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Abstract
Satisfiability is considered the canonical NP-complete

problem and is used as a starting point for hardness reduc-

tions in theory, while in practice heuristic SAT solving

algorithms can solve large-scale industrial SAT instances

very efficiently. This disparity between theory and practice

is believed to be a result of inherent properties of indus-

trial SAT instances that make them tractable. Two char-

acteristic properties seem to be prevalent in the majority

of real-world SAT instances, heterogeneous degree dis-

tribution and locality. To understand the impact of these

two properties on SAT, we study the proof complexity

of random k-SAT models that allow to control hetero-

geneity and locality. Our findings show that heterogeneity

alone does not make SAT easy as heterogeneous ran-

dom k-SAT instances have superpolynomial resolution size.

This implies intractability of these instances for modern

SAT-solvers. In contrast, modeling locality with underlying

geometry leads to small unsatisfiable subformulas, which

can be found within polynomial time.
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1 INTRODUCTION

Propositional satisfiability (SAT) is arguably among the most-studied problems for both theoretical

and practical research. Nonetheless, the gap between theory and practice is huge. In theory, SAT is

the prototypical hard problem and hardness of other problems is shown via reductions from SAT.

Achieving even a running time of O(2cn) for any c < 1 and n variables would be a major breakthrough

and a somewhat surprising one at that. On the contrary, reductions to SAT are used to solve various

problems appearing in practice, as state-of-the-art SAT solvers can easily handle industrial instances

with millions of variables.

This theory–practice gap does not come from the lack of a sufficiently precise theoretical anal-

ysis of modern SAT solvers. They are actually provably slow on most instances, that is, drawing an

instance uniformly at random yields a hard instance with probability tending to 1 for n → ∞, if the

clause-variable ratio is not too low or way too high [9,21]. Instead, the discrepancy comes from the

fact that industrial instances have properties that make them easier than worst-case instances. In 2014,

Vardi [59] wrote that “we have no understanding of why the specific sets of heuristics employed by

modern SAT solvers are so effective in practice” and that we need this understanding to successfully

advance SAT solving further.

In recent years, scientists have been studying properties of industrial SAT instances to gain this

understanding. By modeling SAT instances as graphs, for example, with edges indicating inclusion

of variables in clauses, one can benefit from the extensive research conducted in the field of network

science. Two properties commonly observed in real-world networks are heterogeneity and locality.

Heterogeneity refers to the degree distribution, meaning that vertices have strongly varying degrees. In

fact, one usually observes a heavy-tailed distribution with many vertices of low degree and few vertices

of high degree. A common assumption is a power-law distribution [60], where the number of vertices

of degree k is roughly proportional to k−𝛽 . The constant 𝛽 is called the power-law exponent. Locality
refers to the fact that edges tend to connect vertices that are close in the sense that they remain well con-

nected even when ignoring their direct connection. This can also be seen as having strong community

structures, with high connectivity within communities and loose ties between communities.

With respect to these two properties, industrial SAT instances are similar to real-world networks.

In many cases, the variable frequencies are heterogeneous [1] and there is a high level of locality [2].

The latter is often measured in terms of modularity. Inspired by network science, researchers have stud-

ied models that resemble industrial instances with respect to these properties. Particularly, Ansótegui

et al. [4] introduced a power-law SAT model for heterogeneous instances, which has been theoret-

ically studied in terms of satisfiability thresholds [33–35]. A different model with heterogeneous

degree distributions has been studied by Cooper et al.[22], Ansótegui et al.[3], and Omelchenko and

Bulatov[52]. Moreover, Giráldez-Cru and Levy[40] introduced a model in which variable weights lead

to heterogeneity while an underlying geometry facilitates locality. Comparing this to network mod-

els, the former model [4] is the SAT-variant of Chung-Lu graphs [19,20]. The latter [40] is based on

the popularity-similarity model [53], which is closely related to hyperbolic random graphs [44] and

geometric inhomogeneous random graphs [18].

Besides serving as somewhat realistic benchmarks for SAT competitions [39], these SAT models

can be used to study solver behavior depending on heterogeneity and locality. One can experimentally

observe that a high level of heterogeneity improves the performance of SAT solvers that also per-

form well on industrial instances [4,13]. Moreover, locality seems very beneficial as solvers appear to

implicitly use the locality of a given instance [40]. This coincides with the findings of experiments on

actual industrial instances that show that the locality (measured using modularity) of an instance is a

good predictor for solver performance [51,62,63].
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Up to date, there are no theoretical results supporting these experimental observations. On the

contrary, it has been shown that instances generated by the community attachment model [38], which

enforces a community structure, are hard for modern SAT solvers [48]. With this article, we provide

a theoretical foundation that matches the observations in practice by studying the proof complexity

of k-SAT instances (for constant k) drawn from the power-law SAT model, and from a very general

model with underlying geometry. The former was introduced by Ansótegui et al. [4], the latter is a

generalization of the geometric model by Giráldez-Cru and Levy [40] in the same way as geomet-

ric inhomogeneous random graphs [18] are a generalization of hyperbolic random graphs [44]. Our

findings are that heterogeneous instances are hard asymptotically almost surely
1

in that modern SAT

solvers require superpolynomial or even exponential running time to refute unsatisfiable instances. On

the contrary, instances with a high level of locality facilitated by an underlying geometry are a. a. s. easy

to solve. Our results focus on unsatisfiable instances, that is, on the case where a solver has to prove

that no satisfying assignment exists. This is typically much harder than finding a satisfying assignment,

making the unsatisfiable regime arguably more relevant. Besides these results on SAT, we provide

insights on the complexity of weighted higher-order Voronoi diagrams in higher dimensions, which is

of independent interest.

The power-law and geometric models both mimic specific properties observed in indus-

trial instances while trying to make as little additional assumptions as possible. Though this

makes the resulting instances arguably more realistic than, for example, instances drawn uni-

formly at random, we want to stress that even the geometric model is far from a perfect rep-

resentation of industrial instances. Thus, our results do not claim to completely explain the

efficiency of modern SAT solvers on industrial instances. However, to the best of our knowl-

edge, we provide the first theoretical result that links a high level of locality to provably more

tractable instances, which we believe to be a first step towards closing the theory–practice

gap.

Outline

We state and discuss our main results and technical contributions in Section 2. Formal definitions are

in Section 3. A short outline of our core arguments is in Section 4, followed by the formal proofs: lower

bounds for the power-law model in Section 5, upper bounds on the complexity of Voronoi diagrams in

Section 6, and upper bounds for the geometric SAT model in Section 7. To not distract from the core

arguments, results we use that were either known before or are straight-forward to prove are outsourced

to Appendix A.

2 RESULTS, TECHNICAL CONTRIBUTION, DISCUSSION

In this section, we state our results and discuss the contribution, also in context to previous results. To

make the results understandable, we briefly discuss, for example, the probability distributions over SAT

formulas we study. These are short and not meant to be formal definitions. For complete definitions,

see Section 3.

1Asymptotically almost surely (a. a. s.) refers to a probability that tends to 1 for n → ∞. With high probability (w. h. p.) refers

to the stronger requirement that the probability is in 1 − O(1∕n). Additionally, we say that an event holds with overwhelming
probability, if for every c > 0 it holds with probability at least 1 − O(n−c).
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2.1 Power-law SAT

The power-law SAT model has four parameters: the number of variables n, the number of clauses m,

the number k of variables appearing in each clause, and a power-law exponent 𝛽. To draw a formula,

power-law weights with exponent 𝛽 are assigned to the variables and then each clause is generated

independently by drawing k variables without repetition using probabilities proportional to the weights.

Each literal is negated with probability 1∕2.

To discuss our first main contribution, let Φ be a formula drawn from the power-law model with

density at or above the satisfiability threshold, that is, Φ is unsatisfiable at least with constant proba-

bility. We show that, although it is likely that Φ is unsatisfiable, it is highly unlikely that modern SAT

solvers can figure that out in polynomial time. We prove this using resolution proof complexity.

Resolution is a refutation technique for propositional and first-order logic introduced by [24]. If an

application of resolution steps leads to a contradiction, the formula is unsatisfiable. The sequence of

resolved clauses then serves as a proof for unsatisfiability, also called a refutation of the formula. The

resolution proof system exhibits a strong connection to modern Davis–Putnam–Logemann–Loveland

(DPLL) and conflict-driven clause learning (CDCL) SAT solvers: DPLL is polynomially equivalent

to tree-like resolution [58] and CDCL with unlimited restarts is polynomially equivalent to resolu-

tion [7,54]. Thus, the minimum number of steps necessary to derive a contradiction also yields a lower

bound on the running time of solvers simulating the same process. This number of steps is also called

the resolution size of a formula, that is, the minimum number of resolution steps necessary to arrive at

a contradiction. Equivalently, the width of a resolution proof is the size of the largest clause appearing

in the proof and the resolution width of a formula is the smallest width of any proof refuting that for-

mula. Interestingly, a lower bound w on the resolution width of a formula also implies a lower bound

on its resolution size [9]: every resolution proof of a formula in k-CNF has size exp(Ω((w − k)2∕n))
and every tree-like resolution proof has size 2

w−k
.

We will show a lower bound for the resolution width of unsatisfiable formulas drawn from the

power-law model. Our results translate to lower bounds on the resolution size and thus to matching

lower bounds on the running time of CDCL solvers. For DPLL solvers, which use tree-like resolu-

tion, the bounds are even stronger. We only consider the resolution width of unsatisfiable instances.

Thus, the probability bound we get is actually a conditional probability conditioned on instances being

unsatisfiable. Note that our bound does not only hold above the satisfiability threshold, where a ran-

dom formulaΦ is a. a. s. unsatisfiable, but also at the threshold, where it is unsatisfiable with constant

probability.

Theorem 5.8. Let Φ be an unsatisfiable random power-law k-SAT formula with n vari-
ables, m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent 𝛽 >

2k−1

k−1
. Let Δ = m∕n be

large enough so thatΦ is unsatisfiable at least with constant probability. Let 𝜀, 𝜀1, … , 𝜀3

be constants with 𝜀 > 0, 𝜀1 = k−𝜀
2
− 1 > 0, 𝜀2 = (k − 𝜀) ⋅ 𝛽−2

𝛽−1
− 1 > 0, and

0 < 𝜀3 < ( k
2
− 1) ⋅ 𝛽−2

𝛽−1
− 1. For the resolution width w of Φ, it holds a. a. s. that:

(i) If 𝛽 ∈
(

2k−1

k−1
, 3

)
and Δ ∈ o (n𝜀

2 ), then w ∈ Ω
(
n𝜀

2
∕𝜀

1Δ−1∕𝜀
1

)
.

(ii) If 𝛽 = 3 and Δ ∈ o
(
n𝜀

1∕log
1+𝜀

1 n
)
, then w ∈ Ω

(
n ⋅ Δ−1∕𝜀

1∕log
1+1∕𝜀

1 n
)
.

(iii) If 𝛽 > 3 and Δ ∈ o (n𝜀
1 ), then w ∈ Ω

(
n ⋅ Δ−1∕𝜀

1

)
.

(iv) If 𝛽 >
2k−2

k−2
and Δ ∈ o (n𝜀

3∕log
𝜀

3 n), then w ∈ Ω
(
n ⋅ Δ−1∕𝜀

3

)
.

The above lower bounds allow the density Δ to be super-constant (even polynomial), which is

asymptotically above the satisfiability threshold. For the sake of simplicity, assume Δ to be constant

in the following. Starting at the bottom (iii, iv), we get a linear bound for w if 𝛽 is sufficiently large,

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21168 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BLÄSIUS ET AL. 889

that is, greater than 3 or (2k−2)∕(k−2). For 𝛽 = 3 (ii), the bound is still almost linear. Note that these

results in particular imply exponential lower bounds on the resolution size and thus on the running

time of CDCL and DPLL. For smaller 𝛽 (i), we get a polynomial bound for the width with exponent

𝜀2∕𝜀1; see Figure 1 for a plot with 𝜀 close to 0.

Interestingly enough, our bounds only hold for power law exponents 𝛽 >
2k−1

k−1
. This is comple-

mented by a previous result [34], which shows that the satisfiability threshold of power-law random

k-SAT is at density Δ = Θ(1) for power law exponents 𝛽 >
2k−1

k−1
and that asymptotically almost

surely instances with constant constraint densities are trivially unsatisfiable for power law exponents

𝛽 <
2k−1

k−1
. Thus, the resolution width is constant in the latter case.

Part iv of Theorem 5.8 is derived via lower bounds on the bipartite expansion of the clause-variable

incidence graph of these instances. These results can be of independent interest for hypergraphs with

edge size k and for random (0, 1)-matrices. Additionally, these expansion properties yield lower bounds

for the clause space complexity, which in turn gives lower bounds on the tree-like resolution size of

such formulas (Section 5.2). More precisely, this results in an exponential lower bound on the tree-like

resolution size for 𝛽 >
2k−3

k−2
. This is an improvement of the bound obtained via resolution width.

It is interesting to note that this result on the non-geometric model supports the claim that locality

is a crucial factor for easy SAT instances. The lower bounds for the power-law model are solely based

on the fact that every set of clauses covers a comparatively large set of variables. In other words, we

only use that there are no clusters of clauses with similar variables, that is, we explicitly use the lack

of locality.

2.2 Geometric SAT

The geometric model has the following parameters: n, m, and k have the same meaning as for the

power-law model. Moreover, w is a weight function assigning each variable v a weight wv and T is

the so-called temperature that controls the strength of locality by varying the impact of the geome-

try. As underlying geometric space, we use the 𝑑-dimensional torus T𝑑 = R𝑑∕Z𝑑
(see Section 3)

equipped with a 𝔭-norm with 𝔭 ∈ N+ ∪ ∞. To draw a formula, the variables and clauses are

assigned random positions in T𝑑
. Then, for each clause, k variables are drawn without repetition

with probabilities depending on the variable weight and on the geometric distance between clause

and variable. In the extreme case of T = 0, each clause deterministically includes the k closest

variables (where closeness is a combination of geometric distance and weight), while increasing

the temperature T increases the probability for the inclusion of more distant variables. For T →
∞, the model converges to uniform random SAT. Note that the weights are a parameter of the

model and not drawn randomly. We have the following theorem, where W denotes the sum of all

variable weights. The condition on the weights is in particular satisfied by power-law distributed

weights.

FIGURE 1 Exponent of the bound (i) in Theorem 5.8. Dashed vertical lines show where the bound (iv) takes over.
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Theorem 7.12. Let Φ be a formula with n variables and m ∈ Θ(n) clauses drawn from
the weighted geometric model with ground space T𝑑 equipped with a 𝔭-norm, temperature
T < 1, W ∈ O(n), and wv ∈ O(n1−𝜀) for every v ∈ V and any constant 𝜀 > 0. Then,
Φ contains a. a. s. an unsatisfiable subformula of constant size, which can be found in
O(n log n) time.

To briefly explain how we prove this, consider a simplified version where variables and clauses

are points in the Euclidean plane and each clause contains the k variables geometrically closest to it

(temperature T = 0). Now consider the equivalence relation obtained by defining two points of the

plane equivalent if and only if they have the same set of k closest variables. The equivalence classes

of this relation are the regions of the order-k Voronoi diagram of the variable positions. With this

connection, we can use upper bounds on the complexity of order-k Voronoi diagrams [46] to prove the

existence of small and easy to find unsatisfiable subformulas. We note that this result is of asymptotic

nature. In particular for small densities, the number of variables n has to be very large before the

instances actually get as easy as stated in Theorem 7.12. Nevertheless, this result strongly suggests that

an underlying geometry makes SAT instances more tractable.

To extend the above argument to the general statement in Theorem 7.12, we extend the complexity

bounds for order-k Voronoi diagrams in various ways; see next section for more details. Moreover, for

non-zero temperatures, clauses no longer include exactly the k closest variables but can, in principle,

consist of any set of k variables. However, we can show that, with high probability, a linear fraction

of clauses behaves as in the T = 0 case. We note that analyses of similar structures, such as hyper-

bolic random graphs, are often restricted to the simpler but less realistic T = 0 case, for example,

[11,12,14,50]. We believe that our analysis provides insights on the non-zero temperature case that can

be helpful for such related questions.

We note that our results seem to contradict the results of Mull et al. [48], stating that (i) a strong

community structure is not sufficient to have tractable SAT instances and that (ii) the community

attachment model [38], which enforces a community structure, generates hard instances. However, at a

closer look, this is not a contradiction at all. Though measuring the community structure, for example,

via modularity, is a good indicator for locality, the concept of locality goes deeper. If the instance can

be partitioned such that there are strong ties within each partition and loose ties between partitions, then

the instance has a strong community structure. However, to have a high level of locality, this concept

has to hierarchically repeat on different levels of magnitude, that is, there needs to be community

structure within each partition and between the partitions. To state this slightly differently, consider

locality based on a notion of similarity between objects (here: variables or clauses). In this article, we

use distances between random points in a geometric space as a measure for similarity, which gives us

a continuous range of more or less similar objects. In contrast to that, in the above mentioned papers

focusing on a flat community structure [38,48], similarity is a binary equivalence relation: two objects

are either similar or they are not.

2.3 Voronoi diagrams

Consider a finite set of points, called sites, in a geometric space. The most commonly studied type of

Voronoi diagram assumes the 2-dimensional Euclidean plane as ground space and has one Voronoi

region for each site, containing all points closer to this site than to any other site. We deviate from

this default setting in four ways: (i) We allow an arbitrary constant dimension 𝑑, where the ground

space is the torus or a hypercube in R𝑑
. (ii) We consider the order-k Voronoi diagram, which has for

every subset A of sites with |A| = k a (possibly empty) Voronoi region containing all points for which
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(A) (B)

FIGURE 2 (A) Weighted Voronoi diagram (order-1) of the colored sites. Continuing the construction with n∕2 high-weight

sites on the left and n∕2 low-weight sites towards the right yields Θ(n2) vertices (small black dots). Note that each vertex lies

on the boundary of three regions and has thus equal weighted distance to its three closest sites. (B) The order-3 Voronoi

diagram for the same sites (excluding one). The colored boxes indicate the three closet sites. The order-1 diagram is shown in

the background. Each order-1 vertex lies in the interior of an order-3 region as it has equal weighted distance to its three

closest sites. As at most two order-1 vertices share an order-3 region, we get Ω(n2) order-3 regions. Theorem 6.2 generalizes

this observation.

A are the k nearest sites. The number of non-empty order-k Voronoi regions is called the complexity
of the diagram. (iii) The sites have multiplicative weights that scale the influence of the different sites.

Without loss of generality, we assume the weights to be scaled such that the minimum is 1. (iv) We

allow the 𝔭-norm for arbitrary 𝔭 ∈ N+ ∪ ∞.

Theorem 6.9. Let S be a set of n sites with minimum weight 1, total weight W, and random
positions on the 𝑑-dimensional torus equipped with a 𝔭-norm, for constant 𝑑. For every
fixed k, the expected number of regions of the weighted order-k Voronoi diagram of S is
in O(W). The same holds for random sites in a hypercube.

To set this result into context, we briefly discuss previous work on the complexity of Voronoi

diagrams in different settings. See the book by Aurenhammer et al. [6] for a general overview on

Voronoi diagrams. To this end, we use the following theorem that relates the complexity in terms of

Voronoi regions (which is what we are concerned with in this article) with the complexity in terms of

vertices.
2

Theorem 6.2. Let S be a set of n weighted sites in general position in R𝑑 equipped with
a 𝔭-norm. If the order-k Voronoi diagram has 𝓁 vertices, then the order-(k + 𝑑) Voronoi
diagram has Ω(𝓁) non-empty regions.

We note that, using insights from previous work, this theorem is not hard to prove. One basically

has to generalize the result by Lê [45] bounding the number of 𝑑-spheres going through 𝑑 + 1 points

in 𝑑-dimensional space to weighted sites, and then observe how the Voronoi diagram changes in the

construction by Lee [46] for 𝑑 = 2, when going from order-k to order-(k + 1). However, we are

not aware of previous work stating this connection between vertices and non-empty regions in higher

orders explicitly.

The four above-mentioned generalizations of the basic Voronoi diagram (higher dimension, higher

order, multiplicative weights, and different 𝔭-norms) have all been considered before. However, to the

best of our knowledge, not all of them together.

2
Although the Voronoi regions are not necessarily polytopes in the weighted setting, we adopt the notion for polytopes and call

the corners of Voronoi regions vertices. That is, vertices are the 0-dimensional elements (a.k.a. points) of the boundary, where

higher-dimensional elements (a.k.a. edges, faces, etc.) intersect. They are represented as small black dots in Figure 2.
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892 BLÄSIUS ET AL.

Higher-order Voronoi diagrams have been introduced by Shamos and Hoey [57]. Lee [46] showed

that the order-k Voronoi diagram in the plane (unweighted with Euclidean metric) has complexity

O(k (n−k)) (in terms of number of regions), which is linear for constant k. For the 1- and∞-norm, Liu

et al. [47] improved this bound to O(min{k (n − k), (n − k)2}). Closely related to the 1-norm, Gemsa

et al. [37] showed similar complexity bounds for higher-order Voronoi diagrams on transportation net-

works of axis-parallel line segments. Bohler et al. [15] show an upper bound of 2k (n− k) for the much

more general setting of abstract Voronoi diagrams. There, the metric is replaced by curves separating

pairs of sites such that certain natural (but rather technical) conditions are satisfied. One obtains nor-

mal Voronoi diagrams when using perpendicular bisectors for these curves. This in particular shows

that the 2k (n − k) bound on the number of regions in the order-k Voronoi diagram holds for arbitrary

𝔭-norms in 2-dimensional space and for the hyperbolic plane. As the hyperbolic plane is closely related

to 1-dimensional space with sites having multiplicative power-law weights [18], we suspect that the

bound by Bohler et al. [15] also covers this case.

In general one can say that higher-order Voronoi diagrams of unweighted sites in 2-dimensional

space are well-behaved in that they have linear complexity. This still holds true for arbitrary 𝔭-norms.

However, this picture changes for weighted sites or higher dimensions.

Voronoi diagrams with multiplicative weights were first considered by Boots [17]
3

due to appli-

cations in economics. Beyond that, multiplicatively weighted Voronoi diagrams have applications in

sensor networks [23], logistics [36] and the growth of crystals [25]. However, even in the most basic

setting of 2-dimensional Euclidean space and order 1, weighted Voronoi diagrams can have quadratic

complexity [5] (in terms of number of vertices). This comes from the fact that Voronoi cells are not

necessarily connected; see Figure 2A for the construction of Aurenhammer and Edelsbrunner [5] that

proves the lower bound. With Theorem 6.2, and as illustrated in Figure 2, this implies that even the

order-3 Voronoi diagram of weighted sites in 2-dimensional Euclidean space has a quadratic number of

non-empty regions. As a special case, Theorem 6.9 shows that this complexity is only linear in the total

weight for sites positioned randomly in the unit square. Moreover, this also implies that the number of

vertices of the corresponding order-1 Voronoi diagram is linear. This nicely complements the result

by Har-Peled and Raichel [42], who show that the expected complexity of order-1 Voronoi diagrams

of sites in 2-dimensional Euclidean space with random weights is O(n polylog n). Only recently, Fan

and Raichel [32] showed that sites with weights chosen randomly form a constant-sized set of possi-

ble weights yield Voronoi diagrams with linear complexity. Moreover, more closely related, they show

that the Voronoi diagram of sites with arbitrary weights and with random positions chosen in the unit

square has linear complexity in expectation. We are not aware of any results concerning the complex-

ity of Voronoi diagrams when combining multiplicative weights with higher dimension, higher order

or other norms.

For higher dimensions, even normal (first order, unweighted) Voronoi diagrams in 3-dimensional

Euclidean space can have Θ(n2) [43,56] vertices. Theorem 6.2 thus implies that the order-4 Voronoi

diagram has a quadratic number of non-empty regions. Moreover, the complexity of higher-order

Voronoi diagrams in higher dimensions has been considered before by Mulmuley [49], who obtains

polynomial bounds with the degree of the polynomial depending on the dimension. Our Theorem 6.9

in particular shows that this complexity is much lower, namely linear, for the hypercube with ran-

domly positioned sites. Moreover, via Theorem 6.2 this gives a linear bound on number of vertices

in the normal order-1 Voronoi diagram in higher dimensions. We note that this special case of our

result coincides with a previous result by Bienkowski et al. [10]. Similarly, Dwyer [28] showed that

sites drawn uniformly from a higher dimensional unit sphere (instead of a hypercube) yield Voronoi

3
In this article, Voronoi regions are called Thiessen polygons.
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diagrams of linear complexity in expectation. Moreover, due to Golin and Na [41] and Driemel et al.

[26], the same is true for random sites on 3-dimensional polytopes and random sites on polyhedral

terrains, respectively. Thus, though higher dimensional Voronoi diagrams can be rather complex in

the worst case, these results indicate that one can expect most instances to be rather well behaved. An

alternative explanation of why the complexity of practical instances is lower than the worst-case indi-

cates is given by Erickson [29,30], who studies the complexity of 3-dimensional Voronoi diagrams

depending on the so-called spread of the sites.

The above results for higher dimensional Voronoi diagrams consider the Euclidean norm. For gen-

eral 𝔭-norms, Lê [45] showed that the complexity of the Voronoi diagram is bounded by O(nc), where

c is a constant independent of 𝔭 but dependent on the dimension 𝑑. With the same argument as above,

Theorem 6.9 together with Theorem 6.2 implies a linear bound for this complexity that holds in expec-

tation. Moreover, Boissonnat et al. [16] show more precise bounds of Θ(n⌈𝑑∕2⌉) and Θ(n2) for the ∞-

and the 1-norm, respectively. Again, our result implies linear bounds for random sites in this setting.

3 FORMAL DEFINITIONS

Here, we provide formal definitions for all concepts we use throughout the article, including the

power-law and geometric random SAT models, resolution, and Voronoi diagrams.

k-SAT

We let x1, x2, … , xn denote Boolean variables that can be either true or false. A clause is a disjunction

of literals 𝓁1 ∨ … ∨ 𝓁k, where each literal assumes a (possibly negated) variable. For a literal 𝓁i let

|𝓁i| denote the variable of the literal. A formula Φ in conjunctive normal form (CNF) is a conjunction

of clauses c1∧ … ∧cm and a formula in k-CNF is a conjunction of clauses, where each clause contains

exactly three distinct literals. We conveniently interpret a Boolean formula in CNF as a set of clauses

and a clause c both as a Boolean formula and as a set of literals. We say that Φ is satisfiable if there

exists an assignment of variables x1, … , xn such that the formula evaluates to true.

Power-law random k-SAT

The power-law model can be defined via the more general non-uniform model. To draw a k-SAT

formula from the non-uniform model, let n and m be the number of variables and clauses, respectively,

and let w1, … ,wn be variable weights. We sample m clauses independently at random. Each clause

is sampled by drawing k variables without repetition with probabilities proportional to their weights.

Then each of the k variables is negated independently at random with probability 1∕2.

The power-law model for a power-law exponent 𝛽 > 2 is an instantiation of the non-uniform model

with discrete power-law weights

wi = i−
1

𝛽−1 .

Resolution

The resolution proof system uses two rules, the resolution rule and the weakening rule. Given two

clauses a∨ x and b∨ x, where a and b are clauses and x is a Boolean variable, the resolution rule states
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894 BLÄSIUS ET AL.

a ∨ x b ∨ x
a ∨ b

,

that is, the clause a ∨ b is a logical consequence of the two given clauses. The weakening rule states

that for any two clauses a and b it holds that

a
a ∨ b

,

that is, if a holds, then a ∨ b holds as well. For a formula Φ = {c1, c2, … , cm} in CNF a res-

olution derivation of a clause c from Φ is a sequence of clauses (𝑑1, 𝑑2, … , c) such that each

clause 𝑑i is either one of the initial clauses c1, … , cm or derived from previous clauses with either

the resolution rule or the weakening rule. A resolution refutation is a resolution derivation of the

empty clause. The size of a derivation is the number of clauses it contains. The size of a for-

mula in CNF is the size of a smallest refutation for it. The width of a derivation is the size of

the largest clause in it. The width of a formula in CNF is the smallest width of any refutation

for it.

Graph representation and expansion

Let Φ be a SAT-formula with variable set V and clause set C. The clause-variable incidence graph
G(Φ) of Φ has vertex set C ∪ V , with an edge between a clause and a variable if and only if the

clause contains the variable. Clearly, G(Φ) is bipartite. It is an (r, c)-bipartite expander if for all

C′
⊂ C with |C′| ≤ r it holds that |N(C′)| ≥ (1 + c) ⋅ |C′|, where N(C′) is the neighborhood

of C′
.

Geometric ground space

We regularly deal with points with random positions in some geometric space. With random point,
we refer to the uniform distribution in the sense that the probability for a point to lie in a region

A is proportional to its volume vol(A). For this to work, the volume of the ground space has to be

bounded. Canonical options are, for example, a unit-hypercube or a unit-ball. These, however, lead

to the necessity of special treatment for points close to the boundary, which makes the analysis more

tedious without giving additional insights. To circumvent this, we use a torus as ground space, which

is completely symmetric.

The 𝑑-dimensional torus T𝑑
is defined as the 𝑑-dimensional hypercube [0, 1]𝑑 in which oppo-

site borders are identified, that is, a coordinate of 0 is identical to a coordinate of 1.
4

It is equipped

with the 𝔭-norm as metric, for arbitrary but fixed 𝔭 ∈ N+ ∪ {∞}. To define it formally for the torus,

let p = (p1, … , p𝑑) and q = (q1, … , q𝑑) be two points in T𝑑
. The circular difference between

the ith coordinates is |pi − qi|◦ = min{|pi − qi|, 1 − |pi − qi|}. With this, the distance between

p and q is

||p − q|| =
⎧
⎪⎨⎪⎩

𝔭

√ ∑
i∈[𝑑]

|pi − qi|𝔭◦ for 𝔭 ≠∞,

max
i∈[𝑑]

{|pi − qi|◦} for 𝔭 = ∞.

4
For convenience reasons, we sometimes work with [−0.5, 0.5]𝑑 instead of [0, 1]𝑑 .

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21168 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BLÄSIUS ET AL. 895

Random points

We obtain the uniform distribution for a point p = (p1, … , p𝑑) by drawing each coordinate pi
uniformly at random from [0, 1]. For two random points p and q, their distance ||p − q|| is a random

variable. Let Fdist(x) be its cumulative distribution function (CDF), that is, Fdist(x) = Pr
[||p − q|| ≤ x

]
.

To determine Fdist(x), fix the position of p. Then, for x ≤ 0.5, the set of points of distance at most x to

p is simply the ball Bp(x) of radius x around p, yielding

Fdist(x) = vol(Bp(x)) (1)

= Π𝑑,𝔭 ⋅ x𝑑 for 0 ≤ x ≤ 0.5,

with Π𝑑,𝔭 =
(2Γ (1∕𝔭 + 1))𝑑

Γ (𝑑∕𝔭 + 1)
,

where Γ is the gamma function. Note that Π𝑑,𝔭 only depends on 𝑑 and 𝔭 but is constant in x. Moreover

Π2,2 = 𝜋 (thus the name Π), and Π𝑑,∞ = lim𝔭→∞ Π𝑑,𝔭 = 2
𝑑
. For distances x > 0.5, the formula for

Fdist(x) is more complicated (we basically have to subtract the parts reaching out of the hypercube).

However, for our purposes, it suffices to know Fdist(x) for x ≤ 0.5 and use the obvious bound Fdist(x) ≤
1 for x > 0.5.

Weighted points and distances

We regularly consider a fixed set of n points equipped with weights, which we call sites. For a site si
with weight wi, the weighted distance of a point p to si is ||si − p||∕w1∕𝑑

i . For a fixed value x, the set

of points with weighted distance at most x are the points with ||si − p|| ≤ xw1∕𝑑
i . Note that the volume

of this set is proportional to wi. Intuitively, the region of influence of a site is thus proportional to its

weight. To simplify notation in some places, we define normalized weights 𝜔i = w1∕𝑑
i .

5

Geometric random k-SAT

In the geometric model, we sample positions for the variables and clauses uniformly at random in the

𝑑-dimensional torus T𝑑
. For v ∈ V and c ∈ C, we use v and c to denote their positions, respectively.

Let w1, … ,wn be variable weights that are normalized such that the smallest weight is 1. Moreover,

let W =
∑n

v=1
wv. For a clause c and a variable v, define the connection weight

X(c, v) =
(

wv
||c − v||𝑑

)1∕T

.

This is the reciprocal of the weighted distance between v and c raised to the power 𝑑∕T . The k variables

for the clause c are drawn without repetition with probabilities proportional to X(c, v). Among all

possible combinations, we choose which of the k variables to negate uniformly at random, without

repetition if possible, that is, we only get the same clause twice if we have more than 2
k

clauses with

the same variable set. For T → 0 the model converges to the threshold case where c contains the k
variables with smallest weighted distance.

5
We note, in the context of weighted Voronoi diagrams, it is common to only use the normalized weights (just calling them

“weights”). In the context of random networks, however, the non-normalized weights are more common. As both notions have

their advantages in different situations, we use both.
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896 BLÄSIUS ET AL.

The connection weight X(c, v) is a random variable. We denote the CDF of X(c, v) with FX(x).
With the CDF for the distance between two random points in Equation (1), we obtain the following;

see Lemma A.2 for a proof:

FX(x) = 1 − Π𝑑,𝔭wvx−T
for x ≥

(
2
𝑑wv

)1∕T
. (2)

Voronoi diagrams

Let S = {s1, … , sn} be a set of sites with weights w1, … ,wn. A point p belongs to the (open) Voronoi
region of a site si if its weighted distance to si is smaller than its weighted distance to any other site.

The collection of all Voronoi regions is the Voronoi diagram of S. Order-k Voronoi regions are defined

analogously for subsets A ⊆ S with |A| = k, that is, the region of A contains a point p if and only if the

weighted distances of p to all sites in A is smaller than the weighted distance to any site not in A. More

formally, p belongs to the order-k Voronoi region of A if there exists a radius r such that ||si−p|| ≤ 𝜔ir
for si ∈ A and ||si − p|| > 𝜔ir for si ∉ A. Note that the order-k Voronoi region of A is potentially

empty. The order-k Voronoi diagram is the collection of all non-empty order-k Voronoi regions. Its

complexity is the number of such non-empty regions.

4 CORE ARGUMENTS

Before delving into the technical details of our proofs in the subsequent sections, we briefly discuss

the core arguments.

4.1 Power-law SAT

We use a framework that Ben-Sasson and Wigderson [9] introduced for the uniform SAT model. We

prove lower bounds for the resolution width, which imply lower bounds for the resolution size and the

tree-like resolution size, which then imply lower bounds for the running times of CDCL and DPLL

solvers, respectively.

To bound the resolution width, we essentially have to show that different clauses do not overlap

too heavily. Specifically, a formula has resolution width Ω(w) if (1) every set S of at most w clauses

contains at least |S| different variables and (2) every set S of
1

3
w ≤ |S| ≤ 2

3
w clauses contains at least

a constant fraction of unique variables.

We achieve the bounds in Theorem 5.8 (i–iii) by showing the above two properties directly. For

the bound in Theorem 5.8 (iv), we first observe that both properties are fulfilled if the clause-variable

incidence graph of a k-CNF formula Φ has high enough bipartite expansion. Recall the definition

of bipartite expansion from Section 3 and note how the requirement that the neighborhood of clause

vertices is large resembles the requirement that clauses do not overlap too heavily. We show that G(Φ)
is a bipartite expander asymptotically almost surely if Φ is drawn from the power-law model, which

yields the lower bound of Theorem 5.8 (iv).

Compared to the uniform case, the weights make the properties required for the lower bounds less

likely. Variables with high weight appear in many clauses, making the clauses less diverse. Thus, it is

less likely that every clause set covers a large variety of variables.
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4.2 Geometric SAT

To explain the core idea of our proof, consider the following simplified geometric model. Map

n variables and m clauses to distinct points in the 2-dimensional Euclidean plane (randomly or

deterministically). Build the SAT instance by including in each clause c the k variables with the small-

est geometric distance to c. Now consider the order-k Voronoi diagram defined by the positions of the

n variables. As a clause c contains the k closest variables, the k variables contained in c are exactly

the k variables defining the Voronoi region of c’s position. Independent of the positions of the n vari-

ables, there are only at most 2k (n − k) regions in the order-k Voronoi diagram [15]. Thus, if we

have at least 2
k
2k (n − k) clauses, then, by the pigeonhole principle, at least one Voronoi region con-

tains 2
k

clauses. As k is considered to be a constant, this number of clauses is linear in n, that is, we

still have constant density. Moreover, as repeating the same clause (with the same variable negations)

is avoided whenever possible, there is a set of k variables that has a clause for every combination

of literals. Thus, we have an unsatisfiable subformula of constant size 2
k
, which implies low proof

complexity.

This result can be varied and strengthened in multiple ways, for example, by allowing weighted

variables, a higher dimensional ground space, or by softening the requirement that every clause con-

tains the k closest variables (model with higher temperature). In the following, we briefly discuss how

these generalizations can be achieved.

Abstract geometric spaces

The result by Bohler et al. [15] on the complexity of order-k Voronoi diagrams is very general

in the sense that it holds for abstract Voronoi diagrams. Roughly speaking, abstract Voronoi dia-

grams are based on separating curves between pairs of points that take the role of perpendicular

bisectors. In this way, one can abstract from the specific geometric ground space. Whether a point

p is closer to site s1 or to site s2 is no longer determined by comparing distances ||s1 − p|| and

||s2 − p|| but by the curve separating s1 from s2. For this to work, the separating curves have to

satisfy a handful of basic axioms. These are for example satisfied by perpendicular bisectors in the

Euclidean or the hyperbolic plane. Thus, the above argumentation for low proof complexity directly

carries over to the hyperbolic plane, or more generally, to any abstract geometric space satisfying the

axioms.

Lower density via random clause positions

Assume the variable positions are fixed. Now choose random positions for the clauses and observe

in which regions of the order-k Voronoi diagram they end up. We want to know whether there is a

region that contains at least 2
k

clauses. This comes down to a balls into bins experiment. Each Voronoi

region is a bin and each clause is a ball. Thus, there are O(n) bins and m balls. Moreover, we are

interested in the maximum load, that is, the maximum number of balls that land in a single bin. Due

to a result by Raab and Steger [55], the maximum load is a. a. s. in Ω( log n
log log n

) if we throw Ω( n
polylog n

)
balls. Thus, even for a slightly sublinear number of balls, the maximum load is superconstant. We note

that this result holds for uniform bins. In our case, we have non-uniform bins, as the probability for

a clause to end up in a particular Voronoi region is proportional to the area of the region. However,

it is not hard to see that the result by Raab and Steger [55] remains true for non-uniform bins; see

Section A.5. Thus, even if the number of clauses m is slightly sublinear in the number of variables n,

we get a small unsatisfiable subformula asymptotically almost surely if the Voronoi diagram has low

complexity.
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898 BLÄSIUS ET AL.

Positive or negative literals with repetition

Above we assumed that we get the exact same clause with coinciding negations twice only if we already

have more than 2
k

clauses with the same set of k variables. Although this is arguably a reasonable

assumption for the model, we can make a similar argument without it. Assume instead that for each

variable, we choose the positive and negative literal uniformly at random, independently of all other

choices. Moreover, assume for an increasing function f , that there are f (n) clauses that have the same

set of k variables. With the above balls into bins argument, we, for example, have f (n) ∈ Ω( log n
log log n

).
Then the probability that there is a combination of positive and negative literals that we did not see at

least once is at most 2
k(1 − 2

−k)f (n). This probability goes to 0 for n → ∞, that is, a. a. s., there is an

unsatisfiable subformula of constant size 2
k
.

Higher dimension and weighted variables

At the core of our argument lies the fact that order-k Voronoi diagrams have linear complex-

ity in the plane. As already mentioned in Section 2.3, this is no longer true for order-k Voronoi

diagrams in higher dimensions or if the variables have multiplicative weights. A formal argu-

ment for why this property breaks is in Section 6.1. However, for sites distributed uniformly at

random, we show in Section 6.2 that the complexity can be expected to be linear in the total

weight, even in the more general setting. Thus, using that the variables have random positions

(a requirement we did not need before), we can apply the above argument to obtain low proof

complexity.

Non-zero temperature

Non-zero temperatures make it so that clauses do not necessarily contain the k closest variables.

Instead, variables are included with probabilities depending on the distance. Thus, we cannot simply

look at the order-k Voronoi diagram to determine which variables are contained in a given clause.

We resolve this issue in Section 7. For this, we call a clause nice, if it behaves as it would in the

T = 0 case, that is, if it includes the k closest variables. In Section 7.1, we show that, in expec-

tation, a constant fraction of clauses is actually nice. Moreover, in Section 7.2, we show that the

number of nice clauses is concentrated around its expectation. With this, we can apply the same

arguments as before to only the nice clauses, of which we have linearly many, to obtain a low proof

complexity.

4.3 Voronoi diagrams

The worst-case lower bounds for the complexity of order-k Voronoi diagrams follow from existing

lower bounds on the number of vertices together with Theorem 6.2, which connects the complexity in

terms of regions with the complexity in terms of vertices. This connection is obtained by observing

how the order-k Voronoi diagram changes when increasing k.

For the average-case linear upper bound on the number of regions, the argument works roughly

as follows, assuming the unweighted case for the sake of simplicity. For each size-k subset A of

the sites, we devise an upper bound on the probability that A has a non-empty order-k Voronoi

region. This region is non-empty if and only if there are points that have A as the k closest sites,

that is, if there is a ball that contains the sites of A and no other sites. With this observation, we

can use a win-win-style argument. Either the radius of this ball is small, which makes it unlikely

that all sites of A lie in the ball, or the ball is large, which makes it unlikely that it contains no

other sites.
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5 RESOLUTION SIZE OF POWER-LAW RANDOM K-SAT

5.1 The direct approach

As stated in Section 4.1, a formula has resolution width Ω(w) if (1) every set S of at most w clauses

contains at least |S| different variables and (2) every set S of
1

3
w ≤ |S| ≤ 2

3
w clauses contains at least

a constant fraction of unique variables. In this section, we are going to show that both conditions are

satisfied for power-law exponents 𝛽 >
2k−1

k−1
and clause-variable ratios Δ ∈ Ω(1). The first condition

can also be interpreted in terms of bipartite expansion. It states that the clause-variable incidence

graph G(Φ) is a (w, 0)-bipartite expander. The following lemma states bounds on w for which G(Φ)
is a (w, 0)-bipartite expander asymptotically almost surely. These bounds depend on the power-law

exponent 𝛽 as well as on the clause-variable ratio Δ. Note that our choices of k and 𝛽 in the lemma

ensure 𝜀1, 𝜀2 > 0.

Lemma 5.1. Let Φ be a random power-law k-SAT formula with n variables, Δ ⋅ n = m ∈
Ω(n) clauses, k ≥ 3, and power-law exponent 𝛽 >

2k−1

k−1
. Let 𝜀1 = k ⋅ 𝛽−2

𝛽−1
− 1 > 0 and

𝜀2 = (k − 2) 𝛽−2

𝛽−1
> 0. Then G (Φ) has (w, 0)-bipartite expansion a. a. s. if

(i) 𝛽 ∈
(

2k−1

k−1
, 3

)
, Δ ∈ o (n𝜀

1∕log
𝜀

2 (n)), and w ∈ O
(
n𝜀

1
∕𝜀

2 ⋅ Δ−1∕𝜀
2

)
.

(ii) 𝛽 = 3, Δ ∈ o
(
n(k−2)∕2∕log

1+(k−2)∕2(n)
)
, and w ∈ O

(
n ⋅ (Δ ⋅ ln n)−2∕(k−2)).

(iii) 𝛽 > 3, Δ ∈ o (n𝜀
2∕log

𝜀
2 n), and w ∈ O

(
n ⋅ Δ−1∕𝜀

2

)
.

Proof. We are interested in showing |N(C′)| ≥ |C′| for all C′
⊆ C with |C′| ≤ w. We

consider a smallest C′
such that |N(C′)| ≤ |C′|− 1 and denote it by Ĉ. Let i be the event

that |Ĉ| = i. Thus, i implies that for all C′
⊆ C with |C′| < i it holds that |N(C′)| ≥ |C′|.

This implies that every variable in N(Ĉ) has to appear at least twice. Otherwise, one could

delete a clause with a unique variable from Ĉ to get a set Ĉ′
with |Ĉ′| = i−1 and |N(Ĉ′)| ≤

i− 2. This would violate the minimality of Ĉ. Also, Ĉ must contain exactly i− 1 different

variables. Otherwise, we could remove any clause from Ĉ and violate minimality.

Now we bound

w∑
i=1

Pr(i) ≤
w∑

i=1

(m
i

)
Pi,

where Pi is the probability to draw i clauses which contain at most i−1 different variables

and all of them at least twice. We can now imagine the k ⋅ i variables of the i clauses to be

drawn independently with replacement. This would only increase the probability that the

i clauses contain at most i − 1 different variables and all of them at least twice. Thus, the

probability we consider is an upper bound. Now, we consider the i − 1 different variables

drawn. Then, we choose the i − 1 pairs of positions where each variable appears for the

first and second time. As a rough upper bound we have at most

((
k⋅i
2

)

i − 1

)
≤

(
(k ⋅ i)2 ⋅ e
2 ⋅ (i − 1)

)i−1

many possibilities by simply choosing i − 1 from all

(
k⋅i
2

)
possible pairs. Now we bound

the probability that at these pairs of positions the same variables do appear. This is at most∑n
j=1

p2

j per pair of positions, where pj = j−1∕(𝛽−1)
∑n
𝓁=1
𝓁−1∕(𝛽−1) is the probability that the jth variable
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900 BLÄSIUS ET AL.

is drawn. At the remaining k ⋅ i − 2 ⋅ (i − 1) positions we can only choose from at most

those i − 1 variables. Thus, the probabilities at all other positions are the sum of the i − 1

variable probabilities, which is at most the sum of the i− 1 highest variable probabilities.

Let F(i) be the sum of the i highest variable probabilities. Then it holds that

Pi ≤

(
(k ⋅ i)2 ⋅ e
2 ⋅ (i − 1)

)i−1

⋅

( n∑
j=1

p2

j

)i−1

⋅ F(i − 1)k⋅i−2⋅(i−1)

≤ 𝜅
i−1 ⋅

(
i2

i − 1

)i−1

⋅

( n∑
j=1

p2

j

)i−1

⋅
( i − 1

n

)(k⋅i−2⋅(i−1)) 𝛽−2

𝛽−1

for a constant 𝜅 = 𝜅(k, 𝛽) > 0 that might depend on other parameters, which are fixed to

constants as well. We will use 𝜅 to collect all constant factors. According to Lemma A.1

n∑
j=1

p2

j =

⎧
⎪⎪⎨⎪⎪⎩

Θ
(

n−2
𝛽−2

𝛽−1

)
, 𝛽 < 3;

Θ (ln n∕n) , 𝛽 = 3;
Θ
(
n−1

)
, 𝛽 > 3.

Thus, our result depends on the power law exponent 𝛽. For 𝛽 < 3 we get

Pi ≤ 𝜅
i ⋅
(

i2
i − 1

)i−1

⋅ n−(i−1)⋅2 𝛽−2

𝛽−1 ⋅
( i − 1

n

)(k⋅i−2⋅(i−1)) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ n−k⋅i⋅ 𝛽−2

𝛽−1 ⋅ ii−1 ⋅ (i − 1)(k⋅i−2⋅(i−1)) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ n−k⋅i⋅ 𝛽−2

𝛽−1 ⋅ i(k⋅i−2⋅(i−1)) 𝛽−2

𝛽−1
+(i−1)

= 𝜅
i ⋅ n−k⋅i⋅ 𝛽−2

𝛽−1 ⋅ i(k⋅i−2⋅i) 𝛽−2

𝛽−1
+i+2

𝛽−2

𝛽−1
−1

≤ 𝜅
i ⋅ n−k⋅i⋅ 𝛽−2

𝛽−1 ⋅ i(k⋅i−2⋅i) 𝛽−2

𝛽−1
+i = 𝜅

i ⋅ n−i⋅(𝜀
1
+1) ⋅ ii⋅(𝜀2

+1)
,

where we used

(
i2

i−1

)i−1

≤ e ⋅ ii−1
in the second line and upper-bounded i − 1 in the base

by i, which we can do since (k ⋅ i− 2 ⋅ (i− 1)) 𝛽−2

𝛽−1
> 0 due to k ≥ 3 and 𝛽 > 2. In the third

line, we used 2
𝛽−2

𝛽−1
− 1 < 0, which holds since 𝛽 < 3.

We can now see that

w∑
i=1

(m
i

)
Pi ≤

w∑
i=1

(m
i

)
⋅ 𝜅 i ⋅ n−i⋅(𝜀

1
+1) ⋅ ii⋅(𝜀2

+1)

≤

w∑
i=1

𝜅
i ⋅ Δi ⋅ n−i⋅𝜀

1 ⋅ ii⋅𝜀2 , (3)

which holds since we assume m = Δ ⋅ n and

(
m
i

)
≤

(
e⋅m

i

)i
. In order to have a sum which

is o(1) we want to ensure that

𝜅 ⋅ Δ ⋅ n−𝜀1 ⋅ i𝜀2 ,
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BLÄSIUS ET AL. 901

is at most a constant smaller than 1. It is easy to check that this holds for

i ∈ O
(
n𝜀

1
∕𝜀

2 ⋅ Δ−1∕𝜀
2

)
.

Thus, we can set w to this value. If we split the sum in Equation (3) at i0 = ⌊𝜀1 log n⌋,
the part with i ≤ i0 is upper-bounded by O

(
Δ ⋅ n−𝜀1 ⋅ i𝜀2

0

)
∈ O (Δ (log

𝜀
2 (n)∕n𝜀

1)) via a

geometric series. The part with i > i0 is upper-bounded by the first term. If we chose

w ∈ Θ(n𝜀
1
∕𝜀

2 ⋅ Δ−1∕𝜀
2 ) so that Δ ⋅ n−𝜀1 ⋅ i𝜀2 ≤ c for a constant c ∈ (0, 1), the second

term yields at most cΘ(log n) = o(1). Thus, we get
(
Θ
(
n𝜀

1
∕𝜀

2 ⋅ Δ−1∕𝜀
2

)
, 0
)
-expansion with

probability at least 1 − Θ (Δ (log
𝜀

2 (n)∕n𝜀
1)) or a. a. s. if Δ ∈ o(n𝜀

1∕(log(n))𝜀2).
For 𝛽 > 3 we get

Pi ≤ 𝜅
i ⋅
(

i2
i − 1

)i−1

⋅ n−(i−1) ⋅
( i − 1

n

)(k⋅i−2⋅(i−1)) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅
( i

n

)i−1+(k⋅i−2⋅(i−1)) 𝛽−2

𝛽−1

.

Thus,

r∑
i=1

(m
i

)
Pi ≤

w∑
i=1

(n
i

)i
⋅ 𝜅 i ⋅ Δi ⋅

( i
n

)i−1+(k⋅i−2⋅(i−1)) 𝛽−2

𝛽−1

=
w∑

i=1

𝜅
i ⋅ Δi ⋅

( i
n

)(k⋅i−2⋅i) 𝛽−2

𝛽−1
+2

𝛽−2

𝛽−1
−1

≤

w∑
i=1

𝜅
i ⋅ Δi ⋅

( i
n

)i⋅(k−2) 𝛽−2

𝛽−1

≤

w∑
i=1

𝜅
i ⋅ Δi ⋅

( i
n

)i⋅𝜀
2

,

which holds since
i
n
≤ 1 and 2 ⋅ 𝛽−2

𝛽−1
− 1 ≥ 0 for 𝛽 ≥ 3. It is now easy to show that

𝜅 ⋅ Δ ⋅ (i∕n)𝜀2 is at most a small constant for w ∈ Θ(n ⋅ Δ−1∕𝜀
2) sufficiently small. By

splitting the sum as before, we can show ((n ⋅ Δ−1∕𝜀
2), 0)-expansion with probability at

least 1 − Θ(Δ ⋅ log
𝜀

2 n∕n𝜀
2) or a. a. s. for Δ ∈ o (n𝜀

2∕log
𝜀

2 n).
For 𝛽 = 3 we get the same result as for 𝛽 > 3, except for an additional factor of

(ln n)i−1
. Thus,

w∑
i=1

(m
i

)
Pi ≤

w∑
i=1

𝜅
i ⋅ Δi ⋅

( i
n

)i⋅(k−2) 𝛽−2

𝛽−1

ln
i−1n

≤

w∑
i=1

𝜅
i ⋅ Δi ⋅

(
i ⋅ ln

2∕(k−2)n
n

)i⋅ k−2

2

.

By assuming

w ∈ Θ
(
n ⋅ (Δ ⋅ log n)−2∕(k−2))
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902 BLÄSIUS ET AL.

small enough, we can ensure that this sum is at most O(Δ ⋅ log n ⋅
(log(n)∕n)(k−2)∕2) by splitting the expression at ⌊i0 = ln n⌋ again. Hence,

we get
(
Θ(n ⋅ (Δ ⋅ log n)−2∕(k−2)), 0

)
-expansion with probability at least

1 − O
(
Δ ⋅ ln n ⋅ (log(n)∕n)(k−2)∕2

)
or a. a. s. for Δ ∈ o

(
n(k−2)∕2∕log

(k−2)∕2+1(n)
)
. ▪

Now, we want to show the second requirement of Theorem 5.3, that every set S of
1

3
w ≤ |S| ≤ 2

3
w

clauses contains at least a constant fraction of unique variables. Again, our choices of k and 𝛽 in the

lemma ensure that we can always choose an 𝜀 > 0 with 𝜀1, 𝜀2 > 0.

Lemma 5.2. Let Φ be a random power-law k-SAT formula with n variables, Δ ⋅ n = m ∈
Ω(n) clauses, k ≥ 3, and power-law exponent 𝛽 >

2k−1

k−1
. Let 𝜀, 𝜀1, 𝜀2 be constant such that

𝜀 > 0, 𝜀1 = k−𝜀
2
− 1 > 0, and 𝜀2 = (k − 𝜀) ⋅ 𝛽−2

𝛽−1
− 1 > 0. There is a W such that for all

w ∈ 𝜔(1) with w ≤ W a. a. s. all sets C′ of clauses from Φ with 1

3
w ≤ |C′| ≤ 2

3
w contain

at least 𝜀 ⋅ |C′| unique variables. It holds that:

(i) If 𝛽 ∈
(

2k−1

k−1
, 3

)
and Δ ∈ o (n𝜀

2 ), then W ∈ Θ
(
n𝜀

2
∕𝜀

1 ⋅ Δ−1∕𝜀
1

)
.

(ii) If 𝛽 = 3 and Δ ∈ o
(
n𝜀

1∕ln
𝜀

1
+1n

)
, then W ∈ Θ

(
n ⋅ Δ−1∕𝜀

1∕ln
1+ 1

𝜀1 n
)

.

(iii) If 𝛽 > 3 and Δ ∈ o (n𝜀
1 ), then W ∈ Θ

(
n ⋅ Δ−1∕𝜀

1

)
.

Proof. Let 𝜀 ∈ (0,min{k − 𝛽−1

𝛽−2
, k − 2}) be a constant. The upper bounds on 𝜀 ensure

𝜀1 > 0 and 𝜀2 > 0. We want to bound the probability that there is a set of clauses C′
with

1

3
w ≤ |C′| ≤ 2

3
w and at most 𝜀 ⋅ |C′| many unique variables. Let Pi be the probability

that there is a set C′
of size i with that property. We assume the k ⋅ i Boolean variables

to be drawn independently at random, that is, we allow duplicate variables inside clauses.

This only decreases the probability of having unique variables. Additionally, we split the

probability into parts depending on the number j of different variables that appear in C′
in

addition to the 𝜀 ⋅ i unique ones. It holds that

Pi ≤
(m

i

)

⏟⏟⏟

choices of

clauses

⋅

k−𝜀
2
⋅i∑

j=1

(k ⋅ i
𝜀 ⋅ i

)

⏟⏟⏟

possible posi-

tions for the

𝜀⋅i unique

variables

((
(k−𝜀)⋅i

2

)

j

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

possible positions

for the first

two appearances

of the j other variables

⋅ 1
𝜀⋅i

⏟⏟⏟

probability to

draw a new

variable

( n∑
x=1

p2
x

)j

⏟⏞⏞⏟⏞⏞⏟

probability that variables

are same at positions for

first two

appearances

⋅ F(j)k⋅i−𝜀⋅i−2j

⏟⏞⏞⏞⏟⏞⏞⏞⏟

upper bound on

probability to draw

j chosen variables again

≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(k ⋅ i
𝜀 ⋅ i

)𝜀⋅i( (k − 𝜀)2 ⋅ i2
j

)j

⋅

( n∑
x=1

p2
x

)j

⋅ F(j)k⋅i−𝜀⋅i−2j

≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅

( n∑
x=1

p2
x

)j

⋅
( j

n

)(k⋅i−𝜀⋅i−2j) 𝛽−2

𝛽−1

,

where 𝜅 = 𝜅(k, 𝜀, 𝛽) > 0 is a constant that might depend on other parameters, which are

fixed to constants. Note that we estimated the probability to draw a new (unique) variable

with 1. Thus, this also accounts for the probability to draw a variable that is not actually

new. Especially, it accounts for the probability to draw one of the j non-unique variables.

This means, the expression we have is an upper bound for the probability to draw at most
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BLÄSIUS ET AL. 903

𝜀 ⋅ i unique variables. As in the proof of Lemma 5.1 we have to distinguish three cases

depending on the power law exponent 𝛽. Using Lemma A.1 we see that for 𝛽 < 3

Pi ≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅

( n∑
x=1

p2
x

)j

⋅
( j

n

)(k⋅i−𝜀⋅i−2j) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅ n−2j 𝛽−2

𝛽−1 ⋅
( j

n

)(k⋅i−𝜀⋅i−2j) 𝛽−2

𝛽−1

= 𝜅
i ⋅ Δi ⋅ ni

(
1−(k−𝜀) 𝛽−2

𝛽−1

)
⋅ i−i ⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅ j(k⋅i−𝜀⋅i−2j) 𝛽−2

𝛽−1 . (4)

Now, it remains to bound the inner sum. In order to do so, we will split it at j0 = 3−𝛽
4
(k−𝜀)⋅i.

It is easy to see that 0 <
3−𝛽

4
<

1

4
for 2 < 𝛽 < 3, thus this choice of j is valid. For the first

part of the sum it holds that

3−𝛽
4
(k−𝜀)⋅i∑
j=1

(
i2
j

)j

⋅ j(k⋅i−𝜀⋅i−2j) 𝛽−2

𝛽−1 ≤ 𝜅
i

3−𝛽
4
(k−𝜀)⋅i∑
j=1

i2⋅j ⋅ j−j ⋅ i((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ i(k−𝜀)⋅i⋅

𝛽−2

𝛽−1

3−𝛽
4
(k−𝜀)⋅i∑
j=1

i
2⋅j
𝛽−1

≤ 𝜅
i ⋅ i(k−𝜀)⋅i⋅

𝛽−2

𝛽−1 ⋅ i2⋅
3−𝛽

4
⋅ k−𝜀
𝛽−1

⋅i

= 𝜅
i ⋅ i

k−𝜀
2
⋅i
,

where we used j ≤ 3−𝛽
4
(k− 𝜀) ⋅ i and ((k− 𝜀) ⋅ i− 2j) ≥ 0 in the first line. The derived sum

in the second line is a geometric series with base i
2

𝛽−1 ≥ 1. This series is dominated by the

term with j = 3−𝛽
4
(k − 𝜀) ⋅ i. Additional factors of at most ci

for positive constants c are

hidden in 𝜅
i
. For the second part of the sum it holds that

k−𝜀
2
⋅i∑

j= 3−𝛽
4
(k−𝜀)⋅i

(
i2
j

)j

⋅ j(k⋅i−𝜀⋅i−2j) 𝛽−2

𝛽−1 ≤ 𝜅
i

k−𝜀
2
⋅i∑

j= 3−𝛽
4
(k−𝜀)⋅i

i2⋅j ⋅ j−j ⋅ i((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ i(k−𝜀)⋅i⋅

𝛽−2

𝛽−1

k−𝜀
2
⋅i∑

j= 3−𝛽
4
(k−𝜀)⋅i

ij−2⋅j 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ i(k−𝜀)⋅i⋅

𝛽−2

𝛽−1 ⋅ i
3−𝛽
𝛽−1

⋅ k−𝜀
2
⋅i

= 𝜅
i ⋅ i

k−𝜀
2
⋅i
,

where we used j ≥ 3−𝛽
4
(k− 𝜀) ⋅ i in the second and a geometric series in the third line. The

base of the series is i
3−𝛽
𝛽−1 ≥ 1. Thus, the last term with j = k−𝜀

2
⋅ i dominates and we get the

shown estimate with factors ci
for positive constants c hidden in 𝜅

i
again.
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904 BLÄSIUS ET AL.

Thus,

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅ j(k⋅i−𝜀⋅i−2j) 𝛽−2

𝛽−1 ≤ 𝜅
i ⋅ i

k−𝜀
2
⋅i
,

and plugging this into Equation (4) yields

Pi ≤ 𝜅
i ⋅ Δi ⋅ ni

(
1−(k−𝜀) 𝛽−2

𝛽−1

)
⋅ ii

(
k−𝜀

2
−1

)
= 𝜅

i ⋅ Δi ⋅ n−𝜀2
⋅i ⋅ i𝜀1

⋅i
.

Since, we want to sum overall Pi with
1

3
w ≤ i ≤ 2

3
w for some w, it holds that

2

3
w∑

i= 1

3
w

Pi ≤

2

3
w∑

i= 1

3
w

𝜅
i ⋅ Δi ⋅ n−𝜀2

⋅i ⋅ i𝜀1
⋅i

≤

2

3
w∑

i= 1

3
w

(𝜅 ⋅ Δ ⋅ n−𝜀2 ⋅ w𝜀
1 )i.

This sums up to o(1) as soon as 𝜅 ⋅ Δ ⋅ n−𝜀2 ⋅ w𝜀
1 is a suitably small constant and w is

super-constant. In our case, we see that this holds for some

w ∈ O
(
n𝜀

2
∕𝜀

1Δ−1∕𝜀
1

)
.

For 𝛽 = 3 we get

Pi ≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅

( n∑
x=1

p2
x

)j

⋅
( j

n

)((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅
(

ln n
n

)j
⋅
( j

n

)((k−𝜀)⋅i−2j) 1

2

= 𝜅
i ⋅ Δi ⋅

(n
i

)i
⋅ n−

k−𝜀
2

i

k−𝜀
2
⋅i∑

j=1

i2j ⋅ j
k−𝜀

2
i−2j ⋅ (ln n)j. (5)

We want to show that this inner sum is at most 𝜅
i ⋅ (i ⋅ ln n)

k−𝜀
2

i
. As before, we can split the

sum. This time we split it at j0 = k−𝜀
4

i. For the first part we get

k−𝜀
4

i∑
j=1

i2j ⋅ j
k−𝜀

2
i−2j ⋅ (ln n)j ≤ 𝜅

i ⋅

k−𝜀
4

i∑
j=1

i2j ⋅ i
k−𝜀

2
i−2j ⋅ (ln n)j

≤ 𝜅
i ⋅ i

k−𝜀
2

i ⋅

k−𝜀
4

i∑
j=1

(ln n)j

≤ 𝜅
i ⋅ i

k−𝜀
2

i ⋅ (ln n)
k−𝜀

4
i
,
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BLÄSIUS ET AL. 905

where we used that
k−𝜀

2
i − 2j ≥ 0 in the first line. The second line contains a geometric

series with base ln n ≥ 1 again that we estimated by its dominating term (ln n)
k−𝜀

4
i
. The

second part of the sum yields

k−𝜀
2

i∑
j= k−𝜀

4
i

i2j ⋅ j
k−𝜀

2
i−2j ⋅ (ln n)j ≤ 𝜅

i ⋅

k−𝜀
2

i∑
j= k−𝜀

4
i

i2j ⋅ i
k−𝜀

2
i−2j ⋅ (ln n)j

≤ 𝜅
i ⋅ i

k−𝜀
2

i

k−𝜀
2

i∑
j= k−𝜀

4
i

(ln n)j ≤ 𝜅
i ⋅ i

k−𝜀
2

i(ln n)
k−𝜀

2
i
,

since j ∈ Θ(i). Plugging this into Equation (5) gives us

Pi ≤ 𝜅
i ⋅ Δi ⋅

(n
i

)i
(

1− k−𝜀
2

)

⋅ (ln n)
k−𝜀

2
i = 𝜅

i ⋅ Δi ⋅
(n

i

)−𝜀
1
⋅i
⋅ (ln n)(𝜀1

+1)⋅i
.

As before, we can see that this is at most 𝜅
i
for some constant 𝜅 ∈ (0, 1) if

w ∈ O
(

n∕ln
1+ 1

𝜀1 n ⋅ Δ−1∕𝜀
1

)

is small enough.

For 𝛽 > 3 we get

Pi ≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅

( n∑
x=1

p2
x

)j

⋅
( j

n

)((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1

≤ 𝜅
i ⋅ Δi

(n
i

)i
⋅

k−𝜀
2
⋅i∑

j=1

(
i2
j

)j

⋅ n−j ⋅
( j

n

)((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1

= 𝜅
i ⋅ Δi ⋅

(n
i

)i
⋅ n−(k−𝜀)

𝛽−2

𝛽−1
i

k−𝜀
2
⋅i∑

j=1

i2j ⋅ nj
(

2
𝛽−2

𝛽−1
−1

)
⋅ j((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j
. (6)

This time we are going to show that the inner sum is bounded by i(k−𝜀)
𝛽−2

𝛽−1
i ⋅
(

n
i

) k−𝜀
2

i
(

2
𝛽−2

𝛽−1
−1

)

.

Again, we split the sum. This time at

j0 =
(k − 𝜀) 𝛽−2

𝛽−1

1 + 2
𝛽−2

𝛽−1

i.

Our choice ensures ((k− 𝜀) ⋅ i− 2j) 𝛽−2

𝛽−1
− j ≥ 0 for j ≤ j0. Thus, in the first part of the sum

all exponents are positive. It now holds that

j((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j
≤ j

((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j

0
≤ 𝜅

i ⋅ i((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j
,
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906 BLÄSIUS ET AL.

for some constant 𝜅 that we can incorporate in the 𝜅 we already have. In the second part

of the sum the exponent ((k − 𝜀) ⋅ i − 2j) 𝛽−2

𝛽−1
− j is negative. However, we know that the

base is j ≥ j0 =
(k−𝜀) 𝛽−2

𝛽−1

1+2
𝛽−2

𝛽−1

i. Thus,

j((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j
≤ j

((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j

0
≤ 𝜅

i ⋅ i((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j
,

as well. This yields

k−𝜀
2
⋅i∑

j=1

i2j ⋅ nj
(

2
𝛽−2

𝛽−1
−1

)
⋅ j((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j

≤ 𝜅
i ⋅

k−𝜀
2
⋅i∑

j=1

i2j ⋅ nj
(

2
𝛽−2

𝛽−1
−1

)
⋅ i((k−𝜀)⋅i−2j) 𝛽−2

𝛽−1
−j

= 𝜅
i ⋅ i(k−𝜀)

𝛽−2

𝛽−1
i ⋅

k−𝜀
2
⋅i∑

j=1

(n
i

)j
(

2
𝛽−2

𝛽−1
−1

)

≤ 𝜅
i ⋅ i(k−𝜀)

𝛽−2

𝛽−1
i ⋅
(n

i

) k−𝜀
2

i
(

2
𝛽−2

𝛽−1
−1

)

,

where the last line holds, since 2
𝛽−2

𝛽−1
− 1 > 0, which implies that we have a geometric

series with base at least one again, that we estimate by its dominating term, that is, the

term with j = k−𝜀
2
⋅ i. If we plug our estimate into Equation (6) this gives us

Pi ≤ 𝜅
i ⋅ Δi

(n
i

)(1− k−𝜀
2

)
i
= 𝜅

i ⋅ Δi
(n

i

)−𝜀
1
⋅i
.

We can now find a w ∈ Θ(n ⋅Δ−1∕𝜀
1) small enough such that the property holds as desired.

In all three cases, we can choose w in such a way that the probability for the property

not to hold is at most 𝜅
w
3 for some constant 𝜅 ∈ (0, 1). This means, the property holds

a. a. s. for w ∈ 𝜔(1). ▪

The two properties, we showed in Lemmas 5.1 and 5.2 can be used to derive lower bounds on

resolution width via the following theorem by Ben-Sasson and Wigderson [9].

Theorem 5.3 ([9]). Let Φ be an unsatisfiable k-CNF formula with k ≥ 3. If there is a
w ∈ N such that

(i) for all sets of clauses C′ with |C′| ≤ w it holds that C′ contains at least |C′| different
Boolean variables and;

(ii) for all sets of clauses C′ with 1

3
w ≤ |C′| ≤ 2

3
w it holds that C′ contains at least 𝜀 ⋅ |C′|

unique variables for some constant 𝜀 > 0;

then the resolution width of Φ is Ω(w).

Lemmas 5.1 and 5.2 together with Theorem 5.3 imply Corollary 5.4. However, Theorem 5.3 only

works for unsatisfiable instances. Since the two lemmas do not condition on instances being unsat-

isfiable, we also need to make sure that the probability for having unsatisfiable instances is large
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BLÄSIUS ET AL. 907

enough. In particular, we have to guarantee that this probability is larger than the error probabilities of

Lemmas 5.1 and 5.2. If the probability of generating unsatisfiable instances is asymptotically larger

than those error probabilities, the conditional probability of our width lower bounds to hold condi-

tioned on instances being unsatisfiable will be approaching one. Since the error probabilities of the two

lemmas are o(1), we want the clause-variable ratioΔ to be high enough for instances to be unsatisfiable

with at least constant probability. The resulting corollary is stated below. It only holds for unsatisfiable

instances as well, that is, the probability bound on resolution width is actually a conditional probability

conditioned on instances being unsatisfiable.

Corollary 5.4. Let Φ be an unsatisfiable random power-law k-SAT formula with n vari-
ables, m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent 𝛽 >

2k−1

k−1
constant. LetΔ = m∕n

be large enough so that Φ is unsatisfiable at least with constant probability. Let 𝜀, 𝜀1, 𝜀2

be constants with 𝜀 > 0, 𝜀1 = k−𝜀
2
− 1 > 0, and 𝜀2 = (k − 𝜀) ⋅ 𝛽−2

𝛽−1
− 1 > 0. For the

resolution width w of Φ, it holds a. a. s. that:

(i) If 𝛽 ∈
(

2k−1

k−1
, 3

)
and Δ ∈ o (n𝜀

2 ), then w ∈ Ω
(
n𝜀

2
∕𝜀

1 ⋅ Δ−1∕𝜀
1

)
.

(ii) If 𝛽 = 3 and Δ ∈ o
(
n𝜀

1∕log
𝜀

1
+1n

)
, then w ∈ Ω

(
n ⋅ Δ−1∕𝜀

1∕log
1+ 1

𝜀1 n
)

.

(iii) If 𝛽 > 3 and Δ ∈ o
(
n𝜀

1
+1
)
, then w ∈ Ω

(
n ⋅ Δ−1∕𝜀

1

)
.

Proof. If both Lemmas 5.1 and 5.2 hold, we can use Theorem 5.3 to get the desired

bound on resolution width. As stated before, Theorem 5.3 only holds for unsatisfiable

instances. Thus, if a random formula Φ is unsatisfiable at least with constant probability,

it holds that the conditional probability for the bounds stated in the corollary to hold is

at least

Pr(Φ unsat) − o(1)
Pr(Φ unsat)

= 1 − o(1),

conditioned on Φ being unsatisfiable, where the o(1) term is the error probability from

Lemmas 5.1 and 5.2. We are going to show that the values of w from Lemma 5.2 are

smaller than those from Lemma 5.1. The expansion bound from Lemma 5.1 also holds

for those smaller values of w due to the definition of bipartite expansion. Thus, the bound

from Lemma 5.2 gives us the maximum w we can achieve.

First, consider the case 𝛽 ∈ ( 2k−1

k−1
, 3). Let 𝜀3 = k 𝛽−2

𝛽−1
− 1 and 𝜀4 = (k− 2) 𝛽−2

𝛽−1
. We want

to show that

n𝜀
2
∕𝜀

1 ⋅ Δ−1∕𝜀
1 ≤ n𝜀

3
∕𝜀

4 ⋅ Δ−1∕𝜀
4 . (7)

Both bounds only hold for

Δ ∈ o (n𝜀
2 ) ⊆ o (n𝜀

3∕log
𝜀

4 (n)) ,

since 𝜀2 = (k − 𝜀) 𝛽−2

𝛽−1
− 1 < k 𝛽−2

𝛽−1
− 1 = 𝜀3. It holds that

𝜀2∕𝜀1 =
(k − 𝜀) ⋅ 𝛽−2

𝛽−1
− 1

k−𝜀
2
− 1

<

k ⋅ 𝛽−2

𝛽−1
− 1

k
2
− 1

<

k 𝛽−2

𝛽−1
− 1

(k − 2) ⋅ 𝛽−2

𝛽−1

= 𝜀3∕𝜀4.
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908 BLÄSIUS ET AL.

We can now distinguish four cases. First, assume Δ ≥ 1. If 𝜀1 ≤ 𝜀4, then Δ−1∕𝜀
1 ≤ Δ−1∕𝜀

4 ,

which implies Inequality (7). If 𝜀1 > 𝜀4, we need to ensure

Δ ≤ n
(

𝜀3

𝜀4

− 𝜀2

𝜀1

)
∕
(

1

𝜀4

− 1

𝜀1

)
.

This is already the case, since we assume Δ ∈ o(n𝜀
2) and 𝜀2 ≤ ( 𝜀3

𝜀
4

− 𝜀
2

𝜀
1

)∕( 1

𝜀
4

− 1

𝜀
1

) due to

𝜀1 > 𝜀4 and 𝜀3 ≥ 𝜀2. Thus, Inequality (7) holds.

Now assume Δ < 1. If 𝜀1 ≤ 𝜀4, we need to ensure that

Δ ≥ n(
𝜀2

𝜀1

− 𝜀3

𝜀4

)∕( 1

𝜀1

− 1

𝜀4

)
.

This already holds, since we assume Δ ∈ Ω(1) and ( 𝜀2

𝜀
1

− 𝜀
3

𝜀
4

)∕( 1

𝜀
1

− 1

𝜀
4

) ≤ 0 due to 𝜀1 ≤ 𝜀4

and 𝜀2∕𝜀1 ≤ 𝜀3∕𝜀4. Thus, Inequality (7) holds. If 𝜀4 ≤ 𝜀1, then Δ−1∕𝜀
1 ≤ Δ−1∕𝜀

4 and

Inequality (7) holds as well.

Now consider 𝛽 = 3. We need to show that

n∕(ln n)
𝜀1+1

𝜀1 Δ−1∕𝜀
1 = n∕(ln n)

k−𝜀
k−𝜀−2Δ−2∕(k−𝜀−2) ∈ O(n ⋅ (Δ ⋅ ln n)−2∕(k−2)).

Again, the left-hand side is from Lemma 5.2 and the right-hand side is from Lemma 5.1.

This holds, due to our assumption Δ ∈ Ω(1) and since 𝜀1 = k−𝜀
2
− 1 > 0 implies 0 <

𝜀 < k − 2 and thus
k−𝜀

k−𝜀−2
>

2

k−𝜀−2
>

2

k−2
. Additionally, the bound only holds up to

Δ ∈ o
(
n(k−𝜀−2)∕2∕ln

(k−𝜀)∕2(n)
)
⊆ o

(
n(k−2)∕2∕log

(k−2)∕2+1(n)
)
.

For 𝛽 > 3 we have to show

n ⋅ Δ−1∕𝜀
1 ∈ O(n ⋅ Δ−1∕𝜀

4 ),

as well as Δ ∈ o(n𝜀
1) ⊆ o ((n∕ log n)𝜀4 ). This holds since 𝜀1 = k−𝜀

2
− 1 ≤ (k − 2) 𝛽−2

𝛽−1
= 𝜀4

due to 𝛽 > 3. This shows that in all three cases the bounds from Lemma 5.2 are smaller,

thus giving us the lower bounds on resolution width as stated in the corollary. ▪

This is nearly the statement of Theorem 5.8. However, via bipartite expansion we can already show

linear resolution width at constant clause-variable ratios for 𝛽 >
2k−2

k−2
instead of 𝛽 > 3. This gives

a better bound for k ≥ 5. The bounds on bipartite expansion and the resulting bounds on resolution

width will be derived in the next section.

5.2 A lower bound on bipartite expansion

In this section, we show an improved bound on the bipartite expansion. We will use it to obtain a linear

lower bound on resolution width for 𝛽 >
2k−2

k−2
, which is potentially smaller than three, and therefore

improves the previous bound. Recall that linear resolution width implies exponential resolution size,

and thus also exponential tree-like resolution size. Moreover, our bound on the bipartite expansion can

also be used to bound the so-called resolution clause space, which additionally yields an exponential

lower bound on tree-like resolution size for 𝛽 >
2k−3

k−2
as we will see at the end of this section. The

following lemma shows the bipartite expansion property.
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BLÄSIUS ET AL. 909

Lemma 5.5. Let Φ be a random power-law k-SAT formula with n variables, m clauses,
k ≥ 3, power-law exponent 𝛽 >

2k−3

k−2
, and let 𝜀 ∈ (0, (k − 1) ⋅ 𝛽−2

𝛽−1
− 1) constant. If Δ =

m∕n ∈ o (n𝜀∕log
𝜀n), then there exists an r ∈ Θ

(
n ⋅ Δ−1∕𝜀) such that the clause-variable

incidence graph G(Φ) is an (r, c)-bipartite expander a. a. s. for c = (k− 1) − (1+ 𝜀) ⋅ 𝛽−1

𝛽−2
.

Proof. First, note that our choice of 𝛽 >
2k−3

k−2
guarantees that the interval (0, (k−1)⋅ 𝛽−2

𝛽−1
−1)

from which we choose 𝜀 is not empty. This interval is chosen in such a way that c > 0 is

guaranteed. As in the proof of [8, Lemma 5.1], we define a bad event  , that G (Φ) is not

an (r, c)-bipartite expander. If  happens, then there is a set C′
⊆ C with 1 ≤ |C′| ≤ r

such that |N(C′)| < (1+c) ⋅ |C′|. Given a set C′
⊆ C = [m] of clause indices with |C′| = i

we want to bound the probability Pi that the k ⋅ i indices of variables appearing in those

clauses contain at most (1+c)⋅i different variables. Since clauses contain variables without

repetition, it holds that Pi is dominated by the probability to draw at most (1+c)⋅i different

variables when drawing k ⋅ i Boolean variables independently at random. Now imagine

sampling these k ⋅ i variables in some arbitrary, but fixed order. It holds that the probability

to draw a new variable is at most 1, while the probability to draw an old variable is at most

the probability to draw one of the (1+ c) ⋅ i variables of maximum probability. As before,

the sum of these probabilities is denoted by F((1 + c) ⋅ i). This gives us

Pi ≤
(m

i

)
⋅
(

k ⋅ i
(1 + c) ⋅ i

)
⋅ 1

(1+c)⋅i ⋅ F((1 + c) ⋅ i)k⋅i−(1+c)⋅i
.

Note that this expression also captures the case that we draw fewer than (1 + c) ⋅ i dif-

ferent variables, since the probability to draw a new variable is bounded by one and thus

also captures the probability that this new variable is in fact an old one. In the case of a

power-law distribution, we have

F((1 + c) ⋅ i) ∼
( (1 + c) ⋅ i

n

) 𝛽−2

𝛽−1

,

due to Lemma A.1 and thus

Pi ≤
(m

i

)
⋅
(

k ⋅ i
(1 + c) ⋅ i

)
⋅
( (1 + c) ⋅ i

n

)(k−(1+c))⋅ 𝛽−2

𝛽−1
⋅i

≤

(e ⋅ m
i

)i
⋅
( e ⋅ k

1 + c

)(1+c)⋅i
⋅
( (1 + c) ⋅ i

n

)(k−(1+c))⋅ 𝛽−2

𝛽−1
⋅i

= 𝜅(c, 𝛽, k)i ⋅ Δi
( i

n

)i((k−(1+c))⋅ 𝛽−2

𝛽−1
−1)

= 𝜅(c, 𝛽, k)i ⋅ Δi
( i

n

)i⋅𝜀
,

for some constant 𝜅(c, 𝛽, k) > 0, m = Δ ⋅ n, and c = (k − 1) − (1 + 𝜀) ⋅ 𝛽−1

𝛽−2
.

Summing overall i ≥ 1 now yields

Pr [] ≤
r∑

i=1

𝜅(c, 𝛽, k)i ⋅ Δi ⋅
( i

n

)i⋅𝜀
.
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910 BLÄSIUS ET AL.

We split this sum into two parts, the first part from i = 1 to ⌊𝜀 ⋅ log n⌋ and the second part

from ⌈𝜀 ⋅ log n⌉ to r. For the first part we get

⌊𝜀⋅log n⌋∑
i=1

𝜅(c, 𝛽, k)i ⋅ Δi ⋅
( i

n

)i⋅𝜀
≤

⌊𝜀⋅log n⌋∑
i=1

𝜅(c, 𝛽, k)i ⋅ Δi ⋅
(
𝜀 ⋅ log n

n

)i⋅𝜀

≤ 2 ⋅ 𝜅(c, 𝛽, k) ⋅ Δ ⋅
(
𝜀 ⋅ log n

n

)
𝜀

∈ O
(
Δ
(

log n
n

)
𝜀
)
,

which holds, since
∑m

i=1
𝛼

i ≤ 2 ⋅ 𝛼 for all m ≥ 1 and 𝛼 <
1

2
. This holds for big enough

values of n and for Δ ∈ o(n𝜀∕log
𝜀n). For the second part we get

r∑
i=⌈𝜀⋅log n⌉

𝜅(c, 𝛽, k)i ⋅ Δi ⋅
( i

n

)i⋅𝜀
≤

r∑
i=⌈𝜀⋅log n⌉

2
−i ∈ O

((
1

n

)𝜀
)
,

which holds if we choose

r ∈ O
(
n ⋅ Δ−1∕𝜀)

small enough so that Δ ⋅
(

r
n

)
𝜀

<
1

2⋅𝜅(c,𝛽,k)
. ▪

This notion of bipartite expansion is connected to the resolution width of a formula. The following

corollary, implicitly stated by Ben-Sasson and Wigderson [9], formalizes this connection.

Corollary 5.6 ([9]). Let k ≥ 3 integer and constant, let 𝜀 > 0 constant, and let Φ be an
unsatisfiable Boolean formula in k-CNF. If there is a constant 𝜀 > 0 such that G(Φ) is a(

r, k+𝜀
2
− 1

)
-bipartite expander, then Φ has resolution width at least Ω(r).

Proof. Due to the definition of bipartite expansion,
k+𝜀

2
> 1 ensures the first condition

of Theorem 5.3. We will show that the second condition is fulfilled as well. Let G(Φ) =
(C,V ,E) and let C′

⊆ C with
1

3
r ≤ |C′| ≤ 2

3
r. Let 𝛿C′

denote the set of unique variables

from C′
, that is, 𝛿C′ =

{
v ∈ N(C′)||N(v) ∩ C′| = 1

}
. As Ben-Sasson and Widgerson state

in [9, Proof of Theorem 6.5] it holds that:

|N(C′)| − |𝛿C′| ≤ (k ⋅ |C′| − |𝛿C′|)∕2,

which implies

|𝛿C′| ≥ 2|N(C′)| − k ⋅ |C′| ≥ 𝜀 ⋅ |C′|,

due to the

(
r, k+𝜀

2
− 1

)
-bipartite expansion. These two properties imply a resolution width

of Ω(r). ▪

This result on the bipartite expansion of power-law random k-SAT allows us to derive the following

corollary on resolution width. Again, we require the clause-variable ratio Δ to be high enough for

instances to be unsatisfiable with at least constant probability.
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BLÄSIUS ET AL. 911

Corollary 5.7. Let Φ be an unsatisfiable random power-law k-SAT formula with n vari-
ables, m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent 𝛽 >

2k−2

k−2
. Let Δ = m∕n be large

enough so thatΦ is unsatisfiable at least with constant probability. For 0 < 𝜀 <
k
2
⋅ 𝛽−2

𝛽−1
−1

constant andΔ ∈ o(n𝜀∕log
𝜀n) it holds a. a. s. thatΦ has resolution width w ∈ Ω(n⋅Δ−1∕𝜀).

Proof. Due to Lemma 5.5 G(Φ) is a (Ω(n ⋅Δ−1∕𝜀), c)-bipartite expander for c = (k − 1) −
(1 + 𝜀) 𝛽−1

𝛽−2
. With 𝛽 >

2k−2

k−2
, it holds that we can choose an 𝜀 > 0 so that c >

k
2
− 1. This

means, the requirement of Corollary 5.6 is fulfilled and implies the statement. ▪

Together with Corollary 5.4 the former corollary implies Theorem 5.8.

Theorem 5.8. Let Φ be an unsatisfiable random power-law k-SAT formula with n vari-
ables, m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent 𝛽 >

2k−1

k−1
. Let Δ = m∕n be

large enough so thatΦ is unsatisfiable at least with constant probability. Let 𝜀, 𝜀1, … , 𝜀3

be constants with 𝜀 > 0, 𝜀1 = k−𝜀
2
− 1 > 0, 𝜀2 = (k − 𝜀) ⋅ 𝛽−2

𝛽−1
− 1 > 0, and

0 < 𝜀3 < ( k
2
− 1) ⋅ 𝛽−2

𝛽−1
− 1. For the resolution width w of Φ, it holds a. a. s. that:

(i) If 𝛽 ∈
(

2k−1

k−1
, 3

)
and Δ ∈ o (n𝜀

2), then w ∈ Ω
(
n𝜀

2
∕𝜀

1Δ−1∕𝜀
1

)
.

(ii) If 𝛽 = 3 and Δ ∈ o
(
n𝜀

1∕log
1+𝜀

1 n
)
, then w ∈ Ω

(
n ⋅ Δ−1∕𝜀

1∕log
1+1∕𝜀

1 n
)
.

(iii) If 𝛽 > 3 and Δ ∈ o (n𝜀
1), then w ∈ Ω

(
n ⋅ Δ−1∕𝜀

1

)
.

(iv) If 𝛽 >
2k−2

k−2
and Δ ∈ o (n𝜀

3∕log
𝜀

3 n), then w ∈ Ω
(
n ⋅ Δ−1∕𝜀

3

)
.

Additionally, Ben-Sasson and Galesi [8] state a theorem that directly connects bipartite expansion

and tree-like resolution size. An application of this theorem yields a slightly better bound on tree-like

resolution size than the ones derived from resolution width.

Theorem 5.9 ([8]). Let Φ be an unsatisfiable CNF and let G (Φ) = (U ∪ V ,E) be the
clause-variable incidence graph of Φ. If G (Φ) is a (r, c)-bipartite expander then Φ has
resolution clause space of at least c⋅r

2+c
and tree-like resolution size of at least exp

(
Ω( c⋅r

2+c
)
)

.

Proof. ([8, Theorems 4.2 and 3.3]). State together that any bipartite graph that is an

(r, c)-bipartite expander has a resolution clause space of at least
c⋅r
2+c

. Thus, with [31,

Theorem 1.6], it holds that the resolution size for formulas whose clause-variable inci-

dence graph is an (r, c)-bipartite expander, is at least exp

(
c⋅r
2+c

)
. ▪

This leads to the following corollary, which already asserts exponential tree-like resolution size for

constant clause-variable ratios at 𝛽 >
2k−3

k−2
.

Corollary 5.10. LetΦ be an unsatisfiable random power-law k-SAT formula with n vari-
ables, m = Ω(n) clauses, k ≥ 3, and power-law exponent 𝛽 >

2k−3

k−2
. Let Δ = m∕n be

large enough so that Φ is unsatisfiable at least with constant probability. For 0 < 𝜀 <

(k − 1) ⋅ 𝛽−2

𝛽−1
− 1 constant and Δ ∈ o((n∕ log n)𝜀), it holds that Φ has tree-like resolution

size exp(Ω(n ⋅ Δ−1∕𝜀)).

Proof. Using Lemma 5.5 we see that for 𝛽 >
2k−3

k−2
the clause-variable incidence graph

a. a. s. is a (Θ(n ⋅Δ−1∕𝜀), c)-bipartite expander for some constant c > 0. Thus, Theorem 5.9

implies the statement. ▪
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912 BLÄSIUS ET AL.

6 THE COMPLEXITY OF VORONOI DIAGRAMS

We first show quadratic lower bounds on the complexity (number of non-empty regions) of order-k
Voronoi diagrams that already hold in rather basic settings. Afterwards, we consider random point sets

and prove a linear upper bound.

6.1 Worst-case lower bounds

In this section, we show worst-case lower bounds on the number of non-empty regions of higher-order

Voronoi diagrams. As already mentioned in Section 2.3, our lower bounds are based on previously

known lower bounds on the number of vertices of Voronoi diagrams, in conjunction with a new theorem

connecting the number of vertices with the number of regions in higher orders. This theorem relies

on the fact that there are not too many different points with equal distance to a set of 𝑑 + 1 sites in

𝑑-dimensional space. For the unweighted case and for 𝔭 ≠ ∞, the result in the next lemma was shown

by Lê [45]. We extend it to weighted sites and 𝔭 = ∞, following along the lines of Lê’s proof [45]

(at least for 𝔭 ≠ ∞): (i) Observe that the points with equal distance to the 𝑑 + 1 sites is the set of

solutions to a system of polynomial equations. (ii) Show that the so-called additive complexity of these

polynomial equations is bounded by a constant only depending on 𝑑. (iii) Apply [45, Proposition 3],

giving an upper bound on the number of solutions to a system of equations that only depends on 𝑑 and

on the additive complexities of the equations.

Lemma 6.1. Let A be a set of 𝑑 + 1 weighted sites in general position6 in R𝑑 equipped
with a 𝔭-norm. Then, the number of points with equal weighted distance to all sites in A
only depends on 𝑑.

Proof. Assume 𝔭 ≠ ∞, and let s0, … , s𝑑 be 𝑑 + 1 sites with normalized weights

𝜔0, … , 𝜔𝑑 . Recall that the weighted distance between si and a point p is ||si − p||∕𝜔i.

Thus, p has the same distance to all 𝑑 + 1 sites if, for all i ∈ [𝑑], it satisfies

||s0 − p||
𝜔0

− ||si − p||
𝜔i

= 0. (8)

We note that this polynomial has the same form in the unweighted case [45, eq. 10], except

we have the additional factors 1∕𝜔0 and 1∕𝜔i.

Concerning (ii), it thus suffices to note that these additional factors do not significantly

increase the so-called additive complexity. We do not fully define the additive complexity

here, but rather cite the properties crucial for this proof. The additive complexity L+(P)
of a polynomial P is defined to be 0 if P is a monomial. Moreover, by [45, Lemma 4], it

holds that

L+(P1 + · · · + Pn) ≤ n − 1 + L+(P1) + · · · + L+(Pn),
L+(Pm) ≤ L+(P), for any m ∈ N, and

L+(PQ) ≤ L+(P) + L+(Q),

6
For a formal definition what general position means in this context, see [45]. As usual, the configurations excluded by the

assumption of general position have measure 0.
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BLÄSIUS ET AL. 913

where all Pi, P, and Q are polynomials. With this, it is easy to see that the additive com-

plexity of the polynomial in Equation (8) is bounded by a constant only depending on 𝑑.

In fact, the last bound, L+(PQ) ≤ L+(P) + L+(Q) in conjunction with the property that

constants are monomials with additive complexity 0, makes it so that the additional con-

stant factors 𝜔0 and 𝜔i do not increase the additive complexity at all. Thus, the additive

complexity is bounded by 4𝑑 − 1 [45, Lemma 5].

Finally, applying [45, Proposition 3] directly yields the claim, which concludes the

proof for 𝔭 ≠ ∞.

For 𝔭 = ∞, we cannot use the same argument, as Equation (8) is not polynomial:

||si−p|| involves the maximum over all coordinates. However, for each si, there are only 𝑑

possibilities to which coordinate the maximum is evaluated, leading to 𝑑
𝑑+1

combinations.

For each of these combinations, we consider its own system of equations. Denote the

resulting set of systems of equations with  . Clearly, every solution for the system of

equations in (8) is a solution to at least one system in  . Thus, the number of solutions

to (8) is bounded by the total number of solutions to systems in  . Clearly, with the same

argument as above, the number of solutions to each system of equations in  is bounded by

a constant only depending on 𝑑. As  contains only 𝑑
𝑑+1

systems, this bounds the number

of solutions to (8) by a constant only depending on 𝑑. ▪

With this, we can now prove the theorem establishing the connection between vertices and

non-empty regions.

Theorem 6.2. Let S be a set of n weighted sites in general position in R𝑑 equipped with
a 𝔭-norm. If the order-k Voronoi diagram has 𝓁 vertices, then the order-(k + 𝑑) Voronoi
diagram has Ω(𝓁) non-empty regions.

Proof. We first show that a vertex of the order-k Voronoi diagram is an interior point of a

non-empty region of the order-(k + 𝑑) Voronoi diagram. Afterwards, we show that only a

constant number of different vertices can end up in the same region.

Let p ∈ R𝑑
be a vertex of the order-k Voronoi diagram. Then p has equal weighted

distance to exactly 𝑑+1 sites (the sites are in general position). Let {s1, … , s𝑑+1} = A ⊆ S
be these sites and let P be the 𝜀-environment of p, that is, a ball with sufficiently small

radius 𝜀 centered at p. For a point p′ ∈ P, sort all sites in S by weighted distance from p′.
Then all sites in A appear consecutive in this order. Moreover, we obtain almost the same

order of S for every p′ ∈ P. The only difference is that the sites of A might be reordered.

Also, as p is a vertex of the order-k Voronoi diagram, at least one site from A belongs to

the k sites with smallest weighted distance to p. It follows that the first k + 𝑑 sites in this

order completely include all sites from A. Thus, the k+ 𝑑 closest sites are the same for all

points in the 𝜀-environment P around p; let B be the set of these sites. It follows that B has

non-empty Voronoi region in the order-(k+ 𝑑) Voronoi diagram as this region has p in its

interior.

It remains to show that only a constant number of vertices of the order-k Voronoi

diagram can be contained in the same region of the order-(k + 𝑑) Voronoi diagram, that

is, the order-(k + 𝑑) region belonging to B includes only a constant number of order-k
vertices. As stated above, every order-k vertex belongs to a subset A ⊆ B with |A| = 𝑑+1.

There are only

(|B|
|A|
)
≤

(
k+𝑑
𝑑+1

)
such subsets A, which is constant for constant k and 𝑑.

Moreover, every fixed subset A of 𝑑 + 1 sites is responsible for only a constant number of
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914 BLÄSIUS ET AL.

vertices due to Lemma 6.1. Thus, only a constant number of order-k vertices end up in the

same order-k + 𝑑 region, which concludes the proof. ▪

Theorem 6.2 transfers some known lower bounds on the number of vertices of Voronoi diagrams

to lower bounds on the number of non-empty regions of order-k Voronoi diagrams. In particular, we

get the following corollaries.

Corollary 6.3. In the worst case, the order-4 Voronoi diagram of n (unweighted) sites in
3-dimensional Euclidean space has Ω(n2) non-empty regions.

Proof. In the worst case, the ordinary (order-1, unweighted) Voronoi diagram of n sites in

3-dimensional Euclidean space has Ω(n2) vertices [43,56]. Applying Theorem 6.2 yields

the claim. ▪

Corollary 6.4. In the worst case, the order-3 Voronoi diagram of n weighted sites in
2-dimensional Euclidean space has Ω(n2) non-empty regions.

Proof. In the worst case, the order-1 Voronoi diagram of n weighted sites in 2-dimensional

Euclidean space has Ω(n2) vertices [5]; also see Figure 2. Applying Theorem 6.2 yields

the claim. ▪

6.2 Upper bounds for sites with random positions

Let S = {s1, … , sn} ⊆ T𝑑
be n randomly positioned sites with weights w1, … ,wn. In the following,

we bound the complexity of the weighted order-k Voronoi diagram in terms of non-empty regions.

Recall from Section 3 that the torus T𝑑
is the hypercube [0, 1]𝑑 that wraps around in every dimension

in the sense that opposite sides are identified. However, the following arguments do not require this

property. Thus, the exact same results hold for Voronoi diagrams in hypercubes.

For the normalized weights 𝜔1, … , 𝜔n, recall from Section 3, that the point p ∈ T𝑑
belongs to the

Voronoi region corresponding to A ⊆ S with |A| = k if there exists a radius r such that ||p− si|| ≤ 𝜔ir
if si ∈ A and ||p − si|| > 𝜔ir if si ∉ A. Thus, A has non-empty order-k Voronoi region if and only if

there exists such a point p. Our goal in the following is to bound the probability for its existence.

Our general approach to achieve such a bound is the following. The condition ||p − si|| ≤ 𝜔ir for

si ∈ A basically tells us the sites in A are either close together or that r has to be large. In contrast to

that, the condition ||p − si|| > 𝜔ir for si ∉ A tells us that many sites (namely all n − k sites in S ⧵ A)

have to lie sufficiently far away from p, which is unlikely if r is large. How unlikely this is of course

depends on r and thus on how close the sites in A lie together. Therefore, to follow this approach, we

first condition on how close the sites in A lie together.

To formalize this, consider a size-k subset A ⊆ S and assume without loss of generality that A =
{s1, … , sk}. The site in A with the lowest weight, without loss of generality s1, will play a special role.

We define the random variable RA to be

RA = max
i∈[k]

||s1 − si||
𝜔1 + 𝜔i

. (9)

The intuition behind the definition of RA is the following. The weighted center between s1 and si is the

point p on the line between them such that ||s1−p|| = 𝜔1r and ||si−p|| = 𝜔ir for a radius r ∈ R. Then

RA is the maximum value for r over i ∈ [k]. In the unweighted setting, RA is just half the maximum
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BLÄSIUS ET AL. 915

distance between s1 and any other site si. In a sense, RA describes how close the sites in A lie together.

Thus, it provides a lower bound on r.

Based on RA, we slightly relax the condition on A having non-empty Voronoi region. We call A
relevant if there exists a point p ∈ T𝑑

and a radius r ≥ RA such that ||s1−p|| ≤ 𝜔1r and ||si−p|| > 𝜔ir
for i > k. The following lemma states that being relevant is in fact a weaker condition than having

non-empty order-k Voronoi region. Thus, bounding the probability that a set is relevant from above

also bounds the probability for a non-empty Voronoi region from above.

Lemma 6.5. A subset of k sites that has a non-empty order-k Voronoi region is relevant.

Proof. Assume A = {s1, … , sk} has a non-empty order-k Voronoi region. Then there

exists a point p and a radius r such that ||si − p|| ≤ 𝜔ir if and only if i ≤ k. Thus,

||s1 − p|| ≤ 𝜔1r and ||si − p|| > 𝜔ir for i > k clearly holds, and it remains to show

r ≥ RA. From ||si − p|| ≤ 𝜔ir for i ∈ [k] it follows that ||s1 − p|| + ||si − p|| ≤ 𝜔1r + 𝜔ir
holds for any i ∈ [k]. Thus, by rearranging and applying the triangle inequality, we

obtain r ≥ (||s1 − p|| + ||si − p||)∕(𝜔1 + 𝜔i) ≥ ||s1 − si||∕(𝜔1 + 𝜔i). This immediately

yields r ≥ RA. ▪

Now we proceed to bound the probability that a set A is relevant. The following lemma bounds

this probability conditioned on the random variable RA. At its core, we have to bound the prob-

ability of the event ||si − p|| > 𝜔ir for si ∉ A. For a fixed point p and a fixed radius r, this

is rather easy. Thus, most of the proof is concerned with eliminating the existential quantifiers for

p and r.

Lemma 6.6. For constants c1 and c2 depending only on 𝑑 and 𝔭, it holds that

Pr [A is relevant|RA] ≤ c1min
si∈A

{wi} exp

(
−c2R𝑑

A
∑
si∉A

wi

)
.

Proof. As before, we assume that A = {s1, … , sk} and that s1 has minimum weight

among sites in A, that is, minsi∈A{wi} = w1. By definition, A is relevant conditioned on

RA, if and only if there exists a radius r ≥ RA and point p ∈ T𝑑
such that ||s1 − p|| ≤ 𝜔1r

and ||si − p|| > 𝜔ir for i > k, that is, formally we have

∃r ≥ RA ∃p ∈ T
𝑑 ∀i > k ∶ ||s1 − p|| ≤ 𝜔1r ∧ ||si − p|| > 𝜔ir. (10)

The core difficulties of bounding the probability for this event are the existential quantifiers

that quantify over the continuous variables r and p. In both cases, we resolve this by using

an appropriate discretization, for which we then apply the union bound.

We get rid of the existential quantifier for r by dividing the interval [RA,∞), which

covers the domain of r, into pieces of length at most RA. More formally, we split the event

∃r ≥ RA with the desired property into the disjoint events ∃r ∈ [jRA, (j+1)RA) for j ∈ N+
.

For a fixed j, r ≥ jRA and ||si−p|| > 𝜔ir implies ||si−p|| > 𝜔ijRA. Moreover, r ≤ (j+1)RA
and ||s1 − p|| ≤ 𝜔1r implies ||s1 − p|| ≤ 𝜔1(j+ 1)RA. Note that this completely eliminates

the variable r from the event, which lets us drop the existential quantifier for r. Thus, the

event in Equation (10) implies

∃j ∈ N
+ ∃p ∈ T

𝑑 ∀i > k ∶ ||s1 − p|| ≤ 𝜔1(j + 1)RA ∧ ||si − p|| > 𝜔ijRA. (11)
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916 BLÄSIUS ET AL.

Note that the new existential quantifier for j is not an issue: as j is discrete, we can simply

use the union bound and sum over the probabilities we obtain for the different values of j.
We will later see that this sum is dominated by the first term corresponding to j = 1.

To deal with the existential quantifier for p, assume j ∈ N+
to be a fixed number. First

note that ||s1 − p|| ≤ 𝜔1(j + 1)RA implies that p lies somewhat close to s1. We discretize

the space around s1 using a grid such that the point p is guaranteed to lie inside a grid

cell. By choosing the distance between neighboring grid vertices sufficiently small, we

guarantee that p lies close to a grid vertex. Then, instead of considering p itself, we deal

with its closest grid vertex. To define the grid formally, let 𝜔min = min
n
i=k+1

{𝜔i} be the

minimum weight of sites not in A and let x = 𝜔minjRA∕ 𝔭
√
𝑑 (x will be the width of our

grid cells). To simplify notation, assume that s1 is the origin. Otherwise, we can simply

translate the grid defined in the following to be centered at s1 to obtain the same result.

Let Γ = {𝓁x|𝓁 ∈ Z∧ |(𝓁− 1)x| ≤ 𝜔1(j+ 1)RA} be the set of all multiples of x that are not

too large. We use the grid defined by the Cartesian product Γ𝑑 . Then the following three

properties of Γ𝑑 are easy to verify.

(i) A point p with ||s1 − p|| ≤ 𝜔1(j + 1)RA lies in a grid cell.

(ii) The maximum distance between a point in a grid cell and its closest grid vertex is
𝔭
√
𝑑x∕2 = 𝜔minjRA∕2.

(iii) Γ𝑑 has at most c′
1
(𝜔1jRA∕x)𝑑 = c1(𝜔1∕𝜔min)𝑑 ≤ c1𝜔

𝑑

1
vertices for constants c1 and

c′
1

only depending on 𝑑 and 𝔭.

Going back to the event in Equation (11), let p be a point with ||s1−p|| ≤ 𝜔1(j+1)RA and

||si−p|| > 𝜔ijRA (for all i > k). By the first inequality and Property (i), p lies in a grid cell

of Γ𝑑 . Let p′ ∈ Γ𝑑 be the grid vertex with minimum distance to p. Then, by Property (ii),

||p−p′|| ≤ 𝜔minjRA∕2. Thus, using the triangle inequality and ||si−p|| > 𝜔ijRA, we obtain

||si − p′|| ≥ ||si − p|| − ||p − p′|| > 𝜔ijRA −
𝜔minjRA

2
≥

𝜔ijRA
2

.

It follows that the event in Equation (11) implies

∃j ∈ N
+ ∃p′ ∈ Γ𝑑 ∀i > k ∶ ||si − p′|| > 𝜔ijRA

2
.

For this event, we can now bound the probability. First note that ||si − p′|| > 𝜔ijRA∕2

implies that the ball of radius 𝜔ijRA∕2 around p′ does not contain si. By Lemma A.3, the

volume of this ball intersected with [−0.5, 0.5]𝑑 is min{1, c2(𝜔ijRA)𝑑} for a constant c2

depending only on 𝑑 and 𝔭. As the si are chosen independently and using that 1 − x ≤
exp(−x) for 0 ≤ x ≤ 1, we obtain

Pr

[
∀i > k ∶ ||si − p′|| > 𝜔ijRA

2

]
=

n∏
i=k+1

max
{

0, 1 − c2(𝜔ijRA)𝑑
}

≤

n∏
i=k+1

exp
(
−c2(𝜔ijRA)𝑑

)

= exp

(
−c2j𝑑R𝑑

A

n∑
i=k+1

𝜔
𝑑

i

)
.
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BLÄSIUS ET AL. 917

We resolve the two existential quantifiers for j and p′ using the union bound. Recall from

Property (iii) that the grid Γ𝑑 contains only c1𝜔
𝑑

1
vertices. Using that 𝜔i = w1∕𝑑

i , we obtain

Pr [A is relevant|RA] ≤ Pr

[
∃j ∈ N

+ ∃p′ ∈ Γ𝑑 ∀i > k ∶ ||si − p′|| > 𝜔ijRA
2

]

≤

∞∑
j=1

c1w1 exp

(
−c2j𝑑R𝑑

A

n∑
i=k+1

wi

)
.

To conclude the proof, it remains to show that the sum over j is dominated by the first term

corresponding to j = 1. For this, note that

∞∑
j=1

exp
(
−xj𝑑

)
= exp(−x) ⋅

∞∑
j=1

exp
(
−xj𝑑

)
exp(−x)

= exp(−x) ⋅
∞∑

j=1

exp
(
−x
(
j𝑑 − 1

))

≤ exp(−x) ⋅
∞∑

j=1

(exp(−x))j−1
.

As x is positive in our case, the sum is bounded by a constant due to the convergence of

the geometric series. This concludes the proof. ▪

Now that we know the probability that A ⊆ S is relevant conditioned on RA, we want to understand

how RA is distributed. The following lemma gives an upper bound on its density function.

Lemma 6.7. There exists a constant c depending only on k, 𝑑, and 𝔭, such that the density
function fRA(x) of the random variable RA satisfies

fRA(x) ≤ cx𝑑k−𝑑−1 1

min
si∈A

{wi}
∏
si∈A

wi.

Proof. The density function fRA (x) is the derivative of the distribution function FRA (x) =
Pr [RA ≤ x]. Thus, we have to upper bound the slope of Pr [RA ≤ x]. As before, we

assume that A = {s1, … , sk} and that s1 has minimum weight among sites in A, that is,

minsi∈A{wi} = w1. Recall the definition of RA in Equation (9). It follows directly that

RA ≤ x if and only if ||s1− si||∕(𝜔1+𝜔i) ≤ x for all i ∈ [k]. Note that this clearly holds for

i = 1. For greater i, this is the case if and only if si lies in the ball Bs
1
((𝜔1+𝜔i)x) of radius

(𝜔1+𝜔i)x around s1. To simplify notation, we denote this ball with B(xi) in the following.

Note that the volume vol(B(xi)) is exactly the probability for si to lie sufficiently close to

s1. As the positions of the different sites si are independent, we obtain

FRA(x) = Pr [RA ≤ x] =
k∏

i=2

vol (B(xi)) .

To upper bound the derivative of this, we have to upper bound the growth of vol(B(xi))
depending on xi. For sufficiently small xi, this volume is given by the volume of a ball
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918 BLÄSIUS ET AL.

in R𝑑
. For larger xi, due to the fact that our ground space

7
is bounded, the growth of this

volume slows down. Thus, to get an upper bound on the derivative, we can simply use the

volume of a ball in R𝑑
. Thus, for appropriate constants c1 and c2 only depending on 𝑑 and

𝔭, we obtain

d

dx
vol (B(xi)) ≤

d

dx
c1((𝜔1 + 𝜔i)x)𝑑 ≤

d

dx
c2(𝜔ix)𝑑 =

d

dx
c2wix𝑑.

With this, it follows that

fRA (x) =
d

dx
FRA(x) ≤

d

dx

k∏
i=2

(
c2wix𝑑

)
,

which immediately yields the claimed bound. ▪

By Lemma 6.6, we know the probability for a set A to be relevant conditioned on RA and by

Lemma 6.7 we know how RA is distributed. Based on this, we can bound the unconditional probability

that A is relevant.

Lemma 6.8. Let A ⊆ S. For a constant c only depending on k, 𝑑, and 𝔭, the probability
that A is relevant satisfies

Pr [A is relevant] ≤ c

∏
si∈A

wi

(
∑

si∉A
wi

)k−1
.

Proof. Let A ⊆ S and let RA be the random variable as defined before; see Equation (9).

Note that 0 ≤ RA ≤
𝔭
√
𝑑. By the law of total probability, we have

Pr [A is relevant] =
∫

𝔭√
𝑑

0

Pr [A is relevant|RA = x] ⋅ fRA (x)dx.

Using Lemmas 6.6 and 6.7, we obtain

Pr [A is relevant|RA = x] ⋅ fRA(x) ≤ c1

∏
si∈A

wi exp

(
−c2x𝑑

∑
si∉A

wi

)
x𝑑k−𝑑−1

,

for constants c1 and c2 only depending on k, 𝑑, and 𝔭. Ignoring the factors independent of

x for now, this expression has the form

x𝛼𝑑−1
exp

(
−𝛽x𝑑

)
with 𝛼 = k − 1 and 𝛽 = c2

∑
si∉A

wi,

which lets us apply Lemma A.4 to bound the integral. We obtain

7
Again, this is true for the torus as well as for the hypercube.
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BLÄSIUS ET AL. 919

Pr [A is relevant] = c1

∏
si∈A

wi ⋅
∫

𝔭√
𝑑

0

x𝛼𝑑−1
exp

(
−𝛽x𝑑

)
dx

≤ c1

∏
si∈A

wi ⋅
Γ (𝛼)
𝛽𝛼𝑑

.

As k is an integer, Γ(𝛼) = Γ(k − 1) = (k − 2)!, which is constant. Thus, substituting 𝛼 and

𝛽 by its corresponding values and aggregating all constant factors into c yields

Pr [A is relevant] ≤ c

∏
si∈A

wi

(
∑

si∉A
wi

)k−1
,

which is exactly the bound we wanted to prove. ▪

Having bound the probability that a specific subset of sites A ⊆ S of size k is relevant, we can now

bound the expected total number of relevant subsets. By Lemma 6.5, this also bounds the number of

non-empty Voronoi regions.

Theorem 6.9. Let S be a set of n sites with minimum weight 1, total weight W, and random
positions on the 𝑑-dimensional torus equipped with a 𝔭-norm, for constant 𝑑. For every
fixed k, the expected number of regions of the weighted order-k Voronoi diagram of S is
in O(W). The same holds for random sites in a hypercube.

Proof. For every subset A ⊆ S with |A| = k, let XA be the indicator random variable that

has value 1 if and only if A has non-empty order-k Voronoi region. Moreover, let X be the

sum of these random variables. Note that E [X] is exactly the quantity, we are interested

in. Using linearity of expectation, we obtain

E
[
number of regions

]
= E [X] =

∑
A⊆S
|A|=k

E [XA] .

Due to Lemma 6.5, a subset A with non-empty Voronoi region is also relevant. Thus,

E [XA] ≤ Pr [A is relevant] and Lemma 6.8 yields

∑
A⊆S
|A|=k

E [XA] ≤
∑
A⊆S
|A|=k

c
∏

si∈A wi(∑
si∉A wi

)k−1
. (12)

For technical reasons, we assume c to be the maximum of 1 and the constant from

Lemma 6.8. We continue by proving the following claim:

∑
A⊆S
|A|=k

E [XA] ≤ 4
k2 cW. (13)

In addition to implying the theorem, this claim specifies a constant that comes on top of

c, which is crucial for the rest of the proof.
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920 BLÄSIUS ET AL.

We first prove the claim for the situation, in which W is not dominated by the highest

k weights. Afterwards, we deal with the other somewhat special case. More formally, let

the weights w1, … ,wn be sorted increasingly and consider the case that
∑n−k

i=1
wi ≥ 4

−kW,

that is, if we leave out the k largest weights, we still have a significant portion of the total

weight. We can use this to estimate the denominator in Equation (12):

∑
A⊆S
|A|=k

c
∏

si∈A wi(∑
si∉A wi

)k−1
≤

∑
A⊆S
|A|=k

c
∏

si∈A wi(
4−kW

)k−1

= 4
k (k−1)c ⋅

∑
A⊆S,|A|=k

∏
si∈A wi

Wk−1
.

To bound the fraction by W, observe that the binomial theorem yields

Wk =

( n∑
i=1

wi

)k

≥

∑
A⊆S
|A|=k

∏
si∈A

wi,

as each summand on the on the right-hand side also appears on the left-hand side. This

proves the claim in Equation (13) for the case
∑n−k

i=1
wi ≥ 4

−kW.

For
∑n−k

i=1
wi < 4

−kW, assume for contradiction that the claim in Equation (13) does

not hold for every set of n weights. Then there exists a minimum counterexample, that

is, a smallest number of n weights such that the expected number of non-empty regions

exceeds 4
k2 cW. We show that, based on this assumption, we can construct an even smaller

counterexample; a contradiction. First note that n > 2k for every counterexample, as there

are fewer than 4
k2 cW subsets otherwise (recall that c ≥ 1).

Now let w1, … ,wn be the minimum counterexample and again assume that the

weights are ordered increasingly. Moreover, fix the coordinates of the sites s1, … , sn and

consider two order-k Voronoi diagrams: one on the set of all sites S = {s1, … , sn}, and

the one on all but the k heaviest sites S′ = {s1, … , sn−k} (note that this is well defined

as n > 2k). In the following, we call the former Voronoi diagram  and the latter  ′.

We define a mapping from the non-empty regions of  to non-empty regions of  ′. Let

A ⊆ {s1, … , sn} be a subset of size k with non-empty region in  and let p be an arbitrary

point in this region. Moreover, let A′ be the set of sites corresponding to the region of  ′

containing p. Then we map the region of A to the region of A′. Note that A and A′ share all

sites that have not been deleted: A∩A′ = A∩S′. Thus, any site A that is mapped to A′ must

satisfy A ⊆ A′ ∪ (S ⧵ S′). This limits the number of different regions in  that are mapped

to the same region of  ′ to at most 4
k
. Thus, the number of regions in  ′ is at least 4

−k

times the number of regions in  . As this holds for arbitrary coordinates, this also holds

for the expected number of non-empty regions when choosing random coordinates.

As we assumed w1, … ,wn to be a counterexample for Equation (13), the expected

number of regions with these weights is more than 4
k2 cW. Thus, by the above argument,

the expected number of regions for the weights w1, … ,wn−k is at least 4
−k ⋅ 4

k2 cW. As

we consider the case
∑n−k

i=1
wi < 4

−kW, we can substitute W to obtain that the weights

w1, … ,wn−k lead to at least 4
k2 c
∑n−k

i=1
wi non-empty regions in expectation. Thus, the

weights w1, … ,wn−k also form a counterexample for the claim in Equation (13), which

is a contradiction to the assumption that w1, … ,wn is the minimum counterexample and

thus to the assumption that there is a counterexample at all. ▪
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BLÄSIUS ET AL. 921

7 GEOMETRIC SAT WITH NON-ZERO TEMPERATURE

In the case with temperature T = 0, we used the fact that every clause contains the k variables with

smallest weighted distance; recall Section 4.2. This is no longer true for higher temperatures: for T > 0,

a clause can, in principle, contain any variable. However, the probability to contain a variable that is

far away is rather small. In the remainder of this section, we show that a constant fraction of clauses

actually behave just like in the T = 0 case, that is, they contain the k closest variables. With this, we

can then apply the argument outlined in Section 4.2.

7.1 Expected number of nice clauses

Recall that a clause c is generated by drawing k variables without repetition with probabilities propor-

tional to the connection weights. We call c nice if it contains the k variables with the highest connection

weight and, additionally, the ith variable drawn for c has the ith highest connection weight with c. That

is, c does not only contain the k variables with highest connection weight but, also, they are drawn in

descending order. This is a slightly stronger property than just requiring c to contain the k variables

with lowest weighted distance.

Let x be the connection weight of a variable v that has rather high connection weight with c. To

show that the probability for v ∈ c is reasonably high, we prove that x is large compared to the sum of

connection weights over all variables with smaller weight. The following lemma bounds this sum for

a given x. We use the Iverson bracket to exclude the variables with weight larger than x from the sum,

that is, [X(c, v) ≤ x] evaluates to 1 if X(c, v) ≤ x and to 0 otherwise.

Lemma 7.1. Let c be a clause at any position and let V be a set of n weighted variables
with random positions in T𝑑 . For T < 1 and x ∈ Ω(W1∕T ), the expected sum of connection
weights smaller than x is in O(x), that is,

E

[∑
v∈V

X(c, v) ⋅ [X(c, v) < x]

]
∈ O(x).

Proof. Using linearity of expectation, the term in the lemma’s statement equals to the sum

over the expectations E [X(c, v) ⋅ [X(c, v) ≤ x]]. To bound this expectation, we consider

the three events X(c, v) ≤ (2𝑑wv)1∕T
, (2𝑑wv)1∕T

< X(c, v) < x, and x ≤ X(c, v). Note that

[X(c, v) < x] is 0 in the last event and 1 in the former two. Thus, we obtain

E [X(c, v) ⋅ [X(c, v) < x]]
= Pr

[
X(c, v) ≤ (2𝑑wv)1∕T] ⋅ E [X(c, v)|X(c, v) ≤ (2𝑑wv)1∕T]

(14)

+ Pr
[
(2𝑑wv)1∕T

< X(c, v) < x
]
⋅ E

[
X(c, v)|(2𝑑wv)1∕T

< X(c, v) < x
]
. (15)

We bound the first term from above by assuming X(c, v) = (2𝑑wv)1∕T
whenever

X(c, v) ≤ (2𝑑wv)1∕T
. Moreover, using the CDF for X(c, v) (2) yields

(14) ≤ Pr
[
X(c, v) ≤ (2𝑑wv)1∕T] ⋅ (2𝑑wv)1∕T

=
(
1 − Π𝑑,𝔭wv(2𝑑wv)−1

)
⋅ (2𝑑wv)1∕T

=
(
1 − Π𝑑,𝔭2

−𝑑) ⋅ (2𝑑wv)1∕T ∈ Θ(w1∕T
v ).
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922 BLÄSIUS ET AL.

For the second term, we have to integrate over the probability density function (PDF)

fX(x) of the connection weights X(c, v), which is the derivative of FX(x) (2). Thus, fX(x) =
TΠ𝑑,𝔭wvx−T−1

for x ≥ (2𝑑wv)1∕T
, and we obtain

(15) = Pr
[
(2𝑑wv)1∕T

< X(c, v) < x
]
⋅
∫

x

(2𝑑wv)1∕T

x ⋅ fX(x)
Pr
[
(2𝑑wv)1∕T < X(c, v) < x

]dx

= TΠ𝑑,𝔭wv ⋅
∫

x

(2𝑑wv)1∕T
x−T

dx.

For T < 1, this evaluates to

= TΠ𝑑,𝔭wv ⋅
[

x1−T

1 − T

]x

(2𝑑wv)1∕T

=
TΠ𝑑,𝔭wv

1 − T
⋅
[
x1−T − (2𝑑wv)1∕T−1

]

≤
TΠ𝑑,𝔭wv

1 − T
⋅ x1−T

∈ Θ
(
wvx1−T)

.

Putting these bounds together yields

E

[∑
v

X(c, v) ⋅ [X(c, v) ≤ x]

]
=
∑

v
((14) + (15))

∈ O

(∑
v

w1∕T
v +

∑
v

wvx1−T

)

⊆ O
⎛
⎜⎜⎝

(∑
v

wv

)1∕T

+ x1−T ⋅
∑

v
wv

⎞
⎟⎟⎠

∈ O
(
W1∕T + x1−TW

)
.

As, x ∈ Ω(W1∕T ), we have W1∕T ∈ O(x), which handles the first term. The second term is

also in O(x), as x ∈ Ω(W1∕T ) implies W ∈ O(xT ). Thus, this yields the claimed bound of

O(x). ▪

This lets us show that each clause is nice with constant probability. The only assumption we need

for this is the fact that no single weight is too large, that is, every weight wi has to be asymptotically

smaller than the total weight W.

Theorem 7.2. LetΦ be a random formula drawn from the weighted geometric model with
ground space T𝑑 equipped with a 𝔭-norm, with temperature T < 1, and with wv∕W ∈ o(1)
for v ∈ V. Let c be a clause of Φ. Then c is nice with probability Ω(1).

Proof. We prove two things. First, we show that, with probability Ω(1), there are at least

k variables sufficiently close to c that they have connection weight Ω(W1∕T ). Second, we

use Lemma 7.1 to show that the k variables with highest connection weight are chosen for

c with constant probability (in descending order).
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BLÄSIUS ET AL. 923

For the first part, we show that there is a constant a such that, with constant probability,

at least k variables have connection weight at least aW1∕T
. For a fixed variable v, we can

use the CDF of X(c, v) (Equation 2) to obtain

Pr
[
X(c, v) ≥ aW1∕T] = Π𝑑,𝔭wv

(
aW1∕T)−T

=
Π𝑑,𝔭

aT
wv
W

= 2k wv
W

, for a =
(
Π𝑑,𝔭

2k

)1∕T

.

Note that this is a valid probability, as wv∕W ∈ o(1) implies that it is below 1. For

the above choice of a, we obtain that the expected number of variables with connec-

tion weight at least aW1∕T
is 2k. As the connection weights for the different vari-

ables are independent, we can apply the Chernoff–Hoeffding bound in Theorem A.7

to obtain that at least k variables have connection weight aW1∕T
with constant

probability.

For the second part of the proof, let x be the connection weight of the kth closest vari-

able. With the argument above, we can assume x ∈ Ω(W1∕T ) with constant probability,

which lets us apply Lemma 7.1. To do so, consider the experiment of drawing the first vari-

able for our clause c. Let v be the variable that maximizes the connection weight X(c, v).
The probability of drawing v equals X(c, v) divided by the sum of all connection weights.

By Lemma 7.1, the sum of all connection weights smaller than x is in O(x). Thus, the sum

of all connection weights is in O(X(c, v)), which implies that v is chosen with constant

probability. As we draw variables without repetition, the exact same argument applies for

the second closest variable and so on. Thus, the probability that c contains the k closest

variables drawn in order of descending connection weights is at least a constant, if there

are k sufficiently close variables. As the latter holds with constant probability, c is nice

with constant probability. ▪

By the linearity of expectation, this immediately yields the following bound on the expected

number of nice clauses.

Corollary 7.3. Let Φ be a random formula with m clauses drawn from the weighted geo-
metric model with ground space T𝑑 equipped with a 𝔭-norm, with temperature T < 1, and
with wv∕W ∈ o(1) for v ∈ V. The expected number of nice clauses in Φ is Θ(m).

7.2 Concentration of nice clauses

We show that the number of nice clauses is concentrated around its expectation, that is, with high

probability, a constant fraction of clauses is nice. Our main tool for this will be the method of typi-

cal bounded differences [61]; see Section A.6. To this end, we consider several random variables, for

example, the coordinates of clauses and variables, that together determine the whole process of gener-

ating a random formula. The number of nice clauses is then a function f of these random variables and

its expectation is Θ(m), due to Corollary 7.3. Roughly speaking, the method of bounded differences

then states that the probability that f deviates too much from its expectation is low if changing a single

random variable only slightly changes f .
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924 BLÄSIUS ET AL.

7.2.1 The random variables

So far, we viewed the generation of a random formula as a two-step process: first, sample coordinates

for the variables and clauses; second, sample the variables contained in each clause based on their

distances. The first step can be easily expressed via random variables. Let V1, … ,Vn and C1, … Cm
be the coordinates

8
of the n variables and m clauses, respectively. Though the second step heavily

depends on the distances determined by the first, we can determine all random choices in advance.

For all i ∈ [m] and j ∈ [k], let Xj
i be a random variable uniformly distributed in [0, 1). The variable

Xj
i determines the jth variable of the ith clause ci in the following way. We partition the interval [0, 1)

such that each variable v not already chosen for ci corresponds to a subinterval of length proportional

to the connection weight X(ci, v). We order these subintervals by length such that the largest interval

comes first. The jth variable of ci is then the variable whose interval contains Xj
i . Note that this samples

k different variables for each clause, with probabilities proportional to the connection weights X(ci, v).
Note further that the whole generation process of a random formula is determined by evaluating the

independent random variables V1, … ,Vn,C1, … ,Cm,X1

1
, … ,Xk

m.

To formalize the concept of nice clauses in this context, we require some more notation. For i ∈ [m],
let i be the sequence of all variables ordered decreasingly by connection weight with the clause

ci. Moreover, let i[a, b] denote the subsequence from the ath to the bth variable in this sequence,

including the boundaries. To simplify notation, we abbreviate the unique element ini[a, a]withi[a].
Recall that clause ci is nice if, for each of k steps, we choose the variable with highest connection

weight that has not been chosen before. With respect to the random variables, this happens if, for each

j ∈ [k], Xj
i is smaller than the connection weight of i[j] divided by the sum of all connection weights

of the remaining variables i[j, n]. We thus define the indicator variable

Ni =
⎧
⎪⎨⎪⎩

1, if ∀j ∈ [k] ∶ Xj
i <

X(ci,i[j])∑
v∈i[j,n]

X(ci, v)
,

0 otherwise,

(16)

which is 1 if and only if the ith clause is nice. With this, we can define the number of nice clauses as

f (V1, … ,Vn,C1, … ,Cm,X1

1
, … ,Xk

m) =
∑

i∈[m] Ni.

7.2.2 Bounding the effect on the number of nice clauses

To apply the method of bounded differences (Theorem A.9 or the more specific Corollary A.10), we

have to bound the effect of changing the value of only one of these random variables on f . For the

variables C1, … ,Cm, this is easy: Changing Ci moves the position of the clause ci, which only makes

a difference for ci. Thus, the number of nice clauses changes by at most 1. Similarly, changing Xj
i only

impacts the clause ci, which implies that it changes the number of nice clauses by at most 1.

For the variables V1, … ,Vn, one can actually construct situations in which changing only a single

position drops f from m to 0. There are basically two situations in which this can happen. First, if

a single variable is close to many clauses, changing its position potentially impacts many clauses.

Second, if many inequalities in Equation (16) are rather tight, then moving a single variable slightly

closer to many clauses can increase the denominator on the right hand side by enough to change Ni
for many clauses. We exclude both situations by defining unlikely bad events. By assuming these bad

8
Technically, these are multivariate random variables, as they represent 𝑑-dimensional points in T𝑑

.
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BLÄSIUS ET AL. 925

events do not happen, we can bound the effect of moving a single variable v by

𝛿v = w
1

1+T
v n

T
1+T log

2

1+T n. (17)

The following bound gives a simpler estimate for 𝛿v that will be useful later.

Lemma 7.4. Let 0 < T < 1 and wv ∈ O(n1−𝜀) for an arbitrary 𝜀 > 0. Then
𝛿v ∈ O

(√
wvn

log n

)
.

Proof. We ignore logarithmic factors and show that 𝛿v∕
√

wvn converges polynomially to

0 for n → ∞. As logarithmic factors grow slower than any polynomial, this proves the

claim. We get

𝛿v√
wvn

= w
1

1+T
− 1

2

v n
T

1+T
− 1

2 .

Rearranging the exponents yields

1

1 + T
− 1

2
= 2 − (1 + T)

2(1 + T)
= 1 − T

2(1 + T)
, and

T
1 + T

− 1

2
= 2T − (1 + T)

2(1 + T)
= − 1 − T

2(1 + T)
.

Thus 𝛿v∕
√

wvn = (wv∕n)c for a positive constant c. As wv ∈ O(n1−𝜀), this yields

the claim. ▪

The following lemma states that, with overwhelming probability, no point (and therefore no vari-

able) is too close to too many clauses. This eliminates the first problematic situation (and will also

help with the second). Note that this statement only assumes random clause positions and holds for

arbitrary variable positions, that is, when moving a variable, we can assume that it holds before and

after the movement.

Lemma 7.5. Let m ∈ O(n), 0 < T < 1, and wv ∈ O(n1−𝜀) for every v ∈ V and arbitrary
constant 𝜀 > 0. Let r = (wvlog

2(n)∕n)
1

𝑑(1+T) . With overwhelming probability, for every
point p, the ball Bp(r) around p with radius r contains only O(𝛿v) clauses.

Proof. As there are uncountably many points p, it is hard to argue about them directly.

Thus, we first reduce the statement to one about finitely many positions, namely the

positions of the clauses. Then it remains to show the statement for these positions.

Consider a fixed point p. As Bp(r) has diameter 2r, the pair-wise distance between

clauses in Bp(r) is at most 2r. Thus, if there exists a point p such that Bp(r) contains too

many clauses, then there exists a clause that has too many other clauses at distance at most

2r. Thus, it suffices to show that for every clause c ∈ C, the number of clauses of distance

at most 2r to c is in O(𝛿v).
Let c0 be a fixed clause (we later apply the union bound over all clauses). We want

to bound the probability for another clause c to be closer than 2r to c0. For this, we use

the CDF of the distance in Equation (1). Note that the restriction of Equation (1) to the

interval [0, 0.5] is not an issue here, as wv ∈ O(n1−𝜀) implies r ∈ o(1) and thus 2r ≤ 0.5.

Thus, we obtain
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926 BLÄSIUS ET AL.

Pr [||c0 − c|| ≤ 2r] = Π𝑑,𝔭2
𝑑r𝑑

= Π𝑑,𝔭2
𝑑

(
wvlog

2n
n

) 1

1+T

= Π𝑑,𝔭2
𝑑

(wv
n

) 1

1+T
log

2

1+T n.

As there are m ∈ O(n) clauses, the expected number of clauses with distance at most 2r
to c0 is

mΠ𝑑,𝔭2
𝑑

(wv
n

) 1

1+T
log

2

1+T n ∈ O
(

w
1

1+T
v n1− 1

1+T log
2

1+T n
)
= O

(
w

1

1+T
v n

T
1+T log

2

1+T n
)
,

which is already the claimed bound of O(𝛿v). As 0 < T < 1, this upper bound grows

polynomially in n. Thus, by the Chernoff–Hoeffding bound in Corollary A.8, it holds

asymptotically with overwhelming probability. Applying the union bound over all O(n)
clauses yields the claim. ▪

The above lemma is stated in terms of the distances. In the following it will be useful to think of it

in terms of connection weights instead. The following lemma translates the radius r in Lemma 7.5 to

the corresponding connection weight between a clause and a variable at distance r.

Lemma 7.6. Let v ∈ V be a variable and let c ∈ C be a clause with distance ||c − v|| =
(wvlog

2(n)∕n)
1

𝑑(1+T) . They have connection weight X(c, v) = w
1

1+T
v n

1

T(1+T) log
− 2

T(1+T) n.

Proof. Using the definition of the connection weight and inserting the above distance, we

obtain

X(c, v) =
(

wv
||c − v||𝑑

) 1

T

=

(
wv ⋅

(
n

wvlog
2n

) 1

1+T

) 1

T

= w
1

T
− 1

T(1+T)
v n

1

T(1+T) log
− 2

T(1+T) n

= w
1

1+T
v n

1

T(1+T) log
− 2

T(1+T) n.
▪

Combining Lemmas 7.5 and 7.6, we obtain that, for arbitrary variable positions (and random

clause positions), no variable has a high connection weight to too many clauses, as summarized by the

following corollary.

Corollary 7.7. Let m ∈ O(n), 0 < T < 1, and wv ∈ O(n1−𝜀) for every v ∈ V and arbitrary
constant 𝜀 > 0. With overwhelming probability, for every variable v and every possible

position of v, the number of clauses with connection weight at least w
1

1+T
v n

1

T(1+T) log
− 2

T(1+T) n
is in O(𝛿v).

For the second problematic situation mentioned above, consider for a clause ci the k inequalities in

Equation (16). We call ci v-critical if for one of these inequalities the difference between the left and

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21168 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BLÄSIUS ET AL. 927

right hand side is at most 𝛿v∕n. In the following lemma, we first bound the number of critical clauses.

Afterwards, we show that the concept of critical clauses works as intended in the sense that moving

the variable v does only change the niceness status of v-critical clauses.

Lemma 7.8. Let m ∈ O(n), 0 < T < 1 and let v be a variable. With overwhelming
probability, there are only O(𝛿v) v-critical clauses.

Proof. A clause ci can only be v-critical if one of the random variables Xj
i for j ∈ [k]

differs by at most 𝛿v∕n to the right hand side of the inequality in Equation (16). The prob-

ability for this to happen for a single Xj
i is 2𝛿v∕n. As k is constant, ci is v-critical with

probability O(𝛿v∕n). Thus, as m ∈ O(n), the expected number of v-critical clauses is in

O(𝛿v). As the event of being v-critical is independent for the different clauses, and as this

bound is polynomial in n for T > 0 (see Equation (17)), the Chernoff–Hoeffding bound

in Corollary A.8 yields the claim. ▪

To prove that the movement of a single variable does not change the niceness status of too many

clauses, we argue along the following lines. Let v be the variable we move and consider a clause c.

If, before or after the movement, v is so close to c that we get a very high connection weight X(c, v),
we basically give up on c and assume that c changes its status (from being nice to not being nice or

the other way round). By Corollary 7.7 this only happens for at most O(𝛿v) clauses. Similarly, if c
is v-critical, we also give up on c, which happens for at most O(𝛿v) clauses by Lemma 7.8. Then it

remains to show that in all other cases (i.e., when X(c, v) is low before and after the movement and c
is not v-critical), the status of c remains unchanged.

This is done as follows. As c is not v-critical, the difference between the right and left hand side

of the inequality in Equation (16) is somewhat high. Thus, if moving v does not change the right hand

side by too much, then c keeps its niceness status. To show this, we can use the fact that X(c, v) is low

before and after the movement and thus it cannot change by too much. This change of X(c, v) has to be

considered relative to the other connection weights, that is, changing X(c, v) has less impact if there

are other variables with higher connection weight. The following lemma establishes that these other

variables with higher connection weight indeed exist.

Lemma 7.9. Let wv ∈ O(n1−𝜀) for every v ∈ V and arbitrary constant 𝜀 > 0. With
overwhelming probability every clause has k variables with connection weight at least
W

1

T log
− 2

T n.

Proof. Let x0 = W
1

T log
− 2

T n be the above connection weight and let c be a clause with

fixed position. For every variable v, the probability for X(c, v) ≥ x0 is Π𝑑,𝔭wvx−T
0

=
Π𝑑,𝔭wvW−1

log
2n by Equation (2). Note that we can apply Equation (2) as x0 ≥ (2𝑑wv)1∕T

due to the condition wv ∈ O(n1−𝜀) and the fact that W ≥ n. Summing this over all vari-

ables yields that the expected number of variables with connection weight at least x0 is

Π𝑑,𝔭log
2n. By Corollary A.8, c has Ω(log

2n) variables with connection weight at least x0

with overwhelming probability. Applying the union bound over all clauses and the fact

that k is constant while log
2n grows with n yields the claim. ▪

Now, we are ready to bound the effect of moving just a single variable on the number of nice

clauses.

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21168 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



928 BLÄSIUS ET AL.

Lemma 7.10. Let m ∈ O(n), 0 < T < 1, and wv ∈ O(n1−𝜀) for every v ∈ V and arbitrary
constant 𝜀 > 0. With overwhelming probability, moving a single variable to an arbitrary
position changes the number of nice clauses by only O(𝛿v).

Proof. We show the result for a fixed variable v. It then follows for all variables using the

union bound.

Consider how the niceness status of clauses changes when moving v. Due to Corol-

lary 7.7, there are only O(𝛿v) clauses with connection weight at least w
1

1+T
v n

1

T(1+T) log
− 2

T(1+T) n
before or after the movement. Moreover, due to Lemma 7.8 there are only O(𝛿v) v-critical

clauses. Thus, even if all these clauses change the status from being nice to not being nice

or vice versa, the number of nice clauses changes by only O(𝛿v).

Every remaining clause c is not v-critical and we have X(c, v) ≤ w
1

1+T
v n

1

T(1+T) log
− 2

T(1+T) n
before and after the movement. In the following, we show that a clause c with these two

properties is nice after the movement if and only if it is nice before the movement.

We first observe that v does not belong to the k variables closest to c due to Lemma 7.9:

with overwhelming probability, there are k variables with connection weight at least

W
1

T log
− 2

T n, which is asymptotically bigger than X(c, v) as wv ∈ O(n1−𝜀).
Thus, in the right hand side of the inequality in Equation (16), the connection weight

X(c, v) only appears in the denominator. To show that the right hand side does not change

by too much, let x be the numerator, let y be the denominator before the movement, and

let y′ be the denominator after the movement. Note that |y′ − y| is exactly the change in

X(c, v) caused by the movement of v. With this, the right hand side of the inequality in

Equation (16) changes by

||||
x
y
− x

y′
|||| =

||||
xy′ − xy

yy′
|||| =

x
y′
⋅
|y′ − y|

y
.

Note that x (the numerator) is the connection weight of one variable whose connection

weight also appears in the sum of the denominator (after and before the movement). Thus,
x
y′
≤ 1 and the above change is upper bounded by

|y′−y|
y

. Note that the upper bound on

X(c, v) holds before and after the movement and thus X(c, v) can only change by less than

this upper bound, that is, |y′ − y| < w
1

1+T
v n

1

T(1+T) log
− 2

T(1+T) n. Moreover, y is the sum of

multiple connection weights including the weight of one of the k closest variables. Thus,

by Lemma 7.9 and the fact that W ≥ n we can assume that y ≥ n
1

T log
− 2

T n. Putting this

together yields

||||
x
y
− x

y′
|||| ≤

|y′ − y|
y

<
w

1

1+T
v n

1

T(1+T) log
− 2

T(1+T) n
n

1

T log
− 2

T n
=
(wv

n

) 1

1+T
log

2

1+T n = 𝛿v
n
.

As c is not v-critical, the difference between the left and right side of the inequality in

Equation (16) is at least
𝛿v
n

before the movement. Thus, as the movement can change the

right hand side by only less than
𝛿v
n

, the clause c is nice after the movement if and only if

it was nice before. ▪

With this we are ready to prove concentration using the method of typical bounded differences.
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BLÄSIUS ET AL. 929

Theorem 7.11. LetΦ be a random formula with n variables and m ∈ Θ(n) clauses drawn
from the weighted geometric model with ground space T𝑑 equipped with a 𝔭-norm, with
temperature 0 < T < 1, with W ∈ O(n), and with wv ∈ O(n1−𝜀) for every v ∈ V and
arbitrary constant 𝜀 > 0. With high probability, Θ(m) clauses are nice.

Proof. We want to apply Corollary A.10. As defined in Section 7.2.1, the random variables

are the variable positions V1, … ,Vn, the clause positions C1, … ,Cm, and the coin flips

X1

1
, … ,Xk

m, and the function f is the number of nice clauses. For N = n + m + km note

that |f (X)| ≤ m ≤ N. For the nice event Γ we assume that the statement from Lemma 7.10

holds. Due to Lemma 7.10, the probability for this is Pr [Γ] ≥ 1−N−c
for any constant c and

sufficiently large N. Thus, when choosing c ≥ 3, we satisfy the condition |f (X)| ≤ Nc−2

of Corollary A.10.

Now we have to bound the change of f when changing only one of the random vari-

ables, assuming we start with an event in Γ, that is, we have to determine the Δi from

Corollary A.10. As mentioned before, changing a clause position Ci or one of the Xj
i

impacts only one clause and thus changes f by at most 1. Moreover, as we start with a

configuration satisfying Lemma 7.10, f changes by only O(𝛿v) for variable v. Thus, for the

sum in Corollary A.10 we obtain

∑
i∈[N]

Δ2

i ∈ O

(
m + km +

∑
v∈V

𝛿
2
v

)
.

Due to Lemma 7.4, we have 𝛿v ∈ O(
√

wvn∕ log n). Thus, the above sum can be

bounded by

∑
v∈V

𝛿
2
v ∈ O

⎛
⎜⎜⎝
∑
v∈V

(√
wvn

log n

)2⎞
⎟⎟⎠
= O

(
n

log
2n

∑
v∈V

wv

)
= O

(
n2

log
2n

)
.

As E
[
f
]
∈ Θ(m) = Θ(n), this is exactly the bound required by Corollary A.10 and thus

the number of nice clauses is in Θ(m) with high probability. ▪

7.2.3 Putting things together

Now, we are ready to prove our main theorem for the geometric model.

Theorem 7.12. Let Φ be a formula with n variables and m ∈ Θ(n) clauses drawn from
the weighted geometric model with ground space T𝑑 equipped with a 𝔭-norm, temperature
T < 1, W ∈ O(n), and wv ∈ O(n1−𝜀) for every v ∈ V and any constant 𝜀 > 0. Then,
Φ contains a. a. s. an unsatisfiable subformula of constant size, which can be found in
O(n log n) time.

Proof. Let m′
be the number of clauses inΦ that consist of the k variables with minimum

weighted distance. By Theorem 7.11 we have m′ ∈ Θ(m) = Θ(n). In the following, we

consider only these clauses.

Consider the weighted order-k Voronoi diagram of the n variables and let n′ be

the number of non-empty regions. By Theorem 6.9 and due to W ∈ O(n), we have
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E
[
n′
]
∈ O(n). Moreover, it follows from Markov’s inequality that n′ ≤ n log n holds

asymptotically almost surely:

Pr
[
n′ ≥ n log n

]
≤

E
[
n′
]

n log n
∈ O

(
1

log n

)
.

Now, determining the k variables of a clause c is equivalent to observing which region of

the order-k Voronoi diagram contains c, or more precisely, which k variables define this

region. Thus, choosing random positions for the clauses is like throwing m′
balls into n′

(non-uniform) bins. Thus, if m′ ∈ Ω(n′∕polylog n′), we can apply Corollary A.5. With

the above bounds, which hold asymptotically almost surely, it is not hard to see that this

condition in fact holds: If n′ ≤ n, it clearly holds as m′ ∈ Ω(n). Otherwise, we have

n′ ≤ n log n ≤ n log n′, which implies n ≥ n′∕ log n′, and thus m ∈ Ω(n′∕ log n′).
Applying Corollary A.5 tells us that, asymptotically almost surely, there is a bin with a

superconstant number of balls. In other words, there is a superconstant number of clauses

that share the same set of k variables. For sufficiently large n, this is bigger than 2
k
, which

implies an unsatisfiable subformula consisting of only 2
k

clauses. Clearly, it can be found

in O(n log n) time by sorting the clauses lexicographically with respect to the contained

variables. ▪
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APPENDIX A: BASIC TECHNICAL TOOLS

This section is a collection of tools we use throughout the article that were either known before or are

straight-forward to prove but distract from the core arguments we make in the article.

A.1 Discrete power-law weights

The following lemma summarizes some properties of the probability distribution given by the discrete

power-law weights.

Lemma A.1. Let 𝛽 > 2 and

pi =
i−1∕(𝛽−1)

∑n
j=1

j−1∕(𝛽−1) ,

for i ∈ [n]. It holds that

n∑
j=1

j−1∕(𝛽−1) = (1 + o(1)) 𝛽 − 1

𝛽 − 2
⋅ n(𝛽−2)∕(𝛽−1)

,

F(i) ∶=
i∑

j=1

pj ∈ O
(( i

n

)(𝛽−2)∕(𝛽−1))
,

and

n∑
j=1

p2

j ∈

⎧
⎪⎪⎨⎪⎪⎩

Θ
(

n−2
𝛽−2

𝛽−1

)
, 𝛽 < 3;

Θ (ln n∕n) , 𝛽 = 3;
Θ
(
n−1

)
, 𝛽 > 3.

(A1)

Proof. Since j−1∕(𝛽−1)
is monotonically decreasing, it holds that

n∑
j=1

j−1∕(𝛽−1)
≤ 1 +

∫

n

j=1

j−1∕(𝛽−1)
dj

= 1 + 𝛽 − 1

𝛽 − 2

(
n(𝛽−2)∕(𝛽−1) − 1

)
= 𝛽 − 1

𝛽 − 2
⋅ n(𝛽−2)∕(𝛽−1) − 1

𝛽 − 2
,
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and

n∑
j=1

j−1∕(𝛽−1)
≥ n−1∕(𝛽−1) +

∫

n

j=1

j−1∕(𝛽−1)
dj

= 𝛽 − 1

𝛽 − 2
⋅ n(𝛽−2)∕(𝛽−1) − 𝛽 − 1

𝛽 − 2
+ n−1∕(𝛽−1)

.

Equivalently, we get

F(i) =
i∑

j=1

pj =
∑i

j=1
j−1∕(𝛽−1)

∑n
j=1

j−1∕(𝛽−1)

≤
1∑n

j=1
j−1∕(𝛽−1)

(
1 +
∫

i

j=1

j−1∕(𝛽−1)
dj
)

≤
1∑n

j=1
j−1∕(𝛽−1)

(
𝛽 − 1

𝛽 − 2
⋅ i(𝛽−2)∕(𝛽−1) − 1

𝛽 − 2

)

∈ O
(( i

n

)(𝛽−2)∕(𝛽−1))
.

Finally, we want to bound

n∑
j=1

p2

j =
∑n

j=1
j−2∕(𝛽−1)

(∑n
j=1

j−1∕(𝛽−1)
)2

.

First, note that for 𝛽 = 3 this equation yields

n∑
j=1

p2

j =
Hn(∑n

j=1
j−1∕(𝛽−1)

)2
∈ Θ(ln n∕n),

where Hn denotes the nth harmonic number. For 𝛽 ≠ 3 we can achieve

n∑
j=1

p2

j ≤
1(∑n

j=1
j−1∕(𝛽−1)

)2

(
1 +
∫

n

j=1

j−2∕(𝛽−1)
dj
)

= 1(∑n
j=1

j−1∕(𝛽−1)
)2

(
1 + 𝛽 − 1

𝛽 − 3
⋅
(
n(𝛽−3)∕(𝛽−1) − 1

))
,

and

n∑
j=1

p2

j ≥
1(∑n

j=1
j−1∕(𝛽−1)

)2

(
n−2∕(𝛽−1) +

∫

n

j=1

j−2∕(𝛽−1)
dj
)

= 1(∑n
j=1

j−1∕(𝛽−1)
)2

(
n−2∕(𝛽−1) + 𝛽 − 1

𝛽 − 3
⋅
(
n(𝛽−3)∕(𝛽−1) − 1

))
.
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BLÄSIUS ET AL. 935

If 𝛽 < 3, the expressions above yield

n∑
j=1

p2

j ∈ Θ
⎛
⎜⎜⎜⎝

1(∑n
j=1

j−1∕(𝛽−1)
)2

⎞
⎟⎟⎟⎠
⊆ Θ

(
n−2(𝛽−2)∕(𝛽−1))

.

For 𝛽 > 3, they yield

n∑
j=1

p2

j ∈ Θ
(

n(𝛽−3)∕(𝛽−1)

n2(𝛽−2)∕(𝛽−1)

)
⊆ Θ

(
n−1

)
.

This proves all statements of the lemma. ▪

A.2 CDF of connection weights in the geometric model

The CDF FX(x)) of the connection weights X(c, v) in the geometric SAT model satisfies the following

lemma.

Lemma A.2. FX(x) = 1 − Π𝑑,𝔭wvx−T for x ≥
(
2
𝑑wv

)1∕T .

Proof. Inserting the definition of the connection weight and rearranging slightly yields

FX(x) = Pr [X(c, v) ≤ x]

= Pr

[(
wv

||c − v||𝑑
)1∕T

≤ x

]

= Pr

[
||c − v|| ≥ w1∕𝑑

v x−T∕𝑑
]

= 1 − Pr

[
||c − v|| < w1∕𝑑

v x−T∕𝑑
]
.

As c and v are two random points, we can use the CDF for the distances between random

points in Equation (1) to obtain

FX(x) = 1 − Π𝑑,𝔭wvx−T
for x ≥

(
2
𝑑wv

)1∕T
,

which concludes the proof. ▪

A.3 Volume of balls in a hypercube

We are regularly concerned with the asymptotic behavior of a ball’s volume depending on its radius.

The following lemma helps us to deal with the edge case, where the ball stretches beyond the boundary

of our ground space.

Lemma A.3. Let H be a 𝑑-dimensional unit-hypercube in R𝑑 equipped with a 𝔭-norm.
There exists a constant c > 0 such that, for every p ∈ H and r > 0, the intersection of H
with the ball Bp(r) of radius r around p has volume at least min{1, cr𝑑}.
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936 BLÄSIUS ET AL.

Proof. In the following, we assume H = [−0.5, 0.5]𝑑 (rather than [0, 1]𝑑), as it makes the

proof more convenient. If r is sufficiently small, then Bp(r) is completely contained in H.

Thus, in this case, the claim follows from the fact that the volume of a ball with radius r in

𝑑-dimensional space is proportional to r𝑑 . Thus, we have to prove that the parts of Bp(r)
outside of H are asymptotically not relevant.

Let p1, … , p𝑑 be the coordinates of p and assume without loss of generality that p
lies in the all-negative orthant, that is, pi ≤ 0 for i ∈ [𝑑]. We proof the claim by defining

a box B with the following three properties. First, the box B has volume proportional to

r𝑑 . Second, B is a subset of the ball Bp(r). Third, B is a subset of the hypercube H or H is

a subset of Bp(r). Note that the lemma’s statement clearly holds if H is a subset of Bp(r)
as the intersection has volume 1 in this case. If H is not a subset of Bp(r), the second and

third property imply that B is a subset of the intersection of Bp(r) and H. Thus, the volume

of B given by the first property is a lower bound for the volume of the intersection, which

proves the claim.

It remains to define B and prove the three properties. The box B has p as corner and

extends from there in the direction of the all-positive orthant. The side lengths are chosen

proportional to the distance from the edge of H in this direction. Formally, the corners of

B are {p1, p1 + r(0.5 − p1)∕ 𝔭
√
𝑑} × · · · × {p𝑑, p𝑑 + r(0.5 − p𝑑)∕ 𝔭

√
𝑑}.

To prove the first property, note that the side length of B in dimension i is r(0.5 −
pi)∕ 𝔭

√
𝑑. As pi ≤ 0, this is at least 0.5r∕ 𝔭

√
𝑑, which implies that the volume of B is at least

(0.5r∕ 𝔭
√
𝑑)𝑑 . For the second property, note that the point of B with maximum distance

from p is the opposite corner, that is, the point with coordinates (pi + r(0.5 − pi)∕ 𝔭
√
𝑑).

The distance from p is given by

𝔭

√√√√ 𝑑∑
i=1

(
r(0.5 − pi)

𝔭
√
𝑑

)𝔭
≤

𝔭

√√√√ 𝑑∑
i=1

r𝔭
𝑑

= r.

Finally, for the third property, assume r = 𝔭
√
𝑑. Then the coordinates pi + r(0.5− pi)∕ 𝔭

√
𝑑

of the corners of B simplify to 0.5. Thus, all corners of B are still in the hypercube H if

r ≤ 𝔭
√
𝑑. On the other hand, if r ≥ 𝔭

√
𝑑, then H is completely contained in Bp(r), which

concludes the proof of the last property. We note that it is easy to verify that all above

arguments also hold for the limit 𝔭 = ∞. ▪

A.4 Derivative of the incomplete gamma function

We need the following somewhat technical bound that is easy to verify.

Lemma A.4. Let Γ be the gamma function. For any 𝛼, 𝛽, 𝛾, 𝑑 ∈ R with 𝛽, 𝛾, 𝑑 > 0,

∫

𝛾

0

x𝛼𝑑−1
exp

(
−𝛽x𝑑

)
dx ≤ Γ (𝛼)

𝛽𝛼𝑑

.

Proof. Let Γ(𝛼, x) be the incomplete gamma function. Its derivative is

𝜕Γ(𝛼, x)
𝜕x

= −x𝛼−1
exp(−x).
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BLÄSIUS ET AL. 937

Thus, it follows that

𝜕

𝜕x

(
−
Γ
(
𝛼, 𝛽x𝑑

)
𝛽𝛼𝑑

)
= 𝛽𝑑x𝑑−1

(
𝛽x𝑑

)
𝛼−1

exp
(
−𝛽x𝑑

)
𝛽𝛼𝑑

= x𝛼𝑑−1
exp

(
−𝛽x𝑑

)
.

Using this, the given integral evaluates to

∫

𝛾

0

x𝛼𝑑−1
exp

(
−𝛽x𝑑

)
dx =

[
−
Γ
(
𝛼, 𝛽x𝑑

)
𝛽𝛼𝑑

]
𝛾

0

= 1

𝛽𝛼𝑑

(
Γ (𝛼, 0) − Γ

(
𝛼, 𝛽𝛾

𝑑
))

≤
Γ (𝛼, 0)
𝛽𝛼𝑑

.

▪

A.5 Balls into heterogeneous bins

Consider throwing m balls into n uniform bins, that is, for each ball we draw one of the n bins uniformly

at random and place the ball into the drawn bin. The maximum load L is the random variable that

describes the maximum number of balls that are together in the same bin. From the analysis by Raab

and Steger [55, Theorem 1], we immediately get the following corollary.

Corollary A.5 ([55, Theorem 1]). Throw m balls into n uniform bins and let L be the
maximum load. If m ∈ Ω( n

polylog n
), then L ∈ Ω( log n

log log n
) asymptotically almost surely.

Now assume we have non-uniform bins, that is, the probability for each ball to end up in the ith
bin is pi with

∑
i pi = 1. Intuitively, Corollary A.5 should still hold in this setting, as increasing the

probability of some bins only makes it more likely that a bin gets many balls. Making this argument

formal yields the following theorem.

Theorem A.6. Corollary A.5 also holds for the non-uniform bins.

Proof. Let B = [n] be the set of all bins and let B′ be the subset of bins with probability

at least 1∕(2n). These are the bins whose probability either increased, or decreased by a

factor of at most 2. Without loss of generality, let B′ = [n′]. Note that the probability for a

ball to land in a bin of B′ is at least a constant, as every bin not in B′ has probability at most

1∕(2n). Thus, by the Chernoff–Hoeffding bound in Corollary A.8, a constant fraction of

the balls end up in a bin of B′ with high probability. We make a case distinction on how

large n′ is.

First, assume n′ ≤ m∕ log n. Thus, with high probability, we end up with Θ(m) balls

in at most m∕ log n bins, which means that at least one bin contains Ω(log n) balls. Thus,

clearly L ∈ Ω(log n∕ log log n).
Second, assume n′ > m∕ log n. Recall that each bin in B′ has probability at least 1∕(2n).

We consider the alternative experiment where, for every ball, each bin in B′ has probability

exactly 1∕(2n) to get the ball. Balls not landing in B′ are discarded. Let L′ denote the max-

imum number of balls that share a bin in B′. Clearly, we can couple the two experiments

such that L ≥ L′ holds in every outcome. It remains to show that L′ ∈ Ω(log n∕ log log n).
For this, let m′

be the number of balls ending up in B′. Note that m′
is a random variable.
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938 BLÄSIUS ET AL.

However, if we condition on m′
, then we are back to the normal homogeneous balls into

bins, except that we throw m′
balls into n′ bins. If we show that m′ ∈ Ω(n′∕polylog n′),

then Corollary A.5 tells us that L′ ∈ Ω(log n′∕ log log n′). First note that this is sufficient

for our purpose: as n′ > m∕ log n and m ∈ Ω(n∕polylog n), we get

log n′

log log n′
>

log m − log log n
log(log m − log log n)

∈ Ω
(

log n − log polylog n − log log n
log(log n − log polylog n − log log n)

)

⊆ Ω
(

log n
log log n

)
.

It remains to show that m′ ∈ Ω(n′∕polylog n′) so that we can actually apply Corol-

lary A.5. To do so, recall that B′ has n′ bins, each with probability 1∕(2n). Thus, the

probability that a single ball lands in B′ is n′∕(2n), which shows that m′
is mn′∕(2n) in

expectation. As n′ is almost m (up to logarithmic factors) and m is almost n, this expec-

tation is almost linear in n. Thus, by the Chernoff–Hoeffding bound in Corollary A.8, we

can assume that

m′ ∈ Θ
(

mn′
n

)

holds with high probability. Using that n′ > m∕ log n and m ∈ Ω(n∕polylog n), we obtain

mn′
n

>
m2

n log n
∈ Ω

(
n

polylog n

)
.

As n′ ≤ n, it follows that m ∈ Ω(n′∕polylog n′), which concludes the proof. ▪

A.6 Concentration bounds

For a random experiment, we say that an event happens with high probability (w. h. p.) if the probability

is at least 1−O(1∕n). The type of event we are usually interested in is that a random variable assumes

a value close to its expectation, that is, that the random variable is concentrated. In the following, we

state two well known techniques to prove concentration, namely a Chernoff–Hoeffding bound and the

method of bounded differences. In both cases we derive asymptotic variants that suite our purpose

better than the original exact bounds.

A.6 Chernoff–Hoeffding

Theorem A.7 (Theorem 1.1 in [27]). Let X1, … ,Xn be independent random variables
with values in {0, 1} and let X =

∑
i∈[n] Xi be their sum. Then, for all 0 < 𝜀 < 1,

Pr
[
X > (1 + 𝜀) ⋅ E [X]

]
≤ exp

(
−𝜀

2

3
E [X]

)
, and

Pr
[
X < (1 − 𝜀) ⋅ E [X]

]
≤ exp

(
−𝜀

2

2
E [X]

)
.
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BLÄSIUS ET AL. 939

We use this bound multiple times in a similar way, which is captured by the following direct

corollary.

Corollary A.8. Let X1, … ,Xn, and X be as in Theorem A.7. Let f (n) ∈ 𝜔(log n) be an
upper or lower bound for E [X]. With overwhelming probability, X ∈ O(f (n)) and X ∈
Ω(f (n)), respectively.

Proof. Assume f (n) is a lower bound, that is, f (n) ≤ E [X]. We show X ∈ Ω(f (n)) with

the desired probability. By the second inequality of Theorem A.7, we have

Pr
[
X < (1 − 𝜀) ⋅ f (n)

]
≤ Pr

[
X < (1 − 𝜀) ⋅ E [X]

]

≤ exp

(
−𝜀

2

2
E [X]

)

≤ exp

(
−𝜀

2

2
f (n)

)
= n−𝜔(1),

where the last equality is due to the fact that f (n) ∈ 𝜔(log n). Thus, for any constant c,

this probability is below n−c
for sufficiently large n. Hence, for any constant 𝜀 ∈ (0, 1),

X ≥ (1 − 𝜀) ⋅ f (n) with probability 1 − n−c
.

Assume f (n) is an upper bound, that is, E [X] ≤ f (n). Let X′ be a random variable with

f (n) = E
[
X′
]

such that X′ dominates X in the sense that X ≤ X′ for every outcome. We

show that X′ ∈ O(f (n)) with probability 1 − n−c
, which implies X ∈ O(f (n)) with at least

the same probability. The first inequality of Theorem A.7 yields

Pr
[
X′ > (1 + 𝜀) ⋅ f (n)

]
= Pr

[
X′ > (1 + 𝜀) ⋅ E

[
X′
]]

≤ exp

(
−𝜀

2

3
E
[
X′
])

= exp

(
−𝜀

2

3
f (n)

)
= n−𝜔(1).

As before, the last inequality comes from the fact that f (n) ∈ 𝜔(log n). All remaining

arguments are as in the case where f (n) was a lower bound. ▪

A.6 Method of typical bounded differences

Theorem A.9 (Theorem 2 in [61]). Let X = (X1, … ,XN) be a family of independent
random variables with Xk taking values in Λk and let Λ =

∏
j∈[N] Λj. Let Γ ⊆ Λ be an

event and assume that the function f ∶ Λ → R satisfies the following typical Lipschitz
condition.

(TL) There are numbers (ck)k∈[N] and (𝑑k)k∈[N] with ck ≤ 𝑑k such that whenever x, x̃ ∈ Λ
differ only in the kth coordinate, we have

|f (x) − f (x̃)| ≤
{

ck if x ∈ Γ,
𝑑k otherwise.
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For any numbers (𝛾k)k∈[N] with 𝛾k ∈ (0, 1], there is an event  = (Γ, (𝛾k)k∈[N])
satisfying

Pr [] ≤
∑

k∈[N]
𝛾
−1

k ⋅ Pr [X ∉ Γ] and ¬ ⊆ Γ,

such that for 𝜇 = E
[
f
]
, ek = 𝛾k(𝑑k − ck) and any t ≥ 0, we have

Pr
[
f (X) ≥ 𝜇 + t and ¬

]
≤ exp

⎛
⎜⎜⎝
− t2

2
∑

k∈[N]
(ck + ek)2

⎞
⎟⎟⎠
.

We derive the following corollary from this, which is more convenient for our purpose and uses a

notation more compatible with the rest of the article.

Corollary A.10. Let X = (X1, … ,XN) ∈ Λ be a family of independent random variables
and let Γ ⊆ Λ be an event with Pr [Γ] ≥ 1 − N−c. Moreover, let f ∶ Λ → R with |f (X)| ≤
Nc−2 and let (Δi)i∈[N] ∈ Ω(1) be numbers such that for any two x ∈ Γ and x̃ ∈ Λ that differ
only in the ith coordinate, we have |f (x)− f (x̃)| ≤ Δi. If

∑
i∈[N] Δ

2

i ∈ O(E
[
f
]2∕log

2N) then
f (X) ∈ Θ(E

[
f
]
) holds with high probability.

Proof. We want to apply Theorem A.9. First note that |f (X)| ≤ Nc−1
implies that f sat-

isfies the typical Lipschitz condition when setting ci = Δi and 𝑑i = 2Nc−2
for every

i. We set 𝛾i in Theorem A.9 to 𝛾i = 1∕𝑑i yielding ei ≤ 1. Thus, we get the event

 with

Pr [] ≤
∑

i∈[N]
𝛾
−1

i ⋅ Pr [¬Γ]

=
∑

i∈[N]
𝑑i ⋅ Pr [¬Γ]

≤

∑
i∈[N]

2Nc−2 ⋅ N−c

= 2N−1 ∈ O(N−1),

such that

Pr
[
f (X) ≥ E

[
f
]
+ t and ¬

]
≤ exp

⎛
⎜⎜⎝
− t2

2
∑

i∈[N]
(Δi + ei)2

⎞
⎟⎟⎠
.

As Δi ∈ Ω(1) and ei ≤ 1, we get that the sum in the denominator is up to constants equal

to
∑

i∈[N] Δ
2

i ∈ O(E
[
f
]2∕log

2N), that is, for sufficiently large N, there exists a positive

constant a such that

Pr
[
f (X) ≥ E

[
f
]
+ t and ¬

]
≤ exp

(
−a ⋅ t2 ⋅ log

2N
E
[
f
]2

)
.
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Choosing t = b ⋅ E
[
f
]

for any positive constant b yields an upper bound of N−ab2
log N ∈

O(N−1) for the probability. Thus, we obtain

Pr
[
f (x) ≥ (1 + b)E

[
f
]]
≤ Pr

[
f (x) ≥ (1 + b)E

[
f
]

and ¬
]
+ Pr [] ∈ O(N−1).

As already noted by Warnke [61], one can obtain the same bound as stated in Theorem A.9

for the opposite direction (Pr
[
f (x) ≤ E

[
f
]
− t
]
) by using −f . The above argument works

exactly the same for this case, yielding Pr
[
f (x) ≤ (1 − b)E

[
f
]]
∈ O(N−1). Note that for

this direction it is crucial that we can choose b to be an arbitrary positive constant. This

yields the claim that f (x) ∈ Θ(E
[
f
]
) with high probability. ▪
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