
A Mathematical Conceptualization of
Bundle Sets in Defeasible Logic Programming

Yamil O. Soto

Dept. of CS and Eng., Universidad Nacional del Sur (UNS)

& Inst. for CS and Eng. (ICIC UNS-CONICET)

Bahia Blanca, Buenos Aires, Argentina

yamil.soto@cs.uns.edu.ar

Cristhian Ariel D. Deagustini

Area de Agentes y Sistemas Inteligentes (FCAD UNER)

Concordia, Entre Rios, Argentina

ariel.deagustini@uner.edu.ar

Maria Vanina Martinez

Artificial Intelligence Research Institute (IIIA-CSIC)

Barcelona, Catalonia, Spain

vmartinez@iiia.csic.es

Gerardo I. Simari

Dept. of CS and Eng., Universidad Nacional del Sur (UNS)

& Inst. for CS and Eng. (ICIC UNS-CONICET)

Bahia Blanca, Buenos Aires, Argentina

gis@cs.uns.edu.ar

ABSTRACT
Defeasible Logic Programming (DeLP) is a formalism for structured

argumentation-based reasoning that is founded on a dialectical

procedure that relies on trees to compute answers to queries, which

return the so-called warrant statuses of the literals involved. In this

work, we propose a novel, more general, and minimal structure

(understanding it as theminimum information necessary to warrant

a statement) than the concept of dialectical tree, which we call

parsimonious bundle set. This structure is significant for a line of
research that we are carrying out in which we are studying the

theoretical foundations of DeLP toward the definition of model-

theoretic semantics, a contribution that, in turn, will allow us to

analyze the formalism from a different perspective, focusing on

theoretical aspects, and also to eventually generalize the query

language from literals to formulas built from Boolean connectives.

Therefore, in this first step, we focus on developing the basic tools

required to provide an alternative to the operational semantics of

DeLP that is centered on declarative definitions.

CCS CONCEPTS
• Computing methodologies→ Nonmonotonic, default rea-
soning and belief revision.

KEYWORDS
Defeasible reasoning, Structured Argumentation, Defeasible Logic

Programming, Argumentation lines, Model-theoretic semantics

ACM Reference Format:
Yamil O. Soto, CristhianAriel D. Deagustini, Maria VaninaMartinez, andGer-

ardo I. Simari. 2024. A Mathematical Conceptualization of Bundle Sets in

Defeasible Logic Programming. In The 39th ACM/SIGAPP Symposium on
Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3605098.3636042

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0243-3/24/04. . . $15.00

https://doi.org/10.1145/3605098.3636042

1 INTRODUCTION AND RELATEDWORK
Defeasible Logic Programming (DeLP) [8] is a structured argumenta-

tive approach to defeasible reasoning [11, 17], i.e., conflicting logical
arguments supporting specific queries are considered in a global

process to determine which survive. In DeLP, queries are analyzed

in a dialectical process that exhaustively considers arguments for

and against specific answers in search of warrants, which means

that available information supports specific conclusions. In this

way, a query 𝛼 has answer Yes when there is an argument for 𝛼

that is warranted, No when there is an argument for ∼𝛼 that is war-

ranted, Undecided if neither 𝛼 nor ∼𝛼 have arguments that warrant

them, and Unknown otherwise. DeLP is an interesting formalism

since it allows to deal with both incomplete and contradictory in-

formation in dynamic domains; hence, the framework is suitable

for representing agents’ knowledge and providing them with an

argumentation-based reasoning mechanism, and it has proven to

be successful in real-world applications [4, 7, 12, 16].

Presumptive Defeasible Logic Programming (PreDeLP) [14] is an

extension of DeLP in which presumptions are fully integrated into

the reasoning mechanism. A presumption is a piece of information

that is tentatively taken to be true although it is not known for

certain, usually in the absence of acceptable reasons to the con-

trary. Though syntactically presumptions look like defeasible facts,

treating them adequately requires a more involved approach.

Formal semantics have been defined for Abstract Argumentation

Frameworks [1] in terms of models (extensions), much like in Logic

Programming [10], defining the subset of all models that satisfy

some desirable properties. To date, no model-theoretic semantics

has been developed neither for DeLP nor PreDeLP; a promising

line of research, that we propose as future work, is to develop

such semantics with the ultimate goal of studying the theoretical

foundations of PreDeLP. As an additional benefit, this may also

pave the way towards generalizing the query language, and it may

also help programmers better understand program behavior and

results.

In this paper, we propose a novel structure, called parsimonious
bundle set, which we believe will be useful in developing the above-

mentioned line of research. Parsimonious bundle sets are more

779

https://doi.org/10.1145/3605098.3636042
https://doi.org/10.1145/3605098.3636042

SAC ’24, April 8–12, 2024, Avila, Spain Soto et al.

general structures than dialectical trees, defined in a more declara-

tive way, and which are also minimal (understood as containing

the minimal information, according to set inclusion, necessary to

warrant a claim). In this first work, we define a set of operations

that can be performed over these structures and present several

interesting properties they enjoy. The main contributions of this

work are: (i) We capture the notion of minimality of information

needed to warrant a claim through the notion of parsimony; (ii) we
propose a structure, called parsimonious bundle sets, that is mini-

mal and more general than dialectical trees, while still encoding all

the information needed to determine the warrant status of a root

argument; (iii) we explore how several set theory-inspired opera-

tions on bundle sets can be defined; and (iv) we define a warrant

procedure for query answering based on parsimonious bundle sets.

The rest of the paper is organized as follows. In Section 2 we

briefly recall the language and the main concepts of PreDeLP. In Sec-

tion 3.1 we recall some notions about bundle sets, and in Section 3.2

we characterize the notion of parsimonious bundle set, give op-

erations on them, and define a warrant procedure through this

structure. Finally, we discuss the main conclusions of the paper and

some future lines of research in Section 4.

2 DEFEASIBLE LOGIC PROGRAMMINGWITH
PRESUMPTIONS

In the following, we briefly recall the most relevant concepts for

PreDeLP from [14]. In the PreDeLP language, a literal 𝐿 is a (possibly

negated) ground atom. We represent strong negation with “∼” and
say that 𝐿 and ∼𝐿 are complementary. A strict (resp., defeasible) rule
has the form 𝐿 ← 𝐿1, . . . , 𝐿𝑛 (resp., L −−≺ L1, . . . , Ln), where 𝐿 is the

head, and 𝐿1, . . . , 𝐿𝑛 , with 𝑛 ⩾ 1, is the body of the rule. Body(𝑅)
and Head (𝑅) denote the body and head of a rule 𝑅. A defeasible rule

head −−≺ body represents a weaker connection between 𝑏𝑜𝑑𝑦 and

ℎ𝑒𝑎𝑑 . It can be understood as expressing that “reasons to believe in

the antecedent 𝑏𝑜𝑑𝑦 provide reasons to believe in the consequent

ℎ𝑒𝑎𝑑” [21], but it may be the case that 𝑏𝑜𝑑𝑦 is true and ℎ𝑒𝑎𝑑 is not.

Note that the symbols← and −−≺ denote meta-relations between a

literal and a set of literals, and have no interaction with language

symbols. As in Logic Programming, strict and defeasible rules are

not conditionals nor implications, they are inference rules [8, 9]. A

fact (resp., presumption) is a strict (resp., defeasible) rule with an

empty body, denoted as𝐿 (resp., L −−≺). Intuitively, presumptions are

pieces of information that are tentatively taken to be true, usually

in the absence of acceptable reasons to the contrary. They express

motives to believe in some information, and they represent weaker

assertions than facts.

Definition 2.1. A PreDeLP program 𝑃 = (Ω,Θ,Δ,Φ), is a set of
strict rules Ω, facts Θ, defeasible rules Δ, and presumptions Φ.

Next, we introduce the concept of annotated derivation, where
we subscribe to the definition given in [14]. In what follows, we

use the term “annotated derivation” or just “derivation”.

Definition 2.2. Let 𝑃 be a PreDeLP program and 𝐿 a literal. An

annotated derivation, denoted 𝜕, of 𝐿 from 𝑃 consists of a finite

sequence of rules, facts, and possibly presumptions [𝑅1, . . . , 𝑅𝑛],
where 𝐿 is (i) a fact 𝑅𝑛 , (ii) a presumption 𝑅𝑛 , or (iii) the head of

the rule 𝑅𝑛 . Furthermore, if a rule 𝑅𝑖 is in the sequence, then its

body 𝐵1, . . . , 𝐵𝑘 , is such that for all 𝐵 𝑗 , with 1 ⩽ 𝑗 ⩽ 𝑘 , 𝐵 𝑗 is a fact,

a presumption or it appears as the head 𝐿𝑚 , for some rule 𝑅𝑚 with

1 ⩽ 𝑚 < 𝑖 .

We assume a canonical form for derivations. A derivation 𝜕′ =
[𝑅1, . . . , 𝑅𝑖] is a sub-derivation of 𝜕 = [𝑅1, . . . , 𝑅𝑛] if 𝑖 ⩽ 𝑛. A deriva-

tion 𝜕 is strict when neither presumptions nor defeasible rules are

used in 𝜕, otherwise 𝜕 is defeasible. A literal 𝐿 is strictly derived
from 𝑃 , denoted 𝑃 ⊢ 𝐿, if there exists a strict derivation for 𝐿 from

𝑃 , and 𝐿 is defeasibly derived from 𝑃 , denoted 𝑃 |∼ 𝐿, if there exists
a defeasible derivation for 𝐿 from 𝑃 and no strict derivation exists.

A derivation 𝜕 for 𝐿 is minimal if no proper sub-derivation 𝜕′ of 𝜕
is also a derivation of 𝐿. Considering minimal derivations avoids

the insertion of unnecessary elements that will weaken its ability

to support the conclusion by possibly introducing needless points

of conflict. Given a derivation 𝜕 for literal 𝐿, there always exists

at least one minimal sub-derivation 𝜕′ for 𝐿. A PreDeLP program

𝑃 = (Ω,Θ,Δ,Φ) is contradictory if there exist derivations for two

complementary literals. We denote with Π = (Ω,Θ) the strict part
of 𝑃 , and assume that the sub-program Π is non-contradictory. Two
literals 𝐿1 and 𝐿2 disagree w.r.t. 𝑃 if Π ∪ {𝐿1, 𝐿2} is contradictory.
Intuitively, this means that both should not be inferred and a mech-

anism to decide between one or the other is needed. This is done

through an argumentative approach that consists of building argu-

ments for the literals in conflict—we call such literals claims—and
evaluating all such arguments in a dialectical process to decide

which prevails. A derivation 𝜕 is contradictory if two disagreeing

literals 𝐿1 and 𝐿2 can be derived from it. In the following, we only

consider minimal and non-contradictory derivations.

2.1 Constructing and Comparing Arguments
Intuitively, arguments are structures that support a claim from

evidence through a reasoning mechanism.

Definition 2.3. An argument for a literal 𝛼 from a PreDeLP pro-

gram 𝑃 , denoted ⟨A, 𝛼⟩, is the set A of facts, presumptions, and

rules (strict and defeasible) used in an annotated derivation 𝜕 for 𝛼 .

An argument A is a sub-argument of an argument B if A ⊆ B.
A is called the set of premises and 𝛼 is called the conclusion or

claim. Since we only consider minimal and non-contradictory an-

notated derivations, the set of premisesA used in 𝜕 is minimal and

non-contradictory. Non-minimal or contradictory sets of premises

are never arguments. An argument ⟨A, 𝛼⟩ is strict iff 𝛼 is strictly

derived from A , otherwise ⟨A, 𝛼⟩ is a defeasible argument. In the

following, we will refer to an argument ⟨A, 𝛼⟩ simply as A when

its claim is not relevant to the discussion. Answers to queries are

supported by arguments built from the program. It is possible to

build arguments for complementary literals, and arguments can

thus attack each other.

Definition 2.4. Let ⟨A, 𝛼⟩ and ⟨B, 𝛽⟩ be two arguments in a Pre-

DeLP program 𝑃 . ⟨A, 𝛼⟩ attacks ⟨B, 𝛽⟩ at literal 𝛾 , iff there exists a

sub-argument ⟨C, 𝛾⟩ of ⟨B, 𝛽⟩ such that 𝛼 and 𝛾 disagree.

Given argumentA and counter-argument B, a comparison crite-
rion is used to decide ifA is preferred toB and, therefore, defeatsB.
The definition of such a formal criterion is a central problem in

any argumentation system where the defeat relation must be com-

puted from the structure of arguments. Although the comparison

780

A Mathematical Conceptualization of Bundle Sets in Defeasible Logic Programming SAC ’24, April 8–12, 2024, Avila, Spain

criterion used in DeLP, and by extension in PreDeLP, is modular,

Generalized Specificity [22] is the default. This criterion intuitively

favors arguments with greater information content (classical Speci-

ficity) or with less use of rules (a more direct derivation). However,

in the presence of presumptions, Generalized Specificity does not

always have the intended results; for that reason, other preference

criteria have been developed [14]. In this work, we assume an arbi-

trary comparison criterion denoted with A ≻ B whenever A is

preferred to B.

2.2 Dialectical Analysis
The dialectical process exhaustively considers arguments for or

against specific queries looking for a warrant, which means that the

claim is supported by an undefeated argument. To decide whether

an argument is undefeated within a program, all related arguments,

i.e., arguments that support or interfere with it, must be considered.

Definition 2.5. Let A and B be arguments from a PreDeLP pro-

gram 𝑃 such that A attacks B, and ≻ is a comparison criterion.

• A is a proper defeater of B iff A ≻ B.
• A is a blocking defeater of B iff A ⊁ B and B ⊁ A .

• A defeats B, denoted (A,B), iff A is a proper or a blocking

defeater of B.

Definition 2.6. Let A1 be an argument in a PreDeLP program

𝑃 . An argumentation line for or rooted in A1 is a sequence of

arguments of the form Λ = [A1, . . . ,A𝑛] where each element is a

(blocking or proper) defeater of its predecessor.

Different argumentation systems can be defined by setting a

particular criterion for proper attacks or defining the admissibility

of argumentation lines. Here, we adopt the one from [8].

Definition 2.7. Given an argumentation line Λ:

• The supporting set is 𝑆 (Λ) = {A𝑖 | A𝑖 ∈ Λ and 𝑖 = 2𝑘 + 1} with
𝑘 ∈ N, i.e., 𝑖 is odd.
• The interfering set is 𝐼 (Λ) = {A𝑖 | A𝑖 ∈ Λ and 𝑖 = 2𝑘} with
𝑘 ∈ N>0, i.e., 𝑖 is even.

Definition 2.8. Let (Ω,Θ,Δ,Φ) be a PreDeLP program. Two ar-

guments ⟨A, 𝛼⟩ and ⟨B, 𝛽⟩ are concordant iff the set Π ∪ A ∪ B is

non-contradictory. More generally, a set of arguments {⟨A𝑖 , 𝛼𝑖 ⟩}𝑛𝑖=1
is concordant iff Π ∪⋃𝑛

𝑖=1A𝑖 is non-contradictory.

Definition 2.9. An argumentation line Λ is acceptable if:
• Λ is finite.

• The supporting (resp., interfering) set is concordant.

• No argument A𝑖 in Λ is a sub-argument of an argument Aℎ

appearing earlier in Λ (with ℎ < 𝑖).

• For all 𝑖 , such that the argument A𝑖 is a blocking defeater for

A𝑖−1, if A𝑖+1 exists, then A𝑖+1 is a proper defeater for A𝑖 .

The dialectical process considers all possible acceptable argumen-

tation lines for an argument, which together form a dialectical tree.
Such trees for PreDeLP programs are defined following [8], and we

adopt the notion of coherent dialectical tree from [14], which, intu-

itively, ensures that conflicting presumptions are not used together

in supporting (or attacking) a claim.

Definition 2.10. LetA1 be an argument from a PreDeLP program

𝑃 . A dialectical tree for A1, denoted T (A1), is defined as follows:

• The root of the tree is labeled with A1.

• Let 𝑁 be a node of the tree labeled A𝑛 , and Λ = [A1, . . . ,A𝑛]
be the sequence of labels of the path from the root to 𝑁 . Let

{B1, . . . ,B𝑘 } be all the defeaters for A𝑛 from 𝑃 . For each defeater

B𝑖 (1 ⩽ 𝑖 ⩽ 𝑘), such that Λ′ = [A1, . . . ,A𝑛,B𝑖] is an acceptable

argumentation line, the node 𝑁 has a child 𝑁𝑖 labeled B𝑖 . If there
is no defeater for A𝑛 or there is no B𝑖 such that Λ′ is acceptable,
then 𝑁 is a leaf.

Argument evaluation, i.e., determining whether the root node

of a dialectical tree is defeated or undefeated, is done through a

marking or labeling procedure, according to which each node in a

dialectical tree is labeled as either defeated (𝐷) or undefeated (𝑈).

Let root (T (A)) be the root of T (A) and mark(𝑁) the value of
the marking for node 𝑁 in T (A).
Definition 2.11. Let A be an argument in a PreDeLP program 𝑃 .

Let T (A) be a dialectical tree for A . The marking of T (A) will
be obtained marking every node in T (A) as follows:
• All leaves in T (A) are marked as𝑈 .

• Let B be an inner node of T (A). Then B is marked as𝑈 iff every

child of B is marked as 𝐷 . Node B is marked as 𝐷 iff it has at least

one child that is marked as𝑈 .

This dialectical process allows us to define a query answering
semantics, according to which a literal 𝛼 is warranted in a PreDeLP

program 𝑃 if there exists a tree whose root is an argument for 𝛼

marked as undefeated. This semantics enjoys the so-called direct
consistency property [3], i.e., no contradictory sets of literals can be

warranted from 𝑃 .

Definition 2.12. A literal 𝛼 is warranted from a PreDeLP program

𝑃 , denoted 𝑃 |∼W 𝛼 , iff there exists a dialectical tree T (A) rooted
in ⟨A, 𝛼⟩ such that mark(root (T (A))) = 𝑈 . If ∼𝛼 is warranted,

then 𝛼 is not warranted. If neither 𝛼 nor ∼𝛼 are warranted, then 𝛼

is Undecided. If 𝛼 is not part of the language of 𝑃 , it is Unknown.

3 TOWARDS WARRANTING BY MEANS OF
PARSIMONIOUS BUNDLE SETS

In Section 3.1 we recall some basic notions presented in [5, 6]

and define a marking and warrant procedure on bundle sets; then,

in Section 3.2 we substantially extend the presented framework to

capture the notion of a more general and minimal structure than

dialectical trees, while still encoding the necessary information to

determine the warrant status of a root argument.

3.1 Introducing Bundle Sets
In the following, we will refer to finite argumentation lines but not

necessarily acceptable ones; also, for simplicity, we use the term

“argumentation lines”, or just “lines”.

Definition 3.1. Let Λ = [A1, . . . ,A𝑛] be an argumentation line. A

segment for Λ is an initial sequence Λ′ = [A1, . . . ,A𝑖] with 𝑖 ⩽ 𝑛.

A segment Λ′ = [A1, . . . ,A𝑖] for Λ is proper if 𝑖 < 𝑛.

Remark 1. A segment Λ of an argumentation line Λ′′ is always a
line and also the segment of another segment Λ′ of Λ′′.

Example 1. Consider a PreDeLP program 𝑃 where the following
set of arguments can be built: {A1,A2,A3,A4}, and where (only)

781

SAC ’24, April 8–12, 2024, Avila, Spain Soto et al.

Figure 1: L, L′, and L′′ are the exhaustive, a parsimonious,
and a partial bundle set, respectively, for A1. Undefeated
(resp., defeated) arguments are colored green (resp., red).

the following defeat relations hold: (A2,A1), (A3,A2), (A4,A1),
and (A1,A4). Note that the last two relations represent thatA1 and
A4 are blocking defeaters. Three possible argumentation lines rooted
in A1 are Λ1 = [A1], Λ2 = [A1,A2], and Λ3 = [A1,A2,A3],
where Λ1 is a proper segment of Λ2 and Λ2 is a proper segment of
Λ3. Also, an infinite number of lines rooted in A1 can be obtained
through the relation betweenA1 andA4, e.g., Λ4 = [A1,A4], Λ5 =

[A1,A4,A1],Λ6 = [A1,A4,A1,A4], etc. Note that in the previous
case, each Λ𝑖 is a proper segment of Λ 𝑗 with 4 ⩽ 𝑖 < 𝑗 .

An argumentation line Λ is exhaustive if there is no line Λ′

such that Λ is a proper segment of Λ′. Otherwise, Λ is partial.
In Example 1, argumentation line Λ3 is exhaustive, while all the

others are partial. A bundle set is a set of argumentation lines such

that no line in the set is a proper segment of another line in the set.

Definition 3.2. Let L be a set of argumentation lines rooted in

argument A from a PreDeLP program 𝑃 . L is a bundle set for A if

there is no Λ,Λ′ ∈ L such that Λ is a proper segment of Λ′.

We are interested in bundle sets of acceptable argumentation

lines, which we call acceptable bundle sets. From now on, all bundle

sets that we consider are acceptable unless otherwise stated. The

concept of bundle set is a more general one than that of dialectical

tree; intuitively, if we consider a bundle set rooted in argument A ,

we can construct a tree structure for A where each argumentation

line is a branch in the tree structure. Indeed, several equivalent

tree structures can be constructed from the same bundle set (see

Definitions 3.5, 3.6, and 3.7 for further details). Also, the notion of

bundle set allows us to treat dialectical trees as sets whose elements

are argumentation lines, and then operate with them analogously

to operations in set theory (see Section 3.2). Given the above, from

now on we will focus on bundle sets. All the properties that we

highlight for bundle sets also extend to tree structures.

The following definition formalizes two specific kinds of bundle

sets that we are interested in.

Definition 3.3. Let L be a bundle set rooted in argumentA from a

PreDeLP Program 𝑃 . L is exhaustive iff L is the set of all exhaustive
lines rooted in A , i.e., there exists no Λ′′ rooted in A such that:

1. Λ′′ ∉ L,
2. Λ′ is a proper segment of Λ′′, where Λ′ is a segment of some

Λ ∈ L, and
3. Λ′′ is not a proper segment of any Λ ∈ L.
Otherwise, L is partial.

Intuitively, if there exists an argumentation line Λ′′ rooted inA
that does not belong to L (condition 1) such that Λ′′ has a proper
segment Λ′ which is a segment of some line in L (condition 2) and

Λ′′ is not a proper segment of any line Λ in L (condition 3), then

one of the lines in L is not exhaustive or Λ′′ is a new line not in L.
In both cases, L is not the set of all exhaustive argumentation lines

rooted in A ; consequently, it is partial.

Note that there exists only one exhaustive bundle set for any

given argument. Also, note that dialectical trees are exhaustive

bundle sets, i.e., consider all defeaters for a given argument, all the

defeaters of the defeaters, and so on.

Example 2. Let 𝑃 be a PreDeLP program where the following set
of arguments can be built: {A1,A2,A3,A4,A5,A6,A7,A8}, and
where (only) the following defeat relations hold: (A2,A1), (A3,A1),
(A4,A2), (A5,A2), (A6,A3), (A7,A3), (A8,A6). The possible
exhaustive argumentation lines rooted inA1 are:Λ0 = [A1,A2,A4],
Λ1= [A1,A2,A5], Λ2= [A1,A3,A6,A8] and Λ3= [A1,A3,A7].
The bundle set L = {Λ0,Λ1,Λ2,Λ3} is exhaustive because it is the set
of all exhaustive lines rooted in A1. The bundle set L′′ = {Λ1,Λ

′
3
},

where Λ′
3
= [A1,A3], is a partial one because one of its lines is

partial (Λ′
3
is a proper segment of both, Λ2 and Λ3), and also because

although Λ1 is exhaustive, (at least) one of its segments [A1,A2] is
a proper segment of Λ0. Figure 1 shows these examples.

We are now almost ready to reformulate the notion of a war-

ranted literal based on bundle sets; first, we need to extend some

concepts to formalize this idea.

Definition 3.4. Let L be a bundle set for argument A1 from a

PreDeLP program 𝑃 . Themarking of L will be obtained by marking

each occurrence of an argument in some Λ ∈ L as follows:
1. Let Λ = [A1, . . . ,A𝑛] ∈ L; then, A𝑛 is marked as𝑈 in Λ.
2. Let Λ = [A1, . . . ,A𝑖 , . . . ,A𝑛] ∈ L, with 𝑖 < 𝑛, and let 𝐸 = {Λ′ ∈
L | [A1, . . . ,A𝑖] be a proper segment of Λ′}. A𝑖 is marked as 𝑈 in

Λ iff for every line Λ′ ∈ 𝐸 it holds that the defeater ofA𝑖 is marked

as 𝐷 in Λ′. Otherwise, A𝑖 is marked as 𝐷 .

Intuitively, condition 1 states that if an argument is the last

element of a line Λ, it does not have any (valid w.r.t. Definition 2.9)

defeater and, consequently, is marked as 𝑈 in Λ. Condition 2 says

that if an argument A𝑖 is an “internal” element of a set of lines 𝐸,

then the mark of all its defeaters in all lines in 𝐸 must be considered,

and A𝑖 is marked in the same way in all lines belonging to 𝐸.

With 𝑟𝑜𝑜𝑡 (L) we denote the argument in which L is rooted, and
the marking of the occurrence of some argument A𝑖 ∈ Λ ∈ L is

denoted with mark(A𝑖 ,Λ). Figure 1 shows examples of markings

for different bundle sets. For instance, in L′, A1 is marked as 𝑈

in Λ1 and Λ3 because all its defeaters in all lines in the bundle set,

namely A2 ∈ Λ1 and A3 ∈ Λ3, are defeated. On the other hand,

in L′′, A1 is marked as 𝐷 in Λ1 and Λ′
3
because although there is

a defeater of A1 that is defeated, namely A2 ∈ Λ1, there is also

another defeater of A1, that is A3 ∈ Λ′
3
, which is undefeated.

We now propose a constructive definition of a more general

concept of a tree structure than a dialectical tree, which we call

argumentation tree, from a bundle set. With some abuse of notation,

we denote argumentation trees in the same way as dialectical ones.

782

A Mathematical Conceptualization of Bundle Sets in Defeasible Logic Programming SAC ’24, April 8–12, 2024, Avila, Spain

Definition 3.5. Let L be a bundle set for argumentA in a PreDeLP

program 𝑃 . An argumentation tree T (A), can be built from L in
the following manner:

• The root of T (A) is labeled with A .

• Let 𝐹 = {tail(Λ), for all Λ ∈ L}, and 𝐻 = {head (Λ), for all
Λ ∈ 𝐹 }1. If 𝐻 = ∅ then T (A) has no sub-trees. Otherwise, if 𝐻 =

{B1, . . . ,B𝑘 }, then for every B𝑖 ∈ 𝐻 , we define getBundle(B𝑖) =
{Λ ∈ 𝐹 | head (Λ) = B𝑖 }. We put T (B𝑖) as an immediate sub-

tree of T (A), where T (B𝑖) is an argumentation tree based on

getBundle(B𝑖).
Note that dialectical trees are a particular case of argumentation

trees. Intuitively, the main difference between both kinds of trees

is that argumentation ones are not necessarily exhaustive, i.e., they
do not necessarily consider all the defeaters (that do not violate

any of the restrictions of Definition 2.9) for an argument in the tree,

while dialectical ones must do so.

Next, we formalize the relation between a bundle set and an

entire class of argumentation trees. Intuitively, two argumentation

trees are equivalent if they are built from the same bundle set

(following Definition 3.5); such trees thus constitute a class, and

there is a mapping (a one-to-one correspondence) between each

bundle set and the class built from it.

Definition 3.6. Let 𝑃 be a PreDeLP Program and let Trees(A)
be the set of all argumentation trees rooted in argument A in 𝑃 .

Let T (A),T ′ (A) ∈ Trees(A). T (A) and T ′ (A) are equivalent,
denoted T (A) ≡ T ′ (A), if both are built from the same bundle

set L for A following Definition 3.5.

Definition 3.7. Let 𝑃 be a PreDeLP Program and let Bundle(A) be
the set of all bundle sets for argument A in 𝑃 . Let L ∈ Bundle(A).
We define the mapping T : Bundle(A) → Trees(A) as T(L) =def
Class(L), where Trees(A) is the quotient set of Trees(A) by the

equivalence relation ≡, and Class(L) denotes the equivalence class
such that all T∈ Class(L) is built from L following Definition 3.5.

Proposition 1. For any argument A in a PreDeLP Program 𝑃 ,
the mapping T is a bijection.

Proposition 2. Let 𝑃 be a PreDeLP program, L be a bundle set
for some argument A1 in 𝑃 , Λ = [A1, . . . ,A𝑖 , . . . ,A𝑛] ∈ L, and
T (A1) ∈ Class(L). mark(A𝑖 ,Λ) = 𝑈 (resp., 𝐷) in L iff A1, . . . ,A𝑖

is the sequence of labels of the path from root (T (A1)) to some node
𝑁 in T (A1) labeled with A𝑖 such that mark(𝑁) = 𝑈 (resp., 𝐷).

Proof. Intuitively, the proof shows that both marking proce-

dures consider the same cases and treat them in the same way.

⇒ Let Λ = [A1, . . . ,A𝑖] ∈ L. From Definition 3.4, we know that

mark(A𝑖 ,Λ) = 𝑈 in L. As T (A1) ∈ Class(L), from Definition 3.7

we know that T (A1) is built from L according to Definition 3.5.

Then, there exists a leaf node 𝑁 in T (A1) such that Λ is the se-

quence of labels of the path from root (T (A1)) to 𝑁 . From Defini-

tion 2.11, mark(𝑁) = 𝑈 in T (A1).
Let Λ = [A1, . . . ,A𝑖 ,A𝑖+1, . . . ,A𝑛] ∈ L with 𝑖 < 𝑛, and let

𝐸 = {Λ′ ∈ L | [A1, . . . ,A𝑖] be a proper segment of Λ′}. From Def-

inition 3.4, mark(A𝑖 ,Λ) = 𝑈 iff for all Λ′ ∈ 𝐸, it holds that

1
The functions head () and tail () have the usual meaning as in list processing, re-

turning the first element in a list and the list formed by all elements except the first,

resp.

mark(A𝑖+1,Λ′) = 𝐷 . As T (A1) ∈ Class(L), from Definition 3.7,

T (A1) is built from L according to Definition 3.5; then, for all Λ′ ∈
𝐸,A1, . . . ,A𝑖 ,A𝑖+1, . . . ,A𝑛 is the sequence of labels of a path from

root (T (A1)) to a leaf node. From Definition 2.11, an inner node 𝑁

labeled withA𝑖 is marked𝑈 inT (A1) iff all its children are marked

as 𝐷 . From Definition 3.4, mark(A𝑖 ,Λ) = 𝐷 iff there exists Λ′ ∈ 𝐸
such thatmark(A𝑖+1,Λ′) = 𝑈 . As T (A1) ∈ Class(L), from Defini-

tion 3.7, T (A1) is built from L according to Definition 3.5; then,

for all Λ′ ∈ 𝐸, A1, . . . ,A𝑖 ,A𝑖+1, . . . ,A𝑛 is the sequence of labels

of a path from root (T (A1)) to a leaf node. From Definition 2.11, an

inner node 𝑁 labeled with A𝑖 is marked 𝐷 in T (A1) iff (at least)

one of its children is marked𝑈 .

⇐ An analogous analysis can be done from T (A1) to L, i.e., con-
sidering that the node 𝑁 labeled withA𝑖 is a leaf (resp., inner node)

in T (A1). For reasons of space, we do not include it here. □

Proposition 3. Let 𝛼 be a literal and let 𝑃 be a PreDeLP program.
𝑃 |∼W 𝛼 iff there exists the exhaustive bundle set L for some argument
⟨A, 𝛼⟩ such that mark(root (L)) = 𝑈 .

Proof.

⇒ Let 𝑃 |∼W 𝛼 . Then, there exists a dialectical tree T (A) for some

argument ⟨A, 𝛼⟩ such thatmark(root (T (A))) = 𝑈 . From Proposi-

tion 1 we know that there exists a bundle set L such that T (A) ∈
Class(L); i.e., T (A) is built from L according to Definition 3.5.

Furthermore, L is exhaustive (because T (A) is a dialectical tree).
From Proposition 2, mark(root (L)) = 𝑈 .

⇐ Let L be the exhaustive bundle set for some argument ⟨A, 𝛼⟩
such that mark(root (L)) = 𝑈 . Let T (A) ∈ Class(L) be an argu-

mentation tree built from L according to Definition 3.5. As L is

exhaustive, T (A) is then a dialectical tree. From Proposition 2,

mark(root (T (A))) = 𝑈 . Then, from Definition 2.12, 𝑃 |∼W 𝛼 . □

3.2 Minimality of Bundle Sets
Next, we introduce the necessary concepts to define a particular

type of bundle set, called parsimonious, that captures our notion of

minimality, understood as the minimal information (according to

set inclusion) necessary to warrant a literal.

In our approach, we can relate bundle sets through a specially

defined inclusion relation. Intuitively, given two bundle sets L and
L′, L′ includes L if every line in L is a segment of some line in

L′. Next, based on Definition 3.1, we are going to formalize this

relation, and the following two definitions introduce the expansion
and contraction operators of a bundle set by an argumentation line.

Definition 3.8. LetL andL′ be two bundle sets rooted in argument

A from a PreDeLP program 𝑃 . We define the bundle set inclusion
relation, denoted ⊑, as a subset of Bundle(A) × Bundle(A). We

denote with L ⊑ L′ that for all Λ ∈ L there exist some Λ′ ∈ L′
such that Λ is a segment of Λ′. If furthermore, there exists at least

some Λ ∈ L that is a proper segment for some Λ′ ∈ L′, then the

inclusion relation is strict, denote as L ⊏ L′.

Definition 3.9. Let L and Λ′ be a bundle set and a line, respec-

tively, both rooted in argumentA from a PreDeLP program 𝑃 . The

expansion of L by Λ′, denoted as L ⊕ Λ′, is defined as follows:

1. If there exists Λ ∈ L such that it is a proper segment of Λ′, then
L ⊕ Λ′ = (L \ Λ) ∪ Λ′.

783

SAC ’24, April 8–12, 2024, Avila, Spain Soto et al.

Figure 2: Illustrating contraction and expansion on bundle
sets (Example 3).

2. If there is no Λ ∈ L that is a proper segment of Λ′, and Λ′ is not
a segment of any Λ ∈ L, then L ⊕ Λ′ = L ∪ Λ′.
3. Otherwise, L ⊕ Λ′ = L.

The expansion of L by Λ′ produces a new bundle set L ⊕ Λ′ such
that L ⊑ L ⊕ Λ′ and Λ′ is a segment of some Λ ∈ L ⊕ Λ′.

Intuitively, condition 1 says that if Λ′ has as proper segment

Λ in L, then the expansion removes Λ and introduces Λ′ into L.
Condition 2 states that if Λ′ neither has as proper segment Λ in L
nor it is a segment of any line in L, then Λ′ is a new line that is

directly added to the bundle set. Condition 3 captures those cases

where Λ′ is a segment of a line in L and then the original bundle

set remains unchanged because Λ′ is already contained in L.

Definition 3.10. Let L and Λ′ be a bundle set and a line, respec-

tively, both rooted in argumentA from a PreDeLP program 𝑃 . The

contraction of L by Λ′, denoted as L ⊖ Λ′, is defined as follows:

1. If Λ′ ∈ L, then L ⊖ Λ′ = (L \ Λ′) ∪ Λ′′, if there exists Λ′′ which
is the longest argumentation line that is a proper segment of Λ′

and is not a proper segment of any other Λ ∈ (L \ Λ′). If such Λ′′

does not exists then L ⊖ Λ′ = (L \ Λ′).
2. IfΛ′ is a proper segment of someΛ ∈ L, thenL⊖Λ′ = (L\S)∪Λ′′,
where S = {Λ | Λ ∈ L and Λ′ is a proper segment of Λ} and Λ′′ is
(if there exists) the longest line that is a proper segment of Λ′ and
is not a proper segment of any other Λ ∈ (L \ S). If such Λ′′ does
not exists then L ⊖ Λ′ = (L \ S).
3. Otherwise, L ⊖ Λ′ = L.

The contraction of L by Λ′ produces a new bundle set L ⊖ Λ′ such
that L ⊖ Λ′ ⊑ L and Λ′ ∉ L ⊖ Λ′.

Condition 1 says that if Λ′ is in L, then the contraction removes

Λ′. Condition 2 states that for all argumentation lines Λ in L such
that Λ′ is as proper segment of Λ, the contraction removes Λ from

L. Conditions 1 and 2 add to L the longest argumentation line

Λ′′ that is a proper segment of Λ′ because contraction makes the

minimal change in the original bundle set to satisfy the condition

Λ′ ∉ L ⊖ Λ′. However, Λ′′ is added just in those cases where Λ′′

is not a proper segment of some line in L, otherwise, the result of
the contraction will be not a bundle set. Condition 3 captures those

cases where Λ′ is not a segment of an argumentation line in L, then
the line cannot be removed from the bundle set.

The expansion and contraction operations allow us to declara-

tively describe changes in the bundle sets, while inclusion allows

us to establish a relationship between the different bundle sets that

arise from distinct expansion and contraction operations. Note that

expansion and contraction on bundle sets are operations in which

we operate not only with elements of the set (the argumentation

lines that belong to the bundle set) but also with “parts” of those

elements (the segments of the argumentation lines in the bundle

set). Also, if we think of the argumentation lines in a bundle set as

different lines of dispute, where the main topic of the debate is the

root argument, the expansion operation allows us to represent all

the possible ways in which the debate can evolve.

Example 3. Let’s recall the arguments and relations presented
in Example 2; Figure 2 illustrates this example. All possible exhaustive
lines rooted in A1 are: Λ0 = [A1,A2,A4], Λ1 = [A1,A2,A5],
Λ2 = [A1,A3,A6,A8] and Λ3 = [A1,A3,A7].

Let L = {Λ1,Λ2,Λ3} and assume that we want to contract L by
Λ′
2
= [A1,A3,A6]. As Λ′

2
is a proper segment of Λ2, then L ⊖ Λ′

2
=

(L \ {Λ2}) ∪ Λ′′
2
where {Λ2} is the set of all lines in the bundle set

that has Λ′
2
as a proper segment, and where Λ′′

2
does not exist because

the longest proper segment of Λ′
2
, that is [A1,A3], is also a proper

segment of Λ3. Then, we have that L′ = L ⊖ Λ′
2
= {Λ1,Λ3}.

Assume now that we want to contract L′ by Λ1. In this case, as
Λ1 ∈ L′ then L′ ⊖ Λ1 = (L′ \Λ1) ∪Λ′

1
where Λ′

1
= [A1,A2] is the

longest proper segment of Λ1 such that Λ′
1
is not a proper segment of

any other line in L′ \ Λ1. Then, L′′ = L′ ⊖ Λ1 = {Λ′
1
,Λ3}.

Finally, assume that we want to expand L′′ by Λ0. As Λ0 has as
proper segment some line in L′′, that is, Λ′

1
is a proper segment of Λ0,

then L′′ ⊕ Λ0 = (L′′ \ Λ′
1
) ∪ Λ0. Then, L′′′ = L′′ ⊕ Λ0 = {Λ0,Λ3}.

The concepts of expansion and contraction will also help us

to define the notion that we need to be able to capture the idea

of a parsimonious bundle set. Intuitively, the requirement for a

bundle set to be parsimonious is that it yields the same informa-

tion as the exhaustive bundle set about the warrant status of the

root argument while being minimal. We express this idea formally

through the notion of relevance. This concept was first introduced
by Prakken et. al. in [18] and further studied in [19] in the context

of argument games and dialogue games, respectively. According

to [19], a move is relevant in a dialogue iff it changes the status of

the dialogue’s initial move. Mapping our context into theirs, argu-

ments correspond to moves, argumentation lines represent lines of

discussion/dispute, and bundle sets correspond to (argumentative)

dialogues. In Prakken’s approach, relevance is a property subject

to the relationship between an argument and a dialogue. In our

approach, relevance is a notion associated with (each argument

in) an exhaustive argumentation line and its relation with the rest

of the lines in a bundle set. We consider (each argument in) an

exhaustive argumentation line because in this way we can take

into account all moves that belong to that dispute (if the line were

partial there could be moves that we are not considering and that

could affect our analysis), and we consider the relationship of each

argumentation line with the other lines in the bundle set since the

warrant status of the root argument depends on that.

Intuitively, an argumentation line is relevant to a bundle set if it

constitutes a line of dispute, understanding dispute as an exchange

of arguments between a proponent and an opponent, such that the

information discussed in it contributes to the general debate, i.e., the

784

A Mathematical Conceptualization of Bundle Sets in Defeasible Logic Programming SAC ’24, April 8–12, 2024, Avila, Spain

1

3 4

2

Figure 3: Illustrating relevance (Example 4).

dispute changes the warrant status of the claim under discussion.

Formally, we have:

Definition 3.11. Let L and Λ be a bundle set and an exhaustive

argumentation line, respectively, both rooted in argument A from

a PreDeLP program 𝑃 . We say that Λ is relevant for L if:

• Λ ∉ L, and there exists a segmentΛ′ ofΛ such thatmark(root (L))
≠ mark(root (L ⊕ Λ′)), or
• Λ ∈ L, and mark(root (L)) ≠ mark(root (L ⊖ Λ)).
Otherwise, Λ is irrelevant for L.

An argumentation line is relevant (resp., irrelevant) for a bundle

set according to its contribution to the warrant status of the root

argument. Then, the notion of relevance is tied to a specific bundle

set, i.e., an argumentation line may be relevant for a given bundle

set and irrelevant for another. The next example illustrates two

interesting cases of relevance.

Example 4. The following example is illustrated in Figure 3. Con-
sider a PreDeLP program 𝑃 where the following set of arguments can
be built: {A1,A2,A3,A4}, and where (only) the following defeat re-
lations hold: (A2,A1), (A3,A2), (A4,A2). All possible exhaustive
lines rooted inA1 are: Λ0 = [A1,A2,A4], and Λ1 = [A1,A2,A3].

Let L = {Λ0,Λ1} be the exhaustive bundle set shown in part (1).
Lines Λ0 and Λ1 are irrelevant to L since for each there exists a
different Λ𝑖 ∈ L that contributes to maintaining the warrant status
of A1. If we contract L by Λ0, shown in part (2), or by Λ1, shown in
part (3), the warrant status of A1 is maintained. However, if after
contracting by Λ1 (3), we contract the resulting bundle set L′ by Λ0

(4) the warrant status of A1 changes because Λ0 is relevant for L′. A
similar situation occurs if, after contracting by Λ0 (2), we contract the
resulting bundle set L′ by Λ1 (4) the warrant status of A1 changes
because Λ1 is relevant for L′.

Let L′′ be the bundle set shown in part (4). Both Λ0 and Λ1 are
relevant for L′′. However, if we expand it by Λ1 (resp., Λ0), for the
resulting bundle set L′′′ (2) (resp., 3) the argumentation line Λ0 (resp.,
Λ1) is irrelevant.

Definition 3.12. Let L be a bundle set for argument A from a

PreDeLP program 𝑃 . L is parsimonious if all, and no other, rele-

vant argumentation lines for L belong to L. Otherwise, L is non-
parsimonious.

The set of all bundle sets rooted in an argument represents all

possible states in the debate about that argument. Intuitively, a par-

simonious bundle set represents a state of the debate in which some

lines of discussion have been explored to their final consequences,

understanding this as no new arguments can be provided in these

lines, where none of these lines is irrelevant, and where a conclu-

sion has been reached about the topic of debate. Then, additional

arguments will not change the status of the claim under discussion.

The bundle set L′ = {Λ1,Λ3} shown in Figure 1 is parsimonious

because it contains the minimum information necessary to unam-

biguously determine the warrant status of the root argument; that

is, if L′ is expanded by another (exhaustive) line, the root state will

not change, and if L′ is contracted by Λ1 or Λ3, the status of the

root argument will change.

Note that there may exist several parsimonious bundle sets for

the same argument. The bundle sets shown in parts (2) and (3) in Fig-

ure 3 are both parsimonious bundle sets for the same argumentA1.

Also note that a bundle set may be exhaustive and parsimonious,

partial and parsimonious, or partial and non-parsimonious.

The following proposition formalizes that parsimonious bundle

sets are minimal bundle sets that allow to unequivocally identify

the warrant status of the root argument.

Proposition 4. Let L be a bundle set for argument A from a
PreDeLP Program 𝑃 . Then, L is parsimonious iff L is a minimal (w.r.t
bundle set inclusion ⊑) bundle set such that for any bundle set L′ for
A such that L ⊑ L′, it holds that mark(root (L)) = mark(root (L′)).

Proof.

⇒ Let L be a parsimonious bundle set for A . Then, L contains all
and only those argumentation lines Λ relevant to it. Then, it must

hold that: (1) for all Λ ∉ L, there does not exist a segment Λ′ of
Λ such that mark(root (L)) ≠ mark(root (L ⊕ Λ′)); and (2) for all

Λ ∈ L, mark(root (L)) ≠ mark(root (L ⊖ Λ)). For (1), it holds that
mark(root (L)) = mark(root (L′)) for all L′ such that L ⊑ L′, and
for (2) L is the minimal bundle set (w.r.t. ⊑) satisfying the previous

property.

⇐ Let L be a minimal (w.r.t. ⊑) bundle set for A such that for

any bundle set L′ such that L ⊑ L′, it holds that mark(root (L)) =
mark(root (L′)). Then, (1) for all Λ ∉ L, there does not exist a

segment Λ′ of Λ such that mark(root (L)) ≠ mark(root (L ⊕ Λ′));
and (2) for all Λ ∈ L, mark(root (L)) ≠ mark(root (L ⊖ Λ)). For (1)
and (2), L contains all and only those lines relevant to it. Then,

from Definition 3.12, L is parsimonious. □

Using Proposition 4, it is straightforward to show that exhaustive

and parsimonious bundle sets are equivalent concerning their root

arguments’ warrant status.

Proposition 5. LetL andL′ be the exhaustive and a parsimonious
bundle set, respectively, both for some argument A in a PreDeLP
program 𝑃 . Then, mark(root (L)) = mark(root (L′)).

Proof. Since L is the exhaustive bundle set for argument A ,

then L′ ⊑ L. As L′ is a parsimonious bundle set forA , from Propo-

sition 4 we know that for all bundle set L′′ such that L′ ⊑ L′′
it holds that mark(root (L′)) = mark(root (L′′)). As consequence,
mark(root (L′)) = mark(root (L)). □

Finally, the previous result allows us to define the warrant pro-

cedure through parsimonious bundle sets.

Proposition 6. Let 𝛼 be a literal and let 𝑃 be a PreDeLP program.
𝑃 |∼W 𝛼 iff there exists a parsimonious bundle set L for some argument
⟨A, 𝛼⟩ such that mark(root (L)) = 𝑈 .

785

SAC ’24, April 8–12, 2024, Avila, Spain Soto et al.

Proof.

⇒ Let’s assume that 𝑃 |∼W 𝛼 . Then, we know from Proposition 3

that there exists the exhaustive bundle set L′ for some ⟨A, 𝛼⟩ such
that mark(root (L′)) = 𝑈 . As L′ is exhaustive, then there exists

a parsimonious bundle set L for ⟨A, 𝛼⟩ such that L ⊑ L′. Then,
by Proposition 5, mark(root (L)) = mark(root (L′)) = 𝑈 .

⇐ Let’s assume that L is a parsimonious bundle set for some

⟨A, 𝛼⟩, and let mark(root (L)) = 𝑈 . Let L′ be the exhaustive bun-
dle set for argument ⟨A, 𝛼⟩. We know from Proposition 5 that

mark(root (L′)) = mark(root (L)) = 𝑈 . Then, from Proposition 3 it

follows that 𝑃 |∼W 𝛼 . □

4 CONCLUSIONS AND FUTUREWORK
In this work, we addressed the problem of declaratively charac-

terizing the concept of warrant in PreDeLP. Toward this end, we

defined a novel structure, called parsimonious bundle set, that is

more general, yet minimal, than dialectical trees. This notion cap-

tures the minimal information needed to warrant a claim. The main

motivation behind this work was to study the properties of these

structures toward the definition of model-theoretic semantics for

PreDeLP, a contribution that we consider to be of value in struc-

tured argumentation. From the study of parsimonious bundle sets

and the expansion and contraction operations, it follows that, un-

like set-theoretic operations in this context, we must consider—in

addition to each element of the set—the internal structure of each

one of them. In other words, expansion and contraction of bundle

sets are operations in which we operate not only with elements of

the set (the lines in the bundle set) but also with “parts” of those

elements (the segments of the lines in the bundle set).

The development of model-theoretic semantics for PreDeLP is

one of our main goals for future work. However, several interesting

lines of research are still open, such as the study of the relation

between operations defined on bundle sets with Belief Revision

operators over argumentative frameworks [2]. Expansion and con-

traction, apart from having the same names, satisfy some properties

similar to the postulates of success and inclusion of the expansion

and contraction operations in Belief Revision. Defining an operation

similar to that of revision, and describing the entire construction

process of a bundle set through Belief Revision-inspired operators,

are problems that remain open for structured argumentation frame-

works [13, 15, 20] and in particular for PreDeLP. The more practical

aspects of the present work, that is, the design of algorithms to com-

pute the different concepts presented so far and their corresponding

complexity analysis, is another line of research that remains open.

Acknowledgments
We thank the anonymous reviewers for their comments, which

helped improve the final version of this paper. This workwas funded

in Argentina in part by the following institutions: Universidad Na-

cional del Sur (UNS) under grants PGI 24/N057 and PGI 24/ZN055,

Universidad Nacional de Entre Rios (PDTS-UNER 7066), CONICET

under grants PIP 11220210100577CO and PIP 11220200101408CO,

and Agencia Nacional de Promocion Cientifica y Tecnologica under

grants PICT-2018-0475 (PRH-2014-0007) and PICT-2020-SERIEA-

01481. The authors also acknowledge support by the Spanish project

PID 2022-139835NBC21 funded by “European Union NextGenera-

tionEU/PRTR”, and by MCIN/AEI/10.13039/501100011033.

REFERENCES
[1] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. 2011. An introduc-

tion to argumentation semantics. Knowl. Eng. Rev. 26, 4 (2011), 365–410.
[2] Pietro Baroni, Eduardo Fermé, Massimiliano Giacomin, and Guillermo Ricardo

Simari. 2022. Belief Revision and Computational Argumentation: A Critical

Comparison. J. Log. Lang. Inf. 31, 4 (2022), 555–589.
[3] Martin Caminada and Leila Amgoud. 2007. On the evaluation of argumentation

formalisms. Artif. Intell. 171, 5-6 (2007), 286–310.
[4] Carlos Iván Chesñevar, Ramón F Brena, and José-Luis Aguirre. 2005. Knowledge

Distribution in Large Organizations Using Defeasible Logic Programming.. In

Canadian Conference on AI. Springer, 244–256.
[5] Carlos Iván Chesñevar and Guillermo Ricardo Simari. 2007. A Lattice-Based

Approach to Computing Warranted Beliefs in Skeptical Argumentation Frame-

works. In IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, Manuela M. Veloso

(Ed.). 280–285.

[6] Carlos Iván Chesñevar, Guillermo Ricardo Simari, and Lluís Godo. 2005. Comput-

ing Dialectical Trees Efficiently in Possibilistic Defeasible Logic Programming.

In Logic Programming and Nonmonotonic Reasoning, 8th International Conference,
LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings (Lecture Notes in
Computer Science, Vol. 3662), Chitta Baral, Gianluigi Greco, Nicola Leone, and
Giorgio Terracina (Eds.). Springer, 158–171.

[7] Boris Galitsky and Eugene William McKenna. 2017. Sentiment extraction from

consumer reviews for providing product recommendations. US Patent 9,646,078.

[8] Alejandro Javier García and Guillermo Ricardo Simari. 2004. Defeasible Logic

Programming: An Argumentative Approach. Theory Pract. Log. Program. 4, 1-2
(2004), 95–138.

[9] Alejandro Javier García and Guillermo Ricardo Simari. 2014. Defeasible logic

programming: DeLP-servers, contextual queries, and explanations for answers.

Argument Comput. 5, 1 (2014), 63–88.
[10] Pascal Hitzler and Anthony Karel Seda. 2011. Mathematical Aspects of Logic

Programming Semantics. CRC Press.

[11] Robert Koons. 2022. Defeasible Reasoning. In The Stanford Encyclopedia of
Philosophy (Summer 2022 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab,

Stanford University.

[12] Mario A. Leiva, Alejandro Javier García, Paulo Shakarian, and Gerardo I. Simari.

2022. Argumentation-Based Query Answering under Uncertainty with Applica-

tion to Cybersecurity. Big Data Cogn. Comput. 6, 3 (2022), 91.
[13] Alejandro J. García Marcelo A. Falappa and Guillermo R. Simari. 2023. Merg-

ing operators on stratified belief bases equipped with argumentative inference.

Journal of Applied Non-Classical Logics 33, 3-4 (2023), 387–420.
[14] Maria Vanina Martinez, Alejandro Javier García, and Guillermo Ricardo Simari.

2012. On the Use of Presumptions in Structured Defeasible Reasoning. In Com-
putational Models of Argument - Proceedings of COMMA 2012, Vienna, Austria,
September 10-12, 2012 (Frontiers in Artificial Intelligence and Applications, Vol. 245),
Bart Verheij, Stefan Szeider, and Stefan Woltran (Eds.). IOS Press, 185–196.

[15] Martín O. Moguillansky, Nicolás D. Rotstein, Marcelo A. Falappa, Alejandro Javier

García, and Guillermo Ricardo Simari. 2013. Dynamics of knowledge in DeLP
through Argument Theory Change. Theory Pract. Log. Program. 13, 6 (2013),

893–957.

[16] Eric Nunes, Paulo Shakarian, and Gerardo I. Simari. 2018. At-risk system identi-

fication via analysis of discussions on the darkweb. In 2018 APWG Symposium
on Electronic Crime Research, eCrime 2018, San Diego, CA, USA, May 15-17, 2018.
IEEE, 1–12.

[17] John L Pollock. 1987. Defeasible reasoning. Cogn. Sci. 11, 4 (1987), 481–518.
[18] Henry Prakken. 2001. Relating protocols for dynamic dispute with logics for

defeasible argumentation. Synthese 127, 1 (2001), 187–219.
[19] Henry Prakken. 2005. Coherence and flexibility in dialogue games for argumen-

tation. Journal of logic and computation 15, 6 (2005), 1009–1040.

[20] Henry Prakken. 2023. Relating Abstract and Structured Accounts of Argumenta-

tion Dynamics: the Case of Expansions. In Proceedings of the 20th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2023,
Rhodes, Greece, September 2-8, 2023, Pierre Marquis, Tran Cao Son, and Gabriele

Kern-Isberner (Eds.). 562–571.

[21] Guillermo R Simari and Ronald P Loui. 1992. A mathematical treatment of

defeasible reasoning and its implementation. Artif. Intell. 53, 2-3 (1992), 125–157.
[22] Frieder Stolzenburg, Alejandro J García, Carlos I Chesñevar, and Guillermo R

Simari. 2003. Computing generalized specificity. J. Appl. Non-Class. Log. 13, 1
(2003), 87–113.

786

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

