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Abstract. Trust and reputation measures are crucial in distributed
open systems where agents need to decide whom or what to choose.
Existing work has overlooked the impact of an entity’s position in
its structural graph and its effect on the propagation of trust in such
graphs. This paper presents an algorithm for the propagation of rep-
utation in structural graphs. It allows agents to infer their opinion
about unfamiliar entities based on their view of related entities. The
proposed mechanism focuses on the “part of” relation to illustrate
how reputation may flow (or propagate) from one entity to another.
The paper bases its reputation measures on opinions, which it defines
as probability distributions over an evaluation space, providing a rich
representation of opinions.

1 INTRODUCTION

Trust and reputation are key to the success of open systems. They aid
agents in deciding what or whom to select. Extensive research has
focused on various aspects of trust and reputation. The most relevant
to our work are the mechanisms that compute reputation based on
the sharing of past experiences, especially those that focus on formed
opinions. This paper proposes a novel approach by highlighting the
importance of the structural relations linking related entities and their
use in indicating the flow of opinions from one entity to another.
The mechanism allows a single agent, after it has formed opinions
about a few entities (nodes) in a structural graph, to be able to infer
its opinion concerning unfamiliar related entities. For example, say
a new coffee machine is now out in the market and it has not been
rated yet. What can an interested customer infer about this new item’s
reputation? Clearly, the reputation of other coffee machines of the
same brand, or even other products of this brand in general, would
be of help here. Hence, there is a need for representing the structural
relations linking those entities together. A structural graph may be
used, and the brand may be represented as one node in this graph,
the brand’s coffee machines as a child node to the former, the new
coffee machine model as a child node to the latter, and so on. Such
a representation will not only facilitate the flow of opinions amongst
related entities, but also permit raters to choose the granularity level
at which they would prefer to leave their opinions at. For instance,
while one agent might be interested in rating this specific model in
the future, it might also be interested in providing a rating for the
brand’s coffee machines in general.

Given this problem definition, the questions that arise and are
addressed by this paper are: (1) how do we specify such struc-
tural graphs, (2) how do opinion-based reputation propagate in such
graphs, and (3) how are all opinions, explicitly specified or propa-
gated, aggregated to provide a final opinion-based reputation mea-
sure for a given node of this graph?
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Question (1) above is addressed by Section 2. Questions (2) and
(3) are addressed by Sections 3 and 4, which discuss the propagation
and aggregation of opinions, respectively. The paper is then wrapped
up by presenting our preliminary results in Section 5, an overview of
related work in Section 6, and the conclusions in Section 7.

2 THE STRUCTURAL GRAPH
The running example of this paper is based on the publications world,
where papers may be viewed as being composed of sections, pro-
ceedings composed of papers, books composed of chapters, and so
on. We choose the publications field because the LiquidPub project
(http://project.liquidpub.org) provides the framework
needed for automatically building the structural graph as researchers
write bits and pieces of their work.2

The basic idea is that researchers may write sections, papers, chap-
ters, books, etc. They can then link these bits and pieces together, or
reuse existing work, by making use of the “part of” relation. Re-
searchers (or agents) may thus be authors of the nodes but also leave
opinions on them. We understand opinions as probability distribu-
tions over an evaluation space, for a particular attribute, and at a
moment in time; for example, one can define a set of elements for
the evaluation space for quality of a node as {poor, good, v.good, ex-
cellent}. The set of attributes that opinions may address can be, for
instance, {novelty, clarity, significance, correctness}.

The structural graph (SG) is formally defined below. We note,
however, that the technique proposed in this paper is not restricted
to the publications domain, and the SG graph defined below may be
used for applications different than the LiquidPub project.

Definition 1
SG = 〈N, G, O, E, A, T, E, F〉

where, N is the set of nodes, G is the set of agents that may own or leave
opinions on nodes, O is the set of opinions that agents may hold, E is the
evaluation space for O, A is the set of attributes that opinions may address,
T represents calendar time, E ⊆ N × N specifies which nodes are part of
the structure of which others (i.e. (n, n′) ∈ E represents n as being part of
n′), F : G×N × A× T → O is a relation that links a given agent, node,
attribute, and time to their corresponding opinion.

A single opinion is then represented as the probability distribu-
tion P(E|G,N,A, T ) ∈ O. We note that probability distributions
subsume classical approaches and are more informative.

3 PROPAGATION OF OPINIONS
Reputation is widely understood as group opinion. Opinions may be
assigned by agents (or reviewers) to nodes of the structural graph.
However, we believe these assigned opinions affect the opinion that

2 We assume agents do not need to save these graphs, since they may be
provided by the relevant organisations (such as LiquidPub or Amazon).



the same agent has on neighbouring nodes, and therefore a propa-
gation of opinions may be put in place. Our propagation concept is
based on analogical reasoning: if a is similar to b, then the opinion
about a is similar to that about b. For example, if 9 out of a book’s
10 chapters are good, then probably the 10th chapter is also good.
When inferring opinions, we take into consideration all of the di-
rect opinions that have been provided by the reviewer, and based on
that, we try to maximise the similarity between parent and children
nodes. Inferred values are essentially computed (and constrained) by
the nodes that have received direct opinions. This section presents
our proposal for this propagation mechanism.

The basic idea is that if a node does not receive a direct opinion,
then its opinion may be deduced from its children nodes’ opinions.
This is because the parent node is structurally composed of its chil-
dren nodes. Hence, the opinions on children nodes must necessarily
influence the deduced opinion on a parent node. We refer to the direct
opinion on a node or its deduced opinion from the parts that compose
it as the intrinsic opinion of that node.

However, in the absence of information about the node itself, or
the parts that compose it, then information may be inherited from the
community to which one belongs. In other words, in the absence of
information about intrinsic opinions, a node may inherit the opinions
of its parents’ nodes. For example, people assume that if a paper has
been accepted by a highly reputable journal then the paper should be
of good quality. Of course, when people actually read the paper, or
parts of the paper, they may start constructing their own opinions, as
opposed to relying on the default inherited one. We refer to opinions
propagated from parent nodes to children nodes as extrinsic opinions.
And we note that people usually rely on extrinsic opinions in the
absence of intrinsic ones. Hence, extrinsic opinions may be viewed
as providing some sort of a default measure that people may refer to
in the absence of other more reliable sources of information.

In what follows, we first illustrate how intrinsic and extrinsic
opinions are calculated (Sections 3.1 and 3.2, respectively). This is
then followed by an algorithm summarising how opinions propagate
within a structural graph through the calculation of intrinsic and ex-
trinsic opinions (Section 3.3).

We note that propagation of opinions would only make sense for
a single reviewer agent and a single attribute. In other words, one
agent’s opinion cannot affect another’s,3 or an opinion addressing
novelty should not affect the correctness aspect of a paper.4 The ag-
gregation stage, described by Section 4 is responsible for dealing
with several reviewer agents and several attributes being reviewed.
Hence, in this section, since the reviewer agent r ∈ G and the at-
tribute a ∈ A being assessed are fixed, we simplify notation and
replace P(ei|r, n, a, t) with Ptn(ei), or even Ptn.

3.1 Intrinsic opinions
The intrinsic opinion of a node is either based on the direct opin-
ion that the node has received or on an aggregation of its children
nodes’ intrinsic opinions. In the latter case, we argue that the reliabil-
ity of the aggregation should take into consideration the percentage
3 Of course, persuasive dialogues can and actually do allow one agent to

influence another’s opinion. Additionally, [15, 1, 3] illustrate how the social
network and the position of agents within their social network contribute to
opinion formation and the influence of one agent’s opinion on another’s.
However, these influences are beyond the scope of this paper.

4 Again, there might be a strong correlation between attributes which might
allow the opinion on one to affect the opinion on another. Additionally,
reviewers may be susceptible to having their opinion on one attribute influ-
ence their opinion on another. However, again, these influences are beyond
the scope of this paper.

of nodes with direct opinions that are contributing to the aggregated
value, which we discuss below.

Reliability of opinions We say, when calculating node n’s in-
trinsic opinion by aggregating the intrinsic opinions of its children
nodes, it is crucial to know the proportion of nodes that have re-
ceived a direct opinion in the structural sub-tree whose root node is
n. This measure, in a way, provides information on the reliability
of the aggregated intrinsic opinion of n. The higher the proportion
of nodes with a direct opinion that are contributing to n’s deduced
intrinsic opinion, then the more reliable this deduced opinion is. In
other words, the larger the number of direct opinions contributing to
an inferred one then the more probable the inferred opinion is. We
define the reliability parameter π as follows:

πtn =

8>>>>>>>><>>>>>>>>:

1 ∃ t′≤ t · direct(Pt′n )

0 ∀ t′≤ t · ¬direct(Pt′n )

∧ 6 ∃ c · (c, n) ∈ EX
(c,n)∈E

πtc
|{c′ | (c′, n) ∈ E}|

otherwise

(1)

where the logical notation is that of first-order logic, and direct(Pt
′
n )

states that node n has received a direct opinion at time t′.
Note that if a node has received a direct opinion, then its π takes

the value 1. However, if a node has never received a direct opinion
from the agent and the node does not have any children nodes, then
its π takes the value 0. Otherwise, the π of a node would be the
average of its children’s πs. We note that πtn ∈ [0, 1] and the value
of π is non-decreasing along time t, since we currently assume the
structural graph to be static.

Aggregation of children’s opinions In the absence of direct opin-
ions, we say a parent node n’s intrinsic opinion is calculated as an
aggregation of its children nodes’ opinions, where each child node’s
contribution to the final aggregated value is based on the child node’s
π value. This is illustrated by the following equation:

Ptn =
1X

(c,n)∈E
πtc
·

X
(c,n)∈E

πtc · Ptc (2)

Decay of intrinsic opinions We consider the integrity of opinions
to decrease with time. This is expressed by the following equation:

Ptn = Λi(Dtnn ,Ptnn ) (3)

where tn ∈ T represents the latest point in time when a value (in
this case, for P and D) was recorded for node n, D is the probability
distribution describing the node’s extrinsic opinion and is the default
opinion that the intrinsic opinion decays towards (we note that D,
which is defined in the following section, is updated along time),
and Λi is a decay function satisfying the property: limt→∞ Ptn =
Dtnn . In other words, Λi is a function that makes Ptn converge to Dtnn
with time. One possible definition for Λi could be: Ptn = (Ptnn −
Dtnn )ν∆t + Dtnn , where ν ∈ [0, 1] is the decay rate, and:

∆t =


0 t− tn < κ

1 + t−tn
t max

otherwise

∆t serves the purpose of establishing a minimum ‘grace’ period
during which the information does not decay and that once reached
the information starts decaying. The period of ‘grace’ is determined
by the parameter κ. The parameter t max, which may also be de-
fined in terms of multiples of κ, is used to control the pace of decay.



The main idea behind this is that after this grace period, the decay
happens very slowly; in other words, ∆t decreases very slowly.

Initially, and in the absence of any information, we say Pt0n = Dt0n ,
where t0 ∈ T represents the initial time (or the time when node n
joined the structural graph, in the case of a dynamic graph).

3.2 Extrinsic opinions

Extrinsic opinions are an aggregation of parents’ intrinsic opinions.
They represent the inheritance of parents’ intrinsic opinions. Similar
to intrinsic opinions, extrinsic opinions are calculated using a similar
aggregation mechanism that uses the same reliability parameter π.

Aggregation of parents’ opinions A child’s extrinsic opinion is
calculated by aggregating its parents’ intrinsic opinions as follows:

Dtn =
1X

(n,p)∈E
πtp
·

X
(n,p)∈E

πtp · Ptp (4)

Decay of extrinsic opinions The extrinsic opinion plays the role
of the default opinion that a given opinion at a given node decays
towards. However, similar to intrinsic opinions or any other type of
information, the integrity of extrinsic opinions also decreases with
time, although presumably at a much slower pace than the decay of
intrinsic opinions towards extrinsic ones. Therefore, we say:

Dtn = Λe(F,Dtnn ) (5)

where tn ∈ T represents the latest point in time when a value for
D has been recorded for node n, F = 1

|E| represents the flat (or uni-
form) probability distribution that Dtnn decays towards, and Λe repre-
sents a decay function similar to Λi of equation 3 (although the decay
rate should be much slower; i.e. the ν, κ, or t max of Λe should be
larger than those of Λi). In other words, while intrinsic opinions de-
cay towards extrinsic ones, extrinsic opinions decay towards the flat
distribution F at a much slower pace.

Initially, and with the absence of any information, we have Dt0n =
F, where t0 ∈ T represents the initial time (or the time node n joined
the structural graph, in the case of a dynamic graph).

3.3 An incremental propagation algorithm

As illustrated by the previous sections, a node’s P and D values are
based on the latest decayed values of all its children and parent nodes,
respectively. And each of those is, in turn, based on the latest decayed
values of their own children and parent nodes. In other words, to ob-
tain the precise values of a given node at a given point in time, one
should be recalculating every node’s π, P, and D values at every sin-
gle step in time. Naturally, this is a very demanding computational
algorithm which consumes loads of memory and time. For this rea-
son, the algorithm we present (Algorithm 1) is an incremental algo-
rithm for propagation that replaces equations 1, 2, and 4 with the
incremental equations 6, 7, and 8, respectively, as illustrated below:

• Incremental update of π: Incremental equation 6 replaces equa-
tion 1 that updates node n’s π value by simply considering the new
π value of the child node c that triggered this update, as opposed
to considering all the children nodes’ π values.

πtn = πtnn +
πtc − π

tc
c

|{c′ | (c′, n) ∈ E}|
(6)

• Incremental update of P: Equation 7 is used to update the in-
ferred intrinsic opinion P of node n by simply considering the
new π and P values of the child node c that triggered this update.
The basic idea is that the old P value of node n (Ptnn ) is now mod-
ified by taking into consideration the new change in the π and P
values of the child (πtc and Ptc). We remind the reader that, ideally,
one should recalculate Ptn by taking into consideration all the de-
cayed values of the children, following equation 2. In practice, this
is computationally expensive. Hence, we believe an approximate
update that considers the new values of the child node may be
good enough. Of course, further experimentation may be needed
to help choose the exact weight that needs to be given for the new
values.

Ptn =
πtnn Ptnn + πtcPtc
πtnn + πtc

(7)

• Incremental update of D: Similar to equation 7, equation 8 is
used to update the extrinsic opinion D of node n by simply con-
sidering the new π and P of the parent node p that triggered this
update.

Dtn =
πtnn Dtnn + πtpPtp

πtnn + πtp
(8)

The basic idea behind Algorithm 1 is that the addition of a newly
assigned opinion P to a node n (which is accompanied by the modi-
fication of n’s π value) would trigger a wave of modifications in the
structural graph by sending n’s new π and P values to its neighbour-
ing nodes (both parents and children), which would in turn send their
modified values to their neighbouring nodes, and so on.

We note that in Algorithm 1, every node reacts to any new infor-
mation it receives and updates its values accordingly, without having
to keep track of the entire propagation mechanism. All it has to do
is to transmit its updates to neighbouring nodes. This a distributed
approach which suits applications where nodes may be physically
located in different locations, such as the case of Liquid Publications.

Algorithm 1 Pseudocode of the propagation of opinions algorithm
while> do

if n receives a new direct opinion P then
Set n’s π value to 1
Send n’s new π and P values to all parent nodes, keeping track of these nodes

end if
if n receives updated π and p values from a child node then

Update n’s π and P values following Equations 6 and 7, respectively
if The difference between n’s old and new P is negligible, and n has at least
one parent node then

Send n’s new π and P values to all parent nodes, keeping track of these
nodes

else
Decay n’s D following Equation 5
Send n’s new π and P values to all children nodes

end if
end if
if n receives updated π and p values from a parent node then

Decay n’s P and D following Equations 3 and 5, respectively
Update n’s D value following Equation 8

if [ , Pt
s′

m , ] 6∈ Wn then
Send n’s new π and P values to all children nodes

end if
end if
if n has not been updated for some time and n has no children nodes then

Decay n’s P following Equation 3
Send n’s new π and P values to all parent nodes, keeping track of these nodes

end if
end while

There are three different cases of a node receiving new informa-
tion. These are: (1) when a node receives a directly assigned opinion,
(2) when a node receives updated π and P values from one of its
children nodes, and (3) when a node receives updated π and P val-
ues from one of its parents’ nodes. In summary, these three cases
state that when a new opinion is assigned to some node, it propa-



gates upwards (only if the difference between old and new values is
not negligible) until it hits a root node. Then, the wave of propaga-
tion would start moving back down the tree to hit leaf nodes. And it
is during these waves that nodes update their values. For this reason,
there is a concern that some sections of the structural graph might not
be hit by any wave for a long period of time. As a result, we intro-
duce a fourth case that allows leaf nodes to decay their P values if the
latest update is considered old enough, and send their updated values
to their parents, triggering a new wave of opinion propagation in the
structural graph. We call this the house keeping action that tries to
keep the values in the structural graph as up to date as possible. We
refer to the time interval that specifies how often a P value of a leaf
node should be updated as the HK interval.5

4 AGGREGATION OF OPINIONS
The previous section has illustrated how a single agent’s opinion on
a node, and with respect to a given attribute, propagates within a
structural graph. However, the ultimate goal is to be able to compute
the reputation of a single node based on all the agents’ opinions, and
possibly for all attributes. In what follows we illustrate how this may
be achieved. We note that the previous simplification of replacing
P(ei|r, n, a, t) with Ptn no longer holds here, since the aggregation
needs to be performed for all reviewer agents and/or for all attributes.

1. Aggregating opinions for all attributes:
In this case, we aggregate the opinions that a single reviewer agent
r holds w.r.t. several attributes of a given node n:

P(ei|r, n, , t) =

X
a∈A∧ P(ei|r,n,a,t)6=F

ρ(a) · P(ei|r, n, a, t)

X
a∈A∧ P(ei|r,n,a,t)6=F

ρ(a)
(9)

Equation 9 states that the final opinion a reviewer agent r forms
about a node n at time t (P(ei|r, n, , t)) is an aggregation of r’s
opinions about n w.r.t. all attributes, based on a preference value
ρ(a) that specifies the preference of each attribute a ∈ A. We
assume that the agent computing the final opinion may specify the
preferences of the attributes. Alternatively, we say that a default
distribution may be provided with the set A by the responsible
organisation, such as a conference specification in the LiquidPub
case. Measures calculating the correlation between attributes, such
as those described by [6], may also contribute to the specification
of the ρ(a) values. Finally, the default case may assume an equal
preference to each. In any case, studying the correlation between
attributes and their effect on the aggregation mechanism is outside
the scope of this paper.

2. Aggregating opinions for all reviewers:
In this case, we aggregate the opinions of several reviewer agents
with respect to a given attribute a of a node n:

P(ei| , n, a, t) =

X
r∈G∧ P(ei|r,n,a,t)6=F

Ω(r, n) · P(ei|r, n, a, t)

X
r∈G∧ P(ei|r,n,a,t)6=F

Ω(r, n)
(10)

5 We believe there is a correlation between the HK interval and the attention
a given node receives from a given reviewer agent. One plausible scenario
is that when the attention is low, the HK value should be relatively high
to keep things up to date. The HK values would then drop as attention in-
creases. However, if the attention reaches extreme high values, then the HK
value would increase again to prevent huge changes in inferred opinions
every time a new opinion is assigned.

Equation 10 aggregates all reviewer agents’ opinions based on the
reliability Ω(r, n) of the reviewer agent r in rating node n. The
definition of Ω is complex, as it is affected by the reviewer agent’s
expertise in the field of n, its history of being correct (in other
words, how close were its past reviews to the final group opinion),
its history of bias, the degree of collaborative or competitive re-
lationship between the reviewer and the node’s owner(s) agent(s),
etc. These issues are outside the scope of this paper; however, for
our publications example, we base Ω(r, n) on the reviewer’s h-
index, which could be viewed as an indication of expertise.

3. Calculating a final reputation measure Rtn∈ [0, 1]:
When computing reputation, some users may be interested in cal-
culating a single numeric valueR for node n at time t, as opposed
to a probability distribution. If this is the case, then the final prob-
ability distribution of node n at time t (P(ei| , n, , t)) may be
translated into a numeric value in the range [0, 1] by calculating
the center of gravity of the probability distribution, following the
transformation equation of [8], which we present below:

Rtn =
1

2 · |E|
X
ei∈E

(2 · (i− 1)) · P(ei| , n, , t) (11)

where P(ei| , n, , t) represents the value of the distribution at the
element ei ∈ E and i represents the position of ei.

When a user is interested in computing a final opinion measure of
a node n at time t, then the latest P values should be obtained for all
reviewer agents on all attributes. It is then up to the user to choose
which of the steps above to perform, and in which order.

We note that alternative aggregation mechanisms may also be
considered. [13] describes three different mechanisms: (1) the de-
pendent method is used when dependencies are assumed to exist
amongst the distributions being aggregated (this is useful if either
correlations between attributes or strong social links between agents
are observed), (2) the independent method amplifies similar proba-
bility distributions when it is believed that there are no dependencies
between the distributions being aggregated, and (3) the Υ method
computes the probability distribution that tries to maximise certainty.

5 RESULTS
To evaluate the correctness of the proposed propagation algorithm for
the publications example, we present here initial results from simu-
lated data. The correctness of the algorithm is based on comparing
the opinions before and after propagation to check for consistency.
We note that instead of generating reviewers’ opinions, we choose to
base initial direct opinions of a paper on the reputation of its authors
by relying on their h-indexes. This is mainly because it may be ar-
gued that simulating reviewers’ opinions requires a deeper analysis
of reviewers’ behaviour. The evaluation process is outlined below.

Step 1: Simulating data A graph is generated to represent two
conference proceeding of the same series: in other words, a simple
3-level tree is generated. The root node represents the conference
series, its two middle level nodes represent the conference’s two pro-
ceedings and its 60 children nodes represent the 60 papers of the
proceedings (30 papers per proceeding). We then created authors,
assigned authors to the conference papers, and generated an h-index
for each of these authors following the following constraints:6

6 Although it was straightforward to obtain real data on a conference proceed-
ings, its papers, and their authors, obtaining the h-indexes for all authors
whose papers has been accepted by a given conference was not as easy.
Hence, we relied on simulated data.



• The number of authors per paper follows a Gaussian function
whose expected value is µ = 3 and its standard deviation σ = 1.

• The number of papers per author follows a Gaussian function
whose expected value is µ = 1 and its standard deviation σ = 0.2.

• The h-indexes of authors follow a Gaussian function whose ex-
pected value is µ = 8 and its standard deviation σ = 4.

Step 2: Populating opinions We say the initial direct opinion that
a node receives may be deduced from the reputation of its authors,
which we base on the authors’ h-index. As such, there is a need to
transform h-index measures into probability distributions, which is
carried out following equation 12:

Aαh(ei) =
f(h, ei)X

ei∈E
f(h, ei)

(12)

where h is the h-index of author α, Aαh(ei) is the value of the prob-
ability distribution at point ei ∈ E, and f(h, ei) is defined as:

f(h, ei) =
1

e

˛̨̨
h

max h
− i
|E|

˛̨̨ (13)

where e represents Euler’s number, h represents the h-index of the
author,max h represents the maximum h-index value in the sample,
and i represents the position of the element ei of the state space E.

Essentially, equation 13 states that f(h, ei) should have a high
value when h and i both have either high or low values, whereas it
should have a low value when either h or i has a high value and
the other a low one. This is because prestigious authors (authors
with high h-indexes) very probably write good papers (papers whose
opinions have high values for ei ∈ E, where i has a high value,
and lower values otherwise), and unknown authors (authors with low
h-indexes) very probably write not so good papers (papers whose
opinions have high values for ei ∈ E, where i has a low value, and
lower values otherwise).

Equation 12 is then used to normalize the result of equation 13 to
ensure that

X
ei∈E

Aαh(ei) = 1.

While equation 12 computes the opinions about authors as prob-
ability distributions, our ultimate goal is to generate a direct opin-
ion for each paper (or node) based on the aggregation of its authors’
opinions. This is calculated as follows:

P0
n(ei) =

X
α∈{x | author(x,n)}

Aαh(ei)

|{x | author(x, n)}|
(14)

where author(x, n) specifies that x is an author of n, and P0
n(ei)

represents the direct opinion at node n.

Step 3: Propagating opinions Each direct opinion is then propa-
gated within the graph following the propagation algorithm presented
in this paper and summarised by Algorithm 1.7

Step 4: Analysing results Recall that the goal of the experiment is
to verify that the final opinions resulting from the propagation mech-
anism do not contradict with the initial direct opinions. In our exam-
ple, initial opinions have been based on authors’ h-indexes. Hence,

7 We note that the opinions are added and propagated one after the other.
However, the order in which the opinions are added is not very relevant
since they are all added within a small interval of time. In other words, the
addition of one opinion before another cannot have a huge (or even any,
due to the ‘grace’ period determined by κ) difference in its effect on the
opinions of others.

one way to analyse the results of the propagation is to compare, for
each author α, the author’s h-index based opinion Aαh(ei) generated
by equation 12 to the final author’s opinion Aαf (ei) resulting from
the propagation algorithm, where Aαf (ei) is an aggregation of the
opinions on the author’s papers which have been obtained after the
propagation. The aggregation is calculated accordingly:

Aαf (ei) =

X
n∈{x | author(α,x)}

Ptn(ei)

|{x | author(α, x)}|
(15)

The difference between both opinions ∆Aα = |Aαf (ei)−Aαh(ei)|
is calculated based on the Earth’s movers distance [7]. Figure 1
presents the results by plotting ∆Aα for all authors, where each au-
thor α is represented by its h-index, hα. Note that since the Earth’s
movers distance is used, we have ∆Aα ∈ [0, 1].
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Figure 1. Difference between initial & propagated opinions

The results illustrate that an author’s deduced opinion, which is a
result of the propagation of opinions, remains consistent with its ini-
tial reputation. There is a minor difference between initial and final
opinions, except for the case of authors with very high h-indexes,
where the difference sometimes crosses the 0.5 value. In general, the
difference is expected, since author’s deduced opinions after prop-
agation are influenced by their co-authors. Moreover, we notice a
correlation between the difference ∆Aα for a given h-index and the
percentage of authors with that h-index. Figure 2 provides the per-
centage of authors associated with a given h-index. For example, we
note that the percentage is minimum for the h-indexes 14, 17, 18, and
19 (1.6%, 0.8%, 1.6%, and 0.8%, respectively). Hence, the proba-
bility for authors with these h-indexes to have co-authors with con-
siderably similar h-indexes is very low. It is for this reason that these
authors have a larger ∆Aα than others. We note that the purpose of
this experiment was to validate the ‘correctness’ of the algorithm,
and not the influence of information sources on opinions. Hence, we
needed to illustrate that propagated results are coherent with initial
ones. The only new information considered is the reputation of coau-
thors, which does influence the original reputation of authors a bit.
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Figure 2. Percentage of authors with a given h-index



6 RELATED WORK

The research carried out by [15, 1, 3] studies the dynamics of opin-
ion formation by focusing on the effect of social relations on how
peoples’ opinions may influence each other in a social network.
Repage [12], ReGreT [11], and SUNNY [4] provide mechanisms
for computing the confidence in a reviewer based on the social re-
lations. These mechanisms mainly influence the reliability of the re-
viewer (Ω(r, n) in Equation 10), which is crucial when aggregating
opinions, yet outside the scope of this paper. Similar to [12, 11, 4],
additional aggregation mechanisms, such as [13, 10], may be viewed
as complementary to the work presented in this paper, which mainly
focuses on the propagation of opinions for one reviewer in the struc-
tural graph.

In the area of publications, SARA [9] and CiteRank [14] present
algorithms on how reputation may propagate based on who is citing
whom. Their reputation propagates along citation links. This paper,
however, focuses on the propagation of reputation along structural
links by focusing on the composition of entities and using the part
of relation as an indication to the flow of opinions from one entity to
another.

Finally, research work on ontology-based recommender systems,
such as [2, 16], makes use of the clustering or classification of in-
formation and uses machine learning and data mining techniques for
ranking and recommending entities. One may draw similarities be-
tween the taxonomies used by such systems and that of the structural
graph of this document; although the propagation mechanism of this
paper is unique in both its algorithm and semantics.

7 CONCLUSION

Opinions and ratings, which numerous trust and reputation mecha-
nisms are based on, are not always abundant. Their abundancy dif-
fers from one field to another. For example, while tons of data may
be available on Amazon or eBay, very little information is available
in the publications field. This research illustrates how opinions may
be deduced in areas where such information is scarce.

The main goal of this work is to provide the means for allowing an
agent to deduce opinions about new entities by propagating the same
agent’s opinions from one entity to another. In other words, given
one agent’s opinions on a set of nodes of a structural graph, what can
the agent deduce about its opinion concerning the remaining nodes?
The true novelty of this work is in introducing the concept of the
propagation of opinions along structural relations (such as part of).

There are several existing reputation mechanisms that focus on
different types of relations, such as social relations between review-
ers, correlations between attributes being assessed, etc. These mech-
anisms may be viewed as complementary to our proposal, since they
influence the aggregation of opinions (see Equations 9 and 10) as
opposed to the propagation of opinions for one reviewer along struc-
tural relations, which is the true novel aspect of this research work.

As such, existing data (e.g. the large data sets of the
www.Epinions.com social networks) could not be useful enough
for validating our propagation algorithm, which requires information
about structural links. Hence, there was a need to simulate our own
modest data set for validating the correctness of our algorithm.

Additionally, several sources of information may be interpreted
as opinions, and hence may use the proposed propagation method.
For example, in the publication example, we illustrate how h-indexes
may be viewed as opinions about authors. Similarly, citations may be
viewed as opinions about papers (or nodes). Propagation of citation-

based opinions would then differ from the algorithms of SARA and
CiteRank by allowing citation based reputation to propagate along
structural relations, as opposed to citation links.

Finally, for simplicity, our algorithm has focused on static graphs
only. Nevertheless, the switch to dynamic graphs is straight forward.
To do so, one needs to consider the effects of adding or deleting a
node or a link on the π, P, and D values of the node’s neighbours.
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