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Abstract

The advent of assisted reproductive technologies marks a revolutionary stride in the annals of bio-
logical science, signaling a new era not only in human healthcare but also in wildlife conservation.
Infertility, affecting approximately 15% of couples globally, poses a significant challenge to the
dream of parenthood. Assisted reproduction emerges as a ray of hope, offering innovative solu-
tions such as In Vitro Fertilization and surrogacy, which have already brought joy to millions of
families worldwide. In 2018 alone, IVF procedures resulted in the birth of over 2.5 million babies,
reshaping the landscape of modern family dynamics. Expanding the horizon beyond human con-
cerns, the narrative then delves into the world of mammals, particularly endangered species. In this
realm, assisted reproduction transforms from medical interventions to instruments of conservation.
With over 1,000 mammalian species currently facing the threat of extinction, the application of
techniques like artificial insemination and embryo transfer becomes pivotal, underscoring their
role in maintaining the delicate balance of our ecosystems.

At the heart of these advancements lies the flourishing field of artificial intelligence. Artificial
intelligence’s integration into assisted reproduction is not just innovative; it’s revolutionary. Al-
gorithms are enhancing the precision and efficiency of assisted reproductive technologies, from
analyzing genetic data to improving success rates of treatments, to predicting the viability of em-
bryos. This convergence of artificial intelligence and assisted reproduction is a prime example
of how interdisciplinary approaches are pushing the boundaries of what’s possible, offering hope
where there was once despair.

This thesis, firstly, embarks on an insightful journey into the role of cumulus oocyte complexes
in ensuring healthy oocyte and embryo development in mammals. It inspects closely and thor-
oughly several aspects such as the expansion during the immature and mature phases, and the cell
density. To dissect these biological phenomena, advanced deep learning techniques and neural
networks have been harnessed. We developed pipelines capable of evaluating the most effec-
tive scoring methods, subsequently enabling the automatic segmentation and estimation of crucial
study elements. The findings underscore a compelling link between expansion and density, and
the development of a healthy embryo. This revelation holds profound implications for the future
trajectory of assisted reproduction, potentially revolutionizing our approach toward enhancing fer-
tility treatments.

Simultaneously, this thesis confronts the challenge of acquiring accurate labels for these complex
biological structures. Label acquisition typically involves multiple experts, each bringing their
own subjective perspectives to the determination of “true” segmentation labels. This diversity of
opinion, while enriching, often introduces a level of noise that can set back the effectiveness of
segmentation algorithms. To navigate this issue, we implemented coupled convolutional neural
networks, tailored for a small-sized, real-world dataset, necessary for healthy embryo develop-
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ment. Our methodology pioneers a novel approach that focuses on areas of high uncertainty.
By comprehensively analyzing these zones, we reach deeper insights into the individual charac-
teristics of the structures in question. Having this, we were able to propose a more sophisticated
ground truth, one that is refined through the use of maximum likelihood estimation. This approach
contributes to the discussion of leveraging machine learning algorithms for segmenting medical
images, especially in situations where multiple human annotators are involved.

Through this dual exploration of cumulus oocyte complexes role and the refinement of best meth-
ods to disentangle from biases in experts’ annotations, this thesis lays the groundwork for signif-
icant advancements in the realm of assisted reproduction. By introducing cutting-edge artificial
intelligence methodologies to intricate biological processes, we uncover new avenues for research
and application that promise to elevate the efficiency and performance of reproductive technolo-
gies.
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Chapter 1

Introduction

In recent years, assisted reproductive technologies (ARTs) have experienced a surge of innova-
tions. Techniques such as intracytoplasmic sperm injection (ICSI) [112] and time-lapse tracking
of morphokinetics [96] have significantly boosted the success rate of ART. Similarly, the potential
integration of artificial intelligence (AI) in oocyte, embryo, and sperm selection is under rigorous
examination. While many studies have explored this, the actual implementation of AI in assisted
reproduction clinics remains in its infancy. This hesitancy is due to the myriad of proposed AI
techniques for clinic operations, leading to uncertainties while the topic is very sensitive.

1.1 Assisted reproductive technology

ART refers to a group of medical procedures designed to treat fertility or genetic problems, assist-
ing individuals or couples in achieving pregnancy. ART covers a broad spectrum of treatments,
including procedures like in-vitro fertilization (IVF), ICSI, cryopreservation of gametes or em-
bryos, and embryo transfer, among others.

The existence and development of ART are deeply rooted in the need to address various infertility
challenges faced by individuals and couples. According to the World Health Organization, infertil-
ity is defined as a disease of the reproductive system, described by the failure to achieve a clinical
pregnancy after 12 months or more of regular unprotected sexual intercourse1. The reasons for
infertility can be numerous and complex, encompassing factors like age, lifestyle, physical abnor-
malities, genetic disorders, or environmental stressors.

In this context, ART emerges as a significant solution, helping those who struggle with natural
conception. The purpose of these technologies is binary: to enable the possibility of parenthood
for individuals or couples who could not otherwise conceive and to prevent the transmission of
certain genetic conditions or diseases.

Firstly, ART makes parenthood attainable for a broad range of people who might struggle with
natural conception due to various reasons like low sperm count, ovulation disorders, fallopian
tube blockages, or unexplained infertility. ART also offers hope to single individuals or same-sex
couples who wish to have biological children.

1See Infertility by World Health Organization

1

https://www.who.int/news-room/fact-sheets/detail/infertility#:~:text=Infertility%20is%20a%20disease%20of,on%20their%20families%20and%20communities.


Secondly, through techniques like preimplantation genetic diagnosis, ART can help prospective
parents avoid passing on certain inherited diseases to their children. By analyzing the genetic
profile of embryos before they are implanted in the uterus, doctors can select embryos free of
specific genetic disorders, thereby ensuring healthier offspring.

ART also plays a crucial role in the preservation of endangered mammalian species. Many of these
species face a high risk of extinction due to habitat loss, climate change, poaching, and diseases.
Traditional conservation efforts like protected areas and anti-poaching laws are crucial but can be
insufficient. Here, ART comes into play as an innovative tool for biodiversity conservation. Using
techniques such as artificial insemination, in-vitro fertilization, and embryo transfer, scientists can
assist in reproducing endangered species under controlled conditions. Moreover, cryopreservation
allows the storage of sperm and egg cells from these species, creating a valuable genetic resource
for future use. These efforts can help bolster population numbers, enhance genetic diversity, and
ultimately contribute to endangered species’ survival and long-term viability.

Moreover, ART is significantly contributing to the lives of cancer patients, particularly those di-
agnosed at a young age. Specific cancer treatments, like chemotherapy and radiation therapy, can
potentially impact fertility by damaging the ovaries or testes. As a result, cancer survivors may
face challenges in conceiving a child naturally after their recovery. However, through techniques
such as gamete (sperm or egg) freezing, also known as cryopreservation, individuals have the op-
tion to preserve their fertility before undergoing treatment. These preserved gametes can later be
used in ART procedures to achieve pregnancy. This offers an invaluable lifeline for cancer patients
who wish to have biological children in the future, enabling them to look forward to life beyond
cancer with optimism.

Thus, whether it provides an invaluable avenue for individuals and couples to realize their dreams
of parenthood or helps preserve our planet’s biodiversity while offering hope to cancer patients for
a family, the contribution of ART extends beyond addressing human infertility. Its growing role in
modern medicine and conservation efforts underscores its importance and potential for the future.

1.2 Artificial Intelligence

AI is a broad field of computer science that simulates human intelligence in machines, program-
ming them to think like humans and mimic their actions. AI can perform learning, reasoning,
problem-solving, perception, and language understanding tasks, driving innovation and improve-
ment in many industries. AI is reshaping how we live and work, from virtual assistants like Siri or
Alexa to more complex technologies like self-driving cars.

AI can be classified into two types: Narrow AI, designed to perform a narrow task such as voice
recognition, and General AI, which can theoretically perform any intellectual task that a human
being can. While we have made significant strides in Narrow AI, General AI remains a far-off
goal, currently confined to the realm of science fiction. AI contains subcategories, structured as
found in Figute 1.1.

1.2.1 Machine learning

Machine Learning (ML) is a subset of AI that allows machines to learn autonomously based on
experiences, observations, and ingesting data. Instead of programming specific tasks, ML systems
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Figure 1.1: The family of Artificial Intelligence, Machine Learning, Artificial Neural Networks,
and Deep Learning.

are trained using large amounts of data and algorithms that enable them to learn how to perform
the task.

Machine learning models are typically classified into three types: supervised learning, where the
model makes predictions based on a set of labeled examples; unsupervised learning, where the
model identifies patterns in unlabeled data; and reinforcement learning, where an agent learns
how to behave in an environment by performing actions and seeing the results.

1.2.2 Deep learning

Deep Learning (DL) is a further subset of ML based on artificial neural networks with multiple
layers - or ’deep’ networks. The ’deep’ in deep learning refers to the number of hidden layers in
the neural network. While a single-layer neural network can still make approximate predictions,
additional hidden layers can help optimize the results.

Deep learning models are excellent at recognizing patterns, which they can do after being trained
with a massive amount of labeled data. These models power high-profile AI applications, includ-
ing voice assistants, image recognition, and recommendation systems.

1.2.3 Bioinformatics

Bioinformatics is an interdisciplinary field that combines biology, computer science, information
engineering, mathematics, and statistics to analyze and interpret biological data. Bioinformatics
involves the computational analysis of genetic and genomic information and other biological data.

AI, ML, and DL are increasingly becoming indispensable tools in bioinformatics, transforming
the field by enhancing our ability to analyze and interpret complex and large-scale biological data.
The utility of AI, ML, and DL in bioinformatics extends across various sub-domains. In genomics,
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Figure 1.2: Timeline illustrating key events in Artificial Intelligence and Assisted Reproductive
Technology.

for example, machine learning algorithms are used to predict gene function and analyze gene
expression data, offering insights into the genetic basis of disease.

Similarly, deep learning is revolutionizing protein structure prediction, one of the most critical
tasks in molecular biology, enabling us to understand disease mechanisms and develop new drugs.
Furthermore, these techniques are used in sequence alignment, phylogenetic analysis, predicting
protein-coding regions, and various other tasks that were traditionally labor-intensive and time-
consuming.

The future of bioinformatics will continue to be shaped by advancements in AI, ML, and DL. As
the volume and complexity of biological data continue to grow, applying these advanced com-
putational methods will be crucial. Integrating these technologies further into the bioinformatics
domain will not only enhance our understanding of complex biological systems but also acceler-
ate the discovery and development of new therapies, diagnostics, and potentially even cures for
various diseases.

Integrating AI into assisted reproduction clinics’ daily operations seems inevitable. In Figure 1.2
by Fernandez et al. [63] there is a timeline of the development of ART along with the development
of AI.

1.3 Scope of the research

The intersection of ART and AI presents a groundbreaking frontier in medical science, particularly
in addressing challenges in fertility treatments and embryology. The application of AI, especially
in the realms of machine learning and deep learning, offers innovative solutions to refine and
enhance the effectiveness of ART procedures. This integration is evident in various aspects of
reproductive technology, from optimizing the measurement and analysis of cumulus-oocyte com-
plexes (COCs) to developing sophisticated models for predicting embryo viability. Our research
delves into this synergy, exploring how advanced AI techniques can revolutionize ART.
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The research questions tackled in this dissertation are the following:

1. Q1: What methodologies prove most effective and accurate in quantifying the expansion of
COCs during mammalian embryo development?

2. Q2: Can the measurement of COC expansion be automated using advanced deep learning
techniques, and what are the benchmarks for evaluating the performance of such automa-
tion?

3. Q3: How can a computational model be developed to accurately compute the expansion of
COCs across different mammalian species?

4. Q4: What is the precise biological role of COC expansion in advancing to a healthy blasto-
cyst stage in mammalian embryos?

5. Q5: Beyond COC expansion, what other morphological or cellular characteristics within
the cumulus-oocyte complex are critical for achieving a healthy blastocyst stage, and how
can these characteristics be quantitatively assessed?

6. Q6: How can a novel consensus segmentation method, which emphasizes areas of disagree-
ment among experts, improve the accuracy and objectivity of medical image segmentation
compared to existing dual and simultaneous consensus approaches?

7. Q7: How does the ratio between the oocyte’s area and the follicle’s area influence the
healthy development of the oocyte, and how can this relationship be effectively modeled
within a deep learning framework to enhance our understanding and predictive capabilities?

8. Q8: How can transfer learning be effectively applied to the study of early stage embryos
across different mammalian species, particularly in cases where data on endangered species
is limited, to enhance our understanding and conservation efforts for these species?

1.4 Contributions

This thesis provides several important contributions in the realm of deep learning and reproductive
biology:

In collaboration with Ghent University’s Department of Obstetrics, Reproduction, and Herd Health2,
a pioneering step was taken in this thesis: the application of deep learning for the detailed study
and automation of cumulus-oocyte complexes (Figure 1.3). A cutting-edge deep learning pipeline
was introduced, tailored to segment cumulus areas with a precision mirroring human expertise,
even within limited resources. This innovative framework not only provides tools for in-depth
analysis of COC expansion but also explores sensitive characteristics of the segmented areas, such
as cellular density. The insights gathered from this study hold high importance in the realm of
predicting the health and development of oocytes and embryos. Furthermore, from an applied
standpoint, this pipeline dramatically reduces the manual labor burden on experts, equipping them
with indicators rich in biological significance. These contributions correspond to research ques-
tions 1,2,3,4,5, and are presented in Chapter 4.

2https://www.ugent.be/di/irp/en
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Figure 1.3: An example of an oocyte from the immature stage to the mature stage.

Figure 1.4: An example of an oocyte within a follicle, containing annotations for the features
needed for this research.

A recurring and rather frustrating challenge in medical image segmentation is the biases experts
carry. This thesis undertakes a comprehensive journey into this issue, concluding in proposing a
novel strategy. By deploying a coupled CNN pipeline – a segmentation network and a comple-
mentary regularization network – a focused approach was adopted. The highlight of this method
is its focus on areas of disagreement amongst experts. By meticulously extracting these diverse
expert profiles, our system ingeniously circumvents individual biases during the annotation phase
by proposing a new way of estimating the ground truth, disentangled from the human biases in
uncertain areas. These contributions correspond to research question 6 and are presented in Chap-
ter 5.

In cooperation with the Laboratory of Reproductive Biology at Rigshospitalet Copenhagen3, a
study was conducted to understand the impact of the ratio between the oocyte’s area and the fol-
licle’s area on oocyte healthy development (Figure 1.4). Despite the constrained dataset, prelim-
inary results unveiled a weak correlation between the areas and healthy development. However,
any other factor available was of less significance than the areas. This finding underscores a need
for broader data acquisition to arrive at more definitive conclusions. The attempts in this domain
correspond to research question 7 and are presented in Chapter 6.

Lastly, a collaboration was established with the Leibniz Institute for Zoo and Wildlife Research4.
The mission was to leverage transfer learning techniques for the in-depth study of mammalian em-
bryos, particularly those hailing from endangered species (Figure 1.5). Our exploration confirmed
a positive use of transferring knowledge between disparate mammalian embryos, such as naked

3https://www.rigshospitalet.dk/english/departments/juliane-marie-centre/fertility-department/laboratory-of-
reproductive-biology/Sider/default.aspx

4https://www.izw-berlin.de/en/home.html

6



Figure 1.5: A sample representation of different mammalian embryos retrieved by the partners in
Berlin.

mole rats and larger mammals or humans. This revelation not only underscores the method’s
adaptability to many species but also augments research prospects for species with barely suffi-
cient data, like the white rhino, without jeopardizing the integrity of their invaluable data. The
attempts in this domain correspond to research question 8 and are discussed in Chapter 6.

1.5 Overview

The structure of this dissertation unfolds as follows: Chapter 2 delves into the foundational aspects
of oocyte biology. In Chapter 3, we embark on a comprehensive review of the convolutional neural
networks, which play a core role in this research. Chapter 4, serving as the heart of this thesis, is
dedicated to the research on Cumulus Oocyte Complexes (COCs). Our exploration into consensus
segmentation is detailed in Chapter 5, while Chapter 6 focuses on side projects, including the study
of follicle maturation and embryo characteristics across mammalian species. Finally, Chapter 7
wraps up the thesis by summarizing and discussing our major contributions to the field.
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Chapter 2

The Language of Oocyte Biology

This chapter provides a comprehensive overview of the fundamental aspects of oocyte biology,
which serves as the cornerstone of our current research project. Given the pivotal role of oocyte
biology in our study, a thorough exploration of its theoretical foundations was deemed essential.
The foundational information presented in this chapter draws upon the extensive research con-
ducted by Gosden et al. [80].

2.1 Introduction

Oocytes hold a crucial role in the mammalian life cycle. They arise from germ cells in the un-
born baby and mature within a follicular environment. This environment ensures their develop-
ment properly aligns with puberty onset, ovulation, and hormone release. It’s worth noting that
many mammalian oocytes lack efficient developmental capability and are unusually susceptible
to chromosomal abnormalities, particularly as females advance beyond their prime fertile years.
Consequently, many women may seek ARTs or consider egg donation. Therefore, it is essential
that research concentrates on understanding the molecular factors and the particular environmen-
tal conditions necessary for the optimal development of oocytes. This potentially enhances the
quantity and quality of these techniques, as these factors frequently constrain human fertility.

The mysteries of egg development have intrigued philosophers and scientists since the time of
Aristotle, particularly in relation to the development of chicks. However, the small mammalian
egg remained a puzzle until its discovery by von Baer in 1826 [80]. Following this discovery,
several generations of biologists have come to understand the process of creating haploid gametes
through meiosis and their union during fertilization [136]. While it’s true that the sperm makes
an equal genetic contribution to the resulting zygote, the oocyte plays a far more significant role
as the primary donor of cytoplasm. It provides almost all of the organelles and nonchromosomal
molecules necessary for development. Even though fertilization signals the beginning of a new
genetic being, it’s obvious that the process of embryogenesis is heavily dependent on oogenesis,
the production of an egg cell.

Oocytes are remarkably specialized to carry out the unique processes of meiosis and fertilization
and initiate a molecular blueprint for development. Upon fertilization, they fulfill their reproduc-
tive role by generating blastomeres, cells formed by the initial divisions of the fertilized oocyte.
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These blastomeres later become precursors to all fetus cell lineages and surrounding membranes.
Therefore, oocytes represent a fascinating paradox, being highly differentiated and simultane-
ously the origin of totipotent cells. However, the scientific interest in oocytes extends beyond their
intriguing biology. They determine the boundaries of a woman’s reproductive lifespan, are fre-
quently implicated in infertility cases, and play a role in significant birth defects, including Down
syndrome. Regrettably, their extreme scarcity and the substantial bioethical considerations they
entail, even more so than other cell types except for their fertilization products, hamper research
efforts.

It was not until the advent of IVF techniques in the early 1980s that gynecologists regularly started
to see living female gametes from our own species. Although IVF procedures have become com-
monplace and ovarian stimulation is the norm, oocytes are still incredibly rare and valuable. Most
oocytes used for research are often donated from IVF programs where they were either not fer-
tilized or immature. Freshly harvested, presumed mature, and fertile cells are seldom available
for study. These challenges are further amplified by the oocyte’s post-ovulation lifespan, which
lasts only a day at most, and the inability to breed oocytes like cell lines. As such, advancements
have largely relied on animal models, including non-mammalian species, despite the egg size and
polarity variances. The cytoplasm in human oocytes appears comparatively uniform, which has
profound implications for invasive ARTs like ICSI. ICSI is a procedure where a single sperm
is injected into the oocyte’s cytoplasm to address most forms of male infertility. It also affects
embryo biopsy for preimplantation genetic diagnosis, where one cell is removed for genetic di-
agnosis and/or screening for abnormal numbers of chromosomes. Unlike amphibians, flies, and
many other animals, where materials deposited during oogenesis visibly polarize the eggs, deter-
mine the first cleavage division’s plane, and become sequestered in specific early embryo lineages,
human eggs lack these visible traits. Another distinct characteristic between species is the absence
of active germline stem cells in mammals after birth. Mammalian ovaries are typically thought
to slowly use up a finite supply of non-renewable oocytes during adulthood. Human ovarian fe-
cundity is more restricted than in most other species due to the mid-life exhaustion of the oocyte
store (i.e., menopause). Additionally, the fertility of oocytes starts to decline dramatically early in
mid-life (beginning around the age of 30), when chromosomal abnormalities become exception-
ally prevalent [91]. An evolutionary explanation is necessary, given humans’ universal occurrence
of rapid ovarian aging.

Meiosis in oocytes, a process known as oogenesis, is a critical aspect of female reproduction and
begins uniquely during fetal development in females. Unlike males, where sperm production is
a continuous process, females are born with a finite number of potential oocytes. Each of these
oocytes enters the first stage of meiosis, called prophase I, but then undergoes a pause in this stage.
These cells, now termed primary oocytes, remain in a suspended state of development until the
female reaches puberty. Once puberty is reached, the process of meiosis in oocytes resumes. Every
menstrual cycle, a few primary oocytes reinitiate meiosis. The first stage of meiosis I is completed
just prior to ovulation, resulting in two cells of unequal size: a larger secondary oocyte and a
smaller first polar body. This stage is crucial as it reduces the chromosome number from diploid
to haploid, essential for ensuring the correct genetic composition in the offspring. The journey of
the oocyte through meiosis continues with the onset of meiosis II, which begins in the secondary
oocyte. However, in a unique twist to the process, the oocyte pauses again, this time in metaphase
II, and is ovulated in this state. It’s only if fertilization occurs that meiosis II resumes, concluding
with the production of a mature ovum and a second polar body. This second division mirrors
mitotic cell division, focusing on the separation of sister chromatids. Several unique aspects mark
oocyte meiosis. The process involves asymmetrical cytokinesis, where the division results in one
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large oocyte and smaller polar bodies, which typically degenerate. Notably, oocyte meiosis is
more prone to errors, particularly in chromosome segregation. This susceptibility increases with
maternal age and can lead to chromosomal anomalies such as Down syndrome. Furthermore,
the extensive duration between the start of meiosis in the fetus and its conclusion potentially
decades later is a distinct characteristic of oocyte meiosis. The regulation of this entire process is
intricately linked to hormonal changes in the female body. Hormones such as Follicle Stimulating
Hormone and Luteinizing Hormone are instrumental in controlling the maturation and release of
the oocyte. This precise hormonal regulation is essential for the proper timing and development
of the oocytes, ensuring their readiness for potential fertilization and the subsequent restoration
of the diploid chromosome number in the zygote. This complex and meticulously timed process
underscores the sophistication of the reproductive system in females.

Oocytes collected for IVF or during ovulation are halted at metaphase II, surrounded by a cluster
of ”cumulus” cells. These cells are a subgroup of the granulosa cells within the follicle, and their
main functions include supporting oocyte development and contributing to hormone and growth
factor production. This phase marks the final step in a lengthy and intricate journey that starts with
primordial germ cells in the epiblast of an implanting embryo [186]. After these cells multiply
and migrate to the gonadal anlagen, they divide via mitosis until they enter the meiotic prophase.
Consequently, by birth, virtually the entire 1–2 million germ cells, now referred to as oocytes,
have arrived at the diplotene stage of prophase I [12]. At this point, they have already undergone
meiotic recombination, which gives each oocyte a unique genetic constitution. They then become
enveloped in a layer of pregranulosa cells, forming primordial follicles. However, these oocytes
cannot ovulate, resume meiosis, or undergo fertilization until they’ve experienced several weeks
of growth within the follicle. During this period, the follicle grows from the tiny primordial stage
(around 35 microns in diameter) to the grape-sized Graafian stage, which is ready for ovulation.
Later, the oocyte development across the complete range of follicle growth is discussed.

2.2 Development

To fully comprehend oocytes, it is crucial to consider them in conjunction with their follicles,
which offer a vital environment for their maturation, making them capable of undergoing fertil-
ization and producing a viable embryo. Follicles, particularly granulosa cells, provide a funda-
mental niche for oocyte survival, nourishment, and regulation (Figure 2.1). After lying dormant
in the ovary for a period ranging from one to over fifty years, primordial follicles commence the
growth of their oocyte and pregranulosa cells [178]. This process involves the PI3K signaling
pathway but operates independently of the follicle-stimulating hormone (FSH) from the pituitary
gland [159]. Only a minor portion of the total oocyte population (seemingly chosen randomly)
grows at once; otherwise, the ovary would be quickly exhausted. The growth of the oocyte is
synchronized with that of the granulosa cells, which progressively increase their activity in steroid
and inhibin production under the impact of gonadotropin stimulation, providing feedback on the
hypothalamic-pituitary unit. The granulosa and theca cells play complementary roles in produc-
ing estrogens, androgens (and progesterone, which begins shortly before ovulation). Despite the
presence of steroid receptors in oocytes, they are not known to be affected by these hormones,
except in frogs, where progesterone induces meiosis. Anti-Mullerian hormone is also secreted by
granulosa cells, but at an earlier stage and as a paracrine factor impacting small follicle commit-
ment to growth [32]. Previously, oocytes were perceived as passengers in follicles, passive and
reliant [78]. However, this metaphor has evolved to view oocytes as captains of their vessels. This
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Figure 2.1: Illustrative representation of follicle development in the ovary: Before birth, primordial
germ cells travel to the forming ovary and, following a growth phase, initiate meiosis I. The ovary
is filled with numerous primordial-stage follicles when a child is born. These have tiny, dormant
oocytes encircled by a layer of granulosa cells. As these follicles evolve, they transition through
stages until they become preovulatory, or Graafian-stage follicles, housing mature oocytes. These
oocytes progress to metaphase II of meiosis due to the mid-menstrual cycle surge of gonadotropins.
However, the meiosis process is only finalized when the oocyte is fertilized.

change came with compelling evidence that mid-growth oocytes could accelerate follicle devel-
opment to the Graafian stage after being combined with granulosa cells from an earlier stage of
follicle development [145].

Members of the TGF-β family are some of the most significant secretory products of growing
oocytes, notably the growth differentiation factor 9 (GDF9) and the closely associated bone mor-
phogenetic protein 15 (BMP15). These proteins have synergistic roles in follicle growth [51, 230].
BMP15 stimulates the expression of KIT ligand in granulosa cells, which acts via the KIT receptor
on oocytes to inhibit BMP15 expression. However, the physiological process is likely more intri-
cate, also involving the theca cell layer [160, 209, 107]. This local feedback loop helps explain
why differentiation in follicles where the oocyte has been removed goes awry. When the oocyte
is present, granulosa cells are stimulated to multiply and synthesize hyaluronic acid. At the same
time, the secretion of plasminogen activator and progesterone is inhibited, partly due to the actions
of GDF9 and BMP15. These interactions effectively coordinate the compartments of the follicle
to prevent premature ovulation and luteinization. The latter is the process where a post-ovulatory
ovarian follicle transforms into a corpus luteum [25, 212, 213, 30].

Although oocytes play a crucial role, communication within follicles is two-way, and the cells
within are interdependent. The survival of oocytes depends on metabolic cooperation, as oocytes
lack certain metabolic pathways. For instance, they can’t use glycolysis to generate energy and
instead rely on pyruvate as a primary energy source [90]. Oocytes nearing maturity secrete GDF9,
BMP15, and FGF8, which promote the expression of genes in granulosa cells. These genes encode
enzymes that stimulate the production of donor metabolites for oxidative metabolism [200]. Sim-
ilarly, they promote the expression of genes encoding amino acid transporters and enzymes and
outsource cholesterol biosynthesis to granulosa cells for membrane growth and other functions
[84, 199]. Nutrients and informational molecules can diffuse through the porous zona pellucida,
the thick glycoprotein shell secreted by growing oocytes. However, cytoplasmic continuity cre-
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ated by heterologous gap junctions is also vital for allowing the bidirectional transport of small
molecules between the granulosa cells and oocytes. These gap junctions form at contact points
between transzonal projections from granulosa cells and the oocyte membrane or microvilli [2,
180]. If connexin 37, a component of these junctions, is genetically deleted, both follicle and
oocyte development stall in mid-growth [193]. FSH, a critical survival factor for granulosa cells,
influences the density of transzonal projections, although the mechanism is unknown. This im-
plies that protocols stimulating the ovaries could impact oocyte quality [39]. During conventional
stimulation for harvesting multiple oocytes for IVF treatment, endogenous FSH is pharmacologi-
cally suppressed to gain greater control of the ovarian response to FSH administration. If oocyte
quality is somewhat lower in stimulated than natural cycles, it’s not necessarily due to any adverse
effects of FSH per se. It’s more likely a result of recruiting a wider range of follicle stages than
the narrow selection window for the single, dominant follicle in spontaneous cycles.

The crucial harmony of growth and differentiation between oocytes and granulosa cells is vital for
the proper timing of maturation, ovulation, and steroidogenesis. These processes are safeguarded
by the cellular interactions and inter-dependencies within the follicles, which are the fundamental
developmental units of the ovary [58]. Research seeking to culture small oocytes as an alternative
to in vivo ovarian stimulation or following frozen banking for fertility preservation must respect
the physiological needs of the granulosa cells in which they are nurtured. The structure of the fol-
licle can also help explain why the quality of oocytes (and, consequently, embryos) is not uniform
within a cohort, as each oocyte has a unique follicular microenvironment and developmental tra-
jectory. As our understanding deepens, we might see a revival of the ancient debate about whether
the intrinsic quality of its oocyte influences the likelihood of a particular follicle ovulating. This
indicates that each oocyte and its surrounding environment can greatly influence fertility. The
complexity and delicacy of these processes underline the importance of further research in this
area.

2.3 Growth and differentiation

Although relatively small, mammalian eggs are much larger than any other somatic (body) cell.
For instance, they expand to 120 micrometers in diameter in humans and grow around 100-fold
in volume and the number of organelles and structural and soluble components [225, 79]. The
enlarged nucleus in these oocytes is called a ”germinal vesicle.” In this state, the chromosomes
are diffused and stained only weakly with basic dyes, making them less visible. While the ap-
pearance is different from the ”lampbrush” chromosomes of the much larger frog egg – where the
chromatin forms brush-like loops acting as factories for RNA synthesis – mammalian oocytes are
transcriptionally highly active [43]. This heightened activity level is evident in the large nucleolus,
indicating heavy ribosomal RNA production. However, when transcription stops, a cap or ”hood”
of heterochromatin (tightly packed DNA) forms around the nucleolus in fully grown oocytes that
are competent to resume meiosis, which is the process of cell division that results in eggs [144].

The small oocytes found in the earliest stage of development, called primordial follicles, contain
a dense aggregation of organelles, including mitochondria, Golgi elements, and the endoplasmic
reticulum (ER). This cluster of organelles, reminiscent of the ”Balbiani body” observed in non-
mammalian eggs, disperses once oocyte growth begins [167]. The Golgi apparatus, an organelle
that modifies and transports proteins, breaks into flattened sacs in the cell’s periphery. Here,
proteins for the zona pellucida (a protective layer around the oocyte) are processed, and cortical
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granules (small sacs containing enzymes) are prepared for their role in hardening the zona pellu-
cida after fertilization [201]. This hardening helps prevent the entry of additional sperm, a crucial
step in ensuring the normal development of the fertilized egg. The cytoplasm of growing oocytes
includes a network of ER and a significant increase in polyribosomes, which are clusters of ri-
bosomes that synthesize proteins. In human oocytes, most centrosomal material needed to form
the mitotic spindle in the first embryonic division is not inherited maternally as in mice. Still, it
comes from the fertilizing sperm [188]. As a consequence, male infertility resulting from defects
in this process is unlikely to be resolved by intracytoplasmic sperm injection (ICSI). During this
procedure, a single sperm cell is injected directly into an egg. Oocytes have only small reserves
of glycogen (a form of energy storage) and lipids. They lack specific yolk proteins, comparable to
vitellogenins in non-mammals, which have disappeared during the evolution of internal fertiliza-
tion, placentation, and lactation. The only exception is the platypus, an egg-laying mammal that
still possesses these yolk proteins [23].

In rodent oocytes, lattice-like structures were once thought to be yolk proteins as they occupy
more than 5% of the cytoplasm at maturity, and they gradually disappear after fertilization un-
til they are completely lost in blastocysts (early-stage embryos) [203]. However, recent studies
on peptidyl arginine deiminase 6 (PADI6), an enzyme that modifies proteins, have supported an
alternative theory suggested years ago. This theory proposes that these cytoplasmic lattices are
actually storage sites for the components of the protein synthesis machinery, including mRNA
molecules and ribosomes [10, 216]. In line with this, it has been found that these lattices contain
PADI6, and when the Padi6 gene is disrupted (knocked out), the lattices are completely absent
from eggs. These Padi6 knockout eggs show defective ribosome function and abnormal activa-
tion of the embryonic genome, and they never develop beyond the 2-cell stage, the earliest stage
of embryonic development [61, 235]. These findings imply that the lattices are involved in protein
synthesis, and the presence of a human version (ortholog) of the Padi6 gene suggests that similar
mechanisms might exist in human eggs. This new understanding of the role of these lattices could
provide valuable insights into the processes involved in early embryonic development.

Oocytes in mammals, including humans, demonstrate radial symmetry, meaning they are symmet-
rical in all directions around a central point. This is true except for the slight eccentric positioning
of the nucleus, which is the central control center for the cell. As the oocyte prepares for ovula-
tion, the meiotic spindle, a structure involved in cell division, moves to the cortex of the oocyte.
This repositioning of the spindle defines the plane for forming the first polar body. The first polar
body is the small cell that results from the unequal division of the oocyte during the first meiotic
division. The side where the polar body is formed is sometimes called the ”animal pole.” How-
ever, this term is technically a misnomer in humans because, unlike in certain animals like frogs,
human oocytes do not have predefined cytoplasmic domains destined to develop into specific cell
lineages after fertilization. In other words, mammalian oocytes are flexible in their developmental
potential, not constrained to a predetermined embryonic axis, a concept referred to as regulative
character [109]. This flexibility in mammalian oocyte development is beneficial. For example,
in the case of fragmentation, cryoinjury, or biopsy (such as in preimplantation genetic diagnosis
where one or more cells are removed from an embryo to test for genetic conditions), the loss of a
blastomere (an early embryonic cell) is unlikely to cause maldevelopment. However, significantly
reducing the volume of maternal cytoplasm can indeed reduce the viability or ability of the embryo
to develop and survive [217].

The zona pellucida is a glycoprotein membrane surrounding the plasma membrane of an oocyte.
It is involved in several important processes in the life of an oocyte and early embryo, includ-
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Figure 2.2: A visual display presents 6 human oocytes retrieved post ovarian stimulation for as-
sisted reproductive techniques, spanning both before and after fertilization, with varying health
and developmental prospects. (A) A standard oocyte in metaphase II phase, accompanied by its
first polar body (highlighted by a white demarcation). (B) An unfertilized oocyte showcasing
multiple prominent vacuoles (labeled as V). (C) A pronuclear stage oocyte exhibiting consider-
able cytoplasmic fragmentation (denoted as F). (D) An oocyte displaying a singular pronucleus
(marked as P) following fertilization via ICSI, making it haploid. (E) A zygote with a triploid na-
ture, evident from two dominant and one diminutive pronucleus, hinting at dispermic fertilization.
(F) A zygote with tetraploid nature, showing four pronuclei, suggestive of a potential trispermic
fertilization occurrence. (Reproduced from Gosden et al. [80].)

ing protection from the external environment, communication with the surrounding cells, sperm
binding and induction of the acrosome reaction, prevention of polyspermy, and hatching of the
blastocyst during embryo implantation. Regarding protein synthesis, the zona pellucida accounts
for more than 5% of the peak output. This membrane contains the primary sperm receptor, zona
pellucida 3 (Zp3) [224]. Due to its specificity and function, the zona pellucida has been a key
focus of immunocontraception research. In mice, the zona pellucida comprises three highly gly-
cosylated proteins: Zp1, Zp2, and Zp3. These proteins are organized as Zp2-Zp3 fibrils, which
are non-covalently crosslinked by Zp1. The expression of these proteins is coordinated by the
transcription factor known as FIGLA (factor in the germline α), which is also required for the
establishment of germ cells [128] (also present in human [104]). The zona pellucida composition
in humans is slightly different, containing an additional protein, ZP4 (found in mice as truncated
pseudogene [42]). This makes four proteins: ZP1, ZP2, ZP3, and ZP4, contributing to the structure
and function of the human zona pellucida.

In mice, each of the three zona pellucida proteins (Zp1, Zp2, and Zp3) plays a unique role, as
evidenced by the different outcomes observed when these proteins are individually knocked out
[45]. When Zp1 is absent, the zona pellucida becomes weaker than normal, resulting in reduced
fertility in female mice. In the absence of Zp2, the zona pellucida is reduced to a thin membrane
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Figure 2.3: A unique instance of mature human oocytes devoid of zona. (A) All the oocytes
retrieved from an infertile patient conspicuously lacked the zona pellucida. (B and C) After under-
going ICSI, these eggs exhibited pronuclei and progressed to the 2-4 cell stage when cultured in
vitro (B). However, they failed to lead to a sustained pregnancy post-transplantation into the uterus
(C), even after being inserted into the evacuated zone. (Reproduced from Gosden et al. [80].)

of Zp1 and Zp3 fibrils. This membrane disappears before ovulation, and the eggs fail to develop
afterward. The most severe impact is observed when Zp3 is missing, which entirely inhibits the
zona pellucida formation and results in infertility. However, this condition can be remedied by
inserting the coding sequence for human Zp3 into the cells. However, the resulting oocytes can-
not bind human sperm because they require either Zp4 or species-specific glycosylation [177].
In humans, mutations in these zona pellucida genes are likely rare and haven’t been widely re-
ported. At your center, among thousands of patients, you’ve encountered only one case where
every oocyte lacked a zona pellucida in recurring stimulation cycles and a natural cycle [214],
seen in Figure 2.3. These ”naked” oocytes were fragile, requiring careful handling during fol-
licular retrieval and intracytoplasmic sperm injection (ICSI). Despite reaching the 8-cell stage
after fertilization and being transferred into empty donor zonae before being placed in the uterus,
successful implantation failed in all cycles except for one, which resulted in a brief pregnancy.
Nonetheless, this woman was able to achieve a successful twin pregnancy through egg donation.
This case underscores the crucial role of a normal zona pellucida in human fertility, highlighting
the significance of these proteins for successful conception.

Judging the competence of living oocytes based on their morphology can be quite challenging, as
there are often no visible indicators of issues such as aneuploidy, which refers to an abnormal num-
ber of chromosomes [13]. While there are some exceptions, such as noticeable large cytoplasmic
inclusions, central granularity (giving a bull’s eye appearance), or endoplasmic reticulum (ER)
clusters, these features are not always reliable predictors of an oocyte’s competence [191, 113,
161]. Sometimes, the oocyte’s cytoplasm may appear highly vacuolated (possibly due to blocked
ER tubes) or even break up into fragments during meiotic maturation. These phenomena generally
predict poor outcomes, either before or after implantation. Aneuploidy is a common occurrence
with numerous possible causes, but its presence is difficult to determine based purely on oocyte
morphology. The morphology of the oocytes often remains unclear until the surrounding cumulus
cells have been dispersed for intracytoplasmic sperm injection (ICSI) or after fertilization. In gen-
eral, embryo appearance and growth rate provide better indicators of implantation potential than
oocyte morphology. This means that embryo development, rather than oocyte appearance, tends
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to be a more reliable measure of potential fertility success [57].

2.4 Molecular side

Growing oocytes show a significant increase in mRNA synthesis, peaking when they reach full
size. This synthesis stops when the germinal vesicle breaks down, indicating the nuclear mem-
brane’s dissolution and the continuation of meiosis after a lengthy pause at prophase I [169, 11].
While newly-formed mRNAs are typically processed and translated swiftly, many in oocytes trans-
form into stored versions. Therefore, gene expression regulation in oocytes shifts predominantly to
translation rather than transcription. There’s a pivotal time frame starting from when the oocyte re-
sumes meiosis to the embryo’s initial cleavage, marking the activation of the embryonic genome.
This suggests that the earliest stages of development rely on protein synthesis derived from the
stored maternal transcripts. The well-being of the initial embryos hinges on the components and
synthetic activity present in the egg. As hinted previously, the differences in mRNA compositions
and amounts within a group of oocytes, or due to aging, could provide insights into their viability
[164]. Some research indicates that lacking the spindle checkpoint assembly regulator, MAD2,
and similar molecules may lead to aneuploidy [197].

From an economic perspective, one might anticipate that gene products would emerge promptly
and in amounts directly corresponding to physiological demand. However, reality often defies
this expectation. For instance, components of the maturation-promoting factor (MPF), integral
to the molecular mechanism propelling the cell cycle, manifest way before oocytes are ready for
meiosis. Furthermore, the protein lactate dehydrogenase appears in extremely high quantities,
much more than required for carbohydrate metabolism. These apparent discrepancies could, in
time, be clarified by understanding that these components might have multiple, diverse functions.

The collection of oocytes formed before birth is designed to last throughout the reproductive life
span. Given this, certain germ cells must endure for many decades, and it’s likely that over time,
they undergo degradation due to the cumulative effects of aging. Once these oocytes are liberated
from their follicular surroundings during ovulation, they begin to degrade at a swift pace. From
the initial primordial stage to ovulation, these oocytes don’t adhere to a strict developmental time-
line. Their growth rates can vary, influenced by the particular trajectory of the follicle they’re in.
They also possess a degree of adaptability in their developmental schedule leading up to ovula-
tion, which is eventually triggered by a surge in luteinizing hormone. For instance, in patients with
polycystic ovaries susceptible to ovarian hyperstimulation syndrome (OHSS) due to FSH stimula-
tion, there’s an option to ”coast” or delay the maturation of the follicles for as long as three days by
halting the stimulation. This doesn’t seem to affect the quality of the oocytes significantly [126].
The stability of mRNA and proteins likely remains intact during this period.

In oocytes, the lifespan of mRNAs extends to days or even weeks, which is in stark contrast to the
typical few hours observed in most body cells. Once mobilized from storage for oocyte matura-
tion, fertilization, and cell division, the vast majority (over 90%) of these transcripts vanish by the
time the first cell division occurs. By the blastocyst phase, they’re all gone [86]. So, how do these
molecules maintain such impressive stability, and what signals their eventual breakdown? Upon
being freshly transcribed, mRNA undergoes splicing, resulting in a mature molecule that’s then ex-
ported to the cytoplasm. Here, it becomes part of a ribonucleoprotein (RNP) complex. Along with
some initiation factors, this complex begins forming new polypeptide chains. A polyadenylation
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Figure 2.4: Illustrative depiction of the regulation of mRNA translation within RNP structures in
oocytes. When a freshly synthesized and spliced transcript gets integrated into an RNP structure,
it has two routes: directly translated or remaining translationally inactive for an extended time.
Transcripts primed for storage have a CPE located at their 3’-untranslated tail, which becomes the
binding site for the CPEB protein. When CPEB gets phosphorylated, it leads to the disengagement
of PARN from the complex. This permits GLD2 to extend the poly(A) tail, facilitating translation
through interactions with other proteins. For mRNAs in the dormant state, another protein asso-
ciated with CPEB, termed maskin, obstructs an initiation element (eIF4G). This factor is essential
to bring the 40S ribosomal component to the mRNA’s 5’ end by engaging with the cap-binding
initiation factor, known as 4E. The term 40S stands for the 40S ribosomal component.

at the molecule’s 3’ end is crucial for this translation to occur. However, stored mRNAs experi-
ence a shortening of their poly(A) tails to a mere 20–40 nucleotides, rendering them “masked”
[150]. The intricate regulation of translation encompasses the following primary components: (i)
For storage in oocytes, transcripts have U-rich, cis-acting cytoplasmic polyadenylation elements
(CPEs) located ahead of the processing signal, which is denoted as the sequence AAUAAA, with
A, U being nucleobases, (A for Adenine, U for Uracil), in the 3’ untranslated region [103, 215].
(ii) The CPE-binding protein (CPEB) is vital for the repression or activation of translation; it iden-
tifies the CPE in coordination with other factors, which leads us to the third component [179].
Figure 2.4 offers a basic representation of how these molecular participants interact, shifting from
a state of translational dormancy to one of expression. This shift is triggered by the Aurora A
kinase in frog eggs. When the poly(A) ribonuclease (PARN) is ejected from the complex, the
germline development factor 2 (GLD2) extends the tails by 200–250 nucleotides, a necessary step
for translation to occur. Furthermore, a protein associated with CPEB, called maskin, hinders
translation. It does so by contending with other factors for recruiting the 40S ribosomal subunit
to the AUG start codon. While these details are more accessible in species with sizable eggs (like
frogs), they likely hold true across a broad range of mammals.
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Polyadenylation’s critical role becomes evident in the case of Mos RNA, which instructs a key
regulator of meiosis. If this protein is missing, oocytes get stuck in meiosis I and don’t proceed to
meiosis II. However, a workaround exists: when the Mos RNA (with the correct CPE to facilitate
polyadenylation) is directly injected into the cells, they can successfully transition to the next phase
[71]. Another vital translational regulator is the Stem-loop binding protein (SLBP). It’s abundant
in oocytes and attaches itself to the 3’ region of histone mRNAs, playing a pivotal role in regulating
their translation [1]. Histones are essential because they step in to swap out the acidic protamines
in the male pronucleus, embedding themselves in the DNA of expanding embryos. A deficiency
of SLBP means that histones H3 and H4 can’t accumulate. As a result, embryonic development
grinds to a halt at the 2-cell stage. Although, this obstacle can be overcome by reintroducing
the missing protein [4]. Nevertheless, despite the successes in reversing certain gene product
deficiencies, the direct microinjection of mRNAs or proteins into oocytes doesn’t seem poised to
become a widespread technique to enhance oocyte viability soon. This is due to a few reasons:
many vital genes spring into action at earlier, more challenging-to-access phases of oogenesis, and
the degree to which transcriptional deficiencies during oocyte growth (or translation deficiencies
afterward) impact the overall quality of the oocyte remains ambiguous.

Recently, there’s growing evidence that small RNAs play a pivotal role as translation controllers,
with many following the same timing patterns as mRNAs that code for proteins. An experiment
involving the removal of Dicer, an enzyme responsible for converting precursor molecules into
microRNAs (miRNAs), led to significant findings. Without Dicer in oocytes, almost the entire
diverse range of miRNAs disappeared. This absence resulted in spindle defects and stopped em-
bryonic development by the 2-cell stage [206]. Moreover, as a defense strategy for the germ line,
siRNAs originating from pseudogenes (also processed by Dicer) collaborate with Piwi-interacting
RNAs. Through RNA interference pathways, their combined action inhibits mobile genetic ele-
ments, specifically transposons [205, 226]. Such revelations are likely just the tip of the iceberg,
ushering in a fresh perspective on the intricate mechanisms governing translation in oocytes.

Revisiting the earlier puzzle of how oocytes can simultaneously exhibit differentiation and totipo-
tency, a credible theory suggests their central reliance on RNA, transitioning developmental con-
trol from transcription to translation. This temporary separation between the genome, which halts
its synthesis, and the cytoplasm, where the pre-stored program undergoes translation, grants the
cell a unique developmental flexibility. This allows for specific transcript deployment for dedi-
cated functions, while the chromatin undergoes reshaping for embryogenesis [192]. This concept
spans across evolutionary lines, even though the exact timing for the embryonic genome activation
varies among species. In humans, this activation is detected during the 4- to 8-cell stage by in-
hibiting the activity of RNA polymerase [22]. In contrast, it happens 1–2 divisions sooner in mice.
Yet, both are notably early compared to frogs, where transcription doesn’t restart until the tadpole
phase. However, it’s worth noting that frogs reach this stage within hours post-fertilization due to
their swift cell division.

Imprinted genes, crucial for development, are expressed from only one parental allele. In contrast,
the other allele remains inactive due to epigenetic changes, specifically DNA methylation at CpG
islands in the 5’ region. For instance, the H19 gene is unmethylated and thus active in mouse
oocytes. In contrast, maternally imprinted genes like small nuclear ribonucleoprotein N (Snrpn)
and insulin-like growth factor 2 receptor undergo increasing methylation (thus becoming silent) as
the oocyte grows [137]. Interestingly, even if H19 and Snrpn expression remains normal in mouse
embryos formed post-superovulation, unexpected transgenerational methylation discrepancies ap-
pear in the sperm of the resulting male progeny [198]. Further, suboptimal culture conditions can

18



activate the typically silent paternal H19 allele in mouse embryos [50]. This raises concerns re-
garding in vitro maturation (IVM) of oocytes taken from preovulatory follicles. IVM is an assisted
reproductive technique (ART) that largely circumvents the need for gonadotropin-triggered ovar-
ian stimulation, a step in IVF linked with potential health hazards like ovarian hyperstimulation
syndrome (OHSS). The concern is especially poignant if the culture initiates during early oocyte
maturation phases when epigenetic reshaping occurs. However, despite these concerns, the health
of the millions of babies born via ARTs has been largely positive, with imprinting anomalies being
extremely uncommon [26].

Evaluating the safety of Assisted Reproductive techniques is complicated, given the naturally high
rates of aneuploidy (abnormal number of chromosomes) in oocytes. This aneuploidy rate acceler-
ates with age much faster in oocytes than in sperm or lymphocytes [166]. The key causes of this
appear to be weak checkpoint controls and premature segregation of chromatids during metaphase,
attributable to deficiencies in meiosis-specific cohesin. These factors shed light on the puzzling
susceptibility of eggs [100, 131]. Moreover, human oocytes show moderate sensitivity to ionizing
radiation, particularly at the primordial follicle stage. Such radiation can wipe out these follicles
through apoptosis after exposure to therapeutic levels of radiotherapy or intensive chemotherapy
[218]. An intriguing study on mice treated with ethyl nitrosourea, a strong mutagen, revealed that
the predominant infertility effects were observed in males. These males either showcased reduced
sperm production or were rendered completely infertile. On a brighter note, these effects seem to
be binary in nature. Young cancer survivors of either gender who retain their fertility post gonado-
toxic treatments don’t demonstrate an increased risk of birthing children with major congenital
defects [67].

Few mutations that directly impact the quality of oocytes and embryos have been identified. How-
ever, genetic variations might be the cause behind occasional infertility cases where processes like
meiotic maturation, fertilization, or cellular division are halted. Maternal effect genes are often
viewed as the primary suspects. This is because females carrying mutations in these genes tend to
be infertile (despite being otherwise healthy), while males are entirely unaffected. This is largely
due to the lack of significant gene product carryover from sperm to the embryo. The proteins
these maternal effect genes produce are among the most prevalent in oocytes, and many play a
role in processes like transcription and translation. However, some are also present in cortical
complexes [242]. In mammals, roughly a dozen such maternal effect genes have been pinpointed,
with Padi6 being a typical example. Mutations in these genes generally halt the development of
mouse oocytes or embryos from the later stages of oogenesis to the blastocyst phase. Some genes
with a broader expression can also halt this, but only maternal-effect genes have fertility-specific
impacts. To clarify further, although genes like the CCCTC-binding factor and postmeiotic seg-
regation increased 2 (Pms2) produce proteins from mouse oocyte mRNAs crucial for cellular
division, they aren’t labeled as maternal effect genes. These genes also have roles outside of re-
production, such as regulating the epigenome [219] and DNA mismatch repair [83], respectively.
Humans probably have similar defects in the counterparts of these maternal effect genes. Such
defects could be the reason why a significant number of human embryos have suboptimal quality.
There’s a possibility that proteins resulting from slightly penetrative genetic variations have only
subtle impacts on fertility. However, if multiple such variations are present, their combined effect
could be substantial, especially since many maternal effect proteins collaborate in the subcortical
complex [127].
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2.5 Oocyte maturation

Oocyte maturation is the important transition where a cell evolves into a mature gamete, stand-
ing at the crossroads between its own demise and the potential of giving rise to a vast lineage
of descendants. Initiated by the surge of gonadotropin around the midpoint of a woman’s men-
strual cycle, the cell progresses from this trigger, emits a polar body, and continuously advances
through the cell cycle, eschewing any hiatus for DNA replication until it reaches its next meiotic
division. This division comes to a standstill at metaphase II, roughly a day and a half post the
gonadotropin surge, as depicted in Figure 2.5. The first division of meiosis is distinct in that it
incorporates genetic recombination and spans several years. In contrast, the subsequent division
is brief, mirroring mitosis, and its culmination hinges on successful fertilization. Interestingly, it’s
been observed that oocytes at the germinal vesicle stage can spontaneously embark on the matura-
tion process in a cultured environment even without the influence of hormones. This autonomous
maturation seems to hinge on protein phosphorylation and removing suppressive effects inherent
within the follicle. Given the scarcity of mature oocytes in the earlier days of IVF research, early
trailblazers in the field often had access only to immature oocytes, prompting them to rely on in-
vitro maturation (IVM) [59]. Currently, IVM is witnessing a resurgence, primarily as a method to
sidestep the complications associated with ovarian hyperstimulation syndrome (OHSS), especially
in individuals diagnosed with polycystic ovaries. While the outcomes in terms of pregnancy rates
are commendable, the competency of oocytes derived from IVM trails behind that of conventional
IVF cycles. This is likely because procuring oocytes prematurely results in cells that, while they
may be prepared for nuclear maturation, haven’t fully achieved cytoplasmic maturity [36].

During oocyte maturation, the cell’s internal structures are significantly reshuffled and reorganised.
Notably: (i) Mitochondria change to ensure localized energy provision. (ii) Cortical granules move
in anticipation of preventing the entry of multiple sperm, a phenomenon known as polyspermy.
(iii) The endoplasmic reticulum (ER) undergoes shifts, preparing for the sequenced release of
calcium ions (Ca2+) from its stores post-fertilization [134, 66, 132]. This maturation journey is
primarily powered by cell cycle kinases, most of which also play a role in managing mitotic cycles
[110, 24]. MPF (M-phase promoting factor) and MAPK (mitogen-activated protein kinase) are
two pivotal molecules in this process. These molecules are central in orchestrating downstream
targets and are instrumental in the assembly of the spindle [171, 62, 234]. Their activation is
synchronous with the breakdown of the germinal vesicle. As the maturation process unfolds, their
activity escalates, though MPF does experience a brief dip post-metaphase I. Both these kinases
reach their zenith in activity levels in fully matured oocytes [171, 119, 87] as shown in Figure 2.5.
They embody the cytostatic factor that has long been understood to sustain the arrest at metaphase
II [143].

Maturation is critical for ensuring proper development and the correct number of chromosomes in
the cell. Fertilizing an oocyte prematurely at metaphase I can lead to the formation of cells with
three sets of chromosomes, known as triploidy. However, many immature oocytes lack the ability
to generate the necessary repeated calcium (Ca2+) signals required for successful activation by
a sperm [147, 111, 125]. This signalling capability is only fully developed by metaphase II, but
starts declining with age post-ovulation. As the oocyte ages, the signal transitions from one that
initiates activation to one that causes cell death or apoptosis [147, 68, 77]. Following fertilization,
an initial surge of intracellular Ca2+ oscillations repeat approximately every 20-30 minutes. These
oscillations set off a sequence of events that includes the release of contents from cortical gran-
ules, continuation of meiosis, mRNA utilization, formation of the male and female pronuclei, and
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Figure 2.5: Graphical representation of human oocytes’ molecular and cellular evolution. The
development trajectory begins with the onset of oocyte growth in smaller follicles and spans mei-
otic maturation, fertilization, and eventual cellular division. Fully grown oocytes can recommence
meiosis a few days before ovulation. Post the resumption of meiosis, transcription remains in-
active until the embryo reaches the 4- to 8-cell stage. Subsequent gene expression hinges on
translating the pre-stored mRNAs until the activation of the embryonic genome approximately
3–4 days later. As the oocyte reaches its full growth, protein synthesis escalates and plateaus.
Progressing through meiotic stages is steered by the phosphorylation alterations in both MPF and
MAPK. Once the oocyte reaches cytoplasmic maturity, oscillatory patterns of intracellular calcium
concentration ([Ca2+]i), sourced from the endoplasmic reticulum (ER) stores, are initiated by the
sperm that fertilizes the oocyte.

progression to the first cell division or mitosis [190]. The significance of these Ca2+ oscillations
was demonstrated in studies where Ca2+ injections induced the development of oocytes without
fertilization, a phenomenon called parthenogenesis [70]. Conversely, a substance that binds and
removes Ca2+ prevented fertilization [117, 229]. When electric pulses were used to induce Ca2+

release from internal storage areas of the cell, the degree of parthenogenetic development was
linked to the number of Ca2+ oscillations produced. For instance, the release of cortical granules,
an early event, required fewer Ca2+ signals than the formation of pronuclei and the onset of mi-
tosis, which are later events [163, 54]. To reach stages beyond implantation, a high frequency of
these oscillations was necessary [162]. In some cases, patients undergoing IVF treatments have
oocytes that consistently fail to activate post-intracytoplasmic sperm injection (ICSI). This could
be due to a failure in Ca2+ signaling. To overcome this, a Ca2+ ion-inducing substance has been
used to encourage fertilization [95]. However, a more natural or physiological method would be
preferable, as will be discussed further.
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The oscillations in calcium ions ([Ca2+]i) that are triggered by fertilization stem from the phos-
phoinositide signaling pathway. Here, phosphatidylinositol 4,5-bisphosphate, found on the plasma
membrane, gets cleaved by phospholipase C (PLC) into two secondary messengers: inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG) [17]. IP3 attaches to its receptors (IP3Rs) on the
endoplasmic reticulum (ER) membrane, prompting the release of Ca2+ from ER storage into the
cell’s cytoplasm [243]. On the other hand, DAG aids in the influx of Ca2+ by activating protein
kinase C (PKC) [158]. In mammalian eggs, the oscillations in calcium following fertilization are
primarily mediated by the type 1 IP3R (known as IP3R-1) [165, 65]. Evidence for this comes from
using IP3R-1 specific antibodies, which have been found to inhibit the calcium response and the
activation of the oocyte [229, 153]. If there are irregularities in the abundance, location, or any
post-translational changes of IP3R-1 during oocyte maturation, they could potentially hinder suc-
cessful fertilization [125, 111, 148]. Addressing irregularities in this signaling pathway presents a
challenge. However, in cases where there’s a deficiency in the ”sperm factor” that initiates these
calcium oscillations, one solution could be to inject the sperm-specific form of PLC, known as
PLCζ. This could potentially activate eggs in situations where intracytoplasmic sperm injection
(ICSI) doesn’t work, especially in scenarios related to male infertility [232, 97].

Following the activation of the oocyte, the sperm’s nucleus goes through decondensation and
replaces its protamines with histones, forming the male pronucleus. This pronucleus gains the
potential for future transcriptional activity. The process of decondensation is facilitated by the
reduction of disulfide bonds in protamines [168]. This reduction likely involves glutathione, which
accumulates during oogenesis, and a product of a maternal effect gene known as nucleoplasmin 2
(NPM2) [29]. In situations where fertilization is halted due to a failure in decondensation, it could
result from either an ineffective oocyte or a sperm nucleus resistant to decondensation.

2.6 Future

Human oocytes have transitioned from being relatively unknown to playing a pivotal role in con-
temporary biology. Even with the rising use of Assisted Reproductive Technologies, the efficiency
remains relatively low. For younger women, about 25 oocytes are harvested for every live birth.
However, this ratio can vary based on factors such as the treatment facility, maternal age, and
whether the oocytes are frozen. A significant reason for this inefficiency is the subpar quality of
many oocytes, especially as a woman gets older. Hence, there’s a pressing need for advanced meth-
ods to discern high-quality oocytes. Screening single cells presents inherent challenges. While
non-invasive techniques, like analyzing polar bodies, surrounding cumulus cells, or the culture
medium left after fertilization, are promising, their practical applications are limited or still in the
experimental phase. It might be more feasible to assess the potential of embryos for implantation
than to screen oocytes, given that issues typically become more apparent post-fertilization. En-
hancing the quality of oocytes is a compelling approach, but realizing it is complex. Regarding
increasing the number of oocytes for medical procedures and research, the current ovarian stim-
ulation methods might have maxed out their potential. However, there’s a pressing demand for
higher-quality and more abundant oocytes. Meeting this demand could alleviate the strain on egg
donation services and encourage the transfer of single embryos, reducing the risk of multiple preg-
nancies. Furthermore, there’s a need for research-quality oocytes to investigate the reasons behind
chromosomal abnormalities and to pave the way for regenerative medicine through somatic cell
cloning.
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In the coming years, due to biological and ethical constraints, the availability and quality of oocytes
will be inherently limited. This reality brings forth a mix of great anticipation, tempered by cau-
tion, towards advancements via innovative cultivation technologies. These advancements include
the potential to cultivate gametes from the relatively more numerous small-follicle stages [81], or
from the germline stem cells that continue to exist after birth [28, 246]. To achieve success, the
culture setup must be intricate enough to replicate the environment of the follicle accurately. It
should also have the capability to provide stage-specific cues for regulating growth, differentia-
tion, epigenetic alterations, and meiotic processes. Standard cultivation methods might fall short
in achieving these requirements. However, the evolution of microfluidics technology could pave
the way to create a more organic microenvironment. Recent research has managed to cultivate
cells resembling oocytes using embryonic stem (ES) cells, and various bodily cells like those from
the pancreas, fetal skin, and the outer layer of postmenopausal ovaries [142]. And while it’s unde-
niable that germ cells can develop in embryoid bodies derived from ES cells, present-day culture
conditions haven’t yet been able to fully simulate the unique and dynamic conditions vital for
producing a fertile oocyte – whose true definition lies in its ability to result in a healthy offspring.

The pursuit of enhancing the quality of oocytes by cytoplasmic transfer from younger donor
oocytes has been met with skepticism. The reservations stem from the minuscule amount of
cytoplasm that can be introduced and the inadequate knowledge regarding the determinants of
poor quality and aging processes in oocytes. Indeed, while several babies have been successfully
conceived following such procedures [15], worries regarding genetic safety led to the suspension
of these practices in the USA. Another method, transferring the germinal vesicle to an enucleated
donor oocyte, provides a more extensive cytoplasmic replacement. However, this technique is
limited by the efficiency of in-vitro maturation (IVM) protocols and concerns about mitochondrial
heteroplasmy. The latter refers to the presence of mitochondria from multiple sources in a single
cell, which raises potential concerns for offspring health. Interestingly, the transfer of the spindle-
metaphase II chromosome complex to enucleated donor oocytes has shown promise. This method
has resulted in the birth of three healthy monkeys [204]. One significant advantage of this method
is that since mitochondria are maternally inherited, the risk of passing on mitochondrial DNA
mutations to the offspring is virtually nil. This is especially crucial for families with a history of
mitochondrial disorders, as it provides a method for ensuring that the child does not inherit these
disorders. Nevertheless, a recurring challenge for all these approaches is the restricted availability
of donor oocytes. This scarcity underscores the need for continued research and development of
alternative, more efficient methods to address oocyte quality and quantity issues.

Despite the challenges, there is a bright horizon for advancements in this domain. With the aid of
advanced molecular tools, it’s now possible to study individual oocytes – a critical development
when examining rare and diverse cells. Establishing an international oocyte bank could propel
this field forward, especially given the improved efficacy of low-temperature storage. This means
that researchers wouldn’t rely on IVF clinics for samples and invaluable cells wouldn’t go to
waste. Over time, we’ll gain a more profound insight into oocyte health and aging, paving the way
for innovative oocyte cultivation techniques and even molecular interventions to rectify defects.
Furthermore, if induced pluripotent stem cells (iPS cells) continue to show promise, they might
become a fresh source of oocytes, offering chances to rectify genetic defects at a nascent stage. iPS
cells strongly resemble ES cells but originate from modified somatic cells. Healthy mice, birthed
from these cells, have been found to possess fertile germ cells [241]. This suggests the potential for
human iPS cells to eventually serve as a germ cell reservoir for producing oocytes. While it’s hard
to foresee the speed of these advancements or the safety of these gametes for fertility treatments,
these explorations enrich our understanding of oocyte biology and any associated disorders.
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Chapter 3

The Language of Convolutional Neural
Networks

As we transition from the intricate biology of oocytes explored in the previous chapter to the
innovative realm of AI in this chapter, we introduce Convolutional Neural Networks (CNNs), a
transformative force in computer vision. These networks, mirroring the pattern recognition ca-
pabilities of the human brain, provide a novel lens through which we can analyze and interpret
the complex imagery of oocytes. Bridging the gap between the detailed biological understand-
ing previously established and the technological prowess of CNNs, this chapter aims to explore
how the synergy of biology and advanced computing can unlock new dimensions in the study of
reproductive biology, propelling us beyond traditional methodologies to discover groundbreaking
insights in the field.

3.1 Introduction

Computational neural models have a rich history, dating back to the mid-20th century, with early
foundational works like the Hebb and Perceptron models [94, 182]. A critical moment came
with Rumelhart et al.’s introduction of backpropagation for learning family tree structures [184].
Today, backpropagation is the primary method for training diverse neural network architectures.
LeCun et al. later utilized backpropagation to train highly complex neural networks, introducing
convolution layers for practical applications such as recognizing handwritten digits [123, 124].
It’s crucial to note that while these introductions of backpropagation and convolution layers were
impactful, they weren’t the first of their kind since others have been mentioned thoroughly [189].

Deep Convolutional Neural Networks (DCNNs) are a class of deep learning models primarily
used in processing structured array data such as images, leveraging convolutional layers for fea-
ture extraction. Their development was significantly influenced by advancements in computational
resources and training techniques, allowing them to achieve outstanding performance in tasks like
image and video analysis. In a later period, interest in these networks was reduced, mainly be-
cause of computational constraints and the absence of large labeled datasets. However, a revived
interest emerged when Hinton et al. [98] successfully trained deep layers of an auto-encoder
for dimensionality reduction. Advances in computational power, primarily through graphics pro-
cessing units (GPUs), and a deeper understanding of how to efficiently initiate and train these
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networks soon led to the remarkable success of a Deep Convolutional Neural Network (DCNN)
named ’AlexNet’ [118]. This model excelled in the ’ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)’, bringing deep learning to the forefront. ILSVRC is a yearly challenge
dedicated to detection and classification tasks [185].

It’s essential to recognize that while deep learning often centers around deep neural networks,
other deep architectures exist, such as hierarchies based on k-means clustering [38]. Nevertheless,
deep neural networks remain the most representative model in the deep learning domain. This
thesis uses ’deep learning’ to denote ’deep neural networks’.

3.1.1 Definition and Overview

A standard neural network consists of input and output layers, with at least one intermediary layer
known as the hidden layer. These layers are made up of units named neurons. Neurons within
a layer connect to those of the layers before and after them using connection weights, or simply,
network weights. A particular neuron, yj , calculates a weighted sum of its input values xi, using
corresponding weights wij and an added bias bj . Based on the network’s design, a linear or non-
linear transformation, known as an activation function f , may be applied to this sum, expressed
as:

yj = f(
∑
i

xiwij + bj). (3.1)

The network’s performance is measured using a ’loss’ function. During the training phase, the
objective is to minimize this loss function relative to the set of connection weights W , which
consist of the weights wij . To simplify it, we’ll focus on the weights and not include bias in
our explanations. The training process typically employs backpropagation, which comprises two
iterative procedures: the forward pass and the backward pass. The network’s operations boil down
to straightforward matrix multiplications if the non-linear activations are removed.

3.1.1.1 Network depth

The depth of a network is usually determined by counting its layers, excluding the input layer.
So, a conventional shallow neural network, consisting of an input, an output, and a single hidden
layer, is said to be two layers deep. A layer’s width is related to the number of neurons it contains.
Generally, a network that is both deeper and wider might have a higher capacity to model com-
plex patterns. However, this notion varies based on the neural network’s design and the specific
problem it addresses. It’s worth noting that deeper networks can potentially overfit data. While
the distinction between ’shallow’ and ’deep’ networks can be subjective, networks with several
hidden layers are typically labeled ’deep’.

Figure 3.1 provides a generalized depiction of a deep network, specifically a DCNN. This in-
cludes two successive convolution layers (alternating with pooling layers), culminating in the
fully-connected layers (all layers defined later on in Section 3.2). The convolution layers produce
multiple feature maps derived from the preceding layer or the input image. The final convolution
or pooling layer’s features then lead to a fully connected layer, which calculates a weighted sum
of these inputs and typically applies a non-linear transformation, or activation, to them.
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Figure 3.1: A Deep Convolutional Neural Network (DCNN) that consists of two convolutional
layers responsible for calculating multiple feature maps. These convolutional layers are alter-
nated with two pooling layers, which achieve a dual purpose: they reduce dimensionality through
response pooling and introduce a degree of translation invariance. To conclude, the network in-
corporates two fully connected layers at the end, which carry out a weighted sum of the feature
vectors derived from the convolutional layers.

3.1.1.2 Network orientation

The terms ’up’ and ’down’ are conventionally used to indicate directions pointing toward the
output and input layers, respectively. This means the input layer is thought to be at the base,
while the output layer sits at the network’s peak. As a result of using back propagation during the
training phase, data ascends in a forward pass, while gradient updates descend in a backward pass.

3.1.1.3 Layers, activations and variations in taxonomy

Theoretically, activation functions are deemed network layer components rather than independent
layers themselves. But with the surge in the development of deep learning tools and methodolo-
gies over the past couple of years, it’s not unusual to see instances where activation functions
are designated separate layers for implementation purposes [108], even if their operations remain
unchanged. This shift has led to a growing trend in literature where activation functions are dis-
cussed as ’layers’. Details on frequently utilized network components, like layers, activations, and
loss functions, essential for crafting contemporary deep learning workflows, can be found in the
following sections.

3.2 Blocks of CNN architecture

The architecture of a CNN is comprised of various components, including convolution layers,
pooling layers, and fully connected layers. Generally, a CNN architecture is characterized by
repeated sequences of multiple convolution layers paired with a pooling layer, followed by one or
several fully connected layers. The process during which the input data undergoes transformation
to produce output via these layers is known as forward propagation.

3.2.1 Convolutional layer

A convolution layer is a prevalent layer type in neural networks tailored for computer vision and
image processing tasks. Multiple small two-dimensional filters or feature detectors characterize
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this layer. Unlike the manually designed features in traditional machine learning methods, the
filters within deep networks are refined during training. This approach, where feature and classifier
training happen concurrently, is known as representation learning.

These adaptive filters engage in convolution operations with the input image, and the resulting
feature outcomes are relayed to the subsequent layer [123]. Networks that sequence multiple
convolution layers (often alternated with pooling layers) are called DCNNs.

Extending the AlexNet design philosophy, contemporary advancements lean towards architecting
networks predominantly around convolution layers. A case in point is the ResNet [93], a 152-layer
deep residual learning network (which excelled at ILSVRC 2015). This structure is predominantly
built from convolution layers.

Filter Traditional machine-learning approaches in image processing often involve utilizing pre-
defined feature detectors. These detectors produce responses, which are then passed through a
classifier for label determination. In deep networks, the initial convolution layers, positioned
closer to the input, act as these low-level feature detectors. Unlike classic methods, the parameters
of these detectors, primarily the weights of the kernels, are fine-tuned during the training phase.
Commonly, DCNNs deploy a cascading series of convolution layers, where the output from one
layer, say Cn, feeds into the subsequent layer, Cn+1. This architecture facilitates extracting foun-
dational (low-level) and intricate (high-level) features. In essence, high-level features emerge as a
compounded blend of their foundational counterparts, allowing for the representation of sophisti-
cated image patterns. There’s been a surge in recent studies focusing on visualizing these feature
levels in neural networks [237, 233, 244].

Stride The convolution filters, typically compact in dimension (ranging around 3×3 to 11×11
pixels), capitalize on the strong spatial correlations inherent within close-knit pixel clusters in im-
ages. The filter’s size, called the ’receptive field’, is a chosen parameter. It defines how many
neurons from a preceding layer (or pixels if it’s an input layer) connect to a neuron in the present
layer. A defining trait of convolution layers is the concept of ’shared weights’. Regardless of
the filter’s position on an image, its weights remain consistent, ensuring weight adjustments are
uniform across the entire image. This approach notably reduces the network’s weight dimension-
ality, hence, convolution networks often carry fewer weights compared to their fully connected
counterparts.

Another essential factor in convolution layers is the ’stride’, dictating the horizontal or vertical
movement of the filter after each convolution operation. For a visual, consider Figure 3.2. Here,
a 5×5 kernel interacts with an image. A stride set to three pixels means, post convolution, the
kernel will be moved three pixels rightward.

3.2.2 Pooling layer

Pooling layers are commonly utilized after convolution layers. They serve the function of sub-
sampling feature responses from a prior convolution layer, propagating only the most essential
feature response (based on the pooling type) to subsequent layers. Such layers also infuse a level
of translation invariance into the neural networks.
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Figure 3.2: Illustration of the convolution layer’s receptive field and stride: The receptive field
covers a 5×5 area. In this particular example, a stride of three is employed, indicating that the
convolution filter is displaced by a distance of three pixels after each convolution operation.

Three main parameters characterize the pooling layer: size, stride, and type. The size denotes the
dimensions (both horizontally and vertically) of the region over which the pooling action happens.
Stride, similarly to its role in convolution layers, determines the subsequent pooling area’s loca-
tion. By adjusting the size and stride, one can establish overlapping (if the stride is less than the
size) or non-overlapping (if the stride is equal to or larger than the size) pooling areas.

There are two prevalent forms of pooling: max pooling and average (or mean) pooling. Max
pooling takes and forwards only the highest feature response within the pooling region to the
next layer. Conversely, average pooling calculates and sends forward the average of all feature
responses within that pooling window. For instance, Figure 3.3 depicts the outcomes from both
max and average pooling layers.

Notably, this subsampling process contributes to a reduced count of network parameters, simpli-
fying the optimization process.

3.2.3 Fully connected layer

A fully connected layer is characterized by the fact that every neuron within it is linked to every
element of the preceding (downstream) layer, leading to a very dense interconnected pattern. This
contrasts convolution layers, where a neuron only connects to prior elements within its receptive
field. Given the connectivity of the fully connected layers, even a limited number of them can
account for a significant portion of the network’s weights.

In most neural networks, these fully connected layers are found towards the end, just before the
network computes its loss. It’s also frequent to see an activation function, such as the Rectified
Linear Unit (ReLU) [74], placed between two consecutive fully connected layers. However, recent
trends have started to challenge the indispensability of these layers. There’s a growing inclination
to swap out the terminal fully connected layer with a support vector machine classifier. According
to findings in [73], networks with fewer fully connected layers demonstrated better generalization
on testing data.

28



Figure 3.3: Illustration of max and mean pooling techniques. In this example, a pooling size of
two pixels is applied in horizontal and vertical directions, with a stride of two pixels, ensuring that
pooling neighborhoods do not overlap.

3.2.4 Dropout layer

Introduced by Hinton and his team in 2012 [99], dropout layers have since become an integral
part of many deep learning architectures. These layers can be inserted anywhere within a neural
network. Interestingly, in some experiments from [99], including a dropout layer right at the input
(alongside those within hidden layers) led to even more significant reductions in recognition errors.
It’s worth noting that dropout layers are always used to support another functional layer, such as a
convolution or a fully connected layer. This means a dropout layer is always paired with a specific
functional layer.

The dropout probability, specified by the user, is a crucial parameter for each dropout layer. This
probability determines how often elements from its paired functional layer are turned ’on’ or ’off’
during a training cycle. For instance, a 0.5 dropout probability means that half the neurons are
randomly deactivated in any given iteration. As a result, these neurons do not participate in the
forward or backward passes for that iteration. However, suppose a neuron is deactivated for a
particular iteration (say iteration k), even though it remains inactive for that cycle. In that case, its
last known weights (from iteration k−1) are preserved for potential use in the succeeding iteration
(k + 1), assuming the neuron is reactivated. During the testing phase, every neuron is active, and
their weights are typically adjusted by a factor (for instance, halved for a dropout probability of
0.5).

Dropout layers play a crucial role in regulating deep networks. They work to reduce overfitting
by effectively mitigating the model’s variance. By periodically deactivating specific neurons, the
network’s structure gets modified. When using a dropout probability of 0.5, this behavior can
be likened to sampling from an ensemble of 2n distinct networks, where n represents the total
neurons in the paired functional layer.
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3.2.5 Attention layer

In addition to the previously discussed layers, another pivotal component that merits discussion
is the attention layer [76]. This layer represents a significant advancement in the field of deep
learning, especially in the context of CNNs. The attention layer works by selectively focusing
on certain parts of the input data, much like the human visual attention mechanism. It identifies
which features are more important in the given context, allowing the model to concentrate more
’attention’ on those relevant features while processing information. This mechanism enhances the
model’s ability to learn complex patterns and relationships within the data, leading to more accu-
rate and efficient performance. The integration of attention layers in CNNs has shown remarkable
improvements in various tasks, particularly those involving intricate visual recognition challenges.
This layer’s ability to refine the focus of the network aligns seamlessly with the research field of
the current thesis, where precision and detail-oriented analysis are crucial.

3.2.6 Activation functions

Rectified linear unit (ReLU) The ReLU is an activation function that can be integrated with
other layers. Since its debut in [74], it has become the predominant activation function in deep
learning, surpassing hyperbolic tangent and logistic sigmoid functions [114]. The ReLU can be
described as:

f(x) = max(0, x), (3.2)

where x is the ReLU’s input. It operates similarly to a half-wave rectifier by setting all negative
inputs to zero. When paired with a batch normalization layer, only about 50% of the ReLUs are
active at any moment, leading to sparse activations.

One significant advantage of the ReLU over sigmoid-based activation functions is its gradient
doesn’t diminish as input increases. Instead, its value remains steady at one, provided the input
stays positive. To illustrate, if a large positive input is fed into a sigmoid, the output is capped
at one. Hence, any increment in input translates to only a minimal increase in the output and,
subsequently, the gradient—giving rise to the ”vanishing gradients” problem. The gradient for
ReLU is defined as:

∂f

∂x
=

{
1 if x > 0

0 otherwise
(3.3)

However, the ReLU isn’t without its issues. It’s possible to end up with weights that cause the
neuron to remain inactive for all training examples in the dataset. This phenomenon is known
as ”dead neurons”. Imagine, for instance, a bias set too low during training. To counteract this,
various ReLU variants have emerged, like leaky ReLU, parametric rectified ReLU, and random-
ized leaky ReLU. For an in-depth analysis of these activation functions, readers can refer to this
study [228]. It’s worth noting, however, that many of these ReLU alternatives are relatively new
and require further investigation to solidify opinions about their effectiveness and adaptability to
diverse datasets and network designs.
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Last layer activation function The activation function used in the final fully connected layer
often differs from those used in earlier layers. The choice of the activation function depends on
the specific task at hand. For example, for tasks involving multiclass classification, the softmax
function [55] is commonly used. This function converts the real-valued outputs from the last fully
connected layer into probabilities for each target class. Each output value lies between 0 and 1,
with the sum of all these values equaling 1. When it comes to binary classification, the most
common one is the sigmoid function [89].

3.3 Training a network

Training a neural network involves identifying the optimal kernels in convolution layers and
weights in fully connected layers to minimize the differences between the network’s output pre-
dictions and the actual ground truth labels in the training dataset. The backpropagation algorithm
is a widely-used method for training these networks, in which several components and methods
are in use. The performance of a model with specific kernels and weights is evaluated by a loss
function during forward propagation on the training dataset. The learnable parameters, which are
the kernels and weights, are then adjusted based on the calculated loss value. This adjustment is
done through backpropagation and optimization algorithms.

3.3.1 Batch normalization

Introduced in 2015 [106], the batch normalization (BN) layer rapidly gained traction, proving es-
pecially valuable for training deep neural networks. Positioned typically before a non-linearity,
like the ReLU function, this layer normalizes each set of feature responses from the minibatch
that enters the BN layer. Essentially, BN takes the feature responses corresponding to each feature
detector and transforms them into a standard normal distribution. After this initial compulsory
normalization, it provides the flexibility to learn and then apply a reverse transformation, which
involves rescaling and re-translating the normalized features. The parameters of this reverse trans-
formation are determined during network training.

At first glance, one might perceive normalization as trivial, especially when the data entering the
network’s input layer might already be normalized. Yet, in practice, batch normalization plays a
vital role in the learning process. It ensures that only about half of the feature responses surpass
the subsequent non-linear activation’s activation threshold. Hence, post-BN, a feature response’s
contribution to the subsequent non-linear activation hinges on its relative value, not its absolute
value. To illustrate, if all feature responses funneled into a ReLU exhibit high positive values,
every ReLU unit becomes activated. Conversely, entirely negative input values could deactivate
all non-linearities. Integrating a BN layer transforms this strictly positive or negative spectrum into
a distribution with zero mean and unit standard deviation. This guarantees that around half of the
feature responses consistently influence the gradient, potentially sidestepping the ”dead neurons”
scenario. In such a scenario, with ReLU’s negative inputs, no weight updates might occur.

3.3.2 Loss functions

In supervised training of deep networks for classification tasks, data is often represented as input
and target pairs (xi, ti), where xi is an individual data sample and ti is its corresponding class
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label. Imagine the neural network as a function f , which comprises iterative applications of linear
operations followed by non-linear activations. Broadly speaking, for a given input xi, the output
yi can be denoted as:

yi = f(xi,W ) (3.4)

where W represents the set of weights that serve as parameters to be optimized.

The primary objective of training the network is to minimize the discrepancy between the predicted
output yi and the actual target ti across all data points. This difference is quantified through a loss
function, and various loss functions like Softmax, Hinge, and Euclidean loss exist in the literature
[76].

One of the most prevalent loss functions is Softmax loss, often used for classification problems
involving multiple classes. For better clarity, let’s enhance our notation: yij represents the output
and tij the target, where i indexes a data point and j a class. For instance, in a binary classification
problem, each data point xi yields two values yi1 and yi2, interpreted as unnormalized probabilities
for the two classes. The target vector ti also has two elements: ti1 and ti2, where the element
corresponding to the correct class is set to one and the other to zero.

With this refined notation, the Softmax loss for a specific data point i can be represented as follows:

Li = −log

(
eyik∑
j e

yij

)
, (3.5)

where yik is the output corresponding to class k, often involving normalization based on the com-
plete output vector yij for that data point. Usually, neural networks operate on minibatches con-
taining n examples, and the total loss is an average of the individual losses computed for each of
these n examples, as shown below.

L =

∑n
i=1 Li

n
(3.6)

In addition to the primary loss term L, including a regularization term R is commonplace, often
weighted by a coefficient λ. Typically, R is calculated over the network weight W , as follows:

R =
∑
p

W 2
p , (3.7)

and the final loss Lfinal is:

Lfinal = L+R. (3.8)

The gradients of the final loss function are calculated to update the network’s weights. These
gradients are then propagated backward through the network, updating weights layer-by-layer
using analytical gradient computation and the chain rule of calculus. This approach using the L
and R components was explicitly used in Chapter 5.
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Figure 3.4: Tree representation of loss functions families.

The family of loss functions is extensive. Many of them were studied and used within this thesis
for different purposes. More information on the specific selections of loss functions can be found
in the corresponding sections. Here, in Figure 3.41, there is just a graphic representation of some
of them, while below there is a short presentation of the main ones.

3.3.2.1 Cross-entropy loss

Cross-entropy loss [76] is used to measure the performance of a classification model whose output
is a probability value between 0 and 1. It’s effective for multi-class problems and is commonly
used in a pixel-wise manner for segmentation. For a single data point, the Cross-Entropy Loss is
given by equation 3.9, where M is the number of classes, y is a binary indicator (0 or 1) if class label
c is the correct classification for observation o, and p is the predicted probability observation o is
of class c. Special case is the binary cross-entropy loss, which is suitable for binary segmentation
tasks.

lossCE = −
M∑
c=1

yo,clog(po,c) (3.9)

3.3.2.2 Dice loss

Dice loss [46] is based on the Dice coefficient, a statistic used to gauge the similarity of two
samples. It’s particularly useful in medical image segmentation where the class imbalance issue is
prevalent. Dice Loss is calculated as equation 3.10, where X and Y are the predicted and ground
truth binary segmentations, respectively.

lossDice = 1− 2× |X ∩ Y |
|X|+ |Y |

(3.10)

1https://github.com/JunMa11/SegLoss
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3.3.2.3 Jaccard loss

Jaccard (or IoU) loss [56], based on the Jaccard index, measures the overlap between the predicted
segmentation and the ground truth. It’s particularly effective for class imbalance issues. The
equation 3.11 is below, with X being the predicted segmentation and Y the ground truth.

lossJaccard = 1− |X ∩ Y |
|X ∪ Y |

(3.11)

3.3.2.4 Focal loss

Focal loss [130] is designed to address the class imbalance problem by focusing more on hard,
misclassified examples. The Focal Loss is defined as in equation 3.12, where pt is the model’s
estimated probability for each class, α is a weighting factor for the rare class, and γ is a focusing
parameter.

lossFocal = −α(1− pt)
γlog(pt) (3.12)

3.3.2.5 Tversky loss

Tversky loss [187] allows more control over false positives and false negatives, making it suitable
for imbalanced datasets. It’s a generalization of the Dice coefficient. It is presented in equation
3.13, where α and β control the relative weight of false negatives and false positives, respectively.

lossTversky = 1− |X ∩ Y |
|X ∩ Y |+ α|X\Y |+ β|Y \X|

(3.13)

3.3.3 Optimization

The process of training a neural network is iterative and focuses on optimization. The final loss
function, Lfinal, relies on two key factors: (1) The collection of network weights, denoted as W ,
and (2) The batch of input samples, referred to as X . Among these, the weight set W is considered
the variable to be optimized. In other words, given a specific batch X , the weights W are adjusted
to best classify the training data into their respective categories.

The literature contains a variety of optimization algorithms aimed at reducing network loss. Most
of these algorithms are based on the principle of gradient descent and operate under a local search
framework. Some commonly employed optimization algorithms include Gradient Descent (GD),
Minibatch Gradient Descent (MBGD), Stochastic Gradient Descent (SGD), AdaDelta (which uti-
lizes an adaptive learning rate), Adaptive Gradient, Adam and Nesterov’s Accelerated Gradient
[116, 154, 236, 53].

Despite the vast array of available optimization algorithms, Adam [116] remains a popular choice
in practice. Specifically, in the experiments described in this thesis, Adam was the chosen opti-
mization method.
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Adam is an optimization technique that offers an alternative to the traditional Stochastic Gradi-
ent Descent (SGD) for iteratively updating network weights during training. Introduced in 2015,
Adam sets itself apart from traditional SGD methods in several ways. Unlike SGD, which uti-
lizes a fixed learning rate, commonly denoted as α, for all weight updates throughout the training
process, Adam employs individual learning rates for each network weight. These rates are adap-
tively updated as the training progresses. Adam synthesizes the advantages of both AdaGrad and
RMSProp. However, it goes a step further by not just using the average of the first moments (the
mean) of the gradients, as seen in RMSProp, but also by leveraging the average of the second
moments (the uncentered variance) of the gradients. The algorithm computes exponential moving
averages for both the gradient and the squared gradient, controlled by decay rate parameters β1
and β2. When initialized, the moving averages and the β values (typically close to 1.0 as recom-
mended) are biased toward zero. Adam corrects this bias by obtaining biased moment estimates
and adjusting them to produce bias-corrected estimates. This multi-faceted approach allows Adam
to be highly effective in various machine-learning tasks.

3.4 Architectures

3.4.1 Popular architectures

Over the past years, numerous network architectures have emerged. Some have set new perfor-
mance standards on widely recognized image datasets. AlexNet [118] clinched the ILSVRC 2012
classification challenge. The Network in Network (NiN) [129] showcased an early modular neu-
ral network design built by repetitively aligning similar components. The Inception network (or
GoogLeNet) became the benchmark in the ILSVRC 2014 detection challenge [202], with a 22-
layer deep structure that used 12 times fewer parameters than AlexNet did in 2014. The Visual
Geometry Group (VGG) at Oxford introduced models of various depths, with their 16 and 19-layer
models [34] nearly matching GoogLeNet’s performance at the ILSVRC 2014 challenge. Resid-
ual Networks (ResNets) [93], victors of the ILSVRC 2015 classification challenge, presented a
unique design for ultra-deep networks with reduced parameters thanks to small 3×3 convolution
filters. It’s worth noting the foundational LeNet design [124], predating the others but influential
for subsequent deeper models. Last, the most famous network for biomedical image segmentation
has been proved to be U-Net [181], which is presented thoroughly later. A concise overview of
the three architectures—AlexNet, NiN, and LeNet—is also provided.

3.4.1.1 LeNet

The LeNet architecture is often considered the forerunner of contemporary neural networks. It
represents a groundbreaking approach to design, introducing a sequence of convolutional layers
interspersed with downsampling layers, succeeded by several fully connected layers. LeCun et
al. [124] have proposed various architectures under the ’LeNet’ label. Specifically, the LeNet-5
features three convolutional layers and two fully connected layers, utilizing hyperbolic tangent
activation functions and an Euclidean loss function.
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3.4.1.2 AlexNet

The AlexNet employs a conventional convolutional architecture, consisting of five consecutive
convolution layers with filter sizes of 11×11, 5×5, 3×3, 3×3, and 3×3, respectively. Three fully
connected layers then follow these. Interestingly, these five convolution layers, also known as the
convolution stack, are duplicated into two parallel columns. Due to the random initialization, the
filters in these columns evolve to capture distinct features. For instance, in the original study, while
one convolution stack learned edge detection, the other discerned color patterns characteristic of
low-frequency backgrounds.

3.4.1.3 Network in Network

The NiN (Network in Network) architecture adopts a modular approach. This modular design phi-
losophy is also foundational to the Inception model, which influenced the creation of GoogLeNet.
At its core, NiN comprises several identical micro-networks that can be linked sequentially, creat-
ing networks with customizable depths. The underlying belief behind NiN is that if a single micro-
network can deliver satisfactory performance, chaining multiple such micro-networks should en-
hance the results. However, this principle doesn’t always translate seamlessly in practice. Intro-
ducing too many micro-networks might lead to common deep network challenges, like overfitting
and heightened optimization expenses. In reality, Lin et al. [129] utilized only three of these
micro-networks, each consisting of a convolutional layer followed by two fully connected layers,
to assemble their holistic classification model.

3.4.2 U-Net

U-Net is a specialized convolutional neural network tailored for biomedical image segmentation,
originating from the University of Freiburg’s Computer Science Department [181]. Rooted in the
fully convolutional network structure, U-Net’s design was enhanced to perform optimally with
limited training images while achieving more refined segmentation. The success of U-Net’s de-
sign revolves around enhancing a conventional contracting network with layers where upsampling
operators take the place of pooling operations. This results in an improved resolution of the output.
Following this, a convolutional layer generates a detailed output leveraging this refined data.

A standout feature of U-Net is its abundant feature channels in the upsampling segment, enabling
the network to relay contextual data to layers of higher resolution. This design choice results
in the expansive path mirroring its contracting counterpart, creating a U-shaped outline. Without
relying on any fully connected layers, the network employs only valid convolutions. To address the
prediction of border pixels in images, U-Net extrapolates missing contexts by mirroring the image.
This tiling strategy, crucial for processing large images, sidesteps potential GPU memory-related
resolution constraints.

U-Net’s structure comprises two main paths: contracting and expansive. The contracting path,
a standard convolutional network, repetitively applies convolutions followed by a rectified linear
unit (ReLU) and a max-pooling operation. This contraction process diminishes spatial data while
augmenting feature information. Conversely, the expansive route melds feature and spatial details
via a series of up-convolutions and concatenations, integrating high-resolution features from the
contracting path.

36



Figure 3.5: An example of data augmentation to a butterfly picture. The transformations found
here contain de-texturization, de-colorization, enhancement of edges, mapping of salient edges,
flips, and rotations.

U-Net has found numerous applications in biomedical image segmentation, notable examples be-
ing brain image segmentation and liver image segmentation [8, 149]. Additionally, its utility
extends to protein binding site predictions [221]. The architecture’s flexibility has given rise to
variants, such as those used for medical image reconstructions [238]. Some noteworthy U-Net
variants and applications include (i) pixel-wise regression with U-Net, utilized in pansharpening
[231], (ii) 3D U-Net, designed for dense volumetric segmentation from sparse annotations [37],
(iii) TernausNet, a U-Net variant with a VGG11 Encoder pre-trained on ImageNet, tailored for
image segmentation [105].

3.5 Data augmentation

Depending on the specific task, deep learning methodologies can demand more training data than
readily accessible. A shortage of such data can lead to overfitting, where performance on the
training set significantly outpaces that on the validation and test sets. This data scarcity issue
can be counteracted using data augmentation during preprocessing. Data augmentation essentially
generates supplementary training data through appropriate transformations of the existing dataset.

The nature of these transformations hinges on the task. The oocytes in our cumulus-oocyte com-
plexes segmentation framework don’t exhibit a predominant direction. Thus, an oocyte rotated by
180 degrees remains as valid as its unaltered counterpart. Contrastingly, such rotations might be
deemed inappropriate in standard computer vision datasets. For instance, rotating images of cars is
not typical since upside-down cars are rarely encountered in conventional photography, barring ex-
ceptional scenarios like junkyards. Standard augmentation techniques include flips, translations,
rotations, shearing, rescaling, contrast adjustments, and modifications to illumination in natural
scenarios. Some of these augmentative strategies, especially for image recognition, have been de-
liberated in [227]. For data augmentation to be beneficial, the transformations should align with
the nature of the data and the task’s requirements. Some sample transformations can be found in
Figure 3.5 and Figure 3.6.
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Figure 3.6: An example of data augmentation to a brain CT scan. The transformations here contain
rotations, flips, transitions, shear, scaling, noise addition, and brightness changes.

Dealing with restricted datasets, where each data entry is invaluable, poses a challenge in reserving
a subset exclusively for testing. A remedy is the k-fold data sampling and cross-validation method.
Here, data is partitioned into k segments. Training occurs on k-1 segments, leaving one for testing.
In our experiment setup, k-2 segments were utilized for training, with the remaining allocated for
validation and testing. This train/test procedure recurs k times, with a distinct segment earmarked
for testing in each iteration. Ultimately, the result emerges as an average of scores from the k
iterations, ensuring that a specific data subset doesn’t skew the outcome. One viable strategy for
deployment on new, unseen data is interpreting the k differently-trained networks as components
of an ensemble, averaging their predictions before class label assignment.

Moreover, tactics like pretraining on a large external image set or leveraging an already pre-trained
network with subsequent fine-tuning on the original dataset have proven to boost performance in
certain instances [60].

3.6 Transfer learning

Transfer learning (TL) is a machine learning strategy where knowledge acquired from one task
is reused to enhance performance on a similar job. An illustration is in image classification,
where insights from recognizing cars can assist in identifying trucks. This concept is akin to
the psychological idea of transfer of learning, though connections between the two are scarce.
Leveraging information from past tasks for new ones can notably elevate learning efficiency.

In 1976, Bozinovski and Fulgosi published a paper addressing transfer learning in neural network
training [21]. The paper gives a mathematical and geometrical model of the topic. In 1981, a
report considered the application of transfer learning to a dataset of images representing letters of
computer terminals, experimentally demonstrating positive and negative transfer learning [20]. In
1993, Pratt formulated the discriminability-based transfer (DBT) algorithm [175]. In 1997, Pratt
and Thrun guest-edited a special issue of Machine Learning devoted to transfer learning [174].
By 1998, the field had advanced to include multi-task learning [33], along with more formal
theoretical foundations [16]. Learning to Learn [210], edited by Thrun and Pratt, is a 1998 review
of the subject. Transfer learning has been applied in cognitive science as well. Pratt guest-edited
an issue of Connection Science on the reuse of neural networks through transfer in 1996 [173].
Ng said in his NIPS 2016 tutorial [155] that TL would become the next driver of machine learning
commercial success after supervised learning. In the 2020 paper ”Rethinking Pretraining and self-
training” [245], Zoph et al. reported that pretraining can hurt accuracy and advocate self-training
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instead.

Algorithms are available for transfer learning in Markov logic networks [152] and Bayesian net-
works [157]. Transfer learning has been applied to cancer subtype discovery [85], building uti-
lization [3], general game playing [14], text classification [49], digit recognition [138], medical
imaging and spam filtering [18].

In 2020, it was discovered that, due to their similar physical natures, transfer learning is possible
between electromyographic (EMG) signals from the muscles and classifying the behaviors of elec-
troencephalographic (EEG) brainwaves from the gesture recognition domain to the mental state
recognition domain. It was noted that this relationship worked in both directions, showing that
electroencephalographics can likewise be used to classify EMG [19]. The experiments noted that
the accuracy of neural networks and convolutional neural networks were improved [138], through
transfer learning before any learning, i.e., compared to standard random weight distribution. That
is, results are improved by exposure to another domain. Moreover, the end-user of a pre-trained
model can change the structure of fully-connected layers to improve performance.

3.7 Hyperparameter tuning

Several factors influence the efficacy of neural networks in reaching an optimal solution. These
include the architecture of the network (its depth, width, and chosen activation functions), the
selected loss function, the optimizer used, the initial learning rate, and how this rate is adjusted as
training progresses. With the notable advancements in computational capabilities, mainly due to
GPU utilization, it has become feasible to fine-tune a selected range of these parameters.

A growing body of evidence suggests hyperparameter optimization techniques, like the Bayesian
method proposed by Snoek et al. [196], can enhance the performance of these networks. How-
ever, another popular method is the grid search, which involves systematically testing various
combinations of parameters to identify the optimal set. Two of the most frequently fine-tuned
hyperparameters are the learning rate and the loss function.

In real-world scenarios, many practitioners opt for a more pragmatic approach. Rather than un-
dertaking comprehensive grid searches or employing Bayesian hyperparameter optimization, they
prefer to hone network performance by tweaking a select range of parameters based on prior expe-
rience and intuition. Although seemingly less systematic, this heuristic methodology often yields
effective results by leveraging hands-on experience and domain-specific insights.

3.8 Conclusion

In concluding this segment, we’ve embarked on an in-depth exploration of CNNs, dissecting their
intricate designs, operational mechanisms, and the vast capabilities they offer for analyzing com-
plex visual datasets. This exploration has not been a mere academic exercise; rather, it has laid
a robust practical foundation that holds the promise of ushering in transformative advancements
across a myriad of sectors. As we prepare to transition into the subsequent chapter, our focus
shifts towards the cutting-edge intersection of CNN technology and the domain of assisted repro-
duction, a field ripe for innovation. In the forthcoming discussions, we aim to unveil the innovative
ways through which CNN principles and methodologies are being tailored to tackle some of the
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most daunting challenges within reproductive medicine. This fusion of advanced computational
techniques with the intricacies of human reproduction is poised to not only broaden our scientific
comprehension but also redefine the methodologies employed in assisted reproduction, setting a
new paradigm for addressing and solving real-world challenges. Through this journey, we aspire
to illuminate the transformative potential that lies at the confluence of technology and medicine,
heralding a new era of solutions that are as impactful as they are revolutionary.
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Chapter 4

Cumulus-Oocyte Complex Quality

In this chapter, we delve into a series of important research questions, each shedding light on a
distinct part of our investigation:

• Q1: What is the optimal method for computing the area of cumulus-oocyte complexes
(COCs)?

• Q2: Can we develop a deep learning framework that achieves human-level performance
using the optimal method for calculating COCs’ area?

• Q3: Is it feasible to identify the expansion of COCs from an immature to a mature stage
using the optimal method?

• Q4: How does the optimal method for measuring COCs’ expansion impact healthy embryo
development in mammalian species?

• Q5: What influence does the density of COCs, as determined by the optimal method, have
on healthy embryo development in mammalian species?

Research questions Q1, Q3, and Q4 presented below are an expansion of the paper: Raes, An-
nelies, Athanasiou, Georgios, et al. ”Manual versus deep learning measurements to evaluate cu-
mulus expansion of bovine oocytes and its relationship with embryo development in vitro.” Com-
puters in Biology and Medicine (2023): 107785. [176].

Research question Q2 presented below is an expansion of the conference paper: Athanasiou,
Georgios, et al. ”Detecting the Area of Bovine Cumulus Oocyte Complexes Using Deep Learning
and Semantic Segmentation.” [7]

Research question Q5 presented below is an expansion of the paper: Athanasiou, Georgios, et al.
”Measuring cumulus density of mammalian oocytes: AI methods on determining the importance
of cells density to a healthy oocyte development.” [submitted and under review at AI Communica-
tions].
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4.1 Introduction

As has already been described in the previous chapters, infertility, defined as the failure to attain
a clinical pregnancy following 12 months or more of regular, unprotected sexual activity, presents
considerable hurdles for both medical practice and societal well-being. When infertility is diag-
nosed, the treatment pathways frequently involve the use of Assisted Reproductive Technology
(ART). These techniques consist of multiple sub-procedures, notably the essential step of identi-
fying the morphological traits of oocytes and key elements of embryo biology.

Cumulus oocyte complexes in immature and mature stages play a crucial role in evaluating the
quality of mammalian oocytes, particularly for their utilization in in-vitro fertilization (IVF) pro-
cedures. Their role has been extensively explained in Chapter 2. The area of the COC can provide
us with information valuable for predicting embryo development. Among others, the main focus
of this dissertation is the size of these areas, cell density within these areas, and the relative change
of the size (expansion) and cell density.

Numerous methods for identifying cumulus areas have been described in the literature, including
studies by Chen et al. [35] and Ploutarchou et al. [170]. However, these existing methods suffer
from limitations such as being time-consuming and relying heavily on human subjectivity, as the
annotations can vary among different experts. Some of the current approaches involve assessing
the area of the cumulus, including the oocyte, to evaluate several characteristics of the cumulus
cells. This research proposes a pipeline designed explicitly for segmenting the cumulus-oocyte
complex to address these challenges and facilitate automation. Once the COC is accurately seg-
mented, measuring its size and the density of its components becomes a straightforward task. By
automating the segmentation process, our pipeline aims to streamline and simplify the assess-
ment of studying cumulus characteristics, reducing reliance on subjective human judgments and
potentially saving time in evaluating oocyte quality for IVF procedures.

In recent years, medical image segmentation has witnessed significant advancements, thanks to
the emergence of deep learning techniques, particularly Convolutional Neural Networks. These
developments have brought about positive impacts in medicine and healthcare. Image segmenta-
tion, a fundamental task in this domain, involves dividing an image into smaller parts to create
a more meaningful representation that machines can process effectively. This research employs
image segmentation to segment bright-field microscopy images of cumulus-oocyte complexes in
immature and mature oocytes. The aim is to accurately delineate the boundaries of the cumulus
region for further analysis. To accomplish this, a U-Net network architecture [181], well-suited for
medical image segmentation tasks, is utilized. More information on U-Net is available in Chap-
ter 3. By leveraging deep learning and the U-Net architecture, our approach enables precise and
automated segmentation of COCs in bright-field microscopy images. This segmentation process
is crucial in analyzing the information laid on the cumulus area, let alone the size of the area itself,
for assessing the maturity of oocytes. The ability to automate this process not only reduces the
reliance on manual annotations, but also offers the potential for increased accuracy and efficiency
in evaluating this information.

The literature specifically focusing on image segmentation techniques for oocyte microscopy is
somewhat narrow. For instance, a study by Firuzinia et al. [64] centered on the segmentation of
human metaphase II mature oocytes, exploring various morphological features pertinent to this
developmental stage. Although their dataset included 1009 images, details about the involvement
of multiple specialists in annotating the oocytes are not provided. Another notable study by Tar-
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gosz et al. [208] applied image segmentation to human oocytes at various stages, including MII,
MI, and others. Their dataset had 334 images, each featuring one or more oocytes. As with the
work by Firuzinia et al., Targosz et al. do not explicitly mention the use of multiple specialists for
annotation. Both studies used pre-trained neural networks like ResNet [93] and MobileNet [101]
and incorporated various data augmentation methods to improve their models’ performance.

Image segmentation techniques have also found broader applications in Assisted Reproductive
Technology (ART), particularly concerning early-stage human embryos and their morphological
characterization. For example, Fukunaga et al. [69] devised a system for automated detection
of pronuclei in 900 embryos, leveraging image segmentation to identify these crucial structures.
Studies by Khan et al. [115] and Leahy et al. [122] targeted cell counting in early-stage human em-
bryos, utilizing segmentation methods to determine cell numbers accurately. These investigations
aimed to offer vital data for evaluating embryo quality and predicting developmental prospects.
Moreover, various research efforts have been directed toward identifying embryos’ developmental
stages. Works by Dirvanauskas et al. [47], Liu et al. [135], Malmsten et al. [140, 139, 141], Lau
et al. [121], Gingold et al. [72], and Meseguer et al. [151] have all employed segmentation-based
approaches for this purpose, aiming to contribute valuable insights for enhancing embryo selection
and optimizing ART procedures.

This research represents the first investigation to our knowledge into exploring the optimal method
for computing cumulus expansion. It is also the first investigation into image segmentation specifi-
cally applied to bovine oocytes in bright-field microscopy images. The dataset utilized in this later
part comprises only 100 oocytes, which is considerably smaller than the previously mentioned
studies. Another novelty of this research is the segmentation of the areas used to perform analyses
of the significance of cumulus expansion and density for healthy embryo development.

4.2 Best measuring method

In this section, we aim to approach and answer the first research question:

Q1: What is the optimal method for computing the area of cumulus-oocyte complexes (COCs)?

4.2.1 Introduction

Beginning with cumulus expansion, there exist several techniques for evaluating it, spanning both
invasive and non-invasive methods. Measuring hyaluronic acid is the most accurate, though it can
hinder embryo growth and pose health risks to the user because it involves radioactive material. A
common method is classifying cumulus expansion by its overall appearance or counting cumulus
cell layers. This method is efficient and only requires microscopy during the oocyte’s in vitro
processing, eliminating the need for extra tools and preserving the oocyte’s future development.
However, its reliability hinges on the embryologist’s skill, making it subjective.

Advances in imaging technologies have introduced methods like measuring the cumulus cells’ area
and length, aiming to reduce subjectivity. However, these visual techniques can still not capture
the three-dimensional form of the cumulus-oocyte complex and are time-intensive. There’s no
comparative study on these methods’ precision and repeatability. In the following, we design and
perform our own study to identify which method is the most promising.
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4.2.2 Resources

This study did not require ethical approval as the ovaries were sourced from cows post-mortem at
a standard slaughterhouse.

4.2.2.1 Media and reagents

Tissue culture medium (TCM-199), gentamicin, and phosphate-buffered saline were procured
from Life Technologies Europe, based in Ghent, Belgium. Unless otherwise mentioned, all addi-
tional chemicals were sourced from Sigma-Aldrich in Overijse, Belgium. Before utilization, all
media underwent filtration using a 0.22 µm filter from GE Healthcare-Whatman, Diegem, Bel-
gium.

4.2.2.2 Oocytes collection and in-vitro maturation

The maturation process of bovine COCs was in line with the methodology presented by Azari-
Dolatabad et al. [9]. Briefly, bovine ovaries were obtained from a nearby slaughterhouse and
processed within a two-hour window. The ovaries were thrice washed in warm physiological
saline (37 °C) that contained kanamycin (25 mg/mL) and were sterilized using 90% ethanol.
Cumulus-oocyte complexes were extracted from follicles measuring 4 to 8 mm, using an 18-
gauge needle connected to a 10 mL syringe. They were then shifted to a 15 mL container with
2.5 mL of HEPES Tyrode’s albumin–pyruvate–lactate (HEPES-TALP) solution. Each of these
complexes was subsequently cultured in 20 µL droplets of the maturation medium (infused with
20 ng/mL of epidermal growth factor and 50 µg/mL gentamicin) and overlayed with 7.5 mL of
paraffin oil. This setup was maintained for 22 hours at 38.5 °C in a humid environment with 5%
CO2.

4.2.2.3 Image acquisition

Images of COCs were taken both at the initiation of in vitro maturation and 22 hours post-
maturation using an inverted Olympus microscope paired with a ToupCam camera and ToupView
software (version 3.7.13270.20181102). Images, all taken with the same magnification level
(56×), focused on the zona pellucida of a centrally placed oocyte. These images were saved
in PNG format with a resolution of 2592 × 1944 pixels. Out of the lot, 68 images were discarded
due to issues with clarity or focus, leaving 232 paired images of COCs which were then shown to
three evaluators.

4.2.2.4 Cumulus expansion measurement

Three well-trained independent experts measured the cumulus expansion in bovine COCs before
and after the in vitro maturation process. These COCs were rated by three distinct methodologies
(by area, 3-distance method, and a scoring approach). These evaluations were conducted twice,
spaced over different durations, and in no specific sequence.
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Figure 4.1: For measuring cumulus expansion, two methods were employed: the area method and
the 3-distance method. In the area approach, the boundary of the cumulus cells was delineated to
compute the area pre-maturation (a) and post-maturation (b). Using the 3-distance technique, three
distances were identified: the shortest (S), medium (M), and the longest (L). These measurements
were taken from the zona pellucida to the outermost edge of the cumulus. The arithmetic mean
of these distances was determined both pre-maturation (c) and post-maturation (d). The provided
scale bar is applicable to all the images.

Area ImageJ software was utilized to measure the areas of pre- and post-IVM COCs, by outlin-
ing it by hand. The growth area was determined by subtracting the initial from the final measure-
ments and dividing by the initial. The cumulus expansion percentage was then determined.

3-distance In pre-IVM COCs, the straight lines tool in ImageJ was employed to measure the
shortest, median, and longest distances from the zona pellucida to the outermost cumulus cells.
Subsequently, an average of these three measurements was computed. This procedure was repli-
cated for the post-IVM COCs. The differential between the post-IVM and pre-IVM COC average
distances represented the absolute expansion. To calculate the percentage of cumulus expansion,
this absolute expansion was divided by the pre-IVM COC’s average distance (Figure 4.1).

Scoring To assess the expansion of cumulus cells, images of pre-IVM and their corresponding
post-IVM COCs were juxtaposed. A 5-point Likert scale, previously outlined by Downs [52],
was used for scoring. In essence, scores spanned from 0 to 4, where ”0” indicated no expansion;
”1” signified separation in only the peripheral layers of cumulus cells; ”2” represented expansion
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Figure 4.2: Using the scoring method for cumulus expansion assessment, cumulus-oocyte com-
plexes were evaluated pre- and post-maturation (arranged in rows) and given scores (presented in
columns) as outlined: ”0” for no noticeable expansion; ”1” for separation limited to the external-
most layers of cumulus cells; ”2” for extended expansion reaching but not surpassing the halfway
point of the cumulus oophorous; ”3” for expansion that extends to the corona radiata but stops
short ofit; and ”4” for total expansion, encompassing the inmost cells of the corona radiata. The
scale bar present in the bottom image applies to the image directly above it as well.

covering the external half of the cumulus oophorous; ”3” showed expansion nearing but not en-
compassing the corona radiata; and ”4” denoted full expansion involving the innermost corona
radiata cells (Figure 4.2).

4.2.3 Proposal

In evaluating the different techniques for measuring cumulus expansion, the study proposes the
examination of several factors: (1) The average cumulus expansion across all COCs assessed, (2)
inter-observer agreement, which is the variability in cumulus expansion scores given by different
observers, (3) overall inter-observer agreement, representing the mean value from two repeated
measurements of inter-observer agreement since the measurements were done twice, and (4) intra-
observer agreement, which refers to the incompatibility in cumulus expansion scores when an
observer repeats the measurement.

Python (version 3.10.6) was used for data analysis. The inter-observer agreement was appraised
using a two-way random effects model, while a one-way random effects model was employed to
assess the intra-observer agreement of each expert. The ICC and its 95% confidence interval were
then derived from the intraclass corr function in the Pingouin [211] Python statistical package,
version 0.5.2. The ICC values were interpreted based on the criteria set by Landis and Koch
[120]: <0.20 indicates poor agreement; 0.20–0.39 signifies fair agreement; 0.40–0.59 represents
moderate agreement; 0.60–0.79 is a good agreement, and anything >0.80 is viewed as very good
agreement. Results are presented as both ICC and their 95% confidence intervals.
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Method Working principle Equipment Time
Area Measuring the area by drawing the COC contour ++ ++

3-distance Measuring 3 distances between zona pellucida and outer cumulus ++ +++
Scoring 5-point Likert scale + +

Table 4.1: Comparison of methods to measure cumulus expansion. Methods were compared by
three observers and evaluated for equipment- and time requirements and the level of subjectivity.
+, easy or low; ++, moderate; +++, complicated or high.

Figure 4.3: This figure illustrates the cumulus expansion for three distinct measurement tech-
niques. Part (a) showcases the distribution of cumulus expansion percentages obtained through
the area and 3-distance methods. In contrast, part (b) displays the score distribution on the Likert
scale (the scoring method) for 232 cumulus-oocyte complexes (COCs), which were assessed twice
by three different observers.

4.2.4 Results

Three observers assessed three distinct techniques to evaluate cumulus expansion. Table 4.1 pro-
vides a summary of these methods, detailing their operational principle, ease of use (considering
the equipment and time needed), and efficacy (judged by the degree of subjectivity involved).

4.2.4.1 Cumulus expansion in numbers

The area and 3-distance techniques produced numerical results, whereas the cumulus expansion
scoring method gave ordinal outcomes. As such, direct comparisons between the scoring method
and the other two techniques were not conducted. When evaluating cumulus expansion using
the area method, observations ranged from 0.06% to 346.3% with a median increase of 74.28%
(IQR: 123.19%, Figure 4.3a). For the 3-distance approach, the range was 0.15% to 346.9% with
a median expansion of 52.68% (IQR: 90.91%, Figure 4.3a). The scoring technique resulted in a
median score of 3.0 (IQR: 2.0, Figure 4.3b).
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Figure 4.4: The Intraclass Correlation Coefficients (ICC) were computed and presented based
on their respective agreement levels for (a) inter-observer consistency, (b) overall inter-observer
agreement, and (c) intra-observer agreement. Each cumulus-oocyte complex’s expansion was
assessed twice for every method, leading to two ICC values for inter-observer agreement for each
method.

4.2.4.2 The superiority of the area method

Inter-observer agreement The observer agreement for all three methods was assessed using the
respective ICC, as depicted in Figure 4.4a and Table 4.2. Each observer carried out measurements
twice for every method, leading to the ICC being computed in duplicate. For the area method,
the inter-observer ICCs indicated a very high degree of agreement. In contrast, the 3-distance
method had a moderate level of agreement. The scoring method’s inter-observer agreement was
categorized as fair.

Overall inter-observer agreement For each method, an aggregate agreement level was deter-
mined, considering both instances of inter-observer concurrence. The outcomes revealed a very
good overall concurrence for the area method, a moderate consensus for the 3-distance method,
and a subpar agreement for the scoring method, as displayed in Figure 4.4b and Table 4.2.

Intra-observer agreement The consistency within each observer was assessed using ICC cal-
culations for every method and individual observer, as seen in Figure 4.4c and Table 4.2. When
breaking it down, observers 1, 2, and 3 showed very good intra-observer agreement for the area
method. For the 3-distance method, the agreement levels ranged from moderate to good. However,
for the scoring method, the level of agreement differed for each observer, spanning from poor to
moderate and reaching good in just a few instances.
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Method Inter-observer Overall Intra-observer
agreement agreement agreement

Repet 1 Repet 2 Obs/er 1 Obs/er 2 Obs/er 3
Area 0.89 0.90 0.89 0.87 0.90 0.96

(0.88–0.92) (0.85–0.93) (0.85–0.93) (0.84–0.90) (0.87–0.92) (0.95–0.97)
3-distance 0.56 0.51 0.54 0.61 0.59 0.64

(0.49–0.63) (0.44–0.59) (0.44–0.63) (0.53–0.69) (0.50–0.67) (0.56–0.71)
Scoring 0.23 0.38 0.30 0.69 0.11 0.51

(0.12–0.34) (0.3–0.47) (0.12–0.47) (0.63–0.76) (-0.01–0.24) (0.42–0.6)

Table 4.2: Intraclass correlation coefficients for three cumulus expansion measurement methods.
Data are reported as intraclass correlation coefficients with their respective 95% confidence inter-
vals.

4.3 AI-xpansion

In this section, we continue with the second and third research questions:

Q2: Can we develop a deep learning framework that achieves human-level performance using the
optimal method for calculating COCs’ area?

Q3: Is it feasible to identify the expansion of COCs from an immature to a mature stage using the
optimal method?

4.3.1 Introduction

Previously, we established that the best method for measuring COC expansion is the area method.
Regardless of the method, human judgment introduces variability. A potential remedy is deep
learning, the branch of artificial intelligence that learns from data patterns rather than pre-set
rules. Traditional non-invasive cumulus expansion evaluations largely rely on human judgment
and are time-consuming. Creating an automated tool for this purpose could enhance the consis-
tency between cumulus expansion and oocyte potential, simplifying the process for researchers
and embryologists.

Cumulus expansion is a key indicator of effective COC maturation, crucial in reproductive biotech-
nologies. However, current non-invasive techniques aren’t definitive, consume considerable time,
and involve subjectivity. This section introduces a proposed DL-based tool, named AI-xpansion,
for automating cumulus expansion assessment.

4.3.2 Resources

The study incorporated two datasets: (i) a pre-existing dataset for pretraining the segmentation
model and (ii) a cumulus-oocyte dataset selected specifically for the segmentation task.

The pre-existing training dataset is a collection of images previously employed for segmentation
model training, sourced from a distinct domain’s existing dataset. More insights on this dataset
are available in the referenced literature for this context.
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Figure 4.5: A sample representation of the melanoma dataset along with the corresponding masks
provided by the experts.

Additionally, a specialized cumulus oocyte dataset was curated specifically in alignment with the
segmentation goal. This in-house developed dataset was meticulously crafted to meet the specific
goals and criteria of the research. Detailed aspects, including its makeup, features, and annotation
methodologies for the cumulus-oocyte dataset, are further detailed in the ensuing sections.

By integrating the preliminary dataset and the specific cumulus-oocyte dataset, this research sought
to harness pre-existing expertise and adapt it for cumulus-oocyte segmentation, aiming to enhance
the segmentation model’s performance and efficiency.

4.3.2.1 Melanoma

In this research, the pretraining dataset was sourced from the ISIC 2017 Challenge dataset1 dedi-
cated to Skin Lesion Analysis, with a primary emphasis on melanoma detection. This collection
includes 2,000 RGB images, each meticulously segmented by medical professionals, leading to
binary masks corresponding to every image (Figure 4.5). To align with the CNN’s input spec-
ifications, both images and masks were transformed to grayscale and resized to dimensions of
192×240 pixels.

4.3.2.2 Cumulus Oocyte Complexes

A specialized dataset featuring bovine cumulus-oocyte complexes was created (Figure 4.6). The
collection includes images of 100 oocytes. Information on how these COCs were treated and on
how these images were captured are available in previous Sections 4.2.2.2 and 4.2.2.3.

To produce annotations for the COC imagery, three experts (A1, A2, A3) undertook manual seg-
mentation of the images employing the ImageJ software. This resulted in masks identical in di-
mension to the original photos. Owing to minor discrepancies in the annotations by the individual
experts, a consensus segmentation was derived based on mutual agreement among the annotators.
Every pixel within this consensus segmentation was tagged as part of the COC if identified as such
by at least two of the three annotators. Adopting this majority voting system assured annotations

1https://challenge.isic-archive.com/data/
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Figure 4.6: A sample representation of the COC dataset and the masks constructed using the
majority-vote technique. In this case, three different experts provided masks outlining the COC
region of interest. The majority-vote technique was employed to reconcile any discrepancies be-
tween the expert annotations.

Figure 4.7: The concept of the majority vote approach using a simplified example of a 3x3-pixel
sub-part of a sample image. The image consists of a grid representing the individual pixels, each
containing a binary value indicating the presence or absence of a specific feature of interest

that were both consistent and dependable. An illustration of this majority voting mechanism is
presented in Figure 4.7. Here, the definitive classification of each pixel is ascertained according to
the predominant vote within a sample grid of 9×9 pixels.

The resulting consensus annotations were then deemed the benchmark for instructing the seg-
mentation model, henceforth referenced as the majority-vote dataset. To correspond with the
dimensions of the melanoma dataset, all images, and their associated masks, were transformed
to grayscale and subsequently adjusted to a size of 192×240 pixels, utilizing OpenCV’s area-
interpolation method. These masks were enlarged to their initial dimensions (1944×2592 pixels)
using OpenCV’s cubic-interpolation technique for the conclusive assessment. It’s important to
emphasize that the resizing process did not impact the eventual outcomes or findings. While alter-
native methodologies were contemplated, like using probability-based pixels instead of definitive
ones, such approaches have been earmarked for exploration in subsequent research.

4.3.3 Proposal

As it has already been stated earlier, due to its superior inter- and intra-observer agreement, the
area method was chosen for further automation. This led to proposing the development of AI-
xpansion, a DL algorithm designed to automatically identify the COC’s area, facilitating cumulus
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Figure 4.8: Assessment through visual segmentation masks. Starting with the original image of the
cumulus-oocyte complex (COC) (a), human experts drew a segmentation mask around the COC’s
outline (b). This manually drawn mask was then juxtaposed with the segmentation executed by
the deep learning algorithm, AI-xpansion (c).

expansion measurements. An in-depth technical explanation of AI-xpansion, which employs DL
to gauge cumulus expansion autonomously, is presented below (Section 4.3.3). The DL model
behind AI-xpansion is a result of combining transfer learning, image pre-processing, and a U-
Net network approach inspired by Ronneberger et al. [181]. The enhancement of AI-xpansion’s
efficacy was based on transfer learning, leveraging a publicly available melanoma image dataset
available from the ISIC archive2. This dataset established the foundational pre-trained DL model,
which subsequently trained AI-xpansion using pre- and post-IVM COC images. From the data
gathered (details in Section 4.3.2), a random selection of 100 COCs was made, primarily due
to the cost implications of image annotation. This translates to a collection of 200 annotated
images. Experts crafted segmentation masks by hand, outlining the area of both pre- and post-
IVM COCs. These images and their associated segmentation masks formed the training dataset
for AI-xpansion.

For evaluating the segmentation models, specifically AI-xpansion’s capability to pinpoint cumulus
boundaries, a 10-fold cross-validation was adopted. This decision was influenced by the dataset’s
limited size, and the method’s known stability. In each iteration, 90 COCs (both pre- and post-
IVM, equating to 180 images) were designated for training, while 10 COCs (or 20 images) were
set aside for validation purposes. Training was performed in mini-batches of 32 spanning 200
epochs. Each validation set, across all folds, yielded a segmentation mask for its 20 images,
culminating in 200 masks. These generated masks were juxtaposed against expert-provided masks
for the identical COCs (illustrated in Figure 4.8). The dice coefficient [46] metric was employed
to gauge the resemblance between the two masks. The average dice score of the majority-vote
model consistently hovered around 95%.

Within the proposed framework, as showcased in Figure 4.9, our principal segmentation model
consists of convolutional neural networks, specifically capitalizing on the U-Net architecture [181].
Figure 4.9 also illuminates the strategy of utilizing transfer learning to circumvent the issue of
scant training data in our domain. On the left side, the illustration showcases the preliminary
training phase wherein the U-Net model is initially trained using a universally accessible dataset
from a neighboring sector. This dataset consists of bright-field microscopy images of melanoma
cells, allowing the model to decipher pertinent features and patterns. Our COC segmentation en-
deavor is divided into two phases within the framework. Commencing with the first stage, the
methodology utilizes local entropy to accomplish an initial segmentation. This initial segmenta-

2https://challenge.isic-archive.com/data/
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Figure 4.9: The procedure for constructing the segmentation model is outlined as follows. The
procedure starts with deploying two discrete datasets: the first containing melanoma images and
the second containing COC images. As the next step, transfer learning takes place, using the model
pre-educated with melanoma data to lay the foundation for the segmentation model. Thanks to
this transfer learning technique, the model learns crucial characteristics and patterns inherent in
the melanoma dataset, rendering them invaluable for segmenting COC visuals. Ultimately, the
proficiently tutored segmentation model stands primed to deftly segment a presented COC visual,
efficiently identifying the cumulus area from the ambient background. This figure outlines the
steps in constructing the segmentation model, culminating in its adept execution for COC visual
segmentation.

tion then aids in defining a region of interest (RoI), which is visually seen as a bounding rectangle
containing the COC. Subsequently, the RoI snapshot is introduced into the U-Net model in the
latter phase, which undertakes segmentation to enhance the initial pre-trained segmentation out-
come. By harnessing the insights gained from the features and the intricacies of the U-Net, this
phase achieves an enhanced contouring of the COC. The integration of transfer learning, a two-
phase segmentation technique, and the U-Net framework within the proposed schema contribute
to COC segmentation’s robustness and high performance in bright-field microscopy images.

4.3.3.1 Architecture

The U-Net model, introduced by Ronneberger et al. [181], was the chosen architecture for the
entirety of the experiments carried out in this research. The decision to use U-Net is grounded in its
well-documented history of producing commendable results when segmenting biomedical images
[8]. This model is particularly adept at handling varying image sizes and effectively differentiating
intricate structures, which makes it especially suitable for biomedical segmentation challenges.
As demonstrated in Figure 4.10, this architecture is characterized by its symmetrical U-shape,
comprising a contracting pathway that captures context and an expansive pathway that refines
localization. Our experiments harnessed the U-Net architecture’s inherent strengths to achieve
precise and accurate segmentation results.

The U-Net model’s contracting phase in our design encompasses four blocks. Each block is struc-
tured with dual 3×3 convolutional layers, succeeded by a ReLU activation function and a 2×2
max-pooling operation with a stride set at 2. We’ve incorporated an extra block that mirrors the
earlier ones but augments them with a dropout layer, set to a 0.5 probability.
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Figure 4.10: The architecture of a U-Net model specifically designed for learning to segment
COCs. The U-Net architecture, depicted in the figure, consists of four levels of the contracting
path and four levels of the expanding path, followed by a sigmoid function.

Analogously, the expansion phase is constructed with four blocks. Each of these blocks integrates
an up-sampling mechanism using a transposed convolutional layer. They also incorporate a layer
for concatenation, which merges feature maps from the equivalent depth in the contraction phase,
followed by twin 3×3 convolutional layers and a ReLU activation function. Culminating this
design is the last convolutional layer, producing the segmentation’s final output.

To implement the proposed model, we turned to the Keras3 open-source package with Tensor-
Flow4 serving as the backend platform. Keras provides a user-friendly interface for designing
and training deep learning models, while TensorFlow offers efficient computational support and
optimization for training and inference processes.

4.3.3.2 Loss function and metrics

The performance of the suggested segmentation technique is evaluated with the Dice coefficient,
as mentioned in [46]. The Dice coefficient measures spatial overlap between two areas, ranging
from 0 to 1. A score of 0 implies no common area, whereas a score of 1 denotes complete overlap.
The formula of the Dice coefficient is provided in Equation 4.1.

dice(f, x, y) =
2
∑

ij f(x)ijyij∑
ij f(x)ij +

∑
ij yij

(4.1)

In the given equation, y stands for the ground truth, x denotes the input image, and f(x) signifies
the model’s prediction. For training the weights of the U-Net architecture, we picked the Dice loss
metric derived from the Dice coefficient. The formula for the Dice loss is as follows:

Ldice(f, x, y) = 1− dice(f, x, y) (4.2)

3https://keras.io/
4https://www.tensorflow.org/
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By employing the Ldice metric, the model aims to reduce the divergence between its predicted
segmentation and the actual ground truth. This fosters greater Dice coefficient scores and subse-
quently enhances the performance of the segmentation.

Other loss functions and metrics Various loss functions, suitable for segmentation tasks, were
explored alongside dice loss during our experiments in this chapter. However, several were ulti-
mately not adopted for specific reasons. Details on these loss functions are explicitly described in
Chapter 3.3.2. We recommend consulting that chapter for more in-depth information about these
loss functions.

4.3.3.3 Transfer learning

Transfer learning, as introduced in Section 3.6, is a method in machine learning where knowledge
from a model trained on one task is leveraged to enhance performance on a different but related
task. This technique can reduce the amount of data needed for training new models. This is
especially beneficial when data is scarce or annotating it is time-consuming or costly.

In our research, annotating images for the specific goal of segmenting cumulus-oocyte complexes
is a laborious task that demands the expertise of domain specialists. Yet, in this dataset, these
specific annotations are not always available. We used an open-source melanoma image dataset
from the ISIC Archive5 to navigate this obstacle. The models, already trained on this dataset,
are further refined using a limited batch of images and their annotations tuned toward segmenting
cumulus-oocyte complexes.

Through transfer learning, our method uses the knowledge gained by the original model trained
on melanoma images, reshaping it for our specific task. This strategy paves the way for creating
proficient models for segmenting cumulus-oocyte complexes. It minimizes the need for large
datasets and expedites the annotation task, saving domain experts’ knowledge and time.

4.3.3.4 Statistical analysis

To juxtapose the outcomes of the DL method against those of human evaluators, the agreement
among each expert’s annotations was calculated and contrasted with the agreement between the
DL method and each expert. Several metrics gauged the consistency between AI-xpansion and
human evaluators, including average rank, bias, and variances. The primary objective was deter-
mining how frequently AI-xpansion’s assessments mirrored those of the experts. In this regard,
the average rank metric was utilized. In this context, when taking Observer 1 as a benchmark,
the ratings of Observer 2, observer 3, and AI-xpansion are compared against Observer 1. Rank-
ings range from 1 to 3 based on which assessment is closest to the benchmark. This procedure is
replicated for all evaluators. A lower value denotes a more accurate estimation, per Equation 4.3,
where r is the rank with values, and N is the total size of the dataset. Further, biases and variances
between AI-xpansion’s estimates and those of the experts were scrutinized, referencing Equa-
tions 4.4 and Equation 4.5, where qij = ln(expansionij), i being the distribution of interest, j
being the distribution of reference, n being the sample variable, and N being the total size of the
dataset.

5https://challenge.isic-archive.com/data/
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average rank =
N∑
i=1

ri (4.3)

biasij =
N∑

n=1

qin − qjn
N

(4.4)

varianceij =
N∑

n=1

(qin − biasij − qjn)2

N
(4.5)

4.3.4 Results

4.3.4.1 Processor capacity

Given that the ’Area’ method yielded the highest ICC values for manual measurement of cumulus
expansion, a deep learning (DL) model named AI-xpansion was developed based on this approach.
In the pre-processing phase, where the region of interest was identified, the model successfully
segmented 98% of the intended regions. Detection failures occurred due to the very low signal of
the COC and the interference of an oil droplet in the image. Consequently, these 2 instances were
omitted from subsequent analyses and image enhancement. Finally, a total of 100 COCs were
harnessed to train the model, detailed further in Section 4.3.2.

4.3.4.2 Evaluation procedure

To evaluate the segmentation models, we employed a 10-fold cross-validation technique. This
was chosen due to the dataset’s limited size, ensuring robust results. In each fold, 90 oocytes
(equivalent to 180 images) were selected as the training set, while 10 oocytes (or 20 images) were
set aside for validation. The model was trained using minibatches of 32 images across 200 epochs.
Each fold generated masks for the 20 validation images, reaching 200 masks once all folds were
processed. These resultant masks were then juxtaposed against the expert-provided masks. The
dice coefficient was utilized to quantify the similarity between the two masks.

Figure 4.11 visually represents the evolution of the mean dice coefficient alongside the mean dice
loss over the ten folds. The mean dice for the majority-vote model exhibited high performance,
settling around a convergence point of approximately 95%.

A comparison of our method with human annotators is crucial. To achieve this, we assessed
the annotations’ similarity by each of the three experts and then matched these findings against
the similarity between each human expert and our recommended approach. Since there was a
non-normal distribution of dice values, we employed the dice coefficient’s median as the metric to
evaluate the similarity between two sets of annotations. For a perfect similarity, this median should
touch 100%, while it should plummet to 0% for a complete disagreement among annotators.

In Table 4.3, the initial three rows illustrate the degree of similarity in the cumulus oocyte com-
plex segmentations among different pairs of human annotators. The agreement levels span from
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(a) Dice coefficient convergence to 0.95. (b) Dice loss convergence to 0.05.

Figure 4.11: The evaluation of the model using the mean Dice coefficient and mean Dice loss as
performance metrics. The figure showcases the convergence of these metrics during the training
process.

Annotator 1 Annotator 2 Annotator 3
Annotator 1 - 95.15% 95.49%
Annotator 2 95.15% - 95.63%
Annotator 3 95.49% 95.63% -

Our proposal 96.32% 95.99% 96.48%
without RoI 95.95% 95.61% 95.97%
without RT 13.17% 13.55% 14.00%
without TL no convergence

Table 4.3: Comparison of the median of dice coefficients of different models with the ones of
human specialists.

95.15% to 95.63%. Contrastingly, our proposed deep learning model achieves similarity levels be-
tween 95.99% to 96.48%, surpassing human experts’ consistency. This suggests that our model’s
outcomes are nearly indistinguishable from human expert’s segmentations. Given the time and
cost associated with human annotation, our technique offers a cost-effective and efficient alterna-
tive to relying solely on human experts.

To discern the contribution of each step in our workflow – specifically, ROI determination and
transfer learning – we executed an ablation study by omitting each component.

The first modification entails using our model without the preliminary stage of detecting the re-
gion of interest (ROI) but using transfer learning from a melanoma dataset. The performance
from this setup (withoutROI , as listed in Table 4.3) remains reasonable, mirroring the consis-
tency seen among human experts, with values between 95.61%-95.97%; it is just slightly lower
than the proposed model. On the other hand, solely utilizing the model trained on the melanoma
dataset without subsequent retraining to the COC dataset yielded considerably poorer results – be-
tween 13.17% to 14.00% (withoutRT in Table 4.3). Removing transfer learning and initializing
with random weights resulted in a non-convergent model, underscoring the crucial role of transfer
learning in this scenario, likely due to our restricted set of annotated images.
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Figure 4.12: A visual comparison between the experts’ masks and the model’s predictions for seg-
menting COCs. Side-by-side subplots are displayed, each containing two images, the annotators’
individual masks, the majority-vote mask, and the segmented mask.

In Figure 4.12, we illustrate the outcomes of the segmentation procedure. This figure showcases
a sample of cumulus-oocyte complexes as the baseline image. Following this, the next column
presents the three expert-generated masks. A clear observation is that these masks don’t perfectly
match, especially at the oocyte’s borders. While some annotations present a loose outline, others
suggest a more strict boundary. Such discrepancies can make model training challenging when
the foundational annotations are controversial. To mitigate this, the subsequent column offers the
masks formed by the majority consensus from the three expert annotations. This method seeks to
bridge the interpretation gap and deliver a unified representation. Lastly, the final column presents
the masks produced by our proposed model. Visually, it aligns closely with the majority-vote mask
while recognizing and integrating key details. Notably, the model’s approach provides a smoother
boundary than that of annotator 1, yet retains vital features. Through these visual representations,
we gain insights into the segmentation workflow and witness the ability of the model to identify
essential features of the region of interest.

4.3.4.3 Performance

The comparative ranking of scores among the observers is detailed in Table 4.4. In two of the
three scenarios, AI-xpansion outperformed the other observers. The efficiency of AI-xpansion in
measuring the area of the COC was similar to that of human observers (p = 0.15).

Differences in bias and variance among human observers, and between them and AI-xpansion, are
outlined in Table 4.5 and Table 4.6. When assessing cumulus expansion using AI-xpansion, the
system displayed reduced bias and variance one-third of the time compared to human evaluators.
In the other two scenarios, AI-xpansion’s measurements for bias and variance were comparable to
those of human observers. This demonstrates that AI-xpansion achieves performance levels akin
to human capabilities.

4.4 Embryo development

Finally, in this section, we present the fourth and fifth research questions:

Q4: How does the optimal method for measuring COCs’ expansion impact healthy embryo devel-
opment in mammalian species?
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O1 O2 O3

O1 2.04 1.93
O2 2.04 2.15
O3 1.97 2.11

AI-xpansion 1.99 1.85 1.93

Table 4.4: Average rank calculated in the comparison among the different human observers and
between human observers and AI-xpansion. This table shows the similarity between the average
ranking of three observers (O1, O2, O3) and the deep learning method (AI-xpansion). Scores
closer to zero indicate that the performance is closer to the column observer.

O1 O2 O3

O1 0.0475 -0.0097
O2 -0.0475 -0.0572
O3 0.0097 0.0572

AI-xpansion -0.0214 0.0260 -0.0312

Table 4.5: Bias calculated in the comparison between the different human observers and between
human observers and AI-xpansion. It shows the level of simplifying assumptions made to ap-
proximate the reference better. Scores closer to zero indicate that the performance is closer to the
reference.

O1 O2 O3

O1 0.0092 0.0047
O2 0.0092 0.0115
O3 0.0047 0.0115

AI-xpansion 0.0076 0.0070 0.0082

Table 4.6: Variance calculated in the comparison between the different human observers and hu-
man observers vs AI-xpansion. It shows how much change the performance will have when it
comes across different data. Scores closer to zero indicate that the performance is closer to the
reference.
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Q5: What influence does the density of COCs, as determined by the optimal method, have on
healthy embryo development in mammalian species?

4.4.1 Resources

Bovine COCs (totaling 427 across 14 replicates) were collected and underwent in vitro matura-
tion per the procedure outlined in Section 4.2.2.2. The additional criteria for selection included
oocytes encircled by a dense cumulus consisting of a minimum of 5 layers, along with a uniformly
dark or slightly grainy ooplasm. Frozen semen from a bull with confirmed fertility was defrosted
in a water bath set at 38 °C. It was then processed through a Percoll gradient (from GE Health-
care Biosciences, Uppsala, Sweden) to isolate viable sperm cells. These COCs were then paired
with the chosen spermatozoa in separate droplets (each holding 1 COC and measured at 20 µL).
This was done in IVF-Tyrode’s Albumin Lactate Pyruvate (TALP) medium that had added bovine
serum albumin (BSA; Sigma A8806 at 6 mg/ml) and heparin (concentration: 20 µg/mL), up to
a cumulative concentration of 1 × 106 spermatozoa/mL. The droplets were sealed with paraffin
oil and were incubated for 22 hours at 38.5 °C in an environment with 5% CO2 humidified air.

Post in vitro fertilization, the cumulus cells were eliminated using delicate pipetting (using a 140
µm EZ-Tip®, sourced from CooperSurgical, Malov, Denmark), and surplus sperm cells were dis-
carded by immersing the presumed zygotes in the HEPES-TALP medium. The following step
involved transferring the zygotes individually into droplets (1 zygote per 20 µL droplet) contain-
ing synthetic oviductal fluid medium, which was enriched with 0.4% BSA (Sigma A9647) and
ITS (consisting of 5 µg/mL insulin, 5 µg/mL transferrin, and 5 ng/mL selenium). The embryos
were then nurtured up to the eighth day post-fertilization, in conditions set at 38.5 °C, with 5%
CO2, 5% O2, and 90% N2. On the eighth day, the progress of embryonic development was doc-
umented based on the blastocyst rate, which signifies the proportion of embryos that matured to
the blastocyst stage (identified by the emergence of a blastocoel or cavity) to the total count of
presumed zygotes.

COC images were captured before and after the maturation process, as earlier mentioned in Sec-
tion 4.2.2.3. The assessment of cumulus expansion was conducted by a single observer employing
the area, 3-distances, and scoring technique as detailed in Section 4.2.2.4, and also through the
AI-xpansion method outlined in the current section.

4.4.2 Proposal

4.4.2.1 COC expansion and embryo development

The relationship between cumulus expansion and embryonic development was studied using the
Mann-Whitney U test [146], with a significance threshold set at α = 0.05. This test juxtaposed the
cumulus expansion of COCs that either failed or succeeded in development. The base assumption,
H0, posits that both sample sets hail from an identical distribution. Conversely, the alternative
hypothesis suggests one sample exhibits greater expansions than its counterpart.
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(a) Histogram showing the distributions
of cell density for immature and mature
COCs.

(b) Kernel density estimation (KDE) of cell
density for immature and mature COCs.

Figure 4.13: Cell density distribution for immature and mature COCs.

4.4.2.2 COC density and embryo development

In Figure 4.13a and Figure 4.13, two graphs illustrate the cell density distribution across the given
samples. A noticeable trend emerges, indicating a subtle increase in cell density during the transi-
tion from immature to mature stages.

We employed the Mann-Whitney U tests to further interpret these findings, comparing cell density
across varied situations. We considered two separate scenarios: a set comprising 331 oocytes and
a more extensive collection of 922 oocytes. It’s worth highlighting that the eventual sample count
shrunk by 15%, necessitated by data anomalies and the subsequent removal of specific cases.

4.4.3 Results

4.4.3.1 COC expansion and embryo development

The correlation between embryo development and cumulus expansion –measured via the area
method, 3-distance method, scoring method, and AI-xpansion – was investigated to identify the
accuracy of these methods. Successful embryo development was identified when embryos pro-
gressed to the blastocyst stage on day eight after fertilization. Out of 427 anticipated zygotes, 118
matured into blastocysts (27.6%), while 309 (72.4%) halted at a preceding developmental stage.

Notably, the median cumulus expansion was significantly less in embryos that didn’t reach the
blastocyst stage compared to those that did when assessed using (i) AI-xpansion (64.95 (IQR:
48.30) and 77.88 (IQR: 55.96) respectively, with p = 0.011), (ii) area method (72.15 (IQR: 58.55)
and 80.75 (IQR: 62.81) respectively, with p = 0.024), and (iii) 3-distance method (46.83 (IQR:
49.74) and 55.20 (IQR: 50.50) respectively, with p = 0.046).

However, when evaluated by the scoring method, the median cumulus expansion showed no sig-
nificant difference between the halted embryos and the blastocysts, with values of 2.00 (IQR: 2.0)
and 2.00 (IQR: 1.0), respectively, and p = 0.256. These findings are illustrated in Figure 4.14.
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Figure 4.14: Distribution of cumulus expansion in cumulus-oocyte complexes that resulted in
unsuccessful and successful embryo development. Cumulus expansion was measured using (a)AI-
xpansion, (b)the area method, (c)the 3-distance method, and (d)the scoring method. Cumulus
expansion significantly differed between unsuccessful and successful COCs (p ≤ 0.05)) when
being measured by AI-xpansion, area method, or 3-distance method.

4.4.3.2 COC density and embryo development

The outcomes for the previously described comparisons are gathered in Table 4.7. A statistically
significant difference in cell density between immature and mature oocytes was observed from the
reduced dataset. The significance level was larger for mature oocytes, whereas the immature ones
approached the defined significance threshold. Yet, when relative cell density was evaluated, it
failed to exhibit a significant difference, implying its potentially absent role in ensuring embryo
health.

Interestingly, on augmenting the dataset by nearly 2.5 times, the results proved to have a higher
significant difference. Our analysis revealed a strong correlation between cell density and healthy
embryo development, as reflected by p-values of 0.0032 and 0.0003 for immature and mature
COCs, respectively. Furthermore, the p-value tied to the relative density change reached a number
of 0.0029, indicating its role as a significant factor in most instances.

Drawing from these observations and the evidence from the enlarged dataset, we conclude that cell
density, especially within mature cumulus-oocyte complexes and, to an extent, in the immature
variants, holds considerable influence over healthy embryo development.
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Cell density (I) Cell density (M) Relative change
p− value331 0.0155 0.0063 0.1498
p− value922 0.0032 0.0003 0.0029

Table 4.7: The p-values for the cell density parameters in two separate datasets: one comprising
331 oocytes and the other containing 922 oocytes. The p-values indicate the level of statistical
significance for each parameter in relation to healthy embryo development. The parameters studied
here are the cell density (I) in immature COCs, the cell density (M) in mature COCs, and the
relative cell density change.

4.5 Discussion

This chapter raises the following research questions. Firstly, it is sought to determine the most
effective method for assessing the COC area. Furthermore, it is questioned whether evaluating the
COC area can be automated. Whether a model can be established to calculate COC expansion in
mammalian species is also pondered. Last, the significance of cumulus expansion in achieving
healthy embryo development is examined, followed by the impact of cumulus density on forming
a healthy blastocyst.

4.5.1 Best measurement method

This research examined the reliability of three commonly employed techniques for measuring
cumulus area and expansion using the Intraclass Correlation Coefficient (ICC). While the Lik-
ert scale is often the go-to method for such assessments, it displayed high subjectivity in our
study. Comparing the area before and after in vitro maturation yielded the most consistent results
among different observers and repeated measurements by the same observer (inter-observer and
intra-observer agreement). As a result, the area method was chosen as the most accurate and the
foundation for creating a deep learning algorithm for future evaluations.

4.5.2 AI in ART

Recent advances in Assisted Reproductive Technology have witnessed an escalating adoption of
deep learning and image segmentation techniques. While some strides have been made in identify-
ing morphological characteristics from human oocyte and embryo bright-field microscopy images,
applications in other mammalian species and how several key components affect healthy embryo
development are sparse. Segmenting bovine cumulus-oocyte complexes and linking them with
cumulus expansion and density remained uncharted territory.

4.5.3 Area method and deep learning

Following, a supervised detection technique for the cumulus was employed, leveraging trans-
fer learning from a closely related domain – melanoma images to assist the fairly small COC
dataset. The Dice coefficient scores revealed that the top-performing model, which was trained

63



using majority-vote annotations, holds promise as it achieved scores comparable to human anno-
tations. Upon closely examining the complexities of the task, it was observed that experts show
slight variations in their annotation or evaluation of cumulus-oocyte image datasets. Some experts
are highly strict, striving for maximum accuracy without concern for the time invested. In contrast,
others aim for quicker results, which may lead to less detailed and potentially less accurate anno-
tations. To address the issue of minor disagreement among multiple annotators, we introduced
a majority-vote model. This model determines whether a pixel belongs to the cumulus-oocyte
based on the consensus among the majority of experts. According to the median Dice coefficient
metrics, our proposed deep learning model outperforms human capabilities, as demonstrated in
previously. Notably, despite the small dataset size and the inconsistencies among experts on what
should be categorized as a part of the cumulus-oocyte, the deep learning model still delivers high
and consistent performance. This offers a more accurate and time-efficient solution.

4.5.4 Expansion and blastocyst

Based on the merits of this area method and the deep-learning model built, a deep-learning pipeline
named AI-xpansion was developed. The pipeline, designed to measure the COC area and then
the expansion from immature to mature oocyte, was performed with reliability comparable to
human observers. Importantly, the findings revealed that cumulus expansion, as measured by
AI-xpansion, the area method, and the 3-distance method, could be pivotal in predicting oocyte
developmental competence. All three methods exhibited a significant association between embryo
development and the cumulus expansion of the oocyte.

4.5.5 Density and blastocyst

Last, in this study, the importance of cell density in the maturation of oocytes was studied. Our
analysis found marked differences in cell density between oocytes that successfully matured into
healthy embryos and those that did not, indicating that cell density is a key factor in influencing the
developmental viability of oocytes. Along with cumulus expansion, cumulus density is another
important feature in healthy embryo development.

4.5.6 Future

These analyses were performed under the specific frame of bovine cumulus-oocyte complexes.
Having proved its functionality and worthiness, the pipeline provided, including the AI-xpansion
framework and the study of expansion and density to healthy embryo development, could be ex-
panded to other related species. Starting with human [44], and moving on to other mammalian
species, such as horses [195] and wildlife [40], where in-vitro maturation is performed, the algo-
rithms could be developed to be a crucial tool for assisted reproduction, for studying the insights
of infertility, and for preserving endangered species with better understanding and use of assisted
reproductive techniques.

Additionally, these models described here could be the starting point for a more general platform
that segments COC areas and be used to study more features than the one described here, such
as the position of the oocyte and the surrounding cells and the link to healthy development. Last,
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generalizing the current pipeline to other microscopy settings or different image-capturing equip-
ment could be an important step for automating the process and saving a great amount of time for
the experts in the field to devote their time to more sophisticated tasks.

4.6 Conclusions

In this section, it was established that the area method is the most reliable for measuring cumulus
expansion, while the commonly referenced scoring method was found to be the least reliable. Sub-
sequently, the area method inspired the development of an objective alternative, the AI-xpansion
DL algorithm, which was created following the establishment of a framework for segmenting
COC areas. AI-xpansion is poised to be a valuable asset for embryologists and researchers in
in-vitro embryo development laboratories for accurately measuring cumulus expansion with ac-
curacy comparable to human judgment. The importance of measuring cumulus expansion was
validated, as it was demonstrated through the use of AI-xpansion, the area, and the 3-distance
method that median cumulus expansion is significantly greater in competent COCs than in COCs
that do not develop into blastocysts. Additionally, the study explored the impact of COC density
on the potential of an oocyte, and then an embryo, into a healthy blastocyst. The upcoming chapter
will explore more advanced methods of extracting ground truth in medical images to enhance the
realism of DL model performance in segmentation tasks.
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Chapter 5

Consensus Segmentation

In this chapter, we delve into a research question that is important to overcome some obstacles in
our investigation:

• Q6: How can expert biases in medical image segmentation be effectively overcome?

Research question Q6 presented below expands the paper: Athanasiou, Georgios, Josep Lluis Ar-
cos, and Jesus Cerquides. ”Enhancing Medical Image Segmentation: Ground Truth Optimization
through Evaluating Uncertainty in Expert Annotations.” Mathematics 11.17 (2023): 3771.

5.1 Introduction

Assessing the efficiency of image segmentation methods remains a consistent hurdle. While expert
annotators often handle interactive segmentation, it results in differences in their interpretations.
Automated systems strive to remove these inconsistencies, but measuring their success with med-
ical images is challenging because there isn’t a clear ”gold standard” for segmentation.

Various methods are suggested for determining annotator expertise and establishing ground truth
(GT) labels. These techniques fall into two primary categories: a two-stage approach and a simul-
taneous approach.

The two-stage methods involve two distinct steps: first, the aggregation of labels, and then, training
a supervised learning model. Initially, noisy labels are compiled using a probabilistic model that
treats annotator proficiency and GT labels as hidden variables to be deciphered. Afterward, a
machine learning model is trained using the GT labels to execute the desired task. Notably, these
methods often overlook details about the raw inputs, X , in the generative model for noisy labels
during the aggregation phase, which can adversely affect the determination of accurate labels.

The simultaneous methods tackle this shortcoming by incorporating the predictions of the super-
vised learning model, specifically the distribution p(Y | X), into the probabilistic model for noisy
labels. Studies have indicated that these methods enhance predictive accuracy. Such techniques
utilize versions of the expectation-maximization (EM) algorithm during their training process and
necessitate a significant number of labels for every sample. Yet, in many real-world scenarios,
gathering an extensive number of labels for each instance is practically unfeasible, constraining
the applicability of these methods.
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5.2 Recent literature

5.2.1 Two-step approach

Label aggregation and supervised learning model training are carried out independently in the
two-stage methodology. The noisy labels are initially consolidated using a probabilistic model
that considers annotator skills and ground truth labels as unknown variables to be calculated.
Subsequently, a machine learning model is trained on the ground truth labels to perform the task
of interest. Regrettably, these methods often overlook the raw input information during label
aggregation, adversely affecting the estimated true labels.

In 2002, Warfield et al. [222] initially proposed the STAPLE algorithm, which offers a unique way
to characterize each annotator w via their confusion matrix θw ∈ RL×L, where L is the number
of classes, and θw,c′,c denotes the probability that expert w labels a pixel as c′ given c in consen-
sus. Here, the confusion matrix denotes the probability θw,c′,c = P (Swi,j = c′|Ci,j = c) that an
expert w labels a pixel as c′, given that the same pixel is labeled as c in the consensus. The STA-
PLE algorithm harnesses the power of the Expectation Maximization technique [223] to derive
the maximum likelihood consensus segmentation. STAPLE has since witnessed several enhance-
ments. Asman and Landman [5] extended STAPLE into Spatial STAPLE. This algorithm accounts
for spatially varying performance by augmenting the performance level parameters to generate a
smooth, pixel-wise performance level field unique to each annotator. Concurrently, Commowick
et al. [41] introduced Local MAP STAPLE, an approach that tackles spatially variant performance
using a sliding window technique. Furthermore, STAPLE has been improved by incorporating the
image’s intensity in the consensus computation. Asman and Landman [6] proposed a novel sta-
tistical fusion algorithm, Non-Local STAPLE (NLS), which reformulates the STAPLE framework
from a non-local means perspective.

However, Hamzaoui et al. [88] noted that STAPLE is highly sensitive to the size of the back-
ground and to the consensus prior; to mitigate this issue, they introduced MOJITO, an approach
that defines consensus segmentation as one that minimizes the Fréchet variance with respect to
the set of annotators. In Carass et al. [31], the STAPLE algorithm and a wide range of evaluation
metrics were implemented as part of their challenge. Within this challenge, a Consensus Delin-
eation was selected by employing the STAPLE algorithm, which integrated information provided
by two experts and the 14 distinct participating groups, each with their algorithms. This Consen-
sus Delineation facilitated a direct comparison not only between the experts themselves but also
among the algorithms proposed by the different groups, but the study concluded that the experts
still outperformed the algorithms in their challenge.

5.2.2 Simultaneous approach

Simultaneous approaches aim to address this issue by integrating the prediction of the supervised
learning model with a model that handles uncertain or noisy labels. This combination has been
demonstrated to improve prediction accuracy. These methods utilize variants of the expectation-
maximization algorithm during their learning process, and they require an adequate quantity of
labels for each example. However, collecting many labels for each example is often impractical in
real-life situations, which limits their use.
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The models in this category strive to simultaneously curate labels and train a supervised model
in a synchronized, end-to-end manner. This strategy allows the two components to complement
and enhance each other. Although current evidence relates primarily to basic classification tasks,
these concurrent approaches have demonstrated encouraging enhancements over the methods in
the first category in both the predictive capabilities of the supervised model and the sample ef-
ficiency (i.e., fewer labels per input are needed). However, up to this point, the same issue has
received minimal attention in more complex, structured prediction tasks, where the outputs have
high dimensionality.

Zhang et al. [240] present an unprecedented end-to-end supervised segmentation method. This
method uniquely estimates the reliability of multiple human annotators and the true segmenta-
tion labels using solely noisy labels. While they evaluate their methodology in several synthetic
scenarios, it has not been tested on actual medical data. In subsequent work, Zhang et al. [239]
continue to advance this approach, optimizing specific parameters, but only with crowdsourcing
data. On the other hand, Liu et al. [133] shift their focus to learning dynamics — a concept previ-
ously studied in classification problems but scarcely explored in the realm of image segmentation.
They propose the ADELE model, but the results are not grounded in the core issue of multiple
annotators with varying annotation methods.

Several other approaches have been proposed [82, 183, 220, 172], but none of them fulfill the
requirements of actual medical data from multiple expert sources.

5.3 Materials and Methods

5.3.1 Dataset

Images of 100 Cumulus Oocyte Complexes (COCs) were meticulously captured at two criti-
cal stages: the immature stage (0 hours of maturation) and the mature stage (22 hours post-
maturation). This endeavor was achieved utilizing an advanced Olympus stereomicroscope seam-
lessly integrated with a high-definition ToupCam camera. The entire process was efficiently
streamlined with the aid of the ToupView software (version 3.7.13270.20181102). To ensure
consistency and clarity, all images were captured with a uniform magnification of 56×, strategi-
cally positioning a single oocyte’s zona pellucida at the epicenter of the field of focus. Each image
was saved in the .png format, boasting a crisp resolution of 2592 × 1944 pixels and presented in
vibrant RGB color. Three experts were then entrusted with meticulously annotating the COC area
from 100 paired images using the renowned ImageJ software (version 1.53j). This effort resulted
in a comprehensive collection of 200 images and 200 × three individual masks. The images and
masks underwent downscaling for optimization, achieving final dimensions of 192 × 240 × 1.

The esteemed method of majority vote, as delineated by Nguyen et al. (2022) [156], was employed
to derive a Ground Truth (GT) for evaluation objectives. For a visual representation, a sample
of the data — provided by the Department of Internal Medicine, Reproduction, and Population
Medicine at Ghent University (accessible at https://www.ugent.be/di/irp/en, as of 09 November
2021) — is presented in Figure 5.1.
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Figure 5.1: A sample of the dataset. The first column contains a COC in both immature and
mature stages. The subsequent three columns represent the corresponding masks provided by
different experts. It is obvious that there is no complete agreement among the experts for each
case.

5.3.2 Architecture

The method was developed by using the PyTorch framework. For the segmentation part, the
network is designed based on the UNet architecture, which comprises five layers. The channel
count in these layers increases in a sequence, starting from 32 and doubling each time until it
reaches 512, then decreases again. The regularization network uses a Softmax function [75] for
the basic global CM scenario. However, when dealing with the more intricate local CM scenario,
it adopts a double convolutional block, comprising a convolution operation followed by a ReLU
function, as illustrated in Figure 5.2.

Figure 5.2: The segmentation network structure consists of a UNet architecture parameterized
by θ and the regularization networks parameterized by ϕ. The UNet has a depth of 5 layers,
with the number of channels moving progressively from 32 to 64, 128, 256, and finally, to 512.
The maxpooling layer has a padding and stride of 2, while the upsampling layer has a kernel size
and a stride of 2. The regularization networks contain a simple network to compute the global
confusion matrices and a CNN to compute the local confusion matrices.

The available dataset contains 200 images, which we split into different segments: 80% was allo-
cated for training, 10% for validation, and the remaining 10% for testing. The training spanned
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100 epochs, and the learning rate was initialized at 1e-3, gradually reducing it to 1e-6. A batch
size of 16 was used during training, and the Adam optimizer [116] was employed for the process.

5.3.2.1 Segmentation network

The segmentation model is driven by a UNet architecture [181]. This model, characterized by the
parameter θ, yields a predicted probability distribution expressed as pθ(X) ∈ [0, 1]WxHxL, where
W represents the image’s width, H its height, and L the total number of classes. This outputted
distribution conveys the probability of a pixel being associated with a particular class. For this
specific application, the classification consists of just two classes (i.e., L = 2): one for the COC
area and the other for the background.

UNet is renowned for its unique U-shaped design, making it a preferred choice for medical image
segmentation. This is because the architecture captures both low-level and high-level features,
thereby improving segmentation precision. The human-level performance of UNet in tasks re-
lated to COC has been documented previously [7]. Moreover, UNet showcases optimal results
even when trained on limited datasets, rendering it an ideal fit for our current challenge. The
UNet’s visual representation can be found on the left side of Figure 5.2, which is connected to the
subsequent regularization network.

5.3.2.2 Regularization network

Based on [240], the regularization network, as depicted in Figure 5.2, is characterized by the pa-
rameter ϕ. Its main objective is to ascertain the genuine probability distribution of segmentations.
This can be accomplished by replicating the unique tendencies of the three annotators illustrated in
Figure 5.3. Here, ’tendencies’ indicate the individual propensities of annotators to gravitate toward
certain erroneous segmentation patterns, for example, presuming pixels belong to the COC zone
rather than the background. Such tendencies are represented through confusion matrices (CMs).
Assuming that the true label is previously known, then the CM is constructed as follows:

a
(m)
ij (x) = p(y(m) = i | yGT = j,x) (5.1)

where a(m)
ij stands for the element in the (i, j) cell of CM for expert m. In an image of size WxH ,

for every pixel w∈W , h∈H , the CM could be the same among all pixels (global-CM case), or
change for each pixel (w, h) of each image x (local-CM case). Consequently, in the global-CM
case, only one CM represents the whole image, while in the local-CM case, there is a CM for
each pixel. The yGT refers to the Ground Truth (GT) mask, which was utilized in this procedure,
while y(m) represents the mask annotated by the mth annotator. It’s worth noting that the GT
is not directly observable in this context. Thus, the model undergoes a disentangling process to
deduce its version of the GT. As a result, directly computing the Confusion Matrix (CM) isn’t a
straightforward process.
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Figure 5.3: The architecture consists of two components: (a) a segmentation network, character-
ized by the parameter θ, which produces a probability distribution pθ for segmentation; and (b) a
regularization module consisting of a CNN, parameterized by ϕ, which utilizes the input image
to generate three pixel-wise confusion matrices Aϕ at the local (pixel) level. During the training
process, the parameters (θ, ϕ) are learned simultaneously by optimizing the overall loss function.

Thus, a regularization network is employed to simulate the confusion matrices. Each of these
matrices emerges as an output from a Convolutional Neural Network (CNN) that uses the COC
image, denoted as x as its input. This CNN, defined by ϕ(m), maintains a consistent architecture
across all CM branches but is independently fine-tuned after a random initialization. The segmen-
tation network supplies the probability distribution prediction, denoted as pϕ(x), which is evident
from the diagrams in Figure 5.3 and Figure 5.4. We obtain the anticipated probability distributions
that align with each annotator’s patterns by carrying out an element-wise multiplication between
the CMs and this projected probability distribution.

p
(m)
θ,ϕ (x) = A

(m)
ϕ (x) · pθ(x) (5.2)

where A
(m)
ϕ is the total of the CMs, with m ∈ {1, 2, 3} and ’·’ operator denotes the element-wise

matrix multiplication in (w, h), where needed.
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Figure 5.4: The architecture consists of two components: (a) a segmentation network, character-
ized by the parameter θ, which produces a probability distribution pθ for segmentation, and (b) a
regularization module consisting of a CNN, parameterized by ϕ, which utilizes the input image to
generate three image-wise confusion matrices Aϕ at the global (image) level. During the training
process, the parameters (θ, ϕ) are learned simultaneously by optimizing the overall loss function.

The formulation of the optimal confusion matrix and its associated predicted probability distribu-
tion is the outcome of a combined optimization procedure encompassing both the segmentation
and regularization networks.

5.3.3 Loss function and evaluation metrics

In the following segment, we delve into a comprehensive overview of the method we employ
to jointly optimize the parameters of the segmentation network, represented by θ, and those of
the annotator network, symbolized by ϕ. Additionally, we will elucidate the metrics used for
evaluation in our research.

To assess the performance of the proposed segmentation, the Dice Coefficient [46] is selected. The
Dice Coefficient quantifies the spatial concurrence between two regions, providing a range from
0 to 1, where 0 implies no overlap, while 1 indicates complete agreement. The corresponding
equation is given below (5.3):

dice(f,x, y) =
2
∑

ij f(x)ijyij∑
ij f(x)ij +

∑
ij yij

(5.3)

with y being the ground truth, x being the input image, and f(x) the prediction of the model.

To guarantee that the predicted probability distribution, which encapsulates the tendencies of the
annotators, aligns accurately with the real annotations, we make use of the dice loss. The dice
loss, when applied to binary segmentation, is articulated subsequently:

Ldice(f,x, y) = 1− dice(f,x, y) (5.4)
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Subsequently, we incorporate a regularization term derived from the trace norm theorem as out-
lined in [207]. According to this theorem, when presented with a prominent trace for the confusion
matrix, the procedure denoted by 5.2 aspires to curtail this trace. This reduction aids in aligning
the projected confusion matrices corresponding to individual annotators with their genuine coun-
terparts. The fine-tuning of the trace of the CM is achieved using the following loss function:

Ltrace(f,x, y) =
3∑

m=1

tr(A
(m)
ϕ (x)) (5.5)

with tr(A) denoting the trace of A.

By minimizing the trace, we’re essentially encouraging the maximum uncertainty in the predic-
tions of the annotators. On the other hand, by minimizing the dice loss, we ensure that the predic-
tions stay true and loyal to the annotations we have observed. The comprehensive loss function is
then designed by merging these two components: the dice loss and the trace loss.

Lθ,ϕ
total = Lθ

dice + γLϕ
trace (5.6)

where γ corresponds to a regularization term. To establish the optimal γ, several options are tested,
followed by a quantitative comparison, from γ = 0.0 to γ = 1.0, with a step of 0.1, while some
options above 1.0, to examine the case of assigning higher importance to the trace loss. The model
learns the parameters θ and ϕ by minimizing the combined loss function.

5.3.4 Methodology

In our research, we structure our approach into three key stages.

Firstly, we examine the strategies documented in existing scholarly works that delve into training
a supervised segmentation model using labels generated by multiple human specialists (Section
5.3.4.1). We specifically evaluate this in the backdrop of a constrained dataset of COC images
paired with their binary masks annotated by three experts. The primary objective at this juncture
is to extract the accurate segmentation deriving solely from this ensemble of imperfect labels.

However, due to poor results, we switch our attention towards regions marked by heightened
uncertainty (Section 5.3.4.2). As we delve deeper, we sharpen our analysis by discerning unique
annotating tendencies for each specialist.

In the conclusive phase (Section 5.3.4.3), we aim to perfect the ground truth. We highlight the
regions with significant uncertainty, enhancing our segmentation model’s accuracy and reliability.

The code for this part of the thesis is available on the following GitHub page: maximum-likelihood-
gt.

5.3.4.1 Jointly-learning

In this research, we implement the suggested methodology [240] comprising a pair of Convolu-
tional Neural Networks (CNNs). The unique function of these CNNs is to predict the confusion
matrix for each expert, which is subsequently used for segmenting the area of the COC, eliminat-
ing the need for prior GT.
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Coupled CNN training The initial approach was implementing a local-CM model, where each
image pixel was assigned its individual CM. Given the high dimensionality involved with
assigning a CM to each pixel – effectively a H×W×2×2 dimensional problem, we decided
to revise our strategy, with H being the height of the image, W the width of it, and a 2×2
confusion matrix for each pixel. (Figure 5.3)

To manage the high dimensionality, we adopted a different approach, reducing the multiple
CMs to a single one (global-CM) to capture the behavior across the entire image. This
effectively condensed the problem from a H×W×2×2 dimension to a more manageable
2×2 CM. (Figure 5.4)

Coupled CNN training with transfer learning To assist the initial models, examining further
options was necessitated. We adopted the method proposed by Athanasiou et al. [7] and
trained a segmenting CNN model to segment the COC area proficiently. Subsequently, the
model weights were saved to serve as a starting point for disentangling the process from the
ground truth, negating the need to train both CNNs simultaneously and offering a promising
starting point for the training.

Upon revisiting the approach, two primary concepts stood out. The first entailed training
with the pre-trained weights, allowing the models to optimize the weights for both CNNs.
The second concept involved training with the pre-trained weights, freezing the segmenta-
tion CNN, and enabling the models to train the annotating CNN, thus learning the CMs.

5.3.4.2 Confusion Matrices on Uncertainty

To derive the confusion matrices on areas of uncertainty, a pre-trained deep learning model that
has achieved a high dice score (Athanasiou et al. [7]) for segmenting the COC area is employed.
This model is used to pinpoint areas of uncertainty by setting a threshold at 0.05. In this context,
every pixel that falls between [0.05− 0.95] is considered uncertain. Conversely, any pixel outside
this range is deemed a segmentation where experts agree.

The pixels of interest for each image are identified and directly compared with the GT. In this
instance, the GT is defined as the majority-voted masks created by combining the masks provided
by experts. Confusion matrices are constructed by comparing the expert annotations with the
majority-vote annotation solely on uncertain pixels.

Specifically, for each pixel in the uncertainty range, if an expert annotates it as ’1’ and the GT
indicates ’0’, it is recorded as a False Positive in the confusion matrix. If the expert marks it as ’0’
and the GT indicates ’1’, it is a False Negative. Conversely, if the expert’s annotation aligns with
the GT, it is recorded as a True Positive or True Negative. This process is applied to all pixels in
the uncertain areas of an image.

Following this, we normalize across the rows of actual values to obtain a confusion matrix for
each annotator per image. To attain a total confusion matrix for each annotator, we compute the
mean of their confusion matrices across all images.

5.3.4.3 Maximum Likelihood Ground Truth

After obtaining estimates for the confusion matrices of each annotator, we can then deduce the
ground truth using a maximum likelihood approach. Below, we illustrate how to amalgamate
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the labels provided by every annotator and their respective confusion matrices to compute the
Maximum Likelihood Ground Truth.

Consider a specific pixel for which we have annotations. Let M denote the ensemble of all annota-
tors, and each individual annotator m ∈ M assigns a label y(m) to this pixel. The confusion matrix
for annotator m is given by A(m) = (a

(m)
ij ). Here, a(m)

ij signifies the probability that annotator m
designates the pixel with label i when the genuine label for that pixel is j.

Let’s also assume we have a prior distribution ρ = (ρ1, . . . , ρL). This prior provides initial beliefs
about the class distribution of the pixel. Specifically, ρj indicates the predisposition or initial
likelihood that this pixel belongs to class j, even before any annotations have been considered.

With all the components above, our objective now is to determine:

p(yGT = j|y(M), A(M), ρ) =
αjρj∑
l∈L αlρl

, (5.7)

where αj =
∏

m∈M a
(m)

y(m)j
.

This represents the postulated probability that the pixel belongs to class j, given all the information
we have at hand: the annotations from all annotators (y(M)) and their corresponding confusion
matrices (A(M)).

For a straightforward application, we suggest defining ρj as the frequency of label j in the set of
annotations.

5.4 Results

In the upcoming section, we explore the outcomes derived from implementing the methodology
detailed earlier. This includes an examination of the performance of the coupled CNN frame-
work, which is grounded in the existing literature and further augmented by our enhancements.
Additionally, we delve into the identification and understanding of the unique annotation patterns
demonstrated by each expert. Finally, we reach the progress achieved in establishing a more
refined ground truth, with a particular focus on the areas marked by uncertainty. Through this
analysis, our objective is to highlight the proficiency of our comprehensive approach in tackling
the intricacies of segmentation tasks.

5.4.1 Performance of Coupled CNNs

The performance of the coupled CNN structure failed to match the anticipated outcomes based on
its earlier applications to synthetic data. This trend persisted across all cases, whether using global
or local CMs and even when applying transfer learning. There were several reasons for this gap
between the expected potential and the final results.

We identified two main challenges during our research. The first challenge was the inherent limi-
tation in the data size due to the nature of real-world medical problems, such as the COC study we
conducted. Our dataset consisted of a maximum of only 200 COC images. The second challenge
was the high accuracy exhibited by medical experts in identifying COC regions. Such precision
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led to a strong agreement among them, making it difficult to segment and recognize different
expert behaviors.

Our attempts to train the coupled CNN model for COC area segmentation were not successful
using either the local or global CM strategies. The model started deviating after just a few training
rounds in both instances. We made numerous adjustments, including tuning various hyperpa-
rameters and experimenting with different γ values to control the trace loss better. However, the
model’s performance still lagged, highlighting the difficulties in adapting it to this particular task.

A previous research by Athanasiou et al. [7] suggested transfer learning as a crucial strategy
for effective COC area segmentation. Even with a promising start, our initial approach couldn’t
maintain a high performance for either CM strategy. The subsequent approach aimed at locking
the segmenting CNN’s performance and shifted attention to teaching the CMs on the annotating
CNN.

Interestingly, although the model learned three distinct CMs, their values were remarkably similar
across different experts. Both the True Positive (TP) and True Negative (TN) values hovered
around 1.0, while the False Positive (FP) and False Negative (FN) values were close to 0.0. A
closer inspection revealed this consistency was expected, given the high level of agreement among
experts regarding the pixels in both the image background and the COC area.

Our results remained disappointing despite starting with a pre-trained network from Athanasiou
et al. [7]. Even with its initial advantage, the network couldn’t sustain a robust performance
under either the local or global CM setups. In a subsequent strategy, we decided to ’freeze’ the
segmentation CNN to preserve its optimal performance, focusing instead on training the CMs in
the annotation CNN. While this approach did differentiate among three CMs, their values were
surprisingly consistent across all experts. The True Positive (TP) and True Negative (TN) values
were close to 1.0, and the False Positive (FP) and False Negative (FN) values hovered around 0.0.

This outcome was anticipated, given the considerable agreement among experts on most pixels.
Ultimately, we recognized that the intended approach requires further refinement to realize its
creators’ vision, prompting us to reconsider our emphasis on the CMs.

5.4.2 Performance on CMs—Learning

In our current research phase, our main objective is to understand the distinct CMs of each ex-
pert within areas of high uncertainty, as shown in Figure 5.5. Given the broad consensus among
experts, the only practical way to distinguish their individual annotation styles is within these
disputed zones. To start, we identify these areas of high uncertainty using our deep learning
model, which pinpoints zones with significant ambiguity in pixel classification, as detailed in Sec-
tion 5.3.4. We then contrast each pixel in an annotator’s mask with the majority-voted ground
truth. After iterating this comparison five times, we generate an average confusion matrix for
each annotator based on the entire dataset. The resulting matrices, which highlight the unique
characteristics of each expert, are depicted in Figure 5.6.
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Figure 5.5: Visualization of uncertainty regions in the segmentation process: On the left-hand side,
a sample of the original microscopy images of COC is shown. On the right-hand side, the uncer-
tainty regions corresponding to the sample on the left-hand side are displayed. As is evident, areas
of high uncertainty are concentrated along the borders of the cumulus oocyte complexes.

Figure 5.6: Visualisation of the confusion matrices for each annotator, focusing on the areas of
high uncertainty. This representation shows a clear behavior of each expert on the most difficult
areas to identify.

This information shows the experts’ approaches to the most ambiguous areas, where disagree-
ments are most probable, are evident. The first expert stands out for a high True Negative score
but only an average True Positive score. This suggests a preference for classifying pixels as back-
ground and a stricter standard for deeming a pixel part of the COC. In contrast, the third expert
tends to be more liberal in classifying pixels as belonging to the COC, even if it means mistakenly
including background pixels within the COC region. This tendency is reflected in his high True
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Positive and average True Negative rates. Meanwhile, the second expert strikes a middle ground
between these two, showcasing a more balanced style. He exhibits good accuracy in correctly
recognizing COC pixels and distinguishing background pixels.

5.4.3 Ground Truth

As detailed in Section 5.3.4.3, we propose a refined method for determining the ground truth,
leveraging the maximum likelihood approach and incorporating individual expert annotations. An
example of this advanced ground truth computation is illustrated in Figure 5.7.

(a) The average mask and areas
of disagreement.

(b) The maximum likeli-
hood mask.

(c) The area of disagreement
between (a,b).

Figure 5.7: A comparison between the majority-vote ground truth and the maximum likelihood
ground truth, which focuses on the areas of uncertainty. In (a), there is the majority-vote mask,
with a gray zone on the borders, for the pixels of disagreement. In (b), there is the maximum
likelihood mask, which can vary within the range of (0.0–1.0) since it is calculated using the
confusion matrix identity of each expert. In (c), there is the zone of disagreement and alterations
between case (a) and case (b).

Initially, the method relies on a majority vote strategy (as seen in Figure 5.7a). When three experts
participate, an uncertainty level of 0.67 is reached if two experts concur while one dissent. How-
ever, the second method (shown in Figure 5.7b) capitalizes on the confusion matrices obtained
from the annotation processes. This provides insights into the unique behaviors of the annotators.
Using this knowledge, the certainty level for individual pixels can surpass 0.67, ranging between
0.67 and 1. The end result is a more robust ground truth, capable of detecting potential errors
that might go unnoticed in the majority vote technique. The differences between the two methods,
specifically where they diverge, are showcased in Figure 5.7c.

The superiority of the maximum likelihood method over prior techniques is evident. Our approach
uniquely addresses the challenges faced by contemporary techniques. While existing methods
perform somehow well on synthetic data or annotations from non-experts, they fail when used on
real-world medical annotation data from assisted reproduction.

Our technique focuses on the specific annotation behaviors of each expert, generating tailored
profiles based on their annotations. We can pinpoint areas where experts display inconsistencies or
uncertainties by extracting these profiles using confusion matrices. This is achieved by harnessing
real-world annotation data that genuinely reflects expert disagreements.

Additionally, understanding each expert’s unique annotation behavior is pivotal. It facilitates the
reapplication of these behaviors for subsequent annotations, eliminating redundant experimenta-
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tion. This approach not only saves time and resources but also enhances model training perfor-
mance. Importantly, our method eliminates the need for an odd number of experts, a requirement
in many current techniques, such as the majority-vote one.

A key advantage of our methodology is its easy integration into clinical and laboratory settings.
This compatibility ensures the retention and utilization of individual annotation profiles, simplify-
ing the generation of enhanced results without the complexities of compiling multiple annotations.

In summation, our pioneering approach revolutionizes ground truth computation. It adeptly nav-
igates the pitfalls of existing methods, offering pronounced accuracy and operational efficacy in
medical image analysis.

5.5 Conclusions

This study centered on investigating multi-annotator segmentation using a COC dataset. The
research followed a three-step process: first, the application of a coupled CNN architecture to real
medical data, as suggested in the existing literature; second, a specific focus on ambiguous regions
to extract individual expert annotation profiles; and third, an effort to enhance the accuracy of the
ground truth by emphasizing areas of high uncertainty.

A primary discovery of this investigation was the significant contrast between results obtained
from artificial data, commonly used in prior studies, and results from real-life medical datasets.
Strategies that had shown promise with artificial data proved ineffective when applied to actual
medical data. This underscored real-world medical annotation data’s complexities and unique
attributes, emphasizing that solutions developed in idealized environments may not directly apply
to practical scenarios. Attempts to boost model performance using various strategies, such as
transfer learning and adjustments to CMs, did not yield significant improvements.

Another challenge encountered was the difficulty in achieving consensus among the experts.
While high agreement among experts is generally desirable, it posed a challenge in improving
the coupled CNN’s segmentation model using individual CMs, as minimal insight could be gained
in an environment with high agreement. This implies that models designed for scenarios with
significant annotation discrepancies may struggle when discrepancies are minimal.

In response to these challenges, the research shifted its focus toward uncertain regions within the
data. An opportunity arose to delve deeper into understanding the unique behaviors of each expert,
particularly in ambiguous areas. This introspection proved fruitful, revealing distinct tendencies
and preferences for each expert.

Armed with this newfound understanding of annotator behaviors, the research transitioned to re-
define the ground truth (GT) from a more informed perspective. This was not an attempt to dis-
connect the GT from expert annotations but rather a sophisticated effort to better integrate expert
preferences into GT construction. A novel GT was proposed and formulated based on maxi-
mum likelihood, specifically on areas of uncertainty identified through deep learning. This new
approach surpassed the simplistic majority-vote strategy, providing a more nuanced reflection of
expert knowledge in the resulting GT.

The proposed method offers several advantages, primarily addressing challenges in multi-labeling
by focusing on uncertain regions. It also creates personalized annotation profiles for experts,
improving and assessing their performance in future tasks. Moreover, these methods hold practical
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value in real-world settings, saving time and resources while overcoming limitations associated
with an odd number of experts for accurate ground truth determination.

In conclusion, this research highlighted the limitations of transferring methodologies developed
from artificial data to real-world applications. However, it also showcased the value of focusing
on uncertain areas and understanding individual expert behaviors. These insights led to a more
sophisticated construction of ground truth, emphasizing the potential for future research in multi-
annotator segmentation.
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Chapter 6

Side Projects and Future Work

In this chapter, we delve deeper into additional projects undertaken during the course of this PhD
thesis. Owing to our comprehensive engagement, these projects are currently in an ongoing phase,
revealing preliminary research findings that indicate the necessity for additional work to achieve
their intended outcomes. Among these, we explored the ratio between the oocyte area and follicle
area, aiming to understand its impact on the healthy maturation of oocytes (Section 6.1). Addi-
tionally, we investigated the development of healthy mammalian embryos, focusing on identifying
critical stages in their growth process, such as the formation of pronuclei before cleavage (Section
6.2). Lastly, this chapter outlines prospective research directions at the intersection of deep learn-
ing and assisted reproduction (Section 6.3). This forward-looking discussion ties in with the work
presented in the previous chapter and extends beyond, paving the way for future innovations in the
field.

6.1 Follicle maturation quality

Ovarian tissue cryopreservation (OTC) followed by transplantation (OTT) has become the estab-
lished method for preserving fertility in young girls and women facing the risk of premature ovar-
ian insufficiency. While OTT has demonstrated its efficacy and safety, it remains unsuitable for
certain patients due to the potential for the original disease to reoccur after transplantation. This
limitation applies to specific cancer types such as leukemia, neuroblastoma, and ovarian cancer.
In-vitro folliculogenesis emerges as a promising alternative to OTT for fertility preservation, par-
ticularly in cases where there is a risk of cancer relapse. Culturing ovarian follicles is a valuable
model for exploring the fundamental aspects of oogenesis and folliculogenesis, both in healthy
and pathological contexts.

In this section, we embark on a study to assess the following research question:

• Q7: How does the ratio between oocyte and follicle area affect the development of healthy
oocytes?

6.1.1 Resources

The code for this work can be found in the following Github page: follicle oocyte prediction.
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Figure 6.1: A representative image of a human ovarian follicle, meticulously captured by special-
ists at LRB using a Leica MZ12.5 stereomicroscope.

The dataset for this research project was collected and annotated by our skilled colleagues at
RigsHospitalet in Copenhagen, specifically in the Laboratory of Reproductive Biology1 (LRB).

In Figure 6.1, an example of a human ovarian follicle, as it was captured, is presented, while in
Figure 6.2, a human ovarian follicle with its corresponding masks, one for the follicle area and
one for the oocyte area, is shown. The dataset comprises 75 detailed images of human ovarian
follicles, each accompanied by their respective follicle and oocyte masks. Follicles were carefully
extracted from the ovaries using a process of mechanical isolation. This procedure was conducted
under the precision optics of a Leica MZ12.5 stereomicroscope. 23-gauge needles, affixed to 1
mL syringes, were utilized for the extraction. The isolation process took place in a specially
prepared, pre-warmed medium. This medium comprised McCoy’s 5α, enhanced with 25 mM
HEPES (Gibco), and further supplemented with 5% FBS (Fetal Bovine Serum, Gibco) and 1%
penicillin/streptomycin at a 100× concentration. Additionally, a comprehensive track record indi-
cates which ovarian follicles evolved into mature oocytes.

6.1.2 Methods

The primary objective of this study was to investigate the influence of the ratio between the oocyte
and follicle areas on the development of healthy oocytes, as illustrated in Figure 6.3.

The initial idea for the pipeline to succeed in this task is shown in Figure 6.4. To accomplish
this, we designed an advanced deep learning method to accurately segment the areas of oocytes
and follicles in the ovarian follicle image dataset. This involved employing a pair of sophisticated
deep learning Convolutional Neural Networks for segmentation, enhanced by a series of refined
pre-processing and post-processing techniques to optimize the results. Furthermore, we incorpo-
rated the segmented area data and additional relevant information pertaining to these follicles to

1https://www.rigshospitalet.dk/english/departments/juliane-marie-centre/fertility-department/laboratory-of-
reproductive-biology/Sider/default.aspx
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Figure 6.2: Displayed is an image of a human ovarian follicle (A) accompanied by its respective
mask delineating the follicle area (B), and another mask highlighting the oocyte area (C).

develop a predictive model. This model aims to identify the most promising ovarian follicles for
maturation, thereby providing experts with an automated and reliable tool for follicle selection in
the context of human treatment in assisted reproductive technologies.

We implemented a Region Of Interest (ROI) extraction algorithm before the training phase. This
was crucial for eliminating extraneous areas surrounding the follicle, thereby preventing the in-
clusion of artifacts present in the original environment, such as the Petri dish borders, or those
introduced during the image acquisition process, like water droplets. For the segmentation pro-
cess, we experimented with UNet architectures of varying specifications. Initially, the model was
trained on a domain-similar task with a more extensive dataset2. Subsequent training was con-
ducted on the specific dataset of interest. Of the total dataset, 65 images were utilized for the final
model training, while 10 were reserved for validation and testing purposes. We opted for the Dice
loss function, conducting the training over 200 epochs with a batch size of 8.

2https://zenodo.org/records/7152850
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Figure 6.3: This image illustrates an oocyte situated within a follicle, marked with annotations
essential for our study, specifically (i) the follicle’s surface area and (ii) the oocyte’s surface area.

Figure 6.4: The pipeline proposed to solve this research question: First, the ROI algorithm is ap-
plied to determine the area of interest. Then, there are two segmentation models to segment the
follicle and oocyte areas in different steps. Due to the issues faced in the oocyte segmentation, ad-
ditional advancements are required to reach a more robust result. Last, we automatically compute
the ratio for different cases and study its impact on healthy oocyte development.

6.1.3 Preliminary results

The follicle area segmentation model achieved a satisfying performance, registering a 92% Dice
score. However, the model for segmenting the oocyte area faced challenges, peaking at an 88%
Dice score, but exhibiting sensitivity to new data inputs, while it faced overfitting. Despite these
advancements, the limited dataset size hindered our ability to validate the results and derive sta-
tistically significant conclusions. Some sample results of the second phase, which was the phase
that had the most difficulties, are presented in Figure 6.5. Nonetheless, these preliminary findings
lay a solid foundation for future research. This groundwork paves the way for further exploration
into the automated analysis of the relationship between oocyte and follicle area ratios and the
development of healthy oocytes using deep learning methodologies.
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Figure 6.5: The following set of images showcases results from the secondary model dedicated to
segmenting the oocyte area. The initial column displays the ROI area of the ovarian follicle, the
middle column presents the ground truth masks, and the final column contains the areas segmented
by our proposed model. Notably, there were numerous instances, such as in the second example,
where the segmented area appeared flawed and evidently unrealistic, marked by discontinuities.

6.2 Embryo development

Mammalian cleavage has posed considerable challenges for scientific investigation. Mammalian
eggs are among the smallest in the animal kingdom, making them exceptionally challenging to
manipulate in experimental settings. For instance, the human zygote is a mere 100 µm in diame-
ter, barely discernible to the naked eye, and less than one-thousandth the size of a Xenopus egg.
Moreover, unlike sea urchin or frog zygotes, mammalian zygotes are not produced in large quan-
tities, making it arduous to acquire sufficient material for biochemical studies. Typically, a female
ovulates fewer than ten eggs at a time. Adding to the complexity, mammalian embryo develop-
ment occurs within another organism rather than in an external environment. Only in recent times
have we managed to replicate some of these internal conditions and observe mammalian embryo
development in vitro.

When it comes to endangered species, the challenges are further amplified, as obtaining available
data is intricate, and using it requires utmost sensitivity. In this section, we embark on an endeavor
to explore deep learning methods for transferring knowledge across early-stage embryos of dif-
ferent mammalian species, encompassing humans, mice, and certain endangered species. The
primary focus was the study of pronuclei formation, a crucial step before reaching the cleavage
stage. The attempted research question to be assessed is structured as follows:

• Q8: Can deep learning methods facilitate the transfer of knowledge about pronuclei forma-
tion across early-stage embryos of different mammalian species?
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Figure 6.6: This collection showcases a diverse array of mammalian embryos, with mouse, pig,
and leopard species, meticulously procured by our colleagues at the IZW in Berlin. Each sample in
this array represents a unique embodiment of embryonic development across different mammalian
species, highlighting the intricacies of biological diversity and their similarities as members of the
mammalian family.

6.2.1 Resources

The research dataset utilized in this study was meticulously gathered by the proficient team at the
Leibniz Institute for Zoo and Wildlife Research3 (IZW) in Berlin. This dataset encompasses an
extensive collection of early-stage embryonic development time-lapse videos from various mam-
malian species, predominantly featuring mouse embryos. A snapshot of some mammalian em-
bryos in an early stage can be found in Figure 6.6. A significant challenge presented by this
dataset is the scarcity of annotations and masks, of which we managed to acquire only a limited
quantity.

During the experimental phase, post-intracytoplasmic sperm injection (ICSI), the prospective zy-
gotes were placed into embryo culture dishes containing pre-equilibrated media overlaid with light
mineral oil. The experimentation involved different culture media, notably (1) the commercially
available EmbryoMax KSOM medium, enriched with amino acids, and (2) a Synthetic oviduct
fluid (mSOF) formulation based on the work of Tervit et al. [102]. Detailed methodologies and
conditions utilized for embryo procurement are documented in the corresponding publications
from IZW laboratory [194]. After in-vitro fertilization, the embryos underwent development in an
incubator (Geri4, EmbryoScope5), facilitating the acquisition of time-lapse data.

The core objective of this project was to evaluate three primary stages in mammalian embryonic
development: (i) pronuclei formation, (ii) progression to the cleavage stage, and (iii) quantifica-

3https://www.izw-berlin.de/en/home.html
4https://www.hamiltonthorne.com/product/geri-incubator/
5https://www.vitrolife.com/why-vitrolife/the-patient-ivf-journey/embryoscope-time-lapse-system/
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Figure 6.7: Featured in this set are early-stage mouse embryos (first column), each accompanied
by their respective masks that accurately highlight the formation of two pronuclei at this develop-
mental phase (second column).

tion of fragmentation rates. However, the study’s focus was narrowed to solely pronuclei formation
due to constraints in the available data. This shift in focus brought forth two additional challenges.
Initially, the dataset suffered from a severe dearth of annotated data (less than 10 samples, an ex-
ample available in Figure 6.7). Furthermore, a significant issue with the majority of mammalian
embryos, barring human and mouse specimens, is their opaque nature, rendering internal struc-
tures like pronuclei undetectable in embryos from species such as pigs or leopards, as it is also
visible in Figure 6.6.

6.2.2 Preliminary results

In an attempt to address these challenges, a deep learning model was developed to identify pronu-
clei in the available mouse embryos. Unfortunately, the model demonstrated unsatisfactory per-
formance, marred by significant overfitting. Consequently, the project was paused, pending future
continuation when field experts can provide adequate annotations. Despite the current halt, the
project remains a compelling challenge with the potential to revolutionize the automated assess-
ment of mammalian embryonic development. This holds especially true for endangered species,
where data availability is critically limited, presenting practical and conservation-oriented appli-
cations.
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6.3 Future directions

6.3.1 Deep learning application in Cumulus Oocyte Complexes

The research presented in Chapter 4 offers several promising avenues for future exploration:

• Expansion of research to Other COC characteristics: The application of deep learning to
study COCs can be expanded to include a more comprehensive analysis of oocyte char-
acteristics. This could involve examining the position of the oocyte and investigating the
transformations occurring within shorter time frames. Such an expansion would not only
enhance our understanding of oocyte biology but also contribute to the development of pre-
dictive models capable of identifying oocytes with the highest potential for developing into
healthy embryos.

• Adaptation to other mammalian oocytes and microscopic variabilities: The deep learning
models utilized in this research should be tested and adapted for applicability to other mam-
malian oocytes. This adaptation is crucial, as it was not covered in the current study. Addi-
tionally, these models should be versatile enough to accommodate variations in microscopy
equipment and settings, ensuring broader applicability and relevance across different re-
search and clinical environments.

• Correlation between embryo development stages and COC development: There is a poten-
tial link between the different stages of embryo development and the development of the
COC and oocyte. Initial indications in this research suggest that the expansion of the COC
plays a more crucial role in the stages following cleavage in embryo development, imply-
ing a shift in influence from the sperm to the COC at this stage. Future research should
focus on elucidating these relationships in greater detail, providing invaluable insights into
embryonic development processes.

• Commercialization potential: Given the considerable acceptance and interest this tool has
garnered, its commercial potential is worth exploring. Future work could involve assessing
the viability of introducing this deep learning tool into the market, especially considering its
applications in reproductive technology and research.

6.3.2 Deep learning in consensus segmentation

The proposed deep learning method for consensus segmentation, discussed in Chapter 5, also
presents exciting opportunities for further research:

• Application of expert annotation profiles in practical settings: Future research should ex-
plore the implementation of expert annotating profiles in laboratory and clinical settings.
This involves studying the effectiveness of applying these profiles to automatically enhance
the ground truth in segmentation tasks. Investigating the real-world application of these
enhanced profiles could revolutionize current practices in both research labs and clinical
environments.

88



• Potential for standardized commercial application: The feasibility of integrating this con-
sensus segmentation tool into standard clinical procedures is another promising area for
future research. There is a need to evaluate its efficiency and effectiveness in scenarios with
limited expert annotations. Such a study could pave the way for its standardized use in clin-
ical settings, potentially transforming the landscape of clinical diagnostics and treatment
planning.

6.3.3 Deep learning in tackling general problems in ART field

The opportunities coming with deep learning can tackle side problems appeared also in assisted
reproduction:

• The use of Generative Adversarial Networks (GANs) in assisted reproduction: GANs have
shown significant promise in various fields, including assisted reproduction [48, 92]. GANs
could revolutionize this area by generating synthetic but realistic images or data patterns.
This capability is particularly beneficial in scenarios where data is scarce or privacy con-
cerns limit data availability. In assisted reproduction, GANs could be used to generate
high-quality, realistic images of embryos or oocytes, aiding in the research and develop-
ment of reproductive technologies. By enhancing the quality and quantity of available data,
GANs can potentially improve predictive models and decision-making processes in assisted
reproduction, leading to better outcomes in fertility treatments. This becomes stronger, con-
sidering the limitations we faced in the projects presented previously in this chapter, but also
in some cases in Chapters 4 and 5.

• The use of Active Learning in assisted reproduction: Active learning, a subset of machine
learning, involves algorithms that selectively identify the most informative data points for
training. Budd et al. [27] has shown a massive use of active learning in medical image anal-
ysis in his survey presented some years ago. In assisted reproduction, active learning can
significantly enhance the efficiency and accuracy of machine learning models. By focusing
on the most informative and relevant data, these models can become more efficient in pre-
dicting outcomes such as embryo viability, optimal fertilization techniques, or success rates
of various reproductive procedures. This approach could lead to more personalized and ef-
fective treatments in assisted reproduction, improving success rates and patient outcomes.
One of the initial ideas was to dive into the active learning opportunities in ART, however,
due to other opportunities, we decided to leave that for future exploration.
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Chapter 7

Concluding Remarks

In this thesis, a comprehensive exploration of reproductive biology and medical imaging was
undertaken, leading to significant advancements in these fields.

Developing and integrating a deep learning pipeline for cumulus-oocyte complexes marked a key
achievement, offering precision in segmenting COC areas that rival or even surpass human exper-
tise. This allowed for a detailed investigation into COC expansion and its role in healthy embryo
development, including studying cell density around the oocyte. This tool exemplifies the effec-
tiveness of deep learning in biological research.

Furthermore, the thesis addressed the challenge of expert bias in medical image segmentation. A
novel consensus segmentation method was introduced, focusing on areas of disagreement among
experts, thus advancing toward more accurate and unbiased medical image interpretations. Finally,
this approach can create the experts’ annotating profiles with many more real-world applications.

In addition to the major contributions, the thesis also explored two other important cases. Firstly,
the ratio between the oocyte’s area and the follicle’s area was explored, providing insights into
how this ratio could affect the healthy development of the oocyte. Secondly, the thesis stud-
ied early-stage embryos of different mammalian species. This approach could potentially bridge
the knowledge gap and foster a more comprehensive understanding of endangered mammalian
species. These minor attempts further enrich the thesis, adding breadth to its scope and depth to
its scientific contributions.

Wrapping it up, in this thesis, we have tackled several complex questions in the realm of embry-
ology and deep learning. Here’s a summary of our findings:

• Q1: What is the optimal method for computing the area of COCs?
We established that the area method is optimal in terms of objectivity, time, and resources
(see Chapter 4).

• Q2: Can we develop a deep learning framework that achieves human-level performance
using the optimal method for calculating COCs’ area?
A UNet-based deep learning model was proposed and successfully implemented to segment
COC area with human-level performance (see Chapter 4).

• Q3: Is it feasible to identify the expansion of COCs from an immature to a mature stage
using the optimal method?
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We designed a deep learning framework to compute areas in both immature and mature
COCs, enabling us to identify COC expansion, which is vital for healthy oocyte and embryo
development (see Chapter 4).

• Q4: How does the optimal method for measuring COCs’ expansion impact healthy embryo
development in mammalian species?
Through the Mann-Whitney U test, it was demonstrated that COC expansion significantly
influences healthy embryo development in mammalian species (see Chapter 4).

• Q5: What influence does the density of COCs, as determined by the optimal method, have
on healthy embryo development in mammalian species?
Our research indicated that the density of COCs, estimated by the brightness of the seg-
mented areas, is another crucial factor in healthy embryo development (see Chapter 4).

• Q6: How can expert biases in medical image segmentation be effectively overcome?
We proposed a sophisticated method for computing the ground truth in medical image
masks, focusing on uncertain areas among experts, which is a step toward fully disentan-
gling biases in medical image annotations (see Chapter 5).

• Q7: How does the ratio between oocyte and follicle area affect the development of healthy
oocytes?
This project is ongoing, and conclusive results are yet to be presented (see Chapter 6).

• Q8: Can deep learning methods facilitate the transfer of knowledge about pronuclei forma-
tion across early-stage embryos of different mammalian species?
This project is ongoing, and conclusive results are yet to be presented (see Chapter 6).

Future research directions also include expanding deep learning applications to other mammalian
oocytes, exploring the commercial viability of these tools, and investigating active learning meth-
ods. Last, the potential of GANs in assisted reproduction is also highlighted, indicating new
possibilities in the field.

Overall, the thesis marks a convergence of technology and biology, where deep learning becomes
crucial in understanding embryo development and improving medical image analysis. The find-
ings and methodologies established provide a solid base for future research and practical applica-
tions in reproductive biology.
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