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Abstract

The present paper extends to possibility theory the classical
Lewis triviality result that arises when one tries to identify the
probability of conditionals and conditional probability, and its
way-outs provided by imaging and generalized imaging up-
dating rules. Precisely, after showing that a triviality result,
similar to Lewis’s, holds for conditional possibility measures,
we start exploring an imaging updating rule within the set-
ting of this uncertainty theory and we prove that imaged pos-
sibility indeed represents the possibility of those condition-
als that can be formalized in Lewis’s logics called C2 (where
Stalnaker’s conditional are representable) and C1 (that Lewis
himself described as an appropriate logic for counterfactual
conditionals). Leveraging on recently introduced algebraic
models for the aforementioned logics C2 and C1, we finally
show that imaged possibilities and possibilities of (counter-
factual) conditionals can be uniformly treated in that setting.
Indeed, the canonical way of seeing conditional possibility
measures as simple measures on those algebras offers a priv-
ileged perspective through which one can look at conditional
possibility, imaged possibility and the possibility of condi-
tionals.

1 Introduction
Historically, a fundamental question that has been addressed
at the intersection of knowledge representation and probabil-
ity theory is: can we find a logical connective ▷ whose prob-
ability aligns exactly with the corresponding conditional
probability? More precisely, given a probability P on a
Boolean algebra A, the question is if it possible to define
a binary operator ▷: A×A → A such that for all a, b ∈ A
with b ̸= ⊥

P (b ▷ a) = P (a | b) (1)

This question delves beyond technical considerations,
prompting a deeper examination of conditional probability’s
nature within knowledge representation. Specifically, it in-
vestigates whether conditional probability can be interpreted
and reduced to the probability of a true conditional state-
ment.

Initially, Stalnaker’s conditional (Stalnaker 1968) ap-
peared promising in fulfilling this role, see (Stalnaker 1970).
However, subsequent work by Lewis (1976) and Hájek
(1989) demonstrated that no (truth-functional) conditional
connective within the same Boolean algebra can fulfill this

function without trivializing the probability function. These
“triviality results” hold significant weight, revealing that
conditional probability cannot be directly interpreted as the
probability of a conditional relation definable within the
original Boolean framework.

Building on these insights, Lewis (1976) and Gärdenfors
(1982) showed that the probability of a Stalnaker conditional
b □→ a can be characterized using a more general update
rule for probabilities, called “imaged probability”:

P (b □→ a) = Pb(a). (2)

Here, Pb(·) represents a new probability measure, reflecting
the scenario where b is true and resulting from transferring
all the probability mass of where b is false to the relevant
worlds where b is true. More precisely, a Stalnaker condi-
tional, or equivalently a conditional in the logic C2 in (Lewis
1971), is interpreted with respect to a possible worlds model
Σ = (Ω,S , v) where S is a sphere system that provides a
similarity ordering among worlds, and v is a valuation func-
tion; here b □→ a is deemed true at a world w whenever
a (the consequent) is true in the most similar world where
b (the antecedent) is true. Hence, Pb is the result of trans-
ferring the mass of each non-b-world to its most similar b-
world; in order to perform the imaging update procedure, a
similarity structure over our sample space is needed.

This imaging procedure has become a powerful alterna-
tive to conditionalization for updating probabilities with new
information, e.g. (Pearl 2017). Also, imaging has been
recently employed within the setting of probabilistic belief
change (Rens and Meyer 2017). Notably, it allows for an in-
terpretation as the probability of a suitable conditional state-
ment being true. For instance, Rosella and Flaminio (2023),
following Dubois and Prade (1994), show how to extend the
imaging procedure to Dempster-Shafer belief functions in
order to characterize the probability of Lewis counterfac-
tuals, i.e. conditionals in Lewis’s logic C1 (Lewis 1971).
Finally, in the frame of Theory Change, while (Bayesian)
conditioning can be seen as a sort of a numerical AGM revi-
sion operator (Gärdenfors 1988), imaging seems to be closer
to the notion of update operator in the sense of Katsuno and
Meldelzon (1991), see (Dubois and Prade 1994) for a dis-
cussion on this.

This paper explores a similar question within the frame-
work of possibility theory (Dubois and Prade 1988), where



“possibility measures” are a formal tool to represent uncer-
tainty and knowledge which, unlike probability, rank events
based on their plausibility. Interestingly, possibility theory
also accounts for conditionalization and conditional possi-
bility measures. Hence, analogous questions arise for possi-
bility measures: is it possible to represent conditional possi-
bilities as possibilities of conditionals? If not, how can we
characterize the possibility of conditional logical operators?

We address these questions by proving first a triviality
result for possibility theory demonstrating that no truth-
conditional operator in a Boolean setting can directly cap-
ture (a reasonable notion of) conditional possibilities. Build-
ing on this triviality result, we show that the possibility
of well-known conditionals (like Stalnaker conditional and
Lewis counterfactual) can be characterized using a gener-
alization of “imaged possibility measures” introduced in
(Dubois and Prade 1994). This establishes a deep connec-
tion between logical conditional operators and the imaging
update procedure within possibility theory. We then build
upon those in (Flaminio, Godo, and Ugolini 2021), where
conditional possibilities are represented as “canonically ex-
tended possibility measures” within the so-called Boolean
algebras of conditionals (BACs). Our results allow us to
represent the conditional operators we analysed, along with
their induced imaged possibilities, in a highly expressive al-
gebraic framework.

The main contributions of the present paper can be sum-
marized as follows:

1. Possibilistic Triviality Result. We establish a funda-
mental limitation by proving that no conditional operator
▷: A × A → A within a Boolean algebra can satisfy
the equation Π(b ▷ a) = Π(a | b), where Π denotes a
possibility measure.

2. Possibilities of Conditionals vs Conditional Possibili-
ties. We define possibility and necessity measures over
Lewis-Stalnaker sphere models. This allows us to com-
pute the possibility of conditionals within these frame-
works and study their logical properties from a numerical
perspective.

3. Representation of Possibilistic Imaging. We refine
the definition of possibilistic imaging induced by Lewis-
Stalnaker models, originally proposed by Dubois and
Prade (1994). This refinement allows us to express the
possibility of Lewis-Stalnaker conditionals in terms of the
corresponding imaged possibility (Π(b ▷ a) = Πb(a)).

4. Unified Algebraic Framework. By combining the re-
sults of (Flaminio, Godo, and Hosni 2020) and (Rosella,
Flaminio, and Bonzio 2023), we establish a unified alge-
braic representation for conditional possibility measures
and Lewis-Stalnaker conditionals within the novel frame-
work of Lewis algebras. We further develop an alge-
braic interpretation of the possibility of Lewis-Stalnaker
conditionals in terms of a corresponding canonically ex-
tended possibility measure defined on a suitable Lewis al-
gebra. This connection reveals that possibilities of condi-
tionals, characterized as imaged possibilities, ultimately
correspond to the possibility of modal conditionals within
the Lewis algebras framework.

The paper is structured as follows. Section 2 presents
the triviality result for possibility measures. Section 3 ex-
plores Lewis-Stalnaker semantics, imaged possibility mea-
sures, and characterizes the possibility of a relevant class of
conditionals. Sections 4 and 5 move to the algebraic setting,
applying recent results on conditional possibility and BACs.
Finally, Section 6 concludes the paper.

2 Possibilities, Conditional Possibilities and a
Lewis-style Triviality Result

We assume the reader to be acquainted with the theory of
finite Boolean algebras. For otherwise we recall that for ev-
ery finite Boolean algebra A there exists a finite set Ω such
that A = (A,∧,∨,¬,⊤,⊥) is isomorphic to the powerset
algebra (P(Ω),∩,∪,c ,Ω, ∅) where P(Ω) is the powerset of
Ω and ∩,∪,c denotes the set-theoretic operations of intersec-
tion, union, and complementation, respectively. As we will
further elaborate in Remark 3.2 below, the set Ω can actually
be understood as a set of possible worlds. Recall from (Gi-
vant and Halmos 2009) that every finite Booolean algebra is
atomic and hence, in the powerset representation of A, the
set Ω can be taken to be the set at(A) of the atoms of A. As
a further notation, for every a ∈ A, at≤(a) denotes the set
of atoms of A that stand below a.

Notation 1. To ease the reading and without danger of con-
fusion, for x, y ∈ [0, 1] we will sometimes write x ∨ y and
x∧y instead of max{x, y} and min{x, y} respectively. Sim-
ilarly, if X ⊆ [0, 1] we will write

∨
X =

∨
x∈X x and∧

X =
∧

x∈X x to respectively denote sup{x | x ∈ X}
and inf{x | x ∈ X}.

Possibility theory deals with a type of uncertainty that is
alternative to the one handled by probability theory. Pos-
sibility measures, the mathematical models of such uncer-
tainty theory, were introduced first in (Zadeh 1978) in the
context of fuzzy sets. Later on, the theory has been further
extended and developed by Dubois, Prade and colleagues in
a series of publications (see e.g., (Dubois and Prade 1988;
Dubois and Prade 1991; Dubois and Prade 2014)).

A possibility measure on a Boolean algebra A =
(A,∧,∨,¬,⊤,⊥) is a mapping Π : A → [0, 1] such that

(Π1) Π(⊤) = 1 and Π(⊥) = 0;

(Π2) Π(
∨

i∈I ai) = sup{Π(ai) : i ∈ I}, for {ai}i∈I ⊆ A.

If the Boolean algebra A is finite the above (Π2) can be
equivalently written as

(Π3) Π(a ∨ b) = max{Π(a),Π(b)}.

Given an algebra A we will denote by P(A) (or simply P
whenever A is clear by the context) the set of possibility
measures on A.

The dual of a possibility measure Π : A → [0, 1] is the
mapping N : A → [0, 1], called necessity measure, such
that, for all a ∈ A,

N(a) = 1−Π(¬a).

In the finite setting, possibility and necessity measures are
completely determined by their corresponding (normalized)



possibility distributions on the set of atoms at(A) of the al-
gebra A. Namely, Π : A → [0, 1] is a possibility mea-
sure iff there is a mapping π : at(A) → [0, 1] such that∨

α∈at(A) π(α) = 1 and for all a ∈ A,

Π(a) =
∨
α≤a

π(α) and N(a) =
∧

α≤¬a

1− π(α).

As for conditional possibility measures, there have been
several proposals in the literature, see e.g. (Dubois and Prade
1990; Baets, Tsiporkova, and Mesiar 1999; Coletti and Van-
taggi 2009) and (Walley and de Cooman 1999) for a survey.

To introduce conditional possibility measures in a general
setting, we first need to recall the following notion.
Definition 2.1. A function ∗ : [0, 1]×[0, 1] → [0, 1] is called
a t-norm if it is such that:

(Commutativity): x ∗ y = y ∗ x;
(Associativity): x ∗ (y ∗ z) = (x ∗ y) ∗ z;
(Monotonicity): x ∗ z ≤ y ∗ z, whenever x ≤ y;
(Neutral element): 1 ∗ x = x.

A t-norm ∗ is said to be (left-)continuous if so is with respect
to the usual topology of [0, 1]. Also ∗ is said to be without
zero-divisors if for all x, y ∈ [0, 1], x ∗ y = 0 implies x = 0
or y = 0.

Main examples of continuous t-norms are the
Łukasiewicz t-norm x ∗ y = max(x + y − 1, 0), the
product t-norm x ∗ y = x · y, and the minimum t-norm
x ∗ y = min(x, y). The last two are without zero-divisors.

T-norms are [0, 1]-valued conjunctive operators in the
sense that they are extensions of the {0, 1}-valued Boolean
conjunction truth-function. For every t-norm ∗ one can de-
fine an implication-like operation ⇒: [0, 1]× [0, 1] → [0, 1]
as follows: for all x, y ∈ [0, 1]

x⇒ y =
∨

{z ∈ [0, 1] | x ∗ z ≤ y}.

When ∗ is left-continuous, the supremum above is in fact
a maximum, and ⇒ is called the residuum of ∗ since then
the following residuation condition holds: x ∗ y ≤ z iff
x ≤ y ⇒ z. In such a case, (∗,⇒) is called a residuated pair
(see e.g. the monograph (Klement, Mesiar, and Pap 2000)
for further details). In the rest of this paper, and without loss
of generality, we will assume ∗ to be continuous so that its
residuum ⇒ always exists. Notice that if ∗ is without zero-
divisors, then x⇒ 0 = 0 iff x > 0.

For a given continuous t-norm ∗, let us now recall our
working definition of ∗-conditional possibility function on
A as a primitive notion, which was originally introduced
in (Bouchon-Meunier, Coletti, and Marsala 2002), see also
(Coletti and Vantaggi 2007; Coletti and Vantaggi 2009).

From now on, for every Boolean algebra A we will denote
by A′ the set A \ {⊥} of its positive elements.
Definition 2.2. Given a t-norm ∗, a ∗-conditional possibility
measure on a Boolean algebra A is a binary map Π(· | ·) :
A×A′ → [0, 1] satisfying the following conditions:

(CΠ1) Π(a | b) = Π(a ∧ b | b), for all a ∈ A, b ∈ A′

(CΠ2) Π(· | b) is a possibility measure on A, for each b ∈ A′

(CΠ3) Π(a ∧ b | c) = Π(b | a ∧ c) ∗ Π(a | c), for all a, b, c ∈ A
such that a ∧ c ∈ A′.
We will denote by CP∗(A) (or simply CP∗ when the al-

gebra A is clear by the context) the set of all ∗-conditional
possibilities on A. Also, for any b ∈ A′ we will write
Π

b
(·) to denote the possibility measure on A as ensured by

(CΠ2).
In addition to the axiomatic definition given in Defi-

nition 2.2 above, conditional possibilities can be defined
from an unconditional one and a residuated pair. Indeed,
given a possibility measure Π : A → [0, 1] and a resid-
uated pair (∗,⇒), one can define the following mapping
Π∗ : A×A′ → [0, 1] as follows:

Π∗(a | b) =
{

Π(b) ⇒ Π(a ∧ b), if a ∧ b ̸= ⊥
0, otherwise, (3)

As shown in (Coletti, Petturiti, and Vantaggi 2013), Π∗ is a
∗-conditional possibility in the sense of Definition 2.2, that
is, Π∗ ∈ CP∗(A).
Lemma 2.3. For every possibility measure Π on A and for
every t-norm ∗, Π∗ defined as above is a ∗-conditional pos-
sibility measure, whence it belongs to CP∗(A).

Now, for the same possibility measure Π on A, let

CP∗(Π) = {Π ∈ CP∗ | Π(· | ⊤) = Π(·)}
be the subset of CP∗(A) of those ∗-conditional measures
agreeing with Π on A when fixing the conditional event to
⊤. It is easy to check that, for any a ∈ A,

Π∗(a | ⊤) = Π(⊤) ⇒ Π(⊤ ∧ a) = 1 ⇒ Π(a) = Π(a),

and hence Π∗ ∈ CP∗(Π). Moreover, in (Flaminio, Godo,
and Ugolini 2021) it is shown that Π∗ is the greatest measure
in CP(Π).
Lemma 2.4. For every possibility measure Π on A and a
continuous t-norm ∗, Π∗ ∈ CP∗(Π). Moreover, if Π ∈
CP∗(Π) then Π ≤ Π∗.

Therefore, Π∗ can be intuitively regarded as the least in-
formative ∗-conditional measure extending Π.

Now we can prove the main result of this section.
Theorem 2.5. Let ∗ be a t-norm without zero-divisors and
let A be a finite Boolean algebra. Assume there exists a
binary connective ▷ in A such that, for all a, c ∈ A, Π(a ▷
c) = Π∗(c | a) for all Π ∈ P(A). Then,

Π(a ▷ c) = Π(c)

for all a, c ∈ A such that a ∧ c ̸= ⊥ and Π(a ∧ ¬c) > 0.

Proof. Let us start observing that (a ▷ c) = (a ▷ c)∧⊤ =
(a ▷ c) ∧ (c ∨ ¬c) = ((a ▷ c) ∧ c) ∨ ((a ▷ c) ∧ ¬c).
Therefore, by (Π3)

Π(a ▷ c) = Π(((a ▷ c) ∧ c) ∨ ((a ▷ c) ∧ ¬c))
= max{Π((a ▷ c) ∧ c),Π((a ▷ c) ∧ ¬c)}.

By (CΠ3), since Π∗ ∈ CP∗(Π), by Lemma 2.3 the two
factors in the above expressions are

Π((a ▷ c) ∧ c) = Π∗((a ▷ c) ∧ c | ⊤)
= Π∗(a ▷ c | c) ∗Π∗(c | ⊤)
= Π∗(a ▷ c | c) ∗Π(c),



and
Π((a ▷ c) ∧ ¬c) = Π∗((a ▷ c) ∧ ¬c | ⊤)

= Π∗(a ▷ c | ¬c) ∗Π∗(c | ⊤)
= Π∗(a ▷ c | ¬c) ∗Π(¬c).

Therefore,

Π(a ▷ c) = max(Π∗(a ▷ c | c)∗Π(c),Π∗(a ▷ c | ¬c)∗Π(¬c))
(4)

As anticipated above, for every d ∈ A \ {⊥}, let us write
Πd(·) for Π∗(· | d). Then, Πc and Π¬c are possibility mea-
sures and hence by hypothesis we have:

Π∗(a ▷ c | c) = Πc(a ▷ c) = (Πc)∗(c | a),
Π∗(a ▷ c | ¬c) = Π¬c(a ▷ c) = (Π¬c)∗(c | a).

Let us compute e.g. (Πc)∗. By definition, for all x, y ∈ A
with y ̸= ⊥,

(Πc)∗(x | y) =
{

Πc(y) ⇒ Πc(x ∧ y), if x ∧ y ̸= ⊥
0, otherwise.

Therefore, assuming a ∧ c ̸= ⊥ and using (CΠ1), we have:

(Πc)∗(c | a) = Πc(a) ⇒ Πc(a ∧ c)
= Π∗(a | c) ⇒ Π∗(a ∧ c | c)
= Π∗(a | c) ⇒ Π∗(a | c) = 1.

Analogously, by definition of Π∗, we have:

(Π¬c)∗(c | a) = Π¬c(a) ⇒ Π¬c(a ∧ c)
= Π∗(a | ¬c) ⇒ Π∗(a ∧ c | ¬c)
= Π∗(a | ¬c) ⇒ 0.

Since ∗ has no zero-divisors and Π∗(a | ¬c) > 0, one gets
Π∗(a | ¬c) ⇒ 0 = 0, whence (Π¬c)∗(c | a) = 0. Summing
up, we have:

Π(a ▷ c) =
max(Π∗(a ▷ c | c) ∗Π(c),Π∗(a ▷ c | ¬c) ∗Π(¬c)) =
max((Πc)∗(c | a) ∗Π(c), (Π¬c

∗ (c | a) ∗Π(¬c)) =
max(1 ∗Π(c), 0 ∗Π(¬c)) = Π(c).

That is to say, Π(a ▷ c) = Π(c).

The above leads to a possibilistic version of Lewis’s triv-
iality result. Indeed, let us call a possibility measure Π on
A trivial if there is no pair of elements a, c ∈ A such that
a ∧ c ̸= ⊥ and Π(a ∧ ¬c) > 0 (and thus a ∧ ¬c ̸= ⊥).
Actually, as next lemma shows, trivial possibility measures
are those that assign value 1 to only one atom and 0 to the
rest of the atoms.
Lemma 2.6. A (normalised) possibility measure on A is
trivial iff there exists an atom α ∈ at(A) such that Π(α) =
1 and Π(¬α) = 0.

Proof. Let Supp(Π) = {α ∈ at(A) | Π(α) > 0}. To
prove the left-to-right direction, notice that by hypothesis
|Supp(Π)| = 1 and hence it is clear that Π is trivial.

As for the right-to-left direction, by absurdum, assume
that |Supp(Π)| > 1, and let α1, α2 ∈ Supp(Π). Further let
a = α1 ∨α2, and b = ¬α2. It follows that a∧ b = α1 ≥ ⊥,
while Π(a ∧ ¬b) = Π(α2) > 0, and hence Π is not trivial.

Therefore, the only trivial possibility measures Π are ex-
actly those such that |Supp(Π)| = 1.

Finally, we have below a corollary which is the possibilis-
tic analogue to (Hájek 2011, Theorem in §5). We adapt from
it the following notions: 1) a class C of possibility measures
on A is closed under ∗-conditioning whenever if Π ∈ C then
Π∗(· | a) ∈ C as well for every a ∈ A′; and 2) a conditional
▷ is a possibility ∗-conditional for C if, for any Π ∈ C,
Π(a ▷ c) = Π∗(c | a) holds for all a, c ∈ A.

Corollary 2.7. Let ∗ be a t-norm without zero-divisors. If
a class C of possibility measures on A is closed under ∗-
conditioning, then there is no possibility ∗-conditional ▷ for
C unless the class C consists entirely of trivial possibility
measures.

By Theorem 6 in (Flaminio, Godo, and Marchioni 2012),
in fact, trivial possibility measures are exactly the Boolean
homomorphisms of A to the two-elements Boolean chain 2.

3 Sphere Models and Possibilistic Imaging
The previous results provide a valuable stepping stone,
demonstrating that defining a conditional operator whose
possibility aligns with the corresponding conditional pos-
sibility measure is only feasible when the possibility mea-
sure is trivial. This suggests that, similarly to the case of
probability theory, also possibility theory may benefit from
exploring alternative approaches to information update, par-
ticularly those that can effectively capture conditional rela-
tionships in non-trivial scenarios.

Therefore, a natural question arises: given a conditional
operator ▷, is it possible to characterize its possibility in
terms of an updating procedure different from conditional-
ization? In other words, do conditionals encode a different
notion of possibilistic updating?

The main result of this section is the characterization of
the possibility of Lewis-Stalnaker conditionals in terms of
imaged possibilities, which can be seen as an alternative up-
dating procedure to conditionalization. To show this charac-
terization result, we need first to review the semantic prop-
erties of those conditionals and their models.

Let us recall the definition of a sphere model from (Lewis
1973). In the following we will consider a classical finitely-
generated language L expanded with a new binary con-
nective □→. As usual, φ ♢→ ψ will be a shorthand for
¬(φ □→ ¬ψ).
Definition 3.1. Given a finite set of possible worlds Ω, a
sphere model on Ω for the language L is a system Σ =
(Ω,S , v) where S is a function S : Ω → P(P(Ω)) that
assigns, to each α ∈ Ω, a set Sα of subsets of Ω with the
following properties: for all α ∈ Ω,

(S1) Sα is nested: for all Si, Sj ∈ Sα, either Si ⊆ Sj or
Sj ⊆ Si;

(S2) for all S ∈ Sα, α ∈ S;
(S3) either

⋃
Sα = ∅, or {α} ∈ Sα.

For each propositional variable p ∈ L, v(p) is a subset of Ω.
The map v is extended to compound formulas as follows:

• v(¬Φ) = I \ v(Φ);
• v(Φ ∧Ψ) = v(Φ) ∩ v(Ψ);



• v(φ □→ ψ) = {α ∈ Ω : v(φ) ∩
⋃

Sα = ∅, or ∃S ∈
Sα (∅ ≠ (v(φ) ∩ S) ⊆ v(ψ))}.

Given a sphere model Σ = (Ω,S , v), we write Σ, α ⊩ Φ,
if α ∈ v(Φ).

Conforming to a standard notation we will say that a
sphere model Σ = (Ω,S , v) is

• Centered, if for all α ∈ Ω,
⋂

Sα = {α};

• Absolute, if for all α ∈ Ω,
⋃

Sα = Ω.

In absolute sphere models the evaluation of φ □→ ψ and
φ ♢→ ψ simplifies as follows:

• v(φ □→ ψ) = {α ∈ Ω : ∃S ∈ Sα v(φ) ∩ S ⊆ v(ψ)};

• v(φ ♢→ ψ) = {α ∈ Ω : ∀S ∈ Sα v(φ) ∩ S ̸=
∅ implies v(φ ∧ ψ) ∩ S ̸= ∅}.

From now on we will always assume that the sphere mod-
els we consider are centered and absolute.

Remark 3.2. From now on, to be uniform with the al-
gebraic, rather than logical, framework used in (Flaminio,
Godo, and Hosni 2020) and (Rosella, Flaminio, and Bonzio
2023) on which the present paper builds upon, we will as-
sume without loss of generality the set of possible worlds
of every sphere model Σ = (Ω,S , v) to be the set of atoms
at(A) of a finite Boolean algebra A. Under this assumption,
for simplicity, we can forget about the logical language L
and consider formulas as elements of A, meaning that rather
than looking at formulas in the syntax, we already consider
interpreted formulas as elements of the dual Boolean alge-
bra induced by what we call a Lewis sphere model, that is a
sphere model Σ = (at(A),S , v) where for every a ∈ A,
v(a) = {α ∈ at(A) | α ≤ a} = at≤(a). For example, the
evaluation of a conditional b □→ a becomes v(b □→ a) =
{α ∈ at(A) | ∃S ∈ Sα s.t. at≤(b) ∩ S ⊆ at≤(a)}. We
will denote by L the class of centered and absolute Lewis
sphere models.

We may refer to a conditional b □→ a interpreted in a
Lewis sphere model as a Lewis conditional, or a conditional
in the logic C1. Indeed, the logic induced by the the logical
consequence over Lewis models amounts to the logic C1 in
(Lewis 1971).

It is convenient to display every (absolute) sphere system
Sα = ⟨S0, S1, . . . , Sk⟩ as partition of Ω = at(A) by the
following ordered sequence

⟨Dα
0 , D

α
1 , . . . , D

α
k ⟩

where for all j = 0, . . . , k,

Dα
j = Sj \

⋃
i<j Si.

Thus, the sets Dα
j can be seen as the disjoint rings around α

that determine, in a Lewis model, a total pre-order on at(A).
Let us fix now an element b ∈ A \ {⊥} and a cen-

tered sphere model Σ = (at(A),S , v). Furthermore, let
i0 = min{i | Dβ

i ∩ at≤(b) ̸= ∅} the closest ring to β con-
taining an atom below b according to Σ. Then the set of
worlds/atoms below b that are closest to an atom β is

Σb(β) = Dβ
i0
∩ at≤(b). (5)

Note that, if β ≤ b, then Σb(β) = {β}. Also note that
Σb(β) ̸= ∅ for each β ∈ at(A).

Next lemma gathers different equivalent conditions for
conditional formulas b ♢→ a and b □→ a to hold in a sphere
model.

Lemma 3.3. For every sphere model Σ = (at(A),S , v),
for all α ∈ at(A) and for all a ∈ A and b ∈ A \ {⊥}, the
following are equivalent:

(a) Σ, α ⊩ b ♢→ a;
(b) Σb(α) ∩ at≤(a) ̸= ∅.

Moreover, the following are equivalent as well:

(a’) Σ, α ⊩ b □→ a;
(b’) Σb(α) ⊆ at≤(a).

Proof. The proof directly follows by the definitions given
above. Let us sketch the equivalence between (a) and (b) as
an illustrative example. Suppose that Σ, α ⊩ b ♢→ a and
let S ∈ Sα be the first sphere, in the inclusion order, such
that v(b) ∩ S ̸= ∅. Thus v(b) ∩ S = v(b) ∩ Dα

i0
and so

v(a ∧ b) ∩Dα
i0

= v(a) ∩ v(b) ∩Dα
i0

̸= ∅. By (5) Σb(α) ∩
at≤(a) = Dα

i0
∩ at≤(b) ∩ at≤(a). Thus the claim follows

by what we said in Remark 3.2 according to which for all
d ∈ A, v(d) stands for at≤(d).

Within the wide class L of Lewis sphere models, let us
isolate the subclass of Stalnaker models that we will denote
by S and that are defined, within L, as follows.

Definition 3.4. A Lewis sphere model Σ = (at(A),S , v)
is Stalnaker if for all α ∈ at(A), and displaying Sα as the
sequence ⟨Dα

0 = {α}, Dα
1 , D

α
2 , . . . , D

α
k ⟩ of disjoint rings,

each set Dα
i , for all i = 1, . . . , k, contains a single atom of

A, i.e. |Dα
i | = 1.

The above definition reflects the original idea that the
spheres of Stalnaker models are total orders on the set of
worlds. We may refer to a conditional b □→ a interpreted
in a Stalnaker model as a Stalnaker conditional, or a condi-
tional in the logic C2. Indeed, the logic induced by the the
logical consequence over Stalnaker models amounts to the
logic C2 in (Lewis 1971).

To recall how possibilistic imaging has been approached
in (Dubois and Prade 1994)1, let us fix a Lewis sphere model
Σ = (at(A),S , v) and an element b ∈ A \ {⊥}. Further-
more, recall how Σb(β) is defined in (5) for all β ∈ at(A).

The following is our definition of possibilistic imaging
inspired by the one given in (Dubois and Prade 1994).

Definition 3.5 (Possibilistic imaging). Let A be a finite
Boolean algebra, π be a possibility distribution on at(A),
and Σ a sphere model over at(A). For b ∈ A \ {⊥}, the
possibility imaged at b is the map πb such that, for every
α ∈ at(A),

πb(α) ={
π(α) ∨

∨
{π(β) : β /∈ at≤(b), α ∈ Σb(β)}, if α ≤ b

0, if α ̸≤ b

1Although our definition is slightly different from the one given
by Dubois and Prade, the inspiring idea is taken from their paper.



The intuition is that the weight of an atom β not below
b is transferred to the atoms under b which are closest to β,
according to Σ.

The following easy result shows that the above definition
is sound, i.e., πb is indeed a normalized possibility distribu-
tion on at(A) for all b ̸= ⊥.

Proposition 3.6. For every normalized possibility distribu-
tion π : at(A) → [0, 1] and for every b ∈ A′, πb : at(A) →
[0, 1] is a normalized possibility distribution as well.

Proof. Assume that α0 ∈ at(A) is such that π(α0) = 1.
Then, if α0 ≤ b, one has πb(α0) ≥ π(α0) = 1. Conversely,
if α0 ̸≤ b, consider Σb(α0). Since the sphere systems we
are dealing with are absolute, Σb(α0) ̸= ∅ and, for all β ∈
Σb(α0), πb(β) = 1 by definition of πb. Therefore, πb is
normalized.

Since the sphere models we are considering in this paper
are all centered, i.e. Dβ

0 = {β} for each β ∈ at(A), for
every α, β ∈ at≤(b), α ̸∈ Σb(β) = {β}, and the above
definition can hence be substantially simplified to

πb(α) =
∨

{π(β) : β ∈ Ω, α ∈ Σb(β)}. (6)

Notice that in both definitions if α ̸≤ b, πb(α) = 0.

Example 3.7. By way of example, consider an algebra A,
b ∈ A \ {⊥} and a sphere model Σ such that for α ≤ ¬b,
Σb(α) = {β1, β2, β3} as in Figure 1. Let π be a (normal-
ized) possibility distribution on at(A) such that

π(β1) < π(β2) < π(α) < π(β3).

Then one has that

πb(β1) = πb(β2) = π(α) < πb(β3) = π(β3),

while πb(α) = 0. Figure 1 provides a graphical represen-
tation for the redistribution of the possibilities of the atoms
that do not stand below a fixed b ∈ A \ {⊥}.

Finally, from the imaged possibility distribution πb one
can define the corresponding imaged possibility and neces-
sity measures on A as usual:

Πb(a) =
∨
α≤a

πb(α) and Nb(a) =
∧

α≤¬a

1− πb(α).

Observe that for any distribution π on at(A) and any b ∈ A′,
the imaged possibility at b is such that, for c ∈ A, Πb(c) =
Πb(c ∧ b).

4 Algebraic Models of Lewis Counterfactuals
and Stalnaker Conditionals

Boolean algebras of conditionals have been defined in
(Flaminio, Godo, and Hosni 2020) as algebraic models for
conditional formulas. In a nutshell, given any Boolean al-
gebra A where we represent plain events, its associated
Boolean algebra of conditionals C(A) is defined as a suit-
able quotient of the free Boolean algebra Free(A × A′)
generated by the pair of elements (a, b) for a ∈ A and
b ∈ A′ = A \ {⊥}. Pairs (a, b) ∈ A× A′ are interpreted as

basic conditional events (a | b), and then these basic condi-
tionals are closed under Boolean operations, yielding com-
pound conditionals.

If A is a Boolean algebra with n atoms, i.e. |at(A)| = n,
it is shown in (Flaminio, Godo, and Hosni 2020) that the
atoms of C(A) are in one-to-one correspondence with se-
quences α = ⟨α1, . . . , αn−1⟩ of n − 1 pairwise different
atoms of A, each of these sequences giving rise to an atom
ωα defined as the following conjunction of n− 1 basic con-
ditionals:

ωα = (α1 | ⊤)⊓(α2 | ¬α1)⊓. . .⊓(αn−1 | ¬α1∧. . .∧¬αn−2),
(7)

It is then clear that |at(C(A))| = n!.
Now, let Σ be a (centered and absolute) Lewis sphere

model on at(A). As we did in Section 3, for every α ∈
at(A), let us display the sphere system Sα as

Sα = ⟨D0 = {α}, D1, D2, . . . , Dk⟩
For all α ∈ at(A), let Pathα be the set of maximal paths
through Sα, that is to say, a string σ = ⟨β0, β1, . . . , βn−1⟩
of elements of at(A) belongs to Pathα iff
• β0 = α; and
• ⟨β|Di−1|+1, . . . , β|Di|⟩ is a permutation of the elements in
Di, for each i = 1, . . . , k,
Therefore, for every α ∈ at(A), Pathα fixes the set of

atoms of C(A) that corresponds to the lists being the maxi-
mal paths defined as above. Note that, by (7) every maximal
path σ ∈ Pathα corresponds to one and only one atom of
C(A). We can hence define the following accessibility rela-
tion on at(C(A)):

RΣ = {(ω, ω′) | ω[1] = α, ω′ ∈ Pathα}, (8)

where ω[1] denotes the first element of the sequence associ-
ated to ω. In other words RΣ is such that every atom ω of
C(A) that stands below α accesses every atom ω′ in Pathα.
Notice that RΣ is symmetric on Pathα and no atoms below
α can access any other atom that does not stand below the
same α ∈ at(A).

The relation RΣ hence defines a modal frame on
at(C(A)), FΣ = (at(C(A)), RΣ). This gives a normal
modal operator □Σ : C(A) → C(A) defined as usual: for
all c ∈ C(A)

□Σ(c) =
∨
{ω ∈ at(C(A)) |

∨
(ω,ω′)∈RΣ

ω′ ≤ c}.

It is not difficult to see that □Σ is equivalently defined as

□Σ(c) =
∨

{α ∈ at(A) |
∨

Pathα ≤ c}. (9)

Summing up, starting from a Lewis sphere model Σ =
(at(A),S , v), we have defined a unary operator □Σ on
C(A), and hence the structure (C(A),□Σ) is a Boolean al-
gebra with operator in the sense of (Blackburn, de Rijke, and
Venema 2002)). By Proposition 5.7 in Rosella et al. (2023)
the above is a Lewis algebra in the following sense.
Definition 4.1. (Rosella, Flaminio, and Bonzio 2023) For
every Boolean algebra A, a Lewis algebra of A is a pair
(C(A),□) where □ : A → A satisfies the following condi-
tions (and c1 → c2 stands as usual for ¬c1 ∨ c2 in C(A)):



Figure 1: An illustration on the generalized imaging for possibility measures. The possibility π(α) of the atom α that lays below ¬b (as it
stands on the right-hand-side of the dotted line) is tranferred to the atoms β1, β2, β3 that lay below b and are the closest to α according to Σ.
The curved arrows show how π(β1) and π(β2) move to πb(β1) = πb(β2) = π(α). Conversely, πb(β3) = π(β3) because π(β3) > π(α).

(L1) □(t→ t′) ≤ (□t→ □t′) for all t, t′ ∈ C(A);
(L2) □(a | ⊤) = (a | ⊤) for all a ∈ A;
(L3) □(a | a ∨ b) ⊔ □(b | a ∨ b) ⊔ [□(c | a ∨ b) → □((c |

a) ⊓ (c | b))] = 1 for all a, b, c ∈ A with a, b ̸= ⊥.

In every Lewis algebra (C(A),□), one can clearly define
♢ : C(A) → C(A) as usual: for all c ∈ C(A)

♢c = ¬□¬c.

To fully appreciate the results we will show in the rest of
the present paper, it is important to recall that in (Rosella,
Flaminio, and Bonzio 2023) Lewis algebras have been
shown to be algebraic models for would and might counter-
factuals. Those are interpreted in a Lewis algebra (C(A),□)
as follows: for all a ∈ A and b ∈ A′,

b □→ a = □(a | b) and b ♢→ a = ♢(a | b). (10)

Although every sphere model Σ on at(A) determines a
modal operator □Σ on C(A) and hence a Lewis algebra
(C(A),□Σ) too, not every Lewis algebra arises in this way.
Indeed, for instance, the identity operator id : C(A) →
C(A) satisfies (L1)–(L3) above, but no sphere model Σ in
the sense of Definition 3.1 is such that □Σ = id.

Definition 4.2. Let Σ be a Lewis model on at(A). A Lewis
algebra (C(A),□) is said to be Σ-determined if □ = □Σ.

The next result is a characterization of Stalnaker models
within Lewis’s. To prove it we first need to recall that, for
every Lewis model Σ, the modal operator □Σ defined as in
(9) is a normal necessity operator and, as such, it satisfies
□Σ(c1 ∧ c2) = □Σ(c1) ∧ □Σ(c2), while in general it does
not satisfy □Σ(c1 ∨ c2) = □Σ(c1) ∨□Σ(c2).

Theorem 4.3. A Lewis model is a Stalnaker model iff the
the modal algebra (C(A),□Σ) satisfies

(∨) For all c1, c2 ∈ C(A) such that c1 ∧ c2 = ⊥,
□Σ(c1 ∨ c2) = □Σ(c1) ∨□Σ(c2).

Proof. Left-to-right. For every α ∈ at(A), the unique atom
Pathα stands either below c1 or below c2 because those are

disjoint. Whence the claim directly follows from the defini-
tion of □Λ as in (9).

Right-to-left. Since Σ is not Stalnaker, there exists α ∈
at(A) and an index i0 such that Di0 ∈ Sα is such that
ω1, ω2 ∈ Di0 \

⋃
j<i0

Dj and ω1 ̸= ω2. In other words,
ω1, ω2 ∈ Pathα. Let c = ω1 ∨ ω2 so that ω1 ∧ ω2 = ⊥ and,
directly by (9), □Σ(c) = α but □Σ(ω1) = □Σ(ω2) = ⊥
whence (∨) fails in Σ.

In analogy to the above Theorem 4.3, also a form of con-
ditional excluded middle (CEM) that can be expressed in
terms of the modality □Σ characterizes Stalnaker’s within
Lewis’s models.
Theorem 4.4. A Lewis model Σ is a Stalnaker model iff the
the modal algebra (C(A),□Σ) satisfies

(CEM) □Σ(c) ∨□Σ(¬c) = ⊤

Proof. Left-to-right. For all c ∈ A, c ∧ ¬c = ⊥ and, c ∨
¬c = ⊤ and □Λ(⊤) = ⊤. Hence, by Theorem 4.3, one has
□Λ(c) ∨□Λ(¬c) = □Λ(c ∨ ¬c) = □Λ(⊤) = ⊤.

Right-to-left. Let us consider a Lewis model Σ and the
two atoms ω1, ω2 ∈ at(C(A)) as in the proof of Theo-
rem 4.3. Remember that ω1 and ω2 are such that ω1[1] =
ω2[1] = α. Let ω∗ ≤ α′ with α′ ̸= α and ω∗ ̸= Pathα′

and define c = ω1 ∨ ω∗. Therefore, by (9), □Σc = ⊥ be-
cause in particular c ̸≥

∨
Pathα and c ̸≥

∨
Pathα′ . Also,

□Σ(¬c) ̸= ⊤ and in particular □Σ(¬c) =
∨

at(A) \ {α}
because ω2 ∈ Pathα and ω2 ≤ ¬c, but ω1 ∈ Pathα but
ω1 ̸≤ ¬c. Thus,

∨
Pathα ̸≤ ¬c and hence α ̸≤ □Σ(¬c).

We hence conclude that

□Σ(c) ∨□Σ(¬c) = ⊥ ∨ (
∨

at(A) \ {α}) < ⊤.

Thus Σ does not satisfy (CEM).

5 Canonical Extensions, Possibility of
Couterfactuals and Generalized Imaging

Consider a possibility measure Π on a finite Boolean algebra
A with n atoms with its associated normalized possibility
distribution π and let (∗,⇒) be a residuated pair. We start



by defining a mapping π∗ : at(C(A)) → [0, 1] as follows:
for every atom ω (that for the moment we can think as asso-
ciated to the complete list α = ⟨α1, . . . , αn⟩ without loss of
generality) of the Boolean algebra of conditionals C(A) as
in Equation (7), we define the function π∗ : C(A) → [0, 1]
as follows:

π∗(ωα) = Π(α1) ∗ (Π(¬α1) ⇒ Π(α2))∗
∗ . . . ∗ (Π(

∧n−2
j=1 ¬αi) ⇒ Π(αn−1)).

For the sake of a lighter notation, for all a, b ∈ A we will
henceforth write

Π(a)

Π(b)
≻ in place of Π(b) ⇒ Π(a), so that the

above expression becomes

π∗(ωα) = Π(α1) ∗
Π(α2)

Π(¬α1)
≻ ∗ . . . ∗ Π(αn−1)

Π(
∧n−2

j=1 ¬αi)
≻. (11)

It is proved in (Flaminio, Godo, and Ugolini 2021) that π∗

is a normalized possibility distribution whenever so is π.
We will henceforth denote by µ∗

Π the possibility measure
on C(A) defined by the distribution π∗ and we call it the
∗-canonical extension of Π. Thus, for all c ∈ C(A),

µ∗
Π(c) =

∨
ω∈at(C(A)),ω≤c

π∗(ω).

Its dual necessity measure is defined, for all c ∈ C(A), as
µ∗
N (c) = 1− µ∗

Π(¬c). (12)
Let us remark once again that, given an initial possibility
measure Π : A → [0, 1], the possibility distribution π∗,
and hence µ∗

Π and µ∗
N consequently, depend on the fixed t-

norm ∗ (and its residuum ⇒) needed in the key (11) above.
Importantly, the ∗-canonical extension µ∗

Π : C(A) → [0, 1]
of any normalized possibility measure Π : A → [0, 1] can
be seen as a ∗-conditional possibility in the sense that, for
every basic conditional (a | b) ∈ C(A), it holds

µ∗
Π(“(a | b)”) = Π∗(a | b),

see (Flaminio, Godo, and Ugolini 2021, Theorem 1 and
Corollary1) for further details. Also, the next basic result has
been proved in (Flaminio, Godo, and Ugolini 2021, Lemma
4) and it will be used later in this section.
Proposition 5.1. For every finite Boolean algebra A, every
possibility distribution π : at(A) → [0, 1] and every t-norm
∗, the ∗-canonical extension π∗ of π to at(C(A)) satisfies
that, for every α ∈ at(A),∨

ω∈at(C(A)),ω[1]=α

π∗(ω) = π(α),

Let us now consider a possibility measure Π : A → [0, 1]
and a sphere model Σ = (Ω,S , v) where as usual Ω =
at(A). For every counterfactual b □→ a and might coun-
terfactual b ♢→ a that one can define with elements of A, it
is natural to define their possibility values as follows.
Definition 5.2. Let π : at(A) → [0, 1] be a possibility
distribution and let Σ = (at(A),S , v) be a sphere model.
Then we define the following:

Π(b □→ a) =
∨

{π(α) : Σ, α ⊩ b □→ a}
and

Π(b ♢→ a) =
∨

{π(α) : Σ, α ⊩ b ♢→ a}.

In a completely analogous way the necessity of a (might)
counterfactual is defined from the above and by duality.

The next result gives us a first representation for the pos-
sibility and the necessity of counterfactual formulas in terms
of imaged possibility and imaged necessity measures as de-
fined at the end of the previous section.

Proposition 5.3. For every sphere model on Ω = at(A)
and for all a ∈ A and b ∈ A′, Π(b ♢→ a) = Πb(a) and
N(b □→ a) = Nb(a)

Proof. Thanks to the equivalent claims of Lemma 3.3, by
the equivalence between (a) and (b), one has that for all a ∈
A and b ∈ A \ ⊥,

Πb(a) =
∨
β≤a

πb(β) =
∨
β≤a

(∨
{π(α) : β ∈ Σb(α)}

)
(13)

Also, one from the same Lemma 3.3, the equivalence be-
tween (a) and (b) gives

Π(b ♢→ a) =
∨
{π(α) : α ⊩ b ♢→ a}

=
∨
{π(α) : Σb(α) ∩ at≤(a) ̸= ∅}.

(14)
Thus, (13) and (14) implies Π(b ♢→ a) = Πb(a).

For the second claim, N(b □→ a) = 1 − Π(¬(b □→
a)) = 1−Π(b ♢→ ¬a) = 1−Πb(¬a) = Nb(a).

Our next result finally considers canonical extensions of
possibility and necessity measures on Boolean algebras of
conditionals and the associated modal Lewis algebras that
are Σ-determined for some fixed sphere model Σ. The
following shows that the possibility and necessity of those
(might) counterfactuals that can be expressed within the lan-
guage of Lewis algebras as in (10), are indeed imaged pos-
sibility and necessity.

Theorem 5.4. Given a finite Boolean algebra A and a
sphere model Σ = (at(A),S , v), let (C(A),□) be Σ-
determined. Also, let Π : A → [0, 1] be a possibility mea-
sure and ∗ a t-norm. Then it holds that µ∗

Π(□(a | b)) =
Π(b □→ a) and µ∗

Π(♢(a | b)) = Π(b ♢→ a).

Proof. In the following chains of equalities we will always
assume that ω denotes a generic atom of C(A).

µ∗
Π(□(a | b)) =

∨
ω≤□(a|b) π

∗(ω) =
∨

ω[1]⊩b□→a π
∗(ω)

=
∨

α⊩b□→a

(∨
ω[1]=α π

∗(ω)
)

=
∨

α⊩b□→a π(α) = Π(b □→ a).

The fourth equality follows from Proposition 5.1.
In a similar way, we can prove the second equality where,

again, we will use the result of Proposition 5.1 in the penul-



timate equation.

µ∗
Π(♢(a | b)) =

∨
ω≤♢(a|b)

π∗(ω) =
∨

ω≤¬□¬(a|b)

π∗(ω) =∨
ω ̸≤□(¬a|b)

π∗(ω) =
∨

ω[1]̸⊩b□→¬a

π∗(ω) =∨
ω[1]⊩¬(b□→¬a)

π∗(ω) =
∨

ω[1]⊩b♢→a

π∗(ω) =

∨
α⊩b♢→a

 ∨
ω[1]=α

π∗(ω)

 =
∨

α⊩b♢→a

π(α) =

= Π(b ♢→ a).

The claim is hence settled.

The claims of the above Proposition 5.3 and Theorem 5.4
and be put together as in the next result whose proof, thanks
to (12), is easily obtained by direct computation.
Corollary 5.5. For every finite Boolean algebra A, sphere
model Σ on at(A) and for every possibility measure Π on
A, and t-norm ∗, the following equations hold with respect
to any Σ-determined Lewis algebra (C(A),□).

1. µ∗
Π(♢(a | b)) = Πb(a);

2. µ∗
N (□(a | b)) = Nb(a);

3. µ∗
N (♢(a | b)) ≤ Πb(a) and Nb(a) ≤ µ∗

Π(□(a | b)).
Remark 5.6. It is interesting to observe that, by the identi-
ties in the above Corollary 5.5, imaged possibility and neces-
sities do not depend on the t-norm ∗ that is needed to define
the canonical extensions µ∗

Π and µ∗
N . Thus, take t-norms ∗1

and ∗2 and a basic conditional (a | b) ∈ C(A) such that
µ∗1

Π (a | b) = Π(b) ⇒∗1 Π(a ∧ b) ̸=
̸= Π(b) ⇒∗2 Π(a ∧ b) = µ∗2

Π (a | b).
However, for every Σ-determined Lewis algebra (C(A),□),

µ∗1

Π (□(a | b)) = µ∗2

Π (□(a | b)) = Πb(a).

In other words, the canonical extension µ∗
Π of a possibility

function Π defined on a finite algebra A, composed with
the modal operator □, always results in a specific form of
imaging that does not depend on the particular conditional
possibility µ∗

Π we are dealing with.
Finally, let us analyze the case of Stalnaker models

or equivalently, by Theorem 4.3, of those Lewis algebras
(C(A),□) such that □ satisfies (∨) or equivalently (CEM),
thanks to Theorem 4.4. By Proposition 3.3(4) in (Rosella,
Flaminio, and Bonzio 2023), every Lewis algebra (C(A),□)
satisfies the typical axiom (D) from modal logic, i.e., for
every c ∈ C(A), □c ≤ ♢c. Now, if (C(A),□) satis-
fies (CEM), i.e., □c ∨ □¬c = ⊤, one also has that for
all c ∈ C(A), □c ∨ ¬♢c = ⊤, whence □c ≥ ♢c. Thus,
□c = ♢c holds in every (C(A),□) being a model for Stal-
naker conditionals. Hence, under (CEM), □ is an endomor-
phism of C(A). In this framework the previous Corollary
5.5 simplifies.
Proposition 5.7. For every finite Boolean algebra A, Stal-
naker sphere model Λ on at(A) and for every possibility
measure Π on A, the following hold with respect to any Λ-
determined Lewis algebra:

µ⋆
Π(□(a | b)) = Π(b □→ a) = Π(b ♢→ a) =

µ⋆
Π(♢(a | b)) = Πb(a);

µ⋆
N (□(a | b)) = N(b □→ a) = N(b ♢→ a)

= µ⋆
N (♢(a | b)) = Nb(a).

6 Discussion and Conclusion
This paper revisits the fundamental question of how con-
ditional probabilities relate to probabilities of conditionals
within the framework of possibility theory. Investigating
whether a conditional possibilistic measure can be repre-
sented as a non-conditional possibility of the corresponding
conditional statement holds significant technical and con-
ceptual value. Indeed, by establishing a connection between
conditional possibilistic measures and non-conditional pos-
sibilities, we gain a clearer understanding of the meaning
and significance of values produced by conditional possi-
bility measures. Furthermore, if a conditional possibilistic
measure can be represented as a non-conditional possibil-
ity, we can leverage existing semantic devices for calculating
and representing possibilities to handle conditional possibil-
ities as well. This would significantly advance our ability to
work with and reason about conditional possibilities.

Our work establishes several key findings. First, we
demonstrate a “limitative triviality result” proving that,
within a Boolean setting, no conditional operator can make
its possibility coincide with the corresponding conditional
possibility. This highlights limitations in directly translat-
ing conditional probabilities to possibilistic logic. Second,
we show how to characterize the possibility of well-known
Lewis-Stalnaker conditionals using the concept of “imaged
possibilistic measures”. We then unify these results through
an algebraic perspective based on Lewis algebras. This
framework allows for a general study of the interplay be-
tween conditional possibility measures, imaged possibili-
ties, and possibilities of conditionals.

Our work opens new avenues for research at the inter-
section of philosophical foundations of knowledge represen-
tation, logic, algebra, and uncertainty theory, all centered
around the theme of conditional knowledge and inference.
Here, we outline some promising directions for further ex-
ploration:

1. Possibility Measures and Plausibility Orders. While
some authors, e.g. (Dubois 1986; Dubois and Prade 1988;
Boutilier 1994), have discovered a link between Lewis’s
(1973) comparative possibility operator, ⪯, and the plau-
sibility ranking of events induced by possibility mea-
sures, a deep and systematic logical investigation between
Lewis’s different logics for ⪯ and possibility theory is
still lacking. Some initial results in this direction can
be found in (Fariñas del Cerro and Herzig 1991), where
they show how the logic of qualitative possibility coin-
cides with Lewis’s (1973) logic VN. Building on these
results, we aim to discover new representation theorems
connecting other logics in Lewis’s (1973) hierarchy with
logics underlying different possibility measures.

2. Possibilisitic Imaging and Its Logic. While the logic
underlying possibilistic theory and conditional possibility



has been explored, e.g. (Dubois and Prade 2014), a logical
investigation of imaged possibility measures is still lack-
ing. Building on existing work, this research would clar-
ify the connection between imaged possibility measures
and preferential models, ultimately revealing the underly-
ing logic behind possibilistic imaging.

3. Belief Revision and Belief Updating. An interesting di-
rection for future research would be to explore the poten-
tial impact of the present paper’s findings on belief change
and belief revision theory. It is widely accepted that re-
vision and update are distinct belief change procedures,
e.g. (Katsuno and Mendelzon 1992), (Bonanno 2023),
(Grahne 1998), with the former addressing belief changes
in response to new information about a static world and
the latter accommodating belief updating in response to
changes in a dynamic world. Furthermore, Gärdenfors’s
probabilistic imaging is typically considered an instanti-
ation of belief updating, while probabilistic conditional-
ization is often associated with belief revision, see (Kat-
suno and Mendelzon 1992) and (Dubois and Prade 1994)
for more discussion on this. It would be intriguing to in-
vestigate whether this dichotomy extends to conditional
and imaged possibility measures and how possibilistic
imaging captures a specific notion of belief updating. In
this context, it would be fruitful to investigate the rela-
tionships between our triviality results and Gärdenfors’s
(1986) triviality theorem on belief revision methods and
conditionals, as well as our representation theorem of pos-
sibilistic imaging in terms of counterfactuals and its con-
nections to the logic(s) of belief updating as developed,
for instance, in (Bonanno 2023) and (Grahne 1998).

4. Beyond the Possibilisitic Triviality Result. Our trivi-
ality result relies on some specific general assumptions,
for instance, that our underlying residuated pair (∗,⇒)
is such that ∗ has no zero-divisors. Exploring whether
a triviality result still holds under more general condi-
tions and for different lower conditional possibility mea-
sures within the class CP(Π) would provide valuable in-
sights into the fundamental reasons why a possibility of
a conditional might not correspond to a conditional pos-
sibility. Also, since possibility measures offer a suit-
able framework to represent and reasoning about (condi-
tional) preferences (Benferhat, Dubois, and Prade 2001;
Dubois, Fargier, and Vantaggi 2007), it can be interesting
to explore the interpretation of this triviality result from
this perspective.
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