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Abstract

In this paper we consider the probability logic over  Lukasiewicz logic
with rational truth-constants, denoted FP(RPL), and we explore two pos-
sible approaches to reason from inconsistent FP(RPL) theories on clas-
sical events in a non-trivial way. The first one amounts to replace the
logic RPL, that is explosive, by its paraconsistent companion RPL≤. The
second one consists of suitably weakening the formulas in an inconsistent
theory T , depending on the degree of inconsistency of T . We also discuss
the possibility of applying a similar approach to reason about probabil-
ity over the paraconsistent logic RCi along the lines of Bueno-Soler and
Carnielli’s approach to paraconsistent probability.

1 Introduction

Nowadays, with the explosion of available data and information, it is not uncom-
mon to encounter inconsistencies among different pieces of information. Thus,
finding a suitable way of handling inconsistent information has become a chal-
lenge for both logicians and computer scientists working on knowledge represen-
tation techniques and reasoning models, see e.g. [2, 7, 31] among many others.

From a logical point of view, inconsistency is ubiquitous in many contexts
in which, regardless of the given information being contradictory, one is still
expected to extract inferences in a sensible way. Classical logic, and in general
any logic validating the so-called explosion principle, does not allow to reason in
any interesting way in the presence of contradictions, since they trivialize deduc-
tions by allowing to extract any conclusion from an inconsistent theory. In this
sense, such logics are called explosive. On the other hand, paraconsistent logics
have been introduced, among other approaches (see e.g. [3]), as non-explosive
deductive systems able to cope with contradictions. Indeed, paraconsistency is
devoted to the study of logical systems with a negation operator, say ¬, such
that not every contradictory set of premises {Φ,¬Φ} trivializes the system [7].

In this work we investigate a fuzzy logic-based approach for handling conflicts
when the information is of a probabilistic nature. Reasoning with inconsistent
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probabilistic information is indeed a research topic that has received growing
attention in the last years; in particular, with respect to inconsistency measure-
ment of probabilistic knowledge bases, and how inconsistency measures can be
used to devise paraconsistent inference methods, see e.g. the survey [18]. Alter-
natively, from a more logically-oriented perspective, Bueno-Soler and Carnielli
have approached the problem in a different way. Namely, by allowing events
to be formulas of a given paraconsistent logic, and then formalising a suitable
notion of probability over such logic [5].

The approach we follow here is based on a logical formalization of probabilis-
tic reasoning on classical propositions, given by a modal theory over  Lukasiewicz
fuzzy logic, called FP( L), as developed by Hájek et al. [32, 33]. The idea is to
understand the probability of a classical proposition ϕ as the truth-degree of a
fuzzy modal proposition Pϕ, standing for the statement “ϕ is probable”, in such
a way that the higher (resp. lower) is the probability of ϕ, the more (resp. less)
true is Pϕ. Then, the [0, 1]-based semantics of  Lukasiewicz connectives, heavily
relying on the usual addition and subtraction operations, make it possible to
capture the postulates of probability measures (in particular the finite additiv-
ity property) with formulas in the language of FP( L). We observe that the logic
FP( L) can surely be seen as a qualitative probability logic. For instance, one
can easily express that the probability of ϕ is less or equal than the probability
of ψ, by means of the FP( L) formula Pϕ→ Pψ. On the other hand, the expres-
sive power of  Lukasiewicz logic makes it possible to encode more quantitative
probabilistic relations. Even more so, by expanding  Lukasiewicz logic with ra-
tional truth-constants, yielding the logic called Rational Pavelka logic (RPL),
it is possible to encode purely quantitative expressions like “the probability of
ϕ is at least 0.4” as the modal formula 0.4→ Pϕ in the language of FP(RPL),
the probability logic obtained by replacing  L by RPL in FP( L).

In this paper, we explore two possible approaches to reason from inconsistent
FP(RPL) theories in a non-trivial way. The first one amounts to replace the
external logic RPL, that is explosive, by its paraconsistent degree-preserving
companion RPL≤. The second one amounts to suitably weaken formulas of an
inconsistent theory T depending on the degree of inconsistency of T .

In order for this chapter be self-contained, we are forced to have extensive
preliminaries. The paper is then structured as follows. In the next section, we
discuss the basis of a general fuzzy logic-based approach to define modal theories
for reasoning about uncertainty. In the case of probability, the suitable fuzzy
logic to be used is  Lukasiewicz logic  L, whose main definitions and properties, as
well some of its expansions, are recalled in Section 3. In Section 4, we overview
its paraconsistent degree-preserving companion  L≤. The following two sections
are devoted to the introduction of the probability logics based on  L and on RPL,
respectively. Section 7 is devoted to our two proposals to deal with inconsistent
probability theories over FP(RPL). In Section 8, we relate our approach on
measuring inconsistency of theories to other proposals in the literature, based on
the use of distance-based and violation-based inconsistency measures. Finally, in
Section 9 we comment on a possible formalisation of Bueno-Soler and Carnielli’s
approach in our fuzzy logic-based probabilistic setting.
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This chapter is a revised and fully expanded version of a preliminary work
reported in [26].

2 Fuzzy logics versus Uncertainty logics

In [32], a new approach to axiomatize logics of uncertainty was proposed, further
elaborated later on in the celebrated Hájek’s monograph [33]. This approach
clarifies the different roles played on the one side by fuzzy logics and vague-
ness, and on the other side by probability and other types of quantified belief.
We briefly recall here the main underlying ideas, instantiated in the case of
probability:

(i) Truth degrees 6= uncertainty degrees.

Fuzzy logic is a logic of gradual, imprecise notions and propositions that may be
more or less true. Fuzzy logic is then a logic of partial degrees of truth. On the
contrary, probability (or any other uncertainty theory) deals with crisp notions
and propositions that, at least in its classical formulation, are either true or false;
the probability of a proposition is then the degree of belief on the truth of that
proposition. Then, clearly, fuzzy logic does not deal with uncertainty (as belief)
at all. From a semantical point of view, the main difference lies in the fact that
degrees of belief are not extensional (truth-functional). E.g., the probability of
p ∧ q is not a function of the probability of p and the probability of q, whereas
degrees of truth of vague notions admit truth-functional approaches (although
they are not bound to them). Therefore, formally speaking, fuzzy logics behave
as many-valued logics, whereas, as we shall discuss in the next point, uncertainty
or belief theories can be related to some kinds of (two-valued) modal logics.

(ii) Interpreting probability degrees of crisp propositions as truth-degrees of
fuzzy (modal) propositions.

This is the key idea of the approach. Probability, or any uncertainty measure
in general, preserves classical logical equivalence and therefore “understands”
formulas as classical propositions. However, uncertainty measures are just vari-
ables (like pressure, temperature, etc.) and we can make fuzzy assertions on
them. For instance, if ϕ is any formula we may say “ϕ is probable” (or “probabil-
ity of ϕ is high”), and these are typical fuzzy propositions. Thus, in particular,
there is nothing wrong in taking as truth-degree of the fuzzy proposition “ϕ is
probable” exactly the probability degree of the crisp proposition ϕ being true.
For what we said above on compositionality, we clearly have to distinguish be-
tween propositions like “(ϕ is probable) and (ψ is probable)” on the one hand,
and “(ϕ ∧ ψ) is probable” in the other.

(iii) Probability measures as models of fuzzy theories.

Once one builds a fuzzy proposition Pϕ (with P being a modality standing for
probable) for each classical proposition ϕ, one can write theories about the Pϕ’s
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over a particular fuzzy logic including, as axioms, the formulas corresponding
to basic postulates of a particular uncertainty theory, probability theory in this
case. In this way, models (in the sense of many-valued logic) of the theories
about the Pϕ’s become probability measures over the crisp ϕ’s. For instance,
in [32] a propositional probability logic was defined as a theory over Rational
Pavelka logic, an extension of  Lukasiewicz’s infinite-valued logic with rational
truth constants.

Now, the question is which kind of fuzzy logic we can use to formalize proba-
bility theory. The very reason of using  Lukasiewicz and Rational Pavelka logics
in [32, 33] is that the truth-functions for the formulas of  Lukasiewicz logic are
based on the arithmetic operations of addition and subtraction in the unit inter-
val [0, 1], which is obviously what is needed to deal with additive measures such
as probabilities. In the next section we overview  Lukasiewicz logic  L and its
expansion with rational truth-constants RPL. Extensions and generalizations of
this approach are clearly possible, and we invite the interested reader to consult
[25] for a survey.

3  Lukasiewicz logic and some of its extensions

 Lukasiewicz infinite-valued logic [36] is one of the most prominent systems falling
under the umbrella of Mathematical Fuzzy Logic, see the handbooks [10, 11, 12].
In fact, together with Gödel infinite-valued logic [30], it was defined much before
fuzzy logic as a discipline was born. In particular, it has received much attention
since the fifties, when completeness results were proved by Rose and Rosser [45],
and by Chang [14, 15] who developed, for his completeness result, the theory of
MV-algebras; the latter is now largely studied in the literature. For more details
and results about  Lukasiewicz logic and MV-algebras the reader is referred to
the monographs [8, 39].

The language of  Lukasiewicz logic is built in the usual way from a set of
propositional variables, one binary connective → (that is,  Lukasiewicz implica-
tion) and the truth constant 0̄, that we will also denote as ⊥. An evaluation e
maps every propositional variable to a real number from the unit interval [0, 1]
and extends to all formulas in the following way:

e(0̄) = 0,
e(ϕ→ ψ) = min(1− e(ϕ) + e(ψ), 1)

Other interesting connectives can be defined from them,
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1̄ is ϕ→ ϕ,
¬ϕ is ϕ→ 0̄,
ϕ⊕ ψ is ¬ϕ→ ψ,
ϕ&ψ is ¬(¬ϕ⊕ ¬ψ),
ϕ	 ψ is ϕ&¬ψ,
ϕ ≡ ψ is (ϕ→ ψ)&(ψ → ϕ),
ϕ ∧ ψ is ϕ&(ϕ→ ψ),
ϕ ∨ ψ is ¬(¬ϕ ∧ ¬ψ),

and they have the following interpretations:

e(¬Lϕ) = 1− e(ϕ),
e(ϕ⊕ ψ) = min(1, e(ϕ) + e(ψ))
e(ϕ&ψ) = max(0, e(ϕ) + e(ψ)− 1)
e(ϕ	 ψ) = max(0, e(ϕ)− e(ψ))
e(ϕ ≡ ψ) = 1− |e(ϕ)− e(ψ)|
e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))
e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)).

The interpretations of  Lukasiewicz logic connectives over the real unit inter-
val [0, 1] define an algebra which is referred to as the standard MV-algebra and
denoted with [0, 1]MV , which generates in universal algebraic terms the equiv-
alent algebraic semantics of  Lukasiewicz logic in the sense of Blok and Pigozzi,
that is, the variety of MV-algebras [8, 39].

An evaluation e is called a model of a set of formulas T whenever e(ϕ) = 1
for each formula ϕ ∈ T .

Axioms and rules of  Lukasiewicz logic are the following [8, 33]:

( L1) ϕ→ (ψ → ϕ)
( L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
( L3) (¬ϕ→ ¬ψ)→ (ψ → ϕ)
( L4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)
(MP) Modus ponens: from ϕ and ϕ→ ψ derive ψ

From this axiomatic system, the notion of proof from a theory (a set of
formulas), denoted ` L, is defined as usual.

The above axioms are tautologies or valid (i.e., they are evaluated to 1 by
any evaluation), and the rule of modus ponens preserves validity. Moreover, the
following completeness result holds.

Theorem 1. The logic  L is complete for deductions from finite theories. That
is, if T is a finite theory, then T ` L ϕ iff e(ϕ) = 1 for each  Lukasiewicz
evaluation e model of T .

This completeness result with respect to the standard semantics on [0, 1]MV

is not valid for deductions from general (non-finite) theories. There are two
main ways to enforce such stronger completeness result. The first one is to
extend  Lukasiewicz logic by the following infinitary rule of inference [37]:
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(IR)
ϕ→ ψn, for each n ∈ N

¬ϕ ∨ ψ
where ψn is a shorthand for ψ& n. . . &ψ. The second is to replace the standard
real chain [0, 1]MV by an MV-chain on a hyperreal unit interval [0, 1]∗ as the
domain of truth-values and hence allowing for infinitesimal and co-infinitesimal
values [24, 9].

 Lukasiewicz logic does not satisfy the deduction theorem in full generality,
as it only satisfies the following local form: T, ϕ ` L ψ iff there exists n ∈ N such
that T ` L ϕn → ψ, where n depends on the formula ϕ. In this sense we refer
to that form of the deduction theorem as “local”.

It is also worth noticing that, as it happens with most of the many-valued
or fuzzy logics, classical propositional logic (CP) can be recovered extending
 Lukasiewicz logic  L with the axiom of the excluded middle principle:

(EM) ϕ ∨ ¬ϕ

In the rest of this section we briefly recall two interesting expansions of  Lukasiewicz
logic that will be used later on.

3.1  L∆: extending  Lukasiewicz with the projection Baaz-
Monteiro connective ∆

A very helpful connective for our purposes is the so-called Baaz-Monteiro pro-
jection operator ∆, whose standard semantics is as follows: for a  Lukasiewicz
evaluation e to [0, 1],

e(∆ϕ) =

{
1, if e(ϕ) = 1
0, otherwise

In a sense, even if ϕ takes intermediate truth-values, ∆ϕ is two-valued: it is
true when ϕ is 1-true, and false otherwise.

 L∆ is axiomatized by adding to the Hilbert-style system of  L the deduction
rule of necessitation for ∆:

(N∆) from ϕ infer ∆ϕ

and the following axiom schemata:

(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)
(∆3) ∆ϕ→ ϕ
(∆4) ∆ϕ→ ∆∆ϕ
(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

So defined, the completeness result for  L extends to  L∆ with the above
semantics for ∆, see [33]. Moreover,  L∆ satisfies a global deduction theorem in
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the following sense: for each set of formulas Σ ∪ {ϕ,ψ} one has

Σ, ϕ ` L∆
ψ iff Σ ` L∆

∆ϕ→ ψ.

This is a relevant property, considering that  Lukasiewicz logic itself only satisfies
the above mentioned local form of deduction theorem.

3.2 Rational Pavelka logic: extending  Lukasiewicz logic
with rational truth constants

Following Hájek [33], the language of Rational Pavelka logic, denoted RPL, is the
language of  Lukasiewicz logic expanded with countably-many truth-constants
r, one for each rational r ∈ [0, 1].

The evaluation of RPL formulas is as in  Lukasiewicz logic, with the proviso
that evaluations map truth-constants to their intended value: for any rational
r ∈ [0, 1] and any evaluation e, e(r) = r.

Note that, for any evaluation e, e(r → ϕ) = 1 iff e(ϕ) ≥ r, and e(r ≡ ϕ) = 1
iff e(ϕ) = r.

Axioms and rules of RPL are those of  L plus the following countable set of
bookkeeping axioms for truth-constants:

(BK) r → s ≡ min(1, 1− r + s), for any rationals r, s ∈ [0, 1].

The notion of proof is defined as in  Lukasiewicz logic, and the deducibility
relation will be denoted by `RPL. Moreover, completeness of  Lukasiewicz logic
smoothly extends to RPL as follows: if T is a finite theory over RPL, then
T `RPL ϕ iff e(ϕ) = 1 for any RPL-evaluation e model of T .

RPL also enjoys a sort of infinitary completeness result, known as Pavelka-
style completeness. Namely, for any set of RPL formulas T ∪ {ϕ}, define:

- the truth degree of ϕ in T : ‖ϕ‖T = inf{e(ϕ) : e RPL-evaluation model of T},
- the provability degree of ϕ from T : | ϕ |T = sup{r ∈ [0, 1]Q | T `RPL r → ϕ}.

Then the following result holds for deductions from any arbitrary (non neces-
sarily finite) theory [33].

Theorem 2. For any set of RPL formulas T ∪ {ϕ}, we have:

| ϕ |T = ‖ϕ‖T .

We remark that from ‖ϕ‖T = s, with s being rational (in particular, in
the case s = 1) it does not follow in general that T `RPL s → ϕ, only that
T `RPL r → ϕ for all rational r < s. However, the situation improves when T is
a finite theory. Indeed, if T is finite, we can restrict ourselves to rational-valued
 Lukasiewicz evaluations and get strong completeness. The following results are
proved in [33].
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Proposition 1. If T is a finite theory over RPL, then the following conditions
hold:

• ‖ϕ‖T = 1 iff T `RPL ϕ.

• ‖ϕ‖T is rational, hence ‖ϕ‖T = r iff T `RPL r → ϕ.

Remark 1 (Implicit definition of rational numbers). It is interesting to notice
that rational numbers can already be implicitly defined in  Lukasiewicz logic, as
observed in [33, Lemma 3.3.11]. Let us consider for instance the constant 0.5. It
can be directly checked by the definition of the connectives in the standard MV-
algebra that a model of the one-variable formula φ(p) := p⊕ p is an evaluation
e that maps p to a real number in the interval [0.5, 1]. Similarly, a model of the
formula ψ(p) := ¬(p&p) is an evaluation that maps p to some value the interval
[0, 0.5]. Thus, a model of φ ∧ ψ is an evaluation which maps the variable p to
exactly 0.5.1 This means that, given any formula of  Lukasiewicz logic γ, if we
consider the theory T = {γ ≡ p, φ ∧ ψ}, a model of T is an evaluation e such
that e(γ) = 0.5.

While here we picked a simple example for the sake of clarity, the same
holds for all rational numbers. That is, given any rational r ∈ [0, 1], there are
 Lukasiewicz formulas φr(p), ψr(p) whose models are evaluations that map p,
respectively, to a value in the intervals [r, 1] and [0, r]. Therefore, a model of
φr∧ψr is an evaluation that maps p exactly to r. A consequence of such implicit
definition is that, as proved in [33], deductions in RPL from finite theories can
be reduced to proofs in  L.

Remark 2. One can also combine the logics  L∆ and RPL. Indeed, one can
extend  L∆ with rational truth-constants (or viceversa, extend RPL with ∆) and
define the logic RPL∆ by expanding the language of  L∆ with rational truth-
constants r, and by adding to  L∆ the bookkeeping axioms (BK). By doing so,
one can easily check that the bookkeeping axioms for the ∆ connective are
derivable, that is, RPL∆ proves ¬∆r, for every rational r < 1.

Also, one has to notice that RPL∆ keeps enjoying completeness for deduc-
tions from finite theories, but the Pavelka-style completeness is lost, due to the
non-continuity of the truth function for the ∆ connective. As an example, if we
consider the theory T = {r → ϕ | r < 1}, then ‖∆ϕ‖T = 1, but | ∆ϕ |T= 0.

4  L≤: the paraconsistent degree-preserving com-
panion of  L

Deductive systems in the scope of Mathematical Fuzzy Logic (MFL) have been
usually studied under the paradigm of (full) truth-preservation. The latter, gen-
eralizing the classical notion of consequence, postulates that a formula follows
from a set of premises if every algebraic evaluation that interprets the premises

1Alternatively, one could consider the formula η(p) := p ↔ ¬p that again gets value 1
under an evaluation e iff e(p) = 0.5.
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as fully true also interprets the conclusion as fully true. An alternative approach
that has recently received some attention is based on the degree-preservation
paradigm [28, 4], in which a conclusion follows from a set of premises if, for
all evaluations, the truth degree of the conclusion is not lower than that of the
premises. It has been argued that this approach is more coherent with the com-
mitment of many-valued logics to truth-degree semantics because all values play
an equally important rôle in the corresponding notion of consequence [27].

Moreover, while the truth-preserving fuzzy logics are explosive, i.e. from
any theory containing a formula ϕ and its negation ¬ϕ everything follows, in
two recent papers [20, 16] some degree-preserving fuzzy logics have been shown
to exhibit some well behaved paraconsistency properties. In particular, this is
the case of  Lukasiewicz logic  L, whose degree-preserving companion  L≤ is not
explosive, i.e. it is paraconsistent. Moreover, the degree-preserving companions
of finitely-valued  Lukasiewicz logics  Ln are not only paraconsistent but they
also belong to the family of the so-called logics of formal inconsistency (LFIs)
[7].

The logical consequence relation for  L≤ is defined as follows [28]. For every
set of formulas Γ ∪ {ϕ}:

Γ |= L≤ ϕ iff for every evaluation v over the standard MV-algebra [0, 1]MV

and every a ∈ [0, 1], if a ≤ v(γ) for every γ ∈ Γ, then a ≤ v(ϕ).

Because of its very definition, |= L≤ is known as the  Lukasiewicz logic preserving
degrees of truth, or the degree-preserving companion of  L.

In fact,  L and  L≤ have the same tautologies, and for every finite set of
formulas Γ ∪ {ϕ} we have:

Γ |= L≤ ϕ iff |= L Γ∧ → ϕ,

where, if Γ = {γ1, . . . , γk}, Γ∧ denotes the conjunction γ1 ∧ . . . ∧ γk (when
Γ is empty then we take Γ∧ as >). It is worth noticing that the usual rule of
modus ponens is not sound for  L≤. However, the logic  L≤ admits a Hilbert-style
axiomatization with a weaker form of modus ponens.

Definition 1. Axioms of  L≤ are those of  L, and the rules of  L≤ are the following:

(Adj-∧)
ϕ ψ

ϕ ∧ ψ
(MP-r)

ϕ ` L ϕ→ ψ

ψ

The corresponding notion of proof defined from these axioms and rules will be
denoted with ` L≤ .

Note that to apply the modified form of the modus ponens rule (MP-r) it
is required that the implication ϕ → ψ must be a theorem. Clearly, both the
(Adj-∧) and (MP-r) rules are derivable in  Lukasiewicz logic. Therefore, since
the axioms are the same, for all set of formulas T∪{ϕ}, if T ` L≤ ϕ, then T ` L ϕ,
but not vice-versa as, for instance, the Modus Ponens rule is not derivable in
 L≤. Thus,  L≤ is a weaker logic than  L.
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This axiomatic system provides a sound and complete axiomatisation of |= L≤

for deductions from a finite set of formulas [4], that is, for every finite set of
formulas Γ ∪ {ϕ}, one gets:

T ` L≤ ϕ iff T |= L≤ ϕ.

It is clear that  L≤ is a paraconsistent logic, since for instance, p,¬p 6` L≤ ⊥.
However,  L≤ is not a logic of formal inconsistency (LFI), as shown in [20].
Nonetheless, if we expand  L≤ with the ∆ operator, then we obtain an LFI. In-
deed,  L≤∆ is the logic axiomatised by adding to  L≤ the axioms (∆1)− (∆5) and
the following restricted necessitation rule for ∆ (it only applies to theorems of  L):

(rN∆) if ` L ϕ infer ∆ϕ

Then, the definable connective ◦ϕ := ∆(ϕ ∨ ¬ϕ) in  L≤∆ fulfills the required
properties of a consistency operator in the logics of formal inconsistency, and
thus  L≤∆ is an LFI [20].

Similarly, one can define the degree-preserving companion of RPL consider-
ing the logical consequence |=≤RPL according with the proviso that every evalu-
ation e over the standard MV-algebra [0, 1]MV additionally satisfies e(r) = r for
every rational r ∈ [0, 1]. Equivalently, one gets a sound and finite strong com-
plete axiomatisation for |=≤

RPL just adding to the axiomatic system for  L≤ the
usual bookkeeping axioms for truth-constants. Moreover, an analogous Pavelka-
style completeness result for RPL≤ can also be obtained.

For any set of RPL formulas T ∪ {ϕ}, define:

- truth degree of ϕ in T : ‖ϕ‖≤T = inf{e(T )⇒ e(ϕ) : e RPL-evaluation},
- provability degree of ϕ from T : | ϕ |≤T = sup{r | T `≤RPL r → ϕ},

where e(T ) = inf{e(ψ) : ψ ∈ T} and ⇒ is the truth-function of  Lukasiewicz
implication, i.e. x ⇒ y = min(1, 1 − x + y). Then, to prove a Pavelka-style
completeness for RPL≤, we need two previous lemmas.

Lemma 1. If T ∪ {ϕ} is a finite set of RPL-formulas, we have:

| ϕ |≤T = ‖ϕ‖≤T .

Proof. We have the following equalities:

| ϕ |≤T = sup{r ∈ [0, 1] rational | T `≤RPL r → ϕ}
= sup{r ∈ [0, 1] rational | `RPL r → (T∧ → ϕ)} (by RPL complet.)

= inf{e(T∧ → ϕ) : e is an  L-evaluation} = ‖ϕ‖≤T ,

the latter equality being due to the fact that e(T ) = e(T∧).

Lemma 2. For any theory T , ‖ϕ‖≤T = supT0⊆fT ‖ϕ‖
≤
T0

, where T0 ⊆f T stands
for T0 ⊆ T with T0 finite.
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Proof. We prove the two following inequalities:

(i) sup{‖ϕ‖≤T0
| T0 ⊆f T} ≤ ‖ϕ‖≤T . Indeed:

sup{‖ϕ‖≤T0
| T0 ⊆f T} = sup{infe{e(T0)→ e(ϕ)} | T0 ⊆f T} ≤

≤ sup{infe{e(T )→ e(ϕ)} | T0 ⊆f T} = infe{e(T )→ e(ϕ)} = ‖ϕ‖≤T .

(ii) sup{‖ϕ‖≤T0
| T0 ⊆f T} ≥ ‖ϕ‖≤T .

Assume sup{‖ϕ‖≤T0
| T0 ⊆f T} < ‖ϕ‖≤T . Then, there is a rational r such

that sup{‖ϕ‖≤T0
| T0 ⊆f T} < r < ‖ϕ‖≤T . Then we have:

- sup{‖ϕ‖≤T0
| T0 ⊆f T} < r implies that, for all finite T0 ⊆ T , ‖ϕ‖≤T0

< r,
that is, infe e(T0) → e(ϕ) < r. Therefore, there is an evaluation e∗ such
that e∗(T0) → e∗(ϕ) < r, i.e. e∗(T0) > r → e∗(ϕ). Hence, we have
infT0 e

∗(T0) ≥ r → e∗(ϕ), that is, e∗(T ) ≥ r → e∗(ϕ).

- r < ‖ϕ‖≤T implies r < infe e(T ) → e(ϕ) ≤ e∗(T ) → e∗(ϕ) ≤ (r →
e∗(ϕ)) → e∗(ϕ) = r ∨ e∗(ϕ). Therefore, it follows that e∗(ϕ) > r, that is
in contradiction with the fact that e(T0)→ e(ϕ) < r.

Then we can finally prove the following completeness result.

Theorem 3. For any set of RPL formulas T ∪ {ϕ}, we have:

| ϕ |≤T = ‖ϕ‖≤T .

Proof. The following is a proof based on the previous two lemmas:

| ϕ |≤T = sup{r ∈ [0, 1] rational | T `≤RPL r → ϕ}
= sup{r ∈ [0, 1] rational | ∃ a finite T0 ⊆ T s.t. T0 `≤RPL r → ϕ}
= supT0⊆fT sup{r ∈ [0, 1] rational | T0 `≤RPL r → ϕ}
= supT0⊆fT | ϕ |

≤
T0

(by Lemma 1)

= supT0⊆fT ‖ϕ‖
≤
T0

(by Lemma 2)

= ‖ϕ‖≤T .

This completeness result shows that RPL≤ is well-behaved in a purely logical
sense. However, we have mentioned above that the usual rule of modus ponens
is not sound in  L≤, and hence neither is in RPL≤. Actually, in RPL≤, one can
show that only the following weakened form of modus ponens deduction holds:

{ϕ,ϕ→ ψ} |=≤
RPL 0.5→ ψ.

That is, in RPL≤ we are forced to lower the truth-degree of the conclusion in
order to have a sound, but weaker, modus ponens rule. This is a price to pay
to enjoy a paraconsistent behavior.

Let us finally remark that we can also expand RPL≤ with the ∆ operator,
denoted RPL≤

∆ and defined analogously to the case of  L≤
∆, to come up with an

LFI with rational truth-constants.
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5 FP( L): a qualitative logic to reason about
probability as a modal theory over  L

In this section we describe the fuzzy modal logic FP( L) to reason qualitatively
about probability, built upon  Lukasiewicz logic  L. The language of FP( L) is
defined in two steps:

Non-modal formulas: these are built from a set V of propositional variables
{p1, p2, ... pn, . . . } using the classical binary connectives ∧ and ¬. Other connec-
tives like ∨, → and ↔ are defined from ∧ and ¬ in the usual way.2 Non-modal
formulas (we will also refer to them as Boolean propositions) will be denoted
by lower case Greek letters ϕ, ψ, etc. The set of non-modal formulas will be
denoted by L.

Modal formulas: these are built from elementary modal formulas of the form
Pϕ, where ϕ is a non-modal formula and using the connectives and constants
of  Lukasiewicz logic  L. We shall denote them by upper case Greek letters Φ, Ψ,
etc. Notice that we do not allow nested modalities of the form P (P (ψ)⊕P (ϕ)),
nor mixed formulas of the kind ψ → Pϕ.

Definition 2. The axioms of the logic FP( L) are the following:

(i) Axioms of classical propositional logic for non-modal formulas

(ii) Axioms of  L for modal formulas

(iii) Probabilistic modal axioms:

(FP0) Pϕ, for ϕ being a theorem of CPL
(FP1) P (ϕ→ ψ)→ (Pϕ→ Pψ)
(FP2) P (¬ϕ) ≡ ¬Pϕ
(FP3) P (ϕ ∨ ψ) ≡ (Pϕ→ P (ϕ ∧ ψ))→ Pψ

The only deduction rule of FP( L) is that of  L (i.e. modus ponens)

The notion of proof for modal formulas is defined as usual from the above
axioms and rule. We will denote that in FP( L) a modal formula Φ follows from
a theory (set of modal formulas) T by T `FP Φ. Note that FP( L) preserves
classical equivalence. Indeed, due to axioms (FP0) and (FP1), FP( L) proves the
formula Pϕ ≡ Pψ whenever ϕ and ψ are classically logically equivalent, and as
we will see below, this will mean that in such a case they are bound to have the
same probability.

The semantics for FP( L) is given by probability Kripke structures K =
〈W,U , e, µ〉, where:

• W is a non-empty set of possible worlds.

2Although we are using the same symbols ∧,¬,∨,→ as in  Lukasiewicz logic to denote
the conjunction, negation, disjunction and implication, the context will help in avoiding any
confusion. In particular classical logic connectives will appear only under the scope of the
operator P , see below.
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• e : V ×W → {0, 1} provides for each world a Boolean (two-valued) eval-
uation of the propositional variables, that is, e(p, w) ∈ {0, 1} for each
propositional variable p ∈ V and each world w ∈ W . A truth-evaluation
e(·, w) is extended to Boolean propositions as usual. For a Boolean for-
mula ϕ, we will write [ϕ]W = {w ∈W | e(ϕ,w) = 1}.

• µ : U → [0, 1] is a probability over a Boolean algebra U of subsets of W
such that [ϕ]W is µ-measurable for any non-modal ϕ.

• e(·, w) is extended to elementary modal formulas by defining

e(Pϕ,w) = µ([ϕ]W ),

and to arbitrary modal formulas according to  L semantics, that is:

e(0, w) = 0,
e(Φ→L Ψ, w) = min(1− e(Φ, w) + e(Ψ, w), 1).

Notice that if Φ is a modal formula the truth-evaluations e(Φ, w) depend only
on the probability measure µ and not on the particular world w.

The truth-degree of a formula Φ in a probability Kripke structure K =
〈W,U , e, µ〉, written ‖Φ‖K , is defined as

‖Φ‖K = inf
w∈W

e(Φ, w).

When ‖Φ‖K = 1 we say that Φ is valid in K or that K is a model for Φ, and
we will also writte K |= Φ. Let T be a set of modal formulas. Then we say that
K is a model of T if K |= Φ for all Φ ∈ T . Now, letM be a class of probability
Kripke structures. Then we define the truth-degree ‖Φ‖MT of a formula in a
theory T relative to the class M as

‖Φ‖MT = inf{‖Φ‖K | K ∈M, K being a model of T} .

The notion of logical entailment relative to the class M, written |=M, is then
defined as follows:

T |=M Φ if ‖Φ‖MT = 1 .

That is, Φ logically follows from a set of formulas T if every structure in M
which is a model of T is also a model of Φ. If M denotes the whole class of
probability Kripke structures we shall write T |=FP Φ and ‖Φ‖FPT .

It is easy to check that axioms FP0-FP3 are valid formulas in the class of
all probability Kripke structures. Moreover, the inference rule of substitution
of equivalents preserves truth in a model, while the necessitation rule for P
preserves validity in a model. Therefore we have the following soundness result.

Lemma 3. (Soundness) The logic FP( L) is sound with respect to the class of
probability Kripke structures.
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For any ϕ,ψ in the set of non-modal formulas L, define ϕ ∼ ψ iff ` ϕ ↔ ψ
in classical logic. The relation ∼ is an equivalence relation in the crisp language
L and [ϕ] will denote the equivalence class of ϕ, containing the propositions
provably equivalent to ϕ. Obviously, the quotient set L/∼ forms a Boolean
algebra which is isomorphic to a subalgebra B(Ω) of the power set of the set
Ω of Boolean interpretations of the crisp language L.3 For each ϕ ∈ L, we can
identify the equivalence class [ϕ] with the set {ω ∈ Ω | ω(ϕ) = 1} ∈ B(Ω) of
interpretations that make ϕ true. We denote by P(L) the set of probabilities
over L/∼FP or equivalently on B(Ω).

Notice that each probability µ ∈ P(L) induces a probability Kripke struc-
ture 〈Ω,B(Ω), eµ, µ〉 where eµ(p, ω) = ω(p) ∈ {0, 1} for each ω ∈ Ω and each
propositional variable p. We shall denote by PS the class of Kripke structures
induced by probabilities µ ∈ P(L), i.e. PS = {〈Ω,B(Ω), eµ, µ〉 | µ ∈ P(L)}.
Abusing the language, we say that a probability µ ∈ P(L) is a model of a modal
theory T whenever the induced Kripke structure Ωµ = 〈Ω,B(Ω), eµ, µ〉 is a
model of T . Besides, we will often write µ(ϕ) actually meaning µ([ϕ]). In fact,
for many purposes we can restrict ourselves to the class of probability Kripke
structures PS.

Lemma 4. For each probability Kripke structure K = 〈W,U , e, µ〉 there is a
probability µ∗ : B(Ω) → [0, 1] such that ‖Pϕ‖K = µ∗(ϕ) for all ϕ ∈ L. There-
fore, it also holds that ‖Φ‖FPT = ‖Φ‖PST for any modal formula Φ and any modal
theory T .

In the following we sketch a completeness proof for FP( L) as presented in [32,
33] and then further generalised in [23, 25], since we think it may be appealing
for the interested reader.

The usual strategy to prove completeness of probabilistic modal logics like
FP ( L) w.r.t. probabilistic Kripke models consists in the following steps (see
[25, 13] for more details):

(S1) First of all we define a syntactic translation • from modal to propositional
formulas of  Lukasiewicz logic by interpreting every atomic modal formula
P (ϕ) in a new propositional variable pϕ and extending • to compound
modal formulas by truth functionality.

(S2) The translation of all instances of the axioms (FP1)-(FP3), together with
the set {pϕ | ` ϕ} which encodes the propositional translation of (FP0),
gives rise to a propositional  Lukasiewicz theory FP• such that, for every
(finite) set of modal formulas T ∪ {Φ}, T `FP Φ iff T • ∪ FP• ` Φ• (see
for instance [23, 25] and [33]).

Now, assume that T 6`FP Φ and hence T • ∪ FP• 6` Φ•. As we recalled in
Section 3,  Lukasiewicz logic does not enjoy the strong standard completeness,
i.e. standard completeness with respect to deductions from infinite theories.

3Actually, B(Ω) = {{ω ∈ Ω | ω(ϕ) = 1} | ϕ ∈ L}. Needless to say, if the language has only
finitely many propositional variables then the algebra B(Ω) is just the whole power set of Ω,
otherwise it is a strict subalgebra.
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Therefore, if T •∪FP• turns out to be infinite, countermodels cannot always be
found in a chain over [0, 1]. As already mentioned above, we should hence either
extend  L by the infinite rule (IR), or extend the scope of countermodels of Φ• to
include also hyperreal MV-chains of the form [0, 1]∗ [24]. However, if T is finite,
FP• can be obtained translating all the instantiation of the axioms (P1)-(P3)
using, for events, classical formulas up to logical equivalence. Those are finitely
many, once we restrict to the variables occurring in the events of T ∪{Φ}. Thus,
if T is finite, T • ∪ FP• is finite as well and, by Theorem 1, if T • ∪ FP• 6` Φ•

there exists a [0, 1]MV -valuation e which is a model of T • ∪ FP• and maps
Φ• to some value α < 1. Finally, since e is a model of all (the translation of
the instances of) (FP0)-(FP3), e is indeed a probability function that does not
satisfy Φ. Thus, the following holds.

Theorem 4. (Probabilistic completeness of FP( L)) Let T be a finite modal
theory over FP( L) and Φ a modal formula. Then T `FP Φ iff eµ(Φ) = 1 for
each probability µ model of T .

We end this section with the following remark that presents FP( L) and its
extensions as logic for qualitative probabilistic reasoning.

Remark 3. Notice that FP( L) can be used to reason in a purely qualitative
way about comparative probability statements by exploiting the fact a FP( L)-
formula of the form Pψ → Pϕ is 1-true in a model defined by a probability µ iff
µ(ψ) ≤ µ(ϕ). Therefore, if we represent the statement “the event ϕ is at least
as probable than the event ψ” as ψ / ϕ, then an inference of the form

from ψ1 / ϕ1, . . . , ψn / ϕn infer χ / ν

can be faithfully captured by the following proof in FP( L)

Pψ1 → Pϕ1, . . . , Pψn → Pϕn `FP Pχ→ Pν.

Moreover, FP( L) also allows to reason about statements with a more quantita-
tive flavour like “the event ϕ is as twice as probable as the event ψ”, represented
by the formula

Pψ ⊕ Pψ → Pϕ.

Indeed, such a formula is 1-true in a model defined by a probability µ iff µ(ϕ) ≥
min(2µ(ψ), 1).

6 Introducing truth-constants in FP( L): the logic
FP(RPL)

As we have just seen above, the logic FP( L) already allows to express sev-
eral kinds of qualitative statements about probability, from purely comparative
statements to more quantitative statements, but always without an explicit nu-
merical representation of probability values. However, if one wants to explicitly
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reason about numerical statements, like “the probability of ϕ is 0.8”, “the prob-
ability of ϕ is at least 0.8”, or “the probability of ϕ is at most 0.8”, a simple
solution is to replace in FP( L)  Lukasiewicz logic  L by Rational Pavelka logic
RPL, that is, its expansion of  L with rational truth-constants. Then, one will
be easily able to express:

- “the probability of ϕ is 0.8” as Pϕ ≡ 0.8,

- “the probability of ϕ is at least 0.8” as 0.8→ Pϕ, and

- “the probability of ϕ is at most 0.8” as Pϕ→ 0.8.

To define the logic FP(RPL) we just expand the language of modal formulas
with the truth-constants r for every rational r ∈ [0, 1], and in the axiomatic
definition of FP( L) we add the bookkeeping axioms of RPL. The corresponding
probability Kripke structures are as in the case of FP( L) with the obvious minor
modifications.

Theorem 5 (Probabilistic completeness of FP(RPL)). Let T be a finite modal
theory over FP(RPL) and Φ a modal formula. Then T `FP (RPL) Φ iff eµ(Φ) =
1 for each probability µ model of T .

As in the case of RPL, for finite theories we can still get completeness when
we restrict ourselves to rational-valued probabilities.

Corollary 1. Let T be a finite modal theory over FP(RPL) and Φ a modal
formula. Then T `FP (RPL) Φ iff eµ(Φ) = 1 for each rational-valued probability
µ model of T .

Moreover, also Pavelka-style completeness holds for FP(RPL): for an arbi-
trary set of modal formulas T ∪ {Φ), one defines the provability degree of Φ in
T as |Φ|T = sup{r | T `FP (RPL) r → Φ} and the truth degree of Φ in T as
‖Φ‖T = inf{‖Φ‖K | K probability Kripke structure model of T}. Then the
following holds.

Theorem 6 (Pavelka-style completeness for FP(RPL)). For an arbitrary set of
modal formulas T ∪ {Φ) of FP (RPL), one has |Φ|T = ‖Φ‖T .

Since deductions in FP(RPL) from a finite theory can be encoded as deduc-
tions from a (larger) finite theory in RPL, as a direct corollary of Proposition
1, we get the following.

Corollary 2. If T is finite, for any FP(RPL)-formula Φ, ‖Φ‖T is rational.

Adding the rational values in FP (RPL) is indeed quite interesting. In that
manner, we can express in FP (RPL) partial assignments of probability as well,
and thus capture, by a logical consistency of a modal theory, de Finetti’s notion
of coherence for rational-valued probability assignments [19]. Before showing
this result, let us recall that, if ϕ1, . . . , ϕk are classical formulas, an assignment
β : ϕi 7→ ri of the ϕi’s to [0, 1] is said to be coherent iff β can be extended
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to a (at least one) probability function on the algebra spanned by the events
ϕ1, . . . , ϕk.4 Then, we can prove the following (see [22, Theorem 8] for further
details).

Theorem 7. Let ϕ1, . . . , ϕk be (finitely many) classical formulas and let β :
ϕi 7→ ri be a rational-valued assignment. Then the following conditions are
equivalent:

1. β is coherent;

2. The modal theory Tβ = {P (ϕ) ≡ ri | i = 1, . . . , k} is consistent, i.e.,
Tβ 6`FP (RPL) ⊥.

Proof. By Theorem 5, Tβ is consistent iff there exists a probability µ model of
Tβ . In order to prove the claim is hence sufficient to show that this is the case
iff β is coherent.

Suppose that β is coherent and let B be the finite Boolean algebra of all
events modulo provable equivalence where we identify every event with its equiv-
alence class. Then, by de Finetti’s theorem (see [19]), there exists a probability
measure µ : B→ [0, 1] such that, for all i = 1, . . . , k, µ(ϕi) = β(ϕi) = ri. Thus,
if W is the set of atoms of B and, for all w ∈W , e(p, w) is the logical valuation
of p associated to w, 〈W,B, e, µ〉 is a probability Kripke model that satisfies Tβ .
Thus the latter is consistent.

Conversely, if Tβ is consistent, then it is immediate to see that if 〈W,U , e, µ〉
is a probability Kripke model that satisfies all P (ϕi) ≡ ri, µ extends β and
hence β is coherent again by de Finetti’s theorem.

Besides the logical characterization of coherent assignments provided by The-
orem 7 above, the same notion can be also described in geometrical terms, see
for instance [40]. Such geometrical representation will play a role in the next
sections and we now recall how it is obtained. First of all, let us fix a finite set of
events (i.e., classical formulas) E = {ϕ1, . . . , ϕk} and let B be the finite Boolean
algebra generated by them. Let h1, . . . , ht the (also finitely many) homomor-
phisms of B to the two-element Boolean chain {0, 1}. For each i = 1, . . . , t, let
us define the string, with {0, 1}-coordinates

qi = 〈hi(ϕ1), . . . , hi(ϕk)〉.

These qi’s can hence be regarded as point of [0, 1]k and indeed as vertices of the
same cube. Thus, call CE the convex hull generated by q1, . . . , qt, i.e.,

CE = co({q1, . . . , qt}). (1)

Also notice that any assignment β : E → [0, 1] determines a unique point of
[0, 1]k, namely, β = 〈β(ϕ1), . . . , β(ϕk)〉. Then, the following holds.

4It is worth to point out that the one reported here is the statement of de Finetti’s theorem
that characterizes coherent books as those that can be extended by a probability measure.
The actual definition of coherence is in terms of a precisely defined zero-sum betting game.
We invite the interest reader to consult [19] for further details.
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Proposition 2. Let E = {ϕ1, . . . , ϕk} be a finite set of classical formulas and
let β : E → [0, 1] be an assignment. Then the following conditions are equivalent:

1. β is coherent;

2. β ∈ CE .

7 Reasoning with inconsistent probabilistic in-
formation in FP(RPL)

If we want to reason in a non-trivial way from inconsistent probabilistic the-
ories over FP(RPL), we need to devise possible ways to define paraconsistent
reasoning inference relations in a meaningful form.

In this section we will consider two possible approaches. The first approach is
to replace in FP(RPL) the outer logic RPL by its degree-preserving companion

RPL≤, or even by RPL≤∆, its expansion with ∆, that are both paraconsistent
logics as we have seen in Section 4. The second approach consists of, given an
inconsistent theory over FP(RPL), computing a degree of inconsistency of T
and using this degree to minimally weaken the formulas in the theory so that
the weakened theory becomes consistent.

7.1 The degree-preserving companion of FP(RPL)

As it is clear from the definition of FP ( L) and FP (RPL) given in Sections 5
and 6 respectively,  Lukasiewicz logic and RPL, together with (P0)-(P4) allow
to reason about probability statements using  Lukasiewicz calculus with possibly
rational truth-constants. Thus, it makes sense, from what we recalled in Section
4, to replace those logics by their degree-preserving companion  L≤ and RPL≤.
We will mainly focus on the probability logic FP(RPL≤), the degree-preserving
companion of FP (RPL) and, so as to emphasize that degree-preservation ap-
plies at the level of the probability formulas, it will be henceforth denoted by
FP≤(RPL).

Conforming to the usual way of defining deductions in degree-preserving
logics, given two probabilistic modal formulas Φ and Ψ, Φ `FP≤ Ψ iff for every
probabilistic Kripke modelM = (W, e, µ) of FP≤(RPL), ‖Φ‖M ≤ ‖Ψ‖M. More
precisely, if Φ = t1[P (ϕ1), . . . , P (ϕk)] and Ψ = t2[P (ϕ1), . . . , P (ϕk)], the above
means that, for all finitely additive probability measure µ,

t
[0,1]
1 [µ(ϕ1), . . . , µ(ϕk)] ≤ t[0,1]

2 [µ(ϕ1), . . . , µ(ϕk)],

where, for i = 1, 2, ti is a  Lukasiewicz formula and t
[0,1]
i stands for its interpre-

tation in the standard MV-algebra [0, 1]MV .
Obviously the above definition applies to the more general case in which

T = {Φ1, . . . ,Φn} is any finite set of modal formulas. In such a case, in fact,
T `FP≤ Ψ iff for all probabilistic Kripke model M,

‖Φ1 ∧ . . . ∧ Φn‖M ≤ ‖Ψ‖M.
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Let us start noticing that the logic FP≤(RPL) is not explosive. Indeed,
for each classical formula ϕ that is neither a classical theorem nor a contradic-
tion, P (ϕ),¬P (ϕ) 6`FP≤ ⊥. To make an example, notice that, in such case,
P (ϕ),¬P (ϕ) 6`FP≤ P (ϕ)&P (ϕ) because, semantically, one can find a probabil-
ity µ that assigns µ(ϕ) = 1/2 and this gives

min{µ(ϕ), µ(¬ϕ)} = 1/2 > µ(ϕ)� µ(ϕ) = 0.

Moreover, FP≤(RPL) is weaker than FP (RPL) in the following sense: re-
calling the translation map • defined in Section 5, for all pair of modal formulas
Φ and Ψ,

Φ `FP≤ Ψ ⇔
FP • `RPL Φ• → Ψ• ⇒
FP •,Φ• `RPL Ψ• ⇔
Φ `FP Ψ.

Therefore, if Φ `FP≤ Ψ, then Φ `FP Ψ but the other way around does not hold
in general. In other words, we have the following.

Proposition 3. Let T ∪ {Ψ} be a finite set of modal formulas. If T `FP≤ Ψ,
then T `FP Ψ. Therefore, in particular, if T 6`FP ⊥, then T 6`FP≤ ⊥.

The fact that FP≤(RPL) is not explosive is particularly interesting in the
light of Theorem 7 above, where we showed how the (full) consistency of a modal
theory of FP( L) can be used to characterize the coherence of partial probabilistic
assignments. Indeed, being able to handle inconsistency in FP≤(RPL) allows
us to handle partial incoherence as well and hence to derive some reasonable
conclusions from an initial incoherent evaluation. Let us start from the following
definition that uses the characterization result proved in the above Theorem 7.

Definition 3. Let ϕ1, . . . , ϕk be finitely many classical formulas and let β :
ϕi 7→ ri be a rational-valued assignment. Then we say that β is weakly coherent
if Tβ 6`FP≤ ⊥.

The following is an immediate consequence of the above definition and the
semantic definition of `FP≤ .

Proposition 4. Let ϕ1, . . . , ϕk be finitely many classical formulas and β : ϕi 7→
ri be a rational-valued assignment. Then the following conditions are equivalent:

1. β is weakly coherent;

2. There exists a probabilistic Kripke model M such that min{‖P (ϕi) ≡
ri‖M | i = 1, . . . , k} > 0.

From Proposition 4, every coherent assignment β is weakly coherent, but
the converse is generally false. So as to provide an example, let ϕ and ψ be
such that ϕ ∧ ψ ↔ ⊥ and take the incoherent assignment β(ϕ) = 0.4 and
β(ϕ ∨ ψ) = 0.2. Then β, although incoherent, is weakly coherent. Indeed,
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consider the probability Kripke model M = (W, e, µ) where, in particular, µ
gives to µ([ϕ]W ) = 0.3 and µ([ψ]W ) = 0. It is then easy to see that

min{‖P (ϕ) ≡ 0.4‖M, ‖P (ϕ ∨ ψ) ≡ 0.3‖M} = 0.1 > 0.

However, we can see that in FP≤(RPL) the following deduction is valid:

P (ϕ) ≡ 0.4, P (ϕ ∨ ψ) ≡ 0.2 `FP≤ 0.1→ P (ψ). (2)

Semantically, the above states that, for all probability measures µ (defined on
the algebra of events), one has that min{1−|µ(ϕ)− 0.4|, 1−|µ(ϕ∨ψ)− 0.2|} ≤
(1− 0.1)⊕ µ(ψ), i.e., since ϕ ∧ ψ ↔ ⊥,

min{1− |µ(ϕ)− 0.4|, 1− |µ(ϕ) + µ(ψ)− 0.2|} ≤ 0.9⊕ µ(ψ). (3)

Notice that, for all values of µ(ψ) ≥ 0.1, the above is trivially satisfied.
Also, for 0 ≤ µ(ψ) < 0.1 it is valid too. Indeed, taking for instance µ(ψ) =
0 (which would give the lower value for 0.9 ⊕ µ(ψ)) and µ(ϕ) = 1 (that is
compatible with the fact that ϕ∧ψ ↔ ⊥ and it would give the highest value to
the left-hand-side of (3)), one has that min{0.4, 0.2} ≤ 0.9. Also, the function
min{1 − |x− 0.4|, 1 − |x + y − 0.2|} gets a maximum when x = 0.3 and y = 0,
where it takes the value 0.9 and, in that case, (3) yields 0.9 ≤ 0.9 + 0. Thus,
(2) is always valid.

Adopting the same argument as above, we can also notice that

P (ϕ) ≡ 0.4, P (ϕ ∨ ψ) ≡ 0.3 6`FP≤ 0.1 ≡ P (ψ).

Indeed, min{1− |µ(ϕ)− 0.4|, 1− |µ(ϕ) +µ(ψ)− 0.3|} > 1− |P (ψ)− 0.1| for the
probability µ such that µ(ϕ) = 0 and µ(ψ) = 1.

A possibly more evident example that shows what can be proved in FP≤(RPL)
from a more intuitive set of incoherent premises consists in taking the incoher-
ent assignment P (ϕ) = 0.8 and P (¬ϕ) = 0.6. By using a semantical argument
again, we can see that the following hold:

1. P (ϕ) ≡ 0.8, P (¬ϕ) ≡ 0.6 `FP≤ P (⊥) ≡ r for all r ≤ 0.2

2. P (ϕ) ≡ 0.8, P (¬ϕ) ≡ 0.6 6`FP≤ P (⊥) ≡ r for all r > 0.2.

Remark 4. The above examples show that most incoherent partial assignments
can be handled in the logic FP≤(RPL) by means of the notion of weak coher-
ence. However, not all incoherent assignment are necessarily weakly coherent.
For instance, consider the assignment β(⊥) = 1 (or, dually, β(>) = 0). It
is not difficult to see that every probability measure µ, on any algebra, gives
eµ(P (⊥) ≡ 1) = 0, and hence, by Proposition 4 the above assignment is not
even weakly coherent. This reasoning path clearly extends to any assignment
β that contains the identity β(⊥) = 1 (or β(>) = 0). Also notice that hence,
whenever an assignment β contains such equations, its associated theory Tβ is

explosive also in FP≤(RPL).
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7.2 An inconsistency-tolerant probabilistic logic

In the previous section we have seen that a possible way to reason paraconsis-
tently from an inconsistent probabilistic theory in the language of FP(RPL) is
to resort to the degree preserving companion FP≤(RPL). However, we have
also seen that the inferential power of FP≤(RPL) is somehow limited. In this
section, we consider other possible ways of defining inconsistency-tolerant prob-
abilistic consequence relations that can provide, in some cases, more intuitive
results.

Let us recall from Section 5 that, from a semantical point of view, the logic
FP(RPL) is defined as follows: for any set of FP(RPL)-formulas T ∪ {Φ},

T |=FP Φ if, for every probability µ on Boolean formulas,
if µ is a model of T then eµ(Φ) = 1,

where by µ being a model of T we mean that eµ(Ψ) = 1 for every Ψ ∈ T , or
put it short, eµ(T ) = 1. We will denote by JT K the set probability measures on
formulas that are models of T . In other words,

JT K = {probability µ | for all Ψ ∈ T, eµ(Ψ) = 1}.

Of course, the above definition trivializes in the case T is inconsistent, i.e., when
JT K = ∅. However, in FP(RPL) one can take advantage of its many-valued/fuzzy
setting and consider the notion of (in)consistency as being many-valued as well.

Indeed, if a probabilistic theory T has no models, it makes sense to distin-
guish, e.g., cases where: (1) for every probability µ there is a formula Φ ∈ T
such that eµ(Φ) = 0; and (2) there exists a probability µ such that, for all
Φ ∈ T , eµ(Φ) is close to 1. In the former case T is clearly inconsistent, while in
the latter case one could say that T is close to being consistent.

This observation justifies to introduce, for each threshold α, the set of α-
generalised models (or just α-models) of T defined as follows:

JT Kα = {probability µ | for all Ψ ∈ T, eµ(Ψ) ≥ α}.

Note that the set JT K1 coincides with the set JT K of usual models of T . Moreover
JT Kα is a convex set of probabilities.

This in turn allows to define the degree of consistency of a theory as the
highest value α for which T has at least one α-generalised model.

Definition 4. Let T be a theory of FP(RPL). The consistency degree of T is
defined as

Con(T ) = sup{β ∈ [0, 1] | JT Kβ 6= ∅}.
Dually, the inconsistency degree of T is defined as

Incon(T ) = 1− Con(T ) = inf{1− β ∈ [0, 1] | JT Kβ 6= ∅}.

By completeness of FP ( L) with respect to probability models (Theorem 4),
we can also express, for every finite modal theory T , Con(T ) as follows:

Con(T ) = sup{β ∈ [0, 1] | Tβ 6` ⊥}

and hence Incon(T ) = inf{1− β ∈ [0, 1] | Tβ 6` ⊥}.

21



Remark 5. Notice that the notion of consistency degree for a theory T in
FP(RPL) can be seen as a stronger and quantitative version of the notion of
weak coherence as defined in the above Subsection 7.1. Indeed, an immediate
computation shows that if T is a theory representing a partial assignment β on
some classical formulas, i.e., T = Tβ as in the statement of Theorem 7, then we
have:

1. Con(T ) = 1 implies, by Proposition 2, that β is coherent.

2. On the other hand, if Con(T ) > 0, then β is weakly coherent by Proposi-
tion 4.

3. Finally, if Con(T ) = 0, then β is not even weakly coherent. Indeed, this
case coincides with the one explored in Remark 4 above.

A somewhat different formulation of the degrees of consistency and incon-
sistency is the following.

Lemma 5. Con(T ) = sup{
∧

Φ∈T eµ(Φ) | µ probability}.
Incon(T ) = inf{

∨
Φ∈T eµ(¬Φ) | µ probability}.

Proof. Let A = {β | JT Kβ 6= ∅} and B = {
∧

Φ∈T eµ(Φ) | µ probability }. We
have to prove that supA = supB.

• Let µ be a probability and let α =
∧

Φ∈T eµ(Φ). Then eµ(Φ) ≥ α for all
Φ ∈ T . Therefore, µ ∈ JT Kα, that is, α ∈ A, hence α ≤ supA and thus
supB ≤ supA.

• Let β ∈ A, that is, let β be such that JT Kβ 6= ∅. Then there exists µ
probability such that eµ(Φ) ≥ β for all Φ ∈ T . Thus,

∧
Φ∈T eµ(Φ) ≥ β,

and hence supB ≥ β, that is, supB ≥ supA.

Finally, we have Incon(T ) = 1− sup{
∧

Φ∈T eµ(Φ) | µ probability} =
inf{1 −

∧
Φ∈T eµ(Φ) | µ probability} = inf{

∨
Φ∈T 1 − eµ(Φ) | µ probability} =

inf{
∨

Φ∈T eµ(¬Φ) | µ probability}.

If T is finite, the suprema and the infima in Definition 4 and in the expres-
sions Con(T ) and Incon(T ) as in Lemma 5, are in fact maxima and minima.

Lemma 6. Let T be a finite theory of FP(RPL). Then:

Con(T ) = max{
∧

Φ∈T
eµ(Φ) | µ probability} = max{β ∈ [0, 1] | Tβ 6` ⊥},

Incon(T ) = min{
∨

Φ∈T
eµ(¬Φ) | µ probability} = min{1− β ∈ [0, 1] | Tβ 6` ⊥}.

Proof. First, notice that if T is a finite theory, we can write the formula T∧ =∧
Φ∈T Φ, which is such that JT Kα = JT∧Kα. In fact, T∧ as a formula of FP(RPL)

can be seen as a formula of RPL over variables of the kind Pϕ1, . . . , Pϕk.
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Accordingly, let T∧ = t[Pϕ1, . . . , Pϕk] for some RPL term t. Then for each

probability map µ, eµ(T∧) = t[0,1]k(eµ(Pϕ1), . . . , eµ(Pϕk)). The set of values
(p1, . . . , pk) ∈ [0, 1]k associated to probability values of the classical formulas
in E = {ϕ1, . . . , ϕk} is the set CE as defined in (1), which is a compact con-

vex subset of [0, 1]k. Moreover, the map t[0,1]k is a continuous function (since
 Lukasiewicz truth-functions and rational constants are continuous). Hence, the
set of possible values of eµ(T∧), for any µ, is the image in [0, 1] of a closed set
over [0, 1]k, therefore it is a closed subset of [0, 1], which has a maximum value β.
Now, β = Con(T ) = Con(T∧). Indeed, there exists at least a probability map
µ such that eµ(T∧) ≥ β, and β is the largest element with such property.

Moreover, it can be shown that, for any finite theory T , Con(T ) (and thus
Incon(T ) as well) is always a rational value.

Lemma 7. If T is a finite theory over FP(RPL), then Con(T ) and Incon(T )
are rational.

Proof. By Corollary 2, if T is a finite theory over RPL, then the truth-degree
of any formula ϕ ∈ T is rational, i.e. ‖ϕ‖T is rational. This easily extends to
FP(RPL), since deductions in FP(RPL) from a finite theory T can be encoded
as deductions in RPL from the larger, but still finite, theory T • ∪ FP • (recall
the translation map • defined in Section 5).

Now, one can check that Incon(T ) is nothing but the truth-degree of the
formula T# =

∨
Φ∈T ¬Φ in the theory FP •, that is, Incon(T ) = JT#KFP• .

Therefore, from the above, it follows that Incon(T ) is rational.

In particular, from the previous lemma it follows that for a finite theory T ,
if Con(T ) = α, then JT Kα 6= ∅. Moreover:

(i) If Con(T ) = 1 then T has a model, while if Con(T ) = 0 then, for any
probability µ there is a formula Ψ ∈ T such that eµ(Ψ) = 0.

(ii) If Con(T ) > 0 then ‖T‖Con(T ) 6= ∅.

(iii) If T ′ ⊆ T then Con(T ′) ≥ Con(T ).

Let us clarify what we showed so far by some very simple examples.

Example 1. Let us consider the following theory of precise probability assign-
ments T = {Pϕi ≡ ri}i=1,...,n. If µ is a probability, then eµ(Pϕi ≡ ri) =
1− |µ(ϕi)− ri|. Further let

βµ =
∧
i=1,n

1− |µ(ϕi)− ri|.

Then µ ∈ JT Kβµ , and

Con(T ) = sup{βµ | µ probability} = sup
µ

∧
i=1,n

1− |µ(ϕi)− ri|,
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and thus,

Incon(T ) = 1− Con(T ) = 1− sup
µ

∧
i=1,n

1− |µ(ϕi)− ri| = inf
µ

∨
i=1,n

|µ(ϕi)− ri|.

That is to say, Incon(T ) is nothing but the Chebyshev distance of the point
(r1, . . . , rn) ∈ [0, 1]n to the convex set of coherent assignments CE on the events
E = {ϕ1, . . . , ϕn}.

Example 2. Consider the theory Tβ = {P (p) ≡ 1/2, P (¬p) ≡ 1/3} given by
the incoherent assignment β : p 7→ 1/2;¬p 7→ 1/3. Notice that, since every
probability µ satisfies µ(¬p) = 1 − µ(p), the consistency of Tβ is equivalent to
the consistency of the (formally different) theory

T ′β = {(P (p) ≡ 1/2) ∧ (P (p) ≡ 2/3)},

which we will now consider instead of Tβ for the sake of this example.
Now, the coherent set of the unique event p that we consider in the above

formulation, is the whole real unit interval [0, 1]. Indeed, in fact, for every
α ∈ [0, 1], there exists a probability µ such that µ(p) = α. Then, we can
consider the function fΨ : [0, 1]→ [0, 1] defined as

fΨ(y) = min{1− |y − 1/2|, 1− |y − 2/3|},

that is, the continuous and piecewise linear function with rational coefficients
that represents the RPL-formula Ψ = (P (p) ≡ 1/2) ∧ (P (p) ≡ 2/3) once P (p)
is regarded as a (complex) propositional variable (left-hand side of Figure 1).

Now, the maximum for fΨ on the convex and compact set C{p} of all coherent
assignments on p, that in this particular case is the whole real unit interval [0, 1],
i.e. C{p} = [0, 1], is attained at 7/12 and fΨ(7/12) = 11/12, see the left-hand
side of Figure 1. Thus,

Con(T ′β) = 11/12.

Another, yet equivalent, way to graphically compute the consistency degree
of our theory, is to use the geometric description of coherence we briefly recalled
at the end of Section 6. Indeed, if we take into account the original assignment
β and hence the theory Tβ = {P (p) ≡ 1/2, P (¬p) ≡ 1/3}, the set of all coherent
assignments on events p and ¬p is the set C{p,¬p} = {(x, 1 − x) | x ∈ [0, 1]},
i.e. the segment in [0, 1]2 with endpoints (1, 0) and (0, 1) (right-hand side of
Figure 1), and the incoherent assignment β is displayed as the point (1/2, 1/3) 6∈
C{p,¬p}. As we mentioned in the above Example 1, Con(Tβ) can be computed
as 1 minus the Chebyshev distance between (1/2, 1/3) and C{p,¬p}. This value
is attained at the point of coordinates (7/12, 5/12) and then we have:

1− |β(p)− 7/12| = 1− |β(¬p)− 5/12| = 1− 1/12 = 11/12 = Con(Tβ).

Example 3. Let us consider a theory representing an imprecise probability
assignment to a set of events:

T = {(ri − εi → Pϕi) ∧ (Pϕi → ri + εi)}i=1,...,n
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Figure 1: Two equivalent ways to compute Con(T ): on the left-hand side,
Con(T ) is the maximum value attained by the function fΨ(y) = min{1 − |y −
1/2|, 1−|y−2/3|} computed on the compact convex set of coherent assignment.
On the right-hand side Con(T ) is computed as 1 minus the Chebyshev distance
between the point β that represents the partial assignment on p and ¬p, and
the set of coherent assignments on p and ¬p.

where, for each i, ri − εi ≥ 0 and ri + εi ≤ 1, that is εi ≤ ri ≤ 1− εi. Then we
can compute the degree of inconsistency of T as follows:

Incon(T ) = 1− Con(T ) = 1− sup
µ

∧
i=1,n

eµ((ri − εi → Pϕi) ∧ (Pϕi → ri + εi))

= 1− sup
µ

∧
i=1,n

((ri − εi)→ µ(ϕi)) ∧ (µ(ϕi)→ (ri + εi))

=51− sup
µ

∧
i=1,n

((1− εi)→ (ri ≡ µ(ϕi)) = 1− sup
µ

∧
i=1,n

(1− εi)→ 1−|ri−µ(ϕi)|

= inf
µ

1−
∧
i=1,n

(1−εi)→ 1−|ri−µ(ϕi)| = inf
µ

∨
i=1,n

1−((1−εi)→ 1−|ri−µ(ϕi)|)

= inf
µ

∨
i=1,n

(1− εi)⊗ |ri − µ(ϕi)|.

As for paraconsistently reasoning from an inconsistent theory in FP(RPL),
the idea we explore here is to use α-generalised models instead of usual mod-
els to define a context-dependent inconsistent-tolerant notion of probabilistic
entailment.

5Here we use the property min((x− y)→ z, z → (x+ y)) = y → (x ≡ z), if y ≤ x ≤ 1− y.
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Definition 5. Let T be a theory such that Con(T ) = α > 0. We define:

T |≈∗ Φ if eµ(Φ) = 1 for all probabilities µ ∈ JT Kα.

Note that for a finite theory T , if Con(T ) > 0, then T |6≈∗ ⊥, hence |≈∗ does
not trivialize even if T is inconsistent (Con(T ) < 1).

The following are some interesting properties of the consequence relation
|≈∗:

• Clearly, |≈∗ is nonmonotonic. For instance, let T ′ = {Pϕ ≡ 0.4, Pϕ →
Pψ} and T = T ′ ∪ {0.3 ≡ Pϕ}. Then we have con(T ′) = 1 and trivially
T ′ |≈∗ 0.4 ≡ Pϕ, while Con(T ) = 0.95 and T |6≈∗ 0.4 ≡ Pϕ.

• |≈∗ is idempotent, that is, if S |≈∗ϕ and T |≈∗ψ for all ψ ∈ S, then T |≈∗ϕ

Next proposition shows that paraconsistent reasoning from an inconsistent
theory T by means of the inference relation |≈∗ can be reduced to usual reasoning
in FP(RPL) by suitably weakening the formulas in the initial theory T .

Proposition 5. Given a theory T , with Con(T ) = α, then the following con-
dition holds:

T |≈∗ Φ iff Tα `FP Φ,

where Tα = {α→ Ψ | Ψ ∈ T}.

Proof. Indeed, if µ is a probability such that eµ(α → Ψ) = 1, i.e. such that
eµ(Ψ) ≥ α, for all Ψ ∈ T , this means that µ ∈ JT Kα. But if we assume T |≈∗ Φ,
then it follows that eµ(Φ) = 1. Hence Tα `FP Φ.

Conversely, assume Tα `FP Φ with Con(T ) = α and that µ ∈ ‖T‖α. The
latter means that eµ(Ψ) ≥ α for all Ψ ∈ T , i.e. eµ(α → Ψ) = 1 for all Ψ ∈ T .
But then, since Tα `FP Φ, it follows that eµ(Φ) = 1, that is, T |≈∗ Φ.

The weakened theory Tα can be seen as a repair of T . It is worth considering
how the repaired theories Tα look like for two particular kinds of theories T :

• In the case the theory represents a precise probability assignment of the
form T = {ri ≡ Pϕi}i=1,n, then Tα = {(α⊗ ri → Pϕi) ∧ (Pϕi →
α⇒ ri)}i=1,n.

• In the case the theory represents an imprecise probability assignment of
the form T = {(ri → Pϕi) ∧ (Pϕi → si)}i=1,n, then Tα = {(α⊗ ri →
Pϕi) ∧ (Pϕi → α⇒ si)}i=1,n.

Note that in both cases, the constraints represented in Tα are weaker, more
imprecise than those in T : in the first case, a constraint µ(ϕi) = ri is modified
into the constraint µ(ϕi) ∈ [α⊗ri, α⇒ ri], while in the second case, a constraint
µ(ϕi) ∈ [ri, si] is modified into the constraint µ(ϕi) ∈ [α⊗ ri, α⇒ si].
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7.3 A refinement of |≈∗

The consequence relation |≈∗ introduced above has some nice features, but it
may also have a counter-intuitive behaviour in some cases. For instance, let
T = {0.3 ≡ Pϕ, 0.4 ≡ Pϕ, 0.6 ≡ Pψ}, where ϕ and ψ are assumed to be
propositional variables, then Con(T ) = 0.95, and hence T |≈∗ 0.35 ≡ Pϕ, but
strangely enough, T |6≈∗ 0.6 ≡ Pψ, since we can only derive T |≈∗ 0.95 →
(0.6 ≡ Pψ), even though the formula 0.6 ≡ Pψ is not involved in the conflict
in T . The reason is that Con(T ) is a global measure that does not take into
account individual formulas. Actually, if T ′ = T ∪ {0.7 ≡ Pψ}, we still have
Con(T ) = Con(T ′) = 0.95.

The above example motivates the following iterative procedure to come up
with more suitable generalised models of an inconsistent theory T . The intuitive
idea is to weaken the formulas of a theory, but not more than necessary. To
do so, if Con(T ) = α, the following procedure starts by identifying minimal
subsets of formulas that yield the same consistency degree α than T . Call the
complement of that set T>. Then the process starts over again replacing T
by T>, but we restrict ourselves to the α-generalised models of T to compute
Con(T>). The procedure iteratively continues until one cannot find a non-
empty subset of formulas with a consistency degree higher than the one found
in the previous step.

Step 1: Let Con(T ) = α1. Then we know that the set of probabilities JT Kα1

is non-empty. Hence, we can partition T in the following two disjoint
subtheories:

T= = ∪{S ⊆ T | S minimal, Con(S) = α1}
T> = T \ T=

Note that T= 6= ∅ and if T> 6= ∅ then Con(T>) > α1. By definition
T= ∩ T> = ∅ and T = T= ∪ T>.

Then we proceed to weaken only those formulas in T=, so we define:

T (1) = {α1 → Φ | Φ ∈ T=}.
If T> = ∅, then we stop and we define the repaired theory as Tw = T (1).
Otherwise we follow to the next step to repair T>.

Step 2: Restrict the set of possible models to those of JT Kα1
to compute the con-

sistency degree of T>.

Let ConT (T>) = max{β | there exists µ ∈ JT Kα1
, eµ(Φ) ≥ β for all Φ ∈

T>} = α2.

By definition, α2 > α1. And we proceed similarly as above, but restricting
the set of models to those in JT Kα1

, and we partition T> into the following
two subtheories:

(T>)= = ∪{S ⊆ T> | minimal, ConT (S) = α2}
(T>)> = T> \ (T>)=
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Again note that (T>)= 6= ∅, and if (T>)> 6= ∅ then Con((T>)>) > α2.
We proceed to the weakening of the subtheory (T>)= and define:

T (2) = {α2 → Φ | Φ ∈ (T>)=}
If (T>)> = ∅, then we stop and we define the repaired theory as Tw =
T (1) ∪ T (2). Otherwise we follow to the next step to repair (T>)>.

Step 3: Restrict the set of possible models to those of JT Kα1 ∩ JT>Kα2 to compute
the consistency degree of (T>)>:

Let ConT,T>((T>)>) = max{β | there exists µ ∈ JT Kα1
∩JT>Kα2

, eµ(Φ) ≥
β for all Φ ∈ (T>)>} = α3.

By definition, α3 > α2 > α1. we then follow the same procedure as
above, but restricting the set of models to those in JT Kα1 ∩ JT>Kα2 , and
we partition (T>)> into the following two subtheories:

((T>)>)= = ∪{S ⊆ (T>)> | S minimal, ConT,T>(S) = α3}
((T>)>)> = (T>)> \ ((T>)>)=

Now we proceed to weaken the subtheory ((T>)>)= and define:

T (3) = {α3 → Φ | Φ ∈ ((T>)>)=}.
If ((T>)>)> = ∅, then we stop and we define the repaired theory as
Tw = T (1) ∪ T (2) ∪ T (3). Otherwise we follow to the next step to repair
((T>)>)>.

. . . . . .

This procedure goes on until, for a first m, (...(T>) m...)>) = ∅. Then the proce-
dure stops and as a result we get a (finite) sequence of subtheories T (1), T (2), . . . , T (m),
with associated consistency values α1 < . . . < αm.

Lemma 8. The theory Tw = T (1) ∪ . . . ∪ T (m) is consistent.

Proof. Indeed, by construction, JT (1)K ∩ JT (2)K ∩ . . . ∩ JT (m)K 6= ∅.

This allows us to define a refined variant of the |≈∗ consequence relation.

Definition 6. Let T be a theory over FP(RPL). Then we define a refinement
|≈◦ of the consequence relation |≈∗ as follows:

T |≈◦ Φ if Tw `FP Φ.

Compare this definition with the characterisation of |≈∗ in Prop. 5. It is
clear that |≈◦ is stronger than |≈∗ while still paraconsistent.

Example 4. Let T = {0.3 ≡ Pϕ, 0.4 ≡ Pϕ, 0.6 ≡ Pψ, 0.8 ≡ Pψ, 0.7 ≡ Pχ},
where ϕ,ψ, χ are propositional variables. Since Con(T ) = 0.9, we have

T0.9 = {0.9→ (0.3 ≡ Pϕ), 0.9→ (0.4 ≡ Pϕ), 0.9→ (0.6 ≡ Pψ),
0.9→ (0.8 ≡ Pψ), 0.9→ (0.7 ≡ Pχ)}
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Models of T0.9 are probabilities µ such that µ(ϕ) ∈ [0.2, 0.4] ∩ [0.3, 0.5] =
[0.3, 0.4], µ(ψ) ∈ [0.5, 0.7] ∩ [0.7, 0.9] = {0.7} and µ(χ) ∈ [0.6, 0.8].

Let us see what the refinement procedure yields:

Step 1: Con(T ) = 0.9

T= = {0.6 ≡ Pψ, 0.8 ≡ Pψ}
T> = {0.3 ≡ Pϕ, 0.4 ≡ Pϕ, 0.7 ≡ Pχ}
T (1) = {0.9→ (0.6 ≡ Pψ), 0.9→ (0.8 ≡ Pψ)}

Step 2: ConT (T>) = 0.95

(T>)= = {0.3 ≡ Pϕ, 0.4 ≡ Pϕ}
(T>)> = {0.7 ≡ Pχ}
T (2) = {0.95→ (0.3 ≡ Pϕ), 0.95→ (0.4 ≡ Pϕ)}

Step 3: ConT ((T>)>) = 1

(T>)= = {0.7 ≡ Pχ}
(T>)> = ∅
T (3) = {0.7 ≡ Pχ}

Therefore,

Tw = {0.9→ (0.6 ≡ Pψ), 0.9→ (0.8 ≡ Pψ), 0.95→ (0.3 ≡ Pϕ),
0.95→ (0.4 ≡ Pϕ), 0.7 ≡ Pχ},

that is equivalent to the theory

T ′w = {0.5→ Pψ, Pψ → 0.7, 0.7→ Pψ, Pψ → 0.9, 0.25→ Pϕ,
Pϕ→ 0.35, 0.35→ Pϕ, Pϕ→ 0.45, 0.7 ≡ Pχ}.

In this case, models of Tw are probabilities µ such that µ(ϕ) = 0.35, µ(ψ) = 0.7
and µ(χ) = 0.7, and hence the refined consequence relation |≈◦ is such that:

T |≈◦ 0.7 ≡ Pψ, 0.35 ≡ Pϕ, 0.7 ≡ Pχ.

8 Related approaches

Several papers and monographs about how to measure the inconsistency of
probabilistic knowledge bases have recently appeared in the literature, see for
instance [46, 38, 47, 41, 42, 17, 43, 44]. In particular, there is a nice overview
by de Bona, Finger, Potyka and Thimm in [18] on which we will base the
comparison with our approach.

First of all, by a probabilistic knowledge base one usually understands a finite
set of (conditional) probability constraints on classical propositional formulas
(from a given finitely generated language L), of the formKB = {(ϕi | ψi)[qi, qi] |
i = 1, . . . n}, where q

i
and qi are rational values from the unit interval [0, 1].
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Such an expression (ϕi | ψi)[qi, qi] intuitively expresses the constraint (or belief)
that the conditional probability of ϕi given ψi lies in the interval [q

i
, qi].

Then, a probability µ on the formulas satisfies a conditional expression (ϕi |
ψi)[qi, qi], written µ |= (ϕi | ψi)[qi, qi], whenever µ(ϕi ∧ ψi) ≥ q

i
· µ(ψi), and

µ(ϕi ∧ ψi) ≤ qi · µ(ψi). We call such a probability µ a model of the formula
(ϕi | ψi)[qi, qi]. Of course, if µ(ψi) > 0, these conditions amount to state that
µ |= (ϕi | ψi)[qi, qi] when the conditional probability µ(ϕi | ψi) belongs to the
interval [q

i
, qi].

For the case where a probabilistic knowledge base KB is inconsistent, i.e.
when there is no probability map satisfying all the expressions in it, a number
of inconsistency measures have been proposed in the literature. In particu-
lar, different proposals measure how inconsistent a KB can be, some of them
generalising to the probabilistic case inconsistency measures already proposed
for the propositional case, and some of them specifically tailored to deal with
probabilistic expressions. Among them, one finds the so-called distance-based
measures and violation-based measures. Roughly speaking, the former look for
consistent knowledge bases that minimize the distance (for some suitable notion
of distance) to the original inconsistent KB, while the latter look for probabil-
ities that minimize the violation (for some suitable notion of violation) of the
knowledge base [47, 41].

According to [18], when it comes to reasoning with an inconsistent probabilis-
tic KB, there are two sensible ways to proceed: either repair the inconsistent
knowledge base and then apply classical probabilistic reasoning, or apply para-
consistent reasoning models that can deal with inconsistent knowledge bases.
For the first approach, distance-based measures are well-suited, while for the
second approach violation-based measures (together with so-called fuzzy-based
measures) seem to be the most appropriate ones.

We show here that our approach to reason with inconsistent probabilistic
theories over FP(RPL) described in the previous section, when restricted to
theories of the form T = {Pϕi ≡ ri}i=1,...,n, can be seen both as a distance-
based approach and as violation-based approach. Note that we do not deal with
conditional probability expressions, thus our case is in this respect simpler.

In the distance-based approach, given a distance d on Rn, and two theories
T = {Pϕi ≡ ri}i=1,...,n and T ′ = {Pϕi ≡ r′i}i=1,...,n, one can define the distance
between T and T ′ as the distance between their corresponding vectors of truth-
constants:

d(T, T ′) = d((r1, . . . , rn), (r′1, . . . , r
′
n)).

Then, if T = {ri ≡ Pϕi}i=1,...,n is an inconsistent theory, the aim is to look
for a consistent theory (a repair), by modifying the truth-constants ri’s, so to
be at a minimum distance from T . Note that all possible repairs of T that are
precise-assignments theories are of the form

Tµ = {µ(ϕi) ≡ Pϕi}i=1,...,n,

for µ being a rational-valued probability on formulas. In our approach, the
degree of inconsistency of T can be seen as the minimum distance from T to

30



the set of all its repairs, indeed we have:

Incon(T ) = inf
µ

∨
i=1,n

|µ(ϕi)− ri| =

= inf
µ
dc((µ(ϕ1), . . . , µ(ϕn)), (r1, . . . , rn)) = inf

µ
dc(T, Tµ),

where dc is the well-known Chebyshev distance in Rn. That is to say, Incon(T )
is nothing but the Chebyshev distance of the point in [0, 1]n given by the (in-
consistent) assignment (r1, . . . , rn) to the convex set of coherent probability
assignments to the events ϕ1, . . . , ϕn. The set of precise repairs at minimal
distance from T is then

Repairs(T ) = {Tµ | µ probability, dc(T, Tµ) = Incon(T )}.

We observe that this set may contain more than one theory.
Suppose now that T represents an imprecise probability assignment

T = {(ri − εi → Pϕi) ∧ (Pϕi → ri + εi)}i=1,...,n

where, for each i, ri − εi ≥ 0 and ri + εi ≤ 1, that is εi ≤ ri ≤ 1− εi. Then, as
shown in Example 3, the degree of inconsistency of T is:

Incon(T ) = inf
µ

∨
i=1,n

(1− εi)⊗ |ri − µ(ϕi)|.

Therefore, by defining d∗c(T, Tµ) =
∨
i=1,n(1− εi)⊗ |ri − µ(ϕi)|, we can write

Incon(T ) = inf
µ
d∗c(T, Tµ).

Note that the definition of d∗c(T, Tµ) is similar to the one of dc(T, Tµ) but takes
into account the width of the probability intervals assigned to the events in T .
However, d∗c is not symmetric in its arguments since T is in general an imprecise
assignment theory, while Tµ is a precise assignment theory. The question is then
whether d∗c can still be considered as a kind of distance. What we can say in
this respect is that: (i) in the particular case T is a precise assignment theory,
then all the εi’s are zero, and thus d∗(T, Tµ) = dc(T, Tµ); and (ii) a restricted
form of the triangle inequality holds, as the next lemma shows.

Lemma 9. For any imprecise assignment theory T and any probabilities µ and
σ, the following condition holds:

d∗(T, Tµ) ≤ d∗(T, Tσ) + d∗(Tσ, Tµ).

Proof. We first show that

(1− εi)⊗ |ri − µ(ϕi)| ≤ ((1− εi)⊗ |ri − σ(ϕi)|) + |σ(ϕi)− µ(ϕi)|. (4)
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Clearly, |ri−µ(ϕi)| ≤ |ri−σ(ϕi)|+ |σ(ϕi)−µ(ϕi)|, and since |ri−µ(ϕi)| ≤ 1, it
also holds that |ri − µ(ϕi)| ≤ |ri − σ(ϕi)| ⊕ |σ(ϕi)− µ(ϕi)|. Therefore, to show
(4), it is enough to show the following inequality for every x, y, z ∈ [0, 1]:

x⊗ (y ⊕ z) ≤ (x⊗ y)⊕ z.

But we know that y ≤ (x→ (x⊗ y)), and hence y⊕ z ≤ (x→ (x⊗ y))⊕ z, and
moreover by a simple computation, it can be checked that (x→ (x⊗ y))⊕ z =
x → ((x ⊗ y) ⊕ z). Therefore, y ⊕ z ≤ x → ((x ⊗ y) ⊕ z), and this holds iff
x⊗ (y ⊕ z) ≤ (x⊗ y)⊕ z. So we have shown (4). Finally, we have

d∗(T, Tµ) =
∨
i=1,n

(1−εi)⊗|ri−µ(ϕi)| ≤
∨
i=1,n

((1−εi)⊗|ri−σ(ϕi)|)+|σ(ϕi)−µ(ϕi)|

≤
∨
i=1,n

(1− εi)⊗ |ri − σ(ϕi)|+
∨
i=1,n

|σ(ϕi)− µ(ϕi)| = d∗(T, Tσ) + dc(Tσ, Tµ).

From all the above, it is clear that Incon(·) belongs to the family of distance-
based inconsistency measures.

On the other hand, in our setting, for a given inconsistent theory T over
FP(RPL), a violation-based inconsistency measure aims at: first, estimating
how far every interpretation (i.e. every probability) is from satisfying every
formula in T (violation degrees); then, minimising a suitable aggregation of
those degrees. We can show that Incon(·) is in fact a violation-based measure
as well. Indeed, given a probability µ, we define the violation degree of a formula
Φ ∈ T by µ as the satisfaction degree of its negation, i.e.

vdµ(Φ) = eµ(¬Φ) = 1− eµ(Φ),

and then we define the global violation degree of T as vdµ(T ) = maxΦ∈T vdµ(Φ).
Finally, according to Lemma 5, it is straightforward to check that

Incon(T ) = inf
µ
dvµ(T ),

that is, Incon(T ) is nothing but the infimum of the violation degrees of T
by all possible probabilities, and the set of generalised models of T are those
probabilities yielding a minimum violation degree:

GMod(T ) = {µ probability | dvµ(T ) = Incon(T )} = ‖T‖Con(T ).

Moreover, we can show that, in our particular case, the set of consequences
entailed by the set of generalised models in fact coincides with the common
consequences of all theories in Repairs(T ).

Proposition 6. For a precise-assignment theory T , we have:

GMod(T ) ⊆ ‖Φ‖ iff for all Tµ ∈ Repairs(T ), Tµ `RPL Φ.
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Proof. Let T = {ri ≡ Pϕi}i=1,...,n. Assume that GMod(T ) ⊆ ‖Φ‖, that is,
for every µ ∈ GMod(T ) = ‖T‖Con(T ), eµ(Φ) = 1. Now, let µ be a probability
such that Tµ ∈ Repairs(T ). This means that dc(T, Tµ) = Incon(T ), hence
|ri − µ(ϕi)| ≥ α for all i, that is equivalent to eµ(ri ≡ ϕi) ≥ α for all i, i.e.
µ ∈ GMod(T ). Let σ be a probability such that σ ∈ ‖Tµ‖. This implies
that σ(ϕi) = µ(ϕi) for all i, hence σ ∈ GMod(T ) as well, and by hypothesis,
eσ(Φ) = 1. Therefore, by completeness of RPL, Tµ `RPL Φ.

The other direction is similar.

9 Some remarks on Bueno-Soler and Carnielli’s
approach

In the present paper, we have been concerned so far with a  Lukasiewicz logic-
based formalisation of probabilistic reasoning, and two approaches to paracon-
sistent inference from inconsistent theories in that context. An alternative ap-
proach considered by Bueno-Soler and Carnielli in [5] is to formalise a proba-
bility logic over a paraconsistent logic of events, that is, by replacing classical
logic as internal logic of events by a suitable paraconsistent logic. In fact, the
authors consider the logic of formal inconsistency Ci [7], which is an expansion
of the positive fragment of classical propositional logic with two unary oper-
ators. Namely, a paraconsistency negation and a consistency operator, over
which a suitable notion of probability is defined. The logic Ci can be basically
introduced as follows:

(i) Let CPL+ be the Positive fragment of classical propositional logic over
the signature Σ+ = {∧,∨,→}

(ii) Then the minimal paraconsistent logic mbC on the expanded signature
Σ = Σ+∪{¬, ◦} can be axiomatically defined as the extension CPL+ plus
the following two axioms:

(Ax10) ϕ ∨ ¬ϕ
(bc1) ◦ϕ→ (ϕ→ (¬ϕ→ ψ))

(iii) Finally, the logic Ci is defined as the extension of mbC with the following
two additional axioms:

(ci) ¬◦ϕ→ (ϕ ∧ ¬ϕ)

(cf) ¬¬ϕ→ ϕ

However, as discussed in [6], Ci and other paraconsistent logics with non-
deterministic semantics have the drawback that they do not satisfy the replace-
ment property, and hence they are not self-extensional and not algebraizable in
the sense of Blok and Pigozzi. To remedy this situation, in [6] the authors study
the extension of those logics with suitable rules of replacement of equivalents.
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(iv) The logic RmbC is defined as the extension of mbC with replacement
rules for ◦ and ¬:

(R¬)
ϕ↔ ψ

¬ϕ↔ ¬ψ
(R◦)

ϕ↔ ψ

◦ϕ↔ ◦ψ

(v) Then, the logic RCi is just the extension of RmbC with the axioms (ci)
and (cf).

Then, in [7] the authors show that RCi is self-extensional, and it admits an
algebraic semantics with respect to a subvariety of Boolean algebras with LFIs
(BALFIs), i.e. Boolean algebras with two extra unary operators ¬ and ◦ sat-
isfying the equations corresponding to (Ax10), (bc1), (ci) and (cf). In fact, a
completeness result is proved with respect to the degree-preserving semantics for
evaluations on the class of corresponding BALFIs, namely, Γ `RCi ϕ iff either ϕ
is a tautology or there exists a set {ψ1, ..., ψn} ⊆ Γ such that ψ1 ∧ ... ∧ ψn → ϕ
is a tautology in the corresponding subvariety of BALFI algebras.

Therefore, analogously to FP( L) or FP(RPL), one could consider the task of
defining a fuzzy probability logic over events formalised as propositions in RCi.
For this, one first needs to specify what a probability function over RCi is. In
[5] (see also [40]) there is a general definition of a probability P over formulas
for a given logic. Here we particularise that definition for the case of RCi. Let
L be the set of RCi formulas, then a (paraconsistent) probability on L is a
mapping P : L → [0, 1] fulfilling the following properties:

- Non-negativity: 0 ≤ P (ϕ) ≤ 1, for all ϕ ∈ L
- Tautologicity: If `RCi ϕ, then P (ϕ) = 1
- Anti-tautologicity: If ϕ `RCi ψ for all ψ then P (ϕ) = 0
- Comparison: If ϕ `RCi ψ, then P (ϕ) ≤ P (ψ)
- Finite additivity: P (ϕ ∨ ψ) = P (ϕ) + P (ψ)− P (ϕ ∨ ψ)

Once we adopt this definition, one can proceed to axiomatically define the
(fuzzy) probability logic over RCi, that we will denote FP(RCi,RPL), em-
phasizing the fact that the logic of events is RCi and the outer logic keeps
being RPL. Everything is analogous to the case of FP(RPL) with the obvious
changes. In particular, non-modal formulas will be those of RCi (ϕ,ψ, χ, etc.),
and modal formulas are built from elementary modal formulas of the form Pϕ,
where ϕ is a non-modal formula, using the connectives and truth-constants of
RPL (Φ,Ψ, etc.). The axioms of the logic FP(RCi,RPL) will be the following:

(i) Axioms and rules of RCi for non-modal formulas

(ii) Axioms of RPL for modal formulas

(iii) Probabilistic modal axioms:
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(FP0’) Pϕ, for ϕ being a theorem of RCi
(FP1’) Pϕ→ Pψ, for ϕ→ ψ being a theorem of RCi
(FP2’) ¬P (ϕ ∧ ¬ϕ ∧ ◦ϕ)
(FP3’) P (ϕ ∨ ψ) ≡ Pϕ⊕ (Pψ 	 P (ϕ ∧ ψ))

The only deduction rule of FP(RCi,RPL) is modus ponens, both for non-modal
formulas (wrt the → of RCi) and for modal formulas (wrt the → of RPL).

The semantics for modal formulas is as for FP( L) with the required modifi-
cation: for each probability on RCi-formulas µ, the evaluation of basic modal
formulas Pϕ is defined as eµ(Pϕ) = µ(ϕ), and then it is extended to compound
modal formulas using the RPL truth-functions. Then, it is clear that deductions
from theories are sound wrt the intended semantics given by evaluations eµ’s.
Indeed, an RPL-evaluation e is a model of axioms (FP0’)-(FP3’) iff the mapping
µ : L → [0, 1] defined as µ(ϕ) = e(Pϕ) is a probability on L.

Since it is not currently known to the authors of this chapter whether RCi
is locally finite or not, we can only make the following remarks regarding the
issue of completeness for FP(RCi,RPL). If it is the case that RCi is locally
finite, then the finite strong completeness proof for FP( L) easily generalises
to FP(RCi,RPL).6 Otherwise, if it is indeed the case that RCi is not locally
finite, we can always extend FP(RCi,RPL) with the infinitary inference rule
(IR) (see Section 3) and obtain a (infinitary) logical system strongly complete
with respect to ‘paraconsistent’ probabilities on RCi.

10 Conclusions and future work

In this paper we have discussed some initial steps towards reasoning with in-
consistent probabilistic theories over classical events, within the setting of the
probabilistic logic FP(RPL) defined on top of the [0, 1]-valued  Lukasiewicz fuzzy
logic enriched with rational truth-constants. We have explored two approaches.
A first approach amounts to replace the logic RPL, that is explosive, by its para-
consistent companion RPL≤. A second one consists of suitably weakening the
formulas in an inconsistent theory T , depending on the degree of inconsistency
of T . We have also explored the possibility of using the fuzzy logic approach to
reason about probability on top of the paraconsistent logic RCi in the line of
[5].

As for future work, we plan, in particular, to generalise the above approaches
to deal with inconsistent theories about conditional probabilities. In order
to do this, one would need to replace the underlying  Lukasiewicz logic by a
more powerful system such as the  LΠ1

2 logic, which combines connectives from
 Lukasiewicz logic and Product fuzzy logic [29]. On the other hand, the question
of whether these fuzzy logic-based approaches are able to deal with inconsis-
tent theories in the frame of other uncertainty measures (like belief functions or
necessity and possibility measures) deserves to be part of future work as well.

6Remember that  L, and thus RPL as well, is not strong complete, it is only complete for
deductions from finite theories; but they are locally finite and this is what is used in the
completeness proof for FP( L) and FP(RPL).
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Dedication

This contribution is a humble homage to our colleague and friend Walter Carnielli
to celebrate his outstanding contributions in many aspects of logic along his suc-
cessful academic career, and we are sure there are still many to come.
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