
Organisation-based
co-ordination of wireless

sensor networks

by

Maŕıa del Carmen Delgado Román

A dissertation presented in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy in Computer Science

Tutor:

Dr. Jordi González
Sabaté

Supervisor:

Dr. Carles Sierra
Garćıa

PhD Candidate:

Maŕıa del Carmen
Delgado Román

October 6, 2014
Universitat Autònoma de Barcelona

Departament de Ciències de la Computació

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Use case . 3
1.3 Proposal . 4
1.4 Structure of the dissertation . 6
1.5 Contributions . 11

2 State of the Art 13
2.1 Situation of the research problem 13
2.2 Coalition Formation in MAS . 16
2.3 Clustering strategies in WSN . 18
2.4 Conclusions . 21

3 Coalition Oriented Sensing Algorithm 23
3.1 Problem formalisation . 24
3.2 Agent’s coalition formation . 25

3.2.1 Relational functions: adherence and leadership 26
3.2.2 Operational Protocol . 29

3.3 Conclusions . 38

4 RepastSNS simulator 41
4.1 Sensor Network simulators . 42

4.1.1 Platform requirements . 42
4.1.2 Brief survey on sensor network simulators 43

4.2 RepastSNS . 46
4.3 RepastSNS main features . 48

4.3.1 Simulation elements’ communication capability 49
4.3.2 Model: simulation environment cohesion and experiments

repeatability . 52
4.3.3 Simulation observability 53
4.3.4 Simulation elements identification 54

4.4 Sensor Network simulation elements 55
4.4.1 The field . 55
4.4.2 Phenomena . 56

iii

4.4.3 Agent . 57

4.4.4 Sensors . 58

4.4.5 Actuators . 59

4.4.6 Battery and Energy Consumption model 59

4.4.7 Communication module 61

4.4.8 Report . 62

4.5 Conclusions . 63

5 Energy and Communication Aware WSN 65

5.1 Application development structure 65

5.2 Energy management model . 67

5.2.1 Common features . 68

5.2.2 Battery . 69

5.2.3 Energy consumers . 70

5.3 Communication model . 76

5.3.1 Data elements . 76

5.3.2 Communication elements 77

5.4 Conclusions . 82

6 Coalition Oriented Sensing Algorithm based WSN 83

6.1 Power Supply . 83

6.2 Communication Modules . 85

6.2.1 Communication interfaces 85

6.2.2 Communication messages 87

6.3 COSA utils . 88

6.3.1 Mathematical functions 88

6.3.2 Information storage . 89

6.4 Agents . 90

6.4.1 AbstractCfAgent . 90

6.5 SensorAgentSimple . 92

6.5.1 Setup and initialisation 92

6.5.2 Events processing . 94

6.5.3 Message sending . 94

6.5.4 Message reception . 96

6.6 COSA strategies . 97

6.6.1 Sampling Frequency . 97

6.6.2 Coherence . 98

6.7 SinkAgent . 99

6.7.1 Setup and initialisation 99

6.7.2 Events processing . 100

6.7.3 Message reception . 100

6.8 CfAbstractReport . 101

6.9 Conclusions . 101

iv

7 Experimentation 103
7.1 Riversim . 103

7.1.1 Phenomenon . 104
7.2 COSA-able WSN adoption . 108

7.2.1 Nodes deployment . 108
7.2.2 Sensors . 109
7.2.3 Normal Distribution . 110

7.3 Simulation tools . 110
7.3.1 Simulation reports . 110
7.3.2 Report classes . 111

7.4 Simulation Arrangement . 112
7.5 Experiments . 113

7.5.1 Hypotheses . 113
7.5.2 Experiments general framework 114
7.5.3 Scenario I . 118
7.5.4 Scenario II . 123
7.5.5 Scenario III . 128
7.5.6 Scenario IV . 134
7.5.7 Conclusion . 139

8 Conclusions and Future Work 141

v

List of Figures

1.1 Mouth and course of Guadalquivir river. 3
1.2 Development Structure. 8

3.1 Negotiation protocol stages. 33
3.2 Possible coalition configurations. 34

4.1 Object Layer [Pujol-Gonzalez, 2008]. 47
4.2 Network Layer [Pujol-Gonzalez, 2008]. 47
4.3 RepastSNS simulation architecture. 48
4.4 BasicActionSNS class outline [Matamoros, 2008]. 50
4.5 Algorithm for actions execution [Matamoros, 2008]. 51
4.6 ScheduleSNS class outline [Matamoros, 2008]. 52
4.7 SimModelImplSNS class outline [Matamoros, 2008]. 53
4.8 SimulationEvents Table. 54
4.9 SimulationField interface outline [Pujol-Gonzalez, 2008]. 55
4.10 SimulationPhenomenon interface outline [Pujol-Gonzalez, 2008]. 56
4.11 SimulationAgent interface outline [Pujol-Gonzalez, 2008]. 57
4.12 Notification events about sensor/actuator addition and re-

moval [Pujol-Gonzalez, 2008]. 58
4.13 SimulationSensor and SimulationPhenomenonFilter interfaces

outline [Pujol-Gonzalez, 2008]. 58
4.14 DiscreteSensor and ContinuousSensor interfaces out-

line [Pujol-Gonzalez, 2008]. 59
4.15 Battery interface outline [Pujol-Gonzalez, 2008]. 60
4.16 EnergyConsumer interface outline [Pujol-Gonzalez, 2008]. 60
4.17 AbstractSimulationAgent class outline [Pujol-Gonzalez, 2008]. . . 61
4.18 Communication elements interfaces outline [Pujol-Gonzalez, 2008]. 62
4.19 SimulationReport interface outline. 63

5.1 Development Structure. 66
5.2 Energy query direction. 68
5.3 Battery and EnergyConsumer interfaces. 69
5.4 AbstractBattery class outline. 70
5.5 Flowchart corresponding to the isEmpty() method. 71
5.6 Structure of classes for sensor definition. 72

vii

5.7 AbstractDiscreteSensor class outline. 73
5.8 AbstractContinuousSensor class outline. 73
5.9 AbstractSimulationActuator class outline. 75
5.10 AbstractSimulationAgent class outline. 75
5.11 AbstractData class outline. 77
5.12 Transmission events structure. 78
5.13 AbstractTransmitter class outline. 80
5.14 AbstractSimulationReceiver class outline. 80

6.1 CfAbstractBattery class outline. 84
6.2 Communication module. 86
6.3 MathematicsFNeighInfoTimeStamps class outline. 89
6.4 NeighInfoTimeStamps class outline. 90
6.5 AbstractCfAgent class outline. 91
6.6 SensorAgentSimple class outline. 93
6.7 SinkAgent class outline. 99

7.1 Development Structure. 104
7.2 Stain and StainSin classes outline. 105
7.3 RiverPollutantPhenomenon class outline. 106
7.4 Events structure associated to pollution appearance. 107
7.5 NormalDistribution class outline. 110
7.6 TheModel class outline. 112
7.7 Waspmote device [Libelium, 2012b]. 114
7.8 Example of a two nodes’ grid distribution network. 115
7.9 Entropy evolution for a single node. 118
7.10 Outline of Scenario I. 119
7.11 Scenario I: Network remaining energy ratio. 120
7.12 Scenario I: Network median remaining energy. 121
7.13 Scenario I: Information error at the sink. 122
7.14 Scenario I: Network entropy level. 123
7.15 Outline of Scenario II. 124
7.16 Scenario II: Network remaining energy ratio. 125
7.17 Scenario II: Network median remaining energy. 126
7.18 Scenario II: Information error at the sink. 126
7.19 Scenario II: Information error at the sink (zoom in Figure 7.18). 127
7.20 Scenario II: Network entropy level. 127
7.21 Outline of Scenario III. 129
7.22 Scenario III. Information error: COSA-SF+C and Random. . . . 130
7.23 Scenario III. Median remaining energy: COSA-SF and Random. 131
7.24 Scenario III. Network entropy level: COSA and Random. 131
7.25 Scenario III. COSA gains w.r.t. Random Sampling. 133
7.26 Outline of Scenario IV. 135
7.27 Scenario IV. Information error: COSA-SF+C and Random. . . . 136
7.28 Scenario IV. Median remaining energy: COSA-SF and Random. 136
7.29 Scenario IV. Overall entropy level: COSA and Random. 137

viii

7.30 Scenario IV. COSA gains w.r.t. Random Sampling. 138

ix

Acknowledgements

It has been a long way until reaching the moment of finishing this thesis. Now,
it is time to look back and feel grateful for all I have gained during these years,
knowledge, skills, trips and the most important thing of all, the love and support
of all of you who have been by my side.

First of all, I would like to thank the IIIA for funding my research through
the Agreement Technologies project (funded by CONSOLIDER CSD 2007-0022,
INGENIO 2010). Great thanks to all the IIIA members for being like a family
and transmitting this sensation to everyday work. You have really created a nice
environment where to work.

Special thanks to my supervisor, Carles Sierra, who has always encouraged
me to do my best and get this work done. Thank you for all your help and
patience when I needed it the most.

I have been very lucky of sharing my time in the lab with incredible fellows
and friends! Thanks for the laughs, coffees, beers, advises, discussions...Thank
you for sharing the stressing days before deadlines and for initiating me in the
art of ping-pong playing! Many thanks to Marc, who has always listened to me
and smartly advised me with my code problems.

To my friends, who are always by my side at the crucial moments of my
life, either to laugh or to cry. Ale, Meritxell, Fabi and Montse, I cherish your
friendship.

I have always felt grateful for the family in which I was born, now I am also
blessed with a warm-hearted sensible husband and his family. Santi, thanks for
believing in me and making my life cheerful. Thank you also for contributing,
together with my mom, to make all my lab mates recognise my handy tune!

All my love and acknowledgement go to my mom, who made me the person I
am today. It is completely impossible to express with words how much I admire
her for all that she has taught and given to me, unconditionally, always. Her
strength and courage led me to finish this work. This is thanks to her, and for
her and my granny, strong women of my family. I miss you, and I will be missing
you every single second of the rest of my life.

Thank you to all of you who have been by my side at any time along these
years, just by that, you have contributed to this work and its completion, and I
appreciate it. Thank you.

–M del Carmen Delgado Román

xi

xii

Chapter 1

Introduction

This chapter motivates the research problem studied and introduces a particular
use case. The proposal developed to tackle the problem is outlined and the main
contributions derived from this work are presented.

1.1 Motivation

Wireless Sensor Networks (WSNs) are networks formed by a large number of
battery-operated sensing nodes able to develop monitoring tasks in different en-
vironments. Advances in Electronics and Telecommunication have favoured the
development of small sensors able to communicate wirelessly and to perform dif-
ferent functions in the environments where they are deployed. Each node is a low-
cost, low-consumption device of limited capabilities, yet capable of sensing its
environment and communicating wirelessly. This fact, together with its decreas-
ing price, have contributed to the growing use of WSNs [Akyildiz et al., 2002].
This technology allows to perform surveillance tasks in large physical spaces.
Moreover, the large numbers of nodes make these networks very robust to in-
dividual node failures, enabling them to operate in remote and hazardous envi-
ronments. These characteristics, together with their non-invasive nature, make
WSNs appropriate for a great range of monitoring applications.

The change of perspective that WSNs introduced with respect to classical
monitoring, together with their capacity for monitoring difficult-to-access envi-
ronments, have attracted the attention of researchers from different areas.WSNs
application domains are vast and continue getting more interest thanks to con-
cepts such as smart city, smart metering or eHealth. The creation of intelligent
environments that incorporate new functionalities, and allow for a more efficient
performance, are essential goals of these techniques.

One of the first incursions of sensor network technology in daily life took
place through domotics. A typical capability of intelligent buildings is to monitor
the temperature of the room and to turn on/off the air conditioning in order
to maintain the place at a target temperature. Nowadays, the functionalities

1

2 Chapter 1. Introduction

provided by this technology has significantly increased and allow for interaction
with the house’s tenants.

The development of smart cities relies on the creation of interconnected sensor
networks across the cities. WSNs play a fundamental role in the definition and
deployment of these networks that sample information about multiple aspects of
the city, such as air pollution, noise level, street lighting, etcetera. The collection
and adequate processing of these data provide with more efficient management of
the city. Moreover, it also endows the city with added value functionalities that
ease the life of its residents and visitants. Projects developed within this area are
Smartcity Málaga [Endesa, 2014] and SmartSantander [Telefónica et al., 2014].
Among the different functionalities that they provide, we can cite an efficient
management of public lighting in Málaga, the smart parking application in San-
tander or the SmartSantander augmented reality application, which may result
of special interest for tourists.

These circumstances make WSNs an interesting research area, not only by
themselves, but also for their applications’ management. The growing number
of monitoring applications leads to the generation of a large amount of data that
has to be stored and processed in order to extract information from the surveyed
areas. Store and processing of these data consume an important amount of en-
ergy. Consequently, it also represents a pollution source causing carbon dioxide
emission. Therefore, an efficient management of WSNs that makes them sample
the environment effectively poses as a challenging task.

Moreover, growing application of WSNs have entailed the proliferation of
studies to alleviate the hard constraints to which nodes’ devices are subject,
either due to their physical characteristics or the features of the environments
where they actuate. Sensor nodes are constraint in terms of computation, com-
munication capacity and energy availability. These devices are typically battery-
operated and can be deployed in difficult-to-access environments, therefore, pre-
venting from battery replenishment. This situation has led to the development
of numerous algorithms that pursue the extension of the network lifetime. The
importance of extending the lifespan of the network is critical, as it provides
the system with longer operation capacity. Despite this recognised cruciality,
strategies developed to achieve this aim must also maintain a correct network
operation performance, as not every strategy is adequate for every application
scenario.

The energy management of a WSN is a key issue that affects the network
from its design phase to its operation. Energy harvesting and energy conserva-
tion methods are considered elemental techniques to help in improving WSNs
energy conditions. There are different approaches to energy conservation. Many
contributions have focused in the design of routing techniques that reduce the
number of transmissions that each node performs, thereafter, saving overall net-
work energy.

The approach proposed in this thesis to tackle this problem focuses on re-
ducing the number of sampling actions that an agent takes to provide
valid information to the sink. Although the most costly action of a node

1.2. Use case 3

is usually transmission, research in Electronics has resulted in the development
of more powerful sensors with growing energy demands. Decreasing sensing ac-
tuation avoids the energy consumption derived from this element actuation and
the subsequent transmission action. Moreover, this strategy tries to eliminate
redundant data generation, which also contributes to lower the energy demands
for monitoring data storage and processing. Therefore, considering this sensor
function poses a challenging problem that may provide interesting results to the
WSNs community.

1.2 Use case

As it has already been introduced in the previous section, there is a huge range
of possible applications for WSNs. Analogously as they are being deployed in
cities, WSNs are also being applied to water environments. However, this kind
of environments pose additional challenges due to their particular characteristics
that demand robust nodes capable of working in hard environments.

Monitoring the state of the water in seas, lakes and waterways can derive
important information about natural phenomena behaviour. Waterway surveil-
lance can also detect changes in the water composition that warn about pollutant
leakages or other phenomena altering regular conditions. The introduction of
WSNs technology to this specific kind of environments is known as smart water.
Some applications situated within this framework are monitoring the potable
conditions of water, real-time control of leakages in the sea or river floods pre-
diction.

An aquatic environment that may be especially attractive for a WSN deploy-
ment is a navigable river, a waterway. This kind of rivers presents a signalling
infrastructure to guide the vessels navigation along their course. Frequently,
they represent important routes for goods transportation and depending on the
area, sightseeing boats also navigate along the waterway. Examples of rivers ver-
ifying these conditions are Ebro in northeast Spain and Guadalquivir in south
Spain. Figure 1.1 shows a view of the mouth and course of Guadalquivir river.

!
Figure 1.1: Mouth and course of Guadalquivir river.

The enhancement of the signalling infrastructure by the deployment of a

4 Chapter 1. Introduction

WSN provides management capabilities and added value functionalities to this
environment. Activities that can benefit from this improvement are, for instance
buoys lighting self-management or monitoring of the river level and water con-
ditions in areas situated near irrigation fields. Nonetheless, developing a WSN
in this water environment poses a challenging problem. Ambient conditions are
harder than in urban areas. Therefore, devices must be durable. Moreover,
nodes accessibility is constrained, and there is no possibility of nodes’ connec-
tion to the power net. In these circumstances, batteries replenishment can be
difficult to attain and imply excessive costs. Hence, the need of an efficient
network management strategy that saves energy to extend the network lifetime
poses a primary need.

We consider a rectangular section of a river and we want to have early and
reliable information about the presence of contaminants in the monitored area.
Pollution stains can appear in any point of this rectangular section. The river
dynamics consists of a flow that goes in one direction along the rectangle. Pol-
lutants sediment and evaporate, which means that a certain portion of the pol-
lutant is naturally removed. Another amount of pollutant travel downstream
diffusing in the river and eventually occupying the whole section of the river.
The model of diffusion we consider is a very simple one that takes into account
the speed of the water flow and the notion of vicinity given by a grid model
over the river. Pollutants in the river are subject to the river conditions. The
contaminant stains may appear as a one shot event or with some periodicity.
They may also last in time or be a continuous leakage. The intensity of the
pollutant sources also conditions their presence in the river.

The goal is to obtain proper information from the environment that allows
for a quick identification of pollution presence in the river. Although the sce-
nario described may appear as a simple set, it includes the typical complexity
associated to dynamic and continues systems. Moreover, it is general enough to
allow for the extrapolation of the results derived from experimentation on this
setting to similar problems but in different scenarios.

1.3 Proposal

The scenario considered for the research problem addressed is a river whose state
has to be monitored. Different pollutant sources appear along the course of the
waterway and their presence have to be identified. The deployment of a WSN
in this kind of scenario permits the collection of information about the water
state. This WSN can rely on the buoys and signalling elements, but also on
other floatable devices specifically conceived for this purpose. The number of
nodes to use and the cost of each sensor also conditions the network deployment
scheme. However, the sensor nodes composing the network has to be able to
sample the target environmental property and they need to be situated within
each other sensing radius distance. That is, the network connectivity has to be
guaranteed.

The river domain previously introduced represents a dynamic environment

1.3. Proposal 5

due to the continuous water flow of this natural phenomenon and the contam-
inant stains. The state of the river can rapidly change, nonetheless periods of
stable situations may happen. Besides, these stable situations or changes may
be common to neighbouring nodes in the network. Therefore, it can be benefi-
cial for nodes with a similar view of the environment to gather in groups and
then sample and transmit data together. Joint actuation favours energy saving
by avoiding redundant sensing and unnecessary transmissions. This reduction
contribute to extend the lifetime of the nodes in the network. Nonetheless, this
group organisation makes sense as long as the conditions for its formation hold.
Moreover, grouping conditions must guarantee that this configuration does not
detract the performance of the network.

The problem addressed in this thesis is the efficient and effective sampling of
a waterway environment through local co-ordination of the nodes. The approach
selected to accomplish this task relies on the achievement of a network organisa-
tional structure emerging from the network nodes co-ordination. To tackle this
problem, we propose the Coalition Oriented Sensing Algorithm, COSA. The goal
pursued by this algorithm is to extend the network lifetime while maintaining
an adequate network performance.

This algorithm modifies the standard behaviour of nodes in a WSN by con-
sidering this as a Multiagent System. Each node is contemplated then as an
intelligent agent capable of using the information perceived and received to ne-
gotiate with its neighbouring agents. Therefore, agents’ activities are no longer
limited to just sampling the environment and transmitting the data collected
to the sink. Nodes use this information to communicate with their neighbour
agents and establish relationships.

COSA defines a coalition formation algorithm based on peer-to-peer dia-
logues between neighbouring agents (nodes). Agents communicate to exchange
information about their perception of the environment and their own state. As
a result of this local communication, agents select the role to play in the organ-
isation and can then establish leader-follower relationships. A leader-follower
association is set when the two agents involved in a dialogue agree that one of
them (the leader) will work on behalf of the other (the follower). On the one
hand, the follower agent stops its sampling activity for a period of time. This
halt allows the follower to save energy by not sampling, neither negotiating,
during this period. Once this time has elapsed, a follower agent samples the
environment again and uses this information to communicate its current percep-
tion to its neighbours in order to find its preferred role at that moment. A leader
agent samples the environment regularly and informs the sink about the data
collected. These tasks can be performed by and for itself (in case there are no
follower agents associated to it), or on the contrary, it can act on the behalf of
these follower neighbouring agents. Thus, through agents pairs co-ordination,
the network configures itself in a set of groups that sample the environment as
an entity.

The establishment of these peer-to-peer relationships relies on two relational
functions whose values guide the agent behaviour (adherence and leadership).

6 Chapter 1. Introduction

The information exchange between agents is also governed by an operational
protocol that lays down the norms of this co-ordination.

The adherence and leadership attitude concepts allow an agent to express its
desire to form part of a group, and its capacity to lead a group correspondingly.
The interest of an agent in forming part of a group led by a neighbour agent
takes into account two factors. One of these factors considers the similarity of
the agents’ environment perception, that is, an agent wants to become a follower
of a leader who samples similar values. Moreover, it wants the neighbour agent
to have a ‘good’ model of the environment in terms of how informative it is.

The leadership attitude measures the capacity of an agent to act as a leader.
Certain capacities or agent’s attitudes are beneficial for playing this role. These
factors are included in the leadership function definition to encourage the appear-
ance of leader agents that verify them. Hence, the evaluation of the leadership
attitude of a node takes into account if it is already playing this role; the energy
available to perform this task; and the coherence of the group formed by those
agents who are followers of it.

These functions definition requires the specification of a set of parameters
that constrain the set of valid values that they can take. As a consequence,
the agent’s actions are also controlled. Thus, the application’s performance
requirements regarding the maximum size of the groups or the samples deviation
for group establishment are introduced in the network function through agents’
behaviour.

Finally, the agents’ information exchange for a coalition definition is ruled
by a simple negotiation protocol that governs agents’ dialogues and which is
entirely integrated within the agent regular behaviour. This protocol stipulates
the existence of a set of performatives and the order in which they can be ex-
changed. Its reactive architecture based on independent rules allows the agent
to take part in different dialogues at a time without causing deadlock situations.
Moreover, the operation conditions guarantee the agent’s actuation according to
its preferences at any time and its adaptation to changes in the environment or
network conditions.

The Coalition Oriented Sensing Algorithm proposed is completely embed-
ded into the agent behaviour. Its adoption endows the network with a self-
organisation capacity that emerges from the agents’ local interaction and co-
ordination.

1.4 Structure of the dissertation

Once the problem of interest has been briefly introduced, and the selected ap-
proach to provide an answer to it has also been outlined, the work developed
to accomplish the corresponding research tasks is presented. This thesis is com-
posed of eight chapters that cover from the review of previous works developed
in the area to the evaluation and interpretation of the results derived from ex-
perimentation.

Chapter 2 focuses on the study of previous contributions on the problem

1.4. Structure of the dissertation 7

of interest. The review of the State of the Art is organised according to the two
different approaches proposed for WSNs division into groups: the proper WSN
community approach and the Multiagent Systems work.

The need of alleviating the constraints that WSNs present have favoured
the interest of researchers from different research areas in order to promote the
capacities of these networks. The Multiagent Systems (MAS) paradigm has
contributed through the introduction of typical co-ordination and negotiation
techniques used in agents’ environments. The approach selected for the algo-
rithm proposed in this thesis belongs to the MAS research area.

Previous works accomplished from the MAS point of view identify nodes of
the network with agents in the system. This identification allows considering the
nodes as autonomous agents capable of local interaction to originate a global
behaviour at the system’s level. The works reviewed take advantage of this
perspective to propose different coalition formation strategies that allow the
agents to perform tasks non-achievable individually or to do it in a more efficient
way saving resources. As these preceding works, we propose a coalition formation
strategy that, in this case, allows the agents to self-organise into groups to sample
the environment and send the collected information to the sink.

The division of a sensor network into groups is referred as clustering in the
WSN community. Work done in this line focuses mostly on routing strategies.
As transmission is usually the most costly action, improving the route selection
for transmitting to the sink generates important energy savings. Therefore, the
definition of clusters that fix the transmission routes and that also adds the
possibility of operation performance on the collected data have received con-
siderable attention. Many algorithms with different purposes and using various
approaches for cluster head selection have been proposed in the literature. A
general view of these algorithms emphasising the differences with respect to the
coalition formation strategy proposed in this thesis is presented in Chapter 2.
Thereafter, the two research areas contributing previous works to the problem
of interested are covered.

Detailed definition of the algorithm proposed to address the problem is pre-
sented in Chapter 3. Coalition Oriented Sensing Algorithm definition relies on
two functions modelling the relationship between agents and a peer-to-peer ne-
gotiation process. The values registered by these relational functions condition
the development of the negotiation process between a pair of agents, which may
end up in the establishment of a leader-follower relationship.

The implementation of the rules and negotiation conditions in the agent
defines its behaviour, that is, its operational protocol. COSA allows the agent
to take part in different negotiations with distinct neighbours simultaneously
without causing any synchronisation or interference problem. Agents just take
advantage of local information to determine the role to play at a certain moment,
consequently rising a global organisation structure based on local interactions.

The evaluation of Coalition Oriented Sensing Algorithm, as well as the assess-
ment of its functional features, is based on simulation. The election of an appro-
priate simulator which offers the desired features is a relevant task. Chapter 4

8 Chapter 1. Introduction

motivates the choice of RepastSNS as the simulation engine for experimenta-
tion and presents this platform structure. RepastSNS, which is java based, and
developed over a well-known Multiagent Systems’ simulation platform poses as
the best candidate. The study of its characteristics points out its main features,
identifying their advantages and inconveniences when compared to the requisites
for COSA experimentation.

Repast

RepastSNS

ECA-WSN

Experimental setup

COSA-able WSNRiversim

Figure 1.2: Development Structure.

Highlighted features of RepastsSNS are its general character and the commu-
nication capacity of every element modelled in the system. RepastSNS presents
a low-level implementation of every element taking part in a sensor network.
This feature represents a beneficial characteristic for the platform, as it provides
it with a general and flexible character that makes it suitable for very differ-
ent kinds of scenarios and problems. However, its generality, together with its
novelty, demand an extra effort and an important amount of work to adapt the
platform to the particular problem studied and to make it operate properly. Part
of this work, as explained in the chapter, has been performed on RepastSNS and
incorporated to its structure as it corresponds to general platform functions.

Figure 1.2 shows the development structure followed for the simulation execu-
tion. The structure is defined taking into account the scalability and extensibility
features of RepastSNS. Thereafter, it presents a modular structure composed of
different layers. Each of these layers corresponds to different implementation
tasks that enrich the simulation platform towards the Coalition Oriented Sens-
ing Algorithm application completion. Next chapters are dedicated to each of
the layers built upon RepastSNS.

Chapter 5 presents the Energy and Communication Aware Wireless Sensor
Network (ECA-WSN) layer which, as its name states, focus on primary aspects
of the sensor nodes, such as energy management and communication activities.

RepastSNS does not assume any particular kind of environment, nor of the

1.4. Structure of the dissertation 9

sensor node. As a consequence, prior to the implementation of the MAS algo-
rithm, the model of the network designed has to be built.

The energy management of a node refers to the consumption activities of the
node’s components and the battery operation. The energy policy implemented
in this module meets RepastSNS’s principles. Nonetheless, this policy provides
with a completely different approach that standardises all consumption demands
and considers the battery as an element capable of self-management.

Regarding the nodes’ communication activities, the novel model issued by
this layer allows for the emission of unicast and broadcast messages. Commu-
nication is a fundamental pillar of Multiagent Systems algorithms. Thus, an
adequate model of this capacity is critical. The model of these new capacities
and its corresponding activities is consistent with the energy model, what makes
this layer a compact module modelling any regular sensor node’s activities.

Chapter 6 describes the next layer of the structure designed for COSA
simulation. ECA-WSN have considered physical aspects of the network nodes.
The COSA-able WSN module abandons this device perspective to focus on the
logical/behavioural dimension of the network nodes. That is, this layer properly
implements the Multiagent Systems algorithm COSA. The implementation of
the core of COSA behaviour into the agents adjusts to the formal definition
presented in Chapter 3. The different aspects of COSA that contribute to the
final concretion of the agent’s behaviour are implemented in separate but linked
structures.

An intelligent agent behaving according to COSA makes a conscious use of
its resources. Regarding their power supply, agents can save a certain amount of
energy to perform specific communication activities before completely depleting
their batteries. Therefore, this COSA-able WSN module builds the correspond-
ing energy and communication structures over ECA-WSN module to provide
the network nodes with COSA specific functionalities.

This module design preserves scalability and extensibility features of the
RepastSNS platform. Moreover, it also favours the implementation of potential
algorithm enhancements and the reusability of the layered structure. In fact,
this advantageous property is exploited to implement two alternative strategies
to the original COSA formulation. Chapter 6 introduces the definition of two
optional COSA strategies and presents the subtle implementation changes that
they imply within the COSA-able WSN module.

Once the design of the network components has been specified, and their
expected behaviour has been also codified, the last task to accomplish for COSA
experimentation setup is the definition of the environment to be surveyed. This
work belongs to the upper layer in Figure 1.2.

Chapter 7 presents the last layer built for COSA simulation. This chap-
ter describes the experimental results derived too. The Riversim (River sim-
ulator) module contains the structure which specifies the application domain,
particularly a river in which pollution sources appear and whose presence has
to be warned. The model of this kind of environment bases on two components
that represent the just mentioned elements, river and stain. The river compo-

10 Chapter 1. Introduction

nent mimics this natural phenomenon behaviour and stain components represent
pollution sources poured into the river.

This environmental module is linked to the previously defined network
through the specification of the environmental property that the sensor nodes
can perceive. Sensors’ particularisation to sample the environment defined by
Riversim completes the network definition. However, simulation executions still
required building up the simulation model which gathers together all the ele-
ments, and which is also in charge of correspondingly initiating them.

The experimentation accomplished aims at testing the algorithm perfor-
mance. The experimental design done for this purpose takes into account fea-
tures of COSA and the environment in order to define initial tests as complete
as possible. The experiments’ configuration proposed considers the same kind of
node for every simulation but changes the network topology for different scenar-
ios. Regarding the environmental conditions, the dynamics of the river and the
stains also change from one scenario to another, as they represent different kinds
of problems. The expected results from simulation are formulated in terms of
hypotheses that are checked at the end of the chapter.

The evaluation of the potential benefits of COSA use bases on comparing
the network performance when it implements COSA and a so-called Random
policy. Random policy represents the typical WSN agents näıve behaviour of
periodically sampling the environment and transmitting the collected sample to
the sink. The confrontation of the results obtained from these approaches clearly
manifests the impact of applying a MAS coalition formation technique in the
WSN considered. The assessment criteria used for comparison contemplates the
two main dimensions that characterise the performance of a monitoring WSN:
the network lifetime and the correctness of the information reported.

Finally, the results delivered support the initial hypotheses about the ex-
pected behaviour of COSA and the alternative strategies proposed in Chapter 6.
The comparison of the three strategies shows how the trade-off between energy
consumption and information accuracy changes depending on the environment’s
conditions and makes one strategy preferable to the others.

Chapter 8 concludes this thesis by summarising the work accomplished.
Conclusions about the algorithm performance and its implementation are finally
drawn in this chapter. The benefits derived from more experimentation to fully
characterise COSA are also recognised to encourage its use. Nonetheless, its
implementation simplicity poses as an outstanding positive feature. The discus-
sion about future directions of this research gathers enhancements and variation
of the algorithm formulation, together with additional experimentation. These
advances would lead to a methodic parametrisation of COSA. The availability of
this methodology would allow an easy COSA adoption to potential application
domains and, consequently, this would favour its use and spread.

1.5. Contributions 11

1.5 Contributions

This thesis completion have resulted in the following contributions derived from
the work developed.

The Coalition Oriented Sensing Algorithm. This algorithm appears as a
self-organisation mechanism for WSNs, which aims at extending the networks’
lifespan while meeting their primary goal, i.e. adequately monitoring the state
of the environment. This strategy allows the network to regulate its energy con-
sumption according to changes in the environmental conditions. The achieve-
ment of this behaviour stems from the recognition of each node in the network as
an agent in a MAS. Hence, the design of an efficacious strategy for the network
functioning focuses on the nodes’ individual behaviour.

From this point of view, COSA sets the guidelines of a node behaviour in
order to get a network-wide benefit. The definition of the node behaviour is
specified by two functions and a negotiation protocol that allows the agent to
establish relationships with its neighbours. Coalitions are formed as a result of
these negotiations. One agent per coalition samples the environment and sends
the perceived information to the sink on the group behalf, whereas the other
group members stops their sampling actions.

The whole process relies on the local information available for each node
at each moment. The use of this information according to COSA definition
and parametrisation represents the way in which the programmer’s interests
guide the agent and the network behaviour. The network organisation in groups
of nodes that act together to save energy takes into account each node state
and its environmental perception. Thus, the information detriment caused by
nodes’ association is limited, and an adequate performance of the environment
surveillance task can be guaranteed.

A workable version of RepastSNS. The verification of the algorithm func-
tional properties and its study has been performed by simulating a particular
instance of COSA in the target scenario described in Section 1.2. The simu-
lation environment selected for this task is RepastSNS. In order to be able to
use RepastSNS, the performance of a prior work on the simulation platform was
necessary. The preliminary tasks accomplished have improved the platform op-
eration and added new functionalities. As a consequence, we have contributed to
the definition of a simulation environment specially conceived for WSNs study
from a MAS perspective.

The setup of the platform and the implementation of our application over
it follow a layered structure that constitutes a general development framework
for applications over RepastSNS. Thus, the different elements taking part in
the simulation, as well as different aspects of it, are introduced independent
and orderly. This approach favours an easy substitution of the corresponding
component modules to model different environments or circumstances.

12 Chapter 1. Introduction

A reusable generic model of a node physical behaviour. The first level
built on RepastSNS is ECA-WSN. This module concentrates on physical char-
acteristics of the node. ECA-WSN establishes an energy management model
that allows for a homogeneous view of every energy consumer element in the
node. Moreover, it also enhances the communication module with respect to
the RepastSNS’s original one. The notion of this module allows for its reuse in
different applications, as well as its substitution in case the physical model of
the nodes implementing COSA changes.

A modular implementation of COSA. The definition of the COSA-able
WSN module transfers COSA formal expression to the simulation environment.
This module uses the structures defined by ECA-WSN to code the agent be-
haviour following COSA. The modular implementation of the algorithm eases
the introduction of changes and its replication in different frameworks.

Insights on the relationship between local co-ordination and energy
saving. The results of the experiments performed bear witness of the utility of
local co-ordination when the observed phenomenon also presents this character.
It is important to remark this conclusion as the adequacy of COSA use par-
ticularly depends on the local/global nature of the phenomenon. Nonetheless,
proper characterisation of the phenomenon is crucial for COSA adoption and
the analysis of its behaviour.

Chapter 2

State of the Art

Wireless Sensor Networks (WSNs) are generally formed by a large num-
ber of sensing nodes able to develop surveillance tasks in different environ-
ments [Akyildiz et al., 2002]. Their typical features make them appropriate for
an outstanding amount of monitoring applications [Martinez et al., 2004]. As
a result, WSNs have been applied to different domains, such as environment
monitoring, security and traffic control, target tracking, etcetera. Depending on
the application environment and its accessibility, the challenges posed by these
systems can be more or less acute, especially those referred to energy expen-
diture. Multiagent System (MAS) technologies can help in alleviating nodes’
constraints referred to communication, processing capacity and energy availabil-
ity [Lesser et al., 2003]. The introduction of coordination mechanisms between
sensors can make the system, as a whole, more efficient in terms of energy con-
sumption.

In this chapter, we review previous contributions on the area that have in-
spired our work. The point of view selected to study the aforementioned research
problem differentiates previous works. The WSN community approach focuses
on the development of clustering algorithms whereas the Multiagent systems’
perspective concentrates on coalition formation among nodes in the network.
In the following, we distinguish between these two research lines and review
previous contributions to the problem considered.

2.1 Situation of the research problem

The problem tackled in this work is the development of an energy-saving data
treatment strategy that, based on the local activity of the network nodes, per-
mits an adequate performance of the system. Research works within the WSNs
research area cover different aspects of it, but they all aim at improving the
network capacity and attenuating the problems and constraints posed by the
nodes’ physical limitations and the deployment environments.

The work of [Yick et al., 2008] represents a very complete and concise survey

13

14 Chapter 2. State of the Art

on the distinctive features of a WSN and its application domains. It also delivers
a set of WSN features and processes whose improvement poses a challenge to
developers. Authors divide the tasks to accomplish for a WSN creation into
three main groups. From this distinction, and the five-layered communication
protocol stack considered for WSNs, a survey on previous works unfolds. This
survey describes the challenges to be faced at each stage of a WSN development.
In any case, the importance of general aspects of the network, such as the need
of prolonging the network lifetime and providing the agents with organising
mechanisms is recognised throughout the whole paper.

The three group of tasks identified for a WSN creation are system’s tasks,
communication tasks and services tasks. System’s tasks refer to the physical
device; communication tasks cover activities performed within the base-mid lay-
ers of the communication protocol stack, and finally, services tasks comprehend
functions related to the upper part of the communication stack and the network
application. Among the open issues for a WSN creation pointed out within this
classification frame, we can mention the development of more general WSNs’
platforms that fit in different kinds of application domains, and the development
of management and control services to deal with network connectivity issues. A
deeper study of security, quality of service and mobility aspects of routing is also
desirable, as well as the performance of cross-layer optimisation tasks. Sharing
information through all communication layers leads to a more efficient network
performance and an increase in the network lifetime.

Regarding the two previously mentioned research approaches identified for
our problem (MAS point of view and WSN approach), these can be situated
within the WSN accomplishment structure provided by [Yick et al., 2008]. The
clustering work of the WSN community focuses on routing strategies, which
belong to the network layer of the communication protocol stack, hence to
the group of communication tasks. The implementation of coalition formation
strategies between nodes can be classified as a service task. One of the goals
established for these services tasks is to maintain the network operations, which
matches the interest of works on coalition formation. Some of the strategies pro-
posed to reach this target are synchronisation or data compression. The works
of [Lasassmeh and Conrad, 2010] and [Srisooksai et al., 2012] present recent
surveys on these strategies’ development and application for WSNs. Synchroni-
sation and data compression strategies pursue energy conservation and minimi-
sation of the errors committed. Energy management is a critical issue that affects
the whole WSN conception, from its design phase until proper operation. Energy
harvesting [Basagni et al., 2013] and energy conservation [Anastasi et al., 2009]
techniques try to maximise the network lifetime by allowing the replenishment
of nodes’ batteries or by introducing efficient strategies for energy use.

A general classification of energy conservation techniques is introduced
in [Anastasi et al., 2009]. This work explores the principal contributions in this
area by dividing them into three main lines: duty-cycling techniques, data-driven
approaches and mobility-based strategies. Our work is part of the second group
of techniques as it tries to avoid unnecessary sampling actions. To pursue this ob-

2.1. Situation of the research problem 15

jective, the algorithm that we propose makes nodes implement an asynchronous
sleep/wake up strategy, which is related to the duty-cycling schemes too. There-
fore, our proposal could be considered as situated somewhere in the middle be-
tween the duty-cycling schemes and the data-driven approaches. Data-driven
approaches are further divided into two subgroups, which are data-prediction
and energy efficient techniques.

Data-prediction bases on the creation of a model for the observed phe-
nomenon. This model can be used by the sink to predict the value of the
samples instead of demanding a sampling action from the nodes. Some incon-
veniences presented by this kind of techniques refer to their specific character,
as they highly depend on the application and the phenomenon of interest. The
work of [Rogers et al., 2008] proposes an iterative formulation of a multi-output
Gaussian process that can build a reliable probabilistic model of the environ-
mental parameters being observed by a sensor network. This process is executed
by a PDA (personal digital assistant) that has access to the data collected by
a weather sensor network. The execution of this algorithm endows the element
with the capacity of data prediction and autonomous data acquisition from the
nodes, what allows it to determine when to read a sample and from which
sensor. Nonetheless, energy efficient acquisition techniques aims at restricting
the number of sampling actions. These strategies postulate as one of the most
promising areas in energy conservation. They reduce the energy consumption
by lowering the number of samples collected and thus, avoiding the energy cost
of their associated transmissions to the sink. Our work pursues these objectives
by benefiting from spatial phenomenon correlation. A similar perspective of the
environment shared by neighbouring nodes in a WSN favours the possibility of
these nodes group reunion. Nodes joint together share resources and sample the
environment as an entity, a cluster in WSN community terms. The delegation
of sensing and transmission tasks on the leader or cluster head allows the rest of
group members to save energy. The algorithm that we propose to achieve this
goal is based on the consideration of a WSN as a MAS. Thereafter, each sensor
node can be contemplated as an agent able to communicate and establish agree-
ments with its neighbours. The work of [Vinyals et al., 2011] presents a survey
on MAS applications to sensor networks. This work identifies the sensor net-
works’ problems addressed by the MAS community. It also presents promising
research problems related to MAS application to WSN. Particularly, it points
out collective sensing strategies as possibly one of the most promising areas.
Numerous works have recently taken advantage of the adequacy of modelling
networks with MASs. As a sample of this vein, the work of [Rebollo et al., 2014]
proposes the use of a MAS to manage the dynamic demand in a power net. In
the following, we review contributions done to the coalition formation problem
from a MAS point of view and clustering strategies in WSN.

16 Chapter 2. State of the Art

2.2 Coalition Formation in MAS

Coalitions represent a fundamental form of organisation for MAS. Agents
cooperate within the coalition in order to share resources or reach shared
goals that cannot be achieved individually. Coalition Formation (CF) has
traditionally been studied from a game theoretical perspective as stated
in [Horling and Lesser, 2004]. This work presents a review of organisational
mechanisms and characterises each of them, among these mechanisms, coalitions.
Nonetheless group formation of agents that model a sensor network function has
been called coalitions, teams, regions, etcetera depending on the application
domain or the authors considered. We assume the definition of a coalition pre-
viously introduced, as a group of agents that pursue a common goal. According
to [Vig and Adams, 2007], CF in MAS can be studied from three different per-
spectives:

• Task allocation. Many MAS applications require agents to join forces for a
period to solve a task. Contract Net Protocol [Smith, 1980] represents one
of the first proposals in this line. The work of [Shehory and Kraus, 1998]
continues in this line proposing algorithms for task allocation among
agents.

• Social networks. This research line uses coalitions to study the emergence
and behaviour of organisations in environments without clearly defined in-
teraction mechanisms [Gasser, 1993]. SODA methodology [Omicini, 2000]
exploits the social perspective of MAS for the analysis and design of
Internet-based systems. Nonetheless, the work on CF from a social per-
spective have evolved towards a game theoretic approach.

• Game theory. This approach to CF has not traditionally focused on
the design of agents’ strategies to reach a beneficial coalition but on
the study of stability and fairness properties of the coalition. The
work of [Elkind et al., 2013] represents a very clear and complete sur-
vey on the concepts, representation formalisms and solution algorithms
for coalition formation problems. The works of [Dang and Jennings, 2006,
Rahwan and Jennings, 2008] represent recent approaches to the problem of
coalition structure generation from this point of view. A dynamic coalition
formation mechanism for distributed agents that model a smart electricity
grid is introduced in [Mihailescu et al., 2011]. The mechanism presented
focuses on the notion of stability associated to coalitional games.

The application of MAS techniques to the problem of coalition formation
for effective sampling in WSNs demands an adaptive strategy. WSNs are typ-
ically deployed in dynamic and distributed environments whose state changes
continuously in time. Therefore, there is no time, neither computation ca-
pacity in the nodes for a centralised approach to evaluate the optimal so-
lution. Hence, a number of alternative mechanisms for coalition formation
in this kind of environments have been proposed in recent years. According

2.2. Coalition Formation in MAS 17

to [Zambonelli and Omicini, 2004], MAS technology provides an effective way
to solve the complex problems arising in this particular kind of scenarios that
presents geographically distributed tasks and that also requires an adequate
workload distribution of the tasks to be performed.

As stated above, agents’ association to perform a task has been considered
almost from the initial conception of the MAS paradigm. The approach taken
for the design of these coalition or group strategies have evolved as the MAS
application domains diversified. Therefore, a whole range of different CF mech-
anisms exist depending on the conditions and characteristics of the application
scenario and the nodes composing the network.

A typical mechanism for coalition formation in MAS is negotiation. In the
work of [Kraus et al., 2003], self-interested agents negotiate and reach decisions
for task completion in a business inspired scenario with incomplete information
about the environment and the other agents. These negotiations develop in
so-called Request For Proposals domains. In the considered scenarios, business
agents tackle complex decomposable tasks that require the formation of groups of
provider agents to solve them. In contrast to them, we consider a network formed
by cooperative agents whose common task is to monitor the environment. The
interest in accomplishing this task efficiently is what drives the network division
into groups.

The influence of the network topology on the performance
of a MAS for task solving has also been considered in differ-
ent approaches [Gaston and desJardins, 2005, Barton and Allan, 2007,
Glinton et al., 2008]. In these cases, the system divides itself into dis-
joint groups in order to accomplish the demanded tasks. In the work of
[Gaston and desJardins, 2005], agents can rewire their connections to neigh-
bours to form better coalitions. This can be done according to their degree of
connectivity or a performance-based policy. The decision factor for rewiring in
[Barton and Allan, 2007] is the similarity among neighbours and some task and
group success indicators. Finally, the work of [Glinton et al., 2008] enriched
the previous one by considering a more realistic coalition model. All these
works show how dynamic CF can improve the network performance. However,
none of these three approaches takes into account the energy consumption and
the cost derived from the rewiring policies.

Task oriented CF in dynamic environments faces the problem of high power
and bandwidth consumption due to continuous configuration and reconfigura-
tion processes to adapt to the system’s evolving conditions and demands. To
avoid that excessive consumption, [Bai and Zhang, 2008] proposes a task ori-
ented team formation in which the group duration is calculated following some
fuzzy rules applied to the historical behaviour of the agents and the characteris-
tics of the tasks arriving to the system. A social model of coalitions also favours
the appearance of mid-term duration coalitions [Griffiths and Luck, 2003]. The
clan concept proposed in this work designates a set of agents with similar aims
and mutual trust. In this case, group formation is not only determined by task
accomplishment, but by the agents’ motivation and trust relationships. The CF

18 Chapter 2. State of the Art

strategy that we propose is based on a similar environmental perception and the
agents’ state. These metrics capture the interest of an agent in forming part of a
group. However, we are not interested in keeping a coalition configuration when
its origination conditions are no longer valid. Hence, coalitions’ duration in our
scenario is given by these conditions’ time persistence.

The work of [Sims et al., 2003] presents two general CF algorithms for the
problem of vehicle tracking by a sensor network. In the same vein of us, the
proposed algorithms enable the self-organisation of the system by allowing the
agents to discover their organisational relationships during negotiation processes.
The CF process is modelled as a market environment, and negotiations can be
based on local or social marginal utility calculations. The goal of the agents is to
maximise the system’s global utility, which is a function of the number of agents
per sector and how well they cover the target region.

The Dynamic Regions Theory [Ruairi and Keane, 2007a] proposes a com-
pletely different approach for the division of a WSN in charge of a gas plume
detection. According to this theory, the network partitionates itself into several
different regions. The network partition is derived from the individual nodes’ role
election according to their circumstances and the system’s global policy. Each
region performs different tasks in the network. In contrast to this approach, we
propose an algorithm that divides the network into groups that share the same
responsibility with respect to the global objective of the network.

A more recent work that also introduces a strategy for sensor network division
is [Bicocchi et al., 2012]. The network division algorithm is presented as an
organisation mechanism specially conceived for pervasive sensor networks that
do not have a fixed sink, and that can be accessed for information demand at
any point. The identification of regions in the network relies on the differences
registered for the observed variable. Each region is considered as a macro sensor
able to report the value registered in its region. There is not a formal group
establishment as there is neither task delegation. The scenario of this work
is completely different to our application domain and goals pursued are also
different. However, the interest for sensor networks division techniques and
their application to different domains becomes clear in this work.

2.3 Clustering strategies in WSN

As previously discussed in Chapter 1, controlling the energy consumption of a
WSN is a key issue. Clustering represents a prime technique to reduce the energy
consumption of these networks and to extend its lifetime consequently. Cluster-
ing techniques have been typically implemented for routing algorithms and also
as a basis for WSNs self-organisation mechanisms, especially for unstructured
networks [Siham et al., 2013]. Dividing a network into clusters favours scalabil-
ity and efficient use and sharing of resources. These properties translate into
network topology stabilisation and energy saving. Clusters are formed by a set
of agents in which one of them plays a special role, the cluster head. A cluster
head can perform different functions, such as information aggregation or organ-

2.3. Clustering strategies in WSN 19

ise cluster members actuation to avoid collisions, for instance. Clustering also
helps in diminishing communication overhead, decreasing packet collision and
reducing the size of routing tables; that is, a more efficient use of resources.

There exist numerous contributions to clustering algorithms for WSNs. The
work of [Abbasi and Younis, 2007] represents a quite complete survey on these
techniques. It includes a taxonomy of clustering attributes that is used later in
the paper to characterise the different algorithms reviewed. This work considers
scalability as the prominent advantage offered by clustering. Hence, it presents
the set of revised clustering algorithms emphasising whether they converge in
constant or variable time. Besides this review, the survey also includes two useful
tables. The first one compares the algorithms in terms of different metrics such
as energy efficiency, load balancing, cluster overlap, stability, capacity of failure
recovery, location awareness, node mobility and convergence time. The second
table included summarises the reviewed algorithms’ characteristics according to
the proposed taxonomy, what helps in fixing the concepts and understanding the
algorithms function. The proposed taxonomy considers three different groups
of attributes: the first group focuses on cluster properties; the second group
describes the cluster head capabilities, and finally, the last set of properties
considered refers to the clustering process. Attending to this characterisation
criterion, the algorithm that we propose for dividing the network nodes into
groups presents the features included in Table 2.1. Some of the characteristics
mentioned in Table 2.1 point out the MAS approach of our proposal, as its
distributed character and cluster head selection through negotiation processes
that end up with a cluster establishment.

A more recent survey on the area is presented in [Mitra and Nandy, 2012],
which pays special attention to clustering algorithms for heterogeneous WSNs.
Other works dedicated to clustering algorithms review have focused on en-
ergy efficiency, such as [Kumar et al., 2011] and [Siham et al., 2013]. The work
of [Kumar et al., 2011] briefly review an important number of algorithms, in-
cluding a quite exhaustive identification of LEACH algorithm descendants. On
the other hand, [Siham et al., 2013] includes some more recent algorithms in
its review, and a classification of WSNs’ attributes similar to the presented
in [Abbasi and Younis, 2007].

Among the most prominent clustering algorithms proposed for sav-
ing energy in WSNs, we can mention LEACH [Heinzelman et al., 2000],
EEHC [Bandyopadhyay and Coyle, 2003] and HEED [Younis and Fahmy, 2004].
All these algorithms divide the sensor network distributively into a set of non-
overlapping clusters. Each of these groups presents a cluster head which is in
charge of sending the collected data in the group to the sink. Our approach dif-
fers from these works in the way the cluster head is chosen. The characteristics
of the node, its state and the perception that neighbouring nodes have of it are
taken into account when characterising a cluster head.

A more recent approach to this problem is presented
in [Cordina and Debono, 2009], where a cluster-based routing algorithm is
introduced. In this case, the base station determines which are the cluster

20 Chapter 2. State of the Art

Table 2.1: COSA characterisation in terms of the taxonomy proposed in
[Abbasi and Younis, 2007]

Category Characteristics Value

Cluster properties Cluster count variable
Intra-cluster topology fixed
Inter-cluster connectivity direct link
Stability adaptive

Cluster head capabilities Mobility fixed
Node types homogeneous
Role relaying

Clustering process Methodology distributed
Objective of node grouping energy saving
Cluster head selection negotiation
Algorithm complexity n/a

heads, and it also implements a centralised predictive filtering algorithm for
decrementing the amount of transmitted data. In contrast, we propose an ap-
proach in which the nodes make autonomous decisions without any centralised
control. Maintenance of the cluster structure is not significant for our algorithm
as we encourage adaptation in its design. Nonetheless, recent approaches
to clustering, such as the APC-T algorithm [Siham and El Ganami, 2012],
promote cluster stabilisation to extend the network lifetime through load
balancing. Moreover, this algorithm addresses one of the open issues pointed
out by [Yick et al., 2008], the mobility of nodes. The cluster stabilisation is
guaranteed by a cluster head replacement policy that the cluster head itself
applies when its energy drops to a minimum threshold or it is going to leave.

In the vein of reducing the number of transmissions, but far from the coali-
tion/group perspective presented above, the work of [Padhy et al., 2006] pro-
poses an algorithm for individual node adaptive sampling that tries to extend
the network lifetime of a glacial sensor network. This same goal is also pursued
in the work of [Dyo et al., 2010]; that focuses on the importance of optimising
the design and use of a sensor device for lowering the system’s energy cost in
the deployment of an automated wildlife monitoring system.

In contrast to these previous works, we propose a coalition formation strategy
for homogeneous nodes in a sensor network scenario that allows to extend the
useful lifetime of the network by avoiding redundant sensing and transmission.
This group formation strategy bases on the nodes’ state and the conditions of the
environment. There is no intervention of any central authority and the algorithm

2.4. Conclusions 21

is fully distributed and embedded into the nodes’ behaviour.
The main objective of reducing the energy costs of properly monitoring the

target environment is achieved through the delegation of agents’ sampling tasks
to other group members. The selection of group members that share a common
view of the environment becomes crucial in reducing the information loss in
the process. Thus, the initial purpose of the system —faithfully monitoring the
environment— is not missed.

2.4 Conclusions

In this chapter, works that recognise the importance of the research problem
tackled and the need of solutions’ proposal have been presented. The identi-
fication of a WSN with a MAS favours borrowing ideas from both areas for
the definition of an algorithm able to respond to the problem requirements.
Thereafter, different clustering strategies for energy saving in WSNs have been
studied. CF algorithms in MAS have also been reviewed as they constitute an
important mechanism for self-organisation and a tool for the system operation
improvement. The study of works done in these two research areas provides the
basis for the algorithm proposed in this dissertation. To the best of our knowl-
edge, no previous work has addressed the problem of extending a WSN lifetime
while guaranteeing its performance in a purely self-organised way. COSA allows
for the network self-organisation through its division in groups. The network
configuration is reached thanks to the common interest of cooperative agents in
monitoring the environment effective and efficiently. The algorithm that agents
implement to do this relies on a particular model of the agent’s preferences for
CF. The functions of this model take into account the similarity of the agents’
environment perception, the environmental model of the nodes, the availability
of energy, the perception that neighbouring nodes have of a node and the char-
acteristics of the group to be formed. The value of these functions condition
the execution of a peer-to-peer negotiation protocol that leads to the estab-
lishment of leader-follower relationships between agents. The duration of these
relationships depends on the persistence of the conditions that favoured their
appearance. Thus, the network configuration evolves and adapts to changes
in the environment and in the nodes composing the network in order to avoid
redundant sampling and provide the sink with adequate information.

Chapter 3

Coalition Oriented Sensing
Algorithm

The standard and simplest behaviour of a sensor in a WSN consists of sampling
the environment according to a pre-established frequency and then transmitting
the data to a server, where this information can then be further processed and
analysed. When the environment does not change, this behaviour wastes energy
as many sensors will be transmitting the same data to the sink, and when the
environment changes it does not adapt by increasing the frequency of sampling
to provide better information. The objective of the Coalition Oriented Sensing
Algorithm (COSA) proposed here is to improve this situation radically. To reach
this goal, COSA subtly provides the WSN with a structure.

The basis of COSA arises from a social conception of WSNs. One of the
key aspects of MAS studied from this point of view refers to the relationship
between the social-organisational structure of the system and the autonomous
agents composing it [Conte and Castelfranchi, 1995]. Considering a WSN as a
social system, favours the identification of individual sensors with agents in a
MAS. Each of these agents accomplishes particular functions in the system and
in the society they define. From this social perspective and, assuming a simplistic
approach to our problem, we can say that the individual behaviour of the agents
and the interactions among them cause the emergence of new properties at the
system’s level. Hence, agents’ low-level relationships lead to higher order links
among them, what provides the network with an organisational structure.

The core of COSA lies in the establishment of groups among agents. To
define these coalitions, and the role the agents play within them, agents negotiate
through the exchange of information by short-distance communication. Thus,
the resulting coalition structure depends at any time on the network topology,
the state of the agents and the environment. As WSNs are deployed in dynamic
environments, the distribution of roles among agents in the system will change
along time. The use and interpretation of the information an agent has about
itself, about its neighbouring agents and the environment are the key activities

23

24 Chapter 3. Coalition Oriented Sensing Algorithm

of COSA.

3.1 Problem formalisation

The Coalition Oriented Sensing Algorithm (COSA) has been designed consid-
ering a scenario composed of a set A = {a1, . . . , aN} of cooperative and homo-
geneous agents (the network’s sensors). We do not consider that agents can be
competitive or selfish as in the kind of problems considered, there are neither re-
sources to fight for nor rewards to be won by the agents. The pursued objective
is that of improving the systems’ global performance by enriching the capacities
of the individual sensors.

WSNs are deployed in targeted environments in order to collect information
from this area of interest. In such scenarios, the basic behaviour of an agent ai
is to sense the environment and relay the observed measures to a server or sink.

The goal of COSA is to save system’s resources through coalition formation
among agents that are perceiving similar measurements. Thereafter, a single
agent can act as a representative of the coalition, avoiding redundant sensing and
saving resources. To find an appropriate distribution of the agents in coalitions,
we take into account the similarity of the individual measurements and the
topology of the neighbourhood structure, which determines the neighbourhood
relationships to be established among agents.

The unit distance assumed for this scenario is one radio hop. Let d : A×A→
N, be the distance between two nodes, measured as the minimum number
of radio hops between them. The physical properties of wireless communica-
tion guarantees that d is a metric distance. In particular, d is commutative,
d(ai, aj) = d(aj , ai), and d(ai, ai) = 0.

Based on d, and given a set of agents A, we call Ne : A→ 2A a neighbourhood
function if and only if aj ∈ Ne(ai)⇔ d(aj , ai) = 1.

A coalition structure can then be defined for a maximum distance θ among
the members of a group. That is, for θ = 1, only direct neighbours can take
part in a same coalition. Higher values of θ let agents whose neighbourhood
relationship is at most, of θ order join in a group. For instance, if θ = 3
then, a set of agents can form a coalition as long as none of them is further
away from any other member of the group than 3 radio hops. Therefore, θ
parameter influences the maximum achievable size of the coalitions, and hence
the minimum granularity of the network. Given a set of agents A, a θ-distance
coalition structure, cθ = {gk}k:1..K , is a partition of A in K coalitions, such that
∀ai, aj ∈ gk, d(ai, aj) ≤ θ. We note by Cθ the set of all possible θ-distance
coalition structures and the current coalition structure at time t, as ct 1.

The criterion that guides the formation of the different coalition structures is
to find (in a distributed manner) the best partition so that the energy consump-
tion of the system is somehow minimised while the accuracy of the information
sent to the sink hardly deteriorates.

1θ parameter is equal to 1 for the scope of this thesis

3.2. Agent’s coalition formation 25

COSA appears as a tuneable algorithm thanks to the definition of a set
of parameters p whose values drive the agents’ behaviour. Depending on p,
agents take different sampling and transmission actions. This set of actions is
represented as mj ∈ Mp, where Mp is the set of existing actions available for
that p configuration. The right values’ selection of these p parameters leads to
the energy savings desired by the algorithm.

The objective of minimising the system’s energy consumption is formally
expressed in Equation 3.1, where mj

i is the action j taken by agent i and Ej
represents the energy consumption associated to that action.

p∗ = arg min
p∈P

∆E = arg min
p∈P

∑
mj∈Mp

∑
ai∈A

#mj
iEj (3.1)

This set of p parameters plays a dual role in COSA definition. According to
Equation 3.1, we can find a set of parameters p∗ that minimises the energy con-
sumption in the system for a considered interval time. Besides, the accuracy of
the measurements collected is also guaranteed through an adequate p parameters
election as they constrain the actions to be taken by the agents. Nonetheless,
to understand the behaviour of the proposed algorithm and the consequences of
the individual agents’ actions completely, the behaviour of the system is globally
evaluated in terms of remaining energy, together with information entropy per
unit time and joint error committed. Knowing that these are the global evalu-
ation measurements, the behaviour of the individual agents and the effect of p
parameters on it can be identified in the next sections.

3.2 Agent’s coalition formation

COSA modifies the standard sensor behaviour (sampling and transmitting the
collected information to the sink) by considering each sensor as an autonomous,
proactive and reactive agent. To achieve this behaviour, COSA relies on a simple
negotiation protocol and two functions modelling graded relationships: adher-
ence and leadership. The numerical degrees of these relationships determine the
asynchronous dialogues in which nodes engage when negotiating. At the same
time, the results of these negotiations also modify the value of the adherence
and leadership relationships.

As a consequence of this negotiation process, agents assume one of two pos-
sible roles: leader or follower. An agent is a leader if it is the representative
of its coalition (where it may be the only member). A follower agent is that
that joins a coalition led by another agent. The role performed by each agent
in the system, and the link established with its neighbours is what defines the
organisational structure of the WSN at a certain time. Therefore, through the
individual agents’ role election, the network configures itself as a set of coalitions
that define a coalition structure for a specific instant of time. Each coalition in
the coalition structure acts as an entity. The leader of the coalition senses the
environment and sends the collected sample to the sink on behalf of the whole
group. If this value is a good representative of the monitored variable in the area

26 Chapter 3. Coalition Oriented Sensing Algorithm

covered by the coalition then, the coalition as a whole saves energy and com-
putational resources. The addition of these coalitions’ energy savings translates
into a global system energy preservation. However, the possibility of reducing
the energy expenses of the network actions come at the cost of detriment on the
amount of samples available for the sink.

3.2.1 Relational functions: adherence and leadership

As already said in previous sections, coalition formation is the key element of
COSA. Coalition formation is based on a peer-to-peer negotiation protocol by
means of which agents exchange information about their measurements and their
adequacy to represent their neighbours. These agent’s attitudes are evaluated
through the adh and lead functions, correspondingly representing the adherence
and leadership concepts.

Given the set A of agents, the value of the functions adh : A × A → R and
lead : A × 2A → R change along time. Their evaluation depends on the value
observed by neighbouring agents for the monitored variable at a certain time.
In this work, we assume that the variable under observation follows a Normal
distribution, N (µ, σ), as this distribution represents a common model of natural
phenomena [Manning and Schütze, 1999]. In this same vein, and in order to be
able to evaluate its adherence and leadership attitude, each agent ai assumes an
initial model for the phenomenon observed, a Normal distributionNi. Individual
agents update the value of their initial model as they collect new samples from
the environment.

Adherence function

The adherence degree of an agent ai to an agent aj is a measure that indicates
the intention of agent ai to take part in a coalition led by agent aj . The higher
the degree, the higher the intention. The adherence degree is defined as the
product of two factors. Each of these factors takes into account one of the two
elements involved in the agent’s information collection, which are the collected
sample itself and the Normal model assumed by the agent. The first factor
considers the similarity between the values observed by the agents, whereas the
second factor evaluates the certainty that the neighbouring agent aj has about
its variable’s model.

On one hand, the first factor in the adherence expression (Equation 3.2) cap-
tures the similarity between the measurements of agents ai and aj . It is defined
as the quotient of the probability that the sample of an agent comes from the
neighbour’s distribution divided by the maximum probability reachable for that
distribution. This factor’s numerator expresses how likely it is that an agent’s
sample comes from a neighbour’s distribution. The higher the probability, the
similar the agents’ perceptions are. This value is divided by the probability as-
sociated to the mean of the distribution in order to obtain an absolute measure.
The first factor of the adh function is a ratio that does not depend on the specific
variable model of an agent.

3.2. Agent’s coalition formation 27

To avoid unproductive calculation, this factor is only defined for neighbour
agents whose measurements verify that ‖xi−xj‖ ≤ dmaxσj ; that is, the difference
between the agents’ samples (xi, xj) is less than or equal to the product of the
parameter dmax by the neighbour’s model deviation σj . This condition relates
the difference between the samples taken by the agents to the shape of the
distribution used for comparison as this absolute difference can be more or less
significative depending on the kurtosis of the distribution.

On the other hand, the second factor captures the goodness of the neighbour’s
distribution, i.e. how informative the distribution is. To assess this property, we
evaluate the entropy associated to the distribution, Hj , and normalise its value
in the interval of interest. As the observed variable is assumed to follow a Normal
distribution, the entropy evaluation is based on the standard deviation of the
function ([Goldman, 2005]). In these conditions, we define an interval of interest
for the distributions based on their standard deviations, (σmin, σmax). σmin
represents a very low value that just defines the lowest extreme of the interest
interval. Values of σ higher than σmax are associated to wide distributions
that lead to coalitions with disperse information. To avoid this situation, a
null goodness value is associated to neighbours whose deviation verifies σ ≥
σmax. This condition is introduced in the second factor of the adh function
through the constants Hmin and Hmax associated to parameters σmin and σmax.
The definition of this factor also uses exponential functions. The shape of the
exponential function results especially interesting for normalising the entropy
value of an agent’s variable model, as its value quickly grows when approaching
the selected upper extreme. This second factor can be interpreted as a modulator
of the first one. Its value ranges from 0 to 1 so that the adherence takes the
first factor value for agents whose σ is near σmin, whereas this factor is strongly
penalised for agents whose σ is situated around σmax.

Finally, the evaluation of the degree to which an agent ai may be interested
in being led by one of its neighbours aj is calculated as follows:

adh(ai, aj) =
p(xi,Nj(x̄j , σj))
p(x̄j ,Nj(x̄j , σj))

· (1− eHj − eHmin

eHmax − eHmin
) (3.2)

These two just presented multiplying factors can be identified in Equation 3.2.
To sum up the role each of these factors play in the adherence definition, it can
be said that the nearer the sample to the neighbour’s mean is the higher the
adherence whereas the thinner agent aj ’s model of the monitored variable is the
more adherence.

Leadership function

When an agent ai receives an adherence value from a neighbour aj , it has to
decide whether it is interested in becoming the leader of this agent or not. To
determine its leadership degree, agent ai does not only take into account the
adherence message just received from this neighbour aj . In this evaluation,
ai also considers the adherence values previously received from all other nodes

28 Chapter 3. Coalition Oriented Sensing Algorithm

currently ‘depending’ on it (including itself). That is, those agents assuming the
follower role and considering agent ai as their leader.

A good leader has to comply with three requisites referring to different as-
pects of the task it may develop. First, it should be a good representative of its
follower neighbours in terms of phenomenon characterisation. It is also neces-
sary to have enough energy to sense and communicate with the sink. Besides,
to become the leader of another agent, it is beneficial to be already performing
this role for other follower agents.

Let’s call potential group, P (ai), to the set of agents composed of the new
neighbour aj and the follower agents associated to ai (including the own ai).
Then, the willingness of ai to act as a leader of a set of agents P (ai), depends on
three factors that can be identified in Equation 3.3. The names given to these
factors refer to the corresponding aspect that they represent.

The first factor, which is called prestige, is an average of the adherence level of
the members of P (ai) towards ai. This factor captures how an agent is perceived
by the other agents in the network. Taking into account how much ‘wanted’ as
a leader an agent is favours promoting the leadership attitude of that agent.

The second factor, capacity, considers the available energy of the agent to
act as a leader. This value is derived from the current energy level of the agent,
E(ai), minus the so-called Energy security level, Esl, over the maximum energy
level of the battery, Emax. Esl represents the amount of energy necessary to send
one last disconnection message to warn the network about the node’s exhaustion.

Finally, the last factor, representativeness, indicates how well agent ai’s mea-
surement fits as a representative of the potential group agents’ measurements.
Thus, ai characterises the set of samples of agents in P (ai) with their mean
and standard deviation, noted as (x̄P (ai), σP (ai)). To encourage the formation
of coalitions with very similar measurements, an exponential function estab-
lishes the divergence growing ratio. Those potential groups whose measurement
distribution is very disperse are also penalised through the inclusion of the Pear-
son’s coefficient (CVP (ai)) in the equation. Equation 3.3 presents the leadership
capacity of an agent ai for a potential group P (ai):

lead(ai, P (ai)) =

∑
aj∈P (ai)

adh(aj , ai)

N
· E(ai)− Esl

Emax
· 1

e|xi−x̄P (ai)
|CVP (ai)

(3.3)

As previously explained, COSA is designed with a set of parameters that
establish a limit to the computational effort of each agent in the evaluation
of these relationships. Hence, this set of parameters, p, influences the ac-
tions that an agent can take. At this point, we have already introduced
five parameters composing p. Therefore, the set p can now be identified as
p = 〈θ, dmax, σmin, σmax, Esl〉 defined over the space p ∈ <5.

The first parameter included in p, θ, constrains the size of the coalitions to
be formed, as it determines the maximum distance, in radio hops, admissible
between agents in a coalition. The second parameter, dmax puts a limit on the
maximum difference between samples to evaluate the adherence to a neighbour j,

3.2. Agent’s coalition formation 29

‖xj−xi‖ ≤ dmaxσj . This maximum difference is proportional to the neighbour’s
σj to take into account the shape of its distribution.

The extreme values of the interval (σmin, σmax) establish the limit for the
variance of the set of coalition members. The smaller the gap the more demand-
ing we are in terms of the similarity of the coalition members’ measures. Hence,
more coalitions of smaller size would be formed. The larger gap, the dissimilar
node values in a coalition can be. This would imply larger errors at the sink
but larger and more stable coalitions (i.e. more energy savings). Finally, Esl
parameter conditions the energy available for the node to act as a leader, and it
also allows it to send a last disconnection message.

3.2.2 Operational Protocol

The adherence and leadership degrees registered by agents drive their actions to
form coalitions in the system. Agents’ preferences change due to the dynamics of
the environment and the dynamics of the individual sensors. Therefore, based
on these instantaneous values, agents negotiate trying to achieve their most
preferred configuration at each time.

The default and initial situation of the network corresponds to every agent
in the network alone constituting a coalition by itself (led by itself). In this
case, the agent, which is its own leader, senses the environment according to the
demanded sampling period and sends this information to the sink.

Algorithm 1 represents the general behaviour of an agent implementing
COSA. The Sense And Send thread represents the basic behaviour of a net-
work node slightly modified to include basic characteristics of COSA. However,
the real potential of COSA is introduced in this simple thread of action by the
addition of the Information Processing thread.

Algorithm 1: Agent generic behaviour

Data: t(sampling period), t’(sleeping time)
spawn (InformationProcessing);
while E(me) > 0 do

if (!leader) then
stop (SenseAndSend(t));
stop (InformationProcessing);
sleep(t’);
resume (InformationProcessing);
spawn (SenseAndSend(t,role));

else
spawn (SenseAndSend(t,role));

kill (InformationProcessing);
kill (SenseAndSend(t,role));

Implementing COSA into an agent behaviour demands the previous specifi-

30 Chapter 3. Coalition Oriented Sensing Algorithm

cation of the parameters p = 〈θ, dmax, σmin, σmax, Esl〉. Parameters defined by
the monitoring application also need to be specified, such as the demanded sam-
pling period and the sleeping time allowed for the agents. The agent’s behaviour
is organised around two main threads of actions, which are Information Process-
ing and Sense And Send, and their execution depending on the role played by
the agent at each time.

When an agent starts working, it initiates the thread Information Processing.
As long as it has energy, and depending on the role assumed by the agent, it
executes the actions corresponding to the Information Processing and Sense And
Send threads. As it can be seen in Algorithm 1, when an agent assumes the
leader role (which is also its default role), it samples the environment regularly
and sends this information to the sink.

Algorithm 2: Sense and Send

Data: t(sampling period), role(leader or follower)
next = now;
if next=now then

sampling;
modelUpdating;
if role=leader then

sinkTransmission;

neighboursBroadcast;

next=next+t;

The thread Sense And Send collects the sample from the environment ac-
cording to the demanded sampling period. This piece of information is used for
two tasks as it can be seen in Algorithm 2. The first task consists of updating the
variable model of the agent, and the second one refers to the transmission of the
sample. To comply with COSA requisites, individual agents use their samples
to update their models of the environment as explained in Section 3.2.1. As the
variable follows a Normal distribution (N (µ, σ)), updating this model with this
new piece of information implies updating the value of its corresponding mean
and standard deviation. This way, the agent perception of the environment
evolves in time.

The second task consists of transmitting the collected sample. Every agent
collecting a sample from the environment, whether it is a leader or a follower,
takes advantage of this piece of information to find its most desirable role at
that time. To do this, it sends to its neighbours the just collected sample.
Besides this, a leader agent always transmits the latest sample to the sink. In
the case that there is a set of follower agents associated to this agent, that
is, it is not a single agent coalition, sending the collected sample to the sink
implies transmitting information on behalf of all those follower agents. The set
of follower agents of a leader is called dependent group. If the leader agent is
alone, it sends the sample just on its unique representation. A leader agent is

3.2. Agent’s coalition formation 31

also continuously executing the Information Processing thread and consequently,
negotiating and exchanging information with its neighbours.

The first set of actions appearing in Algorithm 1 corresponds to a follower
agent role. A follower agent stops sampling the environment and negotiating
with its neighbours during the sleeping time. Once this period is over, awaken
agents recover their capacities. At that moment, it can sample the environ-
ment and use that information to negotiate with other agents (leader or recently
awaken agents). That is, follower agents can take part in the coalition formation
process right after awakening. This way a follower agent can change its rela-
tionship with its associated leader. It can become the leader of itself or other
agents, it can become a follower agent associated to a different leader, or it can
continue with its previous relationship. This decision is always determined by
the current conditions at that time. The Information Processing thread is the
element that supports the negotiation process and that guides agents’ actions
and role changing depending on the current conditions.

As it can be inferred from the preceding explanation, COSA protocol is
embedded into the agent behaviour mainly via the execution of the Information
Processing thread and the actions corresponding to the agent role at any moment
(leader or follower). The role developed by an agent changes along time de-
pending on the information available at each moment, that is, collected and
processed through the Information Processing thread.

Negotiation protocol

Before going into the details of the Information Processing thread, we are going
to present the basis of its functioning. The introduction of the main concepts
that have driven its design help in a better understanding of the conditions and
consequences it defines.

The working regime imposed by COSA to the agents can be divided into four
processes that run simultaneously:

• Sample information exchange. This process corresponds to the variable
sampling and measurements broadcast. Once the agent has taken a sample
from the environment, it communicates this information to its neighbours
in order to find suitable coalition members.

• Adherence relationship establishment. Once the agent has calculated the
adherence degrees to its neighbours, it communicates the maximum ad-
herence value to the corresponding most preferred neighbour.

• Leadership information exchange. Based on the current adherence rela-
tionships, the agent calculates and communicates its attitude as a leader
towards those agents willing to adhere to it.

• Coalition definition. Depending on the information available for an agent
at a certain moment (own state, adherence degree, own leadership degree
and neighbour’s leadership degree), it decides whether to stay in its current

32 Chapter 3. Coalition Oriented Sensing Algorithm

coalition (as a leader or follower of a leader agent), to leave this coalition
to join a different one, or to constitute its own coalition.

The messages the agents exchange during the negotiation follow a classical
agent communication format: performative(sender, addressee(s), [msgContent]).
A communication message is specified by its kind (performative), the agent ini-
tiating the message (sender), the agent to which the message is sent (addressee)
and, finally, the content of the message (msgContent). This last field is op-
tional and is only included in those messages with information associated. We
consider the existence of five different performatives for negotiation (each one
corresponding to a different kind of action). The set of performatives that agents
use are:

• inform: performative used to indicate the transmission of data (samples,
maximum adherence or leadership values). Values associated to these vari-
ables are sent in the msgContent field of the message.

• firmAdherence: performative used to express the desire of the sending
agent to adhere to the addressee one and to establish a follower-leader
relation with it.

• ackAdherence: performative used to express the acknowledgment to a pre-
viously received firmAdherence message.

• break : performative a leader agent uses to break a leadership relationship
with a follower agent.

• withdraw : performative a follower agent uses to break a leadership rela-
tionship with its associated leader agent.

Note that, within the first three processes listed before, only the inform per-
formative is used as the three of them consist of a different kind of information
exchange. The other performatives presented are used within the coalition def-
inition process, whether to establish new relationships or to dismantle existing
ones. Some of these performatives can also carry additional information in their
msgContent field. This information refers to the current leadership attitude of
the agent. The performatives that include this additional data are inform and
ackAdherence. The goal of adding this piece of information is to guarantee that
the relation established, or to be established, bases on up-to-date information.
Therefore, we take advantage of the emission of these messages to transmit in-
formation about the leadership attitude of the sender. Implementation details
of the negotiation process are precisely presented in Chapter 6.

Finally, one performative extra, not directly related to the negotiation pro-
cesses, is introduced. The death performative represents the message transmitted
by an agent when it is about to die. This message emission is possible thanks to
the Esl energy level introduced in COSA definition, which establishes the need of
energy preservation to accomplish this task before complete battery exhaustion.
The usefulness of this performative is presented together with the description of
the Information Processing thread in the following section.

3.2. Agent’s coalition formation 33

Information Processing thread

The basic idea of the negotiation protocol is quite simple. When an agent sam-
ples the environment, it sends the observed value to its neighbouring agents.
An agent receiving a sample from a neighbour uses this information to evaluate
the adequacy of forming a coalition. If this evaluation is positive, the neighbour
agent sends an adherence message back to the agent initiating the dialogue.
The agent receiving this adherence message offers itself to work for the two of
them (assuming the role of leader of the coalition). If an agreement is reached,
the leadership offer is accepted, then the agent sending the sample becomes the
leader while the neighbour, which assumes the follower role, sleeps and stops its
sampling and sink transmission tasks for the sleeping period. Therefore, through
peer-to-peer negotiations between neighbours, agents select their preferred role
and build a coalition structure in a bottom-up fashion. The set of figures pre-
sented in 3.1 represents this process for a pair of agents. In the case depicted,
the negotiation goes through all existing stages and finishes with an agreement
between the two agents. The agent initiating the dialogue assumes the leader
role while its neighbour becomes its follower.

sample
information

(a)

adherence
information

(b)

leadership
information

(c)

firm adherence

(d)

ack adherence

(e)

leader follower

(f)

Figure 3.1: Negotiation protocol stages.

Adopting the best organisation translates into energy savings by avoiding un-
necessary sampling and long-distance transmissions: those of the follower agents.

34 Chapter 3. Coalition Oriented Sensing Algorithm

This apparently straightforward scheme quickly complicates as the number of
nodes in the network grows. For a simple scenario of three agents, the system
may end up in one of ten different configurations. Figure 3.2 shows an example
of these possible coalition structures. Alternative configurations not depicted
can be obtained just by swapping the leader/follower roles between agents in a
coalition, what eventually renders a different network organisation scheme.

(a) (b) (c)

(d) (e)

Figure 3.2: Possible coalition configurations.

COSA protocol is embedded into the agent generic behaviour. Agents behave
in a proactive and reactive way. Proactive because the core behaviour of an
agent is the continuous process of looking for the best group of neighbours that
matches with its measurement and its state. In order to achieve this objective,
an agent exchanges messages asynchronously with its neighbours. Agents behave
also reactively because their acts and decisions are triggered by the observation
of the environment and the information they receive.

The core of the coalition formation process is contained in Algorithm 3. This
algorithm has been designed following a simple reactive structure in which all
the actions are triggered by an event that changes the available information for
an agent.

The first attempt to implement this algorithm in the agent behaviour was
based on the Finite State Machine model. Describing the agent behaviour as a
sequence of stages and conditional-transitions led the system to high complex
interactions and undesired deadlocks. Therefore, we shifted our approach to
a reactive architecture composed of a set of simple independent rules. This
perspective allows the agent to decouple the different negotiation dialogues it
may be involved in and also the different stages of each process. From a global
point of view, this way of interpreting the information and acting consequently
can somehow be comparable to the existence of an information flow among the
agents, being this flow responsible for the agents’ reaction.

3.2. Agent’s coalition formation 35

When a message is received, depending on its kind, its processing may imply
the update of the internal model of the agent about its leadership value and
about the model associated to the agent sending the message. Depending on
these updates a decision is made that may imply new messages being transmitted
back to the sender or to other agents in the network. The code, as can be seen in
Algorithm 3, allows for the intermingling of dialogues with different neighbours.

As previously said, agents implementing COSA exchange information via
performatives and using a classical alternating negotiation protocol. All these
performatives are used in Algorithm 3, and the meaning of each procedure is
rather self-explanatory.

The first three processes correspond to the reception of the same kind of per-
formative: inform. However, as each of this inform messages presents a different
content in its msgContent field, its processing differs and origins different kind
of actions.

The first procedure corresponds to the reception of an inform message con-
taining the sample collected by a neighbour together with its perception of the
environment. Therefore, this procedure represents the first step of the nego-
tiation protocol: an agent sends its sample to its neighbours. Receiving this
information causes the agent to update the information it has about its neigh-
bour’s model, and also, to take advantage of it by evaluating the adequacy of
forming a coalition with this neighbour. The agent evaluates its adherence de-
gree to this neighbour. If the resulting adherence degree is the maximum value
reached at that moment, the agent sends back an inform message containing the
value of the adherence degree and its environmental model. In case the adher-
ence degree obtained of this evaluation does not represent an improvement with
regards to the existing value, no message is sent.

The second procedure represents the set of actions to be taken when an
inform message containing data about the adherence degree of a neighbour is
received. These actions are aimed at the treatment of a message resulting from
the execution of the previous procedure by a neighbour agent. In this case,
the content of the inform message gives information about the desire of the
neighbour agent of forming a coalition with the addressee. Receiving a message
from a neighbour indicating its adherence degree implies sending an answer
back to tell this neighbour about the agent’s attitude as its leader. This can be
interpreted as the emission of a leader offer to a potential follower. The rest of the
procedure repeats the same actions discussed when an inform message containing
a sample is received (first procedure). When an agent sends an inform message
to inform about its adherence degree towards a neighbour, it also provides the
neighbour with information about its characteristics, such as its sample (the
one used to evaluate its adherence degree). This sample information is used to
evaluate the opposite relationship by the recipient agent. That is, the addressee
agent checks if it is interested in forming a coalition with this neighbour, being led
by the neighbour. As before, if the adherence value obtained is the maximum at
that moment, an inform message containing the value of the adherence degree
together with its identification information is sent back. In this case, a new

36 Chapter 3. Coalition Oriented Sensing Algorithm

Algorithm 3: Information Processing

Data: me: focus agent; aj : generic neighbour; al: potential leader; ar:
potential follower of me; ap: follower agent of me; aL: leader
agent of me; D(me): set of follower agents of me

case received(inform(aj ,me,meas))
updateNeighbourInfo(aj);
adherence2NeighbourEvaluation(aj);
updateOwnMaxAdherence();
if changesOnOwnMaxAdherence then

inform(me, al,maxAdh, t);

case received(inform(aj ,me,maxAdh))
inform(me, ar, lead);
updateNeighbourInfo(aj);
adherence2NeighbourEvaluation(aj);
updateOwnMaxAdherence();
if changesOnOwnMaxAdherence then

inform(me, al,maxAdh, t);

case received(inform(al,me, lead))
if checkAgainstOwnLead then

firmAdherence(me, al);

case received(firmAdherence(ar,me))
if checkAgainstOwnLead then

if !leader then
withdraw(me, aL);

ackAdherence(me, ar);
updateRoleState(leader);
D(me)← D(me) ∪ ar;

case received(ackAdherence(al,me))
if !leader ∧ al! = aL then

withdraw(me, aL);

if leader ∧D(me)! = ∅ then
while D(me)! = ∅ do

break(me, ap);

updateRoleState(follower);
sleep(t);

case received(break(aL,me))
updateRoleState(leader);

case received(withdraw(ap,me))
D(me)← D(me)\ap;
updateRoleState(leader);

case received(death(aj ,me))
if aj == ap then

D(me)← D(me)\aj ;
updateRoleState(leader);

if aj == aL then
updateRoleState(leader);

updateNeighbourInfo(aj);

3.2. Agent’s coalition formation 37

dialogue between the two agents already negotiating initiates as a consequence
of the already existing one. Nevertheless, the design and implementation of the
protocol guarantees the absence of conflicts.

As explained in Section 3.2.2, an inform message can carry different kind of
data in its msgContent field. When an inform message containing the leadership
attitude of a neighbour is received, its processing follows the scheme presented in
the third procedure. To decide if the addressee agent is really interested in being
led by this neighbour sending the message, it compares the just received lead
value to its own lead attitude, which may correspond to the agent itself or to its
leader, if it plays a follower role. After this comparison, if the agent prefers to
assume the follower role associated to this neighbour, it sends a firmAdherence
message. In case that the agent prefers to continue in its previous state (the
comparison of leadership degrees fails), this dialogue between these two agents
finishes at this point.

The fourth and fifth procedures correspond to the processes that follow a
generic successful dialogue initiated with a sample information exchange and
that finishes with an agreement between the two nodes, one assuming the role of
leader and the other one assuming the role of follower. When an agent which has
previously sent a lead offer receives a firmAdherence message, the first thing that
it does is to test if it is still willing to act as a leader for this neighbour. During the
exchange of messages between these two agents, the agent’s conditions can have
changed and messages from other neighbours may have arrived. The addressee
agent can be involved in more than one dialogue, each of it at its own stage, what
causes changes in the agent state during this particular negotiation dialogue.
However, if the agent decides to become the leader of the neighbour, it has to
send the last message of the dialogue, an ackAdherence message. Before doing
this, if the agent is a follower of a neighbour, it has to break this relationship
with a withdraw message. As a consequence of this action, the agent updates
its state as a leader taking into account its leadership attitude and the set of
agents that, from that moment on are followers of it and constitute its dependent
group.

Receiving an ackAdherence message implies the immediate assumption of the
follower role by the addressee agent. That is, after processing this message, the
agent deactivates its sampling and transmission actions and stops the execution
of this Information Processing thread until the sleeping period has finished.
Before reaching this state, and depending on the agent current situation and the
relationships it already held with its neighbours, different actions may need to
be performed.

The first condition of the procedure refers to the situation of an addressee
agent which is not leader. That is, this agent is a follower of a neighbour, but
the neighbour to which it is currently associated is not the same that sent the
lead offer and this ackAdherence message being processed now. The situation
described corresponds to that of an agent which wants to continue being a fol-
lower but now it wants to depend on a different leader. In these circumstances,
the addressee agent needs to break the relationship with its current leader be-

38 Chapter 3. Coalition Oriented Sensing Algorithm

fore going to sleep. To do this, it sends a withdraw message to its leader. After
performing the corresponding required actions, the agent updates its state as a
follower and initiates the sleep time.

A different situation that can also take place is that of the addressee being
a leader agent with its own coalition, and also wanting to change its role to
become a follower. A leader agent has to break the relationship with all its
follower agents before it can become a follower itself. To do this, the addressee
sends break messages to all those agents in its dependent group.

The sixth procedure represents the actions corresponding to the reception
of a break message. This message can only be received by follower agents and
its sender is the corresponding leader of the addressee agent. The action to be
performed when this message is received is just the update of the agent state to
leader. Hence, the recipient agent becomes active again. It then starts sampling
the environment and negotiating with its neighbours in order to find the best
configuration in its new circumstances.

Withdraw messages are sent by follower agents to their leaders. When an
agent receives a withdraw message, this comes from an agent that was a follower
of the agent and that now wants to break the relationship. The reception of this
message implies the deletion of the sender agent of the set of followers of the
addressee.

The last procedure appearing in Algorithm 3 shows the actions corresponding
to the reception of a death message. As explained before in the previous section,
this is not a proper negotiation message but its reception unavoidably affects the
state of the agent’s relationships. If the agent that is about to die is a follower
of the addressee, it has to be deleted from the dependent group to register that
this relationship does not exist anymore. As a consequence of this change, the
addressee agent updates its state as a leader taking into account the existing
relationships. In case that the agent that sent the death message is the leader of
the addressee, the recipient changes its state from follower to leader. Regardless
of the kind of the relationship held by the agents, the addressee deletes the
sender’s information from its register.

The detailed explanation of Algorithm 3 points out the actions to be per-
formed by an agent involved in a negotiation process. This description allows
for a better understanding of COSA functioning and how it affects the agent’s
behaviour. Moreover, this section completes COSA presentation by relating the
concepts that define the algorithm to the agent’s actuation.

3.3 Conclusions

COSA represents a MAS approach to the problem of lifetime extension of WSNs.
This algorithm addresses redundant sensing situations that waste energy in sam-
pling and unnecessary transmitting actions. In order to avoid them, COSA
introduces an organisation mechanism within the agents’ behaviour. This mech-
anism allows the agents to divide the network into coalitions and sample the
environment together without causing significant deterioration of the network

3.3. Conclusions 39

performance. The fulfilment of these premises relies on a negotiation protocol
that enables peer-to-peer co-ordination of the nodes. The protocol conception
guarantees the absence of collisions when different dialogues overlap. An agent’s
preferences guiding the negotiation are determined by the evaluation of the ad-
herence and leadership functions. The assessment of these parametric functions
is based on the agent’s local information. The concepts supporting COSA, as
well as the behavioural strategies designed for the nodes, have been carefully
described in this chapter in order to ease subsequent development and imple-
mentation tasks.

Chapter 4

RepastSNS simulator

As mentioned in previous chapters, the technological progress reached in differ-
ent areas has allowed the development of smaller sensors at lower prices. This
fact has significantly favoured the deployment of real sensor networks in differ-
ent scenarios. Among typical application domains for these networks, we can
mention security and safety, habitat and environment monitoring, biomedical
applications, smart spaces and distributed robotics.

MASs have been successfully applied to sensor networks due to their capacity
for naturally modelling a set of autonomous sensors physically distributed and
their interactions [Sycara, 1998]. In most cases, an agent models a sensor node.
However, the MAS configuration depends on the characteristics of the network
itself and the approach selected by the designer for the tackled problem. Hence,
MAS can be open, cooperative or competitive depending on the possibility of
nodes’ replacement or network purpose or ownership.

The identification between WSNs and MASs have contributed to the de-
velopment of the WSN research area by introducing new methodologies in it,
such as the computational theory of organisations, market mechanisms de-
sign, cooperation and coordination algorithms as well as distributed learning
and algorithms for information distribution [Chen-Khong and Renaud, 2005,
Ruairi and Keane, 2007b, Rogers et al., 2006].

However, despite the ease of development of real sensor networks and the
growing availability of commercial platforms at affordable prices, simulation plat-
forms are still widely used by researchers. The main reasons for this are the high
costs derived from the deployment of a real network, the inherent variability as-
sociated to the results obtained in real scenarios tests and the impossibility of
neglecting the network’s low level details.

Research tasks include protocol design to improve the efficiency of commu-
nications among nodes, individual nodes’ operation or the whole network man-
agement.

From the reasons mentioned above the main one for testing sensor network
algorithms by simulation is cost. The deployment of a sensor network requires
an important investment of money, whereas the use of simulation platforms to

41

42 Chapter 4. RepastSNS simulator

study them is much cheaper.
The development of new protocols and behaviour strategies for the nodes in a

network requires an iterative process of testing and refinement. Appropriate ex-
perimentation demands a controlled environment that ensures the repeatability
character of the tests. This property cannot be guaranteed when the experiments
run on a real sensor network as there are unavoidable uncontrollable factors.

Finally, the development of software research tasks directly on real sensors
forces the designers to take into account all low-level and hardware details of the
nodes. This represents a significant burden of work. Besides this, it is also an
important drawback for the researchers as it prevents them from testing their
algorithms at the desired abstraction level and the development time increases.

In these conditions, we plan to test our COSA algorithm on a simulation
platform. Thereafter, in this chapter we briefly review some of the existing sim-
ulators and their characteristics. Then, we present RepastSNS, the simulation
engine over which we will develop our application.

4.1 Sensor Network simulators

Nowadays, computer simulators are simple and efficient tools able to deal with
the growing complexity of the systems being modelled. A basic classification
divides them into continuous simulators and discrete simulators.

Continuous simulators require precise equational knowledge of the behaviour
of the elements involved in the simulation in order to model them mathemati-
cally. The simulator applies the equations of the model depending on the con-
ditions defined by the environment. However, the equations used to model a
system in a continuous way are complex and the computational cost of their
evaluation increases exponentially with the size of the system. This makes these
simulators appropriate only for small scenarios with a low number of elements.
Therefore, typical application domains of sensor networks requires the use of
discrete computer simulation.

Unlike continuous simulators, discrete simulators do not use a mathematical
formulation to describe the behaviour of the elements in the system. In this
case, the state of the system changes at precise moments as a consequence of the
triggering of events. Describing the system’s behaviour consists then on identify-
ing the sources of change (events) and defining the corresponding consequences
to be executed. The event scheduling follows a simple scheme that consists of
orderly adding the events to a queue and executing them in this same order at
their corresponding simulation time.

4.1.1 Platform requirements

The characteristics of our target scenario and our protocol demand the use of
an event-based simulator. However, the election of a simulator requires tak-
ing also into account other aspects that require from the simulator interesting
characteristics:

4.1. Sensor Network simulators 43

• Open source: It is necessary to select an open source platform so that our
work can be reproduced and used by the scientific community.

• General purpose environment: the abstraction level provided by the simu-
lator has to allow for the instantiation of different kinds of sensor networks
adequate for different domains and/or applications. To incorporate this
feature, the simulator needs to provide an infrastructure that interrelates
the basic components of a sensor network, such as observable phenomena,
sensors, agents and communication mechanisms.

• Extensibility: the platform needs to facilitate reusing and extending its
components for different simulations. This feature favours the study and
characterisation of algorithms in different domains and for different pur-
poses as it prevents high programming and configuration costs.

• Scalability: the key potential of sensor networks arises from the cooper-
ation activities among the high number of nodes composing them. The
platform has to manage the functioning of these nodes assigning corre-
sponding resources to each of them.

• Repeatability: experiments executed using a simulation platform must
always deliver the same results from a statistical perspective for the same
initial conditions. This is a basic requisite to have a valid scientific software
supported by the community.

• Time control: the application domains of sensor networks are typically
dynamic. Thus, the algorithms designed for these systems do not only
need to focus on finding the best configuration for the sensor nodes or
the best strategy to fuse the information, but they also need to focus on
the system’s response time. As a consequence, accurately modelling the
actions’ duration and their interactions with the environment is one of the
simulator’s key requisites.

• Observation: the execution of a simulation produces information that has
to be collected and correctly presented to the user. This information can
be of two kinds: general and domain specific. General information refers to
common parameters to every sensor network (energy consumption, nodes’
position, etcetera). Domain specific information includes useful informa-
tion to understand and evaluate the system’s performance in a particular
scenario (measures collected by sensors, content of messages sent or re-
ceived, etcetera). The simulator has to integrate a set of tools that perform
an automatic collection of general and specific information, together with
a view or report generator.

4.1.2 Brief survey on sensor network simulators

The first simulation environments that appeared for sensor networks were an
adaptation of more general simulators, such as ns-2 [DARPA, 2013] or J-
Sim [Sobeih et al., 2005]. New simulation environments especially designed for

44 Chapter 4. RepastSNS simulator

sensor networks appeared later. Here, we review the characteristics of the most
common network simulators.

ns-2

ns-2 is one of the most popular simulators in the field of computer networks.
This platform is actively maintained and used, having evolved in the last years
to support typical protocols of wired and wireless networks.

The simulator has been developed using C++ and OTcl. The platform’s en-
gine is based on discrete events and follows an object-oriented architecture, what
favours extensibility [Sundani et al., 2011]. Nonetheless, ns-2 cannot model real
time OS or code execution delays [Korkalainen et al., 2009]. Other inconve-
niences of this simulator refer to scalability and the time required to learn how
to use it properly. Furthermore, this simulator does not have an application
layer, what hinders the implementation of typical MAS data fusion or learning
algorithms.

OMNeT++

OMNeT++ [Varga and Hornig, 2008] is a discrete event and component-based
sensor network simulator. It is defined as a set of different modules connected
in a nested hierarchy. Basic modules of OMNeT++ are implemented in C++,
whereas more complex structures use a proprietary language (NED) as a high
level language.

OMNeT++ mainly supports IP networks, but there are extensions for WSN.
This simulator is not as widely used as ns-2 [Varga and Hornig, 2008], although
it scales well, presents an application layer and allows for a relatively straight-
forward components’ modification.

J-Sim

J-Sim is a general purpose discrete event simulator initially conceived for com-
puter networks [Sobeih et al., 2005]. However, it can also be applied to any
system whose components’ state changes at discrete instants of time. It is writ-
ten in two languages (Java and Jacl) and presents a component-based design
which facilitates extensibility and scalability features.

J-Sim provides support to different WSN elements (sensors, physical phe-
nomena, etcetera. Nonetheless, it is complicated to use and only allows for the
use of 802.11 MAC protocol [Sundani et al., 2011]. As it was not originally con-
ceived for WSN simulation, its design makes it difficult to add new protocols or
components, which represents an important inconvenience.

Radsim

Radsim (Radar Simulator) [Lawton, 2003] is a discrete event simulation environ-
ment that was conceived to test networks of cooperative agents. The simulator

4.1. Sensor Network simulators 45

was developed in Java and meets many of the requirements desirable for a sim-
ulation platform. However, it presents two important drawbacks: it is not a
public platform, neither a general purpose sensor network simulator as it was
conceived for tracking moving objects.

SENSE-Sensor Network Simulator and Emulator

SENSE [Chen et al., 2005] is a sensor network simulator that appeared in 2004
with the objective of becoming a powerful simulator easy to use.

The platform is implemented in C++ and presents a component-based de-
sign. This structure confers to the simulator a set of advantages referring to
components reusability, good extensibility features due to loose coupling among
components and parallel execution, which also reverts in a scalability improve-
ment [Sundani et al., 2011]. However, this platform demands a low level ap-
proach, which is quite distant to the MAS point of view in which we are inter-
ested.

Repast 3

Repast 3 is a step-based simulation environment for MAS [Sourceforge, 2012].
It is an open source platform quite known within the MAS community. This
simulation platform, which is Java implemented, provides a large set of adaptive
algorithms. It also presents different utilities to register the simulations and
analyse their results. There are also general packages available that provide
additional functionalities for the simulations.

Repast 3 is a multithreaded environment, so that agents’ actions are per-
formed in a separate thread, and events are delivered continuously. The actions’
duration can be specified before they take place. However, the multithreaded
environment represents an important penalty with respect to execution time
and, moreover it also hinders experimental repeatability.

The analysis of these simulators shows that none of them meets all the
requirements desired to test our COSA algorithm. ns-2 lacks an application
model, OMNET++, J-Sim and SENSE do have this layer but they present a
very low level approach that does not favour a MAS perspective. Radsim is
not a public platform, neither a general purpose simulator and Repast 3 does
not offer enough control to model communications, nodes activity and energy
consumption.

Given this, we decided to use the RepastSNS platform to test COSA algo-
rithm. This platform results from the evolution of a previous work developed
within the IEA project (Institucions Electròniques Autònomes). The study of
sensor networks from a MAS point of view was the main aim of this project
developed at the IIIA-CSIC. One of the outcomes of the project was the SNS
platform [Pujol-Gonzalez, 2008]. The SNS is an event-based platform designed

46 Chapter 4. RepastSNS simulator

to study sensor networks from a MAS perspective. This simulator provides a set
of components that allows modelling sensor networks easily.

RepastSNS is the result of the effort of migrating the SNS platform to convert
it into a Repast package. This work [Matamoros, 2008] was motivated by the
interest of attracting users to the simulator. As previously said, Repast is a well
known and established MAS simulation tool. Therefore, transforming the SNS
sensor network simulator into a Repast package significantly favours its use and
dissemination into the MAS research community.

As part of this intention, we run our COSA algorithm over RepastSNS. This
circumstance poses us in a beta-tester position, as the function of this platform
was only tested at a very low level with simple demonstration examples. Hence,
this situation represents a double challenge for us, as we are going to develop and
implement a real research application over a new simulator. This implies testing
its usability and the satisfaction degree of its design characteristics reached. This
process has allowed us to fix numerous bugs referring to different aspects of the
simulator that lead to an homogenous structure of its components, a correct
functioning of the scheduler and the simplification of the initial conception of
some processes.

4.2 RepastSNS

RepastSNS [IIIA-CSIC, 2012] is an extension of Repast classes, so the program
structure fits into this known MAS simulation engine. RepastSNS is an event-
based simulator especially designed to model sensor networks as multi-agent
systems. A distinctive characteristic of RepastSNS is that all the objects in the
environment are modelled as agents able to communicate via message passing.

This open-source platform was developed in Java over Repast. Its structure
consists of two layers: an object layer and a network layer. The object layer
defines the behaviour of the individual nodes and the network layer defines the
topology and the relationships among the nodes composing the network.

The lower layer provides the basic structure for a sensor network simulation,
including all the needed objects to make an event-based simulation and also ab-
stract classes for the objects composing a general sensor network. These classes,
which are called base components, allow the user to control all generated events
and their associated processing, to model hierarchical and control relationships
among components and also to regulate communication. Figure 4.1 shows the
elements composing this layer.

The upper or network layer contains instances of the base components of the
object layer. This layer follows a component-based architecture in which each
component shows its functionalities. Hence, the platform design distinguishes
two layers each of them implemented according to a different approach, an object
oriented architecture and a component oriented architecture. The structure of
the network layer can be observed in Figure 4.2.

RepastSNS meets all the requirements desired for a simulation platform. It
is an open source platform as it is a Repast package completely implemented

4.2. RepastSNS 47

Model

Field

Scheduler

Reports

Factory
Base

Phenomena
Base

Agent

Sensor
Base

Battery
Base

Actuator
Base

Figure 4.1: Object Layer [Pujol-Gonzalez, 2008].

Phenomena

phen phen

Agents network

Agent Agent

AgentAgent

Perceptions

Actions

CPU Battery Network
InterfaceSensors ActuatorsAgent

Scheduler

Field

Reports

Events
generated

Events executed

Figure 4.2: Network Layer [Pujol-Gonzalez, 2008].

in Java. Different kinds of WSN problems can be implemented and tested over
this platform. The characteristic two-layer structure of the platform makes it a
general purpose simulator, able to perform experiments on different scenarios.
Furthermore, this structure of object layer and network layer makes the simulator
extensible and scalable. The primary behaviour of each component is specified at
the lower layer, whereas the relationship that components may establish among
them are also clearly regulated at the upper layer. These relationships are based
on the exchange of particular events, whose reception and transmission can be
planned in time. Therefore, the platform offers time control on the actions
performed in the system. All these events happening in the simulations can be
detected and monitored, what renders in a high observability of the simulations
performed. The repeatability of experiments is guaranteed by the element that
hosts all other elements in the simulation, the model. The model, considered as
part of the network layer, provides cohesion to all other elements and initiates
them appropriately.

The advantage of using RepastSNS instead of any previously presented sim-

48 Chapter 4. RepastSNS simulator

SensorSensor

SensorSensor

Field

CPU

Battery

Sensor

Actuator

Wireless Sensor

Phenomenon

Phenomenon

Wireless
Sensor

Perceptions

Actions

Figure 4.3: RepastSNS simulation architecture.

ulators is twofold. Firstly, it provides for a more abstract level description than
these other simulators. Therefore, it allows the programmer to concentrate on
the actual agent behaviour instead of dealing with hardware details. Secondly, it
brings with it a convenient basic implementation of all the components needed
to model wireless sensor networks. Thereafter, the central task for a user of
this platform is to configure and adapt the platform’s predefined elements to the
particular domain in which he is interested.

Figure 4.3 outlines the architecture of a sensor network simulation on Repast-
SNS. In RepastSNS, all the observable phenomena are contained inside a field
that includes the nodes themselves. Furthermore, the nodes are composed of
multiple modules: a CPU, a battery, and any number of sensors and actuators.
Sensors are those devices that allow the node to perceive the field’s phenomena
and their properties. Analogously, actuators allow the CPU agent to modify
existing phenomena or produce new ones. This very simple model is surpris-
ingly sound as any phenomena or agent behaviour needed in a system can be
easily modelled and incorporated. For instance, wireless radio interfaces can be
modelled as an actuator that generates wireless waves (a phenomenon), plus a
sensor that detects them.

4.3 RepastSNS main features

RepastSNS defines a set of classes and interfaces for correct integration into
Repast. As aforementioned, a particular concept of event allows for the commu-
nication among elements in the system. The transmission and reception of these
events constitute a source of information about the simulation performance and
consequently favour detailed observation of the system.

Another feature demanded to the simulation platform referred to the control
of the simulation time. Hence, knowing the time at which these events are
generated can give crucial information to the platform’s users to understand
the behaviour of the system. RepastSNS allows a temporal management of the
events and actions taking place in a simulation, dealing with processes’ duration
or actions’ delay when resources are not available. Repast does not present any
of these capabilities; therefore, their incorporation required the addition of new
functionalities to this simulation engine.

4.3. RepastSNS main features 49

4.3.1 Simulation elements’ communication capability

Communication among elements in the simulation scenario takes place through
the exchange of a particular kind of events. These new events need to be gen-
erated by the simulation elements, scheduled by the platform and received and
interpreted by the addressees elements.

Simulation Events

Those particular events, SimulationEvents can be of different types and have
different functions. SimulationEvents allow for the communication among simu-
lation elements, but they also report information about changes happening in the
system during a simulation performance. SimulationEvents providing informa-
tion about the simulation execution are grouped into three classes: AddedEvent,
RemovedEvent and PropertyChangedEvent. The first and the second classes give
information about the time and the object originating a simulation element ad-
dition or removal event, whereas the third one warns about the change of value
of a property observed in the system. SimulationEvents used in communication
vary depending on the elements exchanging information. Its definition is also
conditioned by the nature of the information exchanged.

SimulationEvents’ management for communication requires the simulation
elements to implement the interface SimulationListener. This interface makes
the simulation elements able to receive events. It also obliges the elements to
implement the method simulationChanged(), which takes a SimulationEvent as
parameter. This method also allows for the reception and processing of an event
from a different element. This method processes the event received by searching
for an adequate process method specific to the event received by the object. If
the object does not have it (because it has not been specified by the designer),
a default implementation of the simulationChanged() method is executed.

This process requires the scheduler of the platform to be able to pass a Sim-
ulationEvent to the object playing the receiver role in the information exchange.
The scheduler provided by Repast, as in any other event-simulator, is in charge
of setting the pace of the execution and controlling the simulation time. It ex-
ecutes the events orderly according to their time and controls the simulation
time updating it to the value of the corresponding executed events. However, a
distinctive characteristic of Repast is that it calls these events (scheduler basic
units) actions. Therefore, making a change in the simulation requires building
one of these actions.

RepastSNS presents the BasicActionSNS class. This class is an extension of
the Repast class BasicAction, which defines the scheduler basic units. BasicAc-
tionSNS adds a SimulationEvent property, such that when this event is added to
the action, the method of the destination object is executed taking this event as
its argument (which represents a functionality that was not originally provided
by Repast).

BasicActionSNS class extends from BasicAction and adds the properties tar-
get, methodName and event, which are, correspondingly, the destination object,

50 Chapter 4. RepastSNS simulator

BasicActionSNS
Attributes

Operations
getters and setters
execute()

target
methodName
event

BasicAction

Figure 4.4: BasicActionSNS class outline [Matamoros, 2008].

the method of that object that we want to execute and the event handed as
parameter. These three properties have their own getters and setters. The exe-
cute() method, given by the superclass BasicAction, continues being an abstract
method to be implemented by the programmer. Figure 4.4 shows the structure
of the resulting class BasicActionSNS.

Repast uses the classes ActionUtilities and ByteCodeBuilder to generate,
dynamically, classes extending from BasicAction at runtime. This way, the Ba-
sicActions created can implement the abstract method execute() to call destina-
tion object’s methods. The action creation structure presented in the RepastSNS
package differs from Repast’s one to allow the creation and execution of Basi-
cActionSNS. These differences can be seen in the classes ActionUtiliesSNS and
ByteCodeBuilderSNS. Changes basically refer to the overload of methods for ac-
tions’ creation. Hence, ActionUtiliesSNS and ByteCodeBuilderSNS admit the
creation of actions from SimulationEvents.

ScheduleSNS definition

The definition and creation of BasicActionSNS enables the communication
among elements in the platform. However these actions need to be scheduled
at their corresponding time for this functionality to work properly. RepastSNS
manages this through its ScheduleSNS class.

The ScheduleSNS class introduces changes with respect to the Repast sched-
uler that affect the scheduling process at different levels. The first difference be-
tween both schedulers refers to the unit time used. RepastSNS uses nanoseconds
as its basic unit time to improve the temporal management of the simulations.

A new functionality provided by RepastSNS which is not present in the
Repast simulation engine is the capability of delaying actions. This functionality
appears as a consequence of the communication ability of the elements in order
to guarantee correct delivery. This functionality relies on the lastWorkingTime
property of those simulation elements receiving a SimulationEvent. As it name
states, the value of this property indicates the time instant at which the object
finished or will finish its latest task.

4.3. RepastSNS main features 51

Start

Get Action's
target object

NoAction =
BasicActionSNS

instance?

Yes

Get target object's
lastWorkingTime

lastWorkingTime
> nextTime?

Action's nextTime
= target object's
lastWorkingTime

Add Action to non-
executed actions

list

Stop

Execute Action

Yes

No

Figure 4.5: Algorithm for actions execution [Matamoros, 2008].

Communication among elements of the simulation allows triggering the ex-
ecution of a method of the addressee object through the reception of a Simu-
lationEvent. If the addressee object is engaged in a task, it cannot execute the
demanded method when the SimulationEvent is received. Hence, the scheduler
of RepastSNS delays the execution of this action until the object is available
that is, until its lastWorkingTime value.

The core of ScheduleSNS follows the same structure as the Repast’s scheduler.
The scheduling relies on the execute() method of the ScheduleSNS class. This
execute() method relies in turn on other methods and classes to perform its task.
The classes it relies on are ActionQueue and ScheduleGroupSNS.

The ActionQueue class keeps the actions to be executed until their execu-
tion times arrive. The ScheduleGroupSNS class groups actions that have the
same execution time. Hence, the ScheduleSNS executes groups of actions, not
individual actions. In general terms, the working scheme of the ScheduleSNS ’s
execute() method is as follows: first, a ScheduleGroupSNS element gathers the
actions to be executed at the next timestamp. Then, each of the actions in the
ScheduleGroupSNS that can be executed is executed and, the ones that need
to be rescheduled (because they take place periodically or there are not free
resources for them to be executed now) are inserted again in an ActionQueue
element. The capability of delaying actions is introduced in the last step of this
process affecting the ScheduleGroupSNS class.

The execute() method of this ScheduleGroupSNS class, which is responsible
for executing each of the actions it contains, follows the algorithm shown in
Figure 4.5.

The algorithm begins by testing if the action is of BasicActionSNS class. If
it is not, i.e. it is an original Repast’s BasicAction then, it is executed as this
new module would not exist. Hence, ScheduleSNS can schedule original Repast’s
actions without any loss of generality. On the other hand, if the action is an
instance of BasicActionSNS class, then the target object is obtained to ask it
about its lastWorkingTime. This property tells if the object is currently engaged

52 Chapter 4. RepastSNS simulator

in a task or not. If the addressee object is available, the action is executed. If it
is busy, the action’s execution is delayed until the target object is available, that
is, the action’s execution time is set to the value of lastWorkingTime. Then,
as already explained, the action is added to the corresponding ActionQueue
element actions not executed yet.

Besides this, ScheduleSNS class presents the methods addMessage and addE-
vent which complete the whole integration of the communication events in the
system as they allow for the scheduling of actions created from communication
events. Figure 4.6 shows the basic structure of ScheduleSNS class.

ScheduleSNS

Attributes

Operations
addMessage()
scheduleEvent()
addEvent()
getModel()
getSimulationTime()
scheduleActionAt()
execute()

model

Schedule

Figure 4.6: ScheduleSNS class outline [Matamoros, 2008].

4.3.2 Model: simulation environment cohesion and exper-
iments repeatability

As it was already mentioned when the platform architecture was presented in
Section 4.2, the model component is the element which gives cohesion to the
whole system. The corresponding object in RepastSNS is the SimModelImplSNS
which brings together the functionalities provided by Repast and the ones re-
quired by the RepastSNS platform itself.

Following the definition scheme of Repast classes, SimModelImplSNS imple-
ments the interfaces corresponding to the functions it will provide. Hence, it
implements the SimModel interface (Repast standard), the SimulationListener
interface (communication capability) and SimModelSNS (functionalities of the
RepastSNS platform).

Thanks and through the model, all elements which are model listeners get to
know about the state of the simulation. This is how objects receive information
about what is happening during the simulation. As the model itself implements
the SimulationListener interface, it can also receive information from other sim-
ulation elements.

The SimModelSNS knows all the elements in the simulation. It is in charge

4.3. RepastSNS main features 53

of setting up and initialising all of them. Every simulation element implements
these two methods which are executed by the model through its method prepa-
reElement(). The SimModelSNS is also in charge of generating long parameters
handed to the corresponding elements’ setup() methods. This random number is
used as the seed for the elements that need it. This guarantees the repeatability
of the experiments as two runs of the same simulation will give the same results.

As an element which assembles together all the elements in the simulation,
it keeps a reference to the main components presented in Figure 4.2, such as
ScheduleSNS, SimulationField and SimulationComponentFactory. The Simula-
tionComponentFactory allows the generation of new simulation elements, such
as agents or phenomena, during the simulation. These references and their cor-
responding getters and setter methods can be observed in Figure 4.7.

SimModelImplSNS
Attributes

Operations
setup()
build()
begin()
setupSNS()
initSNS()
process()
buildAgents()
buildComponentFactories()
buildDisplay()
getters and setters
hasScheduler()
prepareElement()
getAgents()
getAgent()
addComponentFactory()
getComponentFactory()
removeComponentFactory()
simulationChanged()

scheduler
field
componentFactories

SimModelSNS SimModelImpl SimulationListener
interface

Figure 4.7: SimModelImplSNS class outline [Matamoros, 2008].

4.3.3 Simulation observability

Another additional feature presented by RepastSNS is the SimulationEvents’
table. This table (shown in Figure 4.8) allows the user to see a set of the last
executed SimulationEvents ordered by time. Each SimulationEvent is repre-
sented by a horizontal register in the table, which shows the time at which the
SimulationEvent occurred, the element which originated it and finally, a descrip-
tion of the SimulationEvent. This tool is especially useful for debugging tasks.

54 Chapter 4. RepastSNS simulator

Figure 4.8: SimulationEvents Table.

Besides this, it also considerably increases the observability of the system, as a
detailed report of all the SimulationEvents happening in the system is available
for inspection.

The SimulationEvents’ table is provided by the classes SimulationEventTable-
View and SimulationEventTableRenderer, which are specific of RepastSNS. This
table implements the SimulationListener interface. Therefore, it presents the
method simulationChanged(). As explained in Section 4.3.1, this method allows
the object to receive and process SimulationEvents, process that in this case
consists just in attaching the SimulationEvents to the SimulationEvents’ table.

The introduction of this table in the Graphical Interface of the platform and
the capture of these SimulationEvents for monitoring purposes differentiates the
Graphical Interface of RepastSNS from Repast’s. The ScheduleSNS class is also
affected as it has to deliver the Simulation events for two different purposes: the
SimulationEvent ’s original one and the attachment to the table.

4.3.4 Simulation elements identification

The introduction of the SimulationEvents’ table allows for a better understand-
ing of the platform working scheme. Nonetheless, to follow the trace of an agent
is a difficult task.

The component structure definition of the platform, which confers scalability
and extensibility features upon it, prevents tracing the behaviour of a particu-
lar agent. Elements composing an agent establish relationships between them
through messages exchange. These elements may or may not know the existence
of the other ones. However, the programmer cannot easily know wether two ele-
ments are related and make up the same agent, as each kind of element (sensors,
actuators, etcetera.) is named independently. As a consequence, when an action
message is emitted by a transmitter, for instance, we cannot identify the node
(agent) emitting that message, but only the transmitter element.

To resolve this situation we add an identification variable, a label called id at

4.4. Sensor Network simulation elements 55

the lowest level of the elements structure, that is, to the AbstractSimulationEle-
ment class. When an agent is created, the value of this identifier is set. This
same value is assigned to all the other agent’s components, such as the trans-
mitter or the receiver. Hence, all the elements composing a node share the same
value. The use of a unique identifier common to all the elements composing
a node eases the previously mentioned activities and makes the platform more
accessible and easy to use.

4.4 Sensor Network simulation elements

Another advantageous feature of RepastSNS is the existence of a basic imple-
mentation for typical elements appearing in a sensor network, such as sensors,
actuators or phenomena to be observed.

As RepastSNS is java-based, basic definition of these elements is given by an
interface and the corresponding abstract class associated to each element. This
architecture eases the addition of new elements to the simulation and, of course,
it contributes to the flexible and adaptable character of the platform.

4.4.1 The field

WSNs are typically used to monitor the state of a phenomenon of interest in
a particular environment. Therefore, there must be a representation of this
environment in the platform.

The SimulationField interface represents the physical environment where
phenomena to be observed appear and in which the WSN is deployed. That
is, this interface represents the space where all the physical elements of the
simulation interact. Figure 4.9 shows the structure of this interface.

SimulationField

Attributes

Operations

setModel()
addPhenomenon()
removePhenomenon()
sensePhenomena()
addNewPhenomenaListener()
removeNewPhenomenaListener()
getWidth()
getHeight()

<<interface>>

Figure 4.9: SimulationField interface outline [Pujol-Gonzalez, 2008].

This interface includes the methods addPhenomenon() and re-
movePhenomenon() that allow for the addition or removal of a phenomenon in
the field respectively. As a consequence, the field knows which phenomena are
active at each time. Its corresponding abstract class is responsible for notifying

56 Chapter 4. RepastSNS simulator

the system about this fact by sending the corresponding Simulation Events, in
particular PhenomenonAddedEvent and PhenomenonRemovedEvent. As their
names state, the PhenomenonAddedEvent informs about the addition of a new
phenomenon to the field, whereas the PhenomenonRemovedEvent notifies the
disappearance event.

Simulations in RepastSNS consider that all existing phenomena are situated
in the field, that is, they have a presence in the field. Hence, agents are also
considered as an observable phenomenon. However, agents represent a special
kind of phenomenon as they are also composed of other elements. As explained
in previous sections, agents include sensors and actuators through which they
can get information from the environment and also act on it.

Therefore, the field performs a special role in the simulation. It is the only
element in the system which is aware of all existing active phenomena and it
is in charge of linking the agents and the phenomena. The way this task is
performed depends on the kind of sensors modelled by the agent. However, the
SimulationField interface includes different methods to accomplish this task:
sensePhenomena(), that returns a list of all the active phenomena that a sen-
sor can perceive; addNewPhenomenaListener() and removeNewPhenomenaLis-
tener(), which allows a sensor to subscribe (unsubscribe) to a particular kind
of phenomenon in the field. As a consequence of the establishment of this rela-
tionship, a sensor receives information about the phenomenon’s appearance and
disappearance.

4.4.2 Phenomena

RepastSNS considers as a phenomenon in the system every occurrence present
in the field. Phenomena represent a simulation element which highly depends on
the simulation domain considered. As a consequence, the interface corresponding
to this element SimulationPhenomenon is barely defined. As it can be observed
in Figure 4.10 it includes two methods, which are die() and mayBeSensedBy().
The first method indicates the disappearance of the phenomenon from the field,
and the second one identifies the kind of sensor that can perceive the phenomenon
considered.

SimulationPhenomenon

Attributes

Operations

mayBeSensedBy()
die()

<<interface>>

Figure 4.10: SimulationPhenomenon interface outline [Pujol-Gonzalez, 2008].

4.4. Sensor Network simulation elements 57

4.4.3 Agent

The key simulation element of RepastSNS is the agent, as this platform was
conceived with the purpose of modelling a WSN from a MAS perspective. Fig-
ure 4.11 shows the structure of the Simulation Agent interface corresponding to
this element.

SimulationAgent

Attributes

Operations

addSensor()
getSensor()
removeSensor()
addActuator()
getActuator()
removeActuator()
lastWorkingTime()
getLocation()
setModel()
die()

<<interface>>

Figure 4.11: SimulationAgent interface outline [Pujol-Gonzalez, 2008].

As it was already presented in Figure 4.1, the agent consists in turn of differ-
ent elements such as the CPU, the battery, sensors, actuators and communication
interfaces. Although it is composed of these different elements, the Simulation-
Agent interface actually contains methods modelling the CPU behaviour (infor-
mation processing and decision making). It also contains methods to manage
the rest of components, such as addSensor() or removeActuator(). In the same
way as the field informs the system about the appearance and dissapearance of
phenomena through the sending of appropriate SimulationEvents, agents inform
about the components that they have available (addition or removal of sensors
and actuators). To perform this task, agents use the SimulationEvents shown
in Figure 4.12 indicating sensors/actuators addition or removal.

The agent is a phenomenon present in the field, therefore it has a position
in it. This position can be known through the method getLocation() of the
interface.

Finally, the last method of the interface is the lastWorkingTime(). The
function of this method was already introduced in Section 4.3.1. The platform’s
scheduler processes actions sequentially and when it has to deliver a Simulation-
Event to a target object, it schedules this action at the moment this target object
is available. An agent can tell the time it needs to process an event through this
lastWorkingTime() method. The basic implementation of this method given by
the platform evaluates this time as actual CPU time. However, its functioning
can be adapted to any particular domain by overriding the method in a corre-
sponding subclass. This method allows the scheduler to check the availability
of an agent before delivering a SimulationEvent and consequently, delaying it if

58 Chapter 4. RepastSNS simulator

ActuatorAddedEvent

Attributes

Operations
ActuatorAddedEvent()
getAddedObject()

SensorAddedEvent

Attributes

Operations
SensorAddedEvent()
getAddedObject()

ActuatorRemovedEvent

Attributes

Operations
ActuatorRemovedEvent()
getRemovedObject()

SensorRemovedEvent

Attributes

Operations
SensorRemovedEvent()
getRemovedObject()

Figure 4.12: Notification events about sensor/actuator addition and re-
moval [Pujol-Gonzalez, 2008].

necessary.

4.4.4 Sensors

Sensors are the elements of an agent through which it captures information about
phenomena happening in the environment. As it can be observed in Figure 4.13,
the SimulationSensor interface defines the perception capacity of a sensor relying
on a filter element.

SimulationSensor

Attributes

Operations
getFilter()

SimulationPhenomenonFilter

Attributes

Operations
accept()

<<interface>> <<interface>>

Figure 4.13: SimulationSensor and SimulationPhenomenonFilter interfaces out-
line [Pujol-Gonzalez, 2008].

Filters are specified by the SimulationPhenomenonFilter interface. The pur-
pose of a filter is quite obvious: to distinguish phenomena observable by the
sensor from those that cannot be perceived.

Sensors can be of two types: continuous or discrete. RepastSNS presents
two different interfaces and their corresponding abstract classes for each kind
of sensor, resulting then in the DiscreteSensor and ContinuousSensor interfaces
and the abstract classes AbstractDiscreteSensor and AbstractContinuousSensor.
Figure 4.14 depicts the schemes of the interfaces corresponding to these two kind
of sensors.

• Discrete sensors: this kind of sensors collect information from the envi-
ronment at particular moments in time. They can do it periodically or
when they are specifically told to do it. The sensor action is triggered by

4.4. Sensor Network simulation elements 59

DiscreteSensor

Attributes

Operations
getSenseInterval()
setSenseInterval()

ContinuousSensor

Attributes

Operations
phenomenonAdded()

<<interface>> <<interface>>

Figure 4.14: DiscreteSensor and ContinuousSensor interfaces out-
line [Pujol-Gonzalez, 2008].

the reception of a SenseEvent. The corresponding method to process this
SenseEvent is contained in the AbstractDiscreteSensor class. This method
executes in turn the SensePhenomena() method of the field which returns
a list of all the active phenomena perceivable by the sensor and provides
it to the sense() method of the sensor which captures it indeed.

• Continuous sensors: as their name say, continuous sensors receive infor-
mation from the environment continuously. Therefore, their functioning
scheme differs from the one associated to discrete sensors. To observe
a phenomenon, the corresponding sensor abstract class (AbstractContin-
uousSensor) subscribes itself to the SimulationField. This subscription
is established through calling the field’s method addNewPhenomenonLis-
tener(). From this moment onwards, the continuous sensor is notified every
time a new perceivable phenomenon appears in the field. The field informs
the continuous sensor about the appearance of an observable phenomenon
through calling the continuous sensor’s method phenomenonAdded(). Once
phenomena are detected, sensors can access their public information.

4.4.5 Actuators

Another element composing the agent is the actuator. Actuators can introduce
new phenomena in the field and affect existing elements in the simulation. These
elements only work discretely, hence they can act periodically or when they are
told to do it. The ActuateEvent constitutes the actuation command, which is
processed at the AbstractSimulationActuator class.

Interfaces corresponding to these two elements are extremely simple. None
of them presents specific methods associated to particular functions. In fact, the
ActuateEvent interface is empty, whereas the SimulationActuator interface only
contains general methods for relating the element to the agent and other node’s
components.

4.4.6 Battery and Energy Consumption model

Most nodes in a WSN have a limited power supply provided by a battery. Hence,
the aim of a WSN is not only to appropriately perform its monitoring task, but

60 Chapter 4. RepastSNS simulator

to also do it maximising the life span of the network.
RepastSNS presents a basic model of the component battery of an agent (see

Figure 4.15). It also considers and models the relationships established among
simulation elements due to the energy consumption process.

Battery

Attributes

Operations
energy()
consumeEnergy()
isEmpty()

<<interface>>

Figure 4.15: Battery interface outline [Pujol-Gonzalez, 2008].

Classes included in RepastSNS to model a battery component are the Battery
interface and the AbstractSimulationBattery class. This component controls and
manages the available energy of the node. Besides these classes, the simulation
platform also presents a InfiniteBattery class extending from the previously pre-
sented abstract class. This InfiniteBattery allows modelling situation in which
nodes are connected to an inexhaustible power supply. On the other hand, De-
faultBattery class models a simple battery with an initial power capacity that
diminishes as other simulation elements consume its energy.

Those simulation elements consuming energy from a node’s battery are the
components of the agent, that is, CPU, sensors and actuators. The energy
consumption capacity of these elements is modelled through the implementation
of the EnergyConsumer interface. This interface, as it can be seen in Figure 4.16,
includes the method hasEnergy(), which tests the availability of energy for the
component to do a task.

EnergyConsumer

Attributes

Operations
hasEnergy()

<<interface>>

Figure 4.16: EnergyConsumer interface outline [Pujol-Gonzalez, 2008].

The energy consumption management is a complex process that depends on
the characteristics of the particular kind of component. The energy consump-
tion management of actuators is one of the simplest ones. Actuators are discrete
devices that only consume energy at the time they are performing an action.
In case there is not enough energy for this action to be made, it cannot be
done. Sensors, on the contrary, consume energy just for being on. The plat-
form discretises this consumption to avoid falsifying the battery level in time.
Finally, the agent (CPU) consumption depends on its use. RepastSNS models

4.4. Sensor Network simulation elements 61

the consumption associated to this element from its standby and working inter-
vals, consuming the energy corresponding to the previous period when changing
state.

As it was already said, sensors and actuators consume energy from the agent’s
battery. However, the agent can turn off these components connected to its
battery when they are no longer needed. The methods the agent use for turning
on and off its components and to manage its own consumption can be seen in
Figure 4.17 showing the skeleton of the AbstractSimulationAgent class.

AbstractSimulationAgent
Attributes

Operations
timeSpent()
getBattery()
setBattery()
getters and setters
powerOnSensor()
powerOnActuator()
powerOffSensor()
powerOffActuator()
hasEnergy()

standByConsumption
processConsumption

Figure 4.17: AbstractSimulationAgent class outline [Pujol-Gonzalez, 2008].

Finally, the ScheduleSNS also takes into account the energy management
presented by checking the energy availability of a component before delivering
an event.

4.4.7 Communication module

The communication module is the part of the platform which is in charge of
simulating and managing the communication among agents. This module is
barely defined and presents a basic definition of the interfaces corresponding to
the elements involved in a communication process.

Agents communicate by sending and receiving data packets. This data have
to be defined according to a Data interface. This interface is initially empty and
can be adapted to the programmer requirements. For two agents to be able to
communicate, agents transmit a special kind of phenomenon that can also be
perceived by a particular kind of sensor. RepastSNS presents three interfaces
defining the basic components involved in a communication: a transmitter, a
receiver and a network interface (see Figure 4.18).

The SimulationTransmitter interface is associated to a particular kind of ac-
tuator able to transmit Data objects. The transmission of data is done through
the creation of a particular phenomenon in the field. The SimulationReceiver
is associated to a sensor able to capture this data. Finally, this SimulationRe-
ceiver and SimulationTransmitter are associated to a SimulationNetworkInter-

62 Chapter 4. RepastSNS simulator

face, through which they can be handled.

SimulationTransmitter

Attributes

Operations
getNetworkInterface()

<<interface>>
SimulationReceiver

Attributes

Operations
getNetworkInterface()

<<interface>>

SimulationNetworkInterface

Attributes

Operations
getIdentifier()
attach()
detach()
buildTransmitEvent()
getActuator()
getReceiver()
setActuator()
setReceiver()

<<interface>>

Figure 4.18: Communication elements interfaces outline [Pujol-Gonzalez, 2008].

Besides this, RepastSNS also presents a very basic Wireless module to im-
plement radio communication. This module considers the particular phenom-
ena transmitted to be WirelessWave generated by a WirelessTransmitter and
perceivable by a WirelessReceiver. All these elements relate through a Wireless-
CommunicationInterface with the agent of which they are part. Each of these
elements also implements the corresponding communication interface depicted
in Figure 4.18. The WirelessWave emitted is the element that contains the
information, that is, the Data.

The last communication layer that the platform provides corresponds to the
radial set of elements. It offers a simple but effective view of wireless commu-
nication. The additional feature that this layer introduces refers to the nature
of the wave. The RadialWave class defines a circular phenomenon that extends
from its origin until a maximum distance, the communication radius.

4.4.8 Report

The report component represents the way to obtain information from the sim-
ulation provided by RepastSNS. Its functioning is based on the fact that every
action occurred in the platform goes through the scheduler. Therefore, a copy of
each event can be sent to the report component to register it, save it or analyse
it correspondingly. This element is again only defined by an interface, Simu-
lationReport. This interface contains the declaration of basic methods for its
functionality implementation. As shown in Figure 4.19, one method relates the
report to the model class and the other one allows it to capture events.

4.5. Conclusions 63

SimulationReport

Attributes

Operations
setModel()
actionPerformed()

<<interface>>

Figure 4.19: SimulationReport interface outline.

4.5 Conclusions

To study a Multiagent System and to analyse its behaviour when it implements
a new algorithm require an important effort. The decision on which simulation
platform to use may lead to increase that effort or to ease the task.

After studying and characterising some of the existing simulation platforms,
and taking into account our demands, we decided to test COSA using a novel
platform, RepastSNS. It represents a new platform but it runs over a well-
known MAS simulation engine. This decision has posed us in a beta-tester
position. Thereby, we have made different improvements and repaired some
functionalities. For instance, we have fixed the scheduler work, managed basic
functionality of sensors, corrected some methods definition, improved visibility
problems of some classes and contributed to an easier debugging methodology by
connecting elements that form part of the same agent. This effort, together with
the characteristics that inspired RepastSNS definition, make it an appropriate
simulation platform that meets our purpose.

RepastSNS has been conceived to study Sensor Networks from a MAS point
of view. The platform, which is based on discrete events, provides a simulation
structure and a set of components that ease modelling tasks of a sensor network
as a MAS. Moreover, this component-based definition contributes to make it
extensible. Components in the platform relate to each other through message
exchange what favours scalability. The establishment of new connections or
the addition of components just changes the way existing elements relate but
do not affect them. Typical components provided by the platform are agents,
sensors and actuators. All they provide common functionalities offered by a
sensor network, what eases application development tasks, but at the same time,
they still keep a high abstraction level, that make them general and valid for
different application domains. Finally, the simulation time control provided by
the scheduler allows to fulfil the initial requirements desired for the simulation
environment. All these reasons has led us to select RepastSNS as the base engine
to perform our experiments.

Chapter 5

Energy and Communication
Aware WSN

An attractive feature of RepastSNS is its general character. Although it has
been designed to model Sensor Networks as Multiagent Systems, it does not
make any assumption about the kind of environment or network to be modelled.
This characteristic demands additional implementation effort to model not only
the agents’ behaviour, but also basic attributes referred to the node regular
working scheme, such as energy consumption, for instance.

Therefore, before tackling the Multiagent System algorithm development,
we need to design and plan the network and the environment model that we
are going to implement. In this chapter, we present the approach selected,
and the layers modules established for this purpose. The first layer built upon
RepastSNS focus on the consumption and communication capabilities of the
nodes. The details of this layer’s definition are given in this chapter.

5.1 Application development structure

RepastSNS lies over Repast Multiagent Systems simulator to contribute its basic
sensor network definition. Proper implementation of the MAS algorithm pro-
posed in Chapter 3 on the platform requires the definition of the environment
to be monitored and the network that performs this surveillance task. The goal
of COSA is to provide the agents with a behavioural policy that allows them
to perform their mission correctly while they use their resources efficiently. The
physical devices holding the agents are subject to energy and communication
constraints. This situation motivates the interest in energy saving. As a conse-
quence, to adequately evaluate this MAS algorithm, we also need to model these
conditions referred to energy and communication capabilities. The approach
selected for the application development can be observed in Figure 7.1.

According to the conception principles of RepastSNS, we propose a modular
and growing structure. The work to be developed from this point onwards

65

66 Chapter 5. Energy and Communication Aware WSN

Repast

RepastSNS

ECA-WSN

Experimental setup

COSA-able WSNRiversim

Figure 5.1: Development Structure.

focus on the upper levels of the diagram. We distinguish three interconnected
modules that are grounded in RepastSNS and Repast. The basic one is Energy
and Communication Aware Wireless Sensor Network (ECA-WSN) and over it,
we include the COSA-able Wireless Sensor Network (COSA-able WSN) module.
River simulator (Riversim) module is grouped together with COSA-able WSN
by the Experimental setup.

The ECA-WSN module broadens, and specifies at the same time, the commu-
nication capabilities of the nodes composing the network. This module defines
the way agents can perform primary actions, such as sampling and communi-
cating. The model selected to represent these actions conditions the tasks and
work to implement this module.

Tasks dedicated to the proper implementation of the intelligence provided
by COSA in the agents belong to the COSA-able WSN module. The work
developed within this frame aims at creating the intelligent agents’ structure
and supply them with the different tools that they may need.

Differently from the previously described modules, the Riversim do not pay
attention to the agents or nodes’ capabilities. It focuses on the environment, its
model and definition.

Finally, the Experimental setup frame aggregates these two last modules,
COSA-able WSN and Riversim. The first one defines the intelligence of a set of
nodes, whose actuation capabilities have already been defined; whereas the sec-
ond module sets the environment holding those agents and where they perform
their activities. The Experimental setup defines the relationship between them.
This module finally builds the target application itself and enables its study and
analysis (the original purpose of this work).

In the following sections, we present the model selected to manage the energy
consumption associated to the agent. The communication module developed,
and the characteristics added are also specified later. These two facets of the

5.2. Energy management model 67

agent have been implemented to enrich the previous models and sustain higher
level applications.

5.2 Energy management model

All the elements that compose an agent demand energy to perform their cor-
responding tasks. The energy consumption represents a fundamental facet of
an agent’s functionality. The model selected to deal with this aspect affects the
level of complexity of the experiments to perform.

As described in Section 4.4.6, RepastSNS offers a basic model of this func-
tionality. RepastSNS platform defines a Battery element connected to an agent.
All the elements of the agent that may need energy at a certain moment are
considered as EnergyConsumers. According to an EnergyConsumer operation,
these elements could check the state of the Battery. Nonetheless, when one of
these EnergyConsumer elements requires a certain amount of energy, it tells the
agent about this need, which in turn, connects to the Battery. In case the Bat-
tery can supply the needs of that element (sensor, for instance), the energy is
spent, and the action executed. Figure 5.2(a) shows a schematic representation
of the communication with the battery.

The approach provided by RepastSNS to tackle the continuous consumption
is also quite simplistic. On the one hand, energy consumption associated to
Continuous Sensors is discretised in fixed intervals. This strategy obliges the
programmer to establish the period for continuous consumption update before-
hand. On the other hand, CPU’s continuous consumption is considered when
this element changes its state. Taking into account that the agent acts as the
CPU, and it manages all the other components that form part of the node, it
may change from idle to active quite frequently. As a consequence, considering
the consumption associated to the idle state at these times seems a good option
for this particular element.

ECA-WSN defines an energy consumption management policy that lies on
the same essential points as RepastSNS approach: the distinction between the
energy supplier and consumer elements, and also, between continuous and spo-
radic consumption. Apart from this, the viewpoint selected to implement and
develop this consumption management strategy is very different.

The battery considered within this ECA-WSN module is capable of self-
management. According to this model, the battery knows all the elements that
can connect to it to demand energy and it can also handle these demands.
Hence, from this perspective, the battery is not a passive element to which the
rest of the node’s components connects to demand service (energy provision).
Moreover, consumer elements connect to their energy supplier directly, that is,
the battery (see Figure 5.2(b)). The agent is not in charge of managing the
energy demands of its components. When an actuator, for instance, needs to
consume energy, it can demand it right to its associated battery. The change of
how elements relate compared to the approach given by RepastSNS introduces a
significative improvement regarding, especially, to continuous consumption man-

68 Chapter 5. Energy and Communication Aware WSN

Battery

Node

Agent

Actuator n

Sensor 1

Actuator 1

Sensor n
...

...

(a) RepastSNS model.

AgentBattery

Sensor 1 Sensor n...

Actuator nActuator 1 ...

Node

(b) ECA-WSN model.

Figure 5.2: Energy query direction.

agement. Among the positive features provided by this policy, we can mention
that it avoids burdening the agent with continuous demands of energy from
other elements. Besides this, the self-management capacity of the battery eases
the functioning of those energy consumer elements with standby consumption,
as the battery itself can demand an update of the standby consumption when-
ever it finds it appropriate. Thereafter, this battery’s feature avoids a misleading
standby energy management associated to elements’ state change, and it also re-
leases energy consumers from making periodic demands of standby energy. The
consumption policy definition is also simplified as it does not require prefixing
consumption periods and energy demands beforehand.

Proper implementation of this model for energy consumption management is
presented next. We present the implementation developed for the battery and
the elements demanding energy separately.

5.2.1 Common features

Energy management represents a fundamental function of a WSN. Therefore,
selecting an appropriate implementation strategy is crucial to help in later de-
velopment or debugging tasks.

To implement the model described above, we decide to keep the approach
used in RepastSNS. That is, elements are specified by an interface and an ab-
stract class. This decision favours the development of a scalable and extensible
ECA-WSN module, which is also coherent with its lower levels.

On the one hand, elements’ interfaces just outline the characteristics that an
element is going to have. On the other hand, an abstract class provides with a
basic definition of the methods required by that element.

We introduce the interfaces associated to battery and consumer elements
in this section. A detailed description of each of them can be found in its
corresponding subsection. However, we present them here together to allow for
a more coherent explanation of our work.

The structure of the Battery interface can be observed in Figure 5.3. It con-
tains the declaration of the methods energy(), consumeEnergy() and isEmpty().

The interface defined for consumer elements is the EnergyConsumer interface
(see Figure 5.3). This interface, associated to elements capable of demanding en-

5.2. Energy management model 69

<<interface>>
Battery

Attributes

Operations
energy()
consumeEnergy()
isEmpty()

<<interface>>
EnergyConsumer

Attributes

Operations
hasEnergy()
getPendingEnergy()

Figure 5.3: Battery and EnergyConsumer interfaces.

ergy to the battery, includes the methods hasEnergy() and getPendingEnergy().
As it name states, the getPendingEnergy() method returns the amount of energy
consumed by the element since the last time it demanded energy to the battery.
The implementation of this last method depends on the kind of element being
modelled, but its meaning does not change.

If we compare these interfaces to its counterparts provided by RepastSNS,
we realise that the difference between them resides in the EnergyConsumer in-
terface, that now incorporates the getPendingEnergy() method. Hence, this
method plays a key role in the implementation of the energy consumption policy
of ECA-WSN.

5.2.2 Battery

The battery of the nodes represents a central concept of an energy model. Its
associated interface is shown in Figure 5.3. The methods contained respond
to basic functionalities, such as the evaluation of the current capacity of the
battery, the consumption of a certain amount of energy and the verification of
the emptiness condition.

The abstract class AbstractBattery presents a basic implementation of each
of these methods. However, to provide a battery with a certain level of self-
management and to make it able to handle energy demands, it needs to know
which are the elements capable of demanding energy to it. Thereafter and to
satisfy this need, the AbstractBattery class maintains a list of all the elements
implementing the EnergyConsumer interface which are associated to it. This
list is represented by the consumers attribute in Figure 5.4.

The energy management policy developed for ECA-WSN leads the battery
to be able to update and know its capacity whenever a consumer demands en-
ergy. Instead of receiving periodic or sporadic standby energy demands from
consumers, the battery can ask them how much standby energy they have con-
sumed since their last demand whenever it finds it appropriate. It simply needs
to call the consumers’ method getPendingEnergy(). Consequently, the correct
development of this task demands an accurate management of the consumers’
list. That is, this list must keep track of the addition and removal of consumers.

70 Chapter 5. Energy and Communication Aware WSN

AbstractBattery

Attributes

Operations
energy()
consumeEnergy()
isEmpty()

energy
model
agent
consumers

Figure 5.4: AbstractBattery class outline.

The reception of SimulationEvents referred to the on/off switching of consumers
changes the relationship of these elements to the battery, but it also updates the
battery’s perception about them. This way, as it was desired, both the battery
and the consuming elements know each other at any time.

The implementation of the methods inherited from the Battery interface,
isEmpty() and consumeEnergy() are conditioned by the self-management capac-
ity of the battery. The isEmpty() method shows the utility of keeping a list of
consumers. Every time that the battery is asked whether it is empty or not and
before checking this condition, it updates its capacity to the right value at that
time. In order to do this, the battery asks each of its consumers the amount of
standby energy consumed in their latest inactivity period and subtracts these
values from the current energy level. This simple process allows the battery to
keep its capacity value up-to-date and, consequently, to accept or discard actions
based on this updated information. Figure 5.5 depicts a flowchart of the actions
described.

The functioning scheme of the consumeEnergy() method also adjusts to this
informative perspective. Hence, before subtracting the demanded quantity of
energy to the capacity level of the battery, it calls its own isEmpty() method to
update its capacity value. The desired consumption action will be done or not
depending on the result of this update and the quantity of energy demanded.
Thereafter, the battery itself is in charge of managing other elements’ accesses
to it and can keep its energy level updated whenever it is required.

5.2.3 Energy consumers

Sensors, actuators and the agent itself constituting a node require energy to
perform their tasks or just to be on. All these elements consume the energy
available in the battery that, together with all of them, form a node of the
network.

The basic behaviour of a battery has been already presented in the previous
section. The description of how energy consumers adapt to an energy consump-
tion management in which the battery can handle demands and consumers can
ask for energy directly to the battery follows next.

5.2. Energy management model 71

any consumer
left?

Start

Consumer: get
pending energy

Accumulate
pending energy

Yes Update current
energy value

energy>0?

Stop

No

Yes

No

Figure 5.5: Flowchart corresponding to the isEmpty() method.

The definition of the behaviour of an energy consumer element relies on
the EnergyConsumer interface (Figure 5.3). The specification of the methods
that this interface contains cannot be done in a unique abstract class common
to all consumers. Each consumer behaves differently according to its nature,
for instance, the energy demands of a continuous sensor are not equivalent to
those of an actuator’s action. This fact prevents us from the creation of an
abstract consumer class. The introduction of the energy management policy in
the consumer elements is done through the corresponding abstract classes of each
element (sensors, actuators and agent). These abstract classes implement the
EnergyConsumer interface and define basic functions coherent with the energy
policy developed in this module.

To describe the specification of the EnergyConsumer interface methods, we
focus on each element and show how the element’s nature condition their imple-
mentation.

Sensors

To allow a sensor to demand and consume energy it has to implement the En-
ergyConsumer interface. The definition of a sensor, as any other element in the
system, is based on a set of classes and interfaces. Figure 5.6 shows the primary
part of this hierarchical structure. One of the classes that defines a sensor must
implement the aforementioned interface.

Energy consumption function is common to every kind of sensor. Therefore,
it seems reasonable that the most generic sensor class implements the Energy-
Consumer interface. This decision leads to the redefinition of the AbstractSim-
ulationSensor.

The AbstractSimulationSensor class implements the EnergyConsumer inter-
face described in Section 5.2.1. Nonetheless, in this class only the hasEnergy()

72 Chapter 5. Energy and Communication Aware WSN

AbstractSimulationSensor

AbstractDiscreteSensorAbstractContinuousSensor

SimulationSensor
interface

ContinuousSensor
interface

DiscreteSensor
interface

Figure 5.6: Structure of classes for sensor definition.

method is specified. The aim of this method is to test the availability of energy
in the battery.

The energy management policy implemented in ECA-WSN allows for direct
connection between the sensor and battery, therefore, the action performed by
the hasEnergy() method is quite straightforward. First, the existence of a battery
is verified to ask immediately about its state by calling the battery’s isEmpty()
method.

The hasEnergy() method allows the consumer (a sensor in this case) to ask
the battery about its emptiness condition. The getPendingEnergy() method
plays the dual role, as the battery can invoke this consumer’s method to know
the cumulative energy demand. The value of this cumulative demand depends
on the sort of sensor, therefore, the implementation of the getPendingEnergy()
method is done at a more specific class in the sensor hierarchical structure def-
inition. These classes, particularly AbstractDiscreteSensor and AbstractContin-
uousSensor, specify the behaviour of the sensor, what favours an appropriate
implementation of this method.

• Discrete Sensors

Sensors in the system can be continuous or discrete. Discrete sensors are specified
by the DiscreteSensor interface and the AbstractDiscreteSensor class. The basic
functioning of a discrete sensor is simpler than a continuous one. Figure 5.7 out-
lines the methods and attributes contained in the AbstractDiscreteSensor class.
Discrete sensors only demand energy at particular instants of time. Particu-
larly the consumption per action is a fixed quantity requested when the agent
samples the environment. The definition of the getPendingEnergy() method is
trivial then. This method just always returns zero, as standby consumption is
negligible.

• Continuous Sensors

Unlike discrete sensors, continuous sensors are continuously perceiving the
environment; therefore, their corresponding AbstractContinuousSensor class re-
quires proper implementation of the getPendingEnergy() method to reflect this
fact.

5.2. Energy management model 73

AbstractDiscreteSensor
Attributes

Operations
getters and setters
sense()
process()
getPendingEnergy()

model
senseConsumption
senseInterval

Figure 5.7: AbstractDiscreteSensor class outline.

The battery is the element in charge of updating an element’s standby con-
sumption. Whenever the battery requires to know its exact capacity, it executes
its own isEmpty() method, which in turn calls the getPendingEnergy() method
of each associated consumer. Consequently, and in this particular case, the en-
ergy consumed by a continuous sensor is then discretised at irregular intervals.
In order to do this, each continuous sensor has to keep track of the last time
it consumed energy. The AbstractContinuousSensor class incorporates a prop-
erty to meet this purpose and save this timestamp. The lastConsumptionTime
variable updates its value every time the sensor performs a sampling action and
when the getPendingEnergy() method is called by the battery. The functionality
of the getPendingEnergy() method is quite obvious now. This method evaluates
the standby energy consumed since the time instant marked by the lastCon-
sumptionTime variable and until the current time, and returns this value. This
new property can be observed in Figure 5.8, which shows this class’ primary
methods and attributes.

AbstractContinuousSensor

Operations
getters and setters
process()
phenomenonAdded()
phenomenonDetected()
getPendingEnergy()
timeToDetect()

Attributes
model
activeConsumption
detectionConsumption
lastConsumptionTime

Figure 5.8: AbstractContinuousSensor class outline.

The energy management of the proper action performed by a continuous sen-
sor is also tackled by the AbstractContinuousSensor class. Although continuous

74 Chapter 5. Energy and Communication Aware WSN

sensors continuously perceive the environment, this does not imply that when-
ever an observable phenomenon appears in the field it will be detected. Sensors
may or may not have enough energy to perceive the phenomena appearing in the
environment. To consider this circumstance, we distinguish two methods: phe-
nomenonAdded() and phenomenonDetected(). The phenomenonAdded() method
reflects the appearance of an observable phenomenon in the field, whereas the
phenomenonDetected() method will deal with the phenomenon processing.

The execution of phenomenonDetected() by the sensor to get information
from the environment is subject to the successful execution of the phenomenon-
Added() method. This method, phenomenonAdded(), evaluates the amount of
energy required by the sensor to actually perceive the phenomenon. If the bat-
tery can provide this energy to the sensor, then phenomenonDetected() method
is executed for further processing the collected data.

The evaluation of the energy needed by the sensor to perform a sampling ac-
tion is based on the time required to perform the action, assuming that the device
consumption’s specifications are expressed per time unit. To take into account
this last feature, we declare the timeToDetect() method in the AbstractContin-
uousSensor class to return this value. Proper implementation of these methods
is left to more specific classes referred to the actual sensor being modelled.

Actuators

Actuators rely on the SimulationActuator interface and the AbstractSimulation-
Actuator class. Consistently with the sensor’s structure, the suitable class to
implement the EnergyConsumer interface is AbstractSimulationActuator (see
Figure 5.9).

The behavioural model defined for actuators allows for the implementation
of the two methods contained in the EnergyConsumer interface within this
class. According to the energy management pattern established, the hasEn-
ergy() method just tests the existence of a battery associated to the element
and whether it is empty. Regarding the getPendingEnergy(), analogously to the
AbstractDiscreteSensor, this method just returns zero. We neglect the actua-
tor’s standby consumption and assume that actuators only require energy when
acting.

The energy management of the actuation is also incorporated to this class.
The getEnergyToGenerate() method aims at evaluating the energy needed for
the actuator to perform its action. At this level of the element definition, this
method just informs about the actuator’s energy consumption per time unit. The
proper implementation of this method has to be done in a more specific class.
The performance of an actuator is conditioned to the availability of energy to
supply its needs.

Agents

Finally, the last element consuming energy from the battery is the agent govern-
ing the node. Again, the AbstractSimulationAgent class implements the Energy-

5.2. Energy management model 75

AbstractSimulationActuator
Attributes

Operations
getters and setters
process()
hasEnergy()
getPendingEnergy()
getEnergyToGenerate()

agent
battery

Figure 5.9: AbstractSimulationActuator class outline.

Consumer interface and its methods. On the one hand, the hasEnergy() method
is exactly the same as its counterparts in the other classes already described. On
the other hand, the getPendingEnergy() method conforms to the characteristics
of this element. Specifically, it evaluates the standby consumption relying on the
lastWorkingTime property of the agent. Based on it and on the current instant
of time, this method evaluates the energy consumed. In the case of an agent, the
evaluation of the consumption per action depends on the time invested in each
particular action (as this consumption specification is also expressed per time
unit). Figure 5.10 shows the main characteristics of the AbstractSimulationAgent
class.

AbstractSimulationAgent
Attributes

Operations
getters and setters
process()
hasEnergy()
getPendingEnergy()

battery
sensors
actuators
standbyConsumption
processConsumption
lastWorkingTime

Figure 5.10: AbstractSimulationAgent class outline.

Hence, from the point of view of the battery, the energy consumption manage-
ment of the agent, or a sensor or an actuator is equivalent. The standardisation
provided by the energy management model implemented in ECA-WSN simpli-
fies the individual elements operation in this respect. Concurrently, it takes
into account the two possible consumptions considered in the model for every
element, independently of whether it presents it or not. As a consequence, the
energy model implemented renders a consistent system.

76 Chapter 5. Energy and Communication Aware WSN

5.3 Communication model

In general terms, the election of a communication model for a MAS is equivalent
to establishing the agents’ capabilities of sending and receiving messages. As
most MAS applications rely on the communication capacity of the nodes, this
decision is of critical significance. A correct model of this feature that provides a
solid and general communication structure favours the development of applica-
tions over the platform. ECA-WSN module introduces a novel communication
model for the agents. The implemented model enriches the capacity of the agents
without impairing the generality of the process.

RepastSNS provides with a complete but very general communication struc-
ture that misses some basic features of this function. Moreover, the energy
model already incorporated to the ECA-WSN module affects communication
elements, such as the transmitter and receiver. Hence, the initial definition of
the communication module delivered by RepastSNS has been revised.

The communication capacity of the nodes has been considered from a generic
point of view and, in this vein, primary communication features have been added.
Nonetheless, these new features do not constrain the set of scenarios that can be
simulated, rather the opposite, they may ease the development tasks associated
to different applications. A new functionality incorporated is the capability
of emitting directed and broadcast messages. Assuming the use of a Radial
Communication model, as described in Section 4.4.7, broadcast messages can
be received by any agent within the communication radius. On the other hand,
directed messages are sent towards a specified recipient. The inclusion of this new
feature implies, and requires, changes on the elements in charge of transmitting
and receiving messages (transmitter and receiver).

To attain a more realistic modelling of these transmitter and receiver ele-
ments, as well as of their actions, the communication bandwidth associated to
these devices is also taken into account. The introduction of this property not
only allows for a more correct simulation, but it also offers the opportunity to
make transmitter and receiver elements comply with the energy consumption
policy adopted. Given the bandwidth assigned to a communication element and
the size of the message to be transmitted or received, the amount of energy
needed for the task completion can be easily calculated from regular specifica-
tions of communication devices. Therefore, the communication model completes
and complements the work presented in the previous section.

In the following sections, it is described how the ECA-WSN module imple-
ments this model. The incorporation of the bandwidth and the directed com-
munication ability requires the design and development of a new communication
structure.

5.3.1 Data elements

The implementation of the communication model conforms to the interface-
abstract class structure already used for the energy model. This approach guar-

5.3. Communication model 77

antees the accomplishment of an uniform ECA-WSN module, which is also co-
herent with its lower levels (RepastSNS).

Agents communicate through message exchange. The basic characteristics
of these messages are defined through the Data interface and the AbstractData
class.

The Data interface declares basic methods associated to the message emitter
identification. Besides this, it includes a getBytes() method to return the size
of the message. This interface also contains an enum constant that includes the
size (in bytes) of the different data types that the message may carry.

The AbstractData implements the Data interface. This class includes the
sender property and the corresponding getter and setter methods. The get-
Bytes() method defined in the interface also presents a basic definition in this
class. In addition, AbstractData provides with a method that checks the iden-
tity of a the data’s sender. This method results very useful when the agent is
engaged in conversations with its neighbours. Figure 5.11 outlines the definition
of this class.

AbstractData

Attributes

Operations
getter and setter
getBytes()
equalsSender()

sender

Figure 5.11: AbstractData class outline.

This modest structure provides all the basic elements needed to completely
define exchangeable messages for the agents. Despite its simplicity, it is flexible
enough to allow the sending of different kinds of data to one or more addressees.

5.3.2 Communication elements

The introduction of the bandwidth concept and the unicast message emission de-
mands the creation of a new communication structure. This structure embraces
the fundamental elements involved in communication, which are a transmitter
and a receiver. Moreover, these elements are linked together by another element,
a network interface. In the following we describe how these elements and their
behaviour develop the desired communication model.

Network Interface

The network interface has been conceived as a binding element for the commu-
nication devices. This element is in charge of managing the transmitter and
receiver and linking them to the agent managing the node.

78 Chapter 5. Energy and Communication Aware WSN

In the same vein as all other elements of the ECA-WSN module, the network
interface definition is based on an interface and an abstract class, which are
SimulationNetworkInterface and AbstractNetworkInterface correspondingly.

The purpose of the SimulationNetworkInterface is to outline the function of
the communication module. In order to do this, it declares methods to con-
nect the transmitter, receiver and the agent. This interface is equivalent to the
SimulationNetworkInterface presented in Section 4.4.7 but for the inclusion of
an overloaded method: buildTransmitDataEvent(). This method is especially
noteworthy, as this is the one that the agent invokes to tell the transmitter its
intention of sending a message, wether it is a broadcast or a directed message.
This method shows how the simulation interface element acts as both simul-
taneously, as a bond and a frontier between the agent and the communication
elements in the node. This perspective favours the agents’ abstraction from the
working scheme of the communication element while still allowing their inter-
action. The implementation of the methods defined in this interface appears in
the AbstractNetworkInterface class.

To fulfil the implementation of methods related to fixing the relationship be-
tween communication elements and the node is very straightforward. The defini-
tion of the buildTransmitDataEvent() method requires the support of a particular
SimulationEvents structure. Figure 5.12 shows this structure of events.

TransmitDataEvent

TransmitUnicastDataEventBroadcastDataEvent

AbstractSimulationEvent

AbstractDataEvent

Figure 5.12: Transmission events structure.

The structure starts at the most basic event class, the AbstractSimulation-
Event. From this class extends the AbstractDataEvent. The AbstractDataEvent
incorporates a Data property and its associated management methods. There-
fore and as it name indicates, this kind of event can contain a Data type message.
TransmitDataEvent is an abstract class that implements the ActuateEvent inter-
face. This feature allows this TransmitDataEvent to be recognisable by trans-
mitter elements. Finally, from this last class, two instantiable classes extend,
BroadcastDataEvent and TransmitUnicastDataEvent. These particular events
are aimed at providing the communication modes indicated at their own names.
BroadcastDataEvent, as its name states, is used for broadcast communication,
and it does not include any novelty when compared to its superclass. However,

5.3. Communication model 79

TransmitUnicastDataEvent adds a new property, the recipient. This event is
responsible for initiating a directed communication. To comply with its mission,
it does not only include the recipient identification, but also methods to deal
with this property.

The addition of these classes broadens the actuation capability of transmit-
ters. The reception of a TransmitUnicastDataEvent or a BroadcastDataEvent
by a transmitter tells this element to actuate in either of the two ways. Depend-
ing on the kind of event received, the transmitter emits a message of the type
specified by the event and with the parameters it gives.

Transmitter and Receiver

The simulation network links the transmitter and the receiver together and
places them in the node’s structure. Transmitter and receiver are different el-
ements with dual functionalities. The transmitter is an actuator able to send
messages, whereas the receiver is a continuous sensor capable of perceiving these
messages and extracting the information that they may carry. This näıve analy-
sis results very helpful to describe transmitter and receiver classes as part of the
communication module. Moreover, this perspective favours the comprehension
of how these elements integrate into the node structure and adapt to the energy
management model of ECA-WSN module.

According to the communication model proposed for ECA-WSN module,
transmitter and receiver elements are subject to a certain communication band-
width. This concept is introduced in the corresponding elements’ definition
through interfaces and abstract classes.

Both the SimulationTransmitter and SimulationReceiver interfaces declare
exactly the same couple of methods: getNetworkInterface() and getBandwidth().
The first one will link the element to a network interface, and the second one will
allow to take into account the bandwidth property when operating. Despite its
identical appearance, these interfaces are completely different. They correspond
to the definition of different elements, and this divergence can be appreciated in
their superclasses. If we recall the previous analysis, the SimulationTransmit-
ter interface extends from SimulationActuator, whereas the SimulationReceiver
interface extends from ContinuousSensor, already presented in Section 5.2.3.

The definition of these elements continues with the established protocol.
Abstract classes implement these interfaces and define the methods declared
in them. Hence, complying with this, the abstract class AbstractTransmitter
implements the SimulationTransmitter interface (see Figure 5.13). This class
includes the Bandwidth property and methods for its management. The anal-
ogous process applies to the AbstractSimulationReceiver. Nonetheless, the Ab-
stractTransmitter declares a new method that does not appear in the Abstract-
SimulationReceiver. This method is the timeToTransmit(). As it name states,
timeToTransmit() aims at computing the time required for the transmitter to
emit a message. This time, together with the energy consumption per time unit
associated to the transmitter, returns the energy cost of the transmission action.
The timeToTransmit() method provides the same functionality offered by the

80 Chapter 5. Energy and Communication Aware WSN

AbstractTransmitter
Attributes

Operations
getters and setters
timeToTransmit()

networkInterface
bandwidth

AbstractSimulationActuator

SimulationTransmitter
interface

Figure 5.13: AbstractTransmitter class outline.

method timeToDetect() declared in the class AbstractContinuousSensor. Once
again, the duality between these two elements becomes relevant. The Abstract-
SimulationReceiver extends from AbstractContinuousSensor, incorporating then
this functionality (see Figure 5.14). However, the AbstractTransmitter extends
from the AbstractSimulationActuator, which did not present it.

AbstractSimulationReceiver
Attributes

Operations
getters and setters

networkInterface
bandwidth

AbstractContinuousSensor

SimulationReceiver
interface

Figure 5.14: AbstractSimulationReceiver class outline.

This brief review of the elements definition and dependences situates them
in the node structure. It also shows the interdependence existing between the
energy and communication model defined for ECA-WSN module.

Wireless Communication Instantiation

Communication is a key cornerstone of both, MAS and WSN. In the previous
sections, the communication model, and its integration in the simulation ele-
ments, have been described. The work performed until this point provides with
a very general simulation environment that is not constrained to any particu-
lar communication technology. However, as our aim is to test the behaviour of
the COSA over a WSN, the ECA-WSN module includes a set of classes defin-

5.3. Communication model 81

ing proper communication devices. This step ahead favours the development of
upper MAS application of any kind, but that require the support of a WSN.

RepastSNS already presented a group of classes giving this functionality in a
very broad sense. ECA-WSN enriches that application by adopting the energy
and communication model proposed for this module.

The classes that specify this communication capability are WirelessWave,
WirelessReceiver, WirelessReceiverFilter and WirelessTransmitter. The imple-
mentation of these classes allows for better comprehension of the models exposed
and their working scheme.

The WirelessWave represents the phenomenon emitted by the Wire-
lessTransmitter. Its nature is not affected by the communication model of the
ECA-WSN module and it just contains the message to transmit.

The WirelessReceiver represents, as its name states, the receiver device. This
class extends from the AbstractSimulationReceiver and constitutes the appro-
priate frame to define methods specific for this type of communication. The
phenomenonDetected() method inherited from AbstractContinuousSensor class
can be adapted to the WirelessWave phenomenon and extract the contained
message. Similarly, the timeToDetect() method can define how long it takes to
detect the wave at this level of implementation. To return this duration, the
length of the message and the bandwidth of the receiver are considered. This
result, together with the consumption specification per unit time, permit to
calculate the energy consumption involved by the action.

The detection of a WirelessWave by a WirelessReceiver demands the use
of a WirelessReceiverFilter. The function of this element is refined to discard
messages not addressed to the node and emitted by the node itself. The intro-
duction of unicast communication in the ECA-WSN module allows the agent to
avoid the process of messages not addressed at them.

Finally, the WirelessTransmitter is the element that generates the event that
triggers the transmission action. It is, therefore, in charge of transmitting di-
rected and broadcast messages and generating the corresponding waves carrying
those messages. As it happened with the WirelessReceiver, this class is at the
specification level of the transmitter definition that enables the evaluation of the
time required to transmit a message and the energy incurred in this task. That
is, the timeToTransmit() method declared in the AbstractTransmitter class, and
the getEnergyToGenerate() method inherited from the AbstractSimulationActu-
ator class are properly implemented in this class. The definition of these methods
connects the two facets of the ECA-WSN module, the energy and communication
models proposed collide and fulfil the element definition. Any other communica-
tion model lying on the same principles can worked over the ECA-WSN module.
In fact, the Radial communication module proposed in Section 4.4.7 can run
over it just by extending from these classes.

The set of classes described represents a complete communication module
that includes a basic characterisation of this function and models different kind
of communications. The implementation of this set of classes finishes the def-
inition of the ECA-WSN module. This work emphasises how the energy and

82 Chapter 5. Energy and Communication Aware WSN

communication models interrelate and come full circle.

5.4 Conclusions

The ECA-WSN module constitutes an elemental layer for later application devel-
opment. It defines generic and simple communication capabilities while carefully
fixing the relationship between the elements involved in the process. The en-
ergy consumption associated to communication actions is evaluated according
to the general management policy proposed for this module. This energy man-
agement policy uniforms the energy consumption treatment for every element.
Thereafter, this module represents an intermediate layer between the application
and RepastSNS, that enriches and standardises the use of the network structure
provided by the last one.

Chapter 6

Coalition Oriented Sensing
Algorithm based WSN

The completion of the ECA-WSN module prepares RepastSNS platform for the
implementation of the Multiagent Systems algorithm defined in Chapter 3. The
COSA-able WSN module gathers together all the elements especially conceived
to allow the agent to behave according to COSA. Thus, in this chapter we present
not only the model of the agent implementing COSA, but also other elements
supporting the agent’s intelligent behaviour. These elements range from the
special kind of battery designed to meet COSA features to the mathematical
dimension of the agent. The structure created in this module for proper COSA
implementation into an agent favours a better understanding of the proposed
algorithm.

6.1 Power Supply

The battery of a node is the element in charge of providing energy to all the
other node’s components to perform their functions.

Agents implementing COSA can make an intelligent use of their resources,
among them, their energy. One particular feature of this intelligent management
is saving a small quantity of energy before reaching complete depletion. This
so-called Energy security level, which was introduced in Chapter 3, is preserved
by the agent to be able to send a last disconnection message. The class providing
this functionality is the CfAbstractBattery.

CfAbstractBattery class extends from AbstractBattery. This class contains
two properties as it can be observed in Figure 6.1. The InitialEnergy, that rep-
resents the maximum capacity of the battery, and the deathThreshold property.
This last property represents the amount of energy that the battery keeps for
the node’s last action (the equivalent Esl value appearing in Formula 3.3). The
values set to these properties are specified when the object is created through
its constructor method.

83

84 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

The existence of an energy threshold determines two different kinds of con-
sumption: energy consumption above and below the threshold. Battery energy
above the deathThreshold can be invested in whichever regular task of the node,
like sampling, processing or communication. The energy remaining below this
threshold cannot be used for any of these purposes. This distinction leads to
the redefinition of the emptiness concept and the split of the methods inherited
from AbstractBattery aimed at consuming energy and checking its availability.

CfAbstractBattery

Attributes

Operations
consumeEnergy()
consumeCriticalEnergy()
isEmpty()
isCriticalEmpty()

initialEnergy
deathThreshold

AbstractBattery

Figure 6.1: CfAbstractBattery class outline.

Therefore, energy management in this class is done through four different
methods: consumeEnergy(), consumeCriticalEnergy(), isEmpty() and isCriti-
calEmpty(). The aim of the first two methods is to decrement the battery’s
energy by the corresponding quantity demanded. The isEmpty() and isCriti-
calEmpty() methods check, as their names state, the availability of energy.

The isEmpty() method overwrites the method inherited from AbstractBat-
tery. In this case, the comparison condition for emptiness is set to deathThreshold
value instead of zero. The evaluation of the battery current energy value is per-
formed from EnergyConsumers as it was done in the AbstractBattery class. In
these conditions, a node considers that it has an empty battery unable to provide
energy for any regular activity when the energy level reaches the deathThreshold
value. If this condition holds, an inner communication event triggers. An event
of DeathEvent type is immediately sent by the battery to the agent to initiate the
last disconnection message emission. On the other hand, the isCriticalEmpty()
method just checks the emptiness condition normally with a zero value.

The consumeEnergy() method just subtracts the demanded energy as long
as there is enough available energy. The consumeCriticalEnergy() mimics the
behaviour of consumeEnergy() but checking the battery condition through the
isCriticalEmpty() method. The only activity able to trigger the consumption of
this critical energy is the disconnection message sending.

This class allows for the energy management of a battery element according
to COSA. The design of a battery for COSA nodes is inspired by a real device, the
WaspMote [Libelium, 2012b]. Therefore, we refer to its technical characteristics

6.2. Communication Modules 85

to define our simulation component.
The WaspMoteBattery class extends from the CfAbstractBattery, and it is

quite simple. It only contains an energy property that indicates the maximum
capacity of the battery. This class presents two overloaded constructor methods
that can be distinguished by the admission of a parameter or not. This parameter
represents the deathThreshold value. The existence of two constructor methods
allows for a general use of this battery class and not only for COSA nodes.

The constructor taking no parameters assumes a zero value for the
deathThreshold. Hence, it creates a regular battery whose energy decreases until
exhaustion with the node activity. The second constructor defines a battery
fulfilling the particular characteristics associated to COSA.

The conjunction of the CfAbstractBattery and WaspMoteBattery classes
complete the definition of the power supply element of a COSA node.

6.2 Communication Modules

COSA definition relies on the agent’s communication capability. Agents ex-
change information through local communication and arrange themselves in
coalitions. Then, only one agent per coalition sends its sampling data to the
server of the network.

To model this situation, we distinguish two communication modules for a
COSA agent: one module dedicated to local communication and another one for
communication with the sink. These communication interfaces do not interact
with each other. The set of messages that can be sent are also defined. The
composition of this module is presented in Figure 6.2.

6.2.1 Communication interfaces

Separate management of messages aimed at local communication from those
addressed to the sink favours an easier development and analysis of the MAS
application. As explained in Chapter 5, the communication module presented
in Section 5.3.2 offers all the basic functionalities that a node may need. To
define regular communication between neighbouring agents, we use the Radial
communication module; whereas for the emission of messages addressed to the
sink, we rely on the Wireless communication module.

The Radial communication module of a COSA agent is created from the
general Radial module. All Radial elements, but the transmitter, are adopted
as their general definition. However, the RadialTransmitter definition has to be
adapted to the particular COSA’s battery management; given that this element
is responsible for emitting the last disconnection message. The RadialTransmit-
ter provided by ECA-WSN module cannot work when the energy level of the
battery is below the Esl. To overcome this difficulty, we define the CfRadial-
Transmitter class.

CfRadialTransmitter extends from RadialTransmitter. This class manages
the emission of the disconnection message addressed to neighbouring agents.

86 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

SinkNetworkInterface RadialNetworkInterface

CfRadialTransmitterSinkTransmitter

SinkReceiver

SinkReceiverFilter

SinkWave

RadialReceiver

RadialReceiverFilter

RadialWave

SayHelloData
Measure2SinkData

DeathData

MeasureData
MaxAdhData
LeadData

FirmAdhData

AckAdhData
WithDrawData
BreakData
DeathData

Figure 6.2: Communication module.

Then, these neighbouring agents are warned about the neighbour exhaustion
and can act consequently.

Finally, and as its name states, this Radial communication module models
omnidirectional communication that fades with distance. Therefore, its complete
definition will require the specification of consumption, bandwidth and sensing
radius parameters.

To model a COSA agent communication with the sink, we define the Sink
communication module. All its elements extend from their equivalent Wireless
elements (SinkNetworkInterface, SinkTransmitter, SinkReceiver, SinkReceiver-
Filter and SinkWave). The only difference between the elements created and
their corresponding Wireless ones refers to the phenomenon to which they are
associated, that is, the SinkWave. Nonetheless, the SinkTransmitter presents
more differences.

Changes presented in the SinkTransmitter aim at managing the consequences
of battery depletion according to COSA. As explained previously, when the
battery capacity reaches the Esl level, the agent normal thread of action is
interrupted. The only permitted action since that moment is the emission of
the disconnection message, which is sent through the RadialNetworkInterface.
Local and sink communication modules do not interact. Hence, to notify the
sink about the node depletion, we have to artificially send a DeathData message
through the SinkTransmitter without any cost.

As the Sink and the Radial communication modules model the same com-
munication device, their technical characteristics are set to the same value.
Nonetheless, for the sake of simplicity and to focus on COSA behaviour, we
discard modelling the typical multihop message routing of WSNs that would
correspond to the Sink module. Instead of this, the evaluation of a message
sending is based on the square of the agent’s distance to the sink. Analogously,
the consumption associated to SinkReceivers is set to zero as agents are not
supposed to receive messages sent to the sink.

6.2. Communication Modules 87

6.2.2 Communication messages

A set of data communication messages is defined to simulate the desired applica-
tion. Most of the defined messages appear to model the specific communication
characteristics associated to COSA’s negotiation protocol, but general commu-
nication messages are also included. In any case, the role associated to each
message is easily identifiable from its name.

SayHelloData

SayHelloData class represents the message sent by sensing agents to the sink
when they turn on. The aim of this message is to inform the sink about the
fact of a node joining the network. This message contains information about the
node position.

Measure2SinkData

Measure2SinkData class appears as a consequence of the two different commu-
nication interfaces in the node. This class represents the message that a leader
agent sends to the sink to inform about the sample value collected. This message
also contains the list of neighbours for which the agent works.

MeasureData

MeasureData class corresponds to the data message that an agent sends to in-
form its neighbours about how it perceives the environment. Typically, this is
the broadcast message that initiates a negotiation to establish a leader-follower
relationship. This kind of message carries information about the last sampled
value from the environment and the variable’s model it assumes, that is the
mean and sigma parameters characterising the distribution. It also contains the
timestamp associated to the sample sent. Besides this data, the MeasureData
includes the current lead capacity of the agent. Thus, if the recipient of the
message is a follower of this agent, it can take advantage of this information to
update the information about the relationship that they hold.

MaxAdhData

MaxAdhData class represents the second message that would be sent in a generic
dialogue. It represents the answer to an interesting MeasureData and contains
the maxAdherence value. This message is also used by its sender to communicate
its perception of the environment to the addressee neighbour. The addition of
its perception can be easily done as this class extends from the MeasureData
class.

LeadData

LeadData class, as its name states, contains the node’s lead information. This
class has two properties. One of the properties corresponds to the current leader-

88 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

ship value of the agent according to its established leader-follower relationships.
The other property represents the agent’s leadership value corresponding to the
potential situation if this negotiation succeeds. Analogously to the Measure-
Data, including information about the current attitude of the agent allows for
negotiations based on up-to-date data.

FirmAdhData, WithdrawData, BreakAdhData and DeathData

These Data classes are all exactly the same except that by their name, which
associates them to a particular negotiation stage.

The DeathData message informs the agent’s neighbours and the sink node
about the sender node’s immediate exhaustion, so that they can act conse-
quently.

AckAdhData

The AckAdhData class, unlike the classes just presented above, includes a piece
of information referring to the new leadership value that this node assumes after
just confirming this relationship. Thus the recipient agent initiates its sleeping
period after receiving the latest data about its relationship with its leader.

The set of classes described provides COSA agents with the communication
capabilities that they require to actuate according to the algorithm.

6.3 COSA utils

An agent that implements COSA needs to be able to store and process the
information it receives. The following classes and methods provide a COSA
agent with the functionalities it needs to follow the algorithm.

6.3.1 Mathematical functions

The MathematicsFNeighInfoTimeStamps class contains, as it own name states,
all the mathematical methods required by a COSA agent. These methods can
be divided into two simple categories: COSA methods, which specifically repre-
sent COSA characteristic mathematical functions; and auxiliary methods, that
support the previous ones. Figure 6.3 shows an outline of this class and its
methods.

Auxiliary methods are normpdfJava(), entropyNormalCalculation(), normal-
izedEntropy(), meanJava() and stdJava(). The first method, normpdfJava(),
allows for the evaluation of the Normal probability density function of an input
value. In the same vein, the entropyNormalCalculation() returns the entropy
value associated to a certain Normal distribution. As it was explained in Chap-
ter 3, it is important to guarantee a minimum quality of the distributions in-
volved in the adherence evaluation. The normalizedEntropy() method performs
this task. This method just mimics the mathematical formulation proposed for
this purpose. Finally, the last two auxiliary methods presented, meanJava() and

6.3. COSA utils 89

MathematicsFNeighInfoTimeStamps
Attributes

Operations
normpdfJava()
entropyNormalCalculation()
normalizedEntropy()
meanJava()
stdJava()
adhCalculation()
prestigeCalculation()
capacityCalculation()
representativenessCalculation()
leadershipEvaluation()
leadCalculus()

nAgents

Figure 6.3: MathematicsFNeighInfoTimeStamps class outline.

stdJava() allows for the obtention of the mean and standard deviation associated
to a set values, characterising these set of values as a Normal distribution.

As it is expected, COSA methods evaluate the adherence between two agents
and each of the factors that define their leadership attitude. The set of methods
included in this group are: adhCalculation(), prestigeCalculation(), capacityCal-
culation(), representativenessCalculation(), leadershipEvaluation() and leadCal-
culus(). These functions rely on the methods previously presented to perform
their actions.

Grouping into a class all the mathematical methods that a COSA agent may
need eases possible enhancements of the algorithm. Changes on this aspect of
COSA would mainly influence this class, but not the inner structure of the node,
what favours the reusability of the rest of components.

6.3.2 Information storage

In the same way that the math module supports the mathematical activity of
a COSA agent, two other classes are introduced to help agents develop their
function. These classes are NeighInfoTimeStamps and RotatingQueue.

The NeighInfoTimeStamps class represents the information store of the
agent. This class contains numerous properties referred to the own node char-
acteristics and its perception of the environment, including both, the observed
variable and the agent relationship to its neighbours. The set of properties
contained can be identified in Figure 6.4. This class also presents methods for
accessing the information kept and updating the value of these properties when-
ever it is required.

The RotatingQueue class defines another necessary object for the agent to
perform its action. This class maintains a LIFO structure that holds a certain
number of the last samples collected by the agent. This structure represents the

90 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

NeighInfoTimeStamps
Attributes

Operations
getters and setters

ID
location
xj
medxj
devxj
timeSample
adhMe2Neigh
timeMe2Neigh
maxAdhNeigh2Me
timeNeigh2Me

Figure 6.4: NeighInfoTimeStamps class outline.

agent’s sampling activity memory. The size of this memory is specified by the
programmer according to his interests. The utility of this class becomes clear
when the agent updates its model of the observed variable by adding a new
sample and discarding the oldest one.

6.4 Agents

The definition of an agent that behaves according to COSA concerns the final
implementation of the core of the algorithm. Sensing agents following COSA
are created from the conjunction of the following two classes: AbstractCfAgent
and SensorAgentSimple. The AbstractCfAgent class aims at configuring the
agent inner structure in charge of managing the reception of SimulationEvents.
On the other hand, the SensorAgentSimple properly contains the COSA engine
providing the intelligent behaviour. This approach favours the split between
COSA intelligence and other agent’s functioning tasks.

6.4.1 AbstractCfAgent

As its name states, the AbstractCfAgent class represents an intermediate class
between the class that will properly hold COSA characteristics and the Abstract-
SimulationAgent provided by the platform. This non-instantiable class provides
the agent with some features required by the application, but without imple-
menting the algorithm yet. These characteristics refer to the particular kind of
battery COSA agents need to use, to the temporal cost of agent’s actions and
also to the management of the different SimulationEvents arriving at the agent.

The AbstractCfAgent is associated to a CfAbstractBattery element. There-
fore, an agent of this class has access to the particular features of this kind

6.4. Agents 91

of battery. Other properties included in this class represent the temporal cost
associated to actions involving the CPU and inner communication between the
node’s components. Among the considered CPU actions, we can cite reading
a sample or computing the adherence value, for instance. Figure 6.5 shows an
outline of this class.

AbstractCfAgent
Attributes

Operations
init()
simulationChanged()
timeSpent()
sendMessage()
sendMessageToBattery()
sendMessageToActuator()
sendMessageToSensor()
setPosicSink()

battery
timeSpentProcessingEvent
Times

AbstractSimulationAgent

Figure 6.5: AbstractCfAgent class outline.

This class overwrites two methods inherited from AbstractSimulationAgent
to include the properties just mentioned. The init() method in this class sets
the values of the CPU consumptions and the deathThreshold of the CfAbstract-
Battery element.

The method in charge of managing the SimulationEvents is the Simulation-
Changed(). The new implementation of this method takes into account the CPU
consumption properties and the presence of a CfAbstractBattery. The process of
an event now demands an initial distinction between DeathEvent and any other
kind of event. The reception of a DeathEvent requires the use of the isCriti-
calEmpty() and the consumeCriticalEnergy() methods. The rest of events check
the emptiness condition regularly and consume energy normally. The evaluation
of the energy spent in the event processing and the associated action performance
relies on the timeSpentProcessingEvent property and the timeSpent() method,
which returns the time invested in this whole process. The methods that adopt
the properties referring to the agent inner communication temporal costs are
sendMessage() or sendMessageToActuator() among others. Hence, this time is
also taken into account when processing their corresponding events.

Another simple but characteristic method required for experimentation is
the setPosicSink(). This method codifies the sink position in the agent. This
artefact is introduced to allow agents to evaluate their distance to the sink and

92 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

then know the energy consumption associated to this action.

6.5 SensorAgentSimple

This is one of the most complex classes of the application, as it contains the rea-
soning core of COSA. The SensorAgentSimple represents the CPU of the node.
Hence, this class knows all the other elements composing the node: communi-
cation module (Radial and Sink elements), battery (of WaspMoteBattery kind)
and the sensor used to monitor the environment, that is, the RiverPollutantPhe-
nomenonSensor.

In order to handle the information that a COSA agent needs, this class con-
tains different types of properties able to save received or collected information.
These properties can be grouped into different sets regarding its goal. There are
properties aimed at keeping the model of the environment, and the information
collected, properties about the neighbours’ information, properties related to the
role played by the agent in the negotiation process and there are also properties
for each of the parameters defined in COSA. Among these parameters are, for
instance, those related to the admissible extreme values for standard deviation.
Some of these properties, together with the methods contained in the class, can
be observed in Figure 6.6. To describe this element, and how COSA is imple-
mented in it, we present methods aimed at initialising the element, methods for
processing SimulationEvents arriving at the agent and methods for sending and
processing received messages separately.

6.5.1 Setup and initialisation

The setup() and init() methods build and initialise the node by creating its dif-
ferent parts: theWaspMoteBattery, the RiverPollutantPhenomenonSensor and
the RadialNetworkInterface and SinkNetworkInterface. The creation of elements
of these types implies the specification of their associated properties, such as
deathThreshold or samplingFrequency. The communication module is a little
more special as it is composed of two interfaces. The bandwidth property of
both transmitters is set to the same value (as they represent the same physical
element), but the cost per action and unit time is different for each transmit-
ter, as explained in Section 6.2. We assume that local communication happens
only between neighbour agents situated one-hop distance away, whereas com-
munication with the sink takes into account the distance (in radio hops) to this
element. The standby consumption of the communication module is modelled
through the RadialReceiver element. The SinkReceiver is not even activated as
COSA agents do not hear messages addressed to the sink.

Regarding the agent configuration for the use of COSA, the init() method
fixes the initial conditions of the agent. A COSA agent initiating its performance
is alive, but it is asleep (not capable of sampling or negotiating). The agent
considers itself as its own leader and assumes null or non-admissible values for the
variables involved in between neighbours relation. Behaving according to COSA

6.5. SensorAgentSimple 93

SensorAgentSimple
Attributes

Operations
setup ()
init()
process()
processData()
sendMeasure()
sendMaxAdherence()
sendLeadOffer()
sendWithdraw()
sendAckAdh()
sendBreak()
sendSinkHello()
sendSinkMessage()
getNeighborInfo()
computePotentialLeadValue()
processInformation()
idOwnMaxAdherenceCase()
maxAdherenceConsequences()
evaluateD2Sink() ...

radialNetworkInterface
sinkNetworkInterface
riverPollutantPhenomenonSensor
math, mean, sigma ...
nMeasures, capacity ...
dependentGroup ...
iLead, myMaxAdherence, ...
asleep, isDead, ...
sMinAdmissible ...

AbstractCfAgent

Figure 6.6: SensorAgentSimple class outline.

requires the agent to have a model of the phenomenon being observed. This
Normal model of the environment is also preset here, and a random distribution
is used to initialise the RotatingQueue memory element of the agent.

Finally, the init() method calls the SendSinkHello() function to inform the
sink about the presence of this agent in the network. The emission of a Wa-
keEvent to change the asleep state of the agent within the next five minutes is
also programmed here.

Every element composing the node (sensors, actuators and battery) share a
unique identifier with the agent. This identifier results very useful to debug the
application and trace the behaviour of the agent.

94 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

6.5.2 Events processing

Communication between the node’s components takes place through the ex-
change of different kinds of SimulationEvents. A SensorAgentSimple agent
can receive three kinds of events, which are: WakeEvent, MeasureEvent and
DeathEvent. The SensorAgentSimple class implements process() methods for
each of them.

The WakeEvent event is sent when the agent is being initialised and at the
end of a sleeping period. The processing of this event consists of changing (if
necessary) the state of the agent from asleep to awake, and of switching on the
phenomenon sensor.

The phenomenon sensor sampling action, and the following reception of a
MeasureEvent by the agent corresponds to the execution of the Sense and Send
thread described in Algorithm 2. The reception of a new measurement causes
the emission of a PropertyChangedEvent and the subsequent update of the agent
information regarding the last sample obtained and the time of this action. The
model of the environment (mean and sigma) is also updated according to the
agent’s samples memory. These actions entail a temporal cost that is taken into
account when evaluating the energy cost of this process.

Once the agent’s registers have been updated, the collected measurement has
to be sent to the agent’s neighbours. The sendMeasure() method performs this
action. In case the agent plays a leader role, it also sends this information to
the sink through the sendSinkMessage() method. These sending methods will
be explained later.

The reception of a DeathEvent coming from the WaspMoteBattery implies
changing the state of the agent to dead. The process of this event also implies
creating new DeathEvents. These events are used to inform the transmitters of
the node that they have to send the agent’s disconnection message, the Death-
Data.

6.5.3 Message sending

The execution of COSA by an agent makes it maintain dialogues with its neigh-
bours to exchange information. The following methods allow the agent for the
emission of different kinds of messages.

sendMeasure()

This method aims at creating and sending a broadcast message to all those
neighbour agents situated within sensing radius distance. Every time that the
agent takes a sample from the environment, it creates a MeasureData message.
Besides the sample, the Data message also contains information regarding the
model of the environment assumed by the agent, its leadership value and the
time of transmission.

6.5. SensorAgentSimple 95

sendMaxAdherence()

A MaxAdhData message is emitted at the beginning of a negotiation process
between two agents. As already explained, it adds the value of adherence to all
the information contained in a MeasureData message. This method creates the
Data message and sends it to the interested addressee.

sendLeadOffer()

Following the scheme of previous sending methods, the sendLeadOffer() creates
and sends to the corresponding neighbouring agent information about how good
the agent would be if it were its leader. This message also includes information
about the current leadership attitude of the agent. The addition of this item
avoids deadlock situations caused by an agent negotiating with its current leader
whose position may be worsening.

sendWithdraw()

This method creates and sends a WithdrawData message to the agent’s leader.
No information justifying this action is included in the message.

sendFirmAdherence()

The FirmAdhData that this method creates is an empty message that confirms
to the addressee neighbour the agent intention of being led by it.

sendAckAdh()

This method builds the corresponding AckAdherence message and sends it to
the corresponding agent. This message contains the leadership attitude of the
agent at the right moment of confirming the leader-follower relationship.

sendBreak()

As a follower, an agent can break its relationship with its leader through a
WithdrawData, so can a leader with a BreakAdhData. This method creates and
sends this message.

All the methods described send messages through the RadialNetworkInter-
face. That is, the messages created are all intended at inter-agent communica-
tion. Nonetheless, agents also communicate with the sink to send the informa-
tion collected through the Measure2SinkData. As mentioned in Section 6.2.2, a
SayHelloData is also sent to the sink to inform it about the agent joining the
network and its position. These messages are sent through the SinkNetworkInter-
face. Methods building these messages and sending them are sendSinkHello()
and sendSinkMessage().

96 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

6.5.4 Message reception

When an agent behaving according to COSA is not asleep, it exchanges informa-
tion with its neighbours to find out its preferred situation in the organisation.
The reception of different messages from neighbours triggers different sets of
actions by the agent. Methods aimed at processing data messages share the
processData() signature, but they differ in the kind of messages they can admit.
The actions that each of these methods performs conform to COSA Information
Processing thread presented in Algorithm 3 on page 36.

The processData() associated to a MeasureData message is executed if and
only if the agent is awake. The actions derived from the reception of this kind of
message are handled by two auxiliary methods: processInformation() and max-
AdherenceConsequences(). The first method collects the information received in
the message and then identifies the possible interest of the agent in the neigh-
bour that sent the message through the idOwnMaxAdherenceCase() method.
The maxAdherenceConsequences(), as its name suggests, triggers the consequent
actions derived from the previous method.

Processing a MaxAdherence message requires the agent to be awake too. This
method includes the actions corresponding to the reception of a MeasureData
plus those specific to this kind of message. These specific actions are the agent
self evaluation as a leader of the node which sent the message and, then informing
it about this evaluation. Methods used for this purpose are computePotential-
LeadValue() and sendLeadOffer().

The processData() method associated to a LeadData makes the agent check
the precedence of the message. If this message comes from its current leader, the
agent updates its current state. Then, the agent checks if the offer improves its
situation and acts consequently by sending, or not, a FirmAdherence message.

The reception of a FirmAdherence message confirms the recipient about the
intentionality of the neighbour of becoming part of a coalition led by it. This
situation entails reevaluating the lead attitude of the agent. If the agent still
prefers becoming a leader of the neighbour, and it is a follower, it breaks this
relationship and updates the relationship to its neighbours. Finally, an Ack-
Adherence message is sent to the corresponding neighbour becoming now its
follower.

An AckAdherence message aims at changing the state of the recipient. Hence,
if the agent receiving this message was a leader, it stops being a leader and
dismantles its group to become a follower on this message’s sender. In the case
that it was already a follower of a different agent, it changes its leader agent.
As a consequence of being a follower node, it switches off its phenomenon sensor
and plans a WakeEvent after the sleeping period. These actions take place if
and only if the message does not arrive out-of-step that is, the initial conditions
of the negotiation still hold.

An agent who plays a leader role can lose its followers when it receives a With-
drawData message. The processing of this kind of message implies the deletion of
the sender entry from the set of followers of the leader agent (dependent group)
and the corresponding update of the leader state variables.

6.6. COSA strategies 97

Follower agents can receive BreakAdhData coming from their leaders. This
kind of messages is always heard and processed by their addressees regardless of
whether they are asleep or awake. Its processing takes the agent to a new leader
state by breaking its link to its previous leader (message sender) and switching
on its sensor.

Finally, the process of a DeathData implies the deletion of the information
associated to the dying agent and the removal of the relationship with it. As
it happens with BreakAdhDatas, DeathDatas are processed by the agent inde-
pendently of the node asleep or awake state. As a consequence of the reception
of a DeathData, and depending on the kind of relationship established between
the addressee agent and the sender, a set of actions is performed to allow the
recipient agent to continue its performance.

Message processing relies on different auxiliary methods. These auxiliary
methods extract information from the messages received, perform mathematical
functions, compute the temporal cost of the actions or evaluate the agent state
after the message reception. For instance, we can cite computePotentialLead-
Value, among others appearing in Figure 6.6. The class shown in this figure can
develop an intelligent behaviour that satisfy COSA principles.

6.6 COSA strategies

The SensorAgentSimple class described in the previous section follows the formal
definition of COSA as presented in Chapter 3. This basic definition is open
to some modifications that may help in adapting it to different environments
or tasks. In this section, we propose two strategies that are used by COSA
(in isolation or combined) and that lead to different behaviours of the COSA
agents. Changes introduced in the strategy influence the balance between the
energy consumption and the overall observed error of the WSN. However, the
following strategies do not represent an essential change of the algorithm, they
just slightly alter the agent behaviour when certain circumstances are met.

6.6.1 Sampling Frequency

The Sampling Frequency strategy alters as its name states, the fixed sampling
frequency of leader agents. COSA presentation and implementation assumes
that the sampling frequency of the environment is a parameter fixed by the
programmer. This strategy removes this assumption and provides the agents
with a very simple individual adaptive sampling strategy. According to this
strategy, when a leader agent has three or more follower agents, it doubles its
sampling frequency. The aim of this strategy is to make COSA agents grouped
in a coalition to be more reactive to changes on the environmental conditions.
The implementation of this strategy leads to an earlier perception of changes,
therefore, to smaller deviation times.

The implementation of this strategy barely affects the SensorAgentSimple
class. This new feature is introduced into the agent through the processData()

98 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

method associated to FirmAdherence messages. When an agent receives a Fir-
mAdherence message, it counts the number of neighbouring agents that form its
dependent group. If the size of the group is over two, the agent automatically
doubles its sampling frequency. Although the initial definition of this strategy
is fixed, the number of agents per group (apg), triggering the frequency change
and the multiplication factor (mf), of the frequency represent COSA Sampling
Frequency ’s configuration parameters. Thus, when this COSA strategy is im-
plemented, these new two parameters have to be included in the p parameters
set defined in Section 3.1.

6.6.2 Coherence

This strategy checks whether the leadership condition of an agent is still coherent
with the last sampled values it had. The behaviour of a leader consists of
sampling the environment, updating its model of the environment and sending
the sampled value to the sink as the value representing all the members of the
coalition. However, if the updated model differs from the model that the leader
had when a member of the coalition joined in it is unclear whether the agent (in
sleeping mode to save energy) would still be willing to stay within the coalition.
Thus, this strategy allows a leader agent to evaluate the difference between the
just sampled value and the previous sample. If this difference is significant
enough, over a threshold VT , the leader agent proactively wakes its followers
so that they can sample the environment and decide again which coalition to
join. As it happened with the COSA Sampling Frequency ’s parameters, VT is a
configuration parameter associated to this new strategy. Therefore, VT has to
be added to the initial p parameters set identified in Chapter 3 when considering
COSA Coherence application.

The goal of this strategy is again to be more reactive to changes in the
environment. As soon as there is a drift in the sensed values of a leader the
follower agents will be waken up to sample again as the coalition raison d’être
(similarity of sampled values) may be at stake.

The inclusion of this strategy in a COSA agent behaviour requires little
changes on the process() method of a MeasureEvent. The right moment to test
the coherence condition is when the leader agent performs a sampling action.
Together with the typical process associated to the sample, the difference with
the last sampled value can be evaluated. As the strategy indicates, important
differences between these values lead to the emission of BreakData messages
to follower agents. Except for this change, the COSA agent thread of action
conforms to the basic definition.

Both strategies increase the sensing and thus the energy consumption with
respect to the basic COSA operation. The computational effort implied by these
strategies is negligible although certainly the number of messages exchanged and
the number of sampling actions taken by leaders and coalition members grow.
The adequacy of these techniques depends on the kind of environment to be
monitored and the interests of the programmer or network manager.

6.7. SinkAgent 99

6.7 SinkAgent

This SinkAgent represents the central node that receives the samples collected
by the monitoring agents composing the network. This element holds the tools
to process the information gathered. Therefore, its implementation is strongly
conditioned by the information evaluation criteria of the programmer or appli-
cation manager. Despite this fact, we include the definition of the SinkAgent
class in the COSA-able WSN module as without the server; the network would
be incomplete, and its definition is better explained in this context. The criteria
for information evaluation implemented in this class are specifically detailed in
Chapter 7. They mainly affect a particular method of the agent class. There-
fore, changing the evaluation criteria entails replacing this method by the one
adapted to the new specifications.

The class structure repeats the SensorAgentSimple’s scheme as shown in
Figure 6.7. It contains a set of general properties to keep the information received
and its corresponding evaluation. Moreover, it also contains different parameters
associated to the evaluation formulas implemented.

SinkAgent
Attributes

Operations
setup ()
init()
process()
processData()
evaluateSigma()) ...

sinkNetworkInterface
riverPollutantPhenomenonReference
latestSamples, mapDeviations ...
tMaxEntropy, sigmaIniEntropy ...

AbstractSimulationAgent

Figure 6.7: SinkAgent class outline.

6.7.1 Setup and initialisation

The setup() and init() methods create and initialise all these properties and
node components. The SinkAgent runs on an InfiniteBattery element as we
assume that it is connected to the net. This agent class just perceives the
information sent to it and processes it. Hence, its communication module can
be defined from a unique SinkNetworkInterface. The consumption associated to
the communication module and the CPU is set to zero as it does not have any
effect on a battery of infinite capacity.

100 Chapter 6. Coalition Oriented Sensing Algorithm based WSN

The implemented evaluation of the information received bases on the real
value of the monitored phenomenon in the environment. Therefore, we include
in the init() method the definition of a direct access to the phenomenon observed,
as an artificial tool for application purposes. This artefact allows the SinkAgent
to have its own view of the phenomenon and to evaluate the distance between the
information collected by the sensors in the network and reality at any location.

Moreover, the init() method triggers the sending of UpdateErrorEvents,
whose process() method performs the periodic evaluation of the data received at
the sink.

6.7.2 Events processing

The only process() method included in this class is the method associated to the
UpdateErrorEvent. This method is the most complex one of the class and the
one on which to act to change evaluation criteria.

The network performance is evaluated in terms of committed error, and en-
tropy associated to the nodes composing the network. Each time an UpdateEr-
rorEvent is received, the value of these magnitudes is calculated. The error
evaluation relies on fulfilling a map containing, for each agent in the network,
the value perceived and the actual value of the phenomenon at that point. With
this information, the calculation of the error committed by each agent and the
global mean value is quite easy.

The quality of the information available in the network is calculated as the
addition of agents’ entropy measures. This evaluation relies on the entropy
values of the observed variable models of each agent and the time elapsed since
the agents last sample collection. Both evaluations use information saved to
properties included in the class.

6.7.3 Message reception

The SinkAgent receives information to evaluate through Data messages that it
can process. The kind of messages that can be received by the SinkAgent are
SayHelloData, Measure2SinkData and DeathData.

SayHelloData is the first message received by the SinkAgent from any of the
nodes in the network. The process of this message is used to obtain information
about the node identity and its location. This message helps the SinkAgent
composing its view of the network deployment.

Processing Measure2SinkData messages renders information about the nodes’
perception of the observed phenomenon. When one of this kind of messages
is received, the sample collected and the time of reception are saved to the
latestSamples and latestSamplesTimes properties. These values are saved related
to the sending agent and, if that is the case, those other agents depending on
the sender, i.e., the rest of coalition members.

The last kind of message receivable by the SinkAgent is DeathData. Re-
ceiving a disconnection message from an agent implies deleting its entry from

6.8. CfAbstractReport 101

the SinkAgent ’s map of the network, as this node will no longer provide any
information.

The SinkAgent definition completes the network function, as it presents the
last actions performed on the information collected by the sampling agents.

6.8 CfAbstractReport

The CfAbstractReport class defines basic characteristic for information extrac-
tion from COSA simulations. Capturing information from a simulation requires
the application definition completion to identify the interesting features to mon-
itor. Nonetheless, knowing the characteristics of the behavioural strategies that
agents can implement, we introduce the CfAbstractReport.

The CfAbstractReport extends from the SimulationReport provided by the
RepastSNS platform and defines basic characteristics common to every kind of
report. This class contains general methods to manage the files to generate.
It links the report to the particular SimulationModel being simulated and also
establishes the name pattern for the generated files. Particularly, files are named
after the simulated model, the observed variable and the specific simulation
seed. Hence, once the interesting simulation features to monitor are selected,
the definition of their associated report focus on capturing and processing the
corresponding BasicAction and implementing the actionPerformed() method.

6.9 Conclusions

The COSA-able WSN provides with the COSA intelligence required for the
application simulations. This module identifies how COSA implementation af-
fects the different elements composing a node and also the simulation structure
itself. The definition of COSA-able WSN module follows RepastSNS princi-
ples with respect to extensibility and scalability. Hence, the implementation of
COSA and its different facets relies on independent yet related classes structures.
The importance of this design stands out when the proposed COSA alternative
strategies are presented, as their introduction barely affects the previous work
developed. Ultimately, to test COSA agents’ behaviour it is still necessary to im-
plement another layer that holds the environment and establishes the simulation
conditions.

Chapter 7

Experimentation

COSA aims at faithfully monitoring the state of a dynamic environment and
at extending the lifetime of the network as much as possible. To test this, the
scenario considered is that of a river, whose state is to be monitored. In previous
chapters, the base structure over which to build experiments has been presented.
To define the desired experimental setup, two additional modules have to be
built: one, to model the environment where the network is deployed, and another
one adapting a COSA-able WSN to the domain. The completion of these tasks
leads to the next step of evaluating the algorithm proposed. The results derived
from experimentation deliver information about the algorithm characterisation
and performance, and about the methodology developed to reach them.

7.1 Riversim

Defining features of COSA and how it models an agent’s behaviour have already
been introduced in Chapter 3. Proper implementation of the algorithm into
a simulated agent can also be found in Chapter 6. Concepts inspiring COSA
definition refer to an intelligent use of the node resources when it develops its
task of monitoring the state of a particular environment. Therefore, to evaluate
COSA performance and its influence on the node’s behaviour, we need to define
the environment that the nodes survey and where they are deployed. Figure 7.1
recalls the development structure required for the creation of the application.

The Riversim module depicted in Figure 7.1 represents the application do-
main. Its definition is based on a set of classes that model the environment of
interest.

As already mentioned, a river is the application scenario selected to test
COSA performance. Different pollution sources appear in the monitored river.
The aim of the network deployed on the river is to detect and inform the sink
about these stains dynamics. In the following sections, we present the class
structure defined to model the application domain correctly and to introduce
the phenomenon to be monitored in the simulation platform.

103

104 Chapter 7. Experimentation

Repast

RepastSNS

ECA-WSN

Experimental setup

COSA-able WSNRiversim

Figure 7.1: Development Structure.

7.1.1 Phenomenon

The definition of the phenomenon to be monitored represents the main task of
the Riversim module. As it name states, the monitored environment is a river
in which different pollution sources may appear along time. The composition of
this phenomenon relies on two classes and their interactions. These classes are
RiverPollutantPhenomenon and Stain.

Stains definition

To define a pollution stain appearing in a river, we consider a set of parameters
that characterise all the features that a stain might have. When describing a
pollutant, it is important to identify its location, its size and its intensity at
the moment of appearance. A stain may last in time when it appears due to a
contaminant source spewing for a period. In this case, the duration, the spewing
pace and the flow of the stain are also considered.

The simulation class created, Stain, contains a variable for each of the prop-
erties enumerated, besides their corresponding access methods. Its structure can
be observed in Figure 7.2(a). The introduction of pollution sources in the river
takes place through an events’ generation and processing schedule that will be
described later. However, this generic process can be easily adapted to any other
kind of phenomenon that may appear in a river.

In fact, we also define a different kind of pollutant source, the StainSin, that
favours the creation of a more dynamic environment. Figure 7.2(b) shows the
outline associated to this class. The StainSin allows for the introduction of
sinusoidal pollutants in the river. These sinusoidal stains cause the presence of a
continuously oscillating contaminant intensity where the stains are located and
their surroundings.

The definition of the class associated to this kind of phenomenon follows the
same principles as regular Stain. However, a StainSin object creates a sinusoidal
stain. As a consequence, the dumped flow is not a constant value, but it is

7.1. Riversim 105

Stain

Attributes

Operations
getters and setters

location
width
length
intensity
flow
period
duration

StainSin

Attributes

Operations
getters and setters

location
width
length
intensity
flow
period
duration
tini
tfinal

Figure 7.2: Stain and StainSin classes outline.

evaluated at each time instant according to the maximum intensity reachable
for the stain and the period of the phenomenon modelled.

The introduction of this new class does not affect the structure the Riversim
module, although it requires the corresponding adaptation to this particular
phenomenon.

River Phenomenon

The river phenomenon represents the environment in which both, the stains
to detect, and the nodes composing the network, coexist. Simulating a river
environment requires the reproduction of a water flow. This river phenomenon is
also in charge of managing the pollutant stains’ appearance. Therefore, these two
parts can be clearly identified in the corresponding simulation class modelling
the element, the RiverPollutantPhenomenon.

• River movement imitation

The river phenomenon models a section of a river. In order to mimic the
effects of water flowing through the river, we define a simple river movement
schedule that causes that any phenomenon appearing in the river is shifted by the
current of the water. The implementation of this model relies on the definition
of a grid covering the whole river section and a set of variables specifying the
stream’s behaviour.

The model used to define the river movement considers two components: a
drift component and a sedimentation component. Equation 7.1 represents the
mathematical formulation of this model, distinguishing these two components.
According to this model, part of the phenomenon remains at its origin due to
the sedimentation component, whereas the rest flows according to the strength
of the current. Formula 7.1 gives the value of the intensity of the phenomenon
at a cell of the grid as a composition of the phenomenon value at this point
and its upper-neighbouring cells in the previous time instant. Values assigned

106 Chapter 7. Experimentation

to parameters ρ, α, β, and γ determine the kind of river modelled. The (1− ρ)
term sets the sedimentation component whereas α, β, and γ model the drift.
Particularly, each of these three factors models the contribution of each of the
upper cells that we consider somehow pour downstream. As the formula shows,
we restrict the contribution of the drift component to a downstream cell to the
three adjacent upper cells. Therefore, if any contaminant is poured in a water
cell, it will spread to its downward cells through time according to the following
equation:

Rivert(x, y) = (1− ρ)Rivert−1(x, y) + ρ(α(Rivert−1(x− 1, y − 1))+

+ β(Rivert−1(x, y − 1)) + γ(Rivert−1(x+ 1, y − 1))) (7.1)

Differences in the spewing pace, duration and number of contamination
sources appearing along the river, together with this characteristic river current
movement is what determines the dynamics of the environment under observa-
tion.

This approach favours an easy implementation of the river movement into
the RiverPollutantPhenomenon class. Figure 7.3 shows a basic outline of the
class developed.

RiverPollutantPhenomenon
Attributes

Operations
riverMovement()
PointShapeIntensityMancha()
process() methods
getters and setters

fieldWidth
fieldLength
grid
speed

AbstractSimulationPhenomenon

Figure 7.3: RiverPollutantPhenomenon class outline.

The constructor of the class creates the grid from the field dimensions and
the size of the desired matrix representing the environment. setup() and init()
methods start the river and its movement according to the parameters given.
The simulation of the dynamic river flow is based on the periodic emission and
processing of an especial SimulationEvent, which is the UpdateEvent.

An UpdateEvent is an empty class whose strength lies in its processing action.
Every time that the RiverPollutantPhenomenon receives and processes this kind
of event, the riverMovement() method is executed. As its name indicates, this
method applies the formula Equation 7.1 over the grid of cells composing the

7.1. Riversim 107

river and updates their values. This artefact makes this river component imitate
the river flow.

• Pollution sources appearance in the river

The introduction of pollution stains in a clean river by the method described
above is based on the consecutive emission and processing of particular events.
These events deal with the nature of the stains and condition their appearance
in the river according to the stain definition.

The events’ structure supporting this is composed of four different classes Pol-
lutionEvent, StainGenerationEvent, PeriodicStainEvent and KeepGoingEvent.
The reception and processing of these events by the RiverPollutantPhenomenon
either create a pollution source in the river or update an existing one. Figure 7.4
shows how the events relate to each other and how the process of one of them
implies the creation of the other.

StainGenerationEvent
Attributes

Operations

PollutionEvent
Attributes

Operations
Stain

getStain()

KeepGoingEvent
Attributes

Operations
Stain

getStain()

process process

process

process

PeriodicStainEvent
Attributes

Operations

Figure 7.4: Events structure associated to pollution appearance.

PollutionEvent can be considered as the basic element of this structure. The
definition of this class demands the specification of the particular Stain object
to introduce. The process method associated to this kind of event properly
sets the stain in the grid modelling the river. The RiverPollutantPhenomenon’s
method providing this functionality is the PointShapeIntensityMancha(), that
checks the Stain object characteristics and changes the river grid according to
them. Once the stain is in the river, its duration is also checked. In case the
stain lasts in time, the emission of a KeepGoingEvent associated to the stain
is programmed according to the spewing pace. Processing a KeepGoingEvent
reproduces the described tasks associated to the PollutionEvent but subtracts
a cycle to the stain’s duration. When the duration of the stain reaches zero,
no more KeepGoingEvents are programmed. These two event classes, and their
process methods, allow for the introduction of stains (instantaneous or with some
duration) in the river.

The kind of stain to appear, regarding its sporadic or periodical character,
is predefined together with the RiverPollutantPhenomenon specification. The
event triggering the process of contaminating the river is designated when initiat-
ing the element, that is, in the init() method of the RiverPollutantPhenomenon.
Hence, if the programmer wants the appearance of a one-shot stain in the river, a
StainGenerationEvent has to be defined. Processing this event implies creating
a stain and a PollutionEvent, whose processing will trigger the above described
processes. On the other hand, to define a periodic stain, the PeriodicStainEvent

108 Chapter 7. Experimentation

is used. In this case, its process creates a StainGenerationEvent, taking then
advantage of the structure created. Furthermore, and as the stain to create
will appear periodically, the emission of another StainGenerationEvent is pro-
grammed according to the stains’ appearance periodicity. This value is hard
codified together with the desired type of stain. Recalling the events’ relation-
ship shown in Figure 7.4, it is important to highlight that not the whole set of
classes appears always, as it depends on the stain characteristics.

Hence, this interwoven but simple structure allows for the introduction of
pollutant sources in the river. It models the interrelationship that links both
parts of the river definition, the water flow movement and the appearance of
stains. Differences in the spewing pace, duration and number of contamina-
tion sources appearing along the river, together with this characteristic river
current movement is what determines the dynamics of the environment under
observation.

As already stated in Section 7.1.1, the introduction of a different kind of
pollutant sources can be considered. This election does not affect the events’
structure, but it does require the creation of events adapted to the new kind of
stain. As the sort of stains and their characteristics depend on the programmer’s
preferences, and these are introduced together with the phenomenon, the easiest
option is to define a new phenomenon class including these changes. Thereafter,
we define the RiverPollutantPhenomenonSin that mimics the river movement of
the RiverPollutantPhenomenon and adapts the introduction of pollutant part
to the StainSin phenomenon.

The definition of the RiverPollutantPhenomenon concludes the Riversim
module. The elements described represent a river environment where a wire-
less sensor network implementing COSA can be deployed and with which it can
interact.

7.2 COSA-able WSN adoption

The implementation of the Riversim module sets the application environment.
The COSA-able WSN module defined a generic WSN able to behave according
to COSA, that is, nodes composing the network behave in an intelligent way
following COSA principles. Nonetheless, the link between these two modules
needs to be established. Nodes sample the environment defined in Riversim,
hence they need to be placed in this environment and their generic sensors have
to adapt to it to be able to sample. As a consequence, the definition of particular
sensors capable of collecting information from the specified domain constitute
the main bond between both modules.

7.2.1 Nodes deployment

Placing the nodes in the field requires the definition of classes able to perform
this task. The selection of a particular network deployment may be associated
to the nature of the environment, the agent’s sampling strategy or both.

7.2. COSA-able WSN adoption 109

Different classes have been defined to represent different layouts. All these
classes extend from the PhysicalDistribution class defined in RepastSNS and
they all follow the same structure too. PhysicalDistribution classes contain
a set of properties related to field dimensions and/or specific distribution pa-
rameters, together with a distribute() method. Some of the classes defined are
UniformDistribution, ZigZagDistribution and MeshDistribution3Nodes. As their
names state, these classes place the nodes in the environment according to a par-
ticular pattern. Some of them place nodes at specific locations hard codified,
while others distribute the nodes in the field according to its dimensions. In any
case, these classes are associated to the generic SimulationAgent class, not being
limited then to any particular kind of agent.

7.2.2 Sensors

As already mentioned, monitoring the phenomena described in the previous
section requires the definition of proper sensors. In this case, the kind of sensor
considered takes samples from the environment periodically and at specific times
to check the presence of hydrocarbon pollutants in the river. Therefore, the
defined sensor is a discrete sensor that adjusts to the generic outline introduced
in Chapter 5. Its particularisation demands the definition of a filter specific to
the phenomenon being monitored besides the setting of consumption and action
specifications according to the device modelled.

Regarding the class implementation for simulation and assuming that the
phenomenon to be monitored is the RiverPollutantPhenomenon, we define the
RiverPollutantPhenomenonSensor. The sensor action specifications are added
to the setup() method of the RiverPollutantPhenomenonSensor class, as well as
the use of the RiverPollutantPhenomenonSensorFilter.

This class follows the standard features defined for a basic sensor, however
it introduces a novelty compared to the standard definition provided by the
AbstractDiscreteSensor class. In order not to create an ideal sensor, it includes
a noise property which slightly alters the measurement actions of the sensor.
This noise property relies on a Normal distribution function which is defined
from the technical specifications of the sensor inspiring this class.

The effect of this modification becomes relevant when the sense() method
is executed. This method returns now the collected value of the phenomenon
at the sampling point plus a disruption given by this noise variable. The class
created to implement this noise will be presented next.

Finally, the specific filter definition just requires designating the RiverPollu-
tantPhenomenon as the phenomenon of interest, so that the so-called RiverPol-
lutantPhenomenonSensorFilter can accept no other kind of event.

Once again, if we change the phenomenon of interest, we need to redefine
the two classes presented to adapt them to the phenomenon. RiverPollutant-
PhenomenonSinSensor and RiverPollutantPhenomenonSinSensorFilter give an
example of how this can be done.

110 Chapter 7. Experimentation

7.2.3 Normal Distribution

The description of a class that characterises a normal function relies on a very
simple interface and a class definition.

The Distribution interface provides with a general framework to model differ-
ent distribution functions that can represent different phenomena. This interface
just declares a nextValue method to return the corresponding value of the dis-
tribution function.

The NormalDistribution class implements the Distribution interface. As it
can be observed in Figure 7.5, NormalDistribution contains three properties that
characterise the distribution. The mean and deviation values specify defining
parameters of the Normal distribution, and a Random object that is in charge of
generating the phenomenon values. Properties mean and deviation are specified
when the object is created through its constructor.

NormalDistribution
Attributes

Operations
nextValue()

mean
deviation
random

Distribution
interface

Figure 7.5: NormalDistribution class outline.

7.3 Simulation tools

The goal of the simulation is to reproduce a set of conditions in a controlled
environment to study the performance of the elements involved and to get in-
formation for further development. To eventually set up the target simulation
of a WSN implementing COSA deployed in a river scenario, there are still two
more tasks to perform. The first task consists in identifying the information to
obtain from the simulation and then, to define associated reports. The second
task requires arranging a model class that binds all the elements taking part in
the simulation (agents, phenomenon, report, etcetera). Once these tasks have
been completed, simulations can be executed and results stored for analysis.

7.3.1 Simulation reports

Reports represent the tool that the programmer has to get information from the
simulations. One distinctive characteristic of the simulation platform developed
is the use of SimulationEvents for inter elements communication. A basic def-
inition of reports allows to capture these SimulationEvents in order to extract
the desired pieces of information.

7.3. Simulation tools 111

The programmer may be interested in monitoring the behaviour of a partic-
ular simulation element or the evolution of a system’s variable. In order to do
this, the first task to accomplish is the identification of the SimulationEvent that
contains the desired information. Then, it is necessary to define an associated
report class able to capture this SimulationEvent. In case that the desired data
is not directly accessible through an existing SimulationEvent, the programmer
can introduce one SimulationEvent artificially for monitoring purposes.

All reports behave in the same way: they capture SimulationEvents, check
their kind and emitter and, if all conditions are met, the desired information is
extracted and printed to a log file. However, depending on the kind of event,
the associated information and the emission frequency, its management can be
more or less complex.

As it will be explained later in this chapter, to evaluate the performance
of COSA in the scenario of interest, we rely on the quality of the information
reported at the sink and the energy available in the network. Besides this, we
are also interested in getting a general view of the network deployment when the
simulation starts and in knowing the death pattern of the nodes. Consequently,
the report classes developed focus on these aspects of the simulation. They all
follow the pattern presented in Section 6.8 that particularise the general report
definition provided by RepastSNS to COSA characteristics.

7.3.2 Report classes

To obtain a general perspective of the network after its deployment, an addi-
tional SimulationEvent is introduced. The NetworkInfoEvent is not a proper
application event, as its purpose is to attach deployment data so that it can
be monitored. This event carries information about the nodes’ identifiers and
position. The associated report class NetworkInfoReport just captures the cor-
responding event and generates the associated log file.

The DeathEventsReport class is very similar to the NetworkInfoReport. In
this case, it is associated to a proper application event, such as the DeathEvent
emitted by every node before depleting its battery. This kind of events appear at
particular moments of the simulation and the report just registers its occurrence.

EntropyReport and ErrorReport classes monitor the evolution of the applica-
tion in terms of these properties, entropy and error. Whereas the EntropyReport
captures events specifically created for it (EntropyReportEvents), the ErrorRe-
port uses a particularisation of a general RepastSNS event, a PropertyChangedE-
vent. Particularly, the PropertyChangedEvent referred to the error variable of
the sink. This fact demands a refinement of the identification process of the
event of interest by checking the sort of property contained in the event.

Both EntropyReportEvents and PropertyChangedEvents associated to the er-
ror property are emitted periodically. Each time they are generated, their value
is registered in their associated log file.

Finally, RemainingEnergyPerBatteryReport and RemainingEnergyReport are
aimed at monitoring the evolution of the energy available for each node and the

112 Chapter 7. Experimentation

whole network. Tracking these values required the capture of the Property-
ChangedEvents emitted every time that the batteries change their value. Unlike
the events associated to the error, changes on the energy value of the nodes’
batteries do not happen periodically what originates an enormous amount of
information. These report classes preprocess the data to deliver mean or actual
values of the network (RemainingEnergyReport) or individual batteries’ energy
periodically (RemainingEnergyPerBatteryReport).

Besides the already presented report classes, more classes have been created
for application information retrieval and debugging purposes and can be enabled
when necessary.

7.4 Simulation Arrangement

As explained in Chapter 4, the SimModelImplSNS provides a generic imple-
mentation of the element capable of binding all simulation elements together.
TheModel class, which extends from SimModelImplSNS, is in charge of setting
up and starting the simulation defined by COSA implementation in a river sce-
nario. This constitutes the last implementation work to do to finally complete
and tune the application to test. Figure 7.6 shows a simple outline of the class
created indicating the methods that have to be overwritten to bring these ele-
ments together.

TheModel
Attributes

Operations
buildField()
buildAgents()
buildReport()
buildDisplay()
setupSNS()
main()
getters and setters

input parameters

SimModelImplSNS

Figure 7.6: TheModel class outline.

To meet its definition purposes, TheModel class creates the environment
(the field and phenomenon) and the particular set of agents corresponding to
the scenario. The buildField() method just creates a simple default field, as
the corresponding behavioural specifications are defined in the RiverPollutant-
Phenomenon class. This phenomenon is added to the field to incorporate its
functionality. The number and kind of agents desired are created within the

7.5. Experiments 113

buildAgents() method. The monitoring ability of the simulation is specified
through the buildReport() method, that creates and enables the reports of inter-
est. And eventually, buildDisplay() prepares drawable elements to appear in the
GUI.

The global view of the system’s simulation components provided by this class
favours a certain application configuration. As a consequence, the kind of rela-
tionship established between some elements in the simulation can be specified
in the setup(). For the precise scenario modelled, the programmer establishes
a position relationship between the agent representing the sink and the rest of
agents monitoring the state of the environment. As it has already been men-
tioned in previous sections, COSA requires each node (agent) in the system to
be aware of the sink location. Moreover, the sink needs to know the network
deployment, that is, the identity of each of the surveillance nodes. We assume
that the corresponding information is hard-codified in the elements involved.
We use TheModel class and its setup() method to inform all surveillance nodes
about the sink position, and we also provide the sink with a list of surveillance
nodes’ identities. The value of the unique identifier associated to each agent
and its components is also set during this process. Moreover, all the simulation
input parameters related to elements’ configuration, such as field dimensions,
devices consumption, number of agents, etcetera are specified through this class.
Therefore, TheModel class contains getter and setter methods for each of them.

The main() method running all the system belongs to the TheModel class.
This method creates and loads an instance of this TheModel with the values
corresponding to the elements’ parameters. To conclude, and recalling the design
objectives of the platform, this class eventually starts a simulation that has been
built from the integration of different interdependent elements.

7.5 Experiments

The description of the software architecture designed to test COSA finishes with
the implementation of the classes presented in the previous section. Although
all the classes composing the application and the simulation platform have al-
ready been defined, running a simulation still needs the specification of input
parameters. The particular values given to these parameters will be presented
together with the experiments’ introduction. The experimental design has been
conceived to test COSA’s characteristics and to point out strengths and weak-
nesses in achieving the overall goals.

7.5.1 Hypotheses

The inspiring concept for COSA definition looks for a trade-off between the
energy expenditure and the quality of the information received at the server.
Grouping the agents and allowing some of them to save energy by not working
periodically, causes unavoidably information loss. Nonetheless, the potential
improvement offered by the algorithm encourages its use. To test this premise,

114 Chapter 7. Experimentation

the performance of the algorithm is evaluated in different scenarios. The features
and the statements that we want to check are:

• COSA increases lifetime average of nodes.

• COSA diminishes uncertainty of the nodes’ values.

• COSA and derived strategies reduce error at the cost of network lifetime.

Four kinds of experiments have been performed to test these statements. The
first two experiments types focus on basic COSA definition, whereas the other
two also deliver information about COSA strategies.

7.5.2 Experiments general framework

The nodes of the network are responsible for monitoring the river’s condition
and informing the sink about their observations. They are formed by a CPU,
battery [Libelium, 2012b], sensor [Libelium, 2012a] and radio [Libelium, 2012c].
These components are modelled after Waspmote devices, real wireless sensors as
shown in Figure 7.7. The device specifications are summarised in Table 7.1.

Figure 7.7: Waspmote device [Libelium, 2012b].

Nodes can implement different sampling policies. Regardless of the sampling
approach taken by the nodes, each active node has to send its collected data to
the sink node. This sink node represents the central monitoring station to which
the nodes deployed along the river are reporting to. Differently from sensing
nodes, the sink node does not take samples from the environment, neither it
is constrained to low power or low processing capacity, as it acts as a server
part of the network control unit. Figure 7.8 shows a sample scenario composed
of the sink (red circle) and a set of evenly distributed sampling nodes (black
circles). Two contamination sources can also be identified, each of them affecting
a different number of nodes with different intensities.

The system primary functioning consists of monitoring the environment
through periodical collection of samples. The way nodes deployed in the scenario

7.5. Experiments 115

Figure 7.8: Example of a two nodes’ grid distribution network.

Table 7.1: Node components specifications

Component Specification

Battery capacity 13000mAh@3.7V
CPU active consumption 9000uAh@3.3V
CPU sleep consumption 62uAh@3.3V
CPU hibernate consumption 1uAh@3.3V
Radio transmission consumption 210000uAh@3.3V
Radio reception consumption 80000uAh@3.3V
Radio sleep consumption 60uAh@3.3V
Radio bandwidth 156Kbps
Radio Sensing radius 1.5km
Sensor consumption 6uAh@3.3V
Sensor sampling time 1.63s
Sensor gaussian noise N (0, 0.024)

behave to satisfy this purpose is what defines the applied sampling policy. Re-
gardless of the sampling policy implemented by the nodes, the sink node always
acts as the collector that receives the information sampled from the environment.

Random policy represents the base case of all the experimentation to be per-
formed. The Random setting presents a set of nodes (called Random nodes) that
take a sample from the environment at a random moment within the sampling
period specified for the network and just transmit it to the sink. Nodes imple-
menting COSA use the collected data to establish relationships among them.
These relationships are defined according to the functions and parameters pre-
sented in Chapter 3.

Table 7.2 presents the values of COSA’s parameters used in the experiments.
These values indicate the programmer temporal preferences regarding data col-
lection and node activity, as well as the admissible looseness for agents rela-
tionship. We study the behaviour of this particular instance of COSA. Changes
on these values modify the way agents relate and also the impact of the al-
gorithm in the agent behaviour. Exploring other parameters settings is part

116 Chapter 7. Experimentation

Table 7.2: COSA’s parameters values

COSA parameters Value

dmax 1.75
σmin 0.0005
σmax 6
Sampling frequency 10min
Node sleep time 1day
Death threshold 1·109Ans

Table 7.3: Node actions’ time cost

Actions Time

Inner message sending 1 ns
Measure reading 100 ns
Neighbour information update 10 ns
Observed variable model update 10 ms
Adherence evaluation 10 ms
Lead Value evaluation 30 ms

of my future work. An automatic tuning of COSA’s parameters to determine
optimal behaviour on a particular environment could be achieved heuristically
with a Genetic Algorithm, for instance. Regarding the time a node takes to
perform typical COSA tasks and inner communication, see Table 7.3 for the
values estimated and used in the experiments. Other values might be valid as
well, but they would represent a different physical node. Finally, the parameters
that characterise the river movement and the nodes’ position vary depending
on the experimental scenario. Therefore, they are introduced together with the
corresponding scenario in the following sections.

Evaluation criteria

The evaluation criteria proposed for COSA experimentation arises from the fea-
tures that inspired the algorithm conception, which are system energy and qual-
ity of the data collected. The system energy is evaluated according to the global
available energy of the system in time and the median of this magnitude. Re-
garding the quality of the information, we propose two assessment criteria: the
error registered by every alive node and the entropy associated to the system.

The error measurement represents the deviation of the information available

7.5. Experiments 117

at the sink for each node from real phenomenon values —as we are simulating,
we know the exact value of the phenomenon at any instant. It is evaluated as
the addition, for every alive node, of the difference between the phenomenon
value known by the sink for each node and the real phenomenon value at the
specific nodes’ location in the environment. The corresponding mathematical
expression can be seen in Equation 7.2, in which N t ⊆ A represents the set of
nodes that have not depleted their batteries at time t; xsti, the value registered
by the sink for the observed phenomenon at the position of node i at time t and,
finally, xpti is the real value of the observed variable in the time instant t at the
position where node i is situated.

et =
∑
i∈Nt

‖xsti − xpti‖ (7.2)

Opposite to the error evaluation, the system’s entropy measure takes into
account the whole set of agents deployed in the environment, whether they are
dead or alive. It is computed as the addition of the entropy value associated to
every node in the network. To evaluate the entropy associated to each node, we
recover the initial assumption of the phenomenon following a Normal distribu-
tion. Therefore, the entropy associated to a general node i can be calculated as
shown in Equation 7.3, according to [Goldman, 2005].

Hi = ln (σi
√

2πe) (7.3)

The entropy measurement establishes a gauge for the available information
in the network during the whole simulation time. In this case, the information
entropy corresponding to a node i increases as time passes since it last data
report. When a node depletes its battery, and it is no longer able to sample
its surroundings, the entropy value associated to it increases up to a maximum
level that corresponds to a situation of no knowledge at that point —complete
ignorance would equate to a flat distribution with a very large σ. We model this
process with a time decay function over σ. Equation 7.4 shows the corresponding
σi(t) function.

σi(t) =

{
σbot if t = ti
σbot + et−ti

etmax · (σtop − σbot) if t 6= ti
(7.4)

where ti is the time instant of the last value received from node i; σbot is the
variance of the gaussian noise that the simulator adds to each sensor reading;
and, σtop = 100σbot represents a very large variance that models maximum
ignorance, i.e. a flat distribution. The parameter tmax is set to three times the
sampling period. Receiving no information from a node for this amount of time
would mean a node failure or serious malfunction.

Just as an example and to illustrate the behaviour of this magnitude, Fig-
ure 7.9 presents its evolution for a single node that samples the environment at
random times in a period of 150 minutes. When the time between samples is less
than 20 minutes, the entropy is almost constant at its minimum value. However,

118 Chapter 7. Experimentation

0 50 100 150
−3

−2

−1

0

1

2

3

4

Time (min)

En
tro

py

Figure 7.9: Entropy evolution for a single node.

as soon as this time approaches 30 minutes, the entropy value increases, as it
occurs in the figure for 70 and 139 minutes time.

The previously presented definitions for error and entropy in the system,
allows for an adequate study of the network performance from the quality of
information point of view. These measurements, together with the two other
energy meters provide with the assessment criteria required. These variables
will be evaluated in all the experiments performed.

As previously stated, the set of experiments designed aims at validating the
proposed hypotheses regarding COSA performance. The first two scenarios (Sce-
nario I and II) represent stable environments. Scenarios III and IV present more
dynamic environments. In both types of scenario, the performance of COSA is
tested. The implementation of the Random baseline policy for experimentation
requires minimum changes on the agents. Basically, removing the intelligent
behaviour implemented in COSA agents.

7.5.3 Scenario I

Scenario I represents the section of a river of 2km by 72.5km. The goal is
to detect the presence of hydrocarbon pollutants at any location in the river,
therefore, we are interested in monitoring the whole river environment.

The network is deployed to cover all the extension of the river following a
regular distribution (see Figure 7.10). The number of nodes considered is set to
50 and their deployment along the river course is assumed to follow a regular
chain distribution, in which every node is situated in the middle of the river
section and evenly spaced. The position assumed for the sink is also the mid
point between the two shores. This assumption does not affect the simulation
results. The high number of nodes and the long distances to the sink entail that
the communication consumption is not affected by a one-hop distance increase,
which is the distance between the mid river point and the shore.

To simulate the river, we define a grid of 10x250 cells whose state is updated
every minute. This represents a quite slow river but with an important drag.
Values given to river movement parameters can be observed in Table 7.4. The

7.5. Experiments 119

. ..

Figure 7.10: Outline of Scenario I.

high ρ value indicates that the drift component governs the river evolution. With
respect to the three contributions to this drift component, the central addition
dominates over the side ones. Therefore, the simulated river presents a high
lineal current.

The rate of pollution sources appearance in this first scenario is quite low.
Only three punctual stains of high intensity appear in the system. These stains
represent a periodical dump in the river every 5 minutes. The pollutant sources
have a random duration between 30 and 60 weeks. They appear at fixed times,
specifically at weeks 40, 80 and 100 and at random locations. Hence, they appear
separated in time and stay in the system for quite a long time until they are
swept away by the river current.

This particular pollution configuration with little punctual stains focus on
the behaviour of COSA agents and their capacity to perceive the changes caused
by spillages in the environment. We stress the memory of the agents by setting
it to a low value as shown in Table 7.4.

In this scenario, we compare the performance of COSA against the baseline
Random policy. Agents implementing COSA sample the environment periodi-
cally as expected, but instead of directly sending every individual measurement
to the sink, these measurements are used to establish peer-to-peer negotiations
with neighbours so that sensing coalitions can be formed. Consequently, only
one node for each coalition (the leader) senses and sends the information to the
sink on behalf of the others, which delegate their tasks on it for a certain period.

The sink node receives the information collected by active nodes. When
agents behave according to the random policy, this information corresponds to
every single measurement periodically collected by all the random nodes. The
sensing task delegation among agents following COSA may cause the sink to
receive a group measurement representing the information associated to the set
of nodes in that coalition. Assuming a common sample for a set of agents may
cause the loss of pieces of information and consequently, the addition of some
extra noise to the reported data.

The experimental setup considered is completely defined through Table 7.4.
To test if COSA achieves the objectives that inspired its definition, its perfor-
mance is evaluated in terms of energy consumption and quality of the reported
information.

All the experiments have run until every node in the network has completely
depleted its battery, at most, 140 weeks in our experiments.

120 Chapter 7. Experimentation

Table 7.4: Scenario I parameters specification

Parameters Value

River Grid dimensions 10x250 cells
α 0.8
β 0.1
γ 0.1
ρ 0.95
Update interval 1 min

Stains Stains dimensions 1x1 cells
Initial intensity 1
Pouring intensity 1
Pouring period 5 min

Agents Number 50
Memory capacity 2

Performance analysis in terms of energy

Figure 7.11 and Figure 7.12 depict the behaviour of the system regarding the
energy available in the system during the simulation time and the median value of
this same magnitude. Particularly, Figure 7.11 shows the ratio of the remaining
network energy for both kinds of agent, those behaving according to COSA and
those following the Random policy.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (weeks)

N
et

w
or

k
re

m
ai

ni
ng

 e
ne

rg
y

ra
tio

CfModel
RndModel
COSA
RANDOM

Figure 7.11: Scenario I: Network remaining energy ratio.

In this figure, as initially expected, we can observe how COSA allows the
network to keep a higher level of global energy than the Random policy dur-
ing most of its lifetime, what comes to support the first hypothesis proposed.

7.5. Experiments 121

However, both sampling policies lead to a very similar network death time.
The energy consumption curve obtained for the Random policy follows a

stable pattern, whereas COSA presents more variability, especially by the end
of the simulation time. This phenomenon appears due to the different coalition
structures that COSA originates in the network over time. The influence of the
coalition configurations reached in the network grows as the global energy in the
system decreases. Hence, at these middle-end stages, the situation of the leader
nodes and the available energy of those nodes still alive have a severe impact on
the global energy level.

In contrast, the results obtained for Random nodes clearly show the effect
of their independent sampling behaviour. The global energy level is neither
affected by their neighbours’ state, nor by the dynamics of the environment.
Random agents consume energy in doing two tasks: collecting samples from the
environment, which requires a quantity of energy that depends on the sampling
frequency; and transmission tasks of those samples, which demand an energy
expenditure proportional to the square of the nodes’ distance to the sink. The
decreasing energy curve, therefore, shows the effect of Random nodes dying
gradually, depending on their distance to the sink. The worth extension of the
useful lifespan of the network can be better identified in the next figure.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (weeks)

M
ed

ia
n

re
m

ai
ni

ng
 e

ne
rg

y

CfModel
RndModel
COSA
RANDOM

Figure 7.12: Scenario I: Network median remaining energy.

Figure 7.12 represents the median of the nodes’ energy values per week.
This figure shows that half of the Random nodes are already disabled by week
101, whereas this same value is reached over 30 weeks later for COSA nodes
(specifically by week 134). This result translates directly into better system
performance during the network lifetime. COSA causes nodes’ death to be
evenly distributed, which guarantees that the network is going to get a fairly
good representation of the whole environment, for most of its lifetime.

This result relates to Figure 7.11, as the nodes that deplete their battery
first are the most distant ones to the sink. This situation causes the sink to be
blind to this area. Random agents situated far from the sink are the first to die,
while the ones situated near the sink hardly spend energy in transmitting. As
a consequence, these agents are the last to die. Therefore, in the final stages of

122 Chapter 7. Experimentation

the Random simulation, the network can only sample the sink’s surroundings.
This situation does not guarantee an adequate surveillance of the subject re-
gion. The even battery depletion associated to COSA agents originates a more
simultaneous nodes’ death phenomenon; although, in terms of global energy in
the system, both policies reach zero level at the same time for this first configu-
ration. In this case, this is due to the low and very similar energy costs derived
from the actions of nodes situated near the sink, disregarding the behavioural
policy selected. That is, the last nodes to die are the closest nodes to the sink,
which die at the same time for both policies.

Performance analysis in terms of quality of information

0 50 100 150
0

1

2

3

4

5

6

7

8 x 10

! 3

Time (weeks)

N
et

w
or

k
m

ea
n

er
ro

r

CfModel
RndModel
COSA
RANDOM

Figure 7.13: Scenario I: Information error at the sink.

The evaluation of the quality of the information bases on error and entropy.
Figure 7.13 represents the deviation of the information reported to the sink by
Random and COSA nodes. When no pollution phenomenon has appeared yet,
both models present the same behaviour. This initial behaviour just shows the
effect of the white noise associated to each sensing node. However, as soon as
pollution sources start to appear, these reported values also begin to diverge.

The error resulting from the application of the Random policy to the system
shows a very stable pattern that only gets altered when a contamination stain
appears. As previously explained, three pollution sources have been considered
in this simulation for the phenomenon. These stains are of high intensity and
appear in the system at random locations but at known times, specifically at
weeks 40, 80 and 100. The absolute error value registered at these times reaches
approximately 1x10−3. Nevertheless, this error value returns to the white noise
value as soon as all nodes reach their next sampling time.

The error curve of COSA nodes shows a stronger effect of the pollution
on its shape. The deviation values reached for the first and second stain are,
approximately, of 2.5x10−3 and the highest error in this case appears for the
third stain (7.25x10−3). This peak is caused by the characteristic grouping
scheme of COSA. The error increase reflects the existence of a leader whose

7.5. Experiments 123

0 50 100 150
-150

-100

-50

0

50

100

150

200

250

300

Time (weeks)

N
et

w
or

k
en

tro
py

CfModel
RndModel
COSA
RANDOM

Figure 7.14: Scenario I: Network entropy level.

conditions do not match its followers’ situation any longer. As a consequence,
this leader transmits samples to the sink that do not represent the coalition
members anymore. Regarding the Random policy approach, the moderate error
increase with the third stain appearance and at the end stages of the simulation
reflects the deviation caused by rapid nodes’ death at these late stages.

Both models provide quite good representations of the phenomenon but, as
expected, COSA agents provide data that is a little more deviated from reality.
However, as Random agents begin depleting their batteries and becoming unable
to sense, the uncertainty in the system rapidly increases.

Figure 7.14 shows how the entropy value associated to the network deteri-
orates almost at a constant pace since the first node’s exhaustion for Random
policy. At this point, the even battery depletion produced by COSA policy re-
veals its benefits for the whole system working time. COSA can guarantee a
better surveillance of the scenario as it provides a higher level of information
during the network lifetime in comparison to Random. Although both mod-
els reach the highest entropy value concurrently at the last node’s death time,
COSA keeps a lower entropy level during the network lifetime, what supports
the second hypothesis elaborated in Section 7.5.1.

7.5.4 Scenario II

Scenario II presents the case of a WSN deployment in an already identified pol-
luted area in the river. In contrast to Scenario I, this situation does not require
the monitoring of the whole course of the river, but only a particular section
that may be located near an industrial site, for instance. We imagine that after
pollution, we deploy the sensors in the river. The experiments corresponding
to this second scenario focus on the behaviour of the network when all nodes
are situated together and distant to the sink. This configuration emphasises the
transmission costs and group reunion. The problem area is located at the end
of the river course and covers the whole width of the river section an a length of

124 Chapter 7. Experimentation

Table 7.5: Scenario II parameters specification

Parameters Value

River Grid dimensions 10x250 cells
α 0.8
β 0.1
γ 0.1
ρ 0.95
Update interval 1 min

Stains Stains dimensions 15x18 cells
Initial intensity 1
Pouring intensity 1
Pouring period 1 min

Agents Number 30
Memory capacity 2

17.5 km. The network deployed to monitor this area is composed of 30 nodes.
These nodes are evenly (horizontally and vertically) distributed in the interest
area forming a grid of 3 nodes per row (see Figure 7.15).

Figure 7.15: Outline of Scenario II.

The river’s characteristics regarding its speed and drag conditions are the
same as in Scenario I, as it can be observed in Table 7.5. Contaminant sources
appear every 35 weeks and last between 6 hours and 5 days maximum. They
can appear at any location within the polluted zone where nodes are. Table 7.5
summarises the rest of parameters specifying the pollution characteristics, such
as its intensity and extension.

Scenario II represents a different monitoring situation when compared to
Scenario I. The analysis of the results obtained from this experimentation will
allow for the evaluation of COSA performance in a different situation and also
the assessment of the effect of the environment conditions on the algorithm
behaviour.

7.5. Experiments 125

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (weeks)

N
et

w
or

k
re

m
ai

ni
ng

 e
ne

rg
y

ra
tio

 CfModel
RndModel
COSA
RANDOM

Figure 7.16: Scenario II: Network remaining energy ratio.

Performance analysis in terms of energy

Figure 7.16 presents the network remaining energy ratio for the Scenario II con-
ditions. This configuration returns a quite different result. As in Figure 7.11, it
can be appreciated how COSA policy keeps an energy level higher than Random
for the whole life of the network. Moreover, and opposite to configuration I,
COSA expands the lifespan of this network in 46 weeks. These results support
again the first hypothesis proposed.

Another difference between the equivalent results obtained for scenarios I
and II refers to the dispersion presented by COSA curve. Whereas Figure 7.11
shows a remarkable growing dispersion in the final stages of the simulation. The
dispersion at the end of the simulation is not so notorious in Figure 7.16. The
reason for this is the network deployment scheme used in Scenario II. Due to
the fact of placing the nodes closer to each other and distant to the sink, the
transmission costs of the leaders become somehow standard. Consequently, the
energy costs derived from a leader’s actions do not differ much whichever node
acts as a leader of the coalition. Instead, the number of nodes in a coalition, i.e.,
the granularity of the network becomes more important, as larger coalitions can
be formed.

The same positive effect of nodes’ median life increase can also be identified
in Figure 7.17. In this case, half of the nodes are already dead 42 weeks earlier
when Random model is used in comparison to COSA model. This difference was
of 30 weeks in Scenario I configuration, what reasserts the increasing network
lifetime tendency.

Performance analysis in terms of quality of information

Measuring the error and the entropy level presented by the network during its
lifetime is also essential to understand the effects of the behavioural policy im-
plemented. Figures 7.18 and 7.20 depict the data collected during the simulation
referring to quality of the information.

Figure 7.18 shows the addition of the error committed by alive nodes in the
network. The times at which the different pollutants appear in the environment

126 Chapter 7. Experimentation

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (weeks)

M
ed

ia
n

re
m

ai
ni

ng
 e

ne
rg

y

CfModel
RndModel
COSA
RANDOM

Figure 7.17: Scenario II: Network median remaining energy.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

Time (weeks)

N
et

w
or

k
m

ea
n

er
ro

r

CfModel
RndModel
COSA
RANDOM

Figure 7.18: Scenario II: Information error at the sink.

can be clearly identified in Figure 7.18 as they cause an important increase in
the system’s general deviation. This deviation appears for agents implementing
either one of the two considered behavioural policies. However, and, as usual,
the error registered when pollutants appear is higher for agents implementing
COSA.

The high deviations registered by COSA nodes at weeks 0, 35, 70, 105 and
140 are caused by the grouping scheme characteristic of COSA. This scenario
configuration especially favours the formation of big coalitions and consequently,
higher errors. On the other hand, as Random nodes always sample periodically,
the error measurement that they deliver is just caused by the mistaken percep-
tion an individual node assumes until its next sampling time. Hence, the error
committed by Random nodes reaches approximately the same maximum value
for the two scenarios studied.

A detailed view of 7.18 makes relevant the self-adaptation and organisation
capacity conferred by COSA to the network. See Figure 7.19, which is a zoom in
Figure 7.18. At week 35, when the second pollution stain appears, all nodes are
still alive for both behavioural models. Figure 7.19 shows clearly the detection of

7.5. Experiments 127

33 34 35 36 37 38 39
0

1

2

3

4

5

6

7

8

9 x 10-3

Time (weeks)

Ne
tw

or
k

m
ea

n
er

ro
r

COSA
RANDOM

Figure 7.19: Scenario II: Information error at the sink (zoom in Figure 7.18).

the init and end times of the contaminant source. The error returned by nodes
implementing COSA is higher than the one obtained for Random nodes at these
transitions. However, both behavioural models return to the white noise error
value once the stain presence and disappearance have been identified.

One main advantage derived from COSA application refers to the lifespan
extension. This achievement allows monitoring the environment longer and,
therefore, reporting information when Random nodes are already dead. In Fig-
ure 7.18, it can be appreciated how the last two stains appearing in the system
are not detected by Random nodes. This loss of information becomes relevant
when the information entropy of the system for both models along time is com-
pared (Figure 7.20).

0 50 100 150
-100

-50

0

50

100

150

200

Time (weeks)

N
et

w
or

k
en

tro
py

COSA
RANDOM

Figure 7.20: Scenario II: Network entropy level.

Figure 7.20 shows how Random policy makes the system maintain its mini-
mum entropy level for almost 44 weeks. From that moment onwards, the entropy
of the system increases as each of the nodes dies according to the distance pat-
tern. The maximum information entropy level is reached by week 61. This

128 Chapter 7. Experimentation

situation causes the sink to be blind for the whole scenario as no node is report-
ing data.

The entropy associated to the network when nodes behaves according to
COSA shows a very different pattern. At the beginning of the simulation when all
nodes are alive, the entropy curve shows bigger value variations when compared
to the Random nodes’ graph. This variability reflects the fact of nodes waking
up and sleeping according to COSA coalition formation processes. Neverthe-
less, the even battery depletion of COSA nodes induces a gradual and slower
increase in the entropy level of the system, which at the same time reverts in
obtaining valid information from the scenario for a longer time. This result
supports the second hypothesis stating that COSA diminishes the uncertainty
of nodes’ values.

This scenario shows the particular COSA trade-off, as this algorithm causes
the network to provide information for longer periods at the cost of making bigger
errors when compared to a Random sampling regime. However, the maximum
deviation reached for either model is on the order of magnitude of 1x10−3, which
represents a pretty low error not causing excessive distortion.

The experiments accomplished show how COSA outperforms Random in
terms of energy and entropy level of the nodes implementing this policy. Either
the results derived from the Scenario I or II support the proposed hypotheses
about COSA behaviour. Hence, we can state that COSA’s features fit with its
desired characteristics at design phase.

The following experiments focus on COSA strategies to test the third hy-
pothesis “COSA and derived strategies reduce error at the cost of network life-
time.” COSA strategies were conceived to improve COSA performance in terms
of error, especially when the strategy is applied to a WSN deployed in a highly
dynamic environment. COSA strategies definition increases the leaders’ activity.
This definition itself implies a detriment of COSA main benefit, energy saving.
Scenarios III and IV define experimental setups to test how these strategies af-
fect the evolution of control variables, that is, energy, error and entropy of the
system.

7.5.5 Scenario III

The network deployment required for Scenario III mimics the chain distribution
of Scenario I, as it can be observed in Figure 7.21. As in that experiment
setup, the WSN has to monitor the whole river course. Differences between
both scenarios refer to the dynamics of the river and pollutant sources. The river
presents the same size and speed for all the experiments performed for different
scenarios. Nonetheless, the different dynamics of the spillage associated to this
scenario comes with a different river flow too. Specifically, the river presents a
stronger drag behaviour that corresponds to the higher ρ and α values presented
in Table 7.6.

The pollutant phenomenon considered in this scenario appears as a unique
intensity-oscillating stain near the sink. Its spewing pace follows a sine func-
tion that completes a cycle every 2 hours. The pollutant source lasts for the

7.5. Experiments 129

. ..

Figure 7.21: Outline of Scenario III.

whole simulation time and spreads along the river due to the river flow. The
maximum intensity reached by this stain and other characteristics can be ob-
served in Table 7.6. The pollutant features demand a change in COSA agents’
characterisation. As the stain lasts in time and describes a sinusoidal wave, the
agent does not need to be so reactive. Hence we increase the memory capacity
of the COSA agent. Regarding COSA strategies, the agent behaviour associated
to COSA Sampling Frequency is predefined with the policy adoption. However,
COSA Coherence strategy requires the specification of the coherence threshold.
We tuned this threshold and with high values we found the best network per-
formance.

Table 7.6: Scenario III parameters specification

Parameters Value

River Grid dimensions 10x250 cells
α 0.9998
β 0.0001
γ 0.0001
ρ 0.9999
Update interval 1 min

StainSin Stain dimensions 3x2 cells
Intensity 1
Period 2 hours
Duration 150 weeks

Agents Number 50
Memory capacity 10
Coherence threshold 0.95

The goal of the set of experiments run in this Scenario III is to test the
behaviour of COSA and its strategies and also, to compare the results delivered

130 Chapter 7. Experimentation

by each of them. To reach this objective, four sets of simulations are run.
Each set compares the behaviour of one COSA approach to Random policy,
the baseline already selected for previous experiments. Then, the performance
of COSA and Random policy, the performance of COSA Sampling Frequency
strategy (COSA-SF) and Random, the performance of COSA Coherence (COSA-
C) and Random and, finally, the performance of the two strategies together,
COSA Sampling Frequency and Coherence joint (COSA-SF+C) and Random
policy are evaluated. For each of these experiments, graphs similar to those
shown for Scenario I and II referring to energy, error and entropy are obtained.
The values assigned to the particular strategy parameters can be identified in
Table 7.6.

Apart from the individual strategy study, the comparison of the results de-
livered by each of them is also an interesting task. To accomplish this goal, and
in order to avoid the point by point comparison for the whole simulation time,
comparison criteria are established. The election of the comparison points or
intervals has been carefully done to guarantee the correctness of the comparison
and the general character of the conclusions drawn.

Analysis of results

Before introducing the comparison criteria, we briefly review the behaviour of
COSA and its strategies.

Figures 7.22 to 7.24 shows the evolution in time of the evaluation variables
(error, energy and entropy). These figures represent the network performance
in time.

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (weeks)

N
et

w
or

k
m

ea
n

er
ro

r

COSA−SF+C
RANDOM

Figure 7.22: Scenario III. Information error: COSA-SF+C and Random.

Figure 7.22 represents the error registered when agents implement the Ran-
dom policy and COSA-SF+C strategy. The pollutant phenomenon has a peri-
odical behaviour and exists for the whole simulation time. This circumstance
causes higher errors when compared to Scenarios I and II, in which the ap-
pearance of pollutant sources occurred at specific times. The mean error value
associated to the Random policy remains quite constant while all agents are

7.5. Experiments 131

alive. The corresponding curve associated to COSA-SF+C situates above the
Random one. It also shows more variability due to the coalitions’ configuration
and reconfiguration processes.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (weeks)

M
ed

ia
n

re
m

ai
ni

ng
 e

ne
rg

y

COSA−SF
RANDOM

Figure 7.23: Scenario III. Median remaining energy: COSA-SF and Random.

Figure 7.23 shows the median of the nodes’ energy values per week. In this
case, the strategies compared are Random and COSA-SF. This figure shows that
half of the agents deplete their batteries by week 101 when using the Random
policy, whereas this situation is reached more than 25 weeks later for COSA-
SF. Moreover, COSA-SF allows the network to keep a higher level of global
energy than the Random policy during most of its lifetime. This strategy also
supports the first hypothesis referring to the energy level of nodes in the system.
Regarding the deviation of these results and, as it happened in the analogous
Scenario I, this figure shows how the Random policy results in a pattern with
constant variance. On the contrary, the increasing variance observed in the curve
corresponding to COSA-SF shows the effect of the different energy consumption
demanded by leader nodes depending on their position.

0 50 100 150
-150

-100

-50

0

50

100

150

200

250

300

Time (weeks)

N
et

w
or

k
en

tro
py

COSA
RANDOM

Figure 7.24: Scenario III. Network entropy level: COSA and Random.

Figure 7.24 represents the overall entropy for basic COSA and Random. The
Random approach causes the entropy to deteriorate almost at a constant pace

132 Chapter 7. Experimentation

since the first node’s battery depletion. The level of entropy when using COSA is
lower (i.e. better) during the whole system lifespan. In spite of the high dynamic
environment, COSA provides an evenly distributed agents’ battery depletion.
Once again, this exhaustion scheme allows the network to offer a fairly good
representation of the whole environment for most of its lifetime. Hence and, as
expected, the uncertainty of the nodes composing the network is reduced when
agents behave according to COSA.

These sample figures just show how COSA, its strategies and possible com-
bination of them, when applied to a highly dynamic environment, adjust to the
expected behaviour of the algorithm expressed in the hypotheses section. As
mentioned before, to compare the performance that each of this alternatives
delivers, we define comparison criteria. The identification of an adequate com-
parison criterion relies on the individual analysis of each policy and the figures
previously described.

Comparison of strategies

To compare the results obtained when the WSN deployed in this scenario imple-
ments different alternatives of COSA, we take into account the performance in
terms of energy and quality of the information. The energy evaluation compar-
ison bases on the analysis of the median value of the energy of the nodes. We
focus on this energy perspective as it emphasises the distinctive COSA feature
of increasing the node energy level. Regarding the quality of the information, we
compare the strategies performance from the error point of view and the entropy
perspective.

To compute the gain in terms of error, the difference of the mean error value
registered for the COSA policy considered and Random is evaluated. For this
calculation, we only take into account the error reported during 100 days of sim-
ulation. To select these days of interest, we consider the median of the Random
nodes’ energy, and we take 100 days around the time when this variable reaches
0.5 value. This constraint is introduced to guarantee that, at the comparison in-
terval time, all the nodes in the network are out of the bootstrapping phase and
still alive, hence reporting information. In this period, both sampling policies
are in the same conditions, and the comparison is, therefore, fairer. Otherwise,
any of the COSA algorithms would be much better in terms of error simply
because, in general terms, nodes live longer than those implementing Random
policy.

To compute the gain in energy consumption and in entropy we choose a
particular point of reference to evaluate the difference in performance. For the
gain in energy consumption, the time instant at which the median of the agents’
energy value reaches zero is selected. This timestamp is interesting as it repre-
sents the moment at which half of the agents in the network have depleted their
batteries.

The reference point to evaluate the difference in entropy is set to the point
where the overall entropy reaches zero. This gain value indicates how long, in
percentage, an algorithm needs to ‘loose’ information, i.e. to increase the entropy

7.5. Experiments 133

until reaching zero.

Figure 7.25 summarises the percentage gain obtained by COSA and its strate-
gies with respect to Random sampling.

Figure 7.25: Scenario III. COSA gains w.r.t. Random Sampling.

The vertical axis of Figure 7.25 identifies the particular instance of COSA: no
strategies (COSA), sampling frequency strategy (COSA-SF), coherence strategy
(COSA-C) and both strategies (COSA-SF+C).

COSA shows the expected trade-off between energy consumption and error.
As it can be appreciated in Figure 7.25, COSA causes the sink to have slightly
higher errors (1.6%) than the Random policy. This loss is however compensated
by a gain of 26% in terms of energy consumption and of 39% about entropy.

The first set of bars appearing in Figure 7.25 corresponds to the gain of COSA
algorithm compared to Random sampling. It clearly shows that the adoption
of COSA policy by the sensing nodes originates a little loss in the accuracy
of the information but also, an important increase of the WSN lifespan. This
lifespan extension translates into a significant improvement of the quality of the
information. The increase in the quality derives mostly from the fact that agents
live longer. Hence, the extension of the lifespan of the network does not only
represent a reduction of its battery replacement costs but also an improvement
of the system’s performance.

The results obtained when we used COSA with the Sampling Frequency strat-
egy are slightly different. In this case, we get an important improvement in the
error gain (reaching a value of almost 13.23%). This improvement comes at
the cost of more moderate gains in terms of energy savings and entropy (corre-
spondingly, values of 20% and 26%). Increasing the sampling frequency of the
leaders allows them to better follow the changes in the environment caused by
the sinusoidal pollutant, therefore, committing less error. However, this extra
effort in sampling and transmitting originates also lower gains for the energy
and entropy when compared to basic COSA, although the values obtained are
still significantly high.

134 Chapter 7. Experimentation

The gain values resulting from the implementation of COSA with the Coher-
ence strategy correspond to the third set of bars. This strategy outperforms the
Sampling Frequency in terms of error gain. The poor performance in terms of
energy and entropy (with corresponding values of 5% and 8%) are compensated
by an error gain of 16.38%. For the highly dynamic scenario considered and,
although the coherence threshold was set almost to one, the cost of breaking
coalitions and initiating negotiations reduces the improvements in energy and
entropy drastically. Nonetheless, coalition dismantlement causes the nodes to
sample the environment at the time this happens, what explains the global com-
mitted error reduction. Hence, it is quite obvious that this strategy, with the
considered configuration parameters, is not the most convenient for the scenario
considered. Although it is still better than Random, it only offers a 3 units im-
provement about the Sampling Frequency strategy, while the energy and entropy
gains deteriorates around 15 units.

The results obtained for the combination of both strategies (COSA-SF+C)
shows how the Coherence strategy has a stronger impact on the combination
than the Sampling Frequency strategy. In this case, the error gain results in
almost the same value as the application of the COSA Coherence alone. The
error and entropy gains also present low values of 4% and 12%. Therefore,
the adoption of these two last strategies does not seem very convenient for this
scenario, as COSA-SF+C and COSA-C, both give the best performance in terms
of error but at the cost of an important reduction in gains corresponding to
energy and entropy measurements. The characteristic trade-off of COSA renders
its best results for COSA-SF strategy in this scenario which offers good results
in terms of error and energy.

A general view of Figure 7.25 supports the third hypothesis about the cost
of improving the network performance in terms of error. The implementation
of any of COSA strategies by nodes of the network always translates in a detri-
ment of the energy gain obtained by COSA. The improvement in terms of error
is also notorious, as it has already been mentioned. The definition of these
strategies provides the programmer with a set of tools that allow him to choose
the configuration that fits best to his interests.

7.5.6 Scenario IV

The set of experiments performed in Scenario IV pursues the same objective as in
Scenario III. The main difference between these scenarios refers to the network
deployment. As in Scenario II, the network aims at monitoring a particular
zone of the river, specifically, the more distant area to the sink (see Figure 7.26).
This configuration increases the transmission, thus it puts stress on the energy
consumption.

The environmental conditions referring to the river movement are the same
as in Scenario III, that is a river with a strong drift component. The only
pollutant source also mimics the behaviour of the sinusoidal stain in Scenario
III, but in this case, the stain appears in the middle of the river and at 45 km
from the sink. The problem area extends from this point until the end of the

7.5. Experiments 135

Figure 7.26: Outline of Scenario IV.

Table 7.7: Scenario IV parameters specification

Parameters Value

River Grid dimensions 10x250 cells
α 0.9998
β 0.0001
γ 0.0001
ρ 0.9999
Update interval 1 min

StainSin Stain dimensions 3x2 cells
Intensity 1
Period 2 hours
Duration 150 weeks

Agents Number 30
Memory capacity 10
Coherence threshold 0.95

river section. Nodes are placed in this specific interest area and are deployed as
in Scenario II. The network is composed of 30 nodes forming a grid distribution
of three nodes per row. The agent characterisation regarding to the behavioural
policies implemented coincides with that of Scenario III, as it can be observed
in Table 7.7.

The goal of this experimentation is to test the performance rendered by
the network when it implements different strategies, and to check the third
hypothesis proposed in Section 7.5.1 for this scenario. To meet these objectives,
we perform the same set of actions as in the previous section. First, graphical
evidence of COSA’s characteristics in Scenario IV in terms of energy and quality
of the information is presented. Then, gains of each COSA strategy with respect
to Random policy are evaluated and compared to find how they adapt to Scenario
IV.

136 Chapter 7. Experimentation

Analysis of results

Figures 7.27 to 7.29 show the performance of the network for Scenario IV con-
figuration in terms of error reported by the system, median remaining energy of
the nodes and overall entropy level.

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (weeks)

N
et

w
or

k
m

ea
n

er
ro

r

COSA−SF+C
RANDOM

Figure 7.27: Scenario IV. Information error: COSA-SF+C and Random.

Figure 7.27 shows the network mean error per unit time for COSA-SF+C
strategy and Random policy. As in Figure 7.22, the reported error by the Ran-
dom sampling policy shows a stable pattern. This stability is only altered at the
final moments of the Random simulation when agents start dying. The specific
situation of the nodes far from the sink, together with the characteristic river
flow, makes the pollution stain effects smoother, which explains the lower error
committed by nodes adopting the random sampling policy. The application of
COSA-SF+C strategy, after an initial phase, also returns a quite stable error
pattern, although with higher variability around 0.065.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (weeks)

M
ed

ia
n

re
m

ai
ni

ng
 e

ne
rg

y

COSA−SF
RANDOM

Figure 7.28: Scenario IV. Median remaining energy: COSA-SF and Random.

The median of the remaining energy per node per unit time measures the
available energy in the system. Figure 7.28 represents the value of this variable

7.5. Experiments 137

for COSA-SF and Random strategy. This figure clearly shows the improvement
derived from the COSA grouping scheme, as the temporal point when half of
the COSA-SF nodes have no energy is reached around 40 weeks later than for
Random nodes. This result verifies the first hypothesis proposed about the
higher level of energy for nodes implementing COSA when compared to the
baseline.

If we compare this figure to its equivalent for Scenario III (Figure 7.23), it can
be appreciated that the lifespan of the network for Scenario IV is lower than for
Scenario III. In this case, as all the nodes are situated at a considerable distance
to the sink, energy demands for information transmission to the server are also
higher. The tight grid distribution of the nodes for this scenario implies also
low variance in terms of energy, as whichever node acts as a leader, the energy
needed to transmit to the sink is almost the same.

0 50 100 150
-100

-50

0

50

100

150

200

Time (weeks)

N
et

w
or

k
en

tro
py

COSA
RANDOM

Figure 7.29: Scenario IV. Overall entropy level: COSA and Random.

The strategies considered in this figure are COSA and Random. Both strate-
gies show their typical behaviour pattern. However, the highest (worst) entropy
value is reached over 25 weeks later for COSA than for Random. The imple-
mentation of COSA policy in this Scenario IV not only guarantees a lower level
of uncertainty for the nodes, but also an extension of the network lifespan. This
lifetime extension directly implies the availability of information from the envi-
ronment for longer time.

If we compare this figure to its equivalent for Scenario III (Figure 7.24), we
observe that the slope of COSA entropy in Scenario IV is higher than in Scenario
III. This effect reflects the different depletion pattern of the nodes’ batteries in
each scenario.

Comparison of strategies

The results obtained for the application of COSA and its strategies to Scenario
IV show a quite different behaviour. The first thing we notice when we observe
Figure 7.30 is that none of the COSA strategies reaches a positive gain value for
the error measurement. As it occurred for Scenario III, the error gain obtains its
worst value for the application of COSA policy and its best one for the combina-

138 Chapter 7. Experimentation

Figure 7.30: Scenario IV. COSA gains w.r.t. Random Sampling.

tion of COSA and its two strategies (COSA-SF+C). The energy measurement
shows the opposite behaviour giving the best result for COSA policy and the
worst for COSA-SF+C. The relationship between the energy and the entropy
measurement also changes in this scenario compared to the previous one. In
this case, the entropy gain obtained for any COSA strategy is always lower than
its corresponding energy gain. This phenomenon appears due to the specific
network depletion pattern, as we will explain later.

In this scenario, with a network composed of 30 nodes situated far from
the sink, the error gain obtained when agents implement COSA strategy has
a value of -103.3%. That is a loss of 100%, which states that the application
of COSA doubles the error committed by the nodes compared to the Random
sampling scheme. Therefore, favouring the formation of bigger coalitions in this
scenario implies sending information to the sink on behalf of nodes that are
poorly represented by their leaders. On the other hand, this high loss in error
comes with high values for the energy and entropy gains. The same grouping
phenomenon originates high energy savings that render an energy gain of 69.31%
and an entropy gain of 55.31%.

The gain values obtained for the adoption of COSA with Sampling Frequency
strategy shows a very little improvement in terms of the error gain and also, a
little detriment of the energy and entropy gains. The error loss is still over 100%
(specifically 101.58%), while the energy gain reduces its value to 51.92% and the
entropy to 41.98%. Hence, increasing the sampling frequency of the leaders is
not very useful for this scenario.

As occurred for the previous Scenario III, COSA Coherence strategy causes
an important improvement in the error loss, almost dividing its value by 2. The
error gain for this strategy and this scenario reaches a value of -59.77%. On the
other hand, energy and entropy gains reduce their value, but they do not suffer a
dramatic decrease. In this case, the corresponding energy gain is 53.94%, and the
entropy gain is 40.83%. The significant reduction in error, together with the low

7.5. Experiments 139

loss in energy and entropy, show that quick coalition reconfiguration processes
allow the nodes to find better distributions and to represent the environment
more faithfully.

Finally, the combination of both strategies results in the highest error gain
(-49.14%) and the lowest energy and entropy gains (38.8% and 28.27% corre-
spondingly). Once again, the trade-off between energy consumption and accu-
racy of the information reported to the sink appears for every COSA strategy.
For this scenario, COSA is able to extend the network lifetime over 60% com-
pared to the Random sampling strategy at the cost of admitting twice the error
reported. The most suitable strategy depends on the programmer preferences.

The results discussed and summarised in Figure 7.30 support again the last
hypothesis proposed in Section 7.5.1. COSA strategies support its design concep-
tion, as their use can reduce the error committed. Nonetheless, this improvement
comes at the cost of the energy available in the network.

7.5.7 Conclusion

The first part of this chapter describes the top layer of the implementation
tasks required for experimentation execution. The Riversim module contains
the software of the simulation environment of the use case. The connection of
this module to the COSA-able WSN is done through the definition of classes
that relate both modules. These classes complete the simulation environment
and their instantiation corresponds to different experiments.

The goal of the experimentation is the verification of the hypotheses that
inspired COSA. The four experiments presented study the behaviour of COSA
and its strategies in a river domain. The influence of COSA implementation is
compared to the WSN näıve behaviour for two different monitoring problems.
These problems consider two different scenarios of the river domain. One of them
aims at monitoring the whole course of the river while the other one focuses on
a particular problematic area of the waterway.

The results derived from the experiments corresponding to Scenario I and
II confirm that COSA behaves as expected. That is, it favours the extension
of the nodes average lifetime at the same time that the level of uncertainty in
the whole network decreases. Scenarios III y IV define scenarios more dynamic
than the previous ones in order to test COSA and its strategies response under
these circumstances. The analysis of the results obtained clearly shows the
characteristic COSA trade-off between energy expenditure and quality of the
information.

A deeper characterisation of COSA performance for different configurations
would be desirable. The existence of this aforementioned characterisation, to-
gether with a structured identification of environmental features, would allow
for the evaluation of the algorithm adequacy in different environments. This
analysis would favour COSA testing in new domains, and the exploitation of the
implementation work accomplished. The software architecture created for this
initial experimentation can easily be adapted to other experimental settings and
domains thanks to its modularity and scalability features.

Chapter 8

Conclusions and Future
Work

The application domains of WSNs are continuously growing thanks to the de-
velopment of ever smaller sensors that present more capacities. The improve-
ment of these devices’ features and their price decrease have contributed to their
widespread use. The special characteristics of WSNs guaranteed by their con-
stituent sensor nodes make possible their deployment in many different areas
that could not be monitored with traditional techniques due to difficult access
to the zone, the need of high investment or the requirement of a distributed
approach. WSNs are an interesting field of study whether it is to improve the
network performance and its potential or to exploit the information that they
can obtain. WSNs constitute a framework that gathers research questions posed
from different communities, such as Electronics, Telecommunication or Software.

One of the major concerns about WSNs refers to their energy management.
Sensor nodes are typically constrained in terms of communication capacity, pro-
cessing and energy as they run on portable batteries. Moreover, depending on
the conditions of their deployment environment, battery connection to the power
net or replenishment cannot be possible. As a consequence, the limited lifetime
of the network can be an important drawback depending on the application do-
main. This situation has gained the attention of researchers that try to improve
different aspects of the WSNs. Different approaches considered for this prob-
lem try to improve the hardware design, to upgrade the operation of the nodes’
components or to define network energy conservation strategies.

Scenarios in which energy administration is a crucial activity are aquatic
environments. In the last years, the application of WSNs to urban environments
has gone up tremendously for numerous purposes. The SmartCity concept has
become very popular to refer to sensor networks’ use in urban areas. In general,
these environments allow for part of the nodes connection to the power net and
broadband communication. Thus, the main inconveniences derived from the use
of a WSN are avoided to a certain extent. These conditions are not reproducible

141

142 Chapter 8. Conclusions and Future Work

when the environment to monitor is a river or a lake, for instance. In this
case, the use of devices especially adapted to the hard conditions of aquatic
environments is necessary. When monitoring a waterway, part of the network
deployment can rely on the signalling elements in the river. These environments
can be greatly benefited by a WSN implantation. WSNs allow for the extraction
of many environmental data that can be used for very different purposes, from
ambient conditions monitoring to water state surveillance. This information can
be used to attain an adaptive lighting system or to guarantee a certain level of
quality of the water by fast identification of changes in its composition. These
are the scenario and the problem that have motivated this dissertation.

The addressed problem meets the need of the development of energy-saving
strategies for WSNs whose objective is to collect information efficiently from
a waterway in order to identify the appearance of contaminant sources in the
water. The Multiagent Systems paradigm inspires the proposed strategy. This
approach allows for the design of an energy-saving network algorithm grounded
on the local activity of the nodes, the Coalition Oriented Sensing Algorithm.
Formalisation and modelling of this distributed and dynamic problem allowed
for the identification of different aspects of the problem that were included in
COSA definition.

COSA aims at extending the lifespan of the WSN while guaranteeing a good
performance of its goal. Agents (nodes) form coalitions in order to look for a
trade-off between the accuracy of the sensed data and their energy consump-
tion. The scenario and algorithm dynamics entail a variable distributed sam-
pling of the environment, in which different number of samples are sent to the
sink depending on the instantaneous network configuration. COSA specifies the
behaviour of the individual agents to accomplish their tasks of sensing the envi-
ronment and transmitting this information to the sink and also of reaching an
appropriate group configuration. The achievement of a good coalition structure
configuration relies on the agent local information about its environment and
neighbouring nodes. COSA establishes how this information has to be used and
to what extent it affects the agent’s behaviour. Thus, this information, together
with an appropriate COSA configuration leads to the formation of groups of
nodes that act as a single entity, avoiding redundant sensing and transmissions
efforts, therefore, saving network energy.

As a consequence, Coalition Oriented Sensing Algorithm endows a network
with self-organisation capacity. This ability can be used to adapt energy con-
sumption to changes in the environment and, at the same time, to fulfil sampling
objectives in terms of the quality of the information reported to the sink.

The study of the algorithm behaviour and its computing properties have
been performed over a novel simulation platform, RepastSNS. The election of
this platform was principally motivated by its nature. The fact of being a typical
MAS simulation platform that included a basic definition of a sensor network
components perfectly fitted our demands. However, its novelty and the lack
of experimental developments over it turned up in some inconveniences that
had to be fixed. Thus, the function of the platform scheduler, which is the

143

main piece of the platform engine, was amended; erroneous behaviour of some
components was fixed, etcetera. These tasks were accomplished without altering
the definition principles of the platform in order to not affect its right features.
As a consequence, the improvement work developed has resulted in a functional
sensor nodes’ simulation platform based on MAS.

The general character of RepastSNS promotes its use for different kinds of
problems, but it also demands a higher effort for the development of applica-
tions. For the particular problem studied in this dissertation, we have designed
a layered structure so that each layer adds certain functions to the simulation
platform.

The ECA-WSN module is in charge of attaching elementary functions to the
node. The energy and communication management strategies provided by this
module allows for an easy administration of the node energy. The implemented
model relies on a self-management battery and the normalisation of every el-
ement consumption. Regarding the node’s communication module, it is also
adapted to this energy policy and includes the possibility of transmitting both,
broadcast and unicast messages. The focus of this module focus on the node’s
physical attitudes allows for its reuse by other applications, as long as the nodes
used for those applications fit these attributes. Analogously, COSA implemen-
tation in a network composed of another kind of devices with different physical
properties just requires the replacement of this layer.

The COSA-able WSN addresses the embedding of COSA into the agent be-
haviour. This task is accomplished in a modular way distinguishing the different
parts of the algorithm and their effects over the node’s components. The modular
perspective used for the implementation allows for an easy enhancement of the
algorithm. The work performed in this module shows how two different COSA
strategies can be implemented just by conducting minimum changes. This fea-
ture together with the tuneable character of COSA encourage the proposal of
algorithm extensions.

The Riversim module defines the physical environment of the application
domain. As it happened with the previous modules, changing the simulation
domain strictly affects this module and linking classes. The connection between
COSA-able WSN and Riversim modules is fixed through the definition of the
specific sensors monitoring the environment and the network deployment. Thus,
the implementation work done has resulted in a general development framework
that can be used for the creation of different applications.

The new version of RepastSNS platform and the packages corre-
sponding to COSA experimentation performance can be downloaded from
http://www.iiia.csic.es/∼delgado/COSA.

Finally, the analysis of the results obtained from the simulation have revealed
the utility of local co-ordination when monitoring local phenomena. When a
global and dynamic phenomenon affects the network, it causes rapid changes in
every node. In these cases, the implementation of local co-ordination strategies,
such as COSA, is not appropriate. The lack of neighbouring sensors’ samples
coincidence, together with the fast changing pace prevent from successful nego-

144 Chapter 8. Conclusions and Future Work

tiations. Moreover, if a negotiation sporadically successes, this originates high
errors due to the quick variation of the phenomenon values. Similarly, the energy
saving capacity is highly conditioned by the network topology as the possibil-
ity of relationships establishment depends on the number of neighbours and its
situation.

In summary, the contributions of this dissertation are:

• the proposal of the Coalition Oriented Sensing Algorithm.

• A modular architecture and implementation of COSA.

• The development of a workable version of RepastSNS.

• A generic and reusable software model of the physical behaviour of a sensor
node.

• Insights on the relationship between local co-ordination and energy saving.

With these propositions in hand, the concepts underpinning COSA and the
simulation work performed, we can define the following future work lines:

1. Complete evaluation of COSA. The performance of this task requires an
exhaustive exploration of the parameters space. This study will generate
the layout of the impact of COSA’s parameters on the overall network
performance under different circumstances. This pattern will fully charac-
terise the algorithm and will allow to establish guidelines on how to use it
on different monitoring scenarios.

2. COSA’s basic model modifications. The COSA and the associated agents’
behaviour rely on the interpretation of local information by means of two
functions: adherence and leadership. Simple changes that could derive
interesting results are:

• To abandon the assumption of Normal behaviour for the observed
phenomenon and to evaluate the algorithm performance for different
models. This task would entail the establishment of adequate metrics
to adapt the adherence formulation.

• To evaluate the similarity factor between two agents using the Earth
Mover’s Distance. Changing this metric would allow for a comparison
independent of the variable’s model assumed.

• To focus on individual samples and evaluate the adherence as a simple
function of the difference between the nodes’ collected data.

3. Network nodes modification by model enhancement. The layered struc-
ture clearly separates different aspects of the nodes and the environment.
This modular approach permits an easy changing of the physical device
modelling. Some changes that can be done are, for instance:

145

• To consider the Low Power Listening mode (LPL) for the nodes when
they adopt the follower role. This technique allows the radio to lower
its consumption in idle states. Its adequacy to COSA should be
assessed taking into account the consumption derived from turning
on/off the radio each time a state change happens.

• To enhance the sink actuation capacity. COSA conceives the sink
as a mere information collector and evaluator. The introduction of
a central control unit modelled by the sink can be interesting to in-
crease the self-management capacity of the network. The sink would
represent this control unit. This element can take advantage of the in-
formation collected by the nodes to act on COSA’s parameters. This
action would generate a noteworthy feedback phenomenon between
the environment conditions and the algorithm particularisation. For
instance, stable conditions in the environment could make the sink
increase the permissiveness of nodes’ association. Changes in COSA
configuration initiated by the sink would propagate downstream to
the nodes in the network.

• To adopt a realistic routing technique. Once COSA had been fully
characterised, an interesting task would be to evaluate its performance
when a valid routing strategy is used. The study of how COSA group-
ing strategy can complement some of the typical clustering algorithms
revised at the beginning of the dissertation could deliver important
results. For instance, if the COSA leader coincides with a cluster
leader, then energy savings would increase as sampling actions would
be efficiently performed and information routing would also be opti-
mised. This kind of results would encourage the use of COSA as an
appropriate WSN management tool.

Bibliography

[Abbasi and Younis, 2007] Abbasi, A. A. and Younis, M. (2007). A survey on
clustering algorithms for wireless sensor networks. Computer Communica-
tions, 30(14-15):2826–2841. Survey.

[Akyildiz et al., 2002] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and
Cayirci, E. (2002). A survey on sensor networks. IEEE Communications
Magazine, 40(8):102–114.

[Anastasi et al., 2009] Anastasi, G., Conti, M., Di Francesco, M., and Passarella,
A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc
Networks, 7(3):537–568.

[Bai and Zhang, 2008] Bai, Q. and Zhang, M. (2008). A Fuzzy Logic-Based Ap-
proach for Flexible Self-Interested Agent Team Forming, volume 89 of Studies
in Computational Intelligence, chapter Rational, Robust, and Secure Negoti-
ations in Multi-Agent Systems, pages 101–113. Springer Berlin / Heidelberg.

[Bandyopadhyay and Coyle, 2003] Bandyopadhyay, S. and Coyle, E. J. (2003).
An energy efficient hierarchical clustering algorithm for wireless sensor net-
works. In Proceedings of IEEE INFOCOM 2003, pages 1713–1723.

[Barton and Allan, 2007] Barton, L. and Allan, V. H. (2007). Methods for coali-
tion formation in adaptation-based social networks. In Klusch, M., Hindriks,
K. V., Papazoglou, M. P., and Sterling, L., editors, CIA, volume 4676 of
Lecture Notes in Computer Science, pages 285–297. Springer.

[Basagni et al., 2013] Basagni, S., Naderi, M. Y., Petrioli, C., and Spenza, D.
(2013). Wireless Sensor Networks with Energy Harvesting. In Mobile Ad
Hoc Networking: The Cutting Edge Directions, IEEE Series on Digital and
Mobile Communication, chapter 20, pages 701–736. John Wiley and Sons,
Inc., Hoboken, NJ.

[Bicocchi et al., 2012] Bicocchi, N., Mamei, M., and Zambonelli, F. (2012). Self-
organizing virtual macro sensors. ACM Trans. Auton. Adapt. Syst., 7(1):2:1–
2:28.

147

148 Bibliography

[Chen et al., 2005] Chen, G., Branch, J., Pflug, M. J., Zhu, L., and Szymanski,
B. (2005). Advances in Pervasive Computing and Networking, chapter Sense:
A Wireless Sensor Network Simulator, pages 249–265. Springer US.

[Chen-Khong and Renaud, 2005] Chen-Khong, T. and Renaud, J.-C. (2005).
Multi-agent systems on sensor networks: A distributed reinforcement learning
approach. In Intelligent Sensors, Sensor Networks and Information Process-
ing Conference, 2005. Proceedings of the 2005 International Conference on,
pages 423–429.

[Conte and Castelfranchi, 1995] Conte, R. and Castelfranchi, C. (1995). Cogni-
tive and social action. UCL Press.

[Cordina and Debono, 2009] Cordina, M. and Debono, C. J. (2009). Maximizing
the lifetime of wireless sensor networks through intelligent clustering and data
reduction techniques. In Proceedings of the 2009 IEEE conference on Wire-
less Communications & Networking Conference, WCNC’09, pages 2508–2513,
Piscataway, NJ, USA. IEEE Press.

[Dang and Jennings, 2006] Dang, V. D. and Jennings, N. R. (2006). Coalition
structure generation in task-based settings. In Brewka, G., Coradeschi, S.,
Perini, A., and Traverso, P., editors, ECAI, volume 141 of Frontiers in Arti-
ficial Intelligence and Applications, pages 210–214. IOS Press.

[DARPA, 2013] DARPA (2013). The network simulator ns-2. http://www.isi.
edu/nsnam/ns//.

[Dyo et al., 2010] Dyo, V., Ellwood, S. A., Macdonald, D. W., Markham, A.,
Mascolo, C., Pásztor, B., Scellato, S., Trigoni, N., Wohlers, R., and Yousef, K.
(2010). Evolution and sustainability of a wildlife monitoring sensor network.
In SenSys, pages 127–140.

[Elkind et al., 2013] Elkind, E., T., R., and N.R., J. (2013). Multiagent Systems,
chapter Computational Coalition Formation. MIT Press, Cambrige, MA.

[Endesa, 2014] Endesa (2014). Smartcity málaga. http://www.

smartcitymalaga.com.

[Gasser, 1993] Gasser, L. (1993). Social knowledge and social action: hetero-
geneity in practice. In Proceedings of the 13th international joint conference
on Artifical intelligence - Volume 1, pages 751–757, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

[Gaston and desJardins, 2005] Gaston, M. E. and desJardins, M. (2005). Agent-
organized networks for dynamic team formation. In Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems,
AAMAS ’05, pages 230–237, New York, NY, USA. ACM.

http://www.isi.edu/nsnam/ns//
http://www.isi.edu/nsnam/ns//
http://www.smartcitymalaga.com
http://www.smartcitymalaga.com

Bibliography 149

[Glinton et al., 2008] Glinton, R., Scerri, P., and Sycara, K. (2008). Agent-based
sensor coalition formation. In Information Fusion, 2008 11th International
Conference on, pages 1 –7.

[Goldman, 2005] Goldman, S. (2005). Information Theory. Dover Phoenix Edi-
tions.

[Griffiths and Luck, 2003] Griffiths, N. and Luck, M. (2003). Coalition forma-
tion through motivation and trust. In Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, AAMAS ’03,
pages 17–24, New York, NY, USA. ACM.

[Heinzelman et al., 2000] Heinzelman, W. R., Chandrakasan, A., and Balakrish-
nan, H. (2000). Energy-efficient communication protocol for wireless microsen-
sor networks. In Proceedings of the 33rd Hawaii International Conference on
System Sciences-Volume 8 - Volume 8, HICSS ’00, pages 8020–, Washington,
DC, USA. IEEE Computer Society.

[Horling and Lesser, 2004] Horling, B. and Lesser, V. (2004). A survey of multi-
agent organizational paradigms. Knowl. Eng. Rev., 19(4):281–316.

[IIIA-CSIC, 2012] IIIA-CSIC (2012). Repast sensor network simulation toolkit.
http://www.iiia.csic.es/~mpujol/RepastSNS/.

[Korkalainen et al., 2009] Korkalainen, M., Sallinen, M., Kärkkäinen, N., and
Tukeva, P. (2009). Survey of wireless sensor networks simulation tools for
demanding applications. In Proceedings of the 2009 Fifth International Con-
ference on Networking and Services, ICNS ’09, pages 102–106, Washington,
DC, USA. IEEE Computer Society.

[Kraus et al., 2003] Kraus, S., Shehory, O., and Taase, G. (2003). Coalition
formation with uncertain heterogeneous information. In Proceedings of the
second international joint conference on Autonomous agents and multiagent
systems, AAMAS ’03, pages 1–8, New York, NY, USA. ACM.

[Kumar et al., 2011] Kumar, V., Jain, S., and Tiwarei, S. (2011). Energy effi-
cient clustering algorithms in wireless sensor networks: A survey. International
Journal of Computer Science Issues, 8(2):259–268.

[Lasassmeh and Conrad, 2010] Lasassmeh, S. and Conrad, J. (2010). Time syn-
chronization in wireless sensor networks: A survey. In IEEE SoutheastCon
2010 (SoutheastCon), Proceedings of the, pages 242–245.

[Lawton, 2003] Lawton, J. H. (2003). The Radsim, chapter The Radsim Simu-
lator. Kluwer Academic Publishers.

[Lesser et al., 2003] Lesser, V., Tambe, M., and Ortiz, C. L., editors (2003).
Distributed Sensor Networks: A Multiagent Perspective. Kluwer Academic
Publishers, Norwell, MA, USA.

http://www.iiia.csic.es/~mpujol/RepastSNS/

150 Bibliography

[Libelium, 2012a] Libelium (2012a). Sensor board. http://www.libelium.com/
es/101651651444/.

[Libelium, 2012b] Libelium (2012b). Waspmote. http://www.libelium.com/

documentation/waspmote/waspmote-technical-guide-eng.pdf.

[Libelium, 2012c] Libelium (2012c). Xbee pro 900. http://www.digi.com/pdf/
ds_xbeepro900.pdf.

[Manning and Schütze, 1999] Manning, C. D. and Schütze, H. (1999). Foun-
dations of statistical natural language processing. Massachusetts Institute of
Technology.

[Martinez et al., 2004] Martinez, K., Hart, J., and Ong, R. (2004). Environmen-
tal sensor networks. IEEE Computer, 37(8):50–56.

[Matamoros, 2008] Matamoros, J. M. (2008). Migració d́’una plataforma de sim-
ulació de xarxes de sensors a repast. Projecte de final de carrera de Enginerya
Informàtica. UB.

[Mihailescu et al., 2011] Mihailescu, R.-C., Vasirani, M., and Ossowski, S.
(2011). Dynamic coalition adaptation for efficient agent-based virtual power
plants. In Klgl, F. and Ossowski, S., editors, Multiagent System Technologies,
volume 6973 of Lecture Notes in Computer Science, pages 101–112. Springer
Berlin Heidelberg.

[Mitra and Nandy, 2012] Mitra, R. and Nandy, D. (2012). A survey on cluster-
ing techniques for wireless sensor networks. International Journal of Research
in Computer Science, 2:51–57.

[Omicini, 2000] Omicini, A. (2000). Soda: Societies and infrastructures in the
analysis and design of agent-based systems. In In this volume, pages 185–193.
Springer-Verlag.

[Padhy et al., 2006] Padhy, P., Dash, R. K., Martinez, K., and Jennings, N. R.
(2006). A utility-based sensing and communication model for a glacial sen-
sor network. In Proceedings of the fifth international joint conference on Au-
tonomous agents and multiagent systems, AAMAS ’06, pages 1353–1360, New
York, NY, USA. ACM.

[Pujol-Gonzalez, 2008] Pujol-Gonzalez, M. (2008). Plataforma per a la simulació
de xarxes de sensors. Projecte de final de carrera de Enginerya Informàtica.
UAB.

[Rahwan and Jennings, 2008] Rahwan, T. and Jennings, N. R. (2008). An im-
proved dynamic programming algorithm for coalition structure generation. In
Proc 7th Int Conf on Autonomous Agents and Multi-Agent Systems, pages
1417–1420.

http://www.libelium.com/es/101651651444/
http://www.libelium.com/es/101651651444/
http://www.libelium.com/documentation/waspmote/waspmote-technical-guide-eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-technical-guide-eng.pdf
http://www.digi.com/pdf/ds_xbeepro900.pdf
http://www.digi.com/pdf/ds_xbeepro900.pdf

Bibliography 151

[Rebollo et al., 2014] Rebollo, M., Carrascosa, C., and Palomares, A. (2014).
Follow the leader in a consensus network as a solution to manage an smart
grid: The balearic islands case. In Proceedings of the 2014 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’14,
pages 1655–1656, Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

[Rogers et al., 2006] Rogers, A., Dash, R., Jennings, N., Reece, S., and Roberts,
S. (2006). Computational mechanism design for information fusion within
sensor networks. In Information Fusion, 2006 9th International Conference
on, pages 1–7.

[Rogers et al., 2008] Rogers, A., Osborne, M., Ramchurn, S., Roberts, S., and
Jennings, N. (2008). Information agents for pervasive sensor networks. In Per-
vasive Computing and Communications, 2008. PerCom 2008. Sixth Annual
IEEE International Conference on, pages 294–299.

[Ruairi and Keane, 2007a] Ruairi, R. M. and Keane, M. T. (2007a). The dy-
namic regions theory: Role based partitioning for sensor network optimization.
In Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems.

[Ruairi and Keane, 2007b] Ruairi, R. M. and Keane, M. T. (2007b). An energy-
efficient, multi-agent sensor network for detecting diffuse events. In IJCAI
2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages 1390–1395.

[Shehory and Kraus, 1998] Shehory, O. and Kraus, S. (1998). Methods for task
allocation via agent coalition formation. Artificial Intelligence, 101(12):165 –
200.

[Siham and El Ganami, 2012] Siham, A. and El Ganami, D. (2012). Advanced
passive clustering-threshold a maintenance mechanism of the cluster structure.
Journal of Theoretical and Applied Information Technology, 46(2).

[Siham et al., 2013] Siham, A., G., D. E., and Abdelilah, M. (2013). Clustering
algorithms based on energy efficiency in wireless sensor networks: survey.
ARPN Journal of Engineering and Applied Sciences, 8(10):785–795.

[Sims et al., 2003] Sims, M., Goldman, C. V., and Lesser, V. (2003). Self-
organization through bottom-up coalition formation. In Proceedings of the
second international joint conference on Autonomous agents and multiagent
systems, AAMAS ’03, pages 867–874, New York, NY, USA. ACM.

[Smith, 1980] Smith, R. G. (1980). The contract net protocol: High-level com-
munication and control in a distributed problem solver. Computers, IEEE
Transactions on, C-29(12):1104 –1113.

152 Bibliography

[Sobeih et al., 2005] Sobeih, A., peng Chen, W., Hou, J. C., chuan Kung, L., Li,
N., Lim, H., ying Tyan, H., and Zhang, H. (2005). J-sim: A simulation en-
vironment for wireless sensor networks. In In Annual Simulation Symposium,
pages 175–187. IEEE Computer Society.

[Sourceforge, 2012] Sourceforge (2012). Repast agent simulation toolkit. http:
//repast.sourceforge.net/repast_3/.

[Srisooksai et al., 2012] Srisooksai, T., Keamarungsi, K., Lamsrichan, P., and
Araki, K. (2012). Practical data compression in wireless sensor networks:
A survey. Journal of Network and Computer Applications, 35(1):37 – 59.
Collaborative Computing and Applications.

[Sundani et al., 2011] Sundani, H., Li, H., Devabhaktuni, V., Alam, M., and
Bhattacharya, P. (2011). Wireless sensor network simulators a survey and
comparisons. Journal of Computer Networks (IJCN), 2:249–265.

[Sycara, 1998] Sycara, K. P. (1998). Multiagent systems. AI Magazine,
19(2):79–92.

[Telefónica et al., 2014] Telefónica, I., Alcatel-Lucent, S., Cantabria, U., Er-
icsson, D., and Surrey, U. (2014). Smart santander. http://www.

smartsantander.eu.

[Varga and Hornig, 2008] Varga, A. and Hornig, R. (2008). An overview of the
omnet++ simulation environment. In In Proceedings of the 1st international
conference on Simulation tools and techniques for communications, networks
and systems & workshops, page 60. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering.

[Vig and Adams, 2007] Vig, L. and Adams, J. A. (2007). Coalition formation:
From software agents to robots. J. Intell. Robotics Syst., 50:85–118.

[Vinyals et al., 2011] Vinyals, M., Rodriguez-Aguilar, J. A., and Cerquides, J.
(2011). A survey on sensor networks from a multiagent perspective. Comput.
J., 54(3):455–470.

[Yick et al., 2008] Yick, J., Mukherjee, B., and Ghosal, D. (2008). Wireless
sensor network survey. Computer Networks, 52(12):2292 – 2330.

[Younis and Fahmy, 2004] Younis, O. and Fahmy, S. (2004). Heed: A hybrid,
energy-efficient, distributed clustering approach for ad hoc sensor networks.
IEEE Transactions on Mobile Computing, 3:366–379.

[Zambonelli and Omicini, 2004] Zambonelli, F. and Omicini, A. (2004). Chal-
lenges and research directions in agent-oriented software engineering. Au-
tonomous Agents and Multi-Agent Systems, 9(3):253–283.

http://repast.sourceforge.net/repast_3/
http://repast.sourceforge.net/repast_3/
http://www.smartsantander.eu
http://www.smartsantander.eu

	Introduction
	Motivation
	Use case
	Proposal
	Structure of the dissertation
	Contributions

	State of the Art
	Situation of the research problem
	Coalition Formation in MAS
	Clustering strategies in WSN
	Conclusions

	Coalition Oriented Sensing Algorithm
	Problem formalisation
	Agent's coalition formation
	Relational functions: adherence and leadership
	Operational Protocol

	Conclusions

	RepastSNS simulator
	Sensor Network simulators
	Platform requirements
	Brief survey on sensor network simulators

	RepastSNS
	RepastSNS main features
	Simulation elements' communication capability
	Model: simulation environment cohesion and experiments repeatability
	Simulation observability
	Simulation elements identification

	Sensor Network simulation elements
	The field
	Phenomena
	Agent
	Sensors
	Actuators
	Battery and Energy Consumption model
	Communication module
	Report

	Conclusions

	Energy and Communication Aware WSN
	Application development structure
	Energy management model
	Common features
	Battery
	Energy consumers

	Communication model
	Data elements
	Communication elements

	Conclusions

	Coalition Oriented Sensing Algorithm based WSN
	Power Supply
	Communication Modules
	Communication interfaces
	Communication messages

	COSA utils
	Mathematical functions
	Information storage

	Agents
	AbstractCfAgent

	SensorAgentSimple
	Setup and initialisation
	Events processing
	Message sending
	Message reception

	COSA strategies
	Sampling Frequency
	Coherence

	SinkAgent
	Setup and initialisation
	Events processing
	Message reception

	CfAbstractReport
	Conclusions

	Experimentation
	Riversim
	Phenomenon

	COSA-able WSN adoption
	Nodes deployment
	Sensors
	Normal Distribution

	Simulation tools
	Simulation reports
	Report classes

	Simulation Arrangement
	Experiments
	Hypotheses
	Experiments general framework
	Scenario I
	Scenario II
	Scenario III
	Scenario IV
	Conclusion

	Conclusions and Future Work

