
MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ

EN INTEL·LIGÈNCIA ARTIFICIAL

Number 1

Institut d’Investigació
en Intel·ligència Artificial

Monografies de l’Institut d’Investigació en

Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based
Systems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology

MILORD II: A Language for

Knowledge–Based Systems

Josep Puyol i Gruart

Foreword by Jaume Agust́ı

Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Jaume Agust́ı
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Josep Puyol i Gruart
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Institut d’Investigació
en Intel·ligència Artificial

ISBN: 84–00–07499–8
ISSN: 1135–4100
Dep. Legal: B–34740–95
c© 1995 by Josep Puyol i Gruart

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Printed by Cardellach Còpies, S.L. CBS, S.A.

Sant Pere, 40.

08221 Terrassa, Spain.

Als meus pares.
A Carme i Pau.

Contents

Foreword xi

Preface xiii

Abstract xv

1 Introduction 1
1.1 Motivation . 1

1.1.1 Real World Expert Systems 1
1.2 From Milord to Milord II . 3

1.2.1 Milord Characteristics . 3
1.2.2 Differences and Improvements 4

1.3 Related Work . 6
1.3.1 Purpose . 7
1.3.2 Modularity . 7
1.3.3 Approximate Reasoning 8
1.3.4 Inference Engines . 9
1.3.5 Control . 10

1.4 Main Contributions . 10
1.5 Scheme of the Thesis . 13

2 Modularity 15
2.1 Introduction . 16

2.1.1 Previous Work . 17
2.1.2 Modular System . 17

2.2 Primitive Components . 19
2.2.1 Interfaces of modules . 22
2.2.2 Modular hierarchy . 24
2.2.3 Semantics of modules . 25

2.3 Generic modules . 28
2.4 Refinement, Expansion and Contraction 32

2.4.1 Refinement . 34
2.4.2 Expansion and Contraction 40

2.5 Special declarations . 41

vii

2.5.1 Inherit and Open . 41

2.5.2 Sharing . 43

2.5.3 Dynamic Modules . 43

2.6 Conclusions . 44

3 Approximate Reasoning 45

3.1 Algebra of truth–values . 47

3.1.1 Modus Ponens Operator 50

3.2 Uncertainty and Imprecision . 51

3.2.1 Intervals of Truth–values 54

3.2.2 Working with intervals . 56

3.2.3 Fuzzy Sets . 57

3.3 Local Logics . 60

3.3.1 Mappings between different local logics 61

3.3.2 Example . 63

3.4 Logic Declaration . 65

3.4.1 Truth values . 65

3.4.2 Connectives . 66

3.4.3 Renaming . 67

3.5 Conclusions . 68

4 Deduction by Specialization 71

4.1 Enriched Behavior . 71

4.1.1 Communication . 73

4.1.2 Solutions . 74

4.1.3 Validation . 79

4.1.4 Summary . 80

4.2 Specialization Calculus . 81

4.2.1 Syntax . 81

4.2.2 Semantics . 82

4.2.3 Specialization Calculus . 86

4.2.4 Soundness and Completeness 87

4.3 Implementation . 87

4.3.1 Inference Engine Design 88

4.3.2 Internal Representation of Deductive Knowledge 89

4.3.3 Specialization . 90

4.4 The Deductive Knowledge Language 94

4.4.1 Facts . 95

4.4.2 Rules . 100

4.4.3 Predicates on Facts . 101

4.5 Conclusions . 105

viii

5 Control 107
5.1 Implicit Control . 109

5.1.1 Subsumption . 109
5.1.2 Unnecessary Rules . 115

5.2 Threshold . 116
5.3 Evaluation Strategy . 117

5.3.1 Lazy . 117
5.3.2 Eager . 119

5.4 Reification and Reflection Mechanisms 119
5.4.1 Static Reification . 121
5.4.2 Dynamic Reification . 122
5.4.3 Deductive Control . 124
5.4.4 Structural Control . 124

5.5 Conclusions . 126

6 Applications 127
6.1 Introduction . 127
6.2 Terap-IA . 128

6.2.1 Motivation and Goals . 128
6.2.2 Architecture . 128
6.2.3 Implementation . 131

6.3 Spong–IA . 136
6.4 Ens–AI . 136
6.5 Fuzzy Control Example . 139

6.5.1 Simulation Process . 140
6.5.2 Controller . 141
6.5.3 Results . 145

6.6 Propagation Rules for Polytrees 146
6.6.1 Introduction . 146
6.6.2 Implementation over Milord II 150

6.7 Future Applications . 155
6.8 Conclusions . 155

7 Conclusions 157
7.1 Future Work . 158

A Syntax of Milord II 161
A.1 Notation . 161
A.2 Modular System . 163
A.3 Deductive Knowledge . 164

A.3.1 Dictionary . 164
A.3.2 Rules . 164

A.4 Inference System . 166
A.5 Control Knowledge . 167

A.5.1 Evaluation Type . 167
A.5.2 Truth Threshold . 167

ix

A.5.3 Deductive Control . 167
A.5.4 Structural Control . 167

B Proofs 169
B.1 Proposition . 169
B.2 Soundness Theorem . 171
B.3 Restricted Completeness . 171

B.3.1 Literal Completeness . 171
B.3.2 Restricted Literal Completeness Theorem 174

C Code Examples 177
C.1 Terap–IA Example . 177
C.2 Fuzzy Control Example . 195

C.2.1 Controller . 196
C.2.2 Simulator . 202
C.2.3 Whole Process . 202

C.3 Polytrees Example . 204

List of Figures 209

List of Tables 211

References 213

Index 221

x

Foreword

The Expert System Shell presented in this book, Milord II, is the result of
a long and intensive research effort made during eight years within the IIIA

in developing several real life Expert Systems. Milord II has been designed
and implemented not only having some possible usages in mind, but during
and through the applications development. To obtain the computational tools
that do some tasks previously done by professionals. So Milord II although it
generalizes from the particular domains who guided its design – mainly medicine
– it should be best understood and be most useful for the generic tasks it was
thought for, classification problem solving. This specialization, the narrow and
deep adaptation to a kind of problem, I think is a mark of good engineering.
Practical engineering including software engineering should be domain driven.

The author of the book fits perfectly well into this dynamic pattern of prac-
tical, day to day engineering. The practical solutions he gave to the problems
were frequently ahead of the theoretical reflection and the foundational effort.
Because the book is the Ph.D. Thesis of the author this practical trend is made
less evident than it could be. Only the last chapter on applications is completely
devoted to show it. The four central chapters of the book show the theoretical
and technical foundations of Milord II. Firmly grounded on them, Milord II
is a powerful tool for classification problem solving with uncertain and incom-
plete information, allowing modular and incremental development and reuse of
solutions.

Bellaterra, February 1996
Jaume Agust́ı

Head of the
Formal Methods Department

of the IIIA, CSIC

xi

xii

Preface

One of the main topics at the IIIA has been the study and development of
Knowledge–Based Systems, going from the theoretical aspects to the practical
development of languages for Expert Systems and real world applications.

Since 1985 our group has been working on the development of a shell for
Expert System named Milord. The first version of Milord was finished in 1989.
Milord introduced great important advances on uncertainty management lan-
guages and multi–level architectures for Expert Systems. The main applications
developed using Milord were in the medical domain. The most important was
Pneumon–IA, an Expert System for the diagnosis of pneumoniae.

The acceptance of Milord shell and its applications prompted us to think in
a second version much renewed of the shell we named Milord II. Since 1989 we
have been developing Milord II, which is the topic of the present work.

As it can be seen from the structure of this book the new contributions
have been the modularization, the uncertainty management, the deduction by
specialization and the reflective control architecture of Milord II. Like in Mi-

lord, this research has been driven by the applications, then a set of new real
world applications and examples have been developed using Milord II. In this
book we present some Expert Systems on different domains: Spong–IA, for
identification of marine sponges; Terap–IA, for treatment of pneumoniae (the
natural extension of Pneumon–IA); Ens–AI, for psicopedagogical diagnosis; and
some small examples.

The research on Milord II is not considered to be finished in the sense that
new applications and ideas still contribute to the continuous enrichement of the
language. Now we are working on a new version of Milord II (MilordAgents
?) based on Multi–Agent Systems. The main idea is to study the cooperation
of cognitive agents based on Milord II modules.

Milord II has been developed in Common Lisp (the interpreter) and in
C (the compiler). This software is available for research and educational pur-
poses. A fresh version for Macintosh1 machines can be obtained by anonymous
ftp at ftp.iiia.csic.es in the directory /pub/Milord/mac, or in the WWW at
http://www.iiia.csic.es/˜puyol. Now we are working on versions for PC and
Unix machines.

1Macintosh is a trademark of Apple Computer, Inc.

xiii

Acknowledgments

This work has been influenced by many people. I specially thank Jaume Agust́ı,
who introduced me to research activities and who has provided guidance and
support in the development of this work.

Carlos Sierra has greatly influenced this work because this thesis is the nat-
ural extension of his previous work, Milord. He has provided me extensive
support. We had large discussions on Milord II and I have benefited of his
advice and assistance during Milord II design and application development.

Llúıs Godo has collaborated in all the questions dealing with uncertainty
management.

I am in debt with the experts that have applied Milord II to real world
problems. Pilar Barrufet, Marta Domingo, Clara Barroso and Llúıs Murgui
have been patient and constant users of my system.

The Milord II Compiler has been developed by Josep Llúıs Arcos. He has
suffered all the continuous changes we were introducing in the language.

Finally I would thank all the IIIA colleagues and friends for their collabora-
tion and support, specially Francesc Esteva, IIIA Director, and Ramón López
de Mántaras, head of our group.

All this work has been developed first in the Artificial Intelligence Group at
the Center for Advanced Studies of Blanes (CEAB), which in October 1995
moved to the newly created Artificial Intelligence Research Institute (IIIA).
CEAB and IIIA are research institutes from the Spanish Scientific Research
Council (CSIC). This work has been financed mainly by CICYT Spanish projects,
SPES project n. 880j382 and TESEU project TIC91–0430. My thanks to these
Institutions for providing the necessary means for the development of this work.

Bellaterra, February 1996
Josep Puyol i Gruart

E–mail: puyol@iiia.csic.es
http://www.iiia.csic.es/˜puyol

xiv

Abstract

Milord II is an architecture and a language for the development of knowledge–
based systems. In particular we are interested in real world Expert Systems, that
is, those that are useful in a real environment and that have real purposes. To
do that we propose a language based on modules as a method for programming
in the large. Modules, generic modules and a set of operations on them are the
basis of this language. A program in Milord II is then a hierarchical structure
of modules. A module is an encapsulated unit with a well defined interface to
other modules. Each module is composed of deductive knowledge (weighted facts
and rules), local logic (a truth values algebra declaration) and a local control
component (Horn–like metarules).

Each module contains its own local logic to deal with approximate reasoning.
An algebra of truth–values is defined to perform the deductions in a weighted
rule–based language (deductive knowledge). A mechanism is provided to find
valid translations of the terms communicated between modules with different
logics.

The deduction mechanism of Milord II is based on the concept of Spe-
cialization. This leads to a new inference engine which improves the deduction
compared with the engines based on Modus ponens. These improvements facili-
tates the communication with the user, the validation and the understanding of
Experts Systems.

Finally we discuss a set of applications and examples developed using Mi-
lord II.

xv

xvi

Chapter 1

Introduction

To introduce the content of this thesis it is necessary first to talk about what are
the problems we want to handle, and what is the kind of solutions we propose.
Here it is very important to fix the type of problems, its environment, what kind
of solutions we are interested in, where, and who is the user of those solutions.
In this Chapter the motivation, the history and a summed up description of
Milord II modular language and its environment are presented.

1.1 Motivation

We say that somebody is an expert when he is skilled in some matter by practice.
Examples of human experts are physicians, biologists, mechanics, engineers, and
so on. They are able to solve problems by using knowledge obtained by practice,
despite they also have somewhat deep knowledge about their knowledge domain.
Expert Systems (ESs) have proved to be useful tools to automate this kind of
problem solving.

The goal of this thesis has been the design and implementation of a modular
language named Milord II, that offers a powerful, simple and friendly environ-
ment to develop ESs. We should notice that the starting point of this thesis was
the previous language Milord. This language and their applications allowed us
to experience new problems, which guided us to the design of a new language
based on the previous one.

First we should fix what kind of Expert Systems Milord II is intended
for, and who are the expected programmers and users of Milord II and its
applications.

1.1.1 Real World Expert Systems

One of the main characteristics of Milord II is that it addresses the development
of real world ESs, that is, the problems we want to solve are not toy examples,

1

2 Chapter 1. Introduction

and both the programmers and the users are professionals interested in obtaining
good results from the system.

Below we present the main characteristics of our work environment, that lead
us to the actual design and implementation of Milord II.

• We think that the programmers of ES applications with Milord II are
experts in some knowledge domain. Normally they are not knowledge
engineers or artificial intelligence specialists. In general, they deal with
application domains where expertise is required, for instance medical or
biological domains. That means that they need simple tools and simple
languages to develop their applications1. Milord II has been designed to
be an easy to use system.

• Experts are qualified and busy professionals, then we should offer friendly
tools to them. Simplifications of problems would lead us to good examples,
but the interest of experts in them will be poor. This implies the need to
handle non simplified real problems to motivate the use of the system by
experts. In this case programming an ES becomes a useful work being
able to structure, understand and diffuse the own knowledge the expert
has. Experts have used Milord II to develop ES applications as biological
classification, medical diagnosis, etc.

• Notice that our applications are highly interactive and that this interaction
is done with humans. We consider users of Milord II people who works
with the ESs generated by programmers. Users have different levels of
expertise. They can be experts in the domain knowledge of the system, or
non expert users. It both cases they need a good communication with the
system and a high level of confidence on it. Specialization is a key concept
introduced in Milord II to produce a good communication with the users.

• Some features of the real applications are the big size, and the incomplete,
imprecise and uncertain knowledge they have. To match these character-
istics we needs an expressive language that provides structuration tools,
incremental design, reutilization of components and approximate reason-
ing. These characteristics are very important in the design of Milord II.
Modularity and uncertainty treatment are the key points of the system
together with specialization.

• Most of the problems we want to handle are classification tasks. We con-
sider classification the task of finding solutions in a known and finite search
space. Milord has been applied mostly to this kind of applications, and
Milord II follows the same way. Examples of classification applications
are medical diagnosis, biological classification, and so on.

1Considering the experts as programmers do not mean that applications are totally devel-
oped by experts. In our case experts have continuous advising from us, we take then the role
of knowledge engineer. It is easy to see that if experts have a good knowledge of the tools they
are using, the communication between the expert and the knowledge engineer is easier.

1.2. From Milord to Milord II 3

• Finally we think that real applications should work in real environments.
The lack of informatic resources in the environments where the applica-
tions could be tested and used is a common problem. This contributes to
isolate the system. We should accommodate and we did it the resource
requirements and the efficiency of Milord II shell to the most normal
machines usually present in the environment of the application.

We have explained the main features and problems that experts and users2

of Real ESs must face. In this thesis we will propose solutions for that. At
this point we should talk about the previous experience with Milord and the
improvements that Milord II introduces to handle the kind of ESs described
above.

1.2 From Milord to Milord II

Notice that the development of Milord II was possible thanks to our previous
experience acquired in ES design. The acceptance of Milord Shell (Godo et
al., 1988; Sierra, 1989) and the applications developed allowed us to think in a
second version much renewed of the Shell we named Milord II. This experience
and all the considerations above lead us to the design and implementation of
Milord II Shell, keeping in mind that the programs should be useful in the real
environment of the application domain.

The transition from Milord to Milord II was a natural one directed by the
applications. The main applications developed with Milord were in the medical
environment, as Pneumon–IA (diagnosis of pneumonia) (Verdaguer, 1989) and
RENOIR (rheumatic disease diagnosis) (Belmonte, 1991). Furthermore Milord

was the starting point of new works on validation (Meseguer, 1992) and case–
based reasoning (López, 1993).

The new applications we are developing with Milord II are: Pneumon–

IA II (a modular version of Pneumon–IA, a system for pneumonia diagnosis),
Terap–IA (treatment of pneumonia), Spong–IA (sponge classification) and Ens–

AI (psycho–pedagogical diagnosis).
To see the improvements and differences of Milord II with respect to the

previous version we summarize Milord characteristics in the following. The needs
detected during the development of the applications have guided the improve-
ments of the system.

1.2.1 Milord Characteristics

It is not our purpose here to describe exhaustively the Milord system. Here we
want to point out those elements that had a close relation to the new design.
We can summarize the main characteristics of Milord in the following points:

2Notice that in the following, when there is no ambiguity, we will use experts meaning the
programmers of Milord II applications. When it is necessary we will distinguish between
users and expert users.

4 Chapter 1. Introduction

Multi–level Architecture: One of the main purpose of Milord was the clear
separation among different sorts of knowledge, that is, associative, struc-
tural, hypothetic and heuristic. That architecture allowed the experts to
give a good structuration of his knowledge providing a clear separation
between domain and control knowledge.

Uncertainty Treatment: A good effort was done to approach and represent
the type of uncertainty the experts normally use to express their knowl-
edge. Milord used fuzzy logic with linguistic labels to represent uncertainty.
Experts were able to define their own logic in the applications.

Modularity: A first proposal (design not implementation) of modularity was
done in Milord in order to support programming in the large. This proposal
was based in the modularization of the domain knowledge only as a static
structuration tool. Before the interpretation of a program, it had to be
compiled to a flat structure, that is, to an equivalent and non modular
program. The multilevel architecture of control was outside this modular
structuration.

Communication: The behavior of Milord was the standard of many Expert
Systems. The user gives a goal to the ES, and the ES asks to the user for
the values of the facts which are relevant to obtain a solution. Finally the
ES answers the value of the goal, or unknown if it was not able to obtain
a solution.

Implementation: The version of flat3 Milord was implemented and tested with
the applications mentioned above. Because of the great amount of re-
sources that symbolic computation consumes (Milord was programmed in
Common Lisp), the current technological state forced the use of mini com-
puters to implement and run Milord.

Following the above points we can give a brief analysis of the main differences
and improvements of Milord II with respect to Milord.

1.2.2 Differences and Improvements

Milord and Milord II have many common points, going from the characteristics
of the language to the applications programmed with them. It is very difficult
to analyze in depth these points without making an exhaustive explanation of
both systems. For that reason here we only describe the main conceptual and
architectural differences between Milord and Milord II leaving the details of the
common points and the differences to be explained along this thesis. The points
we will take into account are: modularity, approximate reasoning, behavior and
communication. A summary of these differences between Milord and Milord II
are given in the Table 1.1.

3Modular Milord was not implemented.

1.2. From Milord to Milord II 5

Milord Milord II

structuration multi–level architecture modularity + local control

control propositional meta–rules first–order meta–rules

uncertainty linguistic labels intervals of linguistic labels

logic default logic local logic to modules

inference engine backward, forward specialization

communication standard behavior enriched communication

Table 1.1: Main differences between Milord and Milord II.

Modularity and Control

The first point we studied in the design of Milord II was the modularity. The
final proposal of modularization was more radical than that of Milord in the sense
of encapsulating all the components of an ES into modules. A module contains
both the object level and the control level. There are no global components in
Milord II.

The first consequence of that decision is that the control is local instead of
global. We consider that control is a component of the problem solving task
tied to the domain knowledge. Modularity allows us to decompose a problem
into simple subproblems. Following this kind of structuration of problems, it is
easy to see that, when we decompose a problem, we know how to control its
subproblems. Global control would confuse this kind of structuration.

The second consequence is that we substitute the multilevel architecture of
control of Milord with a structure composed by a hierarchy of modules with local
control. It is well known that we can think in multiple levels of control. Finally
the question ”Who controls the control?” is frequent. Despite the multilevel
control of Milord showed to be useful in the applications, it is limited. The
modules with local control of Milord II are more flexible, they allow us to
build other multilevel architectures with the numbers of levels required. The
critical point is that there is no a preprogrammed architecture of control as in
Milord and then the programming task could be more difficult.

From the implementation point of view another difference between Milord II
and Milord is that, before run time, Milord compiles the modular object level
of the program to a flat one. Milord II preserves the modular structure, the
modules are objects with a permanent entity.

Another characteristic of Milord II is that it provides dynamic modules,
that is, the modular structure can be created at run time.

Approximate Reasoning

After the definition of the modular language, the second topic that was treated
in the design of Milord II was the approximate reasoning.

Programmers of Milord were able to define the logic that would be used in

6 Chapter 1. Introduction

their applications. Taking into account the modular structure of Milord II we
studied the possibility of defining different logics into the different modules. This
means we can use different languages of representation in the different modules
(Harper et al., 1989). Then, in Milord II the definition of logics is local to the
modules and it provides mechanisms of communication between the different
local logics of the modules.

Another improvement of Milord II over the uncertainty treatment of Milord

is the introduction of imprecision. This is made by means of the extension of
the uncertainty calculus of linguistics labels to the intervals of linguistics labels,
and the use of fuzzy sets.

Behavior and Communication

One of the main goals of this thesis is to enrich the behavior of ESs. A standard
ES receives queries from the user, asks questions to the user, and finally answers
the queries of the user. We are interested in improving the way the system ask the
user, and in enriching the sort of answers the system gives to the user. Remember
that normally our applications are interactive and the users are human. Then
the following points are very important:

• It should be clear to the user that the sequence of questions he is answering
actually drives the system to the solution he is interested in, and that the
information he gives to the system is properly used to find this solution.

• The solutions found by the system to the queries of the user should be
informative enough. For instance, the answer unknown is not informative
at all, it only says that the system was not able to find a solution.

To solve these problems Milord II introduces an inference engine based on
specialization of KBs. This kind of inference engine allows us to make indepen-
dent the search and the deductive processes instead of the classical interleaved
search and deductive processes of the standard inference engines as backward
and forward ones. This allows us to implement different control strategies in or-
der to improve the quality of the process of obtaining information from the user.
Furthermore the inference engine of Milord II is able to obtain conditional
answers and deal with unknown answers from the user.

Finally notice that Milord II Shell runs over personal computers to facilitate
its use by experts in the environment of the applications. This is not a merit of
the implementation but of the new advances introduced in the current personal
computers.

1.3 Related Work

After the first experiences with ESs at seventies (for instance, MYCIN (Short-
liffe, 1976)) knowledge–based systems, and artificial intelligence in general, have
experimented a continuous evolution of the ideas, styles and techniques.

1.3. Related Work 7

Artificial Intelligence have been more and more specialized and a great num-
ber of new disciplines have come out. Knowledge representation, problem solving
methods, approximate reasoning, methodologies for knowledge engineering, for-
mal methods, learning, and so on, are examples of topics that have generated a
lot of work.

We will give a brief explanation of some aspects we consider they are the most
relevant to relate with Milord II. The languages appeared in this Section are
from the classical ones to other actual languages that we consider are interesting
to be related with Milord II now, and in the future. You can find a very
interesting description of some of these systems (including Milord II) through
a common example in (Treur and Wetter, 1993). In the same book there is a
comparison study of these languages (vanHarmelen et al., 1993).

1.3.1 Purpose

The first criteria for the comparison of languages is the purpose the languages
pursue. We can distinguish between the languages that are designed to build
executable systems for some concrete applications from those that find formal
specifications of general tasks, problem solving methods, domain models and so
on.

The purpose of the language determines the sort of development task used to
design and implement a concrete language for knowledge engineering. The lan-
guages directed to the applications are designed following a bottom–up method-
ology. There is a feedback cycle between the language designers and the experts
with their applications. Then, this kind of languages are incrementally designed
and implemented on demands of the applications and the experts. The second
type of languages are devoted to the modelization of more general problems and
they follow a top–down methodology of development.

The resultant languages designed with these approaches differ on their ex-
presivity power. Those languages designed with the first type methodology are
more expressive and easy to use for the specific kind of problems they has been
designed. The others can cope a wider set of problems, but the expresivity power
becomes poor.

As explained in the introduction, we are interested in the implementation of
real ESs, then the development of Milord II was directed by the applications it
was involved in. We have designed a language the more adapted to the kind of
problems it is applied. AIDE (Gréboval and Kassel, 1992) language has a similar
approach to develop real ESs and it is oriented to give good explanations. Mi-
lord II is able to build real size applications.

1.3.2 Modularity

All the language designers agree with the need of providing programming con-
structs for the modularization of the programs. Some languages encourage more
than others this technique and the architectures of the modular systems are
different.

8 Chapter 1. Introduction

In some cases the current methodologies for knowledge engineering, as com-
ponents of expertise (Steels, 1990), KADS (Wielinga et al., 1992) or generic
tasks (Chandrasekaran, 1987), determine the kind of modularization used in the
languages.

Several languages are related with KADS methodology such as (ML)2 (van-
Harmelen and Balder, 1992), AIDE (Gréboval and Kassel, 1992), KARL (Fensen
et al., 1991), and KBSSF (Veld et al., 1993). These systems implement the
global layering of KADS methodology, that is, domain, inference, task and strat-
egy layers. The modularization is limited to be used into each layer, i.e. a
modular structure in the task layer or in the strategic layer.

The language COMMET (Jonckers et al., 1992) uses the components of ex-
pertise methodology based on tasks, models and methods.

Other languages as DESIRE (Langevelde et al., 1993) and the language MC
(Giunchiglia et al., 1993) do not have this limitation and the specifications are
a set of interconnected reasoning modules, where each module is treated as an
independent unit. These languages are used to define different kind of modules,
such as domain and control modules.

The approach of Milord II is different in the sense that each module contains
the domain knowledge (object level) and the local control knowledge (meta level)
of the module. The interaction between modules is limited to object–object only,
thus forcing purely local application of the meta–knowledge.

No one of the previous modularization techniques is based on the idea of a
module as a specialist like in Milord II.

Mostly of the languages (including Milord II) encourage the user to encapsu-
late the local knowledge into modules. Other systems as AIDE has programming
constructs but they do not force the user to exploit them. The modularization
techniques of Milord II are based on theories used in the language ML (Harper
et al., 1986).

1.3.3 Approximate Reasoning

Usually the information contained in the KBs is imperfect. Experts manage
uncertain, imprecise, and incomplete information. Approximate reasoning is
then an important topic in the development of ESs.

There are three main approaches to deal with uncertainty, that is, the prob-
abilistic, the evidential, and the possibilistic approach. Let us to give a brief
vision of these approaches in order to situate that of Milord II.

There are several models based on probability. We can consider Bayesian
Networks (Pearl, 1986), Nilsson’s Probabilistic Logic (Nilsson, 1986), Subjective
Bayesian Networks of PROSPECTOR (Duda et al., 1976), and Certainty Factors
of MYCIN (Shortliffe and Buchanan, 1975).

The lack of expressiveness is the main problem of the models based on prob-
ability. They can not express vague predicates (for instance, tall). We must
specify probabilities but in practice they represent subjective appreciations that
are not based on statistical analysis. In this case it is very difficult that ex-
perts are able to represent these probabilities with enough precision by means

1.3. Related Work 9

of real numbers. Finally notice that the models based on bayesian networks are
computationally expensive.

The evidential theory of Dempster–Shafer (Dempster, 1967; Shafer, 1976)
has its main problem in the computational complexity, despite it is very useful
to manage uncertainty.

Both Milord and Milord II are based on possibilistic approaches. Zadeh
introduced fuzzy logic to manage uncertainty and vagueness (Zadeh, 1975). We
think that this approach provides an understandable and computationally effi-
cient method to deal with imperfect information. Milord uses a linguistic approx-
imation based on linguistic terms as fuzzy intervals (Godo et al., 1988; Sierra,
1989). The expert declares the linguistic terms as fuzzy intervals by defining
a trapezoidal characteristic function. From these declarations Milord computes
the truth tables of the conjunction, disjunction and implication operations. In
the Milord approach still remains the problem of the numerical representation
of the linguistic terms.

Milord II uses multi–valued propositional logic. The expert can choose a
set of linguistic terms and define a set of logical operations directly on the set
of linguistic values.

Milord II uses this kind of logic because multi–valued propositional sen-
tences are easy to understand and to use for the kind of applications we are
normally involved. The lack of first order constructs is compensated by multi–
valuedness of the logic (for instance, DESIRE use three–valued first order logic).

It is very important to notice that we extend the multi–valued logic to in-
tervals of linguistic terms and that the modules of Milord II contain its own
local logic (Agust́ı et al., 1991; Agust́ı et al., 1992) . Milord II provides the
constructs of the language and a set of utilities to define different local logics
adapted to the different problems represented by different modules. Further-
more we provide the method to find valid mappings between these logics in
order to communicate different modules with different local logics without loss
of consistency.

1.3.4 Inference Engines

A lot of systems based on first order logic use the Prolog technology. In other
cases the classical inference engines like that backward and forward ones are
used. For instance, Teiresias (Davis, 1982) has simple control strategies based
on forward or backward engines.

As cited above the inference engine used in the modules of Milord II is based
on the specialization of KBs (Puyol, 1992a; Puyol et al., 1992b). Specialization
is based on the notion of partial evaluation expressed in the well known Kleene’s
Theorem (Kleene, 1952). Briefly, if we have a function of n arguments and we
know the value of an argument we can specialize this function obtaining a new
one with the same arguments that before but the known one. We can consider a
KB as a function with arguments the set of facts needed to reach the goal of the
KB. We specialize the KB with a known fact obtaining a new KB specialized by
the new domain that contains the known fact.

10 Chapter 1. Introduction

Milord II is based on logic, then we use the term partial deduction instead of
partial evaluation following the suggestion of Komorowski (Komorowski, 1981;
Komorowski, 1990). Partial deduction algorithms have been intensively used in
logic programming (Venken, 1984; Gallagher, 1986; Komorowski, 1981; Takeuchi
and Furukawa, 1986; Lloyd and Shepherson, 1991) mainly for efficiency purposes.
Our approach is different for instance from the logic programming one used
in (Lloyd and Shepherson, 1991). There, partial evaluation was goal driven,
whereas here partial evaluation is data driven.

Milord II inference engine is also related to other work on conditioned
answers (Demolombe, 1990; Vasey, 1986; Sakama and Itoh, 1986) and on the
treatment of unknown information (Wolstenholme, 1987). Specialization used
in Milord II allows us to obtain conditioned answers after the specialization of
a KB with the known information. Our system is able to answer a useful result
even in the case of partially unknown information.

The main difference of Milord II specialization with respect to other uses
of partial deduction, is that it is based on a multi–valued propositional language
and it is oriented to the improvement of the communication of ESs.

1.3.5 Control

The first type of production rule languages like OPS5 (Forgy, 1981) used to define
a single level of production. Milord II as DESIRE have declarative control
through a reflection mechanism. Other systems use procedural, functional, or
guided by the user control.

Milord II uses Horn–like rules to define the control knowledge of a module.
Remember that the interaction between modules is limited to object–object
interaction, then the meta–knowledge is local to each module (DESIRE and MC
have metamodules).

Milord II does not use global control and all the components of control are
local to the modules. This allows us to clarify the problem structuration giving
a easy idea of the way control is implemented in an application.

1.4 Main Contributions

The main contribution of this thesis is the integration and implementation of
a set of techniques, like specialization in multi–valued logics, and theoretical
results, some of them introduced here, into a language for the development of
ESs. The language has been implemented and a set of real size applications has
been developed.

The structure of this thesis is aimed at a deep, exhaustive and understandable
description of the Milord II system. Then we summarize the contributions of
the thesis following the same scheme of the thesis Chapter by Chapter.

Chapter 2. A modular language which allows a top–down and incremental
methodology of ESs programming.

1.4. Main Contributions 11

Classical software engineering approves top–down design as a good pro-
gramming methodology. The modular language of Milord II allows ex-
perts to develop programs with a disciplinated methodology based on the
decomposition of problems into simpler subproblems.

Each module of Milord II contains all the components that usually define
a whole ES, that is, the domain knowledge, the control knowledge, the logic
and so on. The idea of a module as a local expert or specialist distinguishes
our modular system from others. Then we can consider an ES as composed
of a set of ESs modules, one for each subproblem to solve. Modules are
organized into a hierarchical structure that provide the form of integrating
the solutions of the subproblems to build the solution of the whole problem.

Incremental programming is another interesting feature of top–down pro-
gramming. It consists in defining problems at different level of detail,
initially by means of a partial description which is successively refined ob-
taining more concrete definitions of the problem. We stop when the level
of detail is the required one.

The modules have a well defined interface, and the language also provides
generic modules and a set of operations devoted to the incremental pro-
gramming of modules.

The contributions of this Chapter to the development methodology of
knowledge–based systems are the following:

• A methodology of programming based on problem decomposition.

• An homogeneous language based on modules, generic modules and
operations between them. The primitive component of Milord II are
the modules. Relational, functional, logic, and control knowledge, are
encapsulated into modules. All the components are local to modules.

• A methodology of incremental programming for knowledge–based sys-
tems.

Chapter 3. Managing imperfect information. Local logics.

The knowledge that experts manage is imperfect, that is, incomplete, im-
precise or uncertain. Milord II deals with this kind of information by
means of an object level language of order 0+ based on many–valued log-
ics. The use of linguistic terms as truth–values makes the language closer
to the experts.

Milord II allows the experts to define the local logic that will be used in
each module, this allows us to use in each module the logic more adequate
to the problem that the module represents. The expert can also define
the mapping between the terms of the different local logics of modules. A
mechanism to find valid mappings between these terms is provided. The
terms of a module are in this way put into correspondence with the different
terms of another module.

The contributions of this Chapter are of different types:

12 Chapter 1. Introduction

• An empirical contribution to the use of multi–valued logics based on
intervals of truth–values to deal with uncertainty and imprecision.

• An empirical and development methodology contribution by the in-
troduction of fuzzy sets into the data types of Milord II.

• A contribution to the theory of local logics mappings and a practi-
cal formulation of the algorithms to find morfisms between different
logics.

• A development methodology contribution by the introduction in the
language of the local logic declarations and the translations of terms
of different modules with different logics.

Chapter 4. A new behavior of ESs based on Specialization of Knowledge Bases.

We consider a module as an entity capable of solving a concrete problem
in a well defined domain. Then we say that a module is a specialist. When
we introduce a new piece of information into a module we are specializing
the module for a new and more restricted domain (the previous one plus
the new information). The inference engine for the object level language
of Milord II is based on this concept of specialization. As we will see this
gives us an enriched behavior that allows conditioned answers.

The contributions of this Chapter are of different types:

• An empirical contribution to the interpretation of deductive processes
as the specialization of KBs, and its applications to the improvement
of the whole behavior of an ES.

• A theoretical contribution to the development of the Specialization
Calculus or deduction by specialization with uncertainty.

• An empirical contribution to the separation of the control and logic
semantics of the deduction by the separation of the search and de-
ductive processes in the inference engine.

• An empirical contribution to the design of the deductive process.

• A development methodology contribution by the definition of a lan-
guage to declare the deductive knowledge of modules.

Chapter 5. Control adapted to the modular structure.

Milord II has no global components, all the components are encapsulated
into modules. That is the same for control. When we decompose a prob-
lem into subproblems we rely on strategies to focus the problem solving
behavior to the more adequate subproblem in each moment. Local con-
trol allows us to define a set of control parameters and a set of metarules.
These metarules control the execution of the module that contains them
and also are responsible of the hierarchical structure of the submodules.

We can summarize the contributions of this Chapter:

1.5. Scheme of the Thesis 13

• An empirical contribution to the control. Implicit control takes ad-
vantages of the specialization allowing to save questioning, computa-
tion and using the more specific knowledge.

• A development methodology contribution by introducing the explicit
local control into modules. It is composed of static declarations
(threshold, evaluation) and dynamic ones based on Horn–like me-
tarules.

Chapter 6. A set of applications developed using Milord II.

The applications developed using Milord II and the set of new problems
they have raised ensures that Milord II can be used to model complex
problems that belong to the category of real ESs.

• Contributions to the development methodology by advising and giv-
ing support to experts during the development of real applications
and some examples.

1.5 Scheme of the Thesis

This thesis is composed of seven Chapters and three Appendixes. Each Chapter
is devoted to a key concept of Milord II. They are ordered to provide an
incremental introduction to the language Milord II and its semantics.

Chapter 2: contains the description of the modular component of the language.
It presents the syntax and the semantics of modules, generic modules and
the operations between modules like refinement, contraction and expan-
sion.

Chapter 3: is devoted to the approximate reasoning. We present the algebra
of truth–values used in Milord II and the set of operations which defines
a logic language of order 0. After that the extension of that algebra to
an algebra of intervals of linguistic terms is introduced. It allows us to
introduce imprecision in Milord II. We present fuzzy sets as a method
to talk about sets in Milord II. Finally we deal with local logics and the
form to find valid mappings among the different logics of modules.

Chapter 4: addresses to the concept of specialization of KBs. We define the
specialization calculus for a multi–valued logic language. We present the
definition of the inference engine that implements that calculus. Finally
we introduce the concrete syntax of the deductive knowledge of Milord II
and all the extralogical components.

Chapter 5: considers the local control of Milord II that is composed of the
implicit control and the explicit one declared by the user.

Chapter 6: is devoted to the applications and examples that have been devel-
oped using Milord II system.

14 Chapter 1. Introduction

Chapter 7: summarizes the conclusions of this work.

After that we include three appendixes. Appendix A contains a complete
BNF description of the syntax of the language Milord II. Appendix B contains
the proofs of the theorems appeared in Chapter 4. And Appendix C contains
complete coded examples of applications developed using Milord II.

Constructs of the language are introduced by means of examples of real
applications developed using Milord II mainly from Terap–IA and Spong–IA

expert systems4. We try to give simple descriptions of the components of the
system.

4For the sake of simplicity examples from applications are simplified to give only an idea
of the constructs introduced. A general view of these applications is presented in Chapter 6
and Appendix C.

Chapter 2

Modularity

Classical software engineering approves top–down design as a good programming
methodology. Decomposition of a whole problem into simple subproblems allows
us to have a clear gain in clarity, simplicity, complexity degree and debugabil-
ity of programs. Milord II is a programming environment that offers all the
advantages of the structured problem solving.

The experience of our group in Knowledge Based Systems (KBSs) design and
development, specially using knowledge acquisition techniques (Plaza and López
de Mántaras, 1989), have allowed us to detect a number of needs that can be
tackled with the methodology we propose here. Among them we can emphasize:
Modularity, multilanguage representation, local control, reusability, incremental
development and validation. Let us briefly discuss the meaning of all these:

Modularity. The usual way of understanding a complex problem is to decom-
pose it into simple subproblems using simple operations. To make a useful
decomposition of problems, subproblems must have a simple and well de-
fined interaction. The determination of the adequate nature of modules,
or partial Knowledge Bases (KB’s), that represent the subproblems and
the definition of the combination operations of these partial KB’s, are key
points in the design of a language for Knowledge Engineering.

Multilanguage representation. The basic operations of modularization and
modification of modules are independent from the underlying language
used to define the bodies of the modules. This independence allows the
use of different representation languages in the different modules (Harper
et al., 1989). A simple example of this is the use of different multi–valued
logics in each module (Sierra and Agust́ı, 1991).

Local Control. Control is a component of the problem solving task tied to the
domain knowledge. Thus it must be a component of each module.

Reusability. In the building process of a KB it is important to be able to reuse
existing partial KB’s of problems solved beforehand (Chandrasekaran, 1986;

15

16 Chapter 2. Modularity

Goguen, 1986). For instance, although the diagnosis of infectious chest ill-
ness and that of chest tumors are essentially different, they could share the
knowledge of an analysis of a thorax radiography. This is an example of
two modules that share the same submodule. There are many examples of
this. Gram analysis is a task that is independent of the type of sample we
are considering. We can program gram analysis as a generic task instead
of a specific gram analysis for every type of sample. So, as a requirement
of our language, we need generic program units that could be instantiated,
or reused, in different contexts. These are the generic modules.

Incremental modification of KB’s. The KB building methodology is an it-
erating two–step process. First a prototype is build (or modified), then it
is validated. Thus, it is convenient to have some safe refinement opera-
tions in the language that support this process of incremental KB building
(modification). These operations have to preserve the adequacy of the KB
behavior with respect to the behavior required by the expert as stated in
the export interface of each module.

Validation. Normally KB validation is applied only to the KB considered as a
whole and after it has been completely build. We think validation should
be done during the KB building process in each module, i.e., in the different
and successive partial KB’s or modules that, conveniently combined and
progressively refined, will result in the total KB. The validation should
not be just a final quality control test, but it must be integrated into the
building process of the system. We can use any validation method for
every module that belongs to a whole ES. Thus the complexity degree of
the validation task diminishes considerably.

All the above issues can be grouped taking into account the classical cycle of
software. Modularity, local control and multilanguage representation are then
tied to the development process of an ES. These are related to the decomposition
of problems and the encapsulation of information. We can build each problem
unit using the information, control and representation language more adapted
to it. Reusability and incremental modification of KB’s are related to the mod-
ification of an existing system. The techniques that help in the modification of
KB’s are very useful. After a first design we should validate it and modify it if
necessary.

2.1 Introduction

All these considerations have determined the design of Milord II. Now we intro-
duce some precedents of Milord II and the main constructs that the language
provides to satisfy the above needs.

2.1. Introduction 17

2.1.1 Previous Work

The construction of modular expert systems started with the work in Milord

(Agust́ı et al., 1989; Sierra and Agust́ı, 1991). The main idea was to adapt to
ES’s the modularization techniques of the language ML (Harper et al., 1986),
and use them to make modular the rule language Milord. A key feature of these
techniques is that the modular language is independent of the underlying lan-
guage. Similar work was previously done with functional and logic programming
languages (Sannella and Wallen, 1987; O’Keefe, 1985; Miller, 1986).

We should consider two aspects of this first attempt. The first one is about
the modular language of Milord, and the second one is about its implementation.

Milord modular language provided a tool based on modules and generic mod-
ules to structure the domain knowledge of an application. Notice that modu-
larization affected only the domain knowledge (control knowledge was a global
component). This sort of technique was useful for the Milord goals, that was: to
grow down the design difficulty using a discipline of structuration, to control the
possible errors, etc. The control and the declaration of the multi–valued logic
for the applications remained global.

In Milord II we propose a more radical modularization technique (Puyol
et al., 1991) in the sense that we avoid global components in the system. As
explained above local control and multilanguage representation are desirable
characteristics of a modular expert system. Then Milord II introduces local
control and local multi–valued logics into the modules.

Now we come to the implementation aspect. An application written in Milord

modular language was compiled to a flat1 structure (a set of Milord rules, the
core language of Milord) as described in (Agust́ı et al., 1989). Milord modularity
was based in a compiler to translate a modular program to an equivalent flat
one, and then using the Milord interpreter for the flat program. This solution
was taken to keep the rule interpreter of Milord.

The modular language of Milord II is not compiled to a flat one. The
proposal of Milord II is not just adding some syntactic modular facilities to
the rule–based language but gives a semantic approach close to object oriented
languages. Modules of Milord II have its own entity at runtime and we are able
to give a semantic interpretation of the modules as specialists (Sticklen et al.,
1987) in some aspect of an application. The interpreter of Milord II is oriented
to the execution of the modules and the communication among them.

2.1.2 Modular System

In this Chapter we explain the modular components of Milord II, that is, the
concepts of modules, submodules, generic modules and the refinement, expansion
and contraction of modules. The internal components of modules (deductive
knowledge, local logics, local control, etc) will be explained along this thesis.

Before to enter in the concrete syntax and semantics of Milord II modular
language let us to introduce informally the main concepts by means of an ex-

1We consider that a structure is flat when it is no modular .

18 Chapter 2. Modularity

ample from Bacter–IA application (microbiological analysis for the diagnosis of
pneumoniae) that will be used along this Chapter.

Modular Hierarchy

One of our main goals is to design a language that allows us programming in
the large. The normal method is to divide the problem in a set of simpler sub-
problems. This leads us to the notion of modules and submodules hierarchically
organized, representing the modules problems, and its submodules the decompo-
sition of these problems into subproblems. Every subproblem can be recursively
decomposed to its subproblems resulting in a hierarchical structure of modules.

First we should clarify which is the notion of problem used in Milord II.
To define a problem we must precise first what we consider is a solution for
that problem, which are the useful data we need to know in order to obtain that
solution and how to obtain that solution from that data. For instance, consider a
very simplified problem of pneumoniae diagnosis. The solution to that problem
is to find the germ causing pneumoniae. The data is relative to the patient. The
solution to that problem is then to give certainty degrees to a set of concepts
(in this case germs): pneumococcus, haemophilus, staphylococcus, and so on.
A possible solution could be pneumococcus is very possible and staphylococcus
is slightly possible. Obviously we need to know relevant data (input) about a
concrete case to be able to find those solutions, for instance the parameters of
a microbiological analysis of a sputum sample of the patient, or data about the
kind of infection he has.

The specification of a problem then consists in identifying a set of goals to
achieve, and the elements needed to solve them. Modules implement functional
abstraction, in the sense that we can see a module as a blackbox, and we know
which are the requirements of the module (input) to reach exported results
(output). The notion of module is based on the concepts of encapsulation and
information hiding. Encapsulation consists in grouping the components that are
useful to reach a concrete set of goals. Information hiding is realized declaring
inside a module which components are visible from outside the module. All the
other components are effectively hidden. From the problem specification of the
previous example we can build a module with outputs the germs and as input
the necessary data to give a certainty value to the germs.

The above problem is a complex one, it may be decomposed in a set of
subproblems. For instance, the problem of finding the germs causing pneumoniae
can be simplified by decomposing it in four submodules: the first one is devoted
to obtain a respiratory diagnosis of the patient; the second one finds the kind
of infection the patient has; the third one informs about the previous treatment
that has been administrated to the patient and finally the last one consist in a
gram analysis of a sample of the sputum of the patient.

All these subproblems provide useful data for giving certainty values to the
set of germs cited above.

2.2. Primitive Components 19

Generic Modules

We have structured the problem in subproblems and the system would be more
powerful if it allows the reutilisation of these units in the case of similar subprob-
lems. For instance, we can think on the previous problem of finding the germ
causing pneumoniae. We have seen that the solution for the problem depends
on the solutions of a set of subproblems. Remember that one of the subproblems
was a gram analysis of a sample of the sputum of the patient.

However some data obtained from a gram analysis of the sputum could be
obtained from different gram analysis over different samples. In this case it is
not necessary to define a different problem solution for each type of analysis, it
would be enough to define a generic problem solution depending on the kind of
analysis. We incorporate generic modules in the language, which are modules
depending on other modules as parameters (module variables or inputs) or also
called parameterized modules. Then we can obtain the concrete subproblems
(modules) through the instantiation of generic modules by substitution of pa-
rameters with concrete modules. In the example it is shown the instantiation of
a generic problem with a concrete laboratory analysis of a sample.

Refinement, Expansion and Contraction of Modules

In the introduction we talked about providing tools to the user to facilitate the
construction of knowledge bases. One of the facilities of the modular language
is that it allows us to decompose a problem in a set of modules. Furthermore we
can introduce other tools to aid the construction of each module. We introduce
in the language the notion of refinement, a sort of incremental programming. We
can specify a module incrementally, that is, from the first version of a module to
other versions of the same module that are refinements of the previous version
(more detailed problem description). Then we can incrementally build more
concrete versions of the module until a final version is achieved. Similarly we
can say that a module is an expansion or a contraction of a previous module
(we expand or contract the set of problems that the previous module was able
to solve). In the example above we can say that the description of a sample of
sputum is a more refined version that the general description of a sample.

In the following we introduce the syntax of modules progressively. We only
describe the simplified syntactical categories as they are needed in each Section.
For a complete description please consult in the Appendix A.

2.2 Primitive Components

Now we explain the concrete syntax of the declaration of modules that allows
us to declare the concepts we have introduced informally. For that we will use
the same example.

Modules are composed of a set of declarations: import and export interfaces,
dictionary, submodules, rules, control, metarules, logic and so on. The decla-
ration of the submodules settles the hierarchic structure of the module. The

20 Chapter 2. Modularity

declaration of submodules is identical in every aspect to the declaration of the
modules.

The components of modules are the following (see the example from Bact-

er–IA for the module Gram in Figure 2.1):

Interface: The interface of a module has two components: the import and
the export interface. They implement the external requirements (from
the user) and the results of a module. All the facts inside a module not
declared in the export interface are hidden to the outside of the module.
In the current example the export interface of the module Gram is the set
of germs cited above. In this case this module has not import interface
because it does not need data from the user.

Hierarchy: The hierarchy of a module is a set of submodule declarations. A
module has visibility over all the facts exported by its submodules. In the
example the module Gram has four submodules (D, T, P and S). They are
declared in Figures 2.3 and 2.8.

Kernel: The kernel allows modules to deduce the components of its export in-
terface from the components of its import interface and those of the export
interfaces of its submodules. The kernel of a module is made up of two
components called deductive knowledge and control knowledge. Deductive
knowledge includes the declarations of the object language which in our
current implementation is a rule–based language. Control knowledge is
represented by means of a meta–language which acts by reflection over the
deductive knowledge and the hierarchy of the module. A module with an
empty kernel can be considered to be a pure interface. In our case the
main components of the code of a module are basically a set of rules and
meta–rules to be interpreted by an inference engine.

The language provides three basic mechanisms of module manipulation:

1. Composition of modules through the declaration of submodules.

2. Composition of modules through operators defined by the user via generic
modules definition.

3. Refinement, expansion and contraction of modules.

In this Chapter we will introduce the module declarations and the mecha-
nisms of module manipulation mentioned above. The components of the kernel
of a module as the deductive and the control declarations will be presented in
Chapters 4 and 5 respectively.

2.2. Primitive Components 21

Module Gram =
Begin

Module D= Respiratory Diagnosis
Module T= Type of Infection
Module P= Previous Treatment
Module S= Gram of Sputum
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
Deductive knowledge

Dictionary: not defined here

Rules:

R001 If S/DCGP then conclude Pneumococcus is possible
R002 If S/DCGP and D/Bact Pneumonia

then conclude Pneumococcus is very possible
R003 If S/BGN and D/Aspiration Pn and T/Nosocomial

then conclude Enterobacteria is quite possible
R004 If S/CBGN and P/Penicilin

then conclude Haemophilus is sure
Inference system:

Truth values= (impossible, few possible, sligh possible, possible,
quite possible, very possible, sure)

Renaming

D/False ==> impossible
D/True ==> sure
T/False ==> impossible
T/True ==> sure
P/impossible ==> impossible
...

Connectives:

Conjunction = Truth Table

((impossible impossible impossible impossible,
impossible impossible impossible)

...
(impossible few possible sligh possible possible

quite possible very possible sure))
end deductive

Control knowledge

Evaluation Type: Lazy
...
end control

end

Figure 2.1: Example of module declaration.

22 Chapter 2. Modularity

interface ::= [import]
[export]

import ::= Import predicateidlist
export ::= Export predicateidlist
predicateidlist ::= predid , predicateidlist | predid

Figure 2.2: Syntax of interfaces.

2.2.1 Interfaces of modules

Figure 2.2 contains the syntax of the interface declarations, that consist in a list
of facts for each interface.

Imported facts are those facts whose values can be obtained from the user
during the execution of a module. For instance, the module Previous Treatment
of the Figure 2.3 has the following declaration:

Import Prev Treat

Imported facts like Prev Treat are asked when needed in the evaluation of a
module2. The code of a module containing an import declaration will be allowed
to ask to the user for values of imported facts only. For instance the module of
the previous example can only ask to the user for the value of the fact Prev Treat.

Exported facts are those facts that are visible outside the module. They
can be asked by the user or by other modules. For instance, the module Previ-
ous Treatment of the Figure 2.3 has the following export interface declaration:

Export Penicilin, Tetracycline

All the exported facts like Penicilin either have to be deduced by the kernel
of the module or have to be imported by the module (obtained from the user).
In this example the facts of the export interface can be deduced by the kernel by
means of the rules R001 and R002. Notice that the facts of the export interface
of the module Type of Infection of the Figure 2.3 are imported directly from the
user (Nocosomial and Extrahospitalary are facts that belong both to the export
and import interface of the module). Facts deduced and imported facts not
mentioned in the export declaration of the module are hidden to the rest of the
modules including the user, i.e., they cannot be used in the body of the rest
of the modules. A module with no exported facts is meaningless. However we
can access to the exported facts of its submodules as explained in subsection
access names below. The code of a module containing an export declaration will
provide means to answer questions about the values of the exported facts only.

2When and in which order the imported facts are asked to the user is determined by the
type of evaluation of the module. See the Section 5.3.

2.2. Primitive Components 23

Module Respiratory Diagnosis =
Begin

Import Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
Export Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
Deductive knowledge

Dictionary: not defined here

Inference system:

Truth values = (false, true)
Connectives:

Conjunction = Truth Table

((false false) (false true))
End deductive

End

Module Type of Infection =
Begin

Import Nosocomial, Extrahospitalary
Export Nosocomial, Extrahospitalary
Deductive knowledge

Dictionary: not defined here

Inference system:

Truth values = (false, true)
Connectives:

Conjunction = Truth Table

((false false) (false true))
End deductive

End

Module Previous Treatment =
Begin

Import Prev Treat
Export Penicilin, Tetracycline
Deductive knowledge

Dictionary: not defined here

Rules :

R001 If Prev Treat = (Peni) then conclude Penicilin is sure
R002 If Prev Treat = (Peni) then conclude Tetracycline is impossible
Inference system:

Truth values = (impossible, sure)
Connectives:=

Conjunction = Truth Table

((impossible impossible) (impossible sure))
End deductive

End

Figure 2.3: Example of module declaration.

24 Chapter 2. Modularity

2.2.2 Modular hierarchy

Writing a Milord II program implies to start defining modules. The primitive
syntax of module declarations is described in Figure 2.4. A module declaration
(moddecl) is composed of a module identifier (amodid) and a body (bodyexpr).
The body of a module can contain other module declarations (hierarchy). We
say that the modules in the hierarchy declaration are submodules of the module
that contains the declaration. For instance the module Respiratory Diagnosis is
a submodule of the module Gram (see Figure 2.1).

moddecl ::= Module amodid = bodyexpr
bodyexpr ::= pathid |

begin decl end
pathid ::= amodid | amodid/pathid

decl ::= [hierarchy]
[interface]
[deductive]
[control]

hierarchy ::= moddecl |
hierarchy hierarchy

Figure 2.4: Syntax of modules.

The language provides two types of module declarations, depending on the
type of body declaration. We will use as an example the set of modules in
Figures 2.1 and 2.3.

Encapsulated declarations

Encapsulated declarations are the most primitive module declarations. They
associate a module identifier to a body. The body declaration gives a complete
description of the module. The module declaration between keywords begin
and end contains the hierarchy, interface and kernel declarations (deductive
and control knowledge) of the module.

Module Gram = Begin ... End

For instance, the module Gram (Figure 2.1), and the modules Respira-
tory Diagnosis, Type of Infection and Previous Treatment (Figure 2.3) are ex-
amples of encapsulated declarations.

Declarations by reference

Module identifiers are used to refer to modules3. For instance in Figure 2.1,
the hierarchy declaration in the module Gram references the module identifier

3The referred modules may not have been created in the moment when their names are used,
expediting thus a top down design. In the following we consider for simplicity that symbols

2.2. Primitive Components 25

Respiratory Diagnosis with the following declaration:

Module D = Respiratory Diagnosis

In this case D is the internal name of the module Respiratory Diagnosis used
in the module that contains this declaration (Gram).

Access names

With the declarations contained in the above examples we obtain the mod-
ule Gram which has four submodules: Respiratory Diagnosis, Type of Infection,
Previous Treatment and Gram of Sputum. The internal names D, T, P and S
correspond to these submodules. They are used to reference the facts exported
by each of this submodules.

Paths of module names (pathid) indicate how to access a module in the hier-
archy of modules. A path to a module is composed by module names separated
by a slash character ”/”. For instance the path Gram/D references the module
Previous Treatment.

The access to exported facts of modules is composed of a path to a module,
the slash character and the name of the exported fact. For instance, to access
the exported fact Extrahospitalary of module Type of Infection we can use the
following equivalent names4.

Type of Infection/Extrahospitalary
≡ Gram/T/Extrahospitalary

Given a module we can access to the exported facts of that module and to
the exported facts of its submodules, using the adecuate paths.

We can use encapsulated declarations or declarations by reference depending
on the structure we want to give to our problem. If we use only encapsulated
declarations we will produce a structure with only a top level module. All the
other modules have to be accessed by means of paths of module names.

2.2.3 Semantics of modules

At this point it is interesting to give a formal description of the modular en-
vironment of Milord II. After that we will extend this description with new
elements. We will keep the same example of Figure 2.1.

A program is a table P from system module identifiers IdM to the set of
modules M:

P = IdM → M

The set of system module identifiers IdM is a set of internal names to distin-
guish the different modules (we will use names like mod1, . . . ,modi for the set

exist when they are referenciated, that is, there are already all the encapsulated declarations
that are required.

4At the moment we consider that all the modules are visible. In the following Sections we
will see cases where not all the possible paths are allowed. For instance, the submodule T

could be hidden outside the module Gram.

26 Chapter 2. Modularity

M and > for the top module). The set of modules M = M ∪ {>} is composed
by the set of modules M that are created from all the encapsulated module
declarations (begin ... end), plus a virtual module named > (top module).

In our example (Figures 2.1 and 2.3) there are five declarations of this type.
They create a set of six module identifiers.

IdM = {>,mod1,mod2,mod3,mod4,mod5}

Each module m ∈ M is composed of the hierarchy (H), export (E), import
(I) and kernel (K) components. The top module only contains the top level
hierarchy of modules (export5, import and kernel components are empty).

M = H × E × I × K

In the following to simplify the notation we will use Hm as the hierarchy
component of a module m ∈ M6. Similarly for the export, import and kernel
components (Em, Im and Km respectively). The hierarchy of a module m ∈ M
is a function Hm from local submodule identifiers of the module m, Im, to
identifiers of the modules M (IdM) and a visibility module qualifier (visible,
hidden or open7).

Hm : Im → IdM × {visible, hidden, open}

Each module has its own function that points to its submodules. Following
the same example, we will show the hierarchy components of those modules (see
the Figure 2.5). The top level module contains all the modules declared by
means of encapsulated declarations at top level:

I> = {Gram,Respiratory Diagnosis, Type of Infection,
Previous Treatment,Gram of Sputum}

H>(Gram) = (mod1, visible)
H>(Respiratory Diagnosis) = (mod2, visible)
H>(Type of Infection) = (mod3, visible)
H>(Previous Treatment) = (mod4, visible)
H>(Gram of Sputum) = (mod5, visible)

The module Gram has four submodules declared by reference:

Imod1
= {D,T, P, S}

Hmod1
(D) = (mod2, visible)

Hmod1
(T) = (mod3, visible)

Hmod1
(P) = (mod4, visible)

Hmod1
(S) = (mod5, visible)

5As noticed above a module with empty export interface has no sense. In that case the top
module is a special module and we are only interested in accessing the exported facts of its
submodules.

6For instance the hierarchy of a module m could be expressed as Hm = first(P (m)), the
first component of the tuple corresponding to identifier m.

7In Section 2.5.1 we will see open declarations of submodules. Now we consider all the
modules are visible.

2.2. Primitive Components 27

@
@

@R

�
�

�	

?

HHHHHHHHHHj

@
@

@
@

@
@

@
@

@@R

�
�

�	

�
�

�
�
�

�
�

�
�

�
�

�
�
�

?

�
�

�
�

�
�

�
�

��	

Type of Infection

mod3

Gram of Sputummod5

Previous Treatment

mod4

Respiratory Diagnosis

mod2

Gram

mod1

>

DT P
S

Figure 2.5: Hierarchy example.

After the definition of the semantical structure of a program and given the
functions that allow us to access the elements of that structure, we define the
main function that is used to execute a program.

Let us introduce the function to query an ES. Query is a command that
given a path name (a question prefixed by a path) returns an answer to that
question. It will be the main function of the system that allows us to start the
execution of an ES. The syntactical form is the following:

Query query
query ::= factid | moduleid/query

For instance, with the set of modules introduced above we can start the
execution with the following query from the user:

Query(Gram/P/Peniciline)

The functions Querym(x) are internal queries to the modules, they represent
a query, of fact x to the module m. Its definition is the following:

Querym : query → Answer

Querym(moduleid/query) =

Queryx(query) ∃x,Hm(moduleid) =
(x, visible)

error otherwise

28 Chapter 2. Modularity

Querym(factid) =

{

deducem(factid) if factid ∈ Em

error otherwise

Notice that when we query a module for a fact belonging to a submodule of
that module, this module has to be visible. The execution of a query always
starts on the top module. For instance, consider the command above, where the
Milord II interpreter (INT) makes a query to the top module of the current
ES.

INT [[Query(Gram/P/Peniciline)]]
Query>(Gram/P/Peniciline) =
QueryH>(Gram)(P/Peniciline) =
Querymod1

(P/Peniciline) =
QueryHmod1

(P)(Peniciline) =
Querymod4

(Peniciline) = deducemod4
(Peniciline)

Finally the interpreter starts the deduction in the module mod4 (expressed
by deducemod4

) in order to give a value to the fact Peniciline. We will return
to this point along the thesis. We have introduced the modular structure of
a program from the semantic point of view. In the following we will extent
this semantical description adding new components that we will progressively
introduce.

2.3 Generic modules

The instantiation of a generic module is considered as a module declaration. The
definition of generic modules opens to the user the possibility of defining specific
operations of composition of modules. Generic modules are then operations (or
functions) on modules. This standard technique to define generic modules is the
one to define functions, that is, it consists of isolating a piece of program, or
module, from its context and then abstracts it by specifying:

1. Those modules upon which the abstracted module may depend (require-
ments or parameters of the generic module).

2. The contribution of the abstracted module to the rest of the program
(results or export interface of the generic module).

As we said the obvious example of this technique is functional programming,
where such abstractions (functions) form the basic program units. The func-
tional body defines how to compute the output (results) in terms of the input
(requirements). The method for building large KB systems consists of applying
generic modules to previously built particular modules.

An example of definition of generic modules is presented in figure 2.6. Re-
member the example used until now. The module Gram (Figure 2.1) has four
submodules (Figures 2.3 and 2.8). The submodule S corresponds to the gram
analysis of sputum. Now the generic module Global Gram (Figure 2.6) repre-
sents a general gram analysis over different samples. Global Gram can now be

2.3. Generic modules 29

applied to different modules to produce new modules analyzing different types
of samples. For instance, an equivalent of module Gram (named New Gram) can
be obtained by instantiating the generic module Global Gram with the module
Gram of Sputum.

Keeping the common parts in a generic module we can save code and time
and make the code much more understandable. Finally when a module is
needed to make the gram analysis of a sputum sample, it is only necessary
to put both modules together by a generic module application, for instance
Global Gram(Gram of Sputum).

In Figure 2.7 we extend the syntax of modules declaration of Figure 2.4
adding the generic modules declarations.

The declaration of a generic module is like a normal module except that in
the hierarchy component of that module there are submodules with local names
the parameters of the generic module. These submodule names point nothing
until the instantiation of the generic module. Then the instantiation of a generic
module consists in:

• Making a copy of the generic module.

• Solving the hierarchy component of that copy.

For instance, we can add to our current system the generic module Global Gram,
as the new module mod6. The hierarchy component of that module is:

Hmod6
(D) = (mod2, visible)

Hmod6
(T) = (mod3, visible)

Hmod6
(P) = (mod4, visible)

Hmod6
(X) = ∅

To compute Global Gram (Gram of Sputum) we make then a copy of that
module (mod7) and solve the hierarchy component linking the submodule X with
the module Gram of Sputum. This is the module New Gram. It is equivalent
to the previous one (Gram), except that the submodule X (Gram of Sputum) is
hidden outside Global Gram.

Hmod7
(D) = (mod2, visible)

Hmod7
(T) = (mod3, visible)

Hmod7
(P) = (mod4, visible)

Hmod7
(X) = (mod5, hidden)

The parameters of a generic module are considered as submodules. If we
want to refer to exported facts of these submodules we must build a path with
the parameters names (for instance in the rules of the module Global Gram we
have X/CBGN).

The parameters of a generic module are submodules hidden outside the
generic module. For instance, notice that the submodule X is hidden outside
the new module New Gram. The following query is then wrong because the
submodule X is hidden (Hmod7

(X) = (mod5, hidden)):

30 Chapter 2. Modularity

Module Global Gram (X) =
Begin

Module D= Respiratory Diagnosis
Module T= Type of Infection
Module P= Previous Treatment
Export Pneumococcus, Haemophilus, Enterobacteria
Deductive knowledge

Dictionary: not defined here

Rules:

R001 If X/DCGP then conclude Pneumococcus is possible
R002 If X/DCGP and D/Bact Pneumonia

then conclude Pneumococcus is very possible
R003 If X/BGN and D/Aspiration Pneumonia and T/Nosocomial

then conclude Enterobacteria is quite possible
R004 If X/CBGN and P/Penicilin then conclude Haemophilus is sure
Inference system:

Truth values= (impossible, few possible, sligh possible, possible,
quite possible, very possible, sure)

Renaming =

D/False ==> impossible
D/True ==> sure
T/False ==> impossible
T/True ==> sure
P/impossible ==> impossible
P/sure ==> sure
X/false ==> impossible
X/unlikely ==> [impossible, possible]
X/may be ==> possible
X/likely ==> [possible, sure]
X/true ==> sure

Connectives:

Conjunction: the same table defined in Figure 2.1.

end deductive

end

Module New Gram = Global Gram(gram of sputum)

Figure 2.6: Example of generic module definition and application.

2.3. Generic modules 31

moddecl ::= Module modbind
modbind ::= amodid [([paramlist])] [= bodyexpr]

bodyexpr ::= pathid[([iparamlist])] |

begin decl end
paramlist ::= amodid | paramlist ; paramlist
iparamlist ::= bodyexpr | iparamlist ; iparamlist

Figure 2.7: Syntax of generic modules.

Module Gram of Sputum =
Begin

Import Sputum Clas, Sputum Gram
Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
Deductive knowledge

Dictionary: not defined here

Rules :

R001 If Sputum clas=(Grup 1,Grup 2,Grup 3)
then conclude Sputum ok is true

R002 If Sputum clas=(Grup 4,Grup 5,Grup 6)
then conclude Sputum not ok is true

R003 If Sputum ok then conclude Gram yes is true
R004 If Sputum not ok then conclude End is true
R005 If Sputum Gram=(DCGP MC) then conclude DCGP is true
R006 If Sputum Gram=(DCGP MC) then conclude CGPC is unlikely
R007 If Sputum Gram=(CGPC MC) then conclude CGPC is likely
R008 If Sputum Gram=(CGPC MC) then conclude DCGP is unlikely
R009 If Sputum Gram=(CGPR MC) then conclude CGPR is true
R010 If Sputum Gram=(BGN MC) then conclude BGN is likely
R011 If Sputum Gram=(CBGN MC) then conclude CBGN is likely
Inference system:

Truth values = (false, unlikely, may be, likely, true)
Connectives: ...

End deductive

End

Figure 2.8: Example of module used as parameter of a generic module.

32 Chapter 2. Modularity

INT [[Query(New Gram/X/CBGN)]]
Query>(New Gram/X/CBGN) =
QueryH>(New Gram)(X/CBGN) =
Querymod7

(X/CBGN) = error

A generic module can use the exported facts of its module parameters, so the
instantiation of a parameter can not be made with any module, but only those
exporting the needed facts. For instance the module Gram of Sputum exports
the facts needed in the rules of the generic module Global Gram. In the following
we will see how to make save the instantiations of generic modules by means of
declaring the parameters as refinements of another module (like giving a type to
the parameters).

We want to support the process of incremental KB building by means of
generic modules. So whenever the definition of a generic module changes, these
changes must be reflected in the rest of the program. The way to do it is just
to repeat the module applications that refer to the modified module. This re–
linking process can be automatised by the compiler, so that the user gets rid of
this task.

2.4 Refinement, Expansion and Contraction

Before explaining these operations on modules we need to know which are the
main components of the kernel of modules. It is not our purpose here to ex-
plain in detail the kernel of modules. We only give a short description of the
main semantical components of the kernel which are needed to understand the
explanations of the current Chapter.

The kernel of modules is composed of the deductive and the control knowl-
edge (see the Figure 2.9) . Deductive knowledge is composed of the definition
of facts (dictionary), the rules and the definition of the local logic (inference
system). At the moment we consider the kernel of a module composed of the
following set8: dictionary, rules, logic and control.

The kernel of a module m ∈ M is composed by the dictionary (Dm), the
rules (Rm), the logic (Lm) and the control (Cm).

K = D × R × L × C

So far we have described modules and generic modules. These declarations
are enough to write programs. Now we introduce the operations that allow us
to deal with incremental programming in Milord II. These operations are the
refinement, expansion and contraction of modules.

Top–down programming methodology is related to an incremental specifica-
tion of problems. We have seen that modular decomposition of problems is a
useful technique to simplify the programming task. We can think in a program

8The complete explanation of the deductive and control knowledge will be done in Chap-
ters 4 and 5 respectively. Here we only explain what is needed to understand the concept of
inheritance which is closely related to modularity and affects mainly the kernel of modules.

2.4. Refinement, Expansion and Contraction 33

Deductive knowledge

Dictionary: ...

Rules: ...

Inference system: ...

end deductive

Control knowledge

Evaluation Type: ...

Truth Threshold: ...

Deductive Control: ...

Structural Control: ...

end control

Figure 2.9: Kernel declaration scheme.

as a hierarchy of modules, but we are interested in including in the language a
set of operations for assisting experts in the process of development, from the
first prototype to the final version of the program.

The task of incremental programming consists in writing a first prototype,
then a second one, and so on until a final version is achieved. This imposes two
requirements to our system. The first one in that the partial specifications of
modules must be executable to test them. The second one is that we need to
define a set of operations for overseeing this process of incremental building of
programs.

If you observe the concrete syntax of modules in Appendix A you can no-
tice that many components of modules are optional. Semantically any module
declaration has sense, for instance, we can declare modules without control com-
ponent, or without import interface, etc. In some cases we do not declare some
components of modules because we want to define them incrementally. For in-
stance, if we execute a module which contains only an export interface, it will
answer to all the questions unknown.

When we program a new version of a previous program we are interested in
checking and declaring what is the relation with the old version. In Milord II
this relation can be a refinement, contraction or expansion of the previous one.
Milord II provides these set of operations at modular level, then we say that a
module is a refinement of another one when the set of accessible9 facts is the same
that the previous one and these facts can be obtained with more or equal precise
values10. When we expand the accessible facts in the next version or reduce
them then we talk about expansion and contraction operations respectively.

In Figure 2.10 we extend the previous syntactical declarations of modules
with these new module operations. The symbols ”:”, ”>” and ”<” stand respec-
tively for the module refinement, expansion and contraction operations. They

9Remember that the accessible facts of a module are the facts belonging to its export
interface and those of the export interfaces of its submodules.

10Precision is a topic that will be explained in Section 3.2.

34 Chapter 2. Modularity

can be used in all the module declaration including the parameter declaration
of generic modules.

moddecl ::= Module modbind
modbind ::= amodid [([paramlist])] [modoper modexpr]

[= modexpr]
modexpr ::= bodyexpr | bodyexpr modoper modexpr
bodyexpr ::= pathid[([iparamlist])] |

begin decl end
paramlist ::= amodid modoper modexpr |

paramlist ; paramlist
iparamlist ::= modexpr | iparamlist ; iparamlist
modoper ::= : | > | <

Figure 2.10: Syntax of refinement, contraction and expansion.

All these modular operations are based in three functions: the enrichement
verification, the inheritance and the information hiding. Now we explain the
refinement of modules that is the operation that uses these three functions. The
other operations are modifications of this refinement operation.

2.4.1 Refinement

When we design a module the first decision is which is the set of goals of that
module. These goals are represented by the set of accessible facts of that module,
those of its export interface and those of the export interfaces of its submodules.
When we design by refinement a new version of that module we must maintain
the same set of goals. Furthermore we must guarantee that these goals will be
obtained with better or equal precision in the new version.

Consider the example of Figure 2.11. The module Sample only contains an
export interface. The expression Module Gram of Sputum : Sample = be-
gin ... end declares11 that the module Gram of Sputum is a refinement of the
module Sample. This is the idea of incremental programming, all the modules
that are refinements of the module Sample (they represent samples) must keep
the same export interface. The module Gram of Sputum is a refinement of the
module Sample because it has the same export interface and other components
(for instance, the deductive one) that allows the module to obtain better results
for the exported facts (different from unknown as was the case for the module
Sample because it has not deductive component).

This is specially useful when we declare generic modules. Remember that
the instantiation of a generic module implies to assign submodules to the generic
module. The resultant module should use the exported facts of the submodules

11There is an equivalent notation for it: Module Gram of Sputum = begin ... end :

Sample.

2.4. Refinement, Expansion and Contraction 35

Module Sample =
Begin

Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
End

Module Gram of Sputum : Sample =
Begin

Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
Deductive knowledge

Dictionary: not defined here

Rules :

R001 If Sputum clas=(Grup 1, Grup 2, Grup 3)
then conclude Sputum ok is true

...
End

Figure 2.11: Example of generic module definition and application.

assigned. It is obvious that not all the modules can be used to instantiate a
generic module. For instance, we can modify the previous declaration of the
generic module Global Gram as following:

Module Global Gram (X : Sample) =
Begin the same declarations than in Figure 2.6 End

This kind of declaration assure us that the modules used to instantiate the
generic module Global Gram are refinements of the module Sample having the
same export interface (for instance, we can assure that these module will export
the fact X/CBGN needed in the evaluation of the module).

We obtain a new module from two modules by means of a refinement oper-
ation. We obtain the module Gram of Sputum refining the second declaration
of Figure 2.11 by the module Sample. A refinement operation is composed by
three operations: the enrichement verification, the inheritance and the informa-
tion hiding.

We will explain these components by considering the following equivalent
declarations:

Module M = M 1 : M 2 ≡ Module M : M 2 = M 1

In the following consider that the internal identifier of the modules M 1 and
M 2 are mod1 and mod2 respectively. The internal identifier of the new module
M is mod. For instance if we consider that all the declarations are at top level,
then: H>(M) = mod, H>(M 1) = mod1 and H>(M 2) = mod2.

36 Chapter 2. Modularity

Enrichement Verification

Given a refinement step it is necessary to verify the enrichement of information.
We take the following definition of enrichement between two modules.

Definition 2.1 (Enrichement) We say that the module M 1 is an enriche-
ment of the module M 2, if and only if:

1. Emod2
⊆ Emod1

2. Imod2
⊆ Imod1

and ∀x ∈ Imod1
∩ Imod2

. Hmod1
(x) is an enrichement of

Hmod2
(x) or Hmod1

(x) = ∅

3. ∀x ∈ Emod1
∩ Emod2

. V (x,mod1) is more precise than V (x,mod2).

4. Lmod1
= Lmod2

or Lmod1
= ∅.

That means that the module M 1 can extend the export interface and the
submodules of M 2. When a submodule is declared in both modules M 1 and
M 2, they must preserve the enrichement relation. Finally we must obtain more
precise values for the facts that belong to both export interfaces (precision will
be the topic of Section 3.2, at the moment we can consider better values).

Inheritance

When we declare a module as a refinement of another one we can maintain
several components of the last version, to avoid the expert write twice the com-
mon components. Copy inheritance acts over submodules, facts defined in the
dictionary and the local logic of the module.

When we declare the new version of a module by refinement we could declare
new submodules and we must declare the same submodules that in the previous
version (remember that Imod2

⊆ Imod1
). In these declarations we could omit the

body of some of them. That means that the module M will inherit the bodies
of the submodules of M 2 that not are present in the declaration of M 1. In
the case of declaring a body in M 1 for a module declared yet in M 2 then a
refinement relation is performed between the two submodules.

For all the submodules x that are in Imod1
∩ Imod2

, the submodules of the
resultant module are:

Hmod(I) =

Hmod2
(I) Hmod1

(I) = ∅

(first(Hmod1
(I)) : first(Hmod2

(I))
, second(Hmod2

(I))) otherwise

The refinement operation makes a copy of the non modified elements of the
dictionaries.

Dmod = {x|x ∈ Dmod1
or x ∈ Dmod2

and x 6∈ Dmod1
}

2.4. Refinement, Expansion and Contraction 37

In the case of the logic, the module inherits the logic of module M2 if that
module contains a logic declaration.

Lmod =

{

Lmod2
if Lmod1

= ∅
Lmod1

if Lmod1
6= ∅

Information Hiding

The first component of the refinement operation was the enrichement verifica-
tion. One of the conditions to obtain a refinement relation between two modules
is that the accessible facts of both modules must be the same. Then after check-
ing the enrichement of information we must hide the new accessible facts of the
refined module if any.

In a refinement operation information hiding affects the export interface and
the modular structure of the module created by the refinement. All the exported
facts of M 1 not present in the export interface of M 2 are hidden in the resulting
module M. Similarly all the submodules of M 1 not present in the hierarchy of
M 2 are hidden in the resulting module M.

Until now we have considered that all modules are visible except for the
parameters of generic modules. Here we introduce the concept of hidden sub-
modules. When a module contains a submodule that is hidden, this submodule
can not be referenced outside the module. The new module can reference the
facts in the export interface of all its submodules, but from outside the module
we can not access the hidden submodules.

Finally the components of the module M , after checking the enrichement of
information, considering inheritance and information hiding will be the following:

• Emod = Emod2

• Imod = Imod1

• Imod = Imod1
∪ Imod2

Hmod(I) =

Hmod2
(I) If Hmod1

(I) = ∅
and I ∈ Imod1

∩ Imod2

(first(Hmod1
(I)) : first(Hmod2

(I)) I ∈ Imod1
∩ Imod2

, second(Hmod2
(I)))

(first(Hmod1
(I)), hidden) I ∈ Imod1

− Imod2

• Dmod = {x|x ∈ Dmod1
or x ∈ Dmod2

and x 6∈ Dmod1
}

• Lmod =

{

Lmod2
if Lmod1

= ∅
Lmod1

if Lmod1
6= ∅

• Rmod = Rmod1

• Cmod = Cmod1

38 Chapter 2. Modularity

We have a small example of the refinement operation in Figure 2.12 and 2.13.
Consider the first version of the program in Figure 2.12. It is composed of
three modules that only contain submodule declarations and the interfaces.
The module Global Culture S has two submodules named Gram S and Respi-
ratory Diagnosis. The module Gram S has only the submodule Respiratory Di-
agnosis.

Module Global Culture S =
Begin

Module G = Gram S
Module D = Respiratory diagnosis
Export Pneumococcus isolation, Haemophilus isolation,

Staphylococcus isolation, No microorganism isolation, antibiogram
Import Multiresistant microorganism
End

Module Gram S =
Begin

Module D= Respiratory Diagnosis
Import Nosocomial, Extrahospitalary, Prev Treat, Sputum clas,

Sputum Gram
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
End

Module Respiratory Diagnosis =
Begin

Import Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
Export Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
End

Figure 2.12: Example of module refinement.

In the next version of the program in Figure 2.13 we can see how the module
Global Culture is defined as a refinement of the previous module Global Culture S.
It is easy to see that the module Global Culture is a refinement of the module
Global Culture S because they have the same export interfaces and the same
submodules. Then the enrichement verification test success and there is no
information hiding. The only operation is the inheritance of components, in
particular the bodies of the submodules D and G.

The declaration of the module Gram is a little different because this module
contains more submodule declarations than module Gram S.

IH>(Gram S) = {D}

IH>(Gram) = {D,T, P, S}

Then information hiding acts over the submodule structure and the new mod-
ules Type of Infection, Previous Treatment and Gram of Sputum become hidden

2.4. Refinement, Expansion and Contraction 39

Module Global Culture : Global Culture S =
Begin

Module G
Module D
Export Pneumococcus isolation, Haemophilus isolation,

Staphylococcus isolation, No microorganism isolation, antibiogram
Import Multiresistant microorganism
...
End

Module Gram : Gram S =
Begin

Module D
Module T= Type of Infection
Module P= Previous Treatment
Module S= Gram of Sputum
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
...
End

Module Type of Infection =
Begin

Import Nosocomial, Extrahospitalary
Export Nosocomial, Extrahospitalary
...
End

Module Previous Treatment =
Begin

Import Prev Treat
Export Penicilin, Tetracycline
...
End

Figure 2.13: Example of module refinement.

40 Chapter 2. Modularity

from outside the module Gram. Notice that the import interface of that module
has changed because the facts imported by the module Gram are now imported
by its submodules.

Finally we can see in Figure 2.14 the modular structure of the program. The
modules Type of Infection, Gram of Sputum and Previous Treatment are hidden
into module Gram. For instance, the paths

Global Culture/Gram/Type of Infection/Nosocomial
Global Culture/Gram/Previous Treatment/Penicilin

are incorrect, but the paths

Global Culture/Respiratory Diagnosis/Bact Pneumonia
Global Culture/Gram/Respiratory Diagnosis/Bact Pneumonia

are correct and equivalent. Another equivalent modular structure could be to
declare the submodule D of module Global Culture S as:

Module D = Gram S/D

@
@

@R

�
�

�	

?

HHHHHHHHHHj

@
@

@
@

@
@

@
@

@@R

�
�

�	

Type of Infection

Gram of Sputum

Previous Treatment Respiratory Diagnosis

Gram

Global Culture

Figure 2.14: Visibility example (hidden modules are written in italic).

2.4.2 Expansion and Contraction

Expansion and contraction operations are based on the refinement one. Expan-
sion allows to build modules that are an expansion of a previous version. We

2.5. Special declarations 41

can extend the set of accessible facts or add submodules to the previous version.
As in the refinement case to expand modules we test that the new module is
an enrichement of the previous one. Inheritance of components is performed as
in the refinement operation, but information hiding is not applied because we
allows the expert to program an expansion of a previous module. Consider the
following declaration:

Module M = M 1 > M 2

The components of a module M created by means of the above declaration are
the following (we represent only the components that are different of a refinement
operation):

• Emod = Emod1

• Imod = Imod1
∪ Imod2

Hmod(I) =

Hmod2
(I) if Hmod1

(I) = ∅
and I ∈ Imod1

∩ Imod2

(first(Hmod1
(I)) > first(Hmod2

(I)) I ∈ Imod1
∩ Imod2

, second(Hmod2
(I)))

Hmod1
(I) I ∈ Imod1

− Imod2

Contraction only test an inverse enrichement verification. Given the decla-
ration Module M = M 1 < M 2 we only test that M 2:M 1 holds. Inheritance
and information hiding are not applied.

2.5 Special declarations

We complete in this Section the set of module declarations allowed in Milord II.
Open and Inherit submodule declarations are only programming facilities and
they do not belong to the primitives of the modular language. Dynamic modules
is an important characteristic of Milord II that allows us to execute submodule
declarations at run time.

One form of the composition of modules is achieved by mean of the decla-
ration of submodules. This declarations defines the hierarchical component of a
module. The complete syntax of the hierarchy component of modules is given
in Figure 2.15.

2.5.1 Inherit and Open

When we use by reference submodule declarations we usually declare a local name
for the submodule. If we want to preserve the previous name of the submodule
we can use the following submodule declaration:

42 Chapter 2. Modularity

hierarchy ::= moddecl |
Inherit pathid |
Open bodyexpr |
Sharing patheq |
hierarchy hierarchy

Figure 2.15: Syntax of submodule declarations.

Inherit B ≡ Module B = B

Obviously this type of declaration can only be used in by reference declarations
of modules.

The last type of submodule declaration is a special kind of submodule dec-
laration, the notion of a submodule as open.

Open B

In this case it is not necessary to use paths to access the facts exported by the
submodule B. All the facts exported by the submodule belongs to the module.
It is valid with encapsulated or by reference declarations.

It is easy to see that name clashes can occur when we use declarations of
type open. If a module has more than one opened submodule, the names of the
exported facts must be different12.

The submodules of the open module are visible directly without the path to
the open module. Consider the following abstract example in Figure 2.16. We
can access to the facts C/c, C/a and C/B/b. The paths C/A/a and C/A/B/b
are not valid.

Module A =
Begin

Module B = Begin Export b ... End

Export a
... End

Module C =
Begin

Open A
Export c
... End

Figure 2.16: Example of open module.

12Milord II Compiler (Arcos, 1992) detects all these conflicts.

2.5. Special declarations 43

2.5.2 Sharing

Considering that Milord II allow us to define applications incrementally, in
some cases we are interested in giving to the compiler information about which
modules will be finally the same module. These declarations assure that in the
building process the compiler will detect the violations of this previous declara-
tions. Syntax declaration of sharing is given in Figure 2.17.

sharing ::= Sharing patheq
patheq ::= pathid = patheq | pathid = pathid |

patheq ; patheq

Figure 2.17: Syntax of sharing.

For instance in the current example we can declare:

Sharing Respiratory Diagnosis = Gram/D

This declaration means that the module Respiratory Diagnosis has to be the
same module that the submodule D of the module Gram.

Sharing declaration can be used at top level or in the hierarchy declarations
of modules. In the last case local names are used. The last declaration implies
that:

H>(Respiratory Diagnosis) = H>(Gram/D)

Sharing declaration can also be used in generic module declarations. In the
declarations above sharing was only to give the information that some modules
will be the same. In the case of generic modules sharing declarations affect
the future instantiations of those generic modules. For instance, consider the
following declaration:

Module G(X : X S; Y : Y S; Sharing X/A = Y/B) =
Begin ... End

This declaration means that when we instantiate the generic module G with
two modules, the first module X must contain a submodule named A and the
second one Y a submodule named B, and these two submodules must be the
same.

2.5.3 Dynamic Modules

Milord II deals with dynamic modules by means of dynamic links among mod-
ules at run time. This characteristic allows us to implement powerful particular
control strategies.

Despite the creation of dynamic modules belongs to the control knowledge
of modules (see Section 5.4.4) we introduce briefly those declarations.

44 Chapter 2. Modularity

We can use as conclusions of metarules module declarations only composed
by reference declarations. For instance, we can write in the control knowledge
of a module a metarule which conclusion is the module declaration Open A.
This means that when this metarule is fired then the module that contains it
will stablish a dynamic link with the module A. Now this module has a new
submodule.

A more interesting use of dynamic modules is the dynamic instantiation of
generic modules. This technique has been useful in the development of Spong–IA

application. It allows to build dynamically a hierarchy of modules representing
the taxonomic tree for the identification of sponges. A detailed explanation can
be found in (Domingo, 1995).

2.6 Conclusions

All the ES programming activity with Milord II language is based on modules.
Modules are the primitive components of the language. The applications pro-
grammed with Milord II start by structuring the whole problem in a hierarchy
of modules. It is a language adapted to the programming in the large, that is,
to program real applications.

Milord II has not global components in the system. Each module contains
a complete ES specialized in a part of the whole application. Modules has
its own deductive knowledge (dictionary, rules and so on), its own local logic
(particular multi–valued logic used to cope the concrete subproblem) and the
local control. Modules has well defined interfaces to interact with the user and
the other modules of the system.

Milord II modular language is based on modules and generic modules.
Generic modules allows us to save code and to make more understandable the
code of an application. Generic modules can be instantiated dynamically.

A set of operations deals with incremental programming of applications. Re-
finement, contraction and expansion of modules allows the expert to build several
versions of modules that are progressively refined and modified. Milord II con-
siders all the versions are executable entities allowing an incremental validation
and testing of the applications.

After the description of the modular language the following Chapters are
devoted to the internal components of the modules giving an incremental de-
scription of the syntax and semantics of the complete Milord II system.

Chapter 3

Approximate Reasoning

We have seen in Chapter 2 that the natural form of describing and solving
problems was by means of the decomposition of the problems into subproblems.
As shown Milord II deals with structured problem solving integrating and
adapting known modularization techniques into a reach ES shell.

A module of Milord II contains the necessary components to describe the
domain and control knowledge relative to a problem, by means of facts, rules,
metarules, and so on. Till now we have not described these internal components
of a module. We only have considered that a module is able to produce items
of information (export interface) from others items of information that has been
provided by the user (import interface) or by the submodules of that module
(hierarchy).

This Chapter is devoted to explain the nature of those items of information
that we name facts in ES’s terminology. For that we can consider that an item of
information is composed of four components, that is, object, attribute, value and
confidence (Dubois and Prade, 1988). The attribute is a function that attaches
a value or a set of values to an object. The confidence indicates the reliability
of an item of information.

Now we analyze the concepts of imprecision and uncertainty of an item of
information. The imprecision is a concept attached to the value component of
an item of information, and the uncertainty to the confidence one. For instance,
we can say It is very possible that the temperature of the patient is between 36 ◦

and 38◦. In this example the object is the patient and the attribute is the
temperature. The value of the temperature is imprecise and it belongs to the
interval [36◦, 38◦] with a confidence degree of very possible. This is an example
of an imprecise and uncertain proposition. We can think in other examples,
a precise and certain proposition: The temperature of the patient is 36.7◦; an
imprecise and certain proposition: The temperature of the patient is between 36 ◦

and 38◦; and finally a precise and uncertain proposition: It is very possible that
the temperature of the patient is 36.7◦.

The management of uncertainty and imprecision becomes essential to mod-
elize real problems. Usually the kind of knowledge domains treated by ES’s

45

46 Chapter 3. Approximate Reasoning

contains imperfect knowledge. We can find many sources of imprecision and
uncertainty. For instance, measurement devices have imprecise results (the cor-
poral temperature depends on which part of the body we take the measure);
subjective appreciations are imprecise (the valuation of the temperature touch-
ing the patient with the hand); the incomplete knowledge added to the natural
language ambiguity produce uncertain propositions (If the patient has headache
it is possible that his temperature could be greater than 37 ◦).

In this Chapter we will explain how Milord II manages uncertainty and
imprecision. As we will see it is limited to manage uncertain data or imprecise
data. It is not possible to express at the same time the uncertainty and the
imprecision of an item of information.

When we want to manage uncertainty by means of linguistic terms (for in-
stance, likely, possible, false, and so on) we must decide how many terms to use
and which they are. Usually these questions are problem dependent and they
are related to the concrete meaning that the expert associates to these linguistic
terms. Some problems could need five terms to express its uncertainty and an-
other problem could need seven terms. Furthermore it is possible that the term
possible would have a different meaning for different experts, or that one expert
prefers to use another term such as likely. The concrete set of terms used to
express uncertainty and its granularity will depend on the expert criteria and
on the concrete problem he is considering.

As seen in Chapter 2 each module is used to specify a subproblem. It could
be very useful to change the language of representation of uncertainty in function
of the type of subproblem. The modular structure of Milord II together with
its approach to uncertainty management, allows to define in a natural way local
uncertainty calculus attached to each module, in such a way that the knowledge
adequation process can also be applied to the uncertainty management. The
interest in having different uncertainty calculus in an ES becomes clearer when
expert systems involving several human experts have to be built. Milord II sys-
tem allows us to define local uncertainty logics in the modules and mechanisms
of communication among these logics(Agust́ı et al., 1992).

This Chapter is divided in four parts. The first one is devoted to the definition
of algebras of truth–values. The expert must define which is the logic more
adecuated to his problem. This implies to define a set of linguistic terms useful
to express his knowledge (for instance, he would say The confidence degree that
the patient has pneumonia is very possible or The treatment with ciprofloxacine
is good). Furthermore the expert can express some control to the meaning of
the logic operators. An example of this is to find the confidence degree of the
fact fever from two sentences: It is slightly possible that the patient has headache
; If the patient has headache it is possible that he has fever.

The second part contains an explanation in depth of the treatment given
by Milord II of the concepts of uncertainty and imprecision. This is reached
by extending the algebra of truth–values to an algebra of intervals of truth–
values (we can say that The evidence that the patient has pneumonia is between
possible and very possible) and introducing fuzzy sets (for instance, The degree

3.1. Algebra of truth–values 47

of membership of the patient to the set of the tall people is quite).
The third part is devoted to the communication between the local logics of

modules. When two modules use different logics (linguistic terms and opera-
tors) we must find a mechanism of translation of the linguistic terms to make
compatible the communication between those modules (for instance, what is the
meaning of the sentence Fever is possible for another module that do not use
this term, maybe Fever is likely?). Finally we introduce all the constructs of the
language Milord II that allow the experts to define the local logics of modules.

3.1 Algebra of truth–values

Psychological experiments (Kuipers et al., 1988; Fox, 1989) show that human
problem solvers do not use numbers to deal with uncertainty and that the way
they manage it is situation dependent. These requirements were partially sat-
isfied in the Milord system in the sense that the treatment of uncertainty was
based in different operators defined over a set of linguistic terms describing the
global verbal scale the experts use to express degrees of uncertainty (Godo et
al., 1989).

The approach used in Milord II to manage uncertainty is based on many–
valued logics. The use of many–valued logics has been criticized (Pearl, 1990;
Hàjek et al., 1992) because of the confusion between uncertainty and imprecision.
We do not enter in depth in this kind of problems that has been extensively
treated in the literature. Despite this, many–valued logics have been proved to
be useful in ESs (Turner, 1984; Bonissone et al., 1987; Godo et al., 1989; López
de Mántaras, 1990). We justify the use of many–valued logics because they have
an efficient and simple deduction from the computability point of view. We
will extend these logics with intervals of truth–values (Esteva et al., 1994) as
a technique to manage uncertainty or imprecision. As we will see intervals of
truth–values allow us to deal with uncertain or imprecise information and to
introduce negative evidence in the sentences.

Here we present the definition of a family of many–valued logics which de-
ductive system is based on a new kind of inference rule called specialization (it
will be presented in the next Chapter). Some aspects of these logics have been
already described in (Agust́ı et al., 1991; Agust́ı et al., 1992). Each logic is de-
termined by a particular algebra of truth–values from a parametric family that
is described next.

Definition 3.1 (Algebra of Truth–values) An algebra of truth–values is a
finite algebra

An
T =< An,Nn, T, IT >

such that:

1. The ordered set of truth–values An is a chain of n elements:

0 = a1 < a2 < · · · < an = 1

where 0 and 1 are the boolean False and True respectively.

48 Chapter 3. Approximate Reasoning

2. The negation operator Nn is the unary operation defined as

Nn(ai) = an−i+1

the only one that fulfills the following properties:

N1: If a < b then Nn(a) > Nn(b), ∀a, b ∈ An

N2: N2
n = Id.

3. The conjunction operation T is a binary operation such that the following
properties hold ∀a, b, c ∈ An:

T1: T (a, b) = T (b, a)

T2: T (a, T (b, c)) = T (T (a, b), c)

T3: T (0, a) = 0

T4: T (1, a) = a

T5: If a ≤ b then T (a, c) ≤ T (b, c) for all c

4. The implication operator IT is defined by residuation with respect to T , i.e.

IT (a, b) = Max {c ∈ An|T (a, c) ≤ b}

and satisfies the following properties:

I1: IT (a, b) = 1 if, and only if, a ≤ b.

I2: IT (1, a) = a

I3: IT (a, IT (b, c)) = IT (b, IT (a, c))

I4: If a ≤ b, then IT (a, c) ≥ IT (b, c) and IT (c, a) ≤ IT (c, b) for all c

I5: IT (T (a, b), c) = IT (a, IT (b, c))

As it is easy to notice from the above definition, any of such truth–values
algebras is completely determined as soon as the set of truth–values An and the
conjunction operator T are determined. So, varying these two characteristics
we can obtain a parametric family of different many–valued logics, including,
among others, Kleene’s and Lukasiewicz’s logics.

As we can see in the example of the Figure 3.1 (the complete definition for
the module Gram of Sputum given in the Figure 2.8 and used in the previous
examples), this module declares a local logic (inference system) consisting in a
set of linguistic terms (truth values) and the conjunction operator (conjunction).

The definition of this local logic in the module Gram of Sputum is deter-
mined by the declaration of the set of five linguistic term S5 = {false, unlikely,
may be, likely, true}, and the conjunction operation TS5

operation defined in the
Table 3.1. The expert has chosen this number of terms because he considers that
it is sufficient to talk about the concepts contained in this module. The names

3.1. Algebra of truth–values 49

Module Gram of Sputum =
Begin

Import Sputum clas, Sputum Gram
Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
Deductive knowledge

Dictionary: not defined here

Rules :

R001 If Sputum clas=(Grup 1 or Grup 2 or Grup 3)
then conclude Sputum ok is true

R002 If Sputum clas=(Grup 4 or Grup 5 or Grup 6)
then conclude Sputum not ok is true

R003 If Sputum ok then conclude Gram yes is true
R004 If Sputum not ok then conclude End is true
R005 If Sputum Gram=(DCGP MC) then conclude DCGP is true
R006 If Sputum Gram=(DCGP MC) then conclude CGPC is unlikely
R007 If Sputum Gram=(CGPC MC) then conclude CGPC is likely
R008 If Sputum Gram=(CGPC MC) then conclude DCGP is unlikely
R009 If Sputum Gram=(CGPR MC) then conclude CGPR is true
R010 If Sputum Gram=(BGN MC) then conclude BGN is likely
R011 If Sputum Gram=(CBGN MC) then conclude CBGN is likely
Inference system:

Truth values = (false, unlikely, may be, likely, true)
Connectives :

Conjunction = Truth Table

((false, false, false, false,false)
(false, unlikely, unlikely,unlikely, unlikely)
(false, unlikely, may be, may be, may be)
(false, unlikely, may be, may be, likely)
(false, unlikely, may be, likely, true)))

End deductive

End

Figure 3.1: Example of Local logic declaration.

false unlikely may be likely true

false false false false false false

unlikely false unlikely unlikely unlikely unlikely

may be false unlikely may be may be may be

likely false unlikely may be likely likely

true false unlikely may be likely true

Table 3.1: TS5
Table.

50 Chapter 3. Approximate Reasoning

of the linguistic terms used in each module are intended to make understandable
the kind of the concepts that are used into the modules.

The expert can choose a T function (holding the properties T1–T5) de-
pending on the meaning he wants to give to the conjunction operation1. For
instance, considering that T (a, b) ≤ min(a, b) (from properties T4 and T5) the
expert can consider more or less optimistic evidence combinations. For instance,
he can consider that the conjunction of two propositions with confidence degree
likely results on a confidence degree of may be (less than likely).

Nn

false true

unlikely likely

may be may be

likely unlikely

true false

Table 3.2: N5 Table.

It is easy to see that the negation operator N5 and the implication operator
ITS5

can be deduced from the above definition of the algebra of truth–values (see
the Tables 3.2 and 3.3 respectively).

x / y false unlikely may be likely true

false true true true true true

unlikely false true true true true

may be false unlikely true true true

likely false unlikely likely true true

true false unlikely may be likely true

Table 3.3: ITS5
(x, y) Table.

3.1.1 Modus Ponens Operator

The language used in Milord II is composed of weighted facts and rules. Till
now we have only introduced the conjunction and negation operators. Then we
should also introduce the many–valued version of modus ponens inference rule
(Alsina et al., 1984; Valverde and Trillas, 1985; Trillas and Valverde, 1987) that
allows us to make deductions, that is, to deduce the truth–value of the conclusion
of a rule from the truth–values of its conditions and the truth–value of the rule.

1A general algorithm for finding truth–value algebras over a partially ordered set of n

elements is given in (Godo and Meseguer, 1991).

3.2. Uncertainty and Imprecision 51

Definition 3.2 (Modus Ponens) MPT is a function from An ×An to the set
of intervals2 of An defined as:

MPT (a, b) =

∅ if a and b
are inconsistent (*)

[a, 1] if b = 1
T (a, b) otherwise

(*) a and b are inconsistent if there exists no c such that I T (a, c) = b.

This is a functional expression of the multiple–valued version of the classical
modus ponens rule, i.e. MPT (a, b) is the set of solutions for ρ(q) in the equation
system:

{

ρ(p) = a
ρ(p → q) = IT (ρ(p), ρ(q)) = b

where ρ is the valuation of the sentences.
The modus ponens table for S5 and TS5

is given in Figure 3.4. For instance,
if the value of the fact p is likely and the value of the rule p → q is true, by means
of the definition of the MPT function and the Table TS5

we can deduce that the
fact q has the value likely. We will return over this rule when we explain the
specialization of KB’s in Chapter 4.

x / y false unlikely may be likely true

false ∅ ∅ ∅ ∅ [false,true]

unlikely false ∅ ∅ ∅ [unlikely,true]

may be false unlikely ∅ ∅ [may be,true]

likely false unlikely ∅ may be [likely,true]

true false unlikely may be likely [true, true]

Table 3.4: MPTS5
(x, y) Table.

We know how to use a propositional language (no defined yet) with negation,
conjunction and implication operators. Till now we only have talked about the
deduction by means of the modus ponens inference rule. In Chapter 4 we will
introduce a different kind of deduction based on the specialization inference rule
(SIR).

3.2 Uncertainty and Imprecision

We have considered in the introduction that uncertainty and imprecision take
an important role in the data used by ESs. Now we will talk on the concrete

2Notice that the modus ponens operator can return an interval of truth–values. This will
be one of the reasons to introduce intervals of truth–values as we will see.

52 Chapter 3. Approximate Reasoning

items of information that can be used in Milord II. Our system deals with
uncertainty and imprecision by means of the use of intervals of linguistics terms.

Consider the following two examples:

1. Peter is quite tall.

2. It is possible that Peter is tall.

These two propositions can be confusing. When we read the first proposition
we could think that the fact of being tall is a graduated measure, then we are
talking about the value of the attribute tall. There are persons that are clearly
tall (for instance, those that their height is greater than 2m.) and persons that
are clearly not tall, but between these two categories there are persons that are
slightly tall, quite tall, etc.

Another interpretation can guide us to the concept of fuzzy sets. The differ-
ence between a classic set (named crisp set) and a fuzzy set is that the elements
of the considered universe have a degree of membership to the fuzzy set. In crisp
sets the elements of the universe belong or not belong to the crisp set. We can
consider that the concept tall is a fuzzy set. We can imagine then a characteristic
function that given the height of a person it returns the degree of membership
of the person to the fuzzy set tall (see the Figure 3.2), expressed by means of
linguistic terms (like quite).

µF (ω)

1.9

-

6

�
�
�

�
�

�
�

��

1

1.7 2.50
ω

Figure 3.2: Fuzzy set representing the concept tall.

The second proposition can be interpreted as the first one, but its syntactical
form guides us to think that tall is a boolean concept (a person is tall or not
tall) and we have a degree of confidence on the fact that Peter is tall. In this
case we are talking about uncertainty. We are not sure if Peter belongs or not
to the set tall.

There are other examples where that confusion is not possible, for instance,
we can say that It is possible that Peter has pneumonia but we can not talk

3.2. Uncertainty and Imprecision 53

about degrees of pneumonia (it is not possible to say that somebody is quite
pneumonic). These interpretations depend on the concept and the concrete
linguistic terms we are using.

In Milord II we will consider only information of the second type, that is,
uncertain information expressed by means of linguistic terms, but the seman-
tical interpretation of those sentences will be dependent on the set of concepts
the expert is using. We will take advantage of this confusion3 to introduce
imprecision.

Imprecision at truth level

Milord II introduces imprecision at the truth level by means of intervals of
linguistic terms. One may know that a proposition must take a truth–value but
does not know exactly which, then a set of possible values is given. We can say
that The confidence degree of pneumonia is between possible and very possible.

This kind of imprecision could seem not to be very useful. We can think that
users would have difficulty to interpret these intervals of truth–values, but we
will make it clear by comparing the interpretation of these intervals in Milord II
with the interpretation of truth–values in Milord.

In Milord all the truth–values associated to the facts were considered to be
positive evidences. When we found more than one deductive path to evaluate a
fact, we choose the best, that is, that of the greatest truth–value. In Milord the
goal was to obtain the maximum certainty degree for the facts. Furthermore in
the case that the fact would get a truth–value less than a threshold, it would be
considered unknown (there was no sufficient positive evidence to consider it).

Now we can comment the interpretation of positive evidence by means of
intervals of truth–values. We consider that positive evidence is an interval from
a truth–value to true, that is, when we say that the value of the fact pneumonia is
possible, the interpretation is that the value of pneumonia belongs to the interval
[possible, true]. When a fact belongs to the interval [0, 1] it means that we know
nothing about its value. With this interpretation when we obtain the value false
for a fact it means that the value of this fact is unknown instead of false.

Thanks to this interpretation we can introduce negative evidence as intervals
of truth–values of the form [0, ai], that is, the value of the fact could be from
false to ai. In Milord II we interpret positive and negative evidence as before.
We can find deductive paths with positive and negative evidences. The result
of the parallel combination is the fusion (intersection) of these intervals (as we
will see in Section 4.2.3). Then the interpretation of an interval as [a i, aj] is that
the positive evidence is ai, but there are a negative evidence aj. The goal of
Milord II is to obtain the maximum precision of the value of facts. We will
return on this in the following Sections.

3Experience shows that experts use this kind of interpretation. Depending on the set of
concepts they are using the interpretation of the linguistic terms could be taken as values or
confidence degrees.

54 Chapter 3. Approximate Reasoning

Imprecision at value level

If we return to the examples above we can interpret the imprecision at truth level
as imprecision at value level, the more standard one. When we say that It is
between possible and very possible that Peter is tall we could think of a previous
imprecise measure of the height of Peter (a numeric interval). The characteristic
function of the fuzzy set tall is a function from intervals of height to intervals of
degrees of membership to the fuzzy set tall.

In the following Section we will present the extension of the algebra of truth–
values to the algebra of intervals. Now we consider that the sense of these
intervals is the imprecision at truth level. We will return on imprecision at value
level in Section 4.4.1.

3.2.1 Intervals of Truth–values

We have presented several semantic motivations to introduce intervals of truth–
values, but there are other reasons. The first one is related to the chaining of
rules. We can see in the above definition of the modus ponens inference rule
that in some cases it returns an interval of truth–values. The second reason
is to make possible the mappings between different local logics and it will be
explained in Section 3.3.

The deductive system of Milord II works on the set of intervals of An,
Int(An). N∗

n, T ∗ and MP ∗
T are the point–wise extensions4 of Nn, T and MPT

respectively. Let us introduce more formally the intervals of truth–values and
these operators.

Definition 3.3 (Intervals) Int(An) will stand for the set of intervals of An,
i.e.

Int(An) = {[a, b]|a, b ∈ An such that a ≤ b} ∪ ∅

being [a, b] = {c ∈ An|a ≤ c ≤ b}.

Notice that there exists an embedding from An to Int(An) identifying ele-
ments a with intervals [a, a] of Int(An). For the sake of simplicity on the nota-
tion, we will also denote by a the interval [a, a] when no confusion is possible.
The interval ∅ represents an inconsistent value as we will see.

On the set of intervals Int(An) we can define the imprecision ordering and
the uncertainty ordering (Esteva et al., 1994).

Imprecision ordering: Is naturally induced by the set inclusion relationship
⊆. Given A,B ∈ Int(An) , the interval A is more precise or equal than
B, if and only if A ⊆ B (see Figure 3.3 for an example on Int(A4), where
A4 = {0, a, b, 1}). The goal of Milord II is to produce the most precise
values.

Uncertainty ordering: The uncertainty order of An can be extended into
Int(An) in at least two different ways:

4Strictly speaking they give the minimal interval containing the point–wise extensions.

3.2. Uncertainty and Imprecision 55

PPPPPPPPPPPPi

Z
Z

ZZ}

�
�

��>

������������1
Z

Z
ZZ}

Z
Z

ZZ}

�
�

��>

�
�

��>

Z
Z

ZZ}

�
�

��>

Z
Z

ZZ}

�
�

��>

Z
Z

ZZ}

�
�

��>

Z
Z

ZZ}

�
�

��>

∅

1ba0

[b,1][a,b][0,a]

[a,1][0,b]

[0,1]

Figure 3.3: Imprecision Ordering on Int(A4).

• Weak uncertainty order (see Figure 3.4):

[a1, b1]≤̃[a2, b2] if, and only if, a1 ≤ a2 and b1 ≤ b2

• Strong uncertainty order:

[a1, b1] � [a2, b2] if, and only if, b1 ≤ a2 or [a1, b1] = [a2, b2]

Now we will define the negation, conjunction and modus ponens operators
for the intervals of truth–values.

Definition 3.4 We define on the set of intervals of An the functions N ∗
n and

T ∗ as those functions that give the minimal interval containing the point–wise
extensions of Nn and T respectively. That is:

• N∗
n([a, b]) = [Nn(b),Nn(a)]

• T ∗([a, b], [c, d]) = [T (a, c), T (b, d)]

In order to get a functional expression of the multiple–valued version of the
Modus Ponens rule, we also define on the set of intervals of An the function
MP ∗

T as follows:

Definition 3.5 For any truth–intervals V and W , we define MP ∗
T (V,W) as

the minimal interval containing all solutions for z in the family of functional
equations

IT (a, z) = b

varying a ∈ V and b ∈ W .

56 Chapter 3. Approximate Reasoning

Z
Z

ZZ~

Z
Z

ZZ~ �
�

��>

�
�

��>Z
Z

ZZ~�
�

��>

Z
Z

ZZ~�
�

��>Z
Z

ZZ~�
�

��>

Z
Z

ZZ~�
�

��>

1ba0

[b,1][a,b][0,a]

[a,1][0,b]

[0,1]

Figure 3.4: Weak Uncertainty Ordering on Int(A4).

This definition can be made more explicit when taking into account that the
truth–intervals W attached to rules of Milord II are always upper intervals, i.e.
W is of the form W = [c, 1].

Proposition 3.1 MP ∗
T ([a, b], [c, 1]) = [T (a, c), 1]

After the introduction of the intervals and its operators we will explain briefly
how we work with intervals and the concept of precision.

3.2.2 Working with intervals

We have seen the extension to an algebra of intervals of truth–values. Now we
can explain how these intervals are used in practice with the rules of Milord II.

The goal of Milord system was to find the maximum truth–value for the facts
because it only uses rules with positive evidence. Because of the use of intervals
of truth–values, the goal of Milord II is to obtain the maximum precision
interval for the facts (combining positive and negative evidences).

Consider a set of rules with the same fact in the conclusion, but some rules
with the negation of that fact in their conclusion. Then we should consider the
following points:

• The rules with a positive conclusion (not negated) will fix the minimum
certainty value of the conclusion fact.

• The rules with a negative conclusion will fix the maximum certainty value
of the conclusion fact.

• We combine evidences by means of the intersection of intervals.

3.2. Uncertainty and Imprecision 57

We can explain it through an example. Consider that the weighted sentences
are pairs (sentence, value). And consider the following sentences (two facts and
two rules)5:

(a, ρa)
(b, ρb)
(a → c, [ρr1

, 1])
(b → ¬c, [ρr2

, 1])

From these facts and rules we can obtain a value for the sentence c and for
¬c using the modus ponens inference rules for intervals of truth–values. Notice
that the value of a Milord II rule is an upper–interval to 1. The values for the
sentences in the conclusions of those rules are then upper–intervals.

(a, ρa)
(b, ρb)
(a → c, [ρr1

, 1])
(b → ¬c, [ρr2

, 1])
(c,MP ∗

T ([ρa, ρa], [ρr1
, 1])) = (c, [T (ρa, ρr1

), 1])
(¬c,MP ∗

T ([ρb, ρa], [ρr2
, 1])) = (¬c, [T (ρb, ρr2

), 1])

Using the negation operator of intervals of truth–values we obtain an interval
from 0 for the conclusion of the second rule. As commented before the positive
rule produces a positive evidence of the conclusion and the negative rule a neg-
ative one. The fusion (intersection) of intervals results in a interval where its
minimum value corresponds to a positive evidence and the maximum value to
the negative one.

(c, [T (ρa, ρr1
), 1])

(¬c, [T (ρb, ρr2
), 1]) ⇒ (c, [0,Nn(T (ρb, ρr2

))])

}

⇒

(c, [T (ρa, ρr1
),Nn(T (ρb, ρr2

))])

When the intersection of values is empty, then it is considered to be incon-
sistent. All the operators N ∗

n, T ∗ and MP ∗
T with an argument equal to ∅ return

the same inconsistent value ∅.

3.2.3 Fuzzy Sets

Facts are one of the most primitive component of Milord II that represent the
concepts we will use in an ES. To deal with uncertainty and imprecision we
associate an interval of truth–values to the facts. Sometimes it is interesting to
deal with other type of facts that represents set concepts. For instance, we can
consider that the fact treatment is a set of antibiotics. We could be interested
in comparing different treatments by means of set relations and operations.

From the logical point of view the concept of fuzzy set is carried out by
changing the usual definition of the characteristic function of a set by means of

5Notice that Milord did not use negation in the conclusion of rules.

58 Chapter 3. Approximate Reasoning

degrees of membership. We use uncertainty in the knowledge we possess about
the membership relation. To define a fuzzy set F we give a reference set Ω and
a mapping, µF (ω), of Ω into [0, 1]. µF (ω), for ω ∈ Ω is interpreted as the degree
of membership of ω in the fuzzy set F . When µF (ω) ∈ {0, 1},∀ω, F is the same
as an ordinary subset of Ω. This is called a crisp subset of Ω and is a particular
case of fuzzy sets.

That is the usual definition of fuzzy sets as a mapping of the characteris-
tic function into the interval [0, 1]. Because of the use of linguistic terms and
imprecision we will extent the usual definition to the intervals of truth–values.

Now we put an example of fuzzy set named treatment. Consider the following
reference set, in this case a set of antibiotics:

Ω = {carbamacepina, teofilina, digoxina ,dicumarinics, ciclosporina,
difenilhidantoina}

We use as imprecise degree of membership intervals of linguistic labels Int(An)
of the logic of the module that contains this fact. We can specify a fuzzy set by
means of its characteristic function. For instance, we consider that a treatment
is a fuzzy set composed by antibiotics6. The characteristic function of the fact
treatment could be:

µtreatment(carbamacepina) = [impossible, impossible]
µtreatment(teofilina) = [definite, definite]
µtreatment(digoxina) = [impossible, definite]
µtreatment(dicumarinics) = [very possible, very possible]
µtreatment(ciclosporina) = [possible, very possible]
µtreatment(difenilhidantoina) = [impossible, impossible]

After the definition of this kind of facts representing fuzzy sets we should say
how to use them in the rules. We can use them by comparing different fuzzy sets.
For instance, consider two different treatments in the universe of antibiotics. We
can say If treatment1 is a subset of the treatment2 then ... or If the treatment1
intersects with the treatment2 then This kind of operations and relations
results in an interval of truth–values as we will see.

Elementary Operations and Relations

Here we explain the possible operations and relations among fuzzy sets used in
Milord II. They are based on usual concepts used in fuzzy set theory and oper-
ations among fuzzy sets (Zadeh, 1965). This provides to the experts a complete
tool to work with fuzzy sets. First of all we describe the unary operations using
the above example.

Cut: We can use a threshold α to obtain a set Fα called α–cut of F . The
definition is the following:

Fα = {ω ∈ Ω|min(µF (ω)) ≥ α}

6This kind of facts like treatment are named enumerated facts in Milord II.

3.2. Uncertainty and Imprecision 59

Fα contains all the elements of Ω that are compatible with F at level at
least α. In Milord II α is the threshold of the module (see the Section 5.2)
that contains the fact F . The threshold in the modules express the mini-
mum certainty value that is considered to be significant. Suppose α to be
possible in the above example, then it is easy to see that:

treatmentpossible = {teofilina, dicumarinics, ciclosporina}

Core: The cut of F at level 1 is called the core of F , denoted Ḟ .

Ḟ = {ω ∈ Ω|µF (ω) = 1}

It contains all the elements of Ω that are in F at level 1. Following the
same example we can see that:

˙treatment = {teofilina}

Support: The support set contains all the elements of Ω that are not at level
0.

S(F) = {ω ∈ Ω|min(µF (ω)) > 0}

In our example they are all the elements with certainty value greater than
impossible.

S(treatment) = {teofilina, dicumarinics, ciclosporina}

Complement: Complementation of set F is defined as the set F̄ that has the
following characteristic function:

∀ω, µF̄ (ω) = N∗
n(µF (ω))

In the same example the characteristic function associated to the set
¯treatment is:

µ ¯treatment(carbamacepina) = [definite, definite]
µ ¯treatment(teofilina) = [impossible, impossible]
µ ¯treatment(digoxina) = [impossible, definite]
µ ¯treatment(dicumarinics) = [slightly possible, slightly possible]
µ ¯treatment(ciclosporina) = [slightly possible, possible]
µ ¯treatment(difenilhidantoina) = [definite, definite]

We consider the normal union and intersection operations among fuzzy sets:

Union: ∀ω, µF∪G(ω) = max∗(µF (ω), µG(ω))

Intersection: ∀ω, µF∩G(ω) = min∗(µF (ω), µG(ω))

60 Chapter 3. Approximate Reasoning

These operations are compatible with those on crisp sets7. Finally we explain
the set of relations we can use in Milord II. These relations given two fuzzy
sets return an interval of truth–values.

R : P̃(U) × P̃(U) → Int(An)

Before that we define the combination of relations and the complement of a
relation as:

Combination: (R ∗ S)(F,G) = min∗(R(F,G), S(F,G))

Complement: R̄(F,G) = N ∗
n(R(F,G))

Now we define the inclusion, intersection and equality between two fuzzy sets
and its meaning.

Inclusion or equal:
R⊆(F,G) = min∗(µF̄∪G)
R⊇(F,G) = R⊆(G,F)

Intersection degree:
R∩(F,G) = max∗(µF∩G)

Equality: R=(F,G) = (R⊆ ∗ R⊇)(F,G)

Inclusion:
R⊂(F,G) = (R⊆ ∗ R̄=)(F,G)
R⊃(F,G) = R⊂(G,F)

These relations return degrees of inclusion, intersection and equality between
two fuzzy sets. Using them we can express the degree of intersection of two
treatments, as so on.

All these operations are the most standard (Zadeh, 1965) and they are com-
patible with crisp sets. In these definitions we have used for simplicity the
functions min and max, but we can use instead the more general ones, the
triangular norm T and the triangular conorm S(x, y) = N(T (N(x),N(y))).

3.3 Local Logics

The need of communication among modules with different local uncertainty cal-
culus has lead us to analyze the correspondence between uncertainty calculus.
Uncertainty calculus can be considered as inference mechanisms defining logi-
cal entailment relationships. Therefore the correspondences (or communication)
between different calculus can be analyzed as mappings between different entail-
ment systems. To do that we will introduce a summary of the main theoretical
results on mappings between entailment systems (Agust́ı et al., 1992) and we
propose an algorithm to find the mappings that allow modules to communicate.

7We consider the functions maximum and minimum as the point–wise extensions:
max∗([a, b], [c, d]) = [max(a, c),max(b, d)] and min∗([a, b], [c, d]) = [min(a, c), min(b, d)]

3.3. Local Logics 61

3.3.1 Mappings between different local logics

Let M and M ′ be two modules and (L,`) and (L′,`′) their corresponding logics,
L and L′ standing for the languages and `′ and ` for the entailment relations
defined on L and L′ respectively. To establish a correspondence from module
M to module M ′, a mapping H : L → L′ relating their languages, is needed.
In the following we will analyze some natural requirements for the mapping H
with respect to the entailment systems ` and `′. Henceforth Γ and e will denote
a set of formulas and a formula of L respectively.

A) If Γ ` e, then H(Γ) `′ H(e)

With this requirement we assure that for every formula deducible from a set
of formulas Γ in M , its corresponding formula in M ′ by the mapping, H(e),
will also be deducible in M ′ from the corresponding formulas of H(Γ). In other
words, there is no inferential power lost when translating from M to M ′ through
a mapping H satisfying A. Nevertheless the main drawback of requirement A
is that it does not forbid to deduce from H(Γ), in M ′, formulas that are not
translations of any formula deducible from Γ in M . The property means that, in
the case of modules representing different experts, an expert E ′ related to M ′,
using knowledge coming from an expert E related to M , will be able to deduce
the same facts than E, but not only those facts. We need:

B) If H(Γ) `′ H(e), then Γ ` e

This is the inverse requirement of A. So, in this case all deductions in M ′

involving only translated formulas from M are translations of deductions in M ,
or equivalently if a fact is not deducible in M , then its correspondent fact in M ′

will neither be deducible from the translated knowledge. An alternative to B
could be:

C) If H(Γ) `′ e′, then there exists e such that Γ ` e and H(e) `′ e′.

This requirement assures that every formula deducible from H(Γ) in M ′ must
be in agreement with what can be deduced from Γ in M . This requirement is
slightly different from B, in the sense that it not necessary that e′ be exactly a
translation of a deducible formula e from Γ, but only something deducible from
such a translation. In the framework of logics for uncertainty management, e′ can
be interpreted as a weaker form of e, i.e. a formula expressing more uncertainty
than e.

It is worth noticing that, if C denotes the consequence operator with respect
to an entailment system (L,`), that is, C(Γ) = {e ∈ L|Γ ` e} for all set of
formulas Γ, then the requirements A and B can be rewritten in the following
way:

A) H(C(Γ)) ⊂ C ′(H(Γ))

B) C′(H(Γ)) ⊂ H(C(Γ))

being C ′ the consequence operator associated to the entailment system (L′,`′).

62 Chapter 3. Approximate Reasoning

From these three different requirements we can define the conditions on the
mappings in order these requirements hold. Notice that they are mappings of
truth–values algebras8.

Theorem 3.1 Given two truth–values algebras An
T1

=< An,Nn, T1, IT1
> and

Bm
T2

=< Bm,Nm, T2, IT2
>, a mapping H : An → I(Bm) fulfills the requirements

A or B or C from An
T1

to Bm
T2

if the following conditions hold:

1. H is non–decreasing, i.e. if a ≤ b, then H(a) ≤∗ H(b)

2. H(0) = 0

3. H(Nn(x)) = N∗
m(H(x))

4. We have one case for each requirement:

A) H(T1(x, y)) ⊃ T ∗
2 (H(x),H(y))

B) H(T1(x, y)) ⊂ T ∗
2 (H(x),H(y))

H(x) ⊂ H(y) ⇒ x = y

C) H(T1(x, y)) ⊂ T ∗
2 (H(x),H(y))

Finally we explain the algorithm that allows us to find mappings that are
quasi–morfisms.

We can divide every chain An in three subsets:

• Nn = {x|x < Nn(x)}

• Fn = {x|x = Nn(x)}

• Pn = {x|x > Nn(x)}

We consider three subsets N ∗
n , F∗

n and P∗
n for the case of intervals Int(An).

In that case we use the weak uncertainty order defined before.

• N ∗
n = {x|x<̃Nn(x)}

• F∗
n = {x|x = Nn(x)}

• P∗
n = {x|x>̃Nn(x)}

After that we find all the mappings

Hi : Nn ∪ Fn → N ∗
m ∪ F∗

m

such that:

1. Hi(0) = 0

8The mappings are from the elements of a chain to elements of the set of intervals of the
other chain.

3.3. Local Logics 63

2. Hi(Fn) ∈ F∗
m

3. If x ≤ y then Hi(x) ≤∗ Hi(y), where x ∈ An and y ∈ Int(Bm).

Now we can extend these mappings:

H(x) =

{

Hi(x) if x ∈ Nn ∪ Fn

N∗
m(Hi(H(x))) if x ∈ Pn

Finally we must check which mapping is quasi–morfisms for the three criteria,
that is, checking the condition 4 of the quasi–morfism definition.

3.3.2 Example

For this example we will consider the set of modules used as examples in Chap-
ter 2. Consider the module Gram (Figure 2.1) that has four submodules Res-
piratory Diagnosis, Type of Infection, Previous Treatment (see Figure 2.3) and
Gram of Sputum (Figure 2.8).

Consider the following sets of truth–values corresponding to these modules,
Gram7 for the module Gram and D2, T2, P2 and S5 for its submodules:

Gram7 = {impossible, few possible, sligh possible, possible,
quite possible, very possible, sure}
D2 = {false, true}
T2 = {false, true}
P2 = {impossible, sure}
S5 = {false, unlikely, may be, likely, true}

and the T functions TS5
and TGram7

(see Tables 3.1 and 3.5 respectively). We
do not represent the other T functions because they are boolean logics with
different names for true and false. This is the situation of Figure 3.5 where we
need to find the mappings HT , HS, HP and HD.

impos few p sli p possib quite p very p sure

impos impos impos impos impos impos impos impos

few p impos few p few p few p few p few p few p

sli p impos few p sli p sli p sli p sli p sli p

possib impos few p sli p possib possib possib possib

quite p impos few p sli p possib very p very p very p

very p impos few p sli p possib quite p very p very p

sure impos few p sli p possib quite p very p sure

Table 3.5: TGram7
Table.

First we focuses over the more difficult mapping HS. Following the above
definitions we can see that the sets N5, F5, N ∗

7 and F∗
7 are:

64 Chapter 3. Approximate Reasoning

@
@

@R

�
�

�	

?

HHHHHHHHHHj

Type of Infection

Gram of Sputum

Previous Treatment Respiratory Diagnosis

Gram

Gram7, TGram7

D2, TD2
T7, TT2

P2, TP2

S5, TS5

HDHT HP
HS

Figure 3.5: Mapping example.

N5 = {false, unlikely}
F5 = {may be}
N ∗

7 = {impos, few p, sli p, possib, [impos, few p],
[impos, sli p], [impos, possib], [few p, sli p], [few p, possib],
[sli p, possib]}
F∗

7 = {possib, [few p, very p], [sli p, quite p], [impos, sure]}

Here there are two mappings that are examples of those that hold the last
requirement C:

S/false → impossible
S/unlikely → [impossible, few possible]
S/may be → [few possible, very possible]
S/likely → [very possible, sure]
S/true → sure

S/false → impossible
S/unlikely → [impossible, slightly possible]
S/may be → possible
S/likely → [quite possible, sure]
S/true → sure

The other cases are very simple because the other logics are boolean. Then
we can map the first term of those logics to the first term of the logic of the
module Gram. We can express the mapping as:

{

D/false → impossible
D/true → sure

3.4. Logic Declaration 65

{

P/impossible → impossible
P/sure → sure

Given a value from a submodule of the module Gram we can translate that
value by means of the mappings above.

3.4 Logic Declaration

After the presentation of the local logics used in Milord II, here we describe
the syntactical declaration of the inference system of a module. Each module
contains the inference system declaration9. It contains the declaration of the
concrete logic that will be used in a module and the mechanism of communication
with the local logics of its submodules.

The inference system declaration contains the set of ordered truth–values An,
the renaming mappings among the local logic and those of the submodules and
a set of logic operators: negation, conjunction, disjunction and modus ponens
(see Figure 3.6).

Inference system:

Truth values = (...)

Renaming: ...

Connectives:

Negation = ...

Conjunction = ...

Disjunction = ...

Inference patterns: ...

Modus ponens = ...

Figure 3.6: Logic declaration.

Now we will explain in depth these declarations specially to make clear the
multiple possibilities of the language. Normally the logics used in Milord II are
of the type explained till now, that is, the expert declare a set of truth–values
and a T function. To experiment with another kind of logics we allow to declare
complete logics.

3.4.1 Truth values

Truth values of a module can be defined given an ordered set of symbols repre-
senting linguistic terms, where each symbol is a truth–value. For instance the
declaration of the set A5 is:

9As explained in Chapter 2 a module can declare its inference system by means of the
inheritance mechanism.

66 Chapter 3. Approximate Reasoning

Truth values = (impossible, sli possible, possible, very possible,
sure)

Notice that given a truth value declaration, the first symbol is considered to
have the semantics of true and the last symbol of false.

To maintain the logic declaration style that was used in Milord there are
another possible form of declaring the truth–values. It consists in associating to
each linguistic term four real numbers in the interval [0, 1]. Then we can use a
truth–values declaration of the following form:

Truth values = (impossible = (a,b,c,d) , ...)

They correspond to the representation of a fuzzy interval (see the Figure 3.7
) by means of a trapezoidal approximation of a fuzzy interval, as was used in
Milord.

µx

cb d

-

6
1

a

A
A
A
A
A
A
A
AA

�
�

�
�

�
�

�
�
�

10

Figure 3.7: Trapezoidal approximation of a fuzzy interval.

3.4.2 Connectives

After the declaration of the set of truth–values of the local logic we must define
the connectives and inference pattern of the logic, that is, the negation, con-
junction, disjunction and modus ponens operators. To do that we have three
options:

1. The standard one in Milord II is to define a set of truth–values and a
conjunction connective by means of a table. Then the system generates
the other connectives, that is, negation, disjunction and modus ponens as
seen above.

2. We can declare the set of truth–values and all the connectives and modus
ponens by means of tables. In this case these connectives will be used by

3.4. Logic Declaration 67

the inference engine. This option is for experimentation with other logics.
Obviously the map of local logics does not work with logics different from
the standard of Milord II.

3. The last option is that of Milord. We can define the set of truth–values
as fuzzy intervals and declare the conjunction by means of a function. In
this case the other connectives and modus ponens are calculated by the
system.

Notice that in all the cases we use the extension to intervals, including the
logics used in Milord.

Functions Declaration

Users can define logical functions, or they can use the predefined functions of
the system.

The user can define these functions by different means:

• Defining a Truth Table for the first and second case. In Figure 3.8 there is
an example of conjunction table declaration.

• By means of a S–expression or using a predefined function in the last case.

Conjunction = Truth Table

((false false false false false)
(false unlikely unlikely unlikely unlikely)
(false unlikely may be may be may be)
(false unlikely may be may be likely)
(false unlikely may be likely true))

Figure 3.8: Truth table declaration for TA5
.

The predefined functions which can be used are the well known:

• Lukasiewicz: T (x, y) = max(0, x + y − 1)

• Zadeh: T (x, y) = min(x, y)

• Probabilistic: T (x, y) = xy

3.4.3 Renaming

Because a module has its own logic, it should have a procedure to translate
the certainty values used in its submodules. Then we introduce the construct
renaming to make this translation.

68 Chapter 3. Approximate Reasoning

Renaming:

S/false ==> impossible
S/unlikely ==> [impossible,few possible]
S/may be ==> [few possible,very possible]
S/likely ==> [very possible,sure]
S/true ==> sure

Figure 3.9: Renaming declaration example.

In Figure 3.9 there is an example of renaming declaration for the module
Gram with the logic B7 that has a submodule named Gram of Sputum that has
the local logic A5.

Finally we can include the complete declaration from the logic point of view
of the module Gram (see the Figure 3.10).

3.5 Conclusions

In this Chapter we have introduced the local logics of modules of Milord II.
Expertise implies to deal with imperfect information. The information managed
by experts is imprecise and uncertain. A language for ESs must provide the
possibility of expressing easily this kind of information. Furthermore the more
adecuated language to express uncertainty is problem dependent.

Milord II introduces a family of multi–valued algebras that are useful to
represent uncertainty by means of linguistic terms. The extension of these al-
gebras to intervals of truth–values has been used to deal with imprecision and
fuzzy sets.

Finally local logics has been introduced as a form to adapt the logic to the
concrete problem and the method to allow the communication among modules
with different logics has been provided.

3.5. Conclusions 69

Module Gram =
Begin

Module D= Respiratory Diagnosis
Module T= Type of Infection
Module P= Previous Treatment
Module S= Gram of Sputum
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
Deductive knowledge

...
Truth values= (impos, few p, sli p, possib, quite p, very p, sure)
Renaming

D/false ==> impos
D/true ==> sure
T/false ==> impos
T/true ==> sure
P/impossible ==> impos
P/sure ==> sure
S/false ==> impos
S/unlikely ==> [impos, sli pos]
S/may be ==> possible
S/likely ==> [quite p, sure]
S/true ==> sure

Connectives:

Conjunction = Truth Table

((impos, impos, impos, impos, impos, impos, impos)
(impos, few p, few p, few p, few p, few p, few p)
(impos, few p, sli p, sli p, sli p, sli p, sli p)
(impos, few p, sli p, possib, possib, possib, possib)
(impos, few p, sli p, possib, very p, very p, very p)
(impos, few p, sli p, possib, quite p, very p, very p)
(impos, few p, sli p, possib, quite p, very p, sure))

end deductive

... end

Figure 3.10: Example of logic declaration.

70 Chapter 3. Approximate Reasoning

Chapter 4

Deduction by Specialization

We have seen in Chapter 2 how an application can be structured in modules. Af-
ter that we have introduced in Chapter 3 the concept of local logics in modules.
This allowed us to deal with different uncertainty and imprecision languages in
different modules. Following the top–down description of Milord II, in this
Chapter we will analyze the deductive knowledge of modules and its interpreta-
tion.

The deductive knowledge of Milord II is mainly composed of facts and
rules as usual in Rule Based Systems . The particular kind of interpretation
we give here to deductive knowledge, that is, our inference engine, is a key
aspect of Milord II. We think that conventional inference engines produce a
poor behavior of the ESs. We think of conventional inference engines as the well
known backward and forward ones. In order to improve the behavior of ESs we
propose an inference engine based on a new rule of inference called specialization.
The deduction in Milord II is based on the specialization of KBs as we will see.

This Chapter is divided in three parts. The first one is devoted to the kind of
behavior we want ESs to have, as the main motivation to introduce our concept
of specialization of KBs. To do that we introduce informally the inference engine
of Milord II. In the second part we present the logical foundation of the special-
ization calculus and the theoretical results about it. After that we will explain
in detail the actual inference engine which is based on specialization. Finally
we present all the extralogic components of deductive knowledge of Milord II
introduced in the language to make easier the development of applications.

4.1 Enriched Behavior

The deductive knowledge component of the Milord II language is used by
experts to represent the domain knowledge of their applications. Like Milord,
Milord II is based on facts of order 0+ and production rules with uncertainty.
They have proved to be useful in our application development experiences. For
this reason further discussions on knowledge representation are avoided except

71

72 Chapter 4. Deduction by Specialization

to motivate the introduction of new constructs.
In this Chapter we are interested in showing that the interpretation of the

deductive knowledge plays an important role in the whole behavior of an ES,
and that a good inference engine design can improve this behavior with respect
to the one imposed by conventional inference engines.

At the moment, to simplify the explanation, we will focus the attention on
the interpretation of facts and rules without the extra complications of control
declarations and modular structuration1.

E.S.

query

input

answer

explanation

success
solution

failure
unknown

dialog

goal
questions

Solutions
Validation

Figure 4.1: Standard Behavior of an ES.

In the Figure 4.1 there is represented the standard behavior of an ES. We will
use that Figure to make clear which are the general aspects we are interested in.
These are related to the communication of the ES with the user, the solutions
generated by the ES and the validation of the ES.

Communication: First the user queries the system for the deduction of a fact.
This fact will be the current goal of the ES2and the ES will try to find
solutions for that fact. In order to obtain solutions, the ES stablishes a
dialog with the user. The system asks questions to the user3, raised by the
process of deduction. We consider that the communication is the sequence
of questions made to the user until a solution for the goal or a failure is
found.

Solutions: The system makes inferences using the rules and the answers given
by the user. Finally the system answers to the user with the solutions for
the goal (if found), which is normally a truth–value in ESs with uncertainty.
Furthermore the system gives some explanation of its answer. We consider
that a solution is a pair composed by an answer and the explanation to
that answer.

Validation: The aspects above allow experts to think in some kind of validation
of their system. The simplest one is case validation, that is, to compare a

1Despite we abstract from modular structure, some aspects of the communication between
an ES and the user can be extended to the communication between modules. In the text you
will find references to modular structure when needed.

2We consider that the goals of the ES are facts. This corresponds to the interpretation of
modules as objects able to answer facts that belongs to its export interface.

3In Milord II the facts asked to the user correspond to the imported facts of modules.

4.1. Enriched Behavior 73

case (the answers given by the user to the ES questions, the goal and its
solution by the user) with the corresponding solution obtained by the ES.

Communication, Solutions and Validation depend on the inference engine
used. Conventional inference engines based on forward and backward strategies
present a number of shortcomings in all three mentioned aspects of ES behavior.
Milord was based on a backward inference engine with uncertainty. The archi-
tecture and behavior of the inference engine of Milord II have been designed
to improve these three aspects of ES behavior.

Following these aspects we will analyze the insufficient behavior produced by
conventional inference engines and explain what are the improvements on it we
propose by means of an inference engine based on specialization. The first point
considered is the architecture of Milord II inference engine. The second and
third points are about one of the main topics of this thesis, that is, specialization.

4.1.1 Communication

In Chapter 1 we have explained that most of the applications developed with
Milord II are interactive. Part of the problem solving behavior of the system
consists in asking to the user the relevant information relative to the case to
be solved. The user’s confidence on the system is then highly related to the
question–answer dialog he maintains with the ES. The user expects a sequence
of questions which should be clearly related to the current goal. The questions
asked and the order in which they are asked are very important to have a good
interaction.

Conventional inference engines have search and deduction interleaved in the
same process. For instance, in backward inference engines depth first and breath
first strategies are part of the design of the inference engine. The search strategy
of Milord was depth first. That means that an inference engine has a fixed search
strategy. The search strategy is embedded in the inference engine and it can not
be changed. Because the search strategy determines indirectly the questions
asked and the order in which they are asked, it is difficult with these inference
engines to obtain a good user interaction. The way to change it is usually by
changing the order of rules, the order of the premises of the rules, and so on.

In this thesis we have not developed a theory of user system interaction. Here
the very important point we consider is the architecture of Milord II inference
engine which makes easier to have a good user interaction (see Figure 4.2). It
is composed of two independent processes, that is, the search process and the
deductive process.

Search process: Given a goal, the search process computes the information
needed to reach the goal with maximum precision (comments on maxi-
mum precision and maximum certainty can be found in Section 3.2). In
Milord II this process is independent of the deductive one. Classical in-
ference engines are limited to the strategies implicitly implemented in the
inference engine (depth first, breadth first, etc). This characteristic allows

74 Chapter 4. Deduction by Specialization

us to implement different search strategies independently of the deductive
process, including the conventional ones.

Deductive process: The inference engine of Milord II is based on special-
ization of KBs. Each new fact known will specialize the KB. The known
facts have been previously selected by the search process. Then the cur-
rent status of a KB is specialized with respect to the known information.
Specialization will be explained along this Chapter.

The proposed architecture allows us to implement different search strategies
depending on different criteria and independently of the deductive process. The
search process is a part of the control of Milord II, and it will be explained
in depth in Chapter 5. The deductive process is the main topic of the current
Chapter.

KB

Deductive
Process

Specialization

Search
Process

Control
Strategy

USER
answer

questions in
pu

t

data
 fo

r

sp
ec

ial
iza

tio
n

Figure 4.2: Inference Engine Architecture.

4.1.2 Solutions

A solution given to the user should be as much informative as possible, that
is, the answer and its explanation should be clearly related to the previous
question–answer interaction with the user. Any doubt on this relation causes
the confidence in the system be on the decrease.

Real world ESs applications are very big and they demand a lot of interaction
with the user. Sometimes the user does not know the answer to ES questions.
There are different reasons for that. Maybe the user actually does not know
the answer to the system question, or he does not know it at the time of the
interaction. Frequently it can be too expensive to obtain that answer. For
instance in medical environments, sometimes to answer a question implies to

4.1. Enriched Behavior 75

produce an intrusive action on the patient. For all these reasons it is very
important to be able to deal with incomplete information (lack of answers).
Conventional inference engines are not able to work with incomplete information,
they answer unknown to a goal if the system is not able to deduce the goal using
the information given by the user.

Remember the standard ES behavior (please return on Figure 4.1). The user
queries to the system whether a given fact can be deduced. If the system is able
to deduce the fact, its certainty value is given back. Otherwise the answer is
unknown (open world assumption). This behavior is rather poor because the
system usually has much more information obtained implicitly in the process of
deduction that could be useful to the user, for instance:

1. When the system is able to answer the user’s query, the user might also
be interested in knowing other deductive paths that would be useful to
improve the solution, or to know other conditioned conclusions that could
be deducible from this solution.

2. When the system is not able to answer a query, it gives back the value
unknown maybe because the user did not provide enough information to
the system. Thus, the communication would be much more informative
if the system was able to answer, not unknown, but give the information
the user should know to come up with a value for the query (this kind of
answers are called conditioned answers).

All this information the ES has about the goal is usually not visible outside
the system, and it could be used to better modelise communication among hu-
man experts. Looking carefully at how experts communicate their knowledge
and at their problem solving procedures, we can find complex communication
patterns. Sometimes experts cannot reduce their interaction only to the com-
munication of certainty values for facts, that is, by giving a precise answer. For
instance, in medical diagnosis, when experts communicate, they also need:

1. To condition their decisions. Suppose that it is not known whether
a patient is allergic to penicillin. An expert considering the possibility of
giving penicillin as treatment would say: Penicillin is a good treatment
from a clinical point of view provided that the patient has no allergy to
penicillin.

2. To give suggestions that must be considered with solutions. Ex-
perts usually give other suggestions (antibiogram) that are related to the
solution (pneumococcus). For instance the expert might say: Pneumococ-
cus has been isolated in the culture of sputum. In this case it is strongly
suggested to make an antibiogram to the patient .

3. To give conditioned suggestions to be considered together with
decisions. Another example of complex communication is the combina-
tion of the above two communication patterns: Ciprofloxacine is a good

76 Chapter 4. Deduction by Specialization

treatment, but if the patient is a woman on breast–feeding period she must
stop breast–feeding .

Specialization allows us to deal with incomplete knowledge giving as solutions
conditioned answers, and producing complementary information as suggestions
or recommendations. To model such communication protocols, we have to ex-
tend the ES answering procedure, by allowing to answer queries with sets of
formulas (rules and facts). We propose the Specialization Calculus (Puyol et al.,
1992b) as a type of deduction allowing to have all this enriched communication.

Let us introduce the specialization of KBs to better understand how we can
obtain this kind of enriched solutions.

Introduction to Specialization

Here we introduce informally the notion of specialization. In rule base systems,
deduction is mainly based on the modus ponens:

A,A → B ` B

Modus ponens is only applicable when every condition of the premise of the rule
to be fired is satisfied, otherwise nothing can be inferred. We propose the use
of partial evaluation to extract the maximum information even from incomplete
knowledge about the truthvalue of the premises of a rule.

We base the partial evaluation of rules on the well known logical equivalence
(A∧B) → C ≡ A → (B → C) which leads to the following boolean specialization
inference rule:

A,A ∧ B → C ` B → C

The rule B → C is called the specialization of the rule A ∧ B → C with respect
to the fact A. Notice that in the particular case of B = ∅, we recover the usual
modus ponens rule.

It is easy to see that we can specialize rules deleting the known facts from the
premise. Unknown facts remain as part of the premise of the rules. This leads
to simpler rules that can be thought as compiled rules. For instance, suppose
that we have the following rule:

If a and b and c then conclude d

Imagine that we only know a and c are true. Then the specialized rule is:

If b then conclude d

Using modus ponens inference rule, the answer to the goal d would have been
unknown because we do not know if the fact b is true or false. If we give the
above rule as an answer, then its interpretation is the following: The truthvalue
of d depends on the truthvalue of b, if b is unknown so will be d (open word
assumption).

This boolean case can not be considered of great interest, but we can extend
this specialization concept to the more interesting uncertainty calculus. For that
we introduce the definition of what we call Specialization Inference Rule (SIR).

4.1. Enriched Behavior 77

Definition 4.1 (SIR) Given a fact A with certainty value α, and a rule with
certainty value ρ, then

(A,α), (A ∧ B → C, ρ) ` (B → C, ρ′)

where ρ′ = MP ∗
T (α, ρ) is the new truth value of the specialized rule4.

Now consider the following weighted rule:

If a and b and c then conclude d is very possible

where very possible is the truthvalue of the rule. Imagine we know that a has
the value possible and c has the value definite. The resultant specialized rule
could be:

If b then conclude d is slightly possible

Notice that the truthvalue of the rule has changed because of the uncertain
values of the facts a and c. This is important when the KB contains a set of
other rules that also deduce d, and all these rules are ordered by their precision.
The specialized rule will change its place in the priority order affecting the
corresponding effect in the search strategy as we will see in Section 5.1.2.

The specialization of a knowledge base consists on the exhaustive specializa-
tion of its rules. Rules whose conditions contain facts with known values are
replaced by their specializations, in particular, rules that only have one known
condition will be eliminated and its conclusion added to the KB as a new fact.
This new fact will be used again to specialize the knowledge base. The process
will finish when the knowledge base has no rule containing on its conditions a
known fact.

Now we can return to the three examples on experts communication in the
previous Section. We can translate the expert’s statements into a set of formulas.
It is easy to see that those formulas are a specialized part of a knowledge base
related to a goal. For instance in the first example we can think of a knowledge
base that contains the following rule:

If no (allergy) and ... then conclude penicillin treatment is good

If the goal is penicillin treatment then the rule selected is the above one.
After that the system asks the questions related to the premise of this rule.
Suppose all the conditions are satisfied except the one related to the fact allergy
that is unknown. Finally the answer to the goal will be:

If no (allergy) then conclude penicillin treatment is good

This rule expresses formally the answer given in the example. We can see
that the system answers with a conditioned answer instead of saying that peni-
cillin treatment is unknown. It is very important to notice the following points
about conditioned answers:

4SIR is parametric on the uncertainty propagation function MP ∗

T
(modus ponens), partic-

ular for each uncertainty calculus.

78 Chapter 4. Deduction by Specialization

• Conditioned answers is a form of answering a goal with part of the knowl-
edge needed to reach it. Then we can say that the system communicates
knowledge (rules) instead of only data (facts).

• The user can reconsider its answers to the questions of the system. In the
example above, the user has answered unknown to the question allergy.
The conditioned answer informs the user where allergy is used in order
to obtain his goal. Then he can reconsider its answer trying to get this
information.

Even in the case the system has reached the goal, it can also answer with
complementary suggestions. Remember that the KB is specialized until it has no
rule containing a know fact. Then we can obtain these suggestions by selecting
those rules that have been specialized with the goal. Consider the two rules in
the last example:

If ... then conclude ciprofloxacine is good
If ciprofloxacine and breast feeding
then conclude stop breast feeding is definite

If the information of the case allows the system to conclude ciprofloxacine,
the specialized rules will be:

ciprofloxacine is good
If breast feeding then conclude stop breast feeding is definite

We can consider this result as an answer composed by the solution of the
goal and a conditioned recommendation.

At this point let us give a new interpretation of the specialization of KBs. So
far we have interpreted the specialization as a form to build answers by selecting
part of a specialized KB. Now we will focus our attention on the inspection of a
whole specialized KB.

A KB is programmed thinking in a concrete domain. For instance, the do-
main of a KB could be: KB for treatment of pneumoniae acquired by adult
patients outside the hospital environment. This KB has no sense for problems
out of this domain. In Milord II a KB is specialized with each information
given by the user. We can interpret this specialization as a form of restricting
the initial domain of the KB. Then, specialization goes from a KB in a domain
to a KB in a more concrete domain. We can clarify this interpretation by means
of an example.

In Figure 4.3 we can see an example of a general KB for pneumonia treat-
ment. It is specialized for a case of women with gramnegative rods. We obtain
a new KB for pneumonia treatment in the case of women with gramnegative
rods. This interpretation of the specialization of KBs allows us to introduce how
specialization can affect the validation of ESs.

4.1. Enriched Behavior 79

Context

KB

Specialized KB

Women with gramnegative rods

General KB for pneumonia
treatment

Specialized KB for
pneumonia treatment
in the case of women with
gramnegative rods.

Figure 4.3: Example of specialization of a KB

4.1.3 Validation

Validation is a mandatory part of the development of ESs. Validation aims at
checking that programs are free of errors and satisfy the user needs. A number
of different methods and techniques exists for program validation. We can find
an exhaustive study of validation and its new trends in (Meseguer, 1992).

Here we do not present any contribution to validation in the sense that we
do not present a set of methods about how to validate an ES. We only want to
show that specialization of KBs is a good technique to simplify the validation
task, and we propose a very simple validation method based on specialization.

As shown in the last example, we can obtain specialized versions of an initial
KB, producing a set of KBs in restricted domains. We can think in applying
any validation method on these simpler specialized KBs. This can contribute to
simplify the validation task similarly as argued for the modular structure in the
introduction of Chapter 2.

The validation method used in Milord II is related to ES testing (the sim-
plest case of validation). We define ES testing as the process of examining ES
behavior by its execution on sample cases (test set) (Meseguer, 1992). The se-
lection of the test set is an essential point for the testing process. This set should
be large enough to be a representative sample of the program domain and yet
small enough to allow the testing process to be executed on each element of the
test set consuming a reasonable amount of resources. Testing has shown to be
very effective in practice.

Normally the expert has a significative set of cases, for instance in medical
diagnosis the cases are patient hospital records. After the execution of the cases
in the ES, a comparative analysis between the results obtained from the ES an
those given by human experts is done. This analysis of results and expected
results next to simple explanations (rules fired, facts deduced, deductive paths,
etc) helps the experts to detect errors and to do a fine tuning of the ES.

80 Chapter 4. Deduction by Specialization

As we have explained above, conventional inference engines produce useful
results when they have enought information to deduce the goal with a value
different from unknown. Each element of the test set can be a large set of data.
The expert should imagine how this set of data has produced the deduction of
the result over a set of rules. A summary of the execution of the inference engine,
like the fired rules, the evaluated facts, and so on, is not sufficient to imagine
how the result has been deduced. This task can become more difficult when the
number of rules of the system grows up. This kind of testing method involve the
expert in the operational aspects of the system.

The testing method based on specialization avoids the experts enter into the
operational aspects of the deduction. Specialization allows us to incrementally
focus the KB in a concrete domain. The expert can detect errors or improve the
KB by observing how a new information specializes his KB. After a specialization
step the expert must agree with this new specialized version of the KB. He
must agree with this version because it is the KB the expert would program for
this restricted domain. Simple inspection of specialized KBs can give a simple
method for the experts for validating their base without loss of the declarative
interpretation of the language.

4.1.4 Summary

Finally we can summarize the most important characteristics of the inference
engine architecture of Milord II and the differences with the inference engine
of Milord. This differences are summarized in Table 4.1.

Milord II is based on an architecture with two independent processes (search
process and deductive process) and on a mechanism of deduction based on spe-
cialization. This inference engine allows us to use any search strategy, allowing
conditioned answers and simplified validation.

Milord Milord II

inference backward, forward specialization
answer atomic facts formulas
search implicit in the engine independent process
goals maximum certainty maximum precision

Table 4.1: Main differences between Milord and Milord II inference engines

The rest of this Chapter can be divided in two parts. The first one is re-
lated to the logical foundation of specialization and the design of the inference
engine. For that, we introduce a simplified syntax and we develop the theory of
specialization.

In the second part we introduce the real syntax and semantics of Milord II
deductive knowledge. Deductive knowledge of Milord II is not only composed

4.2. Specialization Calculus 81

of facts and rules. Practice in ES development has driven us to add a set of
extralogical components to the base language.

4.2 Specialization Calculus

Specialization Calculus is the key point of the deductive process used in Mi-
lord II, and then of the whole behavior of the system. In this Section we give
a formal description and study the properties of this calculus. Here we present
the abstract syntax of the language, the semantics and a soundness theorem.
Examples are written in real syntax, but they are easily understandable5. The
purpose of the detailed examples is to introduce and acquire familiarity with the
calculus with intervals of truthvalues.

4.2.1 Syntax

Here we present a very simplified syntax of facts and rules for the deductive
knowledge of Milord II. It allows us to introduce formally the specialization
calculus. Afterwards we will present the concrete syntax which does not intro-
duce significant changes in the theoretical results.

A propositional language Ln = (An, Σ, C,Sn) is defined by:

• The set of linguistic terms An as defined in Chapter 3.

• A signature Σ consisting on a set of atomic propositional symbols plus true
and false.

• A set of Connectives: C = {¬,∧,→}

• A set of Sentences: Sn = Mv–Literals ∪ Mv–Rules

Sentences are pairs of classical–like propositional sentences and intervals
of truth–values. The classical–like propositional sentences are restricted to
be literals or rules. Thus, the sentences of the language are of the following
types:

Mv–Atoms: {(p, V) | p ∈ Σ and V ∈ Int(An)}

Mv–Literals: {(p, V) | (p, V) ∈ Mv–Atoms or p = ¬q and (q, V) ∈ Mv–
Atoms}

Mv–Rules: {(p1 ∧ p2 ∧ · · · ∧ pn → q, V) | pi and q are literals, V = [a, 1]
is an upper interval of Int(An) where a > 0, and ∀i, j(pi 6= pj , pi 6=
¬pj , q 6= pj , q 6= ¬pj)}

5The logic used in the examples of this chapter is the one defined in Chapter 3. Remem-
ber that the linguistic terms are A5 = {impossible, slightly possible, possible, very possible,
definite}.

82 Chapter 4. Deduction by Specialization

This syntax is close to the standard one in ESs, that is, facts and produc-
tion rules. The most important difference is that facts and rules are weighted
by intervals of truthvalues. The atomic symbols of the signature are what we
call facts in ES terminology. Rules are composed of a set of conditions and a
conclusion. The conditions and the conclusion are facts or negations of facts.
As usual, the facts contained in a rule only appear once, in the conditions or in
the conclusion.

In the next sections we will introduce the real syntax of facts and rules. Here
we limit our expansion to the logical components of deductive knowledge and
we will use the terminology introduced above.

The connectives are translated to the real syntax as: no (¬), and (∧), and if
· · · then conclude (→). An example of rule in Milord II syntax is:

R005 If macrol and no (light seriousness) and
entered to hospital then conclude no (roxi) is very possible

Notice that the symbol very possible after is represents the truthvalue of the
mv–rule. Only an element of An is introduced because the truthvalue of the
mv–rule is always implicitly considered an interval from an element of An to 1.
We could say that this value represents the more pessimistic value of the rule.
It is easy to see that the translation of the previous rule to the abstract syntax
is:

(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])

There are two reasons to consider this kind of intervals for the conclusions
of rules. The first one is for simplicity. Despite the utility of using intervals of
truthvalues, experts express better their knowledge using only one value for the
rules. The second one is related to the semantics of specialization and it will be
explained in the next Section.

4.2.2 Semantics

After the description of the syntax of the abstract language, we present the
meaning of the sentences introduced above. This allows us to give an interpre-
tation of facts and rules with no ambiguity. It is very easy to missinterpret the
language as often do experts by translating the rules into natural language and
incorporating all the ambiguities it has. Then it is mandatory the reference to
the exact meaning of the language.

Models

Models Mρ are defined by valuations ρ, i.e. mappings from the first components
of sentences to An. The elementary case is the valuation of atomic symbols. For
instance we can say that the fact macrol has the value possible, that is, ρ(macrol)
= possible. From this elementary valuation and the operators Nn (negation),

4.2. Specialization Calculus 83

T (conjunction) and IT (implication) presented in Section 3.1 we can obtain
valuations of non atomic sentences.

Valuations of non atomic sentences as defined below hold that:

M1: ρ(¬p) = Nn(ρ(p))

M2: ρ(p1 ∧ p2) = T (ρ(p1), ρ(p2))

M3: ρ(p → q) = IT (ρ(p), ρ(q))

M4: ρ(true) = 1

M5: ρ(false) = 0

We can build an example with the facts and the rule given in the syntax
example. Suppose that our model Mρ is:

ρ(macrol) = possible
ρ(light seriousness) = impossible
ρ(entered to hospital) = definite
ρ(roxi) = slightly possible

We can extend the valuation function to the example rule as follows:

ρ(macrol ∧ ¬light seriousness ∧ entered to hospital → ¬roxi) =
IT (T (ρ(macrol), T (Nn(ρ(light seriousness)), ρ(entered to hospital))),
Nn(ρ(roxi))) =
IT (T (possible, T (Nn(false), true)),Nn(slightly possible)) = definite

Satisfaction Relation

Given a model, that is, the valuations of facts and rules, we define when a
sentence is satisfied by a model. The satisfaction relation is defined as follows:

Definition 4.2 (Satisfaction Relation) The Satisfaction Relation between mod-
els and sentences is defined by:

Mρ |= (p, V) iff ρ(p) ∈ V

where V ∈ Int(An).

The satisfaction of a set of sentences is the satisfaction of each of them. This
satisfaction relation introduces in our system the notion of imprecision presented
in Chapter 3, a sentence is satisfied if the valuation of the proposition belongs
to an interval of truthvalues (it is not necessarily equal to a truthvalue). For
instance we can show that the model above satisfies the rule given in the syntax
example:

{ρ(macrol) = possible, ρ(light seriousness) = impossible,
ρ(entered to hospital) = definite, ρ(roxi) = slightly possible} |=
(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])

84 Chapter 4. Deduction by Specialization

It is easy to see that:

ρ(macrol ∧ ¬light seriousness ∧ entered to hospital → ¬roxi) = def-
inite ∈ [very possible,1]

Semantical Entailment

From the definitions of models and satisfaction relation given above, we can
introduce in the usual way the notion of semantical deduction, that is, when a
sentence is semantically deducible from a set of sentences.

Definition 4.3 (Semantical Entailment) Semantical entailment between sets
of sentences and sentences is defined as usual:

Γ |= A iff for any model Mρ |= Γ implies Mρ |= A,

for any set of sentences Γ and sentence A.

Following the same example consider that Γ and A are:

Γ = {(macrol,[possible,definite]),
(light seriousness,[impossible,impossible]),
(entered to hospital,[definite,definite]),
(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])}

A = (roxi,[impossible,possible])

Now we want to prove that Γ |= A. First of all we should find all the models
that satisfies Γ. Using the satisfaction relation it is easy to see that the valuations
of the atoms must be :

ρ(macrol) =

possible
very possible
definite

ρ(light seriousness) = impossible
ρ(entered to hospital) = definite

ρ(roxi) =

impossible
slightly possible
possible
very possible
definite

From these atomic valuations which combinations define fifteen possible mod-
els, we can compute which are the valid models that satisfy the rule:

ρ(macrol ∧ ¬light seriousness ∧ entered to hospital → ¬roxi) =
IT (T (ρ(macrol), T (Nn(ρ(light seriousness)), ρ(entered to hospital))),
Nn(ρ(roxi))) ∈ [very possible,1]

4.2. Specialization Calculus 85

We can simplify the expression with the facts light seriousness and entered -
to hospital that only can take a boolean value:

IT (ρ(macrol),Nn(ρ(roxi))) ∈ [very possible,1]

Using the Table 3.3 of the operator IT in this example, we can build the
Table 4.2 that contains the valid models obtained.

ρ(light seriousness) ρ(entered to hospital) ρ(macrol) ρ(roxi)

impossible definite possible impossible
sli possible
possible

very possible impossible
sli possible
possible

definite impossible
sli possible

Table 4.2: Valid models of the example.

Then we have obtained eight models that satisfy Γ. It is easy to see that all
the valuations of roxi are in the interval [impossible,possible], so Γ entails A.

Now we are interested in semantical deduction. From mv–facts and mv–rules
we want to obtain new mv–facts and specialized mv–rules. A set of interesting
properties of the semantic entailment that will play a major role in later proofs
is presented next.

Proposition 4.1 If p, q, p1, . . . , pn denote literal symbols then the following prop-
erties are fulfilled:

SR1: (p, V) |= (p,W) ⇔ V ⊆ W

SR2: (p, V) |= (¬p,W) ⇔ N ∗
n(V) ⊆ W

SR3: (p, V), (p,W) |= (p,U) ⇔ V ∩ W ⊆ U

SR4: (pi, Vi), (p1 ∧ · · · ∧ pn → q, V) |= (p1∧· · ·∧pi−1∧pi+1∧· · ·∧pn → q,W) ⇔
MP ∗

T (Vi, V) ⊆ W

SR5: MP ∗
T (T ∗(V1, . . . , Vn),W) =

MP ∗
T (V1,MP ∗

T (V2, . . . ,MP ∗
T (Vn,W) . . .)), if W = [w, 1]

These properties6 give semantics to the negation of mv–atoms and the spe-
cialization of mv–rules. The property SR5 is the justification of the equivalence
which is the base of specialization (a ∧ b → c ≡ a → (b → c)). This is the other
reason cited above to use upper intervals in the mv–rules.

6The proof of these properties can be found in (Puyol et al., 1992c) and Appendix B.

86 Chapter 4. Deduction by Specialization

4.2.3 Specialization Calculus

After the semantics we define the syntactical deduction that will be the base of
the inference engine and we prove that it is sound. The specialization calculus
is based on the following axioms and inference rules:

1. Axioms:

A1: (true, [1, 1])

A2: (false, [0, 0])

2. Axiom schemes:

AS1: (p, [0, 1])

3. Inference rules:

Weakening: (p, V1) ` (p, V2) where V1 ⊆ V2, for any literal p

Not–introduction:
(p, V) ` (¬p,N∗

n(V)), for any atom p
(¬p, V) ` (p,N∗

n(V)), for any atom p

Composition: (p, V1), (p, V2) ` (p, V1 ∩ V2), for any literal p

SIR: (pi, Vi), (p1 ∧ · · · ∧ pi ∧ · · · ∧ pn → q, Vr) `
(p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn → q,MP ∗

T (Vi, Vr)), for any literals
p1 · · · pn and q

It is easy to see that these inference rules are deduced from the properties
SR1–SR4. This is the simplest system for our concept of specialization of KBs.
We want to obtain mv–facts and specialized mv–rules. We are not interested in
other kind of rules. Finally we can give an example of deduction. Consider this
initial set of sentences composed by the above rule R005 and concrete values for
the facts macrol, light seriousness and entered to hospital.

(macrol,[possible,definite])
(light seriousness,[impossible,impossible])
(entered to hospital,[definite,definite])
(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])

Using Not–introduction and SIR inference rules we can deduce syntactically
the following set of sentences7:

(macrol,[possible,definite])
(¬macrol,[impossible,possible])
(light seriousness,[impossible,impossible])
(¬light seriousness,[definite,definite])

7We do not apply the Weakening inference rule for the sake of simplicity. This rule would
generate new more imprecise mv–atoms. These mv–atoms would specialize again the mv–rules
producing new more imprecise mv–rules.

4.3. Implementation 87

(entered to hospital,[definite,definite])
(¬entered to hospital,[impossible,impossible])
(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])
(¬light seriousness ∧ entered to hospital → ¬roxi,[possible,1]))
(entered to hospital → ¬roxi,[possible,1]))
(¬roxi,[possible,1])
(roxi,[impossible,possible])

For simplicity we have not written all the resultant sentences obtained from
the application of weakening. Finally the conclusion is:

A = (roxi,[impossible,possible])

4.2.4 Soundness and Completeness

From properties SR1, SR2, SR3 and SR4 of the semantical entailment, it is easy
to check that the above specialization calculus is sound.

Theorem 4.1 (Soundness) Let A be a sentence and Γ a set of sentences.
Then Γ ` A implies Γ |= A

It is straightforward to see that our deductive system is not complete. For
instance, we have {(p → q, 1), (q → r, 1)} |= (p → r, 1) but {(p → q, 1), (q →
r, 1)} 6` (p → r, 1). It is also the case that the language is not complete for literal
deduction in general. For instance, we have {(p → q, 1), (¬p → q, 1)} |= (q, 1)
but {(p → q, 1), (¬p → q, 1)} 6` (q, 1). However, it can be proved that the system
is complete for literal deduction in the context of a restricted language setting.
Soundness and restricted completeness are proved in (Puyol et al., 1992c) and
in Appendix B.

Despite our deductive system is not complete, we can show that it is useful
for our purpose of obtaining specialization of KBs. We need to specialize a rule
when we know the truthvalue of an atom that belongs to the premise of that
rule and in this case we have:

{(p1, V1), (p1 ∧ · · · ∧ pn → q,W)} |= (p2 ∧ · · · ∧ pn → q, U) ⇔
{(p1, V1), (p1 ∧ · · · ∧ pn → q,W)} ` (p2 ∧ · · · ∧ pn → q, U)

To finish this part we introduce the implementation of that Specialization
Calculus.

4.3 Implementation

In the above Section we have introduced the Specialization Calculus used in
Milord II. Axioms and inference rules are the sufficient mechanisms to do
specialization from the logic point of view. We have proved that the properties
we were interested in hold. Now we want to implement that Specialization
Calculus.

88 Chapter 4. Deduction by Specialization

The requirements for the inference engine are closely related to the behavior
of the whole system. Remember that the specialization of deductive knowledge
is the base for users/system communication. Furthermore the inference engine
must also handle the control knowledge. In summary, the inference engine is
a key part of the whole system Milord II. In this Section we will present the
requirements of the inference engine and the concrete implementation.

4.3.1 Inference Engine Design

The simplest inference engine would be an inference engine that given a KB it
would apply all the inference rules of the Specialization Calculus until there is
not any rule that can be applied. In the last example we have showed this kind
of behavior. But when we design the inference engine of Milord II we have new
requirements that determine which and when rules have to be applied.

In order to preserve the correctness of the inference engine with respect to
the semantics of Specialization Calculus, the inference engine does not introduce
here extralogical components. The axioms and inference rules presented above
are the only mechanisms to do specialization.

As usual we are interested in designing an efficient program but we do not
make a special point of this. Despite this we have introduced some control to
improve the efficiency of specialization.

Furthermore we should take into account that this inference engine must be
integrated in the whole system. Possible simplifications of the inference engine
are not possible because we need to handle the actions of the local control of
a module (control will be explained in Chapter 5). The following are the more
important points that we take into account in the design of the inference engine
of Milord II:

• The task of the inference engine is to produce specialization of deductive
knowledge. As seen in Section 4.1 the specialized deductive knowledge is
used to present an enriched behavior of ESs. The internal representation
of deductive knowledge should facilitate that task. We have chosen an
internal representation that it is close to our concept of specialization.

• When deducing facts we are only interested in values (intervals of truth–
values) having maximum precision. Then the inference engine will assign a
definitive value to a fact when it is the most precise (you can find comments
on imprecision and its control in Sections 3.2.2 and 5.1.2 respectively) that
we can obtain from the deductive knowledge in the current case; otherwise
the values are considered to be provisional.

• The inference engine must be interleaved with control. Then it should fit
the actions made by the control. We avoid some simplifications that would
produce a more efficient inference engine because in the inference engine
design we must foresee the actions of the control.

Following the above criteria of design now we will comment the use of the
inference rules of the Specialization Calculus.

4.3. Implementation 89

The first point is that we want to obtain maximum precision. This implies
that the inference engine must not use the Weakening inference rule that pro-
duces valid but less precise values. Another consequence of maximum precision
is that the system specializes the mv–rules with the more precise mv–atoms.
Then, it is not necessary to conserve the previous versions of the mv–rules be-
cause the rules will not be specialized again with the same mv–atoms. This
implies the substitution of mv–rules with their specialized versions.

From the expert point of view a KB is represented by means of mv–rules
and mv–atoms. Specialization of a KB should conserve that representation as
shown in the introduction of this Chapter. Then we are not interested in creating
mv–literals. Not–Introduction is only used when necessary to calculate the new
truthvalue of mv–rules or that of their conclusion when they are specialized.

Finally notice that Composition is used to calculate the truthvalue of a fact
when more that one rule conclude it. Each rule gives a provisional value to the
conclusion. Finally the definitive value is obtained by means of Composition.

Following this requirements we will define the inference engine. We will use
functional and algorithmic descriptions. We use a simple example to illustrate
the behavior of the inference engine. First of all we introduce the internal data
structure of a KB.

4.3.2 Internal Representation of Deductive Knowledge

Here we present the internal representation of deductive knowledge to make clear
what is the task of the inference engine and what are the entries to control.

We are not interested in maintaining a data structure composed of facts and
rules. We propose a new data representation that it is very close to the real
implementation and that clarifies control and extralogical components of the
inference engine.

We maintain the above definitions for mv–atoms, and mv–literals, but we
propose a new representation of mv–rules that allows us to make easy the func-
tional descriptions by means of set operations.

Definition 4.4 (Mv–Rule) A mv–rule is represented as a 3–tuple
r = (mr, cr, ρr) where mr is the premise (a set of literals), cr is the conclusion
(a literal) and ρr is the truthvalue of the rule (an interval of truthvalues such
that ρr = [α, 1] and α ∈ An).

For instance the mv–rule (c ∧ d → e,[ρ2,1]) can be represented as the 3–
tuple: ({c, d}, e, [ρ2, 1]). From that we can give the definition of a knowledge
base. Given a set of mv–rules, it consists in associating each atom appearing in
the mv–rules with its current truth–value (provisional or definitive one) and the
mv–rules that can deduce it, that is, those whose conclusion is that atom or the
negation of that atom. In the following we will call knowledge base the internal
representation of the deductive knowledge.

Definition 4.5 (Knowledge Base) Let R be a set of mv–rules and let FR be
the set of all atoms appearing in the rules of R. We define a knowledge base

90 Chapter 4. Deduction by Specialization

KBR as a mapping8:

KBR : FR → Int(An) ×P(R)

where, for each f ∈ FR, KBR(f) = (vf , Rf), being Rf = {r ∈ R|r = (mr, cr , ρr)
and cr = f or cr = ¬f}

Initially we build a knowledge base with truthvalues of the atoms [0, 1]. It
means that the atoms initially has the most imprecise value. Notice that a KB
with all the atoms with truthvalues [0, 1] is always consistent in our specializa-
tion calculus (axiom scheme AS2). The truthvalues of atoms can be changed
by the rules that deduce them (giving a more precise truthvalue by means of
Composition inference rule) or by external valuations of atoms. The truthvalue
of an atom is considered to be provisional when there are rules that can conclude
it; otherwise it is considered to be definitive.

Now we can see an example of initial KB. Suppose that we have a deductive
knowledge composed of the following set of mv–rules:

R = {(a ∧ b → c,[ρ1,1]), (a ∧ f → ¬ c,[ρ2,1]), (c ∧ d → e,[ρ3,1])}

It is easy to see that the set FR is:

FR = {(a, b, c, d, e, f)}

Now we can translate the example to the new representation. We create a
table (mapping) from atoms of FR to its initial truthvalue ([0,1]) and the set of
mv–rules that deduce them. Then the knowledge base is the mapping KB such
that:

KB(a) = ([0 , 1], ∅)
KB(b) = ([0 , 1], ∅)
KB(c) = ([0 , 1], {({a, b}, c, [ρ1, 1]), ({a, f},¬c, [ρ2, 1])})
KB(d) = ([0 , 1], ∅)
KB(e) = ([0 , 1], {({c, d}, e, [ρ3, 1])})
KB(f) = ([0 , 1], ∅)

Now we will define the specialization of KBs represented by the above for-
malism. We will use the same example to illustrate the explanation.

4.3.3 Specialization

First of all we give a functional description of specialization of mv–rules. Giving
a mv–rule and a mv–atom, the mapping SR will specialize the mv–rule with
respect of that mv–atom. It will return the new specialized mv–rule, or a new
mv–atom in the case that the initial mv–rule would be able to deduce its con-
clusion.

8P(R) is the powerset of the set R.

4.3. Implementation 91

Definition 4.6 (Specialization of Mv–Rules) Let R be a set of mv–rules
and F ∗ a set of mv–atoms F ∗ = {(p, ρp)|p ∈ FR}. We define SR as a mapping:

SR : R × F ∗ → R × F ∗

SR(r, (p, ρp)) =

(r, (∅, [0, 1])) if p 6∈ mr and ¬p 6∈ mr

(r′, (∅, [0, 1])) if p ∈ mr or ¬p ∈ mr

(∅, (q, α)) if mr = {p} or mr = {¬p}
and cr = q or cr = ¬q

where

r′ =

{

(mr − {p}, cr ,MP ∗
T (ρp, ρr)) if p ∈ mr

(mr − {¬p}, cr ,MP ∗
T (N∗

n(ρp), ρr)) if ¬p ∈ mr

and

α =

MP ∗
T (ρp, ρr) if mr = {p} and cr = q

N∗
n(MP ∗

T (ρp, ρr)) if mr = {¬p} and cr = q
MP ∗

T (N∗
n(ρp), ρr) if mr = {p} and cr = ¬q

N∗
n(MP ∗

T (N∗
n(ρp), ρr)) if mr = {¬p} and cr = ¬q

Negations of mv–atoms are calculated by means of the Not–introduction
inference rule, and the specialization of mv–rules is done using SIR inference
rule. Notice that we only generate mv–atoms. Taking again the same example
we can do the specialization of the mv–rule of the last example obtaining a new
specialized mv–rule:

SR(({a, f}, ¬ c,[ρ2,1]), (f,[ρ4, ρ
′
4]) =

(({a}, ¬ c,[MPT (ρ4, ρ2),1]), ∅)

If we specialize again the rule we obtain a mv–atom:

SR(({a}, ¬ c,[MPT (ρ4, ρ2),1]), (a,[ρ5, ρ′
5]) =

(∅, (c, N ∗
n(MP ∗

T ([MPT (ρ4, ρ2), 1], [ρ5, ρ′
5]))))

After the definition of rule specialization we can explain atom specialization.
A kb–atom is a structure that associates to an atom its truthvalue and the
rules that conclude it. Then, atom specialization will modify the structure of a
kb–atom with a mv–atom.

First of all we find a mv–rule from the set of mv–rules that conclude the atom
such that it can be specialized with respect to that mv–atom. If no rule of this
type can be found the specialization of the kb–atom returns the same structure.
Otherwise it returns a new specialized rule (r ′ 6= r) or a new mv–atom (r = ∅).
If the specialization of a rule returns a new rule (SR(r, f∗) = (r′, (∅, [0, 1]))) then
we substitute the rule by the specialized one and the truthvalue is not changed.
Notice that [a, b] ∩ [0, 1] = [a, b]. If it returns a new mv–atom (SR(r, f∗) =
(∅, (p′, v′))) the rule is eliminated and the new truthvalue is calculated by means
of the Composition inference rule.

92 Chapter 4. Deduction by Specialization

Definition 4.7 (Atom Specialization) Let R a set of mv–rules and F ∗ a set
of mv–atoms, the specialization of facts is a mapping such that:

SC : Int(An) ×P(R) × F ∗ → Int(An) ×P(R)

SC((v,Rf), f ∗)

=

{

SC((v ∩ v′, Rf − {r} + {r′}), f ∗) (*)
(v,Rf) otherwise

(*) such that SR(r, f∗) = (r′, (p′, v′)) and r′ 6= r

being Rf = {r ∈ R|r = (mr, cr, ρr) and cr = f or cr = ¬f}

For instance, suppose we have the following kb–atom:

KB(c) = ([0, 1], {({a, b}, c, [ρ1, 1]), ({a, f},¬c, [ρ2, 1])})

We want to specialize it with the mv–atom f ∗ = (a, [ρ5, ρ
′
5]). Then the special-

ization is:

SC((v,R), f ∗) =
SC(([0, 1], {({a, b}, c, [ρ1, 1]), ({a, f},¬c, [ρ2, 1])}), (a, [ρ5, ρ′

5])) =
([0, 1], {({b}, c, [ρ6, 1]), ({f},¬c, [ρ7, 1])})

because the specialization of the rule is:

SR(({a, f},¬c, [ρ2, 1]), (a, [ρ5, ρ′
5])) = (({f},¬c, [ρ6, 1]), ∅)

SR(({a, b}, c, [ρ1, 1]), (a, [ρ5, ρ
′
5])) = (({b}, c, [ρ7, 1]), ∅)

We want to specialize this resultant kb–atom with the mv–atom
f∗ = (f, [ρ4, ρ

′
4]). Then

SC((v,R), f ∗) =
SC(([0, 1], {({b}, c, [ρ6, 1]), ({f},¬c, [ρ7, 1])}), (f, [ρ4, ρ′

4])) =
([0, 1] ∩ [0, ρ8], {({b}, c, [ρ6, 1])})

because the specialization of the rule is:

SR(({f},¬c, [ρ3, 1]), (f, [ρ4, ρ′
4])) = (∅, ρ8)

It is easy to see that:

KB(c) = ([0, ρ8], {({b}, c, [ρ6, 1])})

We can interpret that the atom c has provisional value [0, ρ8] because there
is a mv–rule that conclude that atom yet. Finally we can arrive to the whole
knowledge base specialization:

Given a set of mv–atoms to specialize a KB, each mv–atom is used to spe-
cialize the KB. This process of specialization will produce new mv–atoms. These
mv–atoms will be used to specialize the KB again. Specialization stops when
there are no new mv–atoms to specialize the KB.

4.3. Implementation 93

Definition 4.8 (KB Specialization) Let KB be a set of knowledge bases and
F ∗ a set of mv–atoms such that F ∗ = {(p, V)|p ∈ FR}. KB specialization is
defined as a mapping:

SKB : KB ×P(F ∗) → KB

SKB(kb, F ∗) =

{

SKB(kb′, F ∗ − {f∗} + F ∗′

) if F ∗ 6= ∅
kb otherwise

where ∀fkb ∈ FR,

kb′(fkb) =

{

(v, ∅) if (fkb, v) = f ∗ or kb(fkb) = (v, ∅)
SC(kb(fkb), f ∗) otherwise

and

F ∗′

= {y = (p, ρy)|kb(p) = (v,R),SC(kb(p), f ∗) = (ρy, ∅), p ∈ FR}

Finally we can see the last example consisting in specializing the last KB
with the atom b.

SKB(kb, {(b, ρ10)}) = SKB(kb′, F ∗)

where f ∗ = (b, ρ10)

KB′(a) = (ρ5, ∅)
KB′(b) = ([0 , 1], ∅)
KB′(c) = SC((ρ9, {({b}, c, [ρ1, 1])}), (b, ρ10)) = (ρ11, ∅)})
KB′(d) = ([0 , 1], ∅)
KB′(e) = SC(([0, 1], {({c, d}, e, [ρ2, 1])}), (b, ρ10)) =
([0, 1], {({c, d}, e, [ρ2, 1])})
KB′(f) = (ρ7, ∅)

F ∗ = {(c, ρ11)}

Finally

KB′′(a) = (ρ5, ∅)
KB′′(b) = ([0, 1], ∅)
KB′′(c) = (ρ11, ∅)
KB′′(d) = ([0, 1], ∅)
KB′′(e) = ([0, 1], {({d}, e, [ρ12, 1])})
KB′′(f) = (ρ7, ∅)

We have seen the specialization calculus and the concrete implementation
by the above description of the inference engine function SKB. This inference
engine has been designed avoiding extralogical components and then assuring the
correctness of the inference engine with respect to the semantics of specialization
calculus. In Chapter 5 we will enrich the inference engine with the actions of
control.

94 Chapter 4. Deduction by Specialization

4.4 The Deductive Knowledge Language

This Section starts a different approach to Milord II from that seen above. In
the current Chapter we have explained in a formal way a propositional language
close to that of Milord II and its interpretation. We have introduced the basic
logical syntax, the semantics, the properties of this language and the inference
engine that interprets it. Here we introduce the real language of Milord II
which has been build on top of the previous logic based one.

If we observe the module declaration given in Figure 4.4, we can see that
deductive knowledge is a basic component of modules as seen in Chapter 2. The
components of the deductive knowledge are the dictionary, the rules and the
inference system declarations.

Module foo =
...
Deductive knowledge

Dictionary: ...
Rules: ...
Inference system: ...

end deductive

...
End

Figure 4.4: Deductive declaration into the modules.

Now we relate the components of the deductive knowledge of a module with
those of the primitive syntax described in Section 4.2.1. A dictionary declaration
contains fact declarations, that is the set of concepts that will be used into a
module (temperature, feber). Facts can be declared to belong to a type. For
instance we can say that temperature is a numeric fact and feber is a logic fact.
Then, the value of the first fact will be a real number and the value of the
second one an interval of truth–values. The atomic formulas of this language
(atoms in the primitive syntax) are facts of logic type or predicates over facts of
another type. For instance an atomic formula with the fact temperature could be
temperature > 36.5◦. Rules are composed by this kind of atomic formulas. Then,
the sentences of the deductive knowledge of Milord II are composed by pairs
of facts and their value (different from the mv–atoms) and rules weighted by
intervals of truth–values of the form [a, 1] (equal to mv–rules, but with different
atomic formulas). All this is explained in detail in the following paragraph.

The inference system declaration was explained in Section 3.4. Remember
that it declares the local logic of a module. The set of linguistic terms An is
declared as a part of an inference system declaration.

Here we will present the concrete syntax of the dictionary and the rules
of deductive knowledge that allows us to write real applications. Syntax is
introduced mainly to introduce the different constructs. We do not describe here

4.4. The Deductive Knowledge Language 95

all the possible syntactical forms that are valid in the language. Please reference
the complete syntax in Appendix A. When possible we use real examples to
illustrate the programming task with Milord II.

4.4.1 Facts

Facts are one of the most primitive components of the language Milord II. They
are atomic symbols that represent the concepts that will be used in a module.
Facts can be observable (fever), deducible (pneumonia) and so on.

The declaration of a fact is composed by an atomic name that is the identi-
fication of the fact and a set of attributes: name, question, type, function and
relations. Facts can be referenced inside a module9, for instance in its rules.

Facts are declared in dictionary declarations. An example of dictionary is
given in Figure 4.5. It contains type and fact (predicate) declarations. In this
example we can see the declaration of a fact identified by assoc treat.

Dictionary:

Types: farmac = (carbamacepina, teofilina, digoxina,
dicumarinics, ciclosporina,
difenilhidantoina)

Predicates:

assoc treat=
Name: ”Associated Treatments”
Question: ”which farmacs the patient takes usually?”
Type: farmac
Relation: needs true use farmacs?

Figure 4.5: Example of dictionary declaration

Attributes of Facts

Here we will describe all the attributes that facts have. Name and type attributes
of facts are mandatory.

Name: This is an attribute that associates a long name to the fact. Experts
use atomic short names to identify a fact mainly to simplify the rules
and metarules. The long name is presented to the user for helping its
understanding of the concept the fact represents.

Question: This is the text of the question made to the user when a fact belongs
to the import interface. When the system asks a question to the user it
presents the long name of the fact, the question and the set of possible

9A module can reference all the facts declared into the module. Facts declared into other
modules can be referenced by using a path name if they are accessible (remember that they
can be hidden by the information hiding mechanism).

96 Chapter 4. Deduction by Specialization

answers among which the user can select. When a fact belongs to the
import interface of a module this attribute is mandatory.

Type: It declares the type of the fact. The type of a fact is the set of values that
it can take when it is evaluated. There are five predefined types, that is,
boolean, logic, numeric, array and class; and one user–defined type named
enumerated. A fact can be evaluated over the set of values determined by
its type.

Function: Sometimes we want to evaluate a fact with a procedural form in-
stead of a deductive one. This allows us to evaluate a fact by means of a
functional description.

Relation: It stablishes named relations with another facts. This implements a
directed graph of relations among facts that can be used to classify facts,
to stablish an order of evaluation, etc.

We can see the example in Figure 4.5. This fact has a name, a question
because its value will be obtained from the user, and the type (declared in
the type declaration of the dictionary) which is a set of farmacs. The relation
declaration means that the fact use farmacs? needs to be known true to give
sense to the fact assoc treat.

After this summary description of the attributes of facts, we will explain in
detail the type, function and relations attributes.

Types of facts

In the first part of this Chapter we have worked with facts weighted by an
intervals of truthvalues. Now we say that this kind of facts are of logic type. We
need to add more types that the logic one. We follow Milord in this but with
some variations. There are five predefined types: boolean, logic, numeric, array
and class. The user can define new types of facts by enumeration, then we say
that facts are of order 0+. Here there is a summary of the types of Milord II
facts:

Boolean: Are facts whose value can be Yes (true) or No (false). They are
used when we want talk about the presence or absence of a concept. For
instance we can consider that the fact has fever is a boolean fact because
we have a criteria to decide if it is true or not the patient has fever.

Logic: The values of this facts are intervals10 of a set of linguistic terms that
represents uncertainty values. This set of terms must be defined in the
inference system declaration (see Section 3.4). The kind of concepts that
can be considered logic facts are those whose truthness can be valued,
because there are subjective. For instance if we use a subjective criteria to

10
Milord used only one element of a set of linguistic terms. This type of facts was named

fuzzy.

4.4. The Deductive Knowledge Language 97

appreciate if a patient has fever as touching with the hand, we can consider
that the fact has fever is a logic fact (we can say that has fever is possible).

Numeric: The value is an interval of real numbers. They are used in quantita-
tive data, for instance temperature, number of leucocits, etc.

Enumerated: This is the only type that can be defined by the user. This type is
a set of symbolic values. The value of a fact of enumerated type is a subset
of the type declaration, or none. A difference with the enumerated type
in Milord is that each symbol of a enumerated fact has a certainty value
associated (it is a fuzzy set as shown in Section 3.2.3). In Figure 4.5 we can
see an example of enumerated type declaration farmac. An enumerated
type can be defined in the type attribute of a fact declaration. It can also
be defined in the type declaration of the dictionary (see Figure 4.5) and
give it a name. This name can be used to declare a type of a fact.

Array: The value of this kind of facts are arrays of real numbers of any dimen-
sion. This is a special type of fact and it is only used in an example of
belief propagation application described in the Section 6.6.

Class: The facts of this type have no value. They are used only to define
relations with other facts. For instance we can consider that the fact oral
is a class fact because we want to define a relation with it in the declaration
of the antibiotics that are administrated orally.

The facts that belong to the import interface of a module can be asked to the
user11. He can answer with the set of values that are allowed depending of the
type of the fact. Users are able to answer unknown to a system question. It is
very important to distinguish this answer of the interval [0, 1]. In the first case
the system considers that the fact questioned provisionally has no value. Then,
it do not produce any actions on the module, it is not used to specialize the KB.
The interval [0, 1] is an interval of truth–values used internally that represents
the definitive value unknown.

Fact Functions

Fact functions allows us to implement a set of functionalities that are useful in
the practice of ESs. Here we emphasize possible applications of functions as
interfaces with other programs, procedural evaluations of facts and fuzzy sets.

The function attribute of a fact is programmed in Common Lisp12. It is
a lambda–expression without parameters. This lambda–expression is considered
to be into a lexical closure that contains the name of the facts declared into a
module. The evaluation of these fact names returns their value. Then the body

11Facts of the import interface are not always asked to the user. In some cases the control
of the module can give a value to an imported fact before asking it to the user.

12Underline language of Milord II is Common Lisp, then it is easy to introduce part of the
ES programmed in this language. In this Section we will use Common Lisp terminology that
is considered to be well known. Details of this can be found in (Steele, 1984).

98 Chapter 4. Deduction by Specialization

of the lambda–expression can contain fact names and they will be substituted
by their values.

The value of a fact that contains a function attribute in its declaration is
calculated by means of the evaluation of that function. To evaluate this kind
of fact its function attribute is evaluated and the result of this evaluation is
attached to the fact. Now we can see a set of examples of the function attribute.

One of the characteristics of Milord II commented in the introduction is
that it should work in a realistic computer environment. Function attributes can
provide a tool for communicating an ES with other programs. For instance in
Spong–IA application the system asks the user which is the form of the sponge
he wants to classify. Then it is more clear if the question is joined with a set
of pictures representing the possible forms. The user can select one of them
by means of a picture representation program. For instance, the evaluation of
the fact form can be obtained by means of a function that uses that program.
Function attributes can be used as a sort of interface with other programs as
graphics, databases, etc.

Sometimes the value of a fact can be obtained easily by means of a mathe-
matical expression or a procedure. An example of function attribute of Terap–IA

application can be seen in Figure 4.6. The value of the fact clearance of creatinin
can be obtained by means of the following expression. In Figure 4.6 we can see
the declaration of this fact creat clear that contains a function attribute.

clearance of creatinin = 140 −

age × weight ×

{

1.0 if male
0.8 if female

}

72

Creat clear=
Name: ”Clearance of creatinin”
Type: numeric

Function:

#’(lambda ()
(- 140
(/

(* age weight (case sex
(male 1.0)
(female 0.8)))

72)))

Figure 4.6: Example of function attribute

Another use of the function attribute of a fact is for declaring the charac-
teristic function of a fuzzy set (see Section 3.2.3). In Figure 4.7 we can see an
example of fact declaration of the concept tall. This concept is represented by a
fuzzy set and declared with a function that given an interval of numeric values

4.4. The Deductive Knowledge Language 99

that represents the height of a person returns an interval of truthvalues. You
can see a graphical representation of this characteristic function in Figure 3.2.

Tall=
Name: ”Tall”
Type: logic
Function:

#’(lambda ()
(labels ((tall (omega)

(cond
((< omega 1.7) ’impossible)
((and (>= omega 1.7)

(< omega 1.75)) ’sli possible)
((and (>= omega 1.75)

(< omega 1.8)) ’possible)
((and (>= omega 1.8)

(< omega 1.9)) ’very possible)
((>= omega 1.9) ’definite))))

(list (tall (first height)) (tall (second height)))))

Figure 4.7: Example of characteristic function.

In the Section 6.5 we can see an application that uses the function attribute
to implement fuzzy sets.

Fact Relations

A fact can have several relation attributes. Relation attributes define named
relations between the fact and other facts of the system. We can distinguish
between relations defined by the user, and predefined relations. The expert can
define relations among facts and give them sense and properties in the control
component of the module. Relations can be used in the conditions of metaru-
les, this will be explained in Section 5.4.1. Here we present some examples of
relations defined by the expert of Terap–IA application:

• eritro DB equivalent spectrum doxi : The facts eritro DB and doxi are
antibiotics. This relation means that both antibiotics can treat the same
kind of pneumoniae.

• amoxi belongs to group administracio oral : The antibiotic amoxi belongs
to the group of the antibiotics administrate orally.

• vanco tract agree with anam spec/insuf renal : Notice that we can define
relations with visible facts of other modules, in this case the relation of
fact vanco tract with the fact insuf renal of the module anam spec.

100 Chapter 4. Deduction by Specialization

There are a set of common problems faced by experts that can be solved
using relations. Predefined relations are a set of relations with a global meaning
in the system.

Belongs to: Experts usually use a belonging relation in their applications. This
is a predefinited relation to avoid defining its transitive property, giving a
more efficient system. For instance when the expert defines these three re-
lations among antibiotics, doxi belongs to ABS/tetras 2, doxi DI belongs to
ABS/tetras 2 and tetras 2 belongs to tetraciclines, the system adds the new
relations doxi belongs to tetraciclines and doxi DI belongs to tetraciclines.

The relations of type needs are used to give a correct ordering of questions
to the user in the case of importable facts.

Needs: When the system is going to ask for the value of a fact, and this fact
has a needs relation with another fact, this last fact will be asked first.
For instance the relation pregnant needs sex means that before asking if a
person is pregnant the system will ask for his sex.

Needs true: This case is similar to the last one but the behavior is different
depending on the answer of the first question. Consider the following ex-
ample of relation from Spong–IA, organization needs true foreign. The first
question to the user would be if the sponge is foreign. If the user answers
”yes”, the question organization would be asked. If the user answers ”no”,
then the fact organization would become false and no question about it
would be made.

Needs false: The only difference with the last case is that the behavior is the
inverse one with respect to the answer to the first question.

The needs relation work with importable facts of type boolean logic or enu-
merated. In the case of enumerated facts we consider that false is the none
answer and that true is any answer but none.

If the expression has the value unknown, then the fact takes the value un-
known. If the expression is evaluated with false in the case of boolean and logic
facts, and with none in the case of enumerated facts, then the fact takes the
same value depending on the type of the fact.

Facts can be evaluated by the user (importable facts) , by the function at-
tribute, or deduced by the rules. Before the above evaluation of a fact all the
needs relations are solved.

4.4.2 Rules

Syntax of Milord II rules is given in Figure 4.8. It is not necessary to give a
complete explanation of rules because they are similar to the mv–rules described
before. The only difference is that the conditions of rules can be composed of
predicates on the facts of different type (conditions in mv–rules were literals of
type logic).

4.4. The Deductive Knowledge Language 101

rules ::= rule rules | rule
rule ::= ruleid If premisse-rule Then conclusion-rule

[documentation]
premisse-rule ::= condition-rule and premisse-rule | condition-rule
conclusion-rule ::= conclude rconclusion is certainty-value

Figure 4.8: Syntax of the rules.

The rules are composed of an identifier, the premise (that is, a conjunction
of conditions), the conclusion, and the certainty value of the rule. The certainty
value of a rule is a linguistic term belonging to the set An of the local logic of the
current module. Internally, this linguistic term is translated to an upper–interval
[a, 1].

4.4.3 Predicates on Facts

Facts are used to build the rules. They appear in the conditions and the conclu-
sion of rules. The evaluation of a condition or a conclusion is always an interval
of truthvalues. Class facts have no value and they do not appear in the rules.
Then in the case of facts where their evaluation is not an interval of truthvalues
we must predicate on them. That is the case of numeric and enumerated facts.

First of all we explain the conditions of rules. We can see in Figure 4.9 the
syntax of the conditions of rules. In order to give an understandable explanation
to conditions of rules, we do not consider conditions containing paths.

The conditions of a rule can be written in affirmative form (condition) or in
negative form (no(condition)). The evaluation of condition returns an interval
of truthvalues, then all the syntactic categories of type condition can be negated
using the negation operator N∗

n of the logic of the current module.

The elemental conditions can be:

1. A fact name or a certainty value belonging to the local logic of the module,
including true or false.

2. A formula composed of facts of any type.

3. Operations among expressions containing facts of type numeric and enu-
merated.

A condition can be a certainty value. This is the most simple case because
certainty values are self–evaluated symbols. They can be used to give initial
values to facts, for instance:

If definite then conclude ciprofloxacine is definite

102 Chapter 4. Deduction by Specialization

condition-rule ::= condition | no (condition)

condition ::= certainty-value |
pathform |
operator (expression, expression)

pathform ::= pathform-s | pathform-c
pathform-s ::= predid | amodid/pathform-s

pathform-c ::= (formula)| amodid/pathform-c

formula ::= (pathform op pathform)

operator ::= < | > | <= | >= | = | /= | int

expression ::= number |
operator-arit (expression, expression)|

operator-set (expression)|

pathform-s |
(values)

values ::= values-crisp | values-fuzzy
values-crisp ::= symbol , values | symbol
values-fuzzy ::= (symbol , symbol), values-fuzzy |

(symbol , symbol)

operator-arit ::= + | - | * | :
operator-set ::= cut | core | support | complement
op ::= plus

Figure 4.9: Syntax of the conditions of rules.

4.4. The Deductive Knowledge Language 103

This kind of rule can be fired immediately and the value of ciprofloxacine
will be definite. A condition can be a fact name when the type of this fact is
boolean or logic. Evaluation of logic facts returns and interval of truthvalues.
Boolean fact evaluation returns a boolean certainty value (true, false). Then the
value true is assimilated to the last linguistic term of An (an), and the value
false to the first linguistic term of the chain An (a0).

Formulas

Sometimes it is necessary to work with combinations of facts. Formulas are
operations among facts of any type. The value of a formula can only be defined
by firing a previous rule, and it does not have any relation with the individual
values of the facts that compose that formula. For instance consider the following
rule:

R024 If AD/pregnant then conclude (macrol plus RFM) is possible

The module that contains this rule must have the declarations of the facts
macrol and RFM in the dictionary declaration, then the rule R024 can give a
value to the formula (macrol plus RFM), and then this formula can appear in the
condition of other rules. The expert can use any operator by previous definition
of its algebra13 or use the predefined operations.

Practical use of the predefined operation plus is given in Section 6.2.3, Te-

rap–IA use this kind of operation to produce a pneumonia treatment composed
of antibiotic combinations. This is an algebra with the following properties:

Symmetric: (a plus b) = (b plus a)
Associative: (a plus (b plus c)) = ((a plus b) plus c)

A module can export a formula when all the components of that formula are
exportable facts.

Before explaining the operations between expression we should distinguish
between operations composed by numeric facts and those composed by enumer-
ated facts.

Numeric Operations

A numeric expression is composed by numbers, numeric facts and arithmetic
operations (+,-,*,:) among them. The evaluation of a expression of this type
returns a number. Then we can apply the relations of Table 4.3 to numeric
values.

The valid relations are < (less), > (greater), <= (less or equal), >= (greater
or equal), = (equal), and / = (different). These are overloaded operations in the
sense that these operations are different depending on the type of the expressions
that are involved. Now we can see the operations with enumerated facts.

13Now the language Milord II has not the constructs to define those algebras. Only the
predefined operator plus can be used.

104 Chapter 4. Deduction by Specialization

Enumerated Operations

Remember the example in Figure 4.5. The enumerated fact is a fuzzy set named
assoc treat. When an enumerated fact is evaluated we consider the reference
set to be the type attribute of the fact, in this case a set of antibiotics:

The operations ”+” and ”-” are interpreted as the set union and the set
intersection. This operators are applied to fuzzy sets as shown in Section 3.2.3.

The valid relations are < (subset), > (superset), <= (subset or equal), >=
(superset or equal), = (equal), / = (different) and int (intersection). The
operators apply over the evaluations of the expressions. These operators only
apply between expressions of the same type, and the result is an interval of
truthvalues. We explain the sense of the operations by means of the Table 4.3.

a / b numeric enumerated

< a < b R⊂(A,B)
> a > b R⊃(A,B)
<= a ≤ b R⊆(A,B)
>= a ≥ b R⊇(A,B)
= a = b R=(A,B)
/ = a 6= b R 6=(A,B)
int no sense R∩(A,B)

Table 4.3: Operations between expressions.

The syntax of the conclusion of rules is given in Figure 4.10. They are simpler
than conditions. Notice that in the conclusion of rules they can not appear paths
because the module only can conclude local facts.

rconclusion ::= form |
(predid = values)|

no (predid)|

no (form op form)|

no (predid = values)

form ::= predid |
(form op form)

values ::= symbol or values | symbol

Figure 4.10: Syntax of the conclusion of rules.

Conclusions can be of affirmative or of negative form. They can conclude
facts or formulas.

4.5. Conclusions 105

4.5 Conclusions

We have presented the deductive knowledge of the modules of Milord II. It is
composed of weighted facts and rules and it has a set of added functionalities
that contribute to the real needs of ESs.

The inference engine of Milord II is based on specialization of KBs. This
allows us to have an enriched behavior of the ES, consisting in the improvement
of the communication with the user, the results provided to the users and the
validation process.

106 Chapter 4. Deduction by Specialization

Chapter 5

Control

In the precedent Chapters we have explained the modular architecture, the ap-
proximate reasoning representation and the deductive mechanisms of Milord II
based on specialization. We can program an application by defining a hierarchy
of modules, their interfaces and their deductive knowledge composed by facts
and rules. Furthermore we declare the concrete local logics of every module and
the translation mechanisms between these logics. The next step is to explain
the control.

Till now we have given an approximate idea of the operational semantics of
Milord II. It can be summarized by the following statements:

1. The user queries a visible module for the value of an exportable fact.

2. The module obtains external data from the user and it also makes queries to
its submodules1. The answers given by the submodules are then translated
to the actual local logic if necessary.

3. With this new information the module specializes its deductive knowledge.

4. Steps 2 and 3 are performed by order to find a solution to the initial query.

This is a global view of the operational semantics of Milord II, but we should
make precise the details of the whole execution. For instance, given a query to
a module, the system must decide which are the facts that will be necessary to
give a solution to that query. Which facts will be asked to the user and which
will be queried to its submodules. How to use the set of rules of the deductive
knowledge of the module to deduce a fact, in which order and how.

In this Chapter we will clarify the execution of an ES programmed with
Milord II. For that we start by introducing the main ideas related to control.

Local Control: We have decided to introduce the control locally to every mod-
ule. This allows us to identify a module as the complete description of

1Returning to the first step for this submodule.

107

108 Chapter 5. Control

a problem. The separation between domain and control knowledge is a
mandatory characteristic of ES’s languages to provide a clear and declar-
ative programming style.

Specific versus general knowledge: Experts usually have different methods
to reason on a problem depending on the amount of data they know. For
instance, a physician do not have aspirations to know all the data about
the patient to make a diagnosis. If the patient is in a coma he can not ask
questions to him, but he should make a diagnosis despite the lack of these
data. To represent these situations experts program rules with different
levels of specificity (using more or less information from the patient, that
is, putting more or less conditions) to deduce the same fact. These kind
of rules allows us to deduce a fact using more specific or more general
knowledge. Milord II extends the concept of subsumption of Milord by
using partial labels in the rules. With this technique we try to use the more
specific knowledge when possible.

Avoiding unnecessary work: It is normal to have different ways to find a
solution for a problem. Furthermore these ways can have different levels
of credibility. It is very important to know which is the more satisfactory
way to start the reasoning, how to change it in the case of failure, and how
to follow the reasoning. For instance a physician can dispose of different
laboratory analysis to find a germ. He starts first with the better analysis
but if it fails he chooses another. Milord II uses specialization in order to
detect if a rule can not yet improve the result of the current goal. During
the execution of a case, the deductive knowledge of modules is specialized
with the new known facts. Specialization produces new rules changing the
premises and the uncertainty values of the previous rules. When a rule is
fired, we can decide if the other rules that conclude over the same fact are
able to improve the result obtained with the first one. If they can not we
should eliminate those rules so avoiding unnecessary work.

Precision Level Results: We have seen that the certainty value of facts is
represented by an interval of truth–values. These intervals represent more
or less precise values of facts. In some cases experts are interested in
programming modules whose results should be greater than a minimum
precision level. They are not interested in less precise results. Experts
can declare a threshold to fix when the values of the facts of a module
are significant, that is, when they can be used to produce precise results.
For instance, we can program a module that only considers that a fact is
significant when its certainty value is greater than possible.

How to obtain Data: Given a query to a module we can follow different strate-
gies to answer the query. How to obtain the external facts of the mod-
ule and in which order are the essential points of the different evaluation
strategies. Milord II allows to declare different evaluation strategies be-
cause of the separation between the search process and the deductive one

5.1. Implicit Control 109

(specialization).

Programming Control: Milord II provides Horn–like metarules that can be
programmed by experts. It is a powerful method of local control that can
simplify the deduction by eliminating rules, deducing facts and changing
the hierarchy of modules.

We divide this Chapter between the implicit control, that is, the prepro-
grammed characteristics of the execution; and the explicit control as the param-
eters of control that the expert can declare.

Implicit components of control are build–in in the interpreter and then they
can not be programmed. Implicit control is composed of two mechanisms, the
unnecessary rules detection and the subsumption treatment. They act when we
have more than one rule that conclude over the same fact.

Control knowledge

Evaluation Type: ...

Truth Threshold: ...

Deductive Control: ...

Structural Control: ...

end control

Figure 5.1: Control declaration

Explicit components of control, that is, those that can be programmed by
experts are explained after implicit ones. These components of control knowl-
edge are the threshold, the evaluation strategy and the reification and reflection
mechanism related to metarules. Figure 5.1 shows the syntactical declaration of
the explicit control in a module.

5.1 Implicit Control

Subsumption control and unnecessary rules control are important characteristics
of the execution of a module that can not be programmed by the expert.

5.1.1 Subsumption

We have repeated along this thesis that the kind of knowledge managed by ESs
is imperfect, that is, incomplete, imprecise and uncertain. Incompleteness is an
usual characteristic of the knowledge managed by human experts. They have
an special ability to manage and obtain useful conclusions from situations with
more or less complete knowledge. For instance, a physician needs to know data
of the patient to decide an adequate treatment. Nevertheless if the patient is
in a coma then the physician should find a treatment using less data. An ES

110 Chapter 5. Control

should be capable to modelize this kind of behavior allowing to program different
solutions to a problem with different levels of incompleteness. When possible
the ES should work with the less incomplete (more specific or more specialized)
knowledge as an expert does. That is the criteria used in Milord II.

Experts express the deductive knowledge of a module by mean of rules. Fre-
quently they write several rules containing the same fact in its conclusions. These
rules can represent disjunctive paths in the proof tree of that fact, but in other
cases they can represent the same path with different incompleteness level2. We
will show two simple examples to clarify this concept. Consider the first example
from Terap–IA:

R051 If cotri then conclude cotri DB is slightly possible
R052 If cotri and seriousness then conclude no(cotri DB) is defi-
nite

These two rules conclude over the same fact cotriDB. It is easy to see that
rule R052 is more specific than rule R051. Whenever we can apply the more
specific rule, we could also apply the more general one. We say that there is a
subsumption relation between these rules. This is an example of lack of data.
In this example the expert has a default rule for the case where they have no
sufficient evidence3 of the seriousness of the illness. Then the fact cotri DB can
be deduced with less data.

If we consider that the fact cotri is true and the fact seriousness is unknown
the value for cotriDB would be [slightly possible, 1] using the more general rule.
If we know that the fact seriousness is true we will use the more specific rule,
and the result for the fact cotriDB would be [0, 0]4 or false. Notice that it is not
necessary that the truth–value of the more specific rule to be greater than the
general one. The second example is:

R001 If age > 60 then conclude old is possible
R002 If age > 70 then conclude old is very possible

Intuitively it is clear that the rule R002 is more specific that the rule R001.
It is more specific to know that the age is greater that seventy than the age is
greater that sixty.

In Milord II as in Milord we first apply the most specific rules. If the most
specific rule can not be applied, then the most general one is fired.

In this sense we can say that in some cases the more specific rule can not be
applied but only the more general can (default reasoning). In the cases where
the more specific rule can be applied, the more general could be applied also.

2In Chapter 4 we had only considered that the rules with the same fact in the conclusion
were disjunctive paths.

3We say sufficient evidence in the sense that the rule would conclude a value different than
unknown ([0,1]). We will insist in this aspect in the next Section where we will talk on the
threshold control component.

4Notice that without the subsumption criteria these two rules would produce an inconsistent
result when both would be applied ([slightly possible, 1] ∩ [0, 0] = ∅).

5.1. Implicit Control 111

Our criterion is that we always apply the more specific rule if possible and in
that case the more general rule will not apply.

Remember the first example. If we know the fact seriousness then we only
use the rule R052. In the other case we will use rule R051.

Now we analyze the above subsumption criterion from a general point of view
in the concrete syntax of Milord II rules.

General Subsumption

Here we explain the general subsumption criterion. We think that it is inter-
esting to use always the more specific knowledge in the deductive process, but
we will finally define a criterion that is a compromise among complexity and
understandability.

First of all we analyze the subsumption criterion between two isolated rules.

Definition 5.1 (Subsumption) Given two rules R1 and R2 with premises A
and B respectively, and that they conclude over the same fact, we say that rule
R1 is more specific than rule R2 or that rule R2 is more general than rule R1,
when

(A → B, 1)

Now we can simplify this criterion taking into account the different types of
premises of Milord II.

First of all we can simplify the criterion using a property of the implication
(I1, Section 3.1) used in Milord II.

(A → B, 1) ⇒ ρ(A → B) = 1 ⇒ IT (ρ(A), ρ(B)) = 1 ⇔ ρ(A) ≤ ρ(B)

Premises of rules are composed of a conjunction of predicates over facts.
Facts can be of four types: boolean, logic, numeric and enumerated. We can
only compare facts of the same type. We extend the subsumption criterion
taking into account the different components of the premises of the rules.

It is easy to see from properties T5 and T1 of T functions that the following
holds:

If a ≤ b and c ≤ d then T (a, c) ≤ T (b, d)

Proof:

a ≤ b ⇒ T (a, x) ≤ T (b, x),∀x
c ≤ d ⇒ T (c, y) ≤ T (d, y),∀y

}

⇒ T (a, c) ≤ T (b, d)

We can consider that premises of rules are composed of a conjunction of
sets of predicates over facts grouped by their type. B, L, N , and E are sets of
predicates of types boolean, logic, numeric and enumerated respectively. Then
it is easy to extend the last property to the new one:

ρ(B1) ≤ ρ(B2)
ρ(L1) ≤ ρ(L2)
ρ(N1) ≤ ρ(N2)
ρ(E1) ≤ ρ(E2)

⇒ ρ(B1 ∧ L1 ∧ N1 ∧ E1) ≤ ρ(B2 ∧ L2 ∧ N2 ∧ E2)

112 Chapter 5. Control

This allows us to group the conditions on sets of the same type and to apply
the subsumption criterion to each group separately. Now we should test if the
following set of conditions hold:

{(B1 → B2, 1), (L1 → L2, 1), (N1 → N2, 1), (E1 → E2, 1)}

Boolean and Logic premises

Suppose the following rules:

BL1: (a1 ∧ a2 ∧ · · · ∧ an → c, α)
BL2: (b1 ∧ b2 ∧ · · · ∧ bm → c, β)

If we want to test if the rule BL1 subsume the rule BL2 then:

ρ(b1 ∧ b2 ∧ · · · ∧ bm) ≤ ρ(a1 ∧ a2 ∧ · · · ∧ an)

If m ≥ n and we can found n facts such that ai = bj then it is easy to see
that ρ(a1 ∧ · · · ∧ an) = ρ(b1 ∧ · · · ∧ bn). And by the property T5 of T functions
the following expression always hold.

T (ρ(a1 ∧ a2 ∧ · · · ∧ an), ρ(an+1 ∧ · · · ∧ am)) ≤ ρ(b1 ∧ b2 ∧ · · · ∧ bn)

In this case it is easy to see that the subsumption criterion is that rule R1 is
more general than rule R2 when A ⊆ B, where A and B are the set of boolean
and logic conditions of rules BL1 and BL2 respectively.

Numeric and enumerated premises

This case is not so easy as the logic and boolean premises. Numeric expressions
can be a set of arithmetic expressions among facts and numbers. Each condition
can contain several facts, and two conditions can predicate over the same fact.
Consider the following example:

(a − b > 3 ∧ b < 6 → c, α)
(a < 12 → c, β)

In this case it is easy to see that the second rule subsumes the first one,
because:

ρ(a − b > 3 ∧ b < 6) = ρ(a > b + 3 ∧ b < 6) = ρ(a < 9 ∧ b < 6) =
T (ρ(a < 9), ρ(b < 6)) ≤ ρ(a < 9) ≤ ρ(a < 12)

In general the problem can be reduced to two inequation systems, each one
composed by the conditions of each rule. After finding the solutions of the two
systems, we can compare each variable of the systems, and show if one system
implies the other. In the last example:

a − b > 3
b < 6

}

⇒
a < 9
b < 6

}

⇒ a < 12

5.1. Implicit Control 113

Finding solutions for an inequation system is a complex task. It is easy to
see that in the case of enumerated premises the problem is similar, but much
more complicated (remember the operations on fuzzy sets explained in the Sec-
tion 3.2.3).

In real programs experts normally do not write very complicated conditions.
Furthermore a complex subsumption criterion is an impediment more than a help
to the understandability of subsumption when the expert writes his program.

For all these reasons in the case of numeric and enumerated premises we
consider that there is a subsumption relation between two rules when the facts
contained in the premise of one rule are contained in the set of facts of the
premise of another rule as in the logic and boolean case.

Subsumption in depth: Partial Labels

There are added problems that have not been addressed yet. Till now we have
only worked with two isolated rules. The last criterion is not enough for catching
all the subsumption relations when we have many rules. For instance consider
the following set of rules:

R1 : a ∧ b ∧ c ∧ d → g
R2 : e ∧ f → g
R3 : c → e
R4 : a ∧ b → f

It is easy to see that there is a hidden subsumption relation between the rules
R1 and R2. Considering the usual chaining of rules we can obtain that the set
of facts necessary to fire the rule R1 is {a, b, c, d}, and for the rule R2 is {a, b, c}.
R1 is more specific than R2. In this case we do not only compare the premises
of the rules but the set of facts in the deduction tree below the fact along two
different paths.

We should not forget that we are thinking on an isolated module. If we
consider all the modular structure then we can find new hidden subsumption
relations. Suppose that the rules in the last example are distributed in two
different modules.

M1 :

{

RM1

1 : M2/f ∧ M2/c ∧ d → g

RM1

2 : M2/e ∧ M2/f → g
M2 :

{

RM2

1 : c → e

RM2

2 : a ∧ b → f

We can find the same subsumption relation than in the first example.
In our system we only find local subsumption relations. Other subsumption

relations are ignored.
Now we describe a partial solution to this type of hidden subsumption rela-

tions using partial labels.
The first idea is to find the set of facts in the deduction tree below the facts.

We would compare them in order to find the subsumption relations. Apart of
the complexity of this task, there is another problem. We consider subsumption
with respect to the data that has been really used to deduce a fact. We do not

114 Chapter 5. Control

know a priori the data that will be necessary to do this. We can not predict
which of the conjunctive paths will be successful. Then we can not build labels
statically but at runtime.

Now we explain the method used in Milord II. This is based on partial
labels. Specialization allows us an easy implementation of this kind of task.

We will illustrate the explanation with the example in the Figure 5.2. The
complete label of a fact in a rule is composed of terminal nodes of the proof tree
considering an isolated module. Terminal nodes of a module are the imported
facts and the prefixed facts (those facts belonging to the submodules).

R1〈a, b, c, d〉 : a ∧ b ∧ c ∧ d → g
R2〈〉 : e ∧ f → g
R3〈c〉 : c → e
R4〈a, b〉 : a ∧ b → f

a
;

R1〈a, b, c, d〉 : b ∧ c ∧ d → g
R2〈〉 : e ∧ f → g
R3〈c〉 : c → e
R4〈a, b〉 : b → f

b
;

R1〈a, b, c, d〉 : c ∧ d → g
R2〈a, b〉 : e → g
R3〈c〉 : c → e

c
;

R1〈a, b, c, d〉 : d → g
R2〈a, b, c〉 : ∅ → g

}

Figure 5.2: Example of subsumption.

Initially we can build the partial labels of each rule identifying the facts in
the premise of the rule that are terminal nodes. In our example all the conditions
in the rule R1 are terminal nodes. Conditions of the rule R2 are not terminal
nodes, they are deducible nodes (by the rules R3 and R4).

When a rule is specialized with a fact that has been deduced by another rule,
the first rule extends its label with the label attached to the other rule. In the
example when rule R4 is fired and the fact f specializes the rule R2, the new
partial label of R2 is the union of the old label (empty) and of the label of the
fired rule (〈a, b〉).

Before firing a rule we can compare its label with the labels of the other rules
that conclude over the same fact. In the case a subsumption relation between
two rules is detected, we act as explained before. In the last specialization step
of the example, we can observe that the rule R2 can be fired but its label is
included in the label of the rule R1. In that case the rule R2 is more specific
than the rule R1 and it is not fired until we know if rule R1 is able to be fired.

Finally we can summarize the design decisions adopted for the practical
implementation of subsumption relations.

• We consider only local subsumption relations inside modules. The rela-
tions that can be detected building the partial labels of the rules during
execution time.

• Runtime labeling of rules allow us to detect cases of hidden subsumption
relations.

5.1. Implicit Control 115

• We consider that the specificity of a rule with respect to the other rules
concluding the same fact is determined by the inclusion relationship of
their partial labels. A rule is more general than another if its partial labels
are included into those of the other rule.

• We only use the more specific rules if possible; otherwise we use the more
general ones.

5.1.2 Unnecessary Rules

In the Section above we have seen that the evaluation of a fact can be carried
out by one or more rules. All these rules can contribute to the evaluation of a
fact taking into account that in the case of rules with a subsumption relation
only a rule will be used. Now we only consider the set of rules that effectively
can take part in the evaluation of a fact.

These rules will be specialized using a concrete search strategy by means of
the Specialization inference rule. We can compose the results of these rules by
means of the Composition inference rule, as seen in Section 4.2.3. It is easy
to see that the intersection of intervals of truth–values leads to more precise or
equal values. Each rule can contribute then to give more precision to the final
result.

Suppose the situation where we have obtained a provisional value to a fact
(a rule has been totally specialized). We can now consider if the remaining rules
concluding the same fact can give more precision to the fact.

The maximum precision given to the conclusion of a rule is limited by the cer-
tainty value of the rule. Consider a rule with premise value [a i, aj] and certainty
value [aρ, 1]. The conclusion of the rule is given by

MP ∗
T ([ai, aj], [aρ, 1]) = [T (ai, aρ), 1)] = [ar, 1] ,where ar ≤ aρ

Then it is easy to see that the value of the conclusion of the rule will be more
imprecise or equal that the precision of the value of the rule. There are no
differences in the case of negative conclusion because the negation does not
change the precision. When the system obtains a new provisional value for a
fact, we test if the rules associated to the fact are necessary or unnecessary.

If the provisional value is [ρp
p, ρ

o
p] and the value of the rule is [ρr, 1], if the

conclusion of that rule is affirmative then the rule will be unnecessary if and
only if ρr ≤ ρp

p. If the conclusion is negative then the rule will be unnecessary if
and only if ρr ≥ Nn(ρo

p).
We apply this test again when a rule is specialized, because specialization

deals with more imprecise or equal truth–values of rules. This method allows
us to save unnecessary deduction and avoids to demand information outside the
module without necessity.

Specialization of rules results in new rules with new truth–values. Then
we can apply this method when a rule is specialized. Notice that it is an im-
provement with respect to other system that do not use specialization (including
Milord). They could only compare the rules before or after firing them. In the

116 Chapter 5. Control

last case all the questions related to a rule would be made. This can be avoided
thanks to the previously explained test.

5.2 Threshold

Remember that the goal of the inference engine of Milord II is to obtain values
with the maximum precision. Despite this we can obtain final values of facts
with so little precision that an expert can consider not to be significant, that
is, like unknown. Milord II introduces a parameter that controls the minimum
precision of facts in order to consider that they are significant. This parameter
is local to each module, then we can control the precision level needed to solve
a concrete problem.

This mechanism of control is named the threshold (Th) of a module. It is
a linguistic label belonging to An and represents the minimum value a deduced
fact must have to be significant. The default threshold value of Milord II is
the second term A2 of the chain An of truth–values. MYCIN (Shortliffe, 1976)
had certainty factors lying in the interval [0, 1]. The threshold used was of 0.2.
An example of threshold declaration is:

Truth Threshold: possible

Now consider the following general rule:

(a1 ∧ a2 ∧ · · · ∧ am → b, [ρr, 1])

We can calculate the final value of the conclusion5 b:

ρ(b) = MP ∗
T (ρ(a1 ∧ a2 ∧ · · · ∧ am), [ρr, 1])

ρ(a1 ∧ a2 ∧ · · · ∧ am) = T ∗(ρ(a1), ρ(a2), . . . , ρ(am))

Considering that ρ(ai) = [ρp
ai

, ρo
ai

], then:

T ∗(ρ(a1), ρ(a2), . . . , ρ(am)) = [T (ρp
a1

, ρp
a2

, . . . , ρp
am

), T (ρo
a1

, ρo
a2

, . . . , ρo
am

)]

ρ(b) = MP ∗
T ([T (ρp

a1
, ρp

a2
, . . . , ρp

am
), T (ρo

a1
, ρo

a2
, . . . , ρo

am
)], [ρr, 1]) =

ρ(b) = [T (T (ρp
a1

, ρp
a2

, . . . , ρp
am

), ρr), 1] = [T (ρp
a1

, ρp
a2

, . . . , ρp
am

, ρr), 1]

And finally:

T (ρp
a1

, ρp
a2

, . . . , ρp
am

, ρr) ≤ Min(ρp
a1

, ρp
a2

, . . . , ρp
am

, ρr)

Notice that the precision of the conclusion of a rule depends on the minimum
truth–values of the rule and its conditions. Given a rule with minimum truth–
value less than the threshold, it concludes the interval [0, 1]. The same happens
when it exists one condition of the rule whose value is less than the threshold.

5Because we are talking on precision we will use only positive rules. Negative rules produce
the same results on precision.

5.3. Evaluation Strategy 117

5.3 Evaluation Strategy

At this moment we know many aspects of Milord II. We have talked about the
modular structure, the uncertainty, and the deductive component. We know how
a knowledge base is specialized using the above implicit control. To specialize
the deductive knowledge of a module it needs to know external data (from the
user and from its submodules). But until now we have not explained how this
information is obtained. In the Figure 4.2 we can see that the search process
asks questions to the user and then passes information to the deductive process
in order to specialize the knowledge base. In this Section we explain how the
search process obtains information from the user and from its submodules.

The search process is goal directed inside each module. Given a goal, that is,
a fact to be evaluated in a module, the evaluation goes by asking the necessary
questions to the user and to its submodules in order to evaluate the goal with
the maximum precision.

In Milord II there are three evaluation strategies, named lazy, eager and
reified strategies. These strategies are declared locally to each module. Lazy
and eager evaluation types are radical strategies in the sense that they use the
minimum information in the case of lazy, or the maximum information in the
case of eager. Other strategies could be defined thanks to the separation between
search and deductive processes as explained in Section 4.1.1. Before explaining
in detail these strategies we give a brief summary:

Lazy: A module with this evaluation strategy asks questions to the user and
to its submodules only in the case where this questions are necessary to
reach the current goal. This strategy is used by default.

Eager: Given a goal to an eager module the following actions are done: it asks
to the user all the imported facts of the module; and it asks also all the
exported facts of its submodules.

Reified: This kind of evaluation strategy do not differs of the eager one in the
form of asking questions. We will explain in detail this kind of evalua-
tion when explaining the reification and reflexion mechanisms in the next
Section.

5.3.1 Lazy

A module with lazy search strategy finds the cheapest path to obtain a solution
for a goal. This is a dynamic task in the sense that the module finds the next
fact to be asked looking at the current state of that module (values of the facts
and current rules). This determines a search cycle consisting in finding the
next question that is relevant to the goal (user or submodules) and updating
the module (by means of the specialization of the knowledge base). This cycle
consisting on finding a question and specializing a module is repeated until the
goal is reached.

118 Chapter 5. Control

We should remember which are the components of a module that participate
in the evaluation of a fact. A fact of a module can be evaluated by the user
(import), by its submodules, by means of needs true or needs false relations (see
Section 4.4.1), by a function associated to a fact (see Section 4.4.1), or by the
rules of the deductive knowledge of the module.

Given a goal to a module the algorithm sketched below shows how the module
finds the questions that are needed to reach the current goal of the module. That
process only returns which is the next fact that is necessary to obtain. This is a
recursive algorithm because the initial goal to the module produces new internal
subgoals that in its turn use the same algorithm.

1. Goal of a submodule. If the goal is a path to a submodule of the current
module, and if that submodule is visible, then the algorithm returns that
path (it will be asked to the submodule).

2. Goal belonging to the import interface. In this case we must consider
if that goal has needs6 relations with other facts. If the goal has not
needs relations the algorithm returns the same goal (it will be asked to the
user); otherwise the needs relations must be satisfied and then we apply
recursively the function to the first fact of a non solved need relation.

3. Goal with a function attribute. Now the evaluation of the goal depends on
the evaluation of the function attribute. In this case we apply recursively
this algorithm to the first fact with no value that belongs to the function.
We iterate this process until all the facts of the function are obtained.
Finally the function is evaluated and its result attached to the fact.

4. Goal that can be deduced by means of rules. In this case we start a depth
search on the rules of the deductive knowledge of the module. This will be
explained in the rule search Section.

Notice that the algorithm finally returns a path to a submodule of the current
module, or a fact belonging to its import interface.

Rule Search

Before starting the rule search we order the set of rules that are able to deduce
a fact with the following criteria.

1. Rules more specific first. We try to find solutions first using the more
specific rules.

2. With rules with no subsumption relations we try first the more precise
rules. A rule is more precise than another when its truth–value is more
precise than that of the other rule. Notice that this order can change
during the execution because of the specialization of rules. We try first
the solutions expected more precise.

6Need relations are those explained in Section 4.4.1, that is, Needs, Needs true and
Needs false.

5.4. Reification and Reflection Mechanisms 119

3. Finally we maintain the order of rules given by the expert.

When we select a rule we maintain the writing order of the conditions of that
rule (left to right). With these considerations the search strategy is depth first7.
We apply recursively the above procedure until a fact is found.

5.3.2 Eager

The eager strategy is radically different from the above one. Now we have not
economical criteria to find the questions. Given a goal to a module, that module
asks all the facts of its import interface, and all the facts belonging to the export
interfaces of its submodules.

The ordering of these goals is that of the declarations given by the expert,
that is, first the facts of the import interface of the module with its original
order, then the facts of the export interface of its submodules with the order of
declaration in the submodules. In this kind of search only the needs relations
are taken into account when asking questions to the user.

5.4 Reification and Reflection Mechanisms

Above we described the implicit and static mechanisms of control that are used
in Milord II. Implicit mechanisms affect the specialization process made in the
deductive knowledge of modules. We only use the rules that can improve the
results (those with more precision) and those with more specific knowledge when
possible. These implicit mechanisms of control can not be programmed by the
expert.

The expert can declare which is the precision level of the modules and the
kind of evaluation used into them. The search process is effected by the implicit
mechanisms cited above and it determines which questions and in which order
they will be asked to the user and to the submodules. Now we are interested in
the dynamic aspects of control, that is, the control programmed by the expert
by means of metarules.

We have presented a complete description of the execution of modules. Given
a query to a module and depending of the kind of search strategy, the module
starts making questions to the user, to other modules and making deductions
by means of the specialization of modules. Now we complete the internal com-
ponents of a module adding the meta control component into its structure. As
introduction we explain the components shown in the Figure 5.3).

Object Level: The object level of a module is composed by the facts and the
rules. It is an active component. Given a goal to a module, it finds that goal
by inspecting the rules, relations, functions and so on, and asking questions
to the user (import interface) and to its submodules (hierarchy). It follows
the search strategy (evaluation type) of the module and specializes the

7This is not exactely true because of the need relations modify that search strategy.

120 Chapter 5. Control

Communication

�

-

MODULE

Reflection Reification

?

6

Object Level

Meta Level

Figure 5.3: Control cycle.

5.4. Reification and Reflection Mechanisms 121

rules following the implicit control (subsumption and unnecessary rules)
and the specialization process with the new external information obtained.
The reification process informs the meta level about the actions performed
by the object level. The actions give values to facts and specialize rules.

Meta Level: The meta level of a module is composed of a set of metarules
(classified in deductive rules and structural rules). It is a passive com-
ponent. It is continuously looking at the behavior of the object level. It
makes actions when the conditions of a metarule hold. The reification
process informs then the meta level about the actions done by the object
level, and the meta level acts on the object level by reflecting actions.
These actions affects the deductive knowledge (deductive control) and the
hierarchy (structural control) of the module. The actions proposed by the
meta level are mandatory to the object level.

For instance, if the object level informs the meta level that the patient is a
man, then the meta level reflects an action consisting in eliminating the specific
rules for women.

Before describing the syntax of metarules we should see which are the com-
ponents of the object level that are reified to the meta level. Static reification
informs the meta level about static components of the deductive knowledge, as
relations, submodules, etc. Dynamic reifications informs the meta level about
the specialization process, as new deductions, specialized rules and so on.

5.4.1 Static Reification

The static reification informs the meta level of several characteristics of the
module that do not change during the execution, as the relations among facts,
the type of facts, the submodules, the threshold, the set of linguistic terms and
the kind of search strategy.

Relations: It is the meta predicate name of relation (the predefined relations
can also be used) with two arguments corresponding to the facts related
(the facts can be valid paths from the module). The relation is from fact1
to fact2.

name of relation(fact1, fact2)

Types: The predicate that says that a fact belongs to a concrete type:

type(fact, type of fact)

where type of fact ∈ {boolean, logic, numeric, class, list of symbols,
name}. An enumerated fact is named with the set of symbols of the type
of that fact (list of symbols) or its name (name) (see Section 4.4.1).

The static reification is performed before the execution of the module because
it does not change during the execution.

122 Chapter 5. Control

5.4.2 Dynamic Reification

The current object level theory (OLT) is the set of rules of a module. The
current meta level theory (MLT) is the set of meta–rules of a module, plus the
instances of the user defined metapredicates, that were the defined in the Section
above. Dynamic reification is composed of the predicates K, WK and P that
are related to the value of facts, and the active submodules of the module.

First of all the minimal literal definition is given. It is composed of the set
of facts deduced in the OLT with the most precise value.

Definition 5.2 (Minimal Literal) We define the minimal literal OLT as

OLT ∗ = {(p,W)|p is a literal, and W =

n
⋂

i=1

Vi such that (p, Vi) ∈ OLT}

Meta–predicate K

K(p, V) means that V is the minimal interval such that the proposition (p, V)
belongs to the OLT. There is a close world assumption on this predicate. The
reflection rules are:

(p, V) ∈ OLT ∗

`M K(p, V)

(p, V) 6∈ OLT ∗

`M ¬K(p, V)

The reflection process maps the meta level theories into object level literals.
The reflection rule that relates MLT with OLT is defined as:

`M K(p, V)

`O (p, V)

Meta–predicate WK

WK(p, V) means that (p, V) is deducible in the OLT, i.e. OLT `O (p, V).
¬WK(p, V) means that OLT `O (p, V ′) with V ′ 6= [0, 1] but V ′ 6⊆ V .

(p, V) ∈ OLT ∗ and V ⊆ V ∗

`M WK(p, V ∗)

(p, V) ∈ OLT ∗ and V 6⊆ V ∗

`M ¬WK(p, V ∗)

5.4. Reification and Reflection Mechanisms 123

Meta–predicate P

P (p) means that (p, V) belongs to the deductive closure of OLT being V 6= [0, 1].
If at the moment of the upwards reflection the computing of the deductive closure
for p is not finished neither P (p) nor ¬P (p) will be generated.

OLT `O (p, V) and V 6= [0, 1]

`M P (p)

OLT 6`O (p, V) and V 6= [0, 1]

`M ¬P (p)

Examples of these predicates can be:

K(fever,[very possible,1]
WK(pneumonia,[possible,1]
P(cotri)

The first example means that the fact fever has been deduced in the OLT
theory with value [very possible, 1] and that value is the most precise one. The
second example says that the fact pneumonia is provisionally deduced with value
[possible, 1], but it could be deduced with more precision. The last example
means that the fact cotri is proved in the OLT theory with a value different
from unknown.

After defining which is the knowledge that the meta level contains in a con-
crete moment of the execution of a module, we explain the syntax of the meta-
rules of Milord II. We distinguish between deductive and structural metarules.
The first ones are related to the deductive knowledge of the module that contains
them, and the other to the submodule structure of that module.

premisse-meta ::= condition-meta and premisse-meta |
condition-meta

condition-meta ::= mconditio |
no(mconditio)|

mconditio ::= metapredid (conditionterm , ..., conditionterm)

conditionterm ::= operation (conditionterm ,..., conditionterm)|

metafunctid (conditionterm , ..., conditionterm)|

conditio

Figure 5.4: Syntax of the premises of metarules.

See the Figure 5.4 for the complete syntactical description of the premises of
metarules. Where metapredid are the above metapredicates (K, WK and P) plus
arithmetic predicates (le, ge, gt and lt), set operators (member, diff and atom).
At the moment we only use plus as operations. Finally the metafunctions are
relative to array functions (for instance transpose).

124 Chapter 5. Control

5.4.3 Deductive Control

The deductive control (see the Figure 5.5) affect the deductive knowledge of a
module by inhibiting rules or deducing the above metapredicates. In some cases
it is interesting to simplify the set of rules to avoid unnecessary deductions, or
to deduce facts despite of the object level.

mrr ::= metaid If premisse-meta Then filters-mrr
filters-mrr ::= filter-mrr filters-mrr | filter-mrr
filter-mrr ::= inhibit rules relation-id pathpredid |

inhibit rules pathpredid |
prune pathpredid |
conclusion-meta

conclusion-meta ::= mconclusion |
no (mconclusion)

mconclusion ::= metapredid (conclusionterm , ..., conclusionterm)

conclusionterm ::= operation (conclusionterm , ..., conclusionterm)|

metafunctid (conclusionterm ,..., conclusionterm)|

form
form ::= predid | $symbol

(form op form)

Figure 5.5: Syntax of the deductive control.

Inhibit Rules: This action inhibits all the rules containing the fact pathpre-
did into their premises. We can introduce optionally a name of relation
relation-id and then the rules inhibited will be those containing in its
premises a fact related with pathpredid.

Prune: It inhibit all the rules belonging to the deductive tree of the fact path-
predid.

Conclude: Metarules can give a value to a fact of the object level. Meta level
has the maximum priority and then the value of a fact given by the meta
level will be definitive. This implies to inhibit the rules deducing this fact.

5.4.4 Structural Control

The metarules of the structural control (see the Figure 5.6) are designed to
modify the hierarchy of a module by inhibiting modules or declaring new ones
(dynamic modules); they can also stop definitely the execution (for instance,
when the system is out of domain).

Filter: A metarule can inhibit (filter) submodules of a module. That means
that all the facts exported by the filtered submodule will be unknown.

5.4. Reification and Reflection Mechanisms 125

mre ::= metaid If premisse-meta Then filter-mre
filter-mre ::= filter amodidlist |

order amodidlist |
Open (conclusionterm , ..., conclusionterm)|

Module (conclusionterm , ..., conclusionterm)|

Inherit (conclusionterm , ..., conclusionterm)

amodidlist ::= amodid amodidlist | amodid
mrx ::= metaid If premisse-meta Then exception
exception ::= definitive solution predid |

stop

Figure 5.6: Syntax of the structural control.

Order: When we use eager evaluation in a module, the order of questioning the
submodules is by the writing order given by the expert. Sometimes it is
interesting to change this order at run time. This actions allow to change
this order when a set of conditions hold.

Open, Module and Inherit These declarations are equivalent to the corre-
sponding normal submodule declarations, but they are performed dynami-
cally. The following example (from Spong–IA) shows the dynamic creation
of a submodule by means of the dynamic instantiation of a generic mod-
ule. Given a value for the enumerated fact DM/taxon, z, with certainty
value [min,max]. If min is greater than the threshold of the module
DM , cut, and z is a submodule of DM , then a submodule is created,
with local name z. That module is the instantion of the generic module
Refinement method with the modules DM/z and T .

M0001 if K(((DM/taxon ,$z), int($min,$max)) and
threshold(DM, $cut) and gt($min,$cut) and
submodule(DM, $z) then
Module(=($z,Refinement method(DM/$z, T)))

Definitive Solution and Stop: These are exceptional actions. In some cases
the expert wants to stop the execution given the value of a fact (definitive
solution) or nothing (stop). This is useful when the ES is out of domain.

Apart from the kind of process used to ask questions in the different evalua-
tion types, we must make distinctions between them with respect to the reifica-
tion and reflexion mechanisms and the specialization.

Lazy: Given a query to a lazy module,

1. It starts finding a question to the user or to a submodule useful to
reach the current goal (see Section 5.3.1).

126 Chapter 5. Control

2. It obtains the value for this question and reifies the result (value of
the fact) to the meta level.

3. The meta level tries to fire metarules. Now there is a looping between
the meta level and the object level. It consists in reflecting a result
to the object level (specialize, inhibit rules, filter submodules, and so
on), to execute the action at the object level, and reify its results. It
is an iterative process until the meta level reflects nothing.

4. Finally the object level specializes its knowledge with the answer to
the first question. And it returns to the first step.

This process continues until a value for the initial query is found.

Eager: Given a query to an eager module,

1. It does the same actions that points 1 to 3 of the lazy strategy. The
difference is that an eager module ask all the questions of its import
interface and of all the export interface of its submodules.

2. Finally the module specializes with all the questions made following
the same dialog with the meta level as before.

Reified: Given a query to a reified module,

1. The first step is similar of that of the eager strategy, but the rules of
the module are also reified. In this case specialization is not used and
all the deduction is made at meta level.

2. Finally the module gets the results reflected by the meta level.

Usually applications use the lazy and eager evaluations as a form of obtaining
the information from the user. An example of module evaluation type reified is
given in Section 6.6.

5.5 Conclusions

In this Chapter we have completed the description of Milord II by presenting
the control. We have explained the part of the control that is implicit in Mi-
lord II and the one that can be programmed by the user.

Chapter 6

Applications

In the introduction of this thesis we put emphasis on the applicability of Mi-
lord II to build real world systems. After the syntactical and semantical de-
scription of all the components of the language and the system, this last Chapter
deals with the systems that have been developed and that are currently running
with Milord II.

Thanks to these application and to the enthusiastic collaboration of the ex-
perts we have been able to bring Milord II to the actual state. In the introduc-
tion we have distinguished Milord II from other systems by its purpose. The
main purpose of Milord II are the application development. The languages
directed to the applications are designed following a bottom–up methodology.
The development of the applications and of Milord II have been in a mutual
feedback cycle.

Despite the great number of problems raised by the paralell development
of real applications and of Milord II, it has brougth a fruitful collaboration.
From the developer point of view, real applications are an interesting source of
new problems. Experts have taken advantage of the bottom–up development by
being allowed to introduce these suggestions to the system design.

6.1 Introduction

We introduce the main applications developed with Milord II. They are dif-
ferent applications and each one has contributed with their own problems and
solutions to Milord II development.

In the first part of this Chapter we explain three ES application (Terap–

IA, Spong–IA, and Ens–AI). Terap–IA is presented more extensively than the
others. Finally we explain two examples. The firs one deals with fuzzy control
and the other with the propagation of belief in bayesian polytrees.

127

128 Chapter 6. Applications

6.2 Terap-IA

Terap-IA is a medical application for pneumonia treatment developed at the IIIA

by Dr. Pilar Barrufet using Milord II. It is a collaboration with the Mataró
Hospital directed by Dr. Albert Verdaguer. A Ph.D. Thesis based on Terap–IA

will be presented soon by Dr. Pilar Barrufet. Terap–IA is the natural exten-
sion of a previous expert system named Pneumon–IA for pneumonia diagnosis
(Verdaguer, 1989) developed using Milord (Sierra, 1989).

6.2.1 Motivation and Goals

The most common cause of mortality related with infectious processes is the
pneumonia (it is the sixth death most common cause at EEUU).

The death rate of patients affected by pneumonia that needs hospitalization,
is very high. About of 54% of gravely ill patients at the intensive care unit
died, and about 20% were old people. In other cases the death rate is about
5.7%. The death rate of patients that do not need hospitalization is lower than
those considered above. Despite this, every pneumonia case needs an urgent
diagnosis and treatment. Erroneous initial diagnosis can be fatal in some cases.
For instance, an initial diagnosis of pneumococic pneumonia in a patient with
legionella pneumonia can be fatal because of late adequate treatment.

The goal of Terap–IA ES is to deduce the best antibiotic treatment in the
case of a pneumonia caused by only one etiologic agent or considering different
etiologic hypothesis (definitive diagnosis are about 50%). In the last case we
should combine the set of antibiotics corresponding to each germ. Thus it must
take into account a set of criterion used in the antibiotic combination.

6.2.2 Architecture

We describe the process of obtaining the treatment of pneumonia for a patient
having a previous diagnosis (set of possible germs). The goal is to produce an
adequate treatment for the case using the previous diagnosis and the data of the
patient . The architecture of Terap–IA is graphically represented in Figure 6.1.

1. We start with the set of groups of antibiotics1 used for the pneumonia
treatment. Initially we consider that the uncertainty values of these groups
of antibiotics are all true.

2. General conditions: A set of general conditions obtained from the patient
is used to filter those groups of antibiotics. Filter these groups consist in
changing its uncertainty value by means of rules (remember that initially

1The list of 27 groups of antibiotics is the following: Quinolones, Tetraciclin, Tetraciclin
Retard, Cotrimoxazol, Sulfamids, Vancomicine, Teicoplanine, Aminoglucocids, Metronidazol,
Clindamicine, Carbapenems, Isoniacida, Rifampicina, Etambutol, Pirazinamida, Anfoteric-
ina B, Aciclovir, Ganciclovir, Vidarabina, Ribaravina, Amantadine, Rimantadine, Penicilline,
Macrolids, Betalactamases Inhibitory, Cefalosporines, and Monobactams.

6
.2

.
T
era

p
-IA

129

Combination
Criterion

Groups of
Antibiotics

Antibiotics

Previous
Diagnosis

Antibiotics

Antibiotics

Antibiotics

Groups of
Antibiotics

Antibiotics
Combinations

Antibiotics
Combination
Result

- Gestation
- Breast-Feefing
- Alergy
- Renal Failure
- Genetic Elements

- Spectrum
- Cost
- Other conditions- Seriousness

- Interactions
- Contrary Effects

...

...

...

...

F
igu

re
6.1:

A
rch

itectu
re

of
T
era

p
–
IA

ap
p

lication
.

130 Chapter 6. Applications

all the groups have the value true). The order of filtering is that of the
following items2.

(a) Gestation

(b) Breast–feeding

(c) Allergy

(d) Renal Failure

(e) Genetic Elements

For instance the expert states that If the patient has renal failure then
the certainty value of Aminoglucocids decreases from sure to possible. The
result of this filtering is the same groups of antibiotics that we got initially
but with their truth–values now adequated to the current case.

3. The starting point is a set of germs that are selected from a previous
initial diagnosis of the patient. These germs are the possible causes of the
disease3. The user selects a set of these germs.

4. For each germ selected we filter the above groups of antibiotics:

(a) Bacterian Sensibility: Given a germ and the groups of antibiotics
with its certainty value for the germ, the process of filtering selects
the groups of antibiotics that can be used in a treatment for this germ.

(b) Seriousness: For each group of antibiotics the seriousness of the pa-
tient determines the concrete antibiotics of that group that are ade-
cuate for the treatment.

(c) Interactions: Filter the concrete antibiotics that have interactions
with other treatments.

(d) Contrary Effects: Filter the concrete antibiotics taking into account
the contrary effects of other treatments.

The result of this phase is a set of concrete antibiotics with a truth–value
associated for each germ considered.

5. When the system has a set of antibiotics one for each germ considered
then:

(a) Antibiotic Combination: It combines the treatment for each germ
returning a global treatment (a combination of antibiotics).

2The filtering of the groups of antibiotics is not dependent of the germ selected.
3The list of the 24 germs is the following: Mycoplasma, Coxiella Burnetii, Chlamydia

Psitacii, Chlamydia Pneumoniae, Legionella Pneumophila, Pneumococcal Pneumonia, Anaer-
obis, Enterobacteria, Influenza Virus, branh, Pseudomonas, Meningococcus, S Pyog, S Au-
rea, Aspergilus, Crip, Nocar, Cytomegalovirus, Varicela–zoster Virus, Herpes Simplex Virus,
Eptein–Barr Virus, Respiratory Syncitial Virus, Adenovirus and Haemophilus Influenzae.

6.2. Terap-IA 131

(b) Antibiotic Filtering: Finally the final treatment is filtered taking into
account the spectrum of the antibiotics, its cost and other considera-
tions.

i. Spectrum

ii. Cost

iii. Other Conditions

6. Finally the answer is a combination of antibiotics useful to treat the germs
selected and adapted to the particular conditions of the patient.

6.2.3 Implementation

In this Section we comment relevant characteristics of the code of Terap–IA. For
a complete example of the code of Terap–IA please go to the Section C.2.

The modular structuration of the treatment problem follows the conceptual
one given in Figure 6.1. We give a simple example of filtering of groups of
antibiotics and the expansion to concrete antibiotics for a given germ. Finally
we present briefly the antibiotic combination.

Filtering

In this Section we explain briefly the kind of filtering used in this applica-
tion. Figure 6.2 shows the modular structure of the filtering explained above.
Notice how the modular hierarchy is declared. The module ABS 1 contains
all the groups of antibiotics with certainty value true. The module Gestation
(Gestacio4) is the first filter. It exports the groups of antibiotics filtered by ges-
tation considerations. The father of this module is Breast–feeding (Lactancia)
and finally Allergy (Alergia).

If we would follow the modular structure we would find the modules Renal
Failure and Genetic Elements. We explain now the module Renal Failure as an
example of filtering.

Consider the declaration of this module given in Figure 6.3. This module
is declared as a refinement of the module ABS. The purpose of this refinement
operation is only for the inheritance of the dictionary of that module. There is
no information hiding.

This module import nothing from the user (only uses the information of its
submodules). It exports the groups of antibiotics. The submodules of Renal
Failure are the module Allergy (another filter) and the module Anam. Notice
that this module is refined with another encapsulated module declaration. The
purpose of this refinement is to hide all the facts exported by the module Anam
but the fact renal failure.

The evaluation type of the module is eager. It asks then for all the facts
exported by its submodules, the filtered groups of antibiotics from Allergy and
the fact renal failure.

4We give the english translation of these module names because this application has been
written in Catalan.

132 Chapter 6. Applications

Figure 6.2: Example of filtering.

6.2. Terap-IA 133

The rules of this module give a certainty value to a set of groups of antibiotics.
Notice that the role of the only metarule of the module is to give a value to the
groups of antibiotics that has not been deduced by the module.

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)

The meaning of this metarule is the following: given any fact of the submod-
ule x (x/y) with any value c, such that y has not been deduced by the current
module (NP ($y))5, then we give to the fact y of the module the value c.

This facts maintains the same value that the given by the submodule x (that
corresponds to the module Allergy). All the filtering modules follows this kind
of structure.

Module renal failure:ABS =
Begin

Module x = allergy
Module anam R= anam:

Begin

Export renal failure
End

Export quinol, tetras 1, tetras 2, cotri, sulfas, vanco, teico,
amino, metro, clinda, carbapen, INH, RFM, ETM, PZ,
anf B, ACV, GCV, ARA A, RBV, AMD, RMD, peni,
macrol, b lactam inh, cef, monobac

Deductive knowledge

Rules:

R001 If anam R/renal failure
then conclude no(tetras 1) is s

R002 If anam R/renal failurel then conclude tetras 2 is p
R003 If anam R/renal failure then conclude amino is p
R004 If anam R/renal failure then conclude anf B is p
R005 If anam R/renal failure then conclude AMD is p
End deductive

Control knowledge

Evaluation Type: eager

Deductive Control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)
end control

End

Figure 6.3: Module Renal Failure.

After the filtering of the groups of antibiotics for each germ, we find the
concrete antibiotics for the treatment. In Figure 6.4 there is a simple case of
treatment for the germ Pneunomia Mycoplasma.

5The metapredicate NP means ¬P (see Section 5.4.2).

134 Chapter 6. Applications

This module inherits the facts of the dictionary from the module Antimicro-
bians. It exports concrete antibiotics. The submodules of this module are the
antecedent of the patient Antecedents and the last filter Renal failure. Notice
that this module is refined in order to only select the groups of antibiotics that
are useful for this germ (bacterian sensibility). The rules determine the values
for the concrete antibiotics exported.

Antibiotic Combinations

The initial diagnosis is a set of possible germs. The system deduces a treat-
ment for each germ of the initial diagnosis. We must combine these different
treatments in order to give a final treatment (a more complete code is given in
Section C.1).

The antibiotic combination consists in two generic modules. The generic
module Build combinations produces a set of valid combinations following a set
of medical criterion. The generic module Remove combinations finally simpli-
fies the result of the module Build combinations. These modules are based on
metarules. Let us comment one metarule of each generic module.

The first one is a metarule of the generic module Build combinations. This
module is instantiated by two modules that represent treatments. Consider two
treatments exported by the submodules x and y.

M004 If K(X/$x,int($tc11,$tc12)) and K(Y/$y,int($tc21,$tc22))
and atom($x) and atom($y) and diff($x,$y)
and no(subsumeix($x,$y)) and no(subsumeix($y,$x))
and no(espectre equivalent($x,$y))
then conclude WK(($x plus $y)

,and(int($tc11,$tc12),int($tc21,$tc22)))

The above metarule has the following meaning: Given two treatments X/x
and Y/y where x and y are simple treatments, that is, antibiotics (atom), and
they are different (diff). Furthermore if they have no subsumption relations
(in the medical sense of subsumption), then we can conclude a combination of
the two antibiotics (x plus y). Notice that the conclusion is weak (WK). That
means that this conclusion is not definitive yet and it can be changed by other
metarules.

The next example is a metarule of the generic module Remove combinations.

M006 If K(($x plus $y),$V) and belongs to($y,administracio oral)
and belongs to($x,administracio parenteral)
then conclude K(($x plus $y) ,int(gp,s))

The above metarule considers a combination of two antibiotics (x plus y). If
they differ in their administration (oral or parenteral) then this combination is
removed by attaching to it the value unknown.

Terap–IA has about 150 modules, 2000 facts, 600 rules, and 200 metarules.
It can be considered a big application and it is in a state of validation.

6.2. Terap-IA 135

Module pneumonia mycoplasma treatment: antimicrobians =
Begin

Inherit antecedents
Inherit clinic situation
Open renal failure:

Begin

Export quinol, tetras 1, tetras 2, macrol
End

Export cipro, oflox, tetras ac rap, doxi, doxi DI, cotri DB,
cotri DI, vanco tract, teico tract, amika, genta, metro tract,
clinda DB, clinda DA, imip, RFM DA, GCV tract, ACV DB,
ACV DA, ARA A tract, RBV tract, AMD DB, AMD DA,
RMD tract, peni procaina, peni G Na, peni G Na DA,
peni amp espectre, cloxa, ampi, amoxi, eritro DB, eritro DA,
roxi, amoxi clav DB, amoxi clav DA, ticar clav, cefuro OR,
cefuro EV, ceftriax, cefazol, cefra, cefmet, cefoxi, ceftaz, aztreo

Deductive knowledge

Rules:

R001 If quinol then conclude cipro is modp
”Kobayashi H. Clinical efficacy of ciprofloxacina in the
treatment of patients with respiratory tract infections in
Japan. Am J Med 1987 ; 82(40): 169-73”

R002 If quinol and clinic situation/tract OR
then conclude oflox is llp

;; tetraciclines per mycoplasma
R003 If tetras 1 then conclude tetras ac rap is p
R004 If tetras 2 then conclude doxi is p
R005 If tetras 1 then conclude doxi DI is p
;; macrolids per mycoplasma
R006 If macrol then conclude eritro DB is s
R007 If macrol then conclude eritro DA is s
R008 If macrol and situacio clinica/tract OR

then conclude roxi is mp
End deductive

End

Figure 6.4: Module Pneumonia Mycoplasma Treatment.

136 Chapter 6. Applications

6.3 Spong–IA

Spong–IA is an ES for sponge classification developed at the IIIA by Marta
Domingo (Domingo, 1993a; Domingo, 1993b) using Milord II. It is a collabora-
tion with the Ecology group at the CEAB and have been directed by Dr. Carlos
Sierra and Dr. Iosune Uriz. A Ph.D. Thesis will be presented soon by Marta
Domingo.

Biological classification is a task performed usually by sistematists, but speci-
ment identification can also be the work of either an expert or a general scientist,
who being a specialist in other fields, needs the identification of a sample as a
starting point for his research.

While an expert would search for a sequence of characters inspired by his
experience, a novice or a laboratory technician can be prepared to perform the
collection of data, but he can still feel lost in the selection of relevant characters
for a given case of classification. The knowledge he would need are the rules
of thumb of experts in the field, which in fact are adquired only after years of
experience. This is the kind of knowledge that an ES is specially suited to model.

In Figure 6.5 there is an example of the modular structure for Geodia sponges.
In Figure 6.6 there is a partial example of a concrete case of classification.

Spong–IA is an application that has approximately 60 modules, 350 facts,
300 rules and 150 metarules. In is starting now the validation step.

6.4 Ens–AI

Ens–AI (Barroso, 1992) is an intelligent tutorial system directed to the diagnosis
and orientation assistency in pedagogical processes. This work is directed to
the student education and its goal is to obtain the diagnosis and orientation
assistance. This ES has been developed by Dr. Clara Barroso of the La Laguna
University (Canarian Islands).

The pedagogical knowledge is composed by a set of different domains of
knowledge, mainly the psychology, the pedagogy and the teaching knowledge.
Educational problems are treated by multiprofesional teams composed by edu-
cational professionals like psychologist, pedagogues and teachers.

The knowledge on education, or pedagogic knowledge, is composed by a set of
interrelated knowledge. Expert teams of schools deal with the diagnosis and rec-
ommendations for educational problems. They are composed by psychologists,
pedagogues and teachers specialized on elementary education. They advice and
orient the general teacher to act in front of a given problem, following the psy-
chopedagogical analysis and diagnosis of the problematic student. The kind of
information managed by the expert team to elaborate their diagnosis is based in
three aspects:

The student: The social and individual characteristics of the student.

His training environment: Going from the internal characteristics of the school
to the external features of the family or his social environment.

6.4. Ens–AI 137

Figure 6.5: Example of module tree.

138 Chapter 6. Applications

==

Case Name: Geodia

Date: 2-2-1994 13:49

--

Long Name: GEOGRAPHICAL LOCATION

Value: (MEDITERRANEAN)

Module: CLASSES Name: GEO

--

Long Name: PRESENCE OF SPICULES

Value: S

Module: SKEL Name: PRES

--

Long Name: FIBRES PRESENT IN THE SKELETON

Value: GP

Module: SKEL Name: FIBRE

--

Long Name: SPICULAR FIBRES OR TRACTS

Value: GP

Module: SKEL Name: TRACTS

--

Long Name: CHEMICAL COMPOSITION

Value: (SILICA)

Module: SKEL Name: QUIM

--

Long Name: SPICULE CATEGORIES

Value: (BOTH CATEGORIES)

Module: SPICULE Name: SIZE

--

Long Name: NUMBER OF THE SPICULE AXES

Value: (FOUR ONE)

Module: SPICULE Name: AXIS

--

Long Name: NUMBER OF THE SPICULE ACTINES

Value: (MORE THAN TWO TWO)

Module: SPICULE Name: ACTINE

--

Long Name: TYPE OF MEGASCLERES

Value: (OXEA TRIAENA)

Module: SPICULE Name: MEGAS

==

Figure 6.6: Case example.

6.5. Fuzzy Control Example 139

His teacher: His education level, skills, expertise, speciality, attitude and ex-
pectations.

The first symptoms of a problem are usually the low profit or the misbehavior
of the student. The analysis of the above data allow the experts to make a
diagnosis and to propose concrete actions to solve the situation (such as special
or alternative education).

The real situation at the school is that expert teams have to work with a
great number of cases. They concentrate in the most important ones, for in-
stance psychopathologies or special education needs. The less important cases
(low profit ,misbehavior, etc) have to be treated by the general teacher without
specialized advice.

Teachers usually have not the necessary training to cope with this special
cases. They have difficulty to analyze with objectivity the result of their actions.
All these facts have motivated the development of an expert system thougth as
a tool to advice teachers in their educational task.

Ens–AI has about 60 modules, 400 facts, 500 rules and 60 metarules.

6.5 Fuzzy Control Example

The first exercise proposed to show the expresivity power of Milord II is a
simple problem of fuzzy control. Fuzzy control methods rely on the knowledge
of a set of rules that link, at a symbolic level, the controller inputs to outputs.

The problem to be solved is the regulation of the level in the second of two
coupled tanks as shown in Figure 6.7. Laurent Foulloy introduced this example
in (Foulloy, 1993) and we will use the fuzzy inference rules proposed in this
paper.

e

h2

c

Q

h1

q1,v1 q2,v2S S

s s

Figure 6.7: Coupled tanks example.

We program the modules of Milord II that represent the controller processes
of the above control problem. In the Figure 6.8 we can see all the parts of
this regulation example. The complete code of this example is given in the
Section C.2.

140 Chapter 6. Applications

Simulation Process: We need to simulate the variation relative to the time
of the level of both tanks h1 and h2 given a flow Q. The controller acts
by intervals of time. Given the sampling period ts the controller needs
to know the level of the second tank at time kts , h2(kts), and the first

derivative of that level dh2(kts)
dt

. With this data the controller computes
the new flow Qk+1 until time (k + 1)ts.

Controller: The controller is a process with three components:

1. Fuzzification. The input of the controller is the actual level in the
second tank and its first derivative. First the controller needs to
translate these values to qualitative values.

2. Fuzzy Inference. These qualitative values can fire a set of rules that
represents the fuzzy control. These rules return a new qualitative
value for the flow.

3. Defuzzification. Finally we must translate the resultant qualitative
value of the new flow to the first tank to a physical value.

Process

c

h2,dh2

Q

fuzzification

defuzzification

fuzzy inference
-

Figure 6.8: Scheme of the process.

6.5.1 Simulation Process

Given two identical tanks with section S and the coupling tubes with section s
it is easy to see that the levels in the tanks are:

{

S dh1

dt
= Q − sv1

S dh2

dt
= sv1 − sv2

where

sv1 =
ρg

R
(h1 − h2)

6.5. Fuzzy Control Example 141

and

sv2 =
ρg

R
h2

Normalizing for ρg
R

:

{

S̄ dh1(t)
dt

= Q̄ − h1(t) + h2(t)

S̄ dh2(t)
dt

= h1(t) − 2h2(t)

Finally,

S̄2 d2h2(t)
dt2

+ 3S̄ d2h2(t)
dt2

+ h2(t) = Q̄

h1(t) = S̄ dh2(t)
dt

+ 2h2(t)

and

h2(t) = c1ep1t + c2ep2t + Q̄
dh2(t)

dt
= c1p1e

p1t + c2p2e
p2t

h1(t) = c1(2 + S̄p1)ep1t + (2 + S̄p2)c2ep2t + 2Q̄

where p1 = − 3+
√

5
2S

and p2 = −3+
√

5
2S

. Considering the initial conditions h1(ta) =
h1,a and h2(ta) = h2,a

c1 =
h2,a − c2ep2ta − Q̄

ep1ta

c2 =
h2,a(2 + S̄p1) − h1,a − Q̄S̄p1

S̄(p1 − p2)ep2ta

Given the initial levels of the tanks h1,(k−1)ts
and h2,(k−1)ts

and the flow Q̄
in the interval of time [(k − 1)ts, kts] we can calculate the new levels in the first
tank and its derivative at time kts:

{

h2(kts) = c1ep1kts + c2ep2kts + Q̄
dh2(kts)

dt
= c1p1e

p1kts + c2p2e
p2kts

We use a set of Lisp functions to simulate this process.

6.5.2 Controller

Now we introduce in detail the three components of the controller: the fuzzifi-
cation, the fuzzy inference and the defuzzification. The implementation of this
fuzzy controller is very simple. It consists in using the function attribute of the
facts for implementing the fuzzificator and the defuzzificator, and the Milord II
rules for the fuzzy inference.

We use three modules, that is, the fuzzificator, the defuzzificator and the
controller (see the Figure 6.9).

142 Chapter 6. Applications

Figure 6.9: Fuzzy control modules.

Fuzzification

Fuzzification is a numeric to qualitative interface. The numerical value of the
error (in this example the difference between the level at the second tank h2

and the reference level c) and its derivative are translated to a set of qualitative
values. In our case we use a set of symbols P0, PS, PM and PL standing
respectively for the qualitative constants Positive Zero, Positive Small, Positive
Medium and Positive Large. The symbols N0, NS, NM and NL represent the
same for negative values.

In the Figure 6.10 we can see that these symbols are represented as fuzzy
sets. The characteristic function is a trapezoid of dimensions width and slope.

width

0

1

x

P0 PS PMN0

x1

fa

fb

x2slope

Figure 6.10: Fuzzification process.

In the example of the Figure 6.10 we can see that given a numeric value x1

the fuzzification function returns the value fa for the symbol P0 and the value
fb for the symbol PS. fa and fb are real numbers between 0 and 16.

fa =
1

2
−

1

2slope
(x1 − width) and fb =

1

2
+

1

2slope
(x1 − width)

6Notice that with this representation the fuzzification of a number only returns one or two
symbolic values.

6.5. Fuzzy Control Example 143

In our example these real values are translated to linguistic terms. The
linguistic terms used in this example are: impossible, few possible, sligh possible,
possible, quite possible, very possible and sure7.

In the following module example we can see that the module fuzzifier imports
the value of the second tank level and its derivative, and exports its qualitative
values (e and Var e).

We represent these fuzzy sets by means of enumerated facts of type Q domain.
The function attribute of these facts are used to make these transformations.

Module Fuzzifier =
Begin

Inherit Simulator
Inherit Data
Export e, Var e
Deductive knowledge

Dictionary:

Types:

Q domain = (PL, PM, PS, P0, N0, NS, NM, NL)
Predicates:

e = Name: ”Qualitative Value of e”
Type: Q domain
Function:

(lambda ()
(let* ((slope (fact value Data/s))

(terms (type e))
(ratio (* (- (division (fact value Simulator/h2b)

(fact value data/reference))
1) 5))

(ling terms (linguistic terms))
(width (fact value Data/w))

(Num terms (length terms)))
...

Var e = Name: ”Qualitative Value of Var e”
Type: Q domain
Function:

...
End deductive

End

For instance, given slope = 2.5 and width = 5 (triangular case) the fuzzifi-
cation of 6 returns that P0 is sligh possible and PS is quite possible.

Fuzzy Inference

Given the qualitative values of the error and its derivative we can use the Ta-
ble 6.1 (Vicar-Whelan, 1976) to find the resultant value of control Q.

7We consider that the linguistic terms are equidistant into the interval [0, 1].

144 Chapter 6. Applications

ε/dε NL NM NS N0 P0 PS PM PL

PL P0 PS NS NL NL NL NL NL

PM PS N0 NS NM NM NM NL NL

PS PM PS N0 NS NS NS NM NL

P0 PM PM PS P0 N0 NS NM NM

N0 PM PM PS P0 N0 NS NM NM

NS PM PL PS PS PS P0 NS NS

NM PL PL PM PM PM PS P0 P0

NL PL PL PL PL PL PL P0 P0

Table 6.1: Mac Vicar–Wheland’s initial set of rules.

The qualitative values of the error and the qualitative values of its derivative
will produce a set of qualitative values. In our case we represent this table as a
set of Milord II rules, where the facts used are enumerated facts.

Module Fuzzy Inference =
Begin

Module F = Fuzzifier
Export Var u
Deductive knowledge

Dictionary:

Types:

Q domain = (PL, PM, PS, P0, N0, NS, NM, NL)
Predicates:

Var u = Name: ”Qualitative Action”
Type: Q domain

Rules:

R001 If F/e int (PL) and F/Var e int (NL)
then conclude Var u = (P0) is sure

...
R035 If F/e int (P0) and F/Var e int (NS)

then conclude Var u = (PS) is sure
R036 If F/e int (P0) and F/Var e int (N0)

then conclude Var u = (P0) is sure
...
R043 If F/e int (PS) and F/Var e int (NS)

then conclude Var u = (N0) is sure
R044 If F/e int (PS) and F/Var e int (N0)

then conclude Var u = (NS) is sure
...
R064 If F/e int (NL) and F/Var e int (PL)

then conclude Var u = (P0) is sure
End deductive

End

These 64 rules produce the qualitative output of the control. Notice that in

6.5. Fuzzy Control Example 145

our system we can introduce weighted rules (in this example all the rules are
sure) allowing to use richer control strategies.

As shown above the result of a fuzzification process is one or two terms.
Taking into account that the rules have as premises the error and its derivative,
the output of the fuzzy inference can be one of four terms as maximum (in this
example).

For instance, given the value e = P0 very possible and PS sure and Var e =
N0 very possible and NS possible, the four rules R035, R036, R043 and R044
are fired (see the code example). The result for Var u is NS very possible, N0
possible, P0 possible and PS slightly possible.

Defuzzification

The terms obtained in the fuzzy inference have to be deffuzified in order to
obtain a real number representing the physical parameter of control. To do
that we use a simple deffuzification method consisting in the computation of the
gravity center8 of the resultant function (see the Figure 6.11).

0

1

x

P0 PS PMN0

fps

fp0

xgc

Figure 6.11: Defuzzication by mean of the gravity center.

The defuzzification of the above example P0 is sligh possible and PS is
quite possible (for number 6) returns 5.428. Obviously the error has an inverse
relation with the number of linguistic terms. The implementation of this module
(defuzzifier) is similar to the fuzzifier module.

6.5.3 Results

We run an example to show the whole process. We use slope = 2.5, width = 5,
S̄ = 50 and the reference level of 800. Initially we consider that the two tanks
are empty, and there is no flow into the first tank.

In the Figure 6.12 we represent the level in the second tank, the flow into the
first tank and the control actions. We can observe an small error in the result of
the level in the second tank (805 instead of 800). This is produced by the small
number of linguistic terms used.

8There are several methods for the deffuzification process, for instance those given in
(Berenji, 1992).

146 Chapter 6. Applications

Figure 6.12: Results for h2, dQ and Q.

In the Figure 6.13 we can see a detailed graph of the evolution of the control
actions. The stabilization is finally performed by mean of small alternatively
positive and negative actions of control.

Finally in the Figure 6.14 we can see the phase plane result of the simulation.
Observe how the absolute value of the error and its variation decreases to the
origin.

6.6 Propagation Rules for Polytrees

Here we present an application whose goal is to obtain a declarative algorithm for
the propagation of belief in bayesian polytrees. This application was developed
by Jose Carlos Ortiz and proposes minimal modifications to Milord II in order
to reach this goal. Finally bayesian reasoning has been added to the inference
machinery of Milord II.

6.6.1 Introduction

We start from the Belief Updating by Network Propagation of Judea Pearl
(Pearl, 1988). A polytree is a singly connected network, namely, no more than
one path exists between any two nodes.

Let considers a typical node having m children, Y1, . . . , Ym, and n parents,
U1, . . . , Un as in Figure 6.15.

The belief distribution of variable X can be computed if the three following
types of parameters are made available:

6.6. Propagation Rules for Polytrees 147

Figure 6.13: Detailed dQ.

148 Chapter 6. Applications

Figure 6.14: Phase plane result.

?πY1
(X)

6
λY1

(X)

?

πX(Ui) 6λX(Ui)

?

?

@
@

@
@

@@R

�
�

�
�

��	

�
�

�
�

���

@
@

@
@

@@I

U1��
��

· · · Ui��
��

· · · Un��
��

X��
��

Y1��
��

· · · Yj��
��

· · · Ym��
��

Figure 6.15: Node example.

6.6. Propagation Rules for Polytrees 149

1. The current strength of the causal support π contributed be each incoming
link Ui → X.

2. The current strength of the diagnostic support λ contributed by each out-
going link X → Yj.

3. The fixed conditional–probability matrix P (x|u1, . . . , un) that relates the
variable X to its immediate parents.

Local belief updating can be accomplished in three steps, to be executed in
any order.

Belief Updating: Node X inspects the messages πX(ui), i = 1, . . . , n com-
municated by its parents (causal support) ant the messages λYj

(x), j =
1, . . . ,m communicated by its children (diagnostic support) and updates
its belief measure to

BEL(x) = αλ(x)π(x)

where

λ(x) =

m
∏

j=1

λYj
(x)

and

π(x) =
∑

u1,...,un

P (x|u1, . . . , un)

n
∏

i=1

πX(ui)

and α is a normalizing constant.

Bottom–up propagation: Using the messages received, node X computes
new λ messages to be send to its parents. For instance, the new mes-
sage λX(ui) that X sends to its parents Ui is computed by

λX(ui) = β
∑

x

λ(x)
∑

uk:k 6=y

P (x|u1, . . . , un)
∏

k 6=y

πX(uk)

Top–down propagation: Each node computes new π messages to be send to
its children. For instance, the new πYi

(x) message that X sends to its child
Yj is computed by

πYj
= α

∏

k 6=j

λYk
(x)

∑

u1,...,un

P (x|u1, . . . , un)

n
∏

i=1

πX(ui)

Boundary conditions:

1. Root nodes: if X is a node without parents, we set π(x) equal to the prior
probability P (x)

2. Anticipatory nodes: if X is a childness node that has not been initiated,
we set λ(x) = (1, 1, . . . , 1)

3. Evidence nodes: if evidence X = x ′ is obtained (X being any node in the
network) we set λ(x) = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the x’–th position.

150 Chapter 6. Applications

6.6.2 Implementation over Milord II

We use the object level and the meta level of Milord II in a particular form
to deal with this kind of application. At the object level we only represent the
causal polytree, nodes and links between nodes. We do not use the inferential
mechanisms provided by this level. We use the meta level to the belief propa-
gation along the causal polytree.The complete code for this example is given in
Section C.3.

Object Level

At the object level we represent the nodes as predicates and the links between
nodes as rules. The example of application n = m = 3, U1 = A, U2 = B,
U3 = C, X = D, Y1 = E, Y2 = F and Y3 = G.

Nodes: The nodes of the polytree are facts of type array. We declare all the
nodes like the following example for A:

A =
name: ”A”
type: array[a0,a1]

Pointers: Because of the premises and the rules of the language Milord II are
of type logic, we use a kind of predicates we name pointers as representa-
tional facts of the polytree nodes . We declare a pointer for each element
of the tree (represented by a relation points to to the facts declare above).
For instance the pointer to A is:

A ptr =
name: ”Pointer to A”
type: logic
relation: points to A

Rules: The rules represents the links among the nodes. In this example the
links of the node D with its parents A, B and C; and its children E, F
and G. We need four rules (using the pointers):

R01: If A ptr and B ptr and C ptr then conclude D ptr is P (d|a, b, c)
R02: If D ptr then conclude E ptr is P (e|d)
R03: If D ptr then conclude F ptr is P (f |d)
R04: If D ptr then conclude G ptr is P (g|d)

Prior Probabilities: For each root node (node with no parents, in this example
A, B and C) we declare a fact that represents its prior probability. For
instance, for the root node A the declaration of its prior probability is:

A prior =
name: ”P(A) Prior probability of A”
question: ”Enter P(A), prior probability for A”
type: array[a0,a1]
relation: prior A

6.6. Propagation Rules for Polytrees 151

The value by default for prior probability assumes equiprobability.

Evidences: Each node with evidence (all the leaves, in this example the nodes
E, F and G) has a fact that represents its evidence.

E evid =
name: ”Evidence for E”
question: ”Enter evidence for E”
type: array[e0,e1]
relation: evid E

The interface of the only module of this application declares the export in-
terface containing all the nodes of the polytree, and the import interface with
each fact of evidence and each fact of prior probability:

Export A, B, C, D, E, F, G
Import A prior, B prior, C prior, E evid, F evid, G evid

Meta Level

At this point we explain a simplified version of the metarules that deal with
the evidence propagation. Remember the evaluation strategy reified where we
execute by only a step of reification.

After the module asked to the user all the import interface, the object level
of the module reifies the facts belonging to the import interface (the only that
have a value at the moment) and the rules (with a particular format9).

K(A prior, aprior)
K(B prior, bprior)
K(C prior, cprior)
K(D evid, devid)
K(E evid, eevid)
K(F evid, fevid)
K(cause((A, B, C), D), P (d|a, b, c))
K(cause((D), E), P (e|d))
K(cause((D), F), P (f |d))
K(cause((D), G), P (g|d))

After this reification step we apply the metarules belonging to the control
knowledge of this module. We will only explain some of the metarules in order
to make clear this kind of application.

Declare nodes: We declare which is a node in the metalevel:

m01 If points to($x ptr, $x) then conclude node($x)

this metarule produces node(A), node(B), ..., node(G).

9In order to simplify the explanation we omit the metarule that makes the translation to
this form. Notice that the premises and the conclusion of the rules are the facts pointed by
the original of the rules.

152 Chapter 6. Applications

Initialize prior probability: We initialize the root nodes with the prior prob-
ability with the metarule:

m02 If prior($x prior, $x) and K($x prior, $v)
then conclude K(pi($x), $v)

For instance, the node A is a root node prior(A prior, A) and has a value
entered by the user K (A prior, aprior), then the result is:

K(pi(A), aprior)

Initialize evidence: We initialize the nodes with evidence as lambda predi-
cates:

m03 If evid($x evid, $x) and K($x evid, $v)
then conclude K(lambda($x), $v)

For instance, the node D has evidence evid(D evid, D) and has a value
entered by the user K (D evid, devid), then the result is:

K(lambda(D), devid)

Lambda propagation: Calculates lambda messages for nodes with several fa-
thers (D in the example):

λX(ui) = β
∑

x

λ(x)
∑

uk:k 6=y

P (x|u1, . . . , un)
∏

k 6=y

πX(uk)

We use the following metarule:

m05 If K(cause($list of fathers, $child), $matrix) and

K(lambda($child), $lambda child) and

position($father i, $list of fathers, $i) and

set of instances

($msg,
conj (position ($father k, $list of fathers,$k),

neg(equal($k,$i))
K(pi msg ($father k, $child), $msg)),

$pi msgs fathers minus i)
then conclude

K(lambda msg($child, $father i),
matrix product

($lambda child,
transpose

(matrix prod*

(cartesian prod*($pi msgs fathers minus i),
reduce dim($matrix, $i)))))

6.6. Propagation Rules for Polytrees 153

In the case of nodes with only one father (E, F and G in the current
example):

λX(u) = β
∑

x

λ(x)P (x|u)

We use the following metarule:

m06 If K(cause($list of fathers, $child), $matrix) and

cardinal($list of fathers, 1) and

position($father, $list of fathers, $i) and

K(lambda($child), $lambda child)
then conclude

K(lambda msg($child, $father),
matrix product($lambda child, transpose($matrix)))

We can create a lambda message from the previously calculated lambda of
the node D , K(lambda(D), devid), and the rule K(cause((D), E), P (e|d)).
From the previous metarule we conclude:

K(lambda msg(E, D),
matrix product(devid, transpose(P (e|d))))

Finally the lambda update function,

λ(x) =
m
∏

j=1

λYj
(x)

The following metarule implements this function:

m07 If node($father) and

set of instances

($msg,
K(lambda msg ($child, $father), $msg),
$lambda msgs children)

then conclude

K(lambda($father), inner product($lambda msgs children))

Pi propagation: Similarly to lambda propagation.

Belief update: Finally the belief update BEL(x) = αλ(x)π(x) is implemented
with the following metarule:

m11 If K(lambda($x),$lambda x) and

K(pi($x),$pi x)
then conclude

K($x, norm(inner product($lambda x,$pi x)))

154 Chapter 6. Applications

We have explained this application to show that with minimal modifications
Milord II deal with bayesian reasoning. We have introduced the type of facts
array, the evaluation strategy reified and some metapredicates (for instance,
position) and functions over arrays. You can see an incomplete example of the
resulting code in the following Figure.

Module POLYTREE =
Begin

Export A, B, C, D, E, F, G
Import A prior, B prior, C prior, E evid, F evid, G evid
Deductive knowledge

Dictionary:

Types:

dom A = (a0, a1)
dom B = (b0, b1, b2)
dom E = (e0, e1)
...

Predicates:

A =
name: ”A”
type: array [dom A]

A prior =
name: ”P(A) Prior probability of A”
question: ”Enter P(A), prior probability for A”
type: array [dom A]
relation: prior A

A ptr =
name: ”Pointer to A”
type: logic
relation: points to A

D =
name: ”D”
type: array [dom D]

E =
name: ”E”
type: array [dom E]

E evid =
name: ”Evidence for E”
question: ”Enter evidence for E”
type: array [dom E]
relation: evid E

...
Rules:

R01 If A ptr and B ptr and C ptr
then conclude D ptr is

((((0.3 0.7) (0.4 0.6) (0.5 0.5))
((0.75 0.25) (0.82 0.18) (0.35 0.65))
((0.45 0.55) (0.8 0.2) (0.1 0.9)))
(((0.3 0.7) (0.99 0.01) (1 0))
((0.37 0.63) (0.85 0.15) (0.21 0.79))

6.7. Future Applications 155

((0.45 0.55) (0.99 0.01) (0.27 0.73))))
R02 If D ptr then conclude E ptr is ((0.75 0.25) (0.55 0.45))
R03 If D ptr then conclude F ptr is ((0.3 0.2 0.5) (0.1 0.5 0.4))
R04 If D ptr then conclude G ptr is ((0.3 0.6 0.1) (0.5 0.2 0.3))
end deductive

Control knowledge

Evaluation Type: reified

Deductive Control:

m01 ...
m02 If points to ($x ptr, $x) then conclude node($x)
m03 If evid($x evid, $x) and K($x evid, $v)

then conclude K(lambda($x), $v)
m04 If prior($x prior, $x) and K($x prior, $v)

then conclude K(pi($x), $v)
m05 If K(cause($list of fathers, $child), $matrix) and

cardinal($list of fathers, 1) and

position($father, $list of fathers, $i) and

K(lambda($child), $lambda child)
then conclude

K(lambda msg($child, $father),
matrix product($lambda child, transpose($matrix)))

...
end control

end

6.7 Future Applications

Milord II has being extended with temporal representation and reasoning capa-
bilities (Vila, 1995). The knowledge representation languange has been enriched
to express the temporal reference of facts as well as temporal relations between
them. Such a language enrichement is efficiently supported by especialized tem-
poral constraint propagation algorithms. Milord II’s temporal extension is
founded on a formally studied temporal ontology based on instants and periods
as pairs of instants (Vila, 1993b; Vila, 1993c), states, fluents and accomplishment
events as temporal entities (Vila, 1993d), pointwise metric temporal constraints
as temporal relations (Dechter et al., 1991; Vila, 1993a) and a logic –embodying
these representational issues– based on the notion of temporal token introduced
as an argument, namely temporal token arguments. Porc-IA is an ESs based on
temporal representation to program the evolution of a pig farm.

6.8 Conclusions

We have presented the main applications and examples developed using Mi-
lord II. Our experience with experts is very satisfactory and we are able to
start new applications soon. Experts use intensively the modular decomposition
of problems and the generic modules. This allows them to make easier to un-

156 Chapter 6. Applications

derstand code (real applications have hundreds of facts and rules). An example
of the size of these applications is given in Figure 6.16.

Figure 6.16: Comparations among applications.

We have showed also that Milord II is able to represent other kind of
problems.

Chapter 7

Conclusions

We have presented Milord II. It is a language and an architecture to build
knowledge–based systems. In this Chapter we present the conclusions of this
thesis and the future work on Milord II.

The conclusions are summarized in the following items:

A Modular Language: All the programming work performed with Milord II
is based on modules. Modules are the primitive components of the lan-
guage. The applications programmed with Milord II start by structuring
the whole problem in a hierarchy of modules. It is a language adapted to
programming in the large, that is, to program real applications.

Milord II has not global components in the system. Each module contains
a complete ES specialized in a part of the whole application. Modules
have its own deductive knowledge (dictionary, rules and so on), its own
local logic (particular multi–valued logic used to cope with the concrete
subproblem) and the local control. Modules have well defined interfaces
to interact with the user and the other modules of the system.

Milord II modular language is based on modules and generic modules.
Generic modules allows us to save code and to make more understandable
the code of an application.

A set of operations on modules have been designed to deal with incremental
programming of applications. Refinement, contraction and expansion of
modules allows the expert to build several versions of modules that are
progressively refinements and modifications . All the successive versions
of a module are executable entities allowing an incremental validation and
testing of the applications.

Imperfect Knowledge: We have introduced the local logics of modules of Mi-
lord II. Expertise implies to deal with imperfect information. The infor-
mation managed by experts is imprecise and uncertain. A language for
ESs must provide the means of expressing easily this kind of information.

157

158 Chapter 7. Conclusions

Furthermore any good language to express uncertainty is problem depen-
dent.

Milord II introduces a familly of multi–valued algebras that are useful to
represent uncertainty by means of linguistic terms. The extension of these
algebras to intervals of truth–values has been used to deal with imprecision
and fuzzy sets.

Local logics have been introduced as a form to adapt the logic to the
concrete problem and the techniques to allow the commmunication among
modules with different logics have been provided.

Deduction by Specialization: The deductive knowledge of the modules of
Milord II is composed of weighted facts and rules and it has a set of
added functionalities that contribute to the practical implementation of
ESs.

The inference engine of Milord II is based on specialization of KBs. It is
a deductive method that provides several improvements on classical infer-
ence engines. The search strategy, the communication of the system, the
validation and the deductive economy of the system are improved thanks
to this mechanism. We have formulated the specialization calculus and
presented the practical implementation of an inference engine based on
specialization.

Control: We have presented the implicit control of Milord II. It deals with
the economy of deduction and quering to the user (unnecessary rules)
and with incomplete knowledge (subsumption). These thecniques takes
benefits from specialization.

The inference engine based on specialization allows us to separate the
search component and the deductive one. Thanks to this separation we
can program different search strategies independently of the deduction.

Each module can contain a local control component based on Horn–like
rules. It provides a powerful resource to implement complex deductive
behaviours.

Applications: Real ESs can be programmed using Milord II. The implemen-
tation and validation of several ESs are now being finished. The domains
of these applications are heterogeneous, from medical applications (Terap–

IA) to biological classification (Spong–IA).

We have showed that Milord II is also useful in other kind of applications
such as fuzzy control and belief propagation.

7.1 Future Work

Milord II is the starting point of a language for autonomous agents (Puyol,
1989b; Puyol, 1989a; Puyol, 1990) where fuzzy control and robotics will be

7.1. Future Work 159

the main topics. We will use the capabilities of specialization to implement
knowledge communication among agents.

160 Chapter 7. Conclusions

Appendix A

Syntax of Milord II

Syntax of Milord II
September 13, 2002

Version 3.4
IIIA-CSIC

A.1 Notation

The symbols ::=, [,], | are part of the BNF formalism, as follows:

L ::= R The syntax of L is defined by R
[X] An optional item
X | Y An item from one of the syntactic categories X or Y

• We write the predefined terminal symbols that are part of the language
Milord II in underlined boldface 1.

• We write user-defined terminal symbols in italic. They are always atomic
symbols.

• We write non-terminal symbols in normal type face.

1Comparison of predefined terminal symbols is case-insensitive.

161

162 Appendix A. Syntax of Milord II

Lines of comments can be written after two semicolons (;;). If the comment
is larger that one line, two semicolons must be written at the beginning of the
lines. Several spaces and carry returns are ignored and considered only a space.

Note: Some parts of this syntax are not explained in the text of this book,
mainly those refering the temporal extension of Milord II. Please refer (Vila,
1995) for a complete explanation.

A.2. Modular System 163

A.2 Modular System

environ ::= moddecl environ | moddecl
moddecl ::= Module modbind
modbind ::= amodid [([paramlist])][modop modexpr]

[= modexpr]
modexpr ::= bodyexpr [modop modexpr]
modop ::= : | < | >
bodyexpr ::= pathid[([iparamlist])] |

begin decl end |
nil

paramlist ::= params [; sharing]
params ::= amodid [modop modexpr] | params ; params
iparamlist ::= modexpr | iparamlist ; iparamlist
decl ::= [hierarchy]

[interface]
[deductive]
[control]

hierarchy ::= Open modexpr |
Sharing patheq |
Inherit pathid |
moddecl |
hierarchy hierarchy

interface ::= [import]
[export]

sharing ::= sharing patheq
pathid ::= amodid | amodid/pathid

patheq ::= pathid = patheq | pathid = pathid |
patheq ; patheq

import ::= Import predicateidlist
export ::= Export predicateidlist
predicateidlist ::= predid , predicateidlist | predid
pathpredid ::= predid | amodid/pathpredid

164 Appendix A. Syntax of Milord II

A.3 Deductive Knowledge

deductive ::= Deductive knowledge
[Dictionary: dictionary]
[Rules: rules]
[Inference system: logcomp]
end deductive

A.3.1 Dictionary

dictionary ::= [typedef] preddef
typedef ::= Types: typebindings
typebindings ::= typeid [= [temporal] typespec] |

typebindings typebindings
typespec ::= (values)|

predefined |
typeid |
Array [arraydim] |

Set Of typeid |
frame framespec end frame

predefined ::= boolean | logic | numeric | class
arraydim ::= typeid |

numeric |
arraydim , arraydim

framespec ::= slotid : typeid
framespec framespec

preddef ::= Predicates: predbindings
predbindings ::= predid = attributes |

predbindings predbindings
attributes ::= name [question] type [function] [relations]
name ::= Name: string
question ::= Question: string
type ::= Type: [temporal] typespec
function ::= Function: S-expression
relations ::= Relation: relationid pathpredid |

relations relations
relationid ::= predef-rel-id | symbol
predef-rel-id ::= Needs | Needs true |

Needs false | Belongs to

A.3.2 Rules

rules ::= rule rules | rule
rule ::= ruleid If premisse-rule Then conclusion-rule

[documentation]
premisse-rule ::= condition-rule and premisse-rule | condition-rule

A.3. Deductive Knowledge 165

conclusion-rule ::= conclude rconclusion is cert-value
condition-rule ::= conditio |

no (conditio)

rconclusion ::= form |
elemental = (values)|

no (elemental)|

no (form op form)|

no (elemental = (values))

form ::= elemental | (form op form)

elemental ::= predid | varid
values ::= symbol , values | symbol
values1 ::= symbol between [ltermid , ltermid] , values1 |

symbol between [ltermid , ltermid]

conditio ::= operator (expression, ..., expression)|

pathform | cert-value |
expression operator expression

pathform ::= pathform-s | pathform-c
pathform-s ::= elemental | amodid/pathform-s | varid/pathform-s

pathform-c ::= (formula)| amodid/pathform-c | varid/pathform-c

formula ::= (pathform op pathform)

expression ::= operator-arit (expression, ..., expression)|

(expression operator-arit expression)|

numeric | elemental | pathpredid | pathvar |
values | values1

S-expression ::= atom | list | S-expression S-expression
list ::= (S-expression)| ()

operator ::= < | > | <= | >= | = | /= | int

operator-arit ::= + | - | * | : | symbol

166 Appendix A. Syntax of Milord II

A.4 Inference System

logcomp ::= [lingtermdef] [order]
[renaming]
[connectives]
[infpat]

lingtermdef ::= Truth values = (ltermidlist)|

Truth values = (ltermlist)

ltermidlist ::= ltermid , ltermidlist | ltermid
ltermlist ::= ltermid = (real, real, real, real), ltermlist |

ltermid = (real, real, real, real)

cert-value ::= ltermid |
number |
[ltermid , ltermid] |

[number , number] |

(certarrows)

certarrows ::= certlist |
(certarrows)certarrows

certlist ::= ltermid |
number |
certlist certlist

renaming ::= Renaming lrenames
lrenames ::= pathid/cert-value ==> cert-value lrenames |

pathid/cert-value ==>cert-value |

S-expression
connectives ::= Connectives:

[Negation = fundef]
[Conjunction = fundef]
[Disjunction = fundef]

infpat ::= Inference patterns:
Modus ponens = fundef

fundef ::= S-expression | fileid | luckasiewicz |
Zadeh | probabilistic | truth-table

order ::= (ltermid, ltermid) order |

λ
truth-table ::= Truth table (arrows)

arrows ::= (termlist) | arrows arrows

ltermlist ::= ltermid | ltermlist ltermlist

A.5. Control Knowledge 167

A.5 Control Knowledge

control ::= Control knowledge
[search] [threshold][deduccnt] [structcnt]
end control

A.5.1 Evaluation Type

search ::= Evaluation type: evaltype
evaltype ::= lazy | eager | heuristic | input | reified

A.5.2 Truth Threshold

threshold ::= Truth threshold: cert-value

A.5.3 Deductive Control

deduccnt ::= Deductive control: lmrr
lmrr ::= mrr lmrr | mrr
mrr ::= metaid If premisse-meta Then filters-mrr
filters-mrr ::= filter-mrr filters-mrr | filter-mrr
premisse-meta ::= condition-meta and premisse-meta |

condition-meta
condition-meta ::= mconditio |

no(mconditio)|

mconditio ::= metapredid (conditionterm , ..., conditionterm)

conditionterm ::= operation (conditionterm ,..., conditionterm)|

metafunctid (conditionterm , ..., conditionterm)|

conditio
filter-mrr ::= inhibit rules relation-id pathpredid |

inhibit rules pathpredid |
prune pathpredid |
increase form integer |
decrease form integer |
conclusion-meta

conclusion-meta ::= mconclusion |
no (mconclusion)

mconclusion ::= metapredid (conclusionterm , ..., conclusionterm)

conclusionterm ::= operation (conclusionterm , ..., conclusionterm)|

metafunctid (conclusionterm ,..., conclusionterm)|

form

A.5.4 Structural Control

structcnt ::= Structural control: lmre
lmre ::= mre | mrx | lmre lmre

168 Appendix A. Syntax of Milord II

mre ::= metaid If premisse-meta Then filter-mre
filter-mre ::= filter amodidlist |

order amodidlist with certainty cert-value |
Open (conclusionterm , ..., conclusionterm)|

Module (conclusionterm , ..., conclusionterm)|

Inherit (conclusionterm , ..., conclusionterm)

amodidlist ::= amodid amodidlist | amodid
mrx ::= metaid If premisse-meta Then exception
exception ::= definitive solution predid |

stop

Appendix B

Proofs

Proposition B.1 MP ∗
T ([a, b], [c, 1]) = [T (a, c), 1]

Proof. It reduces to find all solutions of the functional inequations

IT (x, z) ≥ c

being a ≤ x ≤ b. However, given a residuated pair (T, IT) it is well known that
the following relation holds:

T (x, y) ≤ z iff IT (x, z) ≥ y

Then, the solution for the first equation is z ≥ T (x, c), and taking into account
that x ≥ a, and that z = 1 is always a solution, the minimal interval that will
contain all the solutions for z is [T (a, c), 1].2

B.1 Proposition

Proposition B.2 If p, q, p1, . . . , pn denote literal symbols then the following
properties are fulfilled:

SR1: (p, V) |= (p,W) ⇔ V ⊆ W

SR2: (p, V) |= (¬p,W) ⇔ N ∗
n(V) ⊆ W

SR3: (p, V), (p,W) |= (p,U) ⇔ V ∩ W ⊆ U

SR4: (pi, Vi), (p1 ∧ · · · ∧ pn → q, V) |= (p1∧· · ·∧pi−1∧pi+1∧· · ·∧pn → q,W) ⇔
MP ∗

T (Vi, V) ⊆ W

SR5: MP ∗
T (T ∗(V1, . . . , Vn),W) =

MP ∗
T (V1,MP ∗

T (V2, . . . ,MP ∗
T (Vn,W) . . .)), if W = [w, 1]

Finally we explain the proof of the properties:

169

170 Appendix B. Proofs

SR1: Straightforward from the satisfaction relation definition.

SR2: Follows from SR1 and the fact that a valuation ρ satisfies ρ(p) ∈ V if,
and only if, ρ(¬p) ∈ N∗

n(V).

SR3: Straightforward from the satisfaction relation definition.

SR4: First we prove the property for the simplest Modus Ponens case, i.e.,

{(p,U), (p → q, V)} |= (q,W) iff MP ∗
T (U, V) ⊆ W

By definition of the function MP ∗
T , MP ∗

T (U, V) is the minimal interval
containing all the solutions for ρ(q) in the following family of functional
equation systems:

{

ρ(p) = a
ρ(p → q) = IT (ρ(p), ρ(q)) = b

for any a ∈ U , and b ∈ V . Thus, for any model ρ satisfying ρ(p) ∈ U ,
and ρ(p → q) ∈ V and ρ(q) ∈ W , it must be only the case that ρ(p) ∈
MP ∗

T (U, V), and thus MP ∗
T (U, V) ⊆ W . Moreover, if U = [x, y] and

V = [z, 1], then MP ∗
T (U, V) = [T (x, z), 1].

Now property SR4 follows straightforward from the associativity of the t-
norm T , used to interpret conjunctions, and from the fact that a residuated
pair (T, IT) satisfies the following equality:

IT (T (x, y), z) = IT (x, IT (y, z))

SR5: From proposition 1, it follows that, if U = [x, y] and V = [z, 1], then
MP ∗

T (U, V) = [T (x, z), 1]. Then, it is easy to see that, due to the associa-
tivity of the t-norm T , if Vi = [ai, bi], for i = 1, . . . , n, then

T ∗(V1, . . . , Vn) = [T (a1, . . . , an)1, T (b1, . . . , bn)]

and thus, on the one hand

MP ∗
T (V1,MP ∗

T (V2, . . . ,MP ∗
T (Vn,W) · · ·)) = [T (a1, . . . , T (an, w) · · ·), 1]

= [T (a1, . . . , an, w), 1]

and on the other hand

MP ∗
T (T ∗(V1, . . . , Vn),W) = MP ([T (a1, . . . , an), T (b1, . . . , bn)], [w, 1])

= [T (a1, . . . , an, w), 1]

Properties from SR1 to SR4 give us a foundation for the specialization cal-
culus.

1The expression T (r1, r2, r3, . . .) is the recurrent application of T as T (r1, T (r2, T (r3 . . .) . . .)

B.2. Soundness Theorem 171

B.2 Soundness Theorem

From properties SR1, SR2, SR3 and SR4 of the semantical entailment, it is easy
to check that the above specialization calculus is sound.

Theorem B.1 (Soundness) Let A be a sentence and Γ a set of sentences.
Then Γ ` A implies Γ |= A

Proof. The properties SR1-SR4 show that the inference rules are locally
sound and complete. So, we need only to show that the axioms are sound to
have the proof of the theorem.

1. If A is the axiom AS1, i.e. A = (¬¬p → p, [1, 1]) then for every model
Mρ, ρ(p) = N(N(ρ(p))) = N(ρ(¬p)) = ρ(¬(¬(p))) ⇒ I(¬¬p → p) =
I(ρ(¬¬p), ρ(p)) = 1. Then, for all Mρ, Mρ |= (¬¬p → p, [1, 1]).

2. If A is the axiom AS2, i.e. A = (p, [0, 1]), it is the case that every model
Mρ satisfies ρ(p) ∈ [0, 1]. Then for all Mρ, we have trivially that Mρ |=
(p, [0, 1]).

3. If A is the axiom A1, i.e., A = (true, [1, 1]) then, by definition, for every
model Mρ, ρ(true) = 1 ⇒ Mρ |= (true, [1, 1]).

4. If A is the axiom A2, the proof is analogous to the previous case.

B.3 Restricted Completeness

B.3.1 Literal Completeness

It is straightforward to see that our deductive system is not complete. For
instance, we have {(p → q, 1), (q → r, 1)} |= (p → r, 1) but {(p → q, 1), (q →
r, 1)} 6` (p → r, 1). It is also the case that the language is not complete for literal
deduction in general. For instance, we have {(p → q, 1), (¬p → q, 1)} |= (q, 1)
but {(p → q, 1), (¬p → q, 1)} 6` (q, 1). However, it can be proved that the system
is complete for literal deduction in the context of a restricted language setting,
as it will be shown in this section.

Previous definitions

Definition B.1 (Mv-Horn-Rules) We define the set Mv-Horn-Rules as the
set {(p1 ∧ p2 ∧ · · · ∧ pn → q, V) | pi and q are atomic symbols, V = [a, 1] is an
interval of truth-values of An with a > 0, and ∀i, j(pi 6= pj , q 6= pj) }

Definition B.2 (Restricted Language) Given the propositional language

Ln = (An, Σ, C,Sn)

we define a restricted propositional language as:

RLn = (An, Σ, C,RSn)

172 Appendix B. Proofs

where RSn = Mv-Atoms ∪ Mv-Horn-Rules

For any Γ ⊂ RSn the next notation will be used:

• Γ = ΓL ∪ ΓR

• ΓL = {γ ∈ Γ|γ are mv-Atoms}

• ΓR = {γ ∈ Γ|γ are mv-Horn-Rules}

• Prem: Is a function that given a rule returns its conditions.

• Cond: Is a function that given a rule returns its conclusion.

• ΓA
L = {p ∈ Σ|∃V interval of An : (p, V) ∈ ΓL}

• ΓA
R = {p ∈ Σ|∃r ∈ ΓR : p ∈ Prem(r) or p = Concl(r)}

• ΓA = ΓA
L ∪ ΓA

R

Previous Lemmas

Proposition B.3 The inference rules (Weakening, Composition, Negation and
Specialization) are locally complete, i.e., they verify the following equivalences:

1. (p, V) ` (p,W) iff (p, V) |= (p,W)

2. (p, V) ` (¬p,W) iff (p, V) |= (¬p,W)

3. {(p, V), (p,W)} ` (p,U) iff {(p, V), (p,W)} |= (p,U)

4. {(p1, V1), . . . , (pn, Vn), (p1 ∧ · · · ∧ pn → q,W)} ` (q, U) iff {(p1, V1), . . . ,
(pn, Vn), (p1 ∧ · · · ∧ pn → q,W)} |= (q, U)

Proof. Straightforward from properties SR1-SR5 and from the definition of
the four inference rules in Section 3.3.

Lemma B.1 Let ΓL be a set of Mv-Atoms, and let R1, R2 be two sets of mv-
Horn-Rules. R1 and R2 rules have as premises conjunctions of atoms belonging
to ΓA

L , and share the same conclusion, an atom p not belonging to Γ A
L .

If V1 =
⋂

{V ′′|{ΓL, R1} |= (p, V ′′)}, V2 =
⋂

{V ′′|{ΓL, R2} |= (p, V ′′)} and
W =

⋂

{V ′′|{ΓL, R1, R2} |= (p, V ′′)}, then W ⊇ V1 ∩ V2.

Proof. By reductio ad absurdum. Suppose that W 6⊇ V1 ∩ V2. Then ∃α ∈
V1 ∩ V2 and α 6∈ W . Because of V1 and V2 are minimals, we have that:

• α ∈ V1 ⇒ ∃Mρ such that ρ(p) = α, Mρ |= ΓL and Mρ |= R1

• α ∈ V2 ⇒ ∃Mρ′ such that ρ′(p) = α, Mρ′ |= ΓL and Mρ′ |= R2

B.3. Restricted Completeness 173

We will prove that there always exists a model Mρ′′ such that ρ′′(p) = α,
Mρ′′ |= ΓL, Mρ′′ |= R1 and Mρ′′ |= R2. Define ρ′′(p) = α, and ρ′′(a) =
min(ρ(a), ρ′(a)), ∀a ∈ ΓA

L . Mρ′′ easily extends to the Mv-Horn-Rules by the
implication function IT . Then, for this model Mρ′′ we have:

1. ρ′′(p) = α.

2. Mρ′′ |= ΓL: due to the fact that ρ′′ = min(ρ, ρ′) over ΓA
L .

3. Mρ′′ |= R1: ∀r ∈ R1, where r = (q1 ∧ · · · ∧ qm → p, [vr, 1]), we have that
Mρ |= R1 implies ρ(r) ≥ vr . Given that we work with Mv-Horn rules, i.e.
qi are not negated literals, and the monotonicity property of function T ,
it always holds that:

ρ′′(q1 ∧ · · · ∧ qn) =

T (ρ′′(q1), . . . , ρ′′(qn)) ≤ T (ρ(q1), . . . , ρ(qn)) = ρ(q1 ∧ · · · ∧ qn)

and, given that IT is not increasing in the first argument, it always holds
that:

ρ′′(r) = IT (ρ′′(q1 ∧ · · · ∧ qn), α) ≥ IT (ρ(q1 ∧ · · · ∧ qn), α) = ρ(r) ≥ vr

that is, M ′′
ρ |= R1.

4. Mρ′′ |= R2: Analogously to the previous case.

Summarizing, we have found Mρ′′ such that ρ′′(p) = α, Mρ′′ |= ΓL, Mρ′′ |=
R1 and Mρ′′ |= R2, i.e. {ΓL, R1, R2} 6|= (p,W) which is in contradiction with
the enunciate of the lemma.2

Next Lemma shows that previous deductions over a Mv-Atom p do not re-
strict the models of Mv-Atoms belonging to premises of other rules concluding
the same Mv-Atom p. In practical terms, having previous deductions over an
atom r means that we know r with an interval of truth values of type [v, 1].
Otherwise, if we knew r with a general interval of type [b, c] it could be the case
that premises of rules concluding r would be semantically deduced with inter-
vals different of [0, 1]. On the contrary, it would not be possible to syntactically
deduce them. So, next Lemma allows us, when considering atom deducibility,
to only consider those rules that deduce it and not the rules that use it as a
premise.

Lemma B.2
⋂

{V ′′|{(p ∧ q1 ∧ · · · ∧ qn → r, [a, 1]), (r, [b, 1])} |= (p, V ′′)} = [0, 1]

Proof. It is sufficient to prove that ∀α ∈ [0, 1], we can find a model Mρ such
that ρ(p) = α and that Mρ |= (p ∧ q1 ∧ · · · ∧ qn → r, [a, 1]) and Mρ |= (r, [b, 1]).
Actually, every model Mρ such that ρ(p) = α and ρ(r) = 1, satisfies that
ρ(p ∧ q1 ∧ · · · ∧ qn → r) = 1, and thus Mρ |= (p ∧ q1 ∧ · · · ∧ qn → r, [a, 1])
and Mρ |= (r, [b, 1]). 2

174 Appendix B. Proofs

B.3.2 Restricted Literal Completeness Theorem

Theorem B.2 (Restricted Literal Completeness) If Γ |= (p, V), then Γ `
(p, V), provided that p ∈ ΓA, where Γ is such that the following conditions hold:

1. Γ ⊂ RSn

2. ∀r ∈ ΓR : concl(r) 6∈ ΓA
L

3. The deductive and/or graph associated to Γ is acyclic.

Proof. Given that the and/or deductive graph associated to Γ is acyclic, we
can decompose the set ΓA of atomic symbols appearing in Γ in a set of disjoint
layers. The definition of the layers is the following:

• S0 = {q ∈ ΓA| 6 ∃r ∈ ΓR : Concl(r) = q}

• S1 = {q ∈ ΓA|∀r ∈ ΓR : Concl(r) = q ⇒ ∀x ∈ Prem(r), x ∈ S0}

• ...

• Si = {q ∈ ΓA|∀r ∈ ΓR : Concl(r) = q ⇒ ∀x ∈ Prem(r), x ∈ Sj , being j <
i and ∃r : ∃x ∈ Prem(r), x ∈ Si−1}

• ...

The proof of the theorem is by induction over the layer number n to which p
belongs. Suppose that V 6= [0, 1], otherwise the proof of the theorem is trivial.

The set ΓA is decomposed in layers ΓA =
⋃

i=1,n Si. Because of Lemma 2, in
order to deduce p we only need to consider that part of Γ containing rules using
atoms belonging to layers lower than the layer of p. That is, we consider only
those rules of Γ belonging to the deductive subgraph of p.

Case n = 0: In this case Γ contains a set of mv-atoms as

{(p, Vi)|i ∈ I} ⊆ ΓL

Then, it is easy to see that every model Mρ that satisfies Γ must hold
ρ(p) ∈ (

⋂

i∈I Vi), and then (
⋂

i∈I Vi) ⊆ V . Therefore, we can assure that
if we apply repeatedly the composition and weakening rules, we also can
deduce syntactically (p, V). Then the theorem is true for n = 0.

Induction hypothesis: The theorem is true for n − 1.

Case n: Suppose that p ∈ Sn. Given Rp, the set of rules of Γ with conclusion
p, then ∀r ∈ Rp, the premises of r belong to lower layers. Let be Vq =
⋂

{V |Γ |= (q, V)}, ∀q ∈ Prem(r), ∀r ∈ Rp. By the induction hypothesis
we have that Γ |= (q, Vq) ⇒ Γ ` (q, Vq), ∀q ∈ Prem(r), ∀r ∈ Rp.

By induction over nrp, the number of rules of Rp, and together with the
conditions of the theorem, we will prove that Γ |= (p, V) implies Γ ` (p, V).

B.3. Restricted Completeness 175

1. nrp = 1. In this case we have Rp = {(q1 ∧ · · · ∧ qm → p,W)},
Γ |= (qi, Vqi

) for i = 1, . . . ,m, where Vqi
are minimals. From Lemma

2 we have that Γ |= (p, V) if and only if

{(q1 ∧ · · · ∧ qm → p,W)(q1, Vq1
), . . . , (qm, Vqm

)} |= (p, V)

but from properties SR-4 and SR-5 of proposition 2, this holds if and
only if

V ⊇ MP ∗
T (T ∗(Vq1

, Vq2
, . . . , Vqm

),W)

Given that

MP ∗
T (T ∗(Vq1

, Vq2
, . . . , Vqm

,W) = MP ∗
T (Vq1

,MP ∗
T (Vq2

, . . . ,
MP ∗

T (Vqm
,W) · · ·))

it is easy to see that by successive applications of SIR inference rule
we can obtain Γ ` (p, V), and thus for nrp = 1 the theorem is true.

2. Suppose that the theorem is true for nrp = k − 1.

3. nrp = k. In this case we have that Rp = {r1, r2, . . . , rk} and Γ |=
(qij ,Wqij

) for all qij ∈ Prem(ri), i = 1, . . . , k, being Wqij
mini-

mal. Let be ri = (∧qij → p, Vi) and Ap =
⋃

i,j(qij ,Wqij
). Again

Lemma 2 allows us to state that Γ |= (p, V) if and only if V ⊇ U ,
where {r1, . . . , rk} ∪ Ap |= (p,U) and U minimal,. Consider Rp =
R∗

p∪rk , where R∗
p = {r1, . . . , rk−1} and let be V ∗ =

⋂

{V ′′|{R∗
p, Ap} |=

(p, V ′′)}. By induction hypothesis we have also R∗
p ` (p, V ∗). Fur-

thermore we have {rk, Ap} ` (p,MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk)), and

because of Lemma 1 we know that MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk) =

⋂

{V ′′|{rk, Ap} |= (p, V ′′)}. Then from Lemma 1, we have:

{Rp, Ap} |= (p, V) iff V ⊇ V ∗ ∩ MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk)

Finally it is easy to notice that V ∗ ∩ MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk)

can be obtained by successive applications of SIR and composition
inference rules, that is, we can finally conclude that Γ ` (p, V).2

176 Appendix B. Proofs

Appendix C

Code Examples

C.1 Terap–IA Example

In the following we present an small selection of the code of Terap–IA that has
been explained in Section 6.2.

;; 17-3-93

;; MODULS DE TRACTAMENT DE LES PNEUMONIES ATIPIQUES

Module pneumonia_chlam_pneum_tractament_1: antibiotics_chlamydia_pneum =

Begin

Inherit ant

Inherit situacio_clinica

Open insuf_renal:

Begin

Export quinol, tetras_1, tetras_2, macrol

End

Export cipro, oflox, tetras_ac_rap, doxi, doxi_DI,

eritro_DB, eritro_DA, roxi

Deductive Knowledge

Rules:

;; quinolones per chlamydia_pneum

R004 If quinol then conclude cipro is modp

R005 If quinol and situacio_clinica/tract_OR then conclude oflox is p

;;tetraciclines per chlamydia_pneum

R006 If tetras_1 then conclude tetras_ac_rap is mp

R007 If tetras_2 then conclude doxi is mp

R008 If tetras_2 then conclude doxi_DI is mp

;; macrolids per chlamydia_pneum

R001 If macrol then conclude eritro_DB is fp

R002 If macrol then conclude eritro_DA is fp

R003 If macrol and situacio_clinica/tract_OR then conclude roxi is p

End deductive

End

;;-------------------------------

;; Atmar RL, Greenberg SB, Pneumonia caused by Mycoplasma

;; pneumoniae and the TWAR Agent. Semin Respir Infect 1989; 4:

;; l9-31

177

178 Appendix C. Code Examples

;; Grayston JT, Wang SP, Kuo CC,Campbell LA, Current knowledge

;; on Chlamydia Pneumoniae , strain TWAR, an important cause of

;; pneumonia and other acute respiratory diseases. Eur J Clin

;; Microbiol Infect Dis 1989; 8: 191-202

;; Lipski BA, Tack KJ, Kuo C, Wang S, Grayston T. Ofloxacin

;; treatment of Chlamydia Pneumoniae (Strain TWAR) Lower

;; Respiratory Tract Infections. Am J Med 1990,89: 722-724

;; Grayston JT, Thom DH. The chlamydial pneumonias, in Remington

;; JS, Swartz MN. Current Clinical Topics in Infectious Diseases.

;; Boston, Blackwell Scientific Publications, 1991: 1-18

;; Finegold SM. Aspiration Pneumonia, Lung abscess and Empiema.

;; Pennington JE. Respiratory Infections: Diagnosis and Management.

;; Raven Press, New York 1988: 264_275

;;--------------------------------

Module antibiotics_chlamydia_pneum=antimicrobians:

Begin

Export cipro, oflox, tetras_ac_rap, doxi, doxi_DI, eritro_DB,

eritro_DA, roxi

End

Module ABS=

;; MODUL ABS GRUPS D’ANTIMICROBIANS QUE S’UTILITCEN A TERAPIA

Begin

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,

ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive knowledge

Dictionary:

Predicates:

quinol= name: "quinolones"

type: logic

tetras_1= name: "tetraciclines d’accio rapida"

type: logic

relation: belongs_to_group tetraciclines

tetras_2= name: "tetraciclines de accio retardada"

type: logic

relation: belongs_to_group tetraciclines

cotri= name: "cotrimoxazol"

type: logic

sulfas= name: "sulfamidas"

type: logic

vanco= name: "vancomicina"

type: logic

teico= name: "teicoplanina"

type: logic

amino= name: "aminoglucosids"

type: logic

metro= name: "metronidazol"

type: logic

clinda= name: "clindamicina"

type: logic

C.1. Terap–IA Example 179

carbapen= name: "carbapenems"

type: logic

relation: belongs_to_group atb_betalactamics

INH= name: "isoniacida"

type: logic

relation: belongs_to_group tuberculostatics

RFM= name: "rifampicina"

type: logic

relation: belongs_to_group tuberculostatics

ETM= name: "etambutol"

type: logic

relation: belongs_to_group tuberculostatics

PZ= name: "pirazinamida"

type: logic

relation: belongs_to_group tuberculostatics

anf_B= name: "anfotericina_B"

type: logic

ACV= name: "aciclovir"

type: logic

relation: belongs_to_group antivirics

GCV= name: "ganciclovir"

type: logic

relation: belongs_to_group antivirics

ARA_A= name: "vidarabina"

type: logic

relation: belongs_to_group antivirics

RBV= name: "ribaravina"

type: logic

relation: belongs_to_group antivirics

AMD= name: "amantadina"

type: logic

relation: belongs_to_group antivirics

RMD= name: "rimantadina"

type: logic

relation: belongs_to_group antivirics

peni= name: "penicil.lines"

type: logic

relation: belongs_to_group atb_betalactamics

macrol= name: "macrolids"

type: logic

b_lactam_inh= name: "inhibidors de les betalactamases"

type: logic

relation: belongs_to_group atb_betalactamics

cef= name: "cefalosporines"

type: logic

relation: belongs_to_group atb_betalactamics

monobac= name: "monobactams"

type: logic

relation: belongs_to_group atb_betalactamics

atb_betalactamics= name: "antibiotics betalactamics"

type:class

tetraciclines name: "tetraciclines"

type: class

antivirics= name: "farmacs antivirics"

type: class

tuberculostatics= name: "agents antituberculosos"

type: class

180 Appendix C. Code Examples

End deductive

End

;; 18-3-93

;;----------------------DOCUMENT CONDICIONS GENERALS--------------

;; EL MODUL ABS_1 ES UN REFINAMENT DEL MODUL ABS (VEURE

;; DOCUMENT DIC) EN EL QUE ES DONA UN VALOR DE CERTESA SEGUR A

;; TOTS ELS GRUPS D’ANTIBIOTICS UTILITZATS A TERAP-IA

Module ABS_1:ABS =

Begin

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,

ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge

Rules:

R001 If s then conclude quinol is s

R002 If s then conclude tetras_1 is s

R003 If s then conclude tetras_2 is s

R004 If s then conclude cotri is s

R005 If s then conclude sulfas is s

R006 If s then conclude vanco is s

R007 If s then conclude teico is s

R008 If s then conclude amino is s

R009 If s then conclude metro is s

R010 If s then conclude clinda is s

R011 If s then conclude carbapen is s

R012 If s then conclude INH is s

R013 If s then conclude RFM is s

R014 If s then conclude ETM is s

R015 If s then conclude PZ is s

R016 If s then conclude anf_B is s

R017 If s then conclude ACV is s

R018 If s then conclude GCV is s

R019 If s then conclude ARA_A is s

R020 If s then conclude RBV is s

R021 If s then conclude AMD is s

R022 If s then conclude RMD is s

R023 If s then conclude peni is s

R024 If s then conclude macrol is s

R025 If s then conclude b_lactam_inh is s

R026 If s then conclude cef is s

R027 If s then conclude monobac is s

R028 If s then conclude (macrol plus RFM) is s

R029 If s then conclude (peni plus metro) is s

R030 If s then conclude (macrol plus metro) is s

End deductive

End

;; ELS MODULS GESTACIO, LACTANCIA, ALERGIA, INSUFICIENCIA RENAL I

;; FACTORS GENETICS SON MODULS DE CONDICIONS GENERALS DEL

;; PACIENT QUE MODIFIQUEN LA TERAPIA I QUE ES PODEN APLICAR SOBRE

;; GRUPS D’ANTIBIOTICS. CADA UNA D’AQUESTES CONDICIONS AFECTEN

;; PER IGUAL A TOTS ELS ANTIBIOTIC DE UN MATEIX GRUP I PER TANT ES

;; PODEN APLICAR SOBRE EL GRUP

Module insuf_renal:ABS=

C.1. Terap–IA Example 181

Begin

Module x = alergia

;; anam_R es un refinament d’anam per insuficiencia renal

Module anam_R= anam:

Begin

Export insuf_renal

End

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,

ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge

Rules:

R001 If anam_R/insuf_renal then conclude no(tetras_1) is s

R002 If anam_R/insuf_renal then conclude tetras_2 is p

R003 If anam_R/insuf_renal then conclude amino is p

R004 If anam_R/insuf_renal then conclude anf_B is p

R005 If anam_R/insuf_renal then conclude AMD is p

End Deductive

Control knowledge

Evaluation type: eager

Deductive control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)

End control

End

Module Alergia:ABS=

Begin

Module x = lactancia

;; anam_R es anam refinat per alergia

Module anam_R= anam:

Begin

Export alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec

End

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,

ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge

Rules:

R001 If anam_R/alergia_grups_ABS=(quinol) then conclude no(quinol) is s

R002 If anam_R/alergia_grups_ABS=(tetras_1)

then conclude no(tetras_1) is s

R003 If anam_R/alergia_grups_ABS=(tetras_2)

then conclude no(tetras_2) is s

R004 If anam_R/alergia_grups_ABS=(cotri) then conclude no(cotri) is s

R005 If anam_R/alergia_grups_ABS=(sulfas) then conclude no(cotri) is s

R006 If anam_R/alergia_grups_ABS=(sulfas) then conclude no(sulfas) is s

R007 If anam_R/alergia_grups_ABS=(vanco) then conclude no(vanco) is s

R008 If anam_R/alergia_grups_ABS=(teico) then conclude no(teico) is s

R009 If anam_R/alergia_grups_ABS=(vanco) then conclude teico is llp

R010 If anam_R/alergia_grups_ABS=(amino) then conclude no(amino) is s

R011 If anam_R/alergia_grups_ABS=(metro) then conclude no(metro) is s

R012 If anam_R/alergia_grups_ABS=(clinda) then conclude no(clinda) is s

R013 If anam_R/alergia_grups_ABS=(carbapen) then conclude no(carbapen) is s

R014 If anam_R/alergia_inmed_peni then conclude no(carbapen) is s

R015 If anam_R/alergia_retard_peni then conclude carbapen is p

R016 If anam_R/alergia_infrec then conclude carbapen is p

182 Appendix C. Code Examples

R017 If anam_R/alergia_grups_ABS=(INH) then conclude no(INH) is s

R018 If anam_R/alergia_grups_ABS=(RFM) then conclude no(RFM) is s

R019 If anam_R/alergia_grups_ABS=(ETM) then conclude no(ETM) is s

R020 If anam_R/alergia_grups_ABS=(PZ) then conclude no(PZ) is s

R021 If anam_R/alergia_grups_ABS=(anf_B) then conclude no(anf_B) is s

R022 If anam_R/alergia_grups_ABS=(ACV) then conclude no(ACV) is s

R023 If anam_R/alergia_grups_ABS=(GCV) then conclude no(GCV) is s

R024 If anam_R/alergia_grups_ABS=(ARA_A) then conclude no(ARA_A) is s

R025 If anam_R/alergia_grups_ABS=(RBV) then conclude no(RBV) is s

R026 If anam_R/alergia_grups_ABS=(AMD) then conclude no(AMD) is s

R027 If anam_R/alergia_grups_ABS=(RMD) then conclude no(RMD) is s

R028 If anam_R/alergia_grups_ABS=(peni) then conclude no(peni) is s

R029 If anam_R/alergia_grups_ABS=(macrol) then conclude no(macrol) is s

R030 If anam_R/alergia_grups_ABS=(b_lactam_inh)

then conclude no(b_lactam_inh) is s

R031 If anam_R/alergia_grups_ABS=(peni)

then conclude no(b_lactam_inh) is s

R032 If anam_R/alergia_grups_ABS=(cef) then conclude no(cef) is s

R033 If anam_R/alergia_inmed_peni then conclude no(cef) is s

R034 If anam_R/alergia_retard_peni then conclude cef is p

R035 If anam_R/alergia_infrec then conclude cef is p

R036 If anam_R/alergia_grups_ABS=(monobac)

then conclude no(monobac) is s

R037 If anam_R/alergia_grups_ABS=(metro)

then conclude no(peni plus metro) is s

R038 If anam_R/alergia_grups_ABS=(peni)

then conclude no(peni plus metro) is s

R039 If anam_R/alergia_grups_ABS=(macrol)

then conclude no(macrol plus metro) is s

R040 If anam_R/alergia_grups_ABS=(metro)

then conclude no(macrol plus metro) is s

R041 If anam_R/alergia_grups_ABS=(RFM)

then conclude no(macrol plus RFM) is s

R042 If anam_R/alergia_grups_ABS=(macrol)

then conclude no(macrol plus RFM) is s

End Deductive

Control knowledge

Evaluation type: eager

Deductive control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)

End control

End

;; LACTANCIA NO MODIFICA EL VALOR DELS GRUPS

;; D’ANTIBIOTICS. SI UN ANTIBIOTIC NO ESTA RECOMANAT EN LA

;; LACTANCIA S’ACONSELLA DEIXAR DE LACTAR.

Module lactancia:ABS=

;; falta posar bibliografia

Begin

Module X = gestacio

Module AD = anam_dona

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,

ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive knowledge

Dictionary:

C.1. Terap–IA Example 183

Predicates:

d_d_lact= name: "deixar de lactar"

type: logic

Rules:

R001 If quinol and AD/lact then conclude d_d_lact is s

R002 If cotri and AD/neonatg6pd then conclude d_d_lact is s

R003 If cotri and AD/premat then conclude d_d_lact is s

R004 If teico and AD/lact then conclude d_d_lact is s

R005 If sulfas and AD/neonatg6pd then conclude d_d_lact is s

R006 If sulfas and AD/premat then conclude d_d_lact is s

R007 If metro and AD/lact then conclude d_d_lact is s

R008 If GCV and AD/lact then conclude d_d_lact is s

R009 If ARA_A and AD/lact then conclude d_d_lact is s

R010 If RBV and AD/lact then conclude d_d_lact is s

R011 If (peni plus metro) and AD/lact then conclude d_d_lact is s

R012 If (macrol plus metro) and AD/lact then conclude d_d_lact is s

End Deductive

Control knowledge

Evaluation type: eager

Deductive control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)

End control

End

Module Gestacio:ABS=

Begin

Module x = ABS_1

Module AD =anam_dona

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,

ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge

Dictionary:

Predicates:

adm_GCV_si_no_alt= name: "administrar el farmac nomes si no hi ha un

altra alternativa i es imprescindible"

type: logic

adm_RBV_si_no_alt= name: "administrar el farmac nomes si no hi ha un

altra alternativa i es imprescindible"

type: logic

Rules:

R001 If AD/gest then conclude no(quinol) is s

R002 If AD/gest then conclude no(tetras_1) is s

R003 If AD/gest then conclude no(tetras_2) is s

R004 If AD/gest_t then conclude no(cotri) is s

R005 If AD/gest then conclude cotri is p

R006 If AD/gest_t then conclude no(sulfas) is s

R007 If AD/gest then conclude sulfas is p

R008 If AD/gest then conclude vanco is p

R009 If AD/gest_t then conclude no(teico) is s

R010 If AD/gest then conclude amino is p

R011 If AD/temps_gest=(gest_1_t) then conclude no(metro) is s

R012 If AD/temps_gest=(gest_2_t or gest_3_t) then conclude metro is llp

R013 If AD/gest then conclude clinda is p

R014 If AD/gest then conclude carbapen is p

R015 If AD/gest then conclude RFM is p

R016 If AD/gest then conclude PZ is llp

184 Appendix C. Code Examples

R017 If AD/gest then conclude anf_B is p

R018 If AD/gest then conclude ACV is p

R019 If AD/gest then conclude GCV is llp

R020 If AD/gest then conclude no(ARA_A) is s

R021 If AD/gest then conclude RBV is llp

R022 If AD/gest then conclude no(AMD) is s

R023 If AD/gest then conclude RMD is llp

R024 If AD/gest then conclude (macrol plus RFM) is p

R025 If AD/temps_gest=(gest_1_t)

then conclude no(peni plus metro) is s

R026 If AD/temps_gest=(gest_2_t or gest_3_t)

then conclude (peni plus metro) is llp

End Deductive

Control knowledge

Evaluation type: eager

Deductive control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)

End control

End

;;18-3-93

;;------------------------------MODULS MENU-------------------------

;; ELS MODULS QUE ANOMENO "MENU" SON MODULS DE PREGUNTES AL

;; USUARI DE LES DADES DEL MALALT QUE AJUDEN A DECIDIR EL

;; TRACTAMENT DE LES PNEUMONIES INCLOU EL MODUL DIAG QUE

;; PREGUNTA AL USUARI QUINS GERMENS VOL TRACTAR

MODULE DIAG=

;; DIAG PREGUNTA AL USUARI QUINS GERMENS VOL TRACTAR

;; pendent demanar la certesa del diag de un altra forma

Begin

Import diagnostics, pneum_leg, pneum_asper, pneum_tbc

Export diagnostics, pneum_leg, pneum_asper, pneum_tbc

Deductive Knowledge

Dictionary:

Predicates:

diagnostics=

name: "diagnostics"

question: "quina de les seguents vol tractar"

type: (pneum_myc or pneum_cox or pneum_chlam_psit or pneum_chlam_pneum

or pneum_leg or pneum_pneum or pneum_anaer or pneum_enterobac or

pneum_H_inf or pneum_branh or pneum_pseud or pneum_meningo or

pneum_S_pyog or pneum_S_aur or pneum_asper or pneum_crip

or pneum_nocar or pneum_CMV or pneum_VVZ or pneum_HSV or pneum_EBV

or pneum_VRS or pneum_ADV or pneum_influenza)

pneum_leg= name: "pneumonia per legionella pneumophila"

question: "quina es la certesa de pneum_leg"

type: logic

pneum_asper= name: "pneumonia per aspergilus"

question: "quina es la certesa de pneum_aspergilus"

type: logic

pneum_tbc= name: "pneumonia tuberculosa"

question: "quina es la certesa de pneum_myc_tuberculosis"

type: logic

End deductive

End

C.1. Terap–IA Example 185

MODULE ANAM_GENERAL=

;; ES UN MODUL EN EL QUE ES DEFINEIXEN LES INTERFICIES D’IMPORTACIO

;; I EXPORTACIO DE LES DADES MES GENERALS DE L’ANAMNESI

Begin

Export edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec, reaccions_adv_atb,

g6pd, insuf_hepatica, insuf_renal

End

MODULE ANAM_SPEC:ANAM_GENERAL=

;; ES UN MODUL DE REFINAMENT D’ANAM GENERAL EN EL QUE ES

;; DEFINEIXEN ELS SUBMODULS ANT I ANALITICA QUE ES NECESITAN PER

;; DEDUIR EL VALOR DEL FET INSUFICIENCIA RENAL.I ES DECLAREN ELS FETS

;; EN EL DICCIONARI

Begin

Export edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec,reaccions_adv_atb, g6pd,

insuf_hepatica, insuf_renal

Deductive Knowledge

Dictionary:

Predicates:

edat= name: "edat"

question: "quina es l’edat del pacient?"

type: numeric

sexe= name: "sexe"

question:"es una dona o un home?"

type: (home or dona)

insuf_renal= name: "insuficiencia renal"

type: logic

alergia= name:"alergia a antibiotics"

question: "hi han antecedents d’alergia a antibiotics?"

type: boolean

alergia_grups_ABS=

name:"alergia a algun grup d’ antibiotics "

question: "hi han antecedents d’ alergia a algun dels seguents

grups d’ antibiotics?"

type: (peni or cef or monobac or carbapen or b_lactam_inh or

tetras_1 or tetras_2 or quinol or amino or clinda or cotri

or INH or RFM or ETM or PZ or macrol or vanco or anf_B or

ACV or GCV or ARA_A or RBV or AMD or RMD or metro or sulfas

or teico)

relation: needs alergia

alergia_inmed_peni=

name:"reaccio alergica inmediata a la penicil.lina "

question: "la reaccion alergica a la penicil.lina s’ha

produit en les primeres 72 hores de l’administracio

del antibiotic?"

type: boolean

relation: needs alergia_grups_ABS

alergia_retard_peni=

name:"reaccio alergica retardada a la penicil.lina"

question: "la reaccion alergica s’ha produit despres

de 72 hores de l’administracio del antibiotic?"

type: boolean

relation: needs alergia_grups_ABS

relation: needs alergia_inmed_peni

186 Appendix C. Code Examples

alergia_infrec=

name:"reaccions alergiques infrecuents"

question: "hi han antecedents de anemia hemolitica,

infiltrats pulmonars amb eosinofilia, nefritis

intersticial, granulopenia, trombocitopenia,

febre per drogues, vasculitis per hiper

sensibilitat, eritema multiforme, sindrom lupus like?"

type: boolean

relation: needs alergia_grups_ABS

relation: needs alergia_inmed_peni

relation: needs alergia_retard_peni

reaccions_adv_atb=

name:"reaccions adverses a antibiotics"

question: "ha presentat reaccions adverses a algun

antibiotic?"

type: boolean

g6pd= name: "deficit de glucosa 6 fosfat deshidrogenasa"

question:"Te el pacient un deficit de glucosa 6 fosfat

deshidrogenasa?"

type: boolean

insuf_hepatica= name: "insuf_hepatica"

question: "hi han signes d’insuficiencia hepatica?"

type: boolean

End deductive

End

MODULE ANAM:ANAM_SPEC=

;; ANAM ES UN REFINAMENT D’ANAM_SPEC. EN AQUEST MODUL HI HAN LES

;; REGLES QUE PERMETEN DEFINIR EL FET INSUFICIENCIA RENAL I LES

;; METARREGLES QUE ORDENAN DE FORMA LLOGICA LES PREGUNTES SOBRE

;; ANTECEDENTS D’ALERGIA

Begin

Inherit ant

Inherit analitica

Import edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec, reaccions_adv_atb, g6pd,

insuf_hepatica

Export edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec, reaccions_adv_atb, g6pd,

insuf_hepatica, insuf_renal

Deductive Knowledge

Rules:

R001 If analitica/insuf_renal_ag then conclude insuf_renal is s

R002 If ant/mal_cron_assoc and

ant/tipus_mal_cron_assoc=(insuf_renal_cron)

then conclude insuf_renal is s

End deductive

Control Knowledge

Deductive control:

M001 If K(not(alergia),s) then conclude K(=(alergia_grups_ABS, none), s)

M002 If K(not(alergia_grups_ABS),s)

then conclude K(not(alergia_inmed_peni),s)

M003 If K(not(alergia_grups_ABS),s)

then conclude K(not(alergia_retard_peni),s)

M004 If K(not(alergia_grups_ABS),s)

then conclude K(not (alergia_infrec), s)

M005 If K(=(alergia_grups_ABS,$x),s) and no(member($x,(peni)))

C.1. Terap–IA Example 187

then conclude K(not(alergia_inmed_peni),s)

M006 If K(=(alergia_grups_ABS,$x),s) and no(member($x,(peni)))

then conclude K(not(alergia_retard_peni),s)

M007 If K(=(alergia_grups_ABS,$x),s) and no(member($x,(peni)))

then conclude K(not (alergia_infrec), s)

M008 If K(alergia_inmed_peni, s)

then conclude K(not(alergia_retard_peni),s)

M009 If K(alergia_inmed_peni, s)

then conclude K(not (alergia_infrec), s)

M010 If K(alergia_retard_peni, s)

then conclude K(not (alergia_infrec), s)

End control

End

MODULE ANAM_DONA=

;; ANAM_DONA PREGUNTA AL USUARI DADES ESPECIFIQUES PER DONES

Begin

Open anam

Import gest, temps_gest, gest_t, lact, premat, neonatg6pd

Export gest, temps_gest, gest_t, lact, premat, neonatg6pd, sexe, edat

Deductive Knowledge

Dictionary:

Predicates:

gest= name: "gestacio"

question: "es una gestant?"

type: boolean

relation: needs sexe

relation: needs edat

temps_gest= name: "temps de gestacio"

question: "esta en el: primer trimestre de la

gestacio(gest_1_t) segon trimestre de la

gestacio(gest_2_t) tercer trimestre de la

gestacio(gest_3_t)?"

type: (gest_1_t or gest_2_t or gest_3_t)

relation: needs gest

gest_t= name: "gestacio a terme"

question: "es una gestant a terme?"

type: boolean

relation: needs gest

relation: needs temps_gest

lact= name:"lactancia"

question: "esta en periode de lactancia?"

type: boolean

relation: needs sexe

relation: needs edat

relation: needs gest

neonatg6pd= name: "neonat amb deficit de glucosa 6 fosfat deshidrogenasa"

question:"Te el lactant un deficit de glucosa 6 fosfat

deshidrogenasa?"

type: boolean

relation: needs lact

premat= name: "prematur"

question: "es el lactant prematur?"

type: boolean

relation: needs lact

End deductive

Control knowledge

188 Appendix C. Code Examples

Deductive control:

M001 If K(gest,s) then conclude K(not(lact),s)

M002 If K(=(sexe, (home)),s) then conclude K(not(gest),s)

M003 If K(=(sexe, (home)),s) then conclude K(not(lact),s)

M004 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and lt($x,15)

then conclude K(not(gest),s)

M005 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and lt($x,15)

then conclude K(not(lact),s)

M006 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and gt($x,45)

then conclude K(not(gest),s)

M007 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and gt($x,45)

then conclude K(not(lact),s)

M008 If K(not(gest),s) then conclude K(not(gest_t),s)

M009 If K(not(gest),s) then conclude K(=(temps_gest, none),s)

M010 If K(not(lact),s) then conclude K(not(premat),s)

M011 If K(not(lact),s) then conclude K(not(neonatg6pd),s)

M012 If K(=(temps_gest,$x),s) and member ($x, (gest_1_t or gest_2_t))

then conclude K(not (gest_T),s)

End control

End

MODULE ANT=

;; EL MODUL ANT PREGUNTA ELS ANTECEDENTS PATOLOGICS D’INTERES

Begin

Import mal_cron_assoc, tipus_mal_cron_assoc, inmuno, tipus_inmuno,

atb_betalactamics_previs, tract_assoc, hosp_previa, pneum_previa

Export mal_cron_assoc, tipus_mal_cron_assoc, inmuno, tipus_inmuno,

atb_betalactamics_previs, tract_assoc, hosp_previa, pneum_previa

Deductive Knowledge

Dictionary:

Predicates:

mal_cron_assoc= name: "malaltia cronica associada"

question: "hi han antecedents de malalties croniques

associades?"

type:boolean

tipus_mal_cron_assoc=

name:"tipus de malaltia cronica associada"

question: "hi han antecedents de:

Malaltia hepatica cronica (hepat_cron)

Insuficiencia cardiaca avanzada (IC)

Diabetes mellitus (DB)

Alcoholisme (OH)

Malaltia pulmonar obstructiva cronica (EPOC)

Vasculitis o colagenosis (vasc_colag)

Sarcoidosis (sarc)

Drogadiccio parenteral (ADVP)

Neoplasia avanzada (neop)

Insuficiencia renal cronica (insuf_renal_cron)"

type: (hepat_cron or IC or DB or OH or EPOC or vasc_colag or sarc

or ADVP or neop or insuf_renal_cron)

relation: needs mal_cron_assoc

tipus_inmuno=

name: "tipus d’inmunosupresio"

question: "hi han antecedents de:

tractament amb corticoides > 5 mgrs al dia o

drogues citotoxiques en els ultims sis mesos (tract_inmuno)

transplant de medula osea (TMO)

C.1. Terap–IA Example 189

transplant d’altres organs (TAO)

infeccio HIV (HIV)

hipogamaglobulinemia o agammaglobulinemia (alt_IG)"

type: (tract_inmuno or TMO or TAO or HIV or alt_IG)

relation: needs inmuno

inmuno= name: "inmunosupresio"

question: "hi han antecedents d’inmunosupresio?"

type: boolean

relation: needs mal_cron_assoc

hosp_previa= name:" hospitalitzacio previa"

question: " el pacient ha estat hospitalitzat:

en el ultim any (hosp_1_any)

en els ultims tres mesos (hosp_3_m)

no ha estat hospitalitzat recentment (no_hosp)?"

type: (hosp_1_any or hosp_3_m or no_hosp)

pneum_previa= name:" pneumonia previa"

question: " el pacient ha sofert una pneumonia

durant l’ultim any?"

type: boolean

atb_betalactamics_previs=

name: "antibiotics betalactamics previs"

question: "hi han antecedents de us de antibiotics

betalactamics en els ultims tres mesos?"

type: boolean

tract_assoc=

name: "tractaments associats"

question: "el pacient pren habitualment algun dels seguents farmacs:

teofilina (teof)

carbamacepina (carbam)

digoxina (digox)

dicumarinics (dicum)

ciclosporina (ciclos)

difenilhidantoina (DFH)?"

type: (teof or carbam or digox or dicum or ciclos or DFH)

End deductive

Control knowledge

Deductive control:

M001 If K(not(mal_cron_assoc),s)

then conclude K(=(tipus_mal_cron_assoc, none),s)

M002 If K(not(mal_cron_assoc),s) then conclude K(not(inmuno),s)

M003 If K(not(inmuno),s) then conclude K(=(tipus_inmuno, none),s)

End control

End

MODULE SITUACIO_CLINICA=

;; MODUL PER EVALUAR L’ESTAT CLINIC DEL PACIENT AL INGRES O

;; VISITA

Begin

Import estat_malalt, febre, TAs, TAd, FC, FR, alt_GI, trans_degl,

shock_septic, alt_neurol

Export estat_malalt, febre, FR, alt_GI, trans_degl, shock_septic, alt_neurol,

signes_clin_grav, tract_OR, tract_parenteral

Deductive knowledge

Dictionary:

Predicates:

alt_GI= name:"alteracions gastrointestinals"

question: "te basques o vomits que dificulten l’ingesta oral?"

190 Appendix C. Code Examples

type: boolean

relation: needs estat_malalt

trans_degl= name: "transtorns en la deglucio"

question: "te dificultats per empassar?"

type:boolean

relation: needs estat_malalt

febre= name:"febre"

question: "quina es la temperatura?"

type: numeric

TAs= name:"tensio arterial sistolica "

question: "quina es la tensio arterial sistolica?"

type: numeric

relation: needs TAd

TAd= name:"tensio arterial diastolica "

question: "quina es la tensio arterial diastolica?"

type: numeric

FC= name:"frecuencia cardiaca"

question: "quina es la frecuencia cardiaca?"

type: numeric

FR= name:"frecuencia respiratoria "

question: "quina es la frecuencia respiratoria?"

type: numeric

shock_septic= name: "shock septic"

question:"la TAs es<90mHg i s’observan signes de

hipoperfusio periferica?"

type: boolean

relation: needs estat_malalt

relation: needs TAs

alt_neurol= name: "alteracions neurologiques"

question: " Hi ha obnubilacio o coma?"

type: boolean

relation: needs estat_malalt

estat_malalt= name: "estat del malalt"

question: "quin es segons voste l’estat_malalt del malalt:

lleu

moderadament greu (mod_g)

greu

molt greu (molt_g) ?"

type: (lleu or mod_g or greu or molt_g)

signes_clin_grav= name:"signes clinics de gravetat"

type: logic

tract_parenteral= name: "tractament parenteral"

type: logic

tract_OR= name: "tractament oral"

type: logic

Rules:

R001 If TAs<90 then conclude signes_clin_grav is s

R002 If TAd<60 then conclude signes_clin_grav is s

R003 If FC>140 then conclude signes_clin_grav is s

R004 If FR>30 then conclude signes_clin_grav is s

R005 If alt_GI then conclude no(tract_OR) is s

R006 If trans_degl then conclude no(tract_OR) is s

R007 If no(alt_GI) and no(trans_degl) then conclude tract_OR is s

R008 If no(tract_OR) then conclude tract_parenteral is mp

End deductive

Control knowledge

Deductive control:

C.1. Terap–IA Example 191

M001 If K(=(estat_malalt, $x),s) and member($x,(lleu or mod_g))

then conclude K(not(shock_septic),s)

M002 If K(=(TAs,$x),s) and ge($x,90) and K(=(estat_malalt, $y),s)

and member($y,(greu or molt_g))

then conclude K(not(shock_septic),s)

M004 If K(=(estat_malalt, $x),s) and member($x,(lleu or mod_g))

then conclude K(not(alt_neurol),s)

M005 If K(=(estat_malalt, $x),s) and member($x,(greu or molt_g))

then conclude K(not(alt_GI),s)

M006 If K(=(estat_malalt, $x),s) and member($x,(greu or molt_g))

then conclude K(not(trans_degl),s)

End control

End

MODULE ANALITICA=

;; MODUL QUE PREGUNTA DADES ANALITIQUES

Begin

Inherit ant

Inherit situacio_clinica

Import sodi, hematocrit, leucocits, granulocits, urea, creatinina, pO2

Export hematocrit, leucocits, granulocits, sodi, urea, creatinina, pO2,

insuf_resp, insuf_renal_ag, insuf_resp_greu, signes_anal_grav

Deductive knowledge

Dictionary:

Predicates:

sodi= name: "xifra de sodi en sang"

question: "quin es el valor del sodi en sang?"

type: numeric

hematocrit= name:" hematocrit"

question: "quin es el valor del hematocrit?"

type: numeric

leucocits= name:" nombre de leucocits"

question: "quina es la xifra de leucocits?"

type: numeric

granulocits= name: "nombre de segmentats mes bandes"

question:"quin es el nombre de segmentats mes bandes?"

type: numeric

relation: needs leucocits

creatinina= name: "creatinina"

question:"quina es la xifra de creatinina en mmol/l?"

type: numeric

urea= name: "urea"

question: "quina es la xifra d’urea en mmol/l?"

type: numeric

pO2= name: " presion parcial d’oxigen"

question: "quina es la pO2 basal en mmHG?"

type: numeric

insuf_renal_ag= name: "insuficiencia renal aguda"

type: logic

insuf_resp= name:" insuficiencia respiratoria aguda"

type: logic

relation: needs situacio_clinica/estat_malalt

insuf_resp_greu= name: "insuficiencia respiratoria greu"

type: logic

relation: needs situacio_clinica/estat_malalt

signes_anal_grav= name: "signes analitics de gravetat"

type: logic

192 Appendix C. Code Examples

granulopenia= name:"granulopenia"

type:logic

Rules:

R001 If hematocrit <30 then conclude signes_anal_grav is s

R002 If granulocits<1000 then conclude granulopenia is s

R003 If granulopenia then conclude signes_anal_grav is s

R004 If sodi < 130 then conclude signes_anal_grav is s

R005 If no(ant/tipus_mal_cron_assoc=(insuf_renal_cron)) and urea> 16.6

then conclude insuf_renal_ag is s

R006 If no(ant/tipus_mal_cron_assoc=(insuf_renal_cron)) and creatinina > 220

then conclude insuf_renal_ag is s

R007 If insuf_renal_ag then conclude signes_anal_grav is s

R008 If no(situacio_clinica/estat_malalt=(lleu)) and

situacio_clinica/FR >24 and pO2 < 60

then conclude insuf_resp is s

R009 If no(situacio_clinica/estat_malalt=(lleu or mod_g))

and situacio_clinica/FR >24 and pO2 < 50

then conclude insuf_resp_greu is s

End deductive

End

MODULE COMP=

;; MODUL QUE PREGUNTA SOBRE COMPLICACIONS

Begin

Inherit situacio_clinica

Import comp_sept, embass, emp, cav, afect_mult, afect_radiol_ext

Export comp_sept, embass, emp, cav, afect_mult, afect_radiol_ext

Deductive Knowledge

Dictionary:

predicates:

comp_sept= name: "Complicacions septiques"

question: "s’observan altres focos d’infeccio associats com

artritis, meningitis, endocarditis?"

type: boolean

relation: needs situacio_clinica/estat_malalt

emp= name: "empiema"

question: "l’ embassament pleural te criteris d’empiema pleural?"

type: boolean

relation: needs embass

embass= name: "embassament pleural"

question: " hi ha embassament pleural ?"

type: boolean

relation: needs situacio_clinica/estat_malalt

cav= name: "cavitacio "

question: "la radiografia de torax mostra cavitacio?"

type: boolean

relation: needs situacio_clinica/estat_malalt

afect_radiol_ext= name: "afectacio simultanea de mes de dos lobuls pulmonars"

question: "la RX de torax mostra afectacio de mes de

dos lobuls pulmonars?"

type: boolean

relation: needs afect_mult

relation: needs situacio_clinica/estat_malalt

afect_mult= name:" afectacio multilobar"

question: "la radiografia de torax mostra afectacio

simultanea de dos lobuls pulmonars?"

type: boolean

C.1. Terap–IA Example 193

relation: needs situacio_clinica/estat_malalt

End deductive

Control knowledge

Deductive control:

M001 If K(not(embass),s) then conclude K(not(emp),s)

M002 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(comp_sept),s)

M003 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(embass),s)

M004 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(cav),s)

M005 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(afect_mult),s)

M006 If K(not(afect_mult),s) then conclude K(not(afect_radiol_ext),s)

M007 If K(=(situacio_clinica/estat_malalt, $x),s) and

member ($x, (lleu or mod_g))

then conclude K(not (afect_radiol_ext),s)

End control

End

MODULE CRITERIS_PNEUMONIA_GREU=

;; MODUL PER DEDUIR SI HI HAN CRITERIS DE PNEUMONIA GREU

Begin

Inherit situacio_clinica

Inherit analitica

Inherit comp

Export crit_pneum_greu

Deductive knowledge

Dictionary:

Predicates:

crit_pneum_greu= name: "criteris de pneumonia greu"

type: logic

Rules:

R001 If situacio_clinica/shock_septic then conclude crit_pneum_greu is s

R002 If situacio_clinica/alt_neurol then conclude crit_pneum_greu is s

R003 If analitica/insuf_resp_greu then conclude crit_pneum_greu is s

R004 If comp/afect_radiol_ext then conclude crit_pneum_greu is s

End deductive

End

Module generar_com(x:antimicrobians_general; y:antimicrobians_general)

: antimicrobians_general=

Begin

Export peni_procaina, peni_G_Na, peni_G_Na_DA, peni_amp_espectre, cloxa,

ampi, amoxi, eritro_DB, eritro_DA, roxi, imip, amoxi_clav_DB,

amoxi_clav_DA, ticar_clav, cefuro_OR, cefuro_EV, ceftriax, cefazol,

cefra, cefmet, cefoxi, ceftaz, clinda_DB, clinda_DA, cipro, oflox,

tetras_ac_rap, doxi, doxi_DI, cotri_DB, cotri_DI, vanco_tract,

teico_tract, amika, genta, aztreo, metro_tract, RFM_DA, GCV_tract,

ACV_DB, ACV_DA, ARA_A_tract, RBV_tract, AMD_DB, AMD_DA, RMD_tract

Control knowledge

Evaluation type: eager

Deductive control:

;;creacio de la relacio subsumeix a partir de la relacio belongs_to

M002 If belongs_to_group($x,$z) and belongs_to_group($y,$z) and diff($x,$y)

then conclude subsumeix($x,$y)

;;Mateixa exportacio de dos submoduls

194 Appendix C. Code Examples

M003 If K(x/$c,int($tc11,$tc12)) and K(y/$c,int($tc21,$tc22))

then conclude WK($c ,and2(int($tc11,$tc12),int($tc21,$tc22)))

;;Cocktails de tipus 11 diferents

M004 If K(x/$x,int($tc11,$tc12)) and K(y/$y,int($tc21,$tc22)) and atom($x)

and atom($y) and diff($x,$y) and no(subsumeix($x,$y)) and

no(subsumeix($y,$x)) and no(espectre_equivalent($x,$y))

then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

;;potser es perd alguna combinacio amb el subsumir!

;;Cocktails de tipus 21

M005 If K(x/($x plus $y),int($tc11,$tc12)) and K(y/$x,int($tc21,$tc22))

and atom($x)

then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

M006 If K(x/($x plus $y),int($tc11,$tc12))

and K(y/$y,int($tc21,$tc22)) and atom($y)

then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

M007 If K(x/($x plus $y),int($tc11,$tc12)) and K(y/$z,int($tc21,$tc22))

and atom($z) and diff($z,$x) and diff($z,$y)

and no(subsumeix($x,$z)) and no(subsumeix($y,$z))

and no(espectre_equivalent($x,$z))

and no(espectre_equivalent($y,$z))

then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))

M008 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/$x,int($tc21,$tc22))

and atom($x)

then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

M009 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/$y,int($tc21,$tc22))

and atom($y)

then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

M010 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/$z,int($tc21,$tc22))

and atom($z) and diff($z,$x) and diff($z,$y) and no(subsumeix($x,$z))

and no(subsumeix($y,$z)) and no(espectre_equivalent($x,$z))

and no(espectre_equivalent($y,$z))

then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))

;;Cocktails de tipus 22

M011 If K(x/($x plus $y),int($tc11,$tc12)) and K(y/($x plus $z),int($tc21,$tc22))

and atom($z) and atom($y) and diff($z,$y) and no(subsumeix($y,$z))

and no(subsumeix($z,$y)) and no(espectre_equivalent($y,$z))

then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))

M012 If K(x/($x plus $y),int($tc11,$tc12)) and

K(y/($z plus $y),int($tc21,$tc22)) and atom($z) and

atom($x) and diff($z,$x) and no(subsumeix($x,$z)) and

no(subsumeix($z,$x)) and no(espectre_equivalent($z,$x))

then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))

M013 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/($x plus $z),int($tc21,$tc22))

and atom($z) and atom($y) and diff($z,$y) and no(subsumeix($y,$z))

and no(subsumeix($z,$y)) and no(espectre_equivalent($y,$z))

then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))

M014 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/($z plus $y),int($tc21,$tc22))

and atom($z) and atom($x) and diff($z,$x) and no(subsumeix($x,$z))

and no(subsumeix($z,$x)) and no(espectre_equivalent($z,$x))

then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))

End control

C.2. Fuzzy Control Example 195

End

Module eliminar_com(x:antimicrobians_general) : antimicrobians_general=

Begin

Export peni_procaina, peni_G_Na, peni_G_Na_DA, peni_amp_espectre, cloxa,

ampi, amoxi, eritro_DB, eritro_DA, roxi, imip, amoxi_clav_DB,

amoxi_clav_DA, ticar_clav, cefuro_OR, cefuro_EV, ceftriax, cefazol,

cefra, cefmet, cefoxi, ceftaz, clinda_DB, clinda_DA, cipro, oflox,

tetras_ac_rap, doxi, doxi_DI, cotri_DB, cotri_DI, vanco_tract,

teico_tract, amika, genta, aztreo, metro_tract, RFM_DA, GCV_tract,

ACV_DB, ACV_DA, ARA_A_tract, RBV_tract, AMD_DB, AMD_DA, RMD_tract

Control knowledge

Evaluation type: eager

Deductive control:

M001 If K(x/$x,int($tc1,$tc2)) then conclude K($x,int($tc1,$tc2))

M006 If K(($x plus $y),$V) and belongs_to($y,administracio_oral) and

belongs_to($x,administracio_parenteral)

then conclude K(($x plus $y) ,int(gp,s))

M007 If K(($x plus $y),$V) and belongs_to($x,administracio_oral)

and belongs_to($y,administracio_parenteral)

then conclude K(($x plus $y) ,int(gp,s))

;;IMPROVEMENT No es combinaran antibiotics bacteriostatics

;; amb bactericides

M008 If K(($x plus $y),$V) and belongs_to($y,bacteriostatics)

and belongs_to($x,bactericides)

then conclude K(($x plus $y) ,int(gp,s))

M009 If K(($x plus $y),$V) and belongs_to($x,bacteriostatics)

and belongs_to($y,bactericides)

then conclude K(($x plus $y) ,int(gp,s))

;;IMPROVEMENT Nomes es matxequen si la certesa de la monoterapia

;; esta per sobre de mod-p.

M010 If K(($x plus $y),int($tc11,$tc12)) and K($y,int($tc21,$tc22))

AND GT($tc21,modp)

then conclude K(($x plus $y) ,int(gp,s))

M011 If K(($x plus $y),int($tc11,$tc12)) and

K($y,int($tc21,$tc22)) AND LE($tc21,modp) AND LE($tc11, $tc21)

then conclude K(($x plus $y) ,int(gp,s))

M012 If K(($x plus $y),int($tc11,$tc12)) and K($x,int($tc21,$tc22))

AND GT($tc21,modp)

then conclude K(($x plus $y) ,int(gp,s))

M013 If K(($x plus $y),int($tc11,$tc12)) and K($x,int($tc21,$tc22))

AND LE($tc21,modp) AND LE($tc11, $tc21)

then conclude K(($x plus $y) ,int(gp,s))

End control

End

Module combmycochlam=

eliminar_com(generar_com(pneumonia_mycoplasma_tractament_2,

pneumonia_chlamydia_psit_tractament_2))

C.2 Fuzzy Control Example

Here there is the complete code of the example given in the Section 6.5.

196 Appendix C. Code Examples

C.2.1 Controller

We use four modules to implement the controller: Data, Defuzzifier, Fuzzy Infe-
rence and Fuzzifier. The module Data imports the data of the problem relative
to the fuzzifier (slope and width) and the physical measures of the system (the
level in the second tank and its variation). The module Defuzzifier exports the
quantitative value of the control.

Module Data =

Begin

Import s, w, reference, h2b, deltah2b

Export s, w, reference, h2b, deltah2b

Deductive knowledge

Dictionary:

Predicates:

s = Name: "Slope"

Question: "Slope?"

Type: Numeric

w = Name: "Width"

Question: "Width?"

Type: Numeric

reference = Name: "Reference Level"

Question: "Reference Level?"

Type: Numeric

h2b = Name: "Level in the second tank"

Question: "Level in the second tank?"

Type: Numeric

deltah2b = Name: "Variation of the Level in the second tank"

Question: "Variation of the Level in the second tank?"

Type: Numeric

End Deductive

End

Module Defuzzifier =

Begin

Inherit Data

Inherit Fuzzy_Inference

Export v

Deductive knowledge

Dictionary:

Types:

Q_domain = (PL, PM, PS, P0, N0, NS, NM, NL)

Predicates:

v = Name: "Value"

Type: Numeric

Function:

(lambda ()

(let* ((slope (fact_value Data/s))

(terms (type Fuzzy_Inference/Var_u))

(values (mapcar

(function

(lambda (x) (list (first x)

(first (second x)))))

(fact_value Fuzzy_Inference/Var_u)))

(ling_terms (linguistic_terms))

(width (fact_value Data/w)))

(labels

C.2. Fuzzy Control Example 197

((real_value (ling_term)

(division (position ling_term ling_terms)

(- (length ling_terms) 1)))

(reflevel (term)

(* (- (+ 1 (position term terms))

(division (length terms) 2))

width))

(recursive_zones (values)

(let* ((value (first values))

(rest_values (cdr values))

(pla_value (center_A_n (second value)

(third value))))

(cond

(rest_values

(let ((next (recursive_zones rest_values))

(inter_value (center_union_A_n_A_np1

(second value)

(third value)

(third (first rest_values)))))

(list (+ (first pla_value)

(first inter_value)

(first next))

(+ (second pla_value)

(second inter_value)

(second next)))))

(t pla_value))))

(int_xmpot (pot sup inf)

(division (- (expt sup (+ pot 1)) (expt inf (+ pot 1)))

(+ pot 1)))

(int_constant (constant sup inf)

(* constant (int_xmpot 0 sup inf)))

(int_xmconstant (constant sup inf)

(* constant (int_xmpot 1 sup inf)))

(center_A_n (where A_n)

(let* ((origin (+ (- where width) slope))

(final (- where slope)))

(list (int_xmconstant A_n origin final)

(int_constant A_n origin final))))

(center_union_A_n_A_np1 (where A_n A_np1)

(let* ((X_A_n (+ where (* (- (* 2 A_n) 1) slope)))

(X_A_np1 (+ where (* (- 1 (* 2 A_np1)) slope)))

(X_A_n_A_np1 (+ where (* (- 1 (* 2 A_n)) slope)))

(X_A_np1_A_n (+ where (* (- (* 2 A_np1) 1) slope)))

(origin (- where slope))

(final (+ where slope)))

(labels ((int_down (sup inf)

(+ (* 0.5 (int_xmpot 0 sup inf))

(* (* 0.5 slope)

(- (int_xmpot 1 sup inf)

(* where (int_xmpot 0 sup inf))))))

(int_xmdown (sup inf)

(+ (* 0.5 (int_xmpot 1 sup inf))

(* (* 0.5 slope)

(- (int_xmpot 2 sup inf)

(* where (int_xmpot 1 sup inf))))))

(int_up (sup inf)

(- (* 0.5 (int_xmpot 0 sup inf))

198 Appendix C. Code Examples

(* (* 0.5 slope)

(- (int_xmpot 1 sup inf)

(* where (int_xmpot 0 sup inf))))))

(int_xmup (sup inf)

(- (* 0.5 (int_xmpot 1 sup inf))

(* (* 0.5 slope)

(- (int_xmpot 2 sup inf)

(* where (int_xmpot 1 sup inf)))))))

(cond

((and (greateq A_n 0.5)

(greateq A_np1 0.5))

(list (+ (int_xmconstant A_n origin X_A_n)

(int_xmdown X_A_n where)

(int_xmup where X_A_np1)

(int_xmconstant A_np1 X_A_np1 final))

(+ (int_constant A_n origin X_A_n)

(int_down X_A_n where)

(int_up where X_A_np1)

(int_constant A_np1 X_A_np1 final))))

((and (greateq A_n A_np1)

(lesseq A_np1 0.5))

(list (+ (int_xmconstant A_n origin X_A_n)

(int_xmdown X_A_n X_A_np1_A_n)

(int_xmconstant A_np1 X_A_np1_A_n final))

(+ (int_constant A_n origin X_A_n)

(int_down X_A_n X_A_np1_A_n)

(int_constant A_np1 X_A_np1_A_n final))))

((and (lesseq A_n 0.5)

(greateq A_np1 A_n))

(list (+ (int_xmconstant A_n origin X_A_n_A_np1)

(int_xmup X_A_n_A_np1 X_A_np1)

(int_xmconstant A_np1 X_A_np1 final))

(+ (int_constant A_n origin X_A_n_A_np1)

(int_up X_A_n_A_np1 X_A_np1)

(int_constant A_np1 X_A_np1 final)))))))))

(let ((result

(recursive_zones

(mapcar

(function

(lambda (term)

(list term (reflevel term)

(let ((exists

(position term

(mapcar

(function first)

values))))

(cond

(exists

(real_value (second

(nth exists values))))

(t 0))))))

terms))))

(division (first result) (second result))))))

End deductive

Control Knowledge

Evaluation type: eager

End control

C.2. Fuzzy Control Example 199

End

Module Fuzzy_Inference =

Begin

Module F = Fuzzifier

Export Var_u

Deductive knowledge

Dictionary:

Types:

Q_domain = (PL, PM, PS, P0, N0, NS, NM, NL)

Predicates:

Var_u = Name: "Qualitative ACtion"

Type: Q_domain

Rules:

R001 IF F/e int (NL) and F/Var_e int (NL) THEN conclude Var_u = (PL) is s

R002 IF F/e int (NL) and F/Var_e int (NM) THEN conclude Var_u = (PL) is s

R003 IF F/e int (NL) and F/Var_e int (NS) THEN conclude Var_u = (PL) is s

R004 IF F/e int (NL) and F/Var_e int (N0) THEN conclude Var_u = (PL) is s

R005 IF F/e int (NL) and F/Var_e int (P0) THEN conclude Var_u = (PL) is s

R006 IF F/e int (NL) and F/Var_e int (PS) THEN conclude Var_u = (PL) is s

R007 IF F/e int (NL) and F/Var_e int (PM) THEN conclude Var_u = (P0) is s

R008 IF F/e int (NL) and F/Var_e int (PL) THEN conclude Var_u = (P0) is s

R009 IF F/e int (NM) and F/Var_e int (NL) THEN conclude Var_u = (PL) is s

R010 IF F/e int (NM) and F/Var_e int (NM) THEN conclude Var_u = (PL) is s

R011 IF F/e int (NM) and F/Var_e int (NS) THEN conclude Var_u = (PM) is s

R012 IF F/e int (NM) and F/Var_e int (N0) THEN conclude Var_u = (PM) is s

R013 IF F/e int (NM) and F/Var_e int (P0) THEN conclude Var_u = (PM) is s

R014 IF F/e int (NM) and F/Var_e int (PS) THEN conclude Var_u = (PS) is s

R015 IF F/e int (NM) and F/Var_e int (PM) THEN conclude Var_u = (P0) is s

R016 IF F/e int (NM) and F/Var_e int (PL) THEN conclude Var_u = (P0) is s

R017 IF F/e int (NS) and F/Var_e int (NL) THEN conclude Var_u = (PL) is s

R018 IF F/e int (NS) and F/Var_e int (NM) THEN conclude Var_u = (PM) is s

R019 IF F/e int (NS) and F/Var_e int (NS) THEN conclude Var_u = (PS) is s

R020 IF F/e int (NS) and F/Var_e int (N0) THEN conclude Var_u = (PS) is s

R021 IF F/e int (NS) and F/Var_e int (P0) THEN conclude Var_u = (PS) is s

R022 IF F/e int (NS) and F/Var_e int (PS) THEN conclude Var_u = (P0) is s

R023 IF F/e int (NS) and F/Var_e int (PM) THEN conclude Var_u = (NS) is s

R024 IF F/e int (NS) and F/Var_e int (PL) THEN conclude Var_u = (NS) is s

R025 IF F/e int (N0) and F/Var_e int (NL) THEN conclude Var_u = (PM) is s

R026 IF F/e int (N0) and F/Var_e int (NM) THEN conclude Var_u = (PM) is s

R027 IF F/e int (N0) and F/Var_e int (NS) THEN conclude Var_u = (PS) is s

R028 IF F/e int (N0) and F/Var_e int (N0) THEN conclude Var_u = (P0) is s

R029 IF F/e int (N0) and F/Var_e int (P0) THEN conclude Var_u = (N0) is s

R030 IF F/e int (N0) and F/Var_e int (PS) THEN conclude Var_u = (NS) is s

R031 IF F/e int (N0) and F/Var_e int (PM) THEN conclude Var_u = (NM) is s

R032 IF F/e int (N0) and F/Var_e int (PL) THEN conclude Var_u = (NM) is s

R033 IF F/e int (P0) and F/Var_e int (NL) THEN conclude Var_u = (PM) is s

R034 IF F/e int (P0) and F/Var_e int (NM) THEN conclude Var_u = (PM) is s

R035 IF F/e int (P0) and F/Var_e int (NS) THEN conclude Var_u = (PS) is s

R036 IF F/e int (P0) and F/Var_e int (N0) THEN conclude Var_u = (P0) is s

R037 IF F/e int (P0) and F/Var_e int (P0) THEN conclude Var_u = (N0) is s

R038 IF F/e int (P0) and F/Var_e int (PS) THEN conclude Var_u = (NS) is s

R039 IF F/e int (P0) and F/Var_e int (PM) THEN conclude Var_u = (NM) is s

200 Appendix C. Code Examples

R040 IF F/e int (P0) and F/Var_e int (PL) THEN conclude Var_u = (NM) is s

R041 IF F/e int (PS) and F/Var_e int (NL) THEN conclude Var_u = (PM) is s

R042 IF F/e int (PS) and F/Var_e int (NM) THEN conclude Var_u = (PS) is s

R043 IF F/e int (PS) and F/Var_e int (NS) THEN conclude Var_u = (N0) is s

R044 IF F/e int (PS) and F/Var_e int (N0) THEN conclude Var_u = (NS) is s

R045 IF F/e int (PS) and F/Var_e int (P0) THEN conclude Var_u = (NS) is s

R046 IF F/e int (PS) and F/Var_e int (PS) THEN conclude Var_u = (NS) is s

R047 IF F/e int (PS) and F/Var_e int (PM) THEN conclude Var_u = (NM) is s

R048 IF F/e int (PS) and F/Var_e int (PL) THEN conclude Var_u = (NL) is s

R049 IF F/e int (PM) and F/Var_e int (NL) THEN conclude Var_u = (PS) is s

R050 IF F/e int (PM) and F/Var_e int (NM) THEN conclude Var_u = (N0) is s

R051 IF F/e int (PM) and F/Var_e int (NS) THEN conclude Var_u = (NS) is s

R052 IF F/e int (PM) and F/Var_e int (N0) THEN conclude Var_u = (NM) is s

R053 IF F/e int (PM) and F/Var_e int (P0) THEN conclude Var_u = (NM) is s

R054 IF F/e int (PM) and F/Var_e int (PS) THEN conclude Var_u = (NM) is s

R055 IF F/e int (PM) and F/Var_e int (PM) THEN conclude Var_u = (NL) is s

R056 IF F/e int (PM) and F/Var_e int (PL) THEN conclude Var_u = (NL) is s

R057 IF F/e int (PL) and F/Var_e int (NL) THEN conclude Var_u = (P0) is s

R058 IF F/e int (PL) and F/Var_e int (NM) THEN conclude Var_u = (PS) is s

R059 IF F/e int (PL) and F/Var_e int (NS) THEN conclude Var_u = (NS) is s

R060 IF F/e int (PL) and F/Var_e int (N0) THEN conclude Var_u = (NL) is s

R061 IF F/e int (PL) and F/Var_e int (P0) THEN conclude Var_u = (NL) is s

R062 IF F/e int (PL) and F/Var_e int (PS) THEN conclude Var_u = (NL) is s

R063 IF F/e int (PL) and F/Var_e int (PM) THEN conclude Var_u = (NL) is s

R064 IF F/e int (PL) and F/Var_e int (PL) THEN conclude Var_u = (NL) is s

End deductive

Control Knowledge

Evaluation type: eager

End control

End

Module Fuzzifier =

Begin

Inherit Data

Export e, Var_e

Deductive knowledge

Dictionary:

Types:

Q_domain = (PL, PM, PS, P0, N0, NS, NM, NL)

Predicates:

e = Name: "Qualitative Value"

Type: Q_domain

Function:

(lambda ()

(let* ((slope (fact_value Data/s))

(terms (type e))

(ratio (* (- (division (fact_value Data/h2b)

(fact_value Data/reference))

1)

250))

(ling_terms (linguistic_terms))

(width (fact_value Data/w))

(Num_terms (length terms)))

(labels ((fuzzy_value (level)

C.2. Fuzzy Control Example 201

(nth (truncate

(* (length ling_terms)

(division (- ratio (- level slope))

(* 2 slope))))

ling_terms))

(duplicate (x)

(list x x)))

(dolist (term terms)

(let ((reflevel

(* (- (+ 1 (position term terms))

(division Num_terms 2))

width)))

(cond ((or (eq (car (last terms)) term)

(lessthan ratio (- reflevel slope)))

(return

(list (list term

(car (last ling_terms))))))

((lessthan ratio (+ reflevel slope))

(return

(list

(list

term

(duplicate

(nth (-

(- (length ling_terms)

(position (fuzzy_value reflevel)

ling_terms)) 1)

ling_terms)))

(list

(nth (+ 1 (position term terms)) terms)

(duplicate (fuzzy_value reflevel))))))))))))

Var_e = Name: "Qualitative Value"

Type: Q_domain

Function:

(lambda ()

(let* ((slope (fact_value Data/s))

(terms (type e))

(ratio (fact_value Data/deltah2b))

(ling_terms (linguistic_terms))

(width (fact_value Data/w))

(Num_terms (length terms)))

(labels ((fuzzy_value (level)

(nth (truncate

(* (length ling_terms)

(division (- ratio (- level slope))

(* 2 slope))))

ling_terms))

(duplicate (x)

(list x x)))

(dolist (term terms)

(let ((reflevel

(* (- (+ 1 (position term terms))

(division Num_terms 2))

width)))

(cond ((or (eq (car (last terms)) term)

(lessthan ratio (- reflevel slope)))

(return

202 Appendix C. Code Examples

(list (list term

(car (last ling_terms))))))

((lessthan ratio (+ reflevel slope))

(return

(list

(list

term

(duplicate

(nth (-

(- (length ling_terms)

(position (fuzzy_value reflevel)

ling_terms)) 1)

ling_terms)))

(list

(nth (+ 1 (position term terms)) terms)

(duplicate (fuzzy_value reflevel))))))))))))

End deductive

Control Knowledge

Evaluation type: eager

End control

End

C.2.2 Simulator

We use the following Lisp function to implement the simulation of the process.

(defun simulator (h1a h2a S Q Ts)

(let* ((p1 (- (/ (+ 3 (sqrt 5)) (* 2 S))))

(p2 (/ (+ -3 (sqrt 5)) (* 2 S)))

(c2 (/ (- (* h2a (+ (* S p1) 2)) h1a (* Q S p1))

(* S (- p1 p2))))

(c1 (- h2a c2 Q))

(hb1 (+ (* c1 (exp (* p1 Ts))

(+ 2 (* S p1)))

(* c2 (exp (* p2 Ts))

(+ 2 (* S p2)))

(* 2 Q)))

(hb2 (+ (* c1 (exp (* p1 Ts)))

(* c2 (exp (* p2 Ts)))

Q))

(deltah2b (+ (* c1 p1 (exp (* p1 Ts)))

(* c2 p2 (exp (* p2 Ts))))))

(list hb1 hb2 deltah2b)))

C.2.3 Whole Process

The following Lisp functions implements the loop simulator–controller. In the
case we use a facility of the shell that consist in using a program with the external
mode. Using this mode the modules import facts by mean of an external function
named name of the module–import. The argument of this function is the fact to
be imported, and it returns the value of that fact. The facts required from outside
the ES are exported by mean of another function named name of the module–
export. Its argument is a list composed by the fact to be exported and its value.

C.2. Fuzzy Control Example 203

(defvar Simulator_h2b 0)

(defvar Simulator_deltah2b 0)

(defvar defuzzifier_v 0)

(defun data-import (fact)

(case fact

(s 2.5)

(w 5.0)

(reference 800)

(h2b Simulator_h2b)

(deltah2b Simulator_deltah2b)))

(defun defuzzifier-export (fact-value)

(setq defuzzifier_v (second fact-value)))

(defun two-coupled-tanks-process ()

(setq Simulator_h2b 0)

(setq Simulator_deltah2b 0)

(setq defuzzifier_v 0)

(let* ((h1a 0)

(h2a 0)

(action 0))

(dotimes (x 1000)

(let ((defuzzifier_v_old action))

(Execute ’defuzzifier ’v))

(setq action (+ defuzzifier_v_old defuzzifier_v))

(format t "(~S ~S ~S ~S ~S ~S)~%"

h1a h2a Simulator_deltah2b defuzzifier_v action (abs (- h2a 800)))

(let ((result (simulator

h1a

h2a

50

action

20)))

(setq h1a (first result))

(setq h2a (second result))

(setq Simulator_h2b (second result))

(setq Simulator_deltah2b (third result))

(ResetKB))))))

Notice that the function Execute queries the module defuzzifier for the value
of the fact v, and the function ResetKB return the ES to its original state.

Example of output:

(0 0 0 16.674 16.674 800)

(5.618 0.917 0.075 16.674 33.348 799.082)

(15.478 3.559 0.167 16.674 50.022 796.440)

(28.777 8.012 0.255 16.674 66.696 791.987)

(44.955 14.134 0.333 16.674 83.371 785.865)

(63.579 21.729 0.402 16.674 100.045 778.270)

(84.295 30.603 0.461 16.674 116.719 769.396)

(106.801 40.580 0.512 16.674 133.393 759.419)

(130.845 51.504 0.556 16.674 150.067 748.495)

204 Appendix C. Code Examples

C.3 Polytrees Example

This is the complete code of the belief propagation in bayesian polytrees given
in Section 6.6

Module POLYTREE =

Begin

Export A, B, C, D, E, F, G

Deductive knowledge

Dictionary:

Types:

dom_A = (a0 or a1)

dom_B = (b0 or b1 or b2)

dom_C = (c0 or c1 or c2)

dom_D = (d0 or d1)

dom_E = (e0 or e1)

dom_F = (f0 or f1 or f2)

dom_G = (g0 or g1 or g2)

Predicates:

A =

Name: "A"

Type: array [dom_A]

A_prior =

Name: "P(A) Prior probability of A"

Question: "Enter P(A), prior probability for A"

Type: array [dom_A]

Relation: prior A

A_ptr =

Name: "Pointer to A"

Type: logic

Relation: points_to A

B =

Name: "B"

Type: array [dom_B]

B_prior =

Name: "P(B) Prior probability of B"

Question: "Enter P(B), prior probability for B"

Type: array [dom_B]

Relation: prior B

B_ptr =

Name: "Pointer to B"

Type: logic

Relation: points_to B

C =

Name: "C"

Type: array [dom_C]

C_prior =

Name: "P(C), prior probability of C"

Question: "Enter P(C), prior probability for C"

Type: array [dom_C]

Relation: prior C

C_ptr =

Name: "Pointer to C"

Type: logic

Relation: points_to C

D =

Name: "D"

C.3. Polytrees Example 205

Type: array [dom_D]

D_ptr =

Name: "Pointer to D"

Type: logic

Relation: points_to D

E =

Name: "E"

Type: array [dom_E]

E_ptr =

Name: "Pointer to E"

Type: logic

Relation: points_to E

E_evid =

Name: "Evidence for E"

Question: "Enter evidence for E"

Type: array [dom_E]

Relation: evid E

F =

Name: "F"

Type: array [dom_F]

F_ptr =

Name: "Pointer to F"

Type: logic

Relation: points_to F

F_evid =

Name: "Evidence for F"

Question: "Enter evidence for F"

Type: array [dom_F]

Relation: evid F

G =

Name: "G"

Type: array [dom_G]

G_ptr =

Name: "Pointer to G"

Type: logic

Relation: points_to G

G_evid =

Name: "Evidence for G"

Question: "Enter evidence for G"

Type: array [dom_G]

Relation: evid G

Rules:

R01 If A_ptr and B_ptr and C_ptr then conclude D_ptr is

((((0.3 0.7) (0.4 0.6) (0.5 0.5))

((0.75 0.25) (0.82 0.18) (0.35 0.65))

((0.45 0.55) (0.8 0.2) (0.1 0.9)))

(((0.3 0.7) (0.99 0.01) (1 0))

((0.37 0.63) (0.85 0.15) (0.21 0.79))

((0.45 0.55) (0.99 0.01) (0.27 0.73))))

;; pi_jkl = p (Di / Aj Bk Cl)

;; ((((p0_000 p1_000) (p0_001 p1_001) (p0_002 p1_002))

;; ((p0_010 p1_010) (p0_011 p1_011) (p0_012 p1_012))

;; ((p0_020 p1_020) (p0_021 p1_021) (p0_022 p1_022)))

;; (((p0_100 p1_000) (p0_101 p1_001) (p0_102 p1_002))

;; ((p0_110 p1_010) (p0_111 p1_011) (p0_112 p1_012))

;; ((p0_120 p1_020) (p0_121 p1_021) (p0_122 p1_022))))

206 Appendix C. Code Examples

R02 If D_ptr and B_ptr then conclude E_ptr is ((0.75 0.25) (0.55 0.45))

R03 If D_ptr then conclude F_ptr is ((0.3 0.2 0.5) (0.1 0.5 0.4))

R04 If D_ptr then conclude G_ptr is ((0.3 0.6 0.1) (0.5 0.2 0.3))

End deductive

Control knowledge

Evaluation type: reified

Deductive control:

;; --

;; Translation metarules

M01 If K(implies ($list_of_premises,$conclusion),$matrix) and

points_to ($conclusion,$child) and

set_of_instances ($father,

conj (position ($prem,$list_of_premises,$i),

points_to ($prem,$father)),

$list_of_fathers)

then conclude

K(cause ($list_of_fathers,$child),$matrix)

M02 If points_to ($x_ptr,$x) then conclude node($x)

;; --

;; Initializes nodes with evidence

M03 If evid($x_evid,$x) and K($x_evid,$v)

then conclude K(lambda ($x),$v)

;; --

;; Initializes root nodes

M04 If prior($x_prior,$x) and K($x_prior,$v)

then conclude K(pi($x),$v)

;; --

;; Lambda propagation

;; Calculates lambda messages for nodes with several fathers.

M05 If K(cause ($list_of_fathers,$child),$matrix) and

K(lambda ($child),$lambda_child) and

position($father_i,$list_of_fathers,$i) and

set_of_instances($msg,

conj(position($father_k,$list_of_fathers,$k),

neg(equal($k,$i)),

K(pi_msg($father_k,$child),$msg)),

$pi_msgs_fathers_minus_i)

then conclude K(lambda_msg($child,$father_i),

matrix_prod ($lambda_child,

transpose (matrix_prod%

(cartesian_prod%($pi_msgs_fathers_minus_i),

reduce_dim ($matrix, $i)))))

;; Calculates lambda messages for nodes with only one father

M06 If K(cause($list_of_fathers,$child),$matrix) and

cardinal($list_of_fathers,1) and

position ($father,$list_of_fathers,$i) and

K(lambda($child),$lambda_child)

then conclude K(lambda_msg($child,$father),

matrix_prod($lambda_child,transpose($matrix)))

;; lambda update

M07 If node($father) and

set_of_instances($msg,K(lambda_msg($child,$father),

$msg),$lambda_msgs_children)

then conclude K(lambda($father),

C.3. Polytrees Example 207

inner_product($lambda_msgs_children))

;; --

;; Pi propagation

;; Calculates pi messages for nodes with several children

M08 If K(cause($list_of_fathers,$child_j),$matrix) and

position($father,$list_of_fathers,$i) and

K(pi($father),$pi_father) and

set_of_instances($msg,

conj(K(lambda_msg($child_k,$father),$msg),

neg (equal($child_k,$child_j))),

$lambda_msgs_children_minus_j)

then conclude K(pi_msg($father,$child_j),

norm (inner_product

(inner_product ($lambda_msgs_children_minus_j),

$pi_father)))

;; Calculates pi messages for nodes with a unique child

M09 If K(cause($list_of_fathers,$child),$matrix) and

position($father,$list_of_fathers,$i) and

K(pi($father),$pi_father) and

no(set_of_instances ($child_j,

conj(K(lambda_msg($child_j,$father),$msg),

neg(equal($child_j,$child))),

$other_children))

then conclude K(pi_msg($father,$child),$pi_father)

;; Pi update

M10 If K(cause($list_of_fathers,$child),$matrix) and

set_of_instances ($msg,

conj(position($father_i,$list_of_fathers,$i),

K(pi_msg($father_i,$child),$msg)),

$pi_msgs_fathers)

then conclude K(pi($child),

norm(matrix_prod

(cartesian_prod% ($pi_msgs_fathers),

$matrix)))

;; --

;; Belief update

M11 If K(lambda($x),$lambda_x) and

K(pi($x),$pi_x)

then conclude K($x,norm(inner_product($lambda_x,$pi_x)))

End control

End

208 Appendix C. Code Examples

List of Figures

2.1 Example of module declaration. 21
2.2 Syntax of interfaces. 22
2.3 Example of module declaration. 23
2.4 Syntax of modules. 24
2.5 Hierarchy example. 27
2.6 Example of generic module definition and application. 30
2.7 Syntax of generic modules. 31
2.8 Example of module used as parameter of a generic module. . . . 31
2.9 Kernel declaration scheme. 33
2.10 Syntax of refinement, contraction and expansion. 34
2.11 Example of generic module definition and application. 35
2.12 Example of module refinement. 38
2.13 Example of module refinement. 39
2.14 Visibility example (hidden modules are written in italic). 40
2.15 Syntax of submodule declarations. 42
2.16 Example of open module. 42
2.17 Syntax of sharing. 43

3.1 Example of Local logic declaration. 49
3.2 Fuzzy set representing the concept tall. 52
3.3 Imprecision Ordering on Int(A4). 55
3.4 Weak Uncertainty Ordering on Int(A4). 56
3.5 Mapping example. 64
3.6 Logic declaration. 65
3.7 Trapezoidal approximation of a fuzzy interval. 66
3.8 Truth table declaration for TA5

. 67
3.9 Renaming declaration example. 68
3.10 Example of logic declaration. 69

4.1 Standard Behavior of an ES. 72
4.2 Inference Engine Architecture. 74
4.3 Example of specialization of a KB 79
4.4 Deductive declaration into the modules. 94
4.5 Example of dictionary declaration 95

209

210 LIST OF FIGURES

4.6 Example of function attribute . 98
4.7 Example of characteristic function. 99
4.8 Syntax of the rules. 101
4.9 Syntax of the conditions of rules. 102
4.10 Syntax of the conclusion of rules. 104

5.1 Control declaration . 109
5.2 Example of subsumption. 114
5.3 Control cycle. 120
5.4 Syntax of the premises of metarules. 123
5.5 Syntax of the deductive control. 124
5.6 Syntax of the structural control. 125

6.1 Architecture of Terap–IA application. 129
6.2 Example of filtering. 132
6.3 Module Renal Failure. 133
6.4 Module Pneumonia Mycoplasma Treatment. 135
6.5 Example of module tree. 137
6.6 Case example. 138
6.7 Coupled tanks example. 139
6.8 Scheme of the process. 140
6.9 Fuzzy control modules. 142
6.10 Fuzzification process. 142
6.11 Defuzzication by mean of the gravity center. 145
6.12 Results for h2, dQ and Q. 146
6.13 Detailed dQ. 147
6.14 Phase plane result. 148
6.15 Node example. 148
6.16 Comparations among applications. 156

List of Tables

1.1 Main differences between Milord and Milord II. 5

3.1 TS5
Table. 49

3.2 N5 Table. 50
3.3 ITS5

(x, y) Table. 50
3.4 MPTS5

(x, y) Table. 51
3.5 TGram7

Table. 63

4.1 Main differences between Milord and Milord II inference engines 80
4.2 Valid models of the example. 85
4.3 Operations between expressions. 104

6.1 Mac Vicar–Wheland’s initial set of rules. 144

211

212 LIST OF TABLES

References

Agust́ı, J., Sierra, C. and Sannella, D. (1989). Methodologies for Intelligent
Systems, 4, chapter Adding generic modules to flat rule–based languages: A low
cost approach, pages 43–51. Elsevier Science Publishing Co., Inc.

Agust́ı, J., Esteva, J., Garcia, P., Godo, L. and Sierra, C. (1991). Combining
multiple–valued logics in modular expert systems. In Proceedings 7th Conference
on Uncertainty in AI.

Agust́ı, J., Esteva, F., Garcia, P., Godo, L., López de Mántaras, R., Puyol, J.,
Sierra, C. and Murgui, L. (1992). Fuzzy Logic for the Management of Uncer-
tainty, chapter Structured Local Fuzzy Logics in Milord, pages 523–551. John
Wiley and Sons, Inc.

Alsina, C., Grané, J., Sales, T. and Trillas, E. (1984). Algunes consideracions
sobre el modus ponens: Funcions de modus ponens. In Actes del III Congrés
Català de Lògica Matemàtica. Barcelona, pages 55–77.

Arcos, J. L. (1992). Definició i implementació d’un compilador per a Milord II.
Master’s thesis, Universitat Politècnica de Catalunya, Barcelona.

Barroso, C. (1992). ENS–AI: un sistema experto para la enseñanza. In Proceed-
ings of the European Conference about Information Technology in Education: a
critical insight. Barcelona., volume 2, pages 373–382.

Belmonte, M. (1991). Renoir: Un sistema experto para la ayuda en el diagnostico
de colagenosis y artropatias inflamatorias. PhD thesis, Universitat Autònoma
de Barcelona.

Berenji, H. R. (1992). An Introduction to Fuzzy Logic Applications in Intelli-
gent Systems, chapter Fuzzy Logic Controllers, pages 69–96. Kluwer Academic
Publishers.

Bonissone, P., Gans, S. and Decker, K. (1987). Rum: A layered architecture for
reasoning with uncertaintyg. In IJCAI’87, pages 891–898.

Chandrasekaran, B. (1986). Generic tasks in knowledge–based reasoning: High–
level building blocks for expert systems design. Technical report, Ohio State
University.

213

214 REFERENCES

Chandrasekaran, B. (1987). Towards a functional architecture for intelligence
based on generic information processing tasks. In Proceedings of the IJCAI’87,
pages 1183–1192.

Davis, R. (1982). Knowledge–Based Systems in Artificial Intelligence, chapter
TEIRESIAS: Applications of Meta–Level Knowledge, pages 920–927. McGraw–
Hill, New York.

Dechter, R., Meiri, I. and Pearl, J. (1991). Temporal constraint networks. Arti-
ficial Intelligence, 49:61–95.

Demolombe, R. (1990). Strategies for the computation of conditional answers.
In Proceedings of the Workshop on Partial Deduction, Partial Evaluation and
Intelligent Reasoning, ECAI’90, pages 5–23.

Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued
mapping. Annals of Mathematical Statistics, 38:325–339.

Domingo, M. (1993a). Evaluating the expert system approach to biological
identification through application to porifera. In Sponges in Time and Space.
Proceedings 4th International Porifera Congress, page In press.

Domingo, M. (1993b). Towards a knowledge level analysis of classification in
biological domains. In Proceedings of the IMACS International Workshop on
Qualitative Reasoning and Decision Technologies QUARDET’93., pages 535–
544.

Domingo, M. (1995). An expert system architecture for taxonomic domains. An
application in Porifera: the development of Spongia. PhD thesis, Universitat de
Barcelona.

Dubois, D. and Prade, H. (1988). Possibility Theory: An Approach to Comput-
erized Processing of Uncertainty. Plenum Press.

Duda, R. O., Hart, P. E. and Nilsson, N. J. (1976). Subjective bayesian meth-
ods for rule–based inference systems. In Proceedings of the AFIPS National
Computer Conference, volume 7, pages 1075–1082.

Esteva, F., Garcia-Calves, P. and Godo, L. (1994). Enriched interval bilattices:
An approach to deal with uncertainty and imprecision. Uncertainty, Fuzzyness
and Knowledge–Based Systems (to appear).

Fensen, D., Angele, J. and Landes, D. (1991). Karl: A knowledge adquisition
and representation language. In Proceedings of the 11th Conference on Expert
Systems and their Applications (Avignon), pages 513–525.

Forgy, C. (1981). OPS5 user manual. Technical Report CMU–CS–81–135, Com-
puter Science Department, Carnegie Melon University.

REFERENCES 215

Foulloy, L. (1993). Qualitative control and fuzzy control: Towards a writing
methodology. AICOM, 6(3/4).

Fox, J. (1989). Knowledge Engeneering, chapter Symbolic Decision Procedures
for Knowledge Based Systems. McGraw Hill.

Gallagher, J. (1986). Transforming logic programming by specialising inter-
preters. In Proceedings ECAI’86, pages 109–122.

Giunchiglia, E., Traverso, P. and Giunchiglia, F. (1993). Formal Specification of
Complex Reasoning Systems, chapter Multi–Context Systems as a Specification
Framework for Complex Reasoning Systems. Ellis Horwood.

Godo, L., López de Mántaras, R., Sierra, C. and Verdaguer, A. (1988). Managing
linguistically expressed uncertainty in milord application to medical diagnosis.
AI Communication, 1(1):14–31.

Godo, L., López de Mántaras, R., Sierra, C. and Verdaguer, A. (1989). Milord:
The architecture and management of linguistically expressed uncertainty. Inter-
national Journal of Intelligent Systems, 4:471–501.

Godo, L. and Meseguer, P. (1991). A constraint–based approach to generate
finite truth–values algebras. Technical Report 91/9, IIIa–CEAB.

Goguen, J. A. (1986). Reusing and interconnecting software components. IEEE
Computer, February:16–28.

Gréboval, C. and Kassel, G. (1992). Modelling at the knowledge level: The
shell AIDE. In Proceedings of the 12th International Conference on Artificial
Intelligence, Expert Systems and Natural Language, Avignon, France.

Hàjek, P., Havrànek, T. and Jirousek, R. (1992). Processing Uncertain Infor-
mation in Expert Systems. CRC Press.

Harper, R., McQueen, D. and Milner, R. (1986). Standard ML. Technical Report
ECS–LCFS–86–2, Edinburgh University.

Harper, R., Sannella, D. and Tarlecki, A. (1989). Structure and representation
in LCF. In Proceedings of 4th IEEE Symp. on Logic of Computer Science.

Jonckers, V., Geldof, S. and De Vroede, K. (1992). The COMMET methodology
and workbench in practice. Technical Report 92–8, Vrije Universiteit Brussel.
Laboratory for Artificial Intelligence.

Kleene, S. (1952). Introduction to Metamathematics. Van Nostrand.

Komorowski, H. J. (1981). A specification of an abstract Prolog machine and its
application to partial evaluation. PhD thesis, Linkoping University.

Komorowski, H. J. (1990). Towards a programming methodology founded on
partial deduction. In Proceedings ECAI’90, pages 404–409.

216 REFERENCES

Kuipers, B., Moskowitz, A. and Kassirer, J. (1988). Critical decisions under
uncertainty: Representation and structure. Cognitive Science, 12:177–210.

Langevelde, I. v., Philipsen, A. and Treur, J. (1993). Formal Specification of
Complex Reasoning Systems, chapter A Compositional Architecture for Simple
Design Formally Specified in DESIRE. Ellis Horwood.

Lloyd, J. W. and Shepherson, J. C. (1991). Partial evaluation in logic program-
ming. The Journal of Logic Programming, 11(3/4):217–242.

López de Mántaras, R. (1990). Approximate Reasoning Models. Ellis Horwood
Series in Artificial Intelligence.

López, B. (1993). Aprenentatge i generació de plans per a Sistemes Experts.
PhD thesis, Universitat Politècnica de Catalunya, Barcelona.

Meseguer, P. (1992). Validation of Multi–Level Rule–Based Expert Systems. PhD
thesis, Universitat Politècnica de Catalunya, Barcelona.

Miller, D. A. (1986). A theory of modules for logic programming. In AAVV:
Proceedings of 1986 IEEE Sympos. on Logic Programming.

Nilsson, N. J. (1986). Probabilistic logic. Artificial Intelligence Journal, 28:71–
88.

O’Keefe, R. (1985). Towards an algebra for constructing logic programs. In
AAVV: Proceedings of 1985 IEEE Sympos. on Logic Programming, pages 152–
160.

Pearl, J. (1986). A constrain–propagation approach to probabilistic reasoning.
In Kanal, N. L. and Lemmer, J. F., editors, Uncertainty in Artificial Intelligence,
pages 357–369. North Holland.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

Pearl, J. (1990). Reasoning under uncertainty. Annual Review in Computer
Science, 4:37–42.

Plaza, E. and López de Mántaras, R. (1989). Model–based knowledge acquisition
for heuristic classification systems. SIGART Newsletter, 108:98–105.

Puyol, J. (1989a). Hacia un modelo de computación concurrente para sistemas
expertos. In Proceedings III Reunión Técnica de la Asociación Española para la
Inteligéncia Artificial, pages 23–31.

Puyol, J. (1989b). Parallel programming in expert systems. In Proceedings Third
World Conference on Mathematics at the Service of Man.

Puyol, J. (1990). ADES: un entorn per a sistemes experts distribüıts. Master’s
thesis, Universitat Autònoma de Barcelona.

REFERENCES 217

Puyol, J., Sierra, C. and Agust́ı, J. (1991). Partial evaluation in MILORD II: A
language for knowledge engineering. In Proceedings Europ–IA’91, pages 193–207.

Puyol, J. (1992a). An inference engine based on specialisation with uncertainty.
In Proceedings IPMU’92, pages 725–728.

Puyol, J., Godo, L. and Sierra, C. (1992b). A specialisation calculus to improve
expert system communication. In Proceedings ECAI’92, pages 144–148.

Puyol, J., Godo, L. and Sierra, C. (1992c). A specialisation calculus to improve
expert system communication (long paper). Technical Report 92/8, IIIA–CSIC.

Sakama, C. and Itoh, H. (1986). Partial evaluation of queries in deductive
databases. Technical Report TR–302, ICOT.

Sannella, D. and Wallen, L. A. (1987). A calculus for the construction of mod-
ular prolog programs. In AAVV: Proceedings of 1987 IEEE Sympos. on Logic
Programming, pages 368–378.

Shafer, G. (1976). A mathematical theory of the evidence. Princeton University
Press.

Shortliffe, E. H. and Buchanan, B. G. (1975). A model of inexact reasoning in
medecine. Mathematical Biosciencies, 23:351–379.

Shortliffe, E. H. (1976). Computer Based Medical Consultations: MYCIN. Amer-
ican Elsevier, New York.

Sierra, C. (1989). MILORD: Arquitectura multi–nivell per a sistemes experts en
classificació. PhD thesis, Universitat Politècnica de Catalunya, Barcelona.

Sierra, C. and Agust́ı, J. (1991). Colapses: Towards a methodology and a lan-
guage for knowledge engineering. In Proceedings AVIGNON’91, pages 407–423.

Steele, G. (1984). Common Lisp: The Language. Digital Press.

Steels, L. (1990). Components of expertise. AI Magazine, 11.

Sticklen, J., Smith, J. W., Chandrasekaran, B. and Josephson, J. R. (1987). Mod-
ularity of domain knowledge. International Journal of Expert Systems, 1(1):1–15.

Takeuchi, A. and Furukawa, K. (1986). Partial evaluation of prolog programs
and its application to meta programming. In Information Processing 86.

Treur, J. and Wetter, T., editors (1993). Formal Specification of Complex Rea-
soning Systems. Ellis Horwood.

Trillas, E. and Valverde, L. (1987). On inference in fuzzy logic. In Second IFSA
Congress. Tokyo, pages 294–297.

Turner, R. (1984). Logics for Artificial Intelligence. Ellis Horwood Series in
Artificial Intelligence.

218 REFERENCES

Valverde, L. and Trillas, E. (1985). On modus ponens in fuzzy logic. In Pro-
ceedings 15th ISMVL. Kignston (Ontario), pages 294–301.

van Harmelen, F. and Balder, J. (1992). (ML)2: A formal language for KADS
models of expertise. Knowledge Acquisition, 4(1).

van Harmelen, F., López de Mántaras, R. and Malec, J. (1993). Formal Specifi-
cation of Complex Reasoning Systems, chapter Comparing Formal Specification
Languages for Complex Reasoning Systems, pages 257–282. Ellis Horwood.

Vasey, P. (1986). Qualified answers and their application to transformation. In
Goos, G. and Hartmanis, J., editors, Third International Conference in Logic
Programming, LNCS 225, pages 425–432. Springer–Verlag.

Veld, L., Jonker, W. and Spee, J. (1993). Formal Specification of Complex Rea-
soning Systems, chapter Specifications of Complex Reasoning Tasks in KBSSF .
Ellis Horwood.

Venken, R. (1984). A prolog meta–interpreter for partial evaluation and its
application to source transformation and query–optimisation. In Proceedings
ECAI’84, pages 91–100.

Verdaguer, A. (1989). Pneumon–IA: Desenvolupament i validació d’un sis-
tema expert d’ajuda al diagnòstic mèdic. PhD thesis, Universitat Autònoma
de Barcelona.

Vicar-Whelan, P. J. M. (1976). Fuzzy sets for man–machine interaction. Inter-
national Journal of Man–Machine Studies, 84:687–697.

Vila, L. (1993a). Constraints on distances between temporal distances. Report
de Recerca forthcoming, IIIA.

Vila, L. (1993b). Instants, periods and the divided instant problem. In proc. of
QUARDET’93. IMACS.

Vila, L. (1993c). A theory of time based on instants and periods. Report de
Recerca forthcoming, IIIA. Submitted to 1rst Intl. Conf. on Temporal Logic.

Vila, L. (1993d). Time ontology and temporal occurrence predicates. In TAR-
RAT’93. IIIA.

Vila, L. (1995). On Temporal Representation and Reasoning in Knowledge–Based
Systems. PhD thesis, Universitat Politècnica de Catalunya, Barcelona.

Wielinga, B. J., Schreiber, A. T. and Breuker, J. A. (1992). Kads: A modelling
approach to knowledge engineering (special issue). Knowledge Acquisition, 4(1).

Wolstenholme, D. (1987). Saying i don’t know and conditional answers. In
Moralle, D., editor, Research and Development in Expert Systems IV, pages
115–125. Cambridge University Press.

REFERENCES 219

Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8:338–353.

Zadeh, L. A. (1975). Fuzzy logic and approximate reasoning. Synthese, 30:407–
428.

220 REFERENCES

Index

Ens–AI, 136
Milord, 3
Spong–IA, 136
Terap–IA, 128, 177

Algebra of truth–values, 47

Completeness, 87, 171
Contraction, 32, 40

Deductive Control, 124
Deductive Knowledge, 94
Deductive Process, 74
Dynamic Modules, 43

Eager, 119, 125
Evaluation Strategy, 117
Expansion, 32, 40

Fact Declarations, 95
Fact Types, 96
Fuzzy Control Example, 139, 195
Fuzzy Sets, 57, 98

Generic Modules, 19, 28

Hierarchy of modules, 24

Imprecision, 45, 53
Inference Engine, 88
Information Hiding, 37
Inherit Declaration, 41
Inheritance, 36
Interfaces, 22
Intervals of Truth–values, 54

Lazy, 117, 125
Local Logic Declaration, 65

Local Logics, 60

Metarules, 124
Modules, 18, 25

Open Declaration, 41

Propagation Rules Example, 146, 204

Refinement, 32, 34
Reflection, 119
Reification, 119
Reified, 125
Rule Declarations, 100

Search Process, 73
Search Strategy, 117
Semantics of Specialization, 82
Sharing Declaration, 43
Soundness, 87, 171
Specialization, 9, 76, 90
Specialization Calculus, 81
Structural Control, 124
Subsumption, 109
Syntax of Milord II, 161
Syntax of Specialization, 81

Threshold, 116

Uncertainty, 45, 51
Unnecessary Rules, 115

Validation, 79

221

