

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ

EN INTEL·LIGÈNCIA ARTIFICIAL

Number 21

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

Monografies de l’Institut d’Investigació en

Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Systems
Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification Model

Based on Inclusions
Num. 3 Ll. Vila, On Temporal Representation and Reasoning in Knowledge–

Based Systems
Num. 4 M. Domingo, An Expert System Architecture for Identification in

Biology
Num. 5 E. Armengol, A Framework for Integrating Learning and Problem

Solving
Num. 6 J. Ll. Arcos, The Noos Representation Language
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Con-

straint Satisfaction
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket Metaphor
Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional Logics
Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special Re-

lations
Num. 11 M. López-Sánchez, Approaches to Map Generation by means of Col-

laborative Autonomous Robots
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents
Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-mediated

Electronic Institutions
Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Imprecise

Constants: Possibilistic Semantics and Automated Deduction
Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision The-

ory - A Possibilistic Approach
Num. 17 A. Valls, ClusDM: A multiple criteria decision method for hetero-

geneous data sets
Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation in

Robotics
Num. 19 M. Esteva, Electronic Institutions: from specification to develop-

ment
Num. 20 J. Sabater, Trust and Reputation for Agent Societies
Num. 21 J. Cerquides, Improved Algorithms for Learning Bayesian Network

Classifiers
Num. 22 M. Villaret, On Some Variants of Second-Order Unification
Num. 23 M. Gómez, Open, Reusable and Configurable Multi-Agent Systems:

A Knowledge Modelling Approach
Num. 24 S. Ramchurn, Multi-Agent Negotiation Using Trust and Persuasion

Improved Algorithms for Learning

Bayesian Network Classifiers

Jesús Cerquides

Foreword by Ramon López de Mántaras

2005 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Ramon López de Mántaras
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Jesús Cerquides
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

c© 2005 by Jesús Cerquides
NIPO: 653-05-060-4
ISBN: 84-00-08317-2
Dip. Legal: B-36527-2005

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Contents

Foreword xiii

Acknowledgements xv

Abstract xvii

1 Introduction 1
1.1 Objective . 2
1.2 Roadmap and contributions . 2
1.3 Rationale for the contributions 4

1.3.1 Characteristics of a classifier 4
1.3.2 Why do we need new classifiers? 6

2 Bayesian foundations of the learning process 9
2.1 Probability theory as extended logic 10

2.1.1 The basic desiderata . 10
2.1.2 Justifying the desiderata 10

2.2 The quantitative rules . 12
2.2.1 The product rule . 12
2.2.2 The sum rule . 13

2.3 Prior probabilities . 15
2.3.1 The principle of indifference 15
2.3.2 The entropy principle . 16
2.3.3 Other methods . 16

2.4 Summary . 17

3 Bayesian network classifiers 19
3.1 The problem of classification . 20
3.2 Bayesian networks for classification 20

3.2.1 Dirichlet distributions . 21
3.3 Naive Bayes . 22
3.4 Learning with trees . 23

3.4.1 Learning maximum likelihood TAN 23
3.5 Bayesian model averaging for classification 24

v

3.6 Summary . 25

4 A parallelizable distance-based discretization method 27
4.1 Introduction . 28
4.2 Discretization methods classification 28
4.3 Some discretization methods . 29

4.3.1 Equal size . 29
4.3.2 Equal frequency . 29
4.3.3 ChiMerge . 29
4.3.4 Entropy . 30
4.3.5 D-2 . 32
4.3.6 Other discretization methods 33

4.4 Distance-Based discretization method 33
4.4.1 Cutpoint selection criterion 34
4.4.2 The stopping criterion . 35
4.4.3 Computational complexity 36
4.4.4 Parallelization of the method 36

4.5 Empirical comparison . 38
4.5.1 Comparison design . 38
4.5.2 Comparison results . 38

4.6 Summary . 40

5 The Qualitative Bayesian Classifier 41
5.1 Introduction . 42
5.2 Introduction to Qualitative Probabilistic Networks 43

5.2.1 Wellman approach . 43
5.2.2 Neufeld approach . 44

5.3 Influences and synergies revisited 44
5.4 The Qualitative Bayesian Classifier 45
5.5 Empirical comparison . 48

5.5.1 Result analysis and justification 49
5.6 Examples of explanations and characterizations 49

5.6.1 Qualitative influences for characterization 49
5.6.2 Explanation with qualitative influences and synergies . . 51
5.6.3 Comparison with c4.5rules results 51

5.7 Summary . 52

6 The Indifferent Bayesian Classifier 55
6.1 The naive Bayes model . 56

6.1.1 The naive Bayes model as a Bayesian network 56
6.1.2 The naive Bayes model as a Markov network 56
6.1.3 Naive Bayes parameters 57

6.2 Naive distributions . 60
6.2.1 Calculating probabilities with naive distributions 60
6.2.2 Learning with naive distributions 61

6.3 The Indifferent Naive Bayes Classifier 61

vi

6.4 Experimental results . 63
6.4.1 Dataset description . 63
6.4.2 Interpretation of the results 65

6.5 Summary . 71

7 Empirical Local Bayesian model averaging of TAN classifiers 73
7.1 Local Bayesian model averaging for TAN induction 74

7.1.1 Local Bayesian model averaging 75
7.1.2 Empirical local Bayesian model averaging of TAN models 76
7.1.3 Computational complexity 78

7.2 Experimental results . 80
7.2.1 Adjusting the algorithm to run 80
7.2.2 Experimental setting . 80
7.2.3 Interpretation of the results 80

7.3 Summary . 85
7.3.1 Further research . 86

8 Tractable Bayesian Model Averaging of Tree Augmented Naive
Bayes Classifiers 87
8.1 Decomposable distributions over tree belief networks 88

8.1.1 Definition . 88
8.1.2 Meila and Jaakkola results and corrections to their results 90

8.2 Development of the Averaged Tree Augmented Naive Bayes . . . 92
8.2.1 Decomposable distributions over TANs 92
8.2.2 Calculating probabilities under decomposable distribu-

tions over TANs . 95
8.2.3 Learning under decomposable distributions over TANs . . 95
8.2.4 Putting it all Together . 96

8.3 Approximating tbmatan . 96
8.3.1 tbmatan computational complexity 96
8.3.2 Computational problems 97
8.3.3 A solution to tbmatan computational problems 97

8.4 Empirical Results . 99
8.4.1 Interpretation of the Results 99

8.5 Conclusions and Future Work . 110
8.5.1 Future work . 110

9 Maximum a Posteriori Tree Augmented Naive Bayes Classifiers111
9.1 Maximum a Posteriori results for decomposable distributions over

trees . 112
9.1.1 Calculating the most probable tree under a decomposable

distribution over trees . 112
9.1.2 Calculating the MAP tree given a prior decomposable dis-

tribution over trees . 112
9.1.3 Calculating the k MAP trees and their relative weights

given a prior decomposable distribution over trees 114

vii

9.2 maptan and maptan+bma classifiers 115
9.2.1 Maximum a Posteriori results for decomposable distribu-

tions over TANs . 115
9.2.2 Constructing the maptan and maptan+bma classifiers . 115

9.3 Empirical results . 119
9.3.1 Interpretation of the results 120

9.4 Conclusions and future work . 132
9.4.1 Future work . 133

10 Conclusions 135
10.1 Main contributions and its relevance 135

10.1.1 A parallelizable discretization method 135
10.1.2 Qualitative influences and synergies 136
10.1.3 First Order Qualitative Bayesian Classifier 136
10.1.4 Second Order Qualitative Bayesian Classifier 136
10.1.5 Naive distributions . 136
10.1.6 The indifferent naive Bayes classifier 136
10.1.7 Empirical local Bayesian model averaging of TAN 137
10.1.8 Decomposable distributions over TAN models 137
10.1.9 Tractable Bayesian model averaging of TAN 137
10.1.10Maximum a posteriori TAN classifier 137
10.1.11Maximum a posteriori local Bayesian model averaging of

TAN . 138
10.2 Publication list . 138
10.3 Where to go from here? . 139

A Mathematical developments for the Indifferent Bayesian Clas-
sifier 141
A.1 Preliminaries . 141

A.1.1 A multiple variable constrained integral 141
A.1.2 A bit of notation . 142

A.2 Calculating probabilities with naive distributions 142
A.3 Learning with naive distributions 144

A.3.1 Computing the normalization constant 145
A.3.2 Computing the posterior distribution 145

B Mathematical developments for the Tractable Bayesian Model
Averaging of Tree Augmented Naive Bayes Classifiers 147
B.1 Preliminaries . 147

B.1.1 The matrix tree theorem 147
B.1.2 The matrix tree theorem for decomposable distributions . 148
B.1.3 A useful result about Dirichlet distributions 148

B.2 Detailed development for decomposable distributions over trees
results . 149
B.2.1 Calculating probabilities under decomposable distribu-

tions over trees . 149

viii

B.2.2 Learning under decomposable distributions over trees . . 152
B.3 Detailed development for decomposable distributions over TANs

results . 155
B.3.1 Calculating probabilities under decomposable distribu-

tions over TANs . 155
B.3.2 Learning under decomposable distributions over TANs . . 158

ix

List of Figures

1.1 Thesis roadmap . 3
1.2 Three axis in which a classifier can be placed 5

3.1 Notation for learning with trees 22

5.1 Influence discretization scale . 45
5.2 Iris setosa class . 50
5.3 Iris versicolor class . 50
5.4 Iris Virginica class . 50
5.5 Rules induced by C4.5rules . 52
5.6 Relative positioning of the FOQBC and SOQBC with respect to

naive Bayes . 53

6.1 Representation of the independence assumptions under a naive
Bayes model as a Bayesian network 56

6.2 Alternative representations of the independence assumptions un-
der a naive Bayes model as a Bayesian network 57

6.3 Representation of the independence assumptions under a naive
Bayes model as a the Markov network 57

6.4 Comparison of indifferentnb and mlnb LogScore 69
6.5 Comparison of indifferentnb and bibl LogScore 70
6.6 Relative positioning of the indifferentnb with respect to mlnb

and bibl . 72

7.1 Comparison of stan+bma and stan error rate 83
7.2 Comparison of stan+bma and stan LogScore 84
7.3 Relative positioning of the stan+bma and stan 85

8.1 Transformation of weights for sstbmatan 98
8.2 Comparison of sstbmatan and tbmatan error rate 103
8.3 Comparison of sstbmatan and tbmatanLogScore 104
8.4 Comparison of sstbmatan and stan error rate 105
8.5 Comparison of sstbmatan and stan LogScore 106
8.6 Comparison of sstbmatan and stan+bma error rate 107
8.7 Comparison of sstbmatan and stan+bma LogScore 108

xi

9.1 Comparison of maptan and stan error rate 124
9.2 Comparison of maptan and stan LogScore 125
9.3 Comparison of maptan+bma and maptan error rate 126
9.4 Comparison of maptan+bma and maptan LogScore 127
9.5 Comparison of maptan+bma and stan+bma error rate 128
9.6 Comparison of maptan+bma and stan+bma LogScore 129
9.7 Comparison of sstbmatan and maptan+bma error rate 130
9.8 Comparison of sstbmatan and maptan+bma LogScore 131
9.9 Selecting between sstbmatan, maptan+bma and maptan . . . 133

xii

Foreword

During the last ten years, the field of Machine Learning has made impressive
progress partially due to the adoption of very sophisticated mathematical ma-
chinery, specially from the fields of probability theory and statistics. One of
the best examples of this progress is the subfield of Bayesian network learning.
This monography describes very fine results obtained by Dr. Jesús Cerquides
during several years of research on learning better Bayesian network classifiers.
Among the many contributions contained in this monography, it is worth to
highlight the following: A new classifier, called ”Indifferent Naive Bayes” based
on Bayesian model averaging and the principle of indifference, that improves the
classical Naive Bayes classifier, and a series of three new algorithms for learning
Tree Augmented Naive Bayes (TAN) models. These algorithms extend previous
results by proving that, assuming a prior decomposable distribution over TANs,
one can compute the exact Bayesian model averaging, over TAN structures and
parameters, in polynomial time. It is also proved that the k-maximum a poste-
riori TAN structures can also be computed in polynomial time. These classifiers
provide consistently better accuracies, over Irvine datasets as well as over arti-
ficially generated data, than the TAN-based classifiers previous ly reported in
the literarture. Furthermore, from a practical point of view, these three TAN
classifiers based on decomposable distributions can be seen as alternatives for
different tradeoffs between accuracy and complexity.

Bayesian network learning is a hard area of research that requires mathe-
matical sophistication and advanced programming skills. Dr. Jesús Cerquides,
one of the most brilliant researchers I have ever met, largely fulfils both require-
ments. I have learnt a lot working with him and I have been very lucky having
him as PhD student.

Bellaterra, October 2004

Ramon López de Mántaras
Institut d’Investigació en IntelÂ·ligència Artificial

Consell Superior d’Investigacions Cient́ıfiques

xiii

Acknowledgements

It’s a sign of mediocrity when you demonstrate gratitude with
moderation.

Roberto Benigni

A few days before my defense is a good point in time to take a look back
to the long road that led here and the friends that shared the way. Writing a
doctoral thesis has required a big effort from me, but an even bigger amount of
help from others.

First of all, I would like to thank my advisor, Ramon López de Màntaras. It
was in my fourth year as undergraduate student, when I still did not know him
personally, that I found and read a book authored by him in the faculty library.
I thought it would be amazing to work with somebody like him. I did not know
by that time that only two years later we would be coauthoring our first paper.
He has taught me how to read and write a scientific paper. He has supported
me in many ways and always has been there to listen to this and that new idea.
Most importantly, he has always shown confidence in me and my work.

In 1997, I stayed for a semester at ISI, USC. I am thankful to Yolanda Gil
for her support and kindness, to Gal Kaminka and José Luis Ambite for the
interesting conversations about everything surrounding science and politics. I
am specially in debt with Wei Min Shen, who showed me that simple is good.
Simple questions can be the most relevant. Simple solutions can work better
than complex ones. He pointed me to the work of E.T. Jaynes, and doing so he
shed light in my dark way.

In Ubilab, UBS I learnt a lot about object orientation and programming from
Dirk Riehle and Hans Wegener. Maria Luisa Barja was extremely supportive. I
cannot forget the many coffees we shared complaining about who cares what.

Carlos Domingo introduced me to learning theory and taught me that there
is nothing more practical than a good theory.

This thesis is presented while I am staying at the Department of Matemàtica
Aplicada i Anàlisi in the University of Barcelona. I am thankful to Carles
Simó for allowing me the use of the department computer facilities and not
complaining after I was using about ten times what I said I would use. I am

xv

also thankful to Joaquim Font, Jaume Timoneda and Anna Puig for their help
and encouragement and for listening to me while complaining during the last
months.

I am also grateful to Maite López-Sánchez, Jesús Vega and Juan Antonio
Rodŕıguez-Aguilar for listening and helping all the way through.

I am and will always be in debt with my parents, who taught me how to live
and act, by examples. And with my brother, who taught me about the noble
art of discussion. They have always provided encouragement. They have always
been a lighthouse to turn to when you lose your way.

Finally, all along this time you have been with me, Elena, thanks for
standing there through the good times and the bad. Thanks for bringing me up
so many times. And thanks for accepting sharing our room with a computer
running learning algorithms all night long while we were in Switzerland.

A bit of this thesis comes from each one of you, feel free to choose what.

THANKS.

xvi

Abstract

This thesis applies objective Bayesian probability theory techniques to improve
Bayesian network classifiers. The main contributions are:

• A parallelizable distance based discretization method that allows to extend
discrete classifiers to non-discrete domains.

• The concepts of qualitative influences and synergies, which allow to im-
prove understandability of Bayesian network classifiers.

• The first order and second order qualitative Bayesian classifiers, which
are classifiers based on qualitative influences and synergies, with easily
understandable results and with a reasonable accuracy.

• indifferentnb, an improved version of the naive Bayes classifier based on
the naive Bayes model, naive distributions, Bayesian model averaging and
the principle of indifference that improves the quality of the probabilities
of the maximum likelihood naive Bayes classifier.

• stan+bma, a classification algorithm based on applying empirical local
Bayesian model averaging to the stan (softened TAN) classifier and which
improves its accuracy.

• tbmatan, a classification algorithm based on the computability of the
averaging of TAN models under decomposable distributions over TANs
and the principle of indifference that improves stan accuracy.

• sstbmatan, an efficient approximation to tbmatan which provides also
improved accuracy.

• maptan, a classification algorihtm that computes the maximum a poste-
riori TAN model and improves stan accuracy.

• maptan+bma, a classification algorithm that computes the k maximum a
posteriori TAN models and their relative weights efficiently and improves
stan accuracy and stan+bma accuracy and learning time.

These results show that the joint application of Bayesian model averaging and
a careful selection of the prior probability distribution over the set of models,
following objective Bayesian techniques whenever it is possible, can provide sig-
nificant improvements to classification algorithms.

xvii

Chapter 1

Introduction

In every phenomenon the beginning remains always the most no-
table moment.

Thomas Carlyle

In colloquial terms, learning to classify consists in analyzing a set of objects
with different characteristics and of different classes and after that being able
to assign a possibly unseen object to one of the classes. The field of Machine
Learning has been interested in designing automatic classification algorithms
since its inception. The areas of application of such algorithms are immense,
ranging from historic Artificial Intelligence (AI in the following) objectives such
as “begin able to adapt the behaviour of machines by telling them what is good
and what is bad” to far more recent and business oriented objectives such as
“targeting direct marketing campaigns”.

Probability theory has always been perceived as a relevant discipline to help
in the quest of solving the classification problem and for AI in general. Fur-
thermore, the development in the late eighties and early nineties in the field
of Bayesian networks, together with an increased interest from the community,
have further increased this belief. In this thesis we show several ways in which
the application of probability theory can improve Bayesian network classifiers.

We start this chapter by introducing the objectives of the thesis in section
1.1. After that, we provide a roadmap for the reader in section 1.2 pointing out
the key contributions of the thesis. Finally, in section 1.3 we outline a rationale
for the contributions.

1

2 Chapter 1. Introduction

1.1 Objective

This thesis focuses in improving a family of classification algorithms known as
Bayesian network classifiers. The objective of the thesis is improving Bayesian
network classifiers by means of the application of objective Bayesian probability
theory techniques.

1.2 Roadmap and contributions

In this section we provide an overview of the structure of the thesis which is
depicted in Figure 1.1. In that figure, chapters with original contributions are
dark gray coloured while introductory and review chapters appear coloured light
gray.

The thesis starts with this introductory chapter, where the reader can find
the objectives, structure and a rationale for the contributions.

Chapter 2 presents a short introduction to the foundations of probability
theory summarizing the results in the first two chapters of “Probability The-
ory: The logic of science” by E.T. Jaynes. The reason for including this short
summary is twofold: on one hand it will help a reader without knowledge about
Bayesian statistics understand the philosophy behind the thesis, on the other
hand, it gives a deserved visibility to these results. Also in chapter 2 the princi-
ple of indifference is introduced. The principle will be used in the contributions
of chapters 6 and 8.

In order to ease understanding of the contributions of the thesis, chapter 3
contains an introduction to the problem of classification, a short state of the art
of Bayesian network classifiers and a presentation of Bayesian model averaging
as a probability technique that is useful for the design of classifiers. The notation
and terminology to be used in the thesis are fixed in this chapter. Also in this
chapter, the two main classification algorithms that have been improved are
introduced: Naive Bayes and Tree Augmented Naive Bayes (TAN).

Discretization techniques help broaden the application of classifiers that can-
not deal easily with numerical attributes. In chapter 4 we present a discretization
method that can be implemented in parallel providing for a fast and effective
method for the discretization of numerical attributes and prove its performance
against state of the art discretization methods. The work has been presented at
the Third International Conference on Knowledge Discovery and Data Mining.

Chapters 5 and 6 will present two different ways of improving the Naive Bayes
classifier. In chapter 5 a variation of the naive Bayes classifier is introduced which
is easier to interpret while keeping a reasonable accuracy. This work has been
presented at the 2nd European Symposium on Principles of Data Mining and
Knowledge Discovery. In chapter 6 Bayesian model averaging and the principle
of indifference are applied in order to construct a more accurate Naive Bayes
classifier. This work has been presented at The 16th International FLAIRS
Conference.

Chapters 7, 8 and 9 show different ways in which Bayesian techniques can

1.2. Roadmap and contributions 3

1. Introduction

2. Foundations

4. Discretization

3. Bayesian
classifiers

5. Qualitative 6. Indifferent

7. sTAN+BMA

8. TBMATAN,
SSTBMATAN

10. Conclusions

9. MAPTAN,
MAPTAN+BMA

Figure 1.1: Thesis roadmap

4 Chapter 1. Introduction

improve Tree Augmented Naive Bayes. Chapter 7 shows a hands-on approach
to the calculation of the model averaging of TAN by the use of empirical local
Bayesian model averaging that results in a classifier (stan+bma) that improves
both the classification accuracy and the approximation of the class probabilities
of the state of the art TAN classifier (Friedman et al., 1997): stan. This work
has been presented at the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Chapter 8 presents the most significant
result in this thesis, showing that under some conditions, the averaging of models
for Tree Augmented Naive Bayes results in an integral that can be calculated in
closed form. To do this we introduce decomposable distributions over TANs and
show that the expression resulting from the Bayesian model averaging of TAN
models can be integrated into closed form if we assume the prior probability dis-
tribution to be a decomposable distribution. This result allows the construction
of a classifier (tbmatan) that is most of the cases more accurate than stan and
approximates better the class probabilities. tbmatan learning time can be very
long for large datasets due to computational problems. To fix this problem we
introduce an approximation to tbmatan (sstbmatan) which is more efficient.
sstbmatan has a shorter learning time a longer classification time than stan.
sstbmatan is most of the cases more accurate than tbmatan and approximates
better the class probabilities. This work has been presented at the Twentieth
International Conference on Machine Learning. Finally, in chapter 9, we show
that it is possible to calculate efficiently both the TAN model with maximum a
posteriori probability, and the set of k TAN models with maximum a posteriori
probability and their relative probability weights. We show that these results
allow the construction of two classifiers (maptan and maptan+bma) which
outperform stan and stan+bma respectively in error rate and quality of the
predicted probabilities. Furthermore, maptan+bma learning time complexity
is lower than stan+bma. In the three chapters, experimental results are given
that allow the reader to evaluate the improvements.

1.3 Rationale for the contributions

In this section we propose a simplified comparison of classifiers from the per-
spective of a user and motivate the contributions of this thesis in this simplified
framework. The purpose of the section is easing understanding of what the thesis
proposes, why we think it can be useful and what have been the main characteris-
tics we have taken into consideration while trying to improve Bayesian classifiers.
The reader should not take this framework as a proposal for future use but as a
simple tool for understanding what has been done.

1.3.1 Characteristics of a classifier

Classifiers can be compared by different characteristics. In order to ease the
understanding of the contributions of the thesis from the point of view of a user
of machine learning or data mining algorithms, at the end of some chapters the

1.3. Rationale for the contributions 5

Accuracy

Complexity

Interpretability

Figure 1.2: Three axis in which a classifier can be placed

different classifiers introduced are plot in a three dimensional space where the
three axis are determined by accuracy, interpretability and time complexity (see
Figure 1.2). Evidently, these are not the only characteristics we could define,
but in our opinion these are the most significant when evaluating a classifier.
For a more extended list of classifier characteristics from the perspective of a
user, the reader can refer to section 10.7 of (Hastie et al., 2001).

Accuracy can be defined as how well a classifier performs the task that is its
main objective, that is, classifying. There are different measures of classification
accuracy. The error rate computes the percentage of instances that are misclassi-
fied. Some more sophisticated measures do also take into account the probability
that the classifier has assigned to the class. This way, those measures punish
much more misclassifications where the probability of the class was very high
than those were the classifier itself knew that it was confused and assigned a not
so high probability to the most probable class. In the last few years, the evalu-
ation of accuracy of classifiers based on the Receiver Operating Characteristics
is gaining momentum (Provost et al., 1998; Fawcett, 2003). Independently of
how it is measured, increasing classification accuracy is, obviously, an objective
when proposing new classifiers.

Interpretability stands for how easily humans can understand the decisions
taken by a classifier. Many times, machine learning algorithms, and also clas-
sifiers, are used as supporting devices for a human being who is in charge of
taking a decision in a concrete situation. In these cases, being able to interpret,
understand and explain to interested third parties the rationale behind the de-
cision will influence heavily whether we can use a classifier or not. Increasing
the interpretability of classifiers is hence another objective when proposing new
classifiers.

Time complexity is the amount of time needed for a classifier to perform its
task. Given a dataset, classifiers usually split their work in two steps, a learning
step where the dataset is processed and the information from the dataset sum-
marized in some way, and a classification step where new unclassified instances
are observed and the classifier guesses the class in which they should be classi-

6 Chapter 1. Introduction

fied. This split generates two different complexity measures for a classifier. We
will call learning time complexity the time spent on the first task, and classifica-
tion time complexity the time spent to classify a new instance once the learning
step is over. Decreasing both learning time complexity and classification time
complexity is yet another objective when proposing new classifiers.

1.3.2 Why do we need new classifiers?

If we accept the simplified view proposed by this three axis, when proposing a
new classifier we can be in one of two cases. In the first case, we can move in
a positive direction in one or more of the axis while keeping the others fixed.
This is the case, for example, when the accuracy of a classifier is increased
without modifying its interpretability or time complexity, which is the case for
the improvement of Naive Bayes presented provided by indifferentnb (see
chapter 6) as well as for the improvement for stan provided by maptan (see
chapter 9). This kind of “moves” are clear improvements of previous results and
are usually expected to substitute the previous version of the classifier. In the
second case, we can move in a positive direction in some axis while losing in
some other. This is the case, for example, when we create a classifier with a
better accuracy but at the cost of increasing the time complexity and decreasing
the interpretability, as is the case for the improvements for stan suggested in
chapters 7 and 8. This is also the case when we create a classifier with increased
interpretability but higher time complexity, as is the case for the improvement
presented for Naive Bayes in chapter 5. This kind of moves provide an increase
in the “palette” of tools for the classification user. In the face of a new problem,
the user can evaluate which are the constraints in that concrete case for accuracy,
interpretability and complexity and choose the classifier best suited for the task.
For example, imagine that our task is to create a system to be used for disease
self-treatment and that the system has to suggest the user the correct treatment
for his disease. Assuming the user is not knowledgeable in the area, he will have
to rely on the system decision without trying to interpret the decision, because
he should be knowledgeable in medicine to do that. He will not be willing to
wait for days to get an answer, but he can wait for one or two hours. Accuracy
is probably the most important characteristic for a classifier for this task. If we
slightly change the task and assume that the classifier will be used by a doctor in
his office, this heavily increases the interpretability and time complexity needs
(he will definitely not be willing to make the patient wait for the computer to
answer back) and lowers the accuracy needs, because probably the doctor will
use the system as a double check for his own decisions and in case of disagreeing
he will be able to explore the patient more carefully and generate the adequate
treatment.

Due to the increasing computational power, that allows higher complexity
calculations, increasing accuracy is specially significant. That is why we consider
specially valuable the results in chapter 8, which provide, to the best of our
knowledge, the most accurate classifier with a learning time complexity linear
on the number of observations of the dataset.

1.3. Rationale for the contributions 7

We understand that the new classifiers proposed in this thesis provide rea-
sonable trade-offs and cover areas of the described three dimensional space that
where uncovered before. Hence we think that they deserve to be selected by any
user for some domains and that they could end up being a valuable tool in an
users “palette”.

Chapter 2

Bayesian foundations of the

learning process

. . . instead of asking, “How can we build a mathematical model of
human common sense?” let us ask, “How could we build a machine
which would carry out useful plausible reasoning, following clearly
defined principles expressing an idealized common sense?”

E.T. Jaynes

Since Laplace wrote his famous sentence “Probability theory is nothing but
common sense reduced to calculation” there has been a part of the research
community that has regarded probability theory as an extension of logic. This
chapter explains the main results of the work of E.T. Jaynes, R.T. Cox and
others in trying to see probability theory in this role. Including them here we
try to honour and foster these ideas, while providing a theoretical foundation
for some of the developments in the thesis.

9

10 Chapter 2. Bayesian foundations of the learning process

2.1 Probability theory as extended logic

Considering probability theory as extended logic means accepting that “there is
only a single set of rules for doing plausible reasoning which is consistent and in
qualitative correspondence with common sense” (Jaynes, 1988).

Nowadays, almost everybody accepts Aristotelian logic as “the” deductive
logic. It has been with us for more than two thousand years and stands at
the basis of all sciences. Will there ever be such agreement in the inductive
logic arena? Jaynes’ answer is that there will be, and that probability theory as
presented in the following will be finally be accepted as “the” inductive logic.

In the following we will review how probability theory can be derived just by
setting logical goals. Prior to this we introduce some notation and vocabulary.
In the following, degree of plausibility means degree of belief, how much do we
trust or belief in something. Let A, B, C represent propositions. A|B represents
the conditional plausibility that A is true given that B is true.

2.1.1 The basic desiderata

We will set three conditions over our degrees of plausibility.

1. Degrees of plausibility are represented by real numbers.

2. Our reasoning must correspond qualitatively with common sense.

3. Our reasoning should be consistent:

(a) If a conclusion can be reached in more than one way, every possible
way should lead to the same result.

(b) Our reasoning must include deductive logic as a special case. In the
limit where propositions become certain or impossible in any way,
every equation must reduce to a valid example of deductive reasoning.

2.1.2 Justifying the desiderata

Our stated desiderata are intuitively compulsory for any inductive logic worth
its name. We will try to justify it in the following while deepening into the
understanding of how these desiderata translate into mathematical constraints
for our logic. Following the notation in (Keynes, 1921), (Cox, 1961) and (Jaynes,
1996), the symbol

A|B

indicates the conditional plausibility that A is true given that B is true. Paren-
theses carry no semantic and will be used just to clarify the grouping of expres-
sions.

2.1. Probability theory as extended logic 11

Degrees of plausibility are represented by real numbers

Our first condition seems very intuitive. Anyhow, if it looks too restrictive, the
same results can be obtained by replacing it with two more elementary ones:

1. We should have a way of comparing plausibilities such that:

(a) Is transitive. If (A|X) ≥ (B|X) and (B|X) ≥ (C|X)then (A|X) ≥
(C|X).

(b) Is Universal. Given A, B, C then one of the relations (A|C) > (B|C)
, (A|C) = (B|C) , (A|C) < (B|C) must hold.

For a detailed discussion of this equivalence and the reasons for accepting uni-
versal comparability (1b) see Appendix A of (Jaynes, 1996).

Our reasoning must correspond qualitatively with common sense

Our second condition means that our theory must, on a qualitative scale, be
consistent with common sense rules. In order to clarify how this common sense
rules look like, we will present an example. Let A, B, C, D be propositions. If
the plausibility of A is bigger given D than given C, that is

(A|D) > (A|C)

but the plausibility of B given A is the same in both cases

(B|AD) = (B|AC)

then common sense tells us that we cannot have a decrease in the plausibility
that both A and B are true

(AB|D) ≥ (AB|C)

and there should be a decrease in the plausibility that A is false

(A|D) < (A|C)

These qualitative requirements only set the directions in which the plausibilities
should go, not how much. It is also accepted as condition that an infinitesimal
difference between (A|D) and (A|C) will only induce an infinitesimal difference
between (AB|D) and (AB|C) and between (A|D) and (A|C).

Our reasoning should be consistent

Our third condition probably needs less justification than the previous, since
consistence has been a common condition for most logics. As previously ex-
plained, Aristotelian logic is accepted as “the” deductive logic. We want our
logic to be consistent with it. In a setting where Aristotelian logic can be used,
the usage of probability theory as logic should give the same results.

12 Chapter 2. Bayesian foundations of the learning process

2.2 The quantitative rules

We have established the conditions which from our point of view cannot be
waived for an inductive logic. In the following we will see how these conditions
uniquely determine the rules of probability theory.

2.2.1 The product rule

Here we will look for a way of obtaining the plausibility of AB from the plau-
sibility of A and B separately. What we are looking for is a function F such
that

(AB|C) = F [Pl1, P l2] (2.1)

where Pl1 and Pl2 are different possible ways of separately calculating the plau-
sibility of A and B. First of all we will try to identify what are the options for
PlA and PlB. In order to do this we will try all the different alternatives and
discard those that exhibit violations of common sense. We define

u ≡ (AB|C), v ≡ (A|C), w ≡ (B|AC), x ≡ (B|C), y ≡ (A|BC)

And we would like u to be expressed as a function of two or more of v, w, x, y. In
(Tribus, 1969) it is shown that all but two possibilities can exhibit violations of
common sense in some extreme case. Those two are u = F (x, y) and u = F (v, w).
Hence, we can conclude that the two unique ways of decomposing (AB|C) are

(AB|C) = F [(B|C), (A|BC)]
(AB|C) = F [(A|C), (B|AC)]

(2.2)

These two are in fact equivalent but for the naming of the propositions. We can
apply this decomposition to (ABC|D) in two different ways:

(ABC|D) = F [(BC|D), (A|BCD)] = F{F [(C|D), (B|CD)], (A|BCD)} (2.3)

but also

(ABC|D) = F [(C|D), (AB|CD)] = F{(C|D), F [(B|CD), (A|BCD)]} (2.4)

According to desideratum (3a), both ways of reasoning must give the same result.
This means that F must fulfill the functional equation 1:

F [F (x, y), z] = F [x, F (y, z)] (2.5)

1A technical detail needs to be fixed before this sentence is true. It has been reported
by Halpern (Halpern, 1999a; Halpern, 1999b) that there is a finite model not satisfying this
step. The problem in the demonstration has been fixed by Arnborg and Sjödin (Arnborg
and Sjödin, 1999; Arnborg and Sjödin, 2000b; Arnborg and Sjödin, 2000a) by noticing that
we should impose “extensibility” in order for this step to be true for non-dense (for example
finite) models

2.2. The quantitative rules 13

Now we apply the qualitative correspondence with common sense require-
ment explained in the section 2.1.2. This imposes that

F (x, y) must be a continuous monotonic strictly
increasing function of both x and y

(2.6)

In this setting, the general solution to equation 2.5 can be expressed in two
forms:

w[F (x, y)] = w(x)w(y)
F (x, y) = w−1[w(x)w(y)]

(2.7)

where w(x) is an arbitrary function. A long proof of this result can be found in
(Aczel, 1966). A shorter one, assuming F is differentiable can be found in (Cox,
1961; Jaynes, 1996).

Therefore our combination rule has two possible forms:

w(AB|C) = w(A|C)w(B|AC) (2.8)

w(AB|C) = w(B|C)w(A|BC) (2.9)

Due to equation 2.6 w(x) must be a continuous monotonic function. Condi-
tion (3b) places further restrictions on w(x). Assume that A is certain given C.
Then, assuming C is true, the propositions AB and B are the same (one is true
if and only if the other is true). This means that (AB|C) = (B|C). Reasoning
similarly we have that (A|BC) = (A|C). In this case, equation 2.8 reduces to:

w(B|C) = w(A|C)w(B|C) (2.10)

which implies that

Certainty must be represented by w(A|C) = 1 (2.11)

Now assume A is impossible, given C. Then (AB|C) = (A|C) and if B does
not contradict C, then (A|BC) = (A|C). In this case equation 2.8 reduces to:

w(A|C) = w(A|C)w(B|C) (2.12)

that should hold no matter what is the plausibility of B. This means that

Impossibility should be represented either by w(A|C) = 0 or by w(A|C) = +∞
(2.13)

These two possibilities are in fact isomorphic just by using the transformation
w′(x) = 1

w(x) . Therefore we can choose to represent impossibility by 0 as a

convention. What we still do not know is how w(x) varies between 0 and 1.

2.2.2 The sum rule

Here we will look for a way of relating the plausibility of A with the plausibility
of A. Defining u ≡ w(A|B) and v ≡ w(A|B) we are looking for a functional
relation

v = S(u) (2.14)

14 Chapter 2. Bayesian foundations of the learning process

Qualitative correspondence with common sense requires S(u) to be a continuous
monotonic decreasing function in 0 ≤ u ≤ 1, with extreme values S(0) = 1 ,
S(1) = 0. S must also be consistent with

w(AB|C) = w(A|C)w(B|AC) (2.15)

w(AB|C) = w(A|C)w(B |AC) (2.16)

Combining equations 2.14,2.15,2.16 we get

w(AB|C) = w(A|C)S

[
w(AB|C)

w(A|C)

]
(2.17)

and using commutativity with respect to A and B we get

w(A|C)S

[
w(AB|C)

w(A|C)

]
= w(B|C)S

[
w(BA|C)

w(B|C)

]
(2.18)

Particularly, if we take B = AD where D is any new proposition we have

w(AB|C) = w(B|C) = S[w(B|C)] (2.19)

w(BA|C) = w(A|C) = S[w(A|C)] (2.20)

Using, x ≡ w(A|C) and y ≡ w(B|C) equation 2.18 becomes

x S
[

S(y)
x

]
= y S

[
S(x)

y

]
,

0 ≤ S(y) ≤ x
0 ≤ x ≤ 1

(2.21)

The most general function satisfying equation 2.21 with the boundary condition
S(0) = 1 is already available in the literature:

S(x) = (1 − xm)
1
m (2.22)

Once again, as happened with equation 2.7 a long demonstration of this
result can be found in (Aczel, 1966) and a shorter one, assuming S is twice
differentiable, can be found in (Cox, 1961; Jaynes, 1996). It can be shown that
equation 2.22 is the necessary and sufficient condition on S(x) for consistency
in the sense of equation 2.18

Summarizing, what we have found so far is that there should exist a contin-
uous monotone function w(x) fulfilling

w(AB|C) = w(A|C)w(B|AC) = w(B|C)w(A|BC) (2.23)

wm(A|B) + wm(A|B) = 1 (2.24)

But we can rewrite 2.23 as

wm(AB|C) = wm(A|C)wm(B|AC) = wm(B|C)wm(A|BC) (2.25)

then we notice that the value of m is irrelevant. We can always define p(x) =
wm(x) and be sure that

2.3. Prior probabilities 15

For every reasoning process that is consistent and maintains
qualitative correspondence with common sense, there exists a
continuous monotone function p(x) such that:

∀x 0 ≤ p(x) ≤ 1
p(A|B) + p(A|B) = 1

p(AB|C) = p(A|C)p(B|AC) = p(B|C)p(A|BC)
(2.26)

Rules in equation 2.26 offer an infinite number of ways for doing plausible
reasoning, corresponding to every different choice of p(x). In the next section
we will show that under certain conditions, p(x) can be uniquely determined.

2.3 Prior probabilities

The rules appearing in equation 2.26 provide the basis for plausible reasoning.
In order to reason with these rules, we need to have information that allows us
to determine the values of p(x) for a subset of the propositions and then use the
rules to calculate the values of p(x) for the proposition we are interested in. The
problem of determining prior probabilities is key to the theory of probability as
extended logic, as has been noticed in (Jaynes, 1968). A good review of the field
is done in (Kass and Wasserman, 1994). In this section we will shortly review
some of the rules for determining prior distributions.

2.3.1 The principle of indifference

The principle of indifference give us the way of assigning values to probabilities
in the simplest case, when we are given a set of alternatives and have no reason
to prefer anyone of them.

Suppose we have a set of propositions {A1, . . . , An} that are mutually exclu-
sive (not two of them can be simultaneously true) and exhaustive (one of them
must be necessarily true) given B. In this situation, we can deduct from the
rules appearing in 2.26 that

n∑

i=0

p(Ai|B) = 1 (2.27)

But this is still not enough to assign concrete values to the probabilities. Suppose
that information B is indifferent between every two pairs of propositions Ai,Aj ,
that is, whatever it says about Ai, it says the same thing about Aj , and so it
contains nothing that gives any reason to prefer one over the other. Under these
conditions, and using the consistency desideratum we have that

p(Ai|B) = 1
n

1 ≤ i ≤ n (2.28)

as appears in (Jaynes, 1996; Jaynes, 1988). This is the simplest case where we
can get a set of definite numerical values for p(x) that is uniquely determined

16 Chapter 2. Bayesian foundations of the learning process

by the desiderata that appear in section 2.1.1. As a user guide for the principle
of indifference, we will give the conditions under which we can use it:

1. We must be able to analyze the situation into an enumeration of the differ-
ent possibilities which we recognize as mutually exclusive and exhaustive.

2. Having done this, we must then find that the available information gives
us no reason to prefer any possibility to any other.

When these two conditions are met we can use the result in equation 2.28. It
is important to note that condition 2 can be satisfied in two different ways: it
may be the consequence of positive knowledge or the consequence of complete
ignorance. It is often the case that condition 2 is not satisfied. Then we have to
use other ways of determining priors, such as the entropy principle.

2.3.2 The entropy principle

Suppose we have a six faced die for which we have the information that the
average number of spots over a set of trials is 4 instead of 3.5 as is expected
from a fair one. Which are the probabilities of each face? In this case we cannot
apply the principle of indifference and assign an equal probability to each face,
because this will contradict the information we have available, providing an
average of 3.5. The entropy principle is based on the idea that, in cases like this,
we should select the prior distribution that takes into account the information
we have available “and nothing else”.

In order to do this, we have to have a measure of the amount of uncertainty
in a probability distribution. Let A = {A1, . . . , An} be again a exhaustive set of
mutually exclusive propositions given B. It can be shown (Jaynes, 1996), using
a logical way of reasoning similar to the ones in the previous sections, that the
expression

H(A|B) = −
n∑

i=1

p(Ai|B) log(p(Ai|B)) (2.29)

is the only reasonable measure of “amount of uncertainty”. Thus, what the
entropy principle states is that

For given information that places any definite kind of constraint
on the problem, we should select as a priori probability distri-
bution the one which maximizes 2.29 while fulfilling the con-
straints

In practice, this is usually solved by an application of nonlinear programming
methods such as Lagrange multipliers.

2.3.3 Other methods

Both the indifference and the entropy principles are applicable to discrete prob-
ability spaces. In the literature we can find methods for continuous probability

2.4. Summary 17

spaces, but the reasons behind them are from our point of view not so logically
compelling as the ones for the methods previously seen.

Between those methods we would like to highlight priors based on the appli-
cation of group invariance arguments. In this family of priors we need to define
transformations for which we want our results to be invariant. One of the sim-
plest cases, is the estimation of the parameters of a normal distribution N(µ, σ).
If we are estimating a location parameter, we should be invariant to scaling and
translation. This means that, if given the set of observations {x1, . . . , xn} we
estimate µ = µ1 and σ = σ1 then given {Ax1 + B, . . . , Axn + B} we should
estimate µ = µ1 + B and σ = Aσ1. Formalizing this correctly in terms of group
invariance give us that the prior over (µ, σ) should be p(µ, σ) = 1

σ2 . More in-
formation about this family of priors can be found in (Dawid, 1983; Hartigan,
1964; Jaynes, 1968).

Especially significant is also the work of Bernardo in Bayesian reference anal-
ysis. Quoting Bernardo’s (Bernardo and Ramón, 1998):

The declared objective of reference Bayesian analysis is to specify
a prior distribution such that, even for moderate sample sizes, the
information provided by the data should dominate the prior informa-
tion because of the vague nature of the prior knowledge. Reference
analysis uses the concept of statistical information (...) The amount
of information to be expected from an experiment about some quan-
tity of interest naturally depends on the available prior knowledge:
the more prior information available, the less information may be
expected to be learned from the data. An infinitely large experiment
would eventually provide all missing information; thus, it is possible
to obtain a measure of the amount of missing information as a lim-
iting form of a functional of the prior distribution. It is natural to
define vague prior knowledge as that with the largest missing infor-
mation: the reference prior should then be that which maximizes the
missing information.

Bernardo’s technique for determining priors is so general that the principle of
indifference and the entropy principle can be seen as applications of reference
analysis in their concrete cases. A nicely written introduction to the technique
can be found in (Bernardo, 1998).

2.4 Summary

In this chapter we have reviewed the development of the rules of probability
from logical constraints. Afterwards we have reviewed the problem of prior
probabilities and rules for assigning priors in some concrete cases. The main
idea behind this chapter is to explain and support Laplace’s view of probability
theory as the symbolic logic of plausible reasoning. In this sense, for any learning
algorithm, either probability theory should lay at its foundation, or the reasoning
that is performed in it can be inconsistent in some cases. The idea is by no means

18 Chapter 2. Bayesian foundations of the learning process

new and is gaining widespread acceptance in different disciplines, as can be seen
in (Domingos, 1997; Hanson et al., 1991; Hoeting et al., 1998; Jaynes, 1996;
MacKay, 1995; Shen, 1993).

Chapter 3

Bayesian network classifiers

A tree growing out of the ground is as wonderful today as it ever
was. It does not need to adopt new and startling methods.

Robert Henri

Bayesian network classifiers are classification algorithms that assume proba-
bility distributions encoded as Bayesian networks as the probabilistic model for
the dataset that is the learning objective. This chapter first introduces the no-
tation to be used in the thesis, which is an attempt to put together the different
notations used in (Cerquides, 1999a), (Heckerman et al., 1995), (Friedman et al.,
1997) and (Meila and Jaakkola, 2000a) and some conventions in the machine
learning literature. After that it presents the two Bayesian network classifiers
which have attracted most of the attention in the literature: naive Bayes and
Tree Augmented Naive Bayes (TAN from now on). Finally, the chapter intro-
duces Bayesian model averaging, a probabilistic technique that will be applied
in Chapters 6, 7 and 8 to improve both naive Bayes and TAN.

19

20 Chapter 3. Bayesian network classifiers

3.1 The problem of classification

A discrete attribute is a finite set, for example we can define attribute Pressure
as Pressure = {Low, Medium, High}. A discrete domain is a finite set of
discrete attributes. We will note Ω = {X1, . . . , Xm} for a discrete domain, where
X1, . . . , Xm are the attributes in the domain. A classified discrete domain is a
discrete domain where one of the attributes is distinguished as “class”. We will
use ΩC = {A1, . . . , An, C} for a classified discrete domain. In the rest of the
thesis we will refer to an attribute either as Xi (when it is considered part of a
discrete domain), Ai (when it is considered part of a classified discrete domain
and it is not the class) and C (when it is the class of a classified discrete domain).
We will note as V = {A1, . . . , An} the set of attributes in a classified discrete
domain that are not the class.

Given an attribute A, we will note #A as the number of different values of

A. We define #Ω =
m∏

i=1

#Xi and #ΩC = #C
n∏

i=1

#Ai.

An observation x in a classified discrete domain ΩC is an ordered tuple x =
(x1, . . . , xn, xC) ∈ A1 × . . . × An × C. An unclassified observation S in ΩC is
an ordered tuple S = (s1, . . . , sn) ∈ A1 × . . . × An. To be homogeneous we will
abuse this notation a bit noting sC for a possible value of the class for S. A
dataset D in ΩC is a multiset of classified observations in ΩC .

We will note N for the number of observations in the dataset. We will also
note Ni(xi) for the number of observations in D where the value for Ai is xi,
Ni,j(xi, xj) the number of observations in D where the value for Ai is xi and the
value for Aj is xj and similarly for Ni,j,k(xi, xj , xk) and so on. We note similarly
fi(xi), fi,j(xi, xj), . . . the frequencies in D. It is worth noticing that f defines a
probability distribution over A1 × . . . × An × C.

A classifier in a classified discrete domain ΩC is a procedure that given a
dataset D in ΩC and an unclassified observation S in ΩC assigns a class to S.

A model is a mathematical representation of reality that allows us to draw
conclusions (that do not necessarily have to hold back in reality). A probabilistic
model is a mathematical model that uses probability theory and hence allows
us to draw probabilistic conclusions. We will note a model as M . Usually a
model belongs to a family or set of models which we will note M. Our setting
for the learning problem will usually assume the learning algorithm is given
a dataset D which is an independent identically distributed sample from an
unknown probabilistic model M belonging to a known family of models M.
From this information, the learning algorithm should be able to classify unseen
observations generated randomly from the model M .

3.2 Bayesian networks for classification

Bayesian networks are a valuable tool for solving the discrete classification prob-
lem. The approach that can be followed to apply them is to define a random
variable for each attribute in Ω (the class is included but not distinguished at

3.2. Bayesian networks for classification 21

this time). We will note U = {X1, . . . ,Xm} where each Xi is a random variable
over its corresponding attribute Xi. We extend the meaning of this notation to
Ai, C and V . A Bayesian network over U is a pair B = 〈G, Θ〉. The first com-
ponent, G, is a directed acyclic graph whose vertices correspond to the random
variables X1, . . . ,Xm and whose edges represent direct dependencies between the
variables. The graph G encodes independence assumptions: each variable Xi is
independent of its non-descendants given its parents in G. The second compo-
nent of the pair, namely Θ, represents the set of parameters that quantifies the
network. It contains a parameter θi|Πi

(xi, Πxi
) = PB(xi|Πxi

) for each xi ∈ Xi

and Πxi
∈ ΠXi

, where ΠXi
denotes the Cartesian product of every Xj such that

Xj is a parent of Xi in G. Πi is the list of parents of Xi in G. We will note
Πi = U − {Xi} − Πi. A Bayesian network defines a unique joint probability
distribution over U given by

PB(x1, . . . , xm) =

m∏

i=1

PB(xi|Πxi
) =

m∏

i=1

θi|Πi
(xi|Πxi

) (3.1)

The application of Bayesian networks for classification can be very simple. For
example suppose we have an algorithm that given a classified discrete domain ΩC

and a dataset D over ΩC returns a Bayesian network B over U = {A1, . . . ,An, C}
where each Ai (respectively C) is a random variable over Ai (respectively C).
Then if we are given a new unclassified observation S we can easily classify S
into class argmax

sC∈C

(PB(s1, . . . , sn, sC)). This simple mechanism allows us to see

any Bayesian network learning algorithm as a classifier.

3.2.1 Dirichlet distributions

The Dirichlet probability distribution is frequently used in Bayesian networks
because it is closed under multinomial sampling (Heckerman et al., 1995). In
this thesis we will use the Dirichlet distribution as the basis for decomposable
distributions over TANs, to be presented in chapter 8. It is defined over the
parameter space θ1,. . .,θk, (

∑k
i=1 θi = 1, θi > 0 , i = 1, . . . , k) as:

D(θ1, . . . , θk; N1, . . . , Nk) =
1

ZD

k∏

i=1

θi
Ni−1 (3.2)

The numbers N1,. . .,Nk are the hyperparameters of the Dirichlet distribution.
The normalization constant ZD has the form:

ZD =

∏k
i=1 Γ(Ni)

Γ(
∑k

i=1 Ni)
(3.3)

with Γ denoting the Euler function Γ(p) =
∫∞

0 xp−1e−xdx

22 Chapter 3. Bayesian network classifiers

A
 1

A
 2

A
 3

A
 4

A
 5

C

(a) E

A
 1

A
 2

A
 3

A
 4

A
 5

C

(b) E

A
 1

A
 2

A
 3

A
 4

A
 5

C

(c) E
∗

Figure 3.1: Notation for learning with trees

3.3 Naive Bayes

The naive Bayes classifier (Langley et al., 1992) is a classification method based
on the assumption of conditional independence between the different variables
in the dataset given the class.

If we assume that our data is generated by a naive Bayes model M , the oper-
ation of the model can be explained as follows. Given an unclassified observation
S we must choose the class sC that maximizes P (C = sC |V = S, M). Developing
this conditional probability according to the Bayes rule we have:

P (C = sC |V = S, M) = P (C = sC |M) ∗
P (V = S|C = sC , M)

P (V = S|M)
(3.4)

Since M includes the assumption that the attributes are statistically independent
given the class, it holds that:

P (V = S|C = sC , M) =
n∏

i=1

P (Ai = Si|C = sC , M) (3.5)

where n is the number of attributes of the dataset. Since P (V = S|M) does not
depend on the class, naive Bayes tells us to choose the class sC which maximizes:

P (C = sC |M) ∗
n∏

i=1

P (Ai = Si|C = sC , M) (3.6)

The former equations describe in a very general sense the naive Bayes model
and can be concreted into several different classification algorithms depending

3.4. Learning with trees 23

on additional assumptions. In chapter 6 we will review some of these algorithms
and present a well founded development for learning under the assumption that
the model generating the data is a naive Bayes model.

3.4 Learning with trees

Given a classified domain ΩC we will note E the set that contains every undi-
rected graph E having {A1, . . . ,An} as nodes such that E is a tree. We will note
as E a directed tree for E and E = {E|E ∈ E}. We will use u, v ∈ E instead
of (Au,Av) ∈ E for compactness. Every E uniquely determines the structure
of a Tree Augmented Naive Bayes classifier, because from E we can construct
E

∗
= E ∪ {(C,Ai)|1 ≤ i ≤ n} as can be seen in an example in Figure 3.1. We

note E
∗

= {E
∗
|E ∈ E}. We note the root of a directed tree E as ρE (i.e. in

Figure 3.1(b) we have that ρE = A1).
We will note as ΘE

∗ the set of parameters that quantify the Bayesian network

M = 〈E
∗
, ΘE

∗〉. More concretely:

ΘE
∗ = (θC , θρE |C , {θv|u,C |u, v ∈ E})

θC = {θC(c)|c ∈ C} where θC(c) = P (C = c|M)

θρE |C = {θρE |C(i, c)|i ∈ AρE
, c ∈ C} where

θρE |C(i, c) = P (AρE
= i|C = c, M)

For each u, v ∈ E: θv|u,C = {θv|u,C(j, i, c)|j ∈ Av, i ∈ Au, c ∈ C} where
θv|u,C(j, i, c) = P (Av = j|Au = i, C = c, M).

3.4.1 Learning maximum likelihood TAN

One of the measures used to learn Bayesian networks is the log likelihood:

LL(B|D) =
∑

x∈D

log(PB(x)) (3.7)

An interesting property of the TAN family is that we have an efficient proce-
dure (Friedman et al., 1997) for identifying the structure of the network which
maximizes likelihood. The procedure and the theorem are given below where f
is the probability distribution induced by the frequencies in D.

Theorem 1 (Friedman, Geiger & Goldszmidt, 1997) Let D be a dataset
over ΩC . The procedure Construct-TAN(f) builds a TAN BT that maximizes
LL(BT |D) and has time complexity O(N · n2).

To learn the maximum likelihood TAN we should use Theorem 1 to determine
the structure and the following equation to compute the parameters.

θi|Πi
(xi, Πxi

) =
Ni,Πi

(xi, Πxi
)

NΠi
(Πxi

)
(3.8)

24 Chapter 3. Bayesian network classifiers

procedure Construct-TAN (ProbabilityDistribution P)

var
WeightMatrix IP ;

UndirectedGraph UG;

UndirectedTree UT;
DirectedTree T;
DirectedGraph TAN;

foreach Ai,Aj

Compute IP (Ai; Aj |C) =
∑

x∈Ai

y∈Aj

z∈C

P (x, y, z)log(P (x,y|z)
P (x|z)P (y|z))

end
G = ConstructUndirectedGraph(IP);

UT = MaximumWeightedSpanningTree(G);

T = MakeDirected(UT);
TAN = AddClass(T);
return TAN;

Algorithm 1: TAN construction procedure

It has been shown (Friedman et al., 1997) that equation 3.8 leads to “overfitting”
the model. Also in (Friedman et al., 1997) Friedman et al. propose to use the
parameters as given by

θi|Πi
(xi, Πxi

) =
Ni,Πi

(xi, Πxi
)

NΠi
(Πxi

) + N0
i|Πi

+
N0

i|Πi

NΠi
(Πxi

) + N0
i|Πi

Ni(xi)

N
(3.9)

and suggest setting N0
i|Πi

= 5 based on empirical results. Using equation 3.9 to
fix the parameters improves the accuracy of the classifier. In our opinion, no
well founded justification is given for the improvement.

3.5 Bayesian model averaging for classification

We are faced with the problem of defining a good classifier for a classified dataset.
If we accept that there is a probabilistic model behind the dataset, we have two
alternatives:

1. We know the model M (both structure and parameters) that is generating
the data in advance. In this case it is a matter of probabilistic computation.
We should be able to calculate P (C = sC |V = S, M) for every sC ∈ C
and to choose the class sC with the highest probability. No learning is
performed, because we knew the model in advance.

2. We are given a set of possible models M. This is the situation, for in-
stance, when learning decision trees, neural networks or Bayesian network

3.6. Summary 25

classifiers. The usual approach followed is to let an algorithm choose the
model M that fits the data best. This can give good results, if the model
selected accounts for a good share of the posterior probability distribution
function over the set of models or if its predictions coincide with the ones
given by the majority of the models. In spite of that, in this situation
probability theory tell us we should take a weighted average where each
model prediction is weighted by the probability of the model given the
data. More formally, assuming ξ represents the hypothesis that the model
underlying the data is known to be in M we have that:

P (V = S, C = sC |D, ξ) =

∫

M∈M

P (V = S, C = sC |M)P (M |D, ξ) (3.10)

Applying this equation is commonly known as Bayesian model averaging
(Hoeting et al., 1998). In practice, the problem is that for most models
it is very hard to find a closed form for the integral. This has led to the
introduction of methods such as Local Bayesian Model Averaging (LBMA)
that approximate the integral over a subset of highly probable models.

3.6 Summary

In this chapter we have introduced the notation and terminology to be used in the
rest of the thesis. We have also shortly reviewed naive Bayes, TAN and Bayesian
model averaging. In chapter 5 we will see how to improve the interpretability of
naive Bayes results. In chapters 6, 7, 8 and 9 we will see how the combination
of the naive Bayes and TAN models with Bayesian model averaging and the
principle of indifference introduced in Chapter 2 can be used to improve existing
Bayesian network classifiers.

Chapter 4

A parallelizable

distance-based

discretization method

DISTANCE, n. The only thing that the rich are willing for the
poor to call theirs, and keep.

Ambrose Bierce, The Devil’s Dictionary

Discrete Bayesian network classifiers, as some other discrete classifiers, are
not capable of dealing with continuous attributes. In this chapter we introduce
an algorithm for distance based discretization that converts numerical attributes
into ordered discrete ones. The technique we propose is competitive in accuracy
with the best technique up to now and has the advantage of being easily paral-
lelizable.

27

28 Chapter 4. A parallelizable distance-based discretization method

4.1 Introduction

Many approaches to classification assume the examples can be described only
with discrete attributes. Others, like decision tree induction, increase its com-
plexity when dealing with continuous attributes. Unfortunately, many real
datasets include highly significant information in the form of continuous at-
tributes. We have to take full advantage of this information without slowing
learning.

Discretization is a process that transforms continuous attributes into discrete
ones. Performing this previous step, we can apply discrete classification methods
to datasets containing continuous values.

In this chapter we introduce a discretization method and show that it is
parallelizable and that it achieves a top performance. The chapter begins intro-
ducing how discretization methods can be classified. After that, in section 4.3 we
review some of the previous work done in discretization. After that we explain
our algorithm and perform its parallelization in section 4.4. Section 4.5 gives
the results of a set of empirical comparisons between the different discretization
methods. We finish giving a set of conclusions in section 4.6.

4.2 Discretization methods classification

In (Dougherty et al., 1995) three different axis are used to make a classification
of discretization methods. We will add two more, while keeping their three. A
discretization method can be classified as either:

Global or Local Global methods divide each attribute in a number of regions
that are the same for the whole dataset. Local methods face the problem
locally, as for instance does C4.5 (Quinlan, 1992), that can set two different
cutpoints for two different branches of the tree, generating two different
discretization for two different subsets of the dataset. All the methods we
will discuss are global

Supervised or Unsupervised A discretization method for classification can
make use of the instance classes (supervised methods) to improve the qual-
ity of its discretization, or ignore this information (unsupervised methods
or class-blind methods).

Static or Dynamic Static methods are those that decide each attribute dis-
cretization independently from each other. Dynamic methods try to dis-
cretize all the continuous attributes in the dataset simultaneously and this
allows them to capture inter-attribute dependency, creating a more accu-
rate discretization. Dynamic discretization has been less studied, and good
discretization methods are expected to arise from this approach. All the
discretization methods explained below are static ones.

Direct or Incremental Direct methods divide the range in k intervals simul-
taneously, needing an additional criterion to determine the value of k.

4.3. Some discretization methods 29

Incremental methods begin with a simple discretization and pass though
a improvement process, needing an additional criterion to know when to
stop the discretization.

Bottom-Up or Top-Down Incremental methods usually can be divided into
Top-Down and Bottom-Up. Top-Down methods begin with an empty dis-
cretization and its improvement process is simply to add a new cutpoint
to the discretization. Bottom-Up methods begin with a discretization that
has all the possible cutpoints and its improvement process consists in merg-
ing two intervals (delete a cutpoint).

4.3 Some discretization methods

In this section we shortly review some of the existent discretization methods.

4.3.1 Equal size

The simplest discretization method is an unsupervised direct method named
equal size discretization. It calculates the maximum and the minimum for the
attribute that is being discretized and partitions the range observed into k equal
sized intervals.

4.3.2 Equal frequency

This is another unsupervised direct method. It counts the number of values we
have from the attribute that we are trying to discretize and partitions it into
intervals containing the same number of examples.

These two methods need a value (say k) for the number of intervals. Ex-
perimentally it has been shown that taking k = max{1, log(l)}, where l is the
number of different values of the attribute is a good heuristic.

4.3.3 ChiMerge

ChiMerge is a supervised, incremental, bottom-up method designed by Randy
Kerber and described in (Kerber, 1992). Kerber defines a criterion for measuring
the quality of a discretization, stating that “in an accurate discretization, the
relative class frequencies should be fairly consistent within an interval but two
adjacent intervals should not have similar relative class frequencies”. ChiMerge
uses χ2 statistic to determine the independence of the class from the two adjacent
intervals, combining them if it is independent, and allowing them to be separate
otherwise.

The ChiMerge algorithm has two main stages. In the first it sorts the exam-
ples by the attribute to be discretized and initializes the discretization putting
each instance in its own interval.

The second stage is a bottom-up merging process, that contains two steps
that are repeated continuously until no more merges are needed. In the first

30 Chapter 4. A parallelizable distance-based discretization method

step the χ2 value is computed for each pair of adjacent intervals by means of
equation 4.1. In the second the pair with the lowest χ2 value is merged. We
say that no more merges are needed when all the χ2 values are above some χ2

threshold. The χ2 threshold is determined by selecting a desired significance
level and then using a table or formula to obtain the corresponding χ2 value.

If we refer to the discrete attribute we are constructing as R, the χ2 value is
calculated with the following formula:

χ2 =

2∑

i=1

#C∑

j=1

(NR,C(i, j) − E(i, j))2

E(i, j)
(4.1)

where

#C is the number of different classes

NR,C(i, j) is the number of examples in the ith interval, jth class

E(i, j) = NR(i)NC(j)
N

is the expected value of NR,C(i, j)

NR(i) is the number of examples in the ith interval

NC(j) is number of examples in the jth class

N is total number of examples

The computational complexity of the method when some optimizations are
done is O(N · log N) where N is the number of examples of the dataset being
discretized.

4.3.4 Entropy

Entropy discretization is a supervised, incremental, top-down method proposed
by Usama M. Fayyad and Keki B. Irani and described in (Fayyad and Irani, 1992)
and (Fayyad and Irani, 1993). Entropy discretization recursively selects the
cutpoints minimizing entropy until a stopping criterion based on the Minimum
Description Length criterion ends the recursion.

Entropy discretization starts by sorting all the examples by the attribute
being discretized. Once sorted, it uses a recursive divide and conquer approach
to discretization. A sketch of the algorithm is presented in Algorithm 2.

In the first step it evaluates each possible cutpoint, and selects the one which
induced partition has the minimal class information entropy. We need some def-
initions to clarify the previous statement. Let there be #C classes C1,. . .,C#C ,
and let fD

C (i) be the proportion of examples in D that have class Ci. The class
entropy of a dataset D is defined as:

Ent(D) = −

#C∑

i=1

fD
C (i) log fD

C (i) (4.2)

4.3. Some discretization methods 31

function EntDisc(Dataset D, Attribute A)

begin
Choose the best cutpoint (TA)

according to the entropy criterion

Evaluate if the cutpoint is significant

according to the Minimum Description Length Principle.

if it is not significant then
/* no further discretization is needed */

return the empty list.

else
D1 = {x ∈ D|xA < TA}
D2 = {x ∈ D|xA > TA}
return EntDisc(D1,A),TA,EntDisc(D2,A).

endif
end

Algorithm 2: Entropy discretization method

Given a dataset D, an attribute A, a cutpoint value T , and assuming that T
partitions D into D1 and D2, the class information entropy is calculated by the
expression:

E(A, T ;D) =
ND1

ND
Ent(D1) +

ND2

ND
Ent(D2) (4.3)

where ND,ND1 ,ND2 are the number of instances in D, D1 and D2 respec-
tively. What entropy discretization does is selecting the cutpoint TA for which
E(A, TA;D) is minimal amongst all the candidate cutpoints.

In the second step the Minimum Description Length Principle (MDLP from
now on) is used to evaluate whether a cutpoint is significant or not. Now we
introduce the MDLP and after that we will see how it can be applied to our
problem.

Statement 1 (Minimum Description Length Principle) Given a set of
competing hypotheses and a set of data D, the MDLP calls for selecting the
hypothesis HT for which MLength(HT)+MLength(D|HT) is minimal among
the set of hypothesis. MLength(HT) denotes the length of the minimal possible
encoding of HT , while MLength(D|HT) is the length of the minimal encoding
of the data given the hypothesis.

In our case we will have two hypothesis. The first one, is that no further
discretization is needed, and the second one is that it is better to put a cutpoint
in TA. Analyzing the minimal encoding length that each of this hypothesis
generate we arrive to a decision criterion (the complete development appears in
(Fayyad and Irani, 1993))

32 Chapter 4. A parallelizable distance-based discretization method

The partition induced by a cutpoint T for a set S of N examples is accepted
if and only if

Gain(A, T ;D) >
log2 (N − 1)

N
+

∆(A, T ;D)

N
(4.4)

where
Gain(A, T ;D) = Ent(D) − E(A, T,D) (4.5)

∆(A, T ;D) = log2 (3#C − 2) − [#CEnt(D) − #CD1Ent(D1) − #CD2Ent(D2)]
(4.6)

where #C is the number of different classes in D and #CD1 ,#CD2 the number
of classes present in D1 and D2 respectively.

The computational complexity of the algorithm is bounded by the sort stage
and is O(N · log N), where N is the number of examples in our dataset.

4.3.5 D-2

D-2 is a supervised, incremental, top-down method proposed by J. Catlett and
described in (Catlett, 1991). D-2 recursively selects the cutpoints maximizing
Quinlan’s Gain until a stopping criterion based on a set of heuristic rules ends
the recursion. Its main algorithm appears in Algorithm 3.

function D2Disc(Dataset D, Attribute A)

begin
Choose the best cutpoint (TA)

according to the gain criterion

Evaluate if the cutpoint is significant

according to the D-2 heuristics.

if it is not significant then
/* no further discretization is needed */

return the empty list.

else
D1 = {x ∈ D|xA < TA}
D2 = {x ∈ D|xA > TA}
return D2Disc(D1,A),TA,D2Disc(D2,A).

endif
end

Algorithm 3: D-2 discretization method

As can be seen in the algorithm, D-2 selects at each step the cutpoint that
maximizes the information gain.

The stopping criterion is composed by a set of sub-conditions that must be
accomplished for accepting a cutpoint. These conditions are:

• The number of examples in the interval must be greater than 14.

4.4. Distance-Based discretization method 33

• The maximum number of thresholds is seven.

• The gain on all possible thresholds must not be equal.

• The examples in the interval must pertain to different classes.

These heuristics are explained more deeply in (Catlett, 1991).
The computational complexity of the method is bounded by the sort stage,

and hence is O(N · log N) where N is the number of examples in the dataset
being discretized.

4.3.6 Other discretization methods

There are some more discretization methods in the literature. A good compari-
son between some of them is found in (Dougherty et al., 1995). A discretization
method based in Hellinger divergence is introduced in (Lee and Shin, 1994). A
statistical method named StatDisc is described in (Richeldi and Rossotto, 1995).
A method for describing the accuracy of discretization methods for Bayesian
network classifiers appears in (Pazzani, 1995). Finally, in (Friedman and Gold-
szmidt, 1996) a method for discretizing continuous attributes while learning
Bayesian networks is presented.

4.4 Distance-Based discretization method

In this section we describe a new discretization algorithm based on a distance
between partitions (López de Màntaras, 1991). The algorithm is global, super-
vised, static and Top-Down incremental. This means that it is required to have
two main components, a cutpoint selection criterion and a stopping criterion.
The algorithm has a first step that orders the examples by the attribute value.
Once the examples have been sorted, the main loop of our implementation of
the method appears in Algorithm 4.

function MDisc(Dataset D,Attribute A)

begin
Disc = ∅
NewCutPoint = SelectNewCutPoint(D,A,Disc)

while (ImprovesDiscretization(D,A,Disc,NewCutPoint))

Disc = Disc ∪{ NewCutPoint }
NewCutPoint = SelectNewCutPoint(D,A,Disc)

end
return Disc

end

Algorithm 4: Distance-Based discretization

34 Chapter 4. A parallelizable distance-based discretization method

There is a main difference between our algorithm structure and previously
seen Top-Down incremental algorithms structure: D-2 and Entropy were re-
cursive, dividing the set in two subsets and recursively discretizing each subset
following a divide and conquer strategy while our algorithm is iterative, consid-
ering the whole set for the selection of each new cutpoint.

4.4.1 Cutpoint selection criterion

In decision tree induction algorithms, such as the ID3 algorithm, we estimate the
classification power of an attribute by some measure such as Gain, Gain Ratio
or 1 - Distance. We want to find a set of cutpoints so that the classification
power of the resulting discretized attribute is the highest possible. Our idea is
to follow a greedy heuristic in this search.

Each discretization can be identified with a set of cutpoints. We denote
by PDisc the partition induced by a discretization. We will use PDisc∪{T} for
noting the partition induced in our dataset when the discretization applied to
our attribute is the result of adding cutpoint T to the discretization Disc. We
impose that the function SelectNewCutPoint has to find a cutpoint TA that
accomplishes:

∀T, Dist(PC ,PDisc∪{T}) > Dist(PC ,PDisc∪{TA}) (4.7)

where PC is the partition generated in the dataset by the class attribute and
Dist stands for the distance, which is defined as:

Dist(PC ,PDisc) =
Inf(PC |PDisc) + Inf(PDisc|PC)

Inf(PC ∩ PDisc)
(4.8)

where

Inf(PC |PDisc) = Inf(PC ∩ PDisc) − Inf(PDisc) (4.9)

Inf(PC ∩ PDisc) = −

#C∑

i=1

#Disc∑

j=1

Prob(Ci ∩ Discj) log2 (Prob(Ci ∩ Discj))

(4.10)

Inf(PDisc) = −

#Disc∑

i=1

Prob(Disci) log2 (Prob(Disci)) (4.11)

are the standard Shannon measures of information of a partition. The proba-
bilities are approximated by the frequencies in the dataset. For more details see
(López de Màntaras, 1991; López de Màntaras et al., 1998).

In the first run of the function SelectNewCutPoint, a contingency table is
calculated for each cutpoint, storing the class distribution on each side of it. If it
is not the first run, we modify each table by adding the new cutpoint. After that
we evaluate the distance between the partition generated by the discretization
with the new cutpoint and the partition generated by the class. We do this for

4.4. Distance-Based discretization method 35

each possible new cutpoint, storing the minimum distance and the cutpoint to
which it corresponds. When every possible cutpoints has been processed, the
one with minimum distance is returned.

Once TA is found, the next step is Algorithm 4 if the cutpoint improvement
is significant enough to accept it or if the improvement is insignificant and no
further cutpoints are considered necessary for the discretization.

4.4.2 The stopping criterion

We need a heuristic to evaluate improvement. Our first approach to this problem
was similar to the set of heuristics used in D-2. The results with this approach
were acceptable, but after a deeper analysis we realized that for some datasets
the discretization was unnecessarily complex and for others some useful cutpoints
were not included in it. Therefore we decided to develop a stopping criterion
based on the Minimum Description Length Principle (MDLP), like the one used
by Entropy discretization.

The development is parallel to the one in (Fayyad and Irani, 1993). The
problem that needs to be solved is a communication problem. We have to
communicate a classifier method, that allows the receiver to determine the class
of each example. The sender knows all the attributes of the examples, plus
the class, and the receiver knows all the attributes of the examples but not the
class. The sender must choose the shortest description for sending a message
that allows the receiver to correctly classify each example. Suppose we have a
discretization with p cutpoints, and we are analyzing whether we want to include
the p + 1 cutpoint or not. Our sender has essentially two possible descriptions,
one without the new cutpoint and the other with it. We calculate the encoding
length of each description and choose the option which is minimal.

The encoding length of communicating the set of classes based on a p-cutpoint
discretization can be decomposed as:

Length(Disc) + Length(D|Disc) (4.12)

The first term of 4.12 is

Length(Disc) = p log (N − 1) + (p + 1)#C +

p∑

i=0

#CDiEnt(Di) (4.13)

where Di is the subset of the dataset containing the instances with a value of the
discretized attribute in the interval i, #CDi is the number of different classes in
Di and Ent(Di) is the Shannon entropy for the partition induced by the class
in Di.

The first term of 4.13 is the length needed to make the receiver know where
the p cutpoints are (we communicate the position of each cutpoint in the ordered
sequence of examples). The second term encodes which classes are present in
each interval. It is necessary, because the receiver needs this information to
decode the third term of the expression that defines a code book for each interval

36 Chapter 4. A parallelizable distance-based discretization method

in the discretization. The length of the code book is given by the following
theorem (Hamming, 1980):

Theorem 2 Given a source of messages s with entropy Ent(s), for any ε >
0, there exists an optimal encoding of the messages of s such that the average
message code length l, in bits, is such that Ent(s) ≤ l ≤ Ent(s) + ε

Once we have communicated the discretization, we need to communicate the
classes. As we have communicated a codebook, we can calculate the length of
communicating the classes in D by means of theorem 2:

Length(D|Disc) =

p∑

i=0

NDiEnt(Di) (4.14)

We have characterized expression 4.12 completely. Given two discretizations,
one with p and the other with p + 1 cutpoints, we will choose that with the
minimal encoding length. If it is the one with p cutpoints, then we stop our
algorithm and no more cutpoints are added to the discretization. Otherwise we
consider including another cutpoint.

4.4.3 Computational complexity

The computational complexity of the method is not easily measurable, because
the stopping criterion depends on the data in which we are working. The com-
plexity of the sorting step is O(N · log N). The complexity of the function
SelectNewCutPoint in our implementation (it reuses the results of the previous
runs) is O(#C · i ·N) where #C is the number of classes in the dataset, N is the
number of examples in the dataset and i is the number of intervals the discretiza-
tion has in this run. The complexity of ImprovesDiscretization is O(#C · i). We
will not consider it, because O(#C · i) ⊂ O(#C · i · N). Suppose we discretize
the attribute with p cutpoints. The total complexity of the method is given by:

O

(
N · log (N) +

p∑

i=1

#C · N · i

)
(4.15)

that simplifying gives:

O((log(N) + p2 · #C) · N) (4.16)

k is constant, and very small with respect to N . To ease the evaluation of the
complexity, we can use a heuristic restriction as the one imposed in D-2, and say
that discretizations cannot have more than 7 intervals. With this assumptions,
complexity is bounded by the sorting step, as for Entropy, D-2 or ChiMerge.

4.4.4 Parallelization of the method

In the previous point, analyzing computational complexity, we have found that
the complexity of the algorithm, without including the sorting step, is mainly

4.4. Distance-Based discretization method 37

related with the complexity of the function SelectNewCutPoint. If we are able to
parallelize this function, it will give us a high improvement in the performance
of the algorithm.

Suppose we assign a processor to each example in the dataset. Then the
parallelized version of the algorithm is as follows:

• Step 1. The sorting step can be parallelized with N processors in time
O(log N). From now on we assume the values are sorted in ascending
order by the attribute being discretized.

• Step 2. We have to calculate a contingency table for each processor, in
order for the processor to be able to evaluate the Distance between the
partition generated by the class and the partition generated by fixing the
cutpoint just between its value and the value of the neighbour processor on
its left side. This can be done in O(#C · log N) time in two steps, the first
one by adding the information of all the processors following a processor
binary tree until it arrives to the root, and the second one by descending
the processors tree, distributing the information we have previously put
together in the first step.

• Step 3. Now we have that each processor has its corresponding contingency
table. Each processor evaluates independently the Distance measure for
its cutpoint. This is done in time O(#C · i) where i is the number of
cutpoints that have been added to the discretization up to now.

• Step 4. We have to calculate the processor with minimal Distance. We
use again the binary processor tree, and this gives us a time O(log N).

• Step 5. The root processor evaluates the MDL criterion to see if the new
cutpoint must be added to the discretization. If it turns out that the
new cutpoint is not good enough, broadcasts it to the other processors,
and the algorithm stops here. Otherwise the new cutpoint is annotated
by the root processor. The information of where the cutpoint has been
fixed, and the contingency table of the processor which cutpoint has been
selected is broadcasted to all the processors. This can be bounded in time
by O(#C · i · log N)

• Step 6. Each processor transforms its contingency table by taking into
account that a new cutpoint has been fixed, using its old contingency table,
and the table broadcasted in the previous step. This step is bounded by
O(#C · i)

• Step 7. We return to step 3.

Suppose as in section 4.4.3 that the attribute is discretized with p cutpoints.
The complexity of the sequence of steps is bounded by time O(#C · p2 · log N)
and O(N) processors. A parallel version of the method following this approach
has been implemented in MPI and the main part of its code can be examined
in (Cerquides, 1997). Parallelization of other methods, such as Entropy or D-2

38 Chapter 4. A parallelizable distance-based discretization method

is not direct, due to their recursive nature. Obviously this does not mean that
they are not parallelizable, only that, since they are based on recursion splitting
the dataset, no direct simple parallelization can be applied to them.

4.5 Empirical comparison

4.5.1 Comparison design

There is no way of directly evaluating a discretization, so we will use the accu-
racy of two classification algorithms to measure the discretization goodness. The
two algorithms will be ID3 (Quinlan, 1986) (with no pruning) and Naive-Bayes
(Langley et al., 1992). We will run each algorithm in 9 different domains with
different characteristics (see Table 4.1). For each learning algorithm, discretiza-
tion method and dataset we do 50 runs, each one with 70% of the examples as
training set and the remainder 30% as test set. We take the average of the 50
runs as a measure of performance. We also keep the results of the 50 runs to
make two statistical significance tests: Rank and Signed Rank. In (Cerquides,
1997),(Gibbons, 1971),(López de Màntaras et al., 1998) we can find a complete
explanation of these tests.

Dataset Attributes Instances Classes Missing
crx 15 690 2 few
echo 7 131 2 some
glass 10 214 7 none
heartC 13 303 2 several
heartH 13 294 2 some
hep 19 155 2 some
horse 27 368 2 30 %
iris 4 150 3 none
wine 13 178 3 none

Table 4.1: Domains used for the discretization methods comparison

4.5.2 Comparison results

Average accuracies comparison

For each dataset and classification algorithm we rank the 6 discretization meth-
ods, from the first place (the most accurate) to the sixth one. The results are
displayed in the two tables 4.2 and 4.3. The rows are ordered with the best
method on the top and the worst on the bottom. In the tables 55555 means the
algorithm ranked five times in the position specified by the column under which
it appears, 4444 four times, 333 three times and so on.

We can extract some conclusions from this two tables:

4.5. Empirical comparison 39

First Second Third Fourth Fifth Sixth
Distance 55555 4444
Entropy 4444 55555
Size 55555 333 1
D2 22 4444 22 1
ChiMerge 22 1 1 55555
Frequency 1 55555 333

Table 4.2: Average accuracy results for the different discretization methods using
ID3

First Second Third Fourth Fifth Sixth
Distance 55555 22 22
Entropy 1 333 22 1 1 1
Frequency 22 333 1 22 1
Size 1 333 22 1 22
D2 22 333 1 22 1
ChiMerge 22 333 4444

Table 4.3: Average accuracy results for the different discretization methods using
Naive-Bayes

• Distance seems to be globally the best performer, while ChiMerge seems
to be the worst.

• For the ID3 classification algorithm, either Distance or Entropy have al-
ways the first place.

• Frequency performs badly with ID3, but considerably well with Naive-
Bayes.

Significance test comparison

For each dataset and each classification algorithm we have performed the pair-
wise comparison of accuracies for the six discretization methods. This has given
us a partial ordering of the methods for each dataset. The complete results ap-
pear in (Cerquides, 1997). We will try to extract the most important conclusions
in a few statements:

• Rank and Signed Rank tests differ only in one over twenty of the compar-
isons, and when they do, it never results in a sign change. Therefore we
have decided to analyze only Signed Rank results.

• Entropy and Distance are better than the rest in a statistically significant
way for all the datasets when using ID3 as classification algorithm.

40 Chapter 4. A parallelizable distance-based discretization method

• For the Naive Bayes classifier, Distance seems to perform better than the
rest, but in most of the cases it is not statistically significantly better than
Entropy.

4.6 Summary

We have introduced a new method for discretization of continuous values. We
have seen that our new method has an acceptable time complexity. We have
also shown that our method is easily parallelizable, and we have implemented
a parallel version of it. This characteristic is specially important for its use in
Knowledge Discovery in Databases (KDD), because databases in that area are
supposed to have a large number of registers. The time complexity constraints
of algorithms used in the KDD area are very strong, and parallel computation
is a good way for reducing it.

We have also compared our discretization method, in terms of accuracy,
with other five methods, and for two different classification algorithms (ID3 and
Naive-Bayes) observing that it has better average accuracy than the best of the
methods proposed until now (the Entropy method), but this difference is not
statistically significant.

We have shown that our method can be a good alternative to Entropy
discretization, especially for very large datasets, where a time complexity
O(N · log N) may be unacceptable.

We think that discretization of continuous attributes has many open research
issues. We believe that it would be very interesting to face the problem of
discretization taking into account possible relationships between the attributes.
In our analysis, we have avoided to take into consideration the amount of noise in
the datasets. New discretization methods can be designed especially for working
in noisy environments where errors or missing values are usual. The datasets we
have used for comparing the performance of our method have at most several
hundreds of elements. A new study must be done for larger datasets. In (Pazzani,
1995) a refinement process for discretizations is proposed. It will be interesting
to study how this refinement affects our discretization method.

Chapter 5

The Qualitative Bayesian

Classifier

It is quality rather than quantity that matters.

Seneca (5 BC - 65 AD), Epistles

Bayesian reasoning has been usually criticized as hard to explain and under-
stand, but achieves high performance rates with simple constructs, as happens
for instance with the naive Bayes classifier (Langley et al., 1992). In this chapter
we review some approaches to qualitative uncertainty and propose a new one
based on the idea of Absolute Orders of Magnitude. The approach is tested
by implementing a classification method based on this idea. This classification
method is an adaptation of the naive Bayes classifier, that keeps its accuracy
while gaining interpretability.

41

42 Chapter 5. The Qualitative Bayesian Classifier

5.1 Introduction

Comprehensibility is a key characteristic for machine learning models to be use-
ful in data mining tasks. Some approaches to increasing Bayesian reasoning
comprehensibility appear in (Johnson, 1973), (Lichtenstein and Newman, 1967),
(Wallsten et al., 1985), (Zimmer, 1983) and (Zimmer, 1985). The main idea
in all of them is to attach linguistic labels as “probable” or “very unlikely” to
numerical probabilities, that is to absolutes degrees of belief. Bayesian reasoning
works primarily with changes in probability values, and these approaches do not
seem to give any interpretation of such changes, giving as result hardly under-
standable explanations. It has been accepted that, unlike physical parameters,
absolute probabilities do not seem to have values (except the endpoints) that
are universally interesting (Wellman, 1990).

This problem was noticed also by Elsaesser, that in (Elsaesser, 1989) pro-
posed the use of a version of Polya’s “shaded inductive patterns” (Polya, 1954)
for linguistic explanation of Bayesian inference. Elsaesser uses Oden’s model
(Oden, 1977) to create the linguistic labels related to changes in probability.
Elsaesser explanations are comprehensible, but we have no security that reason-
ing with the information given by these explanations really bring us to coherent
conclusions because explanation and reasoning are performed at different levels,
and we are not allowed to use a previous explanation in a future case.

Another approach is the one followed by Neufeld (Neufeld, 1990), Wellman
(Wellman, 1990) and Parsons (Parsons, 1995), using ideas from the field of
qualitative uncertainty. The idea behind their work is finding whether a fact A
is favoured, unfavoured or not altered by another fact B. Quoting Parsons:

Whereas in probabilistic networks the main goal is to establish prob-
abilities of hypotheses when particular observations are made in qual-
itative systems the main aim is to establish how values change.

Our approach can be viewed as a refinement of qualitative probabilistic net-
works (QPNs) showing that, slightly modified, Elsaesser explanations can be
used not just for explanatory purposes but also for reasoning and prediction
achieving results similar to those of non-qualitative probabilistic reasoning, while
keeping intact its interpretability.

Next section briefly introduces qualitative probabilistic networks, concretely
Wellman and Neufeld approaches. Section 5.3 introduces our qualitative ap-
proach to influences and synergies, making use of the absolute orders of magni-
tude model. Section 5.4 describes our proposal to use the qualitative influences
and synergies in a Qualitative Bayesian classifier. Section 5.5 describes an em-
pirical comparative study based on 15 datasets and analyses the results obtained
with the aim of showing the good performance of our approach in terms of clas-
sification accuracy. In section 5.6 we use examples from one of the datasets to
show the explanation and description capabilities of the proposed approach. We
end up with a short summary in section 5.7.

5.2. Introduction to Qualitative Probabilistic Networks 43

5.2 Introduction to Qualitative Probabilistic

Networks

The concept of QPN has been approached by two ways. We will shortly review
both here.

5.2.1 Wellman approach

For Wellman, a QPN is a pair G = (V, Q), where V is the set of variables
or vertices of the graph and Q is a set of qualitative relationships among the
variables. He introduces two main concepts for modeling QPNs as are qualitative
influences and qualitative synergies.

Wellman qualitative influences

Qualitative influences can be thought of as qualitative relations describing the
sign (direction) of the relationship between a pair of variables. A variable can
influence another positively (+), negatively (-), or in no way (0). We should
also consider the possibility that the sign of the influence is unknown to us (?).
If we use δ to denote one of {+,-,0,?} we say a qualitative influence of a on
b in direction δ holds in the graph G = (V, Q) if (a, b, δ) ∈ Q. For formally
introducing the probabilistic semantic of this concept the way Wellman does, we
need to previously define the set of predecessors that influence a variable in a
network.

predG(b) = {a|(a, b, δ) ∈ Q, forsome δ ∈ {+,−, ?}}

Now we can assign probabilistic meaning to influences. We say that an influence
edge (a, b, +) ∈ Q is satisfied in a concrete domain if for all x ∈ predG(b) − {a}
such that x is consistent with both a and ¬a, we have

Pr(b|a, x) ≥ Pr(b|¬a, x)

The meaning of this expression can be stated as: under any circumstances
(x) that are known to affect b, the presence of a makes b more likely than its
absence.

Parallel definitions can be done for (a, b,−), (a, b, 0) and (a, b, ?), replacing
≥ by ≤, =, and “no condition at all” ((a, b, ?) always holds) respectively.

Wellman qualitative synergies

Qualitative synergies describe the qualitative interaction among influences. The
idea behind them is that two variables synergically influence a third if their joint
influence is greater than separate, statistically independent, influences. The
formalization of this idea can be seen in (Wellman, 1990), and will be skipped
here.

44 Chapter 5. The Qualitative Bayesian Classifier

5.2.2 Neufeld approach

Neufeld formalizes the idea of qualitative influence by means of the concept of
favouring. He says a favours b if

Prob(b|a) > Prob(b)

He includes four types of edges in what he calls inference graphs:

• Defeasible links. Given a, b is more likely to happen.

a → b if 1 > Prob(b|a) > Prob(b)

• Logical links. Given a, b will surely happen.

a ⇒ b if 1 = Prob(b|a) > Prob(b)

• Negative defeasible links. Given a, b is less likely to happen.

a 6→ b if 1 > Prob(¬b|a) > Prob(¬b)

• Negative logical links. Given a, b will not happen.

a 6⇒ b if 1 = Prob(¬b|a) > Prob(¬b)

Once introduced these concepts Neufeld uses them to do common sense reason-
ing. For more details on his approach to qualitative uncertainty see (Neufeld,
1990).

5.3 Influences and synergies revisited

Neufeld and Wellman ideas are useful for common sense reasoning, planning
under uncertainty and when qualitative differential equations are not applicable.
Our idea is to adapt them in order to make them useful for classification and
characterization of sets.

The qualitative model used by both approaches is the signs model, composed
of three categories +,-,0 and ? for representing the unknown. More sophisticated
models have risen from the field of qualitative reasoning. One of these models is
the absolute orders of magnitude model (Trave and Piera, 1989), that considers
a finer partition of the real line than the one given by the signs, allowing also
distinctions in quantities of the same sign. This model qualifies quantities into
seven classes, from Negative Large to Positive Large, including Zero. Quantities
of the same sign are divided into three classes (Large, Medium and Small) that
are very natural in human reasoning. We have discretized influences into this
new model, in a way coherent with Neufeld works. Neufeld states a favours b

if Prob(b|a) > Prob(b) that is, if Prob(b|a)
Prob(b) > 1. This quotient was also used by

5.4. The Qualitative Bayesian Classifier 45

Elsaesser, in his work trying to explain Bayesian reasoning, to denote the shift
in belief that a produces in b. We will define influence of a in b as:

Influence(a, b) =
Prob(b|a)

Prob(b)
(5.1)

We note that:

Influence(a, b) = Influence(b, a) (5.2)

Once we have a definition for influence, we make use of the absolute orders of
magnitude model to make influences comprehensible. By discretizing influences
into the seven classes seen in Figure 5.1, we perform a process similar to that of
Elsaesser assigning linguistic labels as “much more likely”, “a little less likely”,
and so on. We tested different alternatives for the boundary values between
labels. The boundary values established in Figure 5.1 were selected over a set
of alternatives because they performed better in the classification experiments
described in section 5.5. These boundary values did in fact perform better in
these experiments that an alternative adaptive discretization schema where the
boundaries were calculated by a discretization algorithm (concretely Entropy
discretization (Fayyad and Irani, 1992; Fayyad and Irani, 1993)). This is possibly
due to the fact that the rationale behind the values in Figure 5.1 is that they
should be symmetric, in the sense that when multiplied the result should be
one. This is not fulfilled by the boundary values provided by a discretization
algorithm.

1.50.330 0.67 1.05 30.95 1

a little lesssomewhat lessmuch less equally a little more somewhat more much more

infinity

Figure 5.1: Influence discretization scale

We have given an expression for influences and a scale for their discretization.
Synergies can be seen as the difference in influence between two facts that happen
together with respect to these two facts happening separately. We can give the
following expression for synergies of two variables:

Synergy({a1, a2}, b) =
Influence(a1 ∩ a2, b)

Influence(a1, b) ∗ Influence(a2, b)
(5.3)

5.4 The Qualitative Bayesian Classifier

In this section we will show that qualitative influences and synergies can be used
for reasoning and, more concretely, for classification tasks, giving high classifi-
cation rates. We will use them to get a qualitative version of the naive Bayes
classifier. Naive Bayes has already been introduced in chapter 3. Concretely,

46 Chapter 5. The Qualitative Bayesian Classifier

in section 3.3, we state that naive Bayes tells us to choose the class sC which
maximizes:

P (C = sC |M) ∗
n∏

i=1

P (Ai = si|C = sC , M) (5.4)

An interpretation of this formula can be that P (C = sC |M) is our initial belief
in the fact that sC is the class of our example, and each one of the factors
P (Ai = si|C = sC , M) can be seen as shifts that modify this belief with regard
to the new information that Ai = si. We will adapt these shifts in belief to
coincide with our previously defined influences. In order to do this, we will need
to add the assumption that the attributes are statistically independent. Given
this assumption, we can modify equation 3.4, developing the denominator the
same way we did with the numerator, that is

P (V = S|M) =

n∏

i=1

P (Ai = si|M) (5.5)

Substituting in equation 3.4 we have:

P (C = sC |V = S, M) = P (C = sC |M) ∗

n∏
i=1

P (Ai = si|C = sC , M)

n∏
i=1

P (Ai = si|M)
(5.6)

If we refine the definition of influences appearing in equation 5.1 assuming a
naive Bayes model M as

Influence(Ai = si, C = sC) =
P (Ai = si|C = sC , M)

P (Ai = si|M)
(5.7)

this allows us to express equation 5.6 as:

P (C = sC |V = S, M) = P (C = sC |M) ∗
n∏

i=1

Influence(Ai = si, C = sC) (5.8)

Now we can apply this rule with qualitative influences and analyze the dif-
ferences in accuracy between applying the naive Bayes classifier where shifts in
belief vary continuously from 0 to 1 and our qualitative influences framework,
where shifts only can have the seven values we have previously seen.

Before doing this, we introduce synergies in our classifier, because synergies
can be seen as trying to express interattribute dependencies with respect to the
class and hence including them can improve the performance when the classifi-
cation problem at hand does not fulfill the independence assumptions. Our first
idea was to calculate all the synergies between all pairs of variables and apply
them. The problem with this approach is that it is not an approximation of
the Bayes formula, and hence is not theoretically well founded and gives a poor
empirical result. In fact, introducing synergies that way worsened accuracy. The

5.4. The Qualitative Bayesian Classifier 47

program SOQBC;

foreach class c ∈ C

InfEffect =
n∏

i=1

QInfluence(Ai = si, C = c)

ClassP[c] = P (C = c|M) * InfEffect

InfCorrected[c] = Ø;

ApplySynergies(LargeSynergies(c),c);
ApplySynergies(MediumSynergies(c),c);
ApplySynergies(SmallSynergies(c),c);

end
Select the class c with highest ClassP[c];

end
procedure ApplySynergies(Set SynergySet, Class c)

while SynergySet 6= Ø

Randomly choose a Synergy (namely {Ai = si,Aj = sj})
and delete it from SynergySet

if ({Ai = si,Aj = sj} ∩ InfCorrected[c] = Ø) then
QSyn = QSynergy({Ai = si,Aj = sj}, C = c)
ClassP[c] = ClassP[c] * QSyn

InfCorrected[c] = InfCorrected[c] ∪ {Ai = si,Aj = sj}

Algorithm 5: Synergies application strategy

reason is that synergies can be seen as corrections of the approximation to the
probabilities given by influences. It is not correct to apply a synergy correction
for two variables Ai and Aj and also apply it to Aj and Ak, because we are cor-
recting Aj influence twice. That is why we follow the next schema for applying
synergy corrections:

We first classify the set of synergies that affect to our example into Large,
Medium and Small synergies, no matter if they are positive or negative.
Then we try to apply as many Large synergies as possible. A synergy is
not applied if it involves a variable for which a synergy has already been
applied for that class. Once this has been done we repeat the same process
for medium and finally for small synergies.

Algorithmically, it can be expressed as shown in Algorithm 5. The operations
in the algorithm are calculated by using a representative for each interval. We
tested two approaches, one taking as representative a value in the center of each
interval and the other taking the value of the class that is nearer to equality.
Using the discretization values of Figure 5.1, our first method will give as repre-
sentative of “much less” 0.165, as representative of “somewhat less” 0.5 and so
on, while for the same values, the second method will choose 0.33 as represen-
tative of “much less”, 0.67 for “somewhat less”and so on. The second approach
performed better empirically, consequently it is the one we propose and describe

48 Chapter 5. The Qualitative Bayesian Classifier

in our empirical results. We will note influences and synergies calculated follow-
ing this qualitativization process as QInfluence and QSynergy to differentiate
them from their quantitative counterparties.

When our Qualitative Bayesian Classifier (QBC) is restricted to influences we
call it First Order QBC (FOQBC), when synergies of two variables are applied
we call it Second Order QBC (SOQBC). The development for order greater
than second is not trivial because different developments of the greater order
approximations are possible. This development remain as future work.

5.5 Empirical comparison

We have evaluated the classification accuracy for First and Second Order QBC
and compared it with the naive Bayes classifier, as well as with other widely used
machine learning algorithms. Our experiment consists in evaluating the average
accuracy of each classifier, as well as its standard deviation for 15 datasets from
the Irvine repository. Some information regarding these datasets can be seen
in Table 5.1 For each dataset and classification method we performed 50 runs,
keeping the 70% of the dataset as training set and the remaining 30% as test set.
We included our algorithms in the MLC++ (Kohavi et al., 1994) library, and
used the facilities this library provides for machine learning experimentation.
We compared the First and Second Order QBC with the well known machine
learning algorithms CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991),
naive Bayes classifier, IBL (Aha et al., 1991), and ID3 (Quinlan, 1986).

Dataset Attributes Instances Classes Missing

breast-cancer 9 286 2 none
breast 10 699 2 16
crx 15 690 2 few
glass2 10 214 2 none
heart 13 270 2 none
hypothyroid 25 3162 2 some
iris 4 150 3 none
monk1 6 432 2 none
monk2 6 432 2 none
monk3 6 432 2 5%
parity 5+5 10 100 2 none
soybean-large 35 316 19 some
soybean-small 35 47 4 none
votes 16 435 2 few
waveform-21 21 5000 3 none

Table 5.1: Domains used for the Qualitative Bayes empirical comparison

The ranking table (Table 5.2) is more illustrative of the results. In this table

5.6. Examples of explanations and characterizations 49

we show how many times each classification algorithm ranked in the position
indicated by the column identifier. In this table “1” means the algorithm ranked
once in the position specified by the column under which it appears, “22” that
it ranked twice , “333” that it ranked three times and so on. The rows are
ordered with the best method on the top and the worst at the bottom, being
this calculated by assigning a value to each position and adding those values.

First Second Third Fourth Fifth Sixth

ID3 333 333 55555 1 333
IBL 4444 333 22 333 1 22
SOQBC 333 22 1 55555 333 1
CN2 22 333 333 22 1 4444
Bayes 333 22 1 22 4444 333
FOQBC 22 333 22 333 55555

Table 5.2: Ranking table of FOQBC, SOQBC and state of the art classifiers

5.5.1 Result analysis and justification

Table 5.2 shows that SOQBC achieves a reasonable accuracy level compared to
the other classifiers used in the evaluation, being the best one in 3 out of 15
times, so it can be considered as a valuable alternative to these methods. As our
main aim is to improve the interpretability of our method, this accuracy results
are good enough. In the next section we give an example of the interpretability
and explanation abilities of our approach.

On the other hand, we consider the FOQBC results very good considering
the simplicity of the classifier induced. Its results are not too far from the ones
given by continuous Bayes (surprisingly four times FOQBC outperforms naive
Bayes). FOQBC makes a extremely inexact estimation of the probabilities, but
has classification results comparable to the ones given by more complex classi-
fiers. Our intuition is that the difference in performance between FOQBC and
naive Bayes will increase when the number of examples in the dataset increases
but this remains untested.

5.6 Examples of explanations and characteriza-

tions

5.6.1 Qualitative influences for characterization

One of the first steps carried by data analysts in the KDD process consists in
getting familiarized with the data at hand. Qualitative influences can be used to
get a first idea of the relationships that hold between the data. For example, if
we draw the results of the FOQBC in a graph like the ones used by Neufeld, we

50 Chapter 5. The Qualitative Bayesian Classifier

can have a first idea of the most relevant facts affecting each class. Displaying
only large influences, we can have a graph for each class as can be seen in Figures
5.2, 5.3 and 5.4.

Iris Setosa

High Sepal length Small sepal width Not small petal length Not small petal width

Figure 5.2: Iris setosa class

Iris Versicolor

Small Sepal length Large sepal width Medium petal widthSmall petal lengthMedium petal length Not medium petal width

Figure 5.3: Iris versicolor class

Small Sepal length Not large petal widthNot large petal length Large petal length Large petal width

Iris Virginica

Figure 5.4: Iris Virginica class

We find those graphs easily understandable with little practice. We can also
generate some other graphs isolating the more important attributes to see their
interactions, or showing medium and small influences and synergies by changing
the arrow width.

5.6. Examples of explanations and characterizations 51

5.6.2 Explanation with qualitative influences and syner-

gies

A key characteristic for a classification algorithm, for instance when it is used in
decision-making, is its ability to explain why something has been classified into
a class and not into another. We can use qualitative influences and synergies to
explain why we classify an example into a class. For instance, suppose we have
the following instance:

High sepal length, Small sepal width, High petal length, High petal width. Class: Virginica

Our system is capable to explain that it has classified this instance in the
Virginica class because its high petal length and width made this class much
more likely than the others. If we ask the system why it has rejected the Setosa
class in this example, it answers that all the attribute values pointed that it
must be rejected. Finally if we ask it why it has rejected the Versicolor class,
it answers that its High petal width, as well as the coincidences (synergies) of
High petal width with High sepal length and of Small sepal width with High
petal length strongly discourage the class.

We have used only large influences and large synergies to show its character-
ization and explanation power. Of course, if the user of our system requires a
more detailed characterization or explanation, medium and small influences can
be used.

5.6.3 Comparison with c4.5rules results

In order to further validate the knowledge induced by FOQBC and SOQBC,
we will compare our graphs in figures 5.2,5.3,5.4 with the rules extracted by
c4.5rules (Quinlan, 1992). C4.5 is a well known decision tree induction algorithm
and c4.5rules is a program that generates a set of pruned rules given a decision
tree learned by c4.5, and then sifts this set in an attempt to find the most useful
subset of them. The ruleset resulting from running c4.5rules over the iris dataset
is shown in figure 5.5.

The main difference between both approaches is that influence graphs capture
negative relations while c4.5rules presents only a set of positive rules. From the
three rules learned by c4.5rules, rules 2 and 3 are also present in the influence
graphs while rule 1 is present as a negative rule (the rightmost node of the
influence graph for the Iris Setosa means that if petal width is not small then it
is less likely that the instance is in the Iris Setosa class). For this example the
influence graphs provide more information than the rules while the rules provide
a more succint summary. A classifier based in the rules will focus mainly on
petal-width disregarding any other attribute. A classifier based in the influence
graphs will take into account every attribute if there is a significant influence for
the attribute and the class.

52 Chapter 5. The Qualitative Bayesian Classifier

Rule 1:

petal-width = -Inf-0.75

-> class Iris-setosa [96.1%]

Rule 3:

petal-width = 1.65-Inf

-> class Iris-virginica [95.3%]

Rule 2:

petal-width = 0.75-1.65

-> class Iris-versicolor [86.3%]

Default class: Iris-setosa

Figure 5.5: Rules induced by C4.5rules

5.7 Summary

We have introduced qualitative influences and synergies based on the absolute
orders of magnitude model. We have constructed a classifier based on this two
ideas and we have shown that their accuracy results are good. We have also
seen that qualitative influences and synergies can in some cases improve the
comprehensibility of probabilistic reasoning. These facts make us believe that
they can be useful for data mining and machine learning. We have tried to
summarize in Figure 5.6 the interpretation of the results in this chapter in terms
of the three dimensional space for classifiers defined in the introduction. We
can see that, with respect to naive Bayes, in the case of FOQBC we are losing
accuracy to achieve higher understandability and in the case of SOQBC we are
increasing complexity to achieve higher understandability.

.

5.7. Summary 53

Higher Accuracy

Smaller Complexity

Higher Interpretability

Naive Bayes

SOQBC

FOQBC

Figure 5.6: Relative positioning of the FOQBC and SOQBC with respect to
naive Bayes

Chapter 6

The Indifferent Bayesian

Classifier

The opposite of love is not hate, it’s indifference.
The opposite of art is not ugliness, it’s indifference.
The opposite of faith is not heresy, it’s indifference.
And the opposite of life is not death, it’s indifference.

Elie Wiesel

In this chapter we apply probability theory as extended logic, reviewed in
chapter 2, to the naive Bayes classifier. The main objective of the chapter is
to apply Bayesian probability theory to develop a classifier based on the as-
sumption of conditional independence between the attributes given the class. In
section 6.1 we introduce the naive Bayes model, paying special attention to its
conditional independence assumptions and to the estimation of its parameters.
In section 6.2 we introduce naive distributions, which is a family of probability
distributions over the set of naive Bayes models, and show that they are conju-
gate with respect to the naive Bayes model and that they can be integrated in
closed form to get averaged predictions. In section 6.3 we apply the principle
of indifference getting the final expression for the Indifferent Naive Bayes clas-
sifier (indifferentnb from now on). In section 6.4 we perform the empirical
comparison of indifferentnb with the standard implementation of naive Bayes
and the one proposed in (Kontkanen et al., 1998) showing that indifferentnb

provides a similar error rate and approximates better the probabilities, specially
when little data is available. We finish with some conclusions and possibilities
for future research in section 6.5.

55

56 Chapter 6. The Indifferent Bayesian Classifier

6.1 The naive Bayes model

As has been seen in section 3.3, the naive Bayes classifier (Langley et al., 1992)
is a classification method based on the assumption of conditional independence
between the different variables in the dataset given the class. Following the
notation in (Cowell et al., 1999), being X , Y and Z random variables we will
write X ⊥⊥ Y|Z for “X is conditionally independent on Y given Z”. In this
notation, the naive Bayes model states that

∀i, j 1 ≤ i, j ≤ n ; Ai ⊥⊥ Aj |C (6.1)

6.1.1 The naive Bayes model as a Bayesian network

As can be seen in (Cowell et al., 1999) and in (Friedman et al., 1997) in terms of
Bayesian networks, the naive Bayes model can be represented as the network in
Figure 6.1. This can be easily verified using the local directed Markov property

A1 A2

C

An

Figure 6.1: Representation of the independence assumptions under a naive Bayes
model as a Bayesian network

(Cowell et al., 1999) that states that a Bayesian network encodes independence
assumptions equivalent to stating that any variable in the network is indepen-
dent of its non-descendants given its parents. Using this same property, the
Bayesian network in Figure 6.1 is not the only Bayesian network that encodes
the conditional independence assumptions in equation 6.1. In fact any one of
the networks in Figure 6.2 does also satisfy the assumptions in equation 6.1.

6.1.2 The naive Bayes model as a Markov network

The conditional independence assumptions in equation 6.1 give no causal in-
formation which can be used to prefer any of the different Bayesian networks
that encode them. If instead of representing these conditional independence
assumptions as a Bayesian network we choose to represent them as a Markov
network, the only network encoding the assumptions in equation 6.1 can be seen
in Figure 6.3. In our opinion, the use of Figure 6.1 as representation of the naive

6.1. The naive Bayes model 57

A1 A2

C

An A1 A2

C

An A1 A2

C

An

Figure 6.2: Alternative representations of the independence assumptions under
a naive Bayes model as a Bayesian network

A1 A2

C

An

Figure 6.3: Representation of the independence assumptions under a naive Bayes
model as a the Markov network

Bayes model, that is correct when interpreted in terms of acausal Bayesian net-
works, is slightly confusing, due to the fact that if it is interpreted in terms of
causal Bayesian networks it provides more information than the conditional in-
dependence assumptions in equation 6.1. We alternatively propose to represent
the naive Bayes model by the Markov network in Figure 6.3 that avoids such
misunderstandings. Furthermore, the Markov network in Figure 6.3 is also the
essential graph (in the sense of (Andersson et al., 1995)) of this equivalence class
of Bayesian networks.

6.1.3 Naive Bayes parameters

Let C be the class attribute, V = {A1, . . . , An} the set of attributes and C and Ai

random variables over C and Ai respectively. Under the multinomial assumption
(see (Heckerman et al., 1995)), a naive Bayes model M can be characterized by
the following assumptions, parameters and constraints:

• The conditional independence assumptions in Equation 6.1.

• For each class c ∈ C:

– The model has a parameter αc = P (C = c|M).

58 Chapter 6. The Indifferent Bayesian Classifier

– For each attribute Ai, 1 ≤ i ≤ n:

∗ The model includes a set of parameters

φi,v,c = P (Ai = v ∧ C = c|M) (6.2)

one for each possible value v ∈ Ai.

∗ The model includes the constraint that αc =
∑

v∈Ai

φi,v,c.

• The model includes the constraint that
∑

c∈C

αc = 1.

From now on we will use the term naive Bayes model to refer to this set of
assumptions, parameters and constraints. We will note Φ = {φi,v,c|c ∈ C; 1 ≤
i ≤ n; v ∈ Ai}. It should be noted that αc is introduced only in order to ease
understanding and notation, because it can be determined given Φ by means of
the constraints.

Imagine we need to know the probability of an unclassified observation S
being in class sC given a naive Bayes model M . Applying the independence
assumptions and substituting the parameters we have that

p(C = sC ,V = S|M) = αsC

n∏

i=1

φi,si,sC

αsC

(6.3)

In many cases, the naive Bayes classifier has suffered from “the mind pro-
jection fallacy”, to use the term introduced in (Jaynes, 1996). Hence, it has
been accepted that what we need to do is to approximate αj and φi,v,j by the
frequencies in the data set. Defining NC(c) as the number of observations in
class c in the dataset and Ni,C(v, c) as the number of observations with class c
and value v for attribute Ai, the maximum likelihood naive Bayes approximates
αc, φi,v,c as follows:

αc =
NC(c)∑

c′∈C

NC(c)
(6.4)

φi,v,c =
Ni,C(v, c)

NC(c)
αc (6.5)

It has been empirically noticed that approximating these probabilities by their
frequencies in the dataset can lead to a value of zero in expression (6.3). This can
happen if one of the φi,si,sC

is zero, that is if the value of one of the attributes Ai

of the new observation S, that we are trying to classify, has not been observed
in the dataset for the class sC . In other words, if the number of observations
in the dataset fulfilling Ai = si and C = sC is zero. To avoid this problem, a
“softening” consisting in assigning a small probability instead of zero to φi,si,sC

can be done. That softening can improve the accuracy of the classifier. A set
of ad hoc not well founded softening methods have been tried (Cestnik, 1990;
Kohavi et al., 1997).

6.1. The naive Bayes model 59

In (Kontkanen et al., 1998), Kontkanen et al. propose an approach for In-
stance Based Learning (IBL) and apply it to the naive Bayes classifier. This
approach is based on the Bayesian model averaging principle (Hoeting et al.,
1998). They accept the Bayesian network in Figure 6.1 plus an assumption
equivalent to the Dirichlet assumption as appears in (Heckerman et al., 1995).

More concretely, they define θi,v,c =
φi,v,c

αc
and arrive to the conclusion that if

we accept a Dirichlet prior for α. and for each θi,.,c, that is if (α1, . . . , α#C) ∼
Di(µ1, . . . , µ#C) and (θi,1,c, . . . , θi,#Ai,c) ∼ Di(σi,1,c, . . . , σi,#Ai,c) where µc,
σi,v,c are the prior hyperparameters, then the classifier resulting from apply-
ing Bayesian model averaging can be represented as a naive Bayes with the
following softened approximation of αc, φi,v,c (Kontkanen et al., 1998):

αc =
NC(c) + µc∑

c′∈C

(NC(c′) + µc′)
(6.6)

φi,v,c =
Ni,C(v, c) + σi,v,c

NC(c) +
∑

v′∈Ai

σi,v′,c

αc (6.7)

Kontkanen’s work sheds some light on why “softening” improves accuracy and
shows that accuracy can be further improved if the “softening” has a theoretically
well founded basis.

In spite of pointing in the right direction, in our opinion, Kontkanen et al.
disregard the fact that the application of the Dirichlet assumption assumes a
certain causal meaning in the direction of the edges in a Bayesian network. In
fact, applying the same assumption to any of the Bayesian networks in Figure
6.2, which encode the same set of conditional independences, will provide a
different result. In addition to that, the situation allows for the application
of the principle of indifference. First enunciated by Bernoulli and afterwards
advocated for by Laplace, Jaynes and many others (Jaynes, 1996), the principle
of indifference, also known as the principle of insufficient reason tell us that if
we are faced with a set of exhaustive, mutually exclusive alternatives and have
no significant information that allow us to differentiate any one of them, we
should assign all of them the same probability. As has been demonstrated in
(Jaynes, 1996) and in (Bernardo, 2003), the principle of indifference can be seen
as a special case of the more general objective Bayesian techniques of maximum
entropy and reference analysis.

In the following section we show that accepting the naive Bayes model as
defined above, it is possible to find a family of probability distributions that is
conjugate to the model and that allows for a closed calculation of the Bayesian
model averaging. After that we see that the principle of indifference suggests
that the prior to be used is in this family of distributions. We will see that under
this setting an additional relationship between the hyperparameters appears that
has not been noticed in (Kontkanen et al., 1998).

60 Chapter 6. The Indifferent Bayesian Classifier

6.2 Naive distributions

In this section we introduce naive distributions which are a family of probability
distributions over the set of naive Bayes models and show that they have two
key characteristics:

• They allow for the tractable averaging of naive Bayes models in order to
compute the probability of an unseen example.

• They are conjugate to the naive Bayes model, hence allowing to be learned
from data.

A naive distribution over a classified discrete domain ΩC is defined by a hy-
perparameter set N′ = {N ′

i,C(v, c)|1 ≤ i ≤ n; v ∈ Ai; c ∈ C} that fulfills the
following condition: Defining N ′

C(c) as

N ′
C(c) =

∑

v∈A0

N ′
0,C(v, c) (6.8)

N′ should fulfill

∀i N ′
C(c) =

∑

v∈Ai

N ′
i,C(v, c) (6.9)

We will say that P (M |ξ) follows a naive distribution with hyperparameter set
N′ if and only if the probability for a concrete naive Bayes model comes given
by

P (M |ξ) = K
∏

c∈C

αc
N ′

C(c)
n∏

i=1

∏

v∈Ai

(
φv,i,c

αc

)N ′
i,C(v,c)

(6.10)

where K is a normalization constant defined by:

K =

Γ

(
N ′ + #C · [

n∑
i=1

(#Ai) − n + 1] + 1

)

∏
c∈C

Γ

(
N ′

C(c) +
n∑

i=1

(#Ai) − n + 1

)
∏

c∈C

n∏

i=1

Γ (N ′
C(c) + #Ai)

∏
v∈Ai

Γ
(
N ′

i,C(v, c) + 1
)

(6.11)

We should remember that the parameterization of the naive Bayes classifier
depends only on Φ = {φi,v,c|1 ≤ i ≤ n; v ∈ Ai; c ∈ C} because ∀c ∀i αc =∑
u∈Ai

φi,u,c. Naive distributions are a hyper Markov law in the sense of (Dawid

and Lauritzen, 1993), for the Markov network in Figure 6.3.

6.2.1 Calculating probabilities with naive distributions

Assume that our data is generated by a naive Bayes model and that P (M |ξ)
follows a naive distribution with hyperparameter set N′. We can calculate the

6.3. The Indifferent Naive Bayes Classifier 61

probability of an observation S, sC given ξ by averaging over the set of naive
Bayes models

P (V = S, C = sC |ξ) =

∫

M∈M

P (V = S, C = sC |M)P (M |ξ) (6.12)

Solving the integral we have that

P (V = S, C = sC |ξ) = K′

(
N ′

C(sC) + 1 +

n∑

i=1

#Ai − n

)
n∏

i=1

N ′
i,C(si, sC) + 1

N ′
C(sC) + #Ai

(6.13)
and that

P (C = sC |V = S, ξ) = K′′

(
N ′

C(sC) + 1 +
n∑

i=1

#Ai − n

)
n∏

i=1

N ′
i,C(si, sC) + 1

N ′
C(sC) + #Ai

(6.14)
where K′ and K′′ are normalization constants given by:

K′′ =
1

∑
c∈C

[(
N ′

C(c) + 1 +
n∑

i=1

#Ai − n

)
n∏

i=1

N ′
i,C(si,c)+1

N ′
C(c)+#Ai

] (6.15)

K′ = K′′P (V = S|ξ) (6.16)

The development for this result can be found in section A.2

6.2.2 Learning with naive distributions

Given that our data is generated by a naive Bayes model, that P (M |ξ) fol-
lows a naive distribution with hyperparameter set N′ and that D is a dataset
containing independent identically distributed complete observations over a clas-
sified discrete domain ΩC , the posterior probability over models given D and ξ
,P (M |D, ξ), follows a naive distribution with hyperparameter set N′∗ where:

N ′∗
i,C(v, c) = Ni,C(v, c) + N ′

i,C(v, c) (6.17)

The development for this result can be found in section A.3.

6.3 The Indifferent Naive Bayes Classifier

In the case of naive Bayes models, the principle of indifference tells us that, in
the lack of better information, we should assign an equal probability to every
naive Bayes model, that is

∀M ∈ M p(M |ξ) = Q (6.18)

62 Chapter 6. The Indifferent Bayesian Classifier

where Q is a constant. Analyzing equation 6.10, we can see that a naive distri-
bution having

N′ = {N ′
i,C(v, c) = 0|1 ≤ i ≤ n; v ∈ Ai; c ∈ C} (6.19)

assigns an equal probability to every naive Bayes model.

indifferentnb is defined by accepting the prior probability distribution
over the set of models to follow a naive distribution with parameter set N′ given
by 6.19, using the result in section 6.2.2 to calculate the posterior and using the
result in section 6.2.1 to predict once the posterior is calculated.

It is easy to see that the classifier can be represented by a naive Bayes model
that uses the following softened approximations:

αc =

NC(c) + 1 +
n∑

i=1

#Ai − n

∑
c′∈C

(NC(c′) + 1 +
n∑

i=1

#Ai − n)
(6.20)

φi,v,c =
Ni,C(v, c) + 1

NC(c) + #Ai

αc (6.21)

Comparing these results with the ones from (Kontkanen et al., 1998) shown in
equations 6.6,6.7 it is worth noticing the following two facts:

• In (Kontkanen et al., 1998), Kontkanen et al. assume a Dirichlet prior
distribution with a set of hyperparameters that have to be fixed at some
point in time. This means that a methodological usage of that classifier
requires an assessment of the prior hyperparameters for each dataset in
which we would like to apply it. Instead, we have used the principle of
indifference to obtain a prior without information about the dataset besides
the number of attributes and the cardinality of its attributes and class.

• In equations 6.6 and 6.7 the hyperparameters µ. and σi,.,c, for α. and
θi,.,c are not related. Instead, in our approach there is a link between the
softening parameters, because the value of αc in equation 6.20, depends
not only on the number of classes but also on the number of attributes, n,
and on the number of values of each attributes, #Ai, and the value of θi,v,c

in equation 6.21, depends also on the number of values of the attribute,
#Ai.

Furthermore, assuming a naive distribution is compatible with any of the differ-
ent Bayesian networks encoding the independence assumptions in a naive Bayes
model and provides the same result for all of them, because no additional causal
information is assumed from the direction of the edges in the network. The
experimental results in the next section show that these facts lead to a better
approximation of the probabilities of the different classes when classifying.

6.4. Experimental results 63

6.4 Experimental results

We tested three algorithms over 17 datasets from the Irvine repository (Blake
et al., 1998). To discretize continuous attributes we used equal frequency dis-
cretization with 5 intervals. For each dataset and algorithm we tested both error
rate and LogScore. LogScore is calculated by adding the minus logarithm of
the probability assigned by the classifier to the correct class and gives an idea
of how well the classifier is estimating probabilities (the smaller the score the
better the result). If we name our test set D′ we have

LogScore(M,D′) =
∑

(S,sC)∈D′

− log(P (C = sC |V = S, M)) (6.22)

We used 10 fold cross validation, and for each fold we ran the algorithms with
the complete learning fold, with a random sample of 50% of the data in the
learning fold and with a random sample of 10% of the data in the learning
fold and then measured error rate and LogScore against the test fold. This is
done because the three methods converge to the same model given enough data.
Hence, comparing them when the size of the training data is small can provide
us with good insight on how they differentiate.

The error rates appear in tables 6.2, 6.4 and 6.6, with the best method for
each dataset boldfaced. LogScore’s appear in tables 6.3, 6.5 and 6.7. The
columns of the tables are the induction methods and the rows are the datasets.
The meaning of the column headers are:

• mlnb is the standard naive Bayes algorithm using frequencies as probabil-
ity estimates, as shown in equations 6.4 and 6.5.

• bibl is the algorithm appearing in (Kontkanen et al., 1998) and shown in
equations 6.6 and 6.7 and fixing the hyperparameters to get uniform prior
probability distributions.

• indifferentnb is the Indifferent Naive Bayes as described in equations
6.20 and 6.21.

6.4.1 Dataset description

In order to ease the interpretation of the results, we provide a short presentation
of each of the datasets used for the comparison. They were randomly selected
from the UCI repository. In table 6.1 we provide a short summary of its main
characteristics. The datasets used were:

adult This data was extracted from the census bureau database. Prediction
task is to determine whether a person makes over 50K a year. 48842
instances, mix of continuous and discrete attributes.

australian Australian Credit Approval. This data is very similar to the crx
dataset but:

64 Chapter 6. The Indifferent Bayesian Classifier

• missing values have been replaced with the medians, which is unfair
to the algorithms that can deal with missing data well. Replacing an
attribute by its mean/median value is known to be one of the poorest
methods of handling missing values.

• attribute 4 is removed (in the entire dataset atts 4 and 5 were com-
pletely correlated)

• discrete attribute values are numbered in increasing likelihood of be-
ing class +.

690 instances, mix of continuous and discrete attributes.

breast Wisconsin Breast Cancer Database (January 8, 1991). Each instance
has one of 2 possible classes: benign or malignant. 699 instances, all the
attributes are continuous.

car Marko Bohanek car dataset. Prediction task is to determine a car accept-
ability in an ordinal scale (unacc, acc, good, v-good).1728 instances, all
attributes are discrete.

chess Chess End-Game – King+Rook versus King+Pawn on a7. The pawn on
a7 means it is one square away from queening. It is the King+Rook’s side
(white) to move. Prediction task is to determine whether White-can-win
(”won”) and White-cannot-win (”nowin”). It is assumed that White is
deemed to be unable to win if the Black pawn can safely advance. 3196
instances, all attributes discrete.

cleve Dr. Detrano’s database modified by Brian Frasca (6/13/94) - Last at-
tribute deleted to give a two-class problem as suggested by Holte. Pre-
diction task is to determine whether the patient is healthy or sick. 303
instances, mix of continuous and discrete attributes.

crx This dataset concerns credit card applications. All attribute names and
values have been changed to meaningless symbols to protect confidentiality
of the data. 690 instances, mix of continuous and discrete attributes.

flare Solar flare database (UCI flare.data1). 323 instances, all the attributes
are discrete.

glass Glass Identification Database. The study of classification of types of glass
was motivated by criminological investigation. At the scene of the crime,
the glass left can be used as evidence if it is correctly identified. 214
instances, mix of continuous and discrete attributes.

glass2 Glass Identification Database. Removed first attribute, combined classes
1 and 3, and removed classes 4 through 7 as suggested by Holte. This turns
the problem into predicting whether the window was float processed or not.
Because classes 4-7 were deleted, there are less instances than in glass. 163
instances, all attributes continuous.

6.4. Experimental results 65

iris Iris Plants Database. Predicted attribute: class of iris plant. 150 instances,
all attributes are continuous.

letter Letter Image Recognition Data. The objective is to identify each of a
large number of black-and-white rectangular pixel displays as one of the
26 capital letters in the English alphabet. 20000 instances, all attributes
are discrete with values 0..15.

liver BUPA liver disorders. The first 5 variables are all blood tests which are
thought to be sensitive to liver disorders that might arise from excessive
alcohol consumption. Each instance constitutes the record of a single male
individual. 345 instances, all attributes continuous.

nursery Nursery database was derived from a hierarchical decision model origi-
nally developed to rank applications for nursery schools. It was used during
several years in 1980’s when there was excessive enrollment to these schools
in Ljubljana, Slovenia, and the rejected applications frequently needed an
objective explanation. The final decision depended on three subproblems:
occupation of parents and child’s nursery, family structure and financial
standing, and social and health picture of the family. 12960 instances, all
attributes discrete.

primary-tumor Primary Tumor Domain. This primary tumor domain was
obtained from the University Medical Centre, Institute of Oncology, Ljubl-
jana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing
the data. 339 instances, all attributes discrete.

soybean Large Soybean Database. 683 instances, all attributes discrete.

votes Voting records drawn from the Congressional Quarterly Almanac, 98th
Congress, 2nd session 1984, Volume XL: Congressional Quarterly Inc.
Washington, D.C., 1985. This data set includes votes for each of the
U.S. House of Representatives Congressmen on the 16 key votes identi-
fied by the CQA. The prediction task is determining whether the voter is
democrat or republican. 435 instances, all attributes discrete.

6.4.2 Interpretation of the results

The conclusions that are drawn from the statistical significance analysis of all
the numbers in tables 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 are the following:

• Error rate results are similar for the three algorithms, being the only rele-
vant difference that bibl seems to improve mlnb significantly when using
10% of the learning data whilst mlnb improves slightly bibl with 100% of
the learning data.

• Both bibl and indifferentnb have a better LogScore than mlnb.

66 Chapter 6. The Indifferent Bayesian Classifier

Dataset Attributes Instances Classes Missing

adult 14 48842 2 some

australian 15 690 2 none

breast 10 699 2 16

car 6 1728 4 none

chess 36 3196 2 none

cleve 13 303 2 some

crx 15 690 2 few

flare 10 1063 8 none

glass 10 214 7 none

glass2 9 163 2 none

iris 4 150 3 none

letter 16 20000 26 none

liver 7 345 2 none

nursery 8 12960 5 no

primary-tumor 18 339 22 some

soybean 35 683 19 some

votes 16 435 2 few

Table 6.1: Datasets information

• indifferentnb has a better LogScore than both bibl when using less
than 100% of the learning data.

In the following we illustrate each point separately.

Error rate comparison

We can see the results of the statistical significance t-test at 5% in table 6.8.
The columns are the amount of training data used and the rows the algorithms
compared. If we are looking at the row that contains the comparison indiffer-

entnb vs. bibl, the entry at column 10% means that, when using 10% of the
training data, indifferentnb provided 4 times a result better than bibl in a
statistically significant way whilst bibl provided 5 times a result better than
indifferentnb in a statistically significant way.

Looking a the first row, bibl has slightly better results than indifferentnb

when 100% of the training data is not used. The same can be said, in this case
favoring indifferentnb when comparing indifferentnb with mlnb. Compar-
ing bibl with mlnb, we see that bibl improves error rate in a relevant number
of datasets when 10% of the learning data is used, and that using 100% of the
learning data mlnb slightly improves bibl.

LogScore comparison

In table 6.9 we can see the statistical significance results for LogScore. From
there we can easily conclude that both indifferentnb and bibl improve sig-
nificantly mlnb LogScore in most of the cases. It can also be seen that indif-

ferentnb improves significatly bibl LogScore with 10% of the learning data,
that this improvement is not so relevant when using 50% of the learning data
and that with 100% both classifiers improve the other in the same number of
datasets. The dominance of indifferentnb over bibl and mlnb in LogScore
can be seen in figures 6.4 and 6.5. It is worth noticing that whilst indiffer-

entnb consistently and significantly improves LogScore, this improvement, in
general, does not translate into a clear improvement of the error rate. This can

6.4. Experimental results 67

Dataset BIBL IndifferentNB MLNB

adult 18.66 ± 0.75 18.92 ± 0.73 18.76 ± 0.73

australian 17.25 ± 0.88 15.97 ± 0.76 20.84 ± 0.86

breast 3.00 ± 0.45 3.15 ± 0.52 3.43 ± 0.52

car 20.05 ± 0.49 20.35 ± 0.67 19.75 ± 0.55

chess 15.54 ± 0.78 15.58 ± 0.78 15.44 ± 0.79

cleve 22.18 ± 0.83 20.78 ± 1.00 27.35 ± 1.04

crx 17.01 ± 1.03 15.59 ± 0.85 21.08 ± 1.04

flare 23.77 ± 1.15 26.21 ± 1.16 24.72 ± 1.12

glass 41.69 ± 2.01 40.99 ± 2.01 73.23 ± 2.65

glass2 34.68 ± 1.64 34.74 ± 1.56 35.78 ± 1.58

iris 16.13 ± 1.55 16.27 ± 1.59 16.13 ± 1.96

letter 31.18 ± 1.27 33.36 ± 1.23 32.07 ± 1.24

liver 44.07 ± 1.69 44.13 ± 1.73 44.26 ± 1.67

nursery 10.56 ± 1.09 10.36 ± 1.10 10.52 ± 1.09

primary-tumor 68.14 ± 1.74 69.66 ± 1.56 79.75 ± 0.94

soybean 28.78 ± 1.22 36.19 ± 1.05 61.60 ± 1.59

votes 10.66 ± 0.81 10.46 ± 0.70 10.06 ± 1.12

Table 6.2: Averages and standard deviations of error rate using 10% of the
learning data

Dataset BIBL IndifferentNB MLNB

adult 686.00 ± 4.50 678.89 ± 4.70 778.00 ± 5.56

australian 17.91 ± 0.80 14.21 ± 0.64 67.36 ± 1.88

breast 8.46 ± 0.86 4.85 ± 0.43 35.55 ± 2.21

car 32.90 ± 0.93 37.95 ± 0.80 65.95 ± 2.54

chess 47.23 ± 1.02 47.67 ± 1.01 52.90 ± 1.73

cleve 10.42 ± 0.90 7.49 ± 0.72 61.53 ± 2.45

crx 18.07 ± 0.83 14.65 ± 0.66 65.84 ± 2.15

flare 47.17 ± 1.18 44.15 ± 1.18 176.33 ± 3.43

glass 17.44 ± 1.31 10.84 ± 0.99 247.44 ± 6.97

glass2 9.04 ± 0.88 5.63 ± 0.49 63.53 ± 3.05

iris 3.09 ± 0.84 2.65 ± 0.58 18.31 ± 2.77

letter 1505.51 ± 9.10 1258.11 ± 8.10 3727.18 ± 14.95

liver 16.43 ± 1.04 12.57 ± 0.68 64.21 ± 3.03

nursery 154.84 ± 2.75 167.21 ± 2.76 157.51 ± 3.16

primary-tumor 56.34 ± 2.11 41.59 ± 1.48 352.69 ± 4.48

soybean 87.18 ± 1.96 81.72 ± 1.91 812.12 ± 8.39

votes 13.54 ± 1.06 12.23 ± 1.08 40.28 ± 2.38

Table 6.3: Averages and standard deviations of LogScore using 10% of the
learning data

Dataset BIBL IndifferentNB MLNB

adult 18.47 ± 0.76 18.55 ± 0.79 18.50 ± 0.77

australian 14.81 ± 0.52 14.20 ± 0.49 15.13 ± 0.57

breast 2.55 ± 0.37 2.66 ± 0.26 3.20 ± 0.52

car 15.53 ± 0.97 14.73 ± 1.03 15.43 ± 0.96

chess 13.01 ± 0.63 13.05 ± 0.64 12.94 ± 0.60

cleve 17.90 ± 1.15 17.50 ± 1.25 18.82 ± 1.22

crx 14.57 ± 0.68 14.28 ± 0.57 15.42 ± 0.84

flare 23.85 ± 0.56 25.17 ± 0.72 24.64 ± 0.53

glass 21.26 ± 1.56 22.61 ± 1.89 20.84 ± 1.31

glass2 25.96 ± 1.76 25.12 ± 1.60 26.32 ± 1.77

iris 11.60 ± 0.95 12.27 ± 0.73 10.53 ± 1.17

letter 25.74 ± 1.00 27.31 ± 1.05 25.41 ± 0.97

liver 37.92 ± 1.08 38.32 ± 1.16 37.98 ± 1.13

nursery 9.75 ± 0.99 9.68 ± 0.99 9.75 ± 0.99

primary-tumor 55.67 ± 1.52 57.09 ± 1.71 58.63 ± 1.44

soybean 10.65 ± 0.33 12.84 ± 0.49 7.84 ± 1.06

votes 9.93 ± 0.60 10.11 ± 0.58 9.35 ± 0.65

Table 6.4: Averages and standard deviations of error rate using 50% of the
learning data

68 Chapter 6. The Indifferent Bayesian Classifier

Dataset BIBL IndifferentNB MLNB

adult 665.65 ± 4.17 665.22 ± 4.16 672.95 ± 4.41

australian 13.89 ± 0.45 13.30 ± 0.38 19.23 ± 1.28

breast 9.89 ± 0.57 7.17 ± 0.41 25.58 ± 1.45

car 25.23 ± 0.63 26.10 ± 0.61 24.56 ± 0.63

chess 41.62 ± 0.47 41.84 ± 0.46 42.33 ± 0.58

cleve 6.84 ± 0.68 6.51 ± 0.63 10.08 ± 1.17

crx 14.20 ± 0.28 13.25 ± 0.29 23.81 ± 1.67

flare 41.94 ± 0.86 42.39 ± 0.74 79.69 ± 2.18

glass 6.53 ± 0.70 5.86 ± 0.58 34.10 ± 2.09

glass2 5.13 ± 0.65 4.68 ± 0.58 6.23 ± 1.04

iris 1.57 ± 0.42 1.62 ± 0.38 2.55 ± 0.78

letter 1046.21 ± 7.69 1042.07 ± 7.07 1281.05 ± 10.57

liver 9.96 ± 0.44 9.81 ± 0.43 10.72 ± 0.41

nursery 148.02 ± 2.86 150.24 ± 2.87 148.20 ± 2.83

primary-tumor 35.05 ± 0.90 31.56 ± 0.89 145.12 ± 3.76

soybean 23.17 ± 0.96 25.62 ± 0.77 24.37 ± 2.05

votes 12.30 ± 0.31 12.15 ± 0.38 16.79 ± 1.36

Table 6.5: Averages and standard deviations of LogScore using 50% of the
learning data

Dataset BIBL IndifferentNB MLNB

adult 18.48 ± 0.71 18.52 ± 0.73 18.50 ± 0.71

australian 14.67 ± 0.56 14.52 ± 0.57 14.49 ± 0.52

breast 2.69 ± 0.33 2.63 ± 0.26 2.80 ± 0.27

car 14.51 ± 0.37 13.69 ± 0.49 14.35 ± 0.44

chess 12.16 ± 0.34 12.16 ± 0.33 12.15 ± 0.33

cleve 16.73 ± 0.87 16.33 ± 0.70 17.58 ± 0.76

crx 14.46 ± 0.39 14.25 ± 0.33 14.72 ± 0.47

flare 24.54 ± 0.38 24.74 ± 0.33 24.50 ± 0.42

glass 17.33 ± 1.14 20.14 ± 1.38 15.88 ± 0.78

glass2 23.82 ± 1.21 23.70 ± 1.12 23.82 ± 1.21

iris 11.33 ± 1.09 11.60 ± 1.04 11.33 ± 1.06

letter 25.18 ± 0.95 26.27 ± 1.03 24.94 ± 0.92

liver 37.99 ± 0.90 38.04 ± 0.87 37.99 ± 0.90

nursery 9.80 ± 0.99 9.75 ± 1.00 9.78 ± 0.99

primary-tumor 51.71 ± 1.16 53.12 ± 0.98 54.91 ± 1.09

soybean 9.19 ± 0.47 9.89 ± 0.49 5.22 ± 0.49

votes 9.83 ± 0.44 9.93 ± 0.33 9.65 ± 0.46

Table 6.6: Averages and standard deviations of error rate using 100% of the
learning data

Dataset BIBL IndifferentNB MLNB

adult 666.72 ± 4.13 666.61 ± 4.12 669.36 ± 4.22

australian 12.95 ± 0.35 12.83 ± 0.33 13.34 ± 0.70

breast 9.54 ± 0.26 7.96 ± 0.23 16.41 ± 0.27

car 24.33 ± 0.30 24.68 ± 0.29 23.98 ± 0.30

chess 40.61 ± 0.29 40.72 ± 0.27 40.73 ± 0.77

cleve 6.48 ± 0.28 6.32 ± 0.28 8.47 ± 0.66

crx 13.09 ± 0.24 12.84 ± 0.23 15.26 ± 0.93

flare 40.61 ± 0.65 41.61 ± 0.52 61.61 ± 1.70

glass 4.18 ± 0.56 4.50 ± 0.53 11.85 ± 1.08

glass2 4.14 ± 0.38 4.02 ± 0.36 4.18 ± 0.39

iris 1.69 ± 0.38 1.62 ± 0.30 3.62 ± 0.85

letter 987.71 ± 7.18 999.45 ± 7.13 1080.25 ± 8.16

liver 9.30 ± 0.34 9.28 ± 0.33 9.31 ± 0.35

nursery 147.14 ± 2.83 148.24 ± 2.84 147.85 ± 2.77

primary-tumor 30.11 ± 0.56 28.55 ± 0.35 83.66 ± 1.08

soybean 21.17 ± 0.60 24.39 ± 0.56 9.96 ± 1.01

votes 12.06 ± 0.52 11.98 ± 0.47 12.38 ± 0.88

Table 6.7: Averages and standard deviations of LogScore using 100% of the
learning data

6.4. Experimental results 69

Figure 6.4: Comparison of indifferentnb and mlnb LogScore

70 Chapter 6. The Indifferent Bayesian Classifier

Figure 6.5: Comparison of indifferentnb and bibl LogScore

6.5. Summary 71

be seen as an example of the already known fact (Devroye et al., 1996) that a
good classifier does not need to correctly approximate the class probabilities and
that classification is easier than regression function estimation. In spite of that,
when using a learning algorithm, many times the user needs a good estimate of
the class probabilities (the setting is closer to density estimation than to classifi-
cation). This is the case, for example, in one of the most successful practical uses
of learning algorithms, that is predicting the response to a marketing campaign.

Classifiers compared 10 % 50% 100%

indifferentnb vs. bibl 4 - 5 5 - 7 5 - 5

indifferentnb vs. mlnb 7 - 4 8 - 6 5 - 5

bibl vs. mlnb 10-2 7 - 5 2 - 6

Table 6.8: Error rate statistical significance results at 5%

Classifiers compared 10 % 50% 100%

indifferentnb vs. bibl 14 - 3 9 - 4 7 - 7

indifferentnb vs. mlnb 16 - 1 13 - 2 11 - 2

bibl vs. mlnb 16-0 14 - 1 12 - 2

Table 6.9: LogScore statistical significance results at 5%

6.5 Summary

We have developed indifferentnb, the Indifferent Naive Bayes classifier, by
accurately defining the naive Bayes model based on its conditional independence
assumptions and calculating a conjugate distribution for the set of models. We
have used the principle of indifference to define the prior distribution. While
the objective of the development was mainly theoretical we have seen that the
development leads to improvements in the quality of the probabilities assigned to
the class, specially when only small amounts of data are available. An interesting
possibility for the future is providing indifferentnb with the possibility of
handling unknown values.

Recently, Dash and Cooper have proposed a different method for averaging
naive Bayes classifiers (Dash and Cooper, 2002). Empirically comparing this
method with indifferentnb remains as future work.

72 Chapter 6. The Indifferent Bayesian Classifier

Higher Accuracy

Smaller Complexity

Higher Interpretability

BIBL

MLNB

IndifferentNB

Figure 6.6: Relative positioning of the indifferentnb with respect to mlnb

and bibl

We have tried to summarize in Figure 6.6 the interpretation of the results
in this chapter in terms of the three dimensional space for classifiers defined in
the introduction. There we can see that bibl improves naive Bayes accuracy
and that indifferentnb improves accuracy over both naive Bayes and bibl.
In this case, these improvements come at no cost neither in complexity nor in
understandability.

Chapter 7

Empirical Local Bayesian

model averaging of TAN

classifiers

A poet’s hope: to be,
like some valley cheese,
local, but prized elsewhere.

W. H. Auden (1907 - 1973), Collected Poems

In the previous chapter we have seen that the independence assumptions
under the naive Bayes model can be clearly stated, that we can account for
model uncertainty under the assumption that a naive Bayes model is generating
the data and the benefits that these two facts provide. In the next three chapters
we present our effort to improve Tree Augmented Naive Bayes (TAN). Already
introduced in chapter 3, TAN has shown to be competitive with state-of-the-
art machine learning algorithms (Friedman et al., 1997). However, the TAN
induction algorithm that appears in (Friedman et al., 1997) (and presented as
well in section 3.4.1) can be improved in two ways.

The first way in which TAN can be improved is by noticing that the algorithm
in section 3.4.1 does not account for model uncertainty and providing a solution
for this problem. As was presented in section 3.5, from the point of view of
probability theory, the way to deal with model uncertainty is through Bayesian
model averaging. We have developed three alternative solutions for applying
Bayesian model averaging to TAN models:

73

74 Chapter 7. Empirical Local Bayesian model averaging of TAN classifiers

• In this chapter we will show that we can account for model uncertainty by
selecting a small set of TAN structures in a neighborhood of the maximum
likelihood TAN structure and empirically evaluating the probability of each
structure from the sample. This results in more accurate predictions than
the ones coming from the maximum likelihood TAN structure alone at
the cost of increasing both the learning time and the classification time
complexity.

• In chapter 8 we will see that for a concrete family of distributions over the
set of models, named decomposable distributions over TANs, it is possible
to calculate the result of the Bayesian model averaging in polynomial time.
The development in chapter 8 is parallel to the one already presented in
chapter 6 for naive Bayes. The result provided in chapter 8 provides the op-
timal way (from a Bayesian perspective) to account for model uncertainty
when learning TAN. This comes at the cost of increasing considerably the
classification time complexity.

• Finally, in chapter 9 we will see that decomposable distributions over TANs
allow us to refine the algorithm presented in this chapter because they have
the property of making efficiently computable the k TAN structures with
maximum a posteriori probability, providing a considerable improvement
in the learning time complexity associated with the algorithm, a slight
improvement in accuracy and a better founded theoretical basis.

The second way in which TAN can be improved has as starting point a fact
that was noted in section 3.4.1. There, we described that the usage of equation
3.9 to fix the parameters, instead of the maximum likelihood parameters given
by equation 3.8, improves the accuracy of the classifier. This fact is somewhat
puzzling and in our opinion, no theoretical justification was given for it. Further-
more, if the usage of the maximum likelihood principle for fixing the parameters
can be improved by softening, possibly its usage in the determination of the
best TAN structure can also be improved. From a Bayesian point of view, when
forced to choose a model we should select the one which better represents the
results of the BMA. If the posterior distribution over models is well behaved,
we can select the model with maximum posterior probability, which is usually
known as maximum a posteriori or MAP. In chapter 9 we prove that under de-
composable distributions it is possible to efficiently calculate the MAP structure
and parameters. The algorithm for finding the MAP structure and parameters
presented in chapter 9 has a reduced error rate and in our opinion is theoretically
better founded than stan.

7.1 Local Bayesian model averaging for TAN in-

duction

In this section we provide a solution to the first of the two problems of the TAN
learning algorithm as shown in (Friedman et al., 1997), namely that the algo-

7.1. Local Bayesian model averaging for TAN induction 75

rithm ignores uncertainty in model selection. Bayesian model averaging (BMA)
(Hoeting et al., 1998) provides a coherent mechanism for accounting for uncer-
tainty in modeling. We have already introduced Bayesian model averaging in
section 3.5. In this section we introduce local Bayesian model averaging (LBMA),
a practical way of implementing BMA. After that, we see how LBMA can be
applied in the case of TAN models.

7.1.1 Local Bayesian model averaging

As seen in section 3.5, BMA is how probability theory tell us we should act when
faced with the problem of choosing between a set of different non-intersecting
models. More formally, assuming ξ represents the hypothesis that the model
underlying the data (M) is known to be in M we have that:

P (C = sC |D,V = S, ξ) =

∫

M∈M

P (C = sC |M,V = S)P (M |D, ξ) (7.1)

Given a model M , the probability of a classified observation, P (V = S, C =
sC |M), is usually known. In order to apply equation 7.1 we have to develop
P (M |D, ξ) into more detail. By Bayes theorem we have that

P (M |D, ξ) =
P (D|M)P (M |ξ)∫

M ′∈M

P (D|M ′)P (M ′|ξ)
(7.2)

Here P (M |ξ) is the prior probability of M , that is, our belief before seeing the
data in D that M is the model generating the data. P (D|M) is the probability
that model M generates the data in D. The application of BMA in learning al-
gorithms presents some problems, coming from the computational cost of calcu-
lating equation 7.1 by numerical integration when no closed form for the integral
is available. In order to handle this problem, we propose LBMA, an heuristic
approach to approximate BMA. The idea is similar in spirit to the Occam’s Win-
dow method described in (Hoeting et al., 1998; Madigan and Raftery, 1994). To
apply LBMA we should have an heuristic h(M,D) such that

h(M,D) ≈ P (M |D) (7.3)

In order to approximate the summation in equation 7.1, and given that we
have h(M,D), we can define our set of interesting models M′ as:

M′ = {M ∈ M|h(M,D) ≥ γ} (7.4)

γ represents a compromise between the prediction accuracy and its computa-
tional cost. It should be big enough to make #M′ � #M (sometimes M′

will be finite and M infinite, but we will use the integral sign generically in our
development). It (γ) should be small enough in order for

P (M |D) ≈ P ′(M |D) =
P (D|M)P (M |ξ)∫

M ′∈M′

P (D|M ′)P (M ′|ξ)
(7.5)

76 Chapter 7. Empirical Local Bayesian model averaging of TAN classifiers

and

P (V = S, C = sC |D, ξ) ≈

∫

M∈M′

P (V = S, C = sC |M)P ′(M |D, ξ) (7.6)

to be accurate approximations.
It is interesting to note that maximum likelihood prediction is a concrete

case of LBMA where h(M,D) = P (D|M) and γ is implicitly set in order for M′

to contain only a single model. We describe LBMA algorithmically in algorithm
6, assuming M′ is finite, to ease its understanding. The algorithm calculates a
weighted set of models. Once it has calculated it, we can use it to classify by
calculating equation 7.6 (where the integral is substituted by a summation) for
each class and choosing the class with higher probability.

Empirical local Bayesian model averaging

In algorithm 6, we can see that the computation of the probability of the dataset
given the model is done by calling a function named CalculateProb(D, M). If
we have a closed form expression for this function we will code CalculateProb

specifically for the model we are averaging. Otherwise, we can empirically
calculate its value as can be seen in algorithm 7. Whenever we compute
CalculateProb as in algorithm 7 we will say that we are using empirical lo-
cal Bayesian model averaging or ELBMA.

7.1.2 Empirical local Bayesian model averaging of TAN

models

In this section we demonstrate the application of ELBMA to the case of TAN
induction. For this concrete case, our class of models M is

M = {〈E
∗
, ΘE

∗〉|E
∗
∈ E

∗
, ΘE

∗ ∈ Parameters(E
∗
)} (7.7)

where we remind that E
∗

is the set of all TAN structures and ΘE
∗ defined as in

section 3.4.
We perform a first reduction of M accepting the use of the results in equation

3.8 or equation 3.9 depending on whether we decide to use the maximum likeli-
hood principle or the ad hoc adjustment proposed in (Friedman et al., 1997) to
fix the network parameters. In any case, we will only average over the structures,
fixing the parameters by using the corresponding equation in each case.

Our heuristic over structures will be given by the function Construct-TAN

that can be seen in algorithm 1, just modifying the step where a maximum
weight spanning tree (MWST) is induced, to generate a set containing the k
MWSTs. The problem of computing the k MWSTs in order is well known
and different algorihtm with different time complexities have been provided.
In (Katoh et al., 1981) it is demonstrated that the problem can be solved in
O((log(β(n2, n))+k) ·n2) time for a complete graph, where β(m, n) is defined to

7.1. Local Bayesian model averaging for TAN induction 77

procedure LBMA-Main (Dataset D,Real γ,Heuristic h)
var

WeightedSetOfModels Result;
begin

Calculate M′ using h and γ;
return LBMA(D,M′);

end

procedure LBMA (Dataset D,SetOfModels M′)

var
WeightedSetOfModels Result;
ProbabilityDistribution P ′;

begin
foreach M ∈ M′

P ′(M) = CalculateProb(D, M) * P (M |ξ);
end
Normalize P ′(M);
Result = {(M, P ′(M))|M ∈ M′};
return Result;

end

Algorithm 6: Local Bayesian model averaging

/* Calculates P (D|M) */

procedure CalculateProb (Dataset D,ProbabilisticModel M)

var
Real PM;

begin
PM = 1;

foreach (S, sC) ∈ D
PM = PM * P (C = sC |M,V = S);

end
return PM;

end

Algorithm 7: Empirical local Bayesian model averaging computation of proba-
bilities

78 Chapter 7. Empirical Local Bayesian model averaging of TAN classifiers

be min{i| log(i) n ≤ m/n} and log(i) x denotes the log function iterated i times.
A simpler algorithm for the same problem with a slightly higher complexity is
provided in (Gabow, 1977). A slightly better time complexity under certain
conditions appears in (Eppstein, 1992)

In order to calculate P ′(M |ξ), we set a prior over tree structures that as-
signs the same probability to each possible tree structure (since they can be
considered of a similar complexity). We also have to know how to calculate
P (C = sC |M,V = S). The expansion of equation 3.1 taking into account the
TAN structure is

P (V = S, C = sC |E
∗
, ΘE

∗) = θC(sC) θρE |C(sρE
, sC)

∏

u,v∈E

θv|u,C(sv, su, sC)

(7.8)
And from here we can easily calculate P (C = sC |M,V = S) as

P (C = sC |M,V = S) =
P (V = S, C = sC |E

∗
, ΘE

∗)
∑
c∈C

P (V = S, C = c|E
∗
, ΘE

∗)
(7.9)

The algorithmic description of the complete ELBMA TAN induction proce-
dure shown in algorithm 8. The algorithm uses the maximum likelihood principle
for determining the best structure and equation 3.9 to fix the parameters. We
will name this learning algorithm stan+bma.

7.1.3 Computational complexity

The computational complexity of the Construct-TAN procedure in algorithm
1 is O((N + r3) · n2) where r = max(max

i∈V
#Ai, #C). For the general ELBMA

procedure appearing in algorithms 6 and 7 the costs are:

Cost(P (C = sC |M,V = S)) = O(n · r)
Cost(CalculateProb) = O(N · n · r)

Cost(LBMA) = O(k · N · n · r)
(7.10)

where k = #M′, and n the number of attributes.
Knowing that:

Cost(Probability Approximation) = Cost(Counting) = O((N + r3) · n2)
Cost(Model Proposal) = O((log(β(n2, n)) + k) · n2)

(7.11)
we have that the total computational cost of the TAN induction algorithm that
appears in algorithm 8 using BMA is

Cost(LBMA-TAN) = Cost(Counting) + Cost(Model Proposal) + Cost(LBMA)
= O(N · n(n + k · r) + [r3 + log(β(n2, n)) + k] · n2)

(7.12)
which can be more easily understood as O(N · n(n + k · r) + (r3 + k) · n2) for
most practical purposes. This means that as long as we keep M′ small, the

7.1. Local Bayesian model averaging for TAN induction 79

procedure LBMA-TAN (Dataset D)

var
ProbabilityDistribution P ∗

D

DirectedGraphSet M′;

begin
Calculate P ∗

D by using equation 3.8;

M′ = Construct-K-TAN(P ∗
D,k);

foreach M ∈ M′

Set the weights of M according to equation 3.9;

end
return LBMA(D,M ′);

end

procedure Construct-K-TAN (ProbabilityDistribution P, Integer k)
var

WeightMatrix IP ;

UndirectedGraph UG;

UndirectedTreeSet UTS;
DirectedTreeSet TS;
DirectedGraphSet M′;

begin
foreach Ai,Aj

Compute IP (Ai; Aj |C) as in Construct-TAN

end
G = ConstructUndirectedGraph(IP);

/* Returns the k maximum weighted spanning trees */

UTS = K-MaximumWeightedSpanningTree(G,k);
TS = MakeDirected(UTS);
M′ = AddClass(TS);
return M′;

end

Algorithm 8: ELBMA TAN learning procedure

80 Chapter 7. Empirical Local Bayesian model averaging of TAN classifiers

computational overhead with respect to Construct-TAN will not be large. It
grows linearly on the number of models and the number of learning instances.

After considering the learning time complexity, we should consider the clas-
sification time complexity. The cost of classifying a new instance with a single
TAN model this is O(n · r). With a multiple TAN model the cost is O(k · n · r).

7.2 Experimental results

7.2.1 Adjusting the algorithm to run

To run the algorithm described in Section 7.1.2, we fixed k to 10. This value
was chosen to show that you do not need to average over a large set of models
in order to improve accuracy. We would like to point that k (and equivalently
γ in the general version of LBMA) can act as an effort knob, in the sense of
(Thearling, 1998), hence providing a useful feature for data mining users that
allows them to decide how much computational power they want to spend in the
task.

7.2.2 Experimental setting

We tested stan and stan+bma over 17 datasets from the Irvine repository
(Blake et al., 1998). The dataset characteristics are described in section 6.4.1.
To discretize continuous attributes we used equal frequency discretization with 5
intervals. For each dataset and algorithm we tested both error rate and LogScore
(as defined in section 6.4). For the evaluation of both error rate and LogScore
we used 10 fold cross validation. We tested the algorithm with the 10%, 50% and
100% of the learning data for each fold, in order to get an idea of the influence
of the amount of data in the behaviors of both error rate and LogScore for the
algorithm.

The error rates appear in tables 7.1,7.3,7.5, with the best method for each
dataset boldfaced. LogScore’s appear in tables 7.2,7.4,7.6. The columns of the
tables are the induction methods and the rows are the datasets. The meaning
of the column headers are:

• stan is the softened TAN algorithm as described in (Friedman et al., 1997)

• stan+bma is the result of applying ELBMA directly to the stan algo-
rithm.

7.2.3 Interpretation of the results

Looking at the tables 7.1 - 7.6 it is easy to see that for most of the datasets,
applying ELBMA improves both error rate and LogScore. Furthermore, after
performing a 5% statistical significance t-test, we have that stan+bma error
rate is significantly better than stan 5, 5 and 6 times with 10%, 50% and 100%
of the learning data respectively, whilst stan error rate is never better than

7.2. Experimental results 81

Dataset sTAN sTAN+BMA

adult 17.60 ± 0.82 17.60 ± 0.80

australian 25.39 ± 1.18 24.96 ± 1.13

breast 8.73 ± 0.87 7.73 ± 0.93

car 19.38 ± 0.95 17.60 ± 0.77

chess 10.89 ± 0.56 10.91 ± 0.53

cleve 32.37 ± 1.00 31.89 ± 1.27

crx 25.14 ± 0.87 24.18 ± 0.98

flare 19.94 ± 0.85 19.92 ± 0.88

glass 59.19 ± 1.78 58.54 ± 1.83

glass2 37.75 ± 1.39 36.63 ± 1.37

iris 25.87 ± 3.07 24.80 ± 2.96

letter 36.11 ± 1.39 34.68 ± 1.37

liver 42.39 ± 0.94 41.24 ± 1.37

nursery 8.88 ± 1.12 8.50 ± 1.12

primary-tumor 71.67 ± 1.54 71.73 ± 1.44

soybean 30.79 ± 1.28 30.82 ± 1.33

votes 14.14 ± 0.93 14.13 ± 0.71

Table 7.1: Averages and standard deviations of error rate using 10% of the
learning data

Dataset sTAN sTAN+BMA

adult 567.09 ± 3.92 567.64 ± 4.00

australian 17.85 ± 0.64 17.06 ± 0.60

breast 8.12 ± 0.69 7.56 ± 0.65

car 38.55 ± 0.91 36.52 ± 0.86

chess 35.39 ± 0.58 35.40 ± 0.59

cleve 8.49 ± 0.74 8.23 ± 0.76

crx 17.84 ± 1.05 16.89 ± 1.00

flare 24332.38 ± 56.59 24332.03 ± 56.59

glass 11713.24 ± 72.91 11713.00 ± 72.91

glass2 4.68 ± 0.57 4.57 ± 0.54

iris 4.04 ± 0.67 3.96 ± 0.70

letter 1385.73 ± 8.95 1300.23 ± 8.38

liver 12.62 ± 0.79 11.71 ± 0.65

nursery 3126.39 ± 77.45 3123.62 ± 77.45

primary-tumor 75927.03 ± 123.39 75926.94 ± 123.39

soybean 41125.59 ± 108.25 41125.46 ± 108.25

votes 6.09 ± 0.50 6.03 ± 0.48

Table 7.2: Averages and standard deviations of LogScore using 10% of the
learning data

Dataset sTAN sTAN+BMA

adult 16.46 ± 0.78 16.45 ± 0.83

australian 18.14 ± 0.91 17.74 ± 0.80

breast 5.26 ± 0.84 4.75 ± 0.72

car 8.68 ± 0.68 8.09 ± 0.58

chess 8.25 ± 0.49 8.15 ± 0.49

cleve 24.01 ± 1.31 23.57 ± 1.28

crx 18.12 ± 0.92 17.68 ± 0.85

flare 18.55 ± 0.62 18.54 ± 0.72

glass 33.79 ± 1.14 33.86 ± 0.97

glass2 22.38 ± 1.53 23.40 ± 1.54

iris 8.40 ± 1.00 8.27 ± 0.82

letter 15.62 ± 0.91 15.31 ± 0.83

liver 36.73 ± 1.60 35.17 ± 1.34

nursery 7.09 ± 0.80 6.03 ± 0.97

primary-tumor 60.23 ± 1.17 59.87 ± 1.33

soybean 7.88 ± 0.71 7.80 ± 0.82

votes 7.63 ± 0.93 7.76 ± 0.93

Table 7.3: Averages and standard deviations of error rate using 50% of the
learning data

82 Chapter 7. Empirical Local Bayesian model averaging of TAN classifiers

Dataset sTAN sTAN+BMA

adult 520.03 ± 3.93 518.82 ± 3.91

australian 14.79 ± 0.76 14.41 ± 0.59

breast 5.17 ± 0.64 4.40 ± 0.62

car 20.44 ± 0.51 19.73 ± 0.48

chess 27.32 ± 0.73 27.12 ± 0.79

cleve 7.38 ± 0.66 7.15 ± 0.63

crx 15.62 ± 1.11 15.21 ± 1.07

flare 4233.42 ± 41.82 4233.31 ± 41.82

glass 309.52 ± 24.49 309.25 ± 24.49

glass2 3.86 ± 0.53 3.68 ± 0.51

iris 1.52 ± 0.37 1.48 ± 0.34

letter 574.47 ± 6.13 559.56 ± 6.17

liver 10.78 ± 0.74 10.39 ± 0.71

nursery 1596.96 ± 67.06 1594.32 ± 67.06

primary-tumor 12028.93 ± 51.79 12028.74 ± 51.79

soybean 907.34 ± 42.43 907.27 ± 42.43

votes 5.04 ± 0.80 4.50 ± 0.69

Table 7.4: Averages and standard deviations of LogScore using 50% of the
learning data

Dataset sTAN sTAN+BMA

adult 16.46 ± 0.68 16.42 ± 0.72

australian 16.49 ± 0.65 16.43 ± 0.72

breast 4.29 ± 0.66 3.72 ± 0.45

car 6.23 ± 0.55 6.16 ± 0.53

chess 7.89 ± 0.38 7.68 ± 0.44

cleve 19.99 ± 1.26 19.73 ± 1.18

crx 15.71 ± 0.66 15.79 ± 0.74

flare 18.46 ± 0.30 18.31 ± 0.24

glass 26.58 ± 1.22 25.99 ± 1.28

glass2 19.61 ± 1.42 18.06 ± 1.43

iris 8.13 ± 1.44 7.20 ± 1.43

letter 12.69 ± 0.77 12.48 ± 0.83

liver 33.36 ± 0.98 33.19 ± 1.10

nursery 6.62 ± 0.75 4.81 ± 0.76

primary-tumor 56.74 ± 1.09 56.32 ± 0.93

soybean 5.97 ± 0.50 5.94 ± 0.49

votes 6.26 ± 0.81 6.34 ± 0.56

Table 7.5: Averages and standard deviations of error rate using 100% of the
learning data

Dataset sTAN sTAN+BMA

adult 508.10 ± 3.07 508.01 ± 3.07

australian 12.90 ± 0.65 12.66 ± 0.61

breast 4.85 ± 0.50 4.28 ± 0.54

car 16.29 ± 0.39 16.31 ± 0.41

chess 26.46 ± 0.46 26.22 ± 0.36

cleve 6.51 ± 0.44 6.29 ± 0.51

crx 13.97 ± 0.68 13.76 ± 0.58

flare 1532.39 ± 0.62 1532.22 ± 0.65

glass 7.40 ± 0.59 7.12 ± 0.52

glass2 3.20 ± 0.39 3.08 ± 0.37

iris 1.18 ± 0.44 1.16 ± 0.44

letter 441.94 ± 5.61 433.37 ± 5.84

liver 9.59 ± 0.44 9.72 ± 0.60

nursery 91.52 ± 2.41 89.41 ± 2.30

primary-tumor 6327.87 ± 38.33 6327.64 ± 38.33

soybean 4.49 ± 0.51 4.45 ± 0.48

votes 3.96 ± 0.55 3.76 ± 0.46

Table 7.6: Averages and standard deviations of LogScore using 100% of the
learning data

7.2. Experimental results 83

Figure 7.1: Comparison of stan+bma and stan error rate

84 Chapter 7. Empirical Local Bayesian model averaging of TAN classifiers

Figure 7.2: Comparison of stan+bma and stan LogScore

7.3. Summary 85

Higher Accuracy

Smaller Complexity

Higher Interpretability

sTAN

sTAN+BMA

Figure 7.3: Relative positioning of the stan+bma and stan

stan+bma in a statistically significant way. For LogScore results are even
more conclusive. stan+bma LogScore is significantly better than stan 12, 14
and 12 times with 10%, 50% and 100% of the learning data respectively, whilst
stan LogScore is better than stan+bma in a statistically significant way only
for one dataset and only with 100% of the training data. The difference between
both classifiers is plotted in figures 7.1 and 7.2.

7.3 Summary

In this chapter we have provided a solution to the fact that the TAN induction
algorithm presented in (Friedman et al., 1997) does not account for uncertainty
in model selection. We have introduced both local Bayesian model averaging and
empirical local Bayesian model averaging as techniques to deal with uncertainty
in model selection that can be applied without too many additional requirements
to algorithms inducing probabilistic classifiers. We have seen how empirical local

86 Chapter 7. Empirical Local Bayesian model averaging of TAN classifiers

Bayesian model averaging can be applied for TAN induction. We have provided
empirical evidence that shows that in most of the cases the resulting new method
provides more accurate predictions and probability estimates.

We have tried to summarize in Figure 7.3 the interpretation of the results
in this chapter in terms of the three dimensional space for classifiers defined in
the introduction. There we can see that stan+bma improves considerably stan

accuracy at the cost of increasing complexity and decreasing understandability.

7.3.1 Further research

An analysis of the final weights of the different models suggests that it makes
sense to take an adaptive approach to ELBMA, starting with a large number of
models and reducing it progressively as we accumulate evidence “against them”
(some of the weights were of the order of 10−20 even for not very large datasets).

In the next two chapters we show that under suitable conditions, the Bayesian
model averaging integral for TANs can be calculated in closed form in polynomial
time (chapter 8) and that it is possible to efficiently find the k structures with
maximum a posteriori probability (chapter 9). This last result will provide a
classifier very similar in spirit to stan+bma but with a significantly reduced
learning time complexity and an improved theoretical basis.

Chapter 8

Tractable Bayesian Model

Averaging of Tree

Augmented Naive Bayes

Classifiers

Give no decision till both sides thou’st heard.

Phocylides

In the previous chapter we have seen that the TAN induction algorithm pre-
sented in (Friedman et al., 1997) can be improved by taking into account model
uncertainty. We used empirical local Bayesian model averaging to approximate
Bayesian model averaging because of the computational cost of numerically cal-
culating the exact result.

In this chapter we show that, under suitable assumptions, the Bayesian model
averaging of TAN can be integrated in closed form and that it leads to improved
classification performance. The chapter is organized as follows. In section 8.1
we review and correct the results in (Meila and Jaakkola, 2000b). The proofs
for the results in this and the next section are provided in appendix B. In
section 8.2 we develop the closed expression for the Bayesian model averaging
of TAN and we construct a classifier based on this result which we will name
tbmatan (from Tractable Bayesian Model Averaging of Tree Augmented Naive-
Bayes). In section 8.3 we notice that tbmatan has a major drawback that makes
difficult its usage for large datasets. The drawback comes from the fact that
the classifier depends on the calculation of an ill-conditioned determinant. The
computation of this determinant requires the floating point precision to increase
with the dataset size and hence increases the computing time. To solve this

87

88 Chapter 8. Tractable Bayesian Model Averaging of TAN

drawback we introduce sstbmatan, an approximation of tbmatan. In section
8.4 we study the empirical characteristics of tbmatan and show that it leads
to a reduced error rate and to a better approximation of the class probabilities
with respect to stan. We also show that the empirical results for sstbmatan

significantly improve the ones obtained by tbmatan. This, together with the
fact that sstbmatan can deal with large datasets position sstbmatan as an
interesting classifier. As usual, we end up with some conclusions and future
work in section 8.5.

8.1 Decomposable distributions over tree belief

networks

8.1.1 Definition

In (Meila and Jaakkola, 2000b), Meila and Jaakkola introduced decomposable
priors: a family of priors over structure and parameters of tree belief networks,
that is, a family of probability distributions over the space of tree belief network
models. In the following we will use the term decomposable distribution over
trees instead of decomposable priors, and we will use prior and posterior as they
are commonly used in Bayesian analysis.

Decomposable distributions over trees are the product of a distribution over
tree structures and a distribution over tree parameters, that is, assuming that
given ξ the probability distribution over the set of tree belief network models
follows a decomposable distribution we have that

P (M |ξ) = P (E, ΘE |ξ) = P (E|ξ)P (ΘE |E, ξ) (8.1)

where we recall that E is the directed tree structure and ΘE its parameters.
The definition of decomposable distribution will be done by specifying its two
components, P (E|ξ), the decomposable distribution over tree structures and
P (ΘE |E, ξ), the decomposable distribution over tree parameters.

Decomposable distributions over tree structures

Recalling that m is the number of variables when talking about an unclassified
discrete domain, a decomposable distribution over tree structures is determined
by a m × m hyperparameter matrix β = (βu,v) such that ∀u, v : 1 ≤ u, v ≤ m :
βu,v = βv,u ≥ 0 ; βv,v = 0. We can interpret βu,v as a measure of how possible
is under ξ that the edge (Xu,Xv) is contained in the tree model underlying the
data.

We say that P (E|ξ) follows a decomposable distribution over tree structures
with hyperparameter set β iff:

P (E|ξ) =
P (E|ξ)

m
(8.2)

8.1. Decomposable distributions over tree belief networks 89

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (8.3)

where Zβ is a normalization constant with value:

Zβ =
∑

E∈E

∏

u,v∈E

βu,v (8.4)

It is worth noting that P (E|ξ) depends only on the underlying undirected tree
structure E.

Decomposable distributions over tree parameters

A decomposable distribution over tree parameters follows the equation

P (ΘE |E, ξ) = P (θρE
|E, ξ)

∏

u,v∈E

P (θv|u|E, ξ) (8.5)

where we remember that ρE is the root of E. Furthermore, a decomposable
distribution over tree parameters has a hyperparameter set N′ = {N ′

v,u(j, i)|1 ≤
u 6= v ≤ m ; j ∈ Xv ; i ∈ Xu} with the constraint that exist N ′

u(i), N ′ such
that for every u,v:

N ′
u(i) =

∑

j∈Xv

N ′
v,u(j, i) (8.6)

N ′ =
∑

i∈Xu

N ′
u(i) (8.7)

We say that P (ΘE |E, ξ) follows a decomposable distribution over tree parame-
ters with hyperparameter set N′ iff

• P (ΘE |E, ξ) fulfills equation 8.5

• N′ fulfills the conditions appearing in equations 8.6, 8.7.

• the following two equations are also satisfied

P (θρE
|E, ξ) = D(θρE

(.); N ′
ρE

(.)) (8.8)

P (θv|u|E, ξ) =
∏

i∈Xu

D(θv|u(., i); N ′
v,u(., i)) (8.9)

where D stands for the Dirichlet distribution introduced in section 3.2.1.

Decomposable distributions over tree structures and parameters

We say that P (M |ξ) follows a decomposable distribution over trees with hyper-
parameters β,N′ iff

• P (M |ξ) fulfills equation 8.1

90 Chapter 8. Tractable Bayesian Model Averaging of TAN

• P (E|ξ) follows a decomposable distribution over tree structures with hy-
perparameter set β

• P (ΘE |E, ξ) follows a decomposable distribution over tree parameters with
hyperparameter set N′

that is if the conditions in equations 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8 and 8.9
hold.

8.1.2 Meila and Jaakkola results and corrections to their

results

We have reviewed decomposable distributions over trees. In (Meila and Jaakkola,
2000b), some important results about such distributions are stated. Unfortu-
nately, some of these results were not stated correctly. We review those results
and provide corrected versions when they are needed.

Assumptions needed for decomposable distributions over tree param-
eters

Meila and Jaakkola demonstrated that if we have a distribution over tree pa-
rameters satisfying equation 8.1, for which the support graph is connected and
its parameter set is strictly positive, then under the assumptions of likelihood
equivalence, parameter independence, parameter modularity and connectivity,
for any tree in any directed representation, the parameters are distributed fol-
lowing a set of Dirichlets as imposed by equations 8.5,8.8,8.9,8.6 and 8.7. This
means that decomposable distributions over tree parameters are the result of a
fairly reasonable set of assumptions widely used for learning Bayesian networks
as can be seen in (Heckerman et al., 1995).

Bayesian learning with decomposable distributions over trees

Meila and Jaakkola claimed that if we assume a decomposable distribution over
trees with hyperparameters β,N′ the posterior distribution after a dataset D
follows a decomposable distribution over trees with hyperparameters given by

β∗
u,v = βu,vWu,v (8.10)

N ′∗
u,v(j, i) = N ′

u,v(j, i) + Nu,v(j, i) (8.11)

where

Wu,v =
∏

i∈Xu

∏

j∈Xv

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(N ′
v,u(j, i)) (8.12)

8.1. Decomposable distributions over tree belief networks 91

Corrected Bayesian learning with decomposable distributions over
trees

Unfortunately, the last result is mistaken. After careful derivation, it can be
proven that if we assume a decomposable prior distribution over trees with
hyperparameters β,N′ the posterior distribution after a dataset D follows a
decomposable distribution over trees with hyperparameters given by equations
8.10 and 8.11 but Wu,v are given by:

Wu,v =
∏

i∈Xu

Γ(N ′
u(i))

Γ(N ′
u(i) + Nu(i))

∏

j∈Xv

Γ(N ′
v(j))

Γ(N ′
v(j) + Nv(j))

∏

i∈Xu

∏

j∈Xv

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(N ′
v,u(j, i))

(8.13)

The demonstration can be seen in appendix B.2.2.

Computation of probabilities from the posterior

Meila and Jaakkola claimed that if we assume a decomposable prior distribution
over trees with hyperparameters β,N′ the posterior probability of a new data
point conditioned to the observation of a dataset D comes given by

P (X = x|D, ξ) =
w0(x)|Q(β w(x))|

|Q(βW)|
(8.14)

where

w0(x) =
1

N ′ + N

∏

Xu∈V

[N ′
pa(u)(xpa(u)) + Npa(u)(xpa(u))] (8.15)

w(x) = (wu,v(x)) where wu,v(x) =
N ′

v,u(sv, su) + Nv,u(sv, su)

(N ′
u(su) + Nu(su))(N ′

v(sv) + Nv(sv))
(8.16)

and for any real m × m matrix τ we define Q(τ) : R
m×m → R

m−1×m−1 as the
first m − 1 lines and columns of the matrix Q(τ) where

Qu,v(τ) = Qv,u(τ) =




−τu,v 1 ≤ u < v ≤ m

m∑
v′=1

τv′,v 1 ≤ u = v ≤ m
(8.17)

Corrected computation of probabilities from a decomposable distri-
bution over trees

The previous result is also incorrect since they assume W defined as in equation
8.12. Furthermore, they also claim that w0(x) is a structure independent factor.

92 Chapter 8. Tractable Bayesian Model Averaging of TAN

It is easy to see that this is not the case. If our domains contains two attributes,
namely X1 and X2, for the tree X1 → X2 we have that w(x) = N ′

1(x1) +
N1(x1) while for the tree X2 → X1 we have that w(x) = N ′

2(x2) + N2(x2). In
fact, since we have seen that the posterior is also a decomposable distribution
over trees, we think it is simpler to have a result regarding the probability of
a new data point given a decomposable distribution over trees, since such a
result can be applied to any decomposable distribution over trees, including the
posterior. Hence, we state the corrected result as follows. Assume that P (M |ξ)
follows a decomposable distribution over trees with hyperparameters β,N′. The
probability of an observation x given ξ comes given by

P (X = x|ξ) = hx
0 |Q(β hx)| (8.18)

where

hx
0 =

1

Zβ

1

N ′

∏

Xu∈V

N ′
u(xu) (8.19)

hx =
(
hx

u,v

)
where hx

u,v =
N ′

v,u(xv , xu)

N ′
u(xu)N ′

v(xv)
(8.20)

The proof for this result appears in appendix B.2.1.
It is easy to see that it can be particularized for the posterior by using the

corrected result for Bayesian learning with decomposable distributions over trees.

8.2 Development of the Averaged Tree Aug-

mented Naive Bayes

In the previous section we have reviewed and corrected the results in (Meila and
Jaakkola, 2000b) for trees. In this section we will extend them to TAN models.
We will develop a classifier based on the TAN model that does also take into
account the uncertainty in model selection by means of decomposable distribu-
tions over TANs. We start by introducing decomposable distributions over TAN
structures and parameters, built upon the already presented idea of decompos-
able priors over trees. After that we demonstrate that given a decomposable
distribution over TANs it is possible to calculate the probability of an unseen
observation and that given a prior decomposable distribution over TANs, the
posterior distribution after observing a set of data is also a decomposable dis-
tribution over TANs. We conclude the section by putting together these results
to create tbmatan.

8.2.1 Decomposable distributions over TANs

In this section we introduce decomposable distributions over TANs, which are
a family of probability distributions in the space M of TAN models with a
development parallel to the one for decomposable distributions over trees. De-
composable distributions over trees are based on four assumptions: likelihood

8.2. Development of the Averaged Tree Augmented Naive Bayes 93

equivalence, parameter independence, parameter modularity and connectivity.
These four assumptions are also the basis of the development of decomposable
distributions over TANs. Specially significant, in order to understand the de-
velopments is likelihood equivalence. This assumption states that in all possible
parameterizations consistent with a given undirected tree E the distribution will
assign the same probability mass to any measurable subset in parameter space.
This provides us with a very valuable tool when integrating over parameters,
because it allows us to integrate over the parameters of any directed tree E ob-
tained from E because for all of them the result of the integration should be the
same.

Decomposable distributions over TANs are constructed in two steps. In the
first step, a distribution over the set of different undirected tree structures is
defined. Every directed tree structure is defined to have the same probability
as its undirected equivalent. In the second step, a distribution over the set of
parameters is defined so that is also independent on the structure. If P (M |ξ)
follows a decomposable distribution over TANs then the probability for a model
M = 〈E

∗
, ΘE

∗〉 (a TAN with fixed tree structure E
∗

and fixed parameters ΘE
∗)

is determined by:

P (M |ξ) = P (E
∗
, ΘE

∗ |ξ) = P (E
∗
|ξ)P (ΘE

∗ |E
∗
, ξ) (8.21)

In the following sections we specify the value of a decomposable distribution
over the two components of a TAN model, namely its structure and its param-
eters. That is, P (E

∗
|ξ) (decomposable distribution over TAN structures) and

P (ΘE
∗ |E

∗
, ξ) (decomposable distribution over TAN parameters).

Decomposable distributions over TAN structures

Recalling that n is the number of attributes when talking about a classified
discrete domain, a decomposable distribution over TAN structures is determined
by an n × n hyperparameter matrix β = (βu,v) such that ∀u, v : 1 ≤ u, v ≤ n :
βu,v = βv,u ≥ 0 ; βv,v = 0. We can interpret βu,v as a measure of how possible
is under ξ that the edge (Au,Av) is contained in the TAN model underlying the
data.

We say that P (E
∗
|ξ) follows a decomposable distribution over TAN struc-

tures with hyperparameter set β iff:

P (E
∗
|ξ) =

P (E|ξ)

n
(8.22)

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (8.23)

where Zβ is a normalization constant with value:

Zβ =
∑

E∈E

∏

u,v∈E

βu,v (8.24)

It is worth noting that P (E
∗
|ξ) depends only on the underlying undirected tree

structure E.

94 Chapter 8. Tractable Bayesian Model Averaging of TAN

Decomposable distributions over TAN parameters

A decomposable distribution over TAN parameters follows the equation

P (ΘE
∗ |E

∗
, ξ) = P (θC |E

∗
, ξ) P (θρE |C |E

∗
, ξ)

∏

u,v∈E

P (θv|u,C |E
∗
, ξ) (8.25)

This can be interpreted as an application of equation 3.1 for the case of TAN.
Furthermore, a decomposable distribution over TAN parameters has a hyperpa-
rameter set N′ = {N ′

v,u,C(j, i, c)|1 ≤ u 6= v ≤ n ; j ∈ Av ; i ∈ Au ; c ∈ C} with
the constraint that exist N ′

u,C(i, c), N ′
C(c), N ′ such that for every u,v:

N ′
u,C(i, c) =

∑

j∈Av

N ′
v,u,C(j, i, c) (8.26)

N ′
C(c) =

∑

i∈Au

N ′
u,C(i, c) (8.27)

N ′ =
∑

c∈C

N ′
C(c) (8.28)

We say that P (ΘE
∗ |E

∗
, ξ) follows a decomposable distribution over TAN pa-

rameters with hyperparameter set N′ iff

• P (ΘE
∗ |E

∗
, ξ) fulfills equation 8.25

• N′ fulfills the conditions appearing in equations 8.26, 8.27 and 8.28

• the following equations are also satisfied:

P (θC |E
∗
, ξ) = D(θC(.); N ′

C(.)) (8.29)

P (θρE |C |E
∗
, ξ) =

∏

c∈C

D(θρE |C(., c); N ′
ρE ,C(., c)) (8.30)

P (θv|u,C |E
∗
, ξ) =

∏

c∈C

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c)) (8.31)

Decomposable distributions over TAN structures and parameters

We say that P (M |ξ) follows a decomposable distribution over TANs with hy-
perparameters β,N′ iff

• P (M |ξ) fulfills equation 8.21

• P (E
∗
|ξ) follows a decomposable distribution over TAN structures with

hyperparameter set β

• P (ΘE
∗ |E

∗
, ξ) follows a decomposable distribution over TAN parameters

with hyperparameter set N′

that is if the conditions in equations 8.21, 8.22, 8.23, 8.24, 8.25, 8.26, 8.27, 8.28,
8.29, 8.30 and 8.31 hold.

8.2. Development of the Averaged Tree Augmented Naive Bayes 95

8.2.2 Calculating probabilities under decomposable distri-

butions over TANs

Assume that the data is generated by a TAN model and that P (M |ξ) follows
a decomposable distribution over TANs with hyperparameters β,N′. We can
calculate the probability of an observation S, sC given ξ by averaging over the
set of TAN models

P (V = S, C = sC |ξ) =

∫

M∈M

P (V = S, C = sC |M)P (M |ξ) (8.32)

The integral for P (V = S, C = sC |ξ) can be calculated in closed form by applying
the matrix tree theorem (see Appendix B.1.1 and (Meila and Jaakkola, 2000b))
and expressed in terms of the previously introduced Q as:

P (V = S, C = sC |ξ) = hS,sC

0 |Q(β hS,sC)| (8.33)

where

hS,sC

0 =
1

Zβ

1

N ′

∏

Au∈V

N ′
u,C(su, sC) (8.34)

hS,sC =
(
hS,sC

u,v

)
where hS,sC

u,v =
N ′

v,u,C(sv, su, sC)

N ′
u,C(su, sC)N ′

v,C(sv, sC)
(8.35)

The proof for this result appears in appendix B.3.1.

8.2.3 Learning under decomposable distributions over

TANs

Assume that the data is generated by a TAN model and that P (M |ξ) follows
a decomposable distribution over TANs with hyperparameters β, N′. Then,
P (M |D, ξ), the posterior probability distribution after observing a dataset D,
containing independent identically distributed observations, is a decomposable
distribution over TANs with hyperparameters β∗, N′∗ given by:

β∗
u,v = βu,vWu,v (8.36)

N ′∗
u,v,C(j, i, c) = N ′

u,v,C(j, i, c) + Nu,v,C(j, i, c) (8.37)

where

Wu,v =
∏

c∈C

∏

i∈Au

Γ(N ′
u,C(i, c))

Γ(N ′
u,C(i, c) + Nu,C(i, c))

∏

c∈C

∏

j∈Av

Γ(N ′
v,C(j, c))

Γ(N ′
v,C(j, c) + Nv,C(j, c))

∏

c∈C

∏

i∈Au

∏

j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))

(8.38)

The proof appears in appendix B.3.2.

96 Chapter 8. Tractable Bayesian Model Averaging of TAN

8.2.4 Putting it all Together

Putting together the results from sections 8.2.2 and 8.2.3 we can easily design a
classifier based on decomposable distributions over TANs. The classifier works
as follows: when given a dataset D, it assumes that the data is generated from
a TAN model and assumes a decomposable distribution over TANs as prior
over the set of models. Applying the result from section 8.2.3, the posterior
distribution over the set of models is also a decomposable distribution over TANs
and applying the result of section 8.2.2 this decomposable posterior distribution
over TANs can be used to calculate the probability of any observation S, sC .
When given an unclassified observation S, it can just calculate the probability
P (V = S, C = sC |D, ξ) for each possible class sC ∈ C and classify S in the class
with highest probability.

We have mentioned that the classifier assumes a decomposable distribution
over TANs as prior. Ideally, this prior will be fixed by an expert that knows
the classification domain. Otherwise, we have to provide the classifier with a
way for fixing the prior distribution hyperparameters without knowledge about
the domain. In this case the prior should be as “non-informative” as possible in
order for the information coming from D to dominate the posterior by the effects
of equations 8.36 and 8.37. We have translated this requisite into equations 8.39
and 8.40:

∀u, v ; 1 ≤ u 6= v ≤ n ; βu,v = 1 (8.39)

∀u, v; 1 ≤ u 6= v ≤ n; ∀j ∈ Av; ∀i ∈ Au; ∀c ∈ C; N ′
v,u,C(j, i, c) =

λ

#C#Au#Av

(8.40)

Defining β as in equation 8.39 means that we have the same amount of belief for
any edge being in the TAN structure underlying the data. Fixed u, v, equation
8.40 assigns the same probability to any (j, i, c) such that j ∈ Av, i ∈ Au and
c ∈ C λ is an “equivalent sample size” for the prior in the sense of Heckerman
et al. (Heckerman et al., 1995). In our experiments we have fixed λ = 10. In
the following tbmatan will refer to the classifier described in this section.

8.3 Approximating tbmatan

8.3.1 tbmatan computational complexity

The learning time complexity for tbmatan is bounded by the counting step,
that is, O((N + r3) · n2) where r = max(max

i∈V
#Ai, #C). Once the learning step

is over, the classification time complexity requires the computation of #C < r
determinants. Since computing the determinant of a n× n matrix is O(n3), the
classification time complexity for tbmatan is bounded by O(n3 · r).

8.3. Approximating tbmatan 97

8.3.2 Computational problems

A straightforward implementation of tbmatan, even when accomplishing the
beforementioned complexity bounds, will not yield accurate results, specially for
large datasets. This is due to the fact that the calculations that need to be
done in order to classify a new observation include the computation of a deter-
minant (in equation 8.33) that happens to be ill-conditioned. Even worse, the
determinant gets more and more ill-conditioned as the number of observations
in the dataset increases. This forces the floating point accuracy that we have
to use to calculate these determinants to depend on the dataset size. We would
like to note that this problem is due to the straightforward implementation of
the formulas. If it were possible to compute quotients of determinants of similar
matrixes accurately, the problem would be solved. To the best of our knowledge,
such accurate computation does not exist. Therefore, we have used a brute force
solution to accurately implement tbmatan. More concretely, we have calculated
the determinants by means of NTL (Shoup, 2003), a library that allows us to cal-
culate determinants with the desired precision arithmetic. This solution makes
the time for classifying a new observation grow faster than O(n3 · r), and hence
makes the practical application of the algorithms difficult in situations where it
is required to classify a large set of unclassified data.

8.3.3 A solution to tbmatan computational problems

We analyzed what makes the determinant in tbmatan being ill-conditioned and
concluded that it is due to the Wu,v factors given by equation 8.38. The factor
Wu,v could be interpreted as “how much the dataset D has changed the belief
in that there is a link between u and v in the TAN model generating the data”.
The problems relies in the fact that Wu,v are easily in the order of 10−200 for

a dataset with 1500 observations. Furthermore, the factors
Wu,v

Wu′,v′
for such a

dataset can be around 10−20, providing the ill-condition of the determinant.
In order to overcome this problem, we propose to postprocess the factors Wu,v

computed by equation 8.38 by means of a transformation that limits them to lie
in the interval [10−K , 1] where K is a constant that has to be fixed depending
on the floating point accuracy of the machine. In our implementation we have
used K = 5.

The transformation works as depicted in Figure 8.1 and is described in detail
by the following equations:

lmax = log10 max
u∈V
v∈V
u6=v

Wu,v (8.41)

lmin = log10 min
u∈V
v∈V
u6=v

Wu,v (8.42)

a =

{
K

lmax−lmin
lmax − lmin > K

1 otherwise
(8.43)

98 Chapter 8. Tractable Bayesian Model Averaging of TAN

−K

0 1min max

10^−K

0
−infinity

0

lmin lmax

Log

Linear transform

10

10^

Figure 8.1: Transformation of weights for sstbmatan

b = −K − a ∗ lmin (8.44)

W̃u,v = 10a log10(Wu,v)+b (8.45)

Using W̃u,v instead of Wu,v to calculate the posterior hyperparameters β∗
u,v

has the following properties:

1. It is harder to get get ill-conditioned determinants, because for all u, v
W̃u,v is bound to the interval [10−K , 1].

2. It preserves the relative ordering of the Wu,v. That is, if Wu,v > Wu′,v′

then W̃u,v > W̃u′,v′ .

3. It does not exaggerate relative differences in belief. That is, for all
u, v, u′, v′ we have that

• If
Wu,v

Wu′,v′
≥ 1 then

Wu,v

Wu′,v′
≥

fWu,v

fWu′,v′

.

• If
Wu,v

Wu′,v′
≤ 1 then

Wu,v

Wu′,v′
≤

fWu,v

fWu′,v′

.

The posterior hyperparameters β∗
u,v can be interpreted as a representation

of the a posteriori belief in the existence of an edge (u, v) in the TAN struc-

ture. Using W̃u,v, given the properties stated, means being more conservative in
the structure learning process, because the beliefs will be confined to the inter-
val [10−K , 1] which impedes the representation of extreme probability differences
between edges. We can interpret the transformation as applying some stubborn-
ness to the structure learning process. Applying this transformation allow us to
implement an approximation of tbmatan that does not require the use of spe-
cial floating point accuracy computations. We will refer to this approximation
of tbmatan as sstbmatan (from Structure Stubborn tbmatan).

8.4. Empirical Results 99

It is worth noting that the problem described in this section does only affect
the classification time complexity. The learning process for tbmatan does not
need high precision arithmetics. The learning time complexity for tbmatan,
O((N + r3) · n2), is the same as the one for stan and sstbmatan.

8.4 Empirical Results

We tested four algorithms over 17 datasets from the Irvine repository (Blake
et al., 1998). The dataset characteristics are described in section 6.4.1. To
discretize continuous attributes we used equal frequency discretization with 5
intervals. For each dataset and algorithm we tested both error rate and LogScore
(see section 6.4). For the evaluation of both error rate and LogScore we used
10 fold cross validation. We tested the algorithm with the 10%, 50% and 100%
of the learning data for each fold, in order to get an idea of the influence of
the amount of data in the behaviors of both error rate and LogScore for the
algorithm.

The error rates appear in Tables 8.1,8.3,8.5 with the best method for each
dataset boldfaced. LogScore’s appear in Tables 8.2,8.4,8.6. The columns of the
tables are the induction methods and the rows are the datasets. The meaning
of the column headers are:

• sstbmatan is the method described in section 8.3.

• stan is the softened TAN induction algorithm as presented in (Friedman
et al., 1997).

• stan+bma is the TAN induction algorithm using ELBMA to deal with
model uncertainty as presented in section 7.1.2.

• tbmatan, is the method described in section 8.2.4.

tbmatan classification times are very large for datasets with a large number of
instances. For datasets over 5000 instances we have skipped the execution of
tbmatan. This is represented as a - sign in the corresponding table entries. We
have skipped those datasets also when drawing comparison graphs for tbmatan.

8.4.1 Interpretation of the Results

Summarizing the empirical results in the tables, we can conclude that:

• sstbmatan is a good approximation to tbmatan even improving its re-
sults in some cases.

• sstbmatan improves stan error rate and LogScore.

• sstbmatan improves stan+bma error rate and LogScore.

100 Chapter 8. Tractable Bayesian Model Averaging of TAN

Dataset SSTBMATAN sTAN sTAN+BMA TBMATAN

adult 16.73 ± 0.74 17.60 ± 0.82 17.60 ± 0.80 -

australian 18.20 ± 1.11 25.39 ± 1.18 24.96 ± 1.13 19.01 ± 1.03

breast 11.45 ± 1.22 8.73 ± 0.87 7.73 ± 0.93 14.97 ± 1.15

car 16.08 ± 0.85 19.38 ± 0.95 17.60 ± 0.77 16.51 ± 0.96

chess 11.74 ± 0.89 10.89 ± 0.56 10.91 ± 0.53 9.27 ± 0.81

cleve 24.49 ± 1.12 32.37 ± 1.00 31.89 ± 1.27 24.75 ± 1.07

crx 17.39 ± 0.98 25.14 ± 0.87 24.18 ± 0.98 18.46 ± 0.96

flare 22.46 ± 0.94 19.94 ± 0.85 19.92 ± 0.88 22.76 ± 1.10

glass 37.99 ± 1.52 59.19 ± 1.78 58.54 ± 1.83 40.97 ± 1.20

glass2 32.18 ± 2.18 37.75 ± 1.39 36.63 ± 1.37 32.30 ± 2.15

iris 24.80 ± 2.13 25.87 ± 3.07 24.80 ± 2.96 24.13 ± 2.13

letter 24.02 ± 0.93 36.11 ± 1.39 34.68 ± 1.37 -

liver 43.51 ± 1.14 42.39 ± 0.94 41.24 ± 1.37 43.74 ± 1.17

nursery 7.43 ± 0.98 8.88 ± 1.12 8.50 ± 1.12 -

primary-tumor 70.98 ± 1.77 71.67 ± 1.54 71.73 ± 1.44 71.28 ± 1.73

soybean 24.83 ± 1.14 30.79 ± 1.28 30.82 ± 1.33 -

votes 8.13 ± 0.59 14.14 ± 0.93 14.13 ± 0.71 8.09 ± 0.77

Table 8.1: Averages and standard deviations of error rate using 10% of the
learning data

Dataset SSTBMATAN sTAN sTAN+BMA TBMATAN

adult 520.49 ± 3.40 567.09 ± 3.92 567.64 ± 4.00 -

australian 14.28 ± 0.76 17.85 ± 0.64 17.06 ± 0.60 16.57 ± 0.88

breast 11.09 ± 1.36 8.12 ± 0.69 7.56 ± 0.65 18.03 ± 1.54

car 31.02 ± 0.93 38.55 ± 0.91 36.52 ± 0.86 32.53 ± 0.97

chess 38.34 ± 1.30 35.39 ± 0.58 35.40 ± 0.59 31.74 ± 0.97

cleve 8.42 ± 0.67 8.49 ± 0.74 8.23 ± 0.76 8.56 ± 0.67

crx 14.63 ± 0.81 17.84 ± 1.05 16.89 ± 1.00 17.34 ± 1.02

flare 45.55 ± 1.06 24332.38 ± 56.59 24332.03 ± 56.59 48.54 ± 1.21

glass 13.26 ± 1.28 11713.24 ± 72.91 11713.00 ± 72.91 15.12 ± 1.31

glass2 5.15 ± 0.69 4.68 ± 0.57 4.57 ± 0.54 5.16 ± 0.69

iris 3.83 ± 0.72 4.04 ± 0.67 3.96 ± 0.70 3.83 ± 0.72

letter 1349.63 ± 8.01 1385.73 ± 8.95 1300.23 ± 8.38 -

liver 16.40 ± 0.98 12.62 ± 0.79 11.71 ± 0.65 16.59 ± 1.01

nursery 112.90 ± 2.48 3126.39 ± 77.45 3123.62 ± 77.45 -

primary-tumor 58.53 ± 1.89 75927.03 ± 123.39 75926.94 ± 123.39 59.49 ± 1.90

soybean 66.35 ± 1.78 41125.59 ± 108.25 41125.46 ± 108.25 -

votes 4.53 ± 0.64 6.09 ± 0.50 6.03 ± 0.48 4.53 ± 0.65

Table 8.2: Averages and standard deviations of LogScore using 10% of the
learning data

8.4. Empirical Results 101

Dataset SSTBMATAN sTAN sTAN+BMA TBMATAN

adult 16.23 ± 0.74 16.46 ± 0.78 16.45 ± 0.83 -

australian 14.23 ± 0.85 18.14 ± 0.91 17.74 ± 0.80 14.87 ± 1.07

breast 4.32 ± 0.71 5.26 ± 0.84 4.75 ± 0.72 5.75 ± 0.67

car 7.39 ± 0.79 8.68 ± 0.68 8.09 ± 0.58 7.55 ± 0.77

chess 9.70 ± 0.46 8.25 ± 0.49 8.15 ± 0.49 7.83 ± 0.42

cleve 18.87 ± 1.08 24.01 ± 1.31 23.57 ± 1.28 19.93 ± 1.11

crx 14.28 ± 0.80 18.12 ± 0.92 17.68 ± 0.85 15.24 ± 0.90

flare 19.83 ± 0.67 18.55 ± 0.62 18.54 ± 0.72 19.96 ± 0.65

glass 20.35 ± 1.01 33.79 ± 1.14 33.86 ± 0.97 22.86 ± 1.42

glass2 21.11 ± 1.35 22.38 ± 1.53 23.40 ± 1.54 22.83 ± 1.48

iris 10.27 ± 1.11 8.40 ± 1.00 8.27 ± 0.82 10.27 ± 1.11

letter 11.78 ± 0.84 15.62 ± 0.91 15.31 ± 0.83 -

liver 36.39 ± 1.11 36.73 ± 1.60 35.17 ± 1.34 36.80 ± 1.21

nursery 6.82 ± 0.80 7.09 ± 0.80 6.03 ± 0.97 -

primary-tumor 57.79 ± 1.53 60.23 ± 1.17 59.87 ± 1.33 58.32 ± 1.55

soybean 6.71 ± 0.59 7.88 ± 0.71 7.80 ± 0.82 -

votes 6.16 ± 0.61 7.63 ± 0.93 7.76 ± 0.93 6.03 ± 0.65

Table 8.3: Averages and standard deviations of error rate using 50% of the
learning data

Dataset SSTBMATAN sTAN sTAN+BMA TBMATAN

adult 496.04 ± 3.24 520.03 ± 3.93 518.82 ± 3.91 -

australian 11.01 ± 0.55 14.79 ± 0.76 14.41 ± 0.59 12.22 ± 0.82

breast 5.97 ± 0.51 5.17 ± 0.64 4.40 ± 0.62 10.23 ± 0.75

car 16.03 ± 0.46 20.44 ± 0.51 19.73 ± 0.48 15.87 ± 0.41

chess 32.11 ± 0.49 27.32 ± 0.73 27.12 ± 0.79 26.59 ± 0.68

cleve 6.05 ± 0.61 7.38 ± 0.66 7.15 ± 0.63 6.53 ± 0.66

crx 11.51 ± 0.68 15.62 ± 1.11 15.21 ± 1.07 12.90 ± 0.81

flare 37.93 ± 0.98 4233.42 ± 41.82 4233.31 ± 41.82 39.38 ± 1.14

glass 6.50 ± 0.52 309.52 ± 24.49 309.25 ± 24.49 9.77 ± 0.92

glass2 3.91 ± 0.47 3.86 ± 0.53 3.68 ± 0.51 4.58 ± 0.56

iris 1.65 ± 0.36 1.52 ± 0.37 1.48 ± 0.34 1.69 ± 0.36

letter 416.51 ± 6.07 574.47 ± 6.13 559.56 ± 6.17 -

liver 11.38 ± 0.75 10.78 ± 0.74 10.39 ± 0.71 12.36 ± 0.79

nursery 99.30 ± 2.36 1596.96 ± 67.06 1594.32 ± 67.06 -

primary-tumor 37.30 ± 1.07 12028.93 ± 51.79 12028.74 ± 51.79 40.90 ± 1.24

soybean 7.01 ± 0.84 907.34 ± 42.43 907.27 ± 42.43 -

votes 3.37 ± 0.49 5.04 ± 0.80 4.50 ± 0.69 3.39 ± 0.51

Table 8.4: Averages and standard deviations of LogScore using 50% of the
learning data

102 Chapter 8. Tractable Bayesian Model Averaging of TAN

Dataset SSTBMATAN sTAN sTAN+BMA TBMATAN

adult 16.26 ± 0.71 16.46 ± 0.68 16.42 ± 0.72 -

australian 13.74 ± 0.58 16.49 ± 0.65 16.43 ± 0.72 13.83 ± 0.69

breast 3.49 ± 0.44 4.29 ± 0.66 3.72 ± 0.45 4.63 ± 0.58

car 6.03 ± 0.40 6.23 ± 0.55 6.16 ± 0.53 5.78 ± 0.45

chess 9.47 ± 0.25 7.89 ± 0.38 7.68 ± 0.44 7.68 ± 0.22

cleve 18.22 ± 0.78 19.99 ± 1.26 19.73 ± 1.18 18.47 ± 1.09

crx 13.24 ± 0.41 15.71 ± 0.66 15.79 ± 0.74 13.47 ± 0.60

flare 19.91 ± 0.44 18.46 ± 0.30 18.31 ± 0.24 19.71 ± 0.55

glass 13.80 ± 1.27 26.58 ± 1.22 25.99 ± 1.28 18.41 ± 1.12

glass2 16.43 ± 1.43 19.61 ± 1.42 18.06 ± 1.43 19.63 ± 1.28

iris 7.20 ± 1.52 8.13 ± 1.44 7.20 ± 1.43 7.47 ± 1.57

letter 9.71 ± 0.80 12.69 ± 0.77 12.48 ± 0.83 -

liver 33.21 ± 1.07 33.36 ± 0.98 33.19 ± 1.10 33.99 ± 0.82

nursery 6.96 ± 0.78 6.62 ± 0.75 4.81 ± 0.76 -

primary-tumor 54.08 ± 1.04 56.74 ± 1.09 56.32 ± 0.93 54.38 ± 1.24

soybean 5.36 ± 0.55 5.97 ± 0.50 5.94 ± 0.49 -

votes 5.89 ± 0.35 6.26 ± 0.81 6.34 ± 0.56 5.88 ± 0.74

Table 8.5: Averages and standard deviations of error rate using 100% of the
learning data

Dataset SSTBMATAN sTAN sTAN+BMA TBMATAN

adult 493.81 ± 3.13 508.10 ± 3.07 508.01 ± 3.07 -

australian 9.88 ± 0.28 12.90 ± 0.65 12.66 ± 0.61 10.42 ± 0.43

breast 5.40 ± 0.46 4.85 ± 0.50 4.28 ± 0.54 8.52 ± 0.71

car 14.39 ± 0.39 16.29 ± 0.39 16.31 ± 0.41 14.12 ± 0.40

chess 31.18 ± 0.27 26.46 ± 0.46 26.22 ± 0.36 26.05 ± 0.29

cleve 5.50 ± 0.24 6.51 ± 0.44 6.29 ± 0.51 5.90 ± 0.31

crx 10.31 ± 0.49 13.97 ± 0.68 13.76 ± 0.58 10.96 ± 0.62

flare 34.12 ± 0.73 1532.39 ± 0.62 1532.22 ± 0.65 35.56 ± 0.88

glass 4.15 ± 0.76 7.40 ± 0.59 7.12 ± 0.52 7.92 ± 1.02

glass2 3.11 ± 0.43 3.20 ± 0.39 3.08 ± 0.37 3.91 ± 0.55

iris 1.12 ± 0.50 1.18 ± 0.44 1.16 ± 0.44 1.18 ± 0.53

letter 295.94 ± 4.65 441.94 ± 5.61 433.37 ± 5.84 -

liver 9.97 ± 0.61 9.59 ± 0.44 9.72 ± 0.60 10.66 ± 0.67

nursery 97.67 ± 2.41 91.52 ± 2.41 89.41 ± 2.30 -

primary-tumor 31.33 ± 0.58 6327.87 ± 38.33 6327.64 ± 38.33 33.86 ± 0.82

soybean 4.96 ± 0.38 4.49 ± 0.51 4.45 ± 0.48 -

votes 3.27 ± 0.40 3.96 ± 0.55 3.76 ± 0.46 3.55 ± 0.53

Table 8.6: Averages and standard deviations of LogScore using 100% of the
learning data

8.4. Empirical Results 103

Figure 8.2: Comparison of sstbmatan and tbmatan error rate

104 Chapter 8. Tractable Bayesian Model Averaging of TAN

Figure 8.3: Comparison of sstbmatan and tbmatanLogScore

8.4. Empirical Results 105

Figure 8.4: Comparison of sstbmatan and stan error rate

106 Chapter 8. Tractable Bayesian Model Averaging of TAN

Figure 8.5: Comparison of sstbmatan and stan LogScore

8.4. Empirical Results 107

Figure 8.6: Comparison of sstbmatan and stan+bma error rate

108 Chapter 8. Tractable Bayesian Model Averaging of TAN

Figure 8.7: Comparison of sstbmatan and stan+bma LogScore

8.4. Empirical Results 109

sstbmatan vs tbmatan

The approximation to tbmatan provided by sstbmatan is good for datasets
such as the ones used in this experimental test. In fact, in many cases sstb-

matan improves both error rate and LogScore with respect to tbmatan, and in
a statistically significant way. The improvements can be appreciated in figures
8.2 and 8.3. After performing a 5% statistical significance t-test, we have that
sstbmatan error rate is significantly better than tbmatan 4, 5 and 3 times with
10%, 50% and 100% of the learning data respectively, whilst tbmatan error rate
is better than sstbmatan in a statistically significant way only for one dataset
and only with 100% of the training data. LogScore results favour sstbmatan

more clearly. sstbmatan LogScore is significantly better than tbmatan 11, 10
and 11 times with 10%, 50% and 100% of the learning data respectively, whilst
tbmatan error rate is only 0, 1 and 1 times better than sstbmatan in a sta-
tistically significant way. The fact that sstbmatan provides better error rate
than tbmatan could be explained if we understand that in the development of
tbmatan we are assuming that data is coming from a TAN model. As this is
generally not the case for the datasets used in the test, probably tbmatan is as-
signing too much confidence to the most probable model and sstbmatan, being
sligthly more conservative, performs better. Testing this conjecture by means of
experimental analysis based on artificial data generated from TAN distributions
remains as future work.

sstbmatan vs stan

sstbmatan improves both error rate and LogScore with respect to stan in a
statistically significant way. The improvements can be appreciated in figures
8.4 and 8.5. After performing a 5% statistical significance t-test, we have that
sstbmatan error rate is significantly better than stan 11, 12 and 8 times with
10%, 50% and 100% of the learning data respectively, whilst stan error rate is
only 3, 3 and 3 times better than sstbmatan in a statistically significant way.
LogScore results also favour sstbmatan. sstbmatan LogScore is significantly
better than stan 9, 9 and 10 times with 10%, 50% and 100% of the learning
data respectively, whilst stan error rate is only 4, 3 and 4 times better than
sstbmatan in a statistically significant way.

sstbmatan vs stan+bma

sstbmatan improves both error rate and LogScore with respect to stan+bma

in a statistically significant way specially when little data is available. The
improvements can be appreciated in figures 8.6 and 8.7. After performing a
5% statistical significance t-test, we have that sstbmatan error rate is signifi-
cantly better than stan+bma 11, 11 and 6 times with 10%, 50% and 100% of
the learning data respectively, whilst stan+bma error rate is only 4, 4 and 3
times better than sstbmatan in a statistically significant way. LogScore re-
sults also favour sstbmatan. sstbmatan LogScore is significantly better than
stan+bma 9, 9 and 10 times with 10%, 50% and 100% of the learning data

110 Chapter 8. Tractable Bayesian Model Averaging of TAN

respectively, whilst stan+bma error rate is only 4, 4 and 5 times better than
sstbmatan in a statistically significant way. It is worth noting that sstbmatan

learning time is equal to stan learning time and much shorter than stan+bma

learning time. On the other hand, sstbmatan classification time is higher.

8.5 Conclusions and Future Work

We have introduced tbmatan a classifier based on the TAN model, decompos-
able distributions over TANs and Bayesian model averaging. We have seen that
its implementation leads to the calculation of ill-conditioned determinants and
have proposed to use an approximated implementation: sstbmatan.

sstbmatan is, to the best of our knowledge, the most accurate classifier re-
ported with a learning time linear on the number of observations of the dataset.
The accuracy increase comes at the price of increasing the classification time,
making it cubic on the number of attributes. The algorithm is anytime and
incremental: as long as the dataset observations are processed randomly, we can
stop the learning stage anytime we need, perform some classifications and then
continue learning at the only (obvious) cost of the lower accuracy of the classi-
fications performed in the middle of the learning process. These characteristics
make the algorithm very suitable for datasets with a huge number of instances.

8.5.1 Future work

If we were able to determine beforehand the impact of working with a sample
in the accuracy of the predictions, in the line of Chernoff-Hoeffding bounds, we
could speed up considerably the algorithm by accepting a small deviation in
accuracy. In this sense, finding a result in the line of (Hulten and Domingos,
2002) remains as future work.

Being able to calculate some measure of the concentration of the posterior
distribution around the TAN learned by stan (that is, some sort of “variance”)
will probably allow us to determine beforehand whether tbmatan will provide
significant improvement over stan in a dataset.

Finally, we think that all of the classifiers reviewed by Friedman et al. (Fried-
man et al., 1997) that are based on the Chow and Liu algorithm (Chow and Liu,
1968) can benefit from an improvement similar to the one seen here by the use
of decomposable distributions and Bayesian model averaging. Formalizing the
development for these classifiers and performing the empirical tests remains as
future work.

Chapter 9

Maximum a Posteriori Tree

Augmented Naive Bayes

Classifiers

First weigh the considerations, then take the risks.

Helmuth von Moltke (1800 - 1891)

In chapter 8 we have reviewed decomposable distributions over trees and
we have introduced decomposable distributions over TANs. In this chapter we
present two important results for these two families of probability distributions.
Concretely, we show that the problem of finding the tree (resp. TAN) with
maximum a posteriori (MAP) probability is computable in poynomial time, and
that the problem of finding the set of k trees (resp. TANs) with MAP probability
and their relative probability weights is computable in polynomial time. In the
case of trees, the main idea behind these results was presented in (Heckerman
et al., 1995), prior to the introduction of decomposable distributions over trees
in (Meila and Jaakkola, 2000b). To the best of our knowledge, this idea has been
provided no further development and has never been related to TAN learning
in the literature. In this chapter we develop the ideas sketched in (Heckerman
et al., 1995) into detail and show that these results are trivially extensible to
TAN models. We provide algorithms for finding the MAP and k MAP trees for
decomposable distributions over trees in section 9.1. In section 9.2 we show that
these results can be extended to decomposable distributions over TANs and that
they can be used to create two new classifiers based on the TAN model: maptan

and maptan+bma. In section 9.3 we analyze the empirical performance of the
classifiers introduced in section 9.2. Finally, in section 9.4 we provide some
conclusions and highlight some future research lines.

111

112 Chapter 9. Maximum a Posteriori TAN

9.1 Maximum a Posteriori results for decompos-

able distributions over trees

In this section we show that if we assume a decomposable distribution over trees
as prior over the set of models, the MAP tree can be found in O((N+r2)·n2) time
where r = max

i∈Ω
#Xi. Furthermore, we also show that we can find the k MAP

trees and their relative probability weights in O((N +r2 +log(β(n2, n))+k) ·n2)

time, where β(m, n) is defined to be min{i| log(i) n ≤ m/n} and log(i) x denotes
the log function iterated i times. For almost all practical considerations the time
complexity of finding the k MAP trees is equivalent to O((N + r2 + k) · n2)).

Both results are supported by the next result, that shows that computing the
most probable tree under a decomposable distribution over trees with hyperpa-
rameters β,N′ can be reduced to calculating the maximum weighted spanning
tree (MWST) for the graph with adjacency matrix log(β).

9.1.1 Calculating the most probable tree under a decom-

posable distribution over trees

From the definition of decomposable distribution, concretely from equations 8.2
and 8.3, it is easy to see that the most probable undirected tree given a decom-
posable distribution over trees with hyperparameters β,N′ comes given by

MPT (β,N′) = argmax
E∈E

∏

u,v∈E

βu,v (9.1)

We can see that MPT (β,N′) does not depend on N′. Furthermore, assuming
that ∀u, v ; u 6= v; βu,v > 0, we can take the logarithm of the r.h.s. having

MPT (β,N′) = argmax
E∈E

∑

u,v∈E

log(βu,v) (9.2)

Considering the matrix log(β) as an adjacency matrix, MPT (β,N′) is the
MWST for the graph represented by that adjacency matrix. Hence, if we are
given a decomposable distribution over trees with hyperparameter β, we can find
the most probable tree by calculating the logarithm of every element in the ma-
trix and then running any algorithm for finding the MWST. The complexity of
the MWST algorithm for a complete graph is O(n2) (Pettie and Ramachandran,
2002).

9.1.2 Calculating the MAP tree given a prior decompos-

able distribution over trees

In section 8.1.2 (together with appendix B.2.2) we demonstrated that if we
assume a decomposable distribution over trees with hyperparameters β,N′ as
prior, the posterior distribution after a dataset D follows a decomposable distri-
bution over trees with hyperparameters given by equations 8.10, 8.11 and 8.13.

9.1. Maximum a Posteriori results for decomposable distributions over trees 113

procedure MAPTreeStructure (Dataset D,Matrix β,CountingSet N′)

var

CountingSet N′;

Matrix lβ∗;

begin

N′∗ = CalcN’Posterior(D,N′);

lβ∗ = CalcLogBetaPosterior(β,N′,N′∗);

return MWST(lβ∗);

procedure CalcN’Posterior (Dataset D,CountingSet N′)

var

CountingSet N′∗;

begin

foreach attribute u

foreach attribute v < u

foreach value xu ∈ Au

foreach value xv ∈ Av

N ′∗

u,v(xu, xv) = N ′

u,v(xu, xv);
foreach attribute x ∈ D

foreach attribute u

foreach attribute v < u

N ′∗

u,v(xu, xv) = N ′∗

u,v(xu, xv) + 1;
return N′∗;

procedure CalcLogBetaPosterior (Matrix β,CountingSet N′, N′∗)

var

Matrix lβ∗;

begin

foreach attribute u

foreach attribute v < u

lβ∗

u,v = log βu,v + CalcLogW(N′,N′∗,u,v);

return lβ∗;

procedure CalcLogW (CountingSet N′, N′∗, int u, v)

begin

w = 0;

foreach value xu ∈ Au

w = w + log Γ(N ′

u(xu)) - log Γ(N ′∗

u (xu));
foreach value xv ∈ Av

w = w + log Γ(N ′

v(xv)) - log Γ(N ′∗

v (xv));
foreach value xu ∈ Au

foreach value xv ∈ Av

w = w + log Γ(N ′∗

u,v(xu, xv)) - log Γ(N ′

u,v(xu, xv));
return w;

Algorithm 9: Computation of the MAP tree

114 Chapter 9. Maximum a Posteriori TAN

Since the posterior is a decomposable distribution over trees, we can apply the
former result for finding the most probable tree over it and we will get the MAP
tree. We can translate this result into algorithm 9, that calculates the MAP
tree given a dataset D and prior hyperparameters β,N′. Since the computation
of MWST is O(n2), the time complexity of MAPTreeStructure is bounded by
CalcN’Posterior, which has complexity O((N + r2) · n2).

9.1.3 Calculating the k MAP trees and their relative

weights given a prior decomposable distribution over

trees

The problem of computing the k MWST in order is well known and can be
solved in O((log(β(n2, n)) + k) · n2) for a complete graph (Katoh et al., 1981).
It is easy to see that if in the last step of MAPTreeStructure instead of calculat-
ing the MWST we calculate the k MWST and their relative weights as shown
in algorithm 10, the algorithm will return the k MAP trees and their relative
probabilities. The time complexity of the new algorithm is simply the addition
of the complexity of CalcN’Posterior with that of computing the k MAP trees
and that of computing the weights, giving O((N + r2 + log(β(n2, n)) + k) · n2)
which, as previouly mentioned, can be understood as O((N + r2 + k) · n2) for
all practical purposes.

procedure k-MAPTrees (Dataset D,Matrix β,CountingSet N′, int k)

var

CountingSet N′;

WeightedTreeSet WTS;

Matrix lβ∗;

begin

N′∗ = CalcN’Posterior(D,N′);

lβ∗ = CalcLogBetaPosterior(β,N′,N′∗);

WTS = k-MWST(lβ∗,k);

CalcTreeWeights(WTS,lβ∗);

return WTS;

procedure CalcTreeWeights (WeightedTreeSet WTS, Matrix lβ∗)

begin

foreach tree T ∈ WTS

w = 0;

foreach edge (u, v) ∈ T

w = w + lβ∗

u,v;

fixWeight(T,exp(w));

normalizeWeightsToSumOne(WTS);

Algorithm 10: Computation of the k MAP trees

9.2. maptan and maptan+bma classifiers 115

9.2 maptan and maptan+bma classifiers

In the previous section we have seen that it is possible to efficiently calculate the
MAP tree and the k MAP trees under a decomposable distribution over trees. In
this section we show that these results can be trivially extended to decomposable
distributions over TANs and provide the corresponding algorithms. After that,
we show that two new classifiers, maptan and maptan+bma, can be created
having these results as basis. Finally we briefly discuss the characteristics and
benefits of these two new classifiers.

9.2.1 Maximum a Posteriori results for decomposable dis-

tributions over TANs

It is easy to see that results parallel to the ones presented in section 9.1 hold for
decomposable distributions over TANs. Concretely, algorithm 11 computes the
undirected tree structure underlying the MAP TAN in O((N + r3) · n2) where
r = max(max

i∈V
#Ai, #C). Equivalently, algorithm 12 calculates the k undirected

tree structures underlying the k MAP TAN models and their relative weights in
O((N+r3+log(β(n2, n))+k)·n2) which can be understood as O((N+r3+k)·n2))
for all practical purposes.

9.2.2 Constructing the maptan and maptan+bma classi-

fiers

The previosly introduced results allow us to efficiently compute MAP TAN struc-
tures. We know from equation B.58 that

P (C = sC |V = S, E, ξ) ∝ hS,SC

0

∏

u,v∈E

hS,SC
u,v (9.3)

In fact, given a undirected TAN structure E, it is easy to see that the probability
distribution P (C = sC |V = S, E, ξ) can be represented as a TAN model with

structure E
∗
, such that its undirected version coincides with E and a parameter

set given by

θu|v,C(su, sv, sC) =
N ′

u,v,C(su,sv ,sC)

N ′
v,C

(sv,sC)

θu|C(su, sC) =
N ′

u,C(su,sC)

N ′
C(sC)

θC(sC) =
N ′

C(sC)
N ′

(9.4)

A similar result in the case of decomposable distribution over trees can also be
found in (Meila and Jordan, 2000).

Given a decomposable prior we can calculate the decomposable posterior
using the result in section 8.2.3 and then apply the result we have just enunciated
to the posterior. The posterior probability distribution P (C = sC |V = S, E,D, ξ)

can be represented as a TAN model with structure E
∗
, such that its undirected

version coincides with E and its parameter set is given by

116 Chapter 9. Maximum a Posteriori TAN

procedure MAPTANStructure (Dataset D,Matrix β,CountingSet N′)

var

CountingSet N′;

Matrix lβ∗;

begin

N′∗ = CalcN’PosteriorTAN(D,N′);

lβ∗ = CalcLogBetaPosteriorTAN(β,N′,N′∗);

return MWST(lβ∗);

procedure CalcN’PosteriorTAN (Dataset D,CountingSet N′)

var

CountingSet N′∗;

begin

foreach attribute u

foreach attribute v < u

foreach value xu ∈ Au

foreach value xv ∈ Av

foreach value c ∈ C

N ′∗

u,v,C(xu, xv, c) = N ′

u,v(xu, xv, c);

foreach attribute x ∈ D

foreach attribute u

foreach attribute v < u

N ′∗

u,v,C(xu, xv, xC) = N ′∗

u,v,C(xu, xv, xC) + 1;

return N′∗;

procedure CalcLogBetaPosteriorTAN (Matrix β,CountingSet N′, N′∗)

var

Matrix lβ∗;

begin

foreach attribute u

foreach attribute v < u

lβ∗

u,v = log βu,v + CalcLogWTAN(N′,N′∗,u,v);

return lβ∗;

procedure CalcLogWTAN (CountingSet N′, N′∗, int u, v)

begin

w = 0;

foreach value c ∈ C

foreach value xu ∈ Au

w = w + logΓ(N ′

u,C (xu, c)) - logΓ(N ′∗

u,C (xu, c));

foreach value xv ∈ Av

w = w + logΓ(N ′

v,C
(xv, c)) - logΓ(N ′∗

v,C
(xv, c));

foreach value xu ∈ Au

foreach value xv ∈ Av

w = w + logΓ(N ′∗

u,v,C
(xu, xv, c)) - logΓ(N ′

u,v,C
(xu, xv, c));

return w;

Algorithm 11: Computation of the MAP TAN

9.2. maptan and maptan+bma classifiers 117

θu|v,C(su, sv, sC) =
N ′

u,v,C(su,sv ,sC)+Nu,v,C(su,sv,sC)

N ′
v,C

(sv ,sC)+Nv,C(sv ,sC)

θu|C(su, sC) =
N ′

u,C(su,sC)+Nu,C(su,sC)

N ′
C

(sC)+NC(sC)

θC(sC) =
N ′

C(sC)+NC(sC)
N ′+N

(9.5)

Given this result and our previous results for determining the MAP TAN
structure and the k MAP TAN structures and their relative probability weights,
it is very easy to construct two new classifiers by simple composition. First of
all we have to fix a set of prior hyperparameters. In section 8.2.4 we argued that

∀u, v ; 1 ≤ u 6= v ≤ n ; βu,v = 1 (9.6)

∀u, v; 1 ≤ u 6= v ≤ n; ∀j ∈ Av; ∀i ∈ Au; ∀c ∈ C; N ′
v,u,C(j, i, c) =

λ

#C#Au#Av

(9.7)

where λ is an equivalent sample size, provide a reasonable choice of the hyper-
parameters if no information from the domain is available.

maptan classifier

After fixing the prior hyperparameters, the learning step for maptan classifier
consist in:

1. Applying algorithm 11 to find the undirected dependence tree E underlying
the MAP TAN structure given a dataset D.

2. Randomly choose a root, create a directed tree E and from it a directed
TAN structure E

∗
.

3. Use equation 9.5 to fix the TAN parameters.

For classifying an unclassified observation, we have to apply the TAN that has
been learned for each of the #C classes to construct a probability distribution
over the values of the class C and then choose the most probable class.

This classification algorithm runs in O((N +r3)·n2) learning time and O(nr)
classification time.

maptan+bma classifier

After fixing the prior hyperparameters, the learning stage for maptan+bma

classifier consists in:

1. Applying algorithm 12 to find the k undirected trees underlying the k MAP
TAN structures and their relative probability weights given a dataset D.

2. Generate a TAN model for each of the undirected tree structures as we did
in maptan.

118 Chapter 9. Maximum a Posteriori TAN

procedure k-MAPTANs (Dataset D,Matrix β,CountingSet N′, int k)

var

CountingSet N′;

WeightedTreeSet WTS;

Matrix lβ∗;

begin

N′∗ = CalcN’PosteriorTAN(D,N′);

lβ∗ = CalcLogBetaPosteriorTAN(β,N′,N′∗);

WTS = k-MWST(lβ∗,k);

CalcTreeWeights(WTS,lβ∗);

return WTS;

Algorithm 12: Computation of the k MAP TANs

3. Assign to each TAN model the weight of its corresponding undirected tree
using equation 8.23.

The resulting probabilistic model will be a mixture of TANs. For classifying an
unclassified observation, we have to apply the k TAN models for the #C classes
and calculate the weighted average to construct a probability distribution over
the values of the class C and then choose the most probable class.

This classification algorithm runs in O((N + r3 + log(β(n2, n)) + k) · n2)
learning time and O(nrk) classification time.

Relevant characteristics of maptan and maptan+bma

We have shown that decomposable distributions over TANs can be used to con-
struct two well founded classifiers: maptan and maptan+bma. These classifiers
have some characteristics worth discussing. In the introduction to chapter 7, we
highlighted two possible ways in which the TAN classifier, as presented in (Fried-
man et al., 1997), could be improved: by taking into account model uncertainty
and by providing a theoretically well founded explanation for the use of softening.

The first weak point is that the classifier does not take into account model
uncertainty. In chapter 7 we proposed stan+bma, based on empirical local
Bayesian model averaging as a possible fix for this weak point. We showed that
stan+bma improved stan accuracy at the cost of increasing considerably the
learning time complexity. In chapter 8 we used the fact that decomposable distri-
butions over TANs allow the tractable calculation of the model averaging integral
to construct tbmatan, a classifier that takes into account model uncertainty in
a theoretically well founded way. After its implementation, we realized that the
computation of tbmatan leads to the calculation of an ill-conditioned deter-
minant and proposed sstbmatan, an approximation of tbmatan that showed
better accuracy results. In spite of that, while sstbmatan learning time com-
plexity was equivalent to that of stan, its classification time complexity was

9.3. Empirical results 119

O(n3r), clearly higher than stan’s O(nr). maptan+bma can be seen as shar-
ing some of the good properties of stan, stan+bma, tbmatan and sstbmatan.
As tbmatan, it provides a theoretically well founded way of dealing with model
uncertainty. Its learning time complexity regarding N is almost equivalent to
that of stan and it grows polynomially on k. It has a classification time com-
plexity, O(nrk) as good as that of stan+bma, and reasonably higher than that
of stan. Furtermore, as with stan+bma, we can use k as an effort knob, in the
sense of (Thearling, 1998), hence providing a useful feature for data mining users
that allows them to decide how much computational power they want to spend
in the task. In our opinion, maptan+bma provides the better complexity trade-
off of the four classifiers designed in this thesis to deal with model uncertainty
when learning TAN.

The second improvement consists in providing a theoretically well founded
explanation for the use of softening. Both maptan and maptan+bma can be
interpreted as using softening in both the structure search and the parameter
fixing. This softening appears, in a natural way, as the result of assuming a
decomposable distribution over TANs as the prior over the set of models. In our
opinion maptan is theoretically more appealing than stan.

Finally, both maptan and maptan+bma, share with tbmatan and sstb-

matan the relevant characteristic of allowing the use of some form of prior infor-
mation if such is available, specially structure related information. For example,
if we have expert knowledge that tell us that one of the edges of the tree is much
more (equiv. much less) likely than the others it is very easy to incorporate this
knowledge when fixing the prior hyperparameter matrix β. Evidently, as was
pointed out in (Meila and Jaakkola, 2000b), decomposable distributions do not
allow the expression of some types of prior information such as “if edge (u, v)
exists then edge (w, z) is very likely to exist”.

9.3 Empirical results

We tested four algorithms over 17 datasets from the Irvine repository (Blake
et al., 1998). The dataset characteristics are described in section 6.4.1.

To discretize continuous attributes we used equal frequency discretization
with 5 intervals. For each dataset and algorithm we tested both error rate and
LogScore (see section 6.4). For the evaluation of both error rate and LogScore
we used 10 fold cross validation. We tested the algorithm with the 10%, 50% and
100% of the learning data for each fold, in order to get an idea of the influence
of the amount of data in the behaviors of both error rate and LogScore for the
algorithm.

The error rates appear in Tables 9.1,9.3,9.5 with the best method for each
dataset boldfaced. LogScore’s appear in Tables 9.2,9.4,9.6. The columns of the
tables are the induction methods and the rows are the datasets. The meaning
of the column headers are:

• sstbmatan is the method described in section 8.3.

120 Chapter 9. Maximum a Posteriori TAN

• stan is the softened TAN induction algorithm as presented in (Friedman
et al., 1997).

• stan+bma is the TAN induction algorithm using ELBMA to deal with
model uncertainty as presented in section 7.1.2.

• maptan, is the classifier based on the MAP TAN model described in sec-
tion 9.2.2.

• maptan+bma is the classifier based on the weighted average of the k MAP
TAN models described also in section 9.2.2.

9.3.1 Interpretation of the results

Summarizing the empirical results in the tables, we can conclude that:

• maptan improves stan error rate for most datasets and has a similar
LogScore.

• maptan+bma improves maptan’s LogScore for most datasets. When
little data is available, it also improves its error rate.

• maptan+bma improves stan+bma error rate and LogScore for many
datasets.

• sstbmatan improves maptan+bma error rate and LogScore specially
when little data is available.

In the rest of the section we discuss and justify these assertions into more detail.

maptan vs stan

maptan improves stan error rate in a statistically significant way for most
datasets and has a similar LogScore. This can be appreciated in figures 9.1 and
9.2. After performing a 5% statistical significance t-test, we have that maptan

error rate is significantly better than stan for 12, 11 and 7 datasets with 10%,
50% and 100% of the learning data respectively, whilst stan error rate is bet-
ter than maptan in a statistically significant way only for 4, 2 and 2 datasets.
LogScore results favor maptan slightly. maptan LogScore is significantly bet-
ter than stan for 6, 9 and 9 datasets with 10%, 50% and 100% of the learning
data respectively, whilst stan LogScore is better than maptan in a statistically
significant way for 7, 5 and 6 datasets respectively.

9.3. Empirical results 121

Dataset MAPTAN MAPTAN+BMA SSTBMATAN sTAN sTAN+BMA

adult 17.18 ± 0.68 17.19 ± 0.71 16.73 ± 0.74 17.60 ± 0.82 17.60 ± 0.80

australian 19.91 ± 1.14 19.62 ± 1.13 18.20 ± 1.11 25.39 ± 1.18 24.96 ± 1.13

breast 17.23 ± 1.21 16.89 ± 1.28 11.45 ± 1.22 8.73 ± 0.87 7.73 ± 0.93

car 17.19 ± 1.04 16.50 ± 0.84 16.08 ± 0.85 19.38 ± 0.95 17.60 ± 0.77

chess 9.55 ± 0.80 9.48 ± 0.86 11.74 ± 0.89 10.89 ± 0.56 10.91 ± 0.53

cleve 28.12 ± 1.68 28.14 ± 1.59 24.49 ± 1.12 32.37 ± 1.00 31.89 ± 1.27

crx 19.77 ± 0.91 19.16 ± 1.00 17.39 ± 0.98 25.14 ± 0.87 24.18 ± 0.98

flare 23.50 ± 1.09 23.16 ± 1.09 22.46 ± 0.94 19.94 ± 0.85 19.92 ± 0.88

glass 47.02 ± 1.66 45.72 ± 1.59 37.99 ± 1.52 59.19 ± 1.78 58.54 ± 1.83

glass2 33.69 ± 1.74 32.87 ± 1.82 32.18 ± 2.18 37.75 ± 1.39 36.63 ± 1.37

iris 28.67 ± 2.33 26.27 ± 2.30 24.80 ± 2.13 25.87 ± 3.07 24.80 ± 2.96

letter 30.22 ± 0.96 30.19 ± 0.97 24.02 ± 0.93 36.11 ± 1.39 34.68 ± 1.37

liver 45.52 ± 1.26 44.96 ± 1.06 43.51 ± 1.14 42.39 ± 0.94 41.24 ± 1.37

nursery 7.87 ± 1.03 7.57 ± 1.04 7.43 ± 0.98 8.88 ± 1.12 8.50 ± 1.12

primary-tumor 74.52 ± 1.73 74.28 ± 1.66 70.98 ± 1.77 71.67 ± 1.54 71.73 ± 1.44

soybean 26.53 ± 1.30 26.51 ± 1.33 24.83 ± 1.14 30.79 ± 1.28 30.82 ± 1.33

votes 9.61 ± 0.94 9.67 ± 0.99 8.13 ± 0.59 14.14 ± 0.93 14.13 ± 0.71

Table 9.1: Averages and standard deviations of error rate using 10% of the
learning data

Dataset MAPTAN MAPTAN+BMA SSTBMATAN sTAN sTAN+BMA

adult 562.25 ± 3.75 561.39 ± 3.71 520.49 ± 3.40 567.09 ± 3.92 567.64 ± 4.00

australian 18.54 ± 0.95 17.68 ± 0.96 14.28 ± 0.76 17.85 ± 0.64 17.06 ± 0.60

breast 23.59 ± 1.67 18.24 ± 1.56 11.09 ± 1.36 8.12 ± 0.69 7.56 ± 0.65

car 34.89 ± 1.02 32.79 ± 0.98 31.02 ± 0.93 38.55 ± 0.91 36.52 ± 0.86

chess 32.50 ± 0.89 32.25 ± 0.91 38.34 ± 1.30 35.39 ± 0.58 35.40 ± 0.59

cleve 11.15 ± 1.06 10.09 ± 0.96 8.42 ± 0.67 8.49 ± 0.74 8.23 ± 0.76

crx 19.44 ± 1.06 18.30 ± 1.00 14.63 ± 0.81 17.84 ± 1.05 16.89 ± 1.00

flare 51.12 ± 1.17 49.48 ± 1.15 45.55 ± 1.06 24332.38 ± 56.59 24332.03 ± 56.59

glass 20.49 ± 1.45 17.14 ± 1.40 13.26 ± 1.28 11713.24 ± 72.91 11713.00 ± 72.91

glass2 6.45 ± 0.79 5.49 ± 0.64 5.15 ± 0.69 4.68 ± 0.57 4.57 ± 0.54

iris 4.58 ± 0.68 4.06 ± 0.69 3.83 ± 0.72 4.04 ± 0.67 3.96 ± 0.70

letter 3535.93 ± 12.92 3495.14 ± 13.52 1349.63 ± 8.01 1385.73 ± 8.95 1300.23 ± 8.38

liver 18.71 ± 0.95 15.87 ± 0.92 16.40 ± 0.98 12.62 ± 0.79 11.71 ± 0.65

nursery 112.72 ± 2.47 111.95 ± 2.47 112.90 ± 2.48 3126.39 ± 77.45 3123.62 ± 77.45

primary-tumor 71.74 ± 2.08 69.08 ± 2.05 58.53 ± 1.89 75927.03 ± 123.39 75926.94 ± 123.39

soybean 68.52 ± 1.77 65.29 ± 1.55 66.35 ± 1.78 41125.59 ± 108.25 41125.46 ± 108.25

votes 5.66 ± 0.66 5.17 ± 0.60 4.53 ± 0.64 6.09 ± 0.50 6.03 ± 0.48

Table 9.2: Averages and standard deviations of LogScore using 10% of the
learning data

122 Chapter 9. Maximum a Posteriori TAN

Dataset MAPTAN MAPTAN+BMA SSTBMATAN sTAN sTAN+BMA

adult 16.26 ± 0.75 16.28 ± 0.77 16.23 ± 0.74 16.46 ± 0.78 16.45 ± 0.83

australian 15.36 ± 0.94 15.13 ± 1.09 14.23 ± 0.85 18.14 ± 0.91 17.74 ± 0.80

breast 5.92 ± 0.74 5.84 ± 0.78 4.32 ± 0.71 5.26 ± 0.84 4.75 ± 0.72

car 7.62 ± 0.75 7.55 ± 0.76 7.39 ± 0.79 8.68 ± 0.68 8.09 ± 0.58

chess 7.87 ± 0.44 7.90 ± 0.44 9.70 ± 0.46 8.25 ± 0.49 8.15 ± 0.49

cleve 19.82 ± 1.30 20.27 ± 1.27 18.87 ± 1.08 24.01 ± 1.31 23.57 ± 1.28

crx 15.47 ± 1.01 15.30 ± 1.02 14.28 ± 0.80 18.12 ± 0.92 17.68 ± 0.85

flare 19.83 ± 0.72 19.81 ± 0.65 19.83 ± 0.67 18.55 ± 0.62 18.54 ± 0.72

glass 24.02 ± 1.22 23.31 ± 1.48 20.35 ± 1.01 33.79 ± 1.14 33.86 ± 0.97

glass2 23.69 ± 1.62 22.81 ± 1.61 21.11 ± 1.35 22.38 ± 1.53 23.40 ± 1.54

iris 11.60 ± 1.22 11.07 ± 1.08 10.27 ± 1.11 8.40 ± 1.00 8.27 ± 0.82

letter 14.79 ± 0.78 14.79 ± 0.78 11.78 ± 0.84 15.62 ± 0.91 15.31 ± 0.83

liver 37.33 ± 1.16 36.90 ± 1.15 36.39 ± 1.11 36.73 ± 1.60 35.17 ± 1.34

nursery 6.39 ± 0.92 6.37 ± 0.89 6.82 ± 0.80 7.09 ± 0.80 6.03 ± 0.97

primary-tumor 59.15 ± 1.67 59.09 ± 1.63 57.79 ± 1.53 60.23 ± 1.17 59.87 ± 1.33

soybean 6.64 ± 0.77 6.50 ± 0.85 6.71 ± 0.59 7.88 ± 0.71 7.80 ± 0.82

votes 6.22 ± 0.83 6.25 ± 0.84 6.16 ± 0.61 7.63 ± 0.93 7.76 ± 0.93

Table 9.3: Averages and standard deviations of error rate using 50% of the
learning data

Dataset MAPTAN MAPTAN+BMA SSTBMATAN sTAN sTAN+BMA

adult 507.82 ± 3.82 507.52 ± 3.81 496.04 ± 3.24 520.03 ± 3.93 518.82 ± 3.91

australian 12.86 ± 0.82 12.57 ± 0.84 11.01 ± 0.55 14.79 ± 0.76 14.41 ± 0.59

breast 10.95 ± 0.67 9.20 ± 0.69 5.97 ± 0.51 5.17 ± 0.64 4.40 ± 0.62

car 15.96 ± 0.44 15.90 ± 0.40 16.03 ± 0.46 20.44 ± 0.51 19.73 ± 0.48

chess 26.70 ± 0.66 26.66 ± 0.68 32.11 ± 0.49 27.32 ± 0.73 27.12 ± 0.79

cleve 6.83 ± 0.69 6.70 ± 0.66 6.05 ± 0.61 7.38 ± 0.66 7.15 ± 0.63

crx 13.28 ± 0.89 12.93 ± 0.85 11.51 ± 0.68 15.62 ± 1.11 15.21 ± 1.07

flare 39.81 ± 1.16 39.45 ± 1.15 37.93 ± 0.98 4233.42 ± 41.82 4233.31 ± 41.82

glass 11.05 ± 0.73 9.37 ± 0.84 6.50 ± 0.52 309.52 ± 24.49 309.25 ± 24.49

glass2 5.06 ± 0.73 4.64 ± 0.64 3.91 ± 0.47 3.86 ± 0.53 3.68 ± 0.51

iris 1.87 ± 0.35 1.77 ± 0.34 1.65 ± 0.36 1.52 ± 0.37 1.48 ± 0.34

letter 1030.65 ± 9.50 1030.65 ± 9.50 416.51 ± 6.07 574.47 ± 6.13 559.56 ± 6.17

liver 13.03 ± 0.89 12.21 ± 0.77 11.38 ± 0.75 10.78 ± 0.74 10.39 ± 0.71

nursery 96.60 ± 2.40 96.52 ± 2.42 99.30 ± 2.36 1596.96 ± 67.06 1594.32 ± 67.06

primary-tumor 44.24 ± 1.25 43.00 ± 1.23 37.30 ± 1.07 12028.93 ± 51.79 12028.74 ± 51.79

soybean 6.79 ± 0.83 6.47 ± 0.74 7.01 ± 0.84 907.34 ± 42.43 907.27 ± 42.43

votes 3.66 ± 0.58 3.54 ± 0.52 3.37 ± 0.49 5.04 ± 0.80 4.50 ± 0.69

Table 9.4: Averages and standard deviations of LogScore using 50% of the
learning data

9.3. Empirical results 123

Dataset MAPTAN MAPTAN+BMA SSTBMATAN sTAN sTAN+BMA

adult 16.35 ± 0.73 16.35 ± 0.73 16.26 ± 0.71 16.46 ± 0.68 16.42 ± 0.72

australian 13.68 ± 0.75 13.65 ± 0.74 13.74 ± 0.58 16.49 ± 0.65 16.43 ± 0.72

breast 4.75 ± 0.53 4.63 ± 0.48 3.49 ± 0.44 4.29 ± 0.66 3.72 ± 0.45

car 5.76 ± 0.52 5.78 ± 0.45 6.03 ± 0.40 6.23 ± 0.55 6.16 ± 0.53

chess 7.71 ± 0.25 7.67 ± 0.21 9.47 ± 0.25 7.89 ± 0.38 7.68 ± 0.44

cleve 18.74 ± 1.15 18.53 ± 1.18 18.22 ± 0.78 19.99 ± 1.26 19.73 ± 1.18

crx 13.67 ± 0.53 13.53 ± 0.58 13.24 ± 0.41 15.71 ± 0.66 15.79 ± 0.74

flare 19.71 ± 0.49 19.71 ± 0.55 19.91 ± 0.44 18.46 ± 0.30 18.31 ± 0.24

glass 18.46 ± 1.20 18.74 ± 1.29 13.80 ± 1.27 26.58 ± 1.22 25.99 ± 1.28

glass2 19.81 ± 0.85 20.25 ± 1.39 16.43 ± 1.43 19.61 ± 1.42 18.06 ± 1.43

iris 7.73 ± 1.70 7.47 ± 1.66 7.20 ± 1.52 8.13 ± 1.44 7.20 ± 1.43

letter 11.49 ± 0.74 11.49 ± 0.74 9.71 ± 0.80 12.69 ± 0.77 12.48 ± 0.83

liver 34.35 ± 0.86 33.99 ± 0.77 33.21 ± 1.07 33.36 ± 0.98 33.19 ± 1.10

nursery 6.33 ± 0.89 6.26 ± 0.91 6.96 ± 0.78 6.62 ± 0.75 4.81 ± 0.76

primary-tumor 55.09 ± 1.24 54.68 ± 1.02 54.08 ± 1.04 56.74 ± 1.09 56.32 ± 0.93

soybean 5.47 ± 0.62 5.27 ± 0.62 5.36 ± 0.55 5.97 ± 0.50 5.94 ± 0.49

votes 5.89 ± 0.74 5.89 ± 0.72 5.89 ± 0.35 6.26 ± 0.81 6.34 ± 0.56

Table 9.5: Averages and standard deviations of error rate using 100% of the
learning data

Dataset MAPTAN MAPTAN+BMA SSTBMATAN sTAN sTAN+BMA

adult 495.88 ± 3.68 495.70 ± 3.67 493.81 ± 3.13 508.10 ± 3.07 508.01 ± 3.07

australian 10.65 ± 0.46 10.47 ± 0.44 9.88 ± 0.28 12.90 ± 0.65 12.66 ± 0.61

breast 8.96 ± 0.87 7.89 ± 0.61 5.40 ± 0.46 4.85 ± 0.50 4.28 ± 0.54

car 14.11 ± 0.40 14.12 ± 0.40 14.39 ± 0.39 16.29 ± 0.39 16.31 ± 0.41

chess 26.12 ± 0.40 26.09 ± 0.32 31.18 ± 0.27 26.46 ± 0.46 26.22 ± 0.36

cleve 6.10 ± 0.43 6.05 ± 0.38 5.50 ± 0.24 6.51 ± 0.44 6.29 ± 0.51

crx 11.34 ± 0.62 11.05 ± 0.60 10.31 ± 0.49 13.97 ± 0.68 13.76 ± 0.58

flare 35.82 ± 0.92 35.61 ± 0.90 34.12 ± 0.73 1532.39 ± 0.62 1532.22 ± 0.65

glass 8.53 ± 1.05 7.50 ± 1.03 4.15 ± 0.76 7.40 ± 0.59 7.12 ± 0.52

glass2 4.20 ± 0.56 3.91 ± 0.54 3.11 ± 0.43 3.20 ± 0.39 3.08 ± 0.37

iris 1.29 ± 0.53 1.22 ± 0.53 1.12 ± 0.50 1.18 ± 0.44 1.16 ± 0.44

letter 612.99 ± 7.71 612.99 ± 7.71 295.94 ± 4.65 441.94 ± 5.61 433.37 ± 5.84

liver 10.79 ± 0.63 10.61 ± 0.66 9.97 ± 0.61 9.59 ± 0.44 9.72 ± 0.60

nursery 94.59 ± 2.45 94.57 ± 2.43 97.67 ± 2.41 91.52 ± 2.41 89.41 ± 2.30

primary-tumor 35.28 ± 0.99 34.64 ± 0.94 31.33 ± 0.58 6327.87 ± 38.33 6327.64 ± 38.33

soybean 3.45 ± 0.50 3.38 ± 0.49 4.96 ± 0.38 4.49 ± 0.51 4.45 ± 0.48

votes 3.74 ± 0.59 3.57 ± 0.58 3.27 ± 0.40 3.96 ± 0.55 3.76 ± 0.46

Table 9.6: Averages and standard deviations of LogScore using 100% of the
learning data

124 Chapter 9. Maximum a Posteriori TAN

Figure 9.1: Comparison of maptan and stan error rate

9.3. Empirical results 125

Figure 9.2: Comparison of maptan and stan LogScore

126 Chapter 9. Maximum a Posteriori TAN

Figure 9.3: Comparison of maptan+bma and maptan error rate

9.3. Empirical results 127

Figure 9.4: Comparison of maptan+bma and maptan LogScore

128 Chapter 9. Maximum a Posteriori TAN

Figure 9.5: Comparison of maptan+bma and stan+bma error rate

9.3. Empirical results 129

Figure 9.6: Comparison of maptan+bma and stan+bma LogScore

130 Chapter 9. Maximum a Posteriori TAN

Figure 9.7: Comparison of sstbmatan and maptan+bma error rate

9.3. Empirical results 131

Figure 9.8: Comparison of sstbmatan and maptan+bma LogScore

132 Chapter 9. Maximum a Posteriori TAN

maptan+bma vs maptan

maptan+bma improves maptan LogScore in a statistically significant way for
most datasets. When little data is available, this improvement translates in an
improvement in error rate. This can be appreciated in figures 9.3 and 9.4. After
performing a 5% statistical significance t-test, we have that maptan+bma er-
ror rate is significantly better than maptan’s for 6, 0 and 2 datasets with 10%,
50% and 100% of the learning data respectively, whilst maptan error rate is
never better than maptan+bma’s in a statistically significant way. LogScore
results favor maptan+bma more clearly. maptan+bma LogScore is signifi-
cantly better than maptan for 16, 13 and 12 datasets with 10%, 50% and 100%
of the learning data respectively, whilst maptan LogScore never improves sstb-

matan’s in a statistically significant way.

maptan+bma vs stan+bma

maptan+bma improves stan+bma error rate and LogScore in a statistically
significant way for many datasets. This can be appreciated in figures 9.5 and
9.6. After performing a 5% statistical significance t-test, we have that map-

tan+bma error rate is significantly better than stan+bma for 10, 10 and
8 datasets with 10%, 50% and 100% of the learning data respectively, whilst
stan+bma error rate is only better than maptan+bma in a statistically sig-
nificant way for 5, 4 and 4 datasets . LogScore results favor maptan+bma

slightly. maptan+bma LogScore is significantly better than stan+bma for 7,
9 and 7 datasets with 10%, 50% and 100% of the learning data respectively,
whilst stan+bma LogScore is only better maptan+bma in a statistically sig-
nificant way for 5 datasets independently of the amount of data.

sstbmatan vs maptan+bma

sstbmatan improves maptan+bma error rate and LogScore in a statistically
significant way. This improvement is clearer when little data is available. This
can be appreciated in figures 9.7 and 9.8. After performing a 5% statistical
significance t-test, we have that sstbmatan error rate is significantly better than
maptan+bma for 14, 9 and 4 datasets with 10%, 50% and 100% of the learning
data respectively, whilst maptan+bma error rate is better than sstbmatan in
a statistically significant way only for 1, 2 and 3 datasets. LogScore results
favor sstbmatan more clearly. sstbmatan LogScore is significantly better
than maptan+bma for 13, 12 and 12 datasets with 10%, 50% and 100% of
the learning data respectively, whilst maptan+bma LogScore is better than
sstbmatan in a statistically significant way for 2, 3 and 4 datasets respectively.

9.4 Conclusions and future work

In this chapter we have seen that under a decomposable distribution over trees it
is possible to efficiently determine the MAP tree and the set of k MAP trees and

9.4. Conclusions and future work 133

Value ratio accuracy-efficiency

Uncertainty in models

MAPTAN

MAPTAN+BMA

SSTBMATAN

Figure 9.9: Selecting between sstbmatan, maptan+bma and maptan

their relative probability weights. We have extended these results for TAN’s and
have used them to construct two new classifiers: maptan and maptan+bma.
We have provided empirical results showing that both classifiers improve over
their corresponding equivalents seen in chapter 7. Our empirical results do also
show that sstbmatan is still the most accurate classifier based on the TAN
model. From a practical point of view, selecting when to use sstbmatan, map-

tan+bma or maptan depends mainly on two factors: the amount of uncertainty
a posteriori in the models we expect to have and the ratio between the value of
accuracy and the value of efficiency for the user. We can see a qualitative sketch
of when to choose each classifier in figure 9.9. For any value of the ratio, we
will choose maptan when uncertainty a posteriori in models is low, sstbmatan

when it is high and maptan+bma inbetween. If learning takes place in an
environment where accuracy is much more important than efficiency, then our
threshold in uncertainty to use maptan+bma and sstbmatan will be lower.
If learning takes place in an environment where efficiency is much more impor-
tant than accuracy, then maptan will be our choice most of the times unless
uncertainty in models is very high.

9.4.1 Future work

Since the amount of uncertainty a posteriori in the models can be measured after
the learning step has been done, and the computational overload for finding the

134 Chapter 9. Maximum a Posteriori TAN

k MAP TAN models is low, it is possible to construct a classifier that is able
to make the selection automatically. This classifier could receive a threshold in
the amount of uncertainty in model selection. From the k MAP weights the
classifier can easily calculate a lower bound on the amount of uncertainty in
model selection using the k MAP models, and the single MAP model and select
the classifier to be used based in this bound. Furthermore, this evaluation can be
performed periodically (each 1000 instances for example). Assuming the dataset
is i.i.d., once the uncertainty in a single MAP model is under the threshold, the
learning algorithm can assume that the structure has been learnt and from there
on its learning time will be O(n), instead of on the current O(n2). This means
that we can use the results in this chapter to construct an almost linear TAN
learning algorithm.

In chapter 8 we showed that sstbmatan performed better than tbmatan

empirically and argued that this was possibly due to the fact that tbmatan

assumes that the distribution generating the data is coming from a TAN, so
possibly it overweights the probabilities assigned to the most probable models. A
possible test for this hypothesis will be to use the modified weights of sstbmatan

in maptan+bma and comparing the performance of the structure stubborn
maptan+bma against that of maptan+bma. Developing these ideas and tests
remains as future work.

Chapter 10

Conclusions

The world is round and the place which may seem like the end
may also be only the beginning

Ivy Baker

Along the preceding chapters we have presented several improvements to
Bayesian network classifiers. In the first section of this chapter we review the
contributions in the thesis. After that, the present the list of international
refereed publications produced by the work presented in the thesis. In the last
section we try to foresee future applications of these contributions and future
research lines.

10.1 Main contributions and its relevance

In this thesis we have proposed different ways to improve Bayesian network clas-
sifiers. In the following sections we review each contribution shortly, summarize
its relevance and point out possible future applications.

10.1.1 A parallelizable discretization method

Many classifiers can only be applied in discrete domains. Discretization algo-
rithms allow for the application of such classifiers in continuous domains. We
have introduced a discretization algorithm based on a distance between parti-
tions that is equivalent in terms of accuracy with state of the art discretization
methods and that can be parallelized efficiently. This discretization algorithm
could be beneficial for large classification tasks whenever a parallel machine is
available.

135

136 Chapter 10. Conclusions

10.1.2 Qualitative influences and synergies

Bayesian reasoning has been criticized as hard to explain and understand. We
have introduced two concepts which help increasing this understandability: in-
fluences and synergies. We have also seen that understandability can be further
improved by making these concepts qualitative. Qualitative influences and syn-
ergies can be used to give acceptable explanations for Bayesian reasoning results.
They can also be used in the construction of new, more easily interpretable clas-
sifiers.

10.1.3 First Order Qualitative Bayesian Classifier

We have introduced a very simple and easily interpretable classifier based on
qualitative influences.

This classifier can be used to quickly explore an unknown dataset to grasp
the most relevant interactions with the class, before a more sophisticated and
accurate classifier is applied.

10.1.4 Second Order Qualitative Bayesian Classifier

We have introduced an slightly more complex but still easily interpretable classi-
fier based on both qualitative influences and synergies. This classifier has shown
to be competitive in accuracy with classifiers such as Naive Bayes while having
more easily interpretable results.

This classifier can be used to get information about the most relevant syn-
ergies between pairs of attributes and the class, providing a more detailed in-
formation about the dataset than the First Order Qualitative Naive Bayesian
Classifier.

10.1.5 Naive distributions

We have introduced Naive distributions, which are a family of probability distri-
butions over the set of naive Bayes models. They allow to deal with uncertainty
in model selection when we now that our data follows a naive Bayes model.
In our opinion, they constitute the most reasonable way to provide informa-
tion about a domain prior to the application of an algorithm for learning naive
Bayes models. They also provide the foundation for the indifferent naive Bayes
classifier.

10.1.6 The indifferent naive Bayes classifier

We have introduced the indifferent naive Bayes classifier. The indifferent naive
Bayes classifier is the classifier resulting from the assumption that the data fol-
lows a naive Bayes model and that the prior over models follows a naive distribu-
tion. The development presented here for the indifferent naive Bayes classifier,
constitutes an example of a more widely applicable procedure for the construc-
tion of classifiers. In fact, the same procedure is followed in the development of

10.1. Main contributions and its relevance 137

the Tractable Bayesian Model Averaging of Tree Augmented Naive Bayes. The
indifferent naive Bayes classifier is more accurate than other classifiers based on
naive Bayes models and this improvement is specially significant for datasets
with a small number of instances.

The indifferent naive Bayes can be applied wherever Naive Bayes has been
applied because its application is likely to result in a small increase in accuracy.

10.1.7 Empirical local Bayesian model averaging of TAN

We have introduced stan+bma, a classification algorithm based on applying
empirical local Bayesian model averaging to TAN models. The algorithm has
been shown to improve TAN accuracy.

This classifier is improved both in complexity and classification accuracy by
maptan+bma (see section 10.1.11), , so we foresee no future application for this
result. On the contrary, empirical Bayesian model averaging can be applied to
other probabilistic classifiers as a wrapper to deal with model uncertainty.

10.1.8 Decomposable distributions over TAN models

We have introduced decomposable distributions over TAN models, which are a
family of probability distributions over the space of TAN models, and an exten-
sion for TAN models of decomposable distributions as introduced by Meila and
Jaakola (Meila and Jaakkola, 2000b). Decomposable distributions over TANs
are conjugate to TAN models. They provide a reasonable way to encode in-
formation about a domain prior to the application of an algorithm for learning
a TAN model from data. They also provide the foundation for the tbmatan,
maptan and maptan+bma classifiers.

10.1.9 Tractable Bayesian model averaging of TAN

We have introduced tbmatan and sstbmatan, classification algorithms based
on the TAN model, decomposable distributions over TAN models, Bayesian
model averaging, and the principle of indifference. These algorithms are based
on the fact that decomposable distributions over TANs allow the computation
of the averaging over TAN structures in polynomial time. The sstbmatan

algorithm improves stan accuracy and is, to the best of our knowledge, the best
algorithm reported with a learning time linear on the number of observations in
the dataset.

The classifier is specially best suited for datasets with a very large number of
observations and a relatively small number of attributes and in tasks where high
accuracy is needed and the amount of unclassified data is not overwhelming

10.1.10 Maximum a posteriori TAN classifier

We have introduced maptan, a classification algorithm based on the TAN model,
decomposable distributions over TAN models and the principle of indifference.

138 Chapter 10. Conclusions

This algorithm is based on the fact that decomposable distributions over TANs
allow the computation of maximum a posteriori TAN structure and parameters
in polynomial time. This algorithm improves stan accuracy, provides theoret-
ical support for the use of softening in TAN induction and has equivalent time
complexity.

This algorithm can be applied wherever stan has been applied because its
application is likely to result in an increase in accuracy at no complexity cost.

10.1.11 Maximum a posteriori local Bayesian model aver-

aging of TAN

We have introduced maptan+bma, a classification algorithm based on the TAN
model, decomposable distributions over TAN models, local Bayesian model aver-
aging, and the principle of indifference. This algorithm is based on the fact that
decomposable distributions over TANs allow the computation of the k maximum
a posteriori TAN structures and parameters in polynomial time. This algorithm
improves the accuracy of the probabilities assigned to the class by maptan at a
reasonable time complexity cost.

This algorithm can be applied wherever stan has been applied and we are
interested in increasing accuracy even if this means a small increase in time
complexity. The TAN classifiers based on decomposable distributions maptan,
maptan+bma and sstbmatan can be seen as three different alternatives for
different tradeoffs between accuracy and complexity. If time constraints are
very important, then we should use maptan. If accuracy is the most important
characteristic, then we should use sstbmatan. In the space betweeen these two
alternatives we can use maptan+bma.

10.2 Publication list

The work presented in this thesis has also produced the following refereed pub-
lications:

• Cerquides, J. and López de Màntaras, R. Proposal and empirical compar-
ison of a parallelizable distance-based discretization method. In Hecker-
man, D., Mannila, H., Pregibon, D., and Uthurusamy, R., editors, Pro-
ceedings of the Third International Conference on Knowledge Discovery
and Data Mining, pages 139-142.

• López de Màntaras, R., Cerquides, J., and Garcia, P. (1998). Compar-
ing Information-Theoretic Attribute Selection Measures: A Statistical Ap-
proach. AI Communications, 11(2), pages 91-100.

• Cerquides, J. and López de Màntaras, R. Fuzzy metaqueries for guiding
the Discovery Process in KDD. In Proceedings of the Sixth International
Conference on Fuzzy Systems, volume Volume III, pages 1555-1559.

10.3. Where to go from here? 139

• J. Cerquides, R. López de Màntaras. On the Usefulness of Component-
Based Architectures for Knowledge Discovery. In the Proceedings of the
”Primer Congrés Català d’Intel.ligència Artificial (CCIA’98)”, Tarragona,
Spain, October 21-23, pages 177-180.

• Cerquides, J. and López de Màntaras, R. A first analysis of qualitative
influences and synergies. In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, AAAI-98 Student Abstracts Session.

• Cerquides, J. and López de Màntaras, R. Knowledge discovery with quali-
tative influences and synergies. In Proceedings of the 2nd European Sym-
posium on Principles of Data Mining and Knowledge Discovery (PKDD-
98), volume 1510 of LNAI, pages 273-281. Springer.

• Cerquides, J. and López de Màntaras, R. A New Approach to Rule In-
terest Measures. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, AAAI-98 Student Abstracts Session.

• Cerquides, J. Applying General Bayesian Techniques to Improve TAN In-
duction. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining, KDD99, pages 292-296.

• Cerquides, J. and López de Màntaras, R. The indifferent naive bayes
classifier. In Proceedings of the 16th International FLAIRS Conference,
FLAIRS 2003, pages 341-345.

• Cerquides, J. and López de Màntaras, R. Tractable Bayesian Learning of
Tree Augmented Naive Bayes Models. In Proceedings of the Twentieth
International Conference on Machine Learning (ICML-2003), pages 75-82.

10.3 Where to go from here?

The contributions presented in section 10.1 support the thesis that the joint ap-
plication of Bayesian model averaging and a careful selection of the prior proba-
bility distribution over the set of models, following objective Bayesian techniques
whenever it is possible, can provide significant improvements to classification al-
gorithms. We are convinced that the application of these techniques to other
probabilistic models could give equally beneficial results. This is specially clear
for the case of classifiers based on models with an underlying tree-like depen-
dency structure, where we are convinced that an extension of decomposable
distributions can be easily found.

Some of the contributions in the thesis are new classifiers which are to be
included in the “palette” of classifiers to be used by a user of automatic clas-
sification. In this sense, it would be interesting to clarify how to increase the
interpretability of the results of the classifiers resulting from applying Bayesian
model averaging. Better understanding and explaining Bayesian model averag-
ing results appears as an important area of work if we would like to be able

140 Chapter 10. Conclusions

to take full advantage in real life applications of the improvements in accuracy
provided by the application of Bayesian model averaging.

Maybe it is also possible to find versions of the classifiers reported here with
a much more reduced complexity by applying concentration bounds. Concen-
tration bounds, such as Chernoff bounds, give a bound on the quality of a
probability estimate given the amount of data that was used in the estimation.
Given concrete quality constraints, we could invert the process and calculate
the amount of data needed to get to the desired quality constraints. Further
developing this idea and how to apply it for classifiers based on Bayesian model
averaging will benefit in lowering the complexity of the classifiers presented in
this thesis.

Appendix A

Mathematical developments

for the Indifferent Bayesian

Classifier

A.1 Preliminaries

A.1.1 A multiple variable constrained integral

Let δ be a function defined as:

δ(x) =

{
1 x = 0

0 otherwise
(A.1)

Given a real vector m = (m1, . . . , mV) and a real number r the value of the
definite multiple integral

∫
· · ·

∫

γ.

V∏

i=1

γmi

i δ
(V∑

i=1

γi − r
)
dγ. (A.2)

where the limits of integration range from 0 to ∞ for every γi is:

∫
· · ·

∫

γ.

V∏

i=1

γmi

i δ
(V∑

i=1

γi − r
)
dγ. =

V∏
i=1

Γ(mi + 1)

Γ (M + V)
r(M+V −1) (A.3)

where M =
V∑

i=1

mi.

Proof: The integral can be solved by means of Laplace transforms as can
be seen in (Jaynes, 1996) page 1814.

�

141

142 Appendix A. Mathematical developments for IndifferentNB

A.1.2 A bit of notation

Given a classified discrete domain ΩC = {A1, . . . , An, C}, let S = (s1, . . . , sn)
be an unclassified observation over ΩC , C the class attribute, sC and c values
of the class attribute, i an attribute index for denoting Ai and v a value of the
attribute Ai. We can define:

1S,sC

C (c) =

{
1 c = sC

0 otherwise
(A.4)

1S,sC

i,C (k, c) =

{
1 k = si ∧ c = sC

0 otherwise
(A.5)

It is easy to see that: ∑

v∈Ai

1S,sC

i,C (v, c) = 1S,sC

C (c) (A.6)

∑

c∈C

1S,sC

C (c) = 1 (A.7)

A.2 Calculating probabilities with naive distri-

butions

Assume that our data is generated by a naive Bayes model and that P (M |ξ), the
prior probability distribution over the set of models, follows a naive distribution
with hyperparameter set N′. We can calculate the probability of an observation
S, sC given ξ by averaging over the set of naive Bayes models M:

P (V = S, C = sC |ξ) =

∫

M∈M

P (V = S, C = sC |M)P (M |ξ) (A.8)

From the definition of naive distribution in equation 6.10 we get P (M |ξ). From
the definition of naive Bayes model in equation 6.3 we get P (V = S, C = sC |M).
Substituting these two equations into equation A.8 and making use of the nota-
tion introduced in section A.1.2 we get:

P (V = S, C = sC |ξ) =

K

∫

M∈M


∏

c∈C

α
N ′

C(c)+1
S,sC
C

(c)
c

n∏

i=1

∏

v∈Ai

(
φi,v,c

αc

)N ′
i,C(v,sC)+1

S,sC
i,C (v,c)


 dM =

K

∫

M∈M

(
∏

c∈C

α
(1−n)(N ′

C(c)+1
S,sC
C

(c))
c

n∏

i=1

∏

v∈Ai

φi,v,c
N ′

i,C(v,c)+1
S,sC
i,C (v,c)

)
dM (A.9)

Since our model imposes that
∑
c∈C

αc = 1 and ∀i ∀c αc =
∑

v∈Ai

φi,v,c we can

decompose the previous integral in a set of integrals where our model parameters

A.2. Calculating probabilities with naive distributions 143

range from 0 to ∞ encoding our model restrictions as δ functions. From now on
the integral signs should be understood as ranging from 0 to ∞. Hence, defining

B(i, c) =

∫
· · ·

∫

φi,.,c

∏

v∈Ai

φi,v,c
N ′

i,C(v,c)+1
S,sC
i,C (v,c) δ

(∑

v∈Ai

φi,v,c − αc

)
dφi,.,c (A.10)

we can express A.9 as:

P (V = S, C = sC |ξ) =

K

∫
· · ·

∫

α.

(
∏

c∈C

α
(1−n)(N ′

C(c)+1
S,sC
C (c))

c

n∏

i=1

B(i, c) δ
(∑

c∈C

αc − 1
))

dα. (A.11)

Applying the result in equation A.3 to B(i, c) we have

B(i, c) =

∏
v∈Ai

Γ
(
N ′

i,C(v, c) + 1S,sC

i,C (v, c) + 1
)

Γ
(
N ′

C(c) + 1S,sC

C (c) + #Ai

) α
N ′

C(c)+1
S,sC
C (c)+#Ai−1

c (A.12)

Then, substituting in A.11 and grouping:

p(C = cl,V = S|D, ξ) = K
∏

c∈C

n∏

i=1

∏
v∈Ai

Γ
(
N ′

i,C(v, c) + 1S,sC

i,C (v, c) + 1
)

Γ
(
N ′

C(c) + 1S,sC

C (c) + #Ai

) ×

×

∫
· · ·

∫

α.

∏

c∈C

αc

N ′
C(c)+1

S,sC
C

(c)+
nP

i=1

(#Ai)−n

δ
(∑

c∈C

αc − 1
)
dα. (A.13)

Applying A.3 again we get

P (V = S, C = sC |ξ) = K
∏

c∈C

n∏

i=1

∏
v∈Ai

Γ
(
N ′

i,C(v, c) + 1S,sC

i,C (v, c) + 1
)

Γ
(
N ′

C(c) + 1S,sC

C (c) + #Ai

) ×

×

∏
c∈C

Γ

(
N ′

C(c) + 1S,sC

C (c) +
n∑

i=1

(#Ai) − n

)

Γ

(
N ′ + 2 + #C · [

n∑
i=1

(#Ai) − n + 1]

) (A.14)

144 Appendix A. Mathematical developments for IndifferentNB

We can calculate the Bayes factor dividing P (V = S, C = sC |ξ) by the probability
of a reference class s′C :

P (V = S, C = sC |ξ)

P (V = S, C = s′C |ξ)
=

n∏

i=1

[
N ′

i,C(si, sC) + 1

N ′
C(sC) + #Ai

(
N ′

i,C(si, s
′
C) + 1

N ′
C(s′C) + #Ai

)−1
]
×

×

N ′
C(sC) + 1 +

n∑
i=1

(#Ai) − n

N ′
C(s′C) + 1 +

n∑
i=1

(#Ai) − n
(A.15)

Since equation A.15 is symmetrical with respect to sC and S′
C , we can infer from

it that:

P (V = S, C = sC |ξ) = K′

(
N ′

C(sC) + 1 +

n∑

i=1

#Ai − n

)
n∏

i=1

N ′
i,C(si, sC) + 1

N ′
C(sC) + #Ai

(A.16)
where K′ is a normalization constant. Given that P (C = sC |V = S, ξ) =
P (V=S,C=sC |ξ)

P (V=S|ξ) , we also have that

P (C = sC |V = S, ξ) = K′′

(
N ′

C(sC) + 1 +

n∑

i=1

#Ai − n

)
n∏

i=1

N ′
i,C(si, sC) + 1

N ′
C(sC) + #Ai

(A.17)

where K′′ = K′

P (V=S|ξ) is another normalization constant. Given that

∑

sC∈C

P (sC |V = S, ξ) = 1 (A.18)

we have that

K′′ =
1

∑
c∈C

[(
N ′

C(c) + 1 +
n∑

i=1

#Ai − n

)
n∏

i=1

N ′
i,C

(si,c)+1

N ′
C

(c)+#Ai

] (A.19)

This completes the result exposed in section 6.2.1.

�

A.3 Learning with naive distributions

Assume that our data is generated by a naive Bayes model, that P (M |ξ) fol-
lows a naive distribution with hyperparameter set N′ and that D is a dataset
containing independent identically distibuted complete observations over a clas-
sified discrete doman ΩC . We can calculate the posterior probability over models
given D and ξ by applying Bayes theorem over p(M |D, ξ):

p(M |D, ξ) = p(D|M, ξ)
p(M |ξ)

p(D|ξ)
(A.20)

A.3. Learning with naive distributions 145

A.3.1 Computing the normalization constant

The denominator of equation A.20 is a normalization constant that can be ex-
panded as:

p(D|ξ) =

∫

M∈M

p(D|M, ξ)p(M |ξ)dM (A.21)

Since the dataset contains indepedent identically distributed complete observa-
tions, we can compute p(D|M, ξ) by a repeated application of equation 6.3:

P (D|M, ξ) =
∏

c∈C

αNC(c)
c

n∏

i=1

∏

v∈Ai

(
φi,v,c

αc

)Ni,C(v,c)

(A.22)

Substituting equations A.22 and 6.10 into equation A.21 we get:

p(D|ξ) = K

∫

M∈M

∏

c∈C

α
NC(c)+N ′

C(c)
c

n∏

i=1

∏

v∈Ai

(
φi,v,c

αc

)Ni,C(v,c)+N ′
i,C(v,c)

dM

(A.23)
As in the previous section, integrating over models can be replaced by integrating
over parameters adding δ constraints. Doing this and applying twice the result
in equation A.3 similarly to what we did in the previous section we get:

p(D|ξ) = K
∏

c∈C

n∏

i=1

∏
v∈Ai

Γ
(
Ni,C(v, c) + N ′

i,C(v, c) + 1
)

Γ (NC(c) + N ′
C(c) + #Ai)

×

×

∏
c∈C

Γ

(
N ′

C(c) + NC(c) +
n∑

i=1

(#Ai) − n + 1

)

Γ

(
N ′ + N + #C · [

n∑
i=1

(#Ai) − n + 1] + 1

) (A.24)

A.3.2 Computing the posterior distribution

In order to complete the calculation of the posterior distribution we only have
to substitute equations A.22, 6.10 and A.24 into equation A.20 getting:

p(M |D, ξ) =
∏

c∈C

n∏

i=1

Γ (NC(c) + N ′
C(c) + #Ai)

∏
v∈Ai

Γ
(
Ni,C(v, c) + N ′

i,C(v, c) + 1
)×

×

Γ

(
N ′ + N + #C · [

n∑
i=1

(#Ai) − n + 1] + 1

)

∏
c∈C

Γ

(
N ′

C(c) + NC(c) +
n∑

i=1

(#Ai) − n + 1

)×

×
∏

c∈C

α
NC(c)+N ′

C(c)
c

n∏

i=1

∏

v∈Ai

(
φi,v,c

αc

)Ni,C(v,c)+N ′
i,C(v,c)

(A.25)

146 Appendix A. Mathematical developments for IndifferentNB

which is a naive distribution with hyperparameter set N′∗ where N ′∗
i,C(v, c) =

Ni,C(v, c) + N ′
i,C(v, c).

Appendix B

Mathematical developments

for the Tractable Bayesian

Model Averaging of Tree

Augmented Naive Bayes

Classifiers

B.1 Preliminaries

In this appendix we introduce three results that will be needed in the further
development and then in appendix B.3 we prove the results in sections 8.2.2 and
8.2.3.

B.1.1 The matrix tree theorem

Let G = (V, E) be a multigraph and denote by au,v = av,u the number of
undirected edges between vertices u and v. Then the number of all spanning
trees of G is given by the value of the determinant obtained from the following
matrix by removing row u and column v.

A =




deg v1 −a1,2 −a1,3 . . . a1,n

−a2,1 deg v2 −a2,3 . . . a2,n

. .
−an,1 −an,2 −an,3 . . . deg vn


 (B.1)

Proof: See (West, 1999; Rubey, 2000).

�

147

148 Appendix B. Mathematical developments for TBMATAN

B.1.2 The matrix tree theorem for decomposable distri-

butions

Let P(E) be a distribution over spanning tree structures defined by equations
8.3 and 8.4. Then the normalization constant Zβ is equal to |Q(β)| with Q(β)
being the first (n-1) lines and columns of the matrix Q(β) given by:

Qu,v(β) = Qv,u(β) =




−βu,v 1 ≤ u < v ≤ n

n∑
v′=1

βv′,v 1 ≤ u = v ≤ n
(B.2)

Proof: See (Meila and Jaakkola, 2000a).

�

B.1.3 A useful result about Dirichlet distributions

Let D(θ1, . . . , θr; n
′
1, . . . , n

′
r) be a Dirichlet distribution defined as in equation

3.2. We have that:

D(θ1, . . . , θr; n
′
1, . . . , n

′
r)

r∏

i=1

θi
ni =

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

D(θ1, . . . , θr; n
′
1 + n1, . . . , n

′
r + nr)

(B.3)

and since the Dirichlet distribution is normalized you have that

∫
· · ·

∫

θ1,...,θr

D(θ1, . . . , θr; n
′
1, . . . , n

′
r)

r∏

i=1

θi
ni =

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

(B.4)

Proof: By expanding the Dirichlet distribution by means of its definition in
equation 3.2, grouping again into a Dirichlet and considering that the Dirichlet

B.2. Detailed development for decomposable distributions over trees results 149

distribution is normalized distribution and hence integrates to one, we have that:

∫
· · ·

∫

θ1,...,θr

D(θ1, . . . , θr; n
′
1, . . . , n

′
r)

r∏

i=1

θi
ni (B.5)

=

∫
· · ·

∫

θ1,...,θr

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

r∏

i=1

θi
n′

i+ni−1 (B.6)

=

∫
· · ·

∫

θ1,...,θr

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

D(θ1, . . . , θr; n
′
1 + n1, . . . , n

′
r + nr)

(B.7)

=
Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

∫
· · ·

∫

θ1,...,θr

D(θ1, . . . , θr; n
′
1 + n1, . . . , n

′
r + nr)

(B.8)

=
Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

(B.9)

�

B.2 Detailed development for decomposable dis-

tributions over trees results

In this appendix we provide the proofs for the results in section 8.1.2.

B.2.1 Calculating probabilities under decomposable dis-

tributions over trees

Knowing that P (M |ξ) follows a decomposable distribution over trees with hy-
perparameters β,N′ we need to calculate

P (X = x|ξ) =

∫

M∈M

P (X = x|M, ξ)P (M |ξ) (B.10)

We can calculate the integral over the set of models by calculating the probability
of each structure and then performing an addition over the set of structures. In
fact, since we have assumed likelihood equivalence and our distribution over
directed structures is uniform given the undirected structure, we can work over
the set of undirected structures, that is

P (X = x|ξ) =
∑

E∈E

P (X = x|E, ξ)P (E|ξ) (B.11)

150 Appendix B. Mathematical developments for TBMATAN

where P (E|ξ) comes given by:

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (B.12)

In order to calculate P (X = x|ξ) we have to calculate P (X = x|E, ξ) and then
calculate the summmation in equation B.11.

Calculating P (X = x|E, ξ)

Using again likelihood equivalence we can express P (X = x|E, ξ) as the integral
over any directed structure E which undirected structure coincides with E:

P (X = x|E, ξ) =

∫
· · ·

∫

ΘE

P (X = x|E, ΘE)P (ΘE |E, ξ)dΘE (B.13)

P (X = x|E, ΘE) is determined by the expansion of equation 3.1 taking into
account the tree structure.

P (X = x|E, ΘE) = θρE
(xρE

)
∏

u,v∈E

θv|u(xv, xu) (B.14)

P (ΘE |E, ξ) can be expanded from equations 8.5, 8.8 and 8.9 into

P (ΘE |E, ξ) = D(θρE
(.); N ′

ρE
(.))

∏

u,v∈E

∏

i∈Au

D(θv|u(., i); N ′
v,u(., i))

(B.15)

Now we need to calculate the integral in equation B.13 We define:

1x
i (k) =

{
1 k = xi

0 otherwise
(B.16)

1x
i,j(k, l) =

{
1 k = xi ∧ l = xj

0 otherwise
(B.17)

It is easy to see that: ∑

j∈Av

1x
v,u(j, i) = 1x

u(i) (B.18)

∑

i∈Au

1x
u(i) = 1 (B.19)

We can use this notation to expand the product P (X = x|E, ΘE)P (ΘE |E, ξ) by
substituting equations B.14 and B.15 giving:

P (X = x|E, ΘE)P (ΘE |E, ξ) = D(θρE
(.); N ′

ρE
(.))

∏

i∈Aρ
E

θρE
(i)

1x
ρ

E
(i)

×
∏

u,v∈E

∏

i∈Au


D(θv|u(., i); N ′

v,u(., i))
∏

j∈Av

θv|u(j, i)
1x

v,u(j,i)




(B.20)

B.2. Detailed development for decomposable distributions over trees results 151

By analyzing equation B.20 we can see that the integral in equation B.13 can
be calculated by applying the result in equation B.4 twice. This gives:

P (X = x|E, ξ) =

Γ(
∑

i∈Aρ
E

N ′
ρE

(i))

∏
i∈Aρ

E

Γ(N ′
ρE

(i))

∏
i∈Aρ

E

Γ(N ′
ρE

(i) + 1x
ρE

(i))

Γ(
∑

i∈Aρ
E

N ′
ρE

(i) + 1x
ρE

(i))

×
∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u(j, i))

∏
j∈Av

Γ(N ′
v,u(j, i))

∏
i∈Av

Γ(N ′
v,u(j, i) + 1x

v,u(j, i))

Γ(
∑

i∈Av

N ′
v,u(j, i) + 1x

v,u(j, i))




(B.21)

This expression can be simplified by applying equations 8.6,8.7,B.18 and B.19
and reorganizing:

P (X = x|E, ξ) =
Γ(N ′)

Γ(N ′ + 1)

∏

i∈Aρ
E

Γ(N ′
ρE

(i) + 1x
ρE

(i))

Γ(N ′
ρE

(i))

×
∏

u,v∈E

∏

i∈Au

[
Γ(N ′

u(i))

Γ(N ′
u(i) + 1x

u(i))

∏

i∈Av

Γ(N ′
v,u(j, i) + 1x

v,u(j, i))

Γ(N ′
v,u(j, i))

]

(B.22)

Since the quotient
Γ(N ′

∗(∗)+1x
∗(∗))

Γ(N ′
∗(∗)) is N ′

∗(∗) if the condition expressed by the 1x
∗(∗)

is satisfied and 1 otherwise we have that:

P (X = x|E, ξ) =
1

N ′
N ′

ρE
(xρE

)
∏

u,v∈E

[
N ′

v,u(xv, xu)

N ′
u(xu)

]
(B.23)

Defining hx
0 and hx

u,v as in equations 8.19 and 8.20 it is easy to see that multi-
plying and dividing in equation B.23 by the factor:

∏

v∈Ω−{ρE}

N ′
v(xv) (B.24)

and rearranging we get:

P (X = x|E, ξ) = hx
0 Zβ

∏

u,v∈E

hx
u,v (B.25)

and the expression depends only of the undirected structure of the tree.

Adding over Tree Structures

Combining equations B.12, B.25 we get

P (X = x|E, ξ)P (E|ξ) = hx
0

∏

u,v∈E

βu,vh
x
u,v (B.26)

152 Appendix B. Mathematical developments for TBMATAN

Calculating the summation over structures using the matrix tree theorem for
decomposable distributions gives the desired result.

P (X = x|ξ) = hx
0 |Q(β hx)| (B.27)

�

B.2.2 Learning under decomposable distributions over

trees

Given that P (M |ξ) follows a decomposable distribution over trees with hyper-
parameters β,N′ we want to calculate P (M |D, ξ) where D is an i.i.d. dataset
sampled from a tree distribution. Using Bayes rule we get:

P (M |D, ξ) = P (E, ΘE|D, ξ) =
P (E, ΘE |ξ)P (D|E, ΘE, ξ)

ZD
(B.28)

The prior P (E, ΘE|ξ) is calculated combining equations 8.1,B.12, B.15 giving:

P (E, ΘE |ξ) =
1

Zβ

∏

u,v∈E

βu,v

× D(θρE
(.); N ′

ρE
(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i); N ′
v,u(., i))

(B.29)

P (D|E, ΘE , ξ) is the probability that the model generates the data in D. Since
D contains independent identically distributed observations, we have that

P (D|E, ΘE , ξ) =
∏

i∈Aρ
E

θρE
(i)Nρ

E
(i)

×
∏

u,v∈E

∏

i∈Au

∏

j∈Av

θv|u(j, i)
Nv,u(j,i)

(B.30)

Substituting equations B.29 and B.30 into B.28 we get

P (E, ΘE|D, ξ) =
1

Zβ

1

ZD

∏

u,v∈E

βu,v

× D(θρE
(.); N ′

ρE
(.))

∏

i∈Aρ
E

θρE
(i)

Nρ
E

(i)

×
∏

u,v∈E

∏

i∈Au


D(θv|u(., i); N ′

v,u(., i))
∏

j∈Av

θv|u(j, i)
Nv,u(j,i)




(B.31)

B.2. Detailed development for decomposable distributions over trees results 153

Applying the result in equation B.3 for all the Dirichlets we have that

P (E, ΘE|D, ξ) =
1

Zβ

1

ZD

∏

u,v∈E

βu,v

×

Γ(
∑

i∈Aρ
E

N ′
ρE

(i))

∏
i∈Aρ

E

Γ(N ′
ρE

(i))

∏
i∈Aρ

E

Γ(N ′
ρE

(i) + NρE
(i))

Γ(
∑

i∈Aρ
E

N ′
ρE

(i) + NρE
(i))

×
∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u(j, i))

∏
j∈Av

Γ(N ′
v,u(j, i))

∏
j∈Av

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(
∑

j∈Av

N ′
v,u(j, i) + Nv,u(j, i))




× D(θρE
(.); N ′

ρE
(.) + NρE

(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i); N ′
v,u(., i) + Nv,u(., i))

(B.32)

This expression can be simplified by applying equations 8.6 and 8.7 (and similar
ones for N) and reorganizing:

P (E, ΘE |D, ξ) =
1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

∏

u,v∈E

βu,v

×
∏

i∈Aρ
E

Γ(N ′
ρE

(i) + NρE
(i))

Γ(N ′
ρE

(i))

×
∏

u,v∈E

∏

i∈Au


 Γ(N ′

u(i))

Γ(N ′
u(i) + Nu(i))

∏

j∈Av

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(N ′
v,u(j, i))




× D(θρE
(.); N ′

ρE
(.) + NρE

(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i); N ′
v,u(., i) + Nv,u(., i))

(B.33)

Defining Wu,v as appears in equation 8.13, it is easy to see that multiplying and
dividing in equation B.33 by the factor:

∏

v∈Ω−{ρE}

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

(B.34)

154 Appendix B. Mathematical developments for TBMATAN

and rearranging we get:

P (E, ΘE|D, ξ) =
1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

×
∏

u,v∈E

Wu,vβu,v

× D(θρE
(.); N ′

ρE
(.) + NρE

(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i); N ′
v,u(., i) + Nv,u(., i))

(B.35)

It is worth noting that if we use the definition of Wu,v given by Meila and
Jaakkola (see equation 8.12), our expression will keep a factor that depends on
the directed tree structure (concretely on the root) and it would not be possible
to continue with our development further on.

In order to have P (E, ΘE|D, ξ) completely determined we need to calculate
ZD. Since we know that

∫

M∈M

P (M |D, ξ) =
∑

E∈E

∫
· · ·

∫

ΘE

P (E, ΘE|D, ξ) = 1 (B.36)

We can do this by integrating over the parameters, then summing over the tree
structures and finally solving for ZD. The first step is easy, because Dirichlet
distributions are normalized and integrate to 1 giving:

∫
· · ·

∫

ΘE

P (E, ΘE |D, ξ) =
1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

×
∏

u,v∈E

Wu,vβu,v

(B.37)

The addition over structures can be calculated by means of the matrix tree
theorem for decomposable priors, giving

∑

E∈E

∫
· · ·

∫

ΘE

P (E, ΘE |D, ξ) =
|Q(βW)|

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

= 1

(B.38)

Solving for ZD, recalling that Zβ = |Q(β)| we have that

ZD =
|Q(βW)|

|Q(β)|

Γ(N ′)

Γ(N ′ + N)

∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

(B.39)

B.3. Detailed development for decomposable distributions over TANs results 155

Finally, substituting the result for ZD in equation B.35 we can see that the
posterior is a decomposable distribution over trees with the hyperparameters
updated as given by equations 8.10, 8.11 and 8.13:

P (E, ΘE|D, ξ) =
1

|Q(βW)|

∏

u,v∈E

Wu,vβu,v

× D(θρE
(.); N ′

ρE
(.) + NρE

(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i); N ′
v,u(., i) + Nv,u(., i))

(B.40)

�

B.3 Detailed development for decomposable dis-

tributions over TANs results

In this appendix we provide the proofs for the results in sections 8.2.2 and 8.2.3.

B.3.1 Calculating probabilities under decomposable dis-

tributions over TANs

Knowing that P (M |ξ) follows a decomposable distribution over TANs with hy-
perparameters β,N′ we need to calculate

P (V = S, C = sC |ξ) =

∫

M∈M

P (V = S, C = sC |M, ξ)P (M |ξ) (B.41)

The development will be parallel to the one in section B.2.1. In this case, we
can also work over the set of undirected structures having:

P (V = S, C = sC |ξ) =
∑

E∈E

P (V = S, C = sC |E, ξ)P (E|ξ) (B.42)

where P (E|ξ) comes given by:

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (B.43)

Calculating P (V = S, C = sC |E, ξ)

Using likelihood equivalence we can express P (X = x|E, ξ) as the integral over

any directed TAN structure E
∗

which undirected structure coincides with E:

P (V = S, C = sC |E, ξ) =

=

∫
· · ·

∫

ΘE∗

P (V = S, C = sC |E
∗
, ΘE

∗)P (ΘE
∗ |E

∗
, ξ)dΘE

∗ (B.44)

156 Appendix B. Mathematical developments for TBMATAN

P (V = S, C = sC |E
∗
, ΘE

∗) is determined by the expansion of equation 3.1 taking
into account the TAN structure.

P (V = S, C = sC |E
∗
, ΘE

∗) = θC(sC) θρE |C(sρE
, sC)

∏

u,v∈E

θv|u,C(sv, su, sC)

(B.45)

P (ΘE
∗ |E

∗
, ξ) can be expanded from equations 8.21, 8.22, 8.25, 8.29, 8.30 and

8.31 into

P (ΘE
∗ |E

∗
, ξ) = D(θC(.); N ′

C(.))

×
∏

c∈C

D(θρE |C(., c); N ′
ρE ,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c))

(B.46)

Now we need to calculate the integral in equation B.44. We define:

1S,sC

C (c) =

{
1 c = sC

0 otherwise
(B.47)

1S,sC

i,C (k, c) =

{
1 k = si ∧ c = sC

0 otherwise
(B.48)

1S,sC

i,j,C(k, l, c) =

{
1 k = si ∧ l = sj ∧ c = sC

0 otherwise
(B.49)

It is easy to see that:

∑

j∈Av

1S,sC

v,u,C(j, i, c) = 1S,sC

u,C (i, c) (B.50)

∑

i∈Au

1S,sC

u,C (i, c) = 1S,sC

C (c) (B.51)

∑

c∈C

1S,sC

C (c) = 1 (B.52)

B.3. Detailed development for decomposable distributions over TANs results 157

We can use this notation to expand the product P (V = S, C =

sC |E
∗
, ΘE

∗)P (ΘE
∗ |E

∗
, ξ) by substituting equations B.45 and B.46 giving:

P (V = S, C = sC |E
∗
, ΘE

∗)P (ΘE
∗ |E

∗
, ξ) =

= D(θC(.); N ′
C(.))

∏

c∈C

θC(c)1
S,sC
C (c)

×
∏

c∈C


D(θρE |C(., c); N ′

ρE ,C(., c))
∏

i∈Aρ
E

θρE |C(i, c)
1

S,sC
ρ

E
,C

(i,c)




×
∏

c∈C

∏

u,v∈E

∏

i∈Au


D(θv|u,C(., i, c); N ′

v,u,C(., i, c))
∏

j∈Av

θv|u,C(j, i, c)
1

S,sC
v,u,C

(j,i,c)




(B.53)

By analyzing equation B.53 we can see that the integral in equation B.44 can
be calculated by applying the result in equation B.4 three times. This gives:

P (V = S, C = sC |E, ξ) =

Γ(
∑
c∈C

N ′
C(c))

∏
c∈C

Γ(N ′
C(c))

∏
c∈C

Γ(N ′
C(c) + 1S,sC

C (c))

Γ(
∑

c∈C

N ′
C(c) + 1S,sC

C (c))

×
∏

c∈C




Γ(
∑

i∈Aρ
E

N ′
ρE ,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρE ,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρE ,C(i, c) + 1S,sC

ρE ,C(i, c))

Γ(
∑

i∈Aρ
E

N ′
ρE ,C(i, c) + 1S,sC

ρE ,C(i, c))




×
∏

c∈C

∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u,C(j, i, c))

∏
j∈Av

Γ(N ′
v,u,C(j, i, c))

∏
i∈Av

Γ(N ′
v,u,C(j, i, c) + 1S,sC

v,u,C(j, i, c))

Γ(
∑

i∈Av

N ′
v,u,C(j, i, c) + 1S,sC

v,u,C(j, i, c))




(B.54)

This expression can be simplified by applying equations 8.26,8.27,8.28,B.50,B.51
and B.52 and reorganizing:

P (V = S, C = sC |E, ξ) =
Γ(N ′)

Γ(N ′ + 1)

×
∏

c∈C

∏

i∈Aρ
E

Γ(N ′
ρE ,C(i, c) + 1S,sC

ρE ,C(i, c))

Γ(N ′
ρE ,C(i, c))

×
∏

u,v∈E

∏

c∈C

∏

i∈Au

[
Γ(N ′

u,C(i, c))

Γ(N ′
u,C(i, c) + 1S,sC

u,C (i, c))

∏

i∈Av

Γ(N ′
v,u,C(j, i, c) + 1S,sC

v,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))

]

(B.55)

158 Appendix B. Mathematical developments for TBMATAN

Since the quotient
Γ(N ′

∗(∗)+1
S,sC
∗ (∗))

Γ(N ′
∗(∗)) is N ′

∗(∗) if the condition expressed by the

1S,sC
∗ (∗) is satisfied and 1 otherwise we have that:

P (V = S, C = sC |E, ξ) =
1

N ′

× N ′
ρE ,C(sρE

, sC)

×
∏

u,v∈E

[
N ′

v,u,C(sv, su, sC)

N ′
u,C(su, sC)

] (B.56)

Defining hS,sC

0 and hS,sC
u,v as in equations 8.34 and 8.35 it is easy to see that

multiplying and dividing in equation B.56 by the factor:

∏

v∈V −{ρE}

N ′
v,C(sv, sC) (B.57)

and rearranging we get:

P (V = S, C = sC |E, ξ) = hS,sC

0 Zβ

∏

u,v∈E

(
hS,sC

u,v

)
(B.58)

and the expression depends only on the undirected structure of the tree.

Adding over Tree Structures

Combining equations B.43, B.58 we get

P (V = S, C = sC |E, ξ)P (E|ξ) = hS,sC

0

∏

u,v∈E

(
βu,vh

S,sC
u,v

)
(B.59)

Calculating the summation over structures using the matrix tree theorem for
decomposable distributions gives the desired result.

P (V = S, C = sC |ξ) = hS,sC

0 |Q(β hS,sC)| (B.60)

�

B.3.2 Learning under decomposable distributions over

TANs

Given that P (M |ξ) follows a decomposable distribution over TANs with hyper-
parameters β,N′ we want to calculate P (M |D, ξ) where D is an i.i.d. dataset
sampled from a TAN distribution. Using Bayes rule we get:

P (M |D, ξ) = P (E
∗
, ΘE

∗ |D, ξ) =
P (E

∗
, Θ∗

E
|ξ)P (D|E

∗
, ΘE

∗ , ξ)

ZD
(B.61)

B.3. Detailed development for decomposable distributions over TANs results 159

The prior P (E, ΘE|ξ) is calculated combining equations 8.21,B.43, B.46 giving:

P (ΘE
∗E

∗
|ξ) =

1

Zβ

∏

u,v∈E

βu,v

× D(θC(.); N ′
C(.))

×
∏

c∈C

D(θρE |C(., c); N ′
ρE ,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c))

(B.62)

P (D|E
∗
, ΘE

∗ , ξ) is the probability that the model generates the data in D. Since
D contains independent identically distributed observations, we have that

P (D|E
∗
, ΘE

∗ , ξ) =
∏

c∈C

θC(c)
NC(c)

×
∏

c∈C

∏

i∈Aρ
E

θρE |C(i, c)
Nρ

E
,C(i,c)

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

∏

j∈Av

θv|u,C(j, i, c)
Nv,u,C(j,i,c)

(B.63)

Substituting equations B.62 and B.63 into B.61 we get

P (E
∗
, ΘE

∗ |D, ξ) =
1

Zβ

1

ZD

∏

u,v∈E

βu,v

× D(θC(.); N ′
C(.))

∏

c∈C

θC(c)
NC(c)

×
∏

c∈C


D(θρE |C(., c); N ′

ρE ,C(., c))
∏

i∈Aρ
E

θρE |C(i, c)
Nρ

E
,C(i,c)




×
∏

c∈C

∏

u,v∈E

∏

i∈Au


D(θv|u,C(., i, c); N ′

v,u,C(., i, c))
∏

j∈Av

θv|u,C(j, i, c)
Nv,u,C(j,i,c)




(B.64)

160 Appendix B. Mathematical developments for TBMATAN

Applying the result in equation B.3 for all the Dirichlets we have that

P (E
∗
, ΘE

∗ |D, ξ) =
1

Zβ

1

ZD

∏

u,v∈E

βu,v

×

Γ(
∑
c∈C

N ′
C(c))

∏
c∈C

Γ(N ′
C(c))

∏
c∈C

Γ(N ′
C(c) + NC(c))

Γ(
∑

c∈C

N ′
C(c) + NC(c))

×
∏

c∈C




Γ(
∑

i∈Aρ
E

N ′
ρE ,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρE ,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρE ,C(i, c) + NρE ,C(i, c))

Γ(
∑

i∈Aρ
E

N ′
ρE ,C(i, c) + NρE ,C(i, c))




×
∏

c∈C

∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u,C(j, i, c))

∏
j∈Av

Γ(N ′
v,u,C(j, i, c))

∏
j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(
∑

j∈Av

N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))




× D(θC(.); N ′
C(.) + NC(.))

×
∏

c∈C

D(θρE |C(., c); N ′
ρE ,C(., c) + NρE ,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c) + Nv,u,C(., i, c))

(B.65)

This expression can be simplified by applying equations 8.26,8.27 and 8.28 (and
similar ones for N) and reorganizing:

P (E
∗
, ΘE

∗ |D, ξ) =
1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

∏

u,v∈E

βu,v

×
∏

c∈C

∏

i∈Aρ
E

Γ(N ′
ρE ,C(i, c) + NρE ,C(i, c))

Γ(N ′
ρE ,C(i, c))

×
∏

u,v∈E

∏

c∈C

∏

i∈Au


 Γ(N ′

u,C(i, c))

Γ(N ′
u,C(i, c) + Nu,C(i, c))

∏

j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))




× D(θC(.); N ′
C(.) + NC(.))

×
∏

c∈C

D(θρE |C(., c); N ′
ρE ,C(., c) + NρE ,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c) + Nv,u,C(., i, c))

(B.66)

B.3. Detailed development for decomposable distributions over TANs results 161

Defining Wu,v as appears in equation 8.38, it is easy to see that multiplying and
dividing in equation B.66 by the factor:

∏

v∈V −{ρE}

∏

c∈C

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

(B.67)

and rearranging we get:

P (E
∗
, ΘE

∗ |D, ξ) =
1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

×
∏

u,v∈E

Wu,vβu,v

× D(θC(.); N ′
C(.) + NC(.))

×
∏

c∈C

D(θρE |C(., c); N ′
ρE ,C(., c) + NρE ,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c) + Nv,u,C(., i, c))

(B.68)

In order to have P (E
∗
, ΘE

∗ |D, ξ) completely determined we need to calculate
ZD. Since we know that

∫

M∈M

P (M |D, ξ) =
∑

E∈E

∫
· · ·

∫

ΘE∗

P (E
∗
, ΘE

∗ |D, ξ) = 1 (B.69)

We can do this by integrating over the parameters, then summing over the tree
structures and finally solving for ZD. The first step is easy, because Dirichlet
distributions are normalized and integrate to 1 giving:

∫
· · ·

∫

ΘE∗

P (E
∗
, ΘE

∗ |D, ξ) =
1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

×
∏

u,v∈E

Wu,vβu,v

(B.70)

The addition over structures can be calculated by means of the matrix tree
theorem for decomposable priors, giving

∑

E∈E

∫
· · ·

∫

ΘE∗

P (E
∗
, ΘE

∗ |D, ξ) =
|Q(βW)|

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

= 1

(B.71)

162 Appendix B. Mathematical developments for TBMATAN

Solving for ZD, recalling that Zβ = |Q(β)| we have that

ZD =
|Q(βW)|

|Q(β)|

Γ(N ′)

Γ(N ′ + N)

∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

(B.72)

Finally, substituting the result for ZD in equation B.68 we can see that the
posterior is a decomposable distribution with the parameters updated as given
by equations 8.36, 8.37 and 8.38:

P (E
∗
, ΘE

∗ |D, ξ) =
1

|Q(βW)|

∏

u,v∈E

Wu,vβu,v

× D(θC(.); N ′
C(.) + NC(.))

×
∏

c∈C

D(θρE |C(., c); N ′
ρE ,C(., c) + NρE ,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c) + Nv,u,C(., i, c))

(B.73)

�

Bibliography

Aczel, J. (1966). Lectures on Functional Equations and their Applications. Aca-
demic Press, New York.

Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms.
Machine Learning, 6:37–66.

Andersson, S., Madigan, D., and Perlman, M. (1995). A characterization of
markov equivalence classes for acyclic digraphs. Technical Report 287, De-
partment of Statistics, University of Washington.

Arnborg, S. and Sjödin, G. (1999). On the foundations of bayesianism. Technical
report, Nada, KTH.

Arnborg, S. and Sjödin, G. (2000a). Bayes rules in finite models. In Proceedings
of the European Conference on Artificial Intelligence.

Arnborg, S. and Sjödin, G. (2000b). A note on the foundations of bayesianism.
Technical report, Nada, KTH.

Bernardo, J. (1998). Bayesian reference analysis. a post-
graduate tutorial course. Universitat de València,
http://www.unine.ch/statistics/postgrad/images/Course.pdf.

Bernardo, J. (2003). Bayesian statistics. In Encyclopedia of Life Support Systems
(EOLSS).

Bernardo, J. and Ramón, J. (1998). An introduction to bayesian reference anal-
ysis. The Statistician, 47:101–135.

Blake, C., Keogh, E., and Merz, C. (1998). UCI repository of machine learning
databases.

Catlett, J. (1991). On Changing Continuous Attributes into Ordered Discrete
Attributes. In Kodratoff, Y., editor, Proceedings of the European Working
Session on Learning, pages 164–178. Springer-Verlag.

Cerquides, J. (1997). Mantaras Distance for Discretization. Proposal and Empir-
ical Comparison of a New Parallelizable Discretization Method. long version.
Technical report, IIIA-97-03.

163

164 BIBLIOGRAPHY

Cerquides, J. (1999a). Applying General Bayesian Techniques to Improve TAN
Induction. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining, KDD99, pages 292–296.

Cerquides, J. (1999b). Applying General Bayesian Techniques to Improve TAN
Induction. Long Version. Technical report, Ubilab, http://www.ubilab.org.

Cerquides, J. and López de Màntaras, R. (1997a). Fuzzy metaqueries for guiding
the Discovery Process in KDD. In Proceedings of the Sixth International
Conference on Fuzzy Systems, volume Volume III, pages 1555–1559.

Cerquides, J. and López de Màntaras, R. (1997b). Proposal and empirical com-
parison of a parallelizable distance-based discretization method. In Heck-
erman, D., Mannila, H., Pregibon, D., and Uthurusamy, R., editors, Pro-
ceedings of the Third International Conference on Knowledge Discovery and
Data Mining.

Cerquides, J. and López de Màntaras, R. (1998a). A first analysis of qualitative
influences and synergies. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, AAAI-98 Student Abstracts Session.

Cerquides, J. and López de Màntaras, R. (1998b). Knowledge discovery with
qualitative influences and synergies. In Proceedings of the 2nd Euro-
pean Symposium on Principles of Data Mining and Knowledge Discovery
(PKDD-98), volume 1510 of LNAI, pages 273–281. Springer.

Cerquides, J. and López de Màntaras, R. (1998c). A New Approach to Rule
Interest Measures. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, AAAI-98 Student Abstracts Session.

Cerquides, J. and López de Màntaras, R. (1998d). A New Approach to Rule
Interest Measures. long version. Technical report, IIIA-98-08.

Cerquides, J. and López de Màntaras, R. (1998e). Qualitative Influences and
Synergies: A Step Forward in Explaining Probabilistic Reasoning. Long
Version. Technical report, IIIA-98-04.

Cerquides, J. and López de Màntaras, R. (2003a). The indifferent naive bayes
classifier. In Proceedings of the 16th International FLAIRS Conference,
pages 341–345.

Cerquides, J. and López de Màntaras, R. (2003b). The indifferent naive
bayes classifier. long version. Technical Report IIIA-2003-01, Institut
d’Investigació en Intel.ligència Artificial.

Cerquides, J. and López de Màntaras, R. (2003c). Maximum a posteriori tree
augmented naive bayes classifiers. Technical Report IIIA-2003-10, Institut
d’Investigació en Intel.ligència Artificial.

BIBLIOGRAPHY 165

Cerquides, J. and López de Màntaras, R. (2003d). Tractable bayesian learning
of tree augmented naive bayes classifiers. In Proceedings of the Twentieth
International Conference on Machine Learning, pages 75–82.

Cerquides, J. and López de Màntaras, R. (2003e). Tractable bayesian learning
of tree augmented naive bayes classifiers. long version. Technical Report
IIIA-2003-04, Institut d’Investigació en Intel.ligència Artificial.

Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning.
In Proceedings of the 9th European Conference on Artificial Intelligence,
pages 147–149.

Chow, C. and Liu, C. (1968). Aproximatting Discrete Probability Distributions
with Dependence Trees. IEEE Transactions on Information Theory, 14:462–
467.

Clark, P. and Boswell, R. (1991). Rule induction with cn2: Some recent im-
provements. In Kodratoff, Y., editor, Machine Learning - EWSL-91, pages
151–163. Springer-Verlag.

Clark, P. and Niblett, T. (1989). The cn2 induction algorithm. Machine
Learning, 3(4):261–283.

Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. (1999). Probabilistic
Networks and Expert Systems. Springer-Verlag.

Cox, R. (1961). The Algebra of Probable Inference. John Hopkins University
Press, Baltimore MD.

Dash, D. and Cooper, G. (2002). Exact model averaging with naive bayesian
classifiers. In Proceedings of the Nineteenth International Conference on
Machine Learning, pages 91–98.

Dawid, A. (1983). Invariant prior distributions. In Kotz, S. and Johnson, N.,
editors, Encyclopedia of Statistical Sciences, volume 4, pages 228–236. Wi-
ley.

Dawid, A. and Lauritzen, S. (1993). Hyper markov laws in the statistical analysis
of decomposable graphical models. The Annals of Statistics, 21(3):1272–
1317.

Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern
Recognition. Springer Verlag.

Domingos, P. (1997). Bayesian model averaging in rule induction. In Preliminary
papers of the Sixth International Workshop on Artificial Intelligence and
Statistics, pages 157–164.

166 BIBLIOGRAPHY

Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and Unsuper-
vised Discretization of Continuous Features. In Prieditis, A. and Rusell, S.,
editors, Machine Learning: Proceedings of the Twelfth International Con-
ference.

Elsaesser, C. (1989). Explanation of probabilistic inference. In Kanal, L., Levitt,
T., and Lemmer, J., editors, Uncertainty in Artificial Intelligence 3, pages
387–400. Elsevier Science Publishers B.V. (North-Holland).

Eppstein, D. (1992). Finding the k smallest spanning trees. BIT, 32(2):237–248.
Special issue for 2nd SWAT.

Fawcett, T. (2003). Roc graphs: Notes and practical considerations for data
mining researchers. Technical Report HPL-2003-4, HP Laboratories Palo
Alto.

Fayyad, U. M. and Irani, K. B. (1992). On the Hadling of Continuous-Valued
Attributes in Decision Tree Generation. Machine Learning, 8:87–102.

Fayyad, U. M. and Irani, K. B. (1993). Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning. In 13th Inter-
national Joint Conference of Artificial Intelligence, pages 1022–1027.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classi-
fiers. Machine Learning, 29:131–163.

Friedman, N. and Goldszmidt, M. (1996). Discretizing Continuous Attributes
While Learning Bayesian Networks. In Internation Conference on Machine
Learning.

Gabow, H. (1977). Two algorithms for generating weighted spanning trees in
order. SIAM J. COMPUT., 6(1):139–150.

Gibbons, J. (1971). Nonparametric statistical inference. Series in probability
and statistics. McGraw-Hill, New York.

Halpern, J. (1999a). A counterexample to theorems of cox and fine. Journal of
AI research, 10:67–85.

Halpern, J. (1999b). Technical addendum, cox’s theorem revisited. Journal of
AI research, 11:429–435.

Hamming, R. (1980). Coding and information theory. Prentice-Hall, Englewood
Cliffs (N.J).

Hanson, R., Stutz, J., and Cheeseman, P. (1991). Bayesian classification theory.
Technical Report FIA-90-12-7-01, NASA Ames Research Center, Artificial
Intelligence Branch.

Hartigan, J. (1964). Invariant prior distributions. Ann. Math. Statist., 35:836–
845.

BIBLIOGRAPHY 167

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical
Learning. Springer–Verlag.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning bayesian
networks: The combination of knowledge and statistical data. Machine
Learning, 20:197–243.

Hoeting, J., Madigan, D., Raftery, A., and Volinsky, C. (1998). Bayesian model
averaging. Technical Report 9814, Department of Statistics. Colorado State
University.

Hulten, G. and Domingos, P. (2002). Mining complex models from arbitrarily
large databases in constant time. In Proc. 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Jaynes, E. (1968). Prior probabilities. IEEE Transactions on Systems Science
and Cybernetics.

Jaynes, E. (1988). How does the brain do plausible reasoning? In Erickson, G.
and Smith, C., editors, Maximum-Entropy and Bayesian Methods in Science
and Engineering, volume 1, pages 1–24. Kluwer Academic Publishers.

Jaynes, E. (1996). Probability Theory: The Logic of Science. published on the
net, http://bayes.wustl.edu/Jaynes.book.

Johnson, E. (1973). Numerical encoding of qualitative expressions of uncertainty.
Technical Report 250, Army Research Institute for the Behavioural and
Social Sciences, Arlington, Virginia.

Kass, R. and Wasserman, L. (1994). Formal rules for selecting prior distribution:
A review and annotated bibliography. Technical Report 583, Department
of Statistics, Carnegie Mellon University.

Katoh, N., Ibaraki, T., and Mine, H. (1981). An algorithm for finding k minimum
spanning trees. SIAM J. Comput., 10(2):247–255.

Kerber, R. (1992). ChiMerge: Discretization of Numeric Attributes. In Pro-
ceedings of the Tenth National Conference on Artificial Intelligence, pages
123–128. MIT Press.

Keynes, J. (1921). A Treatise on Probability. MacMillan, London.

Kohavi, R., Becker, B., and Sommerfield, D. (1997). Improving simple bayes. In
Proceding of the European Conference in Machine Learning.

Kohavi, R., John, G., Long, R., Manley, D., and Pfleger, K. (1994). MLC++:
A machine learning library in C++. In Tools with Artificial Intelligence,
pages 740–743. IEEE Computer Society Press.

168 BIBLIOGRAPHY

Kontkanen, P., Myllymaki, P., Silander, T., and Tirri, H. (1998). Bayes Optimal
Instance-Based Learning. In Machine Learning: ECML-98, Proceedings of
the 10th European Conference, volume 1398 of Lecture Notes in Artificial
Intelligence, pages 77–88. Springer-Verlag.

Langley, P., Iba, W., and Thompson, K. (1992). An Analysis of Bayesian Clas-
sifiers. In Proceedings of the Tenth National Conference on Artificial Intel-
ligence, pages 223–228. AAAI Press and MIT Press.

Lee, C. and Shin, D.-G. (1994). A Context-Sensitive Discretization of Numeric
Attributes for Classification Learning. In 11th European Conference on
Artificial Intelligence, pages 428–432.

Lichtenstein, S. and Newman, J. (1967). Empirical scaling of common verbal
phrases associated with numerical probabilities. Psychon. Sci., 9(10).

López de Màntaras, R. (1991). A Distance Based Attribute Selection Measure
for Decision Tree Induction. Machine Learning, 6:81–92.

López de Màntaras, R., Cerquides, J., and Garcia, P. (1998). Comparing
Information-Theoretic Attribute Selection Measures: A Statistical Ap-
proach. AI Communications, 11(2).

MacKay, D. (1995). Bayesian methods for neural networks: Theory and appli-
cations. Neural Networks Summer School.

Madigan, D. and Raftery, A. (1994). Model selection and accounting for model
uncertainty in graphical models using occam’s window. J. American Sta-
tistical Association, 89:1535–1549.

Meila, M. and Jaakkola, T. (2000a). Tractable bayesian learning of tree be-
lief networks. Technical Report CMU-RI-TR-00-15, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA.

Meila, M. and Jaakkola, T. (2000b). Tractable bayesian learning of tree belief
networks. In Proc. of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, pages 380 – 388.

Meila, M. and Jordan, M. I. (2000). Learning with mixtures of trees. Journal of
Machine Learning Research, 1:1–48.

Neufeld, E. (1990). A probabilistic commonsense reasoner. International Journal
of Intelligent Systems, 5:565–594.

Oden, G. (1977). Integration of fuzzy logical information. Journal of Experi-
mental Psychology: Human Perception and Performance, 3(4):565–575.

Parsons, S. (1995). Further results in qualitative uncertainty. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 3(2):187–
210.

BIBLIOGRAPHY 169

Pazzani, M. (1995). An iterative improvement approach for the discretization of
numeric attributes in bayesian classifiers. In 1st International Conference
on Knowledge Discovery in Databases.

Pettie, S. and Ramachandran, V. (2002). An optimal minimum spanning tree
algorithm. Journal of the ACM (JACM), 49(1):16–34.

Polya, G. (1954). Mathemathics and Plausible Reasoning, Vol II: Patterns of
Plausible Inference. Princenton, New Jersey: Princenton University Press.

Provost, F., Fawcett, T., and Kohavi, R. (1998). The case against accuracy esti-
mation for comparing induction algorithms. In Proceedings of the Fifteenth
International Conference on Machine Learning.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Quinlan, J. (1992). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Richeldi, M. and Rossotto, M. (1995). Class-Driven Statistical Discretization of
Continuous Attributes (Extendend Abstract). In European Conference on
Machine Learning.

Rubey, M. (2000). Counting spanning trees. Diplomarbeit.

Shen, W. (1993). Bayesian probability theory. a general method for machine
learning. Technical Report MCC-Carnot-101-93, Microelectornics and Com-
puter Technology Corporation, Austin, TX.

Shoup, V. (2003). NTL: A library for doing number theory.
http://www.shoup.net/ntl.

Thearling, K. (1998). Some thoughts on the current state of data mining software
applications. In Keys to the Commercial Success of Data Mining, KDD’98
Workshop.

Trave, L. and Piera, N. (1989). The orders of magnitude models as qualitative
algebras. In 11th IJCAI, Detroit.

Tribus, M. (1969). Rational Descriptions, Decisions and Designs. Pergamon
Press, New York.

Wallsten, T., Budescu, D., Rapoport, A., Zwick, R., and Forsyth, B. (1985).
Measuring the vague meanings of probability terms. Technical Report 173,
The L. L. Thurstone Psychometrich Laboratory, Chapel Hill, N.C.

Wellman, M. P. (1990). Fundamental concepts of qualitative networks. Artificial
Intelligence, 44:257–303.

West, D. (1999). Introduction to Graph Theory, Second Edition. Prentice Hall.

170 BIBLIOGRAPHY

Zimmer, A. (1983). Verbal vs. numerical processing of subjective probabilities.
In Scholz, R., editor, Decision Making Under Uncertainty, pages 159–182.
Elsevier Science Publishers B.V. (North-Holland).

Zimmer, A. (1985). The estimation of subjective probabilities via categorical
judgments of uncertainty. In Proceedings of the Workshop on Uncertainty
and Probability in Artificial Intelligence, pages 217–224. UCLA.

