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Abstract. Wireless Sensor Networks are generally composed of a large
number of nodes that monitor their surrounding area. The monitoring
capacity of sensors gets altered by the changing conditions of the envi-
ronment and the sensors’ internal state. Sensor coalitions, in which only
the leader transmits information to a sink node, are a means to save
resources when the conditions of the environment are similar around the
sensors in the coalition. In this paper we analyse and formalise such
sensor coalitions and propose an algorithm for coalition formation that
allows the sensors to self-organise with the purpose of performing a good
monitoring of the environment while maximising the life span of the sen-
sor network as a whole. The algorithm uses the quality of the information
fused at the coalition leader and the remaining energy of the sensors as
the basic parameters to alter coalition membership and leadership.

Keywords: Wireless Sensor Networks, Sensor Coalitions, Resourse Sa-
ving Strategies.

1 Introduction

Wireless Sensor Networks (WSN) are becoming widespread thanks to the ad-
vances in electronics and wireless communication [1]. Nowadays, there is a ple-
thora of small low-cost and low-energy consuming sensors able to communicate
via wireless technology. These devices have made many monitoring tasks sim-
pler and cheaper. Typical applications include environment monitoring, security
control, military surveillance or traffic control.

The main challenge that WSNs put to scientists is the management of the
hard constraints imposed on the sensors, like low communication bandwidth,
little processing capacity and limited availability of energy. These restrictions
make it necessary to use a large number of sensors such that there is always
a minimum number of operational sensors to do the task. Multiagent system
technologies can alleviate such constraints by introducing coordination between
sensors to improve the performance of the network. The problem tackled in this
paper is the development of energy-saving data treatment strategies based on
the local activity of nodes in a WSN. In a generic scenario, the task of a sensor
is to sense the environment and send the collected data to a server node, the
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sink. Although WSNs are typically deployed in dynamic environments, periods
of stable conditions may not be infrequent. These periods do not require high
sensing rates as this would entail transmitting the same data every time. The
same argument holds in space: sensors situated close to one another may collect
similar data. This phenomenon can be used to check the spatial coherence of the
collected data and to save nodes’ energy by avoiding the transmission of repeated
samples. The inspirational scenario considered for this algorithm proposal is that
of a WSN deployed over a waterway to monitor its state.

The distributed algorithm proposed in this paper implements a strategy for
(not necessarily optimal) coalition formation in WSNs that trades-off informa-
tion-gain and individual nodes’ energy. The algorithm is fully distributed and
embedded in the sensors functioning regime and we assume that coalitions don’t
serve the individual goals of agents but a shared common goal. The network’s
life span is increased at the cost of sending less data to the sink. The balance
between quality of information collected and available energy is what determines
the network division into coherent coalitions of agents.

In this paper we make two contributions. First, we formalise the problem of
environmental monitoring in WSN through the network division into groups.
Secondly, we propose an algorithm for coalition formation that allows for a tu-
nable trade-off between information-gain at the sink and life-span of the whole
network. To our knowledge no previous works followed this approach.

The rest of the paper is organised as follows. In Section 2, we briefly revise
previous contributions to the important field of coalition formation in Multiagent
Systems. Next, a formal description of the problem studied is presented in Section
3. Section 4 presents a detailed description of the algorithms designed and finally,
we draw some conclusions and discuss future work in Section 5.

2 Related Work

Multiagent Systems (MAS) are composed of distributed autonomous entities
that have to coordinate themselves to solve a common task. A simple coordina-
tion mechanism for agents is to organise themselves in coalitions and cooperate
to share resources or reach goals that cannot be achieved individually. From a
MAS perspective, coalitions represent a fundamental form of organisation.

According to the classical formulation, a coalition is defined as a set of self-
interested agents that cooperate to achieve a common goal. Agents try to ma-
ximise their individual and groupal payoff while guaranteeing coalition stability.
According to [14], Coalition Formation (CF) in MAS can be studied from three
different perspectives:

– Task allocation. Many MAS applications require agents to join forces for a
period of time to solve a task. Contract Net Protocol [13] represents one of
the first proposals in this line.

– Social networks. This research line uses coalitions to study the emergence
and behaviour of organisations in environments without clearly defined in-
teraction mechanisms [4].
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– Game theory. This approach to CF does not focus on the design of agents’
strategies to reach beneficial coalitions [14] but on the coalitions stability.

CF in its traditional view, as a static and centralized problem, is NP complete
[10]. However MAS and WSN do not satisfy this view as their application envi-
ronments are typically dynamic and distributed. Hence, a number of alternative
mechanisms for coalition formation in this kind of environments have been pro-
posed in recent years.

A CF protocol for task accomplishment in situations of incomplete informa-
tion was proposed in [8]. In the studied scenario, agents collaborate and reach de-
cisions for task completion with incomplete information about the environment
and the other agents. The algorithm is based on a negotiation process develo-
ped for a so called Request For Proposals domain. In the considered scenarios,
business agents tackle complex decomposable tasks that require the formation
of groups of provider agents to solve them.

Task oriented CF in dynamic environments faces the problem of high power
and bandwidth consumption due to continuous configuration and reconfiguration
processes to adapt to evolving system conditions and demands. To avoid that
excessive consumption, [2] proposes a task oriented CF in which the coalition du-
ration is calculated following some fuzzy rules applied to the historical behaviour
of the agents and the characteristics of the tasks arriving to the system.

The previously presented approaches do not pay attention to individual agents
cooperative or self-interested will. This dimension was added to the problem
through the concept of clan [7]. A clan designates a set of agents that have
similar aims and who also trust each other. In this case, group formation is not
only determined by task accomplishment, but by the agents’ motivation and
trust relationships, originating mid-term duration coalitions.

The application of CF techniques to sensor networks has also been investi-
gated by numerous researchers. For instance, a vehicle-tracking sensor network
is modelled using disjoint coalitions of homogeneous agents in [12]. Coalitions
are formed via a negotiation process based on local and social marginal utility
calculations that take place in an incomplete information scenario. To maximise
the system’s performance, the proposed algorithm enables the self-organisation
of the system by allowing the agents to discover their organizational relation-
ships during the negotiation process. As a result, CF can also be observed as
an organization method in MAS, as it naturally fits within the structure of a
system without a central authority.

Assuming that sensor networks should be inherently adaptive, [9] proposed
the Dynamic Regions Theory, whose objective is to optimize the overall opera-
tion of the network through its own partition into several regions that execute
different algorithms. The network partition is derived from the individual nodes’
role election according to their current circumstances and the system global po-
licy. The goodness of this approach is shown for a specific gas plume detection
scenario. A new dimension was added to the problem of CF in [5]: the study
of the influence of the network topology structure in a MAS perfomance for
task solving. The system divides itself into disjoint groups to accomplish the
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demanded tasks. During the execution, agents can rewire their connections to
form better coalitions according to a degree of connectivity or a performance-
based policy. A new network adaptation policy for the same situation was intro-
duced in [3]. In this case, agents rewire the network according to their similarity
to their neighbours. They also choose to which group they want to adhere and
when to leave it based on some task and group success indicators. In the same
line, [6] enriched the previous situation by considering a more realistic coalition
model. The two rewiring policies developed in the system were based on per-
formance and a different similarity definition. As in previous approaches, the
implementation of these policies makes the system outperform an initial situa-
tion without rewiring capacity. However, none of these three approaches takes
into account the energy consumption and cost derived from the rewiring pocilies.

Guided by the same objective of extending the lifetime of a glacial sensor net-
work, [11] proposes an algorithm for adaptive sampling. Nevertheless, in contrast
with our approach, nodes there follow an individual policy to reach the desired
objective, while we focus on groupal strategies to save energy in sampling tasks.

In this paper, we propose a CF strategy for homogeneous nodes in a sensor
network scenario. The sensor nodes’ task is to monitor the behaviour of the
environment in which they are deployed. In contrast with previous work, the CF
strategy aims at saving energy to extend the network lifetime. This is achieved by
allowing nodes in a coalition to delegate their sensing tasks to other neighbouring
nodes, while restricting the maximum information loss so that the initial purpose
of the system —faithfully monitoring the environment— is not missed.

3 Problem Formalisation

A WSN is composed of an initial set of cooperative and homogeneous nodes, from
now on agents. Each of these agents has the same sensing capability, so they all
can sample the variable x being observed at any time t. The basic behaviour of
an agent consists of sensing the environment and sending this information to a
server or sink. We will note by A = {a1, . . . , ai, . . . , aN} the set of sensing agents
and by as the sink agent, as /∈ A.

To save system resources, agents will organise themselves into disjoint groups.
Nodes in a group accomplish their tasks together as an entity, avoiding redundant
sensing by the members of the group and unnecessary routing among them.
In this way, we will save energy from the batteries of the sensors. To find an
appropriate division of the agents at time t, we take into account the similarity
of the individual measurements and the topology of the neighbourhood structure.
The unit distance assumed for this scenario is one radio hop. Let d : A × A →
IN, be the distance between two nodes, measured as the minimum number of
radio hops between them. The physical properties of wireless communication
guarantees that d is a metric distance. In particular, d is commutative, d(ai, aj) =
d(aj , ai), and d(ai, ai) = 0.

Now we can define the notion of neighbourhood. Based on d, and given a
set of agents A, we call Ne : A → 2A a neighbourhood function if and only if
aj ∈ Ne(ai) ⇔ d(aj , ai) = 1.
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The coalition structure is then defined for a maximum distance α among its
members. The α parameter influences the maximum achievable size of the groups
in a coalition, and hence the minimum granularity of the network. Given a set
of agents A, an α-distance coalition structure, cα = {gk}k:1..K , is a partition of
A in K groups, such that ∀ai, aj ∈ gk, d(ai, aj) ≤ α. We note by Cα the set of
all possible α-distance coalition structures and the current coalition structure at
time t, as ct.

The criterion that guides the formation of the different coalition structures is
to find (in a distributed manner) the best partition so that the quality of the
information sent to the sink is somehow maximised and the energy consumption
of the system somehow minimised. For such scenario, we propose the Coalition
Oriented Sensing Algorithm (COSA), a tuneable algorithm able to fulfill these
requirements. The adaptability of COSA is achieved through the definition of a
set of parameters p (to be explained later) whose values are going to drive the
agents’ behaviour. For a certain p parameters configuration, agents take different
kinds of sampling and transmission actions, represented as mj ∈ Mp, where Mp

is the set of existing actions available for that p configuration. The objective
of minimising the system’s energy consumption is formally expressed in the
first part of (1). According to this, we try to find an optimal set of parameters
p∗, where mj

i is the action j taken by agent i and Ej represents the energy
consumption associated to that action.

p∗ = arg min
p∈P

ΔE = arg min
p∈P

∑

mj∈Mp

∑

ai∈A

#mj
iEj ; s.t. QoI(t) ≥ ε ∀t. (1)

The identification of p∗ is subject to guaranteeing that the Quality of Information
received at the sink (QoI) is over a certain threshold (second part of (1)). Two
different concepts can be used to measure the quality of the data sent to the
sink: Pearson’s coefficient of variation and Information Entropy.

– Pearson’s coefficient of variation (CV ) is a rough measure of relative dis-
persion. The value of this coefficient for a group gk is CV (gk) = σk

x̄k
.

– Information entropy is a measure of the uncertainty or noise of a random
variable. Applying this concept to this problem implies considering a group’s
entropy an indicator of the dissimilarity among the different group compo-
nents. The information entropy associated to a generic group gk is given by
H(gk) = ln (σk

√
2πe).

According to these two concepts, the quality of the information of the system
for a certain configuration can be expressed in two different ways.

QoI(t)
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(
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1,..,gt
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)−1
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CV =
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CV (gt
k)

nt

)−1

(2)
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3.1 Agents’ Coalition Formation

A group in a coalition structure acts as an entity. The leader of the group senses
and sends a groupal value to the sink. If this value is a good representative of the
variable value in the region covered by the group then, the group, as a whole,
saves energy and computational resources.

Group formation is based on a peer-to-peer negotiation protocol by means of
which agents exchange information about their measurements (adherence) and
their adequacy to represent their neighbours (leadership).

The adherence degree of an agent i to an agent j is a measure that indicates
how much agent i intends to form part of a group led by agent j. The higher
the degree, the higher the intention. The adherence degree is defined as the
product of two factors. To evaluate those factors, we assume that the variable
under observation follows a Normal distribution. Every agent i knows an initial
approximation of that distribution, Ni. This distribution is updated by agent
i as it collects new samples, Ni(f(x̄i, xi), g(σi, xi)) (for appropriate f and g
functions).

The first factor in the adherence expression (3) captures the similarity be-
tween the measurements of agents i and j. It is defined as the quotient between
the probability that the measure of an agent comes from the distribution of
the neighbour (which could then be considered as the same value, perhaps with
some noise) normalised by the maximum probability reachable in that distribu-
tion. To avoid unproductive computation, the similarity factor is only defined
for neighbour agents that verify that ‖xj − xi‖ ≤ dmaxσj , where dmax is a pa-
rameter and xi, σj are the corresponding sample and deviation of agents i and
j. On the other hand, the second factor captures the goodness of the neigh-
bour’s distribution and avoids obtaining high adherence values to neighbours
with wide distributions. To get this, this factor restricts the evaluation to those
neighbours whose σ belongs to the interval (σmin, σmax) through the evaluation
of the distribution’s entropy normalized on that range.

As a result, the evaluation of the degree to which an agent ai may be interested
in being led by one of its neighbours aj is calculated as follows:

adh(ai, aj) =
p(xi,Nj(x̄j , σj))
p(x̄j ,Nj(x̄j , σj))

· (1 − eHj − eHmin

eHmax − eHmin
) (3)

Note that the set of p parameters, as presented previously, can be identified now
as p = 〈dmax, σmin, σmax〉 defined over the space p ∈ IR3. The set of values to
which these parameters are set influence the actions that a node can take.

When an agent receives an adherence value from a neighbour, it has to decide
whether it is interested in becoming the leader of this agent or not. Let us call
P (ai) (potential group) the group formed by ai and the agents willing to become
part of a group led by ai. The attitude of ai as a leader of this group depends on
different factors that can be identified in (4). The first factor is called prestige
and it is an average of the adherence level of the group’s members. The capacity
factor indicates the available energy of the node to act as a leader. This value
is derived from the current energy level of the node minus the security energy
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level (Esl) divided by the maximum energy level available Emax. Esl defines the
minimum energy that the node has to keep to ensure sending one last message
before completely depleting its battery.

Finally, the last factor in (4), representativeness, indicates how well the poten-
tial leader’s measurement fits as a representative of the potential group agents’
measurements. So, ai characterizes the set of data received together with its
own data, that is, the set {x}P (ai), with their mean and standard deviation,
noted as (x̄P (ai), σP (ai)). To encourage the formation of groups with very similar
measurements, an exponential function establishes the divergence growing ratio:
the larger the difference between the leader sample and the mean, the larger
the penalty. Those potential groups whose measurement distribution is very dis-
perse are also penalized through the inclusion of the Pearson’s coefficient in the
equation.

A good group leader is an agent who has enough energy and whose measure-
ments are similar enough to the measurements of the other group members. In
summary, the leadership capacity of an agent ai for its potential group P (ai) is
calculated as follows:

lead(ai, P (ai)) =

∑
aj∈P (ai)

adh(aj , ai)

N
· E(ai) − Esl

Emax
· 1
e|xi−x̄P(ai)|CVP(ai)

(4)

4 Operational Protocol

Agents’ preferences for coalition formation change due to the dynamics of the
environment and the dynamics of the sensors. Based on the values of adherence
and leadership, agents negotiate to form groups, trying to achieve their most
preferred configuration at each time. The default situation is that of every agent
alone constituting a group by itself (led by itself). In this section, we describe
the algorithms that underpin the behaviour of the agents.

4.1 Coalition Formation Protocol

The coalition formation algorithm that all nodes execute can be divided in four
processes that run simultaneously:

– Sample information exchange. This process corresponds to the variable sam-
pling and measurements broadcast.

– Adherence graph construction. Once the agent has calculated the adherence
degrees to its neighbours, it communicates the maximum adherence value to
the corresponding most preferred neighbour.

– Leadership information exchange. Based on the current adherence relation-
ships, the agent calculates and communicates its attitude as a leader towards
the agents willing to adhere to it.



Coalition-Oriented Sensing in Wireless Sensor Networks 455

– Group definition. Depending on the information available for an agent at a
certain moment, it decides whether to stay in its current group (as a leader
or dependant of a leader node), to leave this group to join a different one or
to constitute its own group.

The messages exchanged between sensors in this negotiation follow a classi-
cal agent communication format: performative(sender, addresse(s), msgContent,
[time]). The time field is an optional item that is used depending on the kind of
performative. The set of performatives that the agents use are:

– inform: to indicate the transmission of data (measurements, maximum adhe-
rence and leadership values).

– firmAdherence: to express the desire of the sending node to adhere to the
addressee node.

– ackAdherence: to express the acknowledgment to a previously received firm-
Adherence message.

– break : for a leader node to break a leadership relationship.
– withdraw : for a dependant node to break a leadership relationship.

Note that within the first three processes listed before, only the inform perfor-
mative is used, while the rest of the performatives are used within the group
definition process.

4.2 Generic Agent Behaviour

From an external point of view, it can be said that agents behave in a proactive
and reactive way. Proactive because the core behaviour of an agent is the con-
tinuous process of looking for the best group of neighbours that matches with
its measurement and its state. To achieve this objective, an agent exchanges
messages asynchronously with its neighbours. Reactive because their acts and
decisions are triggered by the observation of the environment and the informa-
tion they receive.

The CF protocol is embedded in the agent behaviour via the execution of
the Information Processing thread and the actions corresponding to the agent
role at any moment (leader or dependant). The role changes along time depen-
ding on the information available at a certain moment (collected and processed
through the Information Processing thread). When an agent is a leader, it starts
sampling the environment and sending the measure to both its neighbours and
the sink. Awaken agents communicate with each other to find an adequate con-
figuration in which some of them may end up asleep for a preestablished time.
Leader agents continue sensing and sending data to the sink according to the
frequency demanded by the application, but this time, they work on behalf of
their depending neighbours. When an agent is not a leader, it can, according
to a certain probability, periodically take part in the CF configuration process
together with all leader agents. This way it can change its state to become a
leader of itself and others, depending on its current conditions.
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Algorithm 1. Information Processing

Data: me: focus node; aj : generic neighbour; al: potential leader; ar: potential
dependant on me; ap: dependant node on me; aL: leader node of me;
D(me): set of dependant nodes on me

case rcvd(inform(aj , me, meas, t))1

updateNeighbourInfo();2

adherence2NeighbourEvaluation();3

updateOwnMaxAdherence();4

if changesOnOwnMaxAdherence5

then
inform(me, al, maxAdh, t);6

end7

end8

case rcvd(inform(aj , me, maxAdh, t))9

inform(me, ar, lead);10

updateNeighbourInfo();11

adherence2NeighbourEvaluation();12

updateOwnMaxAdherence();13

if changesOnOwnMaxAdherence14

then
inform(me, al, maxAdh, t);15

end16

end17

case rcvd(inform(al, me, lead))18

if checkAgainstOwnLead then19

firmAdherence(me, al);20

end21

end22

case rcvd(firmAdherence(ar , me))23

if checkAgainstOwnLead then24

ackAdherence(me,ar);25

updateOwnLeadValue();26

updateDependentGroup();27

end28

end29

case rcvd(ackAdherence(al , me))30

if ¬leader ∧ al! = aL then31

withdraw(me, aL);32

end33

if leader ∧D(me)! = ∅ then34

while D(me)¬ = ∅ do35

break(me, ap);36

end37

end38

updateRoleState(dependant);39

sleep(t);40

end41

case rcvd(break(aL , me))42

updateRoleState(leader);43

end44

case rcvd(withdraw(ap , me))45

D(me)← D(me)\ap;46

updateRoleState(leader);47

end48

The core of the CF process is contained in Algorithm 1. This algorithm has
been designed following a simple reactive structure in which all the actions are
triggered by an event that changes the available information of an agent. This
perspective allows the agent to decouple the different negotiation dialogues it
may be involved in and also the different stages of each process. From a global
point of view, information flows among the agents and it is this flow that makes
agents react.

4.3 Example of Coalition Formation

Figures 1–3 illustrate how the algorithm works and some of the different coali-
tion structures it may originate for a simple scenario of three agents. We start
the illustration in a point where each agent has already been informed of the
adherence preferences of its neighbours. Figure 1 shows the adherence graph
where each agent is linked to its most preferred neighbour at a certain instant.
For instance, agent a1 has informed a2 about its maximum adherence. The
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a1

a2

a3

lead1; lead2

lead2; lead1

lead3; lead2

Fig. 1. Adherence relationships and lead
information at each node

a1

a2

a3

lead2 > lead1

lead2 > lead1

lead2 > lead3

Fig. 2. Lead information evaluation and
firm adherence messages emission

establishment of an adherence relationship implies enriching the information
available for an agent with the leadership attitude of its preferred neighbour
(Algorithm 1, line 10). So agent a2 sends its current leadership attitude to a1

and a3. Agent a2 receives the lead valueof a1 and a3 does not communicate its
lead attitude to any other agent because no one wants to adhere to it. Once an
agent gets the information about its neighbours’ lead attitude, it decides whether
it stands by this relationship or not (lines 18 – 22). This decision is reached by
comparing its own lead value to the neighbour’s one (Fig. 2). Depending on
the agent’s current role (leader or dependant) this comparison could be done
with different thresholds to encourage different desired behaviour of the overall
WSN, i.e., agents could be more or less reluctant to changes or demanding on
their neighbours’ leadership strength.1 As a result of these comparisons, agents
still willing to adhere to a neighbour send formal adherence messages that may
or may not be answered by their potential leaders. When a potential leader re-
ceives a firm adherence message, it checks if it would be as good leader of the
expanded group as it is of its current group. If so, it adds this new agent to
its group, updates its lead attitude and sends an acknowledgement message to
the new node to put it to sleep. On the other hand, if the agent’s leadership
would decrease by accepting the new neighbour, the agent will not answer to the
potential new dependant, that may continue looking for a group to join (lines
23 – 29).

Different group configurations can be reached depending on the sequence of
messages exchanged and the order in which they are received. Figure 3 shows
three possible coalition structure configurations (with different number of groups
each) reachable for this example. Each group of the coalition structure is de-
scribed as a tuple formed by the leader and its set of dependent agents.

In the same way that coalition groups are formed, they can be broken by a
leader or dependant agents (lines 42 – 48 in Algorithm 1) when new information
about neighbours is recieved or when its internal state (e.g. remaining energy)
makes the agent’s preferences change (e.g. joining a different group).

1 The addition of these thresholds would imply changing the set of parameters p to
include them and also changing its definition domain.
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a2

a1 a3

c1 = {{a2, a1}, {a3}}

a2

a1 a3

c3 = {{a2, a1, a3}}

a2

a1 a3

c2 = {{a1}, {a2}, {a3}}

Fig. 3. Three possible resulting coalitions from the situation depicted in Fig. 2

It cannot be said that agents take their decisions and actions based on the
actual situation of the environment (as such information may not be available),
but on the current information about the environment. An agent is continuously
involved in different negotiation processes with all its awaken neighbours and
the decisions it takes are based on its most recent information. The intuition of
the system function is that the more information an agent gets about what is
happening, the more beneficial the coalition will be.

5 Conclusions and Future Work

In this work we have formalised and modelled the problem of coalition for-
mation among distributed agents in a sensor network monitoring a wide area.
For the considered scenario, agents join in coalitions in order to trade-off the
quality of the sensed values and the life span of the network as a whole. The
proposed distributed algorithm specifies the behaviour of the individual agents
to accomplish their tasks and reach an appropriate group organisation. The al-
gorithm’s dynamics entail a changing distributed sampling of the environment,
where the number of samples sent to the sink node depends on the current coali-
tion structure of the network. The proposed algorithm is highly tuneable and
eases the addition of an external control module on it. Currently, the experi-
mentation to test the protocol is ongoing. Future work includes the extension of
the approach over different sampling variable distribution models and different
neighbourhood topologies. The influence of the social network derived from the
preference graph structure on the topology and coalition distribution has also to
be further explored. Finally, the comparison of the results of the algorithms for
the two previously presented problem formulations (the first one based on Pear-
son’s coefficient and the second one based on Information Entropy) will allow to
identify which of the models better fits the experimental solution of the problem
studied.
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