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Abstract
A critical aspect of simulation models used in cost-effectiveness analysis lies in accurately representing the natural history
of diseases, requiring parameters such as probabilities and disease burden rates. While most of these parameters can be
sourced from scientific literature, they often require calibration to align with the model’s expected outcomes. Traditional
optimization methods can be time-consuming and computationally expensive, as they often rely on simplistic heuristics
that may not ensure feasible solutions. In this study, we explore using Bayesian optimization to enhance the calibration
process by leveraging domain-specific knowledge and exploiting structural properties within the solution space. Specifically,
we investigate the impact of additive kernel decomposition and a stepwise approach, which capitalizes on the sequential
block structure inherent in simulation models. This approach breaks down large optimization problems into smaller ones
without compromising solution quality. In some instances, parameters obtained using this methodology may exhibit less error
than those derived from naive calibration techniques. We compare this approach with two state-of-the-art high-dimensional
Bayesian Optimization techniques: SAASBO and BAxUS. Our findings demonstrate that Bayesian optimization significantly
enhances the calibration process, resulting in faster convergence and improved solutions, particularly for larger simulation
models. This improvement is most pronounced when combined with a stepwise calibration methodology.

Keywords Bayesian optimization · Gaussian processes · Additive kernels · Model calibration · Simulation models · Cancer
research

This article is an extension of Gómez et al. [1], presented at CCIA
2023.

B David Gómez-Guillén
dgomez@iconcologia.net

Mireia Díaz
mireia@iconcologia.net

Josep Lluís Arcos
arcos@iiia.csic.es

Jesus Cerquides
cerquide@iiia.csic.es

1 Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain

2 Institut Català d’Oncologia (ICO) - Institut d’Investigació
Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat,
Spain

3 Consortium for Biomedical Research in Epidemiology and
Public Health - CIBERESP, Carlos III Institute of Health,
Madrid, Spain

1 Introduction

The use of mathematical simulation models in economic
evaluation inmedicine is a fundamental tool to informhealth-
related decision-making. Cost-effectiveness analyses (CEA),
a common form of economic evaluation, assess the equi-
librium between health benefits and the economic viability
of various health interventions. This ensures fair allocation
of resources while maximizing health benefits for the pop-
ulation. Mathematical simulation models are pivotal in this
process, allowing to assess healthcare interventions and iden-
tify those offering the best value over the long term [2].
By comparing costs and benefits, policymakers and health-
care providers can prioritize strategies and allocate resources
effectively [3].
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Simulation models used in CEA simulate the progres-
sion of disease and the impact of various medical strategies
on health outcomes over time [4]. These models generate
diverse outcomes, such as average cost and life expectancy,
often quantified in Quality-Adjusted Life Years (QALYs)
[5]. However, the inherent uncertainty in input parameters
requires the calibration of the model to align with estab-
lished scientific literature values, such as disease incidence
or mortality rates.

Model calibration, especially for complexmodels, presents
significant challenges due to the multidimensional opti-
mization problems and arbitrary constraints inherent in the
medical domain. State-of-the-art calibration methods for
simulation models in CEA are typically general-purpose
optimization techniques that don’t leverage specific struc-
tural knowledge about simulationmodels [6]. Thesemethods
include grid search, random search, and gradient descent
techniques such as Nelder–Mead or Simulated Annealing.
Also, while parameter selection procedures can effectively
reduce dimensionality, traditional methods often need a pre-
vious parameter selection stage based solely on clinical
relevance [7], rather than using a data-driven approach.

Although these methods are adequate for most simulation
models of low to moderate complexity, they fall short for
more complex simulations like microsimulation models [8].
The large number of simulations required during the opti-
mization process makes these methods impractical, as the
computational cost of each simulation causes the total cali-
bration time to increase rapidly.

In this study, we look into the complexities of model
calibration and propose Bayesian Optimization (BO) as a
promising solution to enhance efficiency and effectiveness.
Our research aims to shed light on novel approaches to
calibrating simulation models, particularly focusing on the
advantages of BO over conventional methods in healthcare
decision-making. We also present a stepwise methodol-
ogy combined with additive kernels for the calibration of
high-dimensional simulation models with a sequential-block
structure. We show that this stepwise approach manages
to drastically reduce the calibration time while maintain-
ing, and sometimes improving, the quality of the calibrated
parameters found in a traditional, naive approach. Finally,
we compare this stepwise methodology with state-of-the-art
BO methods for high dimensional settings.

The paper is organized as follows. Section 2 includes
background information on simulation model calibration,
Bayesian Optimization and Gaussian processes. Section 3
describes the simulation models and the calibration method-
ologies used. Section 4 presents the results of the different
calibration experiments, with a discussion of their impact
in Sect. 5. Finally, future work is outlined in Sect. 6, while
Sect. 7 concludes the paper.

2 Background

2.1 SimulationModel Calibration in CEA

Simulation models used in CEA typically include decision-
analytic models, such as decision trees, Markov models, and
discrete event simulations. These models are designed to
represent the progression of diseases, the impact of inter-
ventions, and the associated costs and health outcomes. For
example,Markovmodels arewidely used to simulate chronic
diseases where patients transition between different health
states over time, allowing the incorporation of recurring costs
and varying quality-of-life adjustments.

Model calibration is a critical step in the development of
accurate and reliable simulationmodels. Calibration involves
adjusting the model parameters so that the outputs of the
model align with real-world data. This process ensures that
the model can replicate observed clinical outcomes accu-
rately. Calibration enhances the credibility and validity of
the model, making the results of the CEA more robust and
applicable to decision-making processes.

However, model calibration poses several challenges,
primarily due to the potential complexity of the models.
Calibration is essentially an optimization task, and the
high-dimensional nature of many models can lead to signif-
icant computational difficulties. Moreover, some simulation
models require extensive simulations, which can be highly
time-consuming and resource-intensive. State-of-the-art cal-
ibration techniques used in CEA [6], such as grid search or
gradient descent methods, often prove ineffective for more
complex models.

Despite these challenges, accurate calibration of simula-
tion models is essential for enhancing the reliability of CEA.
Well-calibrated models yield more precise estimates of the
cost-effectiveness of interventions, guiding resource alloca-
tion in healthcare.

2.2 Bayesian Optimization

BO is a robust technique utilized for optimizing costly,
opaque functions [9]. Its primary advantage lies in its ability
to efficiently locate the global optimum of a function, even
in high-dimensional spaces, requiring relatively few evalu-
ations. This efficiency stems from BO’s proactive approach
to target the most promising areas of the input space for
evaluation rather than relying on random evaluations or sim-
plistic heuristics. However, the method’s computational cost
can escalate, particularly for functions with numerous input
variables or complex regression models.

BO has found successful applications across various opti-
mization challenges in machine learning, including hyper-
parameter tuning, experimental design, and automatic algo-
rithm configuration. It facilitates the rapid identification of
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optimal hyperparameter values or experimental conditions
without requiring exhaustive exploration of the entire param-
eter space.

2.3 Gaussian Processes

Gaussian Processes (GP) serve as non-parametric regres-
sion models, where each observation is represented as a
random variable drawn from a normal distribution f (x) ∼
N (μ(x), k(x, x)) [10]. The kernel function, or covariance
function, is instrumental in endowing GPs with their expres-
sive capability, and its selection heavily relies on the nature
of the function to be modeled [11]. The squared exponential

(SE) kernel, expressed as k(x, x ′) = σ 2e
− ||x−x ′ ||2

2 l2 , remains a
popular choice despite limitations such as locality and sus-
ceptibility to the curse of dimensionality [12].

Modeling high-dimensional functions with a single ker-
nel can be computationally expensive, particularly with local
kernels, a prominent research area [13, 14]. Additive kernel
decomposition simplifies by breaking it into smaller kernels,
enhancing interpretability [15].

However, additive kernels are afflicted by the non-
identifiability problem, where kernel hyperparameters can-
not be uniquely determined from observed data, posing
challenges in model selection and interpretation. To address
this, Lu et al. [16] proposed an extension of additive kernels
by incorporating an additional constant kernel k̃add0(x, x

′)
with an extra variance hyperparameter σ 2

0 , along with an
orthogonality constraint, yielding Orthogonal Additive Ker-
nels (OAK). Assuming a normal input distribution xi ∼
N (μi , δ

2
i ), dimensionality D and kernel lengthscales li the

constrained base kernel is derived as follows:

kaddOAK (x, x ′) =
D∑

i=0

σ 2
i k̃addi (xi , x

′
i )

k̃add j (x, x
′) =

∑

1≤i1<i2<...<i j≤D

⎡

⎣
j∏

d=1

k̃id (xid , x
′
id )

⎤

⎦

k̃i (x, x
′) = e

(xi−x ′i )2
2l2i −

li
√
l2i + 2δ2i

l2i + δ2i
e
− (xi−μi )

2+(x ′i−μi )
2

2(l2i +δ2i )

(1)

An important advantage of additive kernels lies in their
interpretability, as the σ 2

i terms can be interpreted as the con-
tribution of each individual order to the total kernel. Many
problems often hinge on a few low-order interactions, so
higher orders can be truncated to limit computational costs
while retaining most information in the full decomposition.
OAKs are particularly valuable as they accurately identify
each contribution, precisely representing the function’s com-
position.

In this document, the BO method using Gaussian pro-
cesseswith a squared exponential (SE) kernelwill be denoted
as BO-SE, while the same method employing OAK will be
referred to as BO-OAK.

3 Methodology

In this section, we will describe the simulation model and the
optimization methods we will use for its calibration. These
include BO and the rest of the techniques that will be com-
pared.

3.1 SimulationModel

Our study uses a lung cancer model previously introduced in
a published cost-effectiveness analysis as a rapid benchmark
for assessing BO on simulation models [17]. This Markov-
based microsimulation model simulates the progression of a
cohort through six distinct health states from ages 35 to 79,
with monthly intervals. The initial cohort starts at a healthy
state and as time passes they go through different events such
as cancer development, cancer progression through different
stages, cancer survival or death, for example (Fig. 1). Tran-
sition probabilities within the model are age-specific, with
unique values assigned to each 5-year age group (e.g., 35–
39, 40–44, …, 75–79).

Avoiding some model complexities and with the inherent
restrictions imposed on the transition matrices, the parame-
ters by age group are reduced from 36 to 11 [1]. The model
was intentionally designed to be computationally efficient,
with simulation times averaging under 20 ms. By introduc-
ing artificial delays, we can examine the correlation between
calibration and simulation times, providing insights for more
time-intensive models.

For the calibration process, theweighted sumofEuclidean
distances between observed and expected outputs of interest
by age groups was used, including lung cancer incidence and
mortality (45% each) andmortality from other causes (10%).
Figure 2 illustrates these calibration procedures.

3.2 OptimizationMethods

In health simulation models, it’s typical to start with some
estimates derived from scientific literature as starting param-
eter values. For all optimization experiments conducted, a
solution space of ±50% around these initial values was con-
sidered.

BO has been chosen as a promising optimization proce-
dure for simulationmodels in CEAdue to its sample-efficient
approach to optimization. This methodology is expected to
reduce the number of required simulations, thereby accelerat-
ing the calibration process for more time-consumingmodels.
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Fig. 1 State diagram of the lung
cancer simulation model
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Fig. 2 Example of three different calibration results for the lung cancer model, where each attempt tries to match the observed data (black line) as
closely as possible

Other traditional optimization methods were tested against
BO to compare their performance in error minimization, cal-
ibration time and number of simulations required.

Python implementations were employed for the follow-
ing methods: Nelder–Mead [18], Simulated Annealing (SA)
[19], Particle Swarm Optimization (PSO) [20] and BO-SE.
Default hyperparameter valueswere utilized, except for PSO,
where the number of particles was 1000 times the number of
age groups calibrated.

Additionally, we developed an alternative BO implemen-
tation using the R programming language. This was a rapid
prototyping environment to assess different optimizationpro-
cess enhancements tailored to our domain. The acquisition
function employed was Expected Improvement [21] (Eq. 2,
where x+ represents the best optimum found so far), with
PSO utilized to search for its maximum. Implementations of
both SE kernels and OAK were incorporated.

EI(x) = E[max( f (x) − f (x+), 0)] (2)

For more advanced benchmarks, we also include two
high-dimensional methods implemented in python. Sparse
Axis-Aligned Subspace Bayesian Optimization (SAASBO
[22]) employsBayesian learning to adjust kernel lengthscales
through shrinkage, automatically identifying themost critical
parameters. Bayesian Optimization with adaptively expand-
ing subspaces (BAxUS [23]) explores subspace embeddings
that increase in dimensionality throughout the optimization
process and provides theoretical performance guarantees.

To summarize, we will employ a total of seven optimiza-
tion methods in our study. This includes three traditional
methods: Nelder–Mead, Simulated Annealing, and Parti-
cle Swarm Optimization (PSO), as well as four Bayesian
Optimization (BO) techniques: BO with squared exponen-
tial kernels (BO-SE), BO with Orthogonal Additive kernels
(BO-OAK), SAASBO, and BAxUS.
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3.3 Hyperparameter Tuning

Before initiating theBOprocedure, we undertake a two-stage
process to determine the lengthscales l1, . . . , lD and vari-
ances σ 1

0 , σ 2
1 , . . . , σ 2

n of the OAK. This strategy allows us
to decompose a potentially intricate hyperparameter tuning
task for high-dimensional problems into more manageable,
lower-dimensional problems.

In the first stage, lengthscales are ascertained by inde-
pendently maximizing the marginal likelihood for each
dimension. This approach is chosen based on the implicit
assumption that our simulation models exhibit a robust addi-
tive component of order 1 and that a linear combination of
one-dimensional kernels can be a reasonable approximation.
These optimization subtasks entail D simple univariate con-
vex problems. For small and large lengthscales, the kernel
tends to overfit and underfit, respectively, resulting in models
with low likelihood. Each optimum lies within the spectrum
between these two extremes and can be swiftly determined
using a straightforward binary search.

In the second stage, the marginal likelihood is max-
imized for the entire set of variances, considering the
lengthscales obtained in the previous stage. This task is a
(D + 1)-dimensional optimization subtask, solved using the
Nelder–Mead algorithm [18].

3.4 Stepwise Calibration

Wewill also use a stepwise calibration approach as an alterna-
tive to the naive calibration. The rationale behind this method
is that these simulation models follow a time-dependent
sequential block layout. In this structure, the simulation out-
put for a specific age group relies solely on the pertinent
parameters for that age group and those preceding it without
being influenced by those of later age groups.

Let f (p) denote the output of the complete simulation
model with parameters p = {p1, p2, . . . , pn} and let k rep-
resent the number of age groups.We canmake a partition p(i)

of these parameters based on the age group i they influence,
such that p = p(1) ∪ p(2) ∪ · · · ∪ p(k) and

⋂
1≤i≤k p

(i) = ∅.
Using this partition and the output for each age group si , we
can formulate the final output of the model f (p) = sk as a
sequence of functions fi :

s1 = f1(p
(1))

s2 = f2(p
(2) | s1) = f2(p

(2) | p(1))

s3 = f3(p
(3) | s2) = f3(p

(3) | p(1) ∪ p(2))

. . .

f (p) = sk = fk (p
(k) | sk−1) = fk (p

(k) | p(1) ∪ p(2) ∪ · · · ∪ p(k−1))

(3)

The last term of each line is also conditional to the set of
previous fi , but they have been omitted from the notation for
clarity purposes.

This decomposition allows a greedy approach to break
down the calibration of the full model f (p) into k sequen-
tial tasks. This involves the iterative calibration of each age
group, considering the previously calibrated parameter sets,
as outlined in Algorithm 1.

Algorithm 1 Stepwise calibration with k age groups
Require: target ← [t1, . . . , tk ]
for i ← 1 to k do

p(i)∗ ← argmin
p(i)

∥∥∥∥∥ fi

(
p(i)

∣∣∣∣
⋃
j<i

p( j)∗

)
− ti

∥∥∥∥∥
end for
return [p(1)∗ , . . . , p(k)∗ ]

As expected from a greedy method, the optimum for each
step does not guarantee to be part of a global optimum,
and each solution found by these calibration subtasks might
potentially lead to suboptimal solutions in subsequent sub-
tasks. On the other hand, this method reduces the complexity
of the full calibration into k smaller optimization problems,
thereby reducing the overall computational effort required.
The objectivewith this approach is to enable the use of simple
BO methods in this setting while mitigating the downsides
of high dimensionality.

4 Results

4.1 Naive Calibration

Conceptualizing the calibration problem of the simulation
model for all nine age groups (99 parameters) as a single
optimization problem,we obtain the results shown in Table 1.
Note that the BOmethods were truncated at 1000 evaluations
due to their exceedingly large calibration time. Despite this,
they fail to identify satisfactory solutions after several hours
or days of computation.

4.2 Partial Calibration

Due to the poor results of a naive approach using BO, addi-
tional calibration experiments were made by running partial
simulations of the model to see their behavior in smaller
settings. The following results comprise a comparative per-
formance analysis of BO and other methods for calibrating
simulationmodels across the initial four age groups. Figure 3
illustrates the relationship between simulation and calibra-
tion time. In instances where the models are extremely fast,
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Table 1 Results of calibration
of the full model by
optimization method

Method Calibration error Number of evaluations Calibration time

Nelder–Mead 78.87 151, 334 6 min

Simulated annealing 78.50 881, 901 35 min

PSO 87.76 243, 450 11 min

BO-SE 1849.56 1000 1 day 3h

BO-OAK 289.45 1000 7 days 6h
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Fig. 3 Total calibration time in log scale against model simulation time and their critical points by number of parameters

the inference overhead of BO becomes dominant, and alter-
native methods achieve faster calibration by simulating the
model multiple times. However, as we introduce an artifi-
cial delay in the simulation to emulate larger models, the
BO approach yields faster calibration times. Specifically, the
BO approach outperforms the alternative methods for sim-
ulations involving a single age group (with 11 parameters)
and a simulation time exceeding 0.2 s. We will refer to this
time threshold as the critical simulation time.

However, as our problem’s dimensionality increases, the
BO approach’s overhead also increases significantly, as
shown in the y-intercepts of Fig. 3. While calibration times
for the other methods also increased, the critical simulation
time for the BOmethod experienced an exponential rise with
the growing number of parameters. Specifically, it rose from
0.2 s to 0.35, 0.95, and 3.25 s for 11, 22, 33 and 44 parameters,
respectively. Figure 4 projects that for all 9 age groups (99
parameters), BO-SE would be the fastest method only when
each simulation demands more than 5min of computation.

As expected with BO, there is a clear reduction in the
number of evaluations needed to achieve a similar level of
accuracy compared to other methods, as shown in Fig. 5.
Although each iteration requires a significant amount of time
due to the Bayesian inference step, this overhead becomes

less relevant as the model simulation time increases. In this
scenario, the total execution time per iteration is predomi-
nantly determined by the simulation of the model while the
inference overhead becomes negligible in comparison.

In Fig. 6, we present the error’s median progression and
interquartile range throughout the optimizationprocess based
on a sample of 30 random executions. During the exploration
of BO-OAK results, a variable with substantial explanatory
power on its own was identified, which could lead to mis-
leading comparisons. To address this, we introduced a third
univariate SE kernel that exclusively considers this variable.
This kernel demonstrated lower average error and reduced
spread compared to the regular SE kernel, simplifying the
exploration of a smaller solution space with minimal infor-
mation loss. However, it is noteworthy that OAK efficiently
explores the entire 11-dimensional space, surpassing the
average results of the univariate SE kernel while simulta-
neously reducing dispersion as the optimization progresses.

4.3 Stepwise Calibration

Using a stepwisemethodology significantly reduces the com-
putational cost dramatically for BO, in contrast with the
findings in Sect. 4.1, as seen in Table 3. This enables calibra-
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Fig. 5 Lung cancer model calibration error by number of evaluations in logarithmic scale, simulating one age group

tion for all nine age groups within a feasible timeframe while
maintaining comparable quality solutions. Furthermore, crit-
ical simulation times are drastically reduced, as depicted
in Fig. 7. Notably, in a naive calibration with BO-SE, the
projected critical simulation time for the full model was
approximately 300s (see Fig. 4). In contrast, with a step-
wise calibration, the critical time for the same method is
reduced to 0.24 s. To summarize Fig. 7, we can discern three
different scenarios according to the time requirements of the
simulation model as we can see in Table 2.

Stepwise calibration not only achieves solutions for the
simulation model with comparable error to those obtained
by regular calibration but also, in some cases, even lowers
the error. In the case of BO-OAK, we observe a significant
decrease in error for the first and last few age groups, with
a slight increase in the middle ones. This indicates that the

stepwise approach manages to find a better overall solution
(see Table 3 and Fig. 8) in a fewer number of simulations.

It is important to note a sharp increase in error observed
in the seventh age group, a phenomenon observed across
all methods. This increase is attributed to the nature of the
simplified simulation utilized and how the target has been
selected. Consequently, it is crucial to recognize that this
effect is a limitation inherent in the simulation model and
not a shortcoming of the optimization process.

5 Discussion

BO is currently esteemed as a leading optimization method
across various domains, particularly those involving costly
functions to evaluate. When the computational expense of
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Table 2 Fastest optimization
method according to model
simulation time, as seen in Fig. 7

Lung cancer model simulation time Fastest stepwise calibration method

< 0.24 s Nelder–Mead

0.24–140s BO-SE

> 140 s BO-OAK
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Table 3 Comparison of naive
versus stepwise calibration for
the full simulation of all nine
age groups, extended with
state-of-the-art
high-dimensional BO methods

Method Calibration error Number of evaluations Calibration time
Naive Stepwise Naive Stepwise Naive Stepwise

Nelder–Mead 78.87 81.26 151, 334 9447 6 min 18s

Simulated annealing 78.50 78.95 881, 901 272, 733 35 min 9 min

PSO 87.76 83.04 243, 450 518, 656 11 min 36 min

BO-SE 1849.56 83.24 1000 360 1 day 3h 34 min

BO-OAK 289.45 43.90 1000 180 7 days 6h 7h 30 min

SAASBO 117.68 114.82 500 180 1 day 16h 1h 4 min

BAxUS 97.5 134.01 1000 225 1h 9 min 18s
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Fig. 8 Stepwise calibration error for each age group in linear scale (left) and logarithmic scale (right)

the objective function is substantial, BO often emerges as
the natural choice.

The primary bottleneck in the optimization process typ-
ically revolves around optimizing the acquisition function,
especially when the number of observations is relatively
small andmodel regression is not a significant concern. Since
the search space remains constant, the cost of optimizing
the acquisition function does not increase significantly with
additional data.

However, in model regression, Gaussian processes with
SE kernels face considerable challenges, notably due to the
curse of dimensionality. In high-dimensional problems, the
demand for observations to explore the solution space esca-
lates rapidly, rendering regression impractical, particularly
when dealing with large matrices for posterior predictive
distribution calculations. To address this issue, OAKs play a
pivotal role in reducing the requisite number of observations,
mitigating the impact of expanding matrices, and enhancing
the efficiency of the search process. The scalability issues
evident in Fig. 3, attributed to increasing dimensionality,

underscore the necessity for high-dimensional enhancements
such as OAK.

Another complementary approach to circumvent these
scaling challenges is through stepwise calibration. This tech-
nique enables the calibration of models that would otherwise
be infeasible using conventional methods by breaking down
many parameters into a sequence of calibration tasks with
fewer parameters. While stepwise calibration is particularly
suitable for problems with a sequential block structure in
the target function, it does not guarantee global optimality
despite each stepmaking anoptimal choice.Nevertheless, the
technique has demonstrated promising results in simulation
models used for CEA. The efficacy of stepwise calibration
lies in its ability to provide solutions with similar or superior
accuracy compared to naive calibration, particularly evident
with BO-OAK. Moreover, the tuned OAK hyperparameters
suggest a negligible weight on interactions greater than one,
implying that the problem’s parameter interactions are not
overly complex, making the stepwise approach a reasonable
approximation. This result makes intuitive sense, since these
simulation models are designed to represent reality in the
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simplest way that allows us to accurately mimic the clin-
ical, real-world results we are interested in. By Occam’s
razor, these models try to avoid unnecessary complication
for their intended purpose. Consequently, in practice, most
of the interaction between parameters are not excessively
convoluted.

The findings strongly support the notion that stepwise
calibration represents a substantial enhancement over naive
calibration. However, it’s crucial to choose the optimization
method according to the model simulation time, as high-
lighted by critical times in Fig. 7. To further illustrate this
point, three potential scenarios are outlined in the results
section (Table 2).

One notable exception where stepwise calibration doesn’t
improve upon naive calibration is seen with SAASBO and
BAxUS. These advanced techniques incorporate built-in
dimensionality reduction measures: shrinkage over hyperpa-
rameters in SAASBO and lower-dimensionality embeddings
in BAxUS. However, this dimensionality reduction offers
limited advantage when applied to already low-dimensional
subtasks. Despite this limitation, both SAASBO and BAxUS
significantly outperform simpler BO methods when applied
in a naive calibration.

Interestingly, stepwise BAxUS emerges as an exception-
ally fast alternative. It provides a highly attractive option
when a certain degree of suboptimal calibration error is
acceptable, effectively balancing speed, efficiency and accu-
racy.

In particular, combining BO-OAK with stepwise cali-
bration yields impressive results. The stepwise approach
significantly enhances BO, effectively addressing its inher-
ent poor dimensional scalability. This combination results in
faster discovery of better solutions than other methods, espe-
cially if the simulation model is moderately time-consuming
(∼ 2 min). Notably, these results are achieved despite
using a basic BO-OAK implementation, suggesting that fur-
ther improvements in kernel numerical computation could
substantially improve the calibration process, reducing the
critical time.

Lu et al. [16] suggest an intriguing avenue for further
exploration: extending OAK to a BO workflow by cap-
italizing on the inferred low-order representation. In our
experiments, we demonstrate that even with a straightfor-
ward application of OAK on this simple example, a slight
improvement over the SE kernel is evident. This enhance-
ment is expected to be more significant for complex models,
where additional structure can be leveraged.

It’s worth noting that these results hold true despite cer-
tain assumptions of the model not being met. Specifically,
hyperparameter tuning was conducted using a dataset sam-
pled from a uniform input distribution, while the constrained
kernelswere computed assumingnormality in the input. Even
if these distributions were aligned, we would still face the

challenge of determining the input distribution for the opti-
mization process, which would likely be neither normal nor
uniform.

6 FutureWork

An aspect not covered in this article is constraint handling.
Constraints in a simulation model provide another layer of
the solution space structure that can enhance the calibration
process. Extensive literature exists on this topic, exploring
the use of additional regression models or novel acquisition
functions [24]. While some of these methods assume inde-
pendent constraints, it is worth noting that simulationmodels
in CEA often involve interdependent constraints. Neverthe-
less, studies indicate that the independence assumption tends
to work well in practice [25]. In cases where this assumption
does not work, one related research topic would be adapting
these constraint-handling techniques in a stepwise method-
ology to simplify the dependency structure.

In the discussion,we also highlighted the advantageof har-
nessing the parallelization potential inherent in various facets
of the optimization process. While we utilized the Particle
Swarmmethod for optimizing the acquisition function, more
sophisticated avenues for parallelization exist. These include
batched optimization [26], parallel acquisition functions
[27], andGPU approaches [28], among others. By leveraging
parallelization techniques, we can enhance the efficiency and
scalability of the optimization process, potentially leading to
further improvements in performance and speed.

Finally, other future work involves replicating this work
with more simulation models of different nature to gather
more evidence on the performance of these Bayesian meth-
ods. Furthermore, more experiments could reveal additional
patterns to further refine and generalize calibration methods
for CEA.

7 Conclusion

In this work, we propose BO as a method to calibrate sim-
ulation models for CEA and compare them to traditional
approaches. In instances where the applicability of BO is
compromised by high dimensionality, we propose two strate-
gies to mitigate this limitation: using additive kernels and
adopting a stepwise calibration approach. Our findings show
that the combined use of both strategies in functions with
a sequential block structure, as exemplified in a lung can-
cer simulation model, outperforms traditional optimization
methods in speed and accuracy for moderate computational
time requirements.
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