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Abstract
In the past decade, the research on autonomous vehicles (AVs) has made revolution-

ary progress. The advancements in Artificial Intelligence (AI), and especially machine

learning, allow self-driving cars to learn how to handle complex road situations based

on data from millions of accumulated driving hours, much more than any human driver

could ever reach. Autonomous driving brings us hope for safer, more convenient, more

efficient, and more environmentally friendly transportation. However, autonomous ve-

hicles on roads also introduce new challenges to traffic management. New theories for

a better understanding of the new era of transportation and new technologies for smart

roadside infrastructures and intelligent traffic control are crucial for the development

and deployment of autonomous vehicles as well as human communities.

This thesis aims to take on the challenges to address some of the key issues in traffic

control and management, including intersection protocol design, congestion measure-

ment, selfish routing and road infrastructure automation, under the assumption that all

vehicles on the road are connected and self-driving.

To design and test traffic control mechanisms for AVs, we introduced a formal model

to represent road networks and traffic. Based on this model, we developed a simulation

system on top of an existing open-source platform (AIM4) and used it to examine a

number of traffic management protocols specifically designed for traffic with fully au-

tonomous vehicles. Simulation outcomes show that traffic management protocols for

AVs can be more subtle, sensitive and variable with traffic volumes/flow rate, vehicle

safe distance and road configuration. In addition, by analyzing the real-world traffic data

and simulation data, we found that measuring congestion with exponential functions has

considerable advantages against the traditional BPR function in certain aspects.

The deployment of autonomous vehicles provides traffic management with an opportu-

nity of choosing either centralised control or decentralised control. The price of anarchy

(PoA) of autonomous decision-making for routing gives an applicable quantitative cri-

terion for selection between them. We extended the existing research on PoA with the
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class of exponential functions as cost functions. We found an expression for the tight up-

per bound of the PoA for selfish routing games with exponential cost functions. Unlike

existing studies, this upper bound depends on traffic demands, with which we can get a

more accurate estimation of the PoA. Furthermore, by comparing the upper-bounds of

PoA between the BPR function and the exponential function, we found that the expo-

nential functions yield a smaller upper bound than the BPR functions in relatively low

traffic flows.

To specify traffic management systems with autonomous roadside facilities, we propose

a hybrid model of traffic assignment. This model aims to describe traffic management

systems in which both vehicles and roadside controllers make autonomous decisions,

therefore, are autonomous agents. We formulated a non-linear optimization problem to

optimize traffic control from a macroscopic view of the road network. To avoid the com-

plex calculations required for non-linear optimization, we proposed an approximation

algorithm to calculate equilibrium routing and traffic control strategies. The simula-

tion results show that this algorithm eventually converges to a steady state. The traffic

control scheme in this steady state is an approximately optimal solution.
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Chapter 1

Introduction

This thesis aims to address a few key issues in traffic control and management, including

intersection protocol design, congestion measurement, selfish routing and road infras-

tructure automation, under the assumption that all vehicles on the road are connected

and self-driving. This chapter will show the general motivation for this research with

a brief review of the literature. It also contains a summary of the main methodologies,

major contributions as well as the overall structure of the thesis.

1.1 Motivation

Transportation is at the heart of our society. Better transportation solutions mean larger

potential markets, faster supply and demand matching, more specialization, higher pro-

ductivity, and more innovation. Automation promises to overcome one of the last obsta-

cles to the almost infinite growth of the transportation industry, namely human drivers.

Even if humans can be good drivers, they need breaks, make mistakes, and can be ex-

pensive. The basic concept of autonomous vehicles on the road refers to replacing part

or all of the human driving labor with electronic and mechanical devices [Shladover,

2018]. Autonomous driving has the potential to reduce car accidents, alleviate traffic

1
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congestion, and increase time and fuel efficiency [Shi and Prevedouros, 2016, Wei et al.,

2017].

The idea of driving automation was conceived as early as 1918, and General Motors

exhibited the first concept of self-driving vehicles in 1939 [Pendleton et al., 2017,

Shladover, 2018]. Since then, research and development (R& D) efforts have con-

tinued apace in academia and industry. The initial phase of R& D was initiated in the

1950s by General Motors and Sarnoff Laboratories of the Radio Corporation of America

from 1964 to 2003, under separate and joint initiatives of different government agen-

cies and academics. In 2004, the U.S. accelerated the research on self-driving vehicles

through the Department of Defense Advanced Research Projects Agency’s (DARPA)

Grand Challenges program. These challenges led to AVs capable of traversing desert

terrain in 2005 and 2007. The researchers also succeeded in putting AVs on urban roads

through DARPA’s Urban Challenge program. For example, auto parking is a common

function in a normal human-driven car. It can provide safety in parking and is easy

to use by pushing one button. Some governments give a great deal of support to it to

develop safe and reliable autonomous vehicles. For example, the German government

helps automobile manufacturers, such as Audi, Mercedes Benz, and BMW, test their

AVs in a real environment to improve the reliability of autonomous driving. Research

and development efforts have accelerated to make the concept of autonomous cars a re-

ality. Furthermore, the global automobile sector invests around $77 billion in research

& development to promote innovation and maintain competitiveness [Association et al.,

2015, Nieuwenhuijsen, 2015].

With the rapid development of sensors, computing and artificial intelligence technolo-

gies, autonomous driving research has become extremely active. An autonomous ve-

hicle system integrates many technologies, including computer vision, graphical pro-

cessing, navigation, sensor technologies, etc. Most significantly, the recent advance in

machine learning technologies enables a self-driving car to learn to drive in any complex

road situation with millions of accumulated driving hours, which are much higher than

any experienced human driver can reach. However, driving is not a purely technical job
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but involves complicated social activities, which could be hard to reproduce purely with

machine learning algorithms. For example, if two cars meet on a narrow road or a long

bridge through which only one car can go through, how do the cars decide which one

should reverse to give way to the other? Many such situations require direct interac-

tion between vehicles and infrastructure or between vehicles and authorities [Cui et al.,

2017, Gruel and Stanford, 2016]. Such demands push AV research in a different direc-

tion from machine learning concerning communication, negotiation, and cooperation

among autonomous vehicles. However, coordinating autonomous vehicles on the road

remains a daunting task for vehicles that usually travel at relatively high speeds. There-

fore, conducting in-depth research on the traffic management of autonomous vehicles is

necessary. In the future, fully autonomous driving will be considered the ultimate goal

of driver assistance systems.

When an autonomous vehicle appears on a real-world road, it must be capable of han-

dling various complex situations, such as lane keeping, vehicle following, lane chang-

ing, lane merging, avoiding collisions with dynamic or static objects, and interacting

with other related facilities and vehicles, following the same traffic rules. Developing

an autonomous vehicle with these functionalities requires highly intelligent algorithms

to support and integrate the latest hardware technologies in perception, localization,

decision-making, trajectory planning, communication, and control. On the other hand,

the emergence of self-driving vehicles poses a serious challenge to traffic management.

New theories for a better understanding of the new era of transportation and new tech-

nologies for smart roadside infrastructures and intelligent traffic control are crucial for

the development and deployment of autonomous vehicles as well as human communi-

ties. This thesis aims to address the following research questions:

1. How to formally represent road networks and traffic so that AVs can easily under-

stand and reason about them?

A self-driving vehicle needs to understand the road it travels. A formal model

of road networks and traffic is essential. Such a model should be able to specify
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the road configuration, connections, potential collision, right of road and traffic

situations.

2. How to design traffic control protocols to manage traffic with AVs?

The advent of self-driving cars has brought new challenges to traffic management.

Traditional traffic management is based on traffic signals or signs, such as traffic

lights, traffic circles, and the like. Although self-driving vehicles can continue

using existing traffic management approaches through vision or sensors, this is

inefficient. With V2V, V2I and V2X connections, the approaches to control and

manage AV traffic can be totally different. Many traffic management protocols

that are too ideal for human-driven vehicles, such as first-come first-serve, can

apply to autonomous vehicles. Furthermore, autonomous vehicles can negotiate

with each other or negotiate with roadside facilities for better traffic throughput

or travel efficiency.

3. How to model interaction between AVs as well as their interaction with roadside

infrastructures?

An autonomous vehicle is an intelligent agent, or named a mobile robot. Traffic

with fully autonomous vehicles is a system of multiple agents. AVs can not only

communicate each other but also can compete each other for use of roads or

roadside facilities, causing congestion, possible collisions, misuse or damage of

road facilities and so on. AVs can also cooperate for more efficient use of roads or

escaping from traffic hazards. Moreover, self-controlled road facilities can also be

part of the multi-agent systems of AVs, playing roles of global/local coordinators,

competitors/collaborators with other road facilities and so on.

4. How to optimise the efficiency of traffic control and management?

Autonomous vehicles can make decisions themselves to maximize their benefits

or minimize travel costs. However, such an individual optimisation normally can-

not achieve global optimisation. Notably, autonomous driving technology makes

it possible to achieve optimal social benefits through centralised control. The
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choice of centralised or decentralised control of traffic is not only a practical is-

sue but a profound theoretical research topic in game-theory, known as the price

of anarchy [Roughgarden and Tardos, 2002a].

This thesis will provide partial answers to the above fundamental research questions on

autonomous driving. Question 1 will be addressed in Chapter 2 and part of Charter 3.

Question 2 will be addressed in Chapters 3 and 6. Partial answers to Question 3 can be

found in Chapter 4 and 5. Chapter 6 is to provide a partial solution to Question 4.

1.2 Related Work

This section discusses the literature related to the following topics: Intelligent Traffic

Management Protocols, Road Network Modeling, and Traffic Assignment Problems.

1.2.1 Intelligent traffic management protocols

The management of intersections is crucial to effective road traffic networks. Some

studies focus on innovative intersection management techniques to replace signal time

allocation. Intersection management has been a research topic in various research insti-

tutes for a long time. Still, the rapid development of artificial intelligence and driver-

less cars has become an even more relevant topic, and many related papers have been

published in recent years. To handle AVs at isolated intersections, Dresner and Stone

[2004a] developed the reservation-based autonomous intersection management (AIM)

system. A CAV sends a request to the control centre when it reaches an intersection

and waits for a response. The FCFS principle and space-time resource allocation are

the sources of the AIM concept. AIM has since been expanded in several studies. AIM

with pure vehicle-to-vehicle communication and no control centre was proposed by

VanMiddlesworth et al. [2008] and used at a low-traffic intersection. Au and Stone

[2010] looked at the connection between the effectiveness of the AIM controller and
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the precision of vehicle movements. Micro-simulation tests were used to assess the

performance of AIM under challenging circumstances [Au et al., 2014, Fajardo et al.,

2011, Li et al., 2013]. Existing research unequivocally demonstrates that AIM is more

effective at an isolated intersection than signal time allocation (STA).

Currently, there are two main mechanisms for autonomous intersection management.

The first mechanism is implemented from central control, which is called centralized

intersection management. In this approach, all vehicles in the intersection area are un-

der the control of a central control unit. According to this policy, several methods have

been proposed recently. Autonomous intersection management based on auctions pro-

posed by Carlino et al. [2013] is a new approach implemented from a stop sign policy.

It introduced an auction mechanism to allow autonomous vehicles to be bid through.

Another interesting approach is based on a first-come-first-served protocol [Dresner

and Stone, 2004b], which allows autonomous vehicles that move in the same direction

to form a queue with fixed size and then pass through the intersection as a ‘platoon.

This is named platoon-based intersection management [Bashiri and Fleming, 2017].

The second mechanism is based on the autonomous multi-agent system (MAS). It lets

different agents negotiate with each other to decide who will be allowed to pass the

intersection [Dresner and Stone, 2008a, Lamouik et al., 2017]. In this scheme, one

can regard an Autonomous Vehicle as one kind of agent and the intersection control as

another kind of agent [Hausknecht et al., 2011]. Transportation networks can consist

of multiple Intersection Agents (IA), and different agreements can be reached between

AVs and IAs through negotiation protocols. Vehicle-to-Vehicle(V2V) is an automobile

technology designed to allow automobiles to ”talk” to each other. It lets vehicles nego-

tiate with each other to solve the traffic problem for themselves, such as Platoon-Based

Intersection Management [Bashiri and Fleming, 2017] and Auction-Based Intersection

Management [Carlino et al., 2013], Synchronization-Based Intersection Control [Tlig

et al., 2014], and Smart Multi-Agent Traffic Coordinator for Autonomous Vehicles at

Intersections [Lamouik et al., 2017]. In addition, Vehicle to Infrastructure (V2I) is a

communication model that allows vehicles to share information with the components
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that support a country’s highway system. Many centralized mechanisms have been

published to solve the traffic management of autonomous vehicles based on V2I com-

munication [Chan, 2017, Dresner and Stone, 2004b, Kaths et al., 2015, Xu et al., 2017].

1.2.2 Road network modeling and traffic assignment problem

Road networks are made up of numerous interconnected roads. Many methods have

been proposed to represent road networks. Graph theory is the most widely used in

road network modeling [Jiang and Claramunt, 2004, Mackaness, 1995, Mackaness and

Beard, 1993, Thomson and Richardson, 1995, Zhang, 2005]. Several ideas and criteria

are taken from graph theory to facilitate the structural study of road networks and route

selection. These include connectedness, lowest-cost spanning tree, and shortest-path

spanning tree [Zhang, 2004].

Traffic assignment introduced by Wardrop [1952a] in 1952 describes how traffic de-

mand is assigned to different routes when given the topology of the road network. It is

one of the most important research topics in transportation. The congestion game, in-

troduced by Rosenthal [1973], is a common-use model to formulate traffic assignment

problems. The traffic assignment problem [Dafermos and Sparrow, 1969] is an impor-

tant research topic in transportation. In a road network, different numbers of vehicles

pass between different origins and destinations. However, the different choices of vehi-

cle routes can cause different congestion on different roads. Therefore, rational planning

of vehicle choice is another important direction to improve traffic efficiency [Golden

et al., 2008].

The traffic assignment problem is usually defined formally using the congestion game

model [Gibbons et al., 1992], in which the cost of each player is determined by the

resources it selects and the number of other players who also select that resource. Each

road in the road network has an independent cost function that outputs the travel time

of this road using the number of vehicles travelling on that road as input. In such a

transportation system, the travel time of a vehicle depends on the chosen roads and the
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number of vehicles selected on the same roads [Wang et al., 2015]. First, [Rosen-

thal, 1973] proposed the task allocation problem, which later becomes a congestion

game like the original traffic assignment problem. [Roughgarden and Tardos, 2002b]

uses non-cooperative games to explore the game theoretical properties of traffic assign-

ment problems by considering vehicles as autonomous self-interested agents. Sandholm

[2010] further simplifies this idea by focusing on population games and using potential

functions to find equilibrium solutions.

Furthermore, some studies use the existing model to solve the traffic assignment prob-

lem in road networks. The method of successive averages (MSA) is the algorithm most

widely used to find the solution to traffic assignment [Mounce and Carey, 2015]. Liu

et al. [2009] proposed a method of successive weighted averages (MSWA) to obtain

results faster than the original MSA. There are also some common algorithms, such as

origin-based algorithms [Bar-Gera, 2002], path-based algorithms [Jayakrishnan et al.,

1994] and the Frank-Wolfe algorithm [Fukushima, 1984]. Autonomous vehicles in our

model are assumed to make self-interested decisions, like human drivers, who only con-

sider their own interests, such as how to reach their destination in the shortest possible

time. The purpose of the road network model is to allow autonomous vehicles to rea-

son about the network structure and traffic management protocols, which helps them to

make decisions. The main motivation for our emphasis on autonomous driving is the

basis that vehicles have more powerful means of communication than humans to access

more information about the road, helping them make more informed decisions.

1.2.3 Latency/cost functions

In traffic assignment, the cost of individual vehicle or vehicles in a road segment or

the whole road network is mainly measured by the volume of delay of their travel. A

latency function (or called delay function) is a function maps traffic flow to volume of

delay.



Chapter 1. Introduction 9

Many different latency functions have been proposed and used in practice. All these

cost functions follow the basic principles of traffic flow theory, which state that speed

decreases as the traffic flow or saturation rate increases. The saturation rate of a road

is calculated as the relationship between traffic flow and capacity, where the capacity is

unknown and is a problem of estimation in transportation research [Chen et al., 1999,

Dheenadayalu et al., 2004, Morlok and Chang, 2004]. Among the well-developed cost

functions, the Bureau of Public Roads (BPR) function is the most commonly used one.

In addition to the functions above in literature, there are several other functions, such as

the Vatzek function [Jastrzebski, 2000], the conical function [Spiess, 1990] and Mosher

functions [Mosher Jr, 1963].

1.2.4 Price of anarchy

There is a lot of research on the Price of Anarchy (PoA) from a game-theoretical point

of view [Aland et al., 2011, Christodoulou and Koutsoupias, 2005, Feldman et al.,

2016]. The PoA in traffic assignment was first investigated by Roughgarden and Tardos

[2002b] and shows that, with linear cost functions, the tight upper bound of the PoA is

precisely equal to 4
3
. Furthermore, Roughgarden [2003] provides tight upper bounds of

the PoA for several common cost functions, shown in Table 1.1. These results reveal

only the maximum value the PoA could reach, often significantly higher than the actual

value achieved. In previous studies, the main results of the upper bound of the PoA

depended on the characteristics of the cost function, such as the highest-power term of

all cost functions on the road network, rather than considering the impact of changes in

traffic demand on it in a realistic sense [O’Hare et al., 2016a]. But some studies did try

to find an expression for the PoA in terms of traffic demand. As an example, an expres-

sion to describe the relationship between traffic demand and PoA in the road network is

presented in [Cominetti et al., 2021], and O’Hare et al. [2016b] proposed a mechanism

to explain the relationship between the PoA and traffic demand. In addition, there is
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Description Representative Price of Anarchy
Linear ax+ b 4

3
≈ 1.333

Quadratic ax2 + bx+ c 3
√
3

3
√
3−2

≈ 1.626

Cubic ax3 + bx2 + cx+ d 4 4√4

4 4√4−3
≈ 1.896

Polynomial
p∑

i=0

aix
i (1− p(p+ 1)−

p+1
p )−1

M/M/1 delay functions (u− x)−1 1
2
(1 +

√
umin

umin−Rmax
)

Exponential aebx + c 2b̂r̂

log(b̂r̂+1)

TABLE 1.1: The Upper Bound of PoA for Common Cost Functions (the last row (see
Theorem 5.25) represents our contribution in this thesis).

some data-driven approach to estimate PoA in a given road network [Zhang et al., 2016,

2018].

1.3 Methodologies

This section presents some basic and major methods used in this thesis.

1.3.1 Game theory and multi-agent system

The coordination of systems made up of several agents is the focus of the artificial

intelligence study field known as multi-agent systems. An agent is a discrete entity

that can act independently to achieve its objectives. These objectives may be expressed

as logical statements that must be true, or they may be expressed as a utility function

that converts each conceivable condition of any action into a real value. A multi-agent

system (MAS) is a collection of agents for each of which the achievement of its goals

depends on the actions of the other agents in the MAS.

The fact that the results of one agent’s actions may also depend on those of other agents

is a crucial component of multi-agent systems. Since there would not be a multi-agent

system without this, only a collection of separate individual agents would exist if this

were not the case. Agents must therefore take into account the actions other agents have
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taken or will take when deciding what to do. Any situation, including a group of self-

interested agents and a strategic decision-making process, can be conceived as a game

in which individual and collective decisions affect the result.

Such decision-making issues are described by the mathematical theory known as game

theory. Although the game theory may appear to be about playing games at first glance,

it relates to a considerably wider variety of circumstances. It is relevant to any decision

problem in a selfish, multi-agent system and to any circumstances where one person’s

decision depends on the decisions of others and has various aims. Game theory forecasts

rational agent behavior and outlines the necessary course of action. For instance, when

you join an auction for a product, the winner is decided by your bidding strategy and

your rival’s strategy. In game theory, an individual cost function for the agent, often a

player, is typically considered, that is, used to give each potential outcome of the game a

cost. When cost minimization is the objective, each agent makes a decision. However, if

the participants do not work together, a circumstance may eventually develop in which

everyone loses.

In this thesis, we assume that the self-driving car is a selfish autonomous agent and that

the vehicle’s behavior can be expressed as a cost function. The major methodology in

this thesis is to treat each autonomous vehicle and smart roadside infrastructure as an

intelligent agent or a robot so that the whole transport system becomes a multi-agent

(multi-robot) system. Based on this framework, we investigated several game-theoretic

properties, such as Nash equilibrium, global optimization of vehicle decisions, and the

road network’s price of anarchy (PoA).

1.3.2 Simulation environment

Our study assumes that vehicles are fully automated and have independent decision-

making capabilities, but current technology does not satisfy this assumption. Therefore,

it is necessary to simulate the autonomous driving environment. Second, self-driving

vehicles need simulators to help develop them, rather than driving them directly on real
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roads, which is a considerable safety risk. Since, in this thesis, traffic assignment and

traffic management optimisation are considered for autonomous driving, the simulator

is an essential part.

Automated driving simulators are divided into a variety of uses. Some simulators focus

on single-vehicle decision-making, using visual analysis or sensor perception of the sur-

rounding environment to provide consideration for vehicle decisions. Some simulators

focus on machine learning applications, where vehicles are trained from existing data.

Others focus on macro-traffic management, which is used in this thesis. The simulator

is used as a simulation environment from a single intersection to a network of multiple

intersections to verify the effectiveness of our proposed algorithms and traffic manage-

ment protocols and to compare the efficiency with existing management protocols.

First, we use Gazebo, an open-source 3D robotics simulator built in the robot oper-

ating system (ROS), to create a virtual environment for autonomous driving. In this

simulator, we simulated the traffic control protocols of a single intersection. We tested

different traffic management protocols for their efficiency with AVs (programmed in

Python). However, experiments based on robot simulation can only deal with a minor

traffic volume. For a more complicated road network with a large traffic volume, we

proposed a formal definition of traffic management protocols for intelligent vehicles

based on our spatial model of the road network. We developed a standalone simulation

system, AIM4+, based on the autonomous intersection management (AIM) simulation

of the University of Texas. The system is written in Java. In addition, we have also

implemented it into a generic simulator to test the game-theoretic properties of a trans-

port system. Based on the generic simulation system, we can test various properties of

intelligent traffic management systems and autonomous vehicles from macro- to micro-

perspectives of transport networks. In addition to the two simulators mentioned above,

we used the most commonly used commercial simulator, AIMSUN. We tested traffic as-

signment algorithms and traffic management optimization problems and obtained good

results.
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1.3.3 Data analysis

With the development of science and technology, the improvement of intelligent road

network technology, and the increasing number of car owners, the traffic pressure on the

road network increases daily. Data analysis can effectively deal with a large amount of

collected traffic information, which can alleviate traffic pressure on the road network to

a greater extent. Traffic data is usually very complicated, and the information channels

are diverse, so mining the potential value of traffic data can make traffic data processing

efficient and further realize intelligent traffic management of road networks. The traffic

data set includes a range of traffic flow conditions and different types of roads (such as

ramps, straights, bends, and intersections) (low, moderate, congested, etc.). These data

are ideal for studies of traffic flow (speed and density), simulation of microscopic traffic

models, and the creation and evaluation of autonomous driving prediction and planning

algorithms.

The data used in the data analysis in this thesis relate to a real Australian traffic database,

as well as several different automated driving simulators. We are adopting real-world

traffic data from selected Australian roads into our implemented simulator. The simula-

tor produces data for autonomous driving traffic management to validate our proposed

model, traffic management protocols, and theoretical results. Additionally, we discov-

ered a new latency function by analysing real-time traffic data in Sydney and Melbourne

acquired from Intelematics. The function differs from the traditional latency function,

which combines an exponential and linear increase in latency with traffic flow.

1.4 Major Contributions

The major contributions of this thesis are the following:
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• Introduced a formal model to specify road networks and traffic for autonomous

vehicles to understand and reason about road and traffic situations. The model

describes roads and traffic from three different perspectives:

– Micro-level representation of road networks: Describe the connection be-

tween intersections and roads, specify connections between the road lanes

of an intersection and possible collisions in an intersection. This allows

autonomous vehicles to reason about road situations.

– Macro-level representation of road networks: Describe regional roadworks

and their relationships. This allows autonomous vehicles to plan their travel

routing to minimise traffic latency.

– Dynamic of traffic: Describe vehicles moving on the road with variation

in time. This allows autonomous vehicles to reason about the dynamic of

traffic for collision avoidance and efficiency of travel.

• Designed and tested a number of traffic management protocols for autonomous

vehicles based on the spatiotemporal representation of traffic. These management

protocols describe how vehicles cross intersections from the micro-level perspec-

tive of a road network. We extended the AIM4 system with generic priority-based

control protocols and independent control of multiple intersections. We tested a

variety of settings for each protocol and related algorithms and compared their

efficiency.

• Investigated an exponential cost function in the traffic assignment problem with

real-world data support. The results of the data analysis show that the exponential

cost function fits the real-world data better than the commonly used BPR cost

function for the heavy volume of traffic situations. The exponential cost function

can not only be used for the micro-level representation of road networks but also

suitable for the macroscopic road network. The research discovery has potential

applications to regional transport planning and macroscopic traffic control, as well

as the analysis of the price of anarchy.



Chapter 1. Introduction 15

• Found an expression of the tight upper-bound of the price of anarchy for the class

of self-routing games with exponential cost functions. We compared this expres-

sion and the corresponding expressions for routing games with the most com-

monly used cost function, the BPR latency function. This comparison demon-

strates that the tight upper bound of the PoA of games with exponential functions

is lower than the corresponding value with the BPR function as long as the traffic

volume is less than the capacity of the road. The exponential function can ob-

tain a considerably lower upper bound, illustrated by utilizing real-world traffic

data and mimicking road latency as closely as a BPR function with even tighter

exponential parameters.

• Proposed a multi-agent system based hybrid model for traffic control optimisa-

tion with roadside facilities as part of the multi-agent system of AVs. This model

combines two levels of optimisation - equilibrium reached via individual optimi-

sation and global optimisation of traffic control. We designed an algorithm to

approximate the solution of such a nonlinear optimization problem. This algo-

rithm significantly reduces the total delay in the road network, as demonstrated

by the results of our experiments with the AIMSUN simulation software.

1.5 Outline of Chapters

Chapter 2 introduces the formal representation of road networks based on different

levels of abstraction, which can be used for autonomous vehicles reasoning about the

structure of the road. We first introduce a generic road network model used to abstract

roads’ connection between positions, called the macro-level model. We then extended

the macro-road network model with more detailed information about roads, called the

meso-level road network model. It can describe the connection between intersections

and internal relations of a single intersection. Finally, we propose a microscopic road

network model to describe more specific traffic information. This model is based on

discrete time to describe vehicles that travel on the road network.
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Chapter 3 investigates various autonomous driving traffic management protocols and

will build on the aforementioned paradigm. We provide foundation knowledge on pro-

tocols for intelligent traffic management and an autonomous vehicle simulator. Second,

we present several priority-based traffic management solutions for autonomous vehicles

in a meso-level road network model. The suggested methods are also tested using the

general simulator AIM4+. Then, we examine time- and priority-based traffic manage-

ment methods. Finally, we use a general robot operating system simulator that treats

autonomous vehicles as robots to collect data and analyze associated algorithms.

Chapter 4 proposes a cost function in the form of an exponential function in the traf-

fic assignment problem. First, we introduce the formal model of traffic assignment

problems with an exponential cost function. We then validate the exponential function

using real-world traffic data from three specific local government areas of New South

Wales, Australia, with heavy traffic volumes selected for data fitting. We have used

this data to compare the exponential function with several other, more commonly used

cost functions. Detailed results of the data analysis show that the exponential cost func-

tion outperforms the BPR and Akcelik functions to describe the relationship between

regional traffic flow and travel cost.

Chapter 5 focuses on traffic assignment in road networks with exponential cost func-

tions by applying the model introduced in Chapter 2 and the cost function proposed in

Chapter 4. We model a traffic network as a routing game in which vehicles are selfish

agents who choose routes to travel autonomously to minimize the travel delay caused

by road congestion. We concentrate on routing games where the latency of road traffic

may be characterized by an exponential function, in contrast to previous research where

the latency function of traffic congestion was based on BPR or queuing theory. We first

calculate a tight upper bound for the price of anarchy for this class of games and then

compare this result with the tight upper bound of the PoA for routing games with the

BPR latency function. The comparison shows that as long as the traffic volume is less

than the road capacity, the tight upper bound of the PoA of the games with exponential

functions is less than the corresponding value with the BPR function.
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Chapter 6 proposes a multi-agent based method to describe traffic control optimization

for autonomous vehicle assignment problems on road networks. We first present a for-

mal model for abstract road networks. We then extend the road network model into

a game-theoretical model based on population games to describe the behavior of au-

tonomous vehicles under intelligent traffic control. Based on this model, we investigate

a traffic control optimization problem that aims to improve the efficiency of road net-

works and provides an algorithm to find an approximate solution. Lastly, our algorithm

significantly reduces the total delay of the road network, as demonstrated by the results

of our experiments with the Aimsun simulation software.

Chapter 7 summarizes this thesis and discusses some directions for future work.



Chapter 2

Road Network Modeling

This chapter addresses the formal representation of road networks based on different

levels of abstraction. These road network models allow autonomous vehicles to reason

about the network topology, helping them make decisions and enabling self-driving cars

to understand how roads are connected according to the formal requirements of differ-

ent scenarios. First, we briefly overview the background and motivation to introduce

road network modelling for autonomous vehicles in section 2.1. Second, we introduce

a Macro-level road network model in Section 2.2 that aims to allow vehicles to think

about the connection of the road in a large area. We then extend the Macro-level road

network framework to more detailed road connections with intersections and road lanes,

which we called Meso-level road networks, in Section 2.3. These models can allow ve-

hicles to understand more specific road information and traffic management protocols,

which will be discussed in Chapter 3, to make better decisions. Finally, in Section 2.4

we introduce a discrete-time microscopic road network model to describe changes in

vehicle location information over time.

18
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2.1 Graph Theory

Graph theory studies a mathematical model consisting of vertices and edges. Many

connections between information in the world can be represented using this abstract

mathematical way of graphs. There are two critical components for a mathematical

model like a graph: (1) Vertex and (2) Edge, where edges connect vertices and vertices,

and vertices and edges form a graph. In the field of transportation, many aspects can be

expressed using graphs; e.g., each vertex can be a city, each edge can be a road between

cities to extend it further, each vertex can be a terminal, each edge can be a correspond-

ing route; each vertex can be a port, each edge can be a corresponding shipping line,

or more microscopically, each vertex can be a building in a city. Each edge can be

the street between buildings. However, many more abstract data relationships can be

represented in a graph.

This thesis uses graph theory as the basic model to express road networks at different

levels of abstraction. We have introduced a spatial model of a road network based on

graph theory to represent the topological relationship of the road, which contains the

connection of road lanes and intersections, the internal connections of an intersection,

and traffic management protocols.

Here, we propose the road graph in different abstraction levels, a specific way to model

roads and traffic that includes fully autonomous vehicles, as the basis of our research.

This road graph model describes various elements related to traffic, such as traffic flow,

traffic control protocols, vehicle information, and vehicle management processes. It

should be mentioned that at this point, our work in this chapter is only theoretical re-

search. Its purpose is to develop an abstract model that allows self-driving vehicles to

understand roads and traffic, paving the way for more advanced vehicle negotiation or

intelligent traffic management.
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2.2 Macro-level Road Network Modeling

In this section, we introduce a general model to describe road networks. Graph theory

can provide a formal representation of positions and roads and has found a significant

application in the analysis of road networks where there is an intuitive and obvious

relationship between links and nodes in a road network [Karimi, 2012, Porta et al.,

2006].

Formally, a directed graph is defined as follows:

Definition 2.1. A directed graph G is a tuple (N,E), where

• N is a finite set of nodes.

• E ⊆ N ×N is a set of directed edges.

To specify complicated road networks, we divide a road network into several positions

and roads. We use a directed graph to represent a road network. Formally, A macro-

level road network is a directed graph G = (N,E), where N is a finite and non-

empty set of positions and E ⊆ N × N can be interpreted as a set of roads. A road

(n, n′) ∈ E refers to a connection and travel direction from position n to position

n′. The position and road of the road network are generalized concepts that depend

on the level of abstraction. At the national level, it is possible to express land-road

connections between different states. In terms of a state, it is possible to express roads

between different cities. And in terms of a city, it can be a road connection between

administrative areas. If two positions do not have a road link between them, then no

vehicle can travel directly between these two positions. Parallel roads between two

positions are allowed in the road network.

Example 2.1. Fig. 2.1 is an example of a country-size road network that uses an

Australian map, which includes eight states: Western Australia (WA), Northern Terri-

tory (NT), South Australia (SA), Queensland (QLD), New South Wales (NSW), Victoria
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FIGURE 2.1: Example of Macro road network

(VIC), and Tasmania (TAS). The map of Australia is shown on the left side of Fig. 2.1,

and the directed graph on the right side represents the road connections between differ-

ent states in Australia. We formalized each state as a node of the graph, and directed

edges represent the roads between the two states. Intuitively, WA is directly bordered by

NT and SA so that vehicles can travel between these two states along land-based road

connections. However, WA and QLD do not directly border each other, so vehicles must

travel via NT to travel between them. TAS is a separate island, so no roads connect it

to the mainland. It is important to note that the ACT is the Australian Capital Territory

and is included in the NSW region, so ACT vehicles must pass NSW before they can go

to VIC, SA or QLD.

The macro-level road network model is the most general model, and the graphical model

of the road network can be easily changed depending on the usage requirements. For

example, if an edge’s length needs to be modelled, a directed graph with labels can be

used.
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2.3 Meso-level Road Network Modeling

The road network model discussed in the previous section is very macroscopic. In terms

of large regions, it can describe the links between different states in a country, while in

terms of cities, it can describe the links between different suburbs. However, this model

has significant shortcomings when the road network coverage is more fine-grained to

describe individual intersections. We summarize these shortcomings as follows.

• Macro-level road networks cannot describe the conflict of vehicles at intersec-

tions, as we will see in section 2.3.3.

• Macro-level road network models cannot describe traffic management protocols,

as seen in section 3.2.

• When considering traffic management optimization, the macroscopic road net-

work model cannot be used to account for changes in the calculation of waiting

time at intersections caused by the change in the traffic management protocol, as

we will see in chapter 6.

Since the macro-model has the shortcomings mentioned above, we propose a meso-level

road network model in this section to compensate for the shortcomings as mentioned

above of the macro-level model. In this section, we present a formal model to describe

road networks for autonomous vehicles capable of reasoning about the connection be-

tween intersections and roads. At first, we present a graph representation model for

abstract road networks that contain intersections and roads. Then, we introduce internal

relations for each intersection that specify internal connections and conflicts.

2.3.1 Road networks

As with the macro-level road network model, we still use graph theory as the core theory

of the model. Unlike the macro-level road network model, the nodes represent intersec-

tions, while the edges represent roads between intersections, called the meso-level road
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network. Since roads in the same direction may contain different lanes, we use a di-

rected graph with labels to ensure the uniqueness of the lanes. A labelled directed graph

is a generic type of graph and is defined as follows:

Definition 2.2. A labeled directed graph is a tuple (N,L), where

• N is a set of nodes.

• L ⊆ N ×N × N is a set of labeled edges.

With the help of Def. 2.2, we can interpret a meso-level road network as a tuple G =

(N,L), where

• Each node n ∈ N represents an intersection.

• Each labelled edge (n, n′, x) ∈ L represents a lane of a road between n and n′,

where x is an identifier to distinguish between the various lanes of that road.

• Each set of labelled edges with the same n and n′ represents a road between the

intersections n and n′.

It is worth noting that the intersections we are referring to are not intersections in the

real sense. Instead, a common area created by the intersection of at least two roads

can be called an intersection. For example, a parking lot exit intersecting a city road

could be called an intersection, or a private residence intersecting a road could be called

an intersection. Intuitively, an intersection links roads, and a road can be divided into

several lanes. For example, an arc (n, n′) ∈ A represents a road on which vehicles can

travel from n to n′. (n, n′, 1) and (n, n′, 2) are two lanes of the road1. More specifically,

the labels guarantee the uniqueness of each lane. Furthermore, for each intersection

n ∈ N , let Lin
n = {(n′, n, i) ∈ L : n′ ∈ N & i ∈ N} be the set of all incoming lanes,

and let Lout
n = {(n, n′, i) ∈ L : n′ ∈ N & i ∈ N} be the set of all outgoing lanes.

1Instead of denoting a lane as ((n, n′), 1), we simply write (n, n′, 1).
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FIGURE 2.2: Example of Meso Road Network

Example 2.2. The graph in Fig. 2.2 is an example of a road network. There are twelve

intersections, and the arcs indicate the travel directions between the intersections. Re-

garding the graph’s structure, we can claim that intersections n1 and n4 are T-junctions,

and intersections n2, n3, n12 are traditional four-way intersections in the real world.

Fig. 2.3 illustrates the labelled lanes for the intersection n3. We use natural numbers as

the labels for lanes. For example, road a1 only has one lane l1 = (n10, n3, 1), however,

road a3 has two lanes l2 = (n3, n2, 1) and l3 = (n3, n2, 2), respectively.

It is obvious that the road network model is more detailed than the macroscopic model

and can not only describe the relationship between intersections but also be specific to

the number of lanes in different directions of the intersection. For example, the inter-

section in Fig. 2.3 is asymmetric, with the larger north-south road having two adjacent

lanes on the road and the narrower east-west road having only one lane on the road.
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FIGURE 2.3: Example of Labeled Lanes and Connections

2.3.2 Connection relations

The road network model in Def. 2.2 does not represent the connection and conflict re-

lationships between the lanes of the road at an intersection. For example, a vehicle

approaching an intersection may wish to proceed straight, turn left, turn right, or make

a U-turn, but the vehicle may not be allowed to travel in each of these directions. There-

fore, we need to specify the connections between the road lanes at each intersection.

Formally, we define the connection relation as follows:

Definition 2.3. Given a meso-level road network G = (N,L), a connection relation

Cn ⊆ Lin
n × Lout

n of the intersection is a binary relation between the sets of incoming

and outgoing lanes for each intersection n ∈ N .

The connection relation of an intersection specifies which outgoing lane can be reached

from which incoming lane. Each (l, l′) ∈ Cn is called a connection between the in-

coming lane l and the outgoing lane l′. It is worth mentioning that each incoming or

outgoing lane of an intersection should be contained in at least one connection.
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Example 2.3. We use Fig. 2.2 and 2.3 as an example to explain the connection relations.

The connection relation Cn3 = {c1, · · · , c12} in Fig. 2.3 is predefined according to

the traffic signals, shown as white arrows, in each direction, but, of course, when the

arrows are different, the connection relation must be changed accordingly. Intuitively,

the connection c1 = (l1, l2) ∈ Cn3 means that the vehicles in l1 are able to turn left

at node n3 towards l2. However, we assume that the vehicle in l1 cannot turn left to

l3, therefore, we have (l1, l3) ̸∈ Cn3 . We also suppose that a U-turn is not allowed at

intersection n3, so (l1, l12) is not a connection in this case. Similarly, the connection

c12 = (l11, l12) ∈ Cn3 shows that vehicles in l11 can turn left to l12. However, vehicles

in l11 cannot go straight to l2 by the predefined traffic sign, so that (l11, l2) ̸∈ Cn3 .

It is worth mentioning that the above example only explains the connection relation de-

fined in the diagram. Still, the same intersection can have several different connections

depending on traffic scenarios. For example, if we change the predefined traffic sign in

l11 that allowed vehicles able to go straight toward l2, then (l11, l2) ∈ Cn3 .

2.3.3 Conflict relations

Furthermore, since these road connections at the same intersection can cross, vehicles

crossing the intersection can collide if there is no traffic management protocol to avoid

the collision. For example, if a vehicle travels from south to north while another travels

from east to west, it may collide at that intersection. To specify such potential collisions

between connections, we introduce a ‘conflict relation’ on top of the connection relation

for each intersection. Formally, we define the conflict relation as follows:

Definition 2.4. Given a meso-level road network G = (N,L), a conflict relation

Zn ⊆ Cn × Cn is a symmetric binary relation over the set of connections Cn for any

intersection n ∈ N . Here, symmetric means that (c, c′) ∈ Zn if and only if (c′, c) ∈ Zn

for all c, c′ ∈ Cn;



Chapter 2. Road Network Models 27

FIGURE 2.4: Example of Conflict Relation

For an intersection n, the conflict relation can be understood as an undirected graph

whose nodes are connections in the connection relation Cn. The undirected edges of

this graph represent the potential collision of vehicles travelling along two connections

at the intersection. Note that we assume that vehicles departing from the same lane will

not collide with each other.

Example 2.4. Fig. 2.4 shows an example of a conflict relation Zn3 of intersection n3 in

Fig.2.2 using the connection relation Cn3 shown in Fig. 2.3. The connection c2 is related

to the connection c4 in the conflict relation Zn3 means that vehicles on l1 that go straight

might collide with vehicles on l4 that go straight. Similarly, all other connections related

to the connection c2 can be explained in Fig. 2.3. Furthermore, (c1, c8) ̸∈ Zn3 can be

interrupted since vehicles on l1 turn left to l2 have no chance of colliding with vehicles

on l7 turn left to l8.

Note that an intersection’s collision relation only declares potential collisions between

vehicles travelling in different connections, not actual collisions. The meso-level road

network and intersection relations allow us to represent complex road networks in the

real world.
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2.4 Micro-level Road Network Modeling

The above two road network models describe the composition of the road network from

a macroscopic point of view. Still, they cannot precisely describe changes in the driving

status of vehicles on the road network as a function of time. Therefore, this section

proposes a discrete-time-based microscopic road network model to describe the change

in vehicle position with the time change. We introduce a formal method to represent

roads, traffic flows, and traffic control protocols to allow autonomous vehicles to reason

about complicated traffic situations. As a generic assumption of this work and a way of

abstraction, time occurs at distinct, separate ”points in time” throughout each non-zero

region of time (”time period”), represented by natural numbers T = {1, 2, 3, · · · }.

2.4.1 Micro-level road networks

To specify any complicated road, we divide a road into several blocks or road segments.

Each block of a road allows one car to travel at each time2, represented as a vertex

in a graph. The directed edges in a graph represent connections and travel directions

between blocks of road. If two vertices have no edge to link them, no vehicle can travel

directly between these two blocks.

Additionally, we assume that each road contains several entrances and several exits. For

each entry, the vertex representing it must have at least one outgoing edge, and for each

exit, the corresponding vertex must have at least one incoming edge. Formally, we have

the following definition.

Definition 2.5. A micro-level road network G is a tuple (B, E , Bn, Bx), where:

• B is a finite and non-empty set of blocks;

• E ⊆ B × B is a set of arcs. An arc (b, b′) ∈ E refers to a connection and travel

direction from block b to block b′;
2We will use the discrete-time to represent traffic flows; thus, a time point represents a period.
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• Bn ⊆ B is a set of blocks to represent the road entries;

• Bx ⊆ B is a set of blocks to represent the road exits.

FIGURE 2.5: Example of a two-way road network

Example 2.5. Fig. 2.5 shows a simple road network that represents a typical two-way

road. The vertices b1, · · · , b20 represent the segments of the road, while the arcs indicate

the traffic flows that are allowed from segment to segment. For example, b1, b2, b3, b4, b5

are the blocks of the left-most lane. The arc from b2 to b8 means that a vehicle in block

b2 can change lane to block b8, while the absence of an arc from b2 to b7 means that it

is not possible to change to block b7. The blocks b1, b6, b11, and b16 are entrances to the

road, and the blocks b5, b10, b15 and b20 are exits from the road.

As an abstraction of roads, a road graph can represent more complicated road situations

and configurations, such as multi-way junctions, roundabouts, no-through roads, and U-

turns. The following example shows a representation of a typical four-way intersection.

Example 2.6. Fig. 2.6 shows an example of a four-way intersection road network that

will be used as a running example of the paper. Each direction has one lane. The
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FIGURE 2.6: Example of a four-way intersection

road graph indicates that a vehicle turning right cannot travel diagonally inside the

intersection. For example, a vehicle turning b2 to b19 must travel through b3, b4 and b10

rather than a sharp turn from b3 to b10. This is by no means a restriction of road graph

representation but reflects an actual road setting.

Given a road graph, a route along multiple blocks of a road can be easily defined in terms

of standard graph theory terminology. Formally, we have the following definition:

Definition 2.6. Given a micro-level road network (B, E , Bn, Bx), a path ρ is a sequence

b0
e1→ b1

e2→ b2 · · ·
em→ bm, where

• bi ∈ B for all 0 ≤ i ≤ m
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• ei = (bi−1, bi) ∈ E for all 0 < i ≤ m

• bi ̸= bj for any i ̸= j

ρ is called a complete path if b0 ∈ Bn and bm ∈ Bx. We use ρ̂ to denote the start block

of the path and ρ̌ the end block of the path, that is, ρ̂ = b0 and ρ̌ = bm.

These conditions express that a complete path is a simple path that links an entry to an

exit on the road network. In Fig. 2.6, an example of a complete path is b1
e1→ b2

e2→ b3
e12→

b14
e11→ b13.

2.4.2 Vehicles and traffic settings

Vehicles are road users. We assume that all vehicles are fully autonomous, which means

that the decision-making of each vehicle is not centralized but is done by the vehicle it-

self, whether they are driven by humans or computers. We also assume that each vehicle

has a designated path, specifying its entry block, exit block, and intended travel path.

In the context of automated negotiation between autonomous vehicles, these pieces of

information are the initial settings of a vehicle before it enters a road. They are nego-

tiable when they travel on the road. Furthermore, we assume that each vehicle has a

designated time point to enter the road. Formally, we specify vehicle information with

the following concept:

Definition 2.7. Given a micro-level road network G = (B, E , Bn, Bx) and a set V of

possible vehicles. The vehicle information I is represented by a tuple (µ, σ, η,P)

where

• µ : V → Bn is a function that maps each vehicle to a road entry;

• σ : V → Bx is a function that maps each vehicle to a road exit;

• η : V → T is a function that maps each vehicle to a time point that indicates the

time it is expected to enter the road;
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• P : V → P is a function that maps each vehicle to a complete path such that for

each vehicle v ∈ V , ˆP(v) = µ(v) and ˇP(v) = σ(v).

In the rest of this section, we call (G,V , I) a traffic setting.

2.4.3 Traffic states and traffic flows

Traffic means that vehicles move on a road. A snapshot of traffic on the road can be

viewed as a set of vehicles currently on the road and the positions they occupy. As we

mentioned earlier, we assume that each block can contain only one vehicle at each time

point. Therefore, the vehicle’s location can be represented by an injective function from

the set of vehicles to the set of blocks of the road. Formally, we introduce the following

concept:

Definition 2.8. Given a traffic setting (G,V , I), a traffic state with respect to this traffic

setting is a pair (V, τ), where

• V ⊆ V , indicating the vehicles that are currently on the road;

• τ : V → B is an injective function that maps each vehicle to a block of the road.

In other words, for any v, v′ ∈ V , τ(v) = τ(v′) implies v = v′.

A traffic state represents a snapshot of a traffic flow and thus is a static view of traffic.

However, traffic is dynamic. To model a flow of traffic, we define traffic on the road as

a set of traffic states in a time sequence:

Definition 2.9. Given a traffic setting (G,V , I) and a set of time points T , a traffic flow

F = ⟨(Vt, τt)⟩t∈T is a temporal sequence of traffic states such that for each time point

t ∈ T ,

1. v ∈ Vt+1 \ Vt implies τt+1(v) = µ(v).

2. For each v ∈ Vt, exactly one of the following conditions is met.
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(a) τt(v) = τt+1(v)

(b) (τt(v), τt+1(v)) ∈ E

(c) τt(v) = σ(v) and v ̸∈ Vt+1

3. For any v, v′ ∈ Vt such that v ̸= v′ and τt(v) = τt+1(v
′), τt+1(v) ̸= τt(v

′).

Condition 1 says that any new vehicle entering a traffic state must enter the road in its

designated entry block. Condition 2 expresses that the vehicle can only have three states

in the following time period: stay in the current position, travel to the next block of the

path, or leave the road network. And Condition 3 indicates that two vehicles in adjacent

traffic states cannot exchange positions with each other (because they would collide).

A traffic flow encodes the complete travel information of each vehicle that travels on

the road in general for the entire period of time. For example, if we want to know the

trajectory of a vehicle, we can record its position at each time point after it enters the

road. Formally, we can represent the trajectory of a vehicle v as a sequence of blocks:

⟨τt(v)⟩txt=tn , where tn and tx are the entry and exit time of the vehicle, respectively. Note

that the trajectory of a vehicle does not have to be precisely the intended path P(v)

specified in the vehicle information I. In negotiations between vehicles, a trajectory

is an outcome, and the intended path is just an initial proposal for the negotiation. In

certain situations, we need to specify a traffic flow over a time interval, say between

time points t1 and t2. Then a traffic flow is represented as a temporal sequence of traffic

states ⟨(Vt, τt)⟩t2t=t1 .

Example 2.7. We use Fig. 2.7 as an example to explain the traffic state and traffic

flow. The six sub-graphs (A) − (F ) in the figure are the traffic states of each of the six

consecutive periods (t0 − t5) in order. There are four vehicles, Red (vr), Green (vg),

Yellow (vy) and Black (vb), driving on the road. The exit of vehicles are σvr = b13,

σvg = b6, σvy = b13 and σvb = b20. The initial state at t0 is (Vt0 , τt0), with Vt0 =

{vr, vg, vy, vb},τt0(vr) = b11, τt0(vg) = b1, τt0(vy) = b9 and τt0(vb) = b19. Each period

all vehicles will move one grid towards their destination. The black vehicle vb leaves
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FIGURE 2.7: Example of Traffic State and Traffic Flow

at t2, so that Vt2 = Vt1 \ {vb} = {vr, vg, vy}. Similarly, the yellow vehicle leaves at t4,

then at Vt4 = Vt3 \ {vy} = {vr, vg}. The period t6 (one time period after t5) is the last

traffic state because all vehicles will be out during that time period, and then Vt6 = ∅.

2.5 Discussion

Road network models serve as the basis for autonomous vehicles to understand road

conditions and can be used in different research directions. In this chapter, we have pre-

sented three road network models based on the abstraction level. It formally described

the road networks from the macro-level to the micro-level. With running examples, we

have demonstrated that the models allow us to abstract any road network depending on

the needs of the different scenarios. The road network models in this chapter are the

most fundamental part of this thesis; these models will be recalled and expanded in their

corresponding chapters. In the next chapter, we will propose a formal representation of
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traffic management protocols based on the meso- and micro- level road network models.

In chapter 4, we will study the traffic assignment problem with exponential cost func-

tions, described in terms of macro- and meso-level road networks. In chapters 6 and

5, the meso-level road network will investigate a hybrid model of a traffic assignment

problem and traffic control.

In addition to the transportation field discussed in this chapter, our road network models

can also be applied in the following applications. First, self-driving cars are a kind of

mobile robot, and multi-robot coordination is an important road network model appli-

cation direction. Coordination includes but is not limited to robot scheduling and path

planning [Jones et al., 2011, Ulusoy et al., 2013]. There is much research on this, but

the application scenarios are different. Pinillos et al. [2016] proposed the application of

service robots in a hotel scenario based on a road network model to describe the hotel

environment to perform different tasks. Second, many road network models are used in

shared roads, such as [Agatz et al., 2012, Ta et al., 2017, Wang et al., 2020]. In addition,

there is a large amount of research applied to logistics research [Baker and Ayechew,

2003, Bellman, 1958, Golden et al., 2008, Laporte, 1992, Toth and Vigo, 2002].

In general, road network models based on graph theory are widely used in different

research directions of multi-robot systems and transportation, with the primary purpose

of allowing vehicles or robots to understand the road structure to accomplish a particular

task.
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Traffic Management Protocols for

Autonomous Vehicles

Traffic must be controlled to ensure safety and efficiency on the road. Traffic control

consists in instructing vehicles to take the appropriate measures or actions to avoid

collisions or delays. Complex operational procedures, rules and laws, and physical

equipment (such as signs, markings, and lights) have been used in real-world traffic

control systems. The most common traffic control devices and methods are traffic lights,

stop signs, roundabouts, and other facilities.

This chapter will use the above model to propose various traffic management proto-

cols models and simulators for testing and data collection in simulation scenarios for

data analysis. The structure of this chapter is as follows. Section 3.1 introduces some

background about intelligent traffic management protocols and existing simulators for

autonomous vehicles. In Section 3.2, multiple priority-based traffic management pro-

tocols are proposed for autonomous vehicles in the meso-level road network model.

Additionally, we have implemented a new simulator called AIM4+, to simulate traffic

and test the proposed protocols, based on the AIM4 [Au and Stone, 2010, Dresner and

Stone, 2004a]. In Section 3.3, we investigate time-based and priority-based traffic man-

agement protocols based on the formulation of the micro-level road network model. In

36
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Section 3.4, we use a robot operating system simulator to view the robots as self-driving

cars and perform data collection and analysis of the relevant algorithms.

3.1 Background

Self-driving cars are becoming tangible and will change our lives more than we can

imagine [Banerjee et al., 2017, Bimbraw, 2015, Pettersson and Karlsson, 2015, Thorpe

et al., 1991]. In the future, when all cars are self-driving, traffic situations will be

dramatically different and require different methods and infrastructure for control and

management Chan [2017]. With the emergence of AVs and connected vehicles (CVs),

traffic facilities designed for human driving, such as traffic lights, stop signs, and round-

abouts would be replaced by less visible but more efficient algorithmic policies [Gruel

and Stanford, 2016]. According to the American National Highway Traffic Safety Ad-

ministration (NHTSA), AVs are expected to be greener, more efficient and safer [Choi,

2010]. With approximately 2.5 million accidents related to intersections, of which fifty

per cent of these incidents cause serious injuries, and twenty per cent are fatal, intersec-

tions are a safety concern and the main cause of traffic congestion. As such, using new

technologies with connected vehicles and intelligent traffic control for driverless cars

has become one of the most important research topics for autonomous driving [Bashiri

and Fleming, 2017, Belkhouche, 2017, Carlino et al., 2013, Fok et al., 2012, Hausknecht

et al., 2011, Lin et al., 2017]. This chapter aims to investigate the behaviour of AVs un-

der different intersection control protocols.

It is believed that autonomous vehicles will significantly improve driving safety by re-

ducing road accidents, human error injuries, and traffic jams [Wei et al., 2017]. In

the future, when all cars are autonomous, the situation of road traffic can be dramat-

ically different from what we have now and, therefore, will require different methods

and infrastructures for road management and traffic control [Chan, 2017]. With new

technologies for vehicle-based communication and intelligent traffic control, traditional
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vision-based traffic control facilities, such as traffic lights, roundabouts, and stop signs,

are likely to be replaced by less visible but more efficient and more effective algorithmic

controlled road facilities [Gruel and Stanford, 2016].

Intersections are the weakness of the intelligent traffic system and a major cause of

traffic accidents. Traffic at intersections is the main delay in driving time and the main

reason why accidents occur in vehicles; most intersections are not intelligent, so they

still have a lot of room for improvement. Traffic light control or stop sign has been

used at the intersection for more than 150 years. The newest traffic light intersection

control, called dynamic traffic light control, can change the signal time in real-time by

performing a big data analysis of the car between each traffic light. The most com-

mon intersection traffic management strategies are Cybercars-2 [de La Fortelle, 2010],

Intersafe-2 [Roessler, 2010], Autonomous Intersection Management [Fok et al., 2012,

Hausknecht et al., 2011, Wuthishuwong and Traechtler, 2013], Intelligent and Coop-

erative Intersection Collision Avoidance System [Basma et al., 2011, Rawashdeh and

Mahmud, 2008]. There are three typical control mechanisms used almost anywhere in

the world: traffic signals, stop signs, and roundabouts. Traffic signals are considered

the most efficient mechanism for heavy traffic intersections, stop signs for light and un-

balanced traffic intersections, and roundabouts built to accommodate moderate traffic

with balanced flow from all directions. These traffic control facilities were designed

for human drivers. Despite the development of new technologies such as smart inter-

sections to optimize traffic control [Geng and Cassandras, 2015, Younis and Moayeri,

2017], in environments where all vehicles are fully connected and autonomous, these

facilities are no longer necessary and efficient.

The most common traffic control protocols on major roads are based on traffic lights.

The earliest versions of these traffic signal systems assigned a fixed amount of time for

each traffic light to turn green, regardless of the number of vehicles or traffic density in

the corresponding lane. However, as technology advanced, these traffic signal systems

started to consider different parameters, such as a distinction between day and night or

between peak and off-peak periods, to determine the ratio between time in green and
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time in red. Some vision-based traffic management systems [Esteve et al., 2007, Javaid

et al., 2018, Reza et al., 2021] use vision sensors to capture the flow of cars coming

from different directions. To our knowledge, these advanced management approaches

target individual intersections and do not synergise with other intersections. Some roads

may be busier than others at different times, which requires additional time to clear

congestion on the road. An in-depth study of autonomous vehicle traffic management is

in high demand. Almost all current road infrastructures and traffic control technologies

depend on human driving [Wagner, 2016]. Even self-driving cars are being trained to

recognize human-oriented traffic signs and mimic human driving behaviours, which is

no longer necessary for an efficient or reliable traffic management system.

Furthermore, since fully autonomous vehicles are not yet available on a large scale

in the real world, it is not likely that traffic management for autonomous driving will

be studied through real-world tests. Therefore, the management protocols we mention

in this chapter are simulated using virtual simulators to obtain data and analyze them

against existing traffic management protocols. Many simulators are designed to model

human behaviour rather than testing custom agent algorithms. One of the most widely

used simulation platforms in robotics and related research areas is Gazebo [Koenig and

Howard, 2004]. Due to their modular nature, different sensor types and physics engines

can be added to the simulator. However, Gazebo makes it challenging to develop huge,

complicated settings. AirSim [Shah et al., 2017] and CARLA [Dosovitskiy et al., 2017]

are some more notable open-source simulators for autonomous driving. However, when

this research began, none of them gave us the ability to easily replace the mechanism by

which intersections are governed. One of the essential related works is the Autonomous

Intersection Management (AIM) designed by Dresner and Stone [2008b], which could

be an efficient way to handle road junctions for autonomous vehicles. However, we

cannot use this simulator in our research since the vehicles and traffic management

facilities in the simulator cannot make independent judgments and instead rely on pre-

programmed tactics. As a result, more sophisticated simulators are required to mimic

in a multi-agent context.
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3.2 Priority-based Traffic Management Protocols for Meso-

level Road Networks

In this section, we introduce priority-based traffic management protocols based on the

meso-level road network model G = (N,L) (see Def 2.2) and its intersection relations

(Cn, Zn)n∈N (see Def 2.3 and Def 2.4). The meso-level road network shown in Fig. 3.1

is used as a running example in this section.

FIGURE 3.1: An example of a road network.

Example 3.1. Fig. 3.1 shows an example of a road network. It includes an intersec-

tion (n4) with multiple lanes, a roundabout (n6), a T-junction (n9), and a merging

intersection (n10). Fig. 3.2 shows the connection relation and conflict relation for the

intersection n9 in Fig. 3.1. The left graph shows the detailed road of intersection n9.

The middle graph represents the connection relation Cn9 = {c1, c2, c3, c4, c5, c6}, which

means that traffic from n6 is allowed to turn left and turn right; traffic from n10 are
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FIGURE 3.2: An example of connection relation and conflict relation

allowed to go straight and turn right; traffic from n8 are allowed to turn left and go

straight. However, U-turns are not allowed at n9 from any direction. If it is allowed

for the traffic from, say n6, you may add (l1, l6) to Cn9 . The right graph shows an ex-

ample of conflict relation Zn9 at the intersection n9. In this relation, c1 conflicts with

c5, which means that vehicles on lane l1 turning left to lane l2 have a potential collision

with vehicles on lane l5 go straight to lane l2.

Vehicles often collide with other vehicles because their routes intersect and thus obstruct

the paths of others. The general rule determining who has the right of precedence is

called right of way. It defines who has the right to use the conflicting portion of the

route and who must wait for the other to do so. For example, in a country where cars

drive on the left, vehicles will give way to traffic on the right whenever they approach an

intersection, which means that the road on the right has higher priority than the road on

which the vehicle is travelling. Despite the significant differences in traffic management

methods and systems, almost all traffic management methods can be classified into

two types: road-based priority protocols and vehicle-based priority protocols. Road-

based priority management can be divided into static priority and dynamic priority. A
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more detailed explanation of traffic management protocols is given in the following

subsections.

3.2.1 Static priority management protocols

Static priority management protocols are based on predefined priorities of the connec-

tions at each intersection. We introduce a graph representation to describe the priority

of connections for each intersection based on the formal representation of the road net-

works and the intersection relations in Chapter 2. Static priority management protocol

means that for any two conflicting connections, there is always one that has priority

over the other. In short, a vehicle travelling on a lower-priority connection must yield

to a vehicle travelling on a higher-priority connection if it must cross the intersection

simultaneously. For each intersection n ∈ N , we use a directed graph to specify the

priority of connections in the connection relation Cn. If there is a directed edge from c

to c′, vehicles driving along connection c have priority over c′ to pass the intersection n.

Formally, we define a static priority management protocol ξn as follows:

Definition 3.1. Given a meso-level road network G = (N,L) and intersection relations

(Cn, Zn)n∈N . For each intersection n ∈ N , a static-priority management protocol ξn =

(Cn,Ψn) is a directed graph, where Ψn ⊆ Cn × Cn. It must satisfy the following

conditions:

• Antisymmetric: If (c, c′) ∈ Ψn, then (c′, c) /∈ Ψn for any connection c, c′ ∈ Cn, ;

• Transitive: If (c, c′), (c′, c′′) ∈ Ψn, then (c, c′′) ∈ Ψn for any connections c, c′, c′′ ∈

Cn;

• Complete relative to Zn: If (c, c′) ∈ Zn, then (c, c′) ∈ Ψn or (c′, c) ∈ Ψn for any

connections c, c′ ∈ Cn,.

We say that a ’deadlock’ occurs when two conflicting connections have the same pri-

ority or multiple conflicting connections form a closed priority loop. The condition of
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FIGURE 3.3: Example of a static-priority management protocol

antisymmetry and transitivity ensures that no deadlock can occur. For example, suppose

the two connections in the directed graph meet symmetry. In that case, the vehicles on

the two roads will give way to each other due to the unclear priority for multiple con-

nections with closed loops. The fact that the graph is relative to Zn means that for

every pair of conflicting connections, one must have priority over the other. A collision

or deadlock will occur if two conflicting connections do not satisfy completeness. Let

Ξn represent all possible priorities that satisfy all the conditions above for intersection

n ∈ N .

Example 3.2. In Fig. 3.3, the graph on the left-hand side shows a simple example of a

priority graph for the T-junction (n9). The example can be explained as a stop sign on

l1 in the real world. Vehicles on edge l5 that turn left or go straight and vehicles on l4

that go straight have the highest priority. Then, vehicles on l1 that turn left and vehicles

on l3 that turn right have the second-highest priority. Last, vehicles on l1 that turn right

have the lowest priority. For the graph on the right-hand side, we can use a similar

explanation.
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3.2.2 Dynamic priority management protocols

Although the static priority protocol has certain advantages in managing unevenly dis-

tributed traffic flow, it has specific fairness issues if it is relatively balanced. For ex-

ample, in the case of balanced traffic flow, vehicles on lower-priority connections have

higher delays than vehicles on higher-priority connections. Formally, we define a dy-

namic priority management protocol as follows.

Definition 3.2. Let G = (N,L) be a road network, and, for some intersection n ∈ N ,

let Cn and Zn be the corresponding connection- and conflict relation, respectively. A

dynamic-priority management protocol ηn : T → 2Ξn is a function that maps each point

in time to a priority graph, where T represents time.

Intuitively, a dynamic priority management protocol specifies which priority graph is

used at each point in time. An example of a dynamic priority traffic management pro-

tocol is shown below.

Example 3.3. Consider an intersection n9 as shown in Fig. 3.2 on the left. A dynamic-

priority traffic management protocol at intersection n9 can be defined as follows:

ηn9(t) =


ξn9 , if 0 ≤ t mod λ < λ1

ξ′n9
, if λ1 ≤ t mod λ < λ

where ξn9 (Fig. 3.3 left) and ξ′n9
(Fig. 3.3 right) are two priority graphs of intersection

n9 and 0 < λ1 < λ. The protocol specifies two-time intervals in each period of length

[0, λ1) and [λ1, λ). The priority graph ξn9 is used in the first time interval, and the

priority graph ξ′n9
is used in the second time interval.

3.2.3 Vehicle-based priority management protocols

The static and dynamic priority management protocols are based on elaborating the

right of way. These two protocols are not only for autonomous vehicles but can also
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Algorithm 3.2.1: Vehicle-based priority management protocol
1 Input: Vn is a set of vehicles that cross an intersection n.
2 Output: CS[|Vn|] is sequence of vehicles to pass the intersection n.

1: round = 0;
2: Participants(round): A set of first vehicles on every incoming lane of

intersection i;
3: while round < |Vn| do
4: Proposal(round) = {t(v)|∀v ∈ Participants(round)};
5: Winner = argminv∈Proposal(round) t(v);
6: CS[round] = Winner;
7: round = round+ 1;
8: Participants(round) = Participants(round) ∪ {new vehicle} \ winner,

where new vehicle is the vehicle behind of the winner vehicle.
9: end while

be used for existing traffic control. When autonomous vehicles equipped with com-

munication facilities are implemented, a vehicle-based priority management protocol

can be used as one of many protocols to manage the passage of autonomous vehicles

through intersections. The vehicle-based priority management protocol can be inter-

preted as communication between vehicles to determine the order of passing through

the intersection.

First-come-first-serve (FCFS) is a typical communication criterion; the vehicle arriving

can pass through the intersection first. Algorithm 3.2.1 shows the vehicle-based man-

agement protocol based on FCFS, which means that the sequence in which the vehicles

are allowed to cross is based on the arrival time of those vehicles. Suppose that Vn is

a set of vehicles that cross intersection n, and t(v) denotes the arrival time of vehicle

v ∈ Vn. In each iteration, the algorithm compares the arrival time of all the lead vehicles

entering the lane, and the winner is the vehicle that reaches the intersection first. Then,

the set of vehicles allowed to pass the intersection in the next round is the collection

of the remaining vehicles from the previous round and the vehicle after the winning

vehicle. It is worth mentioning that the vehicle-based priority management protocol

can not only use the arrival time as a criterion for vehicles but also use other criteria

based on, for example, auctions. In this case of an auction, vehicles may propose a
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price they are willing to pay. If the arrival time in Algorithm 3.2.1 is changed to the

bid of each vehicle, then the winner is determined as the vehicle with the highest bid

so that Algorithm 3.2.1 can represent the agreement of the passing right of the auction.

However, in the rest of this section, we only use the arrival time as the vehicle-based

priority management protocol criterion.

3.2.4 Experimental setting and results

AIM4 provides traffic simulation at multiple intersections, offering the possibility of

traffic control at the road network level for autonomous driving. It is based on the open-

source project ”Autonomous Intersection Management (AIM)” conducted by the AI

Laboratory Learning Agents Research Group in the Department of Computer Sciences

at the University of Texas at Austin [Dresner and Stone, 2008b].1 2 However, it has

some unrealistic drawbacks that make its simulation results different from real-world

traffic management. First, in AIM4, although a simulated environment with multiple

intersections is provided, each intersection uses the same traffic light management strat-

egy rather than each intersection operating independently. Second, vehicle departures

follow a uniform distribution, meaning that a vehicle is generated at fixed time intervals

from the origin. Finally, in AIM4, vehicles cannot choose their routes but always follow

the shortest route from the origin to the destination.

This subsection describes a new simulation platform, Aim4+, extended and imple-

mented from AIM4 that can simulate traffic on any road network with a graph repre-

sentation of roads and a configuration of priorities among roads and vehicles. Based on

the meso-level road network model, we developed a system that can simulate complex

road networks with autonomous vehicle traffic under the management of different traf-

fic control protocols at different intersections. With this simulation system, we can test

various properties of traffic management protocols from macro- and micro-perspectives

1https://www.cs.utexas.edu/ aim/
2Although the system can take any input of a road graph and a configuration of priorities, the capacity

of roads and vehicles are limited by computer hardware and GUI setting.
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of a traffic network with autonomous vehicles. We can set different speed limits for each

road between the intersections. Furthermore, vehicles can autonomously choose their

routes and travel speeds. The intersections are independently managed under different

traffic control protocols based on preset priorities of roads and vehicles. Furthermore,

the simulator provides a variety of data collection APIs, which allow automated data

collection for different traffic scenarios.

In experiments in the following section, we assume that all vehicles are homogeneous

autonomous vehicles, so the vehicle parameters are the same (acceleration/decelera-

tion, angular velocity, length, and width). In this section, we first test the average delay

of vehicles driving on the road network, separated by different priorities. Second, we

tested whether there is a so-called ‘bullwhip effect’ (explained below) at a single inter-

section. Then, we simulated and compared the average delay experienced by vehicles

when waiting at the intersection due to the various traffic management protocols. Fi-

nally, based on our test results, we determine, for each protocol, a ‘delay function’ that

describes the delay of the vehicles.”

3.2.4.1 Average delay for the static-priority management protocol

For our simulation environment, we use an intersection with one lane for each direction

of entry. In Fig. 3.4, the image on the left shows the intersection we used in our simula-

tion, including nine connections inside the intersection. The image on the right provides

a simple static priority protocol for that intersection. To avoid overly complex expres-

sions of static priority protocols, we assume that no vehicles are entering the intersection

from lane l7, so any connections from l7 are not shown in the figure. The connections

in Fig. 3.4 left are Cn2 = {c1 = (l1, l2), c2 = (l1, l4), c3 = (l1, l6)}, c4 = (l3, l4), c5 =

(l3, l6), c6 = (l3, l8)}, c7 = (l5, l6), c8 = (l5, l8), c9 = (l5, l2)}. To simplify the pre-

sentation, we divide the connections into several different layers, such that in each of

these layers, the connections in that layer do not conflict with each other. Specifically,

the static-priority protocol in Fig. 3.4 is divided into three layers: H0 = {c1, c2, c3},
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H1 = {c4, c5, c6}, and H2 = {c7, c8, c9}. The connections in H0 have the highest prior-

ity over H1 and H2; this means that vehicles on the connections located in H1 and H2

should give way to vehicles on the connections located in H0. Similarly, connections

in H1 have a higher priority than H2, and connections in H2 have the lowest priority in

this example.

FIGURE 3.4: Conflict relation of n2

The average delay here means how many times all vehicles wait before passing the

intersection. Fig. 3.5 shows a vehicle’s average delay at an intersection to give way to

other vehicles with higher priority in different priority hierarchies. The X axis is the

traffic flow per hour, and the Y axis is the average delay for all vehicles in a layer. It

can be seen from the experimental data that the delay of high-priority vehicles does not

increase with increasing traffic flow. This means that the delay of vehicles travelling on

high-priority connections is negligible. In contrast, as traffic flow increases, the delay

time of the second-highest-priority and lowest-priority vehicles increases. As traffic

flow gradually increases, the average delay increases non-linearly.

3.2.4.2 Bullwhip effect for the static-priority management protocol

This subsection shows that our extended AIM4+ simulator can perform several func-

tions to test traffic and simulate traffic management on the road network. We use the



Chapter 3.Traffic Management Protocols for Autonomous Vehicles 49

FIGURE 3.5: Average delay for different levels of priorities

so-called ’bullwhip effect’ in supply chain management to test the impact of intersec-

tions with different priorities on traffic delays. The bullwhip effect (also known as the

Forrester effect) is a demand distortion that flows upstream in the supply chain from the

retailer to the wholesaler and the manufacturer due to order volatility greater than the

variance of sales [Lee et al., 1997]. Information cannot be exchanged efficiently along

the supply chain when transmitted from the ultimate customer to the original provider,

resulting in increased fluctuations in demand information. This section uses the bull-

whip effect of the delay impact on vehicles of different priority levels at an intersection,

which means that when the traffic flow on the high-priority road fluctuates, how it af-

fects the delay of other priorities.

In our experiments, we use a single intersection, like the one depicted in Fig 3.4, and
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use two priority layers H0 and H1 mentioned in section 3.2.4.1 as simulation environ-

ment. Vehicles are generated at l1 and l3 in Fig 3.4 with pre-defined traffic volume. At

first, we assume that new vehicles will enter the intersection from l1 or l3 at fixed time

intervals, for example, every 6 seconds. Then, we compare this with the case that they

appear at random moments determined by some given probability distribution. Our ex-

periment then consists of varying the standard deviation of this probability distribution

and measuring the effect this has on the delay of the other vehicles that are driving in

the H1 lanes. Note that if the standard deviation is 0, it means we are looking at the

original situation in which new cars appear at fixed time intervals. On the other hand,

for larger standard deviations, the cars will appear at the intersection in a more chaotic

fashion.

To change the standard deviation of the probability distribution, we created a new algo-

rithm to generate vehicles from the spawn point, as shown by Algorithm 3.2.2. The core

of this algorithm is divided into several steps. The first step is to fix the traffic flow rate

and the number of time intervals in an hour. Suppose that traffic flow is expressed as

time intervals of 720Veh/hr is 40, which means that 90s for each time interval. First,

we randomly generate 40 random numbers from 0 − 20, then obtain the sum of the

generated random numbers. The second step is calculating the number of vehicles that

need to be generated for each time interval. The calculation method is to take the ran-

dom number and the total of each interval in the first step as the ratio and then multiply it

by the total number of vehicles per hour. The third step is to generate the vehicle spawn

time from the respective origins. For example, if we assume that 30 vehicles need to

appear during the first time interval, then we randomly draw 30 numbers between 0

and 90, where each number represents the time that each vehicle should appear. As the

number of time intervals increases, the randomness of vehicle generation decreases and

leads to a decrease in standard deviation.

Fig. 3.6 shows our experimental results to measure the bullwhip effect according to

different traffic flows. From the two graphs in the first row, it can be concluded that the

standard deviation of the second-highest-priority connections increases as the standard
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Algorithm 3.2.2: Vehicle generation for the Bullwhip effect
1 Input: Traffic flow per hour f and number of time interval N .
2 Output: Vehicle spawn time in an hour.

1: Number of vehicles[N ];
2: sum = 0;
3: Time of interval = 3600

N
;

4: for i < N do
5: Number of vehicles[i] = Random(0, 20);
6: sum = sum+Number of vehicles[i];
7: end for
8: sum real number = 0;
9: for i < N do

10: Number of vehicles[i] = Number of vehicles[i]
sum

∗ f ;
11: end for
12: while current time < MAX TEST TIME do
13: Current interval = Current time%Time of interval;
14: if Current time%Time of interval = 0 then
15: for i < Number of vehicles[i] do
16: Spawn time[i] = Random(0, T ime of interval);
17: end for
18: Sort Spawn time[] from smallest to largest;
19: Spawned vehicle = 0;
20: end if
21: if Current time = Spawn time[Spawned vehicle] then
22: Spawn a vehicle;
23: Spawned vehicle = Spawned vehicle+ 1;
24: end if
25: end while

deviation of the highest-priority connections increases. We can therefore conclude that

the bullwhip effect exists in our experiment. The second row of the graph represents the

increase in the standard deviation of the second-highest-priority connections, causing

the increase in the average delay of vehicles on those connections. Generally, when

we follow the experimental setup for the test when the standard deviation for the high-

priority road increases, it causes the delay time of vehicles on the low-priority lanes to

follow a monotonic increase.
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FIGURE 3.6: Bullwhip effect with different traffic flows

3.2.4.3 Average delay for different management protocols

Next, we compare the average delay time under three traffic management protocols:

static-priority, dynamic-priority, and vehicle-based. In this test, we use a single inter-

section, and vehicles are generated from two incoming lanes. This means that, in any

given time interval, the dynamic priority traffic management protocol allows vehicles

to pass through one incoming edge while the other direction is blocked. In the static-

priority traffic management protocol, there are two priority levels, such as H0 and H1,

in Section 3.2.4.1. And the third protocol is the vehicle-based priority management

protocol, which uses FCFS as its basic rule.

Fig. 3.7 shows the test results under three different traffic management protocols pro-

posed above. The x-axis represents the ratio between the respective traffic flows on

the two incoming lanes l1 and l2, and the Y-axis is the average delay of all the vehicles

tested. For example, suppose there are 1000 vehicles per hour heading to an intersection

from two incoming lanes l1 and l2. We use the notation 90 : 10 to indicate that there
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FIGURE 3.7: Average delay of different management protocols

are 900 vehicles heading from lane l1 and 100 vehicles heading from lane l2. This is

an extremely unbalanced traffic flow. Similarly, 50 : 50 represents balanced traffic flow

from the two incoming lanes (500 vehicles per hour for each lane).

We see from Fig. 3.7 that the delay increases significantly for the dynamic priority pro-

tocol when the traffic flow is unbalanced. For the static priority management protocol,

we see that as the amount of traffic with high priority increases relative to the amount

of traffic with low priority, the delay time decreases. The vehicle-based priority proto-

col has the same trend as the dynamic priority in Fig. 3.7 but has a lower delay time.

Furthermore, we see that vehicle-based and static priority protocols yield shorter delays

than dynamic priority protocols.

3.2.4.4 Delay function

Each intersection has an independent delay function in which the input of the delay

function is the traffic flow of each incoming lane, and the output is the delay time of that

lane. Among the literature on the research of delay functions with traffic management

protocols, there is a famous delay function so-called the ”Webster function” [Webster,
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1958], which expresses, for an intersection with traffic lights, the relationship between

the average delay d and the traffic flow f in one particular direction.

d =
c(1− λ)2

2(1− λx)
+

x2

2f · (1− x)
(3.1)

where c is the time it takes from the traffic light to go through the cycle from green, to

orange, to red and back to green again, called cycle time; λ = g
c

is the proportion of the

cycle in which the light is green (where g is the total amount of time that the traffic light

is green during a single cycle); f is the traffic flow in the direction; x = f
s

is known as

the degree of saturation, which is the ratio of the actual flow to the so-called saturation

flow s. The saturation flow is the maximum amount of traffic that can pass through the

intersection in an hour.

In this experiment, we have tried to find a general expression between delay time and

traffic volume in different traffic control protocols. For the experiments in this chapter,

we use a single intersection with 4 different entry directions, similar to Fig. 3.4. We

tested the intersection’s static priority, dynamic priority and vehicle priority manage-

ment protocols. For static priority protocol, we define one direction as one hierarchy,

like the one shown in Fig. 3.4, but with the difference of having four hierarchies. For

the dynamic priority protocol, we use 120s as the cycle time and change the priority

graph every 30 seconds so that each direction will be the highest priority in a certain

time interval. Vehicle priority uses the original FSFC rules, meaning that the sooner a

vehicle reaches the intersection, the sooner it passes. We collected data on the average

waiting time of vehicles in different directions at simulated intersections. We did this

by running a simulation and measuring the delay time as a function of the traffic flow.

We then tried to find the function that best fits the data. Specifically, We found that the

function that fits the data best has the following exponential form:

d = aebf + c (3.2)
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where a, b, and c are non-negative numbers, and f is the traffic flow. It is worth noting

that the dynamic priority protocol is similar to a traffic light but not identical. In the

dynamic protocol, we allow connections that do not collide with the highest priority

connections to pass directly through the intersection.

Fig. 3.8 shows the curve-fitting results for different priority traffic management pro-

tocols. Blue crosses, orange squares, and green dots are the data collected from our

simulator. The yellow line Eq. (3.3) is the delay function obtained by the static-priority

based management protocol using the composite function. The blue line Eq. (3.4) rep-

resents the delay function of the vehicle-based priority management protocol. The red

line Eq. (3.5) represents the delay function of the dynamic-priority based management

protocol. And the black line represents the Webster function that uses the same param-

eters as the dynamic-priority management protocol, where c = 66, g = 30, s = 600.

Ds = (4.233× 10−8) · e0.02834f + 7.0244 (3.3)

Dv = (1.002× 10−9) · e0.03f + 7.24 (3.4)

Dt = (6.34× 10−4) · e0.01253f + 16.17 (3.5)

From Fig. 3.8, we can conclude that, in our scenario, using exponential functions can

better simulate the delay compared with the Webster function. The reason for this differ-

ence is that the Webster function only describes the delay time for one specific direction,

while we have used the average delay time in each direction as the analysis data. In-

terestingly, our delay function can describe different traffic management protocols by

changing variables, which means that our results are suitable for more generic traffic

scenarios.
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FIGURE 3.8: Experimental results and regression for different management protocols

3.3 Traffic Management Protocols for Micro-level Road

Networks

In this section, we investigate traffic management protocols for the micro-level road net-

work model (B, E , Bn, Bx) (see Def 2.5). Several traffic management protocols based

on the meso-level road network model were proposed in the previous section. While it

can be used to describe a road network of multiple intersections or a single intersection,

it is not suitable for describing how the traffic state changes over time when the time

factor is taken into account in the model. Therefore, the main motivation in this chapter

is to use a microscopic road network model and introduce a time concept to describe the

change of traffic state as time changes. This makes it possible to adapt control protocols

over time depending on the traffic volume from different directions at an intersection.

Despite the significant differences between the different methods and traffic control

systems, the mechanisms of all traffic control methods can be categorized into two fun-

damental traffic control protocols: time-based traffic control and priority-based traffic

control.
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3.3.1 Time-based traffic control protocols

Time-based traffic control uses protocols that control traffic by restricting the accessibil-

ity or impassibility of roads in different periods. With the road graph representation, we

can define a time-based traffic protocol as a temporal sequence of arc groups, indicating

which road segments are accessible at each time. A typical application of time-based

traffic control protocols is traffic light systems. Formally, we define a time-based traffic

control protocol as follows:

Definition 3.3. Given a road graph G = (B, E , Bn, Bx). A time-based traffic control

protocol α : T → 2E is a function from each time point to a subset of arcs. Furthermore,

a traffic flow F = ⟨(Vt, τt)⟩t∈T is said to comply with a time-based protocol α if for any

time point t and any vehicle v, if v ∈ Vt, τt(v) ̸= σ(v) and τt(v) ̸= τt+1(v), then

(τt(v), τt+1(v)) ∈ α(t).

Intuitively, a time-based traffic control protocol specifies which road segment can be

passed at each time point. In other words, for each time point t, all arcs in α(t) are pass-

able (green light), while all arcs in E \ α(t) are impassable (red light). When a traffic

control protocol is enforced on the road, the traffic is shaped to form specific traffic flow

patterns. If a traffic flow is consistent with a time-based protocol, it means that all ve-

hicles only travel through passable arcs. The following example shows a representation

of traffic in a four-way intersection when a time-based protocol is enforced.

Example 3.4. Consider a road graph for a four-way intersection in Example1, and a

time-based traffic control protocol α on the road graph as follows:

α(t) =



Eg ∪ {e2, e3, e9, e8}, if 0 ≤ t mod λ < λ1

Eg ∪ {e2, e3, e18, e14}, if λ1 ≤ t mod λ < λ2

Eg ∪ {e14, e13, e17, e18}, if λ2 ≤ t mod λ < λ3

Eg ∪ {e9, e8, e13, e17}, if λ3 ≤ t mod λ < λ

where 0 < λ1 < λ2 < λ3 < λ and Eg = {e1, e4, e5, e6, e7, e10, e11, e12, e15, e16, e19, e20}.

t mod λ means “t modulo λ”.



Chapter 3.Traffic Management Protocols for Autonomous Vehicles 58

The protocol specifies four time intervals in each period of length λ: [0, λ1), [λ1, λ2),

[λ2, λ3) and [λ3, λ). In the first time interval, vehicles from the east or the west can

travel straight or take a left turn. In the second interval, traffic from the west is allowed

to take a right turn and traffic from the south is allowed to take a left turn. The other

two intervals are similar for traffic from other directions.

3.3.2 Priority-based traffic control protocol

A priority-based protocol controls traffic based on preset priorities of roads at each road

junction. For instance, in a left-driving country, vehicles give way to the traffic on

the right whenever they are approaching an intersection, which means that the road on

the right has higher priority than the road a vehicle travels. With the help of a graph

representation of roads, we can formalise a priority-based traffic control protocol as

follows:

Definition 3.4. Given a road graph G = (B, E , Bn, Bx). A priority-based protocol

β : E → 2E is a function from each arc of the road to a subset of the arcs E such that

1. for any (b1, b2) ∈ E , if (b′1, b
′
2) ∈ β(b1, b2), then b2 = b′2;

2. if e′ ∈ β(e), e ̸∈ β(e′).

To understand the conditions of the definition, the first condition means that an arc gives

priority to another arc only if they meet at the same block. The second condition means

that two vehicles on different roads do not give way to each other. Similar to time-

based traffic control protocols, we can also define whether a traffic flow complies with

a priority-based traffic control protocol.

Definition 3.5. Let (G,V , I) be a traffic setting. A traffic flow F = ⟨(Vt, τt)⟩t∈T is

said to comply with a priority-based protocol β if for any t ∈ T and any v, v′ ∈ Vt,

such that v ̸= v′, τt(v) ̸= τt+1(v) implies (τt(v
′), τt+1(v)) ̸∈ β(τt(v), τt+1(v)) unless

(τt(v
′), τt+1(v)) ̸∈ P(v).
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It means that a vehicle does not have to give way to another vehicle only if the road that

the other vehicle travels on does not have a higher priority or the other vehicle does not

travel into the same block.

Example 3.5. Fig. 3.9 shows a road graph representing a T-junction. Imagine a stop

sign in block b15. Then all vehicles entering b9 via e14 must stop at the stop sign and

observe the coming vehicles towards b9 from other roads. Assume that we enforce the

following priority-based traffic control protocol β at this T-junction:

• β(e) = ∅, where e ∈ {e1, e3, e4, e5, e6, e7, e8, e10, e11, e13, e14, e15, e16}.

• β(e2) = {e13}; β(e12) = {e8}; β(e9) = {e14};

Let F(t) = (Vt, τt) be a traffic state at time t where Vt = {v1, v2}, τt(v1) = b10 and

τt(v2) = b15. Assume that both vehicles v1 and v2 travel towards block b9. Since e8 has

a higher priority than e14, only vehicle v1 can go through but v2 must stay in block b15.

If F(t + 1)) = (Vt+1, τt+1) represents the next state, we then have τt+1(v1) = b9 and

τt+1(v2) = b15.

FIGURE 3.9: An example of a priority-based protocol on a T-junction
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3.4 Traffic Management Protocol Simulation with Robot

Operating System

In the previous two sections, we introduced traffic management protocols for the meso-

and micro- level road network models and used AIM4+ to simulate traffic. However,

this simulator simulates traffic from a macroscopic point of view, where the vehicles

do not have a real physical sense. The main motivation in this chapter is to use a

more realistic simulator to simulate the autopilot at a single intersection. We treat the

autonomous vehicle as a mobile robot and use a built-in 3D simulation software in the

ROS platform called Gazebo, in which vehicles have realistic physical properties, such

as acceleration, deceleration, angular velocity, and volume, and in which the vehicle has

sensors, such as LIDAR, to provide a more realistic simulation of road traffic compared

to the previous two sections. However, one disadvantage of using a real simulator is

that the number of simulated vehicles depends on the computing power of the simulator.

Hence, we only test up to 20 vehicles in this section to avoid system downtime.

In this section, we investigate intersection management protocols in an environment

where all vehicles are autonomous and capable of communication. It is worth mention-

ing that this chapter does not involve any road network models from chapter 2, but is

purely a simulator test for a realistic traffic point of view. We first investigate a traffic

control algorithm for AVs, called the virtual roundabout protocol, to manage traffic at an

intersection. After that, we present two algorithms based on the traffic light mechanism

and the first-come-first-serve policy. These three algorithms for intersection control are

considered and implemented for Gazebo. Although these protocols mimic conventional

control mechanisms for human driving, their behaviour in autonomous driving environ-

ments differs. We found that the virtual roundabout, a protocol in which all vehicles

follow the rules of a roundabout without a physical roundabout, is the most effective.

Based on our results, we conclude that the virtual roundabout outperformed the other

two protocols concerning average delays regardless of safety distance and traffic load

and handled unbalanced traffic reasonably well.
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3.4.1 The model of intersection

We consider an intersection as a four-way junction where two roads cross. It has a 100m

radius intersection area (see Fig. 3.10) which is controlled by a software agent that we

called the intersection manager. The intersection manager collects information on the

location of vehicles within the intersection area and transmits traffic control signals.

Within the intersection area, there is a stop line on each road to the intersection; A

vehicle must stop before the stop line if the intersection is occupied by another vehicle

or if it encounters a red light. The area between the stop lines is called central area.

FIGURE 3.10: The model of intersection

Vehicles on the road are assumed to have software and hardware to follow the appropri-

ate protocols and be able to communicate with each other. Communication amongst the

vehicles can be peer-to-peer or broadcast via the facilities of the intersection, allowing

vehicles to negotiate with each other. Within the intersection area, all vehicles will be
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aware of the status of other vehicles in the intersection area. For simulations, the status

includes the following information:

• Vehicle ID: an identification number to identify vehicles inside the intersection

area.

• Travel direction: the direction towards the intersection.

• Position: current coordinates in the intersection area.

• State: used to determine whether the vehicle has or has not passed the intersec-

tion. It can be any of the following four values: “before central area”, “waiting

at stopping line”, “inside central area”, “after central area”.

• Speed: current speed of the vehicle.

The state of a vehicle can be derived from its position and direction; however, explicitly

including the state allows a more straightforward implementation of the algorithm. In

this study, an intersection consists of four entrances: east, west, south, and north, with

all cars entering the intersection proceeding straight without turning. Road1 consists of

north-south lanes by a solid line; Road2 is the east-west lane.

Consider an observation window period T . We let n denote the vehicles that pass

through the intersection area (excluding vehicles that entered before or left after the

period). Let W denote the width of the intersection area3. We assume that each vehicle

i ∈ n travels in and out of the intersection area with velocity Vi. Let si be the time it

enters the intersection area and fi be the time it leaves the intersection area. Then, the

travel time di = fi − si.
3For simplicity, we assume that the intersection is a square.
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3.4.2 Traffic signal protocol

In Algorithm 3.4.1, we divide the system time into two phases to replicate traffic signals.

Phase 1 allows the vehicles on Road 1 to pass through while restricting vehicles on

Road 2. In other words, Phase 1 means a green light for Road 1, while Road 2 has

a red light, and vice versa for Phase 2. Instead of simulating yellow light, vehicles

on one road do not enter the intersection until vehicles on the other road have left the

intersection.

Algorithm 3.4.1: Traffic signal protocol
1 Input: The set of vehicles N and the array of states

{state[i] : i ∈ N}
2 Output: Time record for each vehicle: the finish time fi and time

duration di
3 Function: traffic signals() :

1: while System is not shutdown do
2: Get Systemtime
3: for i ∈ N do
4: if state[i] is “after central area” then
5: Continue
6: if Systemtime in phase1, vehicle i in Road1 then
7: Vehicle i crosses the intersection and state[i] change to

“inside central area”
8: end if
9: if Systemtime in phase2, vehicle i in Road2 then

10: Vehicle i crosses the intersection and state[i] change to
“inside central area”

11: end if
12: end if
13: end for
14: end while

3.4.3 FIFO protocol

The second protocol shown in Algorithm 3.4.2 follows the idea of first-in-first-out

queues (FIFO), the earlier a vehicle enters the intersection area, the earlier it can pass

through. Vehicles arriving later must wait at the stop line until all previous vehicles

have passed the intersection. Although this protocol is covered in previous sections in
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this chapter, the algorithm in this chapter is based on the intercommunication between

vehicles and intersection managers as a basis and is specific to the Gazebo simulator.

Algorithm 3.4.2: FIFO Protocol
1 Input: The vector of vehicles N sorted by their arrived time and the array of

states {state[i] : i ∈ N}
2 Output: Time record for each vehicle: the finish time fi and time duration di
3 Function: fifo() :

while System is not shutdown do
2: for i = 1 to |N | do

occupied=false
4: if state[i] is “inside central area” then

occupied=true
6: end if

end for
8: for i = 1 to |N | do

if state[i] is “after central area” then
10: Continue

end if
12: if Vehicles i and i+ 1 are on Road1 or Road2, state[i] and state[i+ 1] are

“waiting at stop line”, and !occupied then
Vehicle i and vehicle i+ 1 crosses the intersection and set state[i] and
state[i+1] to “inside central area”

14: else if state[i] is “waiting at stop line” and !occupied then
Vehicle i crosses the intersection and set state[i] to “inside central area”

16: end if
end for

18: end while

If we strictly follow FIFO, only a single vehicle can pass the intersection at any time.

In our implementation, we allow two consecutively arriving vehicles to pass the inter-

section simultaneously if they are on the same road (in different directions).

3.4.4 Virtual roundabout protocol

In Algorithm 3.4.3, we have implemented a new protocol called the Virtual Roundabout.

It is a protocol designed to mimic roundabouts without needing a physical roundabout.

If the central area is empty, the vehicle that arrived earlier is allowed to enter the in-

tersection. However, if the central area is not empty, vehicles on the same road as the

vehicle currently in the central area are allowed to enter the intersection. The differ-

ence between FIFO and the virtual roundabout protocol is the ability to allow multiple

vehicles to cross the intersection regardless of the arrival time.
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Algorithm 3.4.3: Virtual Roundabout Protocol
1 Input: The vector of vehicles N sorted by their arrived time and the array of

states {state[i] : i ∈ N}
2 Output: Time record for each vehicle: the finish time fi and time duration di
3 Function:

while System is not shutdown do
occupied=false

3: for i = 1 to |N | do
if state[i] is “inside central area” then

occupied=true
6: end if

end for
for i = 1 to |N | do

9: if state[i] in “after central area” then
Continue

end if
12: if Vehicle i in the waiting state, and occupied then

Vehicle i crosses the intersection and set state[j] to “inside central area”
end if

15: if Vehicle i on Road1 or Road2, state[i] is “inside central area”, and
!occupied then

for j = 1 to |N | do
if state[j] in “after central area” then

18: Continue
else if Vehicle j on same road with Vehicle i, and state[j] is “waiting at
stop line” then

Vehicle j crosses the intersection and set state[j] to “inside central
area”

21: end if
end for

end if
24: end for

end while

3.4.5 Simulation

In our simulations, we compare the performance of conventional traffic signals, FIFO,

and the virtual roundabout protocol by measuring the average travel delay in each case.

To simulate different traffic conditions, we repeat experiments with varying numbers of

vehicles and safety distances, which is the distance between two vehicles in the same

lane. Furthermore, we varied the ’road balance’ to examine the efficiency of the virtual

roundabout under asymmetric traffic load.



Chapter 3.Traffic Management Protocols for Autonomous Vehicles 66

FIGURE 3.11: Average delay

3.4.5.1 Testing environment

We used Gazebo, a simulator designed to simulate real-world robots for our simula-

tion environment. The communication frequency was set to 10Hz , which means that

vehicles broadcast their information 10 times per second.

We define a unit of distance to be exactly the width of the central area. The central

and intersection areas were set to have 1 × 1 unit2 and 10 × 10 unit2, respectively,

with speed in the intersection area of 0.5 unit/s. With a scale of 1 : 30, the central

area is 30 × 30 m2, the intersection area is 300 × 300 m2, and the speed Vi inside the

intersection area is 54km/h. Start times si for each car were generated at random. A

screenshot of the simulation is shown in Fig. 3.10.

In the rest of this subsection, we analyze our simulations’ results and discuss the virtual

roundabout’s performance against the traffic light and the FIFO protocol.
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3.4.5.2 Different traffic flow

For each of the protocols, we measured the average delay time DT for increasing num-

bers of vehicles. Regardless of the protocol implemented, the average delay also in-

creased as the number of cars increased (see Fig. 3.11). However, the growth rate of the

delay time was different for each protocol.

As the traffic signal protocol was implemented with 30-second phases, traffic that ex-

ceeded the maximum number that can be processed in a single cycle must stop and wait,

resulting in staggering growth. For the FIFO protocol, the growth rate increases expo-

nentially as each traffic lane is rerouted to the stop line and must wait for cars arriving

at the central area first. For the virtual roundabout, the growth rate appears to increase

at a linear rate with an average delay of 62% compared to the traffic lights and 56% of

the FIFO protocol.

3.4.5.3 Change safety distance

This subsection analyses the influence of different safety distances on vehicle average

delay times. The safety distance is the spacing between two vehicles in one road lane,

and we measure the safety distance with different vehicle body lengths. We denote

the length of the vehicle body by b and set the safety distance at 0.5b, 1b, 1.5b, and

2b. For example, assuming a body length of 5 meters, 0.5b safety distance represents a

front-to-rear distance of 2.5 meters, while 1.5b represents a front-to-rear distance of 7.5

meters.

In Figs. 3.12, 3.13 and 3.14, we show the relationship between average delays, safety

distance, and the number of vehicles for the three protocols. It is evident for the FIFO

and the virtual roundabout that as the safety distance increases, so does the average

delay. Interestingly, for the traffic light protocol, it was found that the safety distance

has no measurable impact on the average delay time.
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FIGURE 3.12: Varying safety distance with traffic lights

FIGURE 3.13: Varying safety distance with FIFO

3.4.5.4 Unbalanced traffic flow for the virtual roundabout protocol

In our previous simulations, an equal number of vehicles passed through the central

area from each direction. In this section, we present our experiments with the virtual

roundabout protocol on unbalanced roads: more vehicles coming from one road than

from the other. Under realistic conditions, the ratio and direction of vehicles entering

an intersection are not uniform.
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FIGURE 3.14: Varying safety distance with virtual roundabout

FIGURE 3.15: Increased system efficiency as traffic load becomes imbalanced.

In Fig. 3.15, as the intersection becomes increasingly imbalanced due to the composi-

tion of the traffic load increasing on Road1, the average delay decreases.

3.5 Summary

This chapter proposed various autonomous driving traffic management protocols. Fur-

thermore, we used traffic simulation software to collect data and experiment with those
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protocols. First, we have provided some background information on intelligent traffic

management protocols and an autonomous vehicle simulator. We have provided several

priority-based traffic management strategies for autonomous cars based on the meso-

level road network model. We extended and implemented a general simulator AIM4+

from the simulator AIM4 and used it to test the suggested protocols. Following that, we

have looked at the time- and priority-based traffic management algorithms that are built

on the formulation of the micro-level road network model. Finally, we have proposed

a virtual roundabout traffic management protocol to manage the passage of self-driving

vehicles at a single intersection. We collected data and analysed the relevant algorithms

using a ROS simulator called Gazebo that treats robots as self-driving vehicles.



Chapter 4

Exponential Cost Functions for Road

Networks

In transportation, a cost function is a function that describes the relationship between

traffic flow and travel time, which is essential for the analysis of traffic state, traffic

assignment, and road planning. More specifically, a region-based macroscopic cost

function is a function to model the travel cost of a specific region, which has potential

applications for regional transport planning and macroscopic control of traffic manage-

ment. Chapter 3 showed that exponential delay functions might be more realistic than

previously studied delay functions. This chapter shows that something similar holds for

cost functions. We show that an exponential cost function may be more realistic than

the commonly used BPR function.

This chapter investigates an exponential latency function for a road network. We focus

on the real-world implications of exponential cost-flow functions and use real data to

compare them with existing functions to show the advantages of exponential functions.

The structure of this chapter is as follows. Section 4.1 briefly introduces this chapter’s

motivation and related work. Section 4.2 discusses the database used in this chapter

and the data processing approach. Section 4.3 then details the data analysis and the

71
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goodness-of-fit results. Section 4.4 summarizes the results of this article and the di-

rection of future work. It is worth mentioning that both Macro-level (Chapter 2.2) and

Meso-level (Chapter 2.3) road network models can be used in this chapter. For simpli-

fying the representation, we use the macro road network model G = (N,P ), where N

is a set of positions and P is a set of roads, in this chapter. Note that we use the symbol

P to represent a set of edges instead of E in this section due to the reuse of the symbol

for exponential symbol e.

4.1 Introduction

The classic transportation planning model consists of four phases, namely ’trip gener-

ation’, ’trip distribution’, ’modal division’, and ’traffic assignment’ [Liu et al., 2010].

As explained in previous chapters, traffic assignment refers to the selection of routes

(also known as pathways) for vehicles between the origins and destinations of a traffic

network [Patriksson, 2015]. The origin-destination matrix Bell [1983] is an essential

component of the four-stage model, which describes traffic demand (that is, the number

of vehicles between each origin-destination pair (OD)) [Graham and Glaister, 2004].

Travel time is a widely used metric in the field of transportation. Estimated travel time

is used to study the effect of traffic load on the road network, which also helps assess

traffic management systems’ effectiveness in urban areas.

In most road network models, the effect of traffic flow on travel time is specified using

cost functions. Each road has a separate cost function that calculates the travel time

of that road when the number of vehicles on that road is known. The cost function

accounts for the effects of congestion on the road network. Using these functions, travel

time and average speed can be calculated under congested and uncongested conditions

given parameters such as free flow speed (or free flow travel time) and traffic demand.

As an initial work, the cost function proposed by Smock [1962] was described as an

exponential curve in the Detroit Area Transportation Study, and the value of the cost
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function shown in Equation (4.1) was estimated by averaging the intersection capacities

at the ends.

t(x) = t0 · ex (4.1)

In 1967, Overgaard [1967] proposed another function in the form below.

t(x) = t0 · aex
b

(4.2)

Among the well-developed cost functions, the Bureau of Public Roads (BPR) function

is the most commonly used one. Since its first publication in 1964, this model has

been widely used among researchers in various traffic models due to its good balance

between simplicity and effectiveness. In the BPR function shown in Equation (4.3), the

ratio of travel time (or average travel speed) per unit of distance to free flow is defined

by the parameter a. In contrast, the change of the average travel speed from free-flow

to crowded conditions is determined by the parameter b [Mtoi and Moses, 2014].

t(x) = t0 · (1 + axb) (4.3)

The default values of the parameters a and b are 0.15 and 4, respectively. However,

these numbers do not reflect traffic conditions on all types of roads or in all traffic

control methods [Márquez et al., 2014]. In actual applications, the parameters need to

be adjusted accordingly. Therefore, a calibration process with extensive and accurate

field data is needed. Despite its simplicity, this paradigm also has inherent drawbacks,

mainly when parameter b is high. It slows down the convergence by giving undue

weight to overloaded links with a high value of b. Secondly, the outcome of the BPR

function with a high value of b and low traffic flow will be too close to the free-flow

travel time [Spiess, 1990].

Besides the BPR function, Akcelik [1978] cost function, which is a variant of the func-

tion initially proposed by Taylor [1997], is widely used. Formally, the Akcelik function
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is defined as follows.

t(x) = t0 +
3600

4
a[(x− 1) +

√
(x− 1)2 +

8bx

da
] (4.4)

in which the default values are a = 1, b = 1, c = 1 and d = 1800. Akçelik’s function

can cover more traffic situations, including undersaturated and oversaturated circum-

stances [Singh and Dowling, 2002].

de Grange et al. [2019] provides a traffic assignment model based on link density,

which is the collective result of the responses of road users to the existing transport

network and the interactions between road users at different levels of traffic demands.

Region-based cost functions, also known as macroscopic cost functions (MCF) [Wong

and Wong, 2016], describe the relationship between travel time and traffic demand in

the entire network area. The MCF helps planners and engineers understand how road

users and the road network interact at different levels of traffic demand. Using MCFs to

analyze and plan complex urban networks has several advantages over link-based cost

functions. For example, they can significantly reduce computation time. The MCFs,

which model travel costs at different network usage levels, have received increasing

attention for their potential applications in regional traffic management, control, and

land use planning. Kurth et al. [1996] proposed an approach for the regional traffic

assignment problem. Kucharski and Drabicki [2017] provided an approach to estimate

regionalized cost functions using traffic and speed data transformed into the traffic den-

sity of each road.

Most existing studies are based on the regional cost function extended from the BPR

function without mentioning other types of functions. Second, the available studies use

traffic data in fixed-size regions rather than political region data for function fitting. Fi-

nally, we divide the data according to different periods to get more realistic results of the

fitted function. The objective of this chapter is to present an exponential cost function

and compare it with other relevant functions using a real-world database. The same data

is analyzed at different levels of areas in a highly urbanized area of Sydney, comparing
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the relevant parameters from the LGA to the suburb and analyzing the relationship be-

tween the individual parameters in the function. To analyze the data and calibrate the

functions, we divide it into three groups: peak hours, working day off-peak hours, and

holidays. The results of the analysis show that the exponential cost function matches the

extracted data better than previously studied cost functions. This macroscopic exponen-

tial function has deep research implications for regional traffic control, traffic diversion

and intelligent cities, mainly for traffic assignment problems.

4.2 Data Description

In this section, we first introduce the exponential cost function for road networks. Then,

we describe the database that we used for our experiments. Finally, the literature’s BPR

function and Akcelik function are used to fit the same database and compared to our

proposed exponential cost function.

4.2.1 Exponential cost function

To our knowledge, there is no standard or best practice for cost functions in travel de-

mand models. Field data are usually used to calibrate or validate relevant parameters or

construct unique cost functions [Singh and Dowling, 2002]. Since traffic management

controls traffic from a relatively macroscopic perspective, we focus on the average travel

time through each road instead of focusing on the travel time of each specific vehicle.

Each arc p ∈ P has an independent exponential cost function as follows:

lp(fp) = ape
bpfp + cp (4.5)

where lp(f) represents the time it takes for a vehicle to travel along road p (measured

in sec/km), ap is the congestion sensitivity parameter, bp is the congestion index, and
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ap + cp is the free-flow travel time, which depends on the speed limit. It is worth

mentioning that the definition of free-flow travel time for the exponential function is

similar to that of the BPR function, interpreted as the time required to complete a unit

length. Remark that, although Eq. (4.5) has the same expression as Eq. (3.2), it has a

different interpretation because this is a cost function, while the other one was a delay

function.

4.2.2 Data source

In this study, we have employed Insight, a traffic database provided by Intelematic1. The

database contains data that covers more than 40, 000km of roads in New South Wales

(NSW) and Victoria (VIC) in Australia, with traffic flow data and speed data from 2019

to date. In terms of data frequency, it records data every 15 minutes. Regarding the

coverage scope, it ranges from individual link-based data (microscopic level) to Local

Government Area (LGA) (macroscopic level). The data used in this chapter is within

NSW, covering 39 LGAs, 1058 suburbs and nearly 5000 covered roads in NSW, which

have a total length of nearly 19, 500 km. Located on the southeast coast of Australia,

the Greater Sydney region is the capital of the Australian state of New South Wales. It

is the largest and most populous city in Australia. The Sydney metropolitan area has

an area of approximately 1687 km2 and a population of approximately 5.73 million in

2019. The data between January 2019 and March 2022 are used in time intervals of

years, months, weeks, days and even 15 minutes.

The data in the Insight database was collected from numerous sources and validated to

provide road and traffic statistics. Real-time detectors (GPS hardware) from commer-

cial and private fleets of road vehicles and millions of nodal sensors at highways and

intersections are used to collect real-time traffic flow and speed. Real-time data on road

1https://www.intelematics.com/
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conditions from emergency services and road management provide the context for fur-

ther calibration of the data sources. Cross-validation of 24/7 field control groups and

machine learning algorithms ensures the validity of the data.

We use vehicle data from the Insight database in multiple NSW LGAs, and suburbs to

compare the proposed exponential function to other existing cost functions. The LGA

and suburban data are macroscopic data from January 1, 2019, to February 28, 2022,

consisting of speed and traffic flow data. The speed data contains the average speed,

average delay time, average travel time, road ID, area ID, total length of the entire road,

and average speed limit for the peak and non-peak periods within the area during the

time interval. The flow data contains the total traffic flow in an area, road ID, area ID,

and total length of roads throughout the area during peak and off-peak periods within

the time interval.

The macroscopic level data is obtained by integrating the data of all road sections in

the jurisdiction every 15 minutes. The traffic data downloaded from the database is

automatically divided into peak and off-peak periods. The peak period is 8 hours in

total, including 7 am to 10 am and 3 pm to 6 pm from Monday to Friday, while the off-

peak period is 16 hours (excluding the peak period) plus 24 hours per day on weekends

(Saturday and Sunday).

Since public holidays are not grouped in the database, it is obvious that the data for these

days have more off-peak characteristics, so we manually grouped the public holidays

into the off-peak data. The peak period data is averaged over all 8 hours, the weekday

off-peak data is divided by 16 to obtain the hourly average, and the non-working day

and holiday data are divided by 24 hours to obtain the average. We did not perform any

additional processing on the database, except that we manually excluded data for public

holidays from the weekday data and moved them to the weekend data.

We filter the data following the criteria below to derive more accurate traffic and travel

time correlation functions.
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• To best fit the macroscopic function, the sampling region must include as many

types of roads as possible, including viaducts, freeways, and urban roads.

• The absence of overlapping areas in the sampling area ensures the regional road

network’s independence and distinctive topological features.

• The sampling region must feature a variety of land uses, including commercial-

ized areas, high-density office sectors, residential areas with a mix of high and

low densities, and a well-connected road system.

• Fitting function data must be sampled over a wide time interval to prevent the

impact of crises on traffic data, such as automobile accidents, special holidays,

and lengthy traffic control.

• The selected area needs to have prevailing traffic conditions.

After filtering, three LGAs (i.e., Sydney, North Sydney and Parramatta) belonging to

the Greater Sydney Area with high traffic flow and population density are selected for

analysis, considering that these areas can cover a wide range of traffic conditions. Note

that Sydney, North Sydney and Parramatta are three independent political area without

any overlap area. In addition to the three LGAs, we select a suburb from each LGA

with similar characteristics as described above.

4.2.2.1 Sydney

The City of Sydney is a local government district in the Sydney Metropolitan Area of

NSW, comprising the Sydney Central Business District (CBD) and 31 adjacent suburbs.

The City of Sydney has a population of approximately 170, 000 and a land area of 6.19

square kilometres. The area is a major financial, commercial and tourist centre with a

large transient population and an extensive road network. As a result, the traffic situ-

ation is complex, consisting of many urban roads, underground tunnels and highways

connecting neighbouring areas. The data we use covers 461 roads in Sydney’s local

government area, which are 433 km long.
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4.2.2.2 North Sydney

North Sydney is a local government area on the Lower North Shore of Sydney. It has a

population of 67, 658 and covers an area of approximately 10.9 square kilometres. The

area has not only a large number of high-density commercial areas and a large number

of complex urban roads but also toll roads and free expressways that connect the rest of

Sydney. The North Sydney LGA data covers 156 roads with 166 km total length and 14

suburbs under its jurisdiction.

4.2.2.3 Parramatta

The City of Parramatta spans 84 square kilometres. According to the 2016 census, Par-

ramatta has a population of 226, 149 and contains 38 suburbs within its jurisdiction. This

busy area covers several highways that run through the Sydney area and complex urban

roads. Parramatta LGA’s database includes 222 roads with a total length of 470 km.

4.2.2.4 Suburb selection

For the selection of suburban data, we use the traffic data from the central city of the

three LGAs mentioned above as base data for comparison. The study area includes a

central business district with multiple high-rise buildings, a mixed commercial and res-

idential high-density region, a relatively low-density residential neighbourhood, and a

substantial urban highway network. Even under identical traffic conditions, the trans-

portation networks in the selected areas have different traffic capacities and road condi-

tions due to differences in topographic characteristics.

4.2.3 Evaluation criteria

For comparison, we fit the function using travel times from the traffic database. The

exponential function, BPR function and Akcelik function are then compared based on
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the fitted results. The aim is to identify and analyze the advantages and disadvantages

of each of the functions. To compare with a unified standard, we simplify the three

functions in the following way.

t(x) = axb + c (BPR) (4.6)

t(x) = c+
3600

4
a[(x− 1) +

√
(x− 1)2 +

8b · x
·a

] (Akcelik) (4.7)

The coefficient of determination, abbreviated R2, is the proportion of variation in the

dependent variable that the independent variable can predict in statistics. It is a statis-

tical criterion used to predict future outcomes or to evaluate hypotheses based on other

data. Based on the fraction of the total variation of effects explained by the model, it

measures how well the observed results are represented by the model [Carpenter, 1960,

Glantz and Slinker, 2001]. The function fit analysis uses traditional R2 and root-mean-

square error (RMSE). We use the R-squares of different equations in the same region to

illustrate how well the function fits.

R2 = 1−
∑N

i=0(yi − ŷi)
2∑N

i=0(yi − yi)
2

(4.8)

where N is the number of samples, yi is a dependent variable, ŷi is the output of the

regression model, both indexed by data set i and yi is the mean of the dependent vari-

able. R2 is always less than or equal to 1; the larger it is, the more the variance of the

dependent variable is explained by the regression model.

The RMSE is a commonly used metric for comparing predicted and observed values

(sample or population values) by a model or estimator [Li et al., 2014, Xie et al., 2007],

and is also one of the parameters commonly used in the transportation field for the

degree of fit between functions and data. The square root of the second sample moment

of the discrepancies between anticipated and observed values, or the quadratic mean of
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these differences, is represented by the RMSE. The RMSE combines the magnitudes of

prediction mistakes for different data points into a single measure of predictive capacity.

To compare the forecasting mistakes of other models, the RMSE measures accuracy.

RMSE =

√∑N
i=0(yi − ŷi)2

N
(4.9)

where N is the number of samples, yi is a dependent variable, ŷi is the output of the

regression model. We use R2 and RMSE as reference quantities for the degree of fit of

the data to the function. The closer the R2 is to 1, the better the function fits the data,

and conversely, the higher the RMSE, the worse the function fits the data.

4.3 Numerical Results

This section analyses the differences between the different cost functions in different

regions. Firstly, we perform statistical analysis and function fitting on peak-hour and

nonpeak-hour data at the LGA level. Then we narrow down the regions from LGAs

to suburbs. The results of our analysis indicate a clear data stratification based on the

data set. The phenomenon can be described as a clear regionalization of the data point

set, where we cut the Y-axis data within the same X-axis interval into multiple mu-

tually independent fetches. We used data from Sydney as an example to explain data

stratification.

We used the average speed of vehicles, measured in different time intervals, as raw data

for processing. The average travel time required to complete one kilometre in different

traffic flows is obtained using the equation that relates speed to the length of the road.

Fig. 4.1a shows the daily data in Sydney LGA from January 1, 2019, to February 28,

2022. The X-axis represents the traffic flow per hour, while the Y-axis represents the

average time (in seconds) that it takes a car to drive one kilometre. It is worth men-

tioning that each data point represents the traffic volume and average travel time for all
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(A) Before processing

(B) After processing

FIGURE 4.1: Daily data in Sydney

traffic in one day. The upper stratification (blue points) consists of weekdays (Monday-

Friday), while the lower one (red points) consists of weekends (Saturday-Sunday) and

public holidays. Since the data are divided into multiple data point sets, the data can be

divided into multiple separate subsets.
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Since we can see from Fig. 4.1a that the data representing the working days are still

stratified, it is unsuitable for data fitting by a single cost function. Therefore, we split

the data into peak and off-peak periods. Fig. 4.1b shows the data points after splitting

the data. As can be seen in the figure, there are three clusters. Further analysis of the

data reveals that the top group (blue points) is the set of data points during peak hours on

weekdays; the bottom group (red points) is the set of data points during off-peak hours

on weekdays, and the middle group (green points) is the set of data points on weekends

or holidays.

The data in Fig. 4.1 indicates that even for a given value of traffic volume, there can be

many different values for the travel time. This is because each data point represents data

sampled over an extended period of time, such as 8 hours, over which traffic volume

was not constant. Therefore, even if we compare two different time periods with the

same average traffic volume, the average travel time may be much higher during one of

these periods than during the other because, at some point, during the first period, the

traffic density was much higher than in the rest of that period, or than during the other

period.

For example, the morning peak period is 7:00-10:00 a.m. Suppose there are 500 vehicles

per hour during the 7:00-9:00 a.m. period and 5,000 vehicles per hour during the 9:00-

10:00 a.m. period, so on average, there are 2,000 vehicles per hour during the morning

peak period. So, since the travel time depends non-linearly on the traffic volume, the

average travel time during the entire morning peak period is mainly determined by the

traffic between 9:00 and 10:00. Therefore, if we compare this with an off-peak period

with the same amount of traffic but where the traffic is more uniformly distributed, we

may find a much lower travel time during the off-peak period.

Additionally, traffic control schemes are inconsistent over time, resulting in travel time

variations, and some temporary traffic controls may be implemented during off-peak

hours. Therefore, we fit the Sydney LGA traffic data into three cases, as mentioned

above.
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In the rest of this section, we first fit the data for the three LGA peak hours to three dif-

ferent cost-flow functions. Second, we fit the data for the Sydney LGA as an example to

distinguish between working off-peak hours and holidays&weekend by comparing the

exponential function, the BPR function, and the Akcelik function. Next, we reduce the

area size from LGAs to suburbs and use the same approach to fit the data and compare

the related functions. Finally, we summarize the results of the data analysis.

4.3.1 Working day peak hours

(A) (B)

(C) (D)

FIGURE 4.2: LGA peak hour results

We first fit the functions using the working-day peak hour data for the three regions

(Sydney, Parramatta, and North Sydney) mentioned in Section 4.2. Fig. 4.2 shows how

the three cost functions fit the peak hours in these three LGAs. Fig. 4.2(a) shows the
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geographic information of the three LGAs. Figs. 4.2(b)-(d) offer the road data fitted by

different functions in the Sydney, Parramatta, and North Sydney LGAs, respectively. It

can be observed that the fit of the exponential function is very similar to that of the BPR

function, but the exponential function has a more considerable gradient change than the

BPR function.

TABLE 4.1: Results in LGA Peak Hours

Region Model a b c R2 RMSE
Sydney BPR 6.494 8.12 139 0.7847 2.971

Akcelik 55737 60.88 138.4 0.7813 2.994
Exponential 0.004602 7.325 138.5 0.7856 2.965

Parramatta BPR 3.463 5.598 100.7 0.6434 1.062
Akcelik 11501.4 535.5 100.3 0.6438 1.059

Exponential 0.02734 4.956 100.3 0.6443 1.058
North Sydney BPR 5.735 8.592 128.2 0.7562 2.088

Akcelik 14280 371 127.6 0.756 2.089
Exponential 0.001908 8.049 128.1 0.7568 2.08

Table 4.1 shows the parameters of different functions for different LGAs. The value of

c in the table reflects a surprising consistency between different equations in the same

region. It can be concluded that the exponential function has the best R2, and the value

of RMSE for the exponential function is the lowest. Since the different distribution

of data concentrations in each region can lead to an irregular variation of R2, we only

compare the fit between different functions in the same region rather than performing a

uniform analysis of all regions.

Next, we analyze how well the BPR and exponential functions fit the data across various

sections of the X-axis. Specifically, we divide the X-axis into three separate regions:

low flow (0 ≤ x < 0.5), high flow (0.5 ≤ x < 1), and overflow (x > 1). Table 4.2

shows the results obtained by partitioning and refining the data and fitting this data to the

BPR- and exponential- function, with the same parameters as in Table 4.1. The results

show that the exponential function always fits better than the BPR function indicating

that the exponential function is better matched to the real data under different flow

conditions.
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TABLE 4.2: Curve fitting R2 results for different LGAs

Region Functions Low flow High flow Overflow Overall
(0 ≤ x < 0.5) (0.5 ≤ x < 1) (x > 1)

Sydney BPR 0.2926 0.241 0.5151 0.7847
Exponential 0.3053 0.2438 0.5161 0.7856

Parramatta BPR 0.6121 0.4822 0.5846 0.6434
Exponential 0.6141 0.4838 0.5850 0.6443

North Sydney BPR 0.2884 0.1755 0.6398 0.7562
Exponential 0.2979 0.1768 0.6418 0.7568

4.3.2 Working day off-peak hours, and holidays & weekends

Fig. 4.3(a) shows the results of the road data and curve fitting for off-peak working

day hours. We see that, compared to the peak period, the variation in the travel time is

relatively small during the weekday off-peak period. Fig. 4.3(b) shows the results of the

road data and curve fitting for holidays and weekends. Here, we see that for weekends

and holidays, the variation in travel time is similar to the peak period.

Table 4.3 shows the coefficients and parameters fitted for each function in different

cases. In terms of parameters and fits, they are essentially the same as for the data of

the LGAs level, except that the Akcelik function fits slightly better than the other two

functions on weekends, which is caused by the small sample size of the data.

TABLE 4.3: Results in the Sydney LGA off-peak hour

Off-hour Model a b c R2 RMSE
Working day BPR 5.526 5.26 126.7 0.6666 1.82

Akcelik 41670 1492 126.7 0.6668 1.809
Exponential 0.07374 4.497 125.9 0.6672 1.793

Weekend&Holiday BPR 5.01 5.048 127.7 0.6784 2.002
Akcelik 30429 2273 127.5 0.6795 1.990

Exponential 0.04448 4.846 127.2 0.6793 1.992

4.3.3 Peak hours in suburbs

Fig. 4.4 summarizes the fit results in the suburban area. Fig. 4.4(A) shows the ge-

ographic information of the three suburban areas. Fig. 4.4(B) displays curve fitting
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(A) Working day

(B) Weekend & Holiday

FIGURE 4.3: Sydney LGA off-peak hour fitting results

functions for Sydney suburban road data. Fig. 4.4(C) displays a separate function for

the Parramatta suburban road data, and Fig. 4.4(D) displays a different function fit for

the North Sydney suburban road data. Each point represents the value of off-peak travel

time for weekdays. The distribution of these data is similar to that of the LGAs. The
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results are also identical to those obtained in the three LGAs.

(A) (B)

(C) (D)

FIGURE 4.4: Peak hour results at the suburb level

Table 4.4 provides detailed information on the function parameters. In the case of pa-

rameter c, the value continues to express the travel time under ideal conditions. For the

matching results of R2 and RMSE, it can be seen from the data of the three suburbs

that the BPR function and the exponential function both fit the data very well. On the

contrary, the Akcelik function fits the data relatively less than the other two functions.

Using the information from Tables 4.1, 4.3, and 4.4, we can now formally describe the

cost function for a whole region as a piecewise function. Here, we use the cost function

for Sydney LGA as an example of a piecewise function shown below.



Chapter 4. Exponential cost Function for Road Networks 89

TABLE 4.4: Results of the suburb peak hour

Suburb Model a b c R2 RMSE
Sydney BPR 15.94 7.383 137.2 0.6857 5.982

Akcelik 23922 592.5 136.2 0.6862 5.979
Exponential 0.0249 6.559 136.1 0.6864 5.973

Parramatta BPR 3.106 8.1 131.6 0.4501 1.714
Akcelik 2111.25 29.78 131.6 0.4452 1.772

Exponential 0.003403 6.95 131.2 0.4505 1.715
North Sydney BPR 8.682 9.426 113.5 0.6967 3.308

Akcelik 10221.2 93.04 113.6 0.6973 3.31
Exponential 0.002008 8.451 112.5 0.6974 3.305

tsydney(x) =


0.004602 · e7.325x + 138.5(s/km) Working day peak hour

0.07374 · e4.497x + 125.9(s/km) Working day non-peak hour

0.009562 · e4.846x + 127.2(s/km) Holiday&weekend
(4.10)

4.4 Conclusions

In this chapter, we have proposed using an exponential function as a cost function and

compared it to the more commonly used BPR and Akcelik functions. We have shown

that, in general, for different regional categories and temporal statistical analysis meth-

ods, the exponential function fits slightly better than the most widely used BPR and

Akcelik functions. This suggests that the exponential function is a more realistic rep-

resentation of real-life cost functions. We have compared these cost functions with the

support of the real Australian traffic database.

In future work, we plan to use more general regional data to show that the exponential

function is more generally applicable than just to Australian traffic conditions. Further

theoretical studies on exponential functions in road networks need to be carried out,

such as Wardrop’s principles, game-theoretical-related properties, and traffic planning

problems.



Chapter 5

Price of Anarchy for Traffic

Assignment with Exponential Cost

Function

The advancement of technologies for connected autonomous vehicles (CAVs) provides

great potential for intelligent traffic control and management in the future. The de-

ployment of Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-

Everything (V2X) communications enables traffic control on road segments, intersec-

tions or regional road networks with more options, either centralized or decentralized.

However, these options are not purely technical considerations but a trade-off between

autonomous decision-making and system optimization. An applicable quantitative cri-

terion for such a trade-off is the price of anarchy (PoA) of autonomous decision-making.

This chapter analyses the price of anarchy for road networks with autonomous vehicles.

Unlike existing research in which the latency function of road congestion was based on

BPR or queuing theory, we focus on routing games where the latency of road traffic is

expressed as an exponential function.

The rest of this chapter is organized as follows. Section 5.1 introduces some background

knowledge and motivation in this chapter. In Section 5.2, we formally present the traffic

90
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assignment model and the related notation. In Section 5.3, we give a brief explanation

and theoretical calculations to obtain the expression of the tight upper bound of the PoA

for the road network with exponential cost functions. In Section 5.4, we compare the

expressions of the tight upper bound of the PoA for the BPR function and the expo-

nential function. Finally, we summarize this chapter and discuss future work in Section

5.5.

5.1 Introduction

The main motivation for our emphasis on autonomous driving is based on the fact that

vehicles have more powerful means of communication than humans to access more in-

formation about the road, which helps them make more rational decisions. However,

we assume that vehicles make decisions regarding which route to take when there are

multiple routes that lead from the same origin to the same destination. This is a game-

theoretical decision because if one route is shorter and all cars take that route, they only

end up going slower due to congestion. Human-driven vehicles cannot have centralized

control because it is impossible to force the human driver to make decisions against his

or her will. However, with the advent of self-driving vehicles and the gradual improve-

ment of vehicle-to-everything (V2X) technology, it will be possible to control and route

vehicles centrally. At that time, the vehicle can be controlled by a central computer to

complete the trip. This allows us to study the impact of the social behavior of distributed

control and central control.

If all vehicles make their decisions selfishly, traffic will reach a so-called user equilib-

rium (UE). This is known as Wardrop’s first principle [Wardrop, 1952b]. At the user

equilibrium state, no vehicle can achieve a shorter travel time by changing its route, im-

plying that all vehicles with the same origin and destination will have exactly the same

travel time. The selection of global optimization routes for a road network is called the



Chapter 5. Price of Anarchy for Traffic Assignment with Exponential Cost Function 92

system optimum (SO), known as Wardrop’s second principle [Wardrop, 1952b], which

reflects that the total travel time of all vehicles on the road network is minimized.

This chapter discusses the social aspects of autonomous driving, in particular, the behav-

ior of vehicles either under the assumption of selfish behavior, or under the assumption

of centralized control, from a game-theoretical point of view. It is well known that self-

decision making of intelligent agents can cause a degradation in the performance of the

whole network [Akella et al., 2002, Johari and Tsitsiklis, 2004]. The price of anarchy

PoA is a value that quantifies the cost of self-decision making and was first introduced

by Koutsoupias and Papadimitriou [1999]. The PoA is defined as the ratio between the

UE flow’s social cost and the SO flow’s social cost in the worst case. In other words, the

PoA in traffic assignment is the cost of letting vehicles make individual decisions rather

than letting a centralized control mechanism dictate them to achieve global optimiza-

tion. We can use this concept as a benchmark to change the behavior of vehicles under

different traffic conditions. The PoA can be used as an index to determine which traffic

situations allow vehicles to make decisions or which traffic situations require central-

ized control. When the value of PoA is low, the difference between the social cost of

distributed control and the social cost of centralized control is small, and the vehicle

can be allowed to self-determine at that time. On the contrary, when the value of PoA

is high, the cost of self-determination is too high, instead allowing central control to

obtain more efficient traffic.

The main objective of this research is to calculate the upper bound of the PoA in a large

family of road networks with the same type of cost function [O’Hare et al., 2016a]. This

chapter aims to highlight an expression of the tight upper bound of the PoA for traffic

assignment with exponential cost functions, and we compare it with the expression of

the PoA when using the BPR function. We show that the tight upper bound of the

PoA for exponential latency functions depends on the traffic demand. We conclude that

vehicles can make decisions by them-self when the traffic volume is low, while when

the traffic volume is high, global optimization should be preferred. We present a traffic

assignment model with related notations to derive our results. Then, we provide an
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expression for the tight upper bound of the PoA, which depends on the traffic demand,

for road networks where all cost functions are exponential. Furthermore, we present

a simpler expression for this upper bound, which is not tight. Next, we compare the

difference between using the BPR function to calculate the PoA and the exponential

function to calculate the PoA.

In this chapter, we assume that all vehicles satisfy the following properties.

• Vehicles are fully autonomous, which means that the decision-making of each

vehicle is not centralized, but by the vehicle itself, no matter whether humans or

computers drive it.

• Vehicles are homogeneous users, which means that vehicle attributes are the

same, such as acceleration, body length, and behavior. For example, vehicles

in the road network cannot be distinguished as SUVs, sedans or trucks.

• Each vehicle has its origin and destination and is free to choose any available

routes to reach its destination.

5.2 Problem Formulation

This section’s traffic assignment problem is formalized based on the road network, as

mentioned in Chapter 2. It is worth mentioning that both macro-level (Chapter 2.2) and

Meso-level(Chapter 2.3) road network models can be used in this chapter. However, to

simplify the representation, we only use the macro road network model G = (N,P ),

where N is a set of positions and P is a set of roads, to formalize the traffic assignment

problem in this chapter. Note that we use the symbol P to represent a set of edges

instead of E in this section to avoid confusion with Euler’s number e.

In any given road network G = (N,P ), each road p ∈ P has a traffic capacity Φp ∈

R, which represents the maximum number of vehicles that can pass the road in an
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hour, assuming “traffic flow is not so great as to cause unreasonable delay, hazard or

restriction to the driver” [Olcott, 1955, Schleicher et al., 2011]. This definition of

traffic capacity is also known in the literature as the practical capacity.

The traffic assignment problem is formalized as a congestion game, a type of game

proposed by Rosenthal [1973]. In a congestion game, each player’s payoff depends

on the resources it chooses and the number of players choosing the same resource.

However, the payoff function is not player specific. Formally, a congestion game is

defined as follows:

Definition 5.1. [Rosenthal, 1973]A congestion game is a tuple (V,R, (Si)i∈V ), where

• V = {1, . . . , v} is a set of players.

• R = {1, . . . ,m} is a finite set of resources.

• Each Si is the set of pure strategies of player i ∈ V , where each pure strategy

si ∈ Si is a subset of R (i.e. si ⊆ R).

The cost of each player i ∈ V is πi(s) =
∑
r∈si

cr(s), where s = (s1, · · · , si, . . . , sv) is

the strategy profile, and cr(s) = |{r | ∃i ∈ V : r ∈ si}| is the number of players that

have chosen to use resource r in the strategy profile s.

It is worth mentioning that every congestion game has at least one pure-strategy Nash

equilibrium [Rosenthal, 1973].

5.2.1 Origin-destinations and routes

Next, we define O ⊆ N as a set of origin positions and D ⊆ N as a set of destination

positions. An origin-destination is a pair of positions that describe the road network’s

starting and end positions. Formally, we have
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Definition 5.2. Given a road network G = (N,P ), an origin-destination (o, d) ∈

O ×D is a pair of positions, where d ̸= o, and OD = {(o1, d1), . . . , (oi, di),

. . . , (ok, dk)} is a set of all possible origin-destinations on the road network G.

An origin-destination represents the start point and the end point of a vehicle. For

example, using a map of Australia, an origin-destination could be Sydney-Melbourne

or Sydney-Canberra. Furthermore, we simply refer to an origin-destination (oi, di) as a

subscript i ∈ [1, k].

A route γ, for a given origin-destination (oi, di), is a simple path in the graph (no cycles)

that links its origin oi to its destination di. Formally, we have the following definition

of a route in a road network.

Definition 5.3. Given a road network G = (N,P ). A route γ, for a given origin-

destination (oi, di) is a sequence of roads p1 → · · · → pm that links origin oi to desti-

nation di, where

• px ∈ P for all 1 ≤ x ≤ m;

• p1 = (oi, n
′) and pm = (n′′, di);

• px ̸= py for any x ̸= y.

• If px−1 = (n, n′), then px = (n′, n′′) for any 1 < x ≤ m, where n, n′, n′′ ∈ N ;

The first condition shows that any edges on a route must exist in the graph, while the

second condition defines a route from origin to destination. The following condition is

discussed in which a route is a simple path in graph theory. The last condition states

that two adjacent edges on a route must be connected. Furthermore, let Γi denote all

possible routes for (oi, di) and Γ =
⋃

i∈[1,k] Γi define all possible routes according to the

given topology of the road network G. We assume that for any i ∈ [1, k], Γi ̸= ∅. It

is worth mentioning that the road network model in this chapter is a generalized model

that can express the road network on a large scale and describe the road network within

a specific region.
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5.2.2 Vehicles, traffic demand and traffic flow

Vehicles are road users. Each vehicle has its origin and destination to travel by selected

route. Formally, we specify the information of vehicles with the following concepts.

Definition 5.4. Given a road network G = (N,P ), the information of vehicle v is

represented by a tuple (ov, dv, γv), where

• ov ∈ O is the origin position of vehicle v;

• dv ∈ D is the destination of vehicle v;

• γv ∈ Γ(ov ,dv) is the route selected by vehicle v.

Furthermore, we assume that vehicles do not have special routing preferences except

travel time to reach their destination. For simplicity, we regroup all vehicles traveling

between the ith origin-destination as a set of vehicles Vi = {v : ov = oi, dv = di}, and

define V =
⋃

i∈[0,k]
Vi as all vehicles on the road network G. For each origin-destination

(oi, di), we define the traffic demand ri = |Vi| to be the total number of vehicles per

hour that travel between oi and di.

Definition 5.5. A traffic flow f : Γ → R+ is a function that maps each route γ to a

positive number representing the traffic volume of that route, measured in the number

of vehicles per hour.

To simplify the notation, we use fγ as a shorthand for f(γ). We say that a flow f is

feasible if and only if it satisfies
∑

γ∈Γi
f(γ) = ri for all i ∈ [1, k], and let F denote all

feasible flows. Furthermore, we define fp =
∑

γ∈Γ:p∈γ
fγ as the traffic flow of the road p

for a feasible flow f .

5.2.3 Cost functions and social cost

Each road has a cost function that takes the traffic rate of that road as its input and

outputs the travel time (in seconds) for a vehicle on that road.
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Definition 5.6. Given a road network G = (N,P ). For each road, p ∈ P , a cost

function lp : R → R is a function that takes traffic flow as input and outputs the travel

time on that road.

For obvious reasons, the cost function should be non-negative, differentiable, and non-

decreasing; more traffic leads to more congestion on roads and, thus, higher travel times.

We use L to denote the set of all possible cost functions, and, for some given road

network G, we use l : P → L to indicate the function that maps each road p to its

corresponding cost function lp. The travel time of a route γ ∈ Γ by a feasible traffic

flow f ∈ F can be calculated by the sum of the travel time of the edges contained in the

route, indicated by lγ(f) =
∑

p∈Γ lp(fp). The cost of the vehicle is the travel time of the

route it has selected. It should be noted that the travel time for each route is the average

travel time of all cars that use the route. Furthermore, we define C(f) =
∑
γ∈Γ

lγ(fγ)fγ

as the social cost incurred by feasible flow f , which is the total travel time of the traffic.

By adding roads in a route γ and reversing the order of summation, we can rewrite

C(f) =
∑
γ∈Γ

lγ(fγ)fγ =
∑
p∈P

lp(fp)fp. (5.1)

Definition 5.7. An instance of the traffic assignment problem is now defined as a tuple

(G, r⃗, L), where

• G = (N,P ) is road network.

• r⃗ = (r1, . . . , rk) is a tuple containing the traffic demand ri of each origin-destination

(oi, di)

• L : P → L is a set of cost functions, one for each road p.

5.2.4 User equilibrium

In the field of transportation, Wardrop’s first principle, also known as user equilibrium,

has been accepted as a simple and sound conduct principle to explain the distribution
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of traffic among alternative routes due to congestion. Traffic flows that adhere to this

principle are referred to as user equilibrium flows since each user chooses the best route.

Intuitively, each vehicle travels along the route with the minimum travel time. Other-

wise, this vehicle would re-select another route with a shorter travel time. The user

equilibrium flow is the result of purely self-interested decision-making. Formally, the

user equilibrium is defined as follows:

Definition 5.8. [Roughgarden and Tardos, 2002a] A feasible flow for instance (G, r⃗, L)

is a user equilibrium (UE) flow if for all i ∈ [1, k], all γ1, γ2 ∈ Γi with fγ1 > 0 and all

η ∈ (0, fγ1), we have lγ1(f) ≤ lγ2(f
′), where

f ′
γ =


fγ − η if γ = γ1

fγ + η if γ = γ2

fγ if γ ̸∈ {γ1, γ2}

(5.2)

If all traffic is divided over the roads according to a UE flow, each vehicle cannot unilat-

erally change to a different route to obtain a shorter travel time. Letting η tend to 0, the

continuity and strictly monotonically of the cost latency functions give the following

practical proposition of a flow at user equilibrium.

Proposition 5.9. [Roughgarden and Tardos, 2002a] Given an instance (G, r⃗, L), a fea-

sible flow f ∈ F is a user equilibrium (UE) flow if and only if for any origin-destination

i ∈ [1, k] and any γ ∈ Γi with fγ > 0, we have lγ(fγ) ≤ lγ′(fγ′) for any γ′ ∈ Γi.

This means that when the traffic flow is at UE, for each origin-destination (oi, di), the

travel time along each route between oi and di that has a positive traffic flow is the

same. Formally, lγ(f) = lγ′(f) for all γ, γ′ ∈ Γi and i ∈ [1, k]. From existing work,

it is known that any traffic assignment problem in the form of a congestion game (See

Def.5.1) is a potential game [Monderer and Shapley, 1996], which is a game for which

the incentive of all players to change their strategy can be expressed using a single global

function called the potential function. It is well-known that for such games, there exists

at least one pure strategy user equilibrium [Sandholm, 2010].
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Specifically, the user equilibrium flow of an instance is a traffic flow that minimizes

the potential function, which can be calculated from a non-linear program [Sandholm,

2001]. Although in this chapter, we will not discuss how to calculate the user equi-

librium flow in general. Furthermore, we note that if there exist two or more user

equilibrium flows f and f ′, then C(f) = C(f ′) for any instance (G, r⃗, L).

5.2.5 System optimum

A traffic flow is said to satisfy Wardrop’s second principle (also known as System Op-

timum) if the average travel time of a feasible flow is minimum, achieving the global

optimum of an instance (G, r⃗, L). In other words, the SO flow is a feasible flow with

minimal social cost C(SO) among all feasible flows. Note that a system optimum can

only be reached if all vehicles choose their paths cooperatively to ensure the most effi-

cient utilization of the system as a whole.

Definition 5.10. Given an instance (G, r⃗, L), a feasible flow f ∗ ∈ F is a system opti-

mum (SO) flow if and only if C(f ∗) = minf∈F C(f).

To explain how the minimal social cost can be calculated, we need the following defi-

nition.

Definition 5.11. For any cost function l its corresponding marginal cost function l∗ is

defined by l∗(x) := d
dx
(x · l(x)).

It is known from existing research [Beckmann et al., 1956, Dafermos and Sparrow,

1969, Roughgarden and Tardos, 2002a], that for any instance (G, r⃗, L) a flow f ∗ ∈ F

is an SO flow if and only if f ∗ is the UE flow for the corresponding instance (G, r⃗, L∗),

where L∗ : P → L is a function that maps each road p to a cost function l∗p, which is

the marginal cost function corresponding to lp. Therefore, we can get the SO flow of

instance (G, r⃗, L) by finding the traffic flow with the minimum value of the potential

function, for instance (G, r⃗, L∗).
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5.2.6 Price of anarchy

It is commonly known that when intelligent agents decide for themselves, the entire

network’s performance may suffer. The PoA is the ratio between the social cost of the

UE flow and the social cost of the SO flow.

Definition 5.12. Given an instance (G, r⃗, L), the price of anarchy (PoA) is defined as

PoA(G, r⃗, L) :=
C(UE)

C(SO)

It is worth mentioning that the PoA is a value greater than or equal to 1 because the

social cost of user equilibrium is greater than the cost of system optimization. A higher

value of the PoA represents a higher cost of self-determination. On the contrary, the

more value of the PoA converges to 1, the smaller the difference between the social

cost of global optimization and the social cost of the solution that appears from purely

self-interested decision-making.

5.3 Price of Anarchy with Exponential Cost Functions

In this section, we derive an expression for an upper bound of the PoA in the case where

all cost functions in the road network are exponential and show that this upper bound

is tight. Furthermore, we present another upper bound with a simpler expression that is

not tight.

5.3.1 Exponential Cost Function

In this chapter, we are interested in instances of the traffic assignment problem in which

each road has a cost function with exponential format (see Eq.(4.5)). Specifically, we

assume that for each road p ∈ P , the cost function can be expressed as:
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lp(fp) = aebfp + c (5.3)

We use Lexp to denote the set of all possible cost functions of the form (5.3). Further-

more, we use (G, r⃗, Lexp) to represent an instance with only exponential cost functions,

so Lexp : P → Lexp is a function that maps each road to an exponential cost function,

and we write lp instead of Lexp(p) in the rest of this chapter.

Furthermore, we note that an instance (G, r⃗, Lexp) with only exponential cost functions

has the special property of having a unique user equilibrium solution, as shown in the

following theorem.

Lemma 5.13. For any instance (G, r⃗, Lexp), there is a unique user equilibrium flow.

Proof. From existing work [Aashtiani and Magnanti, 1981, Konishi, 2004, Milchtaich,

2005], it is known that a unique user equilibrium flow exists for any instance with

monotonically increasing cost functions.

5.3.2 Anarchy value and price of anarchy

This subsection explores finding an upper bound of the PoA for instances with expo-

nential functions. We need to define the concept of the ‘anarchy value’ for each road.

The idea of anarchy value was proposed in [Roughgarden, 2003]. The motivation to

define the anarchy value is to find the worst-case ratio between the cost of UE flow and

SO flow for a given set of cost functions.

We should stress here, however, that our definition of ‘anarchy value’ is different from

the original one. The first main difference is that our definition depends on the traffic

demand r⃗ of the instance, while Roughgarden’s original definition took the supremum

over all possible values of the traffic demand. The motivation for this difference is that
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otherwise, the upper bound of the PoA would go to infinity in the case of exponen-

tial cost functions. Secondly, our definition assumes that traffic is at user equilibrium.

Formally, our definition of anarchy value is as follows.

Definition 5.14. Let (G, r⃗, Lexp) be an instance with exponential cost functions, and let

f denote its UE flow. Then the anarchy value ϕp(r⃗) of a road p is defined as follows:

ϕp(r⃗) := [λpµp + (1− λp)]
−1 (5.4)

where λp ∈ [0, 1] is the solution of the equation l∗p(λpfp) = lp(fp), and µp is defined as

µp :=
lp(λpfp)

lp(fp)
∈ [0, 1].

Note that the user equilibrium flow f depends on the traffic demand r⃗, so λp and µp

depend on r⃗, and therefore ϕp also depends on r⃗. We need the following lemma to show

that the anarchy value is well-defined.

Lemma 5.15. For any function l of the form of Eq.(5.3) and for any positive value

x ∈ R+, there is a unique value λ ∈ [0, 1] that solves the equation l∗(λx) = l(x)

(where l∗(·) is the marginal cost function of l(·), see Def. 5.11)

Proof. Secondly, we note that l and l∗ are monotonically increasing on the domain

x > 0. The idea is then to show that l∗(0) = l(0) ≤ l(x) ≤ l∗(x) is true for any positive

x. It is easy to see that, indeed, we have l∗(0) = a + c = l(0). Furthermore, since l

is monotonically increasing, we have l(0) ≤ l(x). And finally, since a, b and x are all

non-negative, we have:

l(x) = aebx + c ≤ aebx + abxebx + c = l∗(x)

Since l and l∗ are monotonically increasing and l∗(0) = l(0), it is now easy to see that

there exists a unique value x′ ≤ x such that l∗(x′) = l(x). Then, we can simply define

λ := x′

x
∈ [0, 1], so that indeed we have l∗(λx) = l(x).
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This lemma shows that λp and µp of Def. 5.14 are well-defined. We now define

ϕ(Lexp) := maxp∈P ϕp(r⃗) as the anarchy value of the instance (G, r⃗, Lexp). Next, we

need the following lemmas from [Roughgarden, 2003] to derive the main results of this

chapter.

Lemma 5.16. [Roughgarden, 2003]Let f and f ∗ be UE flow and SO flow, respectively,

for instance (G, r⃗, Lexp). For a road p, let λp ∈ [0, 1] solve l∗p(λpfp) = lp(fp). Then,

C(f) ≥
∑
p∈P

[lp(λpfp) · λpfp + (f ∗
p − λpfp)lp(fp)]

Proof. See page 11 in [Roughgarden, 2003]

Lemma 5.17. [Roughgarden, 2003]Let f be UE flow and f ∗ be a feasible flow for

instance (G, r⃗, Lexp). Then,

∑
p∈P

lp(fp)fp ≤
∑
p∈P

lp(fp)f
∗
p

Proof. See page 12 in [Roughgarden, 2003]

With all of the preliminaries now in place, we can show the relationship between the

anarchy value and the PoA of an instance (G, r⃗, Lexp) in the following Lemma. It is

worth mentioning that this Lemma is largely copied from [Roughgarden, 2003] with

only a small adaption for my alternative definition of ’anarchy value’.

Lemma 5.18. For any instance (G, r⃗, Lexp), we have:

PoA(G, r⃗, Lexp) ≤ ϕ(Lexp)

Proof. Let f and f ∗ be user equilibrium flow and system optimum flow, respectively,

for the given instance (G, r⃗, Lexp). By combing the lemma 5.16 and lemma 5.17, it is

easy to rewrite the social cost of SO in a form that is easier to relate to the social cost of

UE as follows:
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C(f ∗) ≥
∑
p∈P

[lp(λpfp)λpfp + (fp − λpfp)lp(fp)]

≥
∑
p∈P

[µpλp + (1− λp)]lp(fp)fp

(5.5)

with λp, µp and fp as in Def. 5.14. Thus, we can rewrite this inequality as follows.

C(f ∗) ≥
∑
p∈P

lp(fp)fp
[µpλp + (1− λp)]−1

=
∑
p∈P

lp(fp)fp
ϕp(r⃗)

≥
∑

p∈P lp(fp)fp

maxp∈P ϕp(r⃗)
=

C(f)

ϕ(Lexp)

(5.6)

Eq. (5.6) leads to

PoA(G, r⃗, Lexp) =
C(f)

C(f ∗)
≤ ϕ(Lexp) (5.7)

From Lemma 5.18, we see that the PoA of any instance is always less than or equal to

the maximum anarchy value among all roads in that instance.

5.3.3 The Lambert W function

Before continuing with the rest of this chapter, we here need to briefly discuss the

Lambert W function [Corless et al., 1996]. For any positive real number x, the value

W (x) ∈ R is defined as the unique real number that satisfies:1

W (x)eW (x) = x (5.8)

The Lambert W function is monotonically increasing and satisfies the following well-

known properties [Hoorfar and Hassani, 2007, Weisstein, 2002], which will be useful

1For real numbers x ∈ [− 1
e , 0] this equation has two solutions, which are denoted as W−1(x) and

W0(x) respectively. Still, because we are not interested in a negative value of x (not only in this chapter),
we are not interested in such values.
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to us later on:

W (e) = 1 (5.9)

d

dx
W (x) =

W (x)

x · (1 +W (x))
(5.10)

For any x ≥ e:

log(x)− loglog(x) ≤ W (x) ≤ log(x)− 1

2
loglog(x) (5.11)

5.3.4 Upper bound of the PoA

At this point, we have defined all the concepts required to calculate our upper bound

of the PoA on the set of all instances (G, r⃗, Lexp) with exponential cost functions. We

present this upper bound below, in Theorem 5.22, which depends on two more lemmas.

Lemma 5.19. For any instance (G, r⃗, Lexp), let f denote its UE flow and x = fp is the

UE flow of the road p. The anarchy value ϕp(r⃗) of any road p ∈ P with cost functions

of the form l(x) = aebx + c, where a, b, and c are non-negative coefficients, satisfies the

following:

ϕp(r⃗) ≤
bx

bx+ 2−W (ebx+1)− 1
W (ebx+1)

(5.12)

where W (·) is the Lambert W function.

Proof. Recall that the anarchy value is defined as ϕ(r⃗) = [λµ + (1 − λ)]−1, and to

calculate λ we have to solve l∗(λx) = l(x). That is, we have to solve:

aeλbx + aλbx · eλbx + c = aebx + c (5.13)
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Subtracting c from both sides and then dividing by a into both sides, we get the follow-

ing.

eλbx + λbx · eλbx = ebx

(1 + λbx) · eλbx = ebx

(1 + λbx) · eλbx+1 = ebx+1

Next, if we replace (λbx + 1) by δ, then we get δ · eδ = ebx+1, which can be solved

using the Lambert W function. This gives us: δ = W (ebx+1). Now, if we substitute

back λbx+ 1 for δ, and solve for λ, then we get:

λ =
W (ebx+1)− 1

bx
(5.14)

Next, recall that µ was defined as l(λx)
l(x)

, so we have:

µ =
aeλbx + c

aebx + c

We note that µ therefore satisfies the following:

µ ≥ aeλbx

aebx
= e(λ−1)bx (5.15)

Plugging these expressions (5.14) and (5.15) for λ and µ back into [λµ+(1−λ)]−1, we

obtain:

ϕ(r⃗) = [λµ+ (1− λ)]−1

≤ [
W (ebx+1)− 1

bx
· e(

W (ebx+1)−1
bx

−1)·bx + 1− W (ebx+1)− 1

bx
]−1

= [
W (ebx+1)− 1

bx
· e(W (ebx+1)−1−bx) +

bx

bx
− W (ebx+1)− 1

bx
]−1

=
bx

(W (ebx+1)− 1) · e(W (ebx+1)−1−bx) + bx− (W (ebx+1)− 1)

We see from Eq. (5.8) that for any x > 0 we have eW (x) = x
W (x)

, so we have
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eW (ebx+1)−1−bx =
ebx+1

W (ebx+1)
· e−1−bx =

1

W (ebx+1)

From this, we get the following:

ϕ(r⃗) ≤ bx

(W (ebx+1)− 1) · 1
W (ebx+1)

+ bx− (W (ebx+1)− 1)

=
bx

bx+ 2−W (ebx+1)− 1
W (ebx+1)

(5.16)

This lemma shows an upper bound of the anarchy value for a road p. The following two

lemmas give us a better idea of how the expression at the end of Eq.(5.16) behaves.

Lemma 5.20. The following equation holds: limx→0
x

x+2−W (ex+1)− 1
W (ex+1)

= 1

Proof. Instead of proving this directly, we will prove the ‘reversed’ equation, which is

equivalent:

lim
x→0

x+ 2−W (ex+1)− 1
W (ex+1)

x
= 1 (5.17)

This means we need to prove the following:

lim
x→0

2−W (ex+1)− 1
W (ex+1)

x
= 0 (5.18)

Now, note that since limx→0W (ex+1) = 1, we can multiply this by W (ex+1). So,

equivalently we can prove the following:

lim
x→0

2 ·W (ex+1)−W (ex+1)2 − 1

x
= 0 (5.19)
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Note that, in this equation, the limit of both the numerator and the denominator is 0, so

we can calculate this limit using L’Hopital’s rule. Indeed, using equation 5.10 we get:

lim
x→0

2W (ex+1)−W (ex+1)2 − 1

x
= lim

x→0

d
dx
(2W (ex+1)−W (ex+1)2 − 1)

d
dx
x

= lim
x→0

d
dx
(2W (ex+1)−W (ex+1)2 − 1)

1

= lim
x→0

d

dx
(2W (ex+1)−W (ex+1)2 − 1)

= lim
x→0

2W (ex+1)

W (ex+1) + 1
− 2W (ex+1)2

W (ex+1) + 1

= 0

(5.20)

Lemma 5.21. The expression x
x+2−W (ex+1)− 1

W (ex+1)

is monotonically increasing for x >

0.

Proof. To prove this, we calculate its derivative and show that it is non-negative for any

positive x.

d

dx

x

x+ 2−W (ex+1)− 1
W (ex+1)

=
(x+ 1−W (ex+1)) · (W (ex+1)− 1) ·W (ex+1)

(W (ex+1)2 − (x+ 2) ·W (ex+1) + 1)2

(5.21)

It is easy to see that the denominator is non-negative. For the numerator, we divide

into three parts, x + 1 −W (ex+1), W (ex+1) − 1, and W (ex+1). Since the Lambert W

function is monotonically increasing and W (e) = 1, we can easily see that W (ex+1)−1

and W (ex+1) are both non-negative. For the remaining expression, we note that it is 0

when x = 0, and that (by Eq.(5.10)) we have

d

dx
(x+ 1−W (ex+1)) =

1

W (ex+1) + 1
≥ 0
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From this, it follows that x + 1 −W (ex+1) is also non-negative for any positive value

of x.

The following Theorem gives us an upper bound for the PoA of any instance (G, r⃗, Lexp)

with exponential cost functions. We first need to introduce the following notation: r̂ :=∑
i∈[1,k] ri and b̂ := maxp∈P bp.

Theorem 5.22. For any instance (G, r⃗, Lexp) with exponential cost functions, the price

of anarchy satisfies the following.

PoA(G, r⃗, Lexp) ≤
b̂r̂

b̂r̂ + 2−W (eb̂r̂+1)− 1

W (eb̂r̂+1)

(5.22)

Proof. We know from Lemma 5.18 that:

PoA(G, r⃗, Lexp) ≤ ϕ(Lexp) = max
p∈P

ϕp(r⃗)

Then we know from Lemma 5.3.4 that ϕp(r⃗) can be replaced by the right-hand side of

Eq. (5.12). Furthermore, thanks to Lemma 5.21 and the fact that fp ≤ r̂ we can replace

fp by r̂. Similarly, again due to Lemma 5.21 and the fact that bp ≤ b̂, we can remove the

maximization over p ∈ P and instead replace bp by b̂. Hence, we obtain Eq. (5.22).

5.3.5 Tightness of the upper bound

The following Theorem shows that the expression we presented in Theorem 5.22 is, in

fact, a tight upper bound for the set of all instances with exponential functions.

Theorem 5.23. For any positive numbers b̂ and r̂, there exists an instance (G, r⃗, Lexp)

with exponential cost functions, for which PoA(G, r⃗, Lexp) is exactly equal to

b̂r̂

b̂r̂ + 2−W (eb̂r̂+1)− 1

W (eb̂r̂+1)

(5.23)
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FIGURE 5.1: A variation of Pigou’s example

Proof. We prove this theorem using a simple road network which is an adaptation of a

road network known as Pigou’s example [Pigou and Aslanbeigui, 2017], displayed in

Fig 5.1. The network (a) in this figure is the network for which we will calculate the

PoA. We can choose any arbitrary number r as the traffic demand for this network (that

is, r⃗ = (r)). The network (b) is the same, but with the cost, functions replaced by their

corresponding marginal cost functions. To calculate the PoA of the network (a), we

first need to calculate its UE flow. As explained above, to do this, we need to set the

latency lp′ of the lower road p′ equal to the latency lp of the upper road p. That is, we

need to solve the equation ebr = ebx, which leads to x = fp′ = r. This means that all

traffic is choosing the lower road p′. The total cost C(UE) is then given by:

C(UE) = fp′ · lp′(fp′) = r · lp′(r) = r · ebr

Next, we need to calculate the SO flow for network (a), which equals the UE flow of

network (b). Therefore, we need to set the latency of the two roads in the network (b)

equal. That is, we need to solve: ebr = ebx(bx + 1), for which the solution is given by:

x = W (ebr+1)−1
b

.This means that in SO, the total number of vehicles choosing the lower

road is given by fp′ =
W (ebr+1)−1

b
and the total number of vehicles choosing the upper
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road is fp = r − W (ebr+1)−1
b

. The total cost of C(SO) for all vehicles is then given by:

C(SO) = fp · lp(fp) + fp′ · lp′(fp′)

=
W (ebr+1)− 1

b
· eW (ebr+1)−1 + (r − W (ebr+1)− 1

b
) · ebr

where p is the upper road of the network and p′ is the lower road. Combining these two

results, we get:

PoA =
r · ebr

W (ebr+1)−1
b

· eW (ebr+1)−1 + (r − W (ebr+1)−1
b

) · ebr

=
br · ebr

(W (ebr+1)− 1) · eW (ebr+1)−1 + (br −W (ebr+1) + 1) · ebr

From Eq. (5.8) we see that for any x > 0 we have eW (x) = x
W (x)

, so we have

eW (ebr+1)−1 =
ebr+1

e ·W (ebr+1)
=

ebr

W (ebr+1)
(5.24)

.

Using this, we get the following:

PoA =
br · ebr

(W (ebr+1)− 1) · ebr

W (ebr+1)
+ (br −W (ebr+1) + 1) · ebr

=
br

(W (ebr+1)− 1) · 1
W (ebr+1)

+ (br −W (ebr+1) + 1)

=
br

br + 2−W (ebr+1)− 1
W (ebr+1)

Finally, since this example only had one value bp and one value ri, we have b̂ = b and

r̂ = r, so we indeed have obtained the expression mentioned in the theorem.
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5.3.6 Alternative upper bound

The tight upper bound we presented in Theorem 5.22 has a rather complex expression.

Therefore, we will now derive two simpler expressions that form a lower- and upper-

bound for this expression. It shows that the original function grows less than linearly as

a function of b̂ and r̂.

Lemma 5.24. For any non-negative x, we have

x

log(x+ 1)
≤ x

x+ 2−W (ex+1)− 1
W (ex+1)

≤ 2x

log(x+ 1)

Proof. Since x is non-negative we have ex+1 ≥ e, so we can substitute ex+1 for x in Eq.

(5.11) and obtain:

x+ 1− log(x+ 1) ≤ W (ex+1) ≤ x+ 1− 1

2
log(x+ 1)

From this, we get the following:

x

x+ 2−W (ex+1)− 1
W (ex+1)

≤ x
1
2
log(x+ 1) + 1− 1

x+1−log(x+1)

≤ 2x

log(x+ 1)

(5.25)

where we used the fact that 1
x+1−log(x+1)

< 1, and we get:

x

x+ 2−W (ex+1)− 1
W (ex+1)

≥ x

log(x+ 1) + 1− 1
x+1− 1

2
log(x+1)

≥ x

log(x+ 1)

(5.26)

where we used the fact that 1
x+1− 1

2
log(x+1)

< 1.
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It is worth mentioning that the functions in Eq. (5.25) and Eq. (5.26) are monotonically

increasing for non-negative x. From Lemma 5.24, we can easily get the following

theorem.

Theorem 5.25. For any instance (G, r⃗, Lexp) with exponential cost functions, its price

of anarchy satisfies:

PoA(G, r⃗, Lexp) ≤ 2b̂r̂

log(b̂r̂+1)

Proof. This is simply a combination of Theorem 5.22 and Lemma 5.24

5.4 Comparing with the Upper Bound for BPR func-

tions

In this section, we claim that the PoA is lower under realistic circumstances when roads

have exponential cost functions than BPR cost functions. We assume this value is the

same for every road p, denoted by Φ. Note that by the definition of traffic capacity, in

the real world, the actual traffic flow cannot exceed the traffic capacity by much.

As explained above, the most common cost function used in the literature is the Bureau

of Public Roads (BPR) function [Bureau of Public Roads, 1964], which has the form

l(f) = t0(1 +m · ( f
Φ
)n). (5.27)

where t0 is the free-flow travel time. It is known from the literature [Roughgarden,

2003] that a tight upper bound ˆPoABPR for the PoA over the set of all instances where

the cost functions are BPR functions with the degree at most n̂ is given by:

ˆPoABPR = (1− n̂(n̂+ 1)−
n̂+1
n̂ )−1 (5.28)
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In the next section, we will show that if we try to model the true cost functions of a

real-world road network using BPR functions or by using exponential cost functions,

then the respective values of Φ, b̂, and n̂ that we get will typically satisfy Φ · b̂ ≤ n̂,

which is an essential assumption for the rest of this section.

We are now ready to state our main claim in this section. A formal proof of this conjec-

ture is left as future work.

Conjecture 5.26. Given a road network G and any traffic demand r⃗, we have (G, r⃗, LBPR)

and (G, r⃗, Lexp). If Φ · b̂ ≤ n̂ and f ∗
p ≤ Φ for all p ∈ P (where f is the equilibrium flow

of the instance with exponential functions), then PoA(G, r⃗, Lexp) ≤ ˆPoABPR.

Proof Idea: We know from Lemma 5.18 that:

PoA(G, r⃗, Lexp) ≤ ϕ(Lexp) = max
p∈P

ϕp(r⃗)

Combining this with Eq.(5.12) and Lemma 5.21, we get

PoA(G, r⃗, Lexp) ≤
β

β + 2−W (eβ+1)− 1
W (eβ+1)

where β = maxp∈P bpf
∗
p , and from Eq.(5.28 we know that

ˆPoABPR ≤ (1− n̂(n̂+ 1)−
n̂+1
n̂ )−1

Due to the assumption that fp ≤ Φ, we have bp · fp ≤ bpΦ and therefore β ≤ b̂ · Φ.

Then, since we also assumed that Φ · b̂ ≤ n̂ we have β ≤ n̂. So, by Lemma 5.21 we

have

β

β + 2−W (eβ+1)− 1
W (eβ+1)

≤ n̂

n̂+ 2−W (en̂+1)− 1
W (en̂+1)

(5.29)
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We then only need to show that, for any positive n̂, we have

(1− n̂(n̂+ 1)−
n̂+1
n̂ )−1 − n̂

n̂+ 2−W (en̂+1)− 1
W (en̂+1)

≥ 0 (5.30)

Rather than formally proving this inequality, we argue that it is true by showing a plot

of the left-hand side of Eq. (5.30). This plot is displayed in Fig 5.2. The graph on the

left shows a range of n̂-values of 0 − 10, and the graph on the right shows a range of

n̂-values of 0− 100.

FIGURE 5.2: Plot Results for Conjecture 5.26

5.5 Summary

Traffic assignment with selfish routing is inefficient because it generally does not achieve

the optimal solution that could be achieved if all vehicles cooperated. The price of anar-

chy describes this inefficiency. The traditional approach to calculating the upper bound

of the PoA upper bound uses different cost functions, such as linear function and poly-

nomial function, for simplification. The resulting expression for the upper bound of the

PoA depends on the exponent of the cost functions.

This chapter focused on the tight upper bound of the PoA in road networks using ex-

ponential cost functions and discussed the changes in the tight upper bound due to

changes in traffic demand. For realistic cases, traffic demand cannot be much greater
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than capacity, so we compare the trend of the PoA as a function of traffic demand when

the road network topology is fixed, with the cost functions being exponential or BPR

functions. And the results show that when the traffic rate is lower than capacity, using

the exponential cost function yields a tight upper bound for the PoA that is lower than

the BPR cost function. The conjecture mentioned in this chapter is not mathematically

proven, and the more formal theoretical proof is an aspect of future work. Second, ex-

tending the exponential function to a wider range of application scenarios is the focus

of future work. In addition, more research on PoA can be considered instead of simply

considering traffic scenarios.



Chapter 6

A Hybrid Model of Traffic Assignment

and Control for Autonomous Vehicles

In the previous chapters, we introduced road networks, the traffic assignment problem,

and traffic management protocols. Autonomous vehicles in our model are assumed

to make self-interested decisions, like human drivers, who only consider their inter-

ests, such as how to reach their destination in the shortest possible time. This chapter

proposes a multi-agent based method to describe traffic control optimization for au-

tonomous vehicle assignment problems on road networks. We extend the road network

model into a game-theoretical model based on population games to describe the be-

haviour of autonomous vehicles under intelligent traffic control. Based on this model,

we investigate a traffic control optimization problem that aims to improve the efficiency

of road networks and provides an algorithm to find an approximate solution.

6.1 Introduction

Traditional traffic control systems continue to suffer from several well-known flaws [Dja-

hel et al., 2014]. Current traffic control systems show ineffective time management at

117
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intersections, requiring vehicles to wait unnecessarily, resulting in congestion, pollu-

tion, and additional delays, among other things. Americans travel nearly 3 trillion miles

a year, meaning the number of hours spent in traffic worldwide increases dramatically.

With more than 3,000 people dying daily, driving can be dangerous, and most accidents

result from human error [Administration et al., 2016].

The most common traffic control protocols on major roads are based on traffic lights.

The first versions of these traffic signal systems assigned a fixed time for each traffic

light to turn green, regardless of the number of vehicles or traffic density in the corre-

sponding lane. However, as technology advanced, these traffic signal systems started to

consider different parameters, such as a distinction between day and night or between

peak and off-peak periods, to determine the ratio between time in green and time in

red. Some vision-based traffic management systems [Esteve et al., 2007, Javaid et al.,

2018, Reza et al., 2021] use vision sensors to capture the flow of cars from different di-

rections. To the best of our knowledge, these advanced management approaches target

individual intersections and do not synergize with other intersections. Some roads may

be busier than others at different times, which requires additional time to clear conges-

tion on the road. An in-depth study of autonomous vehicle traffic management is in

high demand. Almost all current road infrastructures and traffic control technologies

depend on human driving [Wagner, 2016]. Even self-driving cars are being trained to

recognize human-oriented traffic signs and mimic human driving behaviors, which is

by no means necessary for an efficient or reliable traffic management system.

Optimizing traffic control for autonomous vehicles has been studied for many years.

These studies range from optimizing vehicle routing to matching traffic control [Liard

et al., 2020, Xu et al., 2012, You et al., 2019]. Others have proposed new traffic con-

trol methods to make autonomous vehicles more efficient [Chen et al., 2021, Dresner

and Stone, 2008b, Fernandes and Nunes, 2010]. Furthermore, some articles optimize

existing traffic management protocols to adapt to changes in traffic flow [Sun et al.,

2020, Wu et al., 2022]. Traditional vision-based traffic control facilities, such as traf-

fic lights, roundabouts, and stop signs, will likely be replaced by less visible but more
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efficient and effective algorithm-controlled road facilities as new technologies emerge

for vehicle-based communication and intelligent traffic control [Gruel and Stanford,

2016]. With the arrival of autonomous vehicles, better solutions have become neces-

sary for intelligent traffic management systems that use the most advanced technologies

[Campisi et al., 2021]. Optimizing traffic control based on vehicle decisions has been

an ongoing challenging problem.

This chapter presents a formal method to optimize traffic control with fully autonomous

vehicles by combining a nonlinear optimization problem and a game-theoretical ap-

proach. Since we assume that the vehicles make autonomous self-interested decisions,

we use a game-theoretical model based on population games and congestion games

to describe the behavior of the vehicles. We then assume that an independent agent,

which we call the intersection manager, has control over all intersections by dynam-

ically changing their respective traffic management protocols. The goal of this inter-

section is to minimize the total delay of all vehicles. Specifically, we formalize this

scenario as a traffic control optimization problem.

We have created a simple simulation environment in Aimsun, which is commercial soft-

ware that provides simulation and services for transportation planning and traffic man-

agement [Ims and Pedersen, 2021]. We provide an algorithm using Aimsun to find ap-

proximate optimization solutions for traffic control protocols. Our proposed algorithm

can successfully reduce the delay in the road network caused by static traffic assign-

ment and traffic setting based on the traffic flow distribution generated by static traffic

assignment, as demonstrated by the test results.

6.2 Traffic Network Game

This section presents the formal definition of a traffic network game. In this model, we

consider the cost of the vehicle as the time the vehicle is driving along a road, as well

as the time it takes for the vehicle to wait at the intersections it goes through. Unlike
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the traffic assignment model (see Section 5.2) in Chapter 5, we consider the change

of the intersection management strategy in this chapter and optimize the management

approach for the route choice of vehicles.

A traffic network game is a model that describes the behavior of autonomous vehicles

on a road network with intelligent traffic control. Each vehicle has a fixed origin and

destination but can choose which road it will take to reach its destination. Some of the

concepts from chapters 2, 3, and 4 are recalled and expanded here to make this chapter

easy to follow.

6.2.1 Road network and traffic management protocols

As we mentioned in Chapter 2, the macro-level road network model (see Section 2.2)

has a limit to describe traffic protocols, and the meso-level road network model we

mentioned in Section 2.3 compensates for this drawback. The road network models

and related concepts mentioned in this chapter are extended from the meso-level road

network model. In this subsection, we briefly outline the road network model and the

traffic assignment problem.

Given a meso-level road network G = (N,L), an origin-destination (oi, di) is a pair

of intersections. I = {(o1, d1), . . . , (oi, di), . . . , (ok, dk)} is the set of all possible origin-

destinations on the road network G (see Def 5.2). We simply write an origin-destination

(oi, di) as a subscript i ∈ I . For each origin-destination i, let Γi = {γ1, . . . , γmi} denote

a set of all paths from oi to di in G, where mi is the total number of such paths. From

now on, we will refer to such paths as routes. Formally, we define a route as follows:

Definition 6.1. Given a meso-level road network G = (N,L) and its intersection re-

lations (Cn, Zn)n∈N . For each origin-destination (n, n′) ∈ P and n′′, n′′′ ∈ N , a

route γ is a sequence (l, l′′) → c1 → · · · cm−1 → (l′′′, l′), where l, l′, l′′, l′′′ ∈ L,

l = (n, n′′, i) and l′ = (n′′′, n′, j), and satisfies for any u with 0 ≤ u ≤ m − 1, such
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that tail(cu) = head(cu+1), where head(c) = l and tail(c) = l′ for any connection

c = (l, l′) ∈ Cn.

Γ =
⋃

i∈I Γi defines all possible routes on the road network, and the total number of

routes for all origin-destination pairs is denoted by m =
∑
i∈I

mi. We assume that Γi ̸= ∅

for all i ∈ I .

For each origin-destination pair, a population of vehicles must travel from that origin to

that destination. To simplify matters, we will not regard vehicles as discrete, countable

objects but rather as a continuous quantity (like a liquid). For any origin-destination

pair, i ∈ I , the value vi > 0 represents the vehicle ‘density’. That is the number of

vehicles that travel from oi to di per unit of time.

Intuitively, the traffic management protocols of an intersection on a road network can

be interpreted as the proportion of allocation of all connections per time unit from a

macro-perspective in our road network model. For example, at an intersection under the

management of traffic lights, the difference in the allocation proportion leads to changes

in the green light time of that connection per unit time for each intersection connection.

Obviously, the longer the traffic light is green, the more traffic can pass through that

connection. Therefore, we can define an intersection’s traffic management protocol as

the allocation proportion to each intersection’s connection. Let Zn := Zn

⋃
{(c, c) :

c ∈ Cn}
⋃
{(c, c′′) : (c, c′), (c′, c′′) ∈ Zn} denote the reflexive and transitive closure of

Zn, so it forms an equivalence relation on Cn. For each c ∈ Cn, let [c] = {c′ ∈ Cn :

(c, c′) ∈ Zn} denote the equivalence class of c under Cn [Schechter, 1996]. Formally,

the traffic management protocol for an intersection is defined as follows.

Definition 6.2. Given a meso-level road network G = (N,L) and its intersection re-

lations (Cn, Zn)n∈N . For each intersection n ∈ N , a traffic management protocol xn

for the intersection is a function xn : Cn → [0, 1] such that
∑
c′∈[c]

xn(c
′) ≤ 1, which

allocates a percentage of resources, such as time, flow, or capacity, to each connection

at the intersection.
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The condition shows that the sum of allocation proportion for all connections in the

same equivalence class must be less than or equal to the unit of time. If we consider the

traffic light as an example of the traffic management protocol at the intersection n, then

the value xn(c) represents the percentage of time that the traffic light for connection c

is green. Furthermore, let Xn be the set of all possible traffic management protocols

for intersection n. We assume that all intersections on a road network are controlled

by a single intersection manager device. This device focuses on reducing total delay

by changing the traffic management protocols of the road network. We define X =∏
n∈N

Xn = {x = (xn1 , . . . , xn|N|) ∈ [0, 1]σ : n ∈ N, xn ∈ Xn} as the set of traffic

settings, where σ =
∑
n∈N

|Cn| is the total number of connections in the road network. An

element of X represents a joint state used to describe intersection traffic management

protocols, one for each intersection.

6.2.2 Traffic network model

In this subsection, we use the defined road network model and traffic management pro-

tocol to describe the traffic network game model.

6.2.2.1 Players and strategy Space

In the traditional traffic assignment game model, the vehicle acts as a player while

its strategy is to choose the road to travel from its origin to its destination. But the

weakness is that the game model becomes very complex when the number of vehicles

is large enough. This thesis focuses on the macroscopic impact on the road network

when vehicles make their decisions. Therefore, to simplify the model, we combine all

vehicles with the same origin-destination into a single independent player, which aims

to assign individual vehicles to different routes. Therefore, the set of strategies for an

origin-destination pair i ∈ I is Si = {si ∈ Rmi
:
∑
γ∈Γi

siγ = vi}. The element siγ ∈ R+

represents the mass of vehicles in the origin-destination pair p choosing strategy γ ∈ Γi.
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Specifically, a strategy for a given player assigns a certain percentage of all vehicles to

each possible route. For example, it can assign 60% of the cars to route γ1 and 40% of

the cars to route γ2.

6.2.2.2 Strategy profiles

Let S =
∏
i∈I

Si = {s = (sp1 , . . . , si|I|) ∈ Rm : si ∈ Si} denote the set of strategy

profiles that describe the behavior of all players at once. Each strategy profile s is a

vector of vehicle mass distributions, one for each origin-destination. In a congestion

game (see Def.5.1, the cost of each player is influenced by the resources they select

and the number of other players who also select those resources. Next, we consider

connections as facilities for a congestion game. For each node n ∈ N , each connection

c ∈ Cn, fc(s) is the total mass of vehicles that use the connection c. That is, fc(s) is

determined from the strategy profile in the following way:

fc(s) =
∑
i∈I

∑
γ∈Γi

siγδc,γ (6.1)

where δc,γ is an indicator function that indicates whether a connection c is contained in

a route γ. That is, δc,γ = 1 if c ∈ γ; otherwise, δc,γ = 0.

6.2.2.3 Cost functions

Each connection (See Def 2.3) has a cost function dxc : R+ → R with the traffic flow

of connection fc(s), which is the total number of vehicles using the connection under

strategy profile s, by given traffic setting x. The cost of the vehicle is the travel time

on the route it takes, which is the sum of the delays on its constituent connections

(See Def 2.3) and the free-flow travel time of the route. The delay on a connection

depends on the number of vehicles that use that connection and the traffic management

protocol applied to the connection. Subsequently, the free-flow travel time of a route
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is a constant number that depends on that route’s length and speed limit. It is worth

mentioning that the route’s travel time does not represent the actual travel time for each

vehicle; however, it shows the average travel time for all vehicles that choose that route.

Formally, the cost for each route is calculated as follows:

F x
γ (s) =

∑
c∈γ

dxc (fc(s)) + Tc (6.2)

where x is a traffic setting and Tc is the free-flow travel time of connection c, which is

a constant number depending on the speed limit and length of the road. F x : S → Rm

is a continuous map that assigns each strategy profile s ∈ S to a vector of costs for a

given traffic setting x, one for each route in each origin-destination.

In summary, the traffic network game is defined as follows:

Definition 6.3. Given a road network G = (N,L) and its intersection relations (Cn, Zn)n∈N .

A tuple is called a traffic network game (I,Γ, X, S, (F x)x∈X), where

• I is the set of origin-destination pairs.

• Γ is the set of all routes.

• X is the set of traffic settings.

• S is the set of strategy profiles.

• F x : S → Rm is the cost function given the traffic setting x ∈ X .

6.2.3 User equilibrium

Next, we need to define the equilibrium strategy profile of the traffic network games.

Here, we recall Def 5.8 and Proposition 5.9 from Chapter 5 to define the user equi-

librium. Specifically, a user equilibrium strategy profile is obtained if no vehicle can
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reduce travel time with one-sided measures. Furthermore, we use the following lem-

mas to show the properties of traffic network games based on the concepts of pop-

ulation games [Sandholm, 2010], congestion games [Rosenthal, 1973], and potential

games [Monderer and Shapley, 1996].

Lemma 6.4. Given a traffic setting x, any traffic network game (I,Γ, {x}, S, F x) is a

congestion game.

Lemma 6.4 is trivial. Based on the definition of congestion game [Rosenthal, 1973],

the cost of each player depends on the facility it chooses and the number of players

who choose the same facility. In the traffic network game, we consider each origin-

destination p ∈ P to be a player and each connection c to be a facility. From the

definition of the cost function (2), the cost of a player depends only on the traffic flow

of the connections when the traffic setting x is given, which satisfies the definition of

the congestion game. We assume that for each intersection n ∈ N and each connection

c ∈ Cn, suppose g(s) = dxc (fc(s)), then g(s) is a continuously differentiable function,

and it satisfies the following properties:

• For any n ∈ N , c ∈ Cn and x ∈ X , if fc(s) ≤ fc(s
′), then dxc (fc(s)) ≤ dxc (fc(s

′))

for any s, s′ ∈ S;

• For any n ∈ N , c ∈ Cn and x1, x2 ∈ X , if x1
n(c) ≤ x2

n(c), then dx
1

c (fc(s)) ≥

dx
2

c (fc(s)) for any s ∈ S;

The first property says that for a fixed traffic setting x, if the number of vehicles fc(s)

that drive through connection c increases (or stays the same), then the delay at dxc (·) will

also increase (or stay the same. And the second property shows that for a connection c

at intersection n, if the traffic setting x1
n(c) is less than the traffic setting x2

n(c), then all

vehicles travel through connection c for the traffic setting x1 have more delay than the

traffic setting x2. That is, dxc (fc(s)) does not decrease with increasing fc(s) when x is

fixed, while it does not increase with increasing xn(c) when s is fixed.
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Lemma 6.5. Given a traffic setting x, the traffic network game (I,Γ, {x}, S, F x) is a

potential game.

Proof. It is easy to see that a game is a full potential game if and only if it satisfies

full externality symmetry(see observation 3.1.1 in [Sandholm, 2010]). In a congestion

game, a vehicle taking route γ ∈ Γq affects the cost of other vehicles choosing route

γ ∈ Γp through the marginal increases in congestion in the connections c ∈ γ
⋂
γ′ that

the two routes have in common. Formally, we have

∂F x
γ (s)

∂sqγ′
=

∑
c∈γ

⋂
γ′

dxc (fc(s))
′ =

∂F x
γ′(s)

∂spγ
(6.3)

for all p, q ∈ I, γ ∈ Γp, γ
′ ∈ Γq and s ∈ S. Eq. (6.3) satisfies full external symmetry,

which means that the traffic network game is a potential game in a given traffic setting x.

The Eq. 6.3 means that We can use the properties of the potential game to prove the

existence of a user equilibrium.

Theorem 6.6. Given a traffic setting x ∈ X , the traffic network game (I,Γ, {x}, S, F x)

has at least one user equilibrium strategy profile.

Proof. Based on Lemma 6.4 and Lemma 6.5, it is possible to find a potential func-

tion [Sandholm, 2010] for the congestion game (I,Γ, {x}, S, F x) as follows:

Fx(s) =
∑
γ∈Γ

∫ fc(s)

0

F x
γ (z)dz (6.4)

So the task of finding the user equilibrium can be considered as the following non-linear

optimization problem:

min
s∈S

Fx(s) (6.5)
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subject to: ∑
γ∈Γi

siγ = vi, ∀i ∈ I (6.6)

siγ ∈ [0, vi], ∀γ ∈ Γi & ∀i ∈ I (6.7)

According to Theorem 3.1.3 in [Sandholm, 2010], the solution to this non-linear prob-

lem is a user equilibrium.

For some given traffic network game, let UE (x) = {s ∈ S : i ∈ I, γ, γ′ ∈ Γi, s
i
γ > 0 →

F x
γ (s) ≤ F x

γ′(s)} denote all user equilibrium strategy profiles for a given traffic setting

x. We know from Theorem 6.7 that UE (x) ̸= ∅ for all traffic settings x ∈ X . Next,

we investigate an optimization problem to optimize traffic control for fully autonomous

vehicles based on the model proposed in this section.

6.3 Traffic Control Optimization

In this section, we first introduce an optimization problem that aims to reduce the total

delay of vehicles based on the traffic network game model. Then, we present algorithms

to find an approximate solution to this optimization problem. Lastly, we create a simple

test environment to verify our algorithms and show some results.

6.3.1 Optimization problem

The intersection manager aims to minimize the total delay caused by changing traffic

settings. To find the minimum total delay for the intersection manager, we can formalize

the problem as the following traffic control optimization problem:

min
x∈X,s∈UE(x)

∑
n∈N

∑
c∈Cn

fc(s)d
x
c (fc(s)) (6.8)
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subject to:

0 ≤ xn(c) ≤ 1 ∀c ∈ Cn & ∀n ∈ N (6.9)∑
c′∈Cn,s.t.c′∈[c]

xn(c
′) ≤ 1 ∀c, c′ ∈ Cn & ∀n ∈ N (6.10)

fc(s) ≥ 0 ∀c ∈ Cn & ∀n ∈ N (6.11)∑
γ∈Γi

siγ = vi ∀i ∈ I (6.12)

siγ ∈ [0, vi] ∀γ ∈ Γi & ∀i ∈ I (6.13)

The objective function Eq. (6.8) calculates the total delay of the road network. The

s ∈ UE (x) corresponds to the user equilibrium, which guarantees that no vehicle can

experience a shorter travel time by unilateral deviation in an optimized traffic setting.

The constraints Eq. (6.9)-(6.10) ensure the feasibility of traffic setting x. The con-

straint Eq. (6.11) specifies the positive traffic flow for all connections. Furthermore,

the constraints Eq. (6.12)-(6.13) identify the feasibility of the strategy profile. The ob-

jective function cannot be solved by linear optimization when user equilibrium is used

as a constraint. Therefore, we have created a simple road network in Aimsun and im-

plemented an algorithm to provide an approximate solution to the problem, which we

present in the next section.

6.3.2 Simulation-based solution

The method of successive averages (MSA) is the algorithm most widely used to find

the solution to traffic assignment [Mounce and Carey, 2015]. Liu et al. [2009] pro-

posed a method of successive weighted averages (MSWA) to obtain results faster than

the original MSA. There are also some common algorithms, such as origin-based al-

gorithms [Bar-Gera, 2002], path-based algorithms [Jayakrishnan et al., 1994], and the

Frank-Wolfe algorithm [Fukushima, 1984]. The simulation software Aimsun provides
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Algorithm 6.3.1: MSA Algorithm
1 Input:Traffic network game (I,Γ, X, S, (F x)x∈X), traffic setting x, gap

tolerances θ, and the maximum iterations Λ.
2 Output: Approximate user equilibrium strategy profile s∗.

1: For each i ∈ I , γ∗
i = min

γ∈Γi

∑
c∈γ Tc;

2: Initial strategy profile s0 = (si,0, . . . , si|I|,0), where si,0γ∗
i
= vi and si,0γ = 0 for all

i ∈ I;
3: yi,0γ = vi, if γ = γ∗

i for all γ ∈ Γi&i ∈ I;
4: yi,0γ = 0, if γ ̸= γ∗

i for all γ ∈ Γi&i ∈ I;
5: Run simulation in Aimsun(s0);
6: j = 0;

7: Rgap(0) =
∑

γ∈Γ si,0γ (tti,0γ −π0
i )∑

γ∈Γ si,0γ π0
i

;

8: while Rgap(j) > θ and j < Λ do
9: yi,jγ = vi, if γ = πj−1

i for all γ ∈ Γi & i ∈ I;
10: yi,jγ = 0, if γ ̸= πj−1

i for all γ ∈ Γi & i ∈ I;
11: si,j+1

γ = 1
j
(yi,1γ + · · ·+ yi,jγ ), for all γ ∈ Γi & i ∈ I;

12: sj = (si,j, . . . , si|I|,j);
13: Run simulation in Aimsun(s∗);

14: Rgap(j) =
∑

γ∈Γ si,jγ (tti,jγ −πj
i )∑

γ∈Γ si,jγ πj
i

;

15: j = j + 1;
16: s∗ = sj

17: end while

an approximate user equilibrium strategy profile based on the method of successive av-

erages (MSA) [Daskin, 1985], which is a general approach to compute User equilibrium

with well-behaved link cost functions [Powell and Sheffi, 1982]. Due to its simplicity

and efficiency in computation, static traffic assignment has been widely used not only to

estimate traffic demands on specific networks but also for transportation planning and

demand management policies related to infrastructure investment [Du and Wang, 2014,

Wang and Du, 2016]; it is the preferred tool for strategic transport planning [Du and

Wang, 2016].

The algorithm 6.3.1 describes MSA, which aims to find the user equilibrium of a given

road network and traffic demand based on our definition of notation. We use s =

MSA(x) as user equilibrium strategies for a given traffic setting x in the remainder of

the paper. The basic idea of MSA is explained as follows.
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Algorithm 6.3.2: Traffic Control Optimization
1 Input: Traffic network game (I,Γ, X, S, (F x)x∈X), objective function Ψ, gap

tolerances ϵ, step size τ ∈ [0, 1], and the maximum iterations Λ.
2 Output: Optimized traffic setting x∗.

1: Initial state x0 ∈ X and s0 = MSA(x0);
2: Ψ0

c = fc(s
0)dx

0

c (fc(s
0)), for all c ∈ Cn and n ∈ N ;

3: Ψ0 =
∑
n∈N

∑
c∈Cn

Ψ0
c ;

4: j = 0;
5: while j < Λ do
6: k = 0;
7: xj

c = 1, for all n ∈ N such that c, c′ ∈ Cn and (c, c′) ̸∈ Zn;

8: ηj(c,c′) = |Ψ
j−1
c −Ψj−1

c′

Ψj−1
c +Ψj−1

c′
|, for all n ∈ N , c, c′ ∈ Cn and (c, c′) ∈ Zn;

9: while k ∈ [0, 1] do
10: xj

c = xj−1
c + kηj(c,c′), for all n ∈ N , c, c′ ∈ Cn, (c, c′) ∈ Zn such that

Ψc −Ψc′ > 0;
11: xj

c′ = xj−1
c − kηj(c,c′), for all n ∈ N , c, c′ ∈ Cn, (c, c′) ∈ Zn such that

Ψc −Ψc′ < 0;
12: sj = MSA(xj);
13: Ψj

c = fc(s
j)dx

j

c (fc(s
j)), for all c ∈ Cn and n ∈ N ;

14: Ψj =
∑
n∈N

∑
c∈Cn

Ψj
c;

15: if Ψj−1−Ψj

Ψj−1 > ϵ then
16: Break;
17: else
18: k = k + τ ;
19: end if
20: end while
21: j = j + 1;
22: x∗ = xj

23: end while

• Step 1: Find the shortest path for all origin-destination by a given road network.

• Step 2: Assign all traffic demand to the shortest path for each origin-destination.

This step is called all-or-nothing-assignment [Dial, 1971].

• Step 3: Checking equilibrium state:

– If the equilibrium state is reached, the algorithm stops.

– If the equilibrium is not reached, a portion (called step size) of the traffic

is shifted to the new shortest path based on the existing traffic calculation.

Then the current step is repeated until the equilibrium state is reached.
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Let the predetermined sequence of step size in the MSA algorithm be θj =
1
j
, where j

is the iteration number. Conventional MSA is calculated as

si,j+1
γ = si,jγ + θj(y

i,j
γ − si,jγ ) (6.14)

The Eq. (6.14) is used to calculate the traffic volume of route γ at iteration j +1, where

si,jγ is the traffic volume of route γ from origin-destination i at iteration j, yi,jγ is equal to

the traffic demand of origin-destination vi of route γ at iteration j. Also we can simplify

the equation (6.14) as

si,j+1
γ =

1

j
(yi,1γ + · · ·+ yi,jγ ) (6.15)

The proposed algorithm is considered to be converged if the average value of the user

equilibrium relative gap becomes stable, where the relative gap can be calculated as:

Rgap(j) =

∑
γ∈Γ s

i,j
γ (ttjγ − πj

i )∑
γ∈Γ s

i,j
γ πj

i

(6.16)

where j is the iteration number, si,jγ is the traffic flow on the route γ, tti,jγ is the travel

experience time of the route γ collected by Aimsun, and πj
i is the minimum travel time

route from the origin to destination i.

Algorithm 6.3.2 is used to find an approximate solution to the optimization problem of

traffic control. The basic idea is to compare the total travel time of vehicles in each

connection at each iteration. Under a traffic management protocol, if the overall vehicle

travel time of a connection is higher than that of another connection, a higher percentage

is allocated to the connection with a higher total travel time in the next iteration, and

the percentage of the connection with lower travel time is reduced accordingly. The

proportion of allocations for each iteration increases or decreases proportionally to the

difference between the total delays of two connections. If the new traffic setting reduces

the total delay by more than a given threshold, then this traffic setting will be used as
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input for the next iteration by the MSA algorithm to find a user equilibrium. When

the maximum number of iterations is reached, the algorithm is terminated. It is worth

mentioning that the algorithm 6.3.2 can only guarantee convergence to a locally optimal

solution but cannot guarantee that the algorithm output is the globally optimal solution.

Therefore, an accurate algorithm to find the global optimal solution is a critical task for

the future.

6.3.3 Aimsun setting and results

FIGURE 6.1: Simulation Setting

We built a simple testing environment to test the algorithms in Aimsun, as shown in

Fig. 6.1. It includes three intersections, five origins, five destinations, and 20 origin-

destination pairs. Each origin-destination pair has independent traffic demand. The

total number of vehicles in the simulation is 5400. The simulation was performed using

an Intel(R) Core(TM) I9 − 10900K CPU @ 3.70GHz and 64GB RAM. Since the al-

gorithm only seeks to optimize the solution to the problem, it is not considered from the
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perspective of fast solutions. Therefore, iteration efficiency is not a research direction

of the algorithm in this paper, and this issue is part of future work.

FIGURE 6.2: Total Delay on Road Network

In the experimental setup, each OD has a different traffic flow generated as a constant

flow. In the initial traffic management setup, the ratio assigned to each connection is the

same as the ratio between the total traffic passing through the intersection and the traffic

of that connection in a static user equilibrium, and each segment uses the BPR function,

which is expressed as

t0 · (1 + α · ( volume

capacity
)β) (6.17)

where t0 is the free flow travel time of the road lane, α = 0.15, β = 4, volume is the

assigned traffic in the road lane and capacity = 1800 for all the road lanes. The initial

traffic x0 is set to have the same allocation ratio of connections at each intersection. For
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example, if an intersection has four connections that conflict, the initial traffic manage-

ment protocol is 0.25 for each connection. It is worth mentioning that road networks

and traffic demand are the same during different iterations.

Fig. 6.2 shows the result of Aimsun using Algorithm 6.3.2, and it is evident that each

iteration reduces the total delay of the simulated road network. Although we used a

simple road network model, the algorithm can still reduce the total delay in static traffic

assignment by 40% without changing vehicle behavior based on the assumption that

vehicles make individual decisions. Further analysis shows that when changes in traffic

settings, traffic assignment still has much room for optimization to reduce overall delay

in a road network.

FIGURE 6.3: Total Number of Vehicles and Total Delay at Each Intersection

The upper left of Fig. 6.3 shows the total number of vehicles that pass at each intersec-

tion during each iteration. The coloured lines represent the number of cars at different

intersections, one for each intersection in Aimsun. It can be seen from the graph that
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the change in traffic flow is almost constant at each intersection throughout the itera-

tion. The rest of the sub-figures in Fig. 6.3 show the total delay at each intersection for

each iteration, one figure for one intersection. The overall delay in the road network de-

creases monotonically with increasing iterations. However, the total delay of vehicles at

each intersection does not decrease monotonically. To put it simply, the autonomous de-

cision of a car causes congestion at some intersections to make others more accessible,

thus reducing the total delay on the road network.

6.4 Summary

In this chapter, we considered problems in the future transport system that optimise traf-

fic control when fully autonomous vehicles can make individual decisions. We proposed

a novel model to combine optimization and user equilibrium methods to increase the ef-

ficiency of road networks from a macroscopic point of view. Due to the complexity of

the theoretical solution for traffic control optimization, we used a simulation-based ap-

proach to reach an approximate solution by implementing an iteration algorithm based

on Aimsun. It can be seen from the experimental results that our proposed algorithm

can significantly reduce the delay in the road network.

Our work leaves some interesting unsolved problems in this chapter. More efficient

algorithms have been implemented that are used to find global optimization. From a

game theory point of view, future research should consider intersections as intelligent

agents, giving them utility, such as toll policies, making the traffic network a different

model. Another suggestion for the future is to extend our model to handle the traffic

with both autonomous and human drive vehicles.



Chapter 7

Conclusion and Future Work

This chapter summarises and discusses the work done so far and future research direc-

tions.

7.1 Summary of the Major Contributions

This thesis proposes a collection of formal models to define and analyze traffic manage-

ment utilizing AI and multi-agent systems from a macroscopic perspective with fully

autonomous vehicles, which can make independent judgments on the road. More specif-

ically, the following work has been done:

1. Road network modelling: To make it possible for mobile robots, particularly those

used in autonomous cars, to comprehend information about the composition and

management of roads, formalized road network models based on many levels of

scenarios have been introduced. These models offer three different perspectives

on the road link.

• Macro-level Road Network: Describes the relationships between locations

and routes from a broad perspective, such as an urban road network.

136
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• Meso-level road network: To enable autonomous vehicles to make better-

informed decisions, the model can specify the internal link and potential

collision for a single intersection and the relationship between roads and

intersections. We typically use it to examine how traffic control procedures

affect certain high-traffic areas or the central part of a city’s road network.

• Micro-level road network: A discrete-time-based road network model rep-

resents how cars move on the road over time. The model can be applied

to single-intersection traffic situations and vehicle trajectory monitoring in

limited areas.

2. Intelligent Traffic Control Protocols: Multiple traffic management protocols based

on road network representation should be available for autonomous cars. From

the point of view of the road network, these management protocols define how

cars cross intersections. We have employed several different simulators to de-

velop and verify traffic management methods. Therefore, in addition to formally

defining traffic management protocols, we have simulated and compared existing

ones. The data comparison findings show that the traffic management techniques

we recommend are more effective in regulating vehicle movements.

3. Traffic Assignment with Exponential Cost Functions:

• We have investigated, with the help of empirical data, the impact of expo-

nential cost functions on the traffic assignment problem. The data analysis

findings demonstrate that the exponential cost function better fits the exper-

imental and real-world data than the cost functions used in previous studies.

The region-based macroscopic cost flow function that is used to simulate the

travel costs of a particular region can also be utilized with the exponential

cost function, which has potential uses for regional transport planning and

macroscopic control of traffic management.

• Using an exponential cost function, we have analyzed the tight upper bound

of the price of anarchy in a road network and how the tight upper bound
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changes when traffic demand changes. Since traffic demand cannot exceed

capacity, we examine the trend of PoA with traffic demand for the same

road network architecture, whether the cost function is exponential or the

BPR function.

4. Hybrid of Traffic Assignment and Control: We have suggested a hybrid model

based on a multi-agent system that tries to optimize traffic control at the network

level under the assumption that vehicles make independent decisions. The model

integrates the macroscopic traffic assignment problem and the microscopic traf-

fic control problem by combining congestion game and non-linear optimization.

Based on the suggested approach, we have examined a traffic control optimization

problem as a non-linear optimisation problem aiming to increase road network ef-

fectiveness. We have also implemented an algorithm to resolve the non-linear op-

timization approximation of a solution. The results of our tests using the Aimsun

simulation software show that this approach greatly minimizes the overall delay

of the road network.

7.2 Future Work

In this thesis, we have defined and examined the route planning and traffic management

of autonomous driving in road networks from different perspectives. This thesis has

raised many more questions, which have been introduced throughout this thesis, some

of which have been addressed in the relevant chapters. We here present more potential

directions for future work.

1. This thesis used the traffic scenario as one of the application directions of the

multi-agent system. The game theory model used in this paper is based on the

non-cooperative game with selfish behaviour. At the same time, the autonomous

driving scenario can also be modelled as a cooperative game. Existing studies

include cooperative games [Song et al., 2014, Wang et al., 2021, Wurman et al.,
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2008], automated negotiation Chater et al. [2018], Keferböck and Riener [2015],

Kneissl et al. [2018] or mechanism design [Arslan et al., 2007, Liu et al., 2017,

Lovellette and Hexmoor, 2021]. It makes more sense to use cooperative mech-

anisms for some traffic scenarios. For example, how do we solve the problem

of two vehicles driving in different directions while the road is too narrow for

the cars to pass each other [Imbsweiler et al., 2018, Mavromatis et al., 2020,

Zhao et al., 2015]? We intend to extend the existing non-cooperative game model

to a cooperative game model to describe the social behaviour arising from au-

tonomous driving decisions and develop related algorithms.

2. In Chapter 6, we have proposed a hybrid model for traffic assignment and con-

trol based on the game theory where the players are purely autonomous vehicles.

Some studies of game theory have been conducted in which individual devices or

several devices act as game players to assist in traffic management in a region,

rather than together using games and vehicles to describe traffic, such as [Bui and

Jung, 2018, Elhenawy et al., 2015, Li et al., 2018, Wei et al., 2018]. However,

with the development of V2X technology, smart roadside devices can become in-

dependent agents shortly, and they make decisions individually based on current

traffic situations [Jameel et al., 2020, Wang et al., 2019]. We intend further to

extend the model in Chapter 6 to describe the group decision-making of infras-

tructure and vehicle agents. The aim is to provide models and related algorithms

for more intelligent transportation.

3. The research in this thesis can be extended to ride-sharing. Ride-sharing is a sce-

nario in which a private vehicle driver who wants to offer a ride and a passenger

who wants to be picked up by a private vehicle utilizes a network (such as one

accessed through an app or website) to coordinate the sharing of personal car

rides, with the passenger paying the fare. Some of the approaches of the road

network [Agatz et al., 2012, Ta et al., 2017, Wang et al., 2020] and the game

theory approaches [Chau et al., 2020, Wang et al., 2018, Yan et al., 2021] on
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ride-sharing are proposed from a micro-perspective. However, we anticipate ad-

justments to the macro-road network model to regulate or enhance ride-sharing

for autonomous vehicles in a given area.

4. Additionally, this research can also be applied to fields related to vehicle rout-

ing problems (VRP). Vehicle routing problem [Economides et al., 1991, Golden

et al., 2008, Toth and Vigo, 2002] is an optimization and integer optimization

problem to rationally allocate the fleet of vehicles to deliver items to the user.

Package delivery, warehouse-supermarket shipments, and express delivery can

be vehicle routing problems. Game theory is widely applied to existing research

on VPR, such as non-cooperative game [Gansterer and Hartl, 2018, Hollander

and Prashker, 2006] and automated negotiation [de Jonge et al., 2021, 2022], cur-

rent traffic scenario with a human driver. We want to use the research mentioned

in this thesis to solve the problem of vehicle routing in fully autonomous driving

situations. But how to reasonably get goods from the merchant to the user in an

autonomous driving scenario?

5. Finally, we expect to be able to switch the research scenario from transportation

to multi-robot systems for more practical applications, such as warehouse [Bolu

and Korçak, 2021, Claes et al., 2017, Li et al., 2020] and service robots [Cavallo

et al., 2014, Di Nuovo et al., 2018]. We envision applications in these areas using

road network models and management protocols similar to those in this thesis.



Appendix A

Published Work

Some of the results presented in this thesis are included in the following papers which

have been published:

• Jianglin Qiao, Dongmo Zhang, and Dave de Jonge. Virtual Roundabout Protocol

for Autonomous Vehicles. AI 2018: Advances in Artificial Intelligence, pages

773–782. The results in this paper are investigated in Chapter 2 and 3.

• Jianglin Qiao, Dongmo Zhang, and Dave de Jonge. Graph Representation of

Road and Traffic for Autonomous Driving. PRICAI 2019: Trends in Artificial

Intelligence, pages 377–384. The results in this paper are included in Chapter 2

and 3.

• Jianglin Qiao, Dongmo Zhang, and Dave de Jonge. Priority-based Traffic Man-

agement Protocols for Autonomous Vehicles on Road Networks. AI 2021: Ad-

vances in Artificial Intelligence, pages 240-253. The results in this paper are

shown in Chapter 2 and 3.

• Jianglin Qiao, Dave de Jonge, Dongmo Zhang, Carles Sierra and Simeon Simoff.

A Hybrid Model of Traffic Assignment and Control for Autonomous Vehicles.

PRIMA 2022: Principles and Practice of Multi-Agent Systems. The results in

this paper are presented in Chapter 6.

Some of the results presented in this thesis are included in the following papers, which

have been submitted but are currently still under review:
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• Jianglin Qiao, Dave de Jonge, Bo Du, Carles Sierra, Dongmo Zhang, and Simeon

Simoff. Estimating Region-based Macroscopic Cost Flow Function: An Expo-

nential Approach. Submitted to Journal of Advanced Transportation. The results

in this paper are proposed in Chapter 4.

• Jianglin Qiao, Dave de Jonge, Dongmo Zhang, Simeon Simoff and Carles Sierra.

Price of Anarchy of Traffic Assignment with Exponential Cost Functions. Sub-

mitted to the 22nd International Conference on Autonomous Agents and Multia-

gent Systems (AAMAS 2023) The results in this paper are included in Chapter

5.
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