
Combining AI Techniques to Perform Expressive Music by ImitationJosep Llu��s Arcos and Ramon L�opez de M�antarasIIIA, Arti�cial Intelligence Research InstituteCSIC, Spanish Council for Scienti�c ResearchCampus UAB, 08193 Bellaterra, Catalonia, Spain.farcos, mantarasg@iiia.csic.es, http://www.iiia.csic.esAbstractIn this brief paper we describe several extensions andimprovements of a previously reported system (Arcos,L�opez de M�antaras, & Serra 1998) capable of gen-erating expressive music by imitating human perfor-mances. The system is based on Case-Based Reason-ing (CBR) and Fuzzy techniques.IntroductionOne of the major di�culties in the automatic genera-tion of music is to endow the resulting piece with theexpressiveness that characterizes human performers.Following musical rules, no mater how sophisticatedand complete they are, is not enough to achieve ex-pression, and indeed computer music usually soundsmonotonous and mechanical. The main problem isto grasp the performers personal touch, that is, theknowledge brought about when performing a score. Alarge part of this knowledge is implicit and very di�-cult to verbalize. For this reason, AI approaches basedon declarative knowledge representations are very use-ful to model musical knowledge an indeed we representsuch knowledge declaratively in our system, howeverthey have serious limitations in grasping performanceknowledge. An alternative approach, much closer tothe observation imitation - experimentation processobserved in human performers, is that of directly us-ing the performance knowledge implicit in examplesof human performers and let the system imitate theseperformances. To achieve this, we have developped theSaxEx, a case-based reasoning system capable of gen-erating expressive performances of melodies based onexamples of human performances. CBR is indeed anappropriate methodology to solve problems by meansof examples of already solved similar problems.In the next section we describe the system and inparticular the fuzzy set-based extension of thereusestep. Then, we brie
y mention some relevant relatedwork and,�nally, we give some conclusions.
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R1Figure 1: Overall structure of the beginning of an `Allof me' case. System descriptionThe problem-solving task of the system is to infer, viaimitation, and using its case-based reasoning capabil-ity, a set of expressive transformations to be appliedto every note of an inexpressive musical phrase givenas input. To achieve this, it uses a case memory con-taining human performances and background musicalknowledge, namely Narmours theory of musical per-ception (Narmour 1990) and Lerdahl & Jackendo�sGTTM (Lerdahl & Jackendo� 1993). The score, con-taining both melodic and harmonic information, is alsogiven.Modeling musical knowledgeProblems solved by SaxEx, and stored in its mem-ory, are represented as complex structured cases em-bodying three di�erent kinds of musical knowledge(see Figure 1): (1) concepts related to the score ofthe phrase such as notes and chords, (2) concepts re-lated to background musical theories such as impli-cation/realization (IR) structures and GTTM's time-span reduction nodes, and (3) concepts related to theperformance of musical phrases.



A score is represented by a melody, embodying a se-quence of notes, and a harmony, embodying a sequenceof chords. Each note holds in turn a set of features suchas its pitch (C5, G4, etc), its position with respect tothe beginning of the phrase, its duration, a referenceto its underlying harmony, and a reference to the nextnote of the phrase. Chords hold also a set of featuressuch as name (Cmaj7, E7, etc), position, duration, anda reference to the next chord.The musical analysis representation embodies struc-tures of the phrase automatically inferred by SaxExfrom the score using IR and GTTM background mu-sical knowledge. The analysis structure of a melodyis represented by a process-structure (embodying a se-quence of IR basic structures), a time-span-reductionstructure (embodying a tree describing metrical rela-tions), and a prolongational-reduction structure (em-bodying a tree describing tensing and relaxing relationsamong notes). Moreover, a note holds the metrical-strength feature, inferred using GTTM theory, express-ing the note's relative metrical importance into thephrase.The information about the expressive performancescontained in the examples of the case memory is repre-sented by a sequence of a�ective regions and a sequenceof events, one for each note, (extracted using the SMSsound analysis capabilities), as explained below.A�ective regions group (sub)-sequences of noteswith common a�ective expressivity. Speci�cally, ana�ective region holds knowledge describing the follow-ing a�ective dimensions: tender-aggressive, sad-joyful,and calm-restless. These a�ective dimensions are de-scribed using �ve ordered qualitative values expressedby linguistic labels as follows: the middle label rep-resents no predominance (for instance, neither tendernor aggressive), lower and upper labels represent, re-spectively predominance in one direction (for example,absolutely calm is described with the lowest label). Forinstance, a jazz ballad can start very tender and calmand continue very tender but more restless. Such dif-ferent nuances are represented in SaxEx by means ofdi�erent a�ective regions.The expressive transformations to be decided andapplied by the system a�ect the following expressiveparameters: dynamics, rubato, vibrato, articulation,and attack. Except for the attack, the notes in the hu-man performed musical phrases are quali�ed using theSMS (Spectral Modeling and Synthesis) system (Serraet al. 1997), by means of �ve di�erent ordered values.For example, for dynamics the values are: very low,low, medium, high and very high and they are auto-matically computed relative to the average loudness ofthe inexpressive input phrase. The same idea is used
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TempoFigure 2: Linguistic fuzzy values for rubato expressiveparameter.for rubato, vibrato (very little vibrato to very high vi-brato) and articulation (very legato to very staccato).In the previous system these values where mere syntac-tic labels but in the improved system, the meanings ofthese values are modeled by means of fuzzy sets suchas those shown in �gure 2 for Rubato. We will explainbelow the advantage of this extension. For the attackwe have just two situations: reaching the pitch froma lower pitch or increasing the noise component of thesound.The SaxEx CBR TaskThe task of SaxEx is to infer a set of expressive trans-formations to be applied to every note of an inexpres-sive phrase given as input. To achieve this, SaxExuses a CBR problem solver, a case memory of ex-pressive performances, and background musical knowl-edge. Transformations concern the dynamics, rubato,vibrato, articulation, and attack of each note in the in-expressive phrase. The cases stored in the episodicmemory of SaxEx contain knowledge about the ex-pressive transformations performed by a human playergiven speci�c labels for a�ective dimensions.For each note in the phrase, the following subtaskdecomposition (Figure 3) is performed by the CBRproblem solving method implemented in Noos:� Retrieve: The goal of the retrieve task is to choose,from the memory of cases (pieces played expres-sively), the set of precedent notes|the cases|mostsimilar for every note of the problem phrase. Speci�-cally, the following subtask decomposition is appliedto each note of the problem phrase:{ Identify : its goal is to build retrieval perspectives(explained in the next subsection) using the af-fective values speci�ed by the user and the musi-cal background knowledge integrated in the sys-tem (retrieval perspectives are described in Sub-section ). These perspectives guide the retrievalprocess by focusing it on the most relevant aspectsof the current problem, and will be used either inthe search or in the select subtasks.



Saxex-CBR

Retrieve Reuse

Identify Select

Construct
perspectives

Retrieve
using

perspectives

Rank
precedents

using persp.
and pref.

Apply
expressive
transform.

Memorize
new solved

case

Retain

Search

Identify&Select

Propose
expressive

performances

Revise

Figure 3: Task decomposition of the SaxEx CBRmethod.{ Search: its goal is to search cases in the case mem-ory using Noos retrieval methods and some previ-ously constructed perspective(s).{ Select : its goal is to rank the retrieved cases usingNoos preference methods. The collection of SaxExdefault preference methods use criteria such assimilarity in duration of notes, harmonic stabil-ity, or melodic directions.� Reuse: its goal is to choose, from the set of mostsimilar notes previously retrieved, a set of expres-sive transformations to be applied to the currentnote. The default strategy of SaxEx is the following:the �rst criterion used is to adapt the transforma-tions of the most similar note. When several notesare considered equally similar, the transformationsare computed using a fuzzy combination (see sec-tion `The use of fuzzy techniques . . . '). The usercan, however, select alternative criteria, not involv-ing this fuzzy combination such as majority rule,minority rule, etc. When the retrieval task is notable to retrieve similar precedent cases for a givennote, no expressive transformations are applied tothat note and the situation is noti�ed in the revisiontask. Nevertheless, using the current SaxEx casebase, the retrieval perspectives allways retrieved atleast one precedent in the experiments performed.� Revise: its goal is to present to the user a set ofalternative expressive performances for the problemphrase. Users can tune the expressive transforma-tions applied to each note and can indicate whichperformances they prefer.� Retain: the incorporation of the new solved problemto the memory of cases is performed automaticallyin Noos from the selection performed by the user inthe revise task. These solved problems will be avail-able for the reasoning process when solving future

problems. Only positive feedback is given. That is,only those examples that the user judges as goodexpressive interpretations are actually retained.In previous versions of SaxEx the CBR task was�xed. That is, the collection of retrieval perspectives,their combination, the collection of reuse criteria, andthe storage of solved cases were pre-designed and theuser didn't participate in the reasoning process. More-over, the retain subtask was not present because it ismainly a subtask that requires an interaction with theuser.Now, in the current version of SaxEx we have im-proved the CBR method by incorporating the user inthe reasoning process (Arcos & L�opez de M�antaras2001). This new capability allows users to in
uencethe solutions proposed by SaxEx in order to satisfytheir interests or personal style. The user can inter-act with SaxEx in the four main CBR subtasks. Thisnew functionality requires that the use and combina-tion of the two basic mechanisms|perspectives andpreferences| in the Retrieve and Reuse subtasks mustbe parameterizable and dynamically modi�able.Retrieval perspectivesRetrieval perspectives are built by the identify sub-task and can be used either by the search or the selectsubtask. Perspectives used by the search subtask willact as �lters. Perspectives used by the select subtaskwill act only as a preference. Retrieval perspectivesare built based on user requirements and backgroundmusical knowledge. Retrieval perspectives provide par-tial information about the relevance of a given musicalaspect. After these perspectives are established, theyhave to be combined in a speci�c way according to theimportance (preference) that they have.Retrieval perspectives are of two di�erent types:based on the a�ective intention that the user wantsto obtain in the output expressive sound or based onmusical knowledge.1) A�ective labels are used to determine the follow-ing declarative bias: we are interested in notes witha�ective labels similar to the a�ective labels requiredin the current problem by the user.As an example, let us assume that we declare we areinterested in forcing SaxEx to generate a calm and verytender performance of the problem phrase. Based onthis bias, SaxEx will build a perspective specifying asrelevant to the current problem the notes from casesthat belong �rst to \calm and very tender" a�ectiveregions (most preferred), or \calm and tender" a�ec-tive regions, or \very calm and very tender" a�ectiveregions (both less preferred).



When this perspective is used in the Search subtask,SaxEx will search in the memory of cases for notes thatsatisfy this criterion. When this perspective is usedin the Select subtask, SaxEx will rank the previouslyretrieved cases using this criterion.2) Musical knowledge gives three sets of declarativeretrieval biases: �rst, biases based on Narmour's im-plication/realization model; second, biases based onLerdahl and Jackendo�'s generative theory; and third,biases based on Jazz theory and general music knowl-edge.Regarding Narmour's implication/realizationmodel,SaxEx incorporates the following three perspectives:� The \role in IR structure" criterion determines asrelevant the role that a given note plays in an impli-cation/realization structure. That is, the kind of IRstructure it belongs to and its position (first-note,inner-note, or last-note). Examples of IR basicstructures are the P process (a melodic pattern de-scribing a sequence of at least three notes with sim-ilar intervals and the same ascending or descendingregistral direction) and the ID process (a sequenceof at least three notes with the same intervals anddi�erent registral directions), among others. For in-stance, this retrieval perspective can specify biasessuch as \look for notes that are the first-note ofa P process".� The \Melodic Direction" criterion determines as rel-evant the kind of melodic direction in an implica-tion/realization structure: ascendant, descendant,or duplication. This criterion is used for adding apreference among notes with the same IR role.� The \Durational Cumulation" criterion determinesas relevant the presence|in a IR structure|of anote in the last position with a duration signi�-cally higher than the others. This characteristic em-phasizes the end of a IR structure. This criterionis used|as the previous|for adding a preferenceamong notes with the same IR role and same melodicdirection.Regarding Lerdahl and Jackendo�'s GTTM theory,SaxEx incorporates the following three perspectives:� The \Metrical Strength" criterion determines as rel-evant the importance of a note with respect to themetrical structure of the piece. The metrical struc-ture assigns a weight to each note according to thebeat in which it is played. That is, the metricalweight of notes played in strong beats are higherthan the metrical weight of notes played in weak

Figure 4: Example of a Time-Span Tree for the begin-ning of the `All of me' ballad.beats. For instance, the metrical strength bias de-termines as similar the notes played at the beginningof subphrases since the metrical weight is the same.� The \role in the Time-Span Reduction Tree" crite-rion determines as relevant the structural impor-tance of a given note according to the role thatthe note plays in the analysis Time-Span ReductionTree.Time-Span Reduction Trees are built bottom-upand hold two components: a segmentation into hi-erarchically organized rhythmic units and a binarytree that represents the relative structural impor-tance of the notes within those units. There are twokinds of nodes in the tree: left-elaboration nodes andright-elaboration nodes.Since the Time-Span Reduction Tree is a tree withhigh depth, we are only taking into account the twolast levels. That is, given a note this perspectivefocuses on the kind of leaf the note belongs (left orright leaf) and on the kind of node the leaf belongs(left-elaboration or right-elaboration node).For instance, in the `All of me' ballad (see Fig-ure 4) the �rst quarter note of the second bar (C)belongs to a left leaf in a right-elaboration node be-cause the following two notes (D and C) elaboratethe �rst note. In turn, these two notes belong to aleft-elaboration (sub)node because second note (D)elaborates the third (C).� The \role in the Prolongational Reduction Tree" cri-terion determines as relevant the structural impor-tance of a given note according to the role that thenote plays in the Prolongational Reduction Tree.Prolongational Reduction Trees are binary treesbuilt top-down and represent the hierarchical pat-terns of tension and relaxation among groups ofnotes. There are two basic kinds of nodes in the tree(tensing nodes and relaxing nodes) with three modes



of branch chaining: strong prolongation in whichevents repeat maintaining sonority (e.g., notes of thesame chord); weak prolongation in which events re-peat in an altered form (e.g., from I chord to I6chord); and jump in which two completely di�erentevents are connected (e.g., from I chord to V chord).As in the previous perspective we are only takinginto account the two last levels of the tree. That is,given a note this perspective focuses on the kind ofleaf the note belongs (left or right leaf), on the kindof node the leaf belongs (tensing or relaxing node),and the kind of connection of the node (strong, weak,or jump).Finally, regarding perspectives based on jazz theoryand general music knowledge, SaxEx incorporates thefollowing two:� The \Harmonic Stability" criterion determines asrelevant the role of a given note according to theunderlying harmony. Since SaxEx is focused on gen-erating expressive music in the context of jazz bal-lads, the general harmonic theory has been special-ized taking harmonic concepts from jazz theory. TheHarmonic Stability criterion takes into account inthe following two aspects: the position of the notewithin its underlying chord (e.g., �rst, third, sev-enth, . . . ); and the role of the note in the chordprogression it belongs.� The \Note Duration" criterion determines as rele-vant the duration of a note. That is, given a speci�csituation, the set of expressive transformations ap-plied to a note will di�er depending on whether thenote has a long or a short duration.The use of fuzzy techniques in the ReusestepHaving modeled the linguistic values of the expressiveparameters by means of fuzzy sets, allows us to applya fuzzy combination operator to these values of the re-trieved notes in the reuse step. The following exampledescribes this combination operation.Let us assume that the system has retrieved two sim-ilar notes whose fuzzy values for the rubato are, respec-tively, 72 and 190, The system �rst computes the max-imum degree of membership of each one of these twovalues with respect to the �ve linguistic values charac-terizing the rubato shown in �gure 2. The maximummembership value of 72 corresponds to the fuzzy valuelow and is 0.90 (see �gure 5) and that of 190 correpondsto medium and is 0.70. Next, it computes a combinedfuzzy membership function, based on these two values.This combination consists on the fuzzy disjunction of
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COA=123Figure 5: Fuzzy combination and defuzzi�cation of ru-bato value.the fuzzy membership functions low and medium trun-cated, respectively, by the 0.90 and 0.70 membershipdegrees. That is:Max(min(0:90; flow);min(0:70; fmedium))The result is shown in �gure 5. Finally defuzzi�esthis result by computing the COA (Center of Area) ofthe combined function (Klir & Yuan 1995). The de-fuzzi�cation step gives the precise value for the tempoto be applied to the initially inexpressive note, in thisexample the obtained result is 123. An analogous pro-cess is applied to the other expressive parameters. Theadvantage of such fuzzy combination is that the result-ing expression takes into account the contribution of allthe retrieved similar notes whereas with criteria suchas minority rule,majority rule etc. this is not the case.For example, if the system retrieves three notes fromthe expressive examples, and two of them had beenplayed with low rubato and the third with medium ru-bato, the majority rule dictates that the inexpressivenote should be played with low rubato. This conclusionis mapped into an a priori �xed value that is lower thanthe average rubato of the inexpressive input piece. Itis worth noticing that each time the system concludeslow rubato for several inexpressive notes, these notewill be played with the same rubato even if the re-trieved similar notes were di�erent (very low would bemapped into a value much lower than the average ru-bato, high would be mapped into a value higher thanthe average and very high into a value much higherthan the average and the same procedure applies to theother expressive parameters such as dynamics, vibratoand legato). With the fuzzy extension, the system iscapable of increasing the variety of its performancesbecause, after defuzzi�cation, the �nal value for eachexpressive parameter is computed and this computa-tion does not depend only on the linguistic value (low,etc.) of the retrieved similar notes but also on themembership degree of the actual numerical values that



are used to truncate the membership functions as ex-plained above, therefore the �nal value will not be thesame unless, of course, the precedent retrieved notes isactually the same note.The system is connected to the SMS (4) software forsound analysis and synthesis based on spectral model-ing as pre and post processor. This allows to actuallylisten to the obtained results. These results clearlyshow that a computer system can play expressively. Inour experiments, we have used Real Book jazz ballads.Related workPrevious work on the analysis and synthesis of musicalexpression has addressed the study of at most two ex-pressive parameters such as rubato and vibrato (Clynes1995; Desain & Honing 1995; Honing 1995), rubatoand dynamics (Widmer 1996; Bresin 1998) or rubatoand articulation (Johnson 1992). Concerning instru-ment modeling, the work of Dannenberg and Derenyi(Dannenberg & Derenyi 1998) is an important step to-wards high-quality synthesis of wind instrument per-formances. Other work such as in (De Poli, Rod�a, &Vidolin 1998; Friberg et al. 1998) has focalized on thestudy of how musicians expressive intentions in
uenceperformers. To the best of our knowledge, the onlyprevious works using learning techniques to generateexpressive performances are those of Widmer (Widmer1996), who uses explanation-based techniques to learnrules for dynamics and rubato using a MIDI keyboard,and Bressin (Bresin 1998), who trains an arti�cial neu-ral network to simulate a human pianist also usingMIDI. In our work we deal with �ve expressive pa-rameters in the context of a very expressive non-MIDIinstrument (tenor sax). Furthermore, ours was the �rstattempt to use Case-based Reasoning techniques. Theuse of CBR techniques was also done later by (Suzuki,Tokunaga, & Tanaka 1999) but dealing only with ru-bato and dynamics for MIDI instruments.ConclusionsWe have brie
y described a new improved version ofour SaxEx system. The added interactivity improvesthe usability of the system and the use of fuzzy tech-niques in the reuse step increases the performance vari-ety of the system. Some ideas for further work includefurther experimentation with a larger set of tunes aswell as allowing the system to add ornamental notesand not to play some of the notes, that is moving asmall step towards adding improvising capabilities tothe system.
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