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In this paper we review the state of the art on graph privacy with special emphasis on applications to 

online social networks, and we consider some novel aspects which have not been greatly covered in 

the specialized literature on graph privacy. The following key considerations are covered: (i)  choice 

of different operators to modify the graph; (ii) information loss based on the cost of graph operations 

in terms of statistical characteristics (degree, clustering coefficient and path length) in the original 

graph; (iii) computational cost of the operations; (iv) in the case of the aggregation of  two nodes, the 

choice of similar adjacent nodes rather than isomorphic topologies, in order to maintain the overall 

structure of the graph; (v) a statistically knowledgeable attacker who is able to search for regions of 

a simply anonymized graph based on statistical characteristics and map those onto a given node and 

its immediate neighborhood. 
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1. Introduction and Motivation 

Data Privacy in Social Network logs has currently become a key issue. Hundreds of 

millions of users all over the world are generating high volume data logs of their online 
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social network activity and relations. On the one hand, this data represents a threat to an 

individuals' data privacy, and on the other hand the data offers a great analysis 

opportunity to data miners. If we can sufficiently protect the data by anonymization 

techniques, then we can make the social network log data publicly available for 

commercial and academic use. 

As an example of a real dataset, consider the Enron emails dataset
1,2,3

. The Enron 

email dataset consists of a collection of 150 folders corresponding to the emails to and 

from senior management and others at Enron, collected over a period between 1998 to 

2002. The total number of emails sent/received between users is approx. 1.5 million. 

Each email sender/recipient represents a node in the graph and the activity is represented 

by the number of emails sent-received along the edges which connect the users. From this 

dataset we derive the network structure (an edge is created between two nodes 'a' and 'b' 

when at least one email is sent between them). We note that this is a directed graph: 'a' 

may send one or more emails to 'b', but 'b' may not send any emails to 'a'. Apart from the 

structure of the graph itself, the activity data is also derived from the same dataset. 

As another example of a real dataset, consider the Facebook New Orleans dataset. 

This dataset was generated by Viswanath et al
4
 by crawling the Facebook New Orleans 

regional network, and consists of approx. 60,000 users, 1.5 million links between users, 

and 800,000 logged interactions over a two year period. In contrast to the Enron dataset, 

for which a link between users is established when an email is sent/received between 

them, in the case of the Facebook users, a link is established by the explicit solicitation 

and acceptance of friendship. Also, in the Facebook dataset,  'writes to wall' is the activity 

indicator, however it can be argued that users also communicate by other methods, such 

as the 'chat' option of Facebook, or another email system (messenger, ...), social network 

(Twitter, ...) or by some other medium (telephone, physical contact, ...). Each user in 

Facebook has a 'wall' which is a public 'message board' on which they themselves or 

other users who are 'friends' can publish and share their messages, links, photos, and 

general online content. 

We observe that in the case of other social network datasets where the links/edges are 

derived from user interaction, such as those based on emails sent/received, the derived 

graph is a truer representation of 'live' links. However, for these datasets, the potential 

problem of spammers and other types of emails (broadcasting, ...) has to be taken into 

consideration when measuring activity. 

The activity logs we consider have already been simply anonymized, that is, the user 

ids/names have been substituted by randomly generated user ids. The only other 

information in the dataset is the timestamp when a link was created or when a write to 

wall was made. However, a key problem with graph anonymization, which does not 

occur for 'tabular data', is that even though the user ids consist of anonymous numbers, 

the characteristics of the links between them can make individual users and subgroups 

identifiable. Therefore, graph anonymization has to try to retain the statistical 

characteristics of the graph which serve for bona fide analysis, while making it as 
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difficult as possible for a potential attacker to identify individuals and/or subgroups of 

individuals. 

In the recent literature on graph privacy, different attack and defense strategies have 

been proposed, based on classic graph theory and on the specific nature of online social 

networks. Proposed anonymization methods in the literature, include: adding and deleting 

edges, k-partitioning which aggregates nodes in k partitions, creating a list of possible 

labels for each node, and so on. In the case of adding edges, an effective predictive model 

exists which serves as a heuristic for choosing which edges to add while minimizing the 

information loss. On the other hand, attack methods include: crawling and querying the 

graph using different strengths of query and auxiliary knowledge; passive and active 

attacks; the infiltration of the graph with 'sybil' nodes; use of malicious websites and 

auxiliary information, and so on. 

In Section 2 of the paper, we review the state of the art on graph privacy with special 

emphasis on applications to online social networks. In this review we identify some areas 

which can be improved or which have not been considered fully in the specialized 

literature on graph privacy, such as using a complete set of operators to modify the graph, 

basing the choice of elements (nodes/edges) for modification on the statistical properties 

of the graph, basing the re-linking of local neighborhoods on the statistical properties of 

the neighborhood, and the choice of adjacent nodes based on similarity instead of looking 

for isomorphisms globally, as candidates for node aggregation. 

In the light of this, in Section 3 we will consider the following key aspects:  

 

(i)  Choice of six different operators to modify the graph;  

(ii) Calculation of the information loss based on the cost of graph operations in terms of 

statistical characteristics (degree, clustering coefficient and path length) in the 

original graph;  

(iii) Consideration of the computational cost of the operations;  

(iv) Choice of similar adjacent nodes rather than isomorphic topologies (which could be 

in any part of the graph) for node aggregation, in order to maintain the overall 

structure of the graph;  

(v) Assumption of a statistically knowledgeable attacker who is able to search for regions 

of a simply anonymized graph based on statistical characteristics and map those onto 

a given node and its immediate neighborhood. 

 

The structure of the paper is as follows: in Section 2 we present the state of the art in 

graph privacy applied to social networks; in Section 3 we consider how the graph 

statistics are calculated in order to quantify information loss for six different graph 

modifier operators, using a simple topology as an example to calculate the key graph 

statistics of degree, clustering coefficient and path length; finally, in Section 4 we 

summarize the present study.  

Note that in Section 3.2 we comment the incorporation of network activity as a 

weight on the topology. However, this is not incorporated into the statistical calculations 

for information loss, but it is left for a following stage. 



4 D. F. Nettleton & V. Torra 

 

2. Related Work and State of the Art 

Privacy in on-line social networks is a relatively new area of research which however has 

a solid base in classic graph theory and data privacy concepts such a k-anonymity
5
. For 

the purposes of the present study, we will divide the authors into the following themes: 

attack/defense/both; techniques based on/not based on k-anonymization; techniques using 

auxiliary information (additional to the simply anonymized graph structure). 
 

Table 1. Authors classified by different approaches/themes 

Theme Sub-Theme Authors 

 

Focus 

Attack Narayanan6, Backstrom7 

Defense Dwork8, Liu9 

Both Hay10,11, Zhou12, Bhagat13 

Anonymization algorithm k-anonymization Hay10,11, Liu9, Zhou12, Bhagat13. 

Other Dwork8 (e-indistinguishability) 

 

 

 

Adversary information 

Only simply anonymized 

graph topology 

Hay10,11, Liu9, Zhou12 

 

Additional information 

Narayanan6 (overlap between two social 

networks), Bhagat13 

Sybil nodes Backstrom7 

 

In Table 1 we can see a summary of the approaches and focuses of different authors 

based on these themes. In the present work, we are particularly interested in the attack 

and defense of a simply anonymized social network graph without additional information 

being available to the adversary and without the creation of sybil nodes. 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Schematic graph of mutual citations of authors included in the state of the art 
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Fig. 1 shows a schematic representation as a directed graph, of the key publications of the 

state of the art authors for graph privacy, showing their inter-relation in terms of cross-

references. For example, Hay references four other key authors: Backstrom
7
, Liu

9
, Zhou

12
 

and Dwork
8
. On the other hand, Hay

10,11
 is referenced by Bhagat

13
, Liu

9
, Narayanan

6
 and 

Zhou
12

. In the bottom right of Fig. 1 we also show three highly cited references, but 

which do not reciprocally cite the other authors, because the publications were previous 

to the current state of the art, or because they deal with more theoretical concepts of 

graphs, data privacy
5
 or metrics

14
.  

 

2.1 Attack methods 

On the one hand, attack methods can contemplate the analysis of simply anonymized data 

such as in the studies presented by Hay
10,11

 and Zhou
12

. On the other hand, attack 

methods can make use of auxiliary information which may be available (or obtainable), 

in order to de-anonymize users and sub-graphs. The studies presented by Narayanan
6
, 

Backstrom
7
 and Bhagat

13
 exemplify this latter approach.  In the following section, we 

will firstly consider the use of auxiliary information in the attack, and then we will look 

at attacks for which auxiliary information is absent. 

One type of auxiliary information is that obtained by interrelating different 

information sources. Narayanan
6
 presents an attack method, based on background 

information derived from the overlap between the Twitter and Flickr online social 

networks. The Twitter, Flickr and LiveJournal social networks were also considered 

individually. The node mapping re-identification algorithm has two main steps: (i) select 

seeds (nodes in the network); (ii) extend seeds (propagate outwards mapping the 

network) using an iterative method. It makes use of the following properties: eccentricity, 

edge directionality and node degrees. The method revisits nodes to remap when 

necessary and considers reverse matching between the original graph and the new graph 

(that is, the target graph and the original graph are interchangeable). The risk measure is 

the percentage of nodes affected, weighted using a node centrality measure. Each node 

has a weight which is based on its centrality (the number of connections a given node 

has, divided by the total number of nodes in the graph). The results showed a 31% correct 

identification of nodes; 41% of the incorrectly identified were at a distance of 1 from the 

target node; and 55% of the incorrect nodes were in the same geographical location as the 

target node.  

Another way of obtaining auxiliary information is by 'infiltrating' the network we 

wish to expose. Backstrom
7
 presents an 'active' and a 'passive' attack on a dataset 

extracted from the LiveJournal application. 'Active' implies the creation of k new 'sybil' 

nodes to infiltrate the network, whereas 'passive' implies the use of existing user accounts 

which 'find themselves' in the network. The active method has the following steps: 

choose victims (nodes), create sybil nodes, create pattern of links; then it tries to find the 

defined structure in the complete graph using two different search methods. The passive 
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method requires a collusion between k existing users, and makes use of the observation 

that most nodes in a real social network belong to a small uniquely identifiable sub-

graph. Thus, if a user is in coalition with k-1 other users after the release of the network, 

this user will be able to identify additional nodes which are connected to the coalition, 

and therefore learn the edge relations between them. The risk measure (number of nodes 

identified) for the active attack gave that a 90% probability of identification was achieved 

using a coalition of k=7. In the case of the passive attack, a smaller coalition (k=5) gave 

the same probability of identification (90%). However, in the active attack, a limit was 

assigned to the degrees of the users created (in order to remain inconspicuous) whereas 

for the passive attack, there was no such limit. 

In Bhagat
13

, the attack is based on querying the anonymized data. Example queries 

select subpopulations and try to identify patterns of interactions between them, such as: 

(i) how many users are in a subpopulation; (ii) patterns of interaction over a given period 

of time (day, month, ..); (iii) establish if a graph of interactions can be partitioned with 

small 'cuts'. The risk measure is calculated as a 'privacy level' for different values of k and 

m, where is k equal to the number of labels and the frequency of appearance in a list, and 

m is equal to the number of partitions (size of the classes). Also, age groupings are used 

for identification purposes. The risk is then measured as the percentage error on 

classifying based on different values of k, m, and the age groupings. 

In the context of attacks without auxiliary information, that is, based only on a simply 

anonymized graph dataset, we will now consider the studies of Hay
10

, and Zhou
12

.   

Hay
10,11

 considers an attack method which attempts re-identification using two types 

of queries: vertex refinement and sub-graph queries. The risk measure is considered as 

the percentage of nodes whose equivalent candidate set falls into one of a given set of 

buckets (1 node, 2-4 nodes, 5-10 nodes, ...). In Ref. 11, the attack methods (vertex 

refinement and sub-graph queries) are the same as in Ref. 10, as are the risk measures 

(using candidate buckets for nodes). The information loss is also considered in the same 

way as in Ref.10. The datasets used for testing by Hay in Refs. 10 and 11 are 'Enron', 

'Hep-th' (also referred to as 'co-authors' in other papers) and 'Net' (IP address traffic log). 

Finally, Zhou
12

 considers that an attack is on a "neighborhood", in which the 

adversary uses only information about neighbors and node degrees of neighbors in order 

to re-identify a given vertex.  

In conclusion to this section on attack methods, we can say that for the authors we have 

surveyed, attack approaches which use auxiliary information are more common than 

attack approaches which try to 'crack' simply anonymized graph datasets. However, from 

a statisticians point of view, we are interested in making simply anonymized graph 

datasets publicly available for the 'bona-fide' analysis community, and therefore we need 

to protect from the non 'bona-fide' analysts (attackers) whose intention is to de-

anonymize. 
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2.2 Anonymization methods 

Almost all the anonymization methods we have found in the literature use  k-anonymity 

(or something similar) as a basis. Examples of k-anonymity based methods include those 

of Liu
9
, Bhagat

13
, Zhou

12
, Hay

10,11
, Feder

15
 and Wang

16
. One approach we found that 

could be considered somewhat different from k-anonymity is that of Dwork
8
, which 

defines a privacy measure which is denominated as 'e-indistinguishability'. 

The objective of defense methods which use k-anonymity is to produce k-degree 

anonymized degree sequences. That is, there must exist k-1 other nodes in the graph with 

the same degree as the target node. Liu
9
  achieves this by using an algorithm which has 

two steps: (a) degree anonymization; (b) graph construction, which builds a new 

synthetic graph using greedy swap and priority. It makes use of the "small world" 

concept, that is, most nodes are not neighbors of one another but can be reached from 

every other node by a small number of hops. A key aspect is the use of degree 

distribution / sequence information. The potential attacker is not detailed with the 

exception of the assumption that he has a priori knowledge of the degrees of certain 

nodes. The information loss measure is calculated using typical graph statistics: (i) the 

norm of vector of differences between the degree sequences of new graph and the 

original graph;  (ii) the average length of the shortest path between all pairs of reachable 

nodes; (iii) edge intersection, the percentage of edges in a degree anonymous graph 

which are also in the original graph; (iv) clustering coefficient, the average fraction of 

pairs of neighbors of a node that are also connected to each other. Liu
9 

uses synthetic data 

and real data. The synthetic data consists of random graphs, small, graphs and scale free 

(power law degree distribution) graphs. The real data consists of four datasets: 'prefuse', 

'enron', 'powergrid' and 'co-authors'.  

Bhagat
13

 presents a defense method called class-based anonymization, which consists 

of grouping the users into classes, and masking the mapping between the users and the 

nodes that represent them in the anonymized graph. This method is then made more 

robust to attack (but less useful for analysis) by incorporating a partitioning scheme 

similar to Hay's generalization method
11

. The class-based anonymization approach, 

creates a 'label list' of candidate node ids for each vertex in the graph, one of which is the 

real id of the corresponding node.  The attacker does not know which of the candidate 

node ids is the real one. Bhagat's method
13

 differs from other approaches in the literature 

in that the graph includes 'rich data', that is, the users' personal details such as location, 

age, gender, game subscriptions, hobbies, ...). The information loss (utility) is calculated 

using the following statistics: pair queries (single hops in the graph); trio queries (two 

hops); triangle queries (clustering coefficient).  

Zhou, in Ref. 12, presents a sophisticated anonymization algorithm which firstly 

generalizes vertex labels and secondly adds edges. The generalization of vertex labels is 

understood as the grouping together of labels based on some taxonomy. One of the 

precepts of the approach is to create local topologies which are isomorphic with other 

local topologies, achieved by adding edges to them. K-anonymization is used for 
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generalization, which makes use of two assumptions: (i) vertex degree follows a power 

law distribution and (ii) a "small world phenomenon" exists (described in terms of 

diameter and number of hops). Each vertex vV(G) is grouped with at least (k-1) other 

vertices such that their anonymized neighborhoods are isomorphic (that is, of the same 

shape, or can be made to correspond). The method is edge preserving and uses a greedy 

search method to calculate the cost of anonymization and selects the lowest cost. The 

algorithm selects 'seed vertices' which have the largest neighborhoods.  

The overall information loss (quality) measure of Zhou
12

 is calculated by a formula 

which unifies different 'sub-measures', based on (i) vertex generalization and (ii) adding 

edges. For vertex generalization, it is calculated as the percentage of leaf nodes in the 

original graph which are converted to non-leaf nodes in the new graph. For edge 

insertion, it is calculated as the total number of edges added. The final component of 

information loss considers the number of vertices in a new neighborhood which were not 

linked in the original neighborhood. Zhou
12

 uses real datasets ('KDD Cup 2003', 'arxiv' 

(.org) and the 'co-authors' (high energy physics) dataset). 

A method which simply adds and deletes links (edges), is that of Hay
10

, which 

presents a simple graph anonymization technique which selects edges randomly for 

modification. The information loss measure calculates some common graph metrics 

(clustering coefficient, path length distribution, degree distribution, ...) in the graph 

before and after anonymization. The information loss is considered from the point of 

view of an analyst who consults these statistical properties.  

In Ref. 11, Hay extends the work of Ref. 10 to define a more sophisticated 

generalization method based on k-partitioning. The anonymization method generalizes 

the graph into k-partitions (groups nodes and edges into partitions) and publishes the 

anonymized (generalized) graph. The anonymized graph consists of a set of nodes (one 

for each partition) and a set of super-edges, which indicate the density of edges (in the 

original graph) between the partitions they connect. The new graph is optimized to fit the 

original graph with respect to a set of graph properties, by a maximum likelihood method 

using simulated annealing to search the state space 

The problem of anonymizing the underlying graph of interactions in a social network 

is studied in Feder
15

.The authors consider different combinatorial problems which can 

arise from the notion of (k,l)-anonymity in graphs. That is, for every node in the graph 

there exist at least 'k' other nodes that share at least 'l' of its neighbors. Given this 

definition, one example of a combinatorial problem would be: given an input graph how 

can the minimum number of edges to be added be calculated in order to achieve (k,l)-

anonymity of the graph. The authors consider different solutions for this minimization 

problem, and find that for certain values of 'k' and 'l' the problems are solvable in 

polynomial-time, whereas for others they are NP-hard. 

Another approach is that of 'granular computing', which is really referring to 

something similar to aggregation or generalization. Wang
16

 considers privacy protection 

in social network data based on 'granular computing', which consists of grouping 

individuals with the same combination of attribute values into a common pool, or 
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'information granule'. The authors generalize the techniques for protecting personal 

privacy in tabulated data, and propose some metrics for anonymity.  A description logic 

is used as a knowledge representation formalism, and the anonymity metrics are 

considered in open world and closed world contexts. In the former case, the graph may be 

incomplete, whereas in the latter, the graph is assumed to be complete. 

The only method we found which is somewhat different from k-anonymity, is that of 

Dwork
8
. This approach considers perturbation as a sort of 'noise' introduced into the 

dataset, giving rise to an 'e-distinguishability' measure. In Ref. 8, Dwork considers the 

calibration of noise (as an anonymization method) using a 'sensitivity' function which 

depends on the input data. The paper focuses on the processing of tabular databases, 

however a section is devoted to consider the introduction of noise in graphs, by the 

adding and removing of links. It is considered theoretically, how much noise has to be 

added to a graph for the graph to become disconnected, non-expansive and/or poorly 

clustered. Different categories of 'sensitivity' are considered, for example, '1-sensitive'. In 

a graph context, an example of a '1-sensitive' function would be the distance of a given 

graph from the nearest disconnected graph. 

In conclusion to this section on anonymization approaches, we observe that 

generalization is a common approach (concept/class/label generalization). In terms of the 

nodes and edges, this implies that an aggregation operator must be applied to the graph. 

Adding edges (Hay
10

, Zhou
12

) is also an approach which is employed to obtain 

anonymity. However, some key aspects are still only approximations: (i) how do we 

optimally choose nodes for modification in an Online Social Network context in order to 

minimize information loss? (ii) which operators (which act on nodes and edges) are best 

to minimize information loss and achieve anonymity? 

2.3 Other observations and results 

Other interesting works in the social network privacy field are: Klienberg
17,18

 presents an 

exposition of graph mining and privacy issues and state of art; Kossinets
19

 and Kumar
20 

consider how the evolution (growth) of social net works can be modeled and empirically 

measured; Xu
21

 considers a utility based anonymization method based on local recoding 

and with an attribute-based utility measure; Felt
22

 considers privacy protection for social 

network software from a software engineering point of view; Danezis
23

 considers how to 

detect sybil nodes in online social networks with a practical approach and empirical 

evaluation; finally, Bonneau
24

, considers different methods/data sources an attacker can 

make use of inside Facebook: (i) public listings; (ii) false profiles (sybil nodes); (iii) 

profile compromise and phishing; (iv) malicious applications; (v) use of the Facebook 

query language (similar to SQL) to collect information about URL ids. 

As well as the definition of k-anonymity method by Sweeney
5
; the graph privacy 

community often cites some works not specifically on graph privacy, which are worth 

mentioning here: Mislove
14 

which defines the key metrics of a social network; Liben-

Newell
25

, which defines a method for predicting link creation in social networks. 
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3. Proposed graph operators and how they modify graph elements and local 

topology 

In this section we present the main considerations of the current paper: (a) offering a 

comprehensive set of operators for graph modification; and (b) modifying a local node-

edge topology and evaluating the result, based on graph statistics. 

When modifying a graph for anonymization purposes, all of the references we have 

encountered in the state of the art make one of three modifications to a graph: (i) add 

edge; (ii) delete edge; (iii) aggregate nodes (such as in k-anonymity). Thus, there is no 

method which explicitly considers adding and/or deleting individual nodes. Also we find 

a lack of consideration of node disaggregation (dividing a node n1 in two or more nodes 

n2, n3 , ... nn), understood as the inverse process of node aggregation. In general terms, we 

could consider a set of 6 operations, which are the following: 

 

(i) Node addition 

(ii) Node deletion 

(iii) Edge addition 

(iv) Edge deletion 

(v) Node aggregation 

(vi) Node disaggregation 

 

It can been seen that we have not considered 'edge aggregation' or 'edge disaggregation'. 

These operators could be defined as 'higher level' operators which involve several of the 

six operators we have already defined. However, it is our opinion that the complexity of 

applying aggregation and disaggregation of edges, and the possible loss of context of the 

nodes themselves, made them less viable for our present study.   

 

In the following sections, for the sake of brevity, we will only show diagrammatic 

representations for (v) node aggregation and (vi) node disaggregation. 

Another relevant issue is that node aggregation methods found in the state of the 

art
11,12

 apply a k-partitioning in which nodes are chosen for their ability to become 

isomorphic to other nodes, in terms of the topologies of their respective immediate 

neighborhoods. Apart from the high computational cost of comparing nodes to find the 

most similar isomorphically, we also propose that this method is really a 'tabular data' 

approach to anonymization, applied to non-tabular data. As a consequence, this method 

loses the vision of the whole graph topology structure. For example, consider two 

neighborhoods: (i) a lecturer in a Chinese university connected locally to his students and 

some colleague teachers (immediate neighborhood); (ii) a lecturer in a Spanish university 

connected locally to his students and some colleague teachers (immediate neighborhood). 

Applying the isomorphism similarity criteria, these two neighborhoods may be fairly 

similar and therefore the algorithm chooses them to be modified. However, as a 

consequence these two nodes lose some of their relation with respect to the whole graph. 

As they are geographically remote and from different cultures, we would expect the 
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surrounding wider neighborhood (for example, hops between 2 and 4) to be distinct. A 

local pairing method would only aggregate physically adjacent node pairs, where the 

node pair would be chosen with a probability weighted by average graph statistics. For 

example, in the case of the Chinese lecturers, it would be quite probable that we may 

aggregate two students of the Chinese lecturer, if they were also directly linked together, 

given that the statistical properties of two students (of the Chinese lecturer) would 

probably be similar. However, it would not be so probable (although possible) that we 

modify the local topology of the Chinese lecturer with respect to the local topology of the 

Spanish lecturer, something which may happen in Zhou's approach
12

.  Once an 

aggregation operation is realized, we also have to re-link the respective neighbors, taking 

into account the average statistical properties of the nodes in the graph. 

In Fig. 2 we illustrate what we have just described, where the selected nodes and their 

immediate neighborhoods represent the Chinese and the Spanish lecturers. Zhou's 

method
12

 would modify the two selected topologies to obtain isomorphisms, whereas 

local aggregation would carry out separate local modifications to reduce risk of re-

identification. With respect to local topology modifications, it could be said that a local 

aggregation method is focused on minimizing information loss whereas Zhou's method is 

focused on minimizing risk of disclosure. However, a general algorithm could be devised 

(for example, using simulated annealing) which  is driven equally in the fitness function 

by both information loss and risk of disclosure. 

Thus, in the remainder of this Section we will consider how to modify the graph 

structure:   

(a) Operators used to modify the graph and their functionality. 

(b) Statistical measures for representing the graph and for calculating the information  

      loss in terms of the average degree, the clustering coefficient and the shortest path  

      length. 

 

The aspect of incorporating network activity into the calculations is discussed in Section 

3.2, although we do not enter into more detail, given that our current focus are 

topologically based statistics. The incorporation of network activity as a weighting factor 

on the topological statistics will be considered in detail in future work. 

In the following sections, we will use simple examples to illustrate the consequences 

of applying the operators to a graph topology. This will give us insight into how to 

quantify the information loss (by typical graph metrics such as degree, clustering 

coefficient and shortest paths). 
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Fig. 2. Topology showing two distant nodes (in terms of path length) chosen for aggregation based on 

isomorphism 

 

3.1 Evaluating the cost (information loss) of graph modification. 

The following is a simple example which serves to clarify the procedure of calculating 

the information loss. However it does not generalize how graph properties are affected by 

the different modification operators. This would require empirical evaluation with real 

datasets, which is proposed in the conclusions as a next step. 

In this section, for each of the six graph modifier operators (mentioned at the 

beginning of Section 3), we will calculate three standard metrics from graph theory to 

represent the characteristics of the graph:  

(a) Average degree of the nodes in the network . The number of links emanating from 

a given node, to other nodes (initially we will consider all links as non-directional, as in 

undirected graphs). 

(b) Average clustering coefficient of the graph . The average for all users (nodes), of 

the number of friends of a user who are also mutual friends with respect to the total 

possible number of links between those friends: 

       CC  =  Number of links between friends of user i   /     

                                Number of possible links between friends of user i 

For example, if user 1 has N friends, and of those N friends, there are M mutual links 

between them, independent of the link with user 1, then the CC for this 'cluster' will be M 

/ N (N-1). Thus, if N=3 and M=4, then CC = 4 / (3 * (3-1)) = 4 / 6 = 0.66. For the New 

Orleans Facebook dataset
4
 a global CC value of 0.15 was reported.  
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(c) Average shortest path of the graph. For each node we find the shortest number of 

hops to reach every other node, then we calculate the average for the whole graph. The 

average normalized shortest path for the complete original graph is: 

     n    m 

  sp =  ∑ ∑ sp(um, un)      /    ( n × m-1)               (1) 
     1    1 

where sp(um, un) is the shortest path from node um to node un, n being the number of 

nodes in the graph and m the average number of mutually related nodes. 

 

For statistics (a) to (c), first we calculate the metrics for the original graph, then we 

recalculate for the graph resulting from the modification by each of the six operators. 

This enables us to make an initial comparison of the effect of each operator on a local 

topology and make some comparisons between them. 

3.1.1 Computational cost of calculating the statistics that characterize the graph 

In this Section we will consider three aspects: (i) the cost of calculating the statistics for a 

complete graph, which may be the original graph, or a proposed new topology; (ii) the 

cost of calculating the statistics for a neighborhood; (iii) mechanisms for reducing the 

computation cost. 

(i) Cost of calculating the statistics for the whole graph. We define mCS as the cost of 

calculating the statistics that characterize the graph (see Tables 2 and 3): average degree, 

average clustering coefficient and average shortest path for the graph. 

 

 Average degree: (for n nodes × m average number of related nodes) 

 Clustering coefficient: (for n nodes × m average number of related nodes × q 

average number of links between nodes of m) 

 Average shortest path: (for number of possible node pairs np × average number 

of hops between node pairs anh × average number of possible routes between 

each pair anpr) 

This gives:  

Average degree: (n × m) + 

Clustering coefficient: ( n × m × q) + 

Average shortest path: (np × anh × anpr)  

 

mCS  = (n × adn) + ( n × m × q) + (np × anh × anpr) 

 = (n × adn) + ( n × m × q) + (n × n × anh x anpr)                         (2) 

(ii) Cost of calculating the statistics that characterize a neighborhood. A neighborhood 

refers to the nodes which are directly linked to a given node (hops = 1), which is to be the 

objective of some modification by one of the operators. The statistics are calculated a 

maximum of (nn) times, where nn is the number of nodes in the neighborhood, which 

represents the number of possible linking permutations tested in order to find a semi-
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optimum configuration for a neighborhood, when we add, delete or modify a given graph 

element or elements in that neighborhood. The same statistics (degree, clustering 

coefficient and path length) are calculated as for the whole graph, the only difference 

being that in the computational cost calculation we substitute n by nn, where n is the 

number of nodes in the whole graph. However, we only calculate the statistics average 

degree and path length for the nodes in the immediate neighborhood (hops = 1), and the 

clustering coefficient necessarily for neighbors of neighbors (hops = 2). 

(iii) Mechanisms to reduce computation cost. The computation cost is highest if we visit 

the graph in a 'linked list' crawling manner. However, we can clearly make very 

significant savings if we pre-calculate the statistics (degree, clustering coefficient and 

average path length) for each node and place them in a table which allows direct access 

using the node id as a hash-key, for example. The tables would be updated after any 

modifications to the graph, by efficiently propagation. Other methods for efficiently 

representing and processing large graphs, such as compact bitmap representations of the 

topology (nodes and edges), can also be made use of. 

Examples: for illustration, we consider the graph in Fig. 3. We observe that the graph is 

undirected, given that even if it is user u1 who establishes (invites) the establishment of a 

link with users u2, u4 and u7 (who then accept or not the invitation), once established the 

link is bidirectional in terms of information flow, and there is no defined hierarchy in the 

relation. 

 

 
 

 
 
 
 
 
 
 
 

Fig. 3. Graph representation of the relation between                                                                                                     

four users of an online social network 

 

Now we will calculate the metrics for this graph: average degree, average clustering 

coefficient and average shortest path. Average degree (ad) and average clustering 

coefficient (cc) are given in Table 2a, whereas average shortest path (sp) is given in Table 

2b. 
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Table 2a. Degree and clustering coefficient metrics for original graph. 

Node Degree (normalized 

value in parenthesis) 

Clustering coefficient 

u1 3 (1.0) 4 / 6 = 0.66rec 

u2 3 (1.0) 4 / 6 = 0.66rec 

u4 2 (0.66rec) 2 / 2 = 1.0 

u7 2 (0.66rec) 2 / 2 = 1.0 

Average ad = 3.33rec / 4 = 

0.833rec 

cc = 3.33rec / 4 = 0.833rec 

 

Table 2b. Shortest path metrics for original graph (normalized values in parenthesis). 

 u1 u2 u4 u7 Average normalized 

value for node 

u1 0 1 (0.5) 1 (0.5) 1 (0.5) 0.5 

u2 1 (0.5) 0 1 (0.5) 1 (0.5) 0.5 

u4 1 (0.5) 1 (0.5) 0 2 (1.0) 0.66rec 

u7 1 (0.5) 1 (0.5) 2 (1.0) 0 0.66rec 

 
The average shortest path for the original graph, computed from the shortest path given in 

Table 2b, is: 

 

 sp = ( (0.5+0.5+0.5) + (0.5+0.5+0.5)+(0.5+0.5+1.0)+( 0.5+0.5+1.0) ) / 12 = (7 / 12)   

      = 0.5833rec. 

 

Therefore we now have the three normalized descriptive metrics for the original graph: 

ad = 0.833rec , cc = 0.833rec and sp = 0.5833rec. 

 

We now consider the application of the six possible modifications to the graph in Fig. 3, 

and the re-calculation of the corresponding metrics following each modification. 

 Add node u10 . We assume that a new node u10 is added. We now recalculate 

the metrics for the new graph, which gives: ad = 4 ÷ 5 = 0.8 , cc = 2.66rec 

÷ 5 = 0.53rec and sp = 10 ÷ 20 = 0.5. 

 Delete node u4. We assume that node u4 is chosen for deletion. Once deleted, 

we recalculate the metrics, which gives:  ad = 3 ÷ 3 = 1.0 , cc = 3 ÷ 3 = 1.0 

and sp = 6 ÷ 6 = 1.0. 

 Add edge {u7 , u4}. We assume that a new edge {u7 , u4}.  is added. Once 

added, we recalculate the metrics, which gives: ad = 4 ÷ 4 = 1.0 , cc = 4 ÷ 

4 = 1.0 and sp = 12 ÷ 12= 1.0. 

 Delete edge {u1 , u4}. We assume that edge {u1 , u4} is chosen for deletion. 

Once deleted, we recalculate the metrics, which gives: ad = 2.66rec ÷ 4 = 

0.66rec , cc = 2.33 ÷ 4 = 0.58 and sp = 8 ÷ 12 = 0.66rec. 

 Aggregate nodes u7 , u4  → [u7 , u4]. We assume that nodes u7 and u4  are 
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aggregated to form a new node [u7 , u4] (see Fig.4a). We now recalculate 

the metrics, which gives:  ad = 3 ÷ 3 = 1.0 , cc = 3 ÷ 3 = 1.0 and sp = 6 ÷ 

6= 1.0. 

 Disaggregate node u1 → u1a , u1b . We assume that node u1 is 

disaggregated into two new nodes u1a and u1b (see Fig. 4b). We now 

recalculate the metrics, which gives:  ad = 4 ÷ 5 = 0.8 , cc = 2.4 ÷ 5 = 0.48 

and sp = 14 ÷ 20= 0.7. 

 

 

 
 
 
 
 
 
 
 
 
 

  (a)     (b) 

 

Fig. 4. Original graph (Fig. 3) altered by (a) aggregation of nodes u4 and u7  and (b) disaggregation of nodes u1 

into nodes u1a and u1b 

 
We now present the summary of metrics for the six graph operations (Table 3a) and the 

distances from original graph (Table 3b). 

With reference to Table 3b, we observe that the operations with the smallest 

normalized distance from the original graph (interpretable as 'cost') for metric 'ad' are 'add 

node' and 'disaggregate node', both with 0.03. In the case of metric 'cc', the operations 

'delete node', 'add edge' and 'aggregate nodes' have the smallest cost, all with 0.17. For 

metric 'sp', the operations 'delete edge' and 'add node' have the smallest cost, with 0.077 

and 0.083, respectively. Finally, if we add and average the normalized distances of the 

three metrics (last column of Table 3b), we get an overall distance for each operation. We 

see that 'add node' gives the lowest distance of 0.413, followed by 'delete edge' and 

'disaggregate node', both with 0.497.  

Thus, an initial conclusion in terms of the graph topology alone, would be that the 

'cheapest' action is 'add node'. However, we have tried only one possible permutation for 

each operation, and we would need to try all possible permutations in order to choose the 

'cheapest' for each operation, before comparing operations for real data.  
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Table 3a. Summary of metrics for six graph modifications. 

modification ad - average 

degree 

cc - average 

clustering 

coefficient* 

sp = average 

shortest path* 

original graph 0.83 0.83 0.58 

add node 0.80 0.53 0.50 

delete node 1.00 1.00 1.00 

delete edge 0.66 0.58 0.67 

add edge 1.00 1.00 1.00 

aggregate nodes 1.00 1.00 1.00 

disaggregate node 0.80 0.48 0.70 

               *rounded to 2 decimal points for the sake of clarity 

 

Table 3b. Distance between new graph and original graph based on the metrics and                                                         

for each type of modification. 

 

operation ad - average 

degree 

cc - average 

clustering 

coefficient 

sp = average 

shortest path 

Overall         

(ad + cc + sp) 

add node 0.03* 0.30 0.083 0.413 

delete node 0.17 0.17 0.417 0.757 

delete edge 0.17 0.25 0.077 0.497 

add edge 0.17 0.17 0.417 0.757 

aggregate 

nodes 

0.17 0.17 0.417 0.757 

disaggregate 

node 

0.03 0.35 0.117 0.497 

       *minimum distances are indicated in bold italic 

 

3.2 Evaluating the cost (information loss) of graph modification, incorporating 

inter-node activity as a weight. 

In order to incorporate information about activity into the information loss calculation, 

the calculations of Section 3.1 would be repeated, but incorporating inter-node activity as 

an edge/node weight into the cost value, together with the distance metrics. As a 

consequence, edges and nodes with lower activity (below a given limit) would have a 

greater probability of being candidates to be altered by one of the graph operators. 

In the case of the Enron email corpus
1,2,3

, the activity measure is simply the number 

of emails sent/received. This measure is quite a strong indicator of contact between 

individuals, although of course people could also communicate via other means. For 

example, two persons A and B could send just a few key emails, and then communicate 

in more detail by telephone. The Enron email corpus also only records email in which the 

sender or receivers' email is a corporate Enron email (enron.com). Thus if two employees 

of Enron also communicate via their personal 'gmail' account, for example, this activity 

would not be registered in the Enron email corpus. 
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In the case of the Facebook dataset
4
, we would use as the activity measure the 'writes to 

wall' (posts received and sent) over a given time period, between users: activity = (PR + 

PS) ÷ (maxPR + maxPS), where PR are posts received and PS are posts sent. As 

commented in the introduction, this measure has its aspects in favor and its 

inconveniences. 

The activity measure between two users (nodes), w( u1, u2 ) considers both 'posts 

received' and 'posts sent', and this value is assigned to edge {u1, u2}. To calculate the 

weight wu for a node u, we simply sum the weights of all the edges ∑w{u, un} connected 

to node u. 

4. Summary 

In this paper we have presented a vision of the state of the art for graph privacy and 

processing, and we have identified some research areas which have not been covered, 

such as the use of a comprehensive set of operators to modify the graph, and using local 

pairing for node aggregation. This has lead us to define six operators and how each of 

them would operate on a simple local topology of nodes. We have also considered key 

aspects of graph modification: node selection, computational cost and neighborhood re-

linking. In terms of the attacker, we have assumed one who is statistically knowledgeable 

and able to map statistical properties (degree, clustering coefficient, path length) onto a 

given node and its immediate neighborhood topology.  As next steps we propose to apply 

the method to the New Orleans Facebook dataset
4
 and the Enron emails dataset

1,2,3
, and 

benchmark against the k-partitioning method which uses isomorphic similarity for node 

aggregation.  We will also incorporate activity information into the information loss 

calculation as a weighting factor on the topological statistics. 
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