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Foreword

To the best of my knowledge, the work described in this monography is the
first to have addressed the problem of map generation by means of a multi-
robot approach. This has been also recognized by leading researchers in the
field. Previous approaches had characterized the map generation problem only
in terms of how the map 1s represented. In this work, a much better and complete
characterization is proposed. This characterization takes into account not only
the map representation (grid-based versus feature-based) but also the type of
terrain to be mapped, the existing knowledge about the environment, the type
of exploration and number of robots, the type of sensors used, and the use of
the represented map.

The reader will also find original contributions in the three approaches to
map generation described. The first two deal with indoor unknown structured
environments and are based, respectively, on fuzzy sets and possibility theory
techniques. The concept of possibility grid used in the second approach, is an
original contribution that has very interesting advantages over probability grids
both computationally (allows local computations) and conceptually (easy and
natural representation of ignorance and modeling not only the occupied but also
the free space). The first approach has been tested on real robots and the second
one on simulated robots implementing a behavior-based architecture. The third
approach involves an heterogeneous group of robots (airborne and ground) that
collaborate in the mapping of an outdoor environment by grouping overlapping
polygons representing obstacles. The results have been obtained also with real
robots.

In this work, the reader will also find out how the robots communicate, what
do they communicate, and how the obtained maps are used for planning, as
well as detailed descriptions of the architecture of the robots, the simulator, the
implementation, and the experiments performed.

As advisor of this work, my collaboration with the author has been very
fruitful and enjoyable. I hope the reader will appreciate, and also enjoy, reading
it.

Bellaterra, September 1999
Ramon Lépez de Mantaras, ITTA (CSIC)
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Abstract

The research of this thesis is focused on the map generation problem. It has
been studied trough a compilation of three new and alternative multi-robot
approaches. Their specification and implementation has provided us with
the experience necessary to characterise the mapping problem based on
starting assumptions and problem settings (i.e., type of environment, num-
ber of robots, gathered information, etc.).

Mapping approaches involve three phases: The map acquisition phase,
which has been faced through the use of several robots that explore the en-
vironment. The map building phase, that represents and updates the gath-
ered information as well as its associated uncertainty. And, the map proc-
essing phase, which depends on the subsequent use of the resulting map.
Our proposed approaches face different instances of the mapping problem
by considering:

¢  Unknown indoor and outdoor environments.

e Behaviour-based homogeneous and heterogeneous robots that ex-

plore the environment in the acquisition phase.

e Feature-based maps and grid map representations.

*  Fuzzy sets, Possibility/Necessity values, and weighted costs for un-

certainty treatment.

e Path planning and map completion in the map processing phase.



Resumen

La investigacion llevada a cabo durante la realizacién de la presente tesis
doctoral se centra en el problema de la generacién de mapas. Dicho estudio
ha sido realizado a través de la especificacién e implementacién de tres
aproximaciones multirobot alternativas. La experiencia adquirida tanto al
tratar el mismo problema con diferentes técnicas asi como al considerar
diversas disposiciones del problema (tales como el tipo de entorno a con-
siderar, el nimero de robots a utilizar o la representacién idénea de la in-
formacién obtenida), nos ha permitido adquirir la abstraccién necesaria
para proponer una caracterizacién de las diferentes soluciones que han sido
histéricamente propuestas.

La generacion de mapas consta de tres etapas principales: la adquisicién
de la informacién, la creacién del mapa y su posterior tratamiento. La
adquisicién de la informacién es llevada a cabo por un grupo de robots que
exploran un entorno desconocido. La creacién del mapa se refiere a la etapa
intermedia que conlleva la representacion y el mantenimiento de la
informacién. Finalmente, el postproceso del mapa corresponde al trata-
miento del mapa necesario para su posterior uso. Las tres aproximaciones
propuestas tratan diferentes instancias del problema de generacién de ma-
pas y consideran los siguientes aspectos:

e Entornos desconocidos de interiores y exteriores.

¢ Robots (tanto homogéneos como heterogéneos) que exploran el entor-
no guiados por una estrategia basada en comportamientos.

* Representaciones de mapas basadas en caracteristicas y en discreti-
zaciones del entorno.

e Tratamiento de la incertidumbre mediante conjuntos difusos, costes
ponderados asi como de valores de Posibilidad y Necesidad.

» Postproceso que consiste en la planificacién de caminos y completado
de mapas.



Resum

La recerca portada a terme durant la realitzacié de la present tesi doctoral
es centra en el problema de la generaci6 de mapes. Aquest estudi ha estat
realitzat a través de I’especificacié i implementacié de tres aproximacions
multirobot alternatives. L'experiéncia adquirida tant al tractar el mateix
problema amb diferents técniques com al considerar diverses disposicions
del problema (tal com el tipus d’entorn a considerar, el nombre de robots a
emprar o la representacié més adient de la informacié obtinguda), ens ha
permeés adquirir 'abstraccié necessaria per a proposar una caracteritzacié
de les diferents solucions que han estat historicament proposades.

La generacié de mapes consta de tres etapes principals: I'adquisicié de la
informacio, la creacié del mapa i el seu posterior tractament. L’adquisici6
de la informacié es realitza mitjangant un grup de robots que exploren un
entorn desconegut. La creaci6é del mapa correspon a I'etapa intermitja que
comporta la representacié i el manteniment de la informacié. Finalment, el
postprocés del mapa es refereix al tractament necessari per al seu posterior
us. Les tres aproximacions proposades tracten diferents instancies del
problema de generaci6é de mapes i consideren els segiients aspectes:

+ Entorns desconeguts d’interiors i exteriors.

* Robots (tant homogenis com heterogenis) que exploren I'entorn gui-
ats per una estrategia basada en comportaments.

* Representacions de mapes basades en caracteristiques i en discretit-
zacions de 'entorn.

e Tractament de la incertesa mitjancant conjunts difusos, costs pon-
derats aixi com de valors de Possibilitat i Necessitat.

» Postprocés que consisteix en la planificacié de camins i completacié
de mapes.
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Chapter 1

Introduction

This thesis presents some work that resulted from applying Artificial
Intelligence techniques into Robotics.

Both Artificial Intelligence and Robotics have been defined in a variety
of manners. Here, we cite two definitions that illustrate how close they can
be:

“Artificial Intelligence is the study of computations that make it

possible to perceive, reason, and act” (Winston 92)

“Robotics is the intelligent connection of perception to action” (Brady

85)

The interests of both Robotics and Artificial Intelligence concur specially
in the research of autonomous robots:

“Considering a Robot as an active, artificial agent whose environment
is the physical world [...] Autonomous Robots are defined as those that
make decisions on their own, guided by the feedback they get from their
physical sensors” (Russell 95).

In general, robots are assumed to perform tasks in physical
environments. Although real environments are very demanding by nature,
their difficulties increase significantly when robots become mobile. During
the execution of their tasks, autonomous mobile robots have to deal with
several environmental aspects:

e Uncertainty about the environment: robot’s sensors are imperfect

and have a limited range that prevents to obtain global information.

e Uncertainty about robot’s actions: on the one hand, there is no

guarantee that an action will be accurately executed, and on the
other, the effects of an action may change over time.
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e The real world is dynamic and complex: it presents a large number
of different situations to deal with.

This thesis describes research addressing the map generation problem
using groups of autonomous mobile robots. This chapter introduces this
problem as well as two other related problems: robot navigation and path
planning. The aim of this introduction is to provide a context by giving
some definitions and to provide a general view of our work.

1.1 Problem Statement

1.1.1 The Map Generation Problem

In general, a Map can be considered to be a model of a given environment.
Nevertheless, this definition might suggest a complete and accurate
representation of the environment, and this might imply to specify an
impracticable number of features with an infeasible accuracy. Hence, in
this thesis, we define a map as an approximate description of some of the
relevant features in a given environment. A map does not need to contain
all the information of the environment but only those relevant features that
can be acquired and recognised. The relevance of the features will depend
on the purpose for which the map is needed.

From this map definition it is possible to define the Map Generation
Problem through the following question: how to generate a map as accurate
as possible considering information that comes from uncertain and limited
resources? When these resources are robots, the solution to this problem
can be addressed by different approaches depending on the characteristics
of the environment, on the robots’ sensor and actuators capabilities, and on
the subsequent use of the map.

The characteristics of the a priori knowledge about the environment
define the map generation process. In this manner, if the environment has
been augmented by adding landmarks, mapping means recognising
landmarks and establishing relations between them. On the contrary, if the
system has no landmarks but an initial approximate map of the
environment, the mapping process consists in matching the previous
knowledge in the map with actual detections in order to refine the map.
And, finally, when the environment is unknown and not augmented with
landmarks, there is no direct way of distinguishing the relevant
information and, therefore, every piece of information discovered by the
robot should be included in the map.
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Robot equipment characteristics are also crucial in the mapping process.
This is because the nature of the sensors not only constrains the kind of
information that can be retrieved but also the imprecision associated with
it. For example, robots can know with more or less accuracy their position
depending on how they obtain their odometry information (encoders at the
wheels for dead reckoning, compass for heading, or GPS for global
positioning). At a given position, robots can gather very different kinds of
data depending on the sensors they are equipped with. Cameras, sonar
sensors, infrared sensors, and laser range finders are different possibilities
that require specific methodologies for data extraction and subsequent
analysis.

The general settings of each specific mapping problem have a significant
influence when choosing the representation of the environmental features
and their relations in the map. It is very common to represent indoor
environments with area-based map representations (Lee 96) such as
occupancy grids, certainty grids or probability maps. These representations
divide the space into distinct regions with associated properties (which
usually describe occupancy). Very often, the size of the regions is constant.
This implies a homogeneous space resolution that is not appropriate for
extensive outdoors environments with low obstacle density. This reason
yields outdoor environments to be represented by feature-based maps that
pay more attention to obstacles rather than to free-space. They usually
represent an environment as a list of primitive features and their
properties. Topological maps can be seen as feature based maps including
relations among features (arcs in a graph representation).

The representation of the map must also deal with the uncertainty
associated with map elements. Although there are several alternative
approaches to uncertainty treatment (such as Possibility Theory, Fuzzy
Logic, or Evidential Theory), Probability techniques are the most commonly
used for both area-based and feature-based maps. Uncertainty is associated
with information that comes from robots’ sensors. Therefore, since sensors
have been classically modelled in probabilistic terms, the probabilistic
representation has been widely preferred.

Finally, we also consider that the ulterior use of the map must be also
considered when choosing the representation of the map. In this sense, we
follow the ecological psychology theory of affordances (Gibson 79), which
says that things are perceived in terms of the opportunities they afford an
agent to act. In the same manner, we represent maps in those data
structures that are more suitable for the posterior use of the map. In
general, graph representations are more useful to plan paths than grids.
This is because the algorithms for finding optimal paths in graphs are well
known, whereas discretized representations use less efficient approaches
such as potential fields —which have local minima problems— or
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reinforcement learning —whose long learning periods cannot be afforded by
most autonomous robots applications.

1.1.2 Robots’ Navigation

Navigation in this thesis is understood as the policy that an autonomous
mobile robot must apply when moving inside an environment.

Navigation becomes a real challenge when the autonomous robot must
perform it without having an accurate model of the environment nor an
accurate model of its actions and their results. In this manner, robot’s
actions are not performed exactly as they are expected and their results are
not completely predictable nor perceptible. Citing Kortenkamp et al. words:

“Mobile robots pose a unique challenge to artificial intelligence
researches. They are inherently autonomous and they force the
researcher to deal with key issues such as uncertainty (in both sensing
and action), reliability, and real time response. Mobile robots also
require the integration of sensing, acting and planning within a single
system. These are all hard problems, but ones that must be solved if we
are to have truly autonomous, intelligent systems” (Kortenkamp 98).

In the early stages of mobile robots research, the sense-plan-action
paradigm was the only approach to robot navigation. The link between
mobile robotics and Artificial Intelligence was probably first forged with
SHAKEY, a robot developed at the Stanford Research Institute in the late
1960s (Nilsson 69). By the 1980s Artificial Intelligence research was
beginning to produce large software systems that, from a starting position,
could take a goal location and generate a sequence of actions that reached
the given goal. This required a model of the world, which was complex and
often had to incorporate large amounts of domain knowledge. Moreover,
each step of the generated plan was passed to the control level of the robot
for execution, which meant that the plan had to include actions down to the
actuator level. As a consequence, the amount of data moving from the
sensors to the centralised computing resources was significant, and the
computational overhead did not allow to synchronise the world
representation with the real environment.

In 1986, Brooks (Brooks 86) showed that behaviours similar to those
observed in simple animals —such as insects— could be produced with very
little, if any, internal state. The subsumtion architecture was designed to
make it easier to build these robots so that the most appropriate behaviour
would be used at each moment. These behaviours would implement tight
sense-act loops using asynchronous finite-state machines. Higher level
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behaviours would dominate (subsume) low-level behaviours by suppressing
their output to the actuators. The idea was to build a robot that accom-
plishes tasks through behaviours that ran in parallel and are arbitrated by
simple strategies based on priorities. The world model was thus distributed
among the behaviours, with only the relevant part of the model being proc-
essed for each behaviour.

Nowadays, most applications lie somewhere between behaviour-based
approaches and world models, increasing the emphasis on sensing and
acting and reducing the emphasis on planning. Arbib and Arkin (Arkin 87)
pioneered the new paradigm from a cognitive science perspective within the
robotics community, calling it action-oriented perception.

1.1.3 Definition of the Path Planning Problem

In the context of an environment, if an autonomous robot —initially located
at a certain position— is assigned the task of reaching a goal position, then
it needs to describe a certain trajectory in order to fulfil its task.
Considering this trajectory as a Path, and considering as well the fact that
this path must be somehow planned, we encounter the Path Planning
problem. It is a well-known problem for which, given an environment and
two positions belonging to it, it is required to specify the trajectory
connecting these two locations. The entire trajectory must belong to the free
space area of the environment, and usually, it must fulfil some additional
requirement such as to be the shortest path or to be the safest one. When
the energetic resources of the robots (i.e., batteries) are limited, short paths
are essential. On the other hand, safe paths have been habitually planned
for manipulator’s applications, which try to maximise the distance to the
obstacles in order to avoid collisions.

The path planning problem has specific solutions when the map (in the
sense that subsection 1.1.1 defines) of the environment is known (the path
planning section —8.1— introduces several alternative approaches).
Nevertheless, how to plan over a partially known environment remains as
an open issue.

1.1.4 Sources of Uncertainty

Different kinds of sensors obtain information about the environment or the
robot’s state by means of different processes. This variation in the
perceptual acquisition of information means that noise alters the measure-
ments under different circumstances. Therefore, the resulting uncertainty
must be considered specifically for each kind of sensor.

When evaluating the information that a robot can obtain from its envi-
ronment, there are two main aspects to take into account:
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Unreliability: to what extent what the robot is sensing is real, and
Imprecision: how accurate is the obtained information (this depends
both on the robot’s positioning accuracy and the precision of its
sensors).

In this subsection we briefly describe the most commonly used sensors
and comment the kind of associated uncertainty they have.

Ultrasonic Range Finders

Ultrasonic Range Finders are commonly known as sonars (Sound Naviga-
tion and Ranging). Generally, an ultrasonic sensor is composed by two
fundamental elements: an acoustic transducer, which generates a packet of
ultrasonic waves, and a ranging circuit board whose task is to detect the
resulting echo of the signal. The time delay between the transmission and
reception allows to compute the distance of the sensed obstacle.

This measuring process is affected by three basic sources of uncertainty
(Poloni 95):

The radiation cone does not have a zero width (in fact, it is usually
about 25 or 30 degrees wide). Inside the cone, it is not possible to
determine the angular position of the object that originated the echo
(see examples a), b), and c) in Figure 1.1).

Radial resolution is finite: in general, the accuracy remains high for
a certain range that usually goes from 10 cm to 10 metres.
Specularity: if the incidence angle is larger than a critical value, the
sensor reading is not significant because the beam may have reached
the receiver after multiple reflections, or as part d) in Figure 1.1
shows, it could even be lost.

VYT ¥

Figure 1.1: Typical uncertainties with ultrasonic sensors. The objects in a), b), and
c) give the same measurements. The signal in d) is lost.
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Infrared Sensors (IR)

Similarly to sonars, infrared sensors are radiant transducers (transducer is
a sensor plus associated circuitry) with the same transmission-detector
system that evaluates the distance to detected obstacles. The main dif-
ferences are that they emit light instead of sound and that they cover a
smaller range. A LED (Light Emitting Diode) emits the infrared signal,
which is affected by the colour of the object it encounters: if the surface of
this object is black most of the emitted light will not be reflected so that the
object will not be detected. In this manner, since white surfaces are the
ones that reflect light more effectively, robots with infrared sensors are
more suitable for environments mainly occupied by white (or light coloured)
objects and walls.

Laser Scanners

Laser scanners are active sensors that emit a low-powered laser beam that
is scanned over a surface. Through techniques such as phase-amplitude
modulation, the distance to the individual points can be computed with the
net result of an array of image points, each of which has an associated
depth. In effect, a three-dimensional image is obtained. Despite their very
high cost, many current implementations of these devices present mechani-
cal instabilities and sparse data sampling at long distances.

A typical configuration of a laser is a lower-cost linear array laser
scanner known as Structured light vision system, (Fabrizi 99) which is
composed by a laser light emitter and a video camera. The emitter
generates a laser beam that goes through a cylindrical lens to create a
plane of light. Such plane is emitted in a circular sector and produces a
bright line (object line) when it hits an object. The camera is placed so that
its horizontal scan lines cross the object line. Exploiting the geometrical
transformation between the camera and the plane of light co-ordinate
frames, it is possible to compute the distance associated with each pixel.
The performance of the structured light sensor may be affected by various
phenomena such as intense ambient light, the colour of the reflecting
surface, camera occlusions, or absence of the object line (due to a mirroring
of the laser beam).

Cameras

Together with sonars, cameras are the most commonly used sensors in
autonomous mobile robots. Historically, cameras have been used to
recognise previously known features that are used as landmarks (Lazanas
95). They have also been widely used in autonomous vehicles, in order to
track the lines or edges of roadways (Kiy 95). Image processing is a re-
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search area by itself that goes beyond the scope of this thesis, so we are not
going to get into the details. Just comment that in order to perform certain
tasks (such as navigation, manipulation, or recognition) it is necessary to
extract 3-D information from the environment. Usually, this is implies:

* Segmentation of the scene into distinct objects, and

e Determining the features (position, orientation, and/or shape) of

each object.

The objective of image segmentation is to separate the components of an
image into subsets that correspond to the physical objects in the scene. The
image segmentation methods assume that the objects have smooth homo-
geneous surfaces that correspond to regions of constant or smoothly varying
intensity in the image and that the intensity changes abruptly at the
boundaries (Nevatia 86).

The appearance of an object in an image can be modelled using
appropriate two-dimensional shape representations, so that instances of
such objects can be recognised and quantitatively inspected by comparing
their actual appearance in an specific image with their expected ap-
pearance as determined by the model (Davis 86).

Extracted information can be highly affected by shadows or occlusions,
and, although stereo vision (two calibrated cameras) allows the generation
of depth maps (which specify distances to objects and increase accuracy),
the extraction process becomes expensive and computationally demanding.
Therefore, cameras are usually combined with other sensors. Otherwise,
they tend to focus on recognising specific views as the purely-vision based
approach in (Franz 97), which obtains 360° horizontal views by using a
conical mirror mounted above a camera pointing to the centre of the cone.

Global Positioning Systems (GPS)

Information positioning constitutes a key information for mobile robots.
Global Positioning Systems (GPS) use three or more satellite signals to
compute the position of the robot. This position is given in world’s co-
ordinates in terms of latitude, altitude and longitude and it is computed
based on the travelling time of the GPS signals and triangulation.
Differential GPS use an additional ground-based transmitter that allows to
obtain a positional resolution of submeter ranges. The position information
has the guarantee that the real robot location is included within a fixed
area around the given co-ordinates, so that the error is not accumulative.
Apart from their cost, their main problem is that the satellites’ signals can
be lost. This makes GPS more suitable for outdoor applications and forces
the robots to have some kind of odometry capability to be used in case the
signals are not received.
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Wheel Encoders

Various kinds of encoders are available for positioning purposes, most of
them count the number of wheel rotations, whilst others recognise the
direction of rotation. The former ones work on a photoelectric principle. A
LED emits light through an indexed code wheel (which is rigidly mounted
on the motor shaft). And the receiver (phototransistor) converts the
light/dark pulses into electrical signals, which are subsequently treated in
order to compute the number of wheel rotations.

In this manner, it is possible to compute the position of the robot by
keeping track of all its movements (both turns and displacements). This is
usually known as dead reckoning, which was originally derived from
deduced reckoning. The main encoders’ problem is that, although their
resolution can be very high for manipulator’s applications, they accumulate
a significant error in mobile robots, mainly due to drift and wheel slippage.

1.2 The approach of this Thesis: Multi-robot
Mapping Solutions

1.2.1 Motivation

To generate maps by means of mobile robots is an open problem that has
been addressed from different points of view. In this section we are not
going to describe what was done before 1994 (when we started the work of
this thesis) because the related work section in the last chapter is devoted
to that. Nevertheless, we would like to emphasise the conclusions we
extracted after studying the ongoing research:

e On the one hand, all the previous map generation approaches
involved the exploration of the environment by means of a single
robot. As a consequence, the flexibility and accuracy of the whole
system relied on the fault tolerance and the precision of one robot.

 And, on the other hand, each approach focused in some specific
aspects of the problem, (such as the map representation or the
information acquisition), but there was a lack of a global study of the
problem, and therefore, some of the important issues in the solution
were simply taken as assumptions.

These two aspects represented two great challenges for us:

e First, the distribution of the map acquisition phase.

e And second, the study of the problem from a rather general point of
view, taking into account all the relevant aspects for the definition
of the settings (or bases) of each specific mapping application.
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The distribution of the map acquisition phase has been faced through the
use of several robots.

This allows to increase the robustness of the map generation process. This
is because the quantity of information that the map contains degrades
gradually with the number of robots that do not succeed in their exploration
task. Moreover, since the error associated with the gathered information
accumulates along the exploration, it is better to have k robots that explore
an area during a certain period of time than to have a single robot that
explores k times this period.

Multi-robot approaches can be characterised by the use of homogeneous
or heterogeneous robots. Heterogeneity is usually related to specialisation,
and can refer both to the use of different robots or to equal robots perform-
ing distinct tasks. In this thesis we present two basically homogeneous
approaches and a third one that is heterogeneous.

The study of the problem has been done trough a compilation of several
new and alternative approaches to different instances of the problem.

The specification and implementation of the three solutions we propose has
provided us with the experience necessary to specify the problem as it is
presented in the previous section. We claim that, when facing the mapping
problem, it is essential to make an explicit characterisation of its starting
assumptions and problem settings (type of environment, number of robots,
gathered information, etc.). This is particularly important when one has to
deal with real problems, i.e., problem settings provided by the context of the
projects, as in our case, as opposed to problem settings designed to test a
given approach. In order to avoid considering unrealistic assumptions, we
have tried to make explicit the concrete features that are specific to each
problem settings and that therefore had a strong influence in the choice of
each particular approach we present.

The analysis and specification of the problem settings is a first step
towards a better understanding of the relation between the nature of the
problem and the approach taken, so as to better assess the suitability of the
approach and the significance of the results obtained.

This sometimes appears to be hidden when analysing the results of a
specific mapping approach. Obviously, in order to obtain concrete solutions,
the analysis cannot be done from a strictly general point of view. Rather on
the contrary, our aim in this thesis is to use specific cases to illustrate that
some solutions are more suitable for specific problem settings than others.
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We apply different Artificial Intelligence techniques for each of our ap-
proaches.

The given solutions do not present new Artificial Intelligence techniques
but expand the potentiality of the existing ones by providing original
applications in the Robotics field.

1.2.2 Different Approaches to the Multi-Robo t
Mapping Problem

This thesis presents three new and alternative approaches to solve the map
generation problem when using several autonomous robots. These ap-
proaches have been specified on the basis of a number of aspects we
consider essential for the definition of the mapping problem settings. We
present them as a list of questions that should be asked when facing any
specific mapping problem for the first time.

1.2.2.1 We Need to Ask the Right Questions

We have already commented that when facing this problem there are
several aspects we need to define:

¢ How will the environment be considered? (Indoors or outdoors?
previously augmented with landmarks, partially known, or com-
pletely unknown?).

«  What kind of robots will be used? How many? Will the group be
homogeneous or heterogeneous?

e« How will the robots be equipped? How will the robots behave when
gathering information (i.e., exploring)? What will be the co-operation
level?

«  What kind of information will the robots gather? What will be the
main source of uncertainty associated to the obtained information?

e How will the map be represented? (Feature-based or area-based?
Will the representation be able of including uncertainty and being
simultaneously suitable for the task?

« How are we going to treat the resulting map? What is the main task
of the robot group?

1.2.2.2 Three Different Answers

This thesis attempts to answer these questions through the presentation of
three approaches together with the motivations that yield us to apply
different solutions depending on the characteristics of each specific prob-
lem.
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Representation of Orthogonal Indoor Environments by means of
Fuzzy Techniques

In the first approach we have a group of robots (developed at the UPC?)
that explore an unknown environment. This environment is considered to
be indoors and orthogonal. The robots explore by moving randomly in free-
space and following walls —or obstacle edges— when detected. The
information that will be used to generate the map will consist of the
portions of walls or obstacles that have been followed by the robots. In order
to filter spurious sensor readings that come from non-existing features, we
only consider those features that, after being detected, have been indeed
followed. Our robots are small, compute their position by dead-reckoning,
and use infrared sensors to follow walls from a close distance. This means
that the uncertainty related to the position of a followed wall is mainly due
to the error associated with the robot position. The robots co-operate by
sharing the information about the followed features when two of them
meet. Finally, at the end of the exploration, they communicate their infor-
mation to a host computer, which is in charge of generating a map of the
environment.

Considering these settings, the map representation that has been chosen
is the feature-based one. More concretely, we represent followed features as
orthogonal segments (i.e., segments that can only be vertical or horizontal).
These segments are imprecise, and we represent their imprecision by
means of fuzzy sets (which are computed on the basis of the accumulated
robot position errors). Although we have previously commented that indoor
environments are generally modelled by means of area-based maps because
indoors have a limited size and a significant density of features, we use
feature-based because the number of followed features is reasonably small
and because this is a kind of ‘symbolic approach’ that allows the host to
reason about the gathered information. Hence, the imprecise segments can
be fused, combined or modified in order to generate higher level features
such as corners or doors.

The representation of the uncertainty by means of fuzzy sets provides a
simple fusion operation and, unlike the Probabilistic approaches, does not
require a large number of well distributed data to be available (which is
usually not available during autonomous robots’ navigation).

1 UPC: Technical University of Catalonia, ESAII: Department of Automatic Control.
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Using Possibility Grids for Structured Indoor Environments

The second approach is based on the simulation of the robots in the
previous approach. In this case, we have developed a simulator system
which includes a robots’ behaviour-based navigation control. The settings
are very similar, there are only two main differences. First, the orthogonal
assumption about the environment has been relaxed in order to include
oblique features. And second, the task is not only to obtain a map but to
plan paths towards less explored areas. The simulation system also
includes the behaviour-based navigation control required for the robots in
order to follow the planned paths and apply reactivity when necessary.

In order to plan paths, the information of free-space is as relevant as the
information about detected and followed features. To include trajectory
information implies that a much higher density of information should be
included in the map representation. Therefore, the main concern is now not
to reason about the features of the map but to distinguish between
occupied, free and unknown areas in the explored environment. This,
together with the fact that we are still indoors, makes more suitable the
occupancy grid approach to represent the map. In our case, we have chosen
Possibility Theory to represent robot trajectories and detected features.
Robot trajectories are modelled through possibility distributions and
detected features (that have been followed) are modelled using necessity
value distributions. Again, the main source of imprecision is the robot
odometry error, which is used in the generation of these distributions.
Possibility theory is specially useful because it assigns, for each cell in the
grid, two dual values (necessity and possibility degree of being occupied).
Contrarily to Probability, which cannot model ignorance for the unexplored
areas, these values allow to represent ignorance in addition to occupancy
and free-space.

Robots store their gathered information in terms of trajectory and ‘wall’
segments. These segments are discretized into certainty values that are
assigned to adjacent cells in the grid. This segment discretization simplifies
the certainty value combination because it becomes local to each cell. And,
although there is not a explicit segment representation, we are still able to
find the boundaries of wall segments and extend them in order to increase
the coverage of the environment.

Finally, the information in the grid is transformed into a visibility graph
which allows to obtain the shortest (with some safe restrictions) paths to
goal positions. The path is computed with the A* algorithm, an optimal Al
search technique based on heuristics. We also study how extended maps
yield to safer paths that decrease the use of reactivity when following them.
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Using Symbolic Grouping for Outdoor Environments

The third approach involves outdoor environments and was developed
during my stay at USC? joining the Taskable Heterogeneous Robot Colonies
project. In this project, the colony is formed by several ground sonar-
equipped robots and an autonomous flying vehicle that has a camera
pointing to the ground. Robots obtain and broadcast information about
obstacles in the environment so that each of them can generate the same
map (or similar, in case of communication problems). Ground robots’ main
task is to plan paths towards a goal position. These plans must be updated
each time a new obstacle obstructing the path is detected.

Considering that we have outdoor environments (that is, large
environments with low density) and that obstacles are represented as
polygons, the feature-based maps are naturally chosen. We build maps by
grouping obstacle polygons into higher level structures with simple shape:
the obstacle areas. Obstacle areas simplify and group information.
Therefore they allow the generation of tractable visibility graphs, and thus
a simple graph update and path planning (simpler than if the graph was
generated directly from the obstacle polygons). The generation of the map is
incremental: new polygons are included into the map obstacle areas, forcing
an update of the visibility graph. Nevertheless, the polygon information is
not lost, so that we can plan paths at different levels of detail (obstacle area
level or polygon level).

When considering the uncertainty associated with the obtained
information, the main concern becomes to discern among the received
polygons: which ones correspond to real obstacles from those others that are
actually the result of shadows or other colour changes in the images. We
represent this uncertainty by means of certainty degrees associated with
each polygon. These values are aggregated in the obstacle areas and are
proportional to the polygon areas and to the sensor reliability.

1.2.2.3 Assumptions

One of the aims of this thesis is to present map generation approaches that
consider and analyse all the aspects in the problem, without hiding basic
assumptions that could affect the feasibility of the approach. Nevertheless,
some form of assumptions are almost unavoidable. In this thesis, we
assume two aspects that are common to the three approaches:

2 USC: University of Southern California, Robotics Lab.
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¢ The environment is considered to be completely unknown and not
augmented with landmarks, but easily passable and mainly
reachable for robots equipped with wheels.

e The environments can be properly modelled by 2-dimensional maps.
In two approaches, maps represent objects at the plane defined by
the sensors, and in the third approach, aerial views give planar
projections of all the objects in the environment.

1.2.3 An Schematic View of Our Approaches

At the beginning of this section we have emphasised the importance of
asking the right questions when defining a specific solution for the mapping
problem. The following Table 1.1 summarises the answers provided by each
of our three approaches.
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Approach 1 Approach 2 Approach 3
Environment | Unknown Indoor Unknown Indoor Unknown Outdoor
Orthogonal Structured
Group of robots | Homogeneous Homogeneous Heterogeneous
Simulated e
Tasks Exploration Exploration Map generation
Map generation Map generation Path planning
Path planning
Path Following
Co-operation | Share information | Share Information |Broadcast
Host communication | Host communication | Information

Information Followed walls Robot trajectories Obstacle polygons
Followed walls
Uncertainty About location About location About existence
Uncertainty Fuzzy Sets Possibility/Necessity | Certainty degrees
representation values
Map approach | Feature-based Area-based Feature-based
Map elements | Imprecise Segments | Grid cells Obstacle polygons
Corners Visibility graph Obstacle areas
Doorways Visibility graph
Map generation | Segment fusion Value combination | Polygon grouping
Map treatment | Map completion Map extension Path planning
Path planning Path update

Table 1.1: Brief description of our three approaches: compact answers to the map-

ping questions.

1.3 Distribution of the Parts and Chapters

Each one of the three approaches is respectively presented in the first,
second, and third parts. The last part concentrates on the conclusions of the

thesis.
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Part I

Chapter 2. This chapter introduces our first approach to map
generation. Initially, it specifies the robot characteristics. The second
section describes how the robots explore the environment, what kind of
information they gather and how do they co-operate. Finally, the third
section corresponds to a statistical error analysis that will be used to
represent the uncertainty in both, the first and second approaches.

Chapter 3. The map generation process is the focus of the third chapter,
which constitutes the central part of the first approach. Initially, it
introduces the basic Fuzzy Logic notions in order to give the background to
the imprecise segment definition, which is subsequently presented. These
imprecise segments are the basic elements in the map representation, and
there are two processes applied to them: fusion and completion. The
chapter ends with the algorithms implemented for both processes.

Chapter 4. The ultimate chapter of the first part presents the results
obtained by the indoor feature-based mapping approach. It details the used
environments, different navigation strategies, the gathered information
and the map generation (including fusion and completion). Finally, it
includes some further remarks related to the random exploration strategy,
the development of the approach and some final conclusions.

Part 11

Chapter 5. The second approach is completely based on simulation. We
have developed a simulator application that allows us to define and explore
different environments. Several robots can simultaneously explore the
environment where they have been included. This fifth chapter is a rather
technical description of the simulator, it includes the description of specific
aspects of the simulated robots such as how they sense, how they execute
actions, their odometry errors, the information that they gather, how to
interpret their trajectory lines on the screen, etc.

Chapter 6. Still in the simulator, the robots navigate based on the co-
ordination of several basic behaviours. This chapter specifies the control
architecture used for robot exploration and describes the rules used to
implement each basic behaviour as well as the ones that specify the
behaviour co-ordination. It ends with the presentation of the exploration
results.

Chapter 7. Back to the map generation issue, the penultimate chapter
of this part describes the basic features of the second mapping approach. It
introduces the Possibility Theory and how it is used to represent and
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combine both the occupancy and the free-space information in the grid map.
It also compares the possibilistic model with the probabilistic and
evidential models. And finally, it presents the map generation results.

Chapter 8. The ultimate chapter of this part contains the specification
of the map refinement process. It first introduces the wall extension process
and the corresponding results. Second, it describes the graph extraction,
the path planning processes, and their results. As a separate section, the
robots’ path following strategy is presented. As for exploration, this
strategy is based on similar basic behaviours that allow to follow a path
and react when unexpected obstacles are encountered. Finally, there is a
discussion about how extended maps yield, in general, to safer paths that
require less use of reactivity when being followed.

Part III

Chapter 9. The description and results of the third approach are
condensed in this ninth chapter. It includes the specification of the input
information, how it is grouped in order to generate the map and how is it
used to plan and update paths towards goal positions. The results are
distributed along the sections. The chapter ends with the description and
treatment of the uncertainty associated with the obtained information.

Part IV

Chapter 10. This chapter constitutes the last chapter of this thesis.
Hence, it is dedicated to provide the conclusions and contributions of this
thesis. It presents as well the related work and a comparison with our
work. Finally, it ends with a brief description of what could be the future
work.
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Chapter 2

Troop of Small Autonomous
Robots

The first part of this thesis presents a part of the Autonomous Navigation
Troop (A.N.T.) project. The main objective of the A.N.T. project (Amat 95)
was to model an unknown office-like environment. More precisely, this
work presents a solution to the map generation problem for cases in which
the environment is structured and indoors.

The solution is given generally in terms of a Master-Multi-Slave approach,
where a troop of small autonomous robots could be considered as being
‘slaves’ of a host computer (the ‘master’). This approach consists of two
main steps:

1. A co-operative and distributed exploration of an unknown environ-
ment using autonomous robots.

2. Incremental generation of environmental map by a host computer
which uses fuzzy techniques to combine the information received from
the robots.

This chapter concentrates on the first in the approach above. First
section gives more details about the troop of robots and the task. Section 2
focus on the hardware characteristics of the robots: their architecture and
their sensors. The third section explains how the robots explore, the
information they gather, and how they communicate. Finally, the last
section studies the robots’ odometry errors and their accumulation. The
measurements of the errors, their statistical analysis, and how they are
modelled are also introduced in the last section. The next chapter will show
how this analysis will be used to model the imprecise location of obstacles
and walls by means of fuzzy techniques.

21
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2.1 Specification of the Team and its Task

In the ANT project a troop of low cost, small autonomous robots has been
developed for exploring an environment that is unknown but easily
passable. These robots follow the already classical line of insect robots
(Alami 93, Brooks 86, Brooks 91).

The goal of these autonomous robots is to obtain partial information
about a vertically and horizontally arranged (orthogonal) environments
during their exploration runs. This information is subsequently supplied to
a host computer which computes the corresponding global map. The
environment is completely unknown for the robots. Nevertheless, there are
some assumptions about the environment that are taken —although they
do not concern the robots. On one hand, we assume that most parts of the
environment are easily passable if we want the robots to succeed in their
task of exploration. On the other hand, although the environment is also
unknown for the host computer, it considers some assumptions that
simplify the process of building the map: it is indoors and orthogonally
structured.

Using this multi-robot strategy and a host computer to generate a model
of the environment, a better efficiency is expected than that which would be
obtained based only on a single expensive robot. The Master-Multi-Slave
strategy is highly distributed, thereby providing two main advantages:
price and robustness. We propose a distributed approach based on various
small cheap robots rather than a centralised approach that relies on the
exploration task using a unique expensive robot. To guarantee the success
of only one explorer robot is especially difficult for an unknown
environment. In our distributed approach, the autonomous robots co-
operate by transferring the perceived environment to each other when they
meet. In this manner, not all the information of the non-returning robots is
lost provided that they had encountered other robots that were able to
return.

The behaviour of these small autonomous robots could be seen as a
metaphor of the behaviour of ants. We did not try to follow any biological
model, but in some sense we were inspired by two aspects of ants: first, how
they spread when looking for sources of food, and second, how they
communicate when building a path from their nest to the food. Similarly,
our robots explore randomly and transfer information to each other when
they meet. Nevertheless, robot navigation strategy is designed so that
robots show three different random behaviours —calm, normal, and
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anxious. These different behaviours are used in order to increase the
coverage of the environment.

2.2 Hardware Characteristics

Each robot has been designed with the aim of being small and cheap. They
must have a high level of autonomy and be endowed with a low cost
processor to memorise a map of the perceived environment. All these
requirements have lead to a solution consisting of small robots with three
wheels. Two of them are steering wheels, having independent motors, and
the third wheel is passive.

The robots environment perception system and the communication with
the host, or with other robots, is based on infrared (IR) impulse modulated
sensors. Since some of the robots may not be able to return to deliver their
map to the host, the following communication process is established: when
two of them meet while at an exploration run, they exchange all the
information they have acquired from the environment so far. In this way,
when a robot reaches the host, it delivers both, the information acquired
during its own run as well as the information obtained from other robots
that it has encountered. This communication process permits the collection
and transfer of all the information of those non-returning mini robots, by
those that return to the host.

Figure 2.1: Autonomous Mini-Robot.

Robots are composed of the following hardware specification. Each robot
is 21 cm. long and 15 cm. wide (see Figure 2.1). Two 5 cm. driving wheels
function to permit to pass over some small obstacles such as carpets or
electrical wires. The robots can reach a maximum speed up of 0.6 m/s., and
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since the battery has about one hour of charge, each robot could, in
principle, explore a maximum distance of about 2000 m.

2.2.1 Architecture: Functional Modules

The design of control unit in each robot has been constrained by both the
simple hardware described above, and the need for a behaviour which is
sufficiently smart in order to navigate efficiently. Furthermore, the robot
had to be based on a flexible hardware to allow for experimentation of
navigation and control strategies. These requirements have resulted in a
design which contains three different functional modules (see Figure 2.2):

* A navigation module, that generates the trajectory to be followed;

* A steering module, which controls the motors in order to follow the
generated trajectory; and

e A perception module, that acquires information of the environment
by means of IR sensors. However it is possible to replace this module
by other modules adapted to different types of sensors.

NavigationModule
7 AN
Steering Module Perception Module
IT IT
Wheels Sensors

Figure 2.2: Three functional modules in our mini-robots.

The computer used to implement the navigation control unit is a 80C186
with 1 MB of RAM used to store the environment map perceived by the
robot and, in case it has met other robots, the respective communicated
maps.

The steering control module is implemented on a 80C552 and operates
with high resolution since each encoder corresponds to a displacement of
only 2 mm. A special control is needed to follow walls and obstacles, and
this is done by micro-corrections of the robot orientation in order to keep
the robot parallel to the followed wall. This kind of controller is known as
the bang-bang controller and results in a zigzag trajectory.
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2.2.2 Sensing Capability

Each robot is equipped with the following sensors:

Impulse generators at each wheel for odometry, which continuously
provide the information about the number —and fractions— of turns
that each wheel performs. In this manner, when both steering
wheels move in the same direction, these encoders give the distance
that the robot is covering. Analogously, when the wheels move in
opposite directions, the turning angle of the robot is obtained.

Five infrared (see page 7) proximity sensors for frontal obstacles
detection and for wall following. These infrared sensors are
distributed in the front side of the robot, considering the front as the
origin, they are at 0, +45° and + 90° These sensors provide two
possible readings: near and far, which correspond to 10 cm and 20
cm respectively.

Two proximity sensors oriented to the ground for the detection of the
terrain horizontal discontinuities.

Safety micro switches for protection against collisions.

One omnidirectional IR Emitter/Receiver sensor to detect the
presence of other robots and to transmit data —with a modulated
FSK signal that transmits data at 9.600 bits/s.

One IR Emitter/Receiver with a scope of 90 degrees —going from the
frontal axis of the robot to its left side—to generate both a priority
signal (right hand preference) and to situate other robots in the
neighbourhood.

2.3 Robot Navigation

The navigation system incorporated to each robot has a partially random
behaviour. Although our environment has right angles and therefore, +90°
turns would be enough to move into it, the robot also make +45° turns to
increase its random movement choices. Robot movements consist of straight
displacements (rectilinear movements) followed by turns on themselves
(i.e., spins that change their direction without changing their position) that
allow the robots to redirect themselves.

Turns are determined by the value of a turning probability. Different
probability values (P1 >> P2 >> Ps) correspond to three qualitatively
differentiated behaviours:

P1 O robot with “anxious” behaviour.
P2 O robot with “normal” behaviour.
P3 O robot with “calm” behaviour.
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When a robot finds an obstacle, it turns in order to place itself parallel to
it and to follow it during a random distance —which depends on its
behaviour. The turn can be done to the right or to the left based also on a
fourth probability value P4. Robots having a probability P4 < 0.5 will show a
tendency to turn to the right more often than to the left, whilst the robots
having a probability P4+ > 0.5 will behave inversely. Therefore, the robots of
the exploration troop do not show identical behaviours. They behave in six
qualitatively different ways corresponding to the different combinations of
turning probabilities with turning tendencies.

During the exploration run, robots store their trajectory and make an
estimation of their localisation error. When, for a given robot, this error is
bigger than a previously fixed threshold, this robot returns towards its
starting point. In order to ensure its returning to be as safe as possible, the
robot follows its own trajectory in inverted order and eliminating loops.
That is, the robot deletes from its trajectory all sub-trajectories starting and
ending at the same point.

2.3.1 Partial Map of each Robot

A partial map is the representation of the information that a robot gathers
during its exploration. This information, or partial map, is stored and
incrementally generated by the robot, and consists of a representation of its
trajectory together with detection information. Since robots movement can
be seen as a sequence of rectilinear movements and turns, trajectories are
represented by a sequence of robot turning positions. Turning co-ordinates
define consecutive extremes of trajectory segments.

Therefore, we can redefine a partial map as being a sequence of robot
trajectory segments with associated information about which ones
correspond to wall following trajectories. In addition, if it is the case that a
robot follows a wall and detects the end of the wall (it may be due to a
corner or a door frame), this ending position is stored as singular point.
Both pieces of information (i.e., detection and singular points) are stored as
labels of the trajectory segments. Detection labels specify the side of the
detection, that is, if the robot was following the wall on its right or on its
left. This label allows the host to compute the corresponding detected wall
segment —it has the same length as the trajectory segment and their co-
ordinates are parallel. Furthermore, a trajectory segment having labels of
detection and singular point means that the last segment co-ordinate
corresponds to the singular point. Notice that there is only one possible
singular point associated to one wall segment in the partial map. (Next
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chapter will show how the wall segments can receive further treatment and
result in a segment with any number of singular points).

2.3.2 Communication Between Robots

A robot uses its omnidirectional IR Emitter/Receiver sensor to detect
another robot in its vicinity. When this occurs, the robot changes its
presence signal into an attention signal and stops. If the other robot detects
this signal it will also stop allowing the hand-checking (protocol
communication establishment) to take place. Both robots communicate with
each other the partial map by a full duplex transmission. After the
transmission, the robots orient themselves to follow their previous
trajectories. During this reorientation, if a robot detects its partner with its
90° scope sensor, it avoids a possible collision by turning 90 degrees to its
left (Figure 2.3 depicts this situation).

Figure 2.3: Two robots ending their communication process. The left one must turn
left to avoid the other.

If a robot meets two other robots that are already communicating each
other, this robot detects their communication signal —which is different
from both the presence signal and the attention signal. In such a case, it
inhibits its presence signal in order to do not interfere the already
established communication and it turns until the 90° scope sensor stops
detecting any signal.

2.4 Error Analysis

Section 1.1 introduced the hardware specification of the robots. There, it is
explained that the position of a robot is obtained from the movement of the
wheels. This kind of computation is called dead reckoning. Error appears in
the dead reckoned position mainly because of wheel slippage (Kortenkamp
98): there is a difference between the movement of the wheels —the
steering— and the distance that the robot is actually covering. The main
characteristic of this odometry error is that it is accumulative. And this is
mainly what this section will analyse. This is a key aspect because all the
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information that the host computer uses to build the map of the
environment comes from the robots, and all the information they gather is
associated to the place the robots ‘think’ they are —i.e., their computed
location. Of course, the information is also subject to the error of the
sensors, and therefore, they are also discussed at the end of this section.

2.4.1 Sample Description

With the goal of studying the position error of each robot due to the
imprecise odometry and to the imprecise steering, we have performed an
analysis based on experimental data obtained from real robots. More
specifically, we have performed a number of trials of four different
displacements:

1. Covering a distance of 3 meters running straight;
2. Covering a distance of 6 meters running straight;

3. Making a 45-degree right turn —which is achieved by moving the
wheels in opposite directions the same number of turns that would be
needed to cover a distance of 10 cm if going ahead— and afterwards,
following a 2.9-meter straight trajectory;

4. Making a 45-degree left turn and follow a 2.9-meter straight run.

Table 2.1 shows the results of all the performed trials for each
displacement. The first column contains the number of trial, and the rest of
columns represent the positions where the tested robot ended after
performing each kind of displacement. The co-ordinates of the given
positions are presented in centimetres and take the origin to be the
theoretical ending position —that is, the position were a robot without any
odometry error would end. In other words, the numbers correspond
respectively to the robot displacements in the x and y axis. Taking the first
cell of the table as an example, the information that we should conclude is
that, after running 3 m, the robot did not ended in the expected position,
but 11.1 em on its right and 3.5 em too far.

# trial 3 m ahead 6 m ahead  45° right turn 45° left turn
& 29 m ahead & 2.9m ahead
1 (11.1, 3.5) (-22.7,1.7) (-18.8,-8.4) (-18.5,-6.4)
2 (8.6, 2.3) (-15.2,3.7) (-17.3 ,-2.9) (-15.3 ,-2.5)
3 (10.0, 1.4) (-12.0,1.7) (-15.8,-5.1) (-13.4,-4.9)
4 (7.8, 1.3) (-9.2,4.9) (-14.1,-1.2) (-13.8,-1.5)
5 4.2, 1.0) (-3.6,2.6) (-13.4,-2.5) (-13.2,-2.8)
6 3.1, 0.9) (-3.5,-2.1) (-12.5,-3.7) (-12.6 ,-1.0)
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# trial 3 m ahead 6 m ahead 452 right turn 452 left turn
& 2.9 m ahead & 2.9m ahead

7 0.6, 2.1) (-0.4,0.7) (-11.6,-0.2) (-12.2,0.4)
8 (8.9, -0.7) (0.5, -2.0) (-10.3,-1.3) (-11.6,-1.7)
9 (6.8, -0.9) 4.7, 2.0) (-9.0,-2.6) (-10.2,-3.3)
10 3.6,-1.1) (4.3,-2.4) (-9.3,1.2) (-9.6 ,0.4)
11 (-3.7,2.7) 4.7,-1.1) (-8.3,0.7) (-8.9,-2.2)
12 (-1.7,1.95) (6.7, -1) (-6.5,-1.3) (-6.5,-1.9)
13 (-3.3,0.3) (6.2, 1.3) (-5.0,-1.5) (-7.7,2.8)
14 (-5.6,1.1) (7.0, 2.0) (-5.1,2.4) (-2.0,3.5)
15 (-12.3,1.1) (15.9, -1.4) (-3.1,0.9) (0.1, -1.2)
16 (-2.5,-0.4) (21.3, 2.8) (0.1, -1.6)

17 (-1.2,-1.3) (25.2, 5.8) (0.1, 2.3)

18 (-11.6 ,-1.5) (-11.4,-3.7)

19 (8.2, 2.6)

20 (-10.2 ,-1.8)

21 (-6.1 ,-2.9)

Table 2.1: Performance of a number of trials for four different robot displacements.

2.4.2 Statistical Analysis

With the data obtained, we have performed an statistical analysis (Savage
72). The most important aspect to study in this sample is if the values from
the x co-ordinate and the values from the y co-ordinate can be respectively
associated to two independent random variables: X and Y. A negative
answer to this question would mean that the displacement in one direction
is related to the displacement in the other direction (i.e., the sample
corresponds to correlated values of a bi-variant random variable). This
aspect is important due to that it would mean a different treatment of the
random variables in the forthcoming sections.

In order to proof the independence of this two variables we need to
obtain a null correlation coefficient from an Independence Test (Ya-Lun
Chou 72, Doménech 75). Nevertheless, this test has an initial requirement
about the distribution of the random variables: they must follow a Normal
distribution. Again, this condition implies two more tasks: first, we need to
give admissible values —in relation to the sample— as parameters of the
distribution; and second, we have to guarantee that the sample actually
follows such a normal distribution.

We used the Kolmogorov Normality Test to verify that the experimental
sample indeed follows a normal distribution both in the direction of the
trajectory and in the direction perpendicular to the trajectory. We have also
tested that both distributions are independent.
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Empirical Distribution and Theoretical Normal Distribution

Considering the second column of the sample Table 2.1, we can calculate
the empirical mean and variance and use them as estimators for the
parameters of the theoretical Normal distribution N(y,0).

The mean estimators for x and y are:

21 21
X, = % in =0.6976 and ¥, = % Z y, =0.5428

and the sample variances are:
Z (xi - f)2
n-1

The p and o values for the theoretical distribution are chosen so that
they are similar to the empirical sample but without laying outside a given
confidence interval. We use a T-Student with n-1=20 degrees of freedom
and a significance level a=0.05 (i.e., confidence of 95%) to obtain the
confidence interval of the means. The critical value that appears in the
table of such distribution is 2=2.086 and the limits of the interval are
computed using the following formula:

=73122 and o, =

I, =xzk g

u

=y +

) and I, =yztk —
In that way, we have the x mean interval I, =[-2.713, 4.108] and the
interval I,,=[-0.252, 1.338] for the y mean. Since 0 0 I, in both cases, then we
can suppose null means for the Normal distributions of X and Y.

Analogously, when assigning a value for the standard deviation of the
distribution, we compute the confidence interval using a [J-square
distribution with n=20 and 0=0.05. The values from the tables of such
distribution are [J2@o, ajp=0.025) =34.17 and [J2¢0,1-0/2-0.975 =9.59. And the upper
and lower limits of the interval are computed using the equations:

2 2
L= |n-D—2— and U= |n-D— 7 —
D(n—1,a/2) D(n—1,1—a/2)

And we have:
Lx=5.5942, Ly=1.3041 and Ux=10.5598, U,=2.4616

As before, the deviation of the empirical distribution X (0, =7.3) must be
included into the interval 1=[5.5942, 10.5598] in order to take it as the
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theoretical deviation. And, since it is the case, we take O ,=7.3.
Equivalently, the theoretical deviation of Y is taken as 0, =1.7 because it is
covered by the interval I=[1.3041, 2.4616].

Does the Empirical Distribution Fit the Theoretical Distribution?

Up to this point, we have specified two theoretical Normal distri butions:
Nx(0,7.3) and NY(0,1.7). Nevertheless, we need to ensure that the sample —
i.e., the empirical distri bution— actually fits these distri butions. We use
the Kolmogorouv’s Test for the fitness to a Normal distribution (Cuadras 84)
that can be used for small samples (where the number of values is smaller
than 30). Briefly, this test consists on the computation of a statistic D» that
is defined as the maximum difference between an empirical distribution
function S» and the gi ven theoretical distri bution. If it is the case that the
obtained D is smaller than the value in the Massey’s Table (also in
Cuadras 84) for the n number of elements in the sample, then we can affirm
that the empirical distribution fits the theoretical one.

In order to compute the empirical distri bution we have first to organise
the sample in increasing order Xi<...<Xi<...<X» and afterwards, to apply
the following formula:

0o if x <x,
S, (x) = @%L ifx, <x<x,,, i=1l.n-1
0l ifx 2x,

In our sample n equals to 21, and the corresponding value from the
Massey’s Table is 0.289. The computed statistics for the X and Y
distributions are D»=0.115 and D»=0.202 respectively. Since both values are
smaller than 0.289, we can conclude that our empirical distributions fit the
theoretical Normal distributions Nx(0,7.3) and Nv(0,1.7).

Independence Test

Returning to our initial requirement for our statistical analysis, our goal is
to test if the two distributions are independent —that is, if there is no
correlation between the variables X and Y. In order to do that we have
already tested the normality condition, and therefore, we can now apply the
Independence test.

When n<30 the ¢ statistic that is used to verify the hypothesis is
distributed as a T-Student with n-2 degrees of freedom. More specifically,
the ¢ statistic has the following formula:
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i(‘xi -y, -y

where r =

\/(Z(xi —x)2)E(li(yi )

In this formula, r is the sample correlation factor —also known as the
correlation estimator of maximum likelihood— and we have r=0.4339 and
t=1.882.

Using a significance level of a =0.05 for the T-Student distribution with
19 degrees of freedom, we obtain an interval (-2.101, 2.101) which includes
the obtained ¢ = 1.882. And this constitutes the proof of the independence of
our random variables X and Y.

2.4.3 Error Modelling

Displacement Error

The previous subsection proofs that a sample of the ending positions of a
3m straight movements follow Normal distributions —Nx(0,7.3) and
Nvy(0,1.7)— that are associated to two independent random variables X and
Y. This random variables correspond to the ending position co-ordinates.

In order to model the error of displacement that the sample reflects, we
have obtained probability intervals over our Normal distributions such that
they cover most of the sample. In that manner, considering the Standard
Normal distribution N(0,1), the interval that is centred in the zero and that
covers 95% of a sample has a total length of 3.92. In other words, if we have
a sample following this N(0,1) distribution, the interval that covers the
sample with a significance level of a=0.05 is (-1.96,1.96). Therefore, for a
random variable X with such a distribution we have the following
probability:

P[-1.96<X<1.96] = 0.05

Nevertheless, our Nx and Ny distributions are not standard. This
implies that we need multipl y their dispersions by 3.92 in order to obtain
the intervals that cover 9 5% of our sample. The length of our interval for
the X and Y variables are therefore 2 8.58 cm and 6.59 cm respectivel y.
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Figure 2.4: The position where the robot ends after a rectilinear displacement of 3
metres has this error rectangle associated.

Experimentally, we have observed that the rectilinear movement of the
robots generate an elliptical distribution of the ending points —these are
the positions where the robots finish after doing the same movements and
starting from the same initial position. Furthermore, the distribution of the
points has a higher density in the centre. Figure 2.4 shows schematically
this idea. With our interval approximation we reflect this feature, the
difference is that the ellipse is approximated by a rectangle in order to
simplify the computation. Regarding the centred density, the Normal
distributions with null deviations already reflect that.

These intervals will be used to associate a rectangle —representing the
approximation of the error— to each position of the robot that belongs to a
rectilinear displacement. In the case of the previous figure, what this
rectangle basically means is that after 3 metres of displacement in straight
movement, there is a high probability of the robot being actually inside the
given rectangle. As in the figure, the rectangle width is in the direction of
the trajectory and the length goes in the direction perpendicular to the
trajectory.

All the analysis done up to this point only consider the first kind of
movement presented at Table 2.1. The data related to the second movement
has been studied in the same way. Both movements are basically the same
—that is, a rectilinear displacement— the only difference is the distance
covered by the robot: the second movement corresponds to a 6-metre
displacement, twice the distance of the first one. The reason to repeat the
same movement just varying the covered distance is that this will allow us
to compare the data in order to conclude if the error grows proportionally to
the distance or not.
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The following Table 2.2 presents a comparison of the empirical mean
and standard deviation of the X and Y distributions for both kinds of
rectilinear movements.

3m 6m
X 0.33cm 1.76 cm
y 0.44 cm 1.13cm
Oy 7.29cm  12.46cm

Oy 1.68 cm 248 cm

Table 2.2: Empirical mean and standard deviation of the X and Y distributions of
two rectilinear movements: 3 and 6 metre displacements.

Taking into account the fact that the confidence interval (see page 30)
gives a margin for the difference between the deviations ox and oy, we can
assume that the ones for the 6 metre displacement doubles the deviations
corresponding to 3 meters. Hence, we assume that the length of the error
interval increases proportionally to the covered distance.

Turning Error

The remaining kind of movements from Table 2.1 at page 29 that have not
yet being studied are the ones related to turns. The robots can perform 45-
degree turns in both directions —right and left— without changing their
position. After the turn, the robots were programmed to follow a 290 cm-
long rectilinear trajectory. As previously, we compute the mean and the
standard deviation of the sample. From the results in Table 2.3 we can
observe that the sample deviation does not seem to be really affected by the
turn.

45 right turn 45° |eft turn
x -9.52 cm -10.36 o
y -1.66 cm -1.49 cm
O 551 cm 488 cm
Oy 256 cm 265 cm

Table 2.3: Sample mean and standard deviation of the +45° turning movement (with
a sequel displacement).

Nevertheless, the mean results for the two types of turns are surpris-
ingly similar: in both movements the robot stopped at a mean position that
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was on the left and before the expected position (the robot ended at about
10 cm on the left and 1.5 cm before). This deviation is equivalent to a
divergence respect the turning angle of 2 degrees on the left (more ac-
curately, it corresponds to a difference of 1.89° for the 45° right turn and
2.06° for the 45° left turn).

From these observations the turning error has been modelled as a
constant deviation of 2 degrees on the left. Therefore if, for example, a robot
decides to turn 45° to the left, then we know that it is turning 47° on the
average (and a theoretical 45° right turn will become on the average
approximately a 43° turn).

The allowed turns for the robots have been restricted to multiples of 45°
(that is, 45-k degrees). This means that the module of the robot that is in
charge of performing the turns just repeats the same order % times. This
implies that in order to compute angle deviations on the robots we only
need to consider multiples of 2.

2.4.4 Error Propagation

In free space, a trajectory is composed of a set of alternating straight runs
and turns. Given the error rectangle at the initial point of a trajectory, we
want to determine the error rectangle at the end of each straight run. In
this subsection we show how we increment the error of trajectory segments
taking into account previous movements and accumulated errors.

Finally, during its navigation the robots detect and follow walls. Wall
positions are computed from the location of the robots that detect them.
Thus, those errors associated to the walls must be somehow similar to the
accumulated trajectory errors. The end of this chapter explains the
computation of the error associated to detected walls.

Error Associated to the Trajectory

Until now, we have seen that given a known initial position of the robot and
given a rectilinear displacement, we can ensure —with a high probability—
that its ending position will belong to the area of an error rectangle. What
we have to specify now is the way in which the error rectangle should be
expanded, starting from a given error rectangle and a robot movement.

The computation of the accumulated error could be thought as if each of
the points in the area of the previous error rectangle followed the same
movement than the robot. In that manner each of this points would
accumulate the error that the current movement generates. This partial
error rectangle would have the width in the same direction than the current
displacement (and therefore the length would be perpendicular). Thus, the
total error rectangle would be the one including all these partial rectangles.



36 Chapter 2: Troop of Autonomous Robots

We do not need to compute partial error rectangles for all the points in a
previous rectangle. It is enough with just considering the four points at the
corners.

Initially, we have an error rectangle R associated to the current robot
position. We also know the vector of the previous robot direction d (this
vector ends at p, the centre of R), the turning angle a and the length of the
distance [ covered after turning. The following Figure 2.5 illustrates the
meaning of these initial values:

el

R 45

Q.

Figure 2.5: Initial data and computation of the new direction.

The following steps in pseudo-code give the idea about the computation
of the increasing error:

1) Compute the real turning angle: @’ = a + de. where a. is the deviation
angle (0e = 2-k and & comes from a = 45-&).

2) Compute d’: the new displacement vector starting at p, with length [
and with orientation the one that results from a rotation of o’ degrees
over the previous direction d . Using the same notation, the point
where d’ ends appears as p’ in Figure 2.6.

3) Compute the new position of a copy of the rectangle error R so that its
centre coincides with p’ and its orientation does not change (that is,
translate R from p to p’).

4) Compute the error rectangle associated to the last straight movement
of the robot: r is the partial error associated to 4 ’ (notice that r is also
centred at p’).

5) For the four corners of the copy of R repeat (Figure 2.7 a):

* make a copy of r and move it until its centre reaches the corner
(do this without changing its orientation).

6) Compute a new rectangle R’ such that includes all the copies of » and

has the same orientation than R. (Figure 2.7 b)
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LB

Figure 2.6: Illustration of the 2, 3, and 4 steps: compute {4 ’, translate R along 4 ’,

and obtain r.
$ P)b

Figure 2.7: a) 5t step: copy r and move the copies to the corners of the copy of R b)
Compute the resulting R’.

At the beginning of this chapter, it has been said that the robot
trajectory is a sequence of turns and rectilinear displacements. This
trajectory can be seen as a sequence of adjacent trajectory segments. There-
fore, if we apply the previous algorithm to all the points in a trajectory we
will have an error area growing along these segments. In fact, knowing the
rectangle errors associated to the extremes of each segment, we can obtain
the entire error area associated to the segment (notice that the final
rectangle of a segment constitutes also the initial rectangle of its following
segment). Figure 2.8 shows an example of the error propagation after a 45°
right turn, a straight line, another 90° right turn and finally another
straight line.
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.48

Figure 2.8: Error propagation for a trajectory with a 45° and 90° right turns

Error Associated to Wall Detection

The way in which the robots explore is by moving randomly in free space
and following a wall when detected. The part of the trajectory that
corresponds to the wall-following movement is a displacement that can be
considered as being parallel to the wall. (This is a simplification of the real
wall-following movement that consists in a zigzag that is driven by a
differential servo system). The robot tries to keep constant its distance to
the wall. This distance depends on the range of the infrared sensors for a
specific wall material (see page 7). Each robot has associated its own
average distance d of wall following as well as the corresponding average
error ed.

The portion of wall that is followed can be therefore modelled by a
segment parallel to the corresponding trajectory segment. The wall seg-
ment is obtained from the trajectory segment —including robot’s displace-
ment direction and the segment length—, the distance d between the robot
and the wall, and the side of detection (that is, if the robot detected the wall
on its right or on its left).

The localisation error of the wall segment is computed considering the
detection error es added to the corresponding trajectory segment error. This
ed is added in the direction of the robot’s detection. Figure 2.9 a) depicts the
generation of a wall segment that was detected on the right. Furthermore,
Figure 2.9 b) shows a simplification of a). This simplification considers to be
constant the error on the direction perpendicular to the movement. This
constant value is set to be the average between the initial and the final
error in this direction. The reason is the aim of reflecting the fact that the
robot is somehow directed by the wall that it is following.
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Figure 2.9: Computation of a wall segment from its corresponding trajectory
segment: b) is the simplification of a).






Chapter 3

Fuzzy Techniques for Map
Generation

The previous statistical error analysis is used to model the imprecise
location of obstacles and walls by means of fuzzy techniques. Next section is
a brief introduction to Fuzzy Logic and Fuzzy Sets —one of its central
concepts. Their definitions give the necessary background for the subse-
quent Section 1.1, which specifies how we use fuzzy sets to represent the
imprecision of detected map information. The third section describes a
fuzzy logic-based algorithm that we have developed in order to fuse the
obtained partial maps. This map information is in fact stored in the
structure defined at the fourth section. The distribution of the map infor-
mation has been designed so that implicit informatio n about environmental
features such as corners or doorways can be specified. The Segment Com-
pletion section details the rules used to determine the existence and
specification of such features. Finally, the last section gives a general de-
scription of the map generation process from a symbolic point of view.

3.1 Fuzzy Logic

Classical logic is a well-known model that can be used to formalise reason-
ing processes. However, classical logic can only be based on information
that must be known to be certain. This is a very strong constraint that
makes it useless for any application considering uncertain information.
Fuzzy Logic is an alternative formalism that can deal with uncertainty
(Zadeh 92).

Within the framework of classical approaches, Probability Theory is a
widely established way of dealing with uncertainty. Nevertheless, the prob-

41
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abilistic framework depends on the availability of statistically supported
data, which is often not available. Furthermore, in Probability, the lack of
certainty about an event implies the certainty of its negation without
leaving any space for ignorance (Godo 93). This goes against common
situations, in which the poverty of the information suggests uncertainty
about both the event and its negation. When building a map of an unknown
environment, the initial value assignment has to reflect, for each cell, the
ignorance about its occupancy. Probabilistic approaches assume equiprob-
ability (i.e., Pfree =Poccupied = 0.5) as a tacit agreement without any
justification. However, equiprobability is a strong assumption because it
implies that any cell has the same probability of being occupied than being
free space. This hypothesis about initial probability values is equivalent to
assuming that 50% of the space in the environment is occupied and that
50% is empty, and this is an assumption that is hardly fulfilled for most
environments. Therefore, the main advantage of Possibility over Probability
is that Probability cannot explicitly represent ignorance whereas Possibility
is able to do it.

As we have said, most approaches using Probability for map generation
do not justify the equiprobability assumption. Nevertheless, to the best of
our knowledge, there is one author that comments this assumption.
Yamauchi (Yamauchi 98) defines the initial Probability values in its grid
map to be set to “the prior Probability of occupancy, which is a rough
estimate of the overall Probability that any given location will be occupied”.
Nevertheless, this estimation is only empirically set without any formal
justification. Getting into more detail, what he says is the following: “A
value of 0.5 was used in all of the experiments described in this paper. In
general this does not need to be an accurate estimate of the actual amount
of occupied space. A prior Probability of 0.5 works fine in environments
where only a small fraction of the total space is occupied, as well as in far
more cluttered environments”.

3.1.1 Fuzzy Sets

Let us consider a proposition of the form “X is A”, where X is a
variable and A is a vague predicate. X takes its values from an
universe U and A denotes a Fuzzy Set of U that is represented by the
following membership function:

uA: U d [0,1]

The notion of fuzzy set is an extension of the characteristic function from
classical set theory. Considering a given context for a predicate and a
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universe, a fuzzy set represents this predicate attributing degrees of mem-
bership to the elements of the universe. Membership degrees belong to the
[0,1] interval: 0 means no membership at all and 1 stands for full member-
ship of the set.

The classical set operations of negation, intersection and union can be
extended to fuzzy sets —represented here as A and B— as follows (Trillas
93):

*  N: negation (for complementation)

Moa(u) = N(pa(u)) OuOU  such that
N(0) =1, N(1)=0, Nx)=N(y)ifx <y, NIN(x)) =x
Usually, N(pa(uw)) is taken as pa(u) = 1-pa(u)

e T:t-norm (for intersection)

Manp(u) = T(pa(u), yg(u)) OuOU  such that
T:[0,1] x[0,1] -[0,1]
T0,x) =0, T(x,1) =%, T(x,y) = T(y,x),
Txy)<Tzw)ifx<zandy<w,
T(x,T(y,z)) = T(T(x,y),z)

Typical examples of z-norms:
T(x,y) = min(x)y), T(x,y) =x¢¥ and T(x,y)=max(0,x+y-1)

e S: t-conorm (for union)
Mags(u) = S(pa(u), pg(u)) OullU  such that
S: 10,11 x [0,1] -[0,1]
S(1,x) =1, S(x,0) =x, S(x,y) = S(y,x),
Sx,y) <S(zw)ifx<zand y<w,
S(x,S(y,2)) = S(S(x,y),2)
Typical examples of #-conorms:
S(x,y) = max(x,y), Sx, y) = (x+y-x[§) (known as probabilistic sum)
and S(x, y) = min(1,x+y) (bounded sum)
The relation of set inclusion is also extended to fuzzy sets:
A O B if and only if pa(u) < pp(u) CuOU

3.2 Imprecise Location of Detected Wall
Segments
The previous Chapter 2 explains how the robots explore an orthogonal

unknown environment: the random movements that they perform in free
space and the way they detect and follow walls. As a result of the
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exploration, each robot generates a partial map represented by a sequence
of trajectory segments and the information necessary to compute the
corresponding detected wall segments. In addition, Section 1.1 shows a
statistical error analysis that estimates the error associated to both the
trajectory segments and the wall segments. In the sequel, we will see how
this statistical error analysis is used to model the imprecise location of
obstacles and walls in the environment by means of fuzzy sets.

Our mapping process only considers environmental features with edges
long enough to be followed by the robots. Small obstacles, such as chair or
desk legs, are not represented because they generate spurious IR sensor
readings that are considered as noise. In fact, this represents the main
justification of our orthogonality assumption for indoor office-like
environments. It is very frequent that this kind of environments present
walls connected by right angles as well as office furniture —such as
bookshelves or drawers— with rectangular shapes.

However, when a robot detects something and it follows its contour, the
information that it stores is the same whether it corresponds to a wall or to
the edge —or side— of an obstacle. Therefore, since most detected obstacles
into our environments are actually walls, in the rest of this thesis we will
refer to wall detection —and wall following— even for those cases where it
may correspond to object detection —or object following.

3.2.1 Specification of our Fuzzy Set

The information that comes from the robots, used to represent the
environment, is imprecise but not uncertain. It is imprecise in the sense
that the co-ordinates of a detected wall segment do not necessarily
correspond to the real location of the detected wall. This is because we have
already seen that all detected points have associated errors. Regarding
uncertainty, the information is not uncertain because the existence of a
wall segment is guaranteed by the robot’s wall following movement and by
filtering spurious sensor readings.

Going back to the definition of fuzzy set in the previous 3.1.1 subsection,
we can define a fuzzy set associated to each wall segment in the following
way:

Let us define a universe U; O [0x[] of all locations in our environment.
Then, given the information of a detected wall segment S, we define a
fuzzy set Fs applying a vague predicate W “wall” over the values of u; O
U.. This fuzzy set is represented by a membership function:

Uw: Ui - [0,1]
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This membership function is such that, if we take Area. 0 U; as being
the rectangle error computed for the wall segment S, then we have:

Uy ;) 00,1] if u, OArea,
Hy (u,) =0 Otherwise

In other words, given a detected segment S = [(x1,y1), (x2,y2)] and its error
Areae, we define its associated fuzzy set Fs such that it gives, for any point
(x,y), its corresponding membership degree to a real wall. In fact, we take
the function Pw satisfying Pw (x,y) = 1 iff (x,y) O S and, from the value 1 at
the points of S, Uw decreases linearly until the value 0 at the borders of the
error rectangle Area. associated to S. In the case of the horizontal segment
in the following Figure 3.1:

(x.y) 0 Area. iff Exl —e, <xX<x, te,
[Qy—es<y<sy+te

(XwY) (X2, Y)

»

X2 Xt

a b)

Figure 3.1: a) Representation of Area. and S and b) representation of the imprecise
segment (in grey, the associated fuzzy set Fs).

As Figure 3.1 a) shows, the length of this rectangle Areac is e1+1S|+e2
being e1 and ez the errors in the direction of displacement. As we have
already said in the error analysis section 1.1, we consider the error e —in
the direction orthogonal to the trajectory— being constant, and. this implies
that the rectangle width is equal to 2e. Furthermore, knowing that the
error in the direction of displacement grows, we can infer that e1 < e2 —
assuming that e1 and ez are respectively associated to the initial and final
points of S.

Notice that the previous figure shows an example of segment orientation
—the horizontal with yi=ys— out of the two allowed by the orthogonality
environment restriction (of course, the other allowed orientation is the
vertical one with x1=x2).
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3.2.2 Imprecise Segment Definition

At this point (and considering the notations that have been specified in the
previous subsection), we are able to define our imprecise segment as the
triple Sr= (S, Areae, Fs) where:

e S corresponds to a wall segment detected by a robot,

e Area. is a location error rectangle that has been computed from S
and from the accumulation of previous displacement errors, and

e Fs is an associated fuzzy set defining, for all the points in Areae,
their membership degree to a real wall (See Figure 3.1 b))

Actually, what we know from this imprecise information is that there is
a portion of a real wall segment [(a, b), (¢, b)] being a, b, ¢ co-ordinate
values satisfying y—e < b < y+e, x1+e1> a > x1—e1 and x2—e2< ¢ < x2+e2 (and
similarly for the orthogonal case).
Finally, we represent —for simplicity— an imprecise segment in the
following way:
Sr = [(x1,y1), (x2,y2), e, e1, e2]

3.3 Imprecise Segment Fusion

The fuzzy set Fs in the imprecise segment Si determines the relation
between a real wall in the environment and the points within and around
the detected wall segment. Nevertheless, since the computer host collects
all the information coming from the robots’ exploration, the representation
of the environment can become redundant and too fragmented. As a
solution, we propose an approach that groups into one single segment those
imprecise segments corresponding to pieces of the same wall. This section
explains how two imprecise segments coming from detections of the same
wall are merged —fused— in a new segment without loosing relevant
information.

3.3.1 Conditions

First of all, we define the requirements that two imprecise segments Sr
and S’ must fulfil in order to take the decision of fusing them:

1. Equal orientation,

2. Error rectangles intersection, and

3. Close relative position.
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More concretely:

¢ Both must have the same orientation. We consider that walls have
only one orientation, so that a corner will always be considered as
the junction of two different walls (see Figure 3.2).

3

2 1
1 5

Figure 3.2: Example of the definition of 5 different walls.

e Their associated error rectangles must intersect. Two imprecise
segments can be considered as portions of the same real wall only if
it is plausible that their real positions determine a segment of the
same wall (see Figure 3.3).

Figure 3.3: Two imprecise segments with intersecting error rectangles. The grey line
represents a plausible position of the detected real wall.

e The relative distance between the detected segments S in Srand S’
in S7 must be smaller than a certain threshold. It can be the case
that the rectangle errors are so big that although the detected
segments are very distant the rectangles still intersect. In order to
control the maximum relative distance that will be allowed between
segments that will be fused, this threshold can be changed in the
application and acts as a ‘grouping degree’ parameter. The relative
distance is determined by two measures Ax and Ay that must be
smaller than the given threshold. These measures represent the
minimum distance in the corresponding axis. For example, in the
case of the two parallel vertical segments, Ax and Ay are computed in
the following way (the horizontal case is equivalent):

S, =@,y 3, ) 0614, ]
Sy =@,y yh).e el e ]
A/’C(SI,S}) :|x _.’)C’ I
D 0 ; — A ! < 0
&y(S;,Sp) =0 . , , iy =y2)Hy; ~¥")
omin(ly, =y, L1y, =y D) otherwise
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In the Ay definition, the first part stands for the case in which
both segments overlap. In that case the terms of the product have a
different sign.

In this manner, Ax and Ay can be respectively viewed as measures
of ‘parallelism’ and ‘co-linearity’ between S and S’.

A A
Y21 LN y2r
y2|
yl .............
Y yl'
X X — —x'
a) ) b

Figure 3.4: a) Two vertical segments that fulfil the conditions to be fused; b)
Resulting segment fusion.

3.3.2 Fusion Computation

Once there are two imprecise segments —Sr and Sr— that fulfil the fusion
conditions, we define how to generate a new imprecise segment Sr” from the
combination of the previous ones. Following the example in Figure 3.4 we
specify the vertical case. The horizontal case is obviously equivalent.

Intuitively, we specify the new vertical imprecise segment Sr” = (S,
Area.”, Fs”) where S” includes the y and y’ co-ordinates and has its x-co-
ordinate x” between x and x’. In addition, Area.” and Fs” are associated to S”
and reflect that the combination of two pieces of information yields to a
reinforced information —that is, the resulting imprecise segment is more
accurate (see Figure 3.4).

In order to specify the combination of imprecise segments we have
imposed the following intuitive premise:

¢ ‘Those segments having small errors e should have more weight in
the fusion than those with big errors’.
Still having in mind that we are in the vertical case —and therefore, we

need to compute the values of x” and e”— we consider the triangle projec-
tions of the fuzzy sets Fs and Fs on the x-axis as Figure 3.5 shows.
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Xl Xl_Fel Xll_ell Xll Xl+ell

3 b

Figure 3.5: Triangle projections on the x-axis of a) the fuzzy sets Fs and Fs’ and b)
Fy.

Taking into account the conditions in the previous subsection, we define
the mass of each triangle projection as being inversely proportional to their
e error. Therefore, for each projection, the mass is 1/e —resp. 1/e’— and it is
considered to be concentrated at x —resp. x’. In this manner, we can
compute the centre of gravity of both masses as being the crossing point of
the segments [(x,1),(x+e,0)] and [(x—¢’,0),(x’,1)]. The mass of the triangle
projection of the fused fuzzy set Fs” is defined as the sum of the masses:

1 1 1
==+

n 1

e e e

We are now able to specify the fusion of two imprecise segments:
S CRRXCERRNNNN
Sy =[xy, yy).e' el eh]
In order to obtain a new imprecise segment:
Sy o=y, x5 e" e e
By computing:
x” as the x component of the intersection point between the
lines defined by [(x,1), (x+ e, 0)] and [(x’-¢’, 0), (x’, 1)]:
x"=x+rdx+e-x)=x+e [F
e 1-0)x'—(x'-eN-x-(x"-eNM-0) _x'-x
((x+e)-x)M1-0)-(0-1Hx"-(x"-e") e+e
o=y 4 00 —,x)
e+e
y1 =min(y;,y1), ¥y = max(y,,y;)
. 1 T
T 1l/e+1l/e’ e+e

en — gl lf min(yl’yi):yl
' otherwise
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yo = if mas(y,5)) =,
2 3 otherwise

Fusion Properties

As we have said, the Fusion is an operation F over pairs of imprecise seg-
ments (Sz, S’7 ) that fulfil conditions of relative position. Fusion gives as re-
sult another imprecise segment:

S; =F(S,,S})

The components of the fused imprecise segment are computed by means
of commutative operations:
e The x co-ordinate of the intersecting point of two lines do not
depend on the order of consideration of the lines:

F(S Sl)_xn_x_'_e[qx’_x)_eBﬁ+e’Bf+eB:’_e’B:_e’B:+er’
FA et Rl EARN - - -

e+e e+e' e+e'
I I I I
elx-x") ek +e'lx
F.(S;,8;)=x"=x"+ = =F.(S;,S))
e +e e+e'

* The computation of the error e” is also commutative:
F (S,;,S;)=¢" :e— :—e =F,(S;,S;)

* The remaining components depend on the minimum, which
is, of course, a commutative operator.

* The conditions that Sr and S’7 must fulfil in order to be fused
correspond to relative positions —that is, same orientation,
error area overlapping and relative distance— are independ-
ent from the imprecise segment order of consideration.

Therefore, we can conclude that the fusion is a commutative operation:
S; =F(S,,S;)=F(S;,S,)

In addition to commutativity, we can study some characteristics of the
fusion from the equations of the computation of the components. In that
manner, we analyse the horizontal case with y, < y, (the rest of the cases are
equivalent) in order to comment these two characteristics:

1) It is possible to obtain an imprecise segment S”7 with the same co-
ordinates than an imprecise segment Sr :
Ox" =x
S” = F(S,,8:) such that [y" =y,

B)’g =Y2
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This is done by fusing Sr with a segment Si* having the following co-
ordinates:
x=x, oy 2y, ¥y <y,

2) Although it is possible to obtain an imprecise segment with the same
co-ordinates —and thus, the corresponding errors e;, e=—, it is not
possible to obtain the same error e. This is because:

. _ eld
e" = -
ete

=e iff e=0

And this is not possible because in our case e > 0 for all segments in our
application (since the error in the robot’s initial position is a matter of
precision, e can be in any case considered to be bigger than 0).

In fact, we have the following inequalities:

1

ele
e>e" = - because e* >0
te

1

e
elé

e'>e" = - because e'* >0
ete

Therefore, we have that the error of a fused imprecise segment is always
smaller than the errors of the segments it comes from. This is intuitive
because it gives support to the idea of that the uncertainty about the
position of the real wall must decrease when there are two detections of the
same wall.

Next figure shows two fusion examples that illustrate this result. Figure
3.6 a) is the fusion of two imprecise segments whose intersecting point
coincides with the x co-ordinates of both segments:

x=4,e=4, x'=4,e'=2, x"=4,¢"=1.33

Figure 3.6 b) represents the hypothetical situation of the fusion of an
imprecise segment with itself. This last situation is unlikely to happen in
the real application but it is useful to illustrate the characteristics of the
fusion function:

x=x'=3,e=¢e'=3, x"=3,e"=1.5

St B s; N S’ Sr

T T 1
(0] 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6
a) b)

Figure 3.6: a) Fusion of two imprecise segments Sr’=F(S,S’7) b) Fusion of an
imprecise segment with itself Sr’=F(S1,Si)
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Finally, we study the associative property of the fusion operation F.
Again, we concentrate only on the computation of the x co-ordinate and its
associated error e of three vertical imprecise segments Sz, Sz and Sis:

e, Wy —x;) _ey [k +e [k

F.(S;,,S;;)=x"=x, +

e, tey e, +e,
L
F.(S,,,S;,)=e"= %2
e te,
II+ n + +
FX(Fx(Sll,SI2),S13) = [ Bf" e Bfg — e, @3 Bﬁl e, @3 BI2 e @2 B:B
e tey e (&, +e (&, te, (&,
e" |} e |} @
Fe(Fe(SIl’Slz),SI3) = - 3 = 1 2 3
e"te;, e [k, te [&; +e, [k,
voe &y te s e, (&,

Fx(SIZ’SIS):x Fe(sz,Sjg):e" =

e, teg e, teg
e" [k, +te, X" _ e, &, [X, +e, (&, [X, +e, (&, [k,
n -

e &, +e [&; te, (e,

FASp F(S,,,8,, )= 8 = albl
e, te' e e, te [&; e, &,

FX(SH,Fx(Sm,Sm)) =

e te

Therefore, we can conclude that the fusion operation F is associative:
F(F(S;,,515),S13) = F(S;,,F(S5,S15))

Next Figure 3.7 a) shows an example of three vertical imprecise
segments Sz, Sr2 and S with the following x and e values:

x=4,e=4; x,=7,e,=2; x3;=10,¢,=3

The fusion computations are shown in the rest of the figure. The x co-
ordinates and errors that are obtained in the subsequent fusion operations
are, for each case:

b)F,.(S,,,8,5) =x" =6, F,(S,,,S;,) =e¢" =1.3
OF,(S!,8,,)=x"=72,F,(S!,S,,)=e" =09
d) F (S;3,8;3) =x" =82, F,(8,,,8,3) =e" =1.2
) F,(S,,,87)=x" =172, F,(S,,,57) =" = 0.9
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Sn / Stz Si3

9 10 11 12 13
r Si3 F(S1”.S/3)
T T T T T T T
5 6 7 8 9 o 11 12 13 5 6 7 8 9
b) c)
1
Sn = F(Su.Sr)
o 1 T2 '3 4 '5 '6 '7 's '9 'tlo's "6 ' 7 ' 89
d) e)

Figure 3.7: Example of fusion commutativity: a) three vertical imprecise segments
S11, Sr2 and Siz; b) Sr’=F(S11, Srz) and Si3; ¢) F(S1”.Si); d) Siz and S’=F(S1z, S13); e)
F(Su,Sr)=F(S11, Sr2)

After the demonstration of the fusion associativity, it would be natural
to extend this property to the fused maps of our application. However, we
cannot guarantee it because the fusion conditions are not always met. This
is due to the change in the relative position after the fusion of the first two
segments. In this manner, the resulting fused segment and the third
segment may not always fulfil the fusion conditions, and therefore, the
fusion between them cannot be computed.

Next Figure 3.8 illustrates this situation with an example of three
vertical imprecise segments Sz, Siz and Si3 with the following x and e
values:

x,=2,6=2; x,=3,e,=3; x,=7,e;=3

Figure 3.8 b) shows how the computation of the fusion of Si; and Sr
gives as a result:

F.(S;,,S;;)=x"=24,F/(S;,,S;;)=e" =12

Graphically, it is straightforward to see that the fused segment does not
overlap the remaining segment Sis. Therefore, the next fusion F(Sr”.Sp)
cannot be computed. However, considering the segments in a different



54 Chapter 3: Fuzzy Techniques for Map Generation

order allows the completion of the fusion process. The results are shown in
Figure 3.8 d) and e):

Fx(SI2’SIB) =x"=5, Fe(Slz,Slg) =" =15
F.(S,,,S])=x"=38.7, F(S,,S])=¢" =0.9

1 [l

'8 wSe \./ S
I T 1 T | T T 1
0 1 2 3 4 5 6 7 8 9 10
a)
1
Sr’ Sis3
) 1 2 3 4 5 6 7 8 9
b)
1 .......................
Su = F(Su,8r)
1 1 1 1 1 é !; JL 5
0 1 2 3 4 5 6 7
c) d)

Figure 3.8: Although the fusion is associative, its conditions are not: a) three
vertical imprecise segments Siz, Siz and Sis; b) Sr”=F(S11, Si2) and Sis do not fulfil
the fusion conditions; ¢) Sz and Sr’=F(Srz, S13); d) F(S1.S1")

3.4 Global Map Representation

The map representation section 2.3.1 (page 26) explains that robots store
their exploration trajectory in what we call partial map. This partial map
contains sequences of trajectory segments and information about which
ones correspond to wall following trajectories. In addition, if it is the case
that a robot follows a wall and detects its end (it may be due to a corner or a
doorframe), this ending position is stored as singular point. Both pieces of
information —i.e., detection and singular points— are stored as labels of
the trajectory segments.
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Returning robots deliver their partial maps to the host computer. Partial
maps are simple due to robots limited capabilities. Nevertheless, the host is
capable of generating a much more complex representation of the
environment: the global map. From the trajectory segments the host
generates the corresponding imprecise trajectory segment by computing the
associated error. The host also specifies the co-ordinates and errors of im-
precise wall segments from those trajectory segments labelled as detections.
These two kinds of imprecise segments are generated and stored in a
dynamic list that grows as new partial map segments are added.

Once the host includes the incoming information, it groups this informa-
tion and generates hypothesis about the existence of environmental fea-
tures. As we have seen in the previous section, imprecise wall segments are
grouped by their fusion, and in the following section will see how the
completion process makes hypothesis about corners or doorways in the
environment. Therefore, the host needs a representation complex enough to
make such processing. For example, when adding an imprecise wall seg-
ment, it can have no more than one singular point so it looks reasonable to
have a segment structure with a field for singular points. The problem is
that afterwards, this imprecise wall segment can be fused with others and
the limit for the number of singular points disappears. This forces to have
an extra dynamic list for the singular points of each segment. Of course this
could also be implemented by building a dynamic list for all the singular
points in the global map that specifies, for each point, the segment to which
it belongs. And, since to have different copies of the same information gives
problems of contradictions when refreshing information, instead of having a
copy of the segment, we will just have a pointer to the segment structure in
the list of segments. The problem with this alternative distribution is that
if we want to access directly the singular points of a segment we have to
look over the whole list of singular points and this is not efficient. An
intermediate solution is to have, on one hand, a dynamic list of singular
points with pointers to their segments, and on the other hand, a dynamic
list of pointers to singular points for each segment. This can look complex,
but pointers have low memory cost and allow quick access to the
information that facilitates its further treatment.

In addition to singular points, this symbolic approach represents two
more features of the environment: corners and doorways. The global map
has therefore a rather complex structure. Before giving a more detailed
information, notice that Figure 3.9 shows an example that will help to
illustrate the concepts. A global map contains 4 main dynamic lists with the
following components:

e List of Segments: Ordered list that contains wall and trajectory
imprecise segments. Each segment has the following structure:
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- Segment index (Si): it is a unique identifier of the imprecise
segment that gives its position in the list.

- Segment co-ordinates (S = (x1y2), (x1y2)): co-ordinates obtained
from the robot partial map.

- Segment errors (e, e1, e2): errors associated to the segment, e goes
in the perpendicular direction of the displacement and its value is
used to order the list increasingly.

- Wall flag (Y/N): value that distinguishes if the segment
represents a piece of detected wall —Y— or if corresponds to a
robot trajectory —N.

- Pointer to its singular point list (- s_pt_li). Each segment has a
secondary dynamic list of pointers to its singular points. This
field is a pointer to that list.

- Pointer to its corner list (-c_li). A segment can also have any
number of corners —only two L-corners but any number of T-
corners— (we will see below what does this mean). This field is a
pointer to a secondary dynamic list of pointers to corners.

- Pointers to its two doorways. Both extremes of a segment can end
with the frame of a door. This is the maximum number of
doorways that can be related to a segment because a wall
segment is considered to be a continuous piece of wall.

List of Singular Points: where each Singular Point is:

- Singular Point index (spi): unique identifier.

- Singular Point co-ordinates (x,y).

- Pointers to its two segments (5, ,s;): In general a singular point
belongs to one segment, but further treatment can discover two
perpendicular segments intersecting at a singular point that

belongs to both segments.

List of Corners: A corner is the intersection of a vertical and a
horizontal imprecise wall segments. If the point of intersection is the
extreme of both segments, the corner is considered to be of type L or
L-shape. Otherwise, its type is T. The components of a corner
structure are:

- Corner index (ci): unique identifier.

- Corner type (L/T).

- Pointers to its two segments (s, ,s;).

List of Doorways: A doorway is the gap between two collinear
segments. It is supposed to have a known length that corresponds to
the average size of an office-like environment door.

- Doorway index (di): unique identifier.

- Pointers to its two segments (s, , ;).
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Of course, for the case of trajectory segments, most of the fields are
empty. Nevertheless, as the next section will show, they are still useful for
the completion process (which tries to fill the rest of structures).

The following example shows an environment with its features and the
map structure and information that the global map should eventually
include in case the exploration were complete and without error. Never-
theless, some elements have been obviated with the aim of remarking
representative elements. In this manner only an imprecise trajectory seg-
ment So appears in the list of segments, and imprecise wall segments Ss
and Se are omitted because of their equivalence to S2 and Si1 respectively.

Environment: Ss
[czl [03 gcﬂ
S sp. D5
So Sy Sz Ss
S1 d1 do Se
*—2 o ——0——2=0 *—=0
sp]  sp1 spio [Spd sSps  sp7 [spe
[ & 23
Global Map:
list of segments
So S1 Se Ss Sa Sv
S S S S S S
e,ene e,enez e,enes e,enez2 e,er,e2 e,er,e2
N Y Y Y Y Y
- ss_pt_li] -os_pt le] >s_pt_ls| >s_pt_ls -s_pt_lz
= -c_l —c_lo ~c_l3 —c_la —c_l7
S I e e e I i B R
list of doorways |, v
d1 do
5,15, 15 |5
s_pt_li s_pt_l2 s_pt_ls s_pt_ls s_pt_lz
1J ®
s_pt1 s_pta s_pts S_pt4 s_pts s_pts s_pte | s_ptio
xy | &y) | &y) | &y | &y (x,y) (x,y)
Sy | 1 S [ So 1S9 | S3 )83 |S41]83]8s Sy | — 1S4 1 S7 ] 8y | —

list of singular points
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c_li c_lo cls c_ls c_lz
L2lel  |2lple]
list of corners / / «/
c1 c2 c3 c4 (5 6

§'l | §2 82 s’% §‘3 | §4 g‘% | ’;5 gﬁ | gﬁ §4 | §7

Figure 3.9: Example of representation of an environment with its features and the
map structure and information that the global map should eventually include in
case the exploration were complete and without error.

3.4.1 Fusion Implementation

Once we have seen how the global map represents the environmental
information, we can specify how we fuse two imprecise wall segments
without breaking references in the structure that could introduce incon-
sistencies in the information. These are the steps to follow:

1) Look for two segments Srand Sr’ that fulfil the fusion conditions.

2) Follow the fusion computation formulae to generate a new imprecise
segment Sr”,

3) Add Sr” to the list of segments in decreasing order of their error e” and
without establishing any pointer.

4) Check if S: or Sr’ have any pointer to a doorway or a corner, if it is the
case:
* copy these pointers in Sr and Sr to Sr” so that they point to
the same doorways and corners —di and ci..
e in these di and ci, substitute the pointers to Sr or Sr by
pointers to Sr”.

5) Repeat the fourth step for the singular points of Sr or Sr. However, for
each singular point s_pti changed, its co-ordinates must be projected
so that they belong to the new segment Sr”. Furthermore, before
adding each s_pti to Sr”, it must me compared to all previous s_pt;, j#i
in Sr”, and if they are close enough to be considered the same, then
s_pti must be deleted. (This is if s_ptiis not related to a third segment,
otherwise only the pointer to S:” will be deleted).
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6) Delete Sr and Sr from the list of segments (this includes a delete of
their secondary lists of singular points and corners).

3.5 Segment Completion

The fusion of imprecise wall segments is a process based on segment infor-
mation: orientation, co-ordinates and errors. However, it is also possible to
use common sense knowledge in order to improve the global map and rep-
resent the environment more accurately. In our system, this common sense
knowledge has been introduced by means of heuristic rules. Heuristic rules
define, under certain conditions, the application of algorithms for different
segment transformations and for environmental feature definitions. Seg-
ments can be extended or aligned, singular points can be added or redefined
and doorways and corners can be defined into the global map structure.

Rule premises have two key aspects: the segment relative positions and
the existence of trajectory segments going in between wall segments. On
one hand, perpendicular segments with an intersection point close enough
to both segments can lead to the definition of a corner. On the other hand,
segments with the same orientation can be the clue for a doorway if they
are collinear enough and if there is a trajectory segment going through
their gap.

Regarding the consequent part or the rules, the given algorithms
produce changes in the map, and this implies that the order of application
of the heuristics is meaningful. We first check the rules that make segment
changes without affecting the rest of the map and afterwards check those
rules whose consequences affect other segments than the ones involved in
the premises of the rules. Rules that define corners are of the former case,
and doorway rules correspond to the later case. The following subsections
get into more detail.

3.5.1 Corner Rules

A corner in the environment can be defined as the intersection of two
perpendicular walls. As the previous section states, we define a structure in
the global map called corner that is the intersection of a vertical and a
horizontal imprecise wall segments. If the point of intersection is the
extreme of both segments, the type of the corner is considered to be L —
making reference to its shape. Otherwise, its type is T.

L-corners

To further illustrate the definition of L-corner, Figure 3.10 shows three
different cases of pairs of segments that are candidates to form L-corners:
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(S1, S2), (S2, S3) and (Ss, Ss). These three combinations have a relative
distance —that is, the distance between the closer extremes— that is close
enough to consider them as corners. On the contrary, the relative distance
between Ssand S: is bigger than a given threshold a that is a parameter of
the implementation. Regarding the categorisation of the corners, the reason
for labelling them with the L type is the situation of their intersecting
point, which is located in the neighbourhood of the closer segment
extremes.

S3 o S3
Sa Sa Sa Sa
S1 LS
a) b)

Figure 3.10: Three L-corners with different cases of related wall position: a) as they
have been detected, b) after being defined.

Considering a wall segment pair (S;, Sj) and their closer extremes si(1S;
and s;[1S;, the following rule asks for several conditions in order to define L-
corners in the map. First, the segments must be perpendicular. Second, the
corner cannot possibly be closed if there is trajectory segments going
between the closer extremes of the segments (s;, Sj). Third, the intersection
point p of the segments must be close enough to (s;, sj). And finally, if we are
going to define a corner (p, S;, Sj), this corner must be different to the rest of
the corners in the global map corner list. The consequent of the rule is just
the definition of the L-corner:

If (" perpendicular(S;, S) &

[trajectory segment between (s, s) &
Op =Si Sj such that distance(p, si)< 0 and distance(p, sj)< 0 &
L Oc=(p, Si, Sm)Ocomer list, ci# (p, Si, S))

Then [ -change the co-ordinates of si and s; so that si= sj=p &
- create a new L-corner (p, Si, S)) in the global map list of corners and update the
comer-pointer-lists of Siand §; &
- use p to define a new singular point (pointing as well to Si and Sj) and update
L the singular-point-pointer-lists of S; and S;.

When defining the new singular point, we use the co-ordinates of the
intersection point p. Nevertheless, it can be the case that one —or both—
segment already has a singular point in the extreme that is being treated.
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In order to detect such a case, we must check if Si or Sj have singular points
s_pti and s_pt; with the co-ordinates equal to si and sj respectively. Due to
the distribution of the data in our global map, this step must be done before
changing the co-ordinates of si and s;. Thus, if the answer to this check is
positive, we have to update the s_pti and s_pt; so that we end up with an
unique singular point with co-ordinates p and pointing to Si and S;. (Of
course, this last steps substitutes the one defining a new singular point).
The results chapter will illustrate this case with more detail.

T-corners

Figure 3.11 gives three different examples of T-corner. The T-corners are
defined by the segment intersection within the pairs (S1, S2), (S1, S3) and
(S1, S4). In these cases the intersection point is close enough to both
segments. Nevertheless, this is not the case of the segment pair (Si, Ss),
where the intersection point is further away from the S: segment than a
distance o —the same parameter than the one used for L-corners. Notice
that a corner is labelled as being of T kind whether it has the corresponding
T shape —for example, (S1, S2)— or if it is cross-shaped — as the (S1, Ss3)
corner.

Sa Sa

So |

Sa |

Ss Ss

Sy | S1

Ss S3

a) b)

Figure 3.11: Three T-corners with different cases of related wall position: a) as they
have been detected, b) after being defined.

Considering a wall segment pair (Si, S;), the family of rules used to
identify and define T-corners in the map are similar to the one defined for
L-corners. The consequent of these rules are analogous as well (including
the definition of singular points). The difference is the measurement of the
relative distance, which is measured between the intersection point p and
each segment (this is a perpendicular distance between a point and a line
and it is 0 if the point belongs to the line):

If perpendicular(S, §) &

[/trajectory segment between (S;, S) &
Op=SiN S;j such that distance(p, Si)< o and distance(p, S)< o
Oc=(pi, Si, Sm)Ccomer list, ¢i# (p, Si, Sj)
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Then -if pis close to one of the extremes of Si or Sj, then make the co-ordinates of this
extremeequaltop &
- create a new T-corner in the global map list of corners (pointing to Si and Sj)
and update the corner-pointer-listsof Sand §; &
- use p to define a new singular point (pointing as well to S; and Sj) and update
the singular-point-pointer-lists of S; and S;.

3.5.2 Doorway Rules

A doorway is defined as the gap between two collinear wall segments. This
gap is supposed to have an average door size that is introduced as a
parameter 3 to the system. In practice, B is usually similar to o in the sense
that both are related to the average door size, the difference is that (3 really
represents the door size, whereas a refers to a distance used as threshold to
define segment intersections —and whose value is usually taken similar to
the B-value. As the previous corner rules, rules used to identify and
generate doorways compare segments that fulfil some relative distance
criteria. However, since the existence of doorways yields to environment
information that can be afterwards used to move from one room to another,
it becomes natural to ask for traversability requirements. This is translated
into the premises of the rules as the condition of existence of a robot
trajectory going through the gap.

The following rule is a generalisation of the ones used to identify and
generate doors. They apply a collinearity test over a pair of segments (S i, S;)
by checking that they have the same orientation and that their
perpendicular distance is smaller than the o parameter. In addition, the
distance between their closer extremes si[1S; and s;[0S; be similar to an
average size door f3:

If ( parallel(S, S) and perpendicular_distance(S, S) <o &
3 < distance(si, s) <28 &

Otrajectory segment between (Si, Sj)

U Odi=(Si, Sm)Odoorway list, di# (S;, S))

Then ( -align Siand Sjso that they become collinear &

- redefine siand sj so that distance(si, s) = &

- create a new doorway in the global map list of doorways (pointing to Si and Sj)
and update the doorway pointers of S and S; &

- define si and s; as singular points of Si and S; and update the singular point

\  pointer lists of Sj and S;.

Next Figure 3.12 shows an example of the definition of three doorways
within the pairs (S1,S2), (S2, S3) and (S4, Ss).
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R o diy oo,
S1 S Sz [Sa S So Sz |S4

Ss trajectory Ss ds

Sz Se lSs Sz Se ISs

a) b)

Figure 3.12: Definition of three doorways: di, d2 and ds: a) as they have been
detected, b) after being defined.

When defining a new doorway from two wall segments there are two
conditions that must be satisfied. First, the gap between the closer ex-
tremes of the segments must be of size . And second, both segments must
be collinear. Enlarging or shortening the segments is enough to satisfy the
first condition. We just modify one of the segments, which is chosen on the
basis of its length. In this manner, if the gap between both segments is
smaller than B, then the longest segment is shortened. On the contrary, a
gap bigger than B implies an extension of the shortest segment. (This is
done with the aim of do not end up with very short segments).

Regarding the collinearity condition, it means a displacement of seg-
ments that may affect other map features. Doorway rules are applied after
all corner rules with the aim of minimising their impact in the map. How-
ever, this does not avoid the problem completely and, therefore, this must
be considered when choosing the segment to be modified and how this
modification is going to affect the segment and its features. The chosen
segment is the one with less impact propagation. That is, the segment with
less characteristics that involve other segments. The way in which other
segments are involved is also important. Thus, if for example, we change a
segment S; defining a corner with another segment S;j, we have to move S;
and, if necessary, redefine the extreme of S; and the singular point at the
corner. This is preferable than a case where Si and Sj are related through a
doorway, because in such a case, both segments must be displaced, and the
propagation may continue. The previous Figure 3.12 shows an example
where the definition of d2 implies a displacement of Sz, which was already
part of di. The change in S2 not only implies a change in its singular points
but a change of the previously defined doorway di. Fortunately, this kind of
propagation ends in the corners (and the change of their singular points).

3.6 Map Generation

Previous sections of this chapter describe different processes that the host
computer can perform over the environment information. These processes
consist on the fusion and completion of imprecise wall segments in the
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global map. This section explains how these two processes are applied over
the global map of the environment in order to transform its symbolic
information into a more structured representation. The host computer
builds and processes the global map incrementally, as it receives the partial
maps from the exploratory robots.

The global map generation algorithm consists of three steps. The first
one is the union of the current map in the host with the map perceived by a
returning robot. This union is the union of both imprecise segment sets.
The second step is the fusion of those imprecise wall segments that come
from different detections but do correspond to the same wall. Finally, the
algorithm completes the resulting map. The overall algorithm is as follows:

Map_Generation (RobotMap, CurrentMap)
begin
NewMap = Fusion( CurrentMap U RobotMap )
retumn ( Completion(NewMap) )
end-map-generation

As we have said, this is an incremental approach, and it is so because of
two main reasons. On one hand, not all troop members may return to give
the information to the host. And, on the other hand, we want to have at any
time the most plausible map based on the information obtained so far by
the returning robots. Therefore, for all partial maps from new returning
robots, the host computer updates the global map by executing once more
this algorithm.

3.6.1 Map Fusion

The Fusion Implementation Section 3.4.1 defines the fusion algorithm
that fuses two imprecise wall segments. The following fusion algorithm is
applied to all segments in the global map —that is the union of the current
global map with the new partial map. This algorithm is nothing more than
an ordered call to the two-segment fusion function. The order in which
segments are processed follows the same increasing error order than the
list of segments in the global map M. Fusion is called with the global map M
—which is copied to an auxiliary map M'— and the threshold fusion
distance a (see L-corners Sect. at page 60) —which is copied to a constant
ctt_dist. Fusion is as follows:
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Fusion(M, ctt_dist)
begin
M=0
while(M’ # M) repeat:
[b_69i_n
for (all sCIM) do:
begin
min_dist = ctt_dist
smin="01
for (all s’OM) do:
begin
if (eq_orient(s,s’) & overlap_error(s,s’) & distance(s,s’)<min_dist)
begin
Smin =S
min_dist = distance(s,s’)
end-then
end-for-s’
if (smin = 0)
begin
add(s, M)
end-then
else
begin
s” = fusion(s, Smin )
add(s”, M)
remove(Smin, M’)
end-else
end-for-s
\e M=M, M=0
nd-wile

return(M)
end-fusion

This algorithm consists of three nested loops: a while loop and two for
loops. The nested for loops compare all segments in M with all segments in
M’. Since M’ is a copy of M with some fused segments, the maximum num-
ber of comparisons is n? —being n the number of segments in M— and
corresponds to the case without fusions. The while loop is done until there
are no more fusions to do over the map. The number of times this loop will
be executed will depend on the distribution of the segments, but it wont be
significant in any case. We can thus conclude that the complexity of this
algorithm is quadratic to the number of segments in the global map: O(n2).

The general idea of this algorithm can also be depicted using the follow-
ing written specification:
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e For each step in a while loop:

* treat all segments s in M following the order in the segment list of M

—i.e., starting with the most precise segment. This treatment

consist in a comparison of s with all segments s’ in M’, and then:

e if there is any s’ that can be fused to s —i.e., they have the
same orientation, their associated error area overlap and
their relative distance is smaller than a— we take the closest
one (Smin) and generate a fused segment s” that is included
into M’ (S’ is removed from M’).

e Otherwise, no segment in M’ can be fused with s and,
therefore, s is added to M'.

e After the treatment of all segments in M, we copy M into M’, empty
M’ and keep doing the while loop until no more fusions are done, that
is, while M # M.

The auxiliary map M’ is useful to keep the order of segments during both
the treatment process of segments in M as well as the map order while
including new fused segments. Therefore, updating only the auxiliary map
M’ allows to sequentially treat all segments in M and to include new
segments in M’ consistently with the error order. The advantage of keeping
the error order in the maps is that it ensures that the most precise
segments are fused first. This implies a global reduction of the map
imprecision. (Notice that the section 3.3.2 explains that the fusion of two
imprecise wall segments leads to a new and more precise segment).
However, the use of an additional map increases the complexity at the
implementation level. The difference is that we are now treating segments
—and their features— which come from two different data map structures.

We can use a small example to further illustrate how this algorithm
works. Let M be a map with a list of four imprecise wall segments (s, Sz, Sa,
S4) as the ones in the following Figure 3.13:

S1 S2 Sa S3

Figure 3.13: Example of the segments S associated to four imprecise wall segments

Then, the execution of the Fusion algorithm, considering as parameters
M and a, is the following:

e Initially, M=(s1, S2, S3, S4) and M'=[0. We treat all segments in M:

$10M cannot be compared to any segment in M’ because it is empty,
therefore s; is added to M’ and we have now M'=(s;).
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S,[0M can be fused to s;00M’, we thus add st? = fusion(sz, s1) to M' —in
the appropriate place according to its error— and remove s; from M'. The
resulting map is M'=(s"?).

s3[0M cannot be fused to any segment[IM’ so, we just add s3 to M’, which
is M’:(sl’z,sg).

s40M can be fused to s"’OM’ and to ss0M'. Since S4 is closer to s™° than to
s3, we add st = fusion(sa, Sl’z) to M’ having M’=(Sl’2’4, S3).

* For the next execution of the while loop M=(sl’2’4, s3), M'=00. We do:

(1) as before, s"**0M cannot be compared because M’ is empty. We
add the segment to the auxiliary map M’:(sl’2’4).

(2) ss00M can be fused to s"*“0M'. Since it is the only segment in the
auxiliary map M’, we first fuse them s"**’=fusion(ss,s"*") and
substitute afterwards s"** by s"**® in M’=(s***?).

e For the third execution of the while loop M =(sl’2’4’3), M'=0,and we do:

(1) s"**°0M is the remaining segment. We end this third execution
with the assignment M'=(s"***)

* Finally, the while loop ends because no more fusions are possible,
that is, M'= M =(s"**?),

3.6.2 Map Completion

Regarding the Completion process, we have already said that rules are
applied in a specific order. The corresponding algorithm defines this order.
It also uses the parameters a and B defined in the previous section. The
algorithm is:

Completion (M, a, 3)
begin
change=0
repeat
M= apply_rules(M, L-corner-rules, a)
M= apply_rules(M, T-comner-rules, o)
M= apply_rules(M, Doorway-rules, a, f3)
while(changez0)
return (M)

end-completion






Chapter 4

Results

4.1 Robot Exploration Results

The robots used in this work have been designed and built by the
Automatic Control department at the UPC (Technical University of Catalo-
nia). When describing the robots’ hardware characteristics at the second
chapter (Section 1.1) three functional modules were specified. The
navigation module —the one at the higher level— controls the robot’s
performance. This module cannot be tested until the mechanical part and
both steering and perception modules are stable. Furthermore, this module
was designed to be a piece of C code copied to a robot’s EPROM. These two
characteristics of the navigation module yield to the convenience of
developing a simulator system. A simulator was built so that the navigation
code could be directly portable to the real robot. Therefore, this simulator
was built in order to develop —and test— a navigation module in parallel to
the robot building process.

This simulator is able to represent different environments, it allows the
user to choose the kind of robot that will explore an environment, it
simulates the exploration (including the returning trajectory) and, finally,
it shows the resulting partial map —which will be communicated to the
host.

4.1.1 Environments

The simulator has a screen area dedicated to represent the map of the

environment. Getting into more detail, this screen area is a rectangle

comprising 256x512 pixels. Each pixel is meant to correspond to a square of
69
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10cm? of the real environment. Therefore, it is able to represent any
environment of size 25.6m by 51.2m. Since this work considers indoors
orthogonal environments, the environments defined for the simulator
represent 10cm width orthogonal walls. The gap between collinear walls
represent doorways and they have a standard size of 80cm —that is, 8
screen pixels.

First, we have been using the environment that appears in the following
Figure 4.1. In the sequel, we will refer to it as Envl. It represents two
rooms communicated by two doorways. The biggest room contains an
obstacle.

Figure 4.1: First environment (called Env1).

The simulator does not represent depth information, therefore, all the
reachable areas in the map are supposed to be easily passable. As we have
said, we consider indoors orthogonal environments. Usually, real
environments with these characteristics are defined as being office-like.
Nevertheless, our restriction is just orthogonality, and to show that we can
deal with environments of different complexity, we also utilise the one in
the next Figure 4.2:
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| |

Figure 4.2: Env2 environment.

Finally, we use a third environment that is more realistic than the
previous ones. It is called Env3 and has 9 rooms and two intersecting
corridors. Again, the doorway gaps are 80 cm long (see Figure 4.3).

Figure 4.3: Env3 environment.

4.1.2 Robots Strategies

The Robot navigation Section 1.1 in the second chapter defines three
different turning probabilities. They are associated to the robots in order to
obtain three qualitatively different behaviours:

* “anxious”,
e “normal”, and
e ‘“calm”.

Robots with different behaviours perform differently. The simulation of
several robots’ explorations illustrates this idea. Anxious robots are defined
by a high turning probability. This tends to generate intricate trajectories
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as the one in the following Figure 4.4. It corresponds to a simulation of an
anxious robot that explores the Envl environment. The starting position of
the robot is fixed to (25,125) —in map screen co-ordinates. In general, since
anxious robots turn so often, they tend to cover a small part of the
environment, and therefore, they find a small number of walls. However,
their focusing on a small area implies a good knowledge of it. This gives
more information about free space than about wall detection information,
but as we have already seen, this can also be useful.

Figure 4.4: Exploration of the Envl environment with an anxious robot with a
significant tendency of turning to the left.

Nevertheless, anxious behaviours can sometimes give a significant
amount of wall information. Next Figure 4.5 is an example:

&

Figure 4.5: Exploration of the Envl environment by a anxious robot with a
significant tendency of turning to the right.
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We can see in Figure 4.6 the performance of a normal robot over the
same Envl environment. In this case, the robot explores a wide area and
finds walls located further away from its starting point. This is due to the
value of the turning probability, which is small enough to allow relatively
long displacement in free space —when nothing is detected.

LT

L

Figure 4.6: Env1 exploration of a normal robot with a right turning tendency.

Finally, we can see an example in Figure 4.7 of robot exploration when
the robot has a small turning probability. As the one in the example, calm
robots tend to perform long rectilinear displacements in obstacle-free areas.

AN )

Figure 4.7: Simulation of the exploration of a robot —with left turning tendency and
a calm behaviour— over the Env1 environment.

Up to this point we have seen the performance of the exploration of
robots in the Envl environment. Most decisions taken during robot
navigation are highly randomised. The previous examples have shown us
that the assignment of turning probability values imposes some behaviours.
Nevertheless, there are other factors that define the actual navigation. On
one hand, the layout of the environment, and one the other hand, the
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probability of turning right or left (defined as P4 at Section 1.1). We will see
some examples of exploration of the Env2 environment. As we have already
said, Env2 is not necessarily a realistic environment, but it is useful to

illustrate this idea.

a) b)
Figure 4.8: Exploration of Env2 by a a) right anxious robot —that is, with a right
turning tendency and an anxious behaviour— and b) a left anxious robot.

=ikinl

The figure above (Figure 4.8) shows two cases of anxious robots. A priori,
a robot that turns right more often than to the left does not necessarily
perform better than a robot that behaves inversely. Nevertheless, we can
see that under certain circumstances (which have an important random
component) one kind of robots manages better into one environment than
the other. The following Figure 4.9 gives two more examples of robots with
a left turning tendency that have some difficulties in not becoming trapped
in one area.

a7

a)
Figure 4.9: Exploration of Env2 with a) a normal robot and b) a calm robot, both
with left turning tendencies.

This does not mean that left robots perform worse than right robots, it
just justifies the necessity of including this new probability. Therefore, we
can conclude that we obtain six different behaviours by combing the
turning tendency probability with the three turning probabilities that
define the anxious, normal and calm behaviours.
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Robot Return

Due to hardware restrictions, the robots have been designed to store limited
trajectories. Since a trajectory is defined as a sequence of robot turning
positions, the simulated robot stops after doing a certain number of turns.
From this position, the robot moves back towards its initial position. The
trajectory that it follows consists in a simplification of its own trajectory.
The simplification is computed by eliminating closed trajectory loops. All
exploration figures have a yellow circle, which determines the returning
point, and a red trajectory that indicates the returning path.

Odometry Error

We have already said that the robots and the simulator that is used here
were developed in parallel. The error of the robots that was considered in
this simulator does not come from the error study of the second chapter
because this analysis has been done over the real robots (and when the
simulator was built the robots were not finished). The error used in this
simulation is a kind of general prediction of what could be described as a
quality factor of the robot position information. This quality factor depends
on the covered distance L as well as on the number of turns N. This
dependency is inversely proportional according to the following formula:

~ 1

Were kL and kn are constants that control how the quality factor Fe
decreases. Their values were set in the simulator to k=100 and k~=30.
They consider that L is given in meters and i~ corresponds to the constant
of the quality of turns.

Fq

Partial Maps

After exploring, robots communicate their partial maps to the host
computer. The structure of these maps has already been presented at the
Partial Map Subsection 2.3.1. Thus, in this subsection we will just see some
examples in order to add a few comments about environment coverage and
data accuracy. As examples, we use the partial maps that were obtained
from the explorations heretofore presented.
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a) b)

Figure 4.10: a) Partial map obtained from the exploration of a left anxious robot
over the Envl environment. It corresponds to the exploration shown in Figure 4.4 .
b) corresponds to the exploration of a right anxious robot in the same Envl
environment (see Figure 4.5).

Regarding the exploration of the Envl environment, the Figure 4.10
above confirms that anxious behaviours actually give information about
walls and free space near the robot’s initial position. Furthermore, the first
partial map in the figure is very accurate because of two reasons. First, a
robot stops after a number of turns, so anxious robots cover less distance
than non-anxious ones —and therefore, the decreasing of its quality factor
is smaller. And second, for this particular case, walls have been detected in
a relatively early stage of the exploration trajectory —no much error was
accumulated yet. This last reason is purely random and does not apply for
the second partial map in the figure. In this case, the robot returns to its
initial position detecting again the same bottom wall but with less
accuracy.

Figure 4.11 shows the partial maps from the two remaining explorations
of Envl. Both robots accumulate more error because they cover long
distances —and wide areas. The decay of the quality factor can be clearly
noticed in the detection of the obstacle in the partial map of the normal
robot.

a) b)
Figure 4.11: Partial maps of the exploration of Envl. a) partial map of the right
normal robot in Figure 4.6, b) of the left calm robot (see Figure 4.7).
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Finally, we see the partial maps corresponding to the Env2
environment. As we have already said, Env2 is particularly difficult for
some robots that get trapped in an area. However, this is not necessarily
bad, because if the area is different for several robots, we can obtain
complementary coverage of the environment. Next Figure 4.12 illustrates
this the four partial maps that correspond to Env2 exploration.

a) b)

éll N

c) d)
Figure 4.12: Env2 exploration: a) right anxious robot from Figure 4.8 a); b) left
anxious robot (Figure 4.8 b)); c) left normal robot (Figure 4.9 a)); and d) left calm

robot (Figure 4.8 b))

4.2 Map Generation Results

At the introduction of the second chapter (see page 21) we state that our
approach has two main steps. The first is a distributed exploration and the
second corresponds to the global map generation. Along the previous
section of this chapter we have seen the kind of partial maps that the
robots obtain from exploration. In this section, we concentrate in the map
generation process. We show some results of the incremental fusion of new
partial maps with the current global map at the host computer. Afterwards,
we will also comment the map completion process.

4.2.1 Fusion

Last section of the third chapter (see Sect. 1.1) describes the general
algorithm of Map generation. This algorithm first includes all segments
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from a newly delivered partial map to the current global map and calls a
fusion function with the new current global map.

Next Figure 4.13 shows a sequence of the implementation of this step for
the partial maps that correspond to the exploration of the Envl
environment. Maps shown on the left side of Figure 4.13 correspond to the
union of partial maps that have being communicated to the host and maps
on the right constitute the sequence of fused maps. In fact, the host does
not compute the fusion of these communicated maps but a fusion of the
union of the currently fused global map with the new incoming partial map.
Maps in the figure have been presented in such a way in order to reflect the
gain of the fusion process —which reduces the number of segments. The
caption of the figure explains the order of communication of the partial
maps after subsequent explorations of the Env1 environment.

a) b)
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g) h)

Figure 4.13: Map generation of the Envl environment. a) The first robot that
communicates its partial map is the left anxious (see Figure 4.10 a)); b) fusion of the
current map; c) Shows the union of the previous partial map in a) with the second
communicated map, which corresponds to the right normal robot exploration (see
Figure 4.11 a)); d) Gives the fusion of the union of the fused map in b) with the new
partial map in c¢). Afterwards, the right anxious robot communicates its partial map
(see Figure 4.10 b)): e) Shows the union of previous partial maps and f) Is the fusion.
Finally, the map from left calm robot (see Figure 4.11 b)) arrives to the host: in g)
We have the union of all partial maps and in h) The final fusion.

Considering the previous Figure 4.13, there are several aspects to
comment:

e Partial maps are filtered so that spurious readings are not
considered. Comparing the partial map from a) and the one that
came from exploration (see Figure 4.10), we can see that the map
generation process filters some detected points (those segments
having the same initial and final position).

e From the partial map information, the map generation process
computes the corresponding imprecise segments (see Sect. 3.2.2).
Imprecise segments are triples Si=(S, Area., Fs) were S is the
segment detection, Areae is the error area asociated to S and Fs is
the corresponding fuzzy segment. All figures in this section have a
segment representation that corresponds to the S component.

¢ Among the conditions that two segments must accomplish in order
to be fused, there is one that can be tuned by the user of the map
generation program at the host. This is the fusion threshold (see
Sect.3.3.1). For the maps in the previous figure, his parameter has
been set to 0.8m, which corresponds to the gap of a standard
doorway. Therefore, the map generation process will not fuse
collinear segments if their relative distance is bigger than 0.8m
(even if their error areas Area. overlap).

Regarding this fusion threshold, the assignment of its value is clearly
tight to the kind of environment. Considering now the less realistic Env2
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environment, we can use a bigger threshold to fuse segments. Next Figure
4.14 shows how this has been done with a threshold of 1.2m.

bT ~ﬂ=v ;rl . % } |

Figure 4.14: Map generation process of the Env2 environment. Communicated
partial maps are in red, and the result of the fusion function is in blue. a) Two
partial maps and the resulting fused map, partial maps came from the left anxious
robot (see Figure 4.8 b)) and the left calm robot (Figure 4.9 b)); b) Four partial maps:
the ones at a) plus the partial maps from the right anxious robot (Figure 4.8 a)) and
the left normal robot (Figure 4.9 a)); ¢) Maps in b) with a superposition of their
fused map; d) The fusion of the map shown in c).

Finally, we see one more example of fusion. In this case (Figure 4.15), we
consider the Env3 environment, whose layout is more office-like than the
previous environments. In this case the host generates the global map from
the exploration of three robots.
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e) f)
Figure 4.15: a) Communicated map from the exploration of the Env3 environment;
b) Fused map obtained from the map in a); ¢) Fusion map in b) with a second
communicated partial map; d) Fusion map from c); e) The fusion map in d) with the
last communicated partial map; e) Fusion of the map in d).

For the previous example we have used a fusion threshold of 0.75 m —it
is a parameter of the program. We have set this value smaller than the
standard doorway size because, due to robots’ error, some relative distances
between doorway segments are smaller than 0.8 m. This decision is done
online: the user in the host computer can evaluate the fusion process
results and try different thresholds in order to obtain the most satisfactory
map. Of course, this criterion is purely subjective, it simply depends on the
common sense of the user but we use an example that clarifies this idea.
Next Figure 4.16 shows two additional fused maps with different threshold
values. They illustrate how the change in this parameter affects the
resulting map. Map a) in the figure has been obtained by setting the
threshold value to 0.8 m. With this value, a doorway near the right side of
the map appears to be closed —or as a single wall— because its gap is
smaller than 0.8 m. The same effect happens for most doorways in map b)
because the threshold used to its fusion was 1.2 m. This value does not
make much sense because it is bigger than the average size of a door, and
therefore it is very likely that doorways are collapsed into single walls. And
therefore, as we can see in the figure, most segments at both sides of
doorways are fused. Since the user does not know the map of the
environment, he or she can only make a hypothesis about what segments
should fuse. Considering a threshold of 0.75 forces the right-most doorway
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to appear, and this is the reason for which the user decided that 0.75 is
more suitable than 0.8 or 1.2. However, this only applies for this case. In
general, the user has to find the compromise between not closing doorways
and doing as much fusion as possible: the smaller value the user sets, the
more conservative the map is and the lower fusion rate the map has.

)
|
o

Figure 4.16: a) Fused map with threshold equal to 0.8m. b) Fused map with 1.2m as
threshold.

Ll

4.2.2 Completion

As it has been previously described (see Section 1.1), the Map Generation
algorithm calls the completion function with the current global map. This
function is a post-processing function that tries to improve the global map
as well as to identify some environmental features —i.e., singular points,
corners and doorways. Completion applies heuristic rules in order to define
these features from the relations among imprecise segments.

Heuristic rules are applied in the following complexity increasing order:
first, L-corner rules; second, T-corner rules and, finally, doorway rules (see
their specification in Sect. 1.1). We will use the fused global map from the
Env3 environment in Figure 4.15 f) to see the results produced by the
heuristic rules. The next Figure 4.17 shows this global map after the
application of the L-corner rules.

By the changes in the singular points of the figure, we can see that 16
corners —out of 24 real corners— have been produced. L-corners have been
generated by relating pairs of perpendicular segments. They can be
distinguished in the image (Figure 4.17) because their singular points
appear highlighted by black circles. The a threshold parameter value that
is used in these results corresponds to 0.8 meters.

Besides light coloured singular points, which relate two segments and
come from single applications of L-corner rules, dark singular points appear
in the figure as the intersection of three different segments. Although they
look like T-corners, they do not come from the application of T-corner rules
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but from applying L-corner rules twice. For the first L-corner rule
application, one segment Si is related to another segment S; producing an L-
corner ci=(pi, Si, Sj) with a singular point pi. Afterwards, a second L-corner
rule application results in a new corner cx=(px, Sk, S1), which relates a pair
of segments (Sk, S1) that intersect at a point px. This new corner will be
directly included into the corner list only if the px point is different to the
previous pi. Otherwise, an additional segment comparison is required in
order to avoid repetitions of corners in the list. Two corners are considered
to be different (cx #ci) when, at least, one of their segments is different ((Si#
Sk and Si# S ) or (Sj# Sk and S; # S1)). Dark singular points in the figure
correspond to two different L-corners that have one segment and a singular
point in common.

We can still find another case of two L-corners sharing a segment in
Figure 4.17. The difference in this case is that, due to detection errors, their
singular points do not coincide. They are very close, though, and therefore
they appear as a kind of double light point. They are not merged into a
unique singular because L-corner rules do not handle segment alignment.
(We can find such kind of double L-corner at the bottom of the figure).

- S . W

Figure 4.17: Completion of the L-Corners of the map in Figure 4.15 f).

T-corner rules are the second rules that are applied over the global map.
In our example, they have only produced two T-corners between pairs of
perpendicular segments —whose intersecting point is close to the extreme
of one segment and far from both extremes of the other segment. These two
T-corners appear as dark singular points in the following Figure 4.18.
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D I B

Figure 4.18: Completion of the map of Figure 4.17: application of T-corner rules
with a = 0.8 m.

Finally, the third computation of features corresponds to the generation
of doorways. Doorway rules (see Sect. 3.5.2) are applied assigning to a and
B parameters a value of 0.8 meters. In the following Figure 4.19 they
appear as two grey singular points linked by a grey arch. Five doorways out
of eleven have been produced. For the remaining six doorways: one of them
was not traversed by any robot—the one on the top of Env3—; four had a
missing detected segment —that is, the robots only detected one of the two
segments that define a doorway—; and the sixth doorway did not fulfil the
requirement about the relative distance between segments (from the left
side of the central horizontal corridor, it is the second doorway on the
right).

Figure 4.19: Completion of the map of Figure 4.18: application of doorway rules (a =
B =0.8m.).
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4.3 Random Exploration Strategy

The Robot Navigation section in the second chapter describes how robots
show a partially random behaviour when exploring the environment.
Randomness is present through probability values. On one hand, a turning
probability defines when the robot must turn. And, on the other hand, a
direction probability that defines a tendency to turn to one side more often
than to the other.

Due to this turning probability, when the robots find a wall and follow it,
they leave it according to its probability value —a minimum distance is
forced, though— even if the end of this wall has not been reached. This
strategy may seem to be counterintuitive, but it is good for the kind of
coverage we are looking for. Considering that robots have very limited
resources —as batteries, etc.—, we rather prefer them to find more than
one wall than just finding one and following it until its end. Nevertheless,
we are also concerned about the policy of “once you have found something
try to extract as much information as possible”. Therefore, we use different
values in the probabilities to ensure that some robots will follow walls for
“reasonable” distances. In this manner calm robots follow walls along
longer distances than nervous robots. The reason to have nervous robots is
that they tend to exhaustively cover an area, providing also information
about free space in the environment.

Our exploration strategy of leaving a wall before its end tends to
homogenise environment coverage. By homogeneous coverage we mean that
detected environment features —together with their associated errors— are
uniformly distributed on the environment. By default, our problem setting
does not favour homogeneous coverage. This is due to that, since all robots
start at the same initial position, it is more likely to happen that robots
detect walls near this position than distant walls. In addition to that, the
sooner a robot detects a wall, the smaller its associated error is. Taking this
into account, our navigation strategy tries to balance this situation by
leaving detected walls once they have been followed along a sufficient
distance. This strategy increases the chances for far away walls to be
detected with acceptable accumulated errors. Of course, it is reasonable to
think that, if robots leave walls before their end, then, part of the
information about nearby walls will be lost. This may look like losing close
information in order to acquire some distant information. However, this
strategy tends to obtain more information than it looses because, since close
walls have high probabilities of being detected, a significant part of this lost
information would have been resulted to be redundant when considering
other robots’ information.
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These previous comments about random environment coverage are just
intuitions. We have not exhaustively studied this problem because there
are other works that already give mathematical soundness to random
exploration and environment coverage. Some results and a brief description
of some of these works are given in the following subsection.

4.3.1 Random Environment Coverage

In 1959, Nash-Williams presented the analogy between the resistance of
electrical networks and random walks on graphs (Nash-Williams 59). Later
(Doyle 84), this analogy was used for investigating the recurrence
properties of random walks on 1, 2 and 3 dimensional grids. Two
representative results of graph coverage by random walk give the following
upper bounds to the coverage time of a graph (with m edges and n vertices):

e O(ml) was given in (Aleliunas 79)
e O(mlpdog n) where the pis the resistance of the graph, assuming all
edges to be 1-Ohm resistors (Chandra 89).

It is also known that this coverage time is significantly reduced if
several random walkers are properly distributed in the graph (Broder 94).

Although these works about graphs are interesting because we can
generate a graph from our maps (by discretizing them and defining a node
for each resulting cell), we rather focus on the results of a recent work on
continuous domains (Wagner 98). In the rest of this subsection we
summarise some coverage results by Wagner et al. They concluded that:

e On the average, a random walk is not too bad compared to
deterministic algorithms that use complex computations to calculate
their steps.

Deterministic algorithms can be generalised as follows:

1. Discretize the environment in areas (defined by the range of the
robot sensors) and go to the starting position.

2. From the current position, see if any neighbour area has not
being covered:
« if there is an area: go there, mark the area as covered and

make a line between the previous and the current area.

e if there is no neighbour area: backtrack using the lines.
« if it is not possible to do backtracking: stop (end).

Random algorithms chose a random point around the current area.

Wagner et al. results are based on the definition of a relation between
the cover time of a Markov process and the electrical resistance of the
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explored region. The cover time of a Markov process is defined as the
average time that a robot needs in order to cover a given region area. It is
computed considering that a robot senses (i.e., covers) a circular area
around its position and that it visits a sequence of points such that the
union of covered circles include the region. On the other hand, the electrical
resistance of the region corresponds to the electrical resistance of its surface
(e.g., the voltage between two points on the surface when applying 1
Ampere of current between these points). The relation between the cover
time and the resistance of a region is established because of a previous
work (Matthews 88), which relates the coverage time with the hitting time
in a Markov process (were the hitting time is taken as the average time
needed to move from a point to the circular neighbourhood of another
point).

Considering an unknown area R that can be discretized in n unitary
square cells we assume n to be the size of R. In general, we know that:

* In order to cover R, a robot that covers —i.e., senses— a circle of
radius /2 must do a number of steps that is, at least:
g 3n O
54[1 m+3./3 E
In addition, when the robot chooses a random direction at each step,
they conclude that:

e The expected time of complete coverage EITFC] of R is bounded by:
2np < E[TPC] <2nplogn

Where p is the electrical resistance of R.

Wagner et al. also conclude upper bounds for the variance and standard
deviation of the coverage time:

VIT™1<2%np and ofr™]= [V[r™] <32 2np

All these results stand for a completely random strategy that chooses a
new robot direction for every step. In our case, this random direction is
chosen after covering a random distance —which comes from the robot
turning probability. Therefore, we could think in our exploration strategy
as a biased random exploration such that, for each step, the probability of
choosing the next direction as being equal to the previous direction is larger
than the probability of choosing any other possible direction. In this
manner, our exploration strategy fits the categorisation of random
exploration, so that the previous results also apply for it.
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4.4 The History of this Approach: some Pitfalls.

This first part of the thesis reflects the approach developed within a
collaboration of the Artificial Intelligence Research Institute —where this
Ph.D. thesis has been developed— with the Automatic Control department
at the UPC (Technical University of Catalonia). The automatic Control
department was building a group of autonomous robots while we were
developing the map generation process. Considering that robots would
explore highly structured environments with low density of objects, we
chose a symbolic approximation to this environment-modelling problem.

In this manner, we first defined imprecise segments as a representation
of the environment. Secondly, we specified the fusion algorithm in order to
group the information —and therefore, simplify it. And we finally sketched
the completion rules that generate some environmental features —corners
and doorways. However, since we were developing these ideas in parallel to
the robots construction, we had to use the previously described simulator to
obtain data for testing our algorithms.

Once they had a stable version of one of the robots hardware, we were
able to do the statistical error analysis shown at the end of the second
chapter (Sect. 1.1). The testing of the robots navigation software was the
next natural step. Unfortunately, a problem in the following of walls
appeared during the testing in real environments. During the micro-
servoing, it turned out that so many micro turns were done that robot
developers decided to incorporate a compass in order to obtain the
orientation of the robot —rather than to compute it by using odometry—
because it accumulated unnecessary errors. Three robots had being
developed by then, however, they never where completed because funding
problems of this starting project at UPC did not allow to install the
required compasses.

In this situation we decided to keep our research in the field of map
generation but using our own simulated data. By then, we had advanced
enough in our symbolic approach to be aware of some limitations regarding
the completion process. These two circumstances yielded us to start a new
approach to solve the same mapping problem. This new approach is the one
presented in Part II. In the rest of this section we comment the limitations
we found for a possible further work on symbolic map completion.
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Further Work on Map Completion

Chapter 3 presents heuristic rules that define features of the environment
by considering relative segment positions. However, from the results shown
in Subsection 4.2.2 it is obvious that this completion process could be
further developed. In fact, the completion concept itself has been reduced to
just complete corners and doors, but it could be generalised to include other
kinds of segment processing such as extending single segments or
combining segments that were not grouped by the fusion process. However,
even restricting the completion to generation of features, there are at least
too more directions that need further development. On the one hand, corner

and doorway rules could be refined in order to include more cases. And, on
the other hand, other concepts could be generated as well. Next paragraphs
comment some of these cases.

As Subsection 4.2.2 shows, there are T-corners in the environment that
are defined in the map as two L-corners sharing a segment. Of course, it
would be possible to have an extra rule that looked for these specific cases,
erasing the corresponding two L-corners and generating a new T-corner.
However, this has two problems. First, the generation of a T-corner only
includes two segments —and therefore, it should be changed. And second,
for those cases where the singular points of the L-corners do not coincide,
the rule should first align some segments —we have previously said that
alignment is not desirable due to its propagation effect. Furthermore, the T-
corner generation needs more elaboration than just extending it in order to
include more segments. This is because the union of two L-corners can lead
to two different T-corners: if they share a segment, then it corresponds to a
T-corner, otherwise, it is a cross-shaped T-corner. Next Figure 4.20 illus-
trates these cases.
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Figure 4.20: a) A T-corner that has been generated as two L-corners sharing the Sz
segment and their singular point; b) A cross-shaped T-corner that has been
generated as two L-corners sharing their singular point.

There are cases where doorways whose walls have been properly
detected are not generated because of the absence of a robot trajectory
going through it. This is a reasonable condition because, if this was not
required, the system would generate doorways that would correspond to
real walls in the environment. However, this traversability information
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could be used by new rules to generate doors having a gap too big but with
a robot trajectory going through.

From the combination of corners and doorways, the concept of a door-
corner appears. An extra heuristic rule could generate them from situations
where neither a corner nor a doorway can be generated. Two perpendicular
segments cannot generate a corner if there is a robot trajectory passing
through their closer extremes. Whilst a doorway cannot be defined for non-
collinear segments. Next Figure 4.21 shows two examples of door-corners.
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Figure 4.21: a) (S1,S2) and (S1,S3), perpendicular segments with a robot trajectory
passing through their closer extremes. b) definition of two door-corners di and ds.

Other kinds of objects could also be defined by increasing the level of
abstraction. For example, we could have the concept of room, as a union of
walls having, at least, one doorway. Considering our structured
environment, we would have more than 4 walls —or any other even
number— and, we could also add the requirement of having the same
number of corners as number of walls. The existence of a door guarantees
that at least one robot has been inside the room. Therefore, as a
complementary concept of room we could define the concept of obstacle as a
closed union of walls. The obstacle definition would require that no robot
had entered inside its area. This would mean that all walls had been
detected from the outside of the obstacle.

The previous discussion illustrates that the number of possible cases can
increase significantly, especially if we consider that we are just working
with an orthogonal environment. Furthermore, we have not taken into
account other factors such as the order of application of heuristic rules,
segment errors or a more complex consideration of trajectory information.
Thus, as we have already said, we decided to change into a less ad-hoc
approach at this point of our research that will be described in Part IL
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4.5 Conclusions

In this Part I we have presented an approach to the map generation
problem. This approach is based on a troop of small autonomous robots that
explore an indoor environment and a host computer that generates a
plausible map of this environment.

The indoor environment is assumed to be orthogonal with a significant
portion of passable areas —this is, the floor must be mainly flat. In
addition, the environment must be basically static because our approxima-
tion generates a static representation of the environment. Nevertheless,
objects with thin legs —i.e., chairs, tables, etc.— or persons can move
because their sides will not be followed and therefore, they will not be
represented. On the contrary, large obstacles —i.e., having sides long
enough to be followed— are supposed to remain in their locations and are
thus represented.

Robots explore the environment by following six different randomised
behaviours. This strategy not only helps in distributing the accumulated
error along the environment but it also performs a reasonable coverage of
the environment. Furthermore, by assigning different values to robots’
turning probabilities, allows to obtain different kinds of information such as
wall positions or free space.

Robots start their exploration from the host position, they gather the
environment information, and finally —when they have accumulated a pre-
specified error—, they return to their initial position. Their returning
trajectory is very conservative (it is basically the same than the exploratory
one but without loops). But guarantees safe traversability and, for a further
work, previously detected features could play the role of landmarks to
compensate for accumulated errors.

All robots in the troop that, after exploration, return successfully,
communicate to the host their partial maps. In fact, robots can also share
their partial maps when two of them meet. We have not seen this situation
in the results, though. None of our robots in the simulation was lost
because the environments were completely passable, and therefore, shared
partial maps were redundant. Nevertheless, without focusing on this co-
operative task of map sharing, we still can say that all robots work in the
same environment and with the same goal —obtaining information in order
to generate a map— and, in that sense, they collaborate in the map
generation task.

The host implements a symbolic approach to include into the global map
of the environment all the information coming from robots’ partial maps.
This symbolic approach is based on a representation of detected
information by means of imprecise segments. Segments are imprecise —
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that is, we do not know their precise location due to robot errors— but not
uncertain because they come from sure detections and subsequent
followings. From the imprecise information that we have about the position
of a segment, we define the corresponding fuzzy set that is represented by a
membership function that gives, for any point in the segment error area, its
membership degree to a real wall.

Together with the imprecise segments, other symbolic features such as
singular points, corners or doors are represented. On this representation,
the host applies first a process of fusion of segments and, afterwards, a map
completion computation based on heuristic rules. Fusion is done
considering the imprecise segment’s errors and relative distances between
the segment candidates for fusion. On the other hand, a completion process
applies heuristic rules that present some problems when trying to cover all
possible cases. However, this symbolic approach, still has remarkable
advantages. Next subsection comments them.

Advantages of Symbolic Approximation

Considering highly structured environments with a low density of obsta-
cles, a symbolic representation is especially desirable because the elements
in the environment can be easily represented and the size of the environ-
ment does not limit its representation.

As we have already explained, the elements in the map are represented
in a reduced memory space. Memory is allocated dynamically, so there is no
need of knowing neither the number of elements that will be represented
nor the number of relations they will have nor the size of the environment.

The representation of environmental features is based on dynamic lists
containing elements that keep their relations by means of pointers.
Pointers allow a direct access to the information as well as quick updating
without a significant memory cost. In addition, these pointers are bi-
directional and therefore, the access to information is very flexible. We can,
for example, access all the segments with singular points in two different
ways: We can follow the list of singular points and, for each singular point,
access the segment/s it belongs to. Or, on the contrary, we can follow the
segments list and check those segments having a non-empty list of singular
points.

This symbolic approximation allows a direct categorisation of environ-
ment features into detected wall segments, singular points, corners and
doorways. This distinction of elements benefits the use of all their implicit
information. In this manner, it is direct to use all the singular points in
order to detect potential doorways or corners because of their wall ending
implication.
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Imprecise segments are ordered applying the Quicksort algorithm with
an increasing error criteria (it is known to be optimal). These imprecise
segments constitute the key aspect of our symbolic representation. They do
not only allow to represent imprecision through fuzzy sets, but also to
define a fusion operation for pairs of segments.

Fusion is by itself an essential process that groups information and
reduces imprecision. Fusion is a simple operation over pairs of imprecise
segments that reinforces their common areas whenever they correspond to
detections of the same real wall. Of course, the direct consequence of
information grouping is the reduction in the number of segments and in the
amount of memory used in the map representation. Nevertheless, what is
more important, is the reduction it implies for the number of comparisons
in the subsequent processing (the completion).

Completion constitutes the higher level process in the symbolic
treatment of the map information. By using heuristic rules, it deduces
different environmental features —more precisely, two different kinds of
corners and doorways— that open a variety of future work possibilities.
Just to depict some examples of future research, we list here several open
directions without aiming to be exhaustive. First of all, generated envi-
ronmental features can be used as natural landmarks for path planning. In
addition, these same features can help in the symbol grounding process of a
robot that moves in indoor environments. Moreover, since these symbols
represent known human concepts, they can define a vocabulary for the
communication of robots with human beings. And finally, they can help the
robot to apply symbolic learning.






Part II: Using Possibility
Grids for Structured Indoor
Environments

95






Chapter 5

Simulation System of the
Robot Exploration Troop

The first part of this thesis described a troop of autonomous robots and a
host computer that collaborate in order to generate a map of an unknown
environment. Robots explore the environment using a navigation strategy
based on probability values. The results in this first part are maps
generated at the host computer by using the exploration information from
robot simulation.

For the second part of the thesis, a new simulator has been developed
and a new approach to the map generation process is also presented.
Basically, the simulation reproduces the hardware characteristics of the
real robots. The main differences are that it implements a different naviga-
tion strategy and that it models the error obtained from the analysis of the
real robots (described in Sect. 1.1).

Basically, both parts treat the same map generation problem —includ-
ing the environment exploration problem. Nevertheless, they have been
approached from a rather different point of view. A brief comparison can be
sketched in two points:

 In the first part, robot exploration strategy is essentially random,
whereas in the second part navigation is done by the co-ordination of
several basic behaviours —it keeps a random component, though.

 The first part presents a symbolic (fuzzy segment based) approach
to the map generation process, while this second part represents the
environment by means of a discretization: a Possibility grid.

The current chapter describes the implementation of the simulator
system and includes a detailed description of the former point. The second
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point, that is, the representation of environment maps, is the main issue of
Chapter 6th,

Both parts have, therefore, important aspects in common. Nevertheless,
the interest of different approaches increases when they exploit com-
plementary features and if their results are useful for different purposes.
Considering their differences, one or the other can be chosen on the basis of
the nature of specific goals in the map generation process. We have already
seen that our symbolic approach is helpful in extraction of environmental
features as corners or doorways. On the contrary, a grid map repre-
sentation is more appropriated for different map treatments. Chapter 7
concentrates in two subsequent processes: segment extension and path
planning.

Finally, Chapter 8 returns to the simulation system in order to describe
how the same behaviour-based navigation strategy can be used to follow
the planned paths obtained in Chapter 7.

5.1 Introduction

Section 1.1 specifies the team and the task of the ANT project. The present
chapter describes a simulator that follows the same specification, although
some aspects in the general settings of the task have been redefined.
Basically, this chapter is a technical description of the simulator. It
describes the simulated environments as well as the simulated robots. Most
of these descriptions are based on the ANT project, and all introduced
variations will be punctually specified in the pertinent moment. These
variations concern environmental assumptions as well as initial and final
robot positions and, despite of their generality, they do not constitute
significant changes in the problem statement. On the contrary, they can be
seen as fairly independent from the two main approaches that are
presented in this second part: Behaviour-based navigation and map
representation by means of Possibility grids.

Since this chapter describes the simulator implementation, it is
important to specify that this simulator is a PC application. It runs over the
Microsoft Windows 3.1 and 95 Operative Systems, and it has been
implemented in Borland 4.5 C++. The fact that it is developed in C++
implies that some of the subsequent comments will make some references
to Object Oriented terms (Eckel 91) —as objects, their methods or
inheritance. We cannot either avoid commenting some aspects about the
user interface —as menus, dialog boxes, child or frame windows. In fact,
our application presents a Multiple Document Interface —MDI (Heller
92)— developed using the classes from the Borland’s Object Windows
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Library —OWL (Borland 94). The explanation will be as much independent
as possible from the classes actually used. Nevertheless, some of them are
mentioned in order to illustrate and clarify the implementation.

5.2 Simulated Environments

5.2.1 Non-orthogonal Environments

The first part of this thesis assumes that office-like environments are
orthogonal. For this second part we relax this restriction and, although we
still assume that they are mostly orthogonal, we also consider and
represent non-orthogonal features in the environment.

In the current chapter we will see that, although robot navigation
follows a behaviour-based strategy, robots explore once again by moving
randomly in free space and following doors —or obstacle edges— when
detected. Therefore, our mapping process still considers only those
environmental features having edges long enough to be followed by the
robots (small obstacles, such as legs of chairs, desks, or people, are thus not
represented). The fact of considering only relatively large environmental
features makes the orthogonal assumption more reasonable. On the one
hand, walls are usually connected by right angles, and on the other hand,
pieces of furniture in an office —such as bookshelves or drawers— tend to
have rectangular shapes.

Besides the obvious advantage of complexity reduction, the orthogonal
assumption presents an extra benefit. In case a robot follows a wall —or an
obstacle edge— without an exactly parallel trajectory, the resulting
detected segment will not be orthogonal. In such a case, orthogonality
allows the host to correct the given segment by generating its closer
orthogonal segment.

Nevertheless, half opened doors appear so often in office-like
environments that they forced us to relax the orthogonal restriction for this
second part. Therefore, our mapping process considers now segments going
in any direction. However, it still considers the orthogonal assumption for
those detected segments that are almost vertical or horizontal, so that they
are orthogonalized whereas oblique segments do not change orientation.
This relaxation of the orthogonal assumption means a significant
improvement to the mapping process because, as Yamauchi points out in
his recent work (Yamauchi 98), it is still quite common to find in the
literature systems that can only handle parallel or perpendicular walls.
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5.2.2 Environment Simulation

Environments in the simulator are opened and saved through the user’s
Multiple Document Interface. Figure 5.1 shows a snapshot of the simulator
with three opened environments together with the Open Dialog that will
allow to open a forth environment. Environments are stored by means of
environment maps, which consist of an array of walls or obstacle edges. As
in the previous part, we do not distinguish walls from obstacle edges, they
are assumed to be decomposable in rectilinear segments so that they are
defined using the co-ordinates of their initial and final points. Furthermore,
all the environments in the simulator are supposed to be flat, and therefore,
these points are defined in a two-dimensional plane.
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Figure 5.1: Snapshot of the simulator when the user is opening several environ-
ments. Three of them are already open. Except for the one that is being opened, all
of them have a granularity value of 2 cm. and considering them in clockwise
direction, their sizes are 5.7m.x 4 m., 5m.x 3m., and 6m.x 4m. respectively.

The opening of an environment map implies the generation of an
environment in the simulator. Although this statement might look straight
forward, it is important to make the distinction between environment maps
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and simulated environments. An environment map is basically a file
containing wall information whereas a simulated environment is the
scenario of the simulation. Inside the client area of the main window of our
simulation application, each simulated environment is created as a new
child window (i.e., child of the main window) that inherits all the display
properties of the MDIClient class. In this manner, we can describe a
simulated environment as the screen of the simulation process. As in every
Multiple Document Interface (MDI) application, there can be several
environments simultaneously open, but simulation is only done in the
simulated environment window that it is currently active.

5.2.3 Environment Class Members

Our simulator defines a number of object classes which is too large to
describe all of them. Nevertheless, there are two classes that are
fundamental for the system and we cannot avoid detailing them. These are
the environment class and the robot class. Here, in this subsection, we
enumerate the principal members of the former class:

e Environment general features. Their values come from the
environment map (they are assigned by the user during its first
definition). We consider a discretization of the real environment in a two
dimensional grid, this grid is characterised by:

- Its granularity, which gives the relation between the real and
the simulated environments. Its default value is 2 cm meaning
that each cell in the simulated environment represents two
square centimetres of the real environment. All opened
environments in Figure 5.1 have a two-centimetre granularity
(a value of 1 cm is also very common, though).

- Its x and y dimensions, together with the granularity, give the
size of the real environment. Their default values are 5 metres
for the x axis and 3 for the y axis. In the Figure 5.1, this is the
actual value of the map on the right top corner. These values
give the size of the white area, which includes all wall co-
ordinates within the environment.

e Array of walls. This array is created from the segments in the
environment map (which correspond to walls and obstacle edges). By
default, a wall is considered to be 10 cm. wide. This value is set to be the
same than the one in the previous part (see Sect. 4.1.1).

* Grid map of the simulated environment. As we have already
mention, the environment is discretized into a grid. The size of the grid
corresponds to the x and y dimensions of the environment divided by its
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granularity. That is, the grid is a matrix where the number of columns is
the x dimension divided by the granularity and rounded to the upper
natural (and respectively, the number of arrows comes from the y
dimension). Each cell in the grid contain the following fields:

- Wall or obstacle presence

- Robot body

- Robot collision detector

- Robot Infra Red signal (IR)

- Robot presence signal

- Robot area of presence detection

These fields take numeric values meaning the number of elements of
the corresponding kind that exist for each particular cell. Having a
coherent value assignment for these six fields is enough to simulate an
environment with several robots moving inside.

Wall values are represented initially. When the user opens an
environment map, the grid is defined and walls are marked inside the
grid by assigning 1 to the wall presence field of the corresponding cells.
Since both, wall and robot body fields, represent physical occupancy,
their values are incompatible and can only be 0 or 1. On the contrary,
the presence of robot body or wall with infrared signal in the same cell
can be used to model detections. For example, if the current position of a
robot is being represented and the fields corresponding to infrared signal
coincide in the same cells than wall fields, this can be interpreted as the
robot detecting a wall.

Although each field is represented by just one byte, it is obvious that
the size of the grid needs the allocation of a significant amount of
memory. This constitutes the main reason for simulating environments
with a limited size. As we have already said, our default size is 5m.x
3m., which corresponds to 879K.

 Array of robots. Robots are defined to belong to the currently active
environment. Each environment can handle a maximum number of five
robots. Next section 5.2 details how does the simulator represent and
manage robots in the environment.

* Display members and overridden inherited functions. As we have
already said, the environment class is derived from a Window class, and
therefore it has inherited functions that help in the display of the
window client area. Basically, the information to display is the
representation of the grid map. This grid is updated after robots’
movements. Therefore, In order to show the current state of the grid
map, we have to synchronise robot’s movements with the windows
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updates. This is done redefining some of the inherited display functions
and creating some auxiliary elements.

Initially, the function SetupWindow() is redefined so that it creates one
Memory Device Context —a memory area where it is possible to draw the
information that will be displayed in the client area of the window—,
one Bitmap and all the Pens and Brushes necessary to draw every displayed
feature. This function also marks the walls in the environment map in
both, the grid map and the Memory Device Context.

Afterwards, each time a robot is added or the robots move, the
representation of the robots must be changed. And, once again, this is
reflected in the grid as well as the screen. In the next Section 5.2 we will
give details about how robots update the grid. Regarding the screen
updating, the function UpdateWindow() sends a WM_PAINT message to the
window EventHandler, which calls the inherited function Paint with the
window’s Device Context as parameter. This Paint function is redefined so
that it updates the representation of the robots in the Memory Device
Context (using the Bitmap, Pens and Brushes) and transfers it into the Device
Context of the window (this is what actually updates the screen). The
translation from each cell in the grid into each pixel in the Memory Device
Context is done by assigning priorities to the cell labels. That is, each
pixel takes the colour from the label with the highest priority in the
corresponding cell. (We will further explain this in the following section).

Finally, in order to add some more window capabilities, several
functions have been created —or overridden from the Window class. Some
of them manage the window with flags (this is the case of CanClose(),
which uses the IsDirty and IsNewFile flags); while others use messages (for
example, EvSize and AdjustScrollers() pass messages to LayoutWindow).

« Interface functions. The user guides the execution of the simulator
by activating all the options that can be selected for an environment.
These options are supported by a number of functions and they are
available to the user from the menu in the main window frame. They
can as well be selected by mouse —opening the menu or the equivalent
tool bar buttons— or by pressing the quick access control keys. The Event
Handler uses several Response Tables that are defined in order to
establish the connection between the messages generated by the
interface elements —when chosen by the user— and the functions that
actually perform these options.

Up to this point, we have already seen that an environment class has
several components that are related to different capabilities. Seeing an
environment as a container of the environment map, it can be created,
saved, saved with a different name, and loaded. All the options that need
some user information open different dialog boxes and use predefined
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information to validate the inputs. In this manner for example, the
environment maps are saved in files with the “*.map’ extension.

On the other hand, environments are windows that display its grid
contents. From the windows point of view, the user can:

- move, select, expand, resize, minimise, or close an environment
window with the mouse as a regular window

- automatically arrange icons of minimised windows,

- close all windows in the application,

- arrange windows in different positions: title or cascade, and

- select and bring into the first plane of view a specific window
name

Finally, an environment has up to 5 associated robots. There are two
menu options that are related to robots: Add Robot and Start Robots. A
robot cannot be added while the simulation of other robots is being
executed. Therefore, the user is expected to, first, add robots and then,
start their exploration. A robot can be started just once, therefore, if
after a simulation the user adds new robots, only these are started,
while the rest of robots remain stopped in the environment (they act as
new obstacles).

* Constructor and destructor member functions. Although we are
describing the environment class as if their instances were huge objects,
it is not the case. Most of the elements that have been described are just
pointers to other objects that come from different classes. In this way,
for example, the environment does not have an array of robots: there is
one array of robots class, and the environment just has a pointer to an
instantiation of this class. Walls in the environment map, memory
device contexts or the grid map are some more examples of pointed
objects. Considering that some of them make a significant allocation of
memory, and since most classes must be instantiated when creating the
environment object, the creator and destructor are very important
functions that are in charge of all related classes management.

5.3 Simulated Robots

As we have already said in the Introduction of this chapter, the simulator
described here is based on the same problem settings that those in the ANT
Project. However, there are two slightly different assumptions about the
initial and final positions of the robots in the environment.
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e First, we assume that robots can start their exploration from
different positions. From a simulation point of view, this simply means
that robots are initialised in positions defined by the user. This is done
in order to increase the environment coverage. (We already described
the result by (Broder 94) in the 4.3.1 Random Environment Coverage
section).

* Second, we assume that robots finish their exploration when they
have accumulated more error than a given threshold. This threshold is
set in the system meaning that when a given information has an
associated error bigger than this value, we consider this information to
be useless. In this way, the robots do not keep exploring the environ-
ment during its way back to their initial position because they would
obtain useless information about features that have been already
detected. In fact, this simulation does not implement the way back. On
the one hand, it could have been done in the same way than in the first
part, by following the exploration path in an inverse order and suppress-
ing trajectory loops. But, on the other hand, since robots start in
different positions, to go back to a position different from the host
position does not seem really necessary.

Both assumptions, initial and final robot positions, would require in real
world —not simulated— a reliable communication system between the host
computer and the robots. This system should allow the communication
between a robot and the host by other means than infrared signals (that is
for example, radio). In this way, a robot could receive its initial position
from the host (this position would be set by the user) and could send its
partial map to the host once it had explored the environment.

5.3.1 Defining New Robots in the Environment

Robot Characteristics

When defining a new robot that will explore the active environment, the
simulator asks the user to input the following robot characteristics —which
appear listed subsequently (see Figure 5.2 below). Their default values
correspond to the ones obtained from the real robots (see the Error Analysis
in Sect. 1.1):

» The displacement error that is perpendicular to robot’s trajectory.
Displacement error is modelled by a rectangle that increases
proportionally with the covered distance; this error refers to its length.
Its units are in centimetres. In this manner, its default value
corresponds to 0.095 cm. meaning that, for each covered centimetre, the
simulated robot accumulates an error of 0.095 cm. (this value comes
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from the 28.58 cm error that the real robot accumulates in a 3 m.
displacement).

* The displacement error that is parallel to robot’s trajectory. In
terms of the rectangle error, this error represents its width. Again, its
default value comes from the real robot error analysis in chapter 2 and
is equal to 6.59/300=0.022 cm for each cm of robot displacement.

ROBOT CHARACTERISTICS ]

Dizplacement Error Rectangle:

Length: cm per moved cm
Width: cm per moved cm

Tuming Error:
Right turn: cm per -45* turn and 1cm mov
Left tumn: cm per 45° turn and 1ecm mov
Right deviation: degrees per -45* turn
Left deviation: degrees per 45* turn
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Distance: [20-000] o
5 0000 EXPLORATION BEEHAVIOUE CHARACTERISTICS
Error: - cm
Random Behaviour:
General Behaviour: Tumning Probability: per cent
g R e Left Turning Probability: per cent
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Initial Position: & [20.000)
v 20.000|

Figure 5.2: Dialog boxes for the definition of a new robot in the active environment.
On the left, general characteristics. On the right, the dialog that appears if the robot
is chosen to explore the environment.

e Right turning error. It is considered to be a segment approximation
to the angular error in the direction perpendicular to the displacement.
It is measured in centimetres, in terms of length of the segment that
appears as a result of a —45 degrees right turn and a robot displacement
of 1 ecm. Since in our statistical analysis this error turned out to be a
constant deviation, the default error has been set to 0°. However, as we
will see further in this section, the simulator is able to include this error
in the size of the displacement error rectangle.

 Left turning error. It is equivalent to the right turning error. Its
default value is, as well, zero degrees.

* Right turning deviation. It reflects a constant deviation for every
right turn. As we have explained, the error analysis resulted in a 2-
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degree deviation on the left (positive) for each -45° turn (right), and it
increases proportionally with the turning angle.

¢ Left turning deviation. This orientation deviation is equivalent to
the right turning deviation. Furthermore, its default value is exactly the
same: 2-degree deviation on the left (positive) for each 45° turn. (From
these results we can assume that the studied robot has a minor built-in
problem in its wheels that turns out in a constant left deviation).

* Infrared detection distance. Its value corresponds to the infrared
range. Its units are also centimetres and its default value is 20 cm.

* Infrared detection error. It is an estimation of the Infrared error.
Although we did not show any statistical information about this error, it
was experimentally estimated to be 5 cm for white surfaces and regular
light conditions. This is also the default value in the simulator.

* Turning probability. Following the ANT Project specification in the
first part of this thesis (Section 1.1), robots explore the environment
using a random strategy. Robot trajectories consist of turns between
fixed orientation displacements. Random decisions about the frequency
of robot turns are based on this turning probability. Its values determine
the length of the robot displacements. These values are in the range of 1
to 100, being 50 the default value (Section 6.1 gives further details).

* Left/Right turning probability. Once the robot navigation strategy
has decided to turn, this left/right turning probability chooses the new
robot orientation —this is done if the environment does not force any
particular turn. Again, the probability value must belong to the [1,100]
interval and by default it is assigned to 50 meaning that robot will
choose to turn right as often as to turn left. A probability grater than 50
implies that the robot will turn left more often, and conversely, a
probability smaller than 50 will force the robot to turn right with a
higher frequency (this is approximate, Section 6.1 details the computa-
tion).

* Initial position. It is specified in grid co-ordinates —being the (0,0)
at the left lower corner —, and corresponds to the position of the robot’s
body geometrical centre. This position must be within a free area of the
environment. The simulator does not accept any initial position causing
a part of the robot to be placed in an occupied place or outside the limits
of the environment grid. (Occupancy can be due to walls, obstacles or
other robots).

Although the system does not ask them, there are some other robot
features that play a role in the representation of robots. They appear
hidden to the user because most of their assignments require some
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knowledge about the system, and our aim is to keep the interface as simple
as possible. They are the following:

 Velocity. Although this characteristic usually refers to the robot
velocity in real environments, in the case of the simulator it refers to the
number of steps that a robot performs before the screen is updated. Its
value is both related to robot speed and the speed of the computer
running the simulator. In our application, this value is set to 1 so that
the computer shows each step in the robot navigation, but if screen
updating is slow, it can be set to 2 (or any other positive integer) and the
screen will be updated for every two steps. This effect causes the user to
think that the robot moves at a higher speed.

« Initial orientation. Each robot has a vector defining its initial
orientation. It is defined in robot co-ordinates and it points to (0,1). That
is, the robot is parallel to the y-axis of the environment.

e Shape. In fact, the simulator has been developed to represent
circular robots only —which is a close approximation to the real robot
shape. However, it would not be hard to change the code in order to
represent other simple shapes as polygons. Further in this section, we
will see how the robot sensors are drawn whenever the robot changes its
orientation. Of course, a circle is invariant with respect to orientation so
that the simulator does not need to redraw it. If it had another shape it
would be simply treated in the same way than the robot sensors.

oA

a) B e 4

Figure 5.3: Black arrows define default robot characteristics: a) size; b) presence
signal range; c¢) range of signal detection; d) distance between the robot body and
the collision detection band.

« Size. This is a value that depends on the shape of the robot. In our
case, robots are circular, and therefore, its size is specified by means of
its radius (see Figure 5.3 a)), which is set to 10 cm. However, this size is
automatically scaled to the granularity of the environment. In this
manner, when an environment has been defined with granularity 2,
robot bodies are shown as circles having radius of 5 pixels. (Obviously,
all robot characteristics are automatically scaled as well).
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» Presence signal broadcast. It specifies the range of the signal that
each robot emits around itself so that it allows other robots to detect it
(see Figure 5.3 b)). As in the ANT project real robots, it has a scope 360°
of, and is represented by a circle with a radius of 30 cm.

» Presence signal detection. Each robot can detect other robots’
presence signal within a scope of 90 degrees starting at its front and
going towards its left. This arch of circle has been defined with a radius
of 31 cm (see Figure 5.3 ¢)).

* Collision detection. The sensor for collision detection in the real
robots is a flexible band anchored by two switches to the sides of the
robot. In this manner, when an obstacle bends the band, it clicks one or
both switches and the collision is detected. This band is simulated by
half circumference that is 2 em away from the robot’s body (see Figure
5.3 d)).

Representing Robots in the Environment

When the user chooses the option of adding a new robot to the active
environment, the system uses the previous characteristics —conveniently
scaled— to define a new robot. Since each environment has a pointer to an
array of robots, a new robot implies the construction of a new robot object
and its subsequent addition to the array of robots —pointed by the environ-
ment. Nevertheless, the creation of a new robot also involves its subsequent
representation. The robot has several elements that contain a
representation of its body, sensors, and signals in the appropriate scale.
When initialising the robot, the simulator computes the size of the area
that a robot representation requires. Afterwards, it generates robot
representation elements with the same area dimensions: Bitmap, Memory
Device Context, and matrix. The robot Bitmap and the Memory Device Context are
used to represent the robot in pixels; and the matrix represents the robot in
the same terms than the grid map cells of the environment.

Since each pixel in those memory areas can take a unique colour value,
the colour assignment is done in the same order than it would be done for
drawing the robot on the screen. First, the pixels laying inside the presence
signal circle are coloured in light blue (or light grey if B/W). Second, the
system draws in dark blue (or dark grey) the detection signal, whose shape
is a 90° arch. Thereafter, the robot body is represented by a medium grey
circle and the collision band is painted as a black semi-circumference.
Finally, the infrared sensors are 5 red radial lines going out of the body.
Figure 5.4 shows the resulting robot representation. As we can see, the
drawing order is equivalent to a priority colour assignment. In this sense,
the later a pixel is drawn, the higher is its priority.
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Figure 5.4: Simulated robot representation

The assignment of the labels to the grid is done similarly to the colour
assignment. The system uses equivalent drawing algorithms for choosing
the cell that will be labelled. However, the order here is not important
because each element generates a label assignment to a different field of
the grid cells. That is, when representing a robot element, the label
assignment does not overwrite any label referring to any representation of
a different robot element. The structure of the cells in the grid is very
similar to the structure of the cells in the environment grid map (see Sect.
5.2.3). The only difference is that robot grid cells do not contain a field for
the wall representation. In this manner, when marking the body, the
detection scope, or the collision sensor, a ‘1’ label is assigned to the
respective cell fields. On the contrary, the presence signal can have two
different labels, the ‘1’ label is used to broadcast the robot’s presence and a
different label —'5°— indicates that the robot has already found another
robot and is waiting to establish the communication. The label assignment
to the infrared field (IR) in a grid cell is slightly different. There are 10
different labels: we need five to distinguish the sensor position (90° left IR,
45° left IR, front IR, 45° right IR, and 90° right IR); and in addition, for
each sensor, two labels are used to differentiate the signal range that is
‘near’ the robot from the rest of the signal (which is ‘far’ from it). We will
see in the next subsection how these labels are used to simulate robot
sensing.

As an example of value assignment, Figure 5.5 marks three different
positions in the robot representation. For the position number 1, the mem-
ory area has associated a grey colour for its corresponding pixel, whereas
the robot grid cell has three different fields with label ‘1’: robot body,
presence signal and detection scope. Considering the position number 2, the
memory area contains a light red pixel, and the robot grid fields without
null values are: presence signal and detection scope have label ‘1’, and the
infrared field has the label ‘far front IR’. Finally, position 3 corresponds to a
dark red pixel in the robot memory area whilst the analogous cell in the
robot grid has the following non-empty fields: collision sensor and presence
signal have label ‘1’, whereas the infrared field takes the label ‘near 45°
right IR’.
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Figure 5.5: Simulated robot representation

Both, memory area and robot grid, are used to update the environment
representation (memory areas update the environment window whilst robot
grid updates the grid of the environment). Therefore, the system needs to
compute the position where they will be added. This position is relative to
the environment and is computed by subtracting from the robot position
half the size of the area dimensions. The inclusion of the robot memory area
(Memory Device Context) into the environment Memory Device Context is done by a
bit-block transfer (which is a function that copies colour bits from a source
rectangle to a destination rectangle) using the Boolean AND combining
operation. Concerning the inclusion of the robot grid inside the
environment map grid, we have to take into account that, although their
field names that describe the robot coincide, these fields take different
values. In the previous Section Part 11.1, we saw that environment cell
fields take numeric values meaning the number of elements of the
corresponding kind that exist for each particular cell. Therefore, all labels
in a robot cell increase in 1 the field values of the corresponding
environment cell. As the previous section Part I1.1 mentions as well, some
of the values of the fields are incompatible due to physical occupancy. In
this manner, the addition of a robot fails when it tries to increase wall or
robot field values for environment cells that have previous non-zero values
in any of these fields.

Next Figure 5.6 shows an environment with three robots that where
added in different positions. From the bottom left to the top right robot,
their positions in local co-ordinates —going from (0,0) to (285,200)— are
respectively: (40,20), (80,100), and (262,157). The figure shows the environ-
ment represented by pixels, the colours for each pixel is chosen depending
on the existing labels that its corresponding cell in the environment grid
has. We have marked two pixels on the top-right robot in order to illustrate
the label assignment. The pixel on the right is black because it corresponds
to a wall. The cell in the environment grid that corresponds to this black
pixel has the following values:

- Wall or obstacle presence = 1

- Robot body =0

- Robot collision detector = 0

- Robot Infra Red signal (IR) =1
- Robot presence signal = 1
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- Robot area of presence detection = 0
On the contrary, the pixel at the front of the robot is red and represents
the frontal infrared sensor. Its equivalent cell has set to 1 the fields
describing the collision detector, the infrared signal, the presence signal
and the presence detection area (wall presence and robot body have 0
value).
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Figure 5.6: Initial position of three robots that have been added in the same
environment. Robot that appears when adding the robot specified by the dialog box
defined in the previous figure.

5.3.2 Moving Robots in an Environment

Once robots are represented in the environment, the user can decide to
trigger their movement. Robots’ movements are driven by actions. And
actions are chosen so that they fulfil some goals taking into account the
environment perception. The strategy to define actions is explained in the
next chapter. What we see here, in this subsection, is how do we specify
actions and how do we simulate their execution. But previously, since
sensing is an essential aspect of action determination, we describe the robot
sensing simulation.

Sensing Simulation

In order to know the sensor readings of a robot in the environment, the
simulator compares the robot’s grid together with the environment grid
map. Basically, it consists in a value comparison between cells in the robot’s
grid and those cells in the environment grid map representing the same
area. Sensor outputs are stored in a structure called Sensors (in fact, it is an
object specified in an Object Oriented language). This structure, contains
seven fields that take character values and correspond to:
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« Sensors.collision: its value can be 1 or 0 depending on the existence or
not of collision with a wall or another robot.

« Sensors.presence_detection: by default its value is 0, and if the robot
detects another robot, it takes value 1 if the detected signal means
presence or value 2 if the signal indicates that the other robot is waiting
for communication.

* Left infrared (Sensors.leftlR): as the rest of infrared sensors, a 0 value
represents the absence of physical detection —of wall, obstacle, or
another robot—; a 1 value appears when there is a ‘near’ detection —
that is, something has been detected to be close to the robot— and
finally, 2 describes a ‘far’ detection (when something is detected at a
distance that is bigger than half the infrared range).

* Oblique left infrared: it corresponds to the Sensors.45leftiR field and,
as the left sensor, it can take values from the {0,1,2} set.

* Front infrared: it is represented by Sensors.frontiR. Once again, its
values belong to the [0-2] interval.

e Oblique right infrared. It is equivalent to the 45° left infrared:
Sensors.45rightIR0{0,1,2}.

* Right infrared: It is equivalent to the left infrared sensor field, its
name is Sensors.rightiR and it takes values among 0,1 or 2.

The algorithm that assigns the values to the fields of Sensors compares
all cells ¢ in the robot grid with their corresponding cells c. in the
environment grid map. Basically, this is done by checking whether values
at the ce fields come from the labels of ¢- cells (that is, if they come from the
same robot grid) or, on the contrary, there is something else in these
environment cells c.. If this is the case, it is possible to conclude that the
robot is detecting something. The comparison is done between specific fields
in order to assign values to Sensors. In this manner, when the algorithm
considers a robot cell having a particular sensor (that is, the corresponding
field is not 0), it only checks if the corresponding cell in the environment
has the type of presence that this sensor can detect. The robot can detect
three different events: collision, detection of the presence of another robot,
and infrared detection. Collision is detected when a robot cell that contains
a collision detector has a corresponding environment cell with a wall,
another robot, or another collision detector —i.e., robots can collide by their
collision detectors. In the same way, in order to detect the presence of
another robot, robot cells having the presence detection must coincide in
the environment with the emission cells of another robot. If it is the case
that the emission signal coming from the other robot means that this other
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robot is waiting for communication, then the value of Sensor.presence_detection
is set to 2. Otherwise, it is set to 1.

Concerning infrared (IR) detection, it is richer in distinctions than the
previous detections. Since there are 10 different labels for distinguishing IR
sensors in a robot, when comparing a robot cell with the environment, it is
possible to differentiate among 10 different IR robot detections that are
represented in the last 5 fields of the Sensor structure. For example, if the
robot cell has the IR field with a value of ‘far front IR’ and it coincides with
an environment cell with wall field value set to 1, thus, the sensor field
Sensor.frontIR takes a 2 value.

Finally, a brief comment about Sensor field values assignment. Although
comparisons are made cell to cell, the Sensor structure contains values
representing the whole robot grid, and therefore, some order and priorities
must be taken into account when assigning Sensor’s field values. The sensor
reading algorithm can be depicted in the following way:

Sensor_reading()
{ Forevery cell crin the robot grid repeat:
{ Find its corresponding cell ce in the environment grid map,

robot = ce.robot_body— c-.robot_body

if(crcollision_detector > 0)

{ collision = ce.collision_detector — c.collision_detector;

if(ce.wall>0 OR robot>0 or collision>0)
Sensor.collision = 1;

}

emission = Ce.emission — cr.emission

if( c.detection > 0 AND emission > 0)

{ if (emission = 5) emission =2 //2 means waiting for communication
else emission=1; /1 means presence
if(Sensor.presence_detection<emission) //2 has more priority than 1

Sensor.presence_detection = emission;

}

if(cIR>0 AND (ce.wall>0 OR robot>0))

{ ir=0;
check the label of c-.IR
{ case 90° left IR: if it is ‘near then Sensor.leftIR = 1

else if (it is ‘far’ and Sensor.leftiR # 1)
then Sensor.leftiR = 2
end case.
case 45° left IR: if it is ‘near’ then Sensor.45leftiR = 1
else if (it is ‘far’ and Sensor.45leftIR # 1)
then Sensor.45leftiR = 2
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}

end case
case front IR: if it is ‘near’ then Sensor.frontIR = 1
else if (it is ‘far’ and Sensor.frontIR # 1)
then Sensor.frontlR = 2
end case
case 45° right IR: if it is ‘near’ then Sensor.45rightIR=1
else if (it is ‘far and Sensor.45rightIR # 1)
then Sensor.45rightIR = 2
end case
case 90° right IR: if it is ‘near then Sensor.rightIR = 1
else if (it is ‘far’ and Sensor.rightIR # 1)
then Sensor.rightIR = 2
end case
}
}

If (all fields in Sensor==0) then retumn 0
else return 1

Robot Actions

Actions are the objects that drive robots’ movements. Basically, our actions
define the next position where the robot should move. In this sense, they
can be seen as robots’ subgoals. This subgoal position is defined in terms
that are relative to the robot. They are the orientation that the robot must
take in order to face the subgoal position and the distance that it must
move once it is facing this direction.

However, an action has other members that help in the supervision of its

execution as well as in the definition of subsequent actions. An Action has
the following structure:

* Distance. Euclidean distance that the robot must cover in order to

consider that the Action has been successfully executed (in this sense,
distance coverage acts as a completion condition).

* Displacement. Intermediate counter that keeps track of the distance

that the robot has actually covered from the action definition until the
current simulation step.

¢ Orientation. Direction that the robot must face before performing

the displacement. This orientation is specified in degrees and has the
origin in the initial orientation of the robot. (Naturally, we can specify
turning actions without implying robot displacement. This is done by
assigning a 0 value to the distance).
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» Sensors. This is the Sensor structure defined above. It stores the
sensor readings that the robot has while executing the current action.

* Current behaviour and previous behaviour. The next chapter will
describe the Behaviour-Based Navigation Architecture that the robots
use to explore. There, we will see that basic behaviours define the
actions and supervise their execution. These fields keep information
about the behaviours involved in the current and previous actions.

* Velocity. It corresponds to the robot velocity. As we have already
mentioned, it refers to the number of steps that a robot performs before
the screen is updated.

« State. In the supervision of the action execution, state is a flag that
indicates the action performance. It can take 6 different values:

- In case a robot is definitely stopped, the state value becomes —1.

- Initially, when no action has been defined yet for a robot, state
takes an special default value (which is 0 in our case).

- Value 1 stands for a regular progress of the action execution.

- In some action execution cases, the action is still valid, but it
needs a slight redefinition —as for example, a slight change in
the direction preserving the distance. State = 2 indicates such
situations.

- After an action execution that has been successfully concluded,
state is set to 3.

- If during its execution, the action is interrupted, the state gets
the value 4.

Action Execution

Up to this point, we have seen that actions are basically a distance to cover
in a certain direction. Actions are executed in a number of steps that
depend on the distance to cover. For each step, the robot moves forward a
unitary displacement that is a constant of the system —in our case, it has
been set to 2 cm. For the first step of an action execution, the robot turns
and makes its first displacement, and for the remaining steps, it just has to
advance in the same direction until the total distance has been covered.
This simplifies the representation of the robot, because the robot needs to
change its local representation —its memory device context and its grid—
for the first step only. The remaining steps just require a change in the
position of the robot —not the orientation—, and thus, a change in the
origin co-ordinates of these local representations (i.e., the position that
relates the local robot representation with the environment).
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Each one of these steps consists of a computation of the new position and
an updating of the robots’ representation. Moreover, a new robot position
also implies the treatment of possible inconsistencies and consideration of
new sensor information. Regarding inconsistencies, they appear if a robot is
placed over a physically occupied cell. If this happens to be the case, then
the simulator interprets it as an irreversible failure and the robot is
definitively stopped. This is reflected by assigning a —1 value to the action
state. For the navigation strategy that we have developed we have not
found this kind of contingencies. However, a similar situation appears
when using open environments and the robot moves beyond the limits of
the environment. (By open environments we mean environments without
walls surrounding their limits).

Next algorithm describes the Action_Execution function. It first updates the
robot representation. And based on this representation, it can update the
sensor information and the state of the action, which will be completed if
the distance has been covered. (Notice that, since turns are done without
changing position and since robots have circular shape, there will be never
any contingency for turning actions).

Action Execution()
{ turn = Action.orientation— Robot.orientation
i=0
Repeat while(i<Action.velocity AND Action.state=1)
{ i=i+1
if(Action.distance > Q)
{ compute the new position of the robot after moving an unitary displacement
compute the new origin for the local representations of the robot
}
remove the robot representati ons from the environment.
if (turn >0 AND i=0)
then redraw the new orientation of the robot in its local representations
transfer the robot local representations into the environment
if (no physical collision was detected during the transfer)
{ read the robot sensors
if (Action.distance=0) then Action.state=3
else
{ Action.displacement = Action.displacement + unitary displacement
if (Action.displacement > Action.distance) then Action.state=3
}
check if the sensors gave a reading that forces any change in the Action.state
}
else block the robot (Action.state=—1) and recover the previous environmental and local
representations
Update Action.Sensors with the obtained sensor readings
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The next Figure 5.7 illustrates the execution of consecutive actions.
Initially, the robot has been created with the default characteristics,
probability values equal to 50 and initial position —in local co-ordinates—
of (200, 40). This figure shows a sequence of snapshots of the simulator
screen. With the aim of focusing only on the details in which we are
interested, we have cut the snapshots so that they appear as a sequence of
intermediate robot positions in the robot’s trajectory. The first image
(Figure 5.7 a)) shows the initial position of the robot inside the environment
it belongs to. Remaining images show different steps during the execution
of consecutive actions. None of these steps involve sensor readings, hence,
actions have been generated randomly (without considering sensor read-
ings). We give more details about action computation in the next chapter.
By now, we just specify the distance and orientation of the actions in the
figure. The first action has a distance value of 36.8 local units and an
orientation of 44.9 degrees. Local units are defined by the environment
granularity —which in our case corresponds to 2 cm.—, and, since unitary
displacements are set to 2 cm, the robot moves 1 unit per step. Figure 5.7 b)
shows the execution of the first step of this first action. During the
execution of this first action, the robot turns in order to face the action
orientation and moves afterwards one unit in this direction. A turning
implies a redefinition in the robot representation, whereas a displacement
implies a change of its origin. Therefore, the robot is drawn facing the 44.9°
orientation and the representation is added into the environment starting
at position (183, 25). The representation is a squared area of 33 units, and
thus, this origin is defined so that the centre or the robot body is at (199,
41). These co-ordinates correspond to the rounded values of the robot’s
current position (199.3, 40.7). For the following 35 steps, the robot moves in
the same direction, increasing by one unit the displacement field of the
action. Figure 5.7 ¢) shows the robot during the execution of the last step of
the first action. At this moment, the displacement field takes the value 37,
and since it is bigger than the distance field, the state value of the action is
set to 3 meaning that the action has been successfully completed. The
second action that the robot must execute has assigned a distance of 33.3
units and —49.8°. Again, the first step to execute is a turning and a unitary
displacement. Figure 5.7 d) shows this situation. This figure also depicts
the last executed action by means of a black line. This line is automatically
generated by the simulator and acts as a trace of the robot trajectory. Each
line corresponds to an action, and it is not drawn until the action is
completed (it can be successfully ended or just interrupted). Figure 5.7 e)
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shows the last step of the second action. Once again, the displacement is
bigger than the distance and the action ends. And finally, we comment a
third action. It has 46.9 units of distance and —96.6° of orientation. In
Figure 5.7 f) we can see the new orientation of the robot and the track of
the two previous actions. Last image (Figure 5.7 g)) just shows an interme-
diate robot position in the execution of this action. Particularly, it corre-
sponds to the 20t step.
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Figure 5.7: Consecutive action executions. Black lines keep track of robot
displacements of completed actions. a) Initial position. b) first movement in the first
action. ¢) Last displacement of the first action. d) First movement of the second
action (with tack of the first action). e) Second action’s last displacement. f) First
movement of the third action (showing the trajectory line of the first and second
actions). g) Intermediate displacement of the third action.

Simultaneous Robot Movements

The only way by which the user can follow robots’ movements is by looking
into the interface environment screen. When the user sees the robots
moving simultaneously in the environment, what the simulator is actually
doing is a constant repetition of a loop that consists of two tasks.

First, the system performs a unitary movement for each of the robots in
the environment. This is done sequentially, following the same order in
which the robots are distributed in their array. These unitary movements
are simple enough to be done in a short period of time. The performance of
these movements results in changes at the environment grid as well as
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variations in the pixel environment representation that is allocated in
memory. As we have already seen, these changes are local, and therefore,
they do not require an updating of the whole environment representation.

The second task of the loop is an update of the environment screen. The
way by which pixel information is stored in memory allows updating the
window at once. This implies that the user sees that the screen changes,
but her or she cannot see how does it change. In addition, the fact that
window updating is done after the movement of all the robots, prevents the
user from distinguishing the order in which robots actually moved.

Although snapshots are not the best way of illustrating how the simula-
tor performs robots’ simultaneous movements, the next Figure 5.8 tries to
depict it by means of some intermediate snapshots. These images corre-
spond to the movements of the three robots from the previous Figure 5.6).
Figure 5.8 a) corresponds to the robots’ situation after executing 10 steps of
their respective actions. Two of them —the ones near the corners— have
detected something and they will end their actions. We do not discuss here
how do they chose their actions, this is just to illustrate that the user sees
the robots moving autonomously and simultaneously. The second image
(Figure 5.8 b)), shows the track of these ended actions and new robots’
orientations resulted from the execution of their new actions. Figure 5.8 ¢)
represents the immediate execution step following figure b). And finally,
after fourteen more steps, we can see in Figure 5.8 d) that the robot in the
middle has ended executing its first action.
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Figure 5.8: Four snapshots of the performance of three robots in the environment.
Their initial positions are the ones at Figure 5.6.

5.3.3 Robot Error Implementation

In the first part of this thesis, we analysed the displacement error in a real
robot. We concluded that the error increases proportionally with the
covered distance, and that this error can be modelled by using two
independent Normal distributions. One distribution N,(0,1.7) models the
error in the direction of the displacement and the other distribution
Nx(0,7.3) corresponds to the direction that is perpendicular to robot’s
displacement. Finally, we bounded the errors with probability intervals
that cover 95% of the sample.

In order to simulate the robots’ errors when they move inside a
simulated environment, we first need to generate random errors following
these Normal distributions, and second, we have to include these errors in
the execution of robots’ actions.

Generation of Normally Distributed Errors

C++ mathematical libraries do not provide Normally distributed random
generators, they only have available uniform random generators from the
standard library stdlib.h. They can be initialised with a fixed seed or with a
random value taken from the time of the system (that is done using the
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time.h library). We have used the uniform random generator random(n) to
generate numbers between 0 and n; and this generator has been randomly
initialised by calling the randomize() function. From this uniform random
distribution we can obtain positive values of a Normal distribution just by
considering this uniform distribution as the image of a Normal distribution.
Basically, what we do is to consider the random numbers y as the image of
the computation of a function over x such that y=fx) —considering f as the
Normal distribution N. And therefore, we compute x as the image of the
inverse of the function over y: x=f(y).

In this manner, we first consider the Normal distribution, which is
defined as:
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This formula can be rewritten by defining:
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So that we obtain a simpler expresion:
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Computing now the inverse f(y) of this function, we have:

x=fy)= —pan?H
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In this manner, from the y values obtained from a uniform random
generator, we can have positive x values that are Normally distributed (see
Figure 5.9). Since our Normal distributions have both 0 mean (and 0x=7.3,
0y=1.7 dispersions), we just have to assign uniformly a sign to the x values
in order to cover the whole x-axis. This can be easily done generating again
another random number n between a given interval, and then, if n is bigger
than half the interval, the x value remains positive. Otherwise, it becomes
negative.
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Figure 5.9: Normal distribution N(0,0).

As we have said, the random number is generated by calling the random(n)
function, having as argument the upper bound of the values that the
generated number can take. Thus, we have to define this interval of possi-
ble values. In order to do it, we must first take into account the restrictions
that the function itself imposes over y. On the other hand, y must be
positive and non-zero in order to be able to compute the natural logarithm
In function (this is because a is always positive). On the other hand, since b
cannot be negative and it appears multiplied by —1, y must be smaller than
a —or equal to a— if we want to obtain a positive argument for the squared
root. (In fact, we obviously have x = 0 for y = a).

These previous restrictions are given by the specification of the inverse
formula (we could name them as “syntactic” restrictions). In this sense, we
still have an additional restriction: a “semantic” restriction. This restriction
says that we are modelling an error, and we can not allow x values to tend
to infinity just because we have obtained a random value very close to O.
Therefore, we need a lower bound for the y values that must be significantly
different from 0. We have chosen this value so that it is half the y value
that we have when taking x = 6. In other words, when x = ¢ we have:

y=a @_%
and we chose a lower bound yn, for y that is:
-1 a @%
Y 9
corresponding to the x value:
3
xX=—=0.
2

Summarising, what we actually do is to generate uniform y values:

%
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in order to obtain x values that are Normally distributed:
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Finally, we have performed several random sample generations with the
aim of testing if the computation of random y values is uniform enough to
generate a sample of y values that describe an empirical Normal
distribution. We have empirically concluded that, considering a sufficient
number of elements (up to 150) we obtain empirical distributions that are
very close to the Normal distributions Nx(0,7.3) and Ny(0,1.7) that we ob-
tained from the analysis of the sample coming from a real robot. As an
example of how close they are, we show the obtained distributions from two
generated samples with 300 random values. For the first sample, we con-
sidered 0=7.3 and we obtained a distribution

Nx(-0.005896, 7.335178)

And for the second sample, we considered 0=1.7 and we obtained the
following distribution:

Ny (-0.119531, 1.729339)

Evidently, these mean and deviation values can vary for each generated
sample. However, we can see that none of the generated ones where far
from the real distributions.

How to Include Errors in the Execution of Actions

Up to this point, we have explained how do we generate the random values
that can simulate the errors. Next step is therefore, to include this error in
the robots’ movement.

The error accumulates with the covered distance. Although there is a
direct way of including the error —which consists in computing the random
error whenever the robot is redraw in the environment—, the problem of
this approach is that the computed error corresponds to an unitary
displacement of the robot (which is 2 cm in the simulator). In this manner,
if an action determines that a robot must move 1 meter in one particular
direction, the error of the position of the robot will be computed 50 times.
This can lead to trajectories with two characteristic features. On one hand,
since the error distribution has 0 mean, the robot could end in the same
place that it would end without considering the error. On the other hand,
the trajectory would describe frequent tiny deviations that would lead to a
kind of zigzag trajectory. Although this zigzag would be hardly perceptible
due to the small variations coming from 2 cm-long displacements, we
discard this model because the real robot does not move in this way.



5.3 Simulated Robots 125

Instead of computing the error for each movement, we decided to
introduce the error according to the total distance of the action. In this way,
once the system decides what will be the distance and orientation of the
next action, instead of assigning them directly, it assigns modified values
through an error function that introduces the displacement error. First,
this error function computes what should be the destination position if no
error were introduced. Afterwards, it generates a random position around
the destination position. This random position is generated as we described
previously so that it belongs to the interval that estimates the error
accumulated during the coverage of the total distance of the action. Finally,
once the random position has been generated, the function translates it into
new distance and orientation values for the action. Therefore, if the robot
executes this action completely, it will end at this random position. Other-
wise, it will end in a position containing an error proportional to the
covered distance.

In robot movements, turns are executed slightly differently from
displacements. This is due to the fact that, for each action, the robot only
turns once (at the beginning) whereas it may move forward several times.
Moreover, consecutive turning actions —i.e., actions without displace-
ment— imply several turns from different actions. Nevertheless, these
differences do not imply a change in the way we assign turning errors, they
are included following the same idea than the displacement error. Each
time the system decides that the robot must turn a degrees, it assigns a
value to the action orientation field that is deviated by an error function.
We have already seen that what the real robot has is a constant deviation
of two degrees to the left for every t45-degree turn. And therefore, the
orientation deviation depends on the number of degrees turned.

As an example of error inclusion in robots’ actions, we return to the
Action Execution Figure 5.7. During our comments about that figure, we
said that the first action had a distance of 36.82 local units and an
orientation value of 44.9 degrees. In fact, the navigation module of the robot
had not chosen such values. Indeed, they were the result of adding the error
to an action saying the robot to move 74 c¢m in a left oblique direction. First,
a turning deviation was applied to the 45 left degrees, so that the new
action orientation was 47°. And afterwards, the system performed several
computations in order to include the displacement error. Initially, the
simulator had to obtain the error bounds in relation to the 74-centimetre
displacement: the generated error in the direction perpendicular to the
displacement had to belong to the [-2.79, 2.79] interval;, whereas the error
in the displacement direction had to belong to the [-0.62, 0.62] interval. And
in that particular case, the simulator generated the following errors: 2.7 cm
for the former interval and -0.4 cm. for the last interval. These errors
implied a deviation in the robot orientation of -2.1 degrees as well as a
distance reduction of -0.4 cm. In such manner, the action values that were
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finally assigned are 47 — 2.1 = 44.9 degrees for the orientation field and
36.8 local units for the distance. (Since distance is specified in local units,
and since the environment granularity was 2 cm., 36.8 units resulted from
the translation of 74 — 0.4 = 73.6 cm).

5.3.4 Robot Information

This subsection details three aspects involving some kind of robot informa-
tion.

First, the robots’ main task is to explore an unknown environment while
gathering information about detected features. We call this information
partial maps (see Sect. 2.3.1) and the host computer uses them to generate
a global map of the environment.

Second, the implementation of robot exploration consists in the execu-
tion of a sequence of actions. Since we have already seen that actions do not
only contain the movements to perform, but also valuable information
about their execution, each robot stores its sequence of actions. We call it
action sequence history, and it is used by the robot navigation strategy.

Finally, robots stop exploring when the error accumulated due to its
movements becomes bigger than a given threshold. The reason for the
existence of this threshold is that information with excessive error is
useless. In order to establish the moment at which the robot should stop, it
needs to model the error accumulation process.

Partial Map

Section 2.3.1 already described the concept of partial map as a representa-
tion of a robot exploration trajectory together with detection information. It
consists of a sequence of robot positions corresponding to the extremes of
rectilinear displacements. For each of these positions the simulator creates
what we call an element of the partial map so that the partial map is an
array of these elements. A partial map element consists of the following
fields:

 Robot position.
* Associated Error Rectangle.
* Detection Label.
* Singular Point Label.
We already know that robot movements are action driven. Partial map

elements are created for the current robot position whenever a displace-
ment action ends. By displacement action we mean an action that has
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resulted in a robot displacement. This ending condition is checked upon the
state value of the robot action (see 5.3.2 Robot Action Section). The system
knows that the action has ended when the state value is bigger than 2. This
is so whenever the action has been successfully executed —its state equals
3— or it has been interrupted —which is represented by a 4-valued state.

Together with the current robot position, each partial map element has
the error associated to that position. This error increases with robot move-
ments and is approximated by a rectangle specified by means of two
corners: the top-left corner and the down-right corner. The following sub-
section gives details about how the robot generates these error rectangles.

During its exploration trajectory, each time a robot starts following a
wall —or obstacle edge— a detection label is associated to its corresponding
robot position. This label takes a “right” value if the robot starts following a
wall —or obstacle edge— detected by its right sensors. On the contrary, this
detection value becomes “left” for left wall following cases.

If it happens to be the case that the robot fails in its wall following
action because the wall has ended before leaving it, the robot considers that
it has found a singular point. Consequently, a “true” value assignment to
the singular point label of the corresponding partial map element reflects
such a situation.

Finally, once a robot ends its exploration, it stores its partial map in a
file named after the environment and the number of robot it corresponds to.
The extension of the partial map file is “*.pm’. In the simulator, the memory
of the computer is used to simulate the communication between the robot
and the host.

Error Modelling

The 2.4.4 Error Propagation Section explains how do we model the
accumulation of trajectory errors in the real robots. Basically, we
approximate displacement errors by rectangles. For each rectilinear move-
ment, we generate a rectangle going in the same direction of the
displacement and we add it to the previous rectangle. The resulting
rectangle goes in the direction the robot started with.

Our turning error analysis concluded that the studied robot had a
deviation but not a turning error that could be isolated from the displace-
ment error. Deviations do not imply error increase, but just a rotation of the
current position respect to the previous turning position.

Although the real robot did not present turning errors, the simulator
does accept to parameterise robot-turning errors. They are specified in
terms of a segment approximation to the angular error in the direction
perpendicular to the displacement. Their units are centimetres and
correspond to the length of a segment that is accumulated for each *45-
degree turn and 1 cm displacement (see next Figure 5.10). Furthermore,
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they are considered to be proportional to the number of turning degrees and
different for their sign —that is, right turns can generate different errors
than left turns.

approx.

’\s error

Figure 5.10: Turning error approximation.

In this manner, the robot considers displacement and turning errors
whilst generating its partial map. They are utilised to define the
dimensions of the error rectangle associated to the current robot position.
As before, these dimensions are computed from, on the one hand, the
dimensions of the rectangle error at the previous position, and on the other
hand, the values that define the last displacement. We reformulate the
computation considering the following elements:

* Ip length and wp, width of the previous error rectangle Ry, —wp goes
in the robot’s initial direction.

* d distance between last and current positions

» a angle difference between last and current orientation, its value
results from robot turns. Robot turns are specified by means of two
values: or right turned degrees and ai left turned degrees. Consecutive
turning actions can be done without displacement, and hence, turned
angles with different signs must be considered separatel y in order to
compute rectangle error dimensions once the robot moves forward.

* ed, ep, er, eit, robot error characteristics. On the one hand, eqs and ep
denote accumulated errors —per covered cm— due to displacement; eq
represents the error in the direction of the displacement, whereas ep is
the error in the direction perpendicular to the displacement. On the
other hand, e~ and er denote the error accumulation —per covered cm
and +45° turn— in the direction perpendicular to the displacement; r
and / subindexes indicate the degree sign: right turns are negative and
left turns are positive.

These elements, allow the robot to compute / and w —length and width
of the current error rectangle R— applying this formulae:
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I=1p + cos a b + ¢) + cos (90—a) [h
w=wp +cos a [ + cos (90—-a) Ob + ¢)

where:
a=d [kd
b = d D?p

c =d [(ert (0 /45 + en (11 /45)

Action Sequence History

In previous subsections we have seen that actions contain valuable
information about their own execution, and hence, to store this information
can help in the robot control. Obviously, since the order of execution of
actions determines robot performance, actions are stored following this
same sequence. The use of such information can vary depending on the task
that make use of it. For example, it can be used to avoid repeating the same
action under the same circumstances for more than a maximum number of
times, or more generally, to break execution loops with more than one
involved action. Moreover, recent action execution can also help in deciding
new actions. In this sense, the situation in which last action ended its
execution is strongly related to the next action to define. These different
aspects will be commented in further detail, when defining the navigation
behaviour-based strategy of our robots, in Chapter 6 (Sect. 6.1).

5.3.5 Browsing the Robot Class

Robot class constitutes a complex class that integrates many other
classes. This approach is in the Object Oriented direction of code reuse
through member objects rather than being in the direction of class heritage.
Heritage is usually applied for cases where base classes need to have
additional functionality. In this manner, heritage allows to define derived
classes without repeating the basic definitions but specifying only the
extensions. Another characteristic of heritage is its ability to express a
problem in terms of a class hierarchy (Eckel 91). In the definition of a robot
class we use member objects instead of derived classes because none of
these two characteristics seem to be fundamental for our problem setting.
However, this does not mean that instead of having a class that includes
many others, we could have used the concept of multiple heritage to define
the robot class as a derived class from all the classes that it includes.

The advantage of defining member objects is that we can use pointers to
them, so that these objects are composed into the robot class at execution
time (in contrast to compilation time). This is usually known as Pointer
Pluggable Composition, and it constitutes an efficient way of adding
flexibility to the system.
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Up to this point, we have already mentioned most of the members of this
class. Our aim here is to give a general description of the robot class in
order to enlighten the organisation of its members as well as to specify
whether they have been included as objects of different classes or as
pointers to these objects. Finally, just comment that most of the members of
these classes have been defined public in order to allow their access from
the robot class.

Data members

We group data members based on what they contain:

* Position: Each robot object has information about its current posi-
tion as well as its current orientation.

» Characteristics. When creating a robot in the simulator the follow-
ing features must be defined for it:

- A pointer to the environment that contains the robot;

- Two variables involved in robot’s movement: turning probability
and left/right turning probability;

- An error characteristics object, which specifies robot’s move-
ment errors —displacement errors, turning errors, deviations,
etc.—;

- A sensor characteristics object. It sets the size and range of the
elements defining the robot: its body radius, range of detection
of the presence signal coming from another robot, range of
emission of its own presence, distance between the body and the
collision detection band, and infrared signal range.

* Members used to draw the robot in the environment. As we have
already said, robots have their own representation in local grids that are
transferred to the global grid of the environment. In fact, this local
representation is stored in three different instances of the local grid
class and the robot keeps pointers to them. One of them contains the
representation of the robot body and the emission signal. This repre-
sentation is invariant to the movements, and therefore it is drawn once
at the robot’s definition and used as base for drawing the robot. It is
completely drawn in the other two grid objects, which change whenever
the robot turns. In addition, some pointers to several Memory Device Context
objects are used to refresh the representation of the robot in the environ-
ment screen.
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» Sensor and Action objects. Each robot has a Sensor object providing
updated sensor readings as well as an Action object, which specifies the
current action —that is, the one that the robot is executing.

e Partial map. Previous subsection explained that the robot gathers
information during its exploration and stores it in its partial map. The
robot object contains a pointer to its corresponding partial map object.

» Historical information. Since action objects contain valuable
information about action execution, they are stored in a dynamic array
so that it is possible to monitor robots’ performance. Again, what robot
class actually has is a pointer to an array of actions object.

Methods

Considering the complexity of the robot class, there is no doubt about the
importance of its constructor and destructor member functions. They
manage the instantiation as well as destruction of all member objects inside
the robot class. In addition they control the address assignment of the
pointers to other class objects. In fact, robot objects are built in different
phases. Initially, when the array of robot is defined, all its members are
empty (with O values). Afterwards, when the user chooses to add a new
robot, a robot object is created based on the definition of robot characteris-
tics, —coming from the user dialog box and default robot values. This object
still lacks of pointed composed members, (that is, its pointers to other class
objects are null) so that it can be easily copied into the first empty robot at
the array of robots. In this manner, its composed members are created —
i.e., their memory requirements are allocated— only when the robot is
defined in the array. This implies:

* An initialisation of the array of Actions (we will discuss details
about arrays later in this subsection),

* Initialisation of the partial map. The first element is the initial
robot position with a prefixed error rectangle of 0.2 x0.2 cm.

¢ Definition of the 3 robot local grids, and drawing both the fixed
features as well as the robot initial appearance.

* Creation of the objects used to draw the robot in the environment
screen. Thitmap and TmemoryDC.

Once the robot has been completely defined, it only remains to add it to
the environment grid and to display it in the screen. If both things are done
successfully, the construction ends. Otherwise, if for example, the robot is
added into an occupied place or outside the environment limits, the robot
object is detached from the array of robots.
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In addition to constructor and destructor members, there are other robot
class methods that have an important role in the simulation. Most of them
have already been mentioned, so we just enumerate them:

- Draw robot and Erase robot

- Read robot sensors

- Introduce random displacement error

- Introduce random turning error

- Execute a step of the current robot action
- Compute current partial map information
- Save partial map file

Some technical aspects regarding the robot drawing method are based
on the fact that it uses different Device Context classes defined at the C++
Object Windows Library (OWL). This drawing method uses several object mem-
bers that determine the context in which graphics are formed (device
context members could also be thought as destinations to which graphics
are sent). In other words, the drawing method directs its graphical output
both to the client area of a window or to an off-screen bitmap just by
selecting the appropriate Device Context member of the robot object.

We use two Device Context classes: TClientDC, for drawing in a window’s
client area; and TMemoryDC, which is used to draw to an off-screen bitmap —
gives access to a memory device context. Both are derived from the Device
Context base class, and their use involves the creation of graphics objects as
TBrush, TPen or TBitmap —a bitmap is a device dependent image that helps in
increasing the output speed by holding a copy of the on-screen image. The
process of using device context classes to produce graphical output involves
four steps:

« First, we need to create or obtain a Device Context object. For example,
to create a TclientDC object we do:
TclientDC *tempdc = new TclientDC(*current_window_handler);
It can also be used to create the TMemoryDC *mdc by doing:
mdc = new TMemoryDC (* tempdc);

» Second, we construct graphic objects as:
bitmap = new TBitmap(*tempdc, width_size, height_size);
TBrush brush(TColor::white); TPen pen (TColor::LtBlue);

And afterwards, we select the object into the device context by
calling the SelectObject member function:

mdc - SelectObject(*bitmap);
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e In the third step we can call one or more member Graphics Device
Interface functions for the device context object. For example, in order to
set all bits to white in the off-screen bitmap, we can draw a white
rectangle having the same size:

mdc - FillRect (TRect (0, 0, width_size, height_size), brush);
Another example could be drawing a light blue line:

mdc - SelectObject(pen);

mdc — MoveTo (initial_position); mdc — LineTo (ending_position);

« Finally, we can restore all objects:
mdc — RestorePen(); mdc — RestoreBrush();
delete tempdc;

And, if we want to see the draw in the screen, we transfer the off-
screen bitmap to the corresponding output device context (by calling
the BitBlt member function of the Device Context base class).

Robot class also overloads standard operators such as = or ==. Such operator
redefinition is necessary in order to manage robot objects as elements of the
array of robots in each environment. Although these standard operators do
not constitute an important aspect of the robot class —because many other
classes in the simulator overload additional standard operators as +, —, >>, or
<< when the concepts of aggregation, subtraction or stream transfer apply—
they introduce us into the array structures. As its name indicates, the
inherited Add function at the array of robots class uses these operators to
include a new robot object into the array of robots. Our aim here is not to
detail the implementation of such operators but to comment some technical
aspects about the array of robots definition. We consider that the array of
robots definition is relevant because of the number of other arrays that are
implemented in this simulator —as for example, array of actions, walls, or
partial map elements—, and hence, we will give an explanation that will be
general enough to include all of them.

Borland C++ includes a class library called arrayh. This library uses
encapsulation and includes several template driven —or template-based—
classes of containers. A class template (also called generic class or class
generator) lets us define a pattern for class definitions. Basic operations are
the same for all classes belonging to each general class definition so that
they do not depend on the class member type.

The classes in this array.h library build containers from Abstract Data
Types (ADT) and use Fundamental Data Structures (FDS) as underlying
structures. The combination of one ADT with a given FDS determines a
particular container storage strategy. Borland C++ defines several ADT
container classes: array, queue, dequeue, stack, set, bag, and dictionary (with
associative keys); as well as several low-level FDS containers: Vector, Btree
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(binary tree), DoubleList, HashTable, and List. The arrays in the simulator
correspond to containers derived from array ADT combined to Vector FDS.
The template that defines this combination is:

template <class T> class TarrayAsVector;

Each template must be instantiated with a particular data type as the
type of element that it will hold. Resulting containers provide direct control
over the types of objects they store. This is because the compiler takes care
of calling the appropriate operators for the contained data type. For
example, the simulator defines a type of robot’s container called TArrayRobots.
This container is an instantiation of the previous TArrayAsVector class
template:

typedef TArrayAsVector <TRobot> TArrayRobots

In this manner, general container functions such as Add(element) or
Detach(element) that need to copy, compare or destroy elements, must use the
corresponding functions of the given element type. In our case, Add or
Detach are called for the instantiated TArrayRobots, and therefore, the
compiler will consider the standard operators (=, ==) that have been over-
loaded for the robot class.

From the definition of TArrayRobots we generate a TRobots class:

class TRobots: public TArrayRobots
whose constructor is defined in the following way:
TRobots(): TArrayRobots(5,0,0){};

to mean that the array is created with an upper bound of 5, a lower bound
of 0, and a growth delta of d. Adding an element beyond the upper bound
leads to an overflow condition. If overflow occurs, since we have a delta
value of 0, the array is expanded —by sufficient multiples of delta— to
accommodate the element addition.

Besides standard array operations as Add, Detach or [],TarrayAsVector class
has an interesting member function called ForEach. It is specified in the
following way:

void ForEach( IterFunc iter, void *args );

This function creates an internal iterator to execute a given iter function
for each element in the array. The args argument lets us pass arbitrary data
to this function.

Our simulator calls this ForEach function in order to move all robots
inside the array of robots. Getting into more detail, for each environment,
the simulator instantiates an object of the TArrayRobots class and several
robots are added to this array of robots object. Afterwards, when the user
chooses the start robots menu option, the simulator calls the ForEach method
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for the array of robots corresponding to the active environment. The
argument of this call is an lterFunc type of function called move_robot. This call
implies one step movement of all robots in the array. As we have already
commented, the screen is updated after this call, producing the effect of
simultaneous robots’ movements.

Up to this point we have explained technical characteristics of the
simulator without detailing the navigation policy of the robots. In this
manner, we should continue this chapter with a section dedicated to the
Behaviour-based architecture for robot exploration as well as a final section
dedicated to show the results. Nevertheless, the relevance of the action
decision process is significant enough to define a separated chapter, and
therefore, we can consider next chapter as a continuation of the present
one.






Chapter 6

Behaviour-based
Architecture for Robot
Exploration

The last paragraph in the previous chapter comments that this sixth
chapter is in fact a continuation of the simulation system. It has been
separated in order to differentiate the technical aspects from the navigation
strategy of the robots. The present chapter describes how robots decide the
actions that must be executed in order to perform the exploration task.
These decisions are based in a architecture that depends on the co-
ordination of different behaviours that are based on If-Then rules. The
more suitable way for evaluating the performance of behaviours is to
analyse the overall task execution, and therefore, the chapter ends with a
detailed section with results (which, obviously, also show results of the pre-
vious chapter).

6.1 Architecture

Robot navigation is a complex task that must fulfil abstract goals while
interacting with the environment. Divide and conquer strategies proposed
by Brooks (Brooks 86), Arkin (Arkin 87) and Payton (Payton 86) have
proved to be a good way of coping with the complexity of architectures for
navigation because of their decomposition of the problem into small and
independent decision-making processes. These processes are called
behaviours, and the resulting architecture is know as Behaviour-Based
Navigation.

137
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In general, a behaviour-based organisation includes several behaviours,
an arbitration strategy and a command fusion operation (Saffiotti 97). Each
behaviour fully implements a control policy for one specific sub-task (like
following a path, avoiding sensed obstacles, or crossing a door). The
arbitration strategy decides which behaviours should be activated depend-
ing on the current goal and on the environmental contingencies (Brooks’
subsumption architecture hard-wires this arbitration strategy). And finally,
when several behaviours are concurrently activated, the command fusion
operation combines their results into one effector command.

In our approach, each robot implements a Behaviour-Based navigation
strategy that accomplishes the random exploration task. Basically, our
architecture is a deterministic finite state automaton in which each state
corresponds to an elementary behaviour (see Figure 6.1). These basic be-
haviours use sensor readings as well as historical information —about
previously taken decisions— to determine what are the actions to execute
as well as when to switch to other behaviours. In this manner, our approach
distributes the arbitration strategy among the behaviours. In Figure 6.1,
switching behaviour conditions appear as labels of the arcs, which connect
different behaviours.

wall

Safe alignment

detection

Orthogonal
detection

loss of wall
detection

Wall
following

Random walk

loss of
detection
End of wall or
random decision

dangerous

detection Wall leaving

Figure 6.1: Automaton schema of the random exploration strategy.

Each active behaviour provides one action, and only one behaviour is
active at a time. Therefore, we do not need to establish any kind of fusion
policy. This ‘one behaviour active at a time’ policy has the advantage of
avoiding combination problems for contradictory outcomes, and although it
is usually considered as a problem simplification, it is not, because it
implies an increase in the complexity of behaviours. In the literature, com-
plex behaviours (Saffiotti 97) are defined to consider multiple objectives, for
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example, a canonical example is that of following a given path while
avoiding unforeseen obstacles in real time. In our approach, elementary
behaviours cannot be considered as being complex because they have a
single goal. However, they take into account other goals by means of the
distribution of the arbitration strategy among them. Considering again the
example of path following, our solution would correspond to several sepa-
rated elementary behaviours: one to follow the path, and one (or more) to
avoid obstacles. Their complexity is higher than classical one-goal behav-
iours: On the one hand, the path following behaviour knows that if the
robot encounters something on its way, then the next behaviour that must
be active is obstacle avoidance. And on the other hand, the actions taken by
the obstacle avoidance take into account the fact that this behaviour has
been activated by the path following behaviour.

Our random exploration strategy co-ordinates elementary behaviours in
order to cover free space by random changes in robots’ direction and by
following walls —or obstacle edges— when detected. We briefly describe
here each elementary behaviour from the previous Figure 6.1 (next subsec-
tion details them):

* Random walk: this behaviour is active while the robot is in free-
space; that is, it controls the movements of the robot when there are
no sensor readings. Random turns and lengths of displacements are
decided using the turning and turning direction probabilities. This
behaviour is deactivated by any sensor detection.

e Wall alignment: this behaviour tries to “align” the robot to what
might be a wall (any sensor detection triggers it). By aligning we
mean having the robot parallel to the wall —or obstacle edge—, this
situation is recognised by the robot when it has sensor information
coming from both sensors in one side without any frontal detection.

*  Wall following: once the robot is aligned to a wall, this behaviour
computes the distance the robot will try to cover and controls its
displacement by keeping it parallel to the wall.

»  Wall leaving: the goal of this behaviour is to reorient the robot until
there are no sensor readings and then switch into the random walk
behaviour.

There are still two more elementary behaviours concerning the
communication process between pairs of robots:

e Presence detection: any behaviour will switch automatically to this
one when a robot detects the presence of another robot. Then, the
robot emits a signal and waits for the confirmation from the detected
robot so that it can active the data transmission behaviour.

* Data transmission: this behaviour consists of the transmission of the
information gathered so far, that is, the robot’s partial map.
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Every behaviour has the same internal architecture. Next Figure 6.2
depicts it. As input, behaviours receive sensor information filtered by a
mask, which eliminates irrelevant information for that particular behav-
iour. Behaviours control the robot navigation by means of a module that
contains two sets of rules (IffThen rules that we will see in the next
subsection). This module uses these filtered sensor readings together with
historical information for providing the output: the action that the robots’
effectors will execute or a switch to another behaviour.

Sensor readings

i Tttt | Attt Information
ke L History
Action generation| | Action supervision
If-Then rules If-Then rules
distance > ( ) 2 behaviour
orientation action state
Behaviour

Action

Figure 6.2: Architecture of each behaviour.

Except for the initial robot movement, the navigation control is
performed by repetitions of the following sequence:

e Action generation: A set of If-Then rules consider sensor information
as well as action history for computing the next action to execute. In
general, actions last for several loops, and therefore, they are not
necessarily generated at each loop. These rules not only compute
new actions but also can modify the current one.

* Action execution. Our simulator executes an action by changing the
representation of the robot in the environment. That is, if for exam-
ple an action sets a certain distance to cover in a given direction,
then the simulator moves the robot in this direction for a prefixed
unitary distance.

* Sensor update. Once the robot has moved in the environment, then
it is necessary to know how the perception of the environment has
changed.

e Action supervision. Considering the new sensor data (together with

historical information), a set of If-Then rules in the active behaviour
check if the current action and behaviour are still valid. Otherwise,
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these rules change the state of the action or/and trigger a different
behaviour.

The next subsection details action generation and action supervision
rules. It is important to notice that these rules do not need to consider every
sensor reading in their conditions (as in associative memory matrices). This
simplifies the rules although it does not control possible inconsistencies.
Moreover, If-Then rules implicitly contain the goal of their corresponding
behaviour. Finally, we conclude this subsection by remarking that only one
rule is fired for each situation, and therefore, the reaction time is very short
and we consider this control navigation to be mainly reactive.

6.2 Description of Exploration Elemen tary
Behaviours

As we have seen, elementary behaviours constitute the navigation module
of the robot. When an elementary behaviour is active, it is in charge of
generating new actions whenever it is necessary as well as supervising its
execution. In addition, each elementary behaviour must define when it has
to activate another behaviour so that this new behaviour takes the control
for navigation. This subsection details the basic behaviours that the robot
uses to explore an unknown environment. For each behaviour, it has been
detailed both the If-Then rule set for the definition of new actions as well as
the rule set for the supervision of their execution.

Up to this point, we have defined six different elementary behaviours.
Nevertheless, the simulator differentiates two kinds of wall following
behaviour depending on the robot side that detects the wall. The reason to
do it so is the different robot sensors that are involved. Obviously, they are
equivalent, though. In this manner, the simulator defines the following
ordered set of seven elementary behaviours:

{Expl, Align, Leave, R_follow, L_follow, Detect, Trans}

Their names have been abbreviated and correspond to Exploration,
Alignment, Wall leaving, Right wall following, Left wall following, Robot
detection, and Data transmission respectively. They constitute an ordered
set just because of implementation simplicity. In this manner, since the
Action object includes fields describing the current and previous behaviours
(see 5.3.2 Robot Actions Sect.), the fact of establishing an order for their
names provides an easy way of specifying conditions over their values. For
example, the condition:

Action.previous_behaviour < R_follow

Is equivalent to:

Action.previous_behaviour = Expl &
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Action.previous_behaviour = Align &
Action.previous_behaviour = Leave

Before specifying how these elementary behaviours use and assign
values to the fields of Action, we abbreviate their names as well, so that
they will appear in the sequel as:

Act.dist, which stands for Action.distance,

Act.displ is the abbreviation of Action.displacement,

Act.orient, that equals to Action.orientation,

Act.sens corresponds to Action.Sensors,

Act.behav is equivalent to Action.current_behaviour,
Act.prev_b is the short name for Action.previous_behaviour,
Act.vel is not used here but corresponds to Action.velocity, and
Act.stat, which is the last field of Action: the state.

Each behaviour is in charge of specifying its actions as well as
supervising their execution. Most supervision is based on sensor readings.
In order to reduce the length of the rules, we abbreviate Sensor names as
follows:

Sens.col means the collision detection band,

Sens.pres means the presence detection of another robot,
Sens.|: the infrared sensor placed at the left,

Sens.45l: the oblique infrared sensor on the left,

Sens.f; the frontal infrared sensor,

Sens.45r: the oblique infrared sensor on the right,

Sens.r: the infrared sensor on the right.

Obviously, all distance and orientation assignments that we will detail
in the sequel are appropriately disturbed by the error functions explained
at Sect. 5.3.3.

6.2.1 Random Walk Behaviour

This elementary behaviour applies four different rules in order to define
the next action that the simulator will execute. Since this behaviour is
active when the are no robot sensor readings, these actions basically consist
of random orientations and distances. The compute_random_distance() function
generates random distances based on the robot turning probability and
guarantees a lower bound for the resulting values. This is done in the fol-
lowing way:
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compute_random_distance()

{ minimum = [100—tuming_probability |

n= random (minimum)
retumn (minimum + n)

1

On the contrary, compute_random_turn() is a function based on the robot
left/right turning probability and only generates values belonging to the set
{45°, 90°, -45°, -90°}. The orientation value is assigned by calling the tum(a)
function, which returns the current robot orientation deviated o degrees.

In the context of this behaviour, since nothing is detected, there are no
restrictions on the values of the distance to cover. The case of the orienta-
tion is very similar, but not equal, because there are two cases for which a
certain orientation is more desirable. Since there are no sensor readings,
these cases are characterised by the previous active behaviour: one
corresponds to wall leaving whereas the other corresponds to robot
communication behaviours (that is, presence detection and data transmis-
sion). The task of wall leaving leads the robot into a situation where
nothing is detected. Therefore, once it has ended, when the random wall
behaviour is activated, it is better not to change the robot orientation again.
Otherwise, it is very likely that the robot will find again the wall that it
was just leaving. However, this rule has one exception: if the robot was
following a wall that ended, then the wall leaving behaviour will have
moved the robot along a certain distance from the wall (so that the robot
passes the corner safely). In the rules, this case is detected by means of the
Act.dist = corner_leaving_distance condition (although in the implementation the
inclusion of errors requires a slight modification for this condition). In such
a case, the random walk behaviour can freely choose a random direction.
Regarding robot communication behaviours as being previous to the
random walk behaviour, since a robot detects another robot when this is
located at its front left side, it is more appropriate for the robot to turn 180 °
in order to avoid a second immediate meeting.

The four rules that correspond to these situations are:

If Actprev_b< Detect & Act.prev_b # Leave
Then Act.dist = compute_random_distance(), Act.displ=0,
Act.orient = tum (compute_random_turn()).

If Act.prev_b = Leave & Act.dist=corer_leaving_distance
Then Actdist = compute_random_distance(), Act.displ=0,
Act.orient = turn (compute_random_turn()).

If  Act.prev_b =Leave & Act.dist #Z comner_leaving_distance
Then Act.dist = compute_random_distance(), Act.displ=0, Act.orient = 0.

If Act.prev_b = Detect
Then Actdist = compute_random_distance(), Act.displ= 0, Act.orient = tum (180°).
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Once the random walk behaviour has generated the new action to
execute, this behaviour is in charge of supervising its performance. The
action execution function (see 5.3.2 subsection), which is common for all
behaviours, sets the action state to 3 whenever the executed action is
successfully ended. Therefore, from the action state value, the behaviour
knows when it has to provide another action to the system. In this manner,
the behaviour only has to supervise possible contingencies. Random walk
behaviour must end and trigger another behaviour whenever something is
detected. If it is a collision, then the next active behaviour will be wall
leaving. This same wall leaving behaviour is also set when the robot does
not face the wall properly. In the rules, this corresponds to a condition that
consists in a call to the wall_not_properly_faced() function. This function returns
a true value if the frontal sensor gives a near reading and if any of the
oblique readings is null or not balanced:

wall_not_properly_faced()
{ retun (Sens.f=1 & (Sens.45r=0 Or Sens.45/ =0 Or Sens.45r# Sens.45l) }

On the contrary, if there is any infrared sensor reading but the condition
wall_not_properly_faced() does not hold, then the next behaviour will be wall
alignment.

There are three rules that control these cases. Since all of them imp¥ a
change in the active behaviour, if any of them can be applied, then the

current action is immediately cancelled by assigning a state value of 4.
If Sens.col =1

Then Act.behav = Leave, Act.stat=4.
Sens.wall_not_properly_faced()

hen Act.behav = Leave, Act.stat=4.

Sens.IR() & —Sens.wall_not_properly_faced|()

hen Act.behav =Align, Act.stat=4.

— 1= |—| 1=

6.2.2 Wall Alignment Behaviour

The task of the wall alignment behaviour consists in positioning the robot
parallel to the wall. In order to accomplish this goal, the alignment
behaviour first generates actions that make the robot to face the wall, and
then, to turn +90°. We consider that a robot faces a wall when the following
face() method returns a true value:

face()
{ retun(Sens.f#0 & Sens.45r#0 & Sens.451#0 & Sens.45r = Sens.45l) }

In other words, we consider that a robot faces a wall when its frontal
infrared sensor detects something and, simultaneously, the two oblique
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sensors have non-zero balanced readings —that is, both are far (equal to 2)
or both are near (1).

When the robot faces the wall, the behaviour generates a rule that
makes the robot turn +90°. The turning direction —i.e., the sign of 90 °— is
randomly chosen based on the left/right turning probability. This random
selection is done due to the lack of information about the wall that the robot
is facing. However, the direction does matter when the robot is facing a wall
after having followed another wall (that is, when a corner is reached). In
such a case, there is only one possible direction to which the robot should
turn towards: the direction opposite to the followed wall. There are three
rules that reflect these cases:

If  Actprev_b=R_follow

Then Actdist=0, Act.displ=0, Act.orient = tumn(90 °)

Act.prev_b = L_follow
n Actdist =0, Act.displ=0, Act.orient =tun(-90°)

Act.prev_b # follow() & Sens.face()
Then Actdist =0, Act.displ=0, Act.orient =turn(90 ° Orandom_sign())

The wall alignment behaviour applies the first and second rules when
the previous behaviour was wall following. Otherwise (Act.prev_b # follow()),
it applies the last rule if, in addition, the robot is facing the wall.

In order to face the wall, the robot must turn depending on the sensor
readings it has. We show here the rules for right detection, left detection
rules are equivalent but with positive angle signs:

If Actprev_b #follow() & Sens.f=0 & Sens.45r # 0
Then Actdist=0, Act.displ=0, Act.orient = turn(-45 °)

If  Act.prev_b # follow() & Sens.f=0 & Sens.rz0 & Sens.45r=0 & Sens.45=0

Then Actdist=0, Act.displ=0, Act.orient = turn(-90 °)

I= |—| I=

This last rule has more conditions in order to give preference to the rules
that turn #45°. In this manner, it is only applied when the first rule does
not apply.

If the environment were completely structured and there were no robot
errors, the previous wall alignment rules would include most aligning
situations. However, this is not our case: in order to face the wall properly,
performance errors and oblique walls make necessary to generate small
turning actions. The following rules are applied when the robot is safel y far
away from the wall —that equals to having a far (2) frontal reading— and
generate small turns of +7.5 degrees, which correspond to a sixth of a +45°
turn. The first and second rules apply these turns when the frontal sensor
and only one oblique sensor detect the wall. Moreover, the third and forth
rules use these small turns when both oblique sensors have non-zero read-
ings but they are unbalanced.
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—

Act.prev_b # follow() & Sens.f=2 & Sens.45r=0 & Sens.45| £ 0
hen Actdist=0, Act.displ=0, Act.orient = turn(7.5°)

Act.prev_b # follow() & Sens.f=2 & Sens.45r 0 & Sens.451=0
hen Actdist=0, Act.displ=0, Act.orient = turn(-7.5°)
Act.prev_b # follow() &
Sensf=2 & Sens.45rz0 & Sens.45l #0 & Sens.45r > Sens.45!
hen Actdist=0, Act.displ=0, Act.orient = tumn(7.5°)

Act.prev_b # follow() &

Sensf=2 & Sens.45r#0 & Sens.451#0 & Sens.45r < Sens.45|
Then Actdist=0, Act.displ=0, Act.orient = tumn(-7.5°)

— 1= |—| 1= |—||

—

These £7.5° turns help in adjusting the position of the robot with respect
to the wall. Nevertheless, they do not always avoid having oscillatory
sensor readings. Sensor oscillations occur if, currently, the robot has
readings from the frontal and one oblique sensor whereas for the previous
action, it was sensing with its frontal sensor and the oblique sensor at the
opposite side. To detect such a situation it is necessary to use the sensors of
the robot as well as the previous sensor readings —that is, historical
information—. We do it by calling the almost_faced() function which can be
described as:

almost_faced()

{ retun( (Sensf#0 & Sens.45r#0 & Sens.451=0 &

Previous_Sens.f# 0 & Previous_Sens.45r=0 & Previous_Sens.45l #0) Or
(Sens.f£0 & Sens.451#0 & Sens.45r=0 &
Previous_Sens.f#0 & Previous_Sens.451 = 0 & Previous_Sens.45r £ 0))

}

In this manner, the alignment behaviour knows that there is something
in front of the robot that gives frontal and oblique readings. Since this
situation is reasonably similar to the facing condition, the wall alignment
behaviour generates the same random action, as if the @Act.prev_b # follow() &
Sens.face()) condition would hold:

If Act.prev_b # follow() & Sens.almost_faced()
Then Actdist = 0, Actdispl=0, Act.orient = turn(90° Orandom_sign())

Finally, the behaviour distinguishes two additional facing situations. On
the one hand, when the robot only detects a frontal far detection. And on
the other hand, when the robot detects with all its sensors, and the
readings are not balanced. For the former situation, the robot is too far and
must get closer to the wall. The rule that makes the robot approach the
wall by one displacement unit (in local co-ordinates) is as follows:
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If  Act.prev_b # follow() & Sensf=2 & Sens.45r=0 & Sens.45/=0
Then Actdist = unit, Act.displ=0, Actorient=turn(0°)

Contrarily to this safe detection, simultaneous and unbalanced readings
could come from a robot near a problematic corner or any other kind
difficult place (notice that the condition includes Sens.f = 1). In such a case,
the wall alignment behaviour turns 180° aiming to avoid frontal detection.

If  Act.prev_b # follow() & Sensf#0 &
Sens.r#0 &Sens.45r#0 & Sens.|#0 & Sens.451#0 & Sens.45r # Sens.45!
Then Actdist = 0, Actdispl=0, Act.orient = turn(180°)

To have so many sensor readings is a problem because this behaviour
tries to situate the robot parallel to the wall, and the main condition for
being parallel is to do not detect at the front. Nevertheless, when the sensor
readings correspond to an unsafe situation, the set of supervision rules
forces a switch to the wall leaving behaviour. On the other hand, if the
robot has been properly aligned to the wall, then the task of this behaviour
has been fulfilled and the next behaviour to activate will be a wall following
behaviour. The next rules specify these changes of behaviour cases:

I - Sens.IR()

hen Act.behav = Expl, Act.stat =4.

Sens.f=0 & Sens.r Z0 & Sens.451 # 1

hen Act.behav = R_follow, Act.stat =4.
Sens.f=0 & Sens.| #0 & Sens.45r # 1

hen Act.behav = L_follow, Act.stat =4.

If  Sens.col=1 Or (Sens.f=1 & —Sens.face())
Then Act.behav = Leave, Act.stat=4.

— 1= |—| 1= |—| 1=

6.2.3 Wall Following Behaviour

As we have already said, there are two wall following behaviours
(R_follow and L_follow) because a robot can follow a wall using its right sensor
readings or its left sensor readings. Once the wall alignment behaviour
aligns the robot to a wall, the wall following behaviour tries to follow this
wall along a random distance that the behaviour computes. This distance is
generated only once, when the behaviour is activated, and it is not changed
by any subsequent action generated during the rest of the current activa-
tion. The task of subsequent actions is to make small changes in the robot
direction in order to keep the robot parallel to the wall it is following. The
behaviour corrects robot deviations by means of small turns (once again,
17.5°). Robot deviations are detected when lateral sensors give a near
reading or when they lose its detection.
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The three rules below implement the right wall following behaviour (the
rules that correspond to the left wall following behaviour are equivalent).

If Act.prev_b # R_follow

Then Act.dist = compute_random_distance(), Act.displ=0, Act.orient = turn(0°)
Act.prev_b = R_follow & Sens.45r=0
hen Act.orient = turn(-7.5°)
If Act.prev_b = R_follow & (Sens.r=1 Or Sens.r=0)
Then Act.orient = turn(7.5°)

—|I—_..|

For wall following behaviours, the set of rules in charge of activating
other behaviours as well as supervising the execution of the previous
actions have to distinguish among several different situations. (Again, we
only detail the rules for the right wall following behaviour; the translation
to left rules is obvious). From the previous set of rules, the last two rules
correct the current action. The behaviour applies them when the robot
sensors indicate that the robot is deviating with respect to the wall. In such
cases, neither the action nor the behaviour are cancelled, just the action
state is set to 2 in order to indicate that the orientation must be corrected.
Two rules reflect this situation:

If Sens.r #0 & Sens.45r =1
Then Act.stat =2.

If  Sensf#1 & Sensrz0 & Sens.45r=0
Then Act.stat =2.

Regarding the activation of other behaviours, most resulting changes
end with the activation of the wall leaving behaviour. On the one hand, this
can be due to successful ends: whether the covered displacement equals the
distance computed for the current action; or the robot finds what we call a
singular point (a wall end). On the other hand, the wall following behaviour
activates the wall leaving behaviour whenever the robot has a collision,
when it looses the wall it was following (i.e., null sensor readings at the
corresponding side), or when it finds a dangerous detection that might not
leave enough room for the robot (assuming it would continue moving in its
current direction). This last situation is considered when there is a close
detection —that is, a near sensor reading— at the oblique sensor that is
opposite to the wall that has been followed. The corresponding rules are:

If  Actdispl = Act.dist

hen Act.behav = Leave, Act.stat=3.

I
If Sensf#1 & Sens.rz0 & Sens.451#1 & Sens.45r=0 & Previous_Sens.45r = 1
=

hen Act.behav = Leave, Act.stat=4.
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If  Sens.col=1 Or (Sens.r=0 & Sens.45r=0) Or Sens.45| =1
Then Act.behav = Leave, Act.stat=4.

Finally, it is possible that the robot encounters a perpendicular wall
while following the current wall. If this happens and the detection is safe
enough, then the next triggered behaviour will be wall alignment so that
the robot will try to follow this new wall. The rule that controls such a
situation can be defined as:

If Sensf#0 & Sens.451#1 & (Sens.r#0 Or Sens.45r #0)

Then Act.behav = Align, Act.stat=4.

6.2.4 Wall Leaving Behaviour

Under normal circumstances, wall leaving behaviour is active when the
robot has finished following a wall. Nevertheless, wall leaving is also
characterised as the behaviour that is able to face any kind of problem. In
this manner, any other behaviour encountering a dangerous situation
activates the wall leaving behaviour. We can think of ‘dangerous’ situations
as collisions or sudden near detections. In this sense, ‘safe’ situations
correspond to far or expected detections.

Since turns are safe actions, almost every action that tries to recover
from a danger consists in some kind of turning. This behaviour chooses
turning angles based on sensor information. Roughly, we can describe angle
selection in the following way: when there are more sensor readings at one
side of the robot —or they correspond to closer readings— than at the other
side, then the robot turns towards the side with less detection.
Unfortunately, this policy can not be applied when having balanced sensor
readings. In such cases we generate random angles. This gives better
performances than to establish a fixed rule because it helps in including
variations in the actions, and therefore, avoids action execution loops.
Although most of the time turning actions are able to recover the robot from
dangerous detections, there are certain situations —such as narrow
corridors or difficult corners— for which a change in the robot position can
be helpful. Following this idea, we have included into the set of rules an
additional rule that —when the sensor readings are not too close— makes
the robot move forward one unit.

There are a total number of eleven rules dedicated to control the robot
for escaping from problematic situations. We are not going to list them here
because, after having shown all the rules for the previous behaviours, the
reader can already have an accurate idea of how they look like. What we
comment here are the three rules that the wall leaving behaviour uses to
control the robot after having followed a wall. (Once again, we show the
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case of left wall following because the rules for right wall following are
equivalent).
If Act.prev_b =L follow & Act.stat=4 & Sens.col=0 & Sens.f=0 & Sens.45r# 1
Then Act.dist =50, Act.displ=0, Act.orient = turn(-15°)
If Act.prev_b = L_follow & Act.stat=4 & Sens.col=0 & Sens.f=0 & Sens.45r=1
Then Actdist =0, Act.displ=0, Act.orient = tumn(-135°)

If  Act.prev_b =L follow & Act.stat#4 & Sens.col=0 & Sens.f=0
Then Actdist =0, Act.displ=0, Act.orient = turn(-90°)

Basically, the first two rules control the case for which, the action of
having followed a wall has been interrupted (state = 4). Under normal
circumstances, this happens when the robot has found a singular point (the
end of a wall). For those cases, there is nothing dangerous around the robot
and it can continue for a distance of 50 units in order to avoid the corner.
The -15° turning opens a little the robot trajectory and helps to correct
accumulated deviations. On the contrary, under the presence of dangerous
detections, the behaviour decides to change completely the robot trajectory,
so that it turns —135 degrees. The last rule controls the cases where the
Action of following the wall was completed successfully (state = 3). Then,
the behaviour just needs to turn 90 degrees towards the direction opposite
to the wall it was following.

Finally, we present the rules that supervise the behaviour performance:

I - Sens.IR() & Sens.col=0 & (Act.dist 50 Or Act.dist < Act.displ)
hen Act.behav = Expl, Act.stat=3.
Sens.face()
hen Act.behav = Align, Act.stat =3.
If Actdist=50 && (Sens.col#0 Or Sens.f#0 Or Sens.45r=1 Or Sens.45l =1)
Then Act.stat =4.

— 1= |—| 1=

Basically, these rules switch to the random walk behaviour when the
sensor readings are lost, and activate the wall alignment when the robot
faces the wall. However, we have said that after a singular point, the wall
leaving behaviour still moves the robot forward along 50 units. Obviously,
this can only be done if there are no detections on the robot’s way.
Otherwise, the last rule cancels the action.

6.2.5 Robot Communication

During robot navigation, if it happens to be the case that two robots meet,
then they communicate each other their gathered information (that is, their
partial maps). Robot communication is a high priority task that is accom-
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plished by the co-ordination of two behaviours: Presence detection and Data
transmission. They have not been included into the exploration strategy
automaton for different reasons. First, they define a new task, which is not
tightly related to exploration. Second, the activation of their behaviours
does not depend on the exploration behaviour that is active at a given time.
And third, the execution of their actions are neither performed by the same
function.

Unfortunately, since only one real robot was available, we were not able
to study the real robot communication. The communication process that we
have simulated is extremely simple and begins whenever a robot detects
the presence of another robot. In such a case, both the current action and
behaviour are cancelled so that the communication behaviours get the
control of the robot. Afterwards, when the communication finishes, the
exploration behaviour recovers the robot control.

Each robot broadcasts a 360° presence signal and detects the presence
signal of another robot within a scope of 90° at its front-left side. This
presence signal can broadcast two values: ‘1’ is the default value and means
the own presence; whilst ‘5’ indicates that the robot has already find
another robot and is waiting for establishing communication. Therefore,
when a robot detects the presence signal of another robot, the correspond-
ing presence detection field of the sensor readings (that is, Sens.pres) can
take two different values (1 or 2 corresponding to ‘1’ and ‘5’ respectively).

Each time a robot detects the presence of another robot with a ‘1’ value
in Sens.pres, the presence detection behaviour is triggered. The task of this
behaviour is to establish the communication with the detected robot. Thus,
it stops the robot, changes its emission of presence into a new ‘5’ signal, and
waits for detecting the same change in the other robot. In this manner,
when the robot detects a ‘5’ signal, it means that the other robot has also
detected him, and then, the behaviour activates the data transmission
behaviour. In fact, data transmission behaviour can also be activated
directly from any other behaviour, the only condition is to have Sens.pres = 2.
This is the case when robots do not detect each other at exactly the same
time: for a robot that detects another already waiting for communication,
the sensor reading it has is 2.

In our implementation, the partial map communication has been
obviated, so that it has been supposed to happen instantaneously. However,
if the signal presence is no longer detected during any of the two communi-
cation behaviours, the current behaviour will trigger the activation of the
exploration behaviour (which will turn 180 °). Another reason to cancel the
communication is the invariance of the presence signal of the detected robot
during the presence detection behaviour. Or, in other words, if the Sens.pres
field remains equal to ‘1’, the robot remains stopped for a prefixed period of
time, so that when it is completed, the control of the robot goes back to
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exploration. The presence detection behaviour uses two rules to switch the
active behaviour:

If Sens.pres =2

Then Act.behav = Trans, Act.stat=3,

If Sens.pres =0

Then Act.behav = Expl, Act.stat=4.
Whereas the data transmission only changes into one behaviour:

If Sens.pres # 2
Then Act.behav = Expl, Act.stat =4.

As we have said, the communication actions are special and are executed
by a different function. Let us just comment briefly that this function
controls the changes of the presence signal that the robot broadcasts. It also
updates the robot representation in the environment (the position and
orientation of the robot do not change in these behaviours, only the colour
of the presence signal) and provides the sensor readings of the robot.

Next Figure 6.3 shows a robot communication example. This figure
contains a sequence of snapshots that have been cut in order to show only
the most relevant parts of the images. The first image corresponds to the
very early step where the robots are still executing the actions of their wall
following behaviours. At this step, the supervision rules of the executions
detect the presence signal and trigger the presence detection behaviour. In
this manner, in the next step, robots compute the new action of the
performance detection behaviour that consists of waiting and changing
their presence signal into ‘5’ (which corresponds to yellow in the image).
When the robot on the left executes its action, the robot on the right has not
changed its presence signal yet. On the contrary, since the robot on the
right executes its action afterwards, it detects the ‘5’ presence signal and
switch its behaviour into data transmission behaviour. The second image
shows the result of these executions. In the next step, the robot on the left
has finally the sensor reading Sens,pres = 2 and changes its behaviour to data
transmission. Then, the right robot computes and executes the data
transmission action, and therefore, changes its presence signal (see image
number 3). The forth image corresponds to the end of the execution of the
data transmission behaviour and a switch to the random walk behaviour.
In the fifth image appears how the robots have turned 180 degrees and
detect again the wall, so that they switch into the alignment behaviour.
Finally, the last image just depicts the situation after several steps.
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Figure 6.3: Sequence of steps in robot communication

Finally, we show two additional examples in Figure 6.4. In the first
example they failed to establish the communication because the robot on
the right does not detect the robot on the left. Therefore the left robot waits
for a number of steps and finally resumes the exploration. In the case of
Figure 6.4 b), the communication is established. The difference with the
previous Figure 6.3 is that there, robots detect each other simultaneously,
whereas here the robot on the right takes one more step to detect its
partner.
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Figure 6.4: Additional examples of robot detection. a) failed communication b)
successful communication.

6.3 Meta-level supervision

We distinguish two different levels in the simulated navigation control
module of each robot. The lower level is the most complex and corresponds
to the level where all the previously seen elementary behaviours co-
ordinate themselves in order to generate the actions that the effectors of
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the robots will execute. The upper level performs a global supervision of the
behaviour co-ordination. This meta-level supervision is different to the one
performed inside the elementary behaviours. Its input information is the
history of actions that have been executed (notice that they contain
valuable information about the behaviours that generated them, the sensor
readings they had, etc.). The task of this “action history” supervisor is to
support high level contingencies. Therefore, under normal circumstances, it
does not generate any output. But in special problematic circumstances, the
output can be a change in the state of the current action or/and a switch of
active behaviour depending on the nature of the problem. These outputs
override the respective values in the current action and the behaviour level
cannot change them. In this sense, we can think that the action supervision
can “inhibit” the behaviour action. Next Figure 6.5 depicts the relation
between these two levels in the control module.

Our simulator implements a simplistic version of action history supervi-
sion. We use it to detect robot performance loops of a certain number of
actions. We just look for coincidences of orientation in a sequence of actions.
When they are found, this module sets a different orientation. For example,
if two orientations are repeated continuously in the sequence of actions,
then the mean orientation is chosen to be the next orientation that the
robot must face. In addition, if the distances of the repeated actions are zero
and a forward motion is safe enough, then the robot will move forward one

unit.

Information
History

[History supervision

Action.state
Action.behaviour

Elementary Behaviours

Action\]‘;
Figure 6.5: Robot navigation Module.

Fortunately, since the generation of actions has a random component,
the action history supervisor does not need to act in most cases. Neverthe-
less, we think it is important to stress the necessity of a global supervisor,
and we do not discard the possibility of extending its capabilities.
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6.4 Results

Robot navigation for environment exploration has a significant random
component (both when generating new actions as well as when introducing
execution error). Therefore, since we are not able to show any fixed
sequence of robot actions, we present some examples of exploration trajecto-
ries. In the simulator, these trajectories appear in the environment screen
as black lines connecting the initial and final robot position for each action
execution. In the remaining chapters of this second part we will see other
examples. These trajectory lines show the general robot performance, such
as, wall or obstacle detections, displacements in free space or wall follow-
ings. However, they are not able to clearly reflect consecutive turns or small
displacements. This section is meant to detail the kind of movements that
the robot performs when facing specific situations. Usually, the user of the
simulator starts the robots and let them move in the environment until
they stop due to an excessive accumulation of error. Nevertheless, if the
user wants to pay attention in robots movements, then he or she can move
them step by step or every each 10 steps. One step in the simulator
interface corresponds to the execution of one step for each of the robots
moving in the environment. Using this simulator capability we have been
able to take as many snapshots as we need. In the sequel we show several
snapshots that we consider to be relevant for illustrating robots’ perform-
ance.

The next two figures (Figure 6.6 and its continuation Figure 6.7) show
the trajectories of two robots. They have been included into one of the
environments that we saw at Figure 5.1 (whose granularity is 2, its
dimensions are 5.7m x 4m, and its origin is located at the bottom-left
corner). The robots have been added with the default error characteristics
and different probabilities and positions. In the sequel we will refer to the
robot near the origin as robot number 1, and the robot above will be robot
number 2. Their turning probabilities are 0.5 and 0.2 respectively, and,
following the same order, their left/right turning probabilities are 0.6 and
0.4. The first image in Figure 6.6 shows robots 1 and 2 in their initial
positions, which correspond to (50, 40) and (45, 100).
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Figure 6.6: Example of robots’ trajectories.

The first movement of the robots is controlled by the random walk
behaviour. This behaviour chooses randomly the distance and orientation to
follow. The second image shows the first step of the execution of the com-
puted action. Robots move in this same orientation for more than ten steps,
until they detect a wall and switch behaviour into the wall alignment be-
haviour. The third image in the figure presents the moment in which robot
number 1 detects the wall, whereas the wall detection of robot number 2
appears in the forth image. By then, robot 1 has approached the wall in
order to face it. The fifth image shows the first wall alignment action for
robot 2 and the last one for robot 1. Robot 2 has detected the wall with its
oblique left sensor, and then turns 45° in order to face the wall. On the
other hand, robot 1 was facing the wall properly so it randomly decides to
turn -90° and switches into the wall following behaviour. In fact, robot 1
keeps following the wall from image 6 to image 10. These images depict the
problems that robot 2 has when trying to face the corner that a half-opened
door defines with the wall. In the sixth image robot 2 has approached the
wall in order to detect it with both oblique sensors. However, the right
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oblique sensor does not detect the wall, and we can see in number seven
how the wall alignment behaviour has made the robot to turn 7.5° twice.
This movement does not bring the robot to an oblique right detection but,
on the contrary, it results in a near frontal detection that is considered to be
dangerous. Therefore, the supervision rules of the wall alignment behav-
iour switch into the wall leaving behaviour. Image 8 presents the first
action of wall leaving, which consists in a -90° turn. The following image
shows that this action does not prevent the robot from detecting the wall,
and therefore, a total number of 6 turning actions (of —7.5° each) and a
displacement are executed before the situation shown in the 9th image is
reached.

Still in Figure 6.6, the tenth image represents the robots’ situation after
executing 24 additional steps. By then, robot 1 has detected a perpendicular
wall and robot 2 is far away from the corner due to a new random walk
action. The eleventh image displays how wall alignment behaviour makes
robot 1 to turn —90 degrees. After the execution of this turning action, the
left wall following behaviour becomes the next active behaviour. From
image 12th to 17th robot 1 keeps executing the wall following behaviour. It
corrects its orientation by 7.5° at image 12 in order to detect with the
oblique left sensor and by -7.5° after image 17, when the left sensor has a
near reading. Regarding robot 2, these previous images show how it first
finds a new wall in the 13th image, it turns -45° in image 14th, gets closer to
the wall by two displacement units in image 15t and, since its left oblique
sensor does not detect the wall, it turns -7.5° in image 16th. This
corresponds to an almost faced condition so that the last action that the
wall alignment behaviour generates is a -90° turn. Afterwards, the left wall
following controls robot 2.

Wall following ends when the robot finds a perpendicular wall, when it
looses the wall, or simply when the distance that was randomly obtained
for its action has been successfully covered. Image number ni neteen depicts
this situation for robot 1. Then, the robot leaves the wall it was fol lowing by
turning 90 degrees to its left (see the result of the turning in image number
20).

In the second figure continuing with this example of robots’ trajectories
(Figure 6.7), we concentrate now in robot number 2. In the 20 th image, this
robot is under the control of the left wall following behaviour. In fact, this
image shows the last time that the left oblique sensor detects the wall
normally. In the next step (image 21), this sensor looses the reading, and
therefore, the behaviour corrects by 7.5 degrees the orientation of the
current wall following action. Image number 22 reflects this situation.
Unfortunately, this turn is not enough, and when the robot moves forward
it looses again its oblique detection as we can see in the 234 image. Once
again, wall following behaviour corrects the robot orientation and, although
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now the robot has readings coming from both left sensors, it is getting
dangerously close to the wall (see 24th and 25'h images). As a consequence,
the supervision forces a switch to the wall leaving behaviour. Finally,
image number 26 displays robot 2 leaving the wall.
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Figure 6.7: Example of robot’s trajectories (continuation of Figure 6.6).

After executing a large number of steps, robot number 1 is still inside
the bottom-left room in the environment, whereas robot 2 has moved to-
wards the bottom-right corner. In Figure 6.7, the image number 27 contains
both robots’ trajectories in the explored environment. We have taken this
snapshot in order to present another case of corner approaching. Initially,
robot 2 is controlled by the random walk behaviour and it detects the object
near the corner with its left sensor. Then, the supervision rules forces the
active behaviour to be wall alignment so the robot turns 90 degrees and it
detects the obstacle with its frontal sensor (see image 28). This behaviour
tries to face the obstacle by approaching the robot. Unfortunately, corners
can never be faced because the frontal sensor becomes near before any
oblique sensor detects anything (image 29 represents this situation). In this
manner, when the frontal sensor gives a near reading, the supervision in
the wall alignment behaviour cancels itself and activates the wall leaving
behaviour. In this case, a -90° turn is enough to stop detecting the obstacle.
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Finally, the last snapshot displays the overall robots’ performance. At
the beginning of this example, we said that robot 2 has a smaller turning
probability than robot 1. We can appreciate here, that robot 2 covers longer
distances than robot 1 and it is not only due to the fact that robot 1 is in a
smaller room. We can see several straight forward movements of robot 1
that have been finished just because of the random distance that was
computed for the corresponding actions.

In the previous example we could see the problems that robot 2 had in
following the wall when approaching the half-opened door. Moreover, the
robot could neither face the corner that the door makes with the wall. In
fact, this 45-degree-opened door represents the worse case of oblique edge
that a robot can find. This is because the angle difference is too large to be
followed as a single wall but too small to detect the end of the wall (a
singular point). And the same happens when trying to face the corner. We
can easily see this just comparing the difference in terms of number of
required actions of facing a straight wall (180°) or a 270° corner with this
225° corner. However, this problem only appears when finding the corner,
not the door itself. Neither the action generation rules nor behaviour
switching rules take into consideration the angle of the wall. They just
consider relative positions between the sensors and the wall and, therefore,
they are applied in the same way for oblique walls. In order to illustrate
how robots behave in relation to oblique walls (in this case, a door can be
thought as a wall) we see in the sequel several examples of specific
situations.
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Figure 6.8: View of a robot facing a 135° corner.
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Figure 6.8 presents an example of a robot facing the same half-opened
door from the opposite side. For this case, the wall alignment behaviour
succeeds in, first, facing the corner (by turning -45°) and afterwards,
turning —90 degrees. As usual, the control is passed on the left wall
following behaviour. Obviously, wall following does not start with the most
convenient orientation, but this is corrected in the subsequent steps. The
last images in the figure demonstrate how the perpendicular wall is
normally faced.
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The next example presents a wall following situation where the followed
wall becomes oblique at a point. The first sequence in Figure 6.9 proves
that such kind of wall can be successfully followed. Unfortunately, the track
is only a line between the initial and final points of an action and, for this
particular situation, it does not describe exactly the trajectory of the robot.
In this case, the distance of the action was covered before reaching the door
end. But this situation does not present any problem for the wall leaving
behaviour, which just had to turn 90 degrees to avoid any detection.
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Figure 6.9: Two more examples of robots’ performance. First sequence depicts how a
robot follows an oblique wall. In the second sequence, the robot finds a singular
point (a wall end).

The second part of Figure 6.9 illustrates how the robot detects singular
points (that is, the end of a wall). They are easily identified by a certain
sequence of readings in the oblique sensor. This sequence differs from a
regular wall following in that sensor readings do not change gradually but
from near to non-detection. This can be interpreted as a sharp shape, and
the robot stores this position as singular point. The behaviour that is active
afterwards is wall leaving and it tries to escape from the corner by moving
forward along a prefixed distance. However in this particular case, this is
not possible and the current behaviour has to force the robot to go through
the door, a situation that is rather complex and requires quite a lot of steps
(notice the “knot” in the trajectory).

Finally, our last example is devoted to demonstrate that a singular point
can be also identified in the case of an oblique wall or obstacle. The se-
quence of readings is exactly the same, and again, the wall leaving
behaviour forces the robot to try to escape from the corner. In this case the
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situation is more favourable than the previous one because of the lack of
near detections obstructing the robots’ way. The following Figure 6.10
shows how easily the robot turns around the door.
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Figure 6.10: Example of a robot following an oblique door, detecting its end and
turning around it.

6.4.1 A Complete Example: from the Opening of an
Environment to Saving its Partial Map

With the aim of illustrating the whole simulated exploration process, this
last subsection presents an additional example that includes interface
aspects.

Initially, the simulator application only allows the user to open an
existing environment or create a new one. This can be done by means of the
buttons in the toolbar or the corresponding options in the ‘Environment
File’ menu. As we can see in the following Figure 6.11 all remaining options
appear disabled.

ySimulation

Figure 6.11: Simulator application.

For this example the user has chosen the option of opening an existing
environment (which corresponds to the one pointed by the cursor in the
previous figure). This selection results in the same window as any standard
open file dialog, it lists the names of the environment files that are
available (see Figure 5.1). In this manner, the user opens an environment
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so that its screen becomes active, (notice that the environment is the same
than the one in previous examples). The next Figure 6.12 depicts how the
user can afterwards add a new robot by pressing the fifth button. (Again, it
has an equivalent menu option).

GLSimulation —E]x]
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Figure 6.12: Opened environment in the simulator.

We already saw in Figure 5.2 how the robot characteristics dialog allows
the user to change the error default values. Since, we have not changed
them for all the presented simulations, we just include here a figure
containing the dialog used to define the probabilities and initial position of
the new robot (Figure 6.13).

EXPLORATION BEHAVIOUR CHARACTERISTICS x|

Random Behaviour:
Turning Probability: per cent V oK
Left Turning Probability: per cent

Initial Position: LS cm xcancel
v om

Figure 6.13: Robot characteristics dialog.

The user can repeat this process of adding exploratory robots. The only
restriction concerns their initial positions. On the one hand they must
belong to the environment co-ordinates. And on the other hand, robot
bodies can not be placed in physically occupied positions (i.e., locations of
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walls, obstacles or other robots’ bodies). (The system will punctually indi-
cate both circumstances).
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Figure 6.14: Starting the robot exploration.

Once the robot is positioned in the environment, several options allow
the user to start the exploration (In case there of several robots, they will
start their exploration simultaneously). If the user presses the sixth toolbar
button (or its equivalent ‘Start Robots’ option from the ‘Robots’ menu), all
the robots will explore the environment until they accumulate an error that
exceeds the threshold value. Since the error is approximated by rectangles,
we consider that a rectangle exceeds this threshold when one of its sides
exceeds it. In all the examples shown here, this threshold value has been
set to 1 metre.

The user can select a different option to start the robots and move them
step by step. The simulator offers this alternative option to allow the user
to supervise their performance. In the previous Figure 6.14, the mouse
cursor points to the toolbar button that executes one step of robots’ motion.
The button next to it is meant to continuously move the robots during 10
steps. Both buttons (and their equivalent menu options) can be alterna-
tively pressed so that the user can focus in specific robots’ actions.

We have been using these two latter options to take snapshots of the
exploration performed by the robot included before. Once more, snapshots
have been cut and numbered. The following Figure 6.15 depicts all these
images. From the previous examples we already know how behaviours co-
ordinate themselves. Here, we are interested in showing the robot trajec-
tory as well as its wall following. Except for the last image, all the pre-
sented images focus on the first two wall followings, whose steps have been
executed between images 2 and 3, and from 9 to 10.
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Figure 6.15: Robot exploration.

Robot’s Partial Map

When moving the robots step by step, the ‘Save Partial Maps’ button
generates a file for the partial map of each robot in the environment. As
subsection 5.3.4 indicates, a partial map contains the robot trajectory
together with wall following information. For this example, we saved the
partial map of the robot after the thirteenth image. The partial map file is a
binary file whose name is built from the first 5 characters of the
environment’s name and the position of the robot in the array of robots.
Binary partial map files have a “*.pm’ extension. The system also stores the
same partial map information coming from exploration in a text file. This
file has the same name but has an *.exp’ extension. We show the contents
of this ent_o_0.exp file in the following Table 6.1. This table contains 6
columns. The first column just indicates the row number and has been
included for the sake of clarity. (The first information in the partial map is
the number of rows, though). The second column is the most important, and
contains the position of the robot. As the rest of positions in the partial
map, this position is specified in local co-ordinates (so that the origin is the
bottom-left corner in the environment). The third and fourth columns
define the estimated error rectangle that is associated with each robot
position. The rectangle error is always initialised with a fixed 0.1 cm size so
that the initial position of every partial map always has this associated
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rectangle error. And finally, wall following information is stored in the last
two columns: s.pt. refers to singular points and wall to wall following.

um | robot position upper-left error bottom-right error | s.pt. | wall
1 [(200, 40) (199.9, 40.1) (200.1, 39.9) no no
2 |(164.703,75.4141) | (160.462, 79.6464) | (168.944,71.1819) | no no
3 [ (161.707,75.271) (157.386, 79.7911) | (166.027 70.7509) no no
4 1(160.709, 75.207) (156.360, 79.8233) | (165.057 70.5907) no no
5 [(159.711,75.1478) | (155.335, 79.8602) | (164.087 70.4353) no no
6 | (157.713,75.0564) |(153.284,79.9607) | (162.141 70.1522) no | left
7 |(156.185, 87.9029) | (150.489, 93.3479) | (161.88282.4579) | yes | no
8 |(157.373,112.875) |(149.279, 118.982) |(165.468 106.767) no no
9 |(147.788,123.079) |(138.513, 130.321) |(157.063 115.836) no no
10 | (147.960, 125.071) | (138.492, 132.374) |(157.428 117.769) no no
11 1(148.022, 126.069) [ (138.458, 133.4 ) | (157.586 118.739) no no
12 |(148.081, 128.068) | (138.325, 135.448) | (157.836 120.688) no | left
13 | (184.015, 129.055) | (173.284, 139.892) |(194.745 118.217) no no
14 |(183.195,95.0644) |(169.217,106.728) |(197.17383.4011) | no no

Table 6.1: ent_o_0.exp partial map.

Now, from the information on the partial map and the previous image
we can easily specify the actions that the robot has performed until the
situation in image number13.

Initially, the robot has moved from its initial position (1st row) until
a position (2rd row) where it has detected a wall. This displacement
corresponds to the first oblique black line in the first image of Figure
6.15.

This detection forces the wall alignment behaviour to take the
control of the robot. Under this behaviour, several actions are
executed. Their final positions correspond to the 3rd, 4th 5th and 6th
rows in the table. The first image in Figure 6.15 shows the robot in
the 5th position, whereas last position corresponds to the second
image. Is in this same position where the left wall following behav-
iour becomes active, and therefore, last column in the 6t row takes
the value left.

The robot follows the wall until it finds its end. Images 3 and 4
depict the detection of the singular point. This is recorded in the
partial map by including a new row (number 7) and assigning Yyes to
the s.pt. column.
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The next active behaviour is wall leaving, which makes the robot to
escape from the corner. Under this behaviour, the robot reaches the
position in the 8th row and 5th image.

When nothing is detected, the robot control returns to the random
walk behaviour. Images 6 and 7 shows how does the robot moves
until a new wall is detected. This position is reflected in the 9th
partial map entree. Again, the wall alignment behaviour causes
robot movements that appear in images 8 and 9 as well as in the
partial map (see 10, 11, and 12 rows).

The start of the second left wall following is indicated in the wall
column of the 12th row. And ends in row 13 (see also image 10). Once
the wall following distance has been covered, the wall leaving
behaviour generates a -90° turning action. The 11th image reflects
the new robot’s orientation. The partial map does not reflect it
because turnings do not change robot’s position.

Finally, images number 12 and 13 depict a random walk action that
ends in the last position of the partial map.

Up to this point, the user will probably be as tired of the example as the

reader.

A quick way of finishing the simulation is by pressing the ‘Start

Robots’ toolbar button. This finishes the step by step simulation and moves
the robot continuously until the error exceeds its threshold. Last image in

Figure

6.15 depicts the complete simulation.

Whenever the robot ends its simulation, it stores its partial map (within
the same text and binary files). The text map file contains 44 entrees. We
just copy here the ones that correspond to wall followings. The binary file

contains the same structure than the real robots’

information. This

structure has robot positions defined as integers, and this is why we have
rounded its co-ordinates in Table 6.2.

num. | robot position | upper-left error bottom-righterror | s.pt. | wall
1 (200, 40) (199.9, 40.1) (200.1, 39.9) no | no
6 (158, 75) (153.284, 79.9607) | (162.141, 70.1522) no | left
7 (156, 88) (150.489, 93.3479) | (161.882, 82.4579) yes | no
12 (148, 128) | (138.325, 135.448) | (157.836, 120.688) no | left
13 (184, 129) | (173.284, 139.892) | (194.745, 118.217) no | no
24 (243, 28) (219.644, 52.5041) | (266.967, 3.60341) no | right
25 (272, 26) (247.782, 53.6432) | (296.718,-0.835667) | no | right
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26 | (273,31) | (247.672,58.7796) |(297.576 3.9849) no | right
27 | (259,35) |[(233.356,63.3308) |(284.8845.85073) | yes | no

32 | (227,28) |(198.776,60.4271) |(254.464-3.86025) | no | left
33 | (181,26) |(151.597,62.3778) |(209.775-10.7455) | no | no

43 | (200,128) |(158.77,177.261) | (241.762,78.3895) | no | left
44 | (245,135) |(201.75,188.422) | (289.108,80.5913) | no | no

Table 6.2: Wall following entrees in the partial map.

We can compare this wall following partial map entrees with the
trajectory in the last image of the previous Figure 6.15. First there are two
left wall followings, from which one has detected a singular point. After-
wards there are three consecutive right wall followings in the bottom-right
corner of the environment (the last one also indicates the existence of a
singular point). And the last two detected walls have been followed from the
left side of the robot. The last one corresponds to the semi-opened door.

Wall Coverage

In the partial map there is additional information:
e Number of stored positions = 44
*  Number of followed walls = 7
*  Number of detected singular points = 2
+ Covered wall distance = 188 environment units.

This last data corresponds to the total length of followed walls. It is
measured in units that depend on the environment granularity. Therefore,
since the environment in the example has granularity 2, walls have been
followed along 188 x 2 = 376 cm. Taking into account that the total length
of walls in this environment is 2938.45 cm, we can see that the percentage
of wall coverage is 12.8%.

This result considers all the walls in the environment. Nevertheless,
some of them are unreachable for the robots. For example, since the door of
the upper-right room is almost closed, two of its walls cannot possible be
detected. This decreases the total followable wall length by 530 cm. In that
case, the percentage would be 15.6% of reachable wall coverage. The follow-
ing chapters will further study wall coverage.






Chapter 7

Map Representation

The last chapter details the way in which robots explore an unknown
environment. In addition, it specifies how do they acquire their partial
maps from their trajectories in free space and wall followings. Once the
robots have completed their exploration, they communicate their partial
maps to a host computer. The present chapter focuses on how the host com-
puter uses the robots’ partial maps in order to generate a global map. This
global map constitutes a compilation of all the followed walls and covered
free-space specified in the received partial maps.

Odometry errors generate imprecise information about the position of
detected environment features and free-space locations. The host computer
makes use of Possibility Theory (Dubois 88) to model the imprecision of the
information. Given some vague information, Possibilistic Logic evaluates
the truth of crisp propositions. In our case, such propositions are:

e "The position of the robot corresponds to the (x, y) free-space
position”, and

e "The robot is following a wall at (x, y)"

Where x and y are crisp numbers.

For the former proposition, we assume that the robot is indeed in free-
space, and we evaluate the precision of its crisp position (x, y). Equiva-
lently, the later proposition assumes that the robot is actually following a
wall, although the location of this wall is not precisely known.

The host computer evaluates the truth of these propositions on the basis
of odometry errors from which it derives degrees of possibility M and
necessity N. Therefore, the resulting global map models the environment in
terms of degrees of possibility and necessity of the position of detected walls
and obstacles.

In this chapter we will see that our approach consists in generating a
global map that discretizes the environment in a bidimensional grid. Each

169
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cell (i, j) in the resulting grid map contains two values: the degree of
possibility and the degree of necessity of the presence of obstacles. Initially,
before any exploration has taken place, the possibility that a cell at co-
ordinates (i, j) is occupied by a wall is 1 (that is, Mi(wall) = 1), and its
corresponding necessity value is Nj(wall) =0. These initial values represent
ignorance and are intuitively interpreted as 'although it is completely
possible that there is a wall in any position, there is no certainty at all
about it'. Afterwards, sensor detection information yields to positive values
of Necessity of wall or obstacle, whereas information about free space gives
Possibility values smaller than one. In this manner, the map generation
process consists in a combination of new possibility and necessity values —
derived from received partial maps— with the ones at the current global
map. The host implements the map generation process incrementally, by
adding new partial maps when robots communicate them. Incremental
computation allows the host to generate the global map with the
information available at any moment. Therefore, the host does not need to
wait for all the robots to successfully end their exploration.

7.1 Possibility Theory

Possibilistic Logic is a particular case of Fuzzy Logic (Godo 93). Given some
vague information, Possibilistic Logic evaluates the truth of crisp proposi-
tions whereas Fuzzy Logic evaluates the truth of vague propositions. In our
case, propositions are of the kind "the position of the robot corresponds to
the (x, y) free-space position" and "the robot is following a wall at (x, y)"
where x and y are crisp numbers. (Note that the opposite of the Possibilistic
Logic is the Multivalued Logic, which assigns crisp values to the truth of
vague propositions).

Possibility Theory defines a possibility distribution based on the fuzzy
sets. In Section 3.1.1 we represented a fuzzy set by its membership func-
tion:

Ma: U -[0,1]

Were A is a vague predicate over the values from a universe U. This
membership function represents the predicate by assigning membership
degrees to the elements of the universe. Possibility Theory states that the
membership function Ha equals the possibility distribution Ta. This T
distribution is the set of possible values of a variable over the universe U
given a predicate A, with the understanding that possibility is a matter of
degree.
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In our case, given a detected segment S = [(x1,y1), (x2,y2)] and its error
Areae, we defined its associated fuzzy set Fs as a membership function pw
that assigns, to any point (x,y), its corresponding membership degree to a
real wall. Now, the possibility distribution T gives the certainty degree
that a wall position takes the value (x,y) knowing the fuzzy set Fs.

From the possibility distribution T, the Possibility M 4 and Necessity N a
constitute two dual measures that are defined over the set/7P(U) of subsets
of U:

MsN:PU) - [0,1]
N,(B) =sup{m,(w); u 0B} O

N, (B) = inf{l - 1, (w); u DB}%D N,(B)=1-M,(=B)

Where A is a fuzzy subset of U and B as a crisp subset. In this manner,
given the imprecise information "X is A", M a(B) and N a(B) measure the
uncertainty of imprecise affirmations such as “X is B”.

Finally, we provide a brief list of some of the Possibility Theory axioms
and properties:

n,N:PU) - [0,1]

N(A) =1-N(-A)

nw)=1, M@)=0, NU)=1, N@O)=0,

M(A O B) =max(MNM(A),M(B)), N(A n B) =min(N(A),N(B))
|_|(A DﬂA):l, N(A N —IA):O

M(A) = N(A), M(A)<10 N(A)=0, NA)>00 NMNA) =1
Ignoranceis expressed by : M(A) =1and N(A) =0

The Possibility M and Necessity N values of singletons are 0.

7.2 Modelling the Certainty

7.2.1 Information Representation

The space being explored by the robots is discretized by means of a grid.
Cells in the grid represent a small area of the real environment. The size of
this area depends on the granularity that the host uses to represent the
environment. Our system considers square cells whose side size is a pa-
rameter of the system (it is usually taken as 1 or 2 c¢cm long). Grid cells
contain two values: the degree of possibility and the degree of necessity of
the presence of obstacles. Initially, all the cells have a possibility value M of
1 and a necessity value N of 0. These initial values correspond to a situation
of total ignorance and are intuitively interpreted as 'although it is
completely possible that there is a wall, there is no certainty at all about it'.
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As the host receives robots’ partial maps, it modifies the possibility and
necessity values of the global map grid. Value update is done in a way that
depends on the presence, or absence, of obstacles. As we have already seen,
partial maps contain robot trajectory segments together with information
about which trajectory segments where covered while following a wall. If
wall following occurs, then the partial map also specifies which side of the
robot detected the wall and if the end of the segment corresponds to a
singular point or not (i.e., if the wall ends). This additional information
allows the host to compute the wall segment that corresponds to the
trajectory segment.

The last section in the second chapter (see Sect. 2.4.4) indicates how
localisation error rectangles are associated with the points that belong to
both, robot trajectory segments and followed wall segments. These rectan-
gles are used to determine the cells in the grid whose possibility and
necessity values will be updated.

Although the host receives information specified in segments —in the
continuous space—, it works with a discretized representation of the envi-
ronment. Therefore, the host needs to discretize both wall and trajectory
segments. As a result, discretized segments become a sequence of consecu-
tive positions that correspond to grid cells. Rectangle errors are associated
to each segment position so that possibility and necessity values are up-
dated for every cell that results partially or totally covered by the rectangle
area. Next Figure 7.1 a) depicts an example of a robot position centred in its
rectangle area. Part b) corresponds to all the positions (and their associated
rectangle errors) in a segment.

y

communicated
position

I:' discretization
of the error:
X error,=5, error,=3

)a

b

Figure 7.1: a) Grid representation of a position and its associated error; b)
Consecutive positions of a discretized segment.

In the sequel, we introduce the fact that the area described by the con-
secutive rectangle errors associated with each position of these discretized
segments determines which grid cells must be marked with occupancy
degrees and which ones with free-space certainty degrees. We also give an
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intuition of how these certainty degrees are distributed along the grid in a
pyramidal manner.

Walls and Obstacle Edges Representation

When representing a wall position (or an obstacle edge) and its associated
error rectangle, the certainty degree is updated in every cell that results
partially or totally covered by the rectangle area. Information about de-
tected and followed walls updates the necessity value in the corresponding
cells and represents the certainty about the presence of an obstacle in each
position.

Necessity values decrease linearly with the magnitude of the error and
remain positive (N(wall) =a> 0) in the cells inside the error rectangle but
obtain the value 0, in what concerns this particular detection, at the cells
outside the limits of the rectangle. These values have been established with
the aim of reflecting that, having followed some wall or obstacle, the
necessity that there is a wall cannot be longer zero but positive, since a
positive value denotes some certainty about the occupancy of the space.
However this occupancy certainty degree decreases when the distance to
the central cell (of the error rectangle) increases. Figure 7.2 a) gives an idea
of how these values are distributed. Notice that the possibility value is
constantly equal to 1 in all the cells covered by the error rectangle. This is
due to the axiom of Possibility theoryN(A)>00 M(A)=1.

M(wall)=1
N(wall)>0

0

a) b)
Figure 7.2: 1 and N value assignment for a wall position. a) Projected to one
dimension, and b) Two dimensions

Free Space Representation

Robot trajectory segments provide information about free space, meaning
that the possibility of the existence of a wall has decreased with respect to
the initial ignorance values.

In terms of possibility and necessity values, free space information
corresponds to MN(-wall)=1 and N(-wall)>0. However, the global map grid
only represents occupancy information (that is, M(wall) and N(wall)). Fortu-
nately, the possibility theory axiom N(A)=1-M(-A) allows us to transform
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N(=wall)>0 values into M(wall)<l as well as MM(-wall)=1 values into
N(wall)=0.

Possibility values of free-space positions NM(wall) increase inversely to
the decrement of necessity values of NG wall). In the same way as necessity
values of wall positions decrease proportionally to the distance to the
central cell of the error rectangle, the possibility value of obstacles MN(wall)
increases with the same proportion until it reaches the value 1 at the cells
outside the limits of the error rectangle. (The possbility of existence of
walls or obstacles outside the error rectangle around a trajectory in free
space is 1). Obviously, we have N(wall) = 0 for all the cells covered by the
error rectangle. The following Figure 7.3 depicts this inverted pyramid rep-
resentation in the grid.

MN-wal)=F - M(wall)<1
N(-wall)>0| 0 M
o N(wal)=0

a) b)

Figure 7.3: Representation of a free-space position: a) Transformation from M(-wall)
and N(—wall) into M(wall) and N(wall). b) Representation of the obtained values
M(wall) and N(wall) in two dimensions.

7.2.2 Value Assignment

The height of the pyramids in the previous Figure 7.2 and Figure 7.3 is
determined by the size of the error rectangle. The underlying idea is to
establish a linear error-height relation such that, a null error implies the
maximum allowed value of height (i.e. one), and an error equal to the
maximum allowed error, K, implies a zero height since the information is
no longer reliable. The maximum allowed error threshold, measured in grid
units, assigns a limit to the error. K is established experimentally and is
the same as the one that forces the robot to return from its exploration due
to the irrelevancy of its later data.

Let us represent the error rectangle by the tuple {xc, yc, ex, ey}, where xc
and yc are the co-ordinates of the central cell of the rectangle and ex and ey
are, respectively, half the length of the base and half the length of the
height of the error rectangle measured in number of grid cells. Following
this, the height of the pyramid is given by:
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max(e, e, )

height =1 - (1)
K
And the necessity value of having a wall at cell (i, j) is given by:
li-x_ | lj-y, |
N, (wall) = height Dmin% ~E TRl T E @)
e, e,

The Mij(wall) values are obtained through 1-Nij(=wall) by using the same
(1) and (2) equations.

Local Assignment

The same value assignment can be implemented by locally computing
height values for every grid cell that results partiall y or totally covered by
the rectangle area. The computation of this height is done by means of a
value propagation that starts at the central cell and spreads over all those
cells laying within the pyramid base. Such a propagation passes four
different values among cells: er, ei, es, and es. These values contain the
distance between the current position and each side of the error rectangle,
i.e. right, left, up and down respectively. Since each value is passed from a
cell towards its immediate neighbours, all values are unitaril y increased or
decreased in each step of the propagation until they reach the zero value.
Let errorx be the length of the error rectangle base, and let errory be the
rectangle height, then the error values are initiall y assigned at the central
cell as follows:
__error, __error,
e, e =——* e =e, =
2 2

Then, the formulas that each cell uses to compute its height (that is, its

N value) are the following:

N :min(Nx,Ny)

x x —err. le, —e, | e te

N, =1-—+ *  where: x = ——"—, err, = L_r
err, K 2 2

y —err le;, —e, | e, +e

Ny:1——y + >, where: y=—¢ " er, =4 ¢
err K 2 2

The next Figure 7.4 depicts an example of an error rectangle on the grid
with errorx = 8 and errory = 4. The propagation starts at the central cell,
whose necessity value is the highest. Whenever a cell receives a null
propagation value, its necessity value becomes zero, and since negative
values cannot be propagated, the propagation finishes. These cells coincide
with the edges of the error rectangle.
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N = height
+
N:0 :O
. initial cell:
e=0 o  ea=e __ ,e=0 et=er=4,en=eda=2
er—1 er—1 N=1-(4/K)
er+1 er+1

edge cell:

ee=8,er=0eu =3,ea=1
N=0

Figure 7.4: Local value propagation in order to compute necessity values N for each
cell in the rectangle area.

With the aim of generating regular necessity pyramids, the propagation
process has been implemented symmetricaly. This forces us to solve the
cases with even rectangle length with an ad-hoc solution: we markthe two
central cells as initial. This choice is pure} arbitrary, but it does not seem
to be worse than any criteria that always takes the same semi-centred posi-
tion.

The next Figure 7.5 shows several examples of pyramids generated by
the host computer. A wall position generates a Necessity pyramid in red (1)
whereas inverted possibility pyramids appear in blue (2 to 6). In both cases,
darker colours mean a higher certainty degree: darker red in a cell stands
for a higher necessity value of having a wall inthis cell; a darker blue
indicates that the possibility of having a wall is smaller (inverse to the
necessity of free space). This figure contains several examples ofPossibility
pyramids. They appear in an increasing error order. As we can observe in
the figure, a large error rectangle associated to a position not ony implies
that a larger number of cells will be covered in the grid but also that they
will receive smaller certainty values (i.e., lighter colours).

LA
TEN
1 4

5
6

Figure 7.5: Example of the representation in the host of a Necessity pyramid (1) and
several Possibility pyramids (2 to 6).
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Finally, it is important to notice that these values of N>0 do not corre-
spond to single points (i.e., singletons) for which Possibility Theory would
assign by definition a zero value, but to discretization intervals over the
environment grid, and consequently they do not have to be zero.

7.3 Global Map Generation: Certainty Grid
Building

As we have said, the host generates the global map incrementally, by
including the information of new income partial maps. The host treats
partial maps sequentially, in the same order as they have been received.
Since all partial maps are treated in exactly the same manner, this section
details how a partial map is included into the global map. This process is
repeated as many times as the host receives new partial maps. Each partial
map includes the number of the robot it comes from. This is necessary
because the host needs to know the characteristics of the robot that deliv-
ered the partial map in order to compute associated errors and detection
distances. Nevertheless, this robot identification is not only necessary to
treat partial map information but also to avoid processing more than once
the information coming from one robot.

7.3.1 Partial Map Inclusion

The previous chapter explains how robots include their exploration
information in partial maps. Basically, a partial map consists in a sequence
of robot’s trajectory segments. The host computer treats the information in
the same order: for each new trajectory segment it reads, it includes the
corresponding certainty values in the global map grid. The next algorithm
in pseudo-code presents how the host adds each new partial map:
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Add_new_partial_map_into_global_map( partial_map, maximum_allowed_error)
{ Repeat while( partial_map # 00 )
{ segment =read_segment(partial_map)
error = max_error(segment)
If( error < maximum_allowed_error )
{ d_seg = discretize (segment)

If ( segment.wall # ‘no’)

{ d_seg = orthogonalize(d_seg)
d_wall=compute_wall_segment( d_seg )
add_wall_and_trajectory_to_global_map( d_wall, d_seg)

}

Else

add_trajectory_to_global_map(d_seg)
}
Else
partial_map = [J
}
}

As the algorithm above shows, every trajectory segment is discretized
and included into the global map grid. Nevertheless, trajectory segments
that where covered by the robot while following a wall are treated
separately. Before including them into the grid map, the host orthogonal-
izes them. They become vertical or horizontal whenever they are ‘almost’
collinear to one of the axis. This collinearity condition is measured in terms
of the change rate between in the x the y co-ordinates of the segment. This
is equivalent to the angle that the segment defines with one axis, but
computationally simpler. In the 7.4 Results Section we will be able to
observe the advantages of segment orthogonalisation and the effects of
setting the ‘almost’ collinear condition to different angles. By now, we just
point out that when this condition holds for a segment, the components
with less variation become equal to their mean value. Clearly, oblique seg-
ments are not changed.

Wall following trajectory segments contain information that allows the
host to compute the corresponding wall segment. Considering the robot
displacement and the side of wall detection, the host generates a wall seg-
ment parallel to the trajectory segment. Both segments are separated by a
distance that corresponds to the robot detection distance. (Section 1.1 al-
ready explained the error associated with the resulting wall segment).

Since the robot odometry error increases with the covered distance,
segments appear in the partial map in an increasing error order. They are
included into the global grid map only if their error is smaller than a
maximum allowed error. Such a system parameter indicates a data rele-
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vance threshold so that beyond its value, no more segments are considered
and the algorithm ends. Segments are discretized and each resulting point
has an associated rectangle error. From the error accumulation, we can
ensure that the size of the rectangles increases from the initial point of the
segment until the final point. Therefore, it is enough to check if the rectan-
gle error associated with the last point is larger than the maximum allowed
error. And it is considered to be the case when one of the two rectangle
dimensions is larger than this threshold.

The present section continues by explaining how trajectory and wall
segments are added to the map grid using two distinct procedures. How-
ever, before this, it is worth to briefly describe the structure of the grid map
in the system.

Map Grid Structure

A map grid is an object class that contains, as members, the dimensions
and the origin of the grid together with a two dimensional dynamic array of
grid elements. (The grid is built at execution time. However, we will not go
into the detail of commenting its methods).

Grid elements correspond to the so called up to now grid cells. Each

element has the following members:

e Necessity value. This value is a real number that belongs to the [0,1]
interval. It represents the necessity degree that the cell is occupied.

e DPossibility value. As the necessity value, it is a real number between
0 and 1. This value represents the occupancy possibility of a cell.

* Singular point. Its value is a label for the cell: ‘1’ means that the cell
corresponds (with the necessity degree contained at the cell) to a
singular point. Otherwise, its value is ‘0.

e Orientation. This value is again associated to wall positions only. Its
value is ‘0’ when the cell only contains information about trajectory
positions. Otherwise, it can take three different values that distin-
guish among horizontal, vertical or oblique orientations: HOR, VERT,
and OBL respectively.

According to Possibility Theory, possibility and necessity values in a cell
must fulfil the axioms in the 1.1 Section. That is, for every cell:

e The Possibility value must be always larger than the Necessity
value.

e A positive (non-zero) Necessity value implies a Possibility value
equal to 1.

* A Possibility value smaller than 1 forces the Necessity value to be 0.

In the previous section we explained that we can represent free space
information by assigning Possibility values smaller than 1 to the cells. We
will further discuss in the rest of this section why we do not fulfil these
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restrictions in intermediate stages of the map building process. This allows
us to combine different information in order to choose the most relevant one
at the end of the process: when displaying the map.

7.3.2 Value combination

In Sect. 7.3.1 we have seen an algorithm that includes partial maps. This
algorithm discretizes each trajectory segment and includes the information
it contains in the global grid map. In this subsection we see how this is
done.

Including Trajectory Information in the Global Map

The discretization of a trajectory segment results in a sequence of grid
positions. Each of these positions has an associated rectangle and repre-
sents free-space. Section 1.1 explains how a free-space position and its error
can be represented in a grid by means of an inverted pyramid of possibility
values in the corresponding cells.

A segment is defined by its initial and final points together with their
associated errors. The discretization process is based on the Digital Differ-
ential Analyser (Hearn 88), which is an incremental algorithm for drawing
lines in digital devices. Utilising this algorithm, cells in the grid are chosen
in the same way than pixels in a screen. Moreover, in the same way that
the first and last position in a trajectory allows to compute all intermediate
cell positions, their associated rectangle errors can similarly be computed
and associated with each new position.

In this manner, the function that includes trajectory information into
the global grid map performs two main steps. First, it discretizes the corre-
sponding trajectory segment. And second, for each resulting trajectory
position, it computes its error and includes the corresponding possibility
pyramid into the grid. In the previous subsection we have seen how cell
necessity and possibility values are propagated from a central cell towards
its surrounding cells. As a consequence of this discretization, central cells
are consecutive and therefore, value propagation is done over cells that may
already have been updated by a previous propagation. In other words, we
are propagating overlapping pyramids, and this implies that new values
must be the result of a combination between old and new pyramids.

This value combination must guarantee that the addition of new infor-
mation always reduces the ignorance at any given cell. Taking into account
that ignorance is expressed with the maximum value of occupancy possibil-
ity (M = 1) and the minimum value of occupancy necessity (N = 0), and con-
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sidering also that free space information is translated into possibility
values smaller than 1, we can conclude that to combine possibility values
with the minimum operator guarantees this ignorance reduction. (Note
that this min operator has been described in Sect. 3.1.1 as a fuzzy set t-
norm operator).

y4 = =0 |
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l 7 7 7 7 7 Z 7
l 7 7 7 7 7 7
l 7 7 7 7 7 7
l 7 7 7 7 7 7 7

Figure 7.6: Free-space representation. (Left): As a combination of consecutive
inverted possibility pyramids. (Right): Four different trajectories included in the
global map.
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The previous Figure 7.6 depicts on the left the idea of combining con-
secutive possibility pyramids using the min operator. Figure 7.6 (right)
contains trajectory positions that have been included in the global map. The
represented information comes from four different trajectory segments. The
first one has a reduced error and, since the error increases in a bottom-up
manner, it implies that the robot moves upwards. As the previous example,
the second example corresponds to vertical robot displacement. Neverthe-
less, its error is less moderated and the robot moves downwards. The
remaining to examples come from a horizontal and an oblique robot trajec-
tories respectively. Both present a relatively large error.

Including Wall Following Information in the Global Map

When a trajectory segment has been covered while following a wall, first
thing to do consists in orthogonalising it. We have already commented that
a segment becomes completely vertical or horizontal only if it already is
almost orthogonal. Afterwards, the information of two segments is included
in the global map: the trajectory segment and the corresponding wall seg-
ment. The trajectory segment is included as the previous subsection details.
The wall segment representation implies a combination of consecutive
necessity pyramids. Wall positions propagate pyramids with positive values
increasing from O at the rectangle error edges. We combine the necessity
values of consecutive pyramids with the maximum operator (see Figure
7.7). This operator corresponds to the fuzzy t-conorm and has been chosen
in order to maintain occupancy certainty values as high as possible.
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Figure 7.7: Max-combination of consecutive necessity pyramids.

Both, wall and trajectory segments have the same length, and therefore,
they can be discretized and included in the map simultaneously. However,
wall information is included into an auxiliary grid map whereas trajectory
information is directly propagated on the global map grid. This auxiliary
grid map is created in order to fit the wall information coming from the
current wall segment. This allows to combine necessity values coming from
the same wall following without mixing with previous values in the global
grid.

Once all the wall positions have been included into the auxiliary grid, it
is transferred into the global grid map at the corresponding position. Unlike
trajectory information, wall information cannot be directly merged with the
necessity values in the global map. This is because two distinct operations
are involved in each combination. First, the maximum operator is applied
for necessity propagation inside the auxiliary map. And second, the wall
combination operator (between necessity values in an auxiliary grid cell
and its corresponding cell in the global map) is the Probabilistic Sum S(x, y)
=x +y —x(. This operation has been chosen with the aim of reinforcing the
wall occupancy certainty in those cells in which two or more different
sources of information coincide. By different sources we mean that this
piece of wall has been followed more than once. Once the information of a
wall following has been included into the global map, it is not possible to
distinguish who has followed a wall. Therefore, when combining previous
wall information with the information in the auxiliary grid, we do not
distinguish whether the wall has been followed by the same robot or by a
different one, we always consider this information to be independent.
Finally, note that the probabilistic sum operation does not change a
necessity value N>0 when it is added into a cell having a zero necessity
value.
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Figure 7.8: Several examples of wall representation. Walls and trajectories without
being orthogonalized (1, 3, and 4). The corresponding orthogonal walls and trajecto-
ries (2 and 5). Wall reinforcement: (8) results from the combination of (6) and (7).
The upper and left walls in 3, 4, and 5 correspond as well to the combination of two
walls. Singular points appear in green at wall extremes.

At the beginning of this section, we saw the pseudo-code of the function
Add_new_partial_map_into_global_map(). In order to include wall following infor-
mation into the global map, this function calls another function whose
name is add_wall_and_trajectory_to_global_map. Although we have already com-
mented all the steps that this function implements, we present its pseudo-
code with the aim of summarising them. Figure 7.8 contains examples of
the way in which the host represents and combines wall following informa-
tion. The images inside the figure illustrate the function steps.

add_wall_and_trajectory_to_global_map(d_wall, d_seg)
{ orthogonalize(d_seg, d_wall)
dim = compute_wall_dimensions( d_wall )
orient = compute_wall_orientation( d_wall )
aux_map = create_auxiliary_map( dim )
Repeat ( for each discrete position p in d_seg )
{ propagate_possibility_values_in_global_map(p , min)
wall_p = take_the_corresponding_wall_position( p )
sing_pt = check_if_the_wall_position_is_a_singular_point( wall_p )
propagate_necessity_values_in_auxiliary_map( aux_map, wall_p, orient, sing_pt, max )
}
add_auxiliary_map_into_global_map ( aux_map, probabilistic_sum)

}

Auxiliary Maps have the same structure as the global map. The Map
Grid Structure subsection (page 179) specifies that each cell has two
associated labels: singular point and orientation information. These labels
take values only if the cell contains wall information. That is, if the cell has
a positive value in its necessity field. In this manner, when propagating the
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wall information that a wall segment implies, the orientation label is
simultaneously assigned. Regarding the singular point label, it can be only
assigned in the propagation of the last position if the robot labelled the
corresponding segment in the partial map as having a singular point. As
the first five images in the previous Figure 7.8 shows, singular points
describe the same necessity values distribution than the rest of wall
positions in a wall, but they appear in green.

7.3.3 Local propagation

The method used to update wall information in the global map (that is, the
combination operation we have just seen) takes advantage of the fact that
wall information is given as segments that come from a single wall
following. This allows to reinforce overlapping —but independent— wall
segments. Nevertheless, this presents the disadvantage of forcing the use of
an auxiliary grid map. This implies that the updating process can not be
considered as being purely local: it is local at the segment level but not at
the cell level. If we want to remain purely local, the computation of the
necessity value of a cell must be done considering only those cells
surrounding that cell.

We propose here an alternative method to include wall information. This
method is purely local. Nevertheless, with the information stored in the
cells it is not possible to distinguish whether two necessity values are
independent or not. Or in other words, the algorithm cannot know if new
propagated values that arrive to a given cell come from the same wall
following or not. Therefore, there is no way of discerning when two
necessity values should be combined by using the maximum operator or
applying the probabilistic sum. This restriction forces local propagation to
use only one operation to combine necessity values. We have chosen the
most conservative one: the maximum operator. Being conservative reflects
the fact that we prefer not to reinforce independent wall information than
to reinforce non-independent wall information.

We compute the height —i.e., necessity value— of the central cell of the
error rectangle, at position (i,j), with the same formula (1) introduced
previously:

max(e, ,e,)
K

Next, we need to define the propagation of this measure fromany cell
(n,m) within the error rectangle to its four neighbours. The propagation
follows the following inequalities:

n; (wall | G,je, e, 0=1- 3
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We use inequalities because we want to keep the maximum of the
different propagated values. For instance, if a propagation is made from cell
(n, m) to cell (n-1, m), then the propagated value that (n-1, m) receives is
smaller than the necessity at (n, m). Although the inequalities allow to
compute afterwards a new propagation back from (n-1,m) to (n,m), the =’
symbol prevent (n, m) to change its necessity value because the propagated
value will be smaller than the one at (n,m). The propagation finishes when
the values get stable in all cells.

Finally, the N measure is updated as follows:

N, wall|Gje, e,0=max(N},  n,, (walllje,e, D) (8)

Once again, free-space can be computed with the previous formulas (4 to
8) from N fl,m(—'wall I @,j.e, ,eyD, which is translated into possibility values

M, wall |G,je, e,0.

The next Figure 7.9 depicts the results of combining wall information
with the maximum operator. This figure includes three different combina-
tions of pairs of walls. With the aim of illustrating the difference between
using reinforcement or not, these walls are the same ones that appeared in
Figure 7.8.

Figure 7.9: Local necessity combination using the max operation. The walls are the
same ones as in Figure 7.8.
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7.4 Possibilistic, Probabilistic, and Evidential
Models

Both possibilistic and probabilistic models are particular cases of the
evidential model (Shafer 76, Smets 88). In the evidential model, a function
m assigns a mass to each subset of the frame of discernment Q in the
following way:
m: P(Q) - [0,1]
m(0d)=0

A;m(A) =1

A mass assignment m generates two dual measures of Belief and Plausi-
bility defined as:

Bel(A) = EZ m(B)
A

Pi(A) = m(B)

BnAz0
So that they verify:
Bel(A) < PI(A)
PI(A) =1-Bel(A)

In general, the masses can be distributed in any manner. The
possibilistic model corresponds to the case where these masses are nested.
Then, the belief and plausibility measures correspond to necessity and
possibility measures respectively. On the other hand, a mass assignment
generates a probability if the focal elements (that is, these subsets having
positive masses) do not intersect.

In our case, the frame of discernment is Q = {wall, -wall}, and our mass
functions of interest are simple support masses of the following type:

m: P(Q) - [0, 1],
m (@) =0,
m ({wall}) = a,
m ({~wall}) =0,
m(Q) =1-a.
Therefore, we obtain:
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Bel(wall) = m(A) = m({wall}) +m(0) = a
AU{wall}
Pl(wall) = m(A) = m({wall}) + m(Q) =1
An{wall }20

Ignorance is represented by assigning the total mass to the entire frame
(m(Q) = 1) without assigning any mass to its subsets. On the contrary, total
security of having wall would be represented by assigning the entire mass
to the wall set (m({wall}) = 1) exclusively.

Our m function assigns positive masses to the wall set m({wall}) = a and
the complete frame m(Q) = 1 — a, leaving the non-wall set m({-~wall}) with a
null assignment. In this manner, we are only considering nested sets ({wall}
0 Q), and therefore, we can consider Belief(wall) and Plausbility(wall) as
being Necessity and Possibility measures respectively. In this manner, we
have N(wall) = a > 0 and M(wall) = 1.

Having a evidence of wall, we can intuitively interpret this mass
assignment in the following way: since the evidence is not completely sure,
we assign a positive mass o to the wall set, a null mass to non-wall (we do
not have evidence for non-wall), and leave the rest (1 — o) to the frame as a
measure of incompleteness of our information.

If, instead of assigning m(Q) = 1 — a we would assign this mass to the
complement of the wall set (that is, m({-wall}) = 1 - a), then, these
measures would correspond to a probabilistic model. This is because, under
these circumstances, we are considering {wall} and {-wall}, which do not
intersect. In the Section 1.1 we already commented that the reason of
choosing possibility/necessity techniques instead of probability is our need
of an initial assignment of values representing ignorance. Possibility theory
allows a clear representation of ignorance but probability does not, and
forces the initial assignment to be: m({wall}) = m({-wall}) = 0.5.

Following the interpretation of the Possibility/Necessity assignments as
Belief/Plausibility values, we can justify now the use of the combination
rules. On one hand, we have already seen that we apply the probabilistic
sum when combining independent wall detections in the same cell, and this
operation is nothing but Dempster's rule for simple support masses:

my,m, : P(Q) - [0,1]

m,,(0)=0
Zml(A) [in,(B)
le(C) — AnB=C
’ m,(A) [n,(B)
AnBz0O

In our case, two evidences assign the following masses:



188 Chapter 7: Map Representation

m,(wall}) =a, my,(lwall}) =a,
m(Q)=1-a, my(Q)=1-a,
m,({~wall}) =m,({~wall}) =0
m,(0)=m,(0)=0

And the resulting mass, using the Dempster-Shafer combination rule is:

m,(A) [n,(B)
ll — AnB=lwall} —
m, ,({wall}) . (A) Gn, (B)
AnBz0

_ my(Q) On,(wall}) + my (wall}) Gn, (Q) + m, (wall}) n, (wall}) — _
m,(Q) [n,(Q) + m,(Q) ln,({w}) + m,({w}) bn,(Q) + m,({w}) bn,({w})
_ 1-a)lba, +a, {1-0a,)+a, [,

=a, ta, —a, mz

1
m,(A) lin,(B)
{_| ll} — AnB={-wall} — 0
my,({~wall}) . (A) G, (B)
AnBz0
m,(Q=1-a)ll-0a,)=1-(a, +a, -a, [&,)

m,,(0)=0

On the other hand, we also combine values coming from a single wall
following, and since we are considering non-independent evidences,
Dempster's rule is not suitable for evidence combination. Instead, we have
used a max-combination, a more cautious operation, still under the evi-
dence theory framework. Indeed, max combination is in accordance with
the so-called 'combination of compatible Belief functions' (Chateauneuf 94)
that makes sense when interpreting Bel/Pl values as bounds of the
probability measures consistent with them. Namely, let

Fi={P| Beli<P<Pli} i=1,2
be the family of such probabilities. Then, their natural combination can be
taken as the intersection:

Fi2=F1n Fo={P| max(Beli, Bel2) < P < min(Pli, Pl2)}

In general,
Bel” = inf P and PI” = sup P
POF|nFy POF|nFy

are not a pair of Belief and Plausibility measures (Chateauneuf 94). How-
ever, in our particular case, this combination leads to a proper belief func-
tion. Indeed, the function Bel® is defined as:
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Belf;(wall) = inf P(wall) = max(Bel,(wall),Bel,(wall)) = max(a,,a,)

POF, N Fy
Bel[,(0) = m({-wall}) = 0
Bel{,(Q) =1

a belief function whose corresponding mass assignments are:

m({wall}) = max(ai, 02),

m(0) = m({~wall}) =0,

m(Q) = 1-max(a1, O2)

Moreover, in this particular case, this max-combination is also in
accordance with a new combination operation proposed in (Torra 95).

7.5 Results

Section 1.1 presented a complete example of robot exploration. That exam-
ple included the partial map generated by a robot exploring an environ-
ment. Therefore, it seems reasonable to start this results section continuing
that example. The following Figure 7.10 illustrates how the computer host
uses the information contained in the robot’s partial map to generate a map
of the environment.

Figure 7.10 a) contains the same trajectory that we already saw in
Figure 6.15. From this trajectory and the partial map, we could see that the
robot followed a total of 7 portions of walls (which means a 12.8% of wall
coverage). Figure 7.10 b) presents the global map obtained from including
the partial map information into a grid initialised with the ignorance
values. For each cell, ignorance is represented by null necessity occupancy
values and possibility occupancy values equal to 1. The host displays this
specific combination of values in white. Due to the addition of a partial
map, some cells in the grid change their initial values into positive
necessity values or possibility values smaller than 1. The host represent
these cells in red and blue respectively. The lighter their colour, the closer
to ignorance they are. The certainty corresponding to free-space is propor-
tional to the darkness of blue. In this manner, we can interpret blue areas
as free-space areas and distinguish the robot trajectory in the map by
following consecutive blue cells. On the contrary, we can think of red areas
as being occupied by walls or obstacles whose side have been followed by
the robot. Again, the darker the red, the higher the necessity value.
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Figure 7.10. Map generation from the partial map information in the example of
Sect. 6.4.1. a) Robot exploration. b) Non-orthogonalized map. ¢) Orthogonal map. d)
Wall representation (the real map representation has been superposed for a better
comparison of the results). e) An alternative manner of displaying the map: wall
information has higher priority than trajectory information. f) The opposite display
policy: possibility degrees over necessity degrees.

At the beginning, when including the information coming from a wall
following segment, the detection distance is larger than the size of the
accumulated rectangle error. Therefore, the cells receiving positive neces-
sity values do not coincide with the ones that acquire possibility values
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smaller than 1. This implies that, on the one hand, the former cells do not
vary their possibility values: they are equal to 1. And, on the other hand,
cells with possibility values smaller than one still contain their necessity
values equal to 0. Consequently, this assignment fulfil Possibility Theory
axioms, which stand that:

M(A) 2 N(A), M(A) <1 0 N(A) =0 and N(A) >0 0 M(A) =1.

However, as the robot explores further, the accumulated error increases,
and the occupancy and free-space information overlap. This means that the
map generation algorithm will try to assign both positive necessity values
(Nij) and possibility values (M) smaller than 1 into single cells at (i, j)
positions. As a solution, the algorithm can opt for the information with
higher certainty value and apply the following assignment:

Necessity propagation(N)

{ If(M=1) combine N with Nji Njj= Nj + N —(N; OON)

Else
If( N'= 1-11;) assign Nj = N and force IMj =1

1

Possibility propagation(IT)

{ If( Njj=0) combine I with My My = max(M;, M)

Else
If(1-1 = Nj) assign M =1 and force Nj=0

}

However, this assignment is order dependent. For example, if it is the
case that a cell receives the following contradictory information: N=0.2,
M=0.7 and N=0.15. The resulting values are different depending on the
order they are received. In case they arrive in the written order, the cell
will end with Nj = 0 and M; = 0.7. This is due to that, initially, since Nj = 0
and IMj = 1, the necessity value becomes Nj = 0.2. Afterwards, for a new pos-
sibility value equal to 0.7, we have 1-0.7 = 0.3 > 0.2 and, therefore, the cell
values change into Nj = 0 and M = 0.7. Finally, the last necessity value is
0.15 and therefore, it cannot change a 0.7 possibility value.

On the contrary, if the necessity values would have been combined
before the arrival of the possibility value, the result would be different. This
is due to the fact that two necessity values of 0.2 and 0.15 yield to a com-
bined necessity value of 0.32. And this value cannot be varied by a 0.7 pos-
sibility value.

Instead of this order dependent solution we propose an order independ-
ent approach. In our approach we simply combine the received value with
its equivalent at the cell:

Necessity propagation(N)

{ combine N with Ni: Njj = Njj + N —=(Nj OON)

}
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Possibility propagation(IT)

{ combine M with My: My = max(M;;, M)

}

And display the one with higher certainty:

Display_cell_value()
{ If(1-TT > Njj ) draw [T
Else
[f(1-Tj < Nj ) draw Nj

}

Although the internal representation of the map does not fulfil the
Possibility Theory axioms, the host computer displays the resulting map
satisfying the restrictions they imply. In fact, it allows the user to choose
among four different preference criteria:

e display only walls (cells with N;> 0)

« walls and trajectories: blue if 1-1;> Nj and red if 1-1; < Nj
« walls over trajectories: red if Nj> 0, otherwise, blue if ;<1
» trajectories over walls: blue if 1; <1, otherwise, red if Nj> 0

In Figure 7.10 b) and c) the displayed cell values correspond to the ones
with higher certainty value, whilst the map in d) exclusively displays
positive wall necessity values. Note that c¢) is the orthogonalized repre-
sentation of b). The third and fourth remaining criteria have been applied
when displaying the map at the e) and f) images respectively.

The fact of assigning incompatible possibility and necessity values to
cells is just an implementation issue. Instead of representing exclusively
occupancy information, we could assign four different values for each cell:
the possibility and necessity degree of being occupied together with the pos-
sibility and necessity degree of representing free-space. This would contain
the same information. The only disadvantage is that it requires allocating
twice the memory space for its representation.

7.5.1 Orthogonalization Results

Before considering other map generation examples, there is an addi-
tional aspect of the map representation that we want to comment: the
orthogonalization of wall following segments. This is done by a simple func-
tion that plays an important role in map generation process. Firstly, it
distributes the error uniformly by assigning to the positions at the extremes
of the segment their mean error rectangles. And secondly, the fact of substi-
tuting less variant co-ordinates by their mean has two advantages. On the
one hand, since wall following segments will become parallel, it favours the
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combination of independent representations. And, on the other hand,
orthogonalized segments are closer to real maps. And this is not only
because of our assumption of mainly orthogonal environments but because
of robots’ wall following performance. Often, a robot starts following a wall
at a distance different from the distance it is when leaving the wall. And it
is specially the case if a robot detects a singular point, because the robot
approaches the wall more than usual (see Sect. 6.2.3). When computing the
wall segment, the host does not have enough information to discern among
different distances of wall following, and therefore, it seems reasonable to
assign the wall co-ordinate mean. In the previous Figure 7.10 d) the real
map representation appears superposed to the obtained map. Figure 7.11 a)
below depicts the walls without being orthogonalized.

L
il

Figure 7.11: a) Non-orthogonal map representation. b) Orthogonal map representa-
tion using a threshold of 5.7°

B

By comparing with the real environment both maps at Figure 7.10 d)
and Figure 7.11 a), we can conclude that most of the times, it is convenient
to orthogonalize segments corresponding to wall followings. However, we
can observe that the non-orthogonal information concerning the upper-right
door is closer to the real environment than the orthogonal one. The decision
of orthogonalization is made on the basis of the angle that the segment
forms with the axis. In the host implementation, all segments determining
an angle smaller than 26.5 degrees are orthogonalized. The following Table
1.1 lists the communicated trajectory segments and the angles they form
with their closer axis (note that wall segments are computed to be always
parallel to trajectory segments). None of these segments form an angle
larger than 26.5° and therefore, all of them have been orthogonalized.

order | initial position |final position | degrees
1 (158, 75) (156, 88) 8.7°
2 (148, 128) (184, 129) 1.6°
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3 (243, 28) (272, 26) 3.9°
4 (272, 26) (273, 31) 11.3°
5 (273, 31) (259, 35) 15.9°
6 (227, 28) (181,26) 2.5°
7 (200, 128) (245,135) 8.8°

Table 7.1: Angles between wall following segments and their closer co-ordinate axis.

This angle threshold value is equivalent to a simple condition that
checks if the length of the projection in one axis is twice the length of the
projection in the other axis. This condition is implemented by a function
that computes the orientation for each segment. The pseudo-code of the
function is as follows:

Orientation( initial_point, final_point )

{ x_inc = Ifinal_point.x-initial_point.xI

y_inc = [final_point.y-initial_point.yl
If(x_inc=00ry_inc/x_inc 22)
orientation = Vertical
Else
If(y_inc=00rx_incly_inc 22)
orientation = Horizontal
Else orientation = Oblique
return ( orientation )

}

In this manner, if the function assigns a ‘Vertical’ or a ‘Horizontal’ label
to a segment that is not completely horizontal, it must be orthogonalized.
Otherwise it is considered as being ‘Oblique’.

Obviously, this threshold can be changed. Figure 7.11 b) presents an ex-
ample whose orthogonalization threshold has been narrowed to 5.7 degrees
(a proportion of 10 instead of 2). Consequently, only 3 of the wall following
segments have been orthogonalized. They correspond to the 2nd, 3rd and 6th
in the previous table. (In the figure they respectively are: the upper-left
wall and trajectory segments, the bottom-right horizontal segments, and
the bottom-right vertical segments).

7.5.2 Global Map Generation Results

We have used the simulator described in Chapter 5 to simulate the explora-
tion of four robots in the previous environment. All the robots have the
same default error characteristics. They are internally numbered following
the order in which they have been introduced into the environment. The
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four robots have been added in different initial positions and different prob-
abilities have been assigned to each of them. The following Table 7.2 lists
these characteristics. (The environment characteristics and the default
robot features can be respectively found in Sections 5.2.2 and 5.3.1).

#robot | initial position | turning probability | I/r turning prob.
1 (75, 110) 20 65
2 (220, 40) 25 35
3 (135, 40) 35 55
4 (85, 130) 20 50

Table 7.2: Robot initialisation parameters.

The next Figure 7.12 a) contains a snapshot of the four robot’s trajecto-
ries after having finished their exploration.

b
e

a) L]

4
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.

&) bl

Figure 7.12: a) Exploration of four robots. From b) to f) incremental generation of
the global map based on the information provided by the four robots.

Robots’ partial maps are communicated sequentially to the host com-
puter. In the simulation, they are stored in files named after the environ-
ment and with the number of the robot at the end. Initially, the host
processes the first partial map and includes its information into the global
map representation. Figure 7.12 b) shows the current global map. After-
wards, the host reads the second partial map file and obtains the map
shown in ¢). Image d) of this Figure 7.12 contains the global map including
the partial maps coming from the first three robots. The final global map
appears in e), and f) presents the wall information.

We have already presented results by other authors that state that a
homogeneous distribution of initial robot positions in the environment
increases environmental coverage when exploring randomly. Therefore, we
are not going to discuss here robot initial positions but their wall coverage.
The next Table 7.3 describes the information that each new partial map
provides to the host, and how does this information affects the global map
representation. The first six columns indicate partial map characteristics,
whereas last three columns contain global map information. The first
column determines the partial map order. The second column contains the
number of trajectory segments in the partial map, which entail the total
covered distance in the third column. From this total number of segments,
only the ones at the fourth column correspond to segments that were
covered while following a wall. During wall following, the robots detect a
reduced number of singular points (i.e., wall ends); they are listed in the
fifth column. Last partial map column contains the distance that the robot
—that generated the partial map— covered while following walls. Distance
units depend on the environment granularity, for this case, each unit
corresponds to 2 cm. Regarding global map information, the values at their
columns are accumulative. Each partial map information entails an incre-
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ment in the number of features represented in the global map. First column
presents the total distance (not area) of wall representation that coincides
with real walls in the environment. When a wall that has been previously
followed from one side is afterwards followed along the other side, the
length of the represented walls does not increase. The second column lists
the total number of represented singular points. And finally, last column
gives the percentage of wall coverage.

Partial map information Global map
# | #t. seg. | total dist. |#w. seg.|#s.pt. |wall dist |wall dist | #s.pt. |coverage
1 36 621.3 9 4 362.2 242.8 2 16.5%
2 45 650.1 6 2 140.7 4442 4 30.2%
3| 45 758.7 10 2 363.6 672.2 6 45.8%
4| 37 699.7 9 2 419.9 869 7 59.1%

Table 7.3: Global map analysis (distance units equal the environment granularity =
2 cm).

As we can observe from the values in Table 7.3, the increment in the
wall length of the global map does not strictly depend on the wall following
distance of the partial map, but only on the length of those portions of walls
that had not been followed before. Nevertheless, although new wall infor-
mation is always useful to increment wall coverage, the error associated to
new information should also be taken into account. If the environment is
relatively cluttered, wall information can close free-space areas. For exam-
ple, we notice in Figure 7.12 f) that the free space between the obstacle and
the wall appears to be closed when the error becomes too large. Obviously,
the 10 units (that equals to 20 cm) that correspond to real free-space have
not being added to the wall distance value. For this particular case, since
this free-space cannot be reached by a robot because of its reduced size, it
does not represent a significant problem. However, there are other areas,
such as the upper left room, that have too many cells with positive occu-
pancy necessity values. This means that the maximum allowed error was
still too large. The host computer executes an application that is user
driven. The user can decide when to include the next partial map, how the
global map will be displayed, as well as the maximum error associated with
information that will be allowed. Therefore, the partial map can include
information that will not be added into the global map (that will happen if
its associated error is larger than the error threshold given by the user).

# | #t. seg. | ini. - final co-ordinates error s.pt | wall
1 5 (32,108) - (32,127) 4.75 no | left
2 6 (32,127) - (65, 132) 8 yes | left
3

10 (77,103) - (33, 99) 12.36 no | left
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4] 11 (33,101) (31, 128) 11.01 | no | left
5 | 12 (32, 128) (59, 129) 13.6 | yes | left
6 | 19 (99, 103) — (143, 100) 20.9 | yes | right
7| 24 (180, 127) — (111, 130) 29.6 no |right
8| 29 (113, 103) — (143, 100) 30.03 | yes |right
9 | 36 (179, 127) - (114, 130) 38.8 no | right

Table 7.4: Wall following trajectory segments from the partial map of the first robot.

Table 7.4 lists the trajectory segments in the first partial map from
which walls have been computed. Each segment is identified by means of
its order in the partial map (first column) and its initial and final co-
ordinates before being orthogonalized. For each segment, the maximum size
of its associated error rectangles has been listed in the third column. Notice
that the error rectangle of the fourth segment is smaller than the previous
one. This is due to orthogonalization. In fact, after orthogonalization, the
third segment has changed its initial and final y-co-ordinates from 103 and
99 into 101, and its initial and final errors of 8.1 and 12.36 units into 10.23.
This error in the position of the third segment also becomes the larger side
of the error rectangle associated to the initial position of the fourth
segment, which grows it until 11.01 local units at its final point.

By analysing the previous table, we can observe that these nine seg-
ments are just covering portions of 5 different walls. This is due to their
overlapping. In fact, the eighth and ninth segments are respectively in-
cluded in the sixth and seventh segments. Therefore, since they are just
adding error, we can set the maximum allowed error to be equal to 30 units
(that is, 60 cm.). The next Figure 7.13 presents the resulting global map of
including the same four partial maps with a maximum allowed error of 30
local units.
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) B)

Figure 7.13: Global map considering information with a maximum error of 30 units.
a) Including trajectory information. b) Real environment over the global map wall
information.

In fact, the user of the application does not need to take into account
very accurate information in order to decide what is the balance between
error and coverage. Just by looking at the representation of the map in the
screen, he or she can conclude that image b) in Figure 7.13 covers nearly
the same walls than image f) in the previous Figure 7.12. And regarding
the error associated to the information, it is equally simple to recognise the
decrease in the error. Next Table 7.5 contains the details of the new global
map.

Partial map information Global map
# | #t. seg. | total dist. |#w. seg.|#s.pt. |wall dist |wall dist | #s.pt. |coverage
1| 29 505.7 7 3 267.2 237.3 2 16.2%
2| 37 524.6 6 2 140.7 442.8 4 30.1%
3| 33 543 7 2 262.1 670.8 6 45.7%
4| 31 528.4 5 2 216.8 838.6 7 57.1%

Table 7.5: Global map analysis reducing the maximum allowed error to 30 units (60
cm.).

Finally, just briefly comment that we can observe form the previous
images that the computed wall positions do not correspond exactly with the
walls in the environment (despite the fact that segment orthogonalization
corrects significantly their positions). This is mainly due to robot errors and
that the host cannot know the exact distance between the robot and the
followed wall. Although it is not realistic, we compute the wall segment at a
constant distance to the trajectory segment. This distance is taken to be
equal to the distance of detection of the infrared robot sensors. The other
reason is the change in the robot orientation during wall following. This
change cannot be reflected into the partial map, which only contains infor-
mation about the positions where the robot started and ended the wall
following task.






Chapter 8

Map Refinement

The previous chapter presents the way by which a host computer generates
maps of unknown environments that have been previously explored by a
troop of robots. The resulting map is a grid representation to which partial
maps information has been added. Partial maps contain robots’ trajectory
segments that are used as evidences of the position of walls and free-space
areas. These evidences are translated into possibility and necessity degrees.
This assignment does not represent segments explicitly. Nevertheless,
there is implicit information in the grid that allows us to treat adjacent
cells as belonging to the same portion of a wall. This chapter describes how
this implicit information can be used to refine the global map. On the one
hand, wall information can be grouped in segments that can be extended
under certain circumstances. And, on the other hand, wall information can
be grouped into polygon-shaped obstacles that allow to plan paths towards
less explored areas.

8.1 Map Treatment: Wall Extension

We have already described how robots move pseudo-randomly in unknown
environments. If while exploring, a robot detects a wall —or obstacle—, it
follows its contour along a random distance and marks in its partial map
the corresponding trajectory segment as wall detection (so that the host can
also compute the position of the corresponding wall segment). Following a
wall along a random distance implies that the probability for a robot to
leave a wall before reaching its end is proportional to this probability. As
the fifth chapter describes, this probability corresponds to the turning
probability, which has been defined by the user for each robot. Random
distances have been defined to belong to a prefixed interval in order to
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guarantee upper and lower distance bounds. Therefore, unless the environ-
ment has extremely short walls, robots leave the walls before reaching their
ends. (We have already commented that this is done in order to increase the
number of discovered features, i.e., to look for other detections, and to avoid
robots going around the same obstacles uninterruptedly). The host can
distinguish that a robot has reached the end of a wall —or obstacle side—
by means of the presence of a singular point label associated with the final
point of the segment.

Both wall and trajectory segments are discretized into grid positions,
and for each position, we have seen that necessity and possibility values are
assigned to cells in the grid. When the position corresponds to a singular
point, the cells are marked accordingly. In this manner, although the
segments are not explicitly represented as such in the grid, the host can
treat neighbour cells with positive necessity values and equal orientation
labels as belonging to the same piece of wall or object. And obviously, if this
piece of wall or object has cells containing singular point labels, it means
that there is a discontinuity in its shape. (It could correspond to a corner,
an open door, etc.). In the sequel, we will refer to these cell groups as wall
segments because is for this kind of environmental features that the
extension we propose makes more sense. Following this grouping cells idea,
we can think of the global map as an implicit representation of wall seg-
ments and trajectories.

The obtained map is as reliable as the information error allows, but it is
also relatively limited. The previous chapter has shown the results of map
generation in terms of wall coverage, and although they cannot be consid-
ered as being poor, these results can be improved. Actually, we can ensure
that wall segments without singular points correspond to longer walls, and
therefore, we can extend them. However, there is not enough information in
the map to know the magnitude of the extension. In the absence of the
knowledge of real wall lengths, we use some criteria to limit the extension
of wall segments. First, since trajectories represent free space, they are
used as extension bounds (see Figure 8.1). And secondly, it seems reason-
able to stop extending a wall segment when it meets either another
detected wall segment or another segment extension. In this later case, if
the meeting wall segments have the same direction, then they can be con-
sidered as being part of the same wall. On the contrary, if they have
perpendicular directions, the direct interpretation is to consider that they
form a corner, so that their junction can be labelled as hypothetical singular
point (see Figure 8.2).

Extension is nothing but a conjecture, there are no evidences to support
it. As a consequence, to be conservative, the host only extends orthogonal
wall segments (i.e., vertical or horizontal). This is because, on the one hand,
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it is more likely that orthogonal wall segments actually correspond to real
walls, and since walls are in average longer than the distance they have
been followed, the extension is appropriate. On the other hand, oblique
features usually correspond to doors or other less usual objects. Thus,
considering that it is more difficult to predict the real shape of oblique
features, it is safer not to extend them.

— - —
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— trajectory wall segment extensions vl ot
wall segment extensio segmment

a) b
Figure 8.1: a) Wall segment extension stopped by a trajectory segment (the left side
of the segment does not extend because of the presence of a singular point); b) Two
wall extensions in the same direction meet to form a single wall.
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Figure 8.2: Segment meetings with different orientations that define hypothetical
singular points.

8.1.1 Implementation

Extension is done locally by propagating low constant certainty values of
occupation for those cells in the segment extremes. These low necessity
values are set to 0.1 in order to reflect that they are just assumptions and
do not correspond to actual robot detections.

As we have already said, segments are not explicitly represented in the
grid. Therefore, the extension algorithm must search trough the grid those
cells belonging to the extremes of a group of cells that can be considered as
a wall. These cells are characterised by two conditions. On the one hand,
they must correspond to a discontinuity in the necessity values. And, on the
other hand, the discontinuity must be in the direction of the wall segment.
In algorithmic terms, this means that this cell must have a positive neces-
sity value, and one of its neighbours in the direction of its orientation must
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have a zero necessity value. In this manner, if for example there is one cell
with positive necessity and horizontal orientation, then either the cell on its
right or the one on its left must have zero necessity value (up and down
respectively for vertical segments). Each time a cell with one neighbour
with zero necessity value is localised, it is necessary to check if it can be
extended (that is, if the stopping conditions do not apply). If it is the case,
the neighbour is marked for extension (with an ‘extendable’ mark), other-
wise, the cell is marked as ‘non-extendable’. In the extension algorithm,
once all cells have been checked, it assigns 0.1 necessity values to cells with
‘extendable’ marks (and the ‘extendable’ marks are then removed).

The user establishes the maximum length that segments can be ex-
tended. (Obviously, if the maximum is larger than the dimensions of the
grid the system just extends as far as it is possible). Extension is done “one
cell at a time” in order to extend by the same distance all segments in the
grid. Therefore, a unitary extension is done over the grid a number of times
equal to the maximum extension length (obviously, the process also ends if
no cell is extended). As a consequence, extendable marks need to be
updated for each unitary extension: a cell in the extreme does not longer
belongs to the extreme once its neighbour changes its necessity value from
zero to a positive value. On the contrary, ‘non-extendable’ marks last for the
whole process.

The next pseudo-code corresponds to the overall extension process:

Grid_Extension( extension_length )
{ k=0, end=0
Repeat for (k<extension_length & end=0)
{ Repeat For Each cell(i, j) in the grid
{ if(cell(i, j).N>0 & cell(i, j).extension_mark=0 & cell(i, j).sing_pt="n’)
determine_and_assign_marks(i,})
}

Repeat For Each cell (i,j) in the grid
{ if(cell(i, j).extension_mark="y")

{ cell(i, j).N=0.1
cell(i, j).extension_mark=0
end=0
}
}
k=k+1

}

remove_extension_marks_in_the_grid()

}
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The determine_and_assign_marks() function is in charge of determining the
neighbours of a cell, and for each cell, it assigns an ‘extendable’ mark to a
neighbour cell or a ‘non-extendable’ mark to the cell. This assignment
follows the idea of limiting wall extension by robot trajectories. A neighbour
is considered to be extendable only if its necessity is zero and its possibility
value is bigger than the possibility value of the cell being considered. Or, in
other words, if the evidence of free-space in the neighbour is smaller than
the evidence of wall in the cell. Otherwise, the cell and all cells in this
segment extreme are marked as ‘non-extendable’.

Additionally, if a neighbour corresponds to an extension that is perpen-
dicular to the current cell orientation, then a hypothetical singular point is
labelled for all the cells that belong to the intersection of the two wall seg-
ment extensions.

8.1.2 Results

Figure 7.12 in Section 7.5.2 shows the exploration of four robots and the
incremental generation of the corresponding global map. Here, we will use
the same maps to illustrate the results of the extension process.

The image a) in the next Figure 8.3 shows the current global map after
the addition of the information of the first robot’s partial map. As the first
row at Table 8.1 indicates, a total length of 237.3 units corresponds to walls
that have been actually followed by the first robot (and this implies a wall
coverage of 16.2%). If then, after the addition of the first partial map, the
user chooses to extent the walls of the global map, then the system will
generate the map shown at image b) in Figure 8.3. As we can see in this
image, extension is only applied for segment ends without singular points.
In fact, two hypothetical singular points are defined when trying to extend
the segments that appear on the left. As we can observe in the upper-right
wall segment, when trying to extend a necessity value to a cell that does
not have the default possibility value 1, possibility value comparisons are
used to decide whether the extension comes from a stronger evidence than
the free-space trajectory or not (that is, if the extension must be done). In
the case of this wall segment, only its right extreme is extended, and since
its extension does not encounter any other information, it propagates until
the boundaries of the environment map. This extension covers the door gap
that the environment has, and therefore, we consider that 20 units of the
extension are incorrect. The second part of the first row in the same Table
8.1 contains the detailed values, which add a total of 112 extended units to
the length of detected walls.
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B 4

Figure 8.3: Extension of the maps from Figure 7.12.

The addition of the two consecutive partial maps (from two robots) yields
to the situation shown in Figure 8.3 ¢). If subsequently, the user chooses
the extension option in the host application, then the map in d) will appear.
In this case, since there is more trajectory information, the extension
hardly propagates necessity values in the inner area of the environment. As
we can observe at the bottom of the image, a short wall following can be
extended to delimit a complete wall in the limit of the environment.
Obviously, as the second row in the table details, this kind of extension
increases significantly the wall coverage without including, in that case,
erroneous wall representations.

Global Map Extended Global Map
#| wall |s.pt|coverage|tot. ext.|cor. ext|n-c ext|s.pt|cor. cov|n-c. cov
112373| 2 | 16.2% | 349.3 | 329.3 20 4 |1 224% | 1.4%
21442.8| 4 | 30.1% | 808.8 | 808.8 0 9 | 55.1% 0%
3]1670.8| 6 | 45.7% | 900.8 | 850.8 50 12 | 57.9% | 3.4%
41838.6| 7 | 57.1% |1098.6 | 1048.6 | 50 15 | 71.4% | 3.4%

Table 8.1: Extension analysis over the sequence of stages of the incremental
generation of the global map. The abbreviated column names mean: ‘4 = number of
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partial map; ‘wall’ = length of followed walls; ‘s.pt.” = number of detected singular
points; ‘coverage’ = wall coverage with respect to the ‘wall’ column; ‘tot. ext.” = total
length of the wall segments in the extended map; ‘cor. ext.” = total length of correct
wall segments; ‘n-c ext.” = non-correct wall extension; ‘s.pt.” = number of singular
points; ‘cor. cov.” = correct coverage; ‘n-c cov’ = non-correct coverage.

Image e) in the next figure represents the global map after including the
partial maps of three robots. In this case, some of the walls followed by the
third robot were already considered by the previous extension, and
therefore, the wall coverage increase is not as large as the previous one (see

third row in the table).
w— -
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Figure 8.4: Continuation of the previous Figure 8.3: e) global map of three partial
maps; f) its extension; g) final global map; h) extended final global map (the real
environment has been included in order to evaluate the results).

5]

And finally, the last images g) and h) in Figure 8.4 show the complete
global map. In this case, the extension process increments the wall coverage
by 14.3% and the length of the wrong assumptions represents a 3.4% of the
total length of real walls. Obviously, the effect of the extension process
decreases with the arrival of more information because the propagation of
necessity values encounters more limits, however, this also implies that the
risk of making wrong assumptions about wall positions also decreases.
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The previous example has been used to illustrate how extension in-
creases the map coverage of the walls in the environment. However,
extension is based on environment assumptions, and therefore, its results
not only depend on the robot exploration but also in the distribution of the
features in the environment. Basically, the assumptions about the environ-
ment are:

» First, since extension is not applied to oblique features, the environ-
ment is assumed to be mostly orthogonal, and

* Second, walls must be significantly longer than the average followed
length. That is, the longer the walls, the more sense extension has.

In this manner, the extension results will strongly depend on how the
environment fulfils these two assumptions. We present now an additional
example of environment (see Figure 8.5) whose distribution of features is
less predictable than the one in the previous example. As we can observe,
none of the two assumptions are properly fulfilled.

Figure 8.5: Exploration of an unpredictable environment by three robots.

Figure 8.5 above, shows the exploration trajectories of three robots.
Their initial positions are (35, 110), (120, 60), and (230, 150) respectively,
and their turning and left/right turning probabilities have been respectively
assigned the following values: 0.25 and 0.55 for the first robot, 0.2 and 0.45
for the second robot, and 0.15 and 0.3 for the last robot (notice that, since
its turning probability is smaller than the probabilities of the other robots,
it performs longer displacements without changing its direction).

The resulting maps and their extensions are shown in Figure 8.6 below,
and the coverage percentage is listed in the subsequent Table 8.2. As we
can observe, the extension in this unpredictable environment topology gives
a significant amount of erroneous assumptions. Once again, this errors are
dependent of the amount of free-space trajectory information that limits the
extension.
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Figure 8.6: a) ¢) and e) Incremental generation of the global map of the environment
in the previous Figure 8.5. b), d) and f) correspond to their extensions. In f) the real
environment has been included in order to evaluate the results.

Global Map Extended Global Map
wall |s.pt|coverage|tot. ext.|cor. ext|n-c ext |s.pt|cor. cov [n-c. cov
1619 | 4 | 12.1% | 729.9 | 299.9 | 430 5 | 22.5% | 32.2%
376.6 | 6 | 28.2% | 806.6 | 476.6 | 330 8 | 35.7% | 24.7%
3]1591.6| 6 | 44.3% |1204.6 | 974.6 | 230 | 10 | 73.1% | 17.2%

DN | = [ 3

Table 8.2: Extension analysis over the sequence of stages of the incremental genera-
tion of the global map. The abbreviated column names are equal to the ones in the
previous Table 8.2.
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Wall extension has two main advantages: first, it increases the coverage
of the real environment and second, the planning over the resulting maps
give more conservative and safer paths than the ones obtained considering
just detected features. As we will see in the following section, these paths
are computed from a visibility graph of the free space and guide robots
towards less explored areas. In Section 8.3 we will see that, when robots
follow paths computed from expanded maps, the use of reactivity to avoid
unknown obstacles is reduced.

8.2 Path Planning

After the robot exploration and the subsequent global map generation it is
possible that certain areas of the environment have been poorly covered. In
the literature, the borders that separate already explored areas from non
visited areas are known as “frontiers”. The work done by Yamauchi
(Yamauchi 98) is more focused on localising them in the map than on the
approach to plan the path towards them. Yamauchi uses evidential grids
and define a frontier as the border between a known open space that yields
to a unknown space. In our approach, is the user of the host application
who chooses an initial and a final position for the robot to approach less
explored areas. These positions are defined by clicking on the map screen,
and afterwards, the host generates a path between these two positions.

In the present section we will see how the map representation on the
grid is transformed into a graph representing free space. And once the
graph is build, a path search algorithm can be applied to obtain the
shortest path in the graph.

8.2.1 Graph Extraction

The map generation process results in a representation of the environment
global map that consists in a Possibility/Necessity grid. This representation
is based on a discretization of the environment and is very useful to com-
bine evidences. However, it is less suitable for planning paths in free space.
As a consequence, the planing process in the host extracts, from the infor-
mation in the grid, a graph representation of the environment that simpli-
fies the search of the required path.

In the literature (Russell 95) there are different methods for obtaining a
graph representation of the free space in an environment. We briefly de-
scribe here three of them:
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e Cell decomposition. This method decompose free-space in convex
regions (of a simple shape) called cells. From these free-space cells,
an adjacency graph is built by considering cells as nodes and
establishing arcs —or edges— between adjacent cells. In order to
plan the path, the initial and final nodes are the ones that contain
the initial and final positions respectively. The resulting path is a
sequence of cells and is translated into a linear path by drawing
lines between the central position of each cell and its boundary with
the next cell.

e Voronoi Diagram. Trajectories in free-space are found so that they
are optimal in terms of distance to obstacles (they maximise this
distance). The graph is computed by identifying the points that are
equidistant to the obstacles in their surroundings. In this manner,
consecutive equidistant points define the arcs in the graph, and their
bifurcations constitute the nodes.

e Visibility graph. This method assumes that the obstacles in the envi-
ronment are polygons. The free-space graph is build by taking as
nodes all the vertices of the polygons. Arcs join ‘visible’ nodes,
meaning that it is possible to move from one node to the other follow-
ing a straight line (without encountering obstacles). Such a graph
contains the shorter path between two points whenever the obstacles
in the environment are polygonal. If the points do not belong to the
graph, they are included as additional nodes and their corresponding
arcs are also established. The resulting graph guarantees the com-
pleteness (i.e., to find a path whenever it exists) of the algorithm
that searches the shortest path between the initial and final points.
Next Figure 8.7 shows an example of Visibility Graph.

Figure 8.7: Example of Visibility graph of an environment of three polygonal obsta-
cles. In black, the shortest path between the initial I and final F points.

Cell decomposition seems to be closer to our grid representation: we
could easily consider as nodes our cells with zero necessity values and build
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the adjacency graph. However, this would yield to a very large number of
nodes. Moreover, this method is sound but not complete (i.e., it produces a
safe path but may not always find one if it exists). On the contrary, Voronoi
diagrams and Visibility Graphs provide a reduced graph description of free
space —named skeleton— that avoids an explicit description of the free-
space boundaries. They are known as skeletonization methods and guaran-
tee completeness under certain circumstances (the skeleton must have a
single connected region and it must be connectable to the initial and final
points in free-space).

Voronoi diagrams have been widely used in path planning (Ilari 90)
when the map contains a complete representation of the environment. In
this manner, since it maximises the distance to the obstacles, it yields to
the safest paths. In our case, the map information is not complete and we
want the host to compute paths towards specific unexplored areas through
known and secure areas. However, this method would guide our robots
through less explored areas (because the lack of wall information would be
interpreted as larger distances to the detected objects) and therefore, we
decided to use the visibility graph method. Another reason for choosing it is
its optimality in terms of length. Our robots have very limited energy
resources and the localisation error increases with the covered distance,
therefore, to give the shortest path is a key aspect to reduce as much as
possible the waste of batteries and the odometry error. Furthermore it
presents two additional advantages. First, the resulting paths are se-
quences of adjacent rectilinear displacements, and therefore, it accommo-
dates perfectly the movements of our robots. And second, since the
resulting paths force robots to reach previously detected obstacle vertices,
they could be used as landmarks in the path following process.

As we have already said, the Visibility graph method can guarantee the
generation of the shorter path only if the considered environment informa-
tion is complete. Although this does not apply to our case, it is still useful
for our robots when navigating inside the environment: they can use this
path as a guide that avoids the previously detected obstacles and they can
apply reactivity when encountering undetected obstacles. Obviously, this
means a loss of optimality when navigating in the environment. Neverthe-
less, an optimal path that considers non-complete information may pro-
bably be the best available heuristic that a robot can use to guide its navi-
gation.

Graph Building by means of Image Analysis Techniques

Before applying the Visibility Graph method, it is necessary to identify the
vertices of the polygonal obstacles in the global map grid. In order to find
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them, the application in the host computer adapts two widely used image
processing techniques: thresholding (Russ 95) and template matching
(Parker 94).

Thresholding is a method that filters grey values in a B/W image and ob-
tains binary images (whose treatment is simpler). The filtering consists in
using a grey value that acts as a threshold assigning a 0 or a 1 value to
each pixel. In our case, we assign 1’s to cells having positive necessity
values and 0 to the rest of cells. (see Figure 8.8).
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Figure 8.8: Wall segment thresholding to obtain a binary image.

On the resulting binary map, we use template matching to recognise
polygon vertices. This method consists in representing a specific feature in
a template so that when comparing pixels in the image with this template,
the feature will be found whenever they coincide. Figure 8.9 shows eight
templates that identify the vertices in the given polygon.
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Figure 8.9: Binary templates that determine 8 different kinds of vertices in the
polygon shown next to them.
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Once we have identified a vertex position in the binary grid, the graph
building method checks if it is possible for a robot to be positioned in front
of the vertex position (that is, if there is a free-space square area adjacent
to that position large enough to include robot). If it is the case, then the
central position of the square is taken as a graph node. Graph arcs are af-
terwards computed to join visible nodes. The number of visibility compari-
sons between polygon vertices can be reduced by considering their charac-
teristics. For instance, we can ensure that the concave corner in obstacle A
at Figure 8.10 can only possibly be visible for those other vertices having
lower or equal 'x' and 'y’ co-ordinates (so that the number of comparisons is
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reduced from 13 to 6). In our grid, visibility is easily checked by drawing a
straight line on the grid without encountering any occupied cell. The
distances between vertices are included in the visibility graph as labels
associated to the arcs that represent traversability costs.
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Figure 8.10: Visibility arcs —or edges— for a concave vertex in A.

We end the graph building process by including two additional nodes to
the graph: the initial and final positions of the path (they are added as
single 1’s in the binary grid).

8.2.2 Computing the Shortest Path in the Visibility
Graph

Once the visibility graph has been generated (including the initial and final
points that the user has chosen), the path planning method in the host
application searches the shortest path in the graph that joins these two
points. Since the costs of the arcs in our graph represent the distance
between nodes, our shortest path search is equivalent to searching the path
with minimum cost.

The cost of a path is defined as the sum of the costs of all the arcs along
the path. In this manner, we search the path going from the initial node n;
to the final node ny, such that its cost ¢ is minimum. The search can be done
based on different strategies (Pearl 84): irrevocable control (as Hill-Climb-
ing), systematic search (Depth-First Search or Breadth-First Search), and
informed control, which uses partial information about the problem domain
to guide the search to increase the search efficiency. This information is
called heuristic knowledge (heuristics) and is used to evaluate which node
should the search consider next. We have applied the widely known A*
algorithm that belongs to the family of informed strategies. Although we
are not going to detail it here (a complete description of the algorithm and
its properties can be found in (Pearl 84)), we introduce some notation and
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definitions in order to prove that the A* properties are fulfilled when the
algorithm is applied to our specific problem domain.

Notation:

k(ni, nj): cost of the optimal path between two nodes n: and nj,

h*(n): cost of the optimal path from a node n to the final node ny,

g(n): cost of the current path from the initial node ni to n,

h(n): heuristic function that estimates A*(n),

fin) =g(n) + h(n): evaluation function that is used to select the next node
to consider in the search algorithm.

Definitions:

Completeness: an algorithm is complete if it ends with a solution
whenever there is one.

If, in addition, the solution is optimal, then the algorithm is considered
to be admissible.

An algorithm is optimal when it has the maximum efficiency for finding
the solution.

An heuristic function A is admissible if:

h(n)<h*(n) On,
and % is consistent if and only if it fulfils the triangular inequality:
h(n)<k(n,n’)+h@®’) 0On,n’

Properties:

In finite graphs (graphs were each node has a finite branching degree or
number of successors), the A* algorithm always ends and it is complete.

If the heuristic function A used in A* is admissible, then, A* is admissi-
ble as well.

A consistent 2 guarantees that when a node n is treated (it is expanded,
so that its successors will be considered), the search has already found the
optimal path from the initial node to this node n, and therefore, this portion
of the optimal path will not be changed.

In our case, the heuristic function has been taken to be the Euclidean
distance between a given node n with co-ordinates (x, y) and the final node

nf =(xf, yf):

h(n) =[x, —2)* +(y, - y)*
And therefore, we can prove that:

*  Our heuristic function is admissible because we can ensure that the
real cost c(n, nf) will always be greater (or equal, in case there are
no obstacles in their way) than the Euclidean distance.
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» Since & is admissible, the search is also admissible so that we can
guarantee that it will end with the optimal solution: the shortest
path.

 The search is optimal (in terms of efficiency of obtaining the
solution) due to that the Euclidean distance heuristic also fulfils the
triangular inequality. (This optimality proof simplifies the imple-
mentation).

8.2.3 Results

The following Figure 8.11 shows a global map that contains the information
gathered by four robots after exploring an environment with granularity 1
unit (which equals to 1cm). Over this global map, the user has chosen an
initial and a final position located at (476, 24) and (316, 384) respectively.
These positions appear in the map labelled by their corresponding I and F
initial letters. Afterwards, when the user chooses the Path Planning option,
the Visibility graph is generated and the shortest path is searched. The
process ends with by displaying the resulting path that appears in blue.

MAP GENERATION

Figure 8.11: Visibility graph generated for a global map. Nodes are free-space posi-
tions that are safely away from corners. Arcs appear in grey, and the obtained path
between I and F in blue.

We have already explained that only those vertices having enough free-
space in front of them are included as nodes in the graph. This is computed
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by checking if a 25x25 square of cells has zero necessity values, and if it
happens to be the case, then the (12, 12) position inside this square is
included into the graph as a new node. In this manner, the node represents
a position that is almost 17 units distant to the corner in an oblique direc-
tion. (notice also that most of the vertices close to the borders do not have
nodes because their distance to the environment borders is smaller than
25).

The obtained path is displayed on the host screen but and saved in a file
so that a robot can use it as a guide to go from the initial position to the
final position in the environment. In this example, the resulting path has
four points: (476, 24), (443, 67), (424, 243), and (316, 384) and a total length
of 409 units (that this case correspond to 409 cm.).

In the previous subsection we have seen that the A* algorithm ensures
that the obtained path is the shortest in the visibility graph that joins the
initial and final points. In addition, visibility graph also ensures that its
representation contains the shortest path between any two points in the
free-space. Nevertheless, we cannot conclude that our approach actually
gives the shortest path but a very close one. This is so because we have
slightly modified the visibility graph representation in order to obtain safer
paths than the ones that join the obstacle vertices. This node modification
may also imply the inability of computing paths that should go trough
narrow walls or passageways. However, if this is the case, the robot could
neither pass through, and therefore, not giving the path just models a con-
servative approach.

8.3 Path Following

Robots use the paths that have been planned at the computer host to reach
less explored areas. In fact, the simulator system that has been used for
robot exploration, simulates also robots following given paths.

Most of the simulator implementation issues explained in Chapter 5 also
apply when the robots perform a path following strategy. Obviously, a robot
that follows a path needs its specification. The path is represented by inter-
mediate points that the robot must reach consecutively when going from its
initial position to a final one.

Figure 8.12 shows the dialog boxes that appear in the simulator when
the user defines a new robot. They are equivalent to the dialogs that
appeared in Figure 5.2 (page 106) when adding an exploratory robot. The
error values are exactly the same, and the general behaviour option is now
selected to be “Path Following”. Over the dialog of robot characteristics,
there is a dialog that asks the file containing the planned path that the
robot will follow. These dialogs will locate a new robot in the initial position
of the path, and if afterwards, the user chooses the start robot option, the
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robot will follow the path until it reaches the last position in the path (that
is, the final desired position).
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Figure 8.12: Adding a new robot to the environment that will follow a planned path.

8.3.1 Behaviour-based Architecture for Path Following

Chapter 6 describes a Behaviour-based architecture for environment explo-
ration. Here, although we need to specify a new strategy for a new task, we
can adapt most of the ideas applied to the random exploration because we
still need to follow walls in order to go around non previously detected
obstacles. In this manner, our aim is to illustrate the idea that the proposed
basic behaviours are definitely specialised for a task, but they can also be
easily adapted to other tasks.

Just by looking at the Figure 8.13 we can easily notice the similarities
between this automaton defined for the path following strategy and that
automaton defined in chapter 6 (see Figure 6.1) for the exploration task.

Their main difference is that random probability decisions are substi-
tuted for goal oriented decisions. As a consequence, the random walk be-
haviour has been replaced by a directed walk behaviour, which is in charge
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of directing the robot towards the next intermediate position in the path.
Moreover, these goal oriented decisions also imply some other changes in
the remaining behaviours.

wall

alignment Orthogonal

frontal detection

detection
- loss of wall

detection

wall
following

dangerous End of wall

detection Wall leaving

Figure 8.13: Path following automaton.

Since these basic behaviours have the same structure as those of explo-
ration, we point the reader to Section 6.1 to know how behaviours contain
sets of If-Then rules that generate and supervise actions. We neither de-
scribe here these rule sets but the intuition of their performance :

e Under normal circumstances, the directed walk behaviour computes
the distance and orientation that the robot must follow in order to
reach the next intermediate point.

» Since the given path only considers previously detected obstacles, it
can be the case that the robot encounters an unexpected obstacle
obstructing its way. In such a case, the remaining behaviours co-
ordinate themselves to avoid the obstacle. This co-ordination per-
forms a reactive strategy that allows the robot to deal with partially
known environments.

We briefly describe now how the elementary behaviours are adapted in
order to fulfil the path following task and include reactivity (notice that a
full description of the behaviours appears in Section 1.1).

As we have already said, the directed walk behaviour directs the robot
towards consecutive subgoal positions while no obstacle obstructs its way,
that is, there is not frontal detection that may prevent the robot to
maintain its orientation and displacement. In terms of sensor readings, this
is equivalent to say that:

“the robot keeps following the path trajectory while there is not
danger of collision, the frontal sensor does not detect anything, and
there are not ‘near’ detections on the two oblique sensors”
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In this manner, this behaviour ignores any other sensor reading,
focusing only in those readings that can cause problems. Some of these
problems are caused by obstacles that can be properly faced and
surrounded, whilst others will require to escape from dangerous readings.

For the former case, a safe detection will cause the activation of the wall
alignment behaviour. As we know, this behaviour forces the robot to face
the wall (or obstacle side), turn £90° in order to become parallel to the wall,
and activate the wall following behaviour. Since there is no information
about the shape of the obstacle, the next subgoal position constitutes the
only thing that can be considered when determining the sign of the turning
angle. In this manner, the robot will turn 90 degrees on its right or on its
left depending on the direction that may give the shortest path towards the
subgoal.

When the wall following behaviour is active, it controls the robot until
the end of the wall is reached. Initially, it computes an initial distance to
cover in the direction that the wall alignment behaviour decided. But if
after having followed this distance, the wall end has not been reached yet,
then the robot will try to follow the wall in the opposite direction for a
distance that is twice the previous one.

Under normal circumstances, wall following will end and switch the
robot control to the wall leaving behaviour. The natural sequence of
behaviour activations will consists on: first, the wall leaving behaviour
avoids the corner by moving forward a fixed distance d (see Sect. 6.2.1 for
details), and second, the directed walk behaviour makes the robot to turn
around the corner before resuming the robot movement towards the
subgoal. In order to turn around the corner, the directed walk behaviour
needs to use the information of action history to on know on which side the
wall following was done. Once it finds the last wall detection in the history
of actions, it forces the robot to turn 90 degrees towards the same side. The
robot will finish the turning by covering the same fixed distance d in this
direction.

From these comments, we can observe that this directed walk behaviour
makes the difference between the exploration strategy and the path
following. And this is not only because subgoal positions replace random
computations, but also because the directed walk behaviour increases its
priority of activation. This behaviour switches the activation of another
behaviour only when it is absolutely necessary (when a frontal obstacle
blocks its path). In this manner, even a near lateral detection does not
activate the wall leaving behaviour if the sensor at the front does not have
a reading. In such circumstances, the directed walk behaviour slightly
modifies its orientation trying to avoid the lateral detection without
deviating too much form the path it follows.
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As in exploration, the wall leaving behaviour faces any problematic
situation and causes the robot to move backwards along a fixed distance
following a random orientation. This is done with the aim of reaching a new
position where the directed walk behaviour can be active again. Obviously,
if it is not the case, it will try to escape again or to surround the obstacle.

Finally, the ending condition is satisfied when the last point in the path
has been reached. Nevertheless, it can be the case that the robot cannot
reach this position. Hopefully, the robot will be moving while trying to
reach it. This will imply an increase in the error rectangle associated to the
robot position. The ending condition that is used under these circumstances
is that the robot stops when its error rectangle includes the goal position.
(The same condition applies for any intermediate subgoal).

8.3.2 Results

The next Figure 8.14 shows an example of path following with reactivity. In
this example, the planned path did not take into account the presence of
the rectangular obstacle, and therefore, it is specified as a rectilinear trajec-
tory between the initial and final points. In this manner, the path that is
given to the robot consists of the two positions that correspond to the small
circles drawn in the environment. Their co-ordinates are respectively: (55,
20) and (60, 80) in local units.

Initially, as we can see in the first image of the figure, the robot is added
into the environment at the initial position (55, 20). The first active behav-
iour is directed walk, which computes the distance and orientation of the
action that the robot must execute in order to reach the goal position (see
Sect. 5.3.2 to see the structure and execution of actions). During the execu-
tion of this action, a frontal detection occurs (see image 2 in the figure), and
the action supervision rules of the behaviour activate the wall alignment
behaviour. Once the robot is facing the wall (or side of the obstacle) prop-
erly, this behaviour decides to turn 90 degrees right because the goal
position is on the right, and therefore, it is assumed that the right direction
will likely yield to a shorter trajectory than the left direction. From this
situation, which is depicted at the third image, the robot follows the wall on
its left. From image 4 to 7, the wall following behaviour controls the robot
and detects the end of the wall (see sequence of movements in images 5, 6,
and 7 and further details in Sect. 6.2.3). Afterwards, images 8 and 9 show
how the wall leaving behaviour corrects the robot deviation and moves it
forward along 25 units to pass the corner safely. From this situation, the
directed walk behaviour is again in control of the robot until the end of the
path following task. Its first action is to turn left 90 degrees (see image 10)
and cover 25 more units (image 11) in order to turn the corner. The next
action is to move towards the goal position (image 12), and the robot
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executes it until a oblique ‘near’ detection forces the supervision rules to
decide to deviate the current orientation by —7.5 degrees (see images 14 and
15). Finally, the robot does not find any other obstruction and can reach the
goal (although, in fact, it ends at the position (65,77) due to the errors).

O Y

2 ] ]

e —— —
1

IR R EN
EX N =R

— L f—

°
15 16 1

=7
Bl

1 -

=X
=[] [
]

13

Figure 8.14: Example of path following with reactivity. 1) initial position (directed
walk behaviour). 2) activation of wall alignment behaviour due to an obstacle ob-
structing the path. From 3) to 7): wall following and detection of the wall end. 8) and
9): wall leaving avoids the corner. From 10) to 18): directed walk drives robot until
the goal position. In 10) and 11) it turns around the corner, in 12) and 13) goes
towards the goal; 14) and 15) changes slightly the direction to avoid the obstacle;
16), 17) and 18) reaches the goal.

8.4 Conclusions

Up to this point, we have seen how the host generates a global map from an
unknown environment and computes paths that can be used by robots to
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reach less explored areas. Obviously, we want these paths to be as accurate
as possible. Otherwise, the robot would need to react against unexpected
obstacles without knowing its shape. Reactivity is necessary for the robot to
handle problematic situations. Nevertheless, since it is non-informed, it can
yield to wrong decisions resulting in long trajectories that accumulate
additional error. We conclude this second part by showing that the map
extension process helps to generate more accurate paths that reduce the
use of reactivity.

Figure 8.15: Seven different planned paths over the graph in Figure 8.11.

In Section 1.1, we have already commented that the extension process is
purely based on the application of heuristics and, therefore, it is hard to
evaluate how it helps in the coverage of the environment. Our aim here is
to illustrate how extension helps in the generation of paths, and since its
evaluation has the same difficulty, we do it by means of representative
examples. We extend the example Figure 8.15, which gives a 45.3% of wall
coverage. The extended map appears in Figure 8.16 and increases the wall
coverage up to a 70.1% (this percentage only corresponds to correct
coverage, an additional 6.4% has been incorrectly extended).

In order to compare the path planning in extended and non-extended
maps, we have computed seven different paths for each map. In both maps,
these paths have the same initial and goal position and are labelled with
the same numbers. The specification of each path appears in the following
Table 8.3. The first column of this table lists the path number, and the
second and third columns contain the initial and final positions of each
path. Comparing the paths in Figure 8.15 and Figure 8.16 we can observe
that most of them describe different trajectories because they consider dif-
ferent maps. The fourth column shows the intermediate points between the



224 Chapter 8: Map Refinement

initial and final position that result from the path planning over the non-
extended map. The corresponding intermediate points for the extended map
appear in three columns (7th, 8th and 9th), As we can observe, extension
results in longer paths that must avoid more features in the environment.
The length of each path appears respectively in columns 5 and 9 for each

map (non-extended and extended).

#| initial I | final Fi |non-ext. |dist| extended intermediate points |dist
1/(561,77)  |(100,323) [(106,184) |255((106,184) |- - 255
2|(476,125) |(58,118) [(273,159) |422|(106,184) |- - 422
3|(410,60) |(59,85) |- 352 [(275,568) |(275,112) |(238,178) 430
4/(55,275) |(313,68) [(238,178) |340 |(238,178) |(275,112) |(275,58) |[359
5((494,123) |(411,46) ((434,112) [120 |(275,112) |(275,58) |- 358
6/(84,316) [(402,328) |- 318((238,178) |(433,197) |- 512
71(309,163) [(239,301) |(238,202) |183 |(433,197) |(433,252) |- 353

Table 8.3: Specification of the seven paths in the non-extended map (see Figure
8.15) and in the extended map (Figure 8.16).

Figure 8.16: The seven paths connecting the same initial and goal positions of
Figure 8.15 over the extended map.

The following figures (from Figure 8.17 to Figure 8.22) depict the
trajectories actually followed by the robots while trying to follow the
planned paths to reach the goal positions. Small circles along these trajecto-
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ries denote the positions where robots reach each intermediate point (in-
cluding the initial and final points).

We distinguish three different kinds of paths depending on the map area
on which they are planned:

e If both areas, the one at the non-extended map and the other at the
extended map, contain the same information, then the paths are
obviously equal and the robots perform equally when following them.
(The first and second paths correspond to this situation).

e If the area in the extended map has more correct wall information
than the area at the non-extended map, then, the extended map
yields to longer paths that are more realistic than the paths based
on non-extended maps. Therefore, correct expansion means less use
of reactivity.

e If the area in the extended map has incorrect extensions, then, the
resulting path from the extended map is longer than the path from
the non-extended. Nevertheless, paths in the extended maps are
more conservative, because they tend to coincide with previous robot
trajectories.

However, under certain circumstances, an incorrect extension can also
be useful if it closes narrow gaps. As an example, if we compare the
performance of the robots following path number 3, we realise that the gap
between the rectangular obstacle and the wall is narrow enough to involve
some execution problems that have been solved using reactivity. Obviously,
we have also counter-examples, as the paths number 4 and 5. Actually,
path 4 avoids a non-existing piece of wall that causes an unnecessary
displacement. The worse case of avoiding a non-existing wall is when the
robot follows the fifth path from the extended map. This path turns around
the corner until it reaches an area previously visited by another robot.
Although this tendency of going over previous robot trajectories can be a
disadvantage, already explored free space also mean safer paths.

Finally, when extension is correct, resulting paths are more informed,
and therefore, reactivity is less often needed (see the performance of path
number 6). Reactivity is less efficient and can yield the problem that
appears path 7 from the non-expanded map. In this case, the reactivity
makes the robot to take so many wrong decisions that the robot stops far
before reaching the goal. (As the path following section explains, the robot
position error grows so much that the error rectangle already includes the
goal).
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Figure 8.17: Resulting trajectories when trying to follow the planned paths to goal
positions 1, 4, and 5 on the non-extended map.

Figure 8.18: Resulting trajectories when trying to follow the planned paths to goal
positions 1, 4, and 5 on the extended map.
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i

Figure 8.19: Resulting trajectories when trying to follow the planned paths to goal
positions 2 and 6 on the non-extended map.

i

Figure 8.20: Resulting trajectories when trying to follow the planned paths to goal
positions 2 and 6 on the extended map.
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Figure 8.21: Resulting trajectories when trying to follow the planned paths to goal
positions 3 and 7 on the non-extended map.

Figure 8.22: Resulting trajectories when trying to follow the planned paths to goal
positions 3 and 7 on the extended map.
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Chapter 9

Mapping an Outdoor
Environment for Path
Planning

The work presented in this third part was developed during my stay as
visiting scholar at the Robotics Research Laboratory of the University of
Southern California (USC), USA. Under the supervision of Prof. George A.
Bekey, I joined the Taskable Heterogeneous Robot Colonies project3. The
generic goal of this project is to achieve outdoor co-operative tasks with a
group of heterogeneous ground based4 and airborne vehicles’. In the work
presented herein, an incremental map building approach is applied by
heterogeneous vehicles, which accomplish co-operation by sharing informa-
tion about the environment. Environment information comes into the
mapping process from two different sources: aerial images from a helicopter
and sonar readings from several ground robots. Ground robots use the re-
sulting map to plan paths towards goal positions. These paths avoid de-
tected obstacles and are updated when there is new information about an
obstacle obstructing them.

We consider environment uncertainty depending on the reliability of the
information. In the previous parts, the wall following strategy implied that

% The Taskable Heterogeneous Robot Colonies project
(http://robotics.usc.edw/projects.html), is a project supported by the Defense Advanced
Research Projects Agency (DARPA: http://www.darpa.mil).
* Ground robds are Pioneers. Pioneer information can be foundat the following URL:
htpp://www.activmedia.com/robots
® AVATARisahdi copter (Autonomous Flying Vehicle) described at: http:/mww-
roboti cs.usc.edu/robotsbrochure/avatar_bergen.html
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the main source of uncertainty was robots’ odometry errors. In the present
project, we use uncertainty as an estimation of the real existence of de-
tected obstacles and we apply it in order to plan paths that may need to go
trough non-real obstacles.

9.1 Project Description

The global scenario of this project is a group of autonomous vehicles that
consist of a helicopter and five ground robots that cover a certain area of an
arena or reach a specific position specified as a command from a human.
Our work has been focused in the representation of the environment as well
as in the generation of paths that can be useful for the ground robots to
avoid obstacles while reaching the goal position. Considering all the obsta-
cle information that is available at each time, we obtain the shortest paths.
However, we do not always use all the information details, and therefore,
we can not guarantee optimality (in terms of distance) although we obtain
optimal paths for each level of detail.

The utility of a path strongly depends on the reliability of the map infor-
mation. In our approach, we have two different sources of information: first,
the helicopter has a camera facing the ground that provides a birds-eye
view of the arena, and second, each ground robot has seven sonar sensors
that detect ground obstacles. Robots communicate the obstacle information
they gather in order to complete the map of the environment. (The commu-
nication is done through a wireless LAN). Since every robot receives in-
formation about the obstacles detected by the rest of the robots, all of them
have the same individual maps (or similar, in case of transmission prob-
lems). In this manner, the distribution of information among the robots
allows other robots to use information gathered by a robot that reached a
specific region before them. Nevertheless, this does not prevent any robot to
plan its own path under bad communication circumstances: since a robot
keeps its own version of the map it can still plan a path albeit with less
information.

In the following subsection we describe how information from the
different sources is pre-processed and used as input data for mapping. The
second section gives the details of how our incremental mapping approach
is based on the grouping of environment obstacles. The resulting map is
used to generate paths, and the third section illustrates this planning
process. Finally, section number four explains the way in which we include
uncertainty into the mapping process.
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9.2 Obstacle Information Extraction

As we have already said, two different kinds of robots gather and share
information from the environment. On the one hand, the helicopter
captures aerial images and, on the other hand, ground robots detect obsta-
cles by means of their sonar readings.

During the helicopter’s flight, image processing will be performed by its
exclusively dedicated image system. Next Figure 9.1 shows an image of a
typical outdoor environment, a parking lot. This image is of the same kind
as the ones captured by the helicopter camera. Since the helicopter chassis
development is still in progress, this image was taken from a building (the
perspective is the main difference between the neighbouring images that
the helicopter will obtain and this image) and processed on a sun station.
Image processing has been done using Matlab 5.2 and gives as output a set
of polygons that contain some of the obstacles in the real world. The reason
for using polygons as descriptions of environmental features is that they
constitute a simple and compact way of representing information, so that
their communication still allows the robots to perform other tasks simul ta-
neously.

Figure 9.1: Outdoors environment image.
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The following steps describe how to extract polygons from a grey-scale
image (Figure 9.2 shows the results of applying these steps to the previous
image in Figure 9.1):

1. Obtain the most common grey that appears in the image and consider it
as background colour.

2. Define lower and upper thresholds so that they specify the range of
greys around the background colour that are still considered as
background.

3. Transform the grey image into a binary bitmap setting the back-
ground pixels to 0 and the remaining ones to 1.

4. Apply several image processing Matlab functions (erode, dilate,
clean and majority) to increase the quality of the image by removing
spurious pixels.

5. Identify the areas that result from the grouping of neighbour white
pixels.

6. For each of the resulting areas, compute its Convex Hull, which is
the smallest convex polygon that includes an area. Polygons are
specified as a list of vertices. Some of these vertices can be discarded
without causing a significant change in the area of the polygon. (As
an example, Figure 9.2 had 60 vertices per polygon on average and
was reduced to an average of 20 vertices per polygon).

7. Compute the area of each polygon and eliminate those having an
area smaller than a certain threshold.

Essentially, this sequence of pre-processing steps separates the fore-
ground from the background and attempts to represent all foreground
entities as polygons. Since the helicopter has no stereo vision, the image
processing system cannot distinguish real obstacles (in the sense of ground
protuberances) from shadows or paintings, therefore there is no guarantee
that a polygon will indeed define an obstacle in the environment. See, for
example, the painted vertical parking lines which are considered to belong
to the horizontal white obstacles in Figure 9.2. Although obtained polygons
do not thus necessarily correspond to real obstacles (because they may
represent part or groups of obstacles), they can still be considered as being
helpful in identifying areas of potential danger for the ground robots.
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Figure 9.2: Resulting polygons from the previous figure image processing.
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The information obtained from the image processing system is incom-
plete, so the ground robots will need to apply reactive techniques to deal
with those obstacles that where not identified in the image but are detected
by sonar. This obstacle information is also added to the environment repre-
sentation and shared among robots. In order to keep a homogeneous repre-
sentation of the obstacle information that comes from different sources, a
robot that is avoiding an obstacle can consider consecutive sonar readings
to generate a polygon that approximates the edge of the obstacle. The
following Figure 9.3 illustrates an example of how a robot follows part of
the edge of wall and the resulting polygonal approximation. Basically the
polygon comes from the grouping of consecutive readings that are approxi-
mated by a line, so resulting polygons are in fact rectangles containing
those lines, with different length and orientation, but with a fixed width
that has been defined by default. In fact sonar readings are filtered in such
a way that distant readings and groupings that yield segment lines shorter
than a threshold are not considered.

Wall — ] : Polygon

Sonar

Figure 9.3: Ground Robot Obstacle detection
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Although the presented work is focused in the image information extrac-
tion, just comment that simultaneously to this work, I was collaborating
with Gogksel Dedeoglu® for grouping sonar readings linearly. It can be
applied when the same wall or obstacle edge is detected more than once.
Two thresholds (angle and distance) define when two linear groups of
readings are considered to come from the same obstacle. And, when this is
the case, comparing the orientation of the first detection with the most
recent one shows how the orientation error has increased through time.
Therefore, the latest segment detection can be rotated to match the same
orientation as the first detected segment, and this can be applied to
subsequent detections. Once two segments are parallel, the distance be-
tween them is used to correct the position of the robot (it is translated in
the perpendicular direction of the reading).

9.3 Map Representation

The previous section defined how obstacle information has been retrieved
and specified through polygons, which constitute the input data of the
mapping task. This section describes how these polygons are used to incre-
mentally create a map of the environment. Since each robot has a map,
every robot updates its own map whether it receives a polygon detected by
another robot or it detects the obstacle by itself (and then broadcasts it as
well). Thus, all robots apply the method described here simultaneously.
When choosing a representation of outdoor environmental features,
there are several characteristics we must take into account. On the one
hand, outdoor environments are especially difficult to map because the
shape and distribution of obstacles are less predictable than human-made
obstacles in indoor environments. This makes it difficult to identify and de-
scribe obstacles, particularly, when the information comes from a single
camera and local sensors embedded in robots with dead-reckoning errors.
On the other hand, it is important to deal with the uncertainty associated
with each map element when choosing the right map representation. In the
second part of this thesis, we have used a grid representation to model
indoor environments. Nevertheless, it is not flexible enough in terms of ob-
stacle positions or contradictory sensor information when used for outdoors
environments. The reason is that, for example, if an obstacle that corre-
sponds to more than one cell is represented in the grid and afterwards new
information suggests that the obstacle representation should be associated
to other cells in the neighbourhood, there is not a direct way of moving it.

® Ph.D. student at USC: http://www-robotics.usc.edu/~gogksel
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Furthermore, if we want to maintain resolution, then the representation
size increases with the size of the environment. This is not the case for a
symbolic representation of the environment such as a graph with obstacle
areas as nodes and their relations as edges (see for example the works of
Kortenkamp 93, Prescott 96, Levitt 90). In such a graph representation,
location is just a characteristic —that in some cases can even be reduced to
be implicit in node relations— and size depends on the number of obstacle
areas, which keep the problem tractable when outdoors.

It is also crucial to have a task oriented representation, that is, to repre-
sent information in such a way that it is easy for the robot to use it for per-
forming its task. In our case, the ground robots will use the map for
planning paths that go from their initial positions to the goal. We are
already familiar with graph representations and they have been proved to
be suitable for optimal path planning. And this constitutes a reason, that
added to the previous ones listed above, to choose a graph representation
for outdoors mapping. In particular, our map consists of a Visibility graph
(see Sect. 8.2.1).

9.3.1 Grouping Obstacle Information into the Map

Considering the polygonal information that the robots gather from the envi-
ronment, the process of building a Visibility graph is direct although the
visibility check for all node pairs —i.e. polygon vertex pairs— may be un-
necessarily expensive in terms of computational time. The purpose of our
mapping task is not to give a detailed description of an environment, but a
rough approximation of those environmental features that can be a
potential danger for the ground robots when approaching a target position.
What we propose is to build an efficient higher level abstraction on top of
the polygons such that a robot is able to plan its path towards a goal
position at this level. Nevertheless we keep the relation between both levels
of representation so that if occasionally the robot needs a more accurate
path, it can go down into the polygon level and still use the abstract level to
simplify the amount of treated data. In general, this should not be the case
because outdoors environments usually have a relatively low obstacle
density. This makes unnecessary for the robots to know the exact shape of
an obstacle in order to avoid it.

We characterise the higher level of abstraction as a set of Obstacle
Areas. An obstacle area being a rectangle that includes a group of overlap-
ping polygons. Polygons can intersect due to different reasons: on the one
hand, the vision system can provide polygons that overlap, and on the other
hand, an obstacle —or part of it— can be detected several times, by differ-
ent means or from distinct perspectives. Thus, map information is
distributed over two levels: the first one defines how the obstacles in the



238 Chapter 9: Mapping an Outdoor Environment

environment are distributed in different areas, and the second level goes
into more detail and specifies the polygons that belong to each area. Figure
9.4 presents another example of an outdoors image and Figure 9.5 shows
how their corresponding image processing polygons have been grouped into
rectangular obstacle areas.

A

Figure 9.4: Outdoors environment image.

Figure 9.5 gives a good description of the kind of obstacle areas that we
can find. Isolated obstacles in the environment yield obstacle areas with a
single polygon, in these cases the gain comes from the fact that we reduce
an average number of twenty vertices per polygon to a constant number of
four. This might not seem a big improvement in the performance, but it has
the advantage that it does not dismiss important information. Since it is an
isolated obstacle the robot will still have room to surround the obstacle area
rectangle.

Bigger obstacle areas are usually composed by several overlapping ob-
stacles. In these cases, they tend to cover bigger free space areas —which
increase the risk of covering useful areas for path planning. However the
reduction of the number of vertices grows in proportion to the number of
included polygons. Nevertheless, the vertices of those polygons that are
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completely contained by others are discarded without taking any additional
risk.
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Figure 9.5: Grouping obstacles: obstacle areas are defined as rectangles containing
intersection polygons.

Finally, there is a special kind of obstacle areas that are produced when
polygons do not intersect but the rectangles of their corresponding obstacle
areas intersect. We call them intersecting obstacle areas. Usually they
require the system to go down to the polygon level to treat the relations
among them. Intersecting obstacle areas are the ones that provide less
efficiency gain because going to the polygon level means getting closer to
the original computational costs, but in the following sections we will show
that we still have some gain in such cases.

9.3.2 Map Structure

Our map representation consists of a set of obstacle areas and a visibility
graph:

*  Obstacle areas present two levels of information: the highest level
specifies a rectangle that contains a set of intersecting polygons, and
the lowest level includes the list of these intersecting polygons. In
case an obstacle area is intersecting with others, the list of
references to these areas is also stored in the high level. For the low
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level, it can also compute an additional polygon representing the
union of the polygons in the obstacle area. Union polygons are com-
puted under request when refining the path that has been obtained
in the high level representation; we will see how they are useful for
visibility computations.

*  We create the visibility graph by considering as nodes the vertices of
the obstacle area rectangles and by establishing edges between
‘visible’ nodes: those node pairs without any obstacle in between.
Edges are labelled with the Euclidean distance among the nodes
they relate. In our approach, visibility is computed considering the
obstacle area rectangles in stead of the polygons.

Figure 9.6 illustrates how we represent the map information. Figure 9.6
a) shows a subset of three obstacle areas from the nineteen obstacle areas
in the previous Figure 9.5. Each area has been drawn as its rectangle and
the polygons it groups, (for example, obstacle area number 1 groups six ob-
stacles).

2]

Figure 9.6: a) Subset of obstacle areas from the previous Figure 9.5. b) Its corre-
sponding visibility graph.

Although it has not been shown in the figure, obstacle areas number 1
and 2 have a cross-reference between them that states their intersection.
Figure 9.6 b) is the corresponding visibility graph. Small circles represent
nodes in the graph and come from the vertices of the obstacle area rec-
tangles. However, not all the vertices are included because there are
vertices in the intersecting areas that may lie inside an obstacle of one of
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the areas it intersects with. This is the case of the lower-right vertex of the
rectangle in area 1, which is located inside the polygon of the second area.

Keeping the level of abstraction at the obstacle-area-rectangle level
speeds up the computation of the visibility. The gain depends on the num-
ber of polygons that each obstacle area is grouping and the number of
vertices of each polygon. But the gain can be significant if we take into
account the fact that all node pairs check for every obstacle area if the area
obstructs their visibility.

B

Figure 9.7: a) Intersecting obstacle areas, b) checking visibility between nodes
considering obstacle area rectangles, c) visibility considering polygons.

Unfortunately, the high level of abstraction may yield a low connection
between nodes that belong to intersecting areas. This is not the case of the
intersecting areas in the previous Figure 9.6 but for a case like the one
shown in Figure 9.7, it is necessary to check visibility at the polygon level
because the higher level does not connect nodes between the two parallel
obstacles.

9.3.3 Map Updating

After determining how data is represented, we describe how robots share
information and how they include new information into the current map.
The idea is that each time a robot defines a new polygon it broadcasts it to
the rest of the team. Thus, all robots are able to update their maps. To add
a new polygon into the map means that it must be included into one of the
obstacle areas and that the visibility graph must be updated. Graph update
is computationally expensive, because it implies including new nodes to the
graph and checking if the new polygon obstructs the visibility of those pairs
of nodes that were visible before the new polygon is taken into account.
However, this process should be kept as cheap as possible because there
might be some information that would turn out to be useless for some
robots —that is, information about obstacles that are located far away from
one specific robot trajectory. We accomplish that by considering again high
level information. The following pseudocode depicts the updating algorithm
and in the rest of this subsection we will see how Update uses the high level
information (i.e., obstacle area rectangles) to restrict the computation.
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Let Map be a list of obstacle areas OAi (0.n, where each obstacle area
contains a list of polygons LP ={P:..P4 and let G be the visibility graph
associated to Map. Then we apply the Update function to include a new
polygon P’ into Map.

Update (Map, P’)
{ list_of_intersecting_areas =
last_area_with_polygon = O
polygon_added = no
Repeat for all OA; obstacle areas U Map
{ intersection = Check_Intersection(P’, OA))
If (intersection = intersects_a_polygon_of_LP)

{ If (last_area_with_polygon = [1)
Include_polygon_in_area (P, OA)
Else
Fuse_areas (last_area_with_polygon, OA)
last_area_with_polygon = OA
polygon_added = yes

}
Els
|

D

—

(intersection = only_intersects_the_rectangle)
list_of_intersecting_areas = OA;

}

If (polygon_added = no)

{ OA’=Create_new_Obstacle_Area (P’, list_of_intersecting_areas)
Add_Obstacle_Area (Map, OA)

}

Initially, the Update function checks if the new polygon P’ intersects with
any of the obstacle areas OA. An increase in efficiency comes from the fact
that when P’ does not intersect with the rectangle that is defined for an
area OA;, there is no need of checking the intersection for the polygons
inside (LPiJ OA). When P’ intersects the rectangle and it overlaps polygons of
LP;, then LPi must contain P': if OAiis the first area that intersects P, then P’
is added to LP;, otherwise it means that P’ has already been included in
another OA;: and both areas must be fused in order to have all overlapping
polygons grouped under the same area OA] = OA; O OAi (with LPj = LP; O LP).
Another advantage of the high level information appears when a polygon is
included into an area OA;in such a way that its rectangle does not grow. In
this case, the associated graph G that corresponds to the previous Map is
still valid and a review of its visibility is not needed (although G may need
it when OA is an intersecting area).
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Information about P’ intersecting the rectangle of OA without overlap-
ping polygons of LP;, causes the reference of OA; to be stored in the variable
list_of_intersecting_areas. In that way, when P’ will be added to another area OAx,
k2 all areas (i.e., OAx together with the ones in list_of intersecting_areas) will
become intersecting areas. Finally, if after checking the intersection of P’
with all obstacle areas OA;, P’ has not yet being included, a new obstacle
area will be created and included into the Map. Notice that, in fact, this
algorithm can be used to update empty maps because it simply creates a
new obstacle area for the first polygon (and updates G correspondingly).
Hence, this is the function that we use to incrementally create our map.

9.4 Path Planning

When using a graph, the shortest path between two positions is given as a
list of connected nodes in the graph so that it is possible for the robot to go
from the initial point to the goal following the links between the positions
that the path nodes represent. In general, the initial position of a robot and
its goal are not represented as nodes in the graph. Therefore, to compute
the path between two positions, it is necessary to first include them as
nodes into the visibility graph (and, of course, establish their connections by
computing their visibility). Then, the A* algorithm is applied to obtain the
path. A* is optimal for this problem because we can use the Euclidean dis-
tance as a heuristic and its triangular inequality property makes it conser-
vative (see Sect. 8.2.2).

When the shapes of obstacles are well known and can be approximated
by polygons, visibility graphs yield optimal paths. Unfortunately, we cannot
guarantee optimality because of the robots' limited obstacle sensing, but we
can come as close as the information allows us to be. If paths that are close
to obstacles present a danger, then it is always possible to grow the obsta-
cles by half the width of the robot, to provide some margin.

Obstacle expansion is also useful to guarantee paths that can be actually
traversed by the robot. This step can be done in the data acquisition stage,
however, we have not done it because we deal with polygons that do not
correspond to real obstacles and growing them can only yield to poorer
paths. Our underlying idea is, therefore, to have robots that are able to
compute an approximated path towards a goal position, and then a robot
can roughly follow the path, applying reactive techniques when its internal
map does not correspond with the environment that it is actually sensing.

The following Figure 9.8 shows an example of the kind of paths that re-
sult when applying the planning algorithm to the visibility graph G. In this
case, we consider the obstacle areas —defined for the polygons obtained
from Figure 9.1— that are shown in Figure 9.2. Taking the upper left
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corner to be the origin of the images and considering pixels as image units,
a path between the initial and final position was asked to be planned.
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Figure 9.8: Path that considers high level information in the map from image in
Figure 9.1.

The initial and final point co-ordinates are (100, 50) and (640, 520)
respectively. Since G has been created considering the higher level of infor-
mation, the resulting paths go trough the vertices of the obstacle area
rectangles. In this manner, the resulting path is specified by the following
sequence of positions:

(100, 50), (207, 82), (245, 117), (279, 129), (492, 272), (640, 520).

9.4.1 Path Update

Adding information into the map does not necessarily mean changing the
current path. In fact, a robot can be following its own path and receiving
simultaneously information about other locations in the environment
without changing its trajectory. Only information about obstacles that are
obstructing the current path triggers the path planning algorithm. Figure
9.9 illustrates how the path is updated when the information in Figure 9.2
is partially received. The image a) of Figure 9.9 shows the path generated
by a ground robot that is located at the initial position and has only re-
ceived twenty polygons from the helicopter image processing system. The
path in image b) has been generated after receiving ten more polygons from
the helicopter. The corresponding paths have been specified as:
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Path a): (100, 50), (130, 83), (183, 177), (640, 520).

Path b): (100, 50), (164, 117), (229,128), (272, 177), (387, 272), (438, 347)
(640,520).
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Figure 9.9: a) Path planning considering twenty obstacles; b) The path must be
redefined after the addition of ten new polygons that obstruct the previous path.

9.4.2 Refining the Path

In the previous sections we have seen how we can consider the higher level
information and still obtain useful paths. Nevertheless, when the image
processing provides obstacle polygons that are a rough approximation of the
real obstacles and the resulting obstacle areas cover most of the space in
the environment, it may be worth to work at a lower level information
without losing more accuracy. The following Figure 9.10 is an example of
such situation, and the extracted obstacles together with the resulting
obstacle area rectangles are shown in Figure 9.11. In this figure, the path
obtained considering the high level information has been displayed together
with the path that uses the lower level of detail. They have been labelled
path and repath respectively. As expected, the use of more accurate infor-
mation results in a refined path that is shorter than the higher level path.
In fact, this is always the case and the gain depends on how accurate the
rectangle areas approximate the obstacles they contain (obviously, the gain
is 0 for those paths that avoid obstacles going trough obstacle vertices that
coincide with the rectangle vertices).
In the figure, the sequence of positions in the resulting paths are:

Path: (5,100), (113, 87), (400, 500)
Repath: (5, 100), (159, 193), (163, 198), (400, 500)
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Figure 9.10: Example of an image that might need a path refinement.

!

*Goal

Initial position

Figure 9.11: Path planning at two different levels: path considers obstacle areas
whilst repath considers obstacle polygons.
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Note that the two intermediate points in repath are very close due to the
polygon shape. The fact that these two points are closer to the image repre-
sentation of the obstacle is not necessarily dangerous. In this case, for ex-
ample, real obstacles are included into the polygons far from their bounda-
ries, and in addition to that, the polygon that is reached by repath does not
correspond to a ground obstacle but to the top of a tree on the left.

When going from the high level information down to the lower level,
what we are doing is to generate a new visibility graph that has as nodes
the vertices of the obstacles instead of using the vertices of the obstacle
area rectangles. The next Figure 9.12 shows an extreme case that illus-
trates the difference. In a) two obstacles are included into their respective
obstacle area rectangles. The problem is that some of the rectangle vertices
lay inside the obstacles, and therefore, they are not included as nodes into
the visibility graph. Therefore, the visibility graph that results from consid-
ering the high level (see part b)) cannot generate any path going between
the two obstacles. On the contrary, Figure 9.12 ¢) shows how this is possible
when the low level information obstacle vertices are used.

) 1) D]

Figure 9.12: a) Two obstacle polygons and their corresponding obstacle area
rectangles. b) The resulting high-level visibility graph. c) Visibility graph at the low
level.

Planning at the polygon level of detail is a computationally expensive
process that means to create a new graph including all polygon vertices as
nodes and computing the visibility graph between them. Fortunately, we
can still use the path obtained from the high level planning to choose the
obstacles on which lower level planning should be focused.

The basic idea is that information from a less accurate path can help the
planning process to discard polygons that are far away from the path.
Therefore our approach is to always compute the plan at the higher level,
and if required, use it to create a local lower level map in which to apply
planning. This local map is built using the obstacle areas that contain the
nodes in the path. The difference now is that instead of including as nodes
the vertices from the obstacle area rectangles, we include the vertices of the
union polygon. The union polygon is an optional part of the obstacle area
that is now computed by combining all the polygons inside the area. For
those areas having more than one polygon, this can reduce the number of
vertices to include into the graph, especially for polygons contained in
others.
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Figure 9.13: Planned path in the map from Figure 9.5.
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As an additional example, we can use the map from Figure 9.5 to plan a
path between an initial and a goal position. Figure 9.13 above, shows the
first path that has been computed considering the higher level of informa-
tion. In that manner, we use this path to choose the four obstacle areas that
are used to build the local map that appears in the following Figure 9.14. In
this case, the refined path at part a) is very similar to the high level path
due to the accuracy of the rectangles in approximating the obstacles of the
involved obstacle areas. We have chosen this example to illustrate the
amount of obstacle areas that can be discarded when building the low-level
visibility graph (which appears at Figure 9.14b)). Figure 9.14 a) contains
the union of the polygons of the involved areas and we can observe how the
refined path goes closer to the obstacles than the one in the previous Figure
9.13.

Initial position

a) by
Figure 9.14: a) Local map: refined path from the path in the previous figure. b) The
corresponding visibility graph.

It is not always the case that the refined path that results from the
planing on the local map avoids all the obstacles in the global map. In order
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to guarantee that, it is necessary to go up to the obstacle area level and
verify that there are no obstructing global map areas. In this manner, if
there is any obstructing area, it is included in the local map and the local
planning process is repeated.

In addition to the refinement of paths, both Figure 9.13 and Figure 9.14
illustrate another especial situation of the path planning. In cases where
the rectangles of the obstacle areas cover bigger areas than the obstacles
they contain, it is possible that the initial or final points of the path lay
inside an obstacle-area rectangle without being located inside any obstacle
of this area. As we have already said, the corresponding point must be
included into the visibility graph establishing the relations with the rest of
the nodes in the graph. The difference now is that we compute the visibility
by using a combination of both levels of information. On the one side, we
consider the obstacles inside the obstacle area that contains the point and,
on the other side, we still use the high level information —i.e., the rectan-
gles— for the rest of the obstacle areas.

9.4.3 Considering Uncertainty

When building the map of an environment, there can be different sources of
uncertainty. As we have seen in the previous parts of this thesis, odometry
and sensor errors are the main cause of uncertainty in obstacle positioning.
However, if we consider that in this outdoor approach obstacle information
is mainly extracted from an aerial camera, uncertainty about what is and
what is not an obstacle becomes the main concern. Shadows, different ma-
terials or colour changes are just some of the environment features that can
lead the vision system to the identification of wrong objects.

One way of facing this uncertainty is to associate with each polygon a
certainty degree of its correspondence to real obstacles in the environment.
We obtain the certainty degree by taking the product of the area of the
polygon and the reliability of the sensor that detected the polygon. In our
case we have two kinds of sensors —a camera and sonar sensors— and we
assume reliability as being less than 1 for both sensors. In the same
manner, we compute the certainty degree of an obstacle area by adding the
certainty degrees of all polygons inside this area.

The addition of uncertainty about the existence of an obstacle changes
the concept of the visibility graph. Considering that a polygon might not be
a real obstacle, those node pairs that were not connected because of this
polygon visibility obstruction, should now have an edge connecting them.
When planing over a regular visibility graph, the cost of an edge is usually
considered to be the Euclidean distance between the two nodes. Taking now
into account node uncertainty, more edges must be added in order to repre-
sent relations between nodes whose connections might not be obstructed
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even if the map has some polygons obstructing them. In this manner, the
cost for these edges must be now weighted distances, with the weights
depending on the certainty of the obstacles they go through. The value that
we use as an edge cost is the Euclidean distance plus the addition of all the
certainty degree of those obstacle areas obstructing the visibility of the
edge. Thus, visibility is now checked for the complete graph and edge costs
are updated by adding or subtracting certainty degrees.

The new approach that results from considering obstacle uncertainty
generates paths that can go through low certainty areas when there is not a
better path to follow. Obviously, when the path assumes that an obstacle
can be passed through and it turns out not to be the case, the robot that is
following the path will need to apply reactivity and will probably end up
with a longer trajectory. Nevertheless, it is still better to have a path that
will hopefully avoid some of the obstacles than nothing (we take this ap-
proach when the visibility graph method does not generate any path).

X

Figure 9.15: Parking image that is partially occluded by a tree.

The Figure 9.15 above shows an example of an image that can generate
a map with a high density of non-existing obstacles. In this case, the image
processing system produced eighty obstacles, and most of them do not cor-
respond to real obstacles but to shadows, trees, street lights or painted
lines. Although this kind of images may seem useless for the ground robots,
we can use uncertainty to plan paths going through these non-real obsta-
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cles. Since we have no means of distinguishing real from non-real obstacles,
path planning is done over a graph where all non-obstructed edges have a
much lower cost than those going through obstacles. Therefore, resulting
paths avoid all obstacles that are in fact possible to avoid. The path in the
following Figure 9.16 illustrates this idea: it goes towards the left side of
the parking area at the previous figure. This path ends in a position that is
free, although a tree makes it to appear occupied. Notice that going through
this obstacle is the only way the path can reach its goal. The rest of the ob-
stacles are avoided so that even if some of them do not correspond to real
obstacles, those that do correspond are safely avoided.

f Q\a“‘”/q” A7

e
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N

Figure 9.16: Planning with uncertainty: the path goes through an obstacle in the
map that does not correspond to a real obstacle.

9.5 Implementation

The application that performs map generation and path planning has
been developed in Visual C++ 5.0. It has been designed so that it can be
executed by the ground robots (using the image processing information
from the helicopter) and therefore it has no graphical interface. In fact, in
order to be executed by the Pioneers, the interface of the application had to
consider the Pioneer Application Interface (PAI), a simplified and standard-
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ised interface to Saphira’ (Saffiotti et al. 93 and 95, Konolige 98) developed
by Barry Wergers3.

Basically, the developed application interface is done through files
containing the communicated polygons, the generated obstacle areas, the
corresponding visibility graph and the planned path. These files are text
files that are displayed using an additional application we developed in
order to facilitate the understanding of the results.

Here, we list the contents of each file corresponding to the image in
Figure 9.10. Most of these files were displayed in Figure 9.11.

Polygons

This file contains the polygons ordered by regions. First, the number of
regions in the file is specified, thus, for each region there is a list with its
polygons, which are also specified by the number of points and the list of
these points. (We have omitted 5 polygons from the third region with the
aim of giving a shorter description).

Number of regions: 3

Region 1: Number of polygons: 1
Polygon 1: Number of points: 17
* points: (30, 1), (2, 1), (1, 11), (1, 69), (2, 70), (11, 78), (15, 81), (45, 87), (48, 87), (66,
83), (106, 55), (107, 54), (113, 37), (113, 18), (84, 3), (8,2), (78, 1)
Region 2: Number of polygons: 1
Polygon 1: Number of points: 10
* points: (3, 120), (1, 124), (1, 521), (237, 521), (237, 519), (234, 328), (233, 20), (218,
286), (163, 198), (159, 193)
Region 3: Number of polygons: 7
Polygon 1: Number of points: 19

! Saphira is a client architecture designed to operate with a robot server: a mobile
robot platform that controls the low-level motor operations as well as sensor
readings. This server receives commands from the clients and sends them back
information. This client/server paradigm abstracts the Saphira client from the
particulars of robots and can exist either on the robots itself (as inFlakey or Erratic
from SRI International) or off board on a host computer (as in the tiny Khepera,
original from the Swiss Federal Institute of Technology). Pioneers are also servers of
Saphira that can have it either onboard or connected by a radio modem.

Avail able documentation about PAI and Saphira @n be foundat the URL :
http://cssactivmedia.com/docs

8 discover him at http://www-robotics.usc.edu/~barry.
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. points: (622, 1), (259, 1), (207, 18), (197, 29), (195, 43), (195, 44), (196, 48), (200, 60),
(208, 75), (469, 448), (492, 478), (499, 487) (503, 492), (506, 495), (524, 505), (528,
507), (631, 521), (696, B21), (696, 1).

Polygon 7: Number of points: 6
*  points: 600, 233), (598, 236), (600, 236), (607, 234), (607, 232), (604, 232).

Obstacle areas

The polygons file already contains how they are distributed within the
obstacle areas. Therefore, this file only specifies the rectangles defined for
the obstacle areas that contain the polygons. By comparing the following
file with the previous one, we can observe the simplification gain of using
obstacle area rectangles instead of the polygons. In fact, although we use
rectangles, any other polygon could have been used, their specification is
the same than the rest of polygons: the number of vertices and the list of
their co-ordinates.

Number of regions: 3

Region 1: Number of points: 4
* points: (1, 1), (113, 1), (113, 87), (1, 87)

Region 2: Number of points: 4
e points: (1, 120), (237, 120), (237, 521), (1, 521).

Region 3: Number of points: 4
*  points: (195, 1), (696, 1), 696, 521), (195, 521).

Graph

The nodes of the visibility graph are defined from the vertices of the obsta-
cle area rectangles. The arcs are then established between pair of nodes.
These arcs joining visible nodes are labelled with their Euclidean distance.
On the contrary, if an arc relating two nodes is obstructed, then the label
includes both the Euclidean distance plus the sum of the certainty of the
obstructing polygons (i.e., the areas weighted by 0.5).

Here we list four of the nodes included in the graph text file. For each
node, its arcs are classified as being visible or obstructed. Arcs appear as
tuples of the form (n): label, being n the node to which the current node is re-
lated to, and label the corresponding cost of the arch.

Number of nodes: 12

Node 1: co-ordinates: (1, 1)
e Number of visible nodes = 2: (2):112, (4): &.
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e Number of obstructed nodes = 9: (3): 4180.7; (5): 4158.5; (6): 4303.8; (7): 611; (8):
43636; (9): 4233.5; (10): 96394.5; (11): 96567.5; (12): 43671.

Node 2: co-ordinates: (113, 1)
*  Number of visible nodes = 4: (1):112; (3): 8; (6): 171.8; (9): 82.
*  Number of obstructed nodes = 7: (4): 4180.7; (5): 4202.9; (7): 43687; (8): 43647.9; (10):
92243; (11): 92441.2; (12): 39602.9.

Node 3: co-ordinates: (113, 87)
«  Number of visible nodes = 5: (2): 86; (4):112; (5): 116.8; (6): 128.3; (9):118.8.
e Number of obstructed nodes = 6: (1): 4180.7; (7): 39527.9; (8): 39524.7; (10): 92249.3;
(11): 92386.8; (12): 0518.2.

Node 12: co-ordinates: (195, 521)
e Number of visible nodes = 2: (7): 42, (8): 194.
e Number of obstructed nodes = 9: (1): 43671; (2): 39602.9; (3): 39518.2; (4): 39551.9;
(5): 39522; (6): 39479.7; (9): 39596.5; (10): 1314586; (11): 30577.5;

Path

The specification of the path is as simple as we have seen previously in the
1.1 Path Planning Section. Adding the initial and goal positions to the
previous graph, the shortest path is obtained applying the A* algorithm.

Number of points: 3
»  points: (5, 100), (113, 87), (400, 500)

Redefined files

When we want to use the lower level information in order to increase
accuracy, we use the planned path to select the obstacle areas that will be
treated. In the particular case that we are considering, the initial position
of the path belongs to the largest area and it goes to the bottom-right vertex
of the smallest area before it reaches the goal position. Therefore, these two
areas must be included. Nevertheless, since the medium-sized area inter-
sects with the largest area, the three areas are included (that is, there is no
variation in the number of considered regions).

Considering the lower level information means to treat polygons inside
the obstacle areas instead of its rectangle areas. As we have already said,
when this option is used, the system computes the union of all the polygons
inside each area. The union is computed by using the Generic Polygon
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Clipper library® (GPC), a C library developed by Alan Murtal®. The union
does not affect those obstacle areas with only one polygon, but in the case of
the third region —which has 7 polygons—, it represents a significant sim-
plification without loosing accuracy.

In this manner, the polygons in the refined map are:

Number of regions: 3

Region 1: Number of polygons: 1

Polygon 1: Number of points: 17
* points: (30, 1), (2, 1), (1, 11), (1, 69), (2, 70), (11, 78), (15, 81), (45, 87), (48, 87), 66,
83), (106, 55), (107, 54), (113, 37), (113, 18), (84, 3), (8 2), (78, 1).

Region 2: Number of polygons: 1

Polygon 1: Number of points: 10
* points: (3, 120), (1, 124), (1, 521), (237, 521), (237, 519), (234, 328), (233, 0), (218,
286), (163, 198), (159, 193)

Region 3: Number of polygons: 1

Polygon 1: Number of points: 27

*  points: 696, 521), (631, 521), (528, 507), (24, 505), (506, 495), (503, 492), (499, 487),
(492, 478), (469, 448), (272, 168), (271, 168), (206, 75), (200, 60), (196, 48), (195, 44),
(195, 43), (197, 29), (207, 18), (225, 12), (222, 11), (222, 9), (232, 1), (250, 1), (252, 2),
(252, 3), (259, 1), 696, 1).

These vertices are now used to build the corresponding visibility graph
so that refined paths can be planned. Considering the same initial and goal
positions (which are temporally included as nodes in the graph), the result-
ing path is as follows:

Number of points: 3
»  points: (5, 100), (1%,193), (163, 198), (400, 500)

There are a total number of 56 nodes in the refined graph, we just list
the 4 nodes involved in the refined path. (We specify nodes by means of
their co-ordinates).

Node (5,100)
« Number of visible nodes = 14: (1, 89): 31.3; (2, 70): 30.1; (11, 78):22.8; (15, 81): 21.5;
(45, 87); 42.1; (48, 87): 45; (66, 83): 63.3; (3, 120): 20.1; (1, 124): 24.3; (159, 193):
179.9; 271, 168): 274.6; (206, 75):202.5; (200, 60): 199.1; (196, 48): 198.

°GPCisa public software available at <URL>:
http://www.cs.man.ac.uk/aig/staff/alan/software/index.html#gpc

10 Alan Murta works at the Advanced Interface Group of the Computer Science
department in the Manchester University (U.K.).
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Node (159, 193)
«  Number of visible nodes = 24: (11, 78): 187.4; (15, 81): 182.4; (45, 87): 155.7; (48, 87):
153.5; (66, 83): 144; (108, 55); 147.8; (107, 54): 148.4; (113, 37): 162.6; (113, 18);
180.9; (3, 120): 172.2; (163, 198): 6.4; (508, 495): 460; (503, 492): 455.8; (499, 487):
449.5; (492, 478); 438.3; (469, 448): 401.4: €71, 168): 114.8; (206, 75): 127; (200, 60):
139.2; (196, 48): 149.6; (195, 44): 153.3; (195, 43): 154.3; (197, 29): 168.3; (5, 100);

179.0.

Node (163, 198)
«  Number of visible nodes = 19: (106, 55): 153.9; (107, 54): 154.5; (113, 37): 168.6; (113,
18): 186.8; (218, 286): 103.8; (159, 193): 6.4; (506, 495): 4537; (503, £2): 449.5; (499,
487): 443.2; (492, 478): 432; (469, 448): 395.1; 71, 168): 112.1; 06, 75): 130.3;
(200, 60): 142.9; (196, 48): 153.6; (195, 44): 157.3; (195, 43): 158. 3; (197, 29): 172.4;
(400, 500): 383.9.

Node (400, 500)
«  Number of visible nodes = 20: (106, 55): 533.4; (107, 54): 5336; (113, 37): 544.7; (113,
18): 561; (237, 521): 164.3; (237, 519): 164.1; (234, 328): 239; (233, 320): 245.5; (218,
286): 280.9; (163, 198): 383.9; (631, 521): 232; (528, 507): 128.2; (524, 505): 124.1;
(506, 495): 106.1; (503, 492): 103.3; (499, 487): 99.8; (492, 478):94.6; (469, 448): 86.4;

(271, 168): 356. 2; (206, 75): 67.2.
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Chapter 10

Conclusion

This last chapter summarises the work described and provides the context
necessary to evaluate it through the description of a selection of related
works. The related work is described in the first and second sections, which
characterise the approaches based on two different criteria:

» The standard, whose criterion for discerning between different maps
is the kind of representation that has been chosen for the map, and

* Our alternative classification. Where we propose that the initial
settings of the mapping problem should be used for providing
categories to the mapping approaches.

In the introductory chapter, we claimed that, traditionally, the initial
settings of the map generation problem have not been considered enough.
In this manner, results of different approaches can be arbitrarily dissimilar
depending on, not only on the applied methods and the map representation,
but mostly on the differences in the starting points they consider. As a
consequence, the evaluation (or comparison) of the obtained results is not
being favoured.

The aim of this chapter is to provide a framework to the approaches
presented in the pervious parts as well as to analyse their contributions. In
order to provide the map generation framework, we present a set of the
mapping approaches that the scientific community has proposed. This
selection may be far from being complete but has been chosen on the basis
of their significance with respect to our own approaches. The first section in
this chapter describes each of them briefly, listed under the standard
classification. The second section proposes an alternative categorisation of
the same set of approaches. From these references, those that are
particularly related to the approaches of this thesis, are used in the third
section to compare, evaluate, and comment the characteristics and

259



260 Chapter 10: Conclusion

contributions of our proposed approaches. Finally, the last section describes
some current and future work.

10.1 The Mapping Framework: The Classical
Classification

Considering the representation criterion to classify the research done about
the map generation problem, there are two fundamental paradigms that
are widely recognised:

e Area-based paradigm. Area-based maps (Lee 96) (also known as
grid-based maps, metric maps, occupancy grids, or certainty grids)
divide the space into distinct regions —or cells— whose size is
usually constant. This implies a homogeneous space resolution with
associated properties. The algorithm that adds sensor information
into the grid map assigns, for each cell, some properties describing
the characteristics of the environment region represented by the
corresponding cell. Hence, robot’s sensors are required to provide
some kind of metric information. Usually, this information describes
occupancy with an associated uncertainty. The way by which this
uncertainty is represented in the grid yields to different classes of
area-based maps:

e Probabilistic occupancy grids. Where Probability values are
combined using the Bayes rule.

» Evidence occupancy grids. Where Belief and Plausibility
values are combined using the Dempster-Shafer rule.

e Fuzzy occupancy grids. Where Fuzzy Sets are combined
applying t-norm and t-conorm operations.

e Feature-based paradigm. It pays more attention in obstacles rather
than in free-space. Feature-based maps usually represent an
environment as a list of primitive features and their properties. Very
often, feature-based maps also include specifications of the relations
among features, so that features can be represented as nodes in a
graph and the relations correspond to the connecting arcs. These
graph-based maps are usually known as Topological maps and there
is a wide range of applications that use some sort of topological map
representation. In general they do not require precise metric
information and are more associated to biologically inspired models
or computational theories of cognitive maps. Furthermore, they can
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include some combination of different representation levels or
models.

Although these two paradigms are widely recognised, there have been
some other mapping approaches (such as annotated maps or potential
fields) that cannot be naturally included in any of the previous ones. They
will be briefly presented at the end of this section.

10.1.1 Area-based Paradigm

Probabilistic Occupancy Grids

Occupancy grids have originally been proposed by Moravec and Elfes
(Moravec 85). They associate, to each cell in the grid, a probability
distribution over the set {Occupied, Empty}. Considering, for example,
sonar information, the points of the sonar beam are projected on a
horizontal plane and are used to generate map information by computing a
probability density function. Points inside the sonar beam imply probability
of empty space and points on the beam front imply occupancy. In the map,
probability values of empty cells are represented with negative values,
while probabilities of occupancy have positive values. Therefore the cells in
the resulting grid map take values in the interval (-1,1).

When combining information from several sonar readings, the
operations performed on the empty and occupied probabilities are not
symmetrical. Empty regions are simply added using a probabilistic addition
formula:

Pg., =Py, + Pppy, —(Pg,, (Pp,.)

The occupied probabilities for a single reading are reduced in the areas
where the other data suggest is empty:

Po.. =Py, W= Pg,,)

Then, they are normalised (to make their sum the unity):

Py, = S
S Po.
After this narrowing process, the occupied probabilities from each
reading are combined using the addition formula:
Poee = Poe + Poo, = (Poe Poy,)
And the final occupation value attributed to a cell is given by a
thresholding method:
PCell = B I;OCC d POCC = PEmp
0

Emp

Otherwise
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The Probabilistic sensor modelling has traditionally dominated the
generation of occupancy maps (the works at (Cai 96) and (Guzzoni 97) are
just two additional examples). Nevertheless, the probabilistic approach
raises a number of issues which cast doubt on its value. Several authors
(Lee 96, Pagac 96, Konolige 97, and Thrun 98) have commented them.

As Konolige points out, initial experiments with the occupancy grid
method ignored geometric uncertainty, assuming that all sensor returns
where simple reflections and ignoring the problem of beam width. Later,
Elfes (Elfes 92) reformulated the method as a probabilistic Bayesian
updating problem using gaussian noise with a very large variance to
account for the gross errors entailed by multiple reflections. This is not
realistic, since they typically give highly-correlated readings from nearby
positions and moreover, gaussian distribution implies an averaging model.
He also addressed the problem of geometric uncertainty associated with
sensor beam width by considering target detection under all possible
configurations of the environment, but this grows exponentially with the
covered area.

The work by Konolige claims that, in order to improve the probabilistic
grid maps, it is necessary to define sensor models including specularity (see
Sect. 1.1.4). In his work, Konolige tries to solve this problem by dividing
sonar range readings between those that are from specular reflection and
those from diffuse reflection. The division is done considering the probabili-
ty of specularity of each individual range reading, which is computed using
local information.

When defining grid maps, Elfes noted that occupancy grids are Markov
random fields of order zero (that is, independent) and stated that it would
be possible to use ‘computationally more expensive estimation procedures’
for higher-order Markov fields. Nevertheless, no examples of such higher
order probabilistic grid maps seem to have been published. This prob-
lematic independence assumption has been repeatedly pointed out by Lee,
Konolige, and Thrun because it can lead to significant errors. On the one
hand, independence cannot be assumed when considering redundant
readings: traditionally, the measured probability of a particular cell being
occupied is increased by repeating exactly the same sensor reading from the
same location. This is unrealistic since, in practice, the sensor reading is
almost totally determined by the physical environment around the robot.
Therefore, those two readings should give almost the same result as just
one. In his work, Konolige tries to correct this problem by treating sensor
readings independent only if they come from different robot poses (i.e.,
positions and orientations). On the other hand, sensor readings cannot be
assumed to be independent because a sensor reading gives information
about the combined probability of occupancy of a set of cells, not just a
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single cell. Furthermore, if a specified cell is known to be empty, this
increases the probability that its neighbours are also empty. (Likewise, if
the first and third cells in a line are known to be occupied, then it is more
likely that the intermediate second cell is also occupied). Thrun treats this
problem by means of neural networks that map sonar measures into
occupancy values interpreting sensor readings in the context of their
neighbours.

Since robots start with no knowledge of the objects in the environment,
choosing all the initial and conditional probabilities required for the
Bayesian method cause difficulties in building a reliable map (Lee 96).
Moreover, since the Bayesian theory requires Pi(occupied)+Pi(empty)=1,
each cell in the map is thus initialised to Pi(occupied)=Pi(empty)=0.5. And
this does not express ignorance. Contrarily, it is the same as saying: “with
50% certainty, the cell i is occupied” before collecting any sensor readings.
Finally, as Pagac points out, there is a general inability to quantify the
amount and the quality of the information contained in the map when
attempting to reduce the map to essentially a binary map as required for
navigation. For example, cells having probabilities close to uncertainty such
as Pi(occupied)=0.55, Pi(empty)=0.45 are not suitable for solving planning
problems.

Evidential Occupancy Grids

Pagac, Nebot, and Durrant-White (Pagac 96) were the first in applying the
Dempster-Shafer theory of Evidence for map building using occupancy
grids. Their work diverges from the Bayesian approach because they allow
to support more than one proposition at a time and treat probabilities as
evidence. From the sonar sensors, they assign an occupancy probability
distribution over the sensor arc, and since no evidence exists about the
negation of this occupancy probability, the emptiness probability remains
equal to 0. Similarly, the only distribution generated over the apparently
unoccupied sonar sector is the one corresponding to the emptiness
probability. The main advantage of this model is that it does not longer
require full description of conditional (or prior) probabilities.

Yamauchi (Yamauchi 98) is another example of the generation of
evidential occupancy grids. In order to reduce specular reflections, he has
developed a technique called laser-limited sonar: if the laser returns a
range reading less than the sonar reading, he updates the evidence grid as
if the sonar had returned the range indicated by the laser (in addition to
marking the cells actually returned by the laser as occupied).
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Fuzzy Occupancy Grids

Fuzzy theory (see Sect. 1.1) is a particular case of the Evidential theory.
Hence, the reasons that justify their use to represent occupancy informa-
tion are basically the same. These reasons not only appear thorough this
thesis but they have been also noted in several publications (as, for example
Kim 94, Saffiotti 97, or Fabrizi 99):

e First, the stochastic method behind probabilistic occupancy grids
relies on the assumption that a large number of well distributed
data is available, which is rarely the case during robot navigation.
On the contrary, Fuzzy logic neither requires prior nor conditional
probabilities.

e Second, the fuzzy approach only needs a qualitative model of the
sonar sensors, as opposed to the stochastic needed for Probability
based techniques. Fuzzy logic provides an efficient tool for managing
the uncertainty introduced by the sensing process. Probability
theory originates in a frequentistic interpretation, while Possibility
theory (which axiomatically departs from Probability theory)
corresponds more to the evaluation of the ease of attainment or of
the feasibility of events (Zadeh 92).

e Finally, a Possibility distribution can distinguish between the state
of a cell ¢ being uncertain (T(occupied) = T(free) = 0.5) from the
state of being unknown (T(occupied) = Ti(free) = 1) —that is, when ¢
has not being explored.

In their work, Fabrizi, Oriolo, and Ullivi (Fabrizi_99) define the empty
and occupied space as two fuzzy sets over the universal set —the
environment— assumed to be a grid. The corresponding membership
functions quantify the degree of belief that each cell inside the scanning
area is empty or occupied, as computed on the basis of the available
measures. They combine information from sonar and a structured light
vision system (see Sect. 1.1.4) using a ‘winner takes all’ mechanism, based
on the analysis of the reasons for possible discordances and complementary.
The resulting distributions convey independent information.

The second part of this thesis presents a research on Possibilistic
occupancy grids that belongs to this category of fuzzy occupancy grids. In
our approach (Lépez-Sanchez 97a), free space and occupancy information
comes from several robots, and a host computer generates a grid map of the
environment. In the grid, each cell contains a Necessity and Possibility
occupancy degree. And values are combined using standard fuzzy t-norm
(min) and t-conorm (max and probabilistic sum) operations.
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Elevation Maps

When we have introduced the area-based paradigm, we have commented
that most of them contain occupancy information. However, there are some
terrain mapping applications that do not distinguish between occupied and
empty space but different terrain elevations. These applications have been
mostly applied for the map generation of highly irregular surfaces as
seafloor or planetary terrain. The main difference of elevation maps with
respect to traditional 2-dimensional occupancy grid maps is that the
resulting representation is 3-dimensional.

An example of research on elevation maps for seafloor was developed by
Johnson and Hebert (Johnson 96). They extract the elevation map from
side-scan sonar backscatter images and propose an algorithm that de-
creases the average elevation error. Initially, this algorithm uses sparse
bathymetric data to generate an estimate for the elevation map. The initial
map is then iteratively refined to fit the backscatter image by minimising a
global error functional.

On the other hand, Krotkov and Hoffman (Krotkov 94) proposed a richer
representation for the elevation map of a planetary terrain. Their approach
assigns three different labels to each elevation point: unknown, occluded by
another object, or known. When a known label is assigned to a point, it is
also specified both its elevation and the robot state (i.e., position and legs
configuration). In their case, since sonar sensors are not suitable for
planetary use, they utilise a laser range finder to obtain the information.

10.1.2 Feature-based Paradigm

Inside the feature-based paradigm, maps have been usually presented as
representations that do not require metric information because they tend to
focus on features or objects rather than on the space they occupy. Neverthe-
less, it is rather common that they contain some kind of implicit metrics in
order to enrich, support, or guide qualitative techniques. Here, we distin-
guish different feature-based map approaches depending on how do they
organise and represent the information.

10.1.2.1 Maps of Geometric Features

In general, geometric-feature maps contain a set of features that have been
specified containing some information about its shape and location with
associated uncertainty.

In 1994, Cox and Leonard (Cox 94) proposed a rather theoretical
approximation that consists on constructing probabilistic trees to represent
different alternative models of the environment. The branches of such a
hypothesis tree represent different possible measurements of assignments
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to geometric features. Each geometric feature has an associated covariance
that models the uncertainty due to noise of the ultrasonic range data.
Bayesian data association allows to calculate the probability of each
hypothesis in order to prune the hypothesis tree.

The work presented in (Kim 94) describes geometric primitives of the
environment as parameter vectors (in parameter space). The main differ-
ence is the representation of the associated uncertainty, which is specified
by assigning appropriate fuzzy numbers to the parameter vectors. In
addition, the uncertainty in the transformations (translations and rota-
tions) between co-ordinate frames are treated through fuzzy arithmetic.

Geometric-feature maps representing the environment based on simple
shapes as segments or circles are also very common. Some probabilistic
examples can be found at (Vandorpe 96, Betgé-Brezetz 96 or Thrun 97). The
work in (Vandorpe 96) proposes a dynamic map building representing maps
as segments and circles: matching segments are updated using their
associated variances in a static Kalman filter, and circles are considered to
match if the distance between their centre points are smaller than a
threshold. Thrun (Thrun 97) uses segments as well, although in this case,
they are considered to be orthogonal. And finally, the approach described in
(Betgé-Brezetz 96) represents objects (such as rocks in spatial terrain) by a
location with an associated variance-covariance matrix and a shape
approximated by ellipsoids. This model is built based on laser range finder
data and updated using an extended Kalman filter. In addition, they
generate landmarks from rocks with salient points.

Fuzzy logic has also been used in the representation of the uncertainty
associated with segments. The first part of this thesis describes our ap-
proach based on imprecise segments, which contain metric information and
associated fuzzy sets. The map is incrementally generated by fusing
imprecise segment information that comes from different robots (Lépez-
Sanchez_98d). In addition, in our application, a host computer reasons
about segment relations in order to define higher level concepts such as
doors or corners. This fuzzy segment representation has been also used by
Gasés (Gasés 99), who groups consecutive sensor readings into fuzzy
segments in order to obtain single boundaries in the map representation.
He assumes a vague previous knowledge on the objects’ sizes and locations
that is expressed by linguistic terms (which are provided by humans).

10.1.2.2 Topological Maps

Topological maps include a wide variety of mapping approaches repre-
senting features and their relations. In general, they tend to be closer to the
biological and psychological approaches of cognitive representations.
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Kuipers pioneered the work in the topological approach field. Since
1974, he tried to model the cognitive mapping capabilities exhibited by
humans. In 1988, Kuipers and Levitt (Kuipers 88) established the bases for
qualitative navigation, multi-level representation, and biologically inspired
models.

They developed the Qualitative Navigation model: a multi-level
representation theory of large-scale space based on the observation and
reacquisition of distinctive visual events, that is, landmarks. This model
includes a topological representation together with available metric knowl-
edge of relative or absolute angles and distances. The topological map con-
sists of a network of fixed features of the environment (places, paths, and
regions) and topological relations among them (such as connectivity, order,
and containment) defined in terms of sensorimotor experience. The quanti-
tative information acquired during travel is assimilated into two levels of
metric description: local geometry and orientation frames.

Kuipers and Levitt also defined the concept of ‘view’ as the sensory
image received by the observer at a particular point. In this manner, views
could be used to recognise places, and paths could be represented by means
of sequences of actions and views. This concept of view is very relevant in
biology because there are neurones in the brain (place-cells in the hippo-
campus) that fire only within the context of a particular view. However,
they treated views as opaque objects that can be used as indexes for
associative retrieval of landmarks in a memory. Views are not necessarily
visual, but must be distinctive enough to allow the assimilation of the envi-
ronmental structure. In this approach algorithms were developed under the
assumption of correct association of landmarks on reacquisition.

Maps Based on Graphs

Every topological map requires some kind of structure to represent features
of the environment and their relations. Probably, the one that comes more
naturally is the graph representation. Here, we present some of the ap-
proaches to topological maps that use some form of graph as a basis for
their structure.

Mataric’s approach (Mataric 90) defines topological maps that are
graphs having landmarks as nodes and arcs connecting neighbour land-
marks. Straight wall segments are used as landmarks whose recognition
involves robot motion. In addition, this approach includes dis tance informa-
tion to help in the localisation of the robot.

Lu and Milios [Lu_97] propose a completely different approach. They use
the graph representation to study the problem of consistent registration of
multiple frames of measurements. In the nodes, they include local frames of
range scan data together with the corresponding estimated poses of the
robot (that is, robot’s position and orientation). The relative spatial
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relationships between local frames are represented by two kinds of links.
Weak links relate adjacent poses along robot’s paths. And strong links join
local frames whose scan data have ‘sufficient’ overlap (the spatial extent in
the overlapping part of two scans should be larger than a fixed percentage
of the spatial extent covered by both scans). Consistency is achieved by
using all the spatial relations as constraints in order to solve all the data
frame poses simultaneously.

There are also specific kinds of graphs that can be used for representing
an environment. For example, view graphs (Franz 97) relating scene views
in outdoors environments, or visibility graphs (see Sect. 8.2.1) in polygonal
terrain. The latter, has been used in the rather theoretical approach de-
scribed in (Rao 96), which studies the performance of several point-robots in
order to reduce the sensing time. The proposed robots are point-sized. They
are equipped with vision sensors that return the visibility polygon associ-
ated to their position (that is, all points that can be seen from that
position).

In topological approximations, the poor metric sensing must be com-
pensated by better pattern matching. This means that they are strongly
dependent on the recognition of previously known landmarks. For example,
the approach by Shatkay and Kaelbling (Shatkay 97) gives a method that
learns topological map from landmark observations. It considers local
topological information along with some landmark information to dis-
ambiguate different locations. The method is based on a recursive estima-
tion routine that can refine positions estimates backwards in time. This
approach extends a previous one by Koeing and Simmons (Koeing 96), who
investigated the problem of learning the distances in a topological map if a
topological sketch of the environment was readily available. Their approach
is to provide the robot with the topological and geometrical constraints that
are easily obtainable by humans, and have the robot to learn the rest. They
use probability distributions to create a model for optimal decision making
(Partially Observable Markov Decision Process or POMDP) that incorpo-
rates the distance uncertainty as well as sensor and actuator models. The
POMDP is specified as a set of states, a set of actions for each state that can
be executed with a transition probability, and the probability that each
sensor reports the correct features of the current state. Each state specifies
robot’s location —with 1 m of resolution— and orientation (considering only
4 compass directions).

Multi-Level Maps

Whenever one has to deal with a significant amount of data, there is a
tendency to group information and to represent it with a higher level of
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abstraction. Here, we present some examples of topological approaches that
organise their information in multi-level map representations.

Levitt and Lawton (Levitt 90) developed a two-level theory of spatial
representation of the environment based on the recognition of landmarks.
In the first level, viewframes constitute regions of the space defined by
relative angles and estimated distances. In the second level, every two
landmarks create the so called Landmark Pair Boundaries, lines that lead
to topological divisions of ground space into regions (orientation regions).
The robot navigates by moving between orientation regions. Navigation can
be done qualitatively by crossing the boundary lines.

The multi-level approach representation of Kortenkamp (Kortenkamp
93) is based on a model of the human cognitive mapping. Kortenkamp
adapted it for implementation on a mobile robot. The model consists of 3
components that lead to two different representation levels. The first com-
ponent is a Bayesian network that performs place recognition from sonar
and vision information. The second component uses spreading activation
networks that encode direction and familiarity. This component represents
regional networks (topological maps) and allow to select a route to a goal as
well as directions to the next place (gateways) along that route. Finally, the
third component represents the regional map (survey map for the psycho-
logists) that creates a global image-like overview of its environment from
the abstraction of its local representations.

Environmental information can also be grouped hierarchically. For
example, Bulata and Devy (Bulata 96) propose a hierarchical model with
three different levels. The first level corresponds to the geometrical model
that describes landmarks. Landmarks are extracted from sensory data
using a segmentation algorithm upon the acquired points. Extracted land-
marks are then compared to the models by means of rules. Landmark
models correspond to characteristic local feature groupings as corners or
doors. From the extracted landmarks, only are selected those that are accu-
rate enough to be recognised and located. The second level is the semantic
level and is defined by grouping landmarks that can be perceived from the
same robot position. These correlated landmarks form area models and are
the base for the third level of this approach: the topological level. This is an
environment model and describes semantical areas such as room or corridor
with perceptual constraints. This model is built from the relationships
between area frames, it is represented by a random vector and a covariance
matrix, updated through the use of an Extended Kalman Filter.

Simpler approaches have been also proposed. For example, Hébert,
Betgé-Brezetz, and Chatila (Hébert 96) used odometry to relate local infor-
mation in a global representation. Local information is extracted from sen-
sing data, so that local maps contain perception-related objects. On the
other hand, odometry is decoupled from exteroceptive information in order
to provide a global frame relating local maps in the global world map.
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The third approach that this thesis presents could be considered to be a
hybrid approach between map representations based on graphs and this
multi-level approach (Lépez-Sanchez 98a). In this manner, we group
polygonal information into obstacle areas and associate a visibility graph
with the level of information we are considering in the path planning task.
Nevertheless this approach diverges from most topological map representa-
tions because it does not involve any landmark recognition process.

Biologically Inspired Approaches

Biologically inspired approaches mostly refer to neural-network-like ap-
plications. Despite their scientific interest (they try to help in the under-
standing of the mapping process in biological creatures), they are less
related to the approaches presented in this thesis, and therefore, we just
briefly comment a few significant approaches (they are by no means com-
plete).

Zimmer (Zimmer 96) uses neural networks to relate situations (that is,
records of sensor information together with their approximate position) by
means of an adjacency relation criterion.

Prescott (Prescott 96) presents a network architecture in which
continuously changing activations of the units can be viewed as a dynamic
map that is permanently oriented to the position and heading of the agent.
This approach maintains multiple, partial, and overlapping models of the
environment based on the barycentric co-ordinate frames defined by groups
of salient landmarks.

Zipser (Zipser 86) develops a 2-layer neural net. The first layer
corresponds to the sensory system. It detects the landmarks and stores
descriptions that can be recognised afterwards. The second layer is in
charge of giving the similarity between the current robot scene and the
scene as recorded at the centre of a place-field. Place-fields are locations
relative to a set of distal landmarks. In his approach, Zipser also presents
two additional models to locate goals: a three-layer neural net, and the so
called B model. Nevertheless, these two models are less based on
neurophysiological experiments. Prescott has used the latter model (i.e., -
model) in his previously described work. The [3-model corresponds to a two-
layer network that records information about three landmarks and the goal
in the so called B weights. This information is recorded once, and can be
used to locate the goal location unambiguously anywhere the landmarks
are visible.
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10.1.3 Grid Maps versus Topological Maps

Many authors have compared these two complementary approaches to
robot mapping. Such comparisons can be found in (Lee 96, Prescott 96,
Saffiotti 97, Konolige 97, Thrun 98a, or Lépez-Sanchez 98a) among others.

In general, grid maps are considered to be easy to construct and main-
tain and their representation naturally reflects neighbourhood relations.
Grid maps rely basically on odometric information and their main problem
is that their representation require a significant amount of memory. On the
other hand, topological maps have a much more compact representation.
They require a more elaborated update but provide abstract representa-
tions of the environment that favour reasoning and information treatment
processes. Topological maps are biologically inspired approaches that are
based on landmarks for both map generation and robot positioning tasks.
Nevertheless, positioning is very sensitive to the recognition, number,
density and uniformity of distribution of landmarks.

A widely treated problem in map generation is to establish
correspondence between current and past locations. This allows to fuse
information about the same feature, to follow paths in a previously explored
environment or to localise the robot. In grid-based mapping approaches, the
correspondence problem is attacked exclusively through metric information:
if the robot is capable of accurately estimating its co-ordinates in a
Cartesian co-ordinate frame, the correspondence problem is solved. How-
ever, in most cases the positioning system accumulates error, and thus,
some inaccuracy model must be included. Additionally, external sensor
information may be also used to refine the position estimate by matching
the currently perceived local grid with the global map. In fact, topological
approaches typically use this last method. They compare external informa-
tion coming from the robot’s sensors with some expected characteristics:
landmarks or special configurations of landmarks.

Grid maps can be considered to represent low-level features, whilst
topological maps concentrate more on representing high-level features. The
suitability of both approaches is highly dependent on the environment and
the robot sensors. High level features may make the map more robust, as
these features are more stable over time. However, high-level features
might appear in a low density distribution and might be difficult to extract
and recognise.

Topological approaches are based on computational theories that model
human cognitive mapping. The biggest difficulty in applying the ideas from
these computational models to robots is that they heavily rely on percep-
tion, particularly perception of landmarks. The Kalman filter has been
widely used to treat uncertainty in the landmark recognition process. It
gives the optimal update for the robot and target positions having noise in
sensor readings and robot positioning. The problem is that choosing the
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wrong target can lead to divergence of the Kalman filter so that the robot
becomes lost in the environment. Cox and Leonard (Cox 94) point out the
importance of this problem, and suggest a Bayesian tree approach to
formulating and processing multiple hypothesis about data associations.

Topological approaches try to avoid the use of odometric information for
the disambiguation of landmarks by using a short history of sensor inputs
or specific navigation routines. Nevertheless, it sometimes becomes neces-
sary and many of them use some kind of implicit metric information. This is
specially the case for robots equipped with sonar sensors, for whom most of
the environment looks alike.

Hybrid Approaches

Taking into account that grid and topological maps are complementary
approaches that exhibit orthogonal advantages and disadvantages, several
authors have proposed methods for combining both paradigms with the aim
of compensating the weaknesses of one method with the strengths of the
other.

In the second approach of this thesis we extract a graph representing
free-space from our possibilistic grid representation (see Sect. 8.2.1). This
graph is a visibility graph, where nodes correspond to obstacle vertexes and
arcs join visible (non-obstructed) nodes. It allows to plan optimal paths and
specify them as abbreviated sequences of intermediate points. Other ap-
proaches, as for example the one by Yamauchi (Yamauchi 98), create
graphs from the grid representation transforming cells representing free-
space directly into nodes of the graph. Cell adjacency is then translated into
arcs joining the corresponding nodes. The algorithms applied to plan paths
can be equally applied, the main difference is the number of nodes that
must be treated and used to specify the resulting paths.

Another approach that combines both paradigms has been proposed by
Thrun (Thrun 98a). It uses neural networks to learn the mapping from
sensors to occupancy values. Neural networks interpret sensor readings in
the context of their neighbours, thus increasing the accuracy of the occu-
pancy information. Afterwards, a Bayesian integration over time yields the
resulting grid map. And a topological map specifying regions in the environ-
ment is then generated on top of the grid-based map. This is accomplished
by using thresholding methods and obtaining a Voronoi diagram (see Sect.
8.2.1).

The opposite idea is applied by Lee (Lee 96). He proposes to derive the
grid-based map from a feature-based map. Using information coming from
ultrasonic sensors, the former map is created by detecting and clustering
potential features. These features are updated in the feature-based map,
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whose information is afterwards included into a probabilistic grid repre-
sentation. He proposes this order on the bases of the problems derived from
independence assumptions and erroneous interpretations that appear when
using probabilities in a early stage. (We have already discussed these
problems when discussing the probabilistic occupancy grids).

Finally, just comment that some algorithms for the conversion between
the two mapping paradigms have been proposed by Horst (Horst 96). His
algorithms convert spatial information in certainty grids into object bound-
ary curves, and vice versa.

10.1.4 Other Map Generation Approaches

Although the classification of area-based maps and feature-based maps can
include most of the map generation approaches for robots, it is worth noting
that there are some map representations that do not naturally fit in this
classification. Here, we just briefly comment some of them.

An annotated map (Thorpe 90) is a 2-dimensional representation that
includes spatial information as well as procedural information. This
procedural information triggers certain events in the robot. Annotated
maps are effective because they tie procedural information to spatial
locations, thus making the procedural information easy to organise and
retrieve (Kortenkamp 93).

Homing (Nelson 89) constitutes the less complex mapping strategy. In
homing, the robot does not explicitly construct the map, it stores sensory
data about the environment and associates movements with sensory
events. As sensory events trigger movements, the robot navigates the envi-
ronment.

Rekleitis, Dudek, and Milios (Rekleitis 97) propose a systematic method
to cover free space with trapezoids using two robots that collaborate in
order to reduce odometry errors. The two robots are equipped with object
detector sensors and a robot tracker, which locates the other robot accu-
rately. Robots move one at a time: the moving robot explores, and the
stationary one reports the distance and orientation of the moving robot.
Exploration consists of two logical parts: local exploration (which sweeps a
horizontal stripe of free space inside one trapezoid), and global exploration
(which connects the straps together and decides which part to explore next).
The order in which stripes are explored is given by a depth first search
algorithm.

A similar exploration based on a surface filling algorithm is presented in
(Gonzalez 96). It represents the environment using adjacent regions that
have been already explored and the robot (that uses sonar sensors) moves
towards the boundaries with the unknown area.
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The map construction in (Sgouros 96) accepts as input a topological
diagram of the environment along with the placement of the proximity
sensors. The environment is discretized and at each point it is computed
which sensors are active. In this manner, the map describes qualitative
variations in sensor behaviour between adjacent regions. This map also
includes attractors that are defined for doorways and goal points, so that it
is used to specify preferred motion directions based on the topological
relation between each point.

Finally, the approach by Liu and Wu (Liu 99) presents an evolutionary
group of robots that builds a potential field map (defined in (Hwang 92)) of
an unknown environment. The robots directly interact with the physical
environment and a remote host handles the computation of the global map
based on the information received from the robots. From the proximity
measurement of each robot at a certain location, it is estimated the
proximity of neighbouring locations to sensed obstacles. They express the
confidence on the proximity estimates by weighting each measurement with
a function of the distance between robot’s position and the neighbouring
locations.

10.2 Our Proposed Characterisation

Up to this point we have commented more than forty approaches to the
map generation problem. As we have seen, most of them can be classified
using a criterion that discerns between approaches depending on the map
representation they use. In this thesis, in addition to providing three new
approaches, we claim that all the initial settings of the mapping problem
should be taken into more consideration, both when defining the problem
and also when comparing the approaches. In the Introduction Chapter, we
provided a list of the problem settings that we consider are essential to
define a mapping approach (see Sect. 1.2.2.1). We think that the results of
an approach are subjected to the initial settings of the problem and only
those approaches assuming similar conditions can be compared. Hence, we
propose not only to use the map representation criterion when classifying
the mapping approaches but to consider all the initial settings to character-
ise the map generation approaches. In this manner, for example, the
criterion of the kind of environment can be used to discriminate among ap-
proaches that are more suitable for indoors, outdoors, planetary, or under-
water terrain.

This section uses the settings listed in Sect. 1.2.2.1 to define the classifi-
cation that each of them implies. For each classification we will reference
those approaches (from the ones cited in the previous section) that fit more



10.2 Our Proposed Characterisation 275

naturally the given classification. This will also help to find the approaches
related to the ones proposed in this thesis, which will be discussed in the
next section.

Kind of Terrain

We have already commented that the kind of terrain that must be modelled
implies the following classification for the mapping approaches:

Indoors: Indoor environments are usually considered to be flat and
structured, that is, containing perpendicular walls defining corners,
parallel walls defining corridors, straight features as sides of pieces
of furniture, etc. In general, their dimensions are in terms of meters
and for this reason most occupancy grid applications consider indoor
environments. Nevertheless a significant number of topological ap-
proximations also consider indoor environments. Some examples of
indoor maps can be found in (Moravec 85, Kortenkamp 93, Lépez de
Mantaras 97, Thrun 98a, or Lépez-Sanchez 98c).

Outdoors. Outdoor environments have different characteristics than
indoors. In general, they present an irregular terrain, although it is
supposed to be smooth enough to allow robot’s displacement. The
features are distributed with a rather low density and can be of any
kind: buildings, trees, mountains, roads, etc. Usually, most of them
are pre-acquired in order to help in their recognition. Therefore,
mappings based on landmarks (as the ones proposed in (Kuipers 88)
and (Levitt 90)) are specially suitable for this kind of environments.

Planetary. Although planetary terrain may look similar to that in
outdoors, it has several characteristics that require a special
treatment. On the one hand, the terrain is usually rugged and
irregular (with a relatively large density of sharp rocks), and hence,
the geometry of the terrain must be accurately modelled. And, on the
other hand, the fact that it belongs to the space means that laser
range finders are the most appropriated sensors (as the one used in
(Krotkov 94)), although some approaches also use cameras (Betgé-
Brezetz 96).

Underwater. Finally, the underwater environment constitutes a very
particular environment where the robot, its sensors, and movements
must be specially adapted. In this thesis we have only commented
the seafloor map generation in (Johnson 96), which is focused in
obtaining an elevation map.
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Previous knowledge of the Environment

The previous information that the robot has about the environment is a key
aspect of the mapping problem. As we have already commented in the
Introduction Chapter, it implies a redefinition of the map generation prob-
lem.

e Partially known. When the robot has been provided with an
approximated sketch of the environment, the map generation
process consists in refining this information while navigating. The
approach in (Koeing 96) is to provide the robot with the topological
and geometrical constraints that are easily obtainable by humans
(i.e., a topological sketch). From this information, the robot has to
learn the distances while learning to navigate in the environment.
This approach provides a probabilistic model for optimal decision
making that incorporates the distance uncertainty and the sensor
and actuator models. Similarly, the approach presented in (Sgouros
96) accepts as input a topological diagram of the environment. In
1996, one of the events of the AAAI Mobile Robot Competition and
Exhibition (explained in (Kortenkamp 97)) consisted in an office
navigation, for which the robots were given a graphic representation
of the office building, showing rooms and hallways and rough
distances. This year, a multi-robot approach explained in (Guzzoni
97) won.

*  Previous information about some objects. When the robot has been
given information about landmarks, to solve the map generation
problem means to recognise these landmarks and to establish
relations between them. By landmarks we understand both artificial
beacons added to the environment or objects existing in the
environment about which the robot has some information (a model,
an image, an approximate description, etc.) that helps in its recogni-
tion. For example, in (Levitt 90) a tree, a mountain, and a building
are supposed to be recognisable. More moderated assumptions are
supposed in (Bulata 96), an approach that extracts landmarks (such
as corners or doors) from sensory data (segmentation algorithm upon
the acquired points) and compare them to certain models by means
of rules. Similarly, Gasés (Gasés 99) proposes to provide the robot
with linguistic descriptions about the objects and their distribution
in an specific environment. In this manner, the robot can match
sensor information with these linguistic descriptions in order to
generate a geometrical map of the environment. Finally, landmarks
can also be specified as positions associated with sensor information.
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In some approaches (as the ones by Thorpe or Thrun) these
landmarks are indicated by humans. In the case of the (Thrun 98b),
a human that drives with joy-stick the robot, chooses and marks a
collection of significant locations in the robot’s environment that are
afterwards used as landmarks.

e Completely unknown. In general, the less information the robot has
about the environment, the harder it is the task of generating its
map. Without previous knowledge, there is not a direct way for
distinguishing the relevant information and, therefore, every
discovered feature is added to the map. Nevertheless, there is
always a minimum amount of information about the kind of environ-
ment (indoors or outdoors) or the density of obstacles. This is
because such information is required to select the map repre-
sentation. Some examples of approaches that map unknown environ-
ments are (Vandorpe 96) and (Lépez-Sanchez 98c). Finally, there are
approaches that assume some additional characteristics about the
environment. For example, (Thrun 97) and (Lépez-Sanchez 97a)
assume vertical and horizontal walls.

Exploration and Number of Robots

There are two main aspects of the information gathering process that
define different robotic map generation approaches: Who performs the
exploration? and How is the exploration performed?

The latter aspect refers to the exploration strategy. Robots can explore
the environment by following a random strategy (Amat 95, Lépez-Sanchez
97b), moving towards the boundaries with the non-explored areas (Gonza-
lez 96, Yamauchi 98), by following given paths (Kuipers 88), or even driven
by humans (Thrun 98b). Nevertheless, there are a significant number of
approaches that consider a sequence of points in the environment (where
the robot stops and senses) that do not specify how this points are selected.
These approaches are usually more concerned with the stationary data
acquisition. The approaches in (Pagac 96) or in (Oriollo 98) are just two ex-
amples.

To the question “Who performs the exploration?” we answer with the
number of exploratory robots. Therefore, we distinguish between:

*  Single-robot mapping approaches, and

*  Multi-robot mapping approaches

Most of the approaches that we have commented consist of a single robot
exploring the environment. Multi-robot systems have been used for a
variety of tasks such as interaction and learning (Mataric 94), soccer
competitions (Shen 98, Veloso 98), foraging (Balch 99), positioning
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(Kurazume 96), adaptive co-operation (Ghanea-Hercock 99), or co-operation
between heterogeneous robots (Parker 94). However, it has not been exten-
sively used in the mapping task.

As we already commented in the Introduction chapter (see Sect. 1.2.1),
exploring the environment with several robots increases the robustness of
the process: the accumulation of odometry error becomes distributed and
the acquired information degrades proportionally to the number of unsuc-
cessful robots.

The multi-robot map generation issue is a rather new idea. In 1995, we
proposed the idea of the first part of this thesis: to have several small
autonomous robots exploring the environment and a host computer to build
the map (Amat 95). The same schema has been used in (Guzzoni 97), (Liu
99) and, in general, all the approaches having simple robots. Obviously,
there are also approaches that do not require a base computer, as the one
presented in the third part (L6pez-Sanchez 98a) (which, in addition, uses
an heterogeneous group of robots). Some of them do not require a high level
of co-operation, so that the results obtained by one robot can be extended to
more than one robot, which is the case of (Thrun 98b). On the contrary,
others present a tight collaboration, as in (Rekleitis 97), where one robot
moves while the other keeps track of it without moving.

There are also some rather theoretical approaches to multi-robot
mapping, as the ones in (Rao 96) or (Cai 96). The former reduces the sens-
ing time for point-sized robots. The latter, integrates the sensing informa-
tion of all the robots considering their corresponding reliability.

The approach by Yamauchi (Yamauchi 98) is particularly interesting
because it provides an exploration strategy for a group of robots. The map is
represented by a evidence grid. Free-space cells that are adjacent to un-
known cells are considered as frontiers, and the robots explore by navi-
gating towards these frontiers. The path planing is a depth-first search on
the free-space cells having as goal one of the frontier cells. Whenever a
robot arrives at a new frontier, it sweeps its sensors and constructs a local
evidence grid representing its current surroundings. This local grid is
integrated with the robot’s global grid, and also broadcast to all of the other
robots grids. When the robot reaches its destination, that location is added
to the list of previously visited frontiers. Hence, several robots may waste
time by navigating to the same frontier. If a robot is unable to make
progress towards its destination for a certain amount of time, then the
robot will determine that the destination is inaccessible, and its location
will be added to the list of inaccessible frontiers. In addition, if it is the case
that one robot blocks another, the blocked robot will mark the frontier as
inaccessible, so it will be explored only if other robots explore it. And
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finally, detected robots can be also included as representations of occupied
space, however, their locations may be afterwards rescanned.

Sensors

The robot’s equipment characteristics are another crucial aspect that must
be considered when defining a robot mapping approach. This is because the
nature of the sensors not only provide the input to the map generation
process but also determine the kind of uncertainty associated with the
gathered information.

In the Introduction Chapter we already described the most commonly
used sensors, their characteristics and the kind of uncertainty they gen-
erate (see Sect. 1.1.4). Moreover, in the previous section we have
commented how do they have been modelled in many probabilistic,
evidential or fuzzy approaches. Therefore, here we just list several of the
previously referenced works based on the sensors they use:

» Sonar: (Moravec 85), (Gonzalez 96), (Pagac 96), (Konolige 97).

e Camera: (Franz 97).

» Laser range-finder: (Lu 97), (Vandorpe 96), (Krotkov 94), (Betgé-

Brezetz 96), (Bulata_96).

e Infra-red: (Amat 95) (L6pez de Mantaras 97), (Lépez-Sanchez 97ab,

98bcd, 99ab).

« Combination of sensors:

e camera and sonar: Kortenkamp (Kortenkamp 93) integrates
sonar and vision sensing using a Bayesian network to
perform place recognition.

* laser and sonar: (Fabrizi 99) (Yamauchi 98)

e robot sensor and sonar (Rekleitis 97), light sensor and sonar
(Zimmer 96), and compass and sonar (Kuipers 88).
However, the information coming from these sensors is not
integrated.

Fabrizi (Fabrizi 99) et al. propose a simple co-operative mechanism for
validating the information provided by the laser and sonar sensors. When
sensors of different nature are used, a competitive approach has been
proved to be successful. A ‘winner takes all’ criterion is specially
appropriate when the sources of uncertainty of the used sensors are
complementary. In this manner, this criterion allows to choose the most
reliable information under each operating conditions. Similarly, Yamauchi
has developed a technique he calls ‘laser-limited sonar’: if the laser returns
a range reading less than the sonar reading, it updates the evidence grid as
if the sonar had returned the range indicated by the laser.



280 Chapter 10: Conclusion

Map Representation and Uncertainty Treatment

Nowadays, map representation constitutes one of the most commonly used
criterion for the classification of the map generation approaches. And,
although we claim that it should not be the only one, its importance is
unquestionable. Section 10.0 is an overview of the mapping framework
where the different approaches are distributed among the area-based and
the feature-based paradigms. Therefore, we do not repeat the classification
that would correspond.

The first section also details how the Probabilistic, Evidential, and
Fuzzy theories have been widely used to treat the uncertainty associated
with the information. Here, we just list some of the approaches that use
these techniques and briefly comment some other approaches that treat
uncertainty by assigning reliability weights to the information.:

e Probabilistic: (Moravec 85), (Cox 94), (Konolige 97), (Thrun 98a)

e Evidential: (Pagac 96), (Yamauchi 98)

e Fuzzy: (Kim 94), (Lépez-Sanchez 97a), (Gasés 99), (Fabrizi 99)

*  Weighted: (Cai 96), (Liu 99), (L6pez-Sanchez 98a).

In (Cai 96) the reliability of the sensed information is concerned with the
robot moving speed and the property of the sensor. The approach in (Liu 99)
defines a confidence weight for each measurement. The weight is a function
of the distance between robot’s position and the measured neighbouring
location. In our third approach (Lépez-Sanchez 98a) the weight is a function
of the area of the obstacle (i.e., the area of its polygonal 2-D projection) and
the reliability of the sensor.

Map Usage

Map usage is the last (but not less important) aspect that must be taken
under consideration when defining mapping approaches. In the Introdic-
tion Chapter we referenced the ecological psychology theory of affordances
(Gibson 79), which says that things are perceived in terms of the opportuni-
ties they afford an agent to act. In our context, this means that the robot
should solely gather the information that is helpful for its ulterior task.
And naturally, this information should also be organised in a repre-
sentation that favours its retrieval and the usage required by the specific
task.

*  Path planning. In general, graph representations are more useful to
plan paths than grids. Some topological approaches that plan paths
are (Kuipers 88, Levitt 90, Kortenkamp 93). Levitt uses two path
planing algorithms: A* gives a sequence of viewframe headings
connecting the current location to the ultimate goal, and a qualita-
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tive path-planning algorithm implements a rule-based recursive
goal-decomposition approach. Most grid-based approaches that plan
paths (Guzzoni 97, Cai 96 or Yamauchi 98) transform free-space
cells into nodes of a graph, and then apply any search technique:
Yamauchi uses depth-first search, and Cai et al. a path planning
algorithm called D*, similar to A* but with cost parameters between
cells that can change during the problem solving process. Neverthe-
less, it is preferable to generate a more compact graph, as in the
second approach of this thesis (see Chapter 8 or (Lépez-Sanchez
99b)). There are also less common approaches, as the one in (Sgouros
96) where resulting paths are not edges in a graph but sequences of
attractors.

e Positioning. The positioning problem appears when the robot has not
accurate odometric information. As a consequence, it does not know
its location with precision and has to rely on exteroceptive
perception to make an hypothesis. Although it is possible localise a
robot by matching the current occupancy information with an area of
an occupancy grid (Yamauchi 96, Schultz 98), it has been
traditionally solved using landmarks (Fukuda 96, Boley 96, Thrun
98b). Other approaches, as the one in (Saffiotti 96), use fuzzy
locations.

10.3 The Mapping Approaches of this Thesis:
Contributions and Related Work

Up to this point, we have seen how the map generation problem can be
solved by different approaches using mobile robots. We have characterised
them on the bases of their settings, that is, those basic aspects that define
the environment treatment, the robot capabilities, the used representation
and the subsequent use of the map.

The aim of this section is to briefly review the three approaches pre-
sented by this thesis (summarised in the Introduction Chapter), and simul-
taneously, to comment their contributions to the general framework as well
as the commonalties they share with other approaches.

10.3.1 Representation of Orthogonal Indoor
Environments by means of Fuzzy Techniques

The approach presented in the first part of this thesis generates the map of
an indoors environment that is considered to be unknown but orthogonal
and mainly passable. The map generation process is performed by a group
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of small autonomous robots that explore the environment and a host
computer that generates the map incrementally from the information
gathered by the robots. Robots explore the environment by moving
randomly in free-space and following walls —or obstacle edges— when
detected. Whenever two robots meet, they co-operate by sharing their
information about the followed features. They also communicate this infor-
mation to the host computer, so that it can incrementally generate the map.
This map consists of a list of imprecise segments that are afterwards
related to form doorways and different kinds of corners. The main source of
uncertainty associated to the obtained information is the odometry error.
This error has been statistically studied and used to define the fuzzy sets
associated with the imprecise segments. These fuzzy sets are utilised to
fuse different imprecise segments that may correspond to the same feature
in the environment.

Contributions

The main contributions of this first part are the implementation of:

*  Multi-robot mapping. We have been referenced as the first approach
to collaborative multi-robot mapping (Thrun 98b). (Amat 95) de-
scribes the first publication proposing the multi-robot approach
described in this thesis!!. Nevertheless, our robots co-operate by
sharing maps when they meet, and this was previously discussed by
Ishioka et al. (Ishioka 93).

» Imprecise segments. We define an imprecise segment as a segment
that represents a feature of the environment (a wall or an obstacle
edge) with uncertainty about its location. This uncertainty is repre-
sented by means of a fuzzy set (see Sect. 3.2.2).

e Segment fusion. We provide an algorithm to combine imprecise
segments that may correspond to the same feature in the environ-
ment (see Sect. 3.2.2).

*  Map completion. After the map generation process, we propose rules

for reasoning about segment relations in order to define higher level
concepts such as doors, L-corners, and T-corners (see Sect. 1.1).

™ Tn 1995, the research of this thesis was just starting and, although my name does
not appear as an author, it is mentioned in the acknowledgements section.
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Related Work

We have already commented that just a few multi-robot systems have been
used for studying the map generation problem. From the approaches we
have referenced and explained in the previous section, we can conclude that
most of them cannot be compared to our system. Two of them (Guzzoni 97
and Liu 99) have the same layout of several robots and a base computer.
Since the former is based on having a previously given graphic repre-
sentation of the environment, we consider that our approach for mapping
unknown environments cannot be compared with this approach. The latter
(Liu 99), (which is simulated) generates potential maps that are difficult to
evaluate because the approach is focused on robot learning aspects (uses
genetic algorithms as a global optimisation method for selecting the
reactive motion strategies of the robots).

Although the multi-robot approach in (Thrun 98b) does not provide
results with more than one robot, the single-robot case can be extended to
the multi-robot rather naturally. Nevertheless, this single robot explores
the environment for the first time driven by a human (who, in addition
indicates the landmarks that the robot will use).

Yamauchi’s approach (Yamauchi 98) utilises two robots equipped with
sonar sensors and a laser range-finder. Most likely, it is the multi-robot
mapping approach that is closer to our research. The main difference is the
way robots gather information and the implication that this fact has in the
resulting map. Yamauchi’s robots gather occupancy information scanning
their surroundings with large-range sensors: several sonar sensors and a
laser. As we have said, they combine the sensor information with a ‘laser-
limited sonar’ technique that reduces significantly the occupancy informa-
tion errors. Nevertheless, they are not completely reduced and therefore,
there is still uncertainty about the existence or not of the detected features.
In our case, the exploration is done by following features at a close distance.
The sequence of movements necessary for a successful following guarantees
the existence of the detected obstacles. Therefore, the uncertainty is about
its position but not its existence. This means that we generate imprecise
maps without noise (in the sense that the information is certain but not
precise) whereas the ones obtained by them are noisy (that is, the
information they contain cannot be guaranteed to be certain).

Regarding the map representation issue, the imprecise segments used in
our approach represent their uncertainty by means of associated fuzzy sets.
This same concept of fuzzy segments has been recently utilised by Gasés
(Gasés 99), who groups consecutive sensor readings into fuzzy segments in
order to obtain single boundaries in the map representation. The difference
is that he assumes a vague previous knowledge on the objects’ sizes and
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locations that is expressed by means of linguistic terms (which are provided
by humans).

We have also provided an operation to combine imprecise segments
called fusion. It is based on the combination of the fuzzy sets associated to
the imprecise segments and has a relative distance threshold as parameter.
Segment fusion can be only applied for imprecise segments with overlap-
ping fuzzy sets. A similar idea is applied in (Lu 97), which links overlapping
scanned areas if they have ‘sufficient’ overlap (a percentage threshold over
the spatial extent of the overlapping area relative to the extent of both
scanned areas). Similarly, the approach by Vandorpe et al. (Vandorpe 96)
also matches geometric primitives using distance thresholds (as for
example, for the distance between the centre points of circles).

Imprecise segment representation allows the host to reason about their
relations in order to define higher level concepts such as doors or corners.
We have called this process map completion and is based on If-Then rules
that consider relative distances to relate neighbouring segments. Map
completion is related to the approach in (Bulata 96), which uses rules to
group landmarks that follow certain models. As we already noted in the
completion conclusions section (see Sect. 1.1), the authors of this approach
also claim that feature-based approaches using geometrical models can
easily lead to a combinatory explosion.

10.3.2 Using Possibility Grids for Structured Indoor
Environments

In the second part of the thesis we presented an alternative approach to the
multi-robot mapping problem that is very similar to the one in the previous
part (although the orthogonality requirement has been relaxed). In this
case, we have developed a simulator in order to be able to control the robots
in addition to mapping the environment. This allows us to design a robot
navigation strategy for exploring the environment that can also be adapted
to follow paths towards less explored areas. The map is a possibilistic grid
representation that allows a local combination of occupancy and free-space
certainty values. Paths are planned by applying a A* algorithm over a
visibility graph that is extracted from the occupancy information in the
grid. The environment coverage of the map can be improved by means of a
wall extension process that consist on the local propagation of occupancy
information in specific directions. In general, this process yields to planned
paths that are safer and require less use of reactivity than paths planned
over non-extended maps.
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Contributions

The second part is based on the simulation of the robots of the first part.
The following list solely contains the contributions that are new.

» A simulation of the environment. We have developed an application
that can simulate several 2-Dimensional environments with groups
of robots navigating inside (see Chapter 5).

*  Robots’ Exploration strategy. The simulated robots execute a simple
behaviour-based navigation strategy to explore the environment ran-
domly (see Chapter 6).

e Possibilistic grid map. We provide a new grid map representation
based on the assignment and combination of possibility and neces-
sity values representing ignorance, occupancy, and free-space (see
Chapter 7).

*  Map extension. We have implemented a method that propagates the
occupancy information in the grid (using free-space and occupancy
information as constraints). The method is described in Sect. 1.1,
and Sect. 1.1 justifies empirically that it yields to safer paths that
require less reactivity than paths planned over non-extended maps.

*  Graph extraction. From the occupancy values on the grid it is
possible to extract contours of polygonal obstacles and thus generate
a visibility graph (see Sect. 8.2.1).

e Robots’ path following strategy. We have implemented a behaviour-
based path following strategy that allows the robot to follow paths
(planned by the host) and to react when encountering non-previously
detected obstacles. The behaviours used in path-following are very
similar to those of exploration. (See Sect. 1.1).

Related Work

The introduction chapter comments that behaviour-based approaches have
been widely applied to robot navigation (see Sect. 1.1.2). In our approach,
each robot implements two navigation strategies: random exploration and
path following. Both strategies are based on the co-ordination among differ-
ent elementary behaviours. The architecture of each strategy is a determi-
nistic finite state automaton in which each state corresponds to an elemen-
tary behaviour. It implements a “one behaviour at a time” policy, thus
avoiding the problem of combination of outcomes that appears in those
approaches activating more than one simple behaviour simultaneously
(Saffiotti 97). Our solution is to have behaviours that are less simple
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(although non-complex) in order to take the decisions that satisfy the goal
for each strategy.

To the best of our knowledge, there are neither other possibilistic grid
approaches to the mapping problem nor grid approaches that apply any
method to extent occupancy information. Nevertheless, the approach by
Fabrizi et al. (Fabrizi 99) is close to ours because they use fuzzy sets over a
grid. They define the empty and occupied space as two fuzzy sets over the
environment (which is also unknown and office-like). The corresponding
membership functions quantify the degree of belief that each cell inside the
scanning area is empty or occupied, as computed on the basis of the
available measures. The main difference between these two approaches is
not the map representation but the robots: they use one single robot
equipped with sonars and a structured light vision system (see Sect. 1.1.4)
whereas we use several small robots equipped with infra-red sensors. As we
have already said, multi-robot strategies are more robust and degrade
gradually. Regarding the information gathering, there are two aspects to
comment. Firstly, they assume the robot stops to gather information at
previously known positions with complete accuracy. And secondly, the robot
scans large areas at each position. They combine the sensor information
analogously to Yamauchi, therefore, the discussion here is equivalent to the
one in the previous subsection: their resulting maps are noisy (i.e., uncer-
tainty about existence or not of obstacles) whilst we generate inaccurate
maps (i.e., uncertainty about the precise location of obstacles).

When combining occupancy information, there are grid approaches, as
the one by Konolige (Konolige 97), that distinguish independent informa-
tion when it comes from different robot poses (that is, position and
orientation). In our approach, we reinforce occupancy values when they
come from different wall —or obstacle edge— followings. Otherwise, our
approach combines occupancy values coming from the same wall following
by using a max operation.

Finally, just comment that visibility graphs (see Sect. 8.2.1) have been
also applied to other mapping approaches (Rao 96). But, as far as we know,
none of them has extracted the graph from a occupancy grid. We have
already commented that most grid-based approaches that plan paths (Cai
96 or Yamauchi 98) transform free-space cells into nodes of an adjacency
graph. However, this method can yield to unnecessary large graphs that
can be avoided by using our proposed graph extraction method.
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10.3.3 Using Symbolic Grouping for Outdoor
Environments

The last mapping approach we propose has been presented in the third part
of this thesis. It involves a heterogeneous group robots that collaborate in
the mapping of an outdoor environment. Obstacles in the environment are
modelled as 2-dimensional polygonal projections (most of them are ex-
tracted from aerial images taken by an autonomous helicopter).
Autonomous ground robots represent the environment by grouping overlap-
ping obstacle polygons into higher level structures with simple shape: the
obstacle areas. The resulting maps also include visibility graphs that allow
to plan paths at different levels of detail (obstacle area level or polygon
level). Each ground robot maintains dynamically both, its map and the path
towards its goal. Finally, the uncertainty associated to the information is
represented through reliability weights in the arcs of the visibility graph.

Contributions

*  Outdoor heterogeneous multi-robot mapping. We propose a mapping
approach that involves airborne and ground autonomous vehicles.
They are equipped with different sensors and have different tasks:
the helicopter flies towards and area taking aerial images and
ground robots plan paths dynamically and detect obstacles with
sonar sensors. Our outdoor map representation integrates features
extracted from different sensors and different robots.

* Robust robot co-ordination. Each time a robot extracts a new
polygonal feature, it broadcasts the information to the rest of robots.
In this manner, if the communication is permanently established, all
robots generate the same map. Nevertheless, since robots are
completely autonomous, a communication failure just implies that
robots will plan paths considering less obstacle information.

* Dynamic path planning at two different levels of detail. Grouping
obstacle polygons into obstacle areas provides a hierarchical map
representation that simplifies its update and treatment. This re-
duces the complexity of visibility graphs associated to each level of
information.

Related Work

Most multi-robot mapping approaches rely on robot communication. Never-
theless, some of them are more robust than others. For example, in
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(Rekleitis 97) full communication is assumed and required because a
moving robot obtains its current position from a second observer robot at
any time. Therefore, if the communication fails, the robot can hardly inte-
grate its gathered information without knowing its own position. Other ap-
proaches, as the one by Yamauchi (Yamauchi 98) are less dependent
because, like our approach, they broadcast new scanned information but
robots explore completely autonomously. However, in our approach, the
helicopter provides most of the information and, in general, the com munica-
tion between the air and the ground is less obstructed that the commu-
nication between ground robots. Hence, as a direct consequence of having
heterogeneous robots, we can expect that the robots in our approach share
information more efficiently than the homogeneous robots utilised in
Yamauchi’s approach. To the best of our knowledge, our approach consti-
tutes the only heterogeneous robot colonies that generates maps of
unknown outdoor environments. Due to the image polygon extraction
algorithm in the helicopter, we need to assume that the outdoors terrain is
similar to a parking area. Nevertheless, this assumption is less informed
than the one assumed in (Guzzoni 97), where two different robots navigate
in an office-like environment using a previously known graphic repre-
sentation of the office building (including rooms, hallways, and rough dis-
tances).

Multi-level maps and representations based on graphs have been
already discussed in the Topological Maps subsection (see Sect. 10.1.2.2).
From this map representation point of view our approach can be considered
as a hybrid (Lépez-Sanchez 98a). We group polygonal information into
obstacle areas and associate a visibility graph with the level of information
we are considering in the path planning task. From the feature based maps
subsection 10.1.2, it is obvious that these ideas of grouping information and
utilising graph representations are by no means new. Nevertheless our ap-
proach uses its representation at different accuracy levels to plan paths,
and diverges from standard topological map representations in the fact that
it does not involve any landmark treatment.

Finally, our proposed approach represents uncertainty through reliabil-
ity weights in the arcs of the visibility graph. These reliability weights are
computed as a function of the area of the obstacle and the reliability of the
sensor. This uncertainty treatment is similar to the approaches in (Cai 96)
or (Liu 99). In (Cai 96) the reliability of the sensed information is concerned
with the robot moving speed and the property of the sensor. The approach
in (Liu 99) defines a confidence weight for each measurement, where the
weight is a function of the distance between robot’s position and the meas-
ured neighbouring location.
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10.4 Future Work

This thesis presents the research done with three different settings of the
map generation problem. Nevertheless, we are currently working in two
research projects that also require a map of the environment. One of these
settings corresponds to an autonomous robot doing transportation tasks
inside a factory. Since the basic distribution in a factory does not change
very often, a map of the environment can be provided. Hence, the main task
is to plan paths and to be able to follow them while avoiding non-
permanent obstacles that may obstruct the planned paths. Currently, the
robot is under construction, so that in the medium term we will be able to
incorporate to the robot our behaviour-based path following approach,
which has been proved to be successful under simulation.

The other project we are currently working on corresponds to a legged
robot that navigates in unknown, outdoor environments. In this case, the
robot is equipped with stereovision and its image processing system is able
to extract several landmarks. Hence, our mapping approach is based on
landmarks and, since the odometric information in a legged robot is
extremely poor, the map representation must be topological. Stereovision
can also provide some metric information (such as distances to landmarks)
that will be incorporated in the map representation. For this approach we
will follow Prescott’s (Prescott 96) idea of using the (-model (proposed in
(Zipser 83)) to record information about groups of three landmarks and the
goal. This information is recorded once, and can be used to locate the goal
unambiguously if the three landmarks are visble. In our case, since
landmarks will not be assumed to be always recognisable, we will probably
use some additional landmarks.

The research presented in the second part of this thesis can be etended
to apply some learning techniques. In fact, during the development of this
part, we studied some reinforcement learning algorithms, specially the Q-
learning, which has been successfully applied to robot learning. (Murao 97,
Szepesvari 97, Yoshida_98). Nevertheless, reinforcement learning algo-
rithms require long learning periods that cannot be afforded by most
autonomous robots applications that do not consider toy problems. As a
consequence, we explored the field of case base reasoning. In order to learn
from examples, it is necessary to define an example as a set of attribute-
value pairs. In our case, since our behaviour-based strategy is based on If-
Then rules, it is possible to translate these rules in cases. The variables in
the rules would correspond to the attributes. In this manner, for each
behaviour, we can generate two decision trees: one containing the cases
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that correspond to the rules that define the next action to execute, and
another for deciding the activation of another behaviour. The underlying
idea is that the rules that have been developed for the basic behaviours can
be used as a knowledge base previous to the learning process. By
considering these cases, the robot could face similar cases with similar
actions. In order to do this, it will be necessary to define a similarity
function to retrieve from the knowledge base the most similar case. In
addition we also require a method for adapting the retrieved case into the
action necessary in the current situation. Currently, the translation of the
action rules into cases for the exploration behaviours has been done.
Nevertheless, our robots do not learn yet because we just have used the
equality as similarity function, and we do not adapt the resulting actions.
We propose to face the symbol grounding problem from this point of view.
For example, the wall end symbol has been already represented as a
specific sequence of sensor readings in the wall following behaviour.
Therefore, we can interpret this case as a grounded concept because the
robot recognises it based on its own sensing and experience. Our intuition
says us that similar concepts as corners or doors could also be learned and
grounded, but we have not proved it.
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