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ABSTRACT
In this paper we investigate whether we can extract the com-
monalities shared by a group of cover songs or versions of the
same musical piece. As a main contribution, we introduce
the concept of cover group thumbnail, which is the most
representative, essential subsequence for an entire group of
versions. Opposed to previous approaches, we jointly con-
sider all versions of a given song to compute a single cover
group template, which then shows a high degree of robust-
ness against version-specific aspects. To compute such a
template, we introduce a modification of a recent audio
thumbnailing technique. To evaluate the reliability of our
conceptual contribution, we consider the task of template-
based version identification, where we show comparable ac-
curacies to existing systems.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Methodologies
and Techniques, Systems.

Keywords
Cover song essence, music retrieval, audio thumbnailing.

1. INTRODUCTION
Cover songs are alternative versions or performances of

a previously recorded musical piece. They often differ from
the original in several musical aspects such as timbre, tempo,
song structure, tonality, arrangement, lyrics, or language of
the vocals. The goal of cover song or version identification
is to automatically detect all versions of the same piece of
music within a pool of documents [4, 11]. Version identifica-
tion is usually interpreted as a document-level retrieval task,
where a single similarity measure is used to globally compare
entire documents. However, successful methods perform this
global comparison on a local basis, obtaining the final simi-
larity measure by comparing parts (or subsequences) of the
documents. The global similarity measure can then be de-
rived from the best matching subsequence (e.g. [3, 6, 11]).
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State-of-the-art approaches based on subsequence match-
ing show a significant robustness to musical variations (see [11]
for a review). However, requiring pairwise comparisons of
the query and all subsequences of all available documents,
they typically do not scale to large audio collections. One
step towards better scalability is to employ indexing schemes
to exhaustively compute similarities between subsequences [2,
3]. Another, possibly complementary strategy is to reduce
the number of subsequences that need to be compared. This
approach, which motivates the present paper, has been rather
unexplored, with the notable exceptions of [6, 8].

In an ideal case, for a given song, a single subsequence that
acts as a compact descriptor or template for the entire song
would be sufficient to identify all other versions. In [6, 8],
music thumbnailing approaches were employed to determine
the most representative and repetitive segment of every sin-
gle song. Typically, such a segment has many (approximate)
repetitions covering large parts of the song [1, 7, 10]. The
underlying assumption is that a segment which represents a
song well might also capture aspects of the different versions.
However, as thumbnails are extracted for each version indi-
vidually, they often do not correspond to the same musical
section in all versions. As a result, performing comparisons
of entire songs only on the basis of the individually extracted
templates might not reveal the desired similarities.

Here, our goal is to extract a single robust template that
captures the essence of a group of cover songs. The idea
is to compute a cover group thumbnail : a single segment
that is the most representative and repetitive segment for
an entire group of versions of a piece. Conceptually, our ap-
proach differs from previous approaches as we jointly con-
sider all versions of a given song to compute a single thumb-
nail, whereas previous approaches consider individual songs
to compute a thumbnail for each version separately [6, 8]
or consider groups in a post-processing step [11]. As shown
in [11], considering entire groups of versions provides mean-
ingful information which can enhance current systems.

As our main technical contribution, we introduce a mod-
ification of a recent audio thumbnailing technique [10], so
that the following problem can be solved: Given a group of
sequences (let say K sequences Y1, . . . , YK) and a reference
sequence X, find a subsequence of X that simultaneously
“explains” in each of the sequences Y1, . . . , YK a suitable
subsequence. The resulting subsequence of X is called cover

group thumbnail and the resultingK subsequences are called
induced subsequences. The hypothesis is that these induced
subsequences are similar to the cover group thumbnail. To
obtain a cover group template that captures aspects of all



versions, we compute an average representation of the cover
group thumbnail and all induced subsequences.
Cover group templates have two main advantages over in-

dividual song templates. First, based on a joint analysis of
an entire group, they show a higher degree of robustness
against some version-specific aspects. Second, a single tem-
plate is sufficient to represent the entire group, which could
potentially allow reducing the computational load in a re-
trieval scenario. In our experiments, we analyze to which
extent an entire cover group can be characterized by a sin-
gle segment and show that cover group thumbnails can be
effectively used for template-based version identification.

2. COVER GROUP TEMPLATES

Audio features: For our approach, we employ chroma fea-
tures capturing information that closely correlates to har-
monic and melodic properties of the audio recording. Such
features have become a widely used tool for processing and
analyzing music data in general [1, 3, 9] and cover song iden-
tification in particular [3, 6, 11]. The 12-dimensional chroma
vectors express how the short-time energy of the audio signal
is distributed over the twelve chroma bands. Following [9],
we decompose the audio signal into subbands that corre-
spond to the semitones of the equal-tempered scale. Then,
adding up the bands that belong to the same pitch class, we
obtain a chroma representation. Finally, applying suitable
quantization, smoothing, downsampling, and normalization
operations results in enhanced chroma features referred to
as CENS1 [9]. In the following, we use a feature resolution
of 1 Hz (one feature vector per second).

Similarity matrices: Let X := (x1, x2, . . . , xN ) and Y :=
(y1, y2, . . . , yM ) be two chroma sequences. Furthermore, let
s be a similarity measure that allows for comparing two
chroma features (we here use the cosine measure). Then,
an M ×N similarity matrix (SM) is obtained by comparing
the elements of X and Y in a pairwise fashion: S(m,n) :=
s(ym, xn) for m ∈ [1 : M ] and n ∈ [1 : N ]. Further-
more, we apply a smoothing filter [9], which results in an
emphasis of diagonal information in S. For handling tonal-
ity differences across the versions, we adopt the concept of
transposition-invariant similarity matrices [7]. We first com-
pute the similarity between the sequence X and each of the
twelve cyclically shifted versions of Y resulting in twelve
similarity matrices. Then, the transposition-invariant SM S
is obtained by taking the point-wise maximum over these
matrices. Subsequently, we apply a thresholding operation
with the goal to achieve that relevant paths lie in the positive
part of S, whereas all other cells receive a negative penalty
δ ≤ 0. As proposed in [11], we use a relative threshold that
identifies cells that belong both to the 30% of the cells hav-
ing the highest value in each column and to the 30% having
the highest value in each row (the remaining cells are set to
δ = −1). These experimentally found parameter values did
not have a significant impact on the results.
In our scenario, we jointly consider similarity matrices for

an entire group of K cover songs. Let Yk denote the feature
sequence of the version k ∈ [1 : K] and Y the concatenation
of the Yk. Furthermore, we fix a version k0 ∈ [1 : K] to serve

1Chroma Energy Normalized Statistics, an implementation
of these features is available online: http://www.mpi-inf.
mpg.de/resources/MIR/chromatoolbox/.
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Figure 1: (a) Similarity matrix for a group of six
versions of Kraftwerk’s “Radioactivity” and optimal
path family. Horizontal lines indicate boundaries
between versions. (b) Fitness scape plot.

as reference and define X = Yk0
. Note that any version

k0 ∈ [1 : K] could act as a reference. Let N denote the
length of X, Mk the length of Yk, and M :=

∑
k∈[1:K]Mk

the length of Y . Then, we compute an M × N similarity
matrix S for the sequence Y and the reference X.

Fig. 1a shows S for a group of K = 6 versions of
Kraftwerk’s Radioactivity. In this example, X = Y1 cor-
responds to the original version and the sequences Yk, k ∈
[2 : 6] are covers. Each path of cells of high similarity within
S indicates the similarity between subsequences of X and Y
given by the projections of the path onto the horizontal and
vertical axis, respectively. In the case that two versions are
very similar, one observes a long path. In the case of musical
variations, however, the paths are often fragmented.

Cover group thumbnail: Let α = [s : t] ⊆ [1 : N ] denote
a subsequence of X specified by its starting point s and end
point t. In [10], a fitness measure is introduced that assigns
to each α a fitness value ϕ(α) ∈ R that simultaneously cap-
tures two aspects. It indicates (i) how well α explains other
subsequences of X and (ii) how much of X is covered by
these subsequences. The thumbnail of X is then defined to
be the subsequence α∗ with maximal fitness ϕ.

In the computation of the fitness measure, the main tech-
nical idea is to assign to α a so-called optimal path family

that reveals the relations between α and all other similar
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Figure 2: Illustration of the modifications of the
thumbnailing algorithm for an excerpt of the sim-
ilarity matrix S(m,n) for n = [s : t] and m = [1 : M ]
corresponding to the subsequence α = [s : t].

subsequences. A path family over α is defined to be a set
P := {p1, p2, . . . , pI} of size I, consisting of paths pi over
α, i ∈ [1 : I]. Fig. 1a shows a path family consisting of
I = 6 paths for the segment α = [269 : 414]. Each path over
α of length L is a sequence pi = ((m1, n1), . . . , (mL, nL))
of cells (mℓ, nℓ) ∈ [1 : M ] × [1 : N ], ℓ ∈ [1 : L], satisfying
n1 = s and nL = t as well as (mℓ+1, nℓ+1) − (mℓ, nℓ) ∈ Ω,
where Ω denotes a set of admissible step sizes. We use
Ω = {(1, 2), (2, 1), (1, 1)}, as it has been shown to perform
well for the task of version identification [9, 11]. Impor-
tantly, a path family induces an entire family of related sub-
sequences αi that are similar to α, given by the projection
to the vertical axis π(pi) := [m1 :mL] of each path pi.
Instead of analyzing songs individually, we here analyze a

group of versions simultaneously. In particular, our goal is
to extract for each segment α of the reference sequence X
exactly one subsequence in each of the versions. To do so,
we modify the original algorithm presented in [10] and use
additional constraints to enforce that the number of paths
equals the number of versions (I = K) and that αi ⊂ Yk

for i = k ∈ [1 : K], i.e., there is exactly one αi in each Yk.
Among all possible subsequences of Yk, αi corresponds to
the one that is most similar to α.
In [10], a dynamic programming algorithm is introduced

for computing optimal path families. Our technical modifi-
cation is twofold (Fig. 2). First, to ensure that no path pi
induces a subsequence in more than one Yk, we insert cells
with a score of −∞ between Yk and Yk+1 for k ∈ [1 : K−1].
As a result, a path which crosses the boundary between two
versions gets a score of −∞ (Note that, because of the step
size condition Ω = {(1, 2), (2, 1), (1, 1)}, two entries with
−∞ are needed). Second, to ensure that there is a path
pi inducing a subsequence in each sequence Yk, we add the
condition that the extraction of a path is stopped at the
end t of α and a new path is started in the next version
Yk+1 (Fig. 2, arrows starting in the last column). As this
is the only way to cross the −∞ rows, the combination of
both modifications ensure that the resulting path family P
consist of exactly one path for each version Yk.
Fig. 1b shows an example of fitness values ϕ(α) ∈ R for

all reference segments α in the form of a scape plot repre-

sentation, where each point corresponds to one subsequence
α represented by its center c(α) := (s + t)/2 and its length
|α| := t − s + 1. The fitness ϕ(α) indicates how well α ex-
plains subsequences of Y and how much of Y is covered by
all these subsequences. The subsequence α∗ = [269 : 414]
having maximal fitness ϕ is considered to be the cover group
thumbnail, the subsequence that best explains and is most
similar to the entire group. The optimal path family over
α∗ encodes the relation between α∗ and the induced subse-
quences α∗

k, one in each of the versions, see Fig. 1a.

Template extraction: To obtain a cover group template
for a given group and reference X = Yk0

, we compute the
thumbnail α∗ and extract the chroma features of the in-
duced subsequences α∗

k. The cover group template is then
obtained by averaging all chroma sequences. Here, we ex-
ploit the multi-alignment between α∗ and α∗

k given by the
paths pk to determine for each chroma vector xn the corre-
sponding vectors yk,m in all versions k ∈ [1 : K]. Actually,
this operation results in a temporal warping which compen-
sates for temporal differences in the versions. Furthermore,
we compensate for possible transpositions by employing a
circular shift strategy [11]. The necessary cyclic shift index
is determined by estimating the global similarity between
X and the warped chroma sequences using the cosine mea-
sure. The shift index with maximum similarity is used to
compensate for a transposition. The final cover group tem-
plate Tk0

with respect to the reference k0 is then obtained
by point-wise averaging all K chroma sequences.

3. TEMPLATE-BASED RETRIEVAL
To quantify our assumption that cover group templates

capture characteristic aspects of a group of versions, and to
evaluate the reliability of cover group thumbnails, we con-
sider the task of cover song identification. Given a cover
group template, we investigate if it is possible to retrieve
all versions of the group from a dataset. We use a dataset
D obtained from [11] that consists of G = 17 groups, each
containing K = 6 versions (|D| = G×K = 102).

Since our goal is to gauge the potential of cover group
templates, in this proof-of-concept experiment we perform
training and evaluation on the same dataset (notice however
that we do not perform any exhaustive parameter tuning).
For each group Gg ⊂ D with g ∈ [1 : G], we compute K tem-
plates Tg,k0

by selecting, in turn, each song k0 ∈ [1 : K] as
reference. Then, we perform retrieval on the whole dataset
employing a subsequence matching strategy. Specifically, we
compare Tg,k0

locally with all chroma subsequences of the
database using a DTW-based distance measure [9]. The fi-
nal distance values for a song are obtained by minimizing
the distances of all subsequences of that song.

Following standard practice [11], we express the retrieval
accuracy in terms ofmean of average precision (MAP). Given
the group Gg of K versions that are relevant to the template
Tg,k0

, we obtain the precision ψg,k0
at rank r ∈ [1 : |D|]

as ψg,k0
= 1

r

∑r

i=1 Γg,k0
(i), where Γg,k0

(r) ∈ {0, 1} indi-
cates whether the version at rank r is contained in Gg. The
average precision ψg,k0

∈ [0, 1] is then defined as ψg,k0
=

1
K

∑|D|
r=1 ψg,k0

Γg,k0
(r). Table 1 shows ψg,k0

values when us-
ing the version k0 ∈ [1 : K] as reference (the higher, the

better). MAP values ψg = 1/K
∑

k0=[1:K] ψg,k0
, ψ

+

g =

maxk0
(ψg,k0

) and ψ
−

g = mink0
(ψg,k0

) are also shown for



g ψg,1 ψg,2 ψg,3 ψg,4 ψg,5 ψg,6 ψg ψg,k0
∗ ψ

+

g ψ
−

g

1 0.41 0.45 0.12 0.57 0.15 0.19 0.31 0.45 0.57 0.12
2 0.90 0.88 0.93 1.00 0.97 0.86 0.92 0.90 1.00 0.86
3 0.47 0.78 0.39 0.42 0.24 0.55 0.47 0.78 0.78 0.24
4 1.00 1.00 1.00 1.00 1.00 0.74 0.96 1.00 1.00 0.74
5 0.93 0.62 0.75 0.80 0.78 0.34 0.70 0.80 0.93 0.34
6 0.64 0.07 0.81 0.81 0.67 0.67 0.61 0.67 0.81 0.07
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 0.59 0.59 0.68 0.51 0.54 0.35 0.54 0.68 0.68 0.35
9 0.94 0.69 0.59 0.67 0.71 0.64 0.71 0.71 0.94 0.59
10 0.88 0.97 0.59 0.78 0.77 0.77 0.79 0.88 0.97 0.59
11 0.97 0.90 1.00 0.88 1.00 0.94 0.95 1.00 1.00 0.88
12 0.74 0.61 0.65 0.69 0.73 0.79 0.70 0.73 0.79 0.61
13 0.61 0.67 0.58 0.37 0.74 0.20 0.53 0.74 0.74 0.20
14 0.42 0.70 0.67 0.65 0.79 0.86 0.68 0.79 0.86 0.42
15 0.86 1.00 1.00 0.86 0.87 1.00 0.93 1.00 1.00 0.86
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
17 1.00 1.00 1.00 0.89 1.00 1.00 0.98 1.00 1.00 0.89
ø 0.78 0.76 0.75 0.76 0.76 0.70 0.75 0.83 0.89 0.57

Table 1: MAPs for each of the 17 cover groups,
consisting of 6 songs each (see text).

each group g ∈ [1 : G]. The values ψg,k0
∗ are obtained by

choosing for each group the reference k0
∗ ∈ [1 : K] that has

maximum fitness k0
∗ = argmaxk0

(ϕ∗
k0
).

The values ψ
+

g indicate the best possible results that can
be achieved by our template-based approach. It turns out

that the average over all groups ψ
+
= 0.89 is similar to the

results for the state-of-the-art subsequence matching algo-
rithm reported in [11], which indicates the potential of a
template-based approach. Note that instead of comparing
all subsequences of all |D| documents with all subsequences
of all |D| documents, one main advantage of our template-
based approach is that we need only to compare G tem-
plates with the subsequences of |D| documents. Thus, as
the number of comparisons and the complexity of the simi-
larity measure is reduced, the template-based approach also
facilitates efficient retrieval.
Importantly, we observed that the selection of a single

template representing a group turned out to be a crucial
step. For some groups (e. g., g = 7, 11, 16, 17) one obtains
rather consistent results for all choices of a reference k0.
For other groups, however, the choice of a reference has a
large influence on the retrieval results. For example, in the
case of the group g = 6, the maximum average precision is
ψ6,k0

= 0.81 when using the reference k0 = 4. However,

with k0 = 2, one only obtains ψ6,k0
= 0.07. One strategy to

select a proper reference is to use the reference k∗0 ∈ [1 : K]
that has maximum fitness (this could also be a potential
application of our approach to querying databases contain-
ing cover groups). For the group g = 6, k∗0 corresponds to
k0 = 5 which results in ψ6,k0

∗ = 0.67. In average over all 17

groups, one obtains ψk0
∗ = 0.83, only a minor reduction in

accuracy in comparison to the ideal case ψ
+
= 0.89.

4. CONCLUSION
The modification of a recent thumbnailing approach al-

lowed us to analyze all versions of the same piece simultane-
ously and to extract a cover group template that is invari-
ant to version-specific aspects: the cover group thumbnail.
We evaluated the reliability of our conceptual contribution
under a cover song retrieval scenario, assuming that all ver-

sions of a song have a common, essential subsequence. First
experiments showed that a template-based cover song iden-
tification system may have the potential of yielding similar
results as state-of-the-art approaches and, as a by-product,
reducing the number of necessary comparisons.

The selection of a reference version, however, turned out
to have a large influence on the resulting templates, which
weakens our assumption of a common subsequencefor all ver-
sions . Being based on chroma features, our approach can
only capture harmonic similarities. In many groups, how-
ever, cover versions are characterized by similarities of the
melody line, bass line, or rhythm pattern [11]. A more ro-
bust cover group template extraction requires additional fea-
tures which capture the many facets of similarities between
cover versions (cf. [5]).
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