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Abstract. The research community on complex networks has developed
techniques of analysis and algorithms that can be used by the SAT com-
munity to improve our knowledge about the structure of industrial SAT
instances. It is often argued that modern SAT solvers are able to exploit
this hidden structure, without a precise definition of this notion.

In this paper, we show that most industrial SAT instances have a high
modularity that is not present in random instances. We also show that
successful techniques, like learning, (indirectly) take into account this
community structure. Our experimental study reveal that most learnt
clauses are local on one of those modules or communities.

1 Introduction

In recent years, SAT solvers efficiency solving industrial instances has undergone
a great advance, mainly motivated by the introduction of lazy data-structures,
learning mechanisms and activity-based heuristics [11, 18]. This improvement is
not shown when dealing with randomly generated SAT instances. The reason for
this difference seems to be the existence of a structure in industrial instances [25].

In parallel, there have been significant advances in our understanding of com-
plex networks, a subject that has focused the attention of statistical physicists.
The introduction of these network analysis techniques could help us to under-
stand the nature of SAT instances, and could contribute to further improve the
efficiency of SAT solvers. Watts and Strogatz [24] introduce the notion of small
world, the first model of complex networks, as an alternative to the classical ran-
dom graph models. Walsh [23] analyzes the small world topology of many graphs
associated with search problems in AI. He also shows that the cost of solving
these search problems can have a heavy-tailed distribution. Gomes et al. [14, 15]
propose the use of randomization and rapid restart techniques to prevent solvers
from falling on the long tail of such kinds of distributions.

The notion of structure has been addressed in previous work [14, 16, 13, 17, 3].
In [22] it is proposed a method to generate more realistic random SAT problems
based on the notions of characteristic path length and clustering coefficient. Here

⋆ This research has been partially founded by the CICYT research projects TASSAT
(TIN2010-20967-C04-01/03) and ARINF (TIN2009-14704-C03-01).



we use a distinct notion of modularity. In [6], it is shown that many SAT in-
stances can be decomposed into connected components, and how to handle them
within a SAT solver. They discuss how this component structure can be used to
improve the performance of SAT solvers. However, their experimental investiga-
tion shows that this is not enough to solve more efficiently SAT instances. The
notion of community is more general than the notion of connected components.
In particular, it allows the existence of (a few) connections between communities.
As we discus later, industrial SAT instances use to have a connected component
containing more than the 99% of the variables. Also, in [1] some techniques are
proposed to reason with multiple knowledge bases that overlap in content. In
particular, they discuss strategies to induce a partitioning of the axioms, that
will help to improve the efficiency of reasoning.

In this paper we propose the use of techniques for detecting the community
structure of SAT instances. In particular, we apply the notion of modularity [19]
to detect these communities. We also discuss how existing conflict directed clause
learning algorithms and activity-based heuristics already take advantage, indi-
rectly, of this community structure. Activity-based heuristics [18] rely on the idea
of giving higher priority to the variables that are involved in (recent) conflicts.
By focusing on a sub-space, the covered spaces tend to coalesce, and there are
more opportunities for resolution since most of the variables are common.

2 Preliminaries

Given a set of Boolean variables X = {x1, . . . , xn}, a literal is an expression of
the form xi or ¬xi. A clause c of length s is a disjunction of s literals, l1∨ . . .∨ ls.
We say that s is the size of c, noted |c|, and that x ∈ c, if c contains the literal x
or ¬x. A CNF formula or SAT instance of length t is a conjunction of t clauses,
c1 ∧ . . . ∧ ct.

An (undirected) graph is a pair (V,w) where V is a set of vertices and w :
V × V → R

+ satisfies w(x, y) = w(y, x). This definition generalizes the classical
notion of graph (V,E), where E ⊆ V × V , by taking w(x, y) = 1 if (x, y) ∈ E
and w(x, y) = 0 otherwise. The degree of a vertex x is defined as deg(x) =
∑

y∈V w(x, y). A bipartite graph is a tuple (V1, V2, w) where w : V1 × V2 → R
+.

Given a SAT instance, we construct two graphs, following two models. In the
Variable Incidence Graph model (VIG, for short), vertices represent variables,
and edges represent the existence of a clause relating two variables. A clause
x1 ∨ . . . ∨ xn results into

(

n

2

)

edges, one for every pair of variables. Notice also
that there can be more than one clause relating two given variables. To preserve
this information we put a higher weight on edges connecting variables related by
more clauses. Moreover, to give the same relevance to all clauses, we ponderate
the contribution of a clause to an edge by 1/

(

n

2

)

. This way, the sum of the
weights of the edges generated by a clause is always one. In the Clause-Variable
Incidence Graph model (CVIG, for short), vertices represent either variables or
clauses, and edges represent the occurrence of a variable in a clause. Like in the
VIG model, we try to assign the same relevance to all clauses, thus every edge



connecting a variable x with a clause C containing it has weight 1/|C|. This
way, the sum of the weights of the edges generated by a clause is also one in this
model.

Definition 1 (Variable Incidence Graph (VIG)). Given a SAT instance Γ
over the set of variables X, its variable incidence graph is a graph (X,w) with
set of vertices the set of Boolean variables, and weight function:

w(x, y) =
∑

c∈Γ

x,y∈c

1
(

|c|
2

)

Definition 2 (Clause-Variable Incidence Graph (CVIG)). Given a SAT
instance Γ over the set of variables X, its clause-variable incidence graph is a
bipartite graph (X, {c | c ∈ Γ}, w), with vertices the set of variables and the set
of clauses, and weight function:

w(x, c) =

{

1/|C| if x ∈ c
0 otherwise

3 Modularity in Large-Scale Graphs

To analyze the structure of a SAT instance we will use the notion of modularity
introduced by [20]. This property is defined for a graph and a specific partition of
its vertices into communities, and measures the adequacy of the partition in the
sense that most of the edges are within a community and few of them connect
vertices of distinct communities. The modularity of a graph is then the maximal
modularity for all possible partitions of its vertices. Obviously, measured this
way, the maximal modularity would be obtained putting all vertices in the same
community. To avoid this problem, Newman and Girvan define modularity as the
fraction of edges connecting vertices of the same community minus the expected
fraction of edges for a random graph with the same number of vertices and same
degree.

Definition 3 (Modularity of a Graph). Given a graph G = (V,w) and a
partition P = {P1, . . . , Pn} of its vertices, we define their modularity as

Q(G,P ) =
∑

Pi∈P

∑

x,y∈Pi

w(x, y)

∑

x,y∈V

w(x, y)
−









∑

x∈Pi

deg(x)

∑

x∈V

deg(x)









2

We call the first term of this formula the inner edges fraction, IEF for short,
and the second term the expected inner edges fraction, IEFe for short. Then,
Q = IEF− IEFe.

The (optimal) modularity of a graph is the maximal modularity, for any
possible partition of its vertices: Q(G) = min{Q(G,P ) | P}



Since the IEF and the IEFe of a graph are both in the range [0, 1], and,
for the partition given by a single community, both have value 1, the optimal
modularity of graph will be in the range [0, 1]. In practice, Q values for networks
showing a strong community structure range from 0.3 to 0.7, higher values are
rare [20].

There has not been an agreement on the definition of modularity for bipartite
graphs. Here we will use the notion proposed by [4] that extends Newman and
Girvan’s definition by restricting the random graphs used in the computation of
the IEFeto be bipartite. In this definition, communities may contain vertices of
V1 and of V2.

Definition 4 (Modularity of a Bipartite Graph). Given a graph G =
(V1, V2, w) and a partition P = {P1, . . . , Pn} of its vertices, we define their
modularity as

Q(G,P ) =
∑

Pi∈P

∑

x∈Pi∩V1
y∈Pi∩V2

w(x, y)

∑

x∈V1
y∈V2

w(x, y)
−

∑

x∈Pi∩V1

deg(x)

∑

x∈V1

deg(x)
·

∑

y∈Pi∩V2

deg(y)

∑

y∈V2

deg(y)

There exist a wide variety of algorithms for computing the modularity of a
graph. Moreover, there exist alternative notions and definitions of modularity
for analyzing the community structure of a network. See [12] for a survey in the
field. The decision version of modularity maximization is NP-complete [8]. All the
modularity-based algorithms proposed in the literature return an approximated
lower bound for the modularity. They include greedy methods, methods based
on simulated annealing, on spectral analysis of graphs, etc. Most of them have
a complexity that make them inadequate to study the structure of an industrial
SAT instance. There are algorithms specially designed to deal with large-scale
networks, like the greedy algorithms for modularity optimization [19, 9], the label
propagation-based algorithm [21] and the method based on graph folding [7].

The first described algorithm for modularity maximization is a greedy method
of Newman [19]. This algorithm starts by assigning every vertex to a distinct
community. Then, it proceeds by joining the pair of communities that result
in a bigger increase of the modularity value. The algorithm finishes when no
community joining results in an increase of the modularity. In other words, it
is a greedy gradient-guided optimization algorithm. The algorithm may also
return a dendogram of the successive partitions found. Obviously, the obtained
partition may be a local maximum. In [9] the data structures used in this basic
algorithm are optimized, using among other data structures for sparse matrices.
The complexity of this refined algorithm is O(md log n), where d is the depth
of the dendogram (i.e. the number of joining steps), m the number of edges
and n the number of vertices. They argue that d may be approximated by log n,
assuming that the dendogram is a balanced tree, and the sizes of the communities
are similar. However, this is not true for the graphs we have analyzed, where the



sizes of the communities are not homogeneous. This algorithm has not been able
to finish, for none of our SAT instances, with a run-time limit of one hour.

An alternative algorithm is the Label Propagation Algorithm (LPA) proposed
by [21] (see Algorithm 1). Initially, all vertices are assigned to a distinct label,
e.g., its identifier. Then, the algorithm proceeds by re-assigning to every vertex
the label that is more frequent among its neighbors. The procedure ends when
every vertex is assigned a label that is maximal among its neighbors. The order
in which the vertices update their labels in every iteration is chosen randomly. In
case of a tie between maximal labels, the winning label is also chosen randomly.
The algorithm returns the partition defined by the vertices sharing the same
label. The label propagation algorithm has a near linear complexity. However,
it has been shown experimentally that the partitions it computes have a worse
modularity than the partitions computed by the Newman’s greedy algorithm.

The Graph Folding Algorithm (GFA) proposed in [7] (see Algorithm 2) im-
proves the Label Propagation Algorithm in two directions. The idea of moving
one node from one community to another following a greedy strategy is the same,
but, instead of selecting the community where the node has more neighbors, it
selects the community where the movement would most increase the modularity.
Second, once no movement of node from community to community can increase
the modularity (we have reached a (local) modularity maximum), we allow to
merge communities. For this purpose we construct a new graph where nodes are
the communities of the old graph, and where edges are weighted with the sum
of the weights of the edges connecting both communities. Then, we apply again
the greedy algorithm to the new graph. This folding process is repeated till no
modularity increase is possible.

4 Modularity of SAT Instances

We have computed the modularity of the SAT instances used in the 2010 SAT
Race Finals (see http://baldur.iti.uka.de/sat-race-2010/). They are 100
instances grouped into 16 families. These families are also classified as cryptog-
raphy, hardware verification, software verification and mixed, according to their
application area. All instances are industrial, in the sense that their solubility
has an industrial or practical application. However, they are expected to show a
distinct nature.

We have observed that all instances of the same family have a similar mod-
ularity. Therefore, in Table 1, we only show the median of these values. We
present the modularities obtained by LPA on the graphs VIG and CVIG, and
by GFA on the graphs VIG. We have re-implemented both algorithms, and in the
case of LPA, we have developed a new algorithm adapted for bi-partite graphs.
The GFA algorithm is not yet adapted for bipartite graphs. We also study the
connected components as in [6].

We have to remark that both algorithms give a lower bound on the modular-
ity, hence we can take the maximum of both measures as a lower bound. Having
this in mind, we can conclude that, except for the grieu family, all families show



Algorithm 1: Label Propagation Algorithm (LPA). The function
most freq label returns the label that is most frequent among a set of ver-
tices. In case of tie, it randomly chooses one of the maximal labels.

function most freq label(v,N)1

SL :={L[v] | v ∈ N};2

for l ∈ SL do3

freq[l] :=
∑

v′∈N

l=L[v′]

w(v, v′)
4

Max := {l ∈ SL | freq[l] = max{freq[l] | l ∈ SL}};5

return random choose(Max)6

7

Input: Graph G = (X,w)
Output: Label L
for x ∈ X do L[x] := x; freq[x] := 0;;8

repeat9

ord := shuffle(X);10

changes := false;11

for i ∈ X do12

(l, f) := most freq label(i,neighbors(i));13

changes := changes ∨ f > freq[i];14

L[i] := l;15

freq[i] := f16

until ¬changes ;17

a clear community structure with values of Q around 0.8. In other kind of net-
works values greater than 0.7 are rare, therefore the values obtained for SAT
instances can be considered as exceptionally high.

As one could expect, we obtain better values with GFA than with the LPA
algorithm. The reason for this better performance is that, whereas in the LPA we
use the most frequent label among neighbors (in order to assign a new community
to a node), in the GFA we select the label leading to a bigger increase in the
modularity. The latter is clearly a better strategy for obtaining a bigger resulting
modularity. Moreover, in the GFA a further step is added where communities
can be merged, when no movement of a single node from one community to
another leads to a modularity increase.

If we compare the modularity values for the VIG model (obtained with the
LPA) with the same values for the CVIG model, we can conclude that, in general,
these values are higher for the CVIG model. It could be concluded that the
loss of information, during the projection of the bipartite CVIG graph into the
VIG graph, may destroy part of the modular structure. However, this is not
completely true. Suppose that the instance has no modular structure at all,
but all clauses are binary. We can construct a partition as follows: put every
variable into a distinct community, and every clause into the same community
of one of its variables. Using this partition, half of the edges will be internal, i.e.
IEF = 0.5, IEFe will be nearly zero, and Q ≈ 0.5. Therefore, we have to take
into account that using Barber’s modularity definition for bipartite graphs, as



Algorithm 2: Graph Folding algorithm (GFA)

function OneLevel(GraphG = (X,w)) : Label L1

foreach i ∈ X do L[i] := i repeat2

changes := false;3

foreach i ∈ X do4

bestinc := 0;5

foreach c ∈ {c | ∃j.w(i, j) 6= 0 ∧ L[j] = c} do6

inc :=7 ∑
L(j)=c

w(i, j)− arity(i) ·
∑

L[j]=c
arity(j)/

∑
j∈X

arity(j);

if inc > bestinc then8

L[i] := c; bestinc := inc; changes := true;9

until ¬changes ;10

return L;11

12

function Fold(Graph G1, Label L) : Graph G213

X2 = {c | ∀i, j ∈ c.L[i] = L[j];14

w2(c1, c2) =
∑

i∈c1,j∈c2
w2(i, j);15

return G2 = (X2, w2);16

17

Input: Graph G = (X,w)
Output: Label L1

foreach i ∈ X do L1[i] := i;18

L2 := OneLevel(G);19

while Modularity(G,L1) < Modularity(G,L2) do20

L1 := L1 ◦ L2;21

G = Fold(G,L2);22

L2 := OneLevel(G);23

we do, if vertex degrees are small, modularity can be quite big compared with
Newman’s modularity.

We also report results on the number of communities (|P |) and the fraction
of vertices belonging to the largest community (larg) expressed as a percentage.
If all communities have a similar size, then larg ≈ 1/|P |. In some cases, like
palacios and mizh, we have |P | ≫ 1/larg. This means that the community
structure corresponds to a big (or few) big central communities surrounded by
a multitude of small communities. In some cases, the sizes of communities seem
to follow a power-law distribution (this is something we would have to check).
The existence of a big community implies an expected inner fraction close to
one, hence a modularity close to zero.

In both algorithms, in every iteration we have to visit all neighbors of every
node. Therefore, the cost of an iteration is linear in the number of edges of the
graph. We observe although than GFA usually needs more iterations than LPA.
This is because, after folding the graph, we can do further iterations, and even
several graph foldings.



Family
Variable IG Clause-Variable IG Connect.

(#instanc.)
LPA GFA LPA Comp.

Q |P | larg. iter. Q |P | larg. iter. Q |P | larg. iter. |P | larg.

cr
ip
to
. desgen(4) 0.88 532 0.8 36 0.95 97 2 37 0.75 3639 1 25 1 100

md5gen(3) 0.61 7176 0.1 16 0.88 38 7 40 0.78 7904 0.1 42 1 100
mizh(8) 0.00 33 99 6 0.74 30 9 33 0.67 5189 31 43 1 100

h
ar
d
.
ve
r. ibm(4) 0.81 3017 0.6 9 0.95 723 4 32 0.77 19743 0.2 140 70 99

manolios(16) 0.30 66 81 9 0.89 37 9 81 0.76 6080 1 26 1 100
velev (10) 0.47 8 68 9 0.69 12 30 24 0.30 1476 77 31 1 100

m
ix
ed

anbulagan(8) 0.55 30902 0.1 11 0.91 90 2 43 0.72 46689 0.6 26 1 100
bioinf(6) 0.61 87 44 3 0.67 60 17 22 0.64 94027 15 10 1 100
diagnosis(4) 0.61 20279 0.7 15 0.95 68 3 43 0.65 85928 0.1 42 1 100
grieu(3) 0 1 100 2 0.23 9 14 11 0 1 100 14 1 100
jarvisalo(1) 0.57 260 5 8 0.76 19 9 26 0.71 336 1 11 1 100
palacios(3) 0.14 1864 96 58 0.93 1802 6 13 0.76 2899 0.4 35 1 100

so
ft
.
ve
r. babic(2) 0.68 34033 8 54 0.90 6944 10 141 0.73 59743 4 53 41 99

bitverif(5) 0.48 3 57 4 0.87 24 6 29 0.76 33276 0.4 8 1 100
fuhs(4) 0.02 18 99 43 0.81 43 7 30 0.67 12617 0.8 28 1 100
nec(17) 0.07 107 96 31 0.93 65 14 124 0.79 23826 0.8 114 1 100
post(2) 0.36 3·106 53 54 0.81 3·106 9 262 0.72 3·106 6 49 224 99

Table 1. Modularity of 2010 SAT Race instances, using LPA and GFA. Q stands for
modularity, |P | for number of communities, larg. for fraction of vertices in the largest
community, and iter. for number of iterations of the algorithm.

We have also studied the connected components of these instances as in [6]. As
we can see, almost all instances have a single connected component, or almost
all variables are included in the same one. Hence the rest of connected com-
ponents contain just a few variables. Therefore, the modularity gives us much
more information about the structure of the formula. Notice that a connected
component can be structured into several communities.

In Table 2 we show the results for the modularity computed after prepro-
cessing the formula with the Satelite preprocessor [10]. The modularities are
computed using the GFA algorithm. Satelite is an algorithm that applies vari-
able elimination techniques. We can see that these transformations almost does
not affect to the modularity of the formula. However, it eliminates almost all the
small unconnected components of the formula.

5 Modularity of the Learnt Clauses

Most modern SAT solvers, based on variants of the DPLL schema, transform
the formula during the proof or the satisfying assignment search. Therefore, the
natural question is: even if the original formula shows a community structure,
could it be the case that this structure is quickly destroyed during the search
process? Moreover, most SAT solvers also incorporate learning techniques that
introduce new learnt clauses to the original formula. Therefore, a second question



Orig. Preprocessed Formula
Family Form. Modularity Connect.

Comp.
Q Q |P | larg. |P | larg.

cripto. desgen (4) 0.951 0.929 81 3.1 1 100
md5gen (3) 0.884 0.884 18 8.5 1 100
mizh (8) 0.741 0.741 18 9.5 1 100

hard. ver. ibm (4) 0.950 0.905 26 6.1 1 100
manolios (16) 0.890 0.800 16 14.9 1 100
velev (10) 0.689 0.687 6 30.3 1 100

mixed anbulagan (8) 0.909 0.913 47 5.1 1 100
bioinf (6) 0.673 0.657 25 11.1 2 99.9
diagnosis (4) 0.952 0.950 65 3.6 1 100
grieu (3) 0.235 0.235 9 14.3 1 100
jarvisalo (1) 0.758 0.722 11 13.1 1 100
palacios (3) 0.928 0.848 17 10.76 1 100

soft. ver. babic (2) 0.901 0.875 23 9.7 1 100
bitverif (5) 0.875 0.833 19 7.3 1 100
fuhs (4) 0.805 0.743 32 9.6 1 100
nec (17) 0.929 0.879 37 10.3 1 100

Table 2. Modularity (computed with GFA) after and before preprocessing the formula
with the Satelite preprocessor [10]

is: how these new clauses affect to the community structure of the formula?
Finally, even if the value of the modularity is not altered, it can be the case that
the communities are changed.

We have conducted a series of experiments to answer to the previous ques-
tions. We use the picosat SAT solver [5] (version 846), since it incorporates a
conflict directed clause learning algorithm, activity-based heuristics, and restart-
ing strategies.

In Table 3 we show the values of the original modularity compared with
the modularity obtained after adding the learnt clauses to the original formula.
We can observe that the modularity weakly decreases with the learnt clauses,
but it is still meaningful. Therefore, learning does not completely destroy the
organization of the formula into weakly connected communities.

The question now is, even if the modularity does not decreases very much,
could it be the case that the communities have changed? In other words, there
are still communities, but are they distinct communities?

If a considerable part of learning is performed locally inside one or a few
communities, then the communities will not change. We have conducted another
experiment to see if this is true. For the VIG model, we use the original formula to
get a partition of the vertices, i.e. of the variables, into communities. Then, we use
modularity as a quality measure to see how good is the same partition, applied
to the graph obtained from the set of learnt clauses. Notice that modularity is a



Orig. Orig. + Learnt Formula
Family Form. Modularity

Q Q |P | larg.

cripto. desgen (2) 0.951 0.561 53 13.0
md5gen (3) 0.884 0.838 19 8.0
mizh (1) 0.741 0.705 28 11.4

hard. ver. ibm (3) 0.950 0.912 752 6.7
manolios (14) 0.890 0.776 31 11.2
velev (1) 0.689 0.558 6 30.1

mixed anbulagan (4) 0.909 0.876 84 2.6
bioinf (5) 0.673 0.287 32 58.7
grieu (3) 0.235 0.085 6 35.0
palacios (2) 0.928 0.851 2289 7.4

soft. ver. babic (2) 0.901 0.904 6942 10.7
fuhs (1) 0.805 0.670 24 7.6
nec (15) 0.929 0.936 62 7.3

Table 3. Modularity (computed with GFA) of the original formula, and of the original
formula with learnt clauses included.

VIG CVIG
Family orig. first 100 all orig first 100 all

desgen (1) 0.89 0.74 0.08 0.77 0.28 0.09
md5gen (1) 0.61 0.74 0.02 0.78 0.96 0.02
ibm (2) 0.84 0.60 0.47 0.81 0.58 0.29
manolios (10) 0.21 0.04 0.10 0.76 0.11 0.09
anbulagan (2) 0.56 0.16 0.01 0.87 0.10 0.04
bioinf (4) 0.62 0.46 0.06 0.68 0.69 0.15
grieu (1) 0.00 0.00 0.00 0.00 0.00 0.00
babic (2) 0.68 0.36 0.36 0.71 0.33 0.33

fuhs (1) 0.66 0.59 0.14 0.71 0.78 0.07
nec (10) 0.12 0.01 0.12 0.78 0.49 0.24

Table 4. Modularity (computed by LPA) of the formula containing the first 100 learnt
clauses, and all learnt clauses. In the first column we show the modularity of the original
formula.

function of two parameters, in this case: the graph is the graph containing the
learnt clauses, and the partition is computed for the formula without the learnt
clauses. Since both graphs (the original formula and the learnt clauses) have the
same set of vertices (the set of variables), this can be done directly.

For the CVIG model we must take into account that the graph contains
variables and clauses as vertices. Therefore, the procedure is more complicated.
We use the original formula to get a partition. We remove from this partition
all clauses, leaving the variables. Then, we construct the CVIG graph for the
set of learnt clauses. The partition classifies the variables of this second graph



VIG CVIG
Family orig. first 100 all orig. first 100 all

md5gen (1) 0.61 0.74 0.02 0.78 0.96 0.02
ibm (2) 0.84 0.50 0.43 0.81 0.58 0.42

anbulagan (1) 0.55 0.03 0.00 0.87 0.13 0.05
manolios (9) 0.20 0.07 0.10 0.76 0.27 0.15
nec (10) 0.12 0.05 0.05 0.78 0.30 0.22

Table 5. Modularity (computed by LPA) of the learnt clauses that have been con-
tributed to prove the unsatisfiability of the original formula. Like in Table 4 we show
results for the first 100 learnt clauses, and for all clauses. We only show results for
unsatisfiable formulas.

into communities, but not the clauses. To do this, we assign to each clause the
community of variables where it has more of its variables included. In other
words, given the labels of the variables we apply a single iteration of the label
propagation algorithm to find the labels of the clauses.

We want to see how fast is the community structure degraded along the
execution process of a SAT solver. Therefore, we have repeated the experiment
for just the first 100 learnt clauses and for all the learnt clauses. We also want to
know the influence of the quality of the learnt clauses. Therefore, we also repeat
the experiment for all the learnt clauses (Table 4), and only using the clauses that
participate in the proof of unsatisfiability (Table 5). Notice that Table 5 contains
fewer entries than Table 4 because we can only consider unsatisfiable instances.
Notice also that picosat is not able to solve all 2010 SAT Race instances, therefore
Tables 4 and 5 contain fewer instances than Table 1. The analysis of the tables
shows us that the CVIG model gives better results for the original formula and
the first 100 learnt clauses, but equivalent results if we consider all learnt clauses.
There are not significant differences if we use all learnt clauses, or just the clauses
that participate in the refutation. Finally, there is a drop-off in the modularity
(in the quality of the original partition) as we incorporate more learnt clauses.
This means that, if we use explicitly the community structure to improve the
efficiency of a SAT solver, to overcome this problem, we would have to recompute
the partition (after some number of variable assignments or after a unit clause
is learnt) to adjust it to the modified formula, like in [6].

It is worth to remark that, for the experiments in Table 4, the modularity for
the VIG and the CVIG models, and the first 100 learnt clauses, is respectively
0.72 and 0.59. This means that, in the VIG model, around 72% of the first 100
learnt clauses could also be learnt working locally in each one of the communities.
However, the percentage of learnt clauses that connect distinct communities is
very significant.

6 Modularity of Random Formulas

We have also conducted a study of the modularity of 100 random 3-CNF SAT
instances of 104 variables for different clause variable ratios (α). For this experi-



n α Q |P | larg. iter

104 1 0.486 545 3.8 54
104 1.5 0.353 146 5.1 52
104 2 0.280 53 6.8 51
104 3 0.217 14 15.5 64
104 4 0.178 11 14.8 54
104 4.25 0.170 11 14.6 53
104 4.5 0.163 11 14.7 53
104 5 0.152 11 14.3 51
104 6 0.133 12 13.9 53
104 7 0.120 10 15.0 56
104 8 0.138 6 25.0 50
104 9 0.130 6 24.3 49
104 10 0.123 6 24.4 47
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Table 6. Modularity (computed with GFA) of random formulas varying the clause variable
ratio (α), and for n = 104 variables.

n α Q |P | larg. iter

102 4.25 0.177 6 14.5 11
103 4.25 0.187 10.5 11.4 35
104 4.25 0.170 11 12.2 53
105 4.25 0.151 14 6.8 102
106 4.25 0.151 14 5.7 167

Table 7. Modularity (computed with GFA) of random formulas at the peak transition
region (clause variable ratio α=4.25), varying the number of variables (n).

ment we used the GFA on the VIG model. Table 6 shows the results. As we can
see, the modularity of random instances is only significant for very low variable
ratios, i.e., on the leftist SAT easy side. This is due to the presence of a large
quantity of very small communities. Notice, that as α increases, the variables get
more connected but without following any particular structure, and the number
of communities highly decreases. Even for low values of α, the modularity is not
as high as for industrial instances, confirming their distinct nature. We do not
observe any abrupt change in the phase transition point.

As a second experiment with random formulas, we wanted to investigate the
modularity at the peak transition region for an increasing number of variables.
Table 7 shows the results. As we can see, the modularity is very low and it tends
to slightly decrease as the number of variables increases, and seems to tend to a
particular value (0.15 for the phase transition point).

Finally, as with industrial instances, we wanted to evaluate the impact on
modularity of the preprocessing with Satelite [10], and the effect of adding all
the learnt clauses needed to solve the formula by Picosat [5]. Table 8 shows
the results. The preprocessing has almost no impact on the modularity of the
formula, except for α=1, because the preprocessing already solves the formula.
With respect to the addition of learnt clauses, it is interesting to observe that



n α Orig. Preproc. Learnt Connect.
Comp.

300 1 0.459 0 0.453 1
300 2 0.291 0.235 0.291 1
300 4 0.190 0.188 0.073 1
300 4.25 0.183 0.182 0.041 1
300 4.5 0.177 0.177 0.045 1
300 6 0.150 0.150 0.120 1
300 10 0.112 0.112 0.171 1  0
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Table 8. Modularity (computed with GFA) of random formulas with 300 variables
varying the clause variable ratio after and before preprocessing the formula with the
Satelite preprocessor [10], and with all learnt clauses included.

in the peak transition region α = 4.25, we get the lowest modularity. A possible
explanation is that at the peak region we find the hardest instances, and in
order to solve them the learnt clauses added by the solver tend to connect more
communities. In [2] we observed that random SAT instances have not a scale-
free structure3, but that the addition of learnt clauses makes the formula clearly
scale-free. On the contrary, we observe here that modularity tends to decrease
with learning.

7 Conclusions

The research community on complex networks has developed techniques of anal-
ysis and algorithms that can be used by the SAT community to improve our
knowledge about the structure of industrial SAT instances, and, as result, to
improve the efficiency of SAT solvers.

In this paper we address the first systematic study of the community structure
of SAT instances, finding a clear evidence of such structure in most analyzed
instances. In fact, some features, like Moskewicz’s activity-based heuristics, were
already designed thinking on the existence of this kind of structure. Here we go a
step further, and we propose the use of an algorithm that is able to compute the
communities of a SAT instance. It verifies the assumption about the existence
of this community structure. The algorithm could also be used directly by SAT
solvers to focus their search.
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