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Abstract

Transition Edge Sensors detector devices, like the core of the X-IFU instrument that will be on-board the Athena
X-ray Observatory, produce current pulses as a response to the incident X-ray photons. The reconstruction of these
pulses has been traditionally performed by means of a triggering algorithm based on the derivative signal
overcoming a threshold (detection) followed by an optimal filtering (to retrieve the energy of each event).
However, when the arrival of the photons is very close in time, the triggering algorithm is incapable of detecting all
the individual pulses which are thus piled-up. In order to improve the efficiency of the detection and energy-
retrieval process, we study here an alternative approach based on Machine Learning techniques to process the
pulses. For this purpose, we construct and train a series of Neural Networks (NNs) not only for the detection but
also for the recovering of the arrival time and the energy of simulated X-ray pulses. The data set used to train the
NNs consists of simulations performed with the SIXTE/XIFUSIM software package, the Athena/X-IFU official
simulator. The performance of our NN classification clearly surpasses the detection performance of the classical
triggering approach for the full range of photon energy combinations, showing excellent metrics and very
competitive computing efficiency. However, the precision obtained for the recovery of the energy of the photons
cannot currently compete with the standard optimal filtering algorithm, despite its much better computing
efficiency.

Unified Astronomy Thesaurus concepts: X-ray detectors (1815); Neural networks (1933); Telescopes (1689); X-
ray astronomy (1810)

Online material: color figure

1. Introduction

The Athena X-ray Observatory (Nandra et al. 2013), selected
in 2014 by ESA as the second Large-class mission in its
Cosmic Vision science program, is designed to implement the
Hot and Energetic universe science theme. Athena will be
equipped with two X-ray detectors, one of which, the X-ray
Integral Field Unit (X-IFU, Barret et al. 2018), is a cryogenic
imaging spectrometer that offers spatially resolved high-
spectral resolution X-ray spectroscopy over a 5′ equivalent
diameter field of view. This microcalorimeter is based on
superconducting Transition Edge Sensor (TES) technology.

In TES devices (see Irwin & Hilton 2005, and Ullom &
Bennett (2015) for a review), the X-ray photons, which come
from astronomical sources and are absorbed by the detector,
produce rapid temperature increases that induce increments of
the resistance in the superconductor element. As a response to
this abrupt resistance increment, the device gives rise to
electrical pulses whose area and height are related to the energy
deposited by the photon. Due to telemetry constraints, the

pulses need to be processed on-board to retrieve their energies,
positions and arrival times.
The on-board processing is a sequential procedure that starts

with the real time initial triggering on the full raw data coming
from the X-IFU pixels. The purpose of this step is decreasing
the amount of data passed to the second stage, the Event
Processor, where the pulses are processed to retrieve the energy
of the photons. The record of data selected in this way is aimed
at containing isolated pulses.
The software package SIRENA3 (see Ceballos et al. 2017, and

references therein for a complete description) is integrated in
the SIXTE (Dauser et al. 2019) package (containing the Athena
official software for simulations), and it has been specifically
developed as a test-bench to evaluate the performance of
different algorithms that can be designed to detect the pulses, to
reconstruct their energy content and to get their arrival time. As
it can be run in software computers on the ground, it facilitates
the testing of very different approaches and the comparison of
their performance, both in terms of energy resolution and of
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computational cost. The algorithm which best suits the
requirements will then be selected to be on-board.

Several pulse processing techniques have been developed for
TES detectors over almost three decades. Some of them are
focused on the improvement of the energy and time resolution
achieved while other techniques are aimed at identifying the
piled-up pulses (nearly coincident events) for their later
removal from the analysis. Among the former, the optimal
filtering (Szymkowiak et al. 1993), the running sum algorithm
(Tan et al. 2011), the interpolated covariant analysis (Peille
et al. 2016 and references therein), the principal component
analysis (Busch et al. 2016; Yan et al. 2016), the multi-pulse
fitting (Fowler et al. 2015) or the fitting of the rising and falling
part of the pulse shape (Ripoche & Heyl 2021). SIRENA

implements several of these methods for testing but only those
with a low computational cost will be suitable for on board
implementation. In particular, the optimal filtering technique is
the standard/baseline implementation as it shows a good
compromise between resolution values and computational cost.

For the purpose of pulse detection to perform the initial
triggering, SIRENA includes two algorithms. The Threshold
method is the most basic, being based on the derivative of the
signal exceeding a given threshold. On the other hand, the
Adjusted derivative method (Boyce et al. 1999) requires the
subtraction of a model pulse (from a calibration database) every
time a pulse has been detected using the threshold; the
detection is iteratively performed over the residual signal until
no more pulses are found.

A performance test carried out using SIRENA over baseline
X-IFU pixel simulations (Cobo et al. 2018) showed that,
although this second method is more precise in general, it has
two main caveats: the subtraction process always yields
residuals, that may be miss-interpreted as additional pulses,
and the method requires a great computational effort resulting
in a non-viable option to be implemented on-board.

On the other hand the simpler Threshold approach is more
affordable in terms of computational resources, but it fails
when two (or more) photons arrive to the detector close in time
(within 0.2 ms for the current pixels under study; LPA2.5a-
style, see Miniussi et al. (2018) for a description of the pixel)
because the derivative of the pulse signal does not have enough
time to go below the detection threshold before the arrival of
the following pulse.

The imperfect detection of these piled-up pulses (the pulse
falling in the tail of a previous pulse is not detected) causes a
wrong determination of their energy content in the event
processor, leading in principle to a worse spectral resolution.
The reason for this in the case for example of the optimal
filtering, is that the piled-up pulses do not match the average
shape of the optimal filter. To avoid as much as possible the
inclusion of these pulses in the scientific analysis an additional
step can be implemented: the reconstructed energy of the pulse
will be compared on ground with a low resolution estimator

(like the reconstruction performed using just a few samples of
the pulse record) to unveil possible inconsistencies which will
point to the presence of multiple pulses. This way these piled-
up pulses can be ignored in the spectral analysis. With all this,
the level of spectral spoiling of this effect using the Threshold
method is, for the case of the X-IFU instrument, within the
requirements.
The pile-up rejection is a goal shared by other processing

techniques, like those based on the Singular Value Decom-
position (Alpert et al. 2016) and Singular Vectors Projections
(Borghesi et al. 2021), developed in the framework of the
HOLMES experiment aimed at measuring the neutrino mass.
With the study presented here, we intend to explore an

additional technique that could improve the initial step of pulse
detection and pile-up rejection, not only for this type of
detectors but also for those used under larger count rates than
the X-IFU. In particular we have studied the contribution of
Machine Learning (ML) techniques to the improvement of the
pulse-finding and as a second step, the application of similar
ML techniques in the reconstruction process to retrieve the
energy of the pulses. We use the X-IFU instrument as a
framework.
ML algorithms (in particular, Neural Networks, NNs) have

been demonstrated to be an indispensable tool in many fields of
research, not only in Astronomy and Astrophysics. The list of
ML applications to the fields of Astronomy and Astrophysics is
already vast: object detection and segmentation (Hausen &
Robertson 2020), galaxy morphological classification (Huertas-
Company et al. 2015; Domínguez Sánchez et al. 2018; Vega-
Ferrero et al. 2021), galaxy mergers and tidal streams (Bottrell
et al. 2019; Walmsley et al. 2019), galaxy–galaxy lensing
identification (Metcalf et al. 2019), photometric redshift
estimation (Pasquet et al. 2019; Campagne 2020) and Globular
Clusters mass estimation (Ho et al. 2019; Su et al. 2020), just to
mention a few examples and references. Moreover, it is likely
to find applications of ML techniques to problem solving in
other fields of research that are similar to what is our scope in
this paper. For instance, X-ray pulse properties from free-
electron laser (Sanchez-Gonzalez et al. 2017), neutron-gamma
pulse shape discrimination (Griffiths et al. 2018), energy and
position neutrino reconstruction in EXO-200 experiment
(Delaquis et al. 2018), digital pulse shape analysis in solid
state detectors (Mardiyanto et al. 2001; Flores et al. 2016) and
cardiac pulse detection and classification (Elola et al. 2019).
In this paper and by means of realistic simulations, we

explore the applications of ML algorithms to the detection and
characterization of X-ray pulses in a TES detector, using the
X-IFU instrument as a case study. In particular, we explore the
potential of using Deep Neural Networks (DNNs) and
Convolutional Neural Networks (CNNs) with the aim of
providing the number of pulses per record, their pseudo-
energies (before final calibration) and their arrival times. We
estimate also the computational cost of these techniques, as this
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is the main driver for their possible application on-board X-ray
satellites.

This paper is structured as follows: in Section 2, we describe
the X-ray pulse simulations carried out with the SIXTE/

XIFUSIM software package; in Section 3, we present the
methodology applied to identify events detected in TES devices
using ML algorithms; in Section 4, we show the ability of
DNNs to estimate the differences in the arrival times of double
pulses stored in the same record; in Section 5, we present the
results on the energy reconstruction of isolated pulses using
DNNs; finally, in Section 6, we summarize our results and
main conclusions.

2. XIFUSIM Simulations of Athena/X-IFU events

Each pulse (event) generated by X-IFU corresponds to a
photon of a given energy hitting the TES device. The shape of
the pulse slightly varies with the photon energy due to the
nonlinearity of the detector. Depending on the intrinsic
brightness of the astronomical source (count rate), photons
may arrive to the detector at close times.

As described in Section 1, neither the Threshold nor the
Adjusted derivative methods are sensitive to pulses generated
by X-ray photons with arrival times closer together than
0.2–0.3 ms for the X-IFU baseline pixels (i.e., pulses separated
less than ∼30–45 samples given the sampling rate of
156.25 kHz assumed throughout the paper). To prove the
limits of detection of our NNs (that will be described in the
following section) we have created simulated data for the train
and test data sets using the SIXTE/XIFUSIM simulator (Lorenz
et al. 2020; Kirsch et al. 2021) for Athena/X-IFU, a software
tool aimed at reproducing all the blocks of the entire instrument
(from the output current of the TES sensor through the entire
readout chain, including multiplexing, amplification and the
digital readout) and that accurately reproduces the lab data of
X-IFU TES devices. Using simulated data let us control the
exact arrival time and energy of the photons and have enough
statistics for the different combination of values, specially
important for the training sets.

In particular, we simulated two types of records: single and
double-pulse records with one and two pulses per record,
respectively. Single-pulse records are characterized by the
pulse energy (E1, in keV). Double-pulse records are described
by the first and second pulse energies (E1 and E2, in keV), and
their separation (d12, in sample units). We simulate pulses with
energies in the range of [0.2, 12] keV according to the X-IFU
requirements. Concerning the separation between pulses, we
simulated them uniformly in the range [1, 100] in sample units.
We do not explicitly present results for simulated triple-pulse
records (containing three pulses per record) since they are
equivalent to double-pulse records and very unlikely to occur
in real observational data for the X-IFU science.

The priority in the study will be the challenging cases for
traditional methods (i.e., those with large and small differences
of energies and similar arrival times), so we especially focus on
generating those (“more complex”) examples. Therefore, we
simulate double-pulse records with energy differences between
the first and the second pulse (i.e., E12= E1− E2) and
separations (d12) drawn from a continuous uniform distribution
as follows: E12 äUnif(− 11.8, 11.8)keV (given that E1,
E2ä [0.2, 12]) and d12 äUnif(1, 100). For the single-pulse
records, the energy of the single pulse (E1) is obtained from a
continuous uniform distribution within the defined energy
range, i.e., E1äUnif(0.2, 12). In total, we simulated 30,000
records of each type. In Figure 1, we show the distributions of

Figure 1. Top panel: distributions of the number of simulated pulses with a
given energy (in keV). Blue histograms correspond to the energy distribution in
single-pulse records, denoted as E1 (S), while green histograms indicate the
energy distributions of the double-pulse records for the first and the second
pulses, denoted as E1 (D) and E2 (D), respectively. Bottom panel: distributions
of the number of pulses with a given difference in energy between the first and
the second pulse (E12 in keV, only for double-pulse records) for the training
(solid histogram) and the test sample (dashed histogram).
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energies in our simulations of single-pulse and double-pulse
records along with the distribution of the differences in energy
between pulses (only for double-pulse records).

In the triggering phase, pulses arriving at separations larger
than ∼100 samples (well above the pile-up limit of the above
mentioned detection methods) can be detected individually so
they would be stored in separated records. This is the main
reason to generate two pulses in the same record with
separations (d12) below that particular value of approximately
100 samples. This criteria ensures that there is a sufficiently
large number of interesting cases with small, similar and large
differences of energy between consecutive pulses, and with
close arrival times.

In Figure 2, we show the intensity (I) and its first derivative
(dI/dt) as a function of the arrival time (t, in samples) for six
examples of records of each type. The original records are
simulated with record lengths of around 10,000 samples (large
enough for the pulse to return to the baseline values) including
a buffer of 1000 samples at the beginning of the records. For
the analysis, however, we use record lengths of 128 samples (a
section of the original record, starting with 7 samples before the
pulse rise) which, given the range of distances between pulses,
contain all the necessary information of the peaks of the two
pulses in double-pulse records (the values of dI/dt are already
very close to zero for t 120 samples). Therefore, the arrival of

the first pulse (in both single-pulse and double-pulse records) is
preceded by approximately 6 samples in the first derivative of
the intensity curve. In double-pulse records, the arrival of the
secondary pulse with respect to the arrival of the primary pulse
is determined by the parameter d12. Since in the real life the
pulse arrival time does no necessarily coincide with a sampling
time, in the simulations it is randomized around±0.5 samples.
The effect of the randomization may be seen in the curves
shown in Figure 2 and, more clearly, in Figure 5.

3. Identification of Events

In this section, we describe the methodology applied to
identify events detected in TES devices using ML algorithms.
The problem of identifying/classifying X-ray records accord-
ing to the number of pulses per record may be faced by
designing a NN in binary mode to distinguish between single-
pulse and double-pulse records. In particular, we examine two
different NN architectures: one is purely a DNN (consisting of
a set of only dense layers), while the second one is a CNN
(combining both convolutional and dense layers). The NN
architectures are chosen based on a hyper-parameter optim-
ization of the selected metric (e.g., the F1 score, see
Equation (3)). Then, we compare their performance based on
the metrics (F1 score, for instance) obtained for a test sample
and the computational cost by means of the number of floating

Figure 2. Top panel: current stream curves (in ADU, Analog-to-Digital Units) for six records of each type (single-pulse, left-hand panel; double-pulse, right-hand
panel) as a function of the arrival time (in sample units). Bottom panel: first derivative of the intensity curves in the top panels. Each color line corresponds to a
different record and thus, to different pulse energies and/or separations.
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point operations needed to process one record. Note that we do
not refer to the number of floating point operations per second
(FLOPS). Hereafter, the number of operations per records is
computed using the keras-flops package in PYTHON.

3.1. Input Dataset

The input data used for the training and test phases of our
NNs in binary mode is created from the pulse simulations
described in Section 2. After a random shuffling we split the
60,000 records (half single-pulse records and half double-pulse
records) into a training sample of 50,000 records and a test
sample of 10,000 records (4979 are single-pulse records and
5021 are double-pulse records). As explained above, we work
with records with a length of 128 samples, starting with
typically 6(±1) samples before the arrival of the first pulse (as
shown in Figure 2).

We choose to provide our NNs with the first derivative of the
pulse intensity as input. This choice is based on the accuracy
obtained after training several NNs with both the intensity and
the first derivative curves as input data. Given that it is a
recommended practise in ML, we also normalized the input
data. Once the first derivative of the pulse intensity is computed
from the records of 128 samples, we normalize individually the
first derivative curve by its maximum value. Although
negligible in comparison with the number of operations due
to the NN architecture (as we describe in the following
sections), the operations made out of the computation of the
derivative of the pulse intensities are performed by hardware
during the Threshold phase. Therefore, we do not include the
computation cost of the derivative of the pulse intensities in the
total number of operations. After the normalization, the
dynamical range of the input data is (0, 1), with a preference
toward positives values since the slope of the pulse intensity is
higher before the peak (i.e., when the pulse is ascending) than
after it. Since we are not inferring here the pulse energy
(Section 5), for which the integrated area below the intensity
curve of a pulse is fundamental, normalizing the records
individually does not have an impact on the classification task,
but it helps keeping a smaller dynamical range compared to the
case without normalization or with a global normalization (i.e.,
normalizing by the maximum value of all the records). Given
that the first derivative may take negative values, we also
checked a normalization with non-negative values but with
slightly less accurate results compared to the individual
normalization described above. Summarizing, we provide the
NNs with input vectors of length 128 samples (therefore, 1D
NNs) containing the information of the first derivative of the
pulse intensity normalized by its maximum value.

3.2. Binary Classification

For the binary classification, we label as Positives (P) the
single-pulse records, while the Negatives (N) labels are
assigned to double-pulse records.
The architectures of the NNs used in this work for the binary

classification task are of two types:

1. a pure DNN consisting of n= (2, 3, 4) dense layers of
variable sizes (Mi, where i ä [1, n] denotes the layer
number) and linear activation functions (the so-called,
relu) followed by a dense layer of size 1 with a sigmoid
activation function.

2. a CNN composed of a combination of n= (2, 3, 4)
convolutional blocks followed by a global max pooling
layer and a dense layer of size 1 with a sigmoid activation
function. Each convolutional block consists of: a
convolutional filter with Mi channels of sizes Li and a
relu activation function; a max pooling layer with
variable pool size (Ki); and a dropout layer with a
variable frequency rate (d). To avoid reducing exces-
sively the dimensions of the output array after the set of
convolutions, we force the pool size of the deepest
convolutional block to be equal to one, i.e., Kn= 1 (no
max pooling is applied). The padding in the convolu-
tional filters is set to “same”. Note that the frequency rate
of the dropout layer (d) is the same for all the
convolutional blocks.

Another key hyper-parameter to set in order to train a neural
network is the learning rate for gradient descent (an optim-
ization technique commonly used in training ML algorithms)
This parameter scales the magnitude of our weight updates in
order to minimize the network’s loss function. Hereafter, we
use an adaptive optimization algorithm (adam) with a variable
learning rate (denoted as lr).
The chosen design for the CNN as a set of convolutional

blocks followed by a global max pooling layer is justified after
a comparison with other architectures. For instance, we also
checked the performance of a CNN consisting of convolutional
blocks followed by a flatten layer, but we found that it had a
lower performance. We did not try a combination of CNN
followed by a recurrent layer because, for analogous results,
this design leads to a larger number of parameters (and
therefore of the number of operations) compared to a pure
CNN, as demonstrated by Elola et al. (2019) on a similar pulse
classification task.
As we describe in the next section, the set of hyper-

parameters is found by performing an hyper-parameter
optimization on a validation set in order to maximize the
algorithm performance.
Given the configuration in binary mode of the previously

described NNs, the output value represents the likelihood, p (in
the range [0, 1]), of being a Positive (P) case (i.e., a single-
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pulse record). Consequently, the value 1− p represents the
likelihood of being a Negative (N) case (i.e., a double-pulse
record). A way to check the accuracy of NN models is based on
the area under the ROC curve (ROC AUC) for the different
predicted probabilities (see Powers 2011, for instance). The
ROC curve is a representation of the false positive rate
(FPR= FP/N, i.e., the ratio of the number of false positives to
negative cases) versus the true positive rate (TPR= TP/P, i.e.,
the ratio of the number of true positives to positive cases) for
different probability thresholds. Note that by definition the sum
of TN and FP correspond to the number of negative cases
(N= TN+ FP), while the sum of TP and FN yields to the
number of positive cases (P= TP+ FN). An optimal classifier
is the one that maximizes the ROC AUC and, therefore, for that
classifier it is possible to derive the probability threshold (pthr)
that optimizes the ROC curve (i.e., maximizes TPR and
minimizes FPR). Nevertheless, depending on the user purpose,
one can vary the pthr to obtain a more complete or less
contaminated sample. According to this definition, records with
predicted values p< pthr are classified as Negatives, while
records with predicted values p� pthr are classified as
Positives.

A complementary way to test the model performance is the
precision and recall scores, which can be defined as follows:

( )precision
TP

TP FP
1=

+

( )recall
TP

TP FN
2=

+

The precision is intuitively the ability of the classifier to not
label as positive a sample that is negative (or a purity/
contamination indicator), while the recall represents the ability
of the classifier to find all the positive samples (i.e., a
completeness indicator). The best value for both the precision
and recall is 1 and the worst value is 0. Additionally, the F1
score, expressed as follows,

· · ( )F1 2
precision recall

precision recall
, 3=

+

can be interpreted as a weighted average of the precision and
recall, where the relative contribution of precision and recall to
the F1 score are equal. The F1 score reaches its best value at 1
and the worst value at 0.

3.2.1. Hyper-parameter Optimization

The aim of hyper-parameter optimization in ML is to find the
combination of hyper-parameters of a given ML algorithm that
returns the best performance as measured on a validation set. In
this section, we describe how we optimize the hyper-
parameters of the DNN and CNN architectures proposed in
the previous section.

The hyper-parameters of every model were optimized using
a Bayesian optimization approach (Snoek et al. 2012). Briefly,
the Bayesian optimization method builds a probability model of
the objective function (or surrogate function) and use it to
select the most promising hyper-parameters to evaluate in the
true objective function. Bayesian approaches, in contrast to
random or grid search, keep track of past evaluation results
which they use to form a probabilistic model mapping the
hyper-parameters to a probability of a score on the objective
function. Recent studies report that Bayesian optimization is
more efficient than manual tuning, grid or random search since
it requires less computation time and the overall performance
on a valuation set is higher (Bergstra et al. 2012). Variants of
the Bayesian optimization differ on how the surrogate function
is computed. In this study, we consider the Tree-structured
Parzen Estimators (TPE). By applying Bayes rule, the TPE
approach is able to find better hyper-parameters (i.e., better
performance) than random search in the same number of trials.
We choose the F1 score (Equation (3)) as the objective

function for the hyper-parameter optimization. We run the
optimization process by maximizing the F1 score for a total of
50 trials and 50 epochs per trial and store the F1 score and the
list of hyper-parameters for each trial. We implement the
optimization pipeline for the proposed DNNs and the CNNs
independently for each architecture in terms of the number of
layers (n). In other words, we obtain a different set of optimized
hyper-parameters for the DNNs and the CNNs with 2, 3 and 4
layers separately (followed in all cases by the output dense
layer).
The hyper-parameters subject to the optimization in the case

of the DNN are the learning rate for the adam optimizer, lr, and
the sizes of the filters in each layer, Li. For the CNN, the hyper-
parameters to be optimized are:

1. the learning rate for the adam optimizer with allowed
values of lr= (10−1, 10−2, 10−3, 10−4);

2. the sizes and the number of channels of the convolutional
filters in each convolutional block may vary as Li= (4, 8,
16, 32, 64, 128) and Mi= (3, 5, 7, 9, 11, 13, 15),
respectively;

3. the size of the max pooling layer in each convolutional
block may take values of Ki= (1, 2, 3), where K= 1
means that no max pooling is applied;

4. the frequency rate of the dropouts (equal for all the
convolutional blocks) may vary as d= (0.1, 0.2, 0.3,
0.4, 0.5);

5. and the batch size is allowed to take the values b= (150,
200, 250, 300, 350, 400, 450, 500, 550, 600).

Concerning the max pooling layers and given the dimensions
of the CNN: for the configuration with n= 2, only the pool size
K1 may vary while K2= 1; for the configuration with n= 3, the
pool sizes K1 and K2 may vary while K3= 1; and for the
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configuration with n= 4, the pool sizes K1, K2 and K3 may
vary but K4= 1.

In Figure 3, we show the results of the hyper-parameter
optimization of the CNNs and the DNNs configurations
described previously. The optimization is obtained on the test
sample of 10,000 records after training the NNs with a sample
of 50,000 records. We only show the 10 trials (from the 50
trials generated) with the highest F1 scores for each
configuration (i.e., 2, 3 and 4 layers). Both the CNNs and the
DNNs achieve excellent results, with values F1 0.99. For all
the CNN configurations, the performances based on the F1
score are comparable with those obtained with the pure DNNs,
however the number of operations is between 2–3 orders of
magnitude larger. The CNN with the best performance, which
achieves a F1= 0.9920, with a number of operations of
1.1× 107, is the one with n= 3. For the DNN architectures, on
one hand, the maximum F1 score for the DNNs is reached by
the configuration with n= 4 (labeled as bin-best) and a number
of operations of ≈1.9× 104 and F1= 0.9928. On the other
hand, the DNN with n= 2 (labeled as bin-ops) has a
performance of F1≈ 0.9901 with a considerably smaller
number of operations of ≈2.2× 103.

For this reason, hereafter we will focus our efforts on the use
of DNNs for the classification task presented in this section and
for the characterization tasks (i.e., arrival time and energy
estimation) described in the following sections. The hyper-

parameters that described the selected DNNs architecture are
shown in Table 1.

3.2.2. Results

From the hyper-parameter optimization process described in
the previous section, we choose the two DNNs with the best
performance in terms of the F1 score (denoted as bin-best with
n= 4) and according to number of operations (labeled as bin-
ops with n= 2) as shown in Table 1. Then, we apply a k-fold
cross-validation where the training sample of 50,000 pulses is
split into k sets. One by one, a set is selected as the validation
set and the k− 1 remaining sets are combined into the
corresponding training set. Since this is repeated for each of the
k sets, we finally obtain a total of k model realizations with an
independent random initialization and trained with a slightly
different training set. We fix k= 10 and, therefore, we derive
10 model predictions trained with 45,000 pulses, validated with
5000 pulses and tested on a test set of 10,000 pulses. We
denote the single-pulse records as S records and the double-
pulse records as D records. We increase the number of epochs
with respect to the optimization phase to 300 epochs. We store
the model weights at the epoch with the lowest loss (not
necessarily the model of the last epoch) for each k model and
apply it to the test sample.
The performance among the different realizations for the

selected DNNs is quite consistent. For the k= 10 realizations
of the bin-best model, we obtain a median F̃1 0.9935= and a
F1= 0.9939 for the best model. For the k= 10 realizations of
the bin-ops model, we derive a median F̃1 0.9904= and a
F1= 0.9926 for the best model. We summarize these metrics
in Table 2. Hereafter, we show the results for the best model

Figure 3. Hyper-parameter optimization of the CNNs (filled dots) and the
DNNs (crosses) for the binary classification. The number of operations is
shown as a function of the F1 score for the 10 trials with the best F1 score for
each NN configuration (2 layers in blue, 3 layers in green and 4 layers in
orange) after 50 epochs of training. The two crosses embedded in empty
diamonds highlight the selected configurations according to the number of
operations (for n = 2 in blue) and to the F1 value (for n = 4 in orange). The
stars (in blue for the DNN with n = 2 and in orange for the DNN with n = 4)
correspond to the results for the best model (among the k = 10 realizations) of
the highlighted configurations after 300 epochs of training. The selected
configurations along with the metrics are described in Tables 1 and 2.

Table 1
Summary of the Hyper-parameter Optimization of the DNNs with the Best

Performance

Model Metric # Ops. n lr b Li

bin-best 0.9928 1.9 × 104 4 0.001 250 (32, 32, 64, 32)
bin-ops 0.9901 2.2 × 103 2 0.001 150 (8, 8)
time-best 0.62 7.0 × 104 4 0.001 300 (64, 128, 128, 16)
time-ops 0.72 1.5 × 104 4 0.001 150 (32, 64, 16, 4)
enrg-best 3.3 3.3 × 104 3 0.0001 150 (32, 128, 64)
enrg-ops 4.6 2.6 × 103 2 0.001 200 (8, 32)

Note. Column 1 indicates the model name. Column 2 shows the metric used for
the optimization: F1 score (Equation (3)) for the binary classification (first two
rows), MAE (Equation (4)) in sample units for the arrival time estimation (third
and fourth rows) and MAE in eV for the energy estimation (last two rows) of
the architecture with the best performance. Column 3 indicates the number of
operations required to process one record. Columns 4, 5 and 6 correspond to
the number of layers (n), the learning rate (lr) of the adam optimizer and the
batch size (b), respectively. Column 7 indicates the size (Li) of the dense layers.
Note that the n dense layers in the DNNs are followed by an additional dense
layer of size 1 (or the output layer).
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among the k= 10 realizations of the bin-best and the bin-ops
models.

In Figure 4, we show the confusion matrices for the bin-best
and the bin-ops models. As expected from the corresponding
F1 scores, the bin-ops classifier has a slightly better
performance than the bin-ops one. The number of FN records (
i.e., S records classified as D records) is almost negligible in
both cases (2 FN of total of 4979 S records). Interestingly, the
FN records for the bin-ops model are both S records with very
energetic pulses (11.90 keV and 11.99 keV), while for the bin-
ops model the 2 FN are S records with low energy pulses
(0.26 keV and 0.41 keV). In Figure 5, we show the normalized
first derivative intensity curves (i.e., the input vector of the
DNNs) of the four FN records found in the bin-best and the
bin-ops models. Note that the first derivative intensity curves
are normalized individually by their maximum value. From this
figure, it is clearly visible a “knee” after the maximum of the
first derivative (at around t= 20 samples) but before the
maximum of the pulse signal (i.e., the first derivative still has
a positive sign, so the signal is still increasing power) for the
FN records in the bin-best model. We interpret that this
variation in the first derivative is confusing the DNNs making
these S records look like D records. For the FN records
detected by the bin-ops model, given the low energy of these
two pulses, the noise level (baseline signal) is comparable with
the signal right after the peak of the first derivative intensity
curve. We conclude that the baseline signal is interpreted by the
DNNs as a secondary peak in the first derivative and, therefore,
the corresponding records are not classified as a S records, but
wrongly as D ones.

The number of FP records (i.e., D records classified as S
records) shown in Figure 4 is 59 for the bin-best model and 72
for the bin-ops model. These values corresponds to ∼1% of the
5021 D records included in the test sample. In particular, these

FP records are mainly D records with large differences in
energy and small separations (i.e., arrival times) between the
first and the second pulses in each record.
In Figure 6, we show the fraction of FP records in the

E12–d12 plane for the bin-best and the bin-ops models. The
fraction of FP records is computed as the number of D records
classified as S records divided by the number of D records, i.e.,
FP/(TN+ FP). Note that the number of D records is roughly
constant per hexagonal bin since we simulate both the E12 and
d12 from a uniform distribution. The majority of the FP records
are located in the top-left corner of the E12 - d12 plane with
d12 15 samples and E12 3 keV. However, even for the most
extreme pulses, those with d12 5 samples and E12 7 keV,
the fraction FP records is below 50%. Apart from the top-left
corner, the fraction of FP records in the rest of the E12 - d12
plane is negligible. Another implication that may be extracted
from Figure 6 is that the DNNs here examined have a better
performance when applied to D records with E12< 0 keV (i.e.,
the second pulse is more energetic than the first one).
Therefore, these DNNs are better at distinguishing the less
energetic pulse during the rise of the most energetic one that the
other way around. This is probably due to the shape of the
pulses as detected by X-IFU (i.e., the sharp rise of the pulse is
much more pronounced than the fall after it peaks). Overall,
this result provides a significant improvement with respect to
the classical method that fail to distinguish records with
multiple pulses with arrival times closer together than ∼30–45
samples, independently of the energies of the pulses (Cobo
et al. 2018).

4. Estimation of the Arrival Time of Double Events

The estimation of the arrival time of a second pulse in the
record (and not only the identification of the record as “double-
pulse”) would permit the recovery of the individual pulses for
the analysis, since they could be reconstructed afterwards with
the information of the uncontaminated pulse length.
In this section, we explore the ability of NNs to estimate the

differences in the arrival times of X-ray pulses stored in the
same record. First, we start by training and testing a series NNs
(analogous to the ones described in Section 3.2) to estimate the
separation of pulses in double-pulse records. After some
preliminary checks we select the DNNs as a better approach,
mainly in terms of the number of operations (but also the
accuracy) to the estimation of the event separation, similarly to
the findings of Sanchez-Gonzalez et al. (2017). Therefore, we
focus on a pure DNN to retrieve the differences in the arrival
time estimation (d12) of two consecutive X-ray pulses stored in
the same record (i.e., D records).
As described in Section 2, the range of the separations

between the first and the second pulses in D records are
uniformly distributed as d12 äUnif(1, 100). Consequently, our
DNNs need to be configured in regression mode in order for

Table 2
Summary of the Metrics for the k = 10 Realizations of the DNN Models

described in Table 1

Model Median Min Max

bin-best 0.9935 0.9924 0.9939
bin-ops 0.9904 0.9892 0.9926
time-best 0.55 0.53 0.57
time-ops 0.62 0.59 0.65
enrg-best 3.0 2.8 3.9
enrg-ops 4.5 3.3 4.7

Note. Column 1 indicates the model name. Column 2 shows the median of the
metric for the k = 10 realizations: F1 score (Equation (3)) for the binary
classifications (first two rows), the MAE (Equation (4)) in sample units for the
arrival time estimation (third and fourth rows) and MAE in eV for the energy
estimation (last two rows). Column 3 and 4 indicate the minimum and the
maximum value of the corresponding metric among the k = 10 realizations,
respectively. Each model is trained up to 300 epochs.
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them to derive a continuous value within the range of d12. The
architecture of the DNNs consists of 2, 3 or 4 dense layers of
variable sizes (Mi) and a relu activation function followed by a
fully connected layer of one neuron with a linear activation
function.

As in the previous classification tasks, the input data to the
DNNs are vectors of length 128 containing the first derivative
of the D pulse intensities normalized by its maximum.
Therefore, the input signals are within the range [0, 1].

Although a global normalization (i.e., normalizing by the
maximum value of all the pulses) might be used, it is not
crucial since the pulse separation is not sensitive to the shape of
the pulse, just to the beginning of it. In any case, we tried a
global normalization, but we found it to have a slightly worse
performance compared with the individual normalization.
The input values for the D records are the separation between

the consecutive pulses, d12 in sample units. These quantities are
previously normalized by the length of the input vector, i.e.,
d̄ d 12812 12= . Once the predictions of the model are derived
we undo the normalization to retrieve the separation between
pulses and the corresponding metrics.

4.1. Hyper-parameter Optimization

In this section, we present the results of the hyper-parameter
optimization of the DNN architectures designed to estimate the
separation of pulses in D records. We choose the mean absolute
error (MAE) as our objective function,

∣ ˜ ∣ ( )
n

y yMAE
1

, 4
i

n

i i
1

å= -
=

which is a typical objective function for a NN in regression
mode. By y and ỹ we refer to the input separation (i.e., d12) and
the predicted separation (denoted as dp) between consecutive
pulses, respectively. The lower the MAE, the better the
performance of the NN architecture. Then, we run the
optimization pipeline for a total of 50 trials and 100 epochs
per trial, and store the MAE and the list of hyper-parameter for
each trial. The hyper-parameter space is the same as the ones

Figure 4. Confusion matrices for the binary classification obtained with the DNN with the best F1 score (bin-best, left-hand panel) and the DNN with the lowest
number of operations (bin-ops, right-hand panel) in the hyper-parameter optimization. The number of pulses in the test sample shown here is equal to 10,000
consisting on 4979 single-pulse (S) records and 5021 double-pulse (D) records. In each box, we show both the number of pulses and the fraction in the corresponding
“true” category.

Figure 5. Normalized first derivative of the current stream curves of the FN
records for the bin-best and bin-ops models as a function of the arrival time (in
sample units).
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defined for the DNNs in the binary classification optimization
(see Section 3.2.1). In Figure 7, we show the results of the
hyper-parameter optimization of the DNNs with n= (2, 3, 4)
for the separation of pulses in D records. We show the number
of operations versus the MAE (in sample units) for the 10 trials
with the smallest MAE for each DNN configuration. On one
hand, the DNN with the best performance is the DNN with
n= 4 (labeled as time-best), MAE= 0.62 samples and a
number of operations equal to 7.0× 104. On the other hand,
we also select the DNN with n= 4 (labeled as time-ops), the
lowest number of operations (equal to 1.5× 104) and a
reasonably good MAE value of 0.72 (although the DNN with
n= 3 has a slightly lower number of operations, its MAE is
almost 0.1 larger). Both selected architectures are described in
Table 1.

Note that the input separation d12 is given by an integer
number within the range [0, 100] samples, while the (output)
predicted separation (dp) is a real number in the same range.
Therefore, values of MAE below 1 sample denote that the
DNNs are able to accurately determine (with less than 1 sample
error) the arrival time of a secondary pulse in D records with
respect to the primary pulse in the same record. However, this
does not mean that the predictions made by the DNNs are
below the measurement error (which is beyond the scope of
this section), but that the DNNs are able to predict the position
of a secondary pulse in a D record with an error below±1
sample.

4.1.1. Results

We present in this section the results of the estimation of the
arrival time of D records for the DNNs with the best

Figure 6. Fraction of false positive (FP) records in the E12 - d12 plane for the bin-best (left-hand panel) and the bin-ops (right-hand panel) models. The color of the
hexagonal bins corresponds to the fraction (in %) of FP records (computed as the number of D records classified as S records divided by the number of D records) as
coded in the color bar. The number in each of the hexagonal bins indicates the number of FP records in that particular bin.

Figure 7. Hyper-parameter optimization of the the DNNs (crosses) for the
arrival time estimation of D records. The number of operations is shown as a
function of the MAE (Equation (4)) for the 10 trials with the lowest MAE for
each DNN configuration (2 layers in blue, 3 layers in green and 4 layers in
orange) after 100 epochs of training. The two crosses embedded in empty
diamonds highlight the selected configurations according to the number of
operations and to the MAE values. The stars correspond to the results for the
best model (among the k = 10 realizations) of the highlighted configurations
after 300 epochs of training. The selected configurations along with the metrics
are described in Tables 1 and 2.
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performance in terms of the MAE (time-best model) and the
number of operations (time-ops model) among the architectures
described previously. The optimized DNNs for the estimation
of the separation of D records are trained and validated with a
sample of 30,000 D records (described in Section 2). The
sample is split into training sample (20,000 records) and test
sample (10,000 records). As for the precedent classification
task, we perform a k-fold cross-validation with k= 10.
Therefore, we obtain 10 different realizations with independent
weights initialization, trained and validated with slightly
different combination of pulses. Then, the models are tested
over the test sample, which has been never shown to the DNN
during the training process. The number of epochs is fixed to
300 epochs. We store the model weights at the epoch with the
lowest MAE for each realization and apply it to the test sample.

For the separation of D records we obtain a median
MAE= 0.55 samples for the k= 10 realizations of the time-
best model, while the best realization has a
MAE= 0.53 samples. For the time-ops model, the median
MAE= 0.62 samples for the k= 10 realizations and the best
realization has a MAE= 0.59 samples. These metrics are
summarized in Table 2. Hereafter, we show the results for
the best model among the k= 10 realizations of the time-best
and the time-ops models.

The distribution of the differences between the predicted and
the true separation (dp− d12) of pulses in D records is shown in
Figure 8. The median values are 0.0± 0.6 and 0.0± 0.5 (errors

correspond to 68% of the test sample) for the time-best and the
time-ops models, respectively.
To better illustrate the results obtained on the determination

of the separation of pulses in D records, we show in Figure 9
two boxplots for the (dp− d12) derived by the time-best and the
time-ops models as a function of the E12 and d12. The median
values are very close to zero in both cases with small deviations
for high values of E12 or low values of d12. However, the D
records with high values of E12 or low values of d12 are also
those with larger interquartile range (IQR) and number of
outliers. The IQR is defined as the width between the third and
first quantiles (i.e., IQR=Q3–Q1), where the Q1 and Q3
correspond to the 25th and 75th percentiles, respectively. It is
clear also from the errors bars that, for the extreme cases where
d12 20, the separation of the pulses, d12, has a stronger
impact in its determination than the difference in energy of the
pulses, E12. In fact, most of the outliers with |dp− d12|> 3
samples are due to records with d12 20.
Once a record is classified by the DNNs described in

Section 3.2 as a D record, in this section, we demonstrate that
the DNNs are able to determine the arrival time of the two
consecutive pulses with enough precision to help the
reconstruction method afterwards. The individual pulses can
be then recoverable for the analysis, since the estimation of its
energy is possible using the uncontaminated pulse length. In
particular, for D records that are separated less than
d12∼ 30–45 samples, the DNN constraints on d12 will improve
significantly the characterization and energy determination of
pulses in D records where the classical triggering fails. The
reconstruction would be then performed over the recovered
individual pulses not needing to throw them away by a labeling
method and avoiding a possible unnoticed reconstruction of
piled-up pulses (worst case scenario).

5. Estimation of the Energy of Single Events

As a final step on the reconstruction of the X-ray pulses
detected by an instrument like Athena/X-IFU, in this section,
we describe the methodology used for inferring their energies
using DNNs. We focus our efforts on retrieving the energies of
pulses in S records, studying whether they are compatible with
the current estimates by the standard method which uses the
well-tested optimal filtering technique (Szymkowiak et al.
1993). Applied over the pulses simulated by XIFUSIM with the
characteristics of the X-IFU baseline pixel (∼2.5 eV FWHM
energy resolution at 6keV) the optimal filtering technique is
able to recover ∼eV input resolution for the reference energy,
while keeping a modest number of operations. For instance, the
optimal filtering technique requires roughly 49,000 operations
(8192 products + 8192 summations in 3 positions) to
reconstruct the energy of just one record. Then, our objective
is to test whether the NN methodology reaches this eV
precision (not bursting the computational cost), or perhaps is

Figure 8. Distribution of the differences between the predicted (dp) and the true
separation (d12) of pulses in D records in the test sample (10,000 records) for
the time-best model (dashed green histogram) and the time-ops model (solid
blue histogram). For each model color dots indicate the median value of the
distribution, while the error bars enclose 68% (1σ) and 95% (2σ) of the test
sample. Note the logarithmic scale in the vertical axis. I suggest instead to use a
stepped empty histogram for one of them, I think that it would be clearer and
friendlier to see in b/w.
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even able to improve the resolution at higher energies, where
the assumption of signal linearity with energy of the optimal
filtering technique produces worse resolution values.

As done in previous sections, since we try to minimize the
number of operations, we train and test only a series of DNNs
(not CNNs). The input data are vectors of length 128
containing the first derivative of the S pulse intensities. Given
that the energy of the pulse is proportional to the area under the
pulse intensity curve (also the shape, see Figure 2), in this case,
we normalize the input vectors to the maximum value of all the
S records. In other words, the maximum value of the input data
is 1 for the record with the largest value of the first derivative of
the pulse intensity and below 1 for the rest of the S records. In
this way, we maintain the information contained on the shape
of the pulse intensity curve about the energy of the pulse. The
input values of the S records are the pulse energies within
E1ä [0.2, 12.0] keV. Therefore, the DNNs are set in regression
mode to retrieve a continuous value of E1 within the given
energy range. The architecture of the DNNs consists of 2,3 or 4
layers of variable sizes (Mi) and a relu activation function
followed by a fully connected layer of one neuron with a linear
activation function.

5.1. Hyper-parameter Optimization

We perform a hyper-parameters optimization of the DNN
architectures mentioned above to estimate the energies of S
records with the MAE (Equation (4)) as the objective function
of the TPE Bayesian optimization. In this case, y and ỹ
correspond to the energies E1 and their predicted values (Ep),
respectively. Then, we run the optimization pipeline for 50

trials and 100 epochs per trials, and store the MAE values, the
number of operations and the list of hyper-parameters for each
trial.
The hyper-parameter space is defined in the same way as in

the previous classification tasks. In Figure 10, we show the
results of the hyper-parameter optimization of the DNNs with
n= (2, 3, 4) for the energy determination of pulses in S
records. The DNN with the best performance (labeled as enrg-
best) is the one with n= 3 and has a MAE 3.3 eV and the
number of operations is 33,000 (see Table 1). Additionally, the
DNN with n= 2 (labeled as enrg-ops) has a similar
performance (MAE 4.6 eV) with 2600 operations (one order
of magnitude less operations with respect to the enrg-best
model). Given these numbers, the enrg-ops model is clearly the
cheapest choice regarding the computational cost while
retrieving satisfactory estimates of the pulse energies in S
records. Contrarily, the enrg-best model has a larger number of
operations, but still below the number required by the high
resolution reconstruction using the optimal filtering technique,
for which 49,000 operations per pulse are required.
Hereafter, we perform the estimation of the pulse energies of

S records with both architectures, the DNN model labeled as
enrg-best and the one denoted as enrg-ops, which are described
in Table 1.

5.1.1. Results

We present the results of the energy estimation of pulses in S
records for the DNN with n= 2 and n= 3 described in the
previous section. Since this is a more complex task, we
increased the number of S records in the training sample to help

Figure 9. Boxplots for the (dp − d12) as a function of the E12 (left-hand panel) and d12 (right-hand panel). The results are shown for the time-ops (in blue) and the
time-best models (in green) separately. The test sample of 10,000 D records is split in bins of E12 of 2 keV within the range [−12, 12] keV, and in bins of d12 of 10
samples within the range [0, 100] samples. Therefore, the boxes are centered in the middle value of each corresponding bin. The box encloses the IQR. The line within
each box indicates the median of the distribution (50th percentile). The minimum and maximum values in the data set (represented with the error bars) excluding
outliers correspond to Q1 − 1.5 × IQR and Q3 + 1.5 × IQR, respectively. A value outside that range is considered an outlier (dots) with 2.7σ.
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the DNNs to retrieve the energies of the pulses in S records
more accurately. The optimized DNNs are trained and
validated with a sample of 60,000 S records (50,000 for
training and 10,000 for testing). We also perform a k-fold cross
validation with k= 10. The number of epochs is now extended
to 300 with respect to the optimization procedure. After the
training phase, we store the model weights at the epoch with
the lowest MAE for each realization and apply it to the test
sample.

We obtain median values of MAE= 4.5 eV and
MAE= 3.0 eV for the 10 realizations trained for estimating
the energy of the pulses in S records with the enrg-ops and
enrg-best models. The realization (among the k= 10) with the
smallest MAE for the enrg-ops model has a MAE= 3.3 eV,
while for the enrg-best this value decreases to MAE= 2.8 eV.
These results are quoted in Table 2. Hereafter, we show the
results for the best model (i.e., smallest MAE) among the
k= 10 realizations of the enrg-best and enrg-ops models.

In Figure 11, we show the estimated relative error of the
predicted value (denoted as Ep) and the true energy of the
pulses (E1) in the 10,000 S records that conform the test
sample. Despite some modest differences, the enrg-ops and
enrg-best models lead to similar results. The relative errors of
the predicted energies are constrained within less than ∼0.5%
for pulses with E1> 2 keV. Weaker pulses (i.e., E1< 2 keV)
are more difficult to characterize in terms of their energies,

leading to larger values of (Ep− E1)/E1. In the bin with the less
energetic pulses (0< E1< 1 keV), the 2.7σ range extends
beyond the 1% relative error with some outliers above the 1.5%
error. It is also interesting to note the increasing number of
outliers in the last energy bin, 11< E1< 12 keV, toward the
negative values of (Ep− E1)/E1. Consequently, we conclude
that for some of these powerful pulses (in the saturation limit of
the detector) the DNNs are underestimating the true energy.
Nevertheless, the relative errors for the majority of these
particular cases are constrained within less than ∼0.1% (or
within less than ∼0.2% considering the outliers). In any case,
the predicted energies are in excellent agreement with the true
energies of pulses in S records, showing median values of
(Ep− E1)/E1 (as well as IQR) very close to zero for the whole
energy range.
In order to compare our results for the energy estimation of

pulses in S records with the classical optimal filtering method,
in Figure 12, we show the FWHM values of the energy
difference Ep− E1 computed in energy intervals of 1 keV. The
FHWM is approximated by 2.35 times the standard deviation
of the energy difference Ep− E1. The FHWM values are
systematically larger for the enrg-ops than for the enrg-best
model, ranging from ∼7 keV at the lowest energies to ∼14 keV
for the largest energies. The overall FWHM values of Ep− E1

are 8.3 eV and 10.0 eV for the enrg-best and the enrg-ops
models, respectively. The FWHM values in the energy range
5–7 keV are ∼9 eV and ∼7 eV for the enrg-ops and the enrg-
best models, respectively, which are more than twice the
FWHM value of 2.5 eV derived with the optimal filtering
method.

Figure 10. Hyper-parameter optimization of the DNNs for the estimation of the
energy of pulses in S records. The number of operations is shown as a function
of the MAE (in eV) for the 10 trials with the smallest MAE at each DNN
configuration (2 layers in blue, 3 layers in green and 4 layers in orange) after
100 epochs of training. The two crosses embedded in empty diamonds
highlight the selected configurations according to the number of operations (for
n = 2 in blue) and to the F1 value (for n = 4 in orange) . The stars (in blue for
the DNN with n = 2 and in orange for the DNN with n = 4) correspond to the
results for the best model (among the k = 10 realizations) of the highlighted
configurations after 300 epochs of training. The selected configurations along
with the metrics are described in Table 1 and in Table 2.

Figure 11. Boxplot for the estimated relative error, (Ep − E1)/E1, of the pulse
energies in S records as a function of the E1. The results are shown for the enrg-
ops (in blue) and the enrg-best models (in green) separately. The test sample of
10,000 S records is split in bins of E1 of 1 keV within the range [0, 12] keV.
Therefore, the boxes are centered in the middle value of each corresp-
onding bin.
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As before mentioned, the classical optimal filtering method
reconstructs accurately the energies of pulses in S records with
roughly 49,000 operations. Therefore, although with a larger
value of the FWHM for Ep− E1, the number of operations
needed for retrieving the pulse energies (with the selected
number of samples in this study) is comparable or significantly
smaller whether the enrg-best (3.3× 104 operations per record)
model or the enrg-ops (2.6× 103 operations per record) are
used, respectively. Note that before reconstructing the energy
of a S records, this has to be previously classified as S record
and, therefore, summing up 2.2× 103 operations per record in
the case of the bin-ops model, for instance.

6. Conclusions

We presented a Machine Learning approach to detect,
identify and characterize current pulses produced as a response
of incident X-ray photons in TES detector devices. Alter-
natively to the classical methods (threshold detection and
optimal filtering), we employ a series of NNs (both DNNs and
CNNs): a) to identify records containing single-pulse (S) or
double-pulse (D) records; b) to recover the arrival time of
pulses in D records; and c) to estimate the energy of the
simulated X-ray pulses in S records.

The data set used to train and test the NNs consists of
simulations performed with SIXTE/XIFUSIM, the Athena/X-
IFU official simulator. This simulator framework constitutes a
quite reliable representation of the X-IFU-like TES arrays
behavior as demonstrated by the test of several reconstruction
algorithms (initially studied on simulations) on TES laboratory

Mn Kα X-ray data from GSFC and NIST laboratories
(Ceballos, M.T. et al. 2022, in preparation). On the other
hand, simulated data have the unique advantage of controlling
the conditions (arrival time and energy) of the X-ray events,
impossible for laboratory data where nearly coincident events
could pass inadvertently. However, as some simplifications
have been used in the simulations (use of non-stationary noise,
for example) it will be a line for future work the study of these
techniques on laboratory data in the situations where the close
arrival of the events are obvious or can be spotted by other
detection methods. Nonetheless, we do not foresee major
discrepancies since the identification of the pulses is mainly
governed by their rise time, their shape and the noise level,
parameters that are quite accurately described by the SIXTE/
XIFUSIM framework. It should be stressed though that the
results for the NN architectures presented here are optimal for
the specific X-IFU-like TES devices, probably being necessary
a further adjustment for other configuration of TES detectors
with different rise time, pulse shapes or noise models.
As they are initially thought for an on board application, our

NN architectures are designed to maximize the performance of
the NNs, while minimizing their complexity (i.e., reducing the
computational cost in terms of the number of operations).
For the identification of the different types of records we

optimize and train a series of NNs configured in binary mode to
distinguish between S and D records. The data set used for
training and testing consist of 60,000 records, 30,000 of each
type (S and D records). The input vectors of 128 samples for
the NNs contain the values of the first derivative of the pulse
intensity. For the binary classifier we choose the DNNs with
n= 2 and n= 4 (labeled as bin-ops and bin-best, respectively)
described in Table 1 for showing an excellent performance
(F1 0.99 in both cases, see Equation (3)).
Given the limitations arisen from being on-board of a space

mission (such as the CPU, RAM and storage capacities), the
best suited option would be the DNN architecture labeled as
bin-ops (described in Table 1) for the binary classification of S
and D records. In terms of the lowest computational cost, the
bin-ops model has a number of operations of 2200. In other
words, the bin-ops model keeps a reasonable computational
cost with an excellent performance in terms of its F1 score. For
this DNN architecture, the number of S records miss-classified
as D records is roughly 2 in ∼5000, while the number of D
records miss-classified as S records is 72 in ∼5000 (∼1%).
Consequently, the small fraction of false negative cases
translates into a high completeness sample of S pulses,
recall= 4977/(4977+ 2)≈ 1.0, while keeping a high purity,
precision= 4977/(4977+ 72)≈ 0.99). More importantly, as
shown in Figure 5, our DNNs in binary mode only fail for very
extreme cases of D records with both large E12 and small d12
parameters. Despite these cases, our DNN clearly surpasses the
detection performance of the classical triggering approach for
the full range of photon energy and arrival time combinations.

Figure 12. FWHM of the energy difference Ep − E1 as a function of the true
energy of the S pulses (E1). Blue and green dots correspond to the FWHM
values in energy intervals of 1 keV for the enrg-ops and the enrg-best models,
respectively. The blue and green horizontal lines indicate the overall FWHM
for each model. The red horizontal segment corresponds to the FWHM of
2.5 eV obtained with the classical optimal filtering method for the energy
interval 5–7 keV. Note that units of FWHM are in eV.
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In a second phase, we optimize and train a series of NNs
designed to estimate the arrival time of pulses in D records. The
arrival times of the secondary pulses in D records are drawn
from a uniform distribution and made of integer values within
the range of [1, 100] samples. Therefore, the NNs for this task
are created in regression mode to retrieve the difference in the
arrival time of two consecutive X-ray pulses stored in the same
record (i.e., d12). In particular, we propose to use DNNs since
they constitute a better approach than the CNNs not only in
terms of performance, but mainly regarding the computational
cost. After the hyper-optimization process, we find that two
DNNs with n= 4 (see Table 1 for a detailed description of their
architectures) are the ones with the best performances and
reasonable computational costs for the arrival time estimation
of D records. In particular, the model with the best performance
and a modest computational cost (15,000 operations), denoted
as time-ops, shows a MAE= 0.62 samples (see Equation (4)).
Again, the largest differences between the predicted and the
true arrival times of pulses in D records (i.e., dp− d12) are
mostly due to records with values of d12 20 samples and
values of E12 5 keV. In contrast to the classical method, the
results for the DNN presented here allow a “sub-sample”
estimation (i.e., MAE 1 sample) of the pulse separation in D
records, even for those in which pulses have very close arrival
times.

By knowing when a D record is detected using the binary
classifier denoted as bin-ops, and what is the separation
between the two consecutive pulses (d12) applying the time-ops
model for the arrival time estimation, we are obtaining a
extremely valuable information to help the classical method to
recovering for the analysis the pulses in double-pulse records
being able to retrieve a more accurate estimate of the (primary
and secondary) pulse energies.

In a final stage, we describe the methodology used to infer
the energies of pulses in S records and compare the results we
obtained with the well-tested optimal filtering technique. For
this task we optimize and train a DNN in regression mode to
infer the input pulse energy within the energy range
[0.2–12] keV. We select two DNNs with different architec-
tures: the first one with n= 3 denoted as enrg-best and the
second with n= 2 labeled as enrg-ops. Although both
architectures obtain similar performances (MAE≈ 3 eV), the
enrg-ops model has reasonably low computational cost (of
2600 operations) compared to the one with enrg-best model
(with more than 10 times more operations). After the training
and testing phases, we obtain a MAE≈ 3.3 eV for the
difference between the estimated and the true pulse energies,
Ep− E1. The median values of the estimate relative error of
Ep− E1 are close to zero in the whole energy range with larger
IQR toward the low-energy end of E1. However, the FWHM of
Ep− E1 for energies within 5–7 keV is ∼9 eV for the enrg-ops
model (∼7 eV for the enrg-best model). Summarizing,
although keeping a low number of operations (almost one

order of magnitude below the optimal filtering technique), the
FWHM values obtained with our enrg-ops model are more than
∼3 times larger than the optimal filtering estimates for low and
intermediate pulse energies, and well above the requirements of
the X-IFU instrument.
The failure to determine with enough accuracy the energy of

the single pulses is what ultimately leads us to conclude that the
machine learning methods developed here are not a viable
alternative to the current baseline optimal filtering technique to
estimate the energy of the pulses, despite their higher
computing efficiency. However, they can be a very valuable
help to recover pulses considered as piled-up by the classical
triggering mechanisms, that otherwise should be excluded from
the analysis by an additional identification procedure, or (in the
worst case scenario) would be incorporated to the analysis as
single pulses, thus contributing to worsen the spectral
resolution.
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