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en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques



Monografies de l’Institut d’Investigació en
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Foreword

The concepts and methodology needed for designing, developing, and imple-
menting real life applications based on multi-agent systems are today still a chal-
lenge for researchers in Artificial Intelligence and Computer Science. Industrial-
strength multi-agent systems require, among other things, reusability, i.e. the
capability of not having to design and implement from scratch a new multi-agent
system for every new application domain. Nonetheless, this is the current status
of most multi-agent systems developed as of 2004: an ad-hoc multi-agent system
is developed for a particular application, a situation that reminds that of expert
systems a decade ago.

The Ph. D. monograph of Mario Gómez addresses several dimensions along
which multi-agent systems methodology has to be enhanced to achieve reuse.
For this purpose, Mario Gómez takes a knowledge modelling stance that comes
from the decade long research in knowledge engineering, and adapts its insights
to the new challenges risen by multi-agent systems. This approach requires
that Mario Gómez is not only aware of the current unsolved issues in multi-
agent systems but conversant in the core ideas and developments in knowledge
modelling. The resulting contributions are organized in the ORCAS framework,
comprising conceptual guidelines to design, methodological commitments for
development, and an implemented platform to make concrete these abstract
notions and effectively experiment with them.

A main contribution of Mario Gómez ORCAS framework is a clear under-
standing of how multi-agent systems can be designed and implemented in a
way that they are independent of the domain of application, i.e. agents and
multi-agent systems can be build in a way their usefulness is not confined to a
single application but can be reused for a range of domains. If you wonder how
is this possible reading the monograph will be certainly enlightening. Another
main contribution is an implemented framework for automatic team formation.
The team formation framework puts together at work all the different ideas pro-
posed by Mario Gómez in this framework together with complementary work
on multi-agent systems that has been developed in recent years at our Institute.
Specifically, the work on electronic institutions is used in the ORCAS framework
but at new level not envisioned by the original authors, showing that further de-
velopments towards “dynamic institutions” is an addressable challenge.

The ORCAS framework was developed at the Institut d’Investigació en
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Intel·ligència Artificial inside the European Commission project IBROW: An In-
telligent Brokering Service for Knowledge-Component Reuse on the World-Wide
Web and the implemented platform for ORCAS was awarded the 3rd Prize in
Agent Infrastructure in the Agentcities Agent Technology Competition 2003.

Bellaterra, July 2004

Enric Plaza i Cervera
Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cient́ıfiques
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Abstract

Although Multi Agent Systems are supposed to be open systems, most of the ini-
tial research has focused on closed systems, which are designed by one developer
team for one homogeneous environment, and one single domain.

This thesis aims to advance some steps towards the realization of the open
Multi Agent Systems vision. Our work has been materialized into a frame-
work for developing Multi Agent Systems that maximizes the reuse of agent
capabilities across multiple application domains, and supports the automatic,
on-demand configuration of agent teams according to stated problem require-
ments.

On the one hand, this work explores the feasibility of the Problem Solving
Methods approach to describe agent capabilities in a way that maximizes their
reuse. However, since Problem Solving Methods are not designed for agents,
we have had to adapt them to deal with agent specific concepts concerning the
agent communication languages and interaction protocols.

One the other hand, this thesis proposes a new model of the Cooperative
Problem Solving process that introduces a Knowledge Configuration stage pre-
vious to the Team Formation stage. The Knowledge Configuration process per-
forms a bottom-up design of a team in terms of the tasks to be solved, the
capabilities required, and the domain knowledge available.

The statements made herein are endorsed by the implementation of an agent
infrastructure that has been tested in practice. This infrastructure has been
developed according to the electronic institutions formalism to specifying open
agent societies. This infrastructure provides a social mediation layer for both
requesters and providers of capabilities, without imposing neither an agent ar-
chitecture, nor an attitudinal theory of cooperation.

The contributions of our work are presented as a multilayered framework,
going from the more abstract aspects, to the more concrete, implementation de-
pendent aspects, concluding with the implementation of the agent infrastructure
and a particular application example for cooperative information agents.

xvii





Agradecimientos

La realización de esta tesis ha sido posible gracias al soporte brindado por el
Consejo Superior de Investigaciones Cient́ıficas. La mayor parte del trabajo se ha
desarrollado bajo la cobertura del proyecto europeo IBROW (IST-1999-190005),
y parcialmente bajo el proyecto español SMASH (TIC96-10ajo 38-C04).

Sin el apoyo y el est́ımulo constante de Enric, mi director de tesis, ésta no se
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Chapter 1

Introduction

The main goal of this thesis is to provide a framework for open Multi-Agent
Systems that maximizes the reuse of agent capabilities through multiple appli-
cation domains, and supports the automatic, on-demand configuration of agent
teams according to stated problem requirements.

We have devoted considerable effort to the applicability of our proposals,
which resulted in the implementation of an infrastructure to develop Multi Agent
Systems according to the principles and requirements stated by our framework.

During the rest of this Chapter the main goal of this thesis is analyzed and
boiled down to the several issues and problems it encompasses. First, we situate
our work in the field of Multi-Agent Systems, focusing on the open problems
and challenges that motivated us; second, the main contributions of this thesis
are summarized; and third, the structure of the thesis is presented as a guide for
readers.

1.1 Motivation and context

Distributed Artificial Intelligence has historically been divided in two main
areas: Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS)
[Bond and Gasser, 1988a]. In the DPS approach problems are divided and dis-
tributed among a number of nodes that cooperate in solving the different parts
of the problem; but the overall problem solving strategy is an integral part of
the system. In contrast, MAS research is concerned with the behavior of a
collection of possibly pre-existing autonomous agents aiming at solving a given
problem [Jennings et al., 1998]. MAS have been defined as loosely coupled net-
works of problem-solving entities working together to find answers to problems
that are beyond the individual capabilities or knowledge of the isolated entities
[Durfee and Lesser, 1989]. The MAS approach advocates decomposing problems
in terms of autonomous agents that can engage in flexible, high level interactions,
and this way of decomposing a problem aids the process of engineering complex
systems [Jennings, 2000]. Some characteristics of MAS are the following:

1
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• each agent has incomplete information or capabilities for solving the prob-
lem, thus each agent has a limited viewpoint;

• there is no global system control;

• data is decentralized; and

• computation is asynchronous.

Some reasons for the increasing interest in MAS research include: the ability
to provide robustness and efficiency, the ability to allow inter-operation of exist-
ing legacy systems, and the ability to solve problems in which data, expertise, or
control is distributed. Agents are defined as sophisticated computer programs
that act autonomously on behalf of their users, across open and distributed
environments, to solve a growing number of complex problems.

Considering the former definitions, MAS are supposed to be open systems in
that agents can enter / leave at any time. Nonetheless, most of the initial work
devoted to MAS research has focused on closed systems [Klein, 2000], typically
designed by one team for one homogeneous environment, with participating
agents sharing common high-level goals in a single domain. The communications
languages and interaction protocols are typically in-house protocols, and are
defined by the design team prior to any agent interactions. Systems are scalable
under controlled conditions and design approaches tend to be ad hoc, inspired
by the agent paradigm rather than using any specific methodologies.

It is often suggested the need for real open systems that were capable of
dynamically adapting themselves to changing environments. Some examples
are electronic markets, communities and distributed search engines. All in all,
in open MAS the participants (both human and software agents) are unknown
beforehand, can change over time and can be developed by different parties.
Open systems are opposite to closed or proprietary systems, i.e. open systems
can be supplied by hardware components from multiple vendors, and whose
software can be operated from different platforms.

According to the predictions of the European Network of Excellence for Agent
Based Computing, fully open MAS spanning multiple application domains and
involving heterogeneous participants will not be achieved in a foreseeable future,
and not before year 2009 [Luck et al., 2003]. This cautious prediction obeys to
some challenges yet to be undertaken, including the following:

• provide effective agreed standards to allow open agent systems;

• provide semantic infrastructure for open agent communities;

• develop reasoning capabilities for agents in open environments;

• develop agent ability to understand user requirements;

• develop agent ability to adapt to changes in the environment;

• ensure agent confidence an trust in agents
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Figure 1.1: Roadmap timeline for agent technologies

Figure 1.1 (adapted from [Luck et al., 2003]) shows a roadmap timeline sug-
gesting how agent technology will progress over time if R & D is aimed at the
main challenges identified.

Although we are not going to solve all these problems entirely, we hope to
provide tentative solutions to some of them and to bring about some insights
that could drive future work on these issues. We are not going to exhaustively
describe these problems here, since they are described in Chapter 2; we are
rather going to sketch them so as to let the reader become acquainted with the
motivations for this work.

Nowadays, MAS are increasingly being designed to cross corporate bound-
aries, so that the participating agents have fewer goals in common, although
their interactions are still concerning a common domain. The languages and
protocols used in these systems are being agreed and standardized; however,
despite this raising diversity, all participating agents are designed by the same
team designing the system and share common domain knowledge.

In order to overcome the limitations of current agent infrastructures for open
MAS, researchers must tackle with several problems:

• the connection problem, or how to put providers and requesters (services
and customers) in contact;

• the interoperability problem, or how to achieve a meaningful interaction
among heterogeneous agents at the syntactic, semantic and pragmatic lev-
els;
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• the coalition problem, or how to form and coordinate agent teams to solve
problems in a cooperative way;

• the reuse problem, or how to use the same agent capabilities across several
application domains;

• the accountability problem, or how to predict or explain the behavior of
MAS according to the requirements of the problem.

The MAS community builds intelligent agents capable of reasoning about
how to cooperate to solve complex problems. This area uses knowledge in-
tensively: for adding meaning (using ontologies), enabling service discovery and
composition (using annotations and reasoning for matchmaking), and coordinat-
ing processes (using negotiation strategies). In closed environments knowledge
is usually homogeneous and static. In open environments such as the Internet,
knowledge is pervasive, distributed, heterogeneous, and dynamic in nature.

Nowadays the Web is shifting the nature of software development to a dis-
tributed plug-and-play process. This change requires a new way of managing and
integrating software based on a software integration architectural pattern called
middleware. Middleware is connectivity software; it consists of enabling services
that allow multiple processes running on one or more machines to interact across
a network. It follows that a middleware layer is required to provide a common set
of programming interfaces that developers can use to create distributed systems.

Intelligent middleware aims to achieve the highest degree of interoperability,
where systems can identify and react to the semantics of data. For this reason,
many research communities are focusing their attention to semantic interoper-
ability, for example: MAS, Semantic Web Services, Cooperative Information
Systems and Component Based Software Development.

In open MAS the middleware layer is usually provided by middle agents
[Decker et al., 1997b] that mediate between requesters and providers of capa-
bilities, e.g. matchmakers [Decker et al., 1996], facilitators [Erickson, 1996a,
Genesereth and Ketchpel, 1997] and brokers[Nodine et al., 1999]). Typically,
the function of a middle agent is to pair requesters with providers that are
suitable for them, and this process is called matchmaking. To enable match-
making, both providers and requesters share a common language to describe
the requests (tasks or goals) and the advertisements (capabilities or services) in
order to compare them. This language is called an Agent Capability Description
Language (ACDL).

Matchmaking is the process of verifying whether a capability specification
matches the specification of a request (e.g. a task to be solved): two specifi-
cations match if their specifications verify some matching relation, where the
matching relation is defined according to some criteria (e.g. a capability being
able to solve a task). Semantic matchtmaking, which is based on the use of
shared ontologies to annotate agent capabilities [Guarino, 1997a], improves the
matchmaking process and facilitates interoperation.

Semantic matchmaking allows to verify whether a capability can solve a
new type of problem (a task), but the reuse of existing capabilities over new
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application domains is difficult because capabilities are usually associated to a
specific application domain.

The notion of an Agent Capability Description Language (ACDL) has been
introduced recently [Sycara et al., 1999a] as a key element to enable MAS in-
teroperation in open environments. An ACDL is a shared language that al-
lows heterogeneous agents to coordinate effectively across distributed networks.
Sometimes, capabilities are referred as “services” and, consequently, an ACDL
can alternatively be called an Agent Service Description Language (ASDL).

In the literature, an ACDL is defined as a language to describe both agent
advertisements and requests, and is primarily used by middle agents (e.g. brokers
and matchmakers) to pair service-requests with service-providing agents that
meet the requirements of the request [Sycara et al., 1999b, Sycara et al., 1999a].

Some desirable features for such a language are expressiveness, efficiency and
ease of use:

• Expressiveness: the language should be expressive enough to represent
not only data and knowledge, but also the meaning of a capability. Agent
capabilities should be described at an abstract rather than implementation
dependent level.

• Efficiency : inferences on descriptions written in this language should
be supported. Automatic reasoning and comparison on the descriptions
should be both feasible and efficient.

• Ease of use: descriptions should not only be easy to read and understand,
but also easy to write. The language should support the use of ontologies
for annotate agent capabilities with shared semantic information.

However, in addition to capability discovery, an ACDL should bring support
to other activities involved in MAS interoperation. On the one hand, once a
capability is discovered, it should be enacted automatically; agents should be
able to interpret the description of a capability to understand what input is
necessary to execute a capability, what information will be returned, and which
are the effects or postconditions that will hold after applying the capability. In
addition, an agent must know the communication protocol, the communication
language and the data format required by the provider of the capability in order
to successfully communicate with it.

On the other hand, in order to achieve more complex tasks, capabilities may
be combined or aggregated to achieve complex goals that existing capabilities
cannot achieve in isolation. This process may require a combination of match-
making, capability selection among alternative candidates, and verification of
whether the aggregated functionality satisfies the specification of a high-level
goal.

Our approach to these activities is tightly related with the idea of reuse: how
to reuse a capability for different tasks, across several application domains, and
in cooperation with other capabilities provided by different, probably heteroge-
neous agents. The idea of reuse is being addressed by the Software Engineering
and the Knowledge Engineering communities.
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The reuse of complete software developments and the process used to create
them has the potential to significantly ease the process of software engineering
by providing a source of verified software artifacts [Wegner, 1984]. It is sug-
gested than reuse of software artifacts can be achieved through the utilization of
software libraries [Atkinson, 1997]. Essentially a software library is a repository
of information which can be used to construct software systems. The main goal
of software libraries reuse is to enable previous development experiences to guide
subsequent software development. To this end, MAS designers must be provided
with libraries of:

• generic organisation models (e.g., hierarchical organisations, flat organisa-
tions);

• generic agent models (e.g., purely reactive agent models, deliberative BDI
models);

• generic task models (e.g., diagnostic tasks, information filtering tasks,
transactions);

• communication languages and patterns for agent societies;

• ontology patterns for agent requirements, agent models and organisation
models;

• interaction protocol patterns between agents with special roles;

• reusable organisation structures; and

• reusable knowledge bases.

From the compositional approach, building a software system is essentially a
design problem [Biggerstaff and Perlis, 1989]. The Component-Based Software
development (CBSD) approach focuses on building large software systems by in-
tegrating previously-existing software components. By enhancing the flexibility
and maintainability of systems, the ultimate goal is to reduce software develop-
ment costs, assemble systems rapidly, and reduce the maintenance burden associ-
ated with the support and upgrade of large systems [Brown and Wallnau, 1996].

Constructing an application involves the use of prefabricated pieces, per-
haps developed at different times, by different people and possibly with different
purposes, therefore integrability of heterogeneous components is a key when con-
sidering whether to acquire, reuse, or build new components. Reusable software
components can be deployed independently and are subject to composition by
third parties [Szyperski, 1996]. There is, however, a major problem with soft-
ware composition, the so called Bottom Up Design Problem [Mili et al., 1995],
defined as:

given a set of requirements, find a set of components within a software
library whose combined behavior satisfies the requirements.
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The fundamental difficulty when considering this problem is how to decom-
pose the requirements in such a way as to yield component specifications. A
reverse approach is to search the space of all possible component compositions
until one satisfying the requirements is found [Hall, 1993, Zhang, 2000]. Thus,
composition of components can be regarded as composition of their specifications
[Butler and Duke, 1998].

Concerning Knowledge Engineering, we are interested in Knowledge Mod-
elling Frameworks that has proposed several methodologies, architectures
and languages for analyzing, describing and developing knowledge systems
[Steels, 1990, McDermott, 1988, Schreiber et al., 1994a, Fensel et al., 1999].
The goal of a Knowledge Modelling Framework (KMF) is to provide a conceptual
model of a system which describes the required knowledge and inferences at an
implementation independent way. This approach is intended to support the en-
gineer in the knowledge acquisition phase [Van de Velde, 1993] and to facilitate
reuse [Fensel, 1997a].

However, KMFs and reusable software libraries have rarely been applied in
the field of MAS to deal with the reuse and interoperation problems arising in
open environments. This thesis explores the utility of a KMF to support the
automated design and coordination of agent teams according to stated problem
requirements; in other words, we translate the Bottom Up Design Problem prob-
lem to the MAS field: given a set of requirements, find a set of agent capabilities
whose combined competence and knowledge satisfy the requirements.

1.2 Contributions

The main outcome of our efforts to overcome the problems concerning interop-
erability and reuse in open MAS is a multi-layered framework for MAS devel-
opment and deployment that integrates Knowledge Modelling and Cooperative
Multi-Agent Systems together. This framework is called ORCAS, which stands
for Open, Reusable and Configurable multi-Agent Systems.

The ORCAS framework explores the use of a KMF for describing and com-
posing agent capabilities with the aim of maximizing capability reuse and sup-
porting the automatic, on-demand configuration of agent teams according to
stated problem requirements. The ORCAS KMF is being used as an ACDL sup-
porting semantic matchmaking and allowing capability descriptions in a domain
independent manner, in order to maximize capability reuse.

The Knowledge Modelling Framework of ORCAS has been complemented
with an Operational Framework, which describes a mapping from concepts in
the Knowledge-Modelling Framework to concepts from Multi-Agent Systems and
Cooperative Problem Solving. Specifically, the Operational Framework describes
how a composition of capabilities represented at the knowledge-level can be op-
erationalized by a customized team of problem solving agents. In order to do
that, the Operational Framework extends the KMF to describe also the commu-
nication and the coordination mechanisms required by agents to cooperate. Our
approach to describe such aspects of a capability is based on the macro-level
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(societal) aspects of agent societies, which is focused on the communication and
the observable behavior of agents, rather than adopting a micro-level (internal)
view on individual agents. The reason to focus on the macro-level is to avoid im-
posing a specific agent architecture, thus facilitating the design and development
of agents to third parties, a basic requirement of open MAS.

The ORCAS Operational Framework proposes a new model of the Coopera-
tive Problem Solving process that is based on a knowledge-level [Newell, 1982]
description of agent capabilities, using the ORCAS KMF. This model includes a
Knowledge Configuration process that takes a specification of problem require-
ments as input and searches a composition of capabilities and knowledge satisfy-
ing those requirements. The result of the Knowledge Configuration process is a
task-configuration, a knowledge-level design of an abstract agent team, in terms
of the tasks to be solved, the capabilities to be applied, and the knowledge to
be used by those capabilities.

An agent willing to start a cooperative activity requires an initial plan
to know which are the capabilities required in order to select suitable agents
for that plan. In larger systems, team selection may involve an exponen-
tial number of possible team combinations, and a blow-out in the number
of interactions required to select the members of a team. There are two
approaches to overcome these problems: one approach, that still relies on
some kind of global plan is that of guiding the team formation with prob-
lem requirements [Tidhar et al., 1996]; another approach is to use distributed
tasks allocation methods to make the team selection computationally tractable
[Shehory and Kraus, 1998, Sandholm, 1993]; furthermore, a mixture of both ap-
proaches is also feasible [Clement and Durfee, 1999].

In this thesis we adopt the approach based on guiding the team formation
process with the problem requirements, but the notion of a initial plan is here
replaced by the notion of a task-configuration. A task-configuration reduces the
complexity of the team formation process by constraining the composition of
the team to a certain design that satisfies the requirements of the problem. In
spite of its combinatorial nature, the complexity of the team selection process
is mitigated, though partially transferred from the team formation process to
the Knowledge Configuration process. Therefore, in order to further reduce the
complexity of the Knowledge Configuration and the team formation activities,
we propose Case-Based Reasoning to heuristically guide the search process over
the space of possible configurations.

Finally, we have implemented and agent infrastructure according to the
ORCAS model of the CPS process. This agent infrastructure has being
implemented using the electronic institutions formalism [Esteva et al., 2001,
Esteva et al., 2002b], which is based on a computational metaphor of human
institutions from a macro-level point of view.

Human institutions are places where people meet to achieve some goals fol-
lowing specific procedures, e.g. auction houses, parliaments, stock exchange
markets, etc. Intuitively, the notion of electronic institutions refers to a sort
of virtual place where agents interact according to explicit conventions. The
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institution is the responsible for defining the rules of the game, to enforce them
and impose the penalties in case of violation.

An electronic institution, or e-Institution, is a “virtual place” designed to
support and facilitate certain goals to the human and software agents concurring
to that place. Since these goals are achieved by means of the interaction of
agents, an e-institution provides the social mediation layer required to achieve a
successful interaction: interaction protocols, shared ontologies, communication
languages and social behavior rules. The interaction is not only regulated by
the institution, furthermore it is mediated by institutional agents that offer an
added value to participating agents.

The ORCAS e-Institution brings an added value to both requesters and
providers: on the one hand, requesters are freed of finding adequate providers
and provides a single interface to the multiple and heterogenous providers; on
the other hand, the institution provides an advertisement service to capabil-
ity providers, provides a mediation service for the team formation process, and
facilitates coordination during the teamwork activity, allowing agents to solve
complex problems that cannot be achieved by an agent alone.

However, in addition to implement an agent infrastructure using the elec-
tronic institutions formalism, we are interested on using the concepts proposed
by the e-Institutions approach to describe the communication and the opera-
tional description of agent capabilities without imposing neither a specific agent
architecture, nor an attitudinal theory of cooperation.

The goal of partitioning the ORCAS framework in layers is to bring devel-
opers an extra flexibility in adapting this framework to their own requirements,
preferences and needs. We claim that a clear separation of layers will support
a flexible utilization and extension of the framework to fit different needs, and
to build different infrastructures. Therefore, we divide the ORCAS framework
in three complementary frameworks:

1. The Knowledge Modelling Framework (KMF) proposes a conceptual and
architectural description of problem-solving systems from a knowledge-
level view, abstracting the specification of components from implementa-
tion details. In addition, a Knowledge Configuration model is presented
as the process of finding configurations of components that fulfill stated
problem requirements.

2. The Operational Framework deals with the link between the characteri-
zation of components and its implementation, that in our framework is
realized by Multi-Agent Systems. This framework comprehends an exten-
sion of the KMF to become a full-fledged Agent Capability Description
Language, together with a new model of the Cooperative Problem Solving
process based on the KMF.

3. The Institutional Framework describes an implemented infrastructure for
developing and deploying Multi-Agent Systems configurable on-demand,
according to the the two layered —knowledge and operational— config-
uration framework. This infrastructure is designed and implemented ac-
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cording to an institutional model of open agent societies. The result is
multi-agent platform that supports flexible, extensible and configurable
Multi-Agent Systems.

Institutional 
Framework

Operational
 Framework

Knowledge
Modelling Framework

Figure 1.2: The three layers of the ORCAS framework

Figure 1.2 shows the three layers as a pyramid made of three blocks. The
block at the bottom corresponds to the more abstract layer, while upper blocks
corresponds to increasingly implementation dependent layers. Therefore, devel-
opers and system engineers can decide to use only a portion of the framework,
starting from the bottom, and modifying or changing the other frameworks ac-
cording to its preferences and needs.

1.3 Structure

This thesis consist of 7 chapters, including this one, and several appendixes
providing technical information. The thesis is organized as follows (Figure 1.3):

Chapter 2 reviews some research relevant to our thesis and discusses some of
their contributions that put the basis for our work, together with its limi-
tations and the open issues we are dealing with. Since our work integrates
two fields together -knowledge modelling and multi-agent systems-, this
chapter have to address very different issues.

Chapter 3 draws the structure of ORCAS framework to give the reader an
overall view of it, and remarks the outstanding elements of each layer so
as to disclose the logic underpinning that structure.

Chapter 4 proposes a knowledge modelling framework for Multi-Agent Sys-
tems. This framework describes a conceptual and architectural charac-
terization of problem-solving systems from a knowledge-level perspective,
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abstracting the specification from any implementation details. Moreover,
this chapter describes a Knowledge Configuration process that is able to
find a configuration of components (tasks, capabilities and domain-models)
fulfilling stated problem requirements.

Chapter 5 describes a framework to operationalize a knowledge-level config-
uration by forming and instructing a team of agents with the required
capabilities and domain knowledge. This chapter describes also a model
of teamwork based on the social view on agent cooperation.

Chapter 6 introduces the institutional framework, an implemented infrastruc-
ture for system development that is based on the two layered approach
to multi-agent configuration together with an institutional approach to
open agent societies, in support of flexible, customizable and extensible
Cooperative Multi-Agent Systems.

Chapter 7 shows an implemented application as a case study of the ORCAS
framework, the Web Information Mediator (WIM). WIM is an application
to look for medical bibliography in Internet that relies on a library of tasks
and agent capabilities for information search and aggregation, linked to a
medical application domain.

Chapter 8 presents some conclusions and draws up those open issues that are
believed to deceive future work.
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Chapter 2

Background and related
work

2.1 Introduction

Our work explores the potential of a Knowledge Modelling Framework for de-
scribing Multi-Agent Systems at the knowledge level, with the goal of enabling
the Cooperative Problem Solving process to be adapted on-demand to fit the re-
quirements of the problem at hand. Therefore, our review of related work has to
deal with two main research areas: Knowledge Modelling (§2.2) and Multi-Agent
Systems §2.4.

This background is completed with a section on Software Reuse (§2.3), and
another section on Semantic Web Services (§2.5). On the one hand, the reason
to include a section about software reuse is that we aim to maximize the reuse
of agent capabilities across multiple domains. On the other hand, the reason to
include a section devoted to Semantic Web Services (§2.5) is the shared interest
of that field and Multi-Agent Systems on interoperation in open environments
like the Internet. A more detailed organization of the chapter is sketched below:

• The chapter begins with a review of some Knowledge Modelling Frame-
works in §2.2, focusing on those frameworks related with the Task-Method-
Domain modelling paradigm: Generic Tasks (§2.2.1), Role-limiting Meth-
ods (§2.2.2), Components of Expertise (§2.2.3), KADS/CommonKADS
(§2.2.4), UPML(§2.2.5) and current issues in knowledge modelling(§2.2.6).
This section concludes with a subsection about reuse of problem solving
methods (§2.2.6), and more specifically, it is mainly about the role of on-
tologies in component reuse.

• Section §2.3 is about those aspects of reuse that are more relevant to our
work, and more specifically, those research lines assuming a compositional
approach to software development, either explicitly or implicitly. Section
§2.3.1 review the field of software libraries, which is similar to the idea

13
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of libraries of problem solving methods in knowledge-engineering; Section
§2.3.2 is about Component-Based Software Development (CBSD), which
share some concepts with abstract architectures for knowledge-engineering;
and finally, Section §2.3.3 deals with the requirements for a semantic-based
reuse and the solutions.

• Section §2.4 addresses the wide field of Multi-Agent Systems. Although
some dimensions and alternative views of Multi-Agent Systems will be pre-
sented, we favor an external, societal view of Multi-Agent Systems, thus
avoiding topics such as agent architectures and agent theories. First, we
review Cooperative Multi-Agent Systems (§2.4.1), including subsections
on collaboration (§2.4.1), coordination (§2.4.1) and Cooperative Problem
Solving (§2.4.1). The section continues with Team Formation (§6.5.3), a
key activity of the Cooperative Problem-Solving process. Team Formation
can be achieved by either a centralized task allocation (§2.4.2) and dis-
tributed task allocation (§2.4.2) approaches. Another section that is espe-
cially relevant for this thesis deals with agent interoperation in open envi-
ronments (§2.4.3), including agent communication (§2.4.3), middle agents
(§2.4.3), and matchmaking (§2.4.3). Section §2.4.3 ends with a review
of infrastructures for developing and deploying Multi-Agent Systems in
open environments (§2.4.3). Next section introduces social modelling ap-
proaches to Multi-Agent Systems (§2.4.4), and finally, the section on MAS
concludes concludes with a review of agent-oriented methodologies (§2.4.5).

• The last section of this chapter is about Semantic Web Services (§2.5), and
is mainly concerned with proposed frameworks (§2.5.1) and relevant work
on composition and interoperation of Web services (§2.5.2).

At the end of the chapter we review the open issues and describe the type
of problems that we expect to contribute to. In addition, the main differences
between our approach and related work are discussed.

2.2 Knowledge Modelling Frameworks

There is much consensus that the process of building a knowledge system can
be seen as a modelling activity. Building a knowledge system means building
a computer interpretable model with the aim of making problem-solving capa-
bilities comparable to a domain expert, but it is not intended to simulate the
cognitive processes involved in human problem-solving.

In the early eighties the development of an expert system has been seen basi-
cally as a transfer process of human knowledge into an implemented knowledge
base. This approach relies on the assumption than the knowledge is available
there (in the expert) ready to be collected. Typically, this knowledge is ac-
quired through interviewing experts, and the knowledge is implemented in some
kind of production rules executed by some interpreter. But due to the limi-
tation of one single knowledge representation formalism, and to the fact that
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expert knowledge is often difficult to acquire (i.e. tacit knowledge) it was re-
alized that the transfer approach adopted by first generation expert systems is
only feasible for small prototypical systems, but it failed to produce large, re-
liable and maintainable knowledge bases. Therefore, with the introduction of
the knowledge level [Newell, 1982] in the development of knowledge system, the
knowledge acquisition phase is no longer seen as a transfer of knowledge, but as
a model construction process [Clancey, 1989] with the following characteristics
[Studer et al., 1998]:

• a model is an approximation of the reality, thus it is never ended;

• modelling is a cyclic process, so new observations can lead to a refinement,
modification or completion of the already-made model; in the other side,
the model may guide the further acquisition of knowledge; and

• modelling depends on subjective interpretations of the knowledge engineer,
therefore this process is typically faulty.

Knowledge Modelling Frameworks propose methodologies, architectures and
languages for analyzing, describing and developing knowledge systems. While
different frameworks may differ on specific details, all of them are based on the
idea of building a conceptual model of a system, which describes knowledge
and inferences at a domain independent level. These frameworks have been
influenced by the notion of the knowledge level [Newell, 1982], which proposes
to describe a system by focusing on the knowledge they contain rather than
the implementation structures of the knowledge (the symbol level). In addition,
the knowledge level proposes to view a system as an agent with three classes of
components: goals, actions and bodies of knowledge; and introduces a principle
of rationality in the agent behavior: actions are selected to attain goals. Next,
we will review the most prominent frameworks for knowledge engineering as a
modelling activity at the knowledge level, namely: Generic Tasks, Role-Limiting
Methods, Components of Expertise, KADS and CommonKADS, and UPML.

2.2.1 Generic Tasks

In the early eighties, the study of existing knowledge system for design and di-
agnosis evolved into the notion of a Generic Task (GT) [Chandrasekaran, 1986].
This approach proposes a task-oriented methodology for analyzing and building
knowledge-systems. The main intuition underlying this proposal is that there are
some recurring patterns in problem-solving activity (e.g. hierarchical classifica-
tion, abduction assembly and hypothesis matching) that can be reused. Generic
tasks are thus viewed as building-blocks that can be combined to build more
complex problem-solving tasks (e.g. diagnosis) [Chandrasekaran, 1987]. This ap-
proach suggests that the representation of knowledge should closely follow its use
(strong interaction problem hypothesis [Bylander and Chandrasekaran, 1988]),
and that there are different organizations of knowledge suitable for different
types of problem-solving: “Representing knowledge for the purpose of solving
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some problem is strongly affected by the nature of the problem and by the
inference strategy to be applied to the knowledge”. A GT is characterized by:

• a generic description of its input and output;

• a fixed schema of knowledge types specifying the structure of the knowl-
edge; and

• a fixed problem-solving method/strategy specifying the inference steps and
the sequence in which these steps have to be carried out.

Since a GT fixes the type of knowledge required to solve a task, it provides
a vocabulary that can be used to guide the knowledge acquisition process. A
Task Specific Architecture (TSA) is an executable shell for a GT that provides
a task-specific inference engine and a knowledge-base representation language.
Therefore, a particular problem-solver is developed by instantiating a TSA with
domain specific terms. However, this approach has the disadvantage of conflat-
ing the notion of task and problem-solving method. To overcome this limitation
the notion of a Task-Structure was proposed [Chandrasekaran et al., 1992]: it
makes a clear distinction between a task, which is used to refer to a type of
problem, and a method, which is a particular way to accomplish a task. A
task structure includes a set of alternative methods suitable for solving a task.
A task can be decomposed into subtasks, thus a task structure is a hierarchi-
cal decomposition of tasks into subtasks, and the methods suitable for each
task. The decomposition structure is refined to a level in which subtasks can
be solved “directly” using available knowledge. From this point of view tasks
refer to types of problems, while methods are specific ways of solving tasks
[Chandrasekaran and Johnson, 1993].

2.2.2 Role-Limiting Methods

This approach [McDermott, 1988] focuses on the characterization of reusable
Problem-Solving Methods. A Role-Limiting Method (RLM) is a method that de-
clares the roles knowledge can play in that method. From this approach, whereas
domain knowledge should not be acquired and represented with independence
of the method, it is still explicitly and separately represented. An advantage of
this approach is that method roles prescribe what knowledge should be acquired,
therefore the expert only have to instantiating the generic roles with available
knowledge. Furthermore, the problem-solving method facilitate explanations
beyond a simple recall of inference steps as was usual in first generation expert
systems. However, some limitations have been presented to this approach: first,
knowledge-acquisition is completely driven by the RLM [Steels, 1990] and thus
it is difficult to reuse domain-models for new RLMs; and second, RLMs have a
fixed structure that is not well suited to deal with tasks that should be solved
by a combination of several methods [Studer et al., 1998]. In order to overcome
the inflexibility of RLMs, the concept of configurable RLMs has been proposed.
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Configurable Role-Limiting Methods exploits the idea of a complex PSM be-
ing decomposed into subtasks, where each subtask may be solved by different
methods [Poek and Gappa, 1993].

Role-limiting methods lead to a streamlined methodology for doing knowl-
edge acquisition which have resulted in several tools that have been successfully
applied in a variety of real-world applications.

2.2.3 Components of Expertise

Components of Expertise [Steels, 1990] is an attempt to synthesize the idea of
Role-Limiting Methods and the task-structure analysis of the GT approach. In
addition, this approach presents a componential framework that is expected to
overcome some of the problems detected in previous work by imposing more
modularity on the different components of expertise and emphasizing pragmatic
constraints. The componential framework considers three classes of components
to describe and build a problem solver: tasks, models and Problem-Solving Meth-
ods.

From a conceptual point of view, a task is characterized in terms of the type
of problem to be solved (e.g. diagnosis, interpretation, design, planning, and so
on). This characterization is based on properties of the input, output, and na-
ture of the operations that map the input to the output. Usually, there is a main
task that describes the application problem, but tasks can be decomposed into
subtasks with input/output relations between them, resulting in a task structure
[Chandrasekaran et al., 1992]. However, the pragmatic view focuses on task con-
strains that result from the environment or from the epistemological limitations
of humans (models are limited in their accuracy and scope of prediction).

The componential framework addresses the question of knowledge modelling
having in mind the separation of deep and surface knowledge [Steels, 1988]. From
the perspective of deep expert systems, problem solving is viewed as a modelling
activity in which some models of the world are constructed in order to solve a
problem using that models. Case models are about the particular problem solv-
ing situation, which is determined by the task and methods at hand. However,
domain-models are valid for a variety of cases. Domain-models describe domain
specific knowledge that is used by Problem-Solving Methods to construct case
models. There are two further subtypes of domain-models: Expansion models
can be used to expand a case model by inference or data gathering; and mapping
models are used to construct or modify a case model based on a mapping from
elements of other models. Models can be constructed from different perspectives
(for example, there are functional models, causal models, behavioral models and
structural models) and represented in heterogeneous forms, like rules, hierarchies
or networks.

Problem-Solving Methods (PSM) are responsible for applying domain knowl-
edge to solve a task. A problem-solving method might decompose a task into
subtasks or directly solve a subtask. In either case they can consult domain-
models, create or change intermediary knowledge structures, perform actions to
gather more data or expand a case model by adding or changing facts.
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2.2.4 KADS and CommonKADS

KADS [Schreiber et al., 1993, Wielinga et al., 1993] is methodology for the anal-
ysis and design of knowledge system, which was further developed to Com-
monKADS [Schreiber et al., 1994a]. A basic characteristic of KADS is the con-
struction of a collection of models, where each model captures specific aspects
of the knowledge system to be developed as well as of its environment. In
CommonKADS the Organization Model, the Task Model, the Agent Model, the
Communication Model, the Expertise Model and the Design Model are distin-
guished:

• The Organizational Model describes the organizational structure in which
the knowledge system will be introduced.

• The Task Model provides a hierarchical description of the tasks which
are performed in the organizational unit, and the agents assigned to the
different tasks.

• The Agent Model specifies the capabilities of each agent involved in the
execution of tasks. In general an agent can be a human or some kind of
software system.

• The Communication Model specifies the interactions between the different
agents, including the type of information exchanged.

• The Design Model describes the system architecture, the representation
and the computational mechanisms to realize a problem-solver according
to the requirement of the target system captured at the Expertise Model
and the Communication Model.

• The Expertise Model describes the knowledge required by agents to solve
tasks, approaching knowledge modelling from three different perspectives:
static, functional and dynamic. Accordingly, three layers for the expertise
model are distinguished: domain layer, inference layer and task layer.

– At the domain layer the domain specific knowledge required to solve
tasks is modelled. Domain knowledge is conceptualized through
domain-models. A domain-model provides a partial view on a part
of the domain knowledge, which statements are conceptualized by a
particular ontology. The main goal of structuring the domain layer is
facilitate its reuse for solving different tasks.

– At the inference layer the reasoning process of a knowledge sys-
tem is specified following the Role-Limiting Methods approach
[McDermott, 1988]. Problem-Solving Methods are described by prim-
itive reasoning steps called inference actions as well as the roles played
by domain knowledge. Dependencies between inference actions and
roles are specified by an inference structure, which specifies how the
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knowledge roles are used and produced by inference actions. Further-
more, the notion of roles provides a domain independent view of the
domain

– The task layer provides a description of tasks in terms of input and
output roles, and specifies the goals characterizing it. In addition,
the task layer describes a decomposition of the task into subtasks, as
well as the control flow over subtasks.

Both semi-formal and formal languages have been proposed to de-
scribe the Expertise Model: CML (Conceptual Modelling Language)
[Schreiber et al., 1994b], which is a semi-formal language with a graphical
notation, oriented towards the human understanding; and (ML)2, which is
a formal specification language based on first order predicate logic, meta-
logic and dynamic logic.

The clear separation between the domain knowledge and the reasoning pro-
cess at the inference and task layers enables two kind of reuse: on the one hand, a
domain-model may be reused by different methods; on the other hand, a method
may be reused in a different domain [Studer et al., 1998] by defining a new view
on the domain. This approach weakens the strong interaction problem hypothesis
[Bylander and Chandrasekaran, 1988], which is thus redefined as the relative in-
teraction hypothesis [Schreiber et al., 1994a]: whereas some kind of dependency
exists between the structure of the knowledge and the type of the task, it can
be minimized by explicitly stating the dependencies between reasoning methods
and domain knowledge [van Heijst, 1995]. Task and PSM ontologies may be
defined as two viewpoints on an underlying domain ontology.

Since one of the goals of the CommonKADS approach is to facilitate reuse,
a library of reusable and configurable components has been defined that can
be used to build up an Expertise Model [Valente et al., 1994], including compo-
nents to solve the following type of (generic) tasks: modelling, design, planning,
assignment, prediction, monitoring, assessment and diagnosis [Breuker, 1994].

2.2.5 UPML

The Unified Problem-solving Method Development Language (UPML)
[Fensel et al., 1999] is a framework for developing knowledge-intensive reasoning
systems based on libraries of generic problem-solving components. UPML is
a description language that integrates work on knowledge modelling, inter-
operability standards and ontologies. Rather than providing the object level
description language, UPML provides an architectural framework that specifies
the components, the connectors and a configuration of how the components
should be connected (architectural constraints) to build a system. Moreover,
design guidelines define a process model for building complex knowledge systems
out of elementary components [Fensel and Motta, 2001].

The UPML architecture for describing a knowledge system consists of six
different elements: tasks, domain-models, PSMs, ontologies, bridges, and refin-
ers: tasks define the type of problems, PSMs specify the reasoning process, and
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domain-models characterize the domain knowledge used by PSMs. Each of these
elements is described independently to enable the reuse of task descriptions in
different domains, the reuse of PSMs for different tasks and domain, and the
reuse of domain knowledge for different tasks and PSMs. Ontologies provide
the terminology used in tasks, PSMs and domain definitions. Again, this sep-
aration enables knowledge sharing and reuse. For example, different tasks or
PSMs can share parts of the same vocabulary and definitions. A fifth element
of a specification of a knowledge system are adapters, which are necessary to
adjust the other (reusable) parts to each other and to the specific application
problem. UPML provides two types of adapters: bridges and refiners. Bridges
explicitly model the relationships between two distinguished parts of an archi-
tecture, e.g. between domain and task or between task and PSM. Refiners can
be used to express the stepwise adaptation of elements of a specification, e.g.
a task is refined into another more specialized task, or a PSM is refined into
a more specialized PSM [Fensel, 1997b]. Again, separating generic and specific
parts of the reasoning process maximizes reusability.

A very important role within the UPML framework is borne by ontologies.
An ontology provides an explicit specification of a conceptualization, which can
be shared by multiple reasoning components communicating during a Teamwork
process. In UPML, ontologies are used to define the terminology and its proper-
ties used to define tasks, PSMs, and domain-models. UPML does not commit to
a specific language style for defining a signature and its corresponding axioms.
However, two styles of specifying signature and axioms are studied and has been
proposed as suited formalisms: logic with sorts and a frame-based representation
using concepts and attributes.

UPML systems are made by adapting and integrating components in a way
constrained by the abstract architecture. The overall configuration process is
guided by tasks that provide generic descriptions of problem classes. After se-
lecting, combining and refining tasks they are connected with PSMs suitable for
those tasks, and both tasks and PSMS are filled in with domain knowledge for
the given domain.

2.2.6 Recent issues in knowledge modelling and reuse

The work on Problem-Solving Methods started in the eighties, when a num-
ber of researchers recognized common patterns in the reasoning processes of
various knowledge systems and described them at a higher level of abstrac-
tion, decoupling them from the application domain. These conceptual models
of the reasoning process make it easier to understand and maintain knowledge-
based systems, and can be used to improve explanation facilities and reuse.
The knowledge modelling community has carried out a large body of work
on formalizing problem solving methods, on building libraries and on charac-
terizing methods in terms of their assumptions and competencies. Research
in this area is concerned with developing new PSMs, methodologies for PSM
reuse, libraries of reusable PSMs, tools to support PSM development, and lan-
guages for representing PSMs. Recent developments of the knowledge mod-
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elling community are undertaking the possibilities of Internet as a medium
[Benjamins, 1997, Benjamins et al., 1999, Monica Crubezy and Musen, 2001].

A recent approach that is being addressed from both the software engineer-
ing and the knowledge engineering communities is that of software architectures
[Shaw and Garlan, 1996, Garland and Perry, 1995]. The goal of software archi-
tectures is learning from system developing experience in order to provide the
abstract recurring patterns for improving further system development. As such,
software architectures contribution is mainly methodological in providing a way
to specify systems. A software architecture has the following elements: (i) com-
ponents, (ii) connectors, and (iii) a configuration of how the components should
be connected [Garland and Perry, 1995]. Software architectures are designed to
build applications by matching the specification of abstract components with the
specification of components in a library or repository. Work on software archi-
tectures establishes an abstract level to describe the functionality and the struc-
ture of software artifacts, thus they are suited to describe the essence of large
and complex software systems. Such architectures specify classes of application
problems instead of focusing on the small and generic components from which a
system is built up. The work on formalizing software architectures in terms of as-
sumptions over the functionality of its components [Penix and Alexander, 1997,
Penix, 1998, Penix and Alexander, 1999] shows strong similarities to recent
work on PSMS, which define the competence in terms of assumptions over
the domain knowledge [Benjamins et al., 1996c, Fensel and Straatman, 1996,
Fensel and Benjamins, 1998a, Musen, 1998]. PSMs require specific types of do-
main knowledge and introduce specific restrictions on the tasks that can be
solved by them. These requirements and restrictions are assumptions that play
a key role in reusing Problem-Solving Methods, in acquiring domain knowledge,
and in defining the problems that can be tackled by a knowledge-based system.

A complementary line of research is the work on ontologies to characterize
consensual, formal and declarative knowledge models [Gruber, 1993a]. While
Problem-Solving Methods describe the reasoning process of a knowledge-based
system, ontologies provide the means to describe the domain knowledge that is
used by these methods [Musen, 1998]. The availability of reusable methods and
reusable domain knowledge reduces the development process of knowledge-based
systems to a “plug-and-play” process [Walther et al., 1992].

Libraries of Problem-Solving Methods

Today, there exist several repositories or libraries of PSMs at different locations,
with different scope, including the following: diagnosis [Benjamins, 1993], plan-
ning [Benjamins et al., 1996b], assessment [Valente and Lockenhoff, 1993], and
design [Chandrasekaran, 1990].

All these libraries aim at facilitating the knowledge engineering process, yet
they differ in various dimensions such as generality, formality, granularity and
size. The type of a library is determined by its characterization in terms of
these dimensions, and each library type is intended for a different role. For
example, libraries of very generic PSMs (i.e. task neutral) aim to maximize
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reuse, since they do not make any commitment to a particular task. However,
at the same time, very general PSMs will require a considerable refinement and
adaptation effort. This phenomenon is known as the reusability-usability trade-
off [Klinker et al., 1991].

Another issue concerning component libraries is the way component spec-
ifications are organized and retrieved. There are several alternatives for or-
ganizing a library, and each of them has consequences for indexing PSMs
and for their selection. Several researchers propose to organize libraries fol-
lowing a task-method decomposition structure [Chandrasekaran et al., 1992,
Puerta et al., 1992, Steels, 1993, Shadbolt et al., 1993, Terpstra et al., 1993].
According to this organization structure, a task can be realized by several PSMs,
each consisting of primitive or composite subtask that can again be realized by
alternative methods. Guidelines for library design according to this principle
have been discussed [Orsvarn, 1996], pointing out that PSMs are indexed ac-
cording to two factors: the competence of the PSMs, and the assumptions under
which they can be correctly applied. Selection of PSMs from such libraries should
consider first the competence of the PSMs (selecting those whose competencies
match the task at hand), and then the assumptions of PSMs (selecting those
whose assumptions are satisfied).

Brokering of Problem Solving Methods

Problem-Solving Methods for knowledge systems establish the behavior of such
systems by defining the roles in which domain knowledge is used and the or-
dering of inferences. Developers can compose PSMs that accomplish complex
application tasks from primitive, reusable methods. The key steps in this devel-
opment approach are task analysis, method selection from a library, and method
configuration [Eriksson et al., 1995]. From the knowledge modelling community,
this approach is described as a configuration process with the following activities:
PSM selection according to their competence to solve a given task, verification of
domain requirements, combining PSMs together, and mapping them to domain
knowledge. This approach to software development is intended to support the
engineer in the knowledge acquisition phase [Van de Velde, 1993] and to facili-
tate reuse [Fensel, 1997a]. The question of reuse has received a lot of attention
last years from the knowledge modelling community [Benjamins et al., 1996a,
Motta, 1999, Fensel and Motta, 2001]. Nowadays, the World-Wide Web is
changing the nature of software development to a distributive plug-and-play
process, which requires a new kind of managing software: intelligent software
brokers. For selecting PSMs from a library, a broker needs to reason about
characteristics of PSMs like their competence and their assumptions. A recent
project, IBROW, [Benjamins et al., 1998, Benjamins et al., 1999], aims to pro-
vide an intelligent brokering service on the Web. One problem that appears
while brokering components is the need to annotate components with semantic
information (meta-data). From the knowledge-modelling approach, meta-data is
provided by the three classes of components: PSMs, tasks and domain-models.

The IBROW approach to brokering libraries of problem-solving compo-
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nents is that of configuring a knowledge-based system by selecting, adapt-
ing and integrating components retrieved from distributed libraries available
on the Web [Monica Crubezy and Musen, 2001]. Essentially, the broker is
a mediator between customers and providers of Problem-Solving Methods
[Benjamins, 1997, Fensel and Benjamins, 1998b]. A customer is someone that
has a complex problem but can provide domain knowledge that describes it
and that supports problem-solving. The providers are developers of Problem-
Solving Methods to be stored in libraries accessible through the Internet. PSMs
are annotated with meta-data to support their selection process and invocation.
The core of an intelligent broker for Problem-Solving Methods consists of an
ontologist that supports the selection process of Problem-Solving Methods for a
given application. Basically, such a broker has to provide support in building or
reusing a domain ontology and in relating this ontology to an ontology that de-
scribes generic classes of application problems. This problem-type ontology has
to be linked with PSM-specific ontologies that allow the selection of a method.

Ontology-based reuse

The knowledge modelling community has focused on ontologies
[John H. Gennari and Musen, 1998, Studer et al., 1996] as a way to share
consensual conceptualizations that are required to facilitate reuse. Ontologies
are defined as “shared agreements about shared conceptualizations”. Shared
conceptualizations include conceptual frameworks for modelling domain knowl-
edge; content-specific protocols for communicating among interoperating agents;
and agreements about the representation of particular domain theories. In the
knowledge sharing context, ontologies are specified in the form of definitions of
representational vocabulary [Guarino, 1997b].

Although the definition of what ontologies are is still a debated issue
[Guarino, 1997b], this term has achieve a considerably attention by the AI com-
munity, and in particular, it has been declared as a key issue in maximizing
reuse [Fensel et al., 1997, Fensel, 1997a, Fensel and Benjamins, 1998b]. From
that viewpoint, the main goal of an ontology is to facilitate knowledge shar-
ing [Chandrasekaran et al., 1998]. In addition to enable reasoning about com-
ponents in order to compare, retrieve, reuse or adapt them, ontologies play a
central role in connecting software components by allowing the comparison of
components using different vocabularies. The comparison of components de-
scribed with different ontologies or different concepts of the same ontology is
allowed by the annexion of ontology mappings.

Ontology mappings are declarative specifications of matching relations be-
tween ontologies, which consist of explicit specifications of the transformations
required to match elements of one ontology to elements in another ontology.
An example of a mapping is a renaming, but mapping can include any kind
of syntactic or semantic transformation: numerical mapping, lexical mapping,
regular expression mapping and others. In our framework the core components
(tasks, capabilities and domain-models) are described with explicit, independent
ontologies [Fensel et al., 1997]. In the context of modern componential frame-



24 Chapter 2. Background and related work

works for knowledge systems development, ontology mappings are required to
match problem requirements to tasks, Problem-Solving Methods to tasks, and
domain-models to Problem-Solving Methods.

The importance of ontologies has even originated what has been called on-
tology engineering [Guarino, 1997b]. A remarkable outcome of this approach
is that of reusing also the ontology-based connectors or mappings; not surpris-
ingly, reuse of mappings is also improved by specifying a mapping ontology
[Park et al., 1998].

2.2.7 Conclusions

Although there are some differences between the different frameworks presented
above, a first conclusion of the review on Knowledge Modelling is that there
exist much consensus about the use of three classes of components to model
knowledge-based systems from a knowledge level approach [Fensel et al., 1999,
McDermott, 1988, Chandrasekaran, 1986, Steels, 1990, Schreiber et al., 1994a].
This paradigm proposes three types of components: there are tasks describing
problem types, Problem-Solving Methods (PSM) describing the reasoning steps
required to solve a class of problems in a domain-independent way, and domain-
models describing the properties of domain knowledge. We use the term Task-
Method-Domain (TMD) frameworks to refer to this architectural pattern found
in modern Knowledge Modelling Frameworks.

We are interested in TMD frameworks as a key to maximize reuse
[Benjamins et al., 1996a, Motta, 1999, Fensel and Motta, 2001] and specifi-
cally, we are mainly interested in its application to the dynamic, on-demand
configuration of Cooperative Multi-Agent Systems. Modern approaches from
the knowledge engineering community are explicitly addressing reuse as an
activity of selecting, configuring and assembling knowledge components from
distributed libraries [Gennari and Tu, 1994, Eriksson et al., 1995, Fensel, 1997a,
Fensel and Benjamins, 1998b, Benjamins et al., 1999]. TMD approaches envis-
age an scenario in which developers can compose Problem-Solving Methods that
accomplish complex application tasks from primitive, reusable methods. This
way of developing a knowledge-system is described as a configuration process
(§2.2.6) and is intended to support the engineer in the knowledge acquisition
phase [Van de Velde, 1993] and to facilitate reuse [Fensel, 1997a]. However, con-
figuring such a system to build a completely new application is far away of becom-
ing an automated process and is rather described as a semi-automated process
[Gaspari et al., 1998, Gaspari et al., 1999, Benjamins et al., 1999, Penix, 1998].
Semi-automatic configuration can be used to support and assist knowledge
engineers in the configuration and adaptation of knowledge-based systems
[Eriksson et al., 1995, Tu et al., 1995, Studer et al., 1996, Fensel, 1997a,
Fink, 1998, Penix and Alexander, 1997, Monica Crubezy and Musen, 2001],
Such an approach to configuring a KBS has not been used to configure teams
of problem solving-agents. The reason is probably the consideration of Team
Formation as a runtime activity, whilst configuration in Knowledge Modelling
Framework is considered as a knowledge engineering activity taking place on
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design time.
This thesis shows how a TMD modelling framework can be used to guide

the Team Formation process on runtime by fully automating the configuration
of the team in terms of the competence required by a team to solve a prob-
lem. An automated configuration process is required to allow agent teams to be
designed on-demand, according to the requirements of the specific problem at
hand. Moreover, in addition to automating the configuration process, our thesis
imposes that the problem specification should be done by the end-user, and not
by a knowledge or software engineer.

Another keystone of TMD frameworks is the use of ontologies as ex-
plicit, declarative specifications of the conceptualizations used to character-
ize components. The use of ontologies to annotate components maximizes
its reuse because enables the semantic comparison of components [Fink, 1998,
Gaspari et al., 1999, Fensel and Benjamins, 1998b, Gaspari et al., 1998]. Con-
sequently, we are including explicit ontologies to describe agent capabilities in a
way that facilitates their reuse and configuration in the context of cooperative
Multi Agent Systems.

2.3 Software reuse

The reuse of complete software developments and the processes used to create
them have the potential to significantly ease the process of software engineering
by providing a source of verified software artifacts [Wegner, 1984]. It is sug-
gested than reuse of software artifacts can be achieved through the utilization
of software libraries [Atkinson, 1997].

2.3.1 Software libraries

Essentially, a software library is a repository of information which can be used
to construct software systems. The main goal of software libraries reuse is to
enable previous development experiences to guide subsequent software develop-
ment. Reuse have been partitioned in compositional and generative reuse. In
particular, we are interested in compositional-approaches to software develop-
ment [Biggerstaff and Perlis, 1989], which are characterized by the idea of se-
lecting and composing existing components in order to achieve a desired system
behavior.

An important aspect of compositional reuse is about the relationship be-
tween components in a software library. The are two major relationships: one
relationship is the one between the client and supplier [Atkinson, 1997], where
the definition of a component by a client refers to the existence of a component in
the library as provided by its supplier; and the second relationship is that of in-
heritance, which allows the definition of one component to include the definitions
of another. In general, there may be many relationships between two software
components that can be used for retrieval from a software library: one com-
ponent may be a subtype [Liskov and Wing, 1993] of another, be behaviorally
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compatible [Smith, 1994] with another, or be substitutable [Duke et al., 1991]
with another.

According to [Mili et al., 1995], there is an open problem of software compo-
sition called the The Bottom Up Design Problem, defined as:

given a set of requirements, a set of components within a software
library whose combined behavior satisfies the requirements.

The fundamental difficulty when considering this problem is how to decompose
the requirements in such a way as to yield component specifications. A reverse
approach is to search the space of all possible component compositions until
one satisfying the requirements is found [Hall, 1993, Zhang, 2000]. Thus, com-
position of components can be regarded as composition of their specifications
[Butler and Duke, 1998].

Although the use of a software library by a software engineer requires to know
the processes of how to retrieve, insert and adapt components of the library,
the issue of how to retrieve components is probably the central one, since the
purpose of software libraries is to provide access to reusable verified components
[Atkinson, 1997]. Component retrieval is defined as the process of locating the
components that can be used in the construction of a particular application.
From that view, retrieval is a process of obtaining a component in a library,
S ∈ L satisfying a given query Q. A query Q imposes some requirements that
should be compared with the specification of existing components L to check
wether a particular retrieval criteria holds. There have been three classes of
proposed solutions to this problem: faceted (classification), signature-matching
(structural) and behavioral (functional) retrieval. These retrieval techniques can
use many different indices as representations of components:

• External Indices seek to find relevant components based upon con-
trolled vocabularies external to the component; including facets
[Prieto-Daz, 1987], frames [Rosario and Ibrahim, 1994], lexical affinity
[Maarek et al., 1991] and feature-based techniques [Börstler, 1995]

• Static Indices include type signature matching [Zaremski and Wing, 1995]
and specification matching techniques [Rollins and Wing, 1991,
Fischer et al., 1995, Zaremski and Wing, 1997], which seek to find
relevant components based upon elements of the structure of components.

• Dynamic Indices seek to find relevant components by comparing input
and output spaces of components, which are used by behavioral techniques
[Hall, 1993, Mili et al., 1997]

2.3.2 Component-Based Software Development

Following the idea of reuse for component-based systems, Component-based soft-
ware development (CBSD) focuses on building large software systems by inte-
grating previously-existing software components. By enhancing the flexibility
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and maintainability of systems, the ultimate goal is to reduce software develop-
ment costs, assemble systems rapidly, and reduce the maintenance burden associ-
ated with the support and upgrade of large systems [Brown and Wallnau, 1996].

CBSD shifts the development emphasis from programming software to com-
posing software systems [Clements, 1996], thus the notion of building a system
by writing code is replaced by the notion of assembling and integrating existing
software components. From the CBSD approach, constructing an application
involves the use of prefabricated pieces, perhaps developed at different times,
by different people and possibly with different purposes; therefore integrability
of heterogeneous components is a key consideration when deciding whether to
acquire, reuse, or build new components. In other words, software components
can be deployed independently and are subject to composition by third parties
[Szyperski, 1996].

Component capabilities and usages are specified by interfaces. From a com-
positional approach, an interface can be defined as a service abstraction, which
defines the operations that the service supports independently from any particu-
lar implementation [Iribarne et al., 2002]. Interfaces can be defined using many
different notations and representation languages. Usually component interfaces
are described in three levels: signature level, semantic level and protocol level.
Current approaches at the signature level use Interface Description Languages
such as the ones defined by CORBA, COM and CCM. At the protocol level
there are many interaction protocol description languages like those based in
finite-state-machines [Yellin and Strom, 1997], Petri-Nets [Bastide et al., 1999],
temporal logic [Han, 1999] or π-calculus [Canal et al., 2001]. At the semantic
level the operational semantics of components are described using formal nota-
tions ranging from the Larch [Garland et al., 1993] family of languages based on
pre-conditions and post-conditions to algebraic equations [Goguen et al., 1996]
or refinement calculus [Mikhajlova, 1999].

2.3.3 Semantic-based reuse: ontologies

The informality of feature-based classification schemes for reuse is an impediment
to formally verify the reusability of a software component. However, the use of
formal specifications to verify reusability has associated a high reasoning cost,
which jeopardizes the scalability of reusable software libraries. A way to increase
the efficiency of formal specifications is to shift the overhead of formal reasoning
from the retrieval to the classification phase of reuse [Penix et al., 1995]. This
is done by using a classification scheme to reduce the number of specification
matching proofs (usually some kind of implication) that are required to verify
reusability. Components can be classified using semantic features that are de-
rived from their formal specification. Retrieval can then be accomplished based
on the stored feature sets, which allow an efficient verification of reusability
relations [Penix and Alexander, 1999].

Following the philosophy underlying the external indices approach to soft-
ware reuse and the semantic enrichment of component descriptions, it seems
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natural to introduce ontologies as shared vocabularies to describe reusable com-
ponents.

We agree with [Guarino, 1997b] about the potential role of explicit ontologies
to support reuse, since ontologies can be used to enable semantic matching be-
tween components [Guarino, 1997a, Paolucci et al., 2002]. Therefore, semantic
matching between an application specification and the components in a library
can be used to verify a reusability relation. A key concept of ontology based
reuse is that of mapping. Ontology mappings are declarative specifications of
matching relations, which consist of explicit specifications of the transformations
required to match elements of one ontology to elements in the other ontology.
An example of a mapping is a renaming, but a mapping can include any kind
of syntactic or semantic transformation, including numerical mappings, lexical
mappings, regular expression mappings and others classes of mappings. An in-
teresting property of ontology mappings are that mapping patterns themselves
can become reusable components [Park et al., 1998].

2.3.4 Conclusions

An open issue of software reuse that is addressed within this thesis is the kind
of language to be used for specifying components. Recent approaches remark
the need for semantic information to describe software components, and there is
an increasing consensus about the class of properties to describe a component;
however, there are many differences among the object languages proposed to
specify these properties, from simple keywords, to First-Order Logic. Since
time is an important factor to take into account when considering the on-the-fly
configuration of MAS, our goal is to achieve a trade-off between the expressive
power of the object language and the computational efficiency of the inference
mechanism (see §4.3.1).

2.4 Multi Agent Systems

Distributed Artificial Intelligence has historically been divided in two main areas
[Bond and Gasser, 1988a]: Distributed Problem Solving (DPS) and Multi-Agent
Systems (MAS). In the DPS approach, a problem is divided and distributed
among a number of nodes which cooperate in solving the different parts of the
problem. In the DPS model, the overall problem solving strategy is an in-
tegral part of the system. In contrast, MAS research is concerned with the
behavior of a collection of possibly pre-existing autonomous agents aiming at
solving a given problem [Jennings et al., 1998]. From that view, a MAS is a
loosely coupled network of problem-solving entities that work together to find
answers to problems that are beyond the individual capabilities or knowledge of
the isolated entities [Durfee and Lesser, 1989]. More recently the term “Multi-
Agent System” has come to a more general meaning, and it is now used to refer
to all types of systems composed of multiple (semi-) autonomous components
[Jennings et al., 1998]. The MAS approach advocates decomposing problems in
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terms of autonomous agents that can engage in flexible, high level interactions,
and this way of decomposing a problem aids the process of engineering complex
systems [Jennings, 2000]. The characteristics of MAS are:

• each agent has incomplete information or capabilities for solving the prob-
lem, thus each agent has a limited viewpoint;

• there is no global system control;

• data is decentralized, and

• computation is asynchronous.

Some reasons for the increasing interest in MAS research include: the ability
to provide robustness and efficiency; the ability to allow inter-operation of exist-
ing legacy systems; and the ability to solve problems in which data, expertise,
or control is distributed.

There are two main perspectives when approaching Multi Agent Systems: a
macro or social level, focused on external, observable behavior, and a micro, or
agent-oriented level, focused on the internal architecture of individual agents. We
are more interested on the macro phenomena, rather than the micro phenomena;
therefore, we are going to focus on the coordination and cooperation mechanisms
of open agent societies, without paying much attention to neither agent theories
nor agent architectures.

2.4.1 Cooperative Multi-Agent Systems

Cooperation is often presented as one of the key concepts which differentiates
Multi-Agent Systems from other related disciplines such as distributed comput-
ing, object oriented systems, and expert systems [Doran et al., 1997]. However,
the idea of cooperation in agent-based systems is yet unclear and sometimes
inconsistent. There are many open questions like for example:

• What is cooperation? How does it relate to concepts like communication,
coordination and negotiation?

• What sorts of cooperation are likely to be found in multi-agent systems?
Which factors will affect cooperation strategies, and how?

• Is it meaningful to talk about reactive cooperation? Is cooperation a men-
talistic, a behavioral notion or a mixture of the two?

• What are the key mechanisms and structures giving rise to cooperation?

The range of answers to these questions are many and varied, probably due
to the different approaches adopted when addressing the cooperation issue; thus
a typology of cooperation approaches seems necessary to help understand coop-
eration without offering a single definition of cooperation (Figure 2.1).
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Multi –Agent Systems

Independent Cooperative

Discrete Emergent
Cooperation

Communicative Non communicative

Deliberative Negotiating

Figure 2.1: Cooperation typology

A Multi-Agent System is independent [Franklin and Graesser, 1996] if each
agent pursues its own agenda independently of the others. A Multi-Agent Sys-
tem is discrete if it is independent and the agendas of the agents bear no relation
to one another, thus there is no cooperation involved. However, cooperation is
possible though agents have no intention of doing so, what can occur when co-
operation is an emergent behavior resulting from the interaction of individuals
(stigmergy is a good example [Beckers et al., 1994] of such a class of cooper-
ation). On the other hand, there are systems in which the agendas (plans)
of the agents include some way of cooperating with other agents. In non-
communicative cooperation agents can coordinate by observing the behavior
of the others [Franklin, ]. In communicative systems agents can achieve coordi-
nation through the intentional sending and receiving of signals, which usually
follow a speech acts style of communication. Deliberative agents jointly plan
their actions so as to cooperate with each other. Negotiating agents are also
deliberative, but the agents are basically competing, thus there is basically a
different degree of self-interestingness.

There is an alternative viewpoint on cooperation that regards it as a property
of the actions of the agents [Doran and Palmer, 1995]: cooperation occurs when
agents have a (possibly implicit) goal in common (which no agent could achieve
in isolation) and their actions tend to achieve that; or agents perform actions
which enable or achieve not only their own goals but also the goals of other
agents. This approach focuses on actions and goals, irrespective of how they
arise. Therefore, from this view agents do not require to deliberate and goals
may be implicit.

In contrast to the former approaches to cooperation that do not require
intention, there is a more restrictive view on cooperation as a motivated activity.
From that viewpoint, cooperation is defined as acting with others for a common
purpose and a common benefit where the purpose should be motivated by an
intention to act together [Norman, 1994]. That intention is usually referred as
a commitment to joint activity [Bratman, 1992, Jennings, 1993]. This class of
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cooperation relying on motivational attitudes is sometimes called collaboration
[Wilsker, 1996, Grosz and Kraus, 1996] to differentiate it from other classes of
cooperation.

Collaborative agents

Most early work in DAI dealt with a group of agents pursuing common goals
[Lesser et al., 1989, Lesser, 1991, Durfee, 1988, Cammarata et al., 1983]. Agent
interactions are guided by cooperation strategies meant to improve their col-
lective performance, therefore early work on distributed planning took the ap-
proach of complete planning before action. These systems have to recognize,
avoid or resolve dependencies or interactions between subproblems. For instance,
[Georgeff, 1983] proposes a synchronizer agent to recognize and resolve such in-
teractions.

Agents embedded in dynamic environments that are continuously sensing
their environment and performing actions to change it are called situated agents
[Rao et al., 1992]. These agents are resource-bounded [Bratman, 1988], they
must reason and act under possibly stringent constrains on time and informa-
tion. According to [Bratman, 1990], the intentions of the agent play a crucial
role in such cases. Intentions can be seen as constrains on the deliberating and
planning processes, hence reducing the reasoning effort. Systems based on men-
tal attitudes like intentions are commonly called Belief-Desire-Intention (BDI)
architectures [Bratman, 1988, Rao and Georgeff, 1991, Rao and Georgeff, 1995].

We review below three of the most influential contributions to the field,
namely: Joint Intentions, SharedPlans and Planned Team Activity.

The Joint Intentions model [Cohen and Levesque, 1990, Levesque, 1990,
Cohen and Levesque, 1991] represents one of the first attempts to establish a
formal theory of multi-agent collaboration. This theory is a formal model of
what motivates agent communication about teamwork. The basic premise rests
in the idea of intention as the commitments to act in a certain mental state
[Levesque, 1990]. A commitment represents a goal that persists over time. From
this view, a team is composed of agents that jointly commit to the achievement
of a team goal, called a joint persistent goal (JPG) [Cohen and Levesque, 1990].
An important conclusion of this theory is that by virtue of its joint commit-
ments, an agent in a team has the responsibility to communicate private be-
liefs if it believes that the JPG is either achieved, unachievable or irrelevant
[Cohen and Levesque, 1991]. Hence, the need of some form of communication
is implicit in this model. Team goals are formed by an individual agent nomi-
nating a task as a proposed team goal, and communicating that intention until
consensus is formed.

The SharedPlans [Grosz and Kraus, 1996, Grosz et al., 1999] model of col-
laboration emphasizes the need for a common high-level team model that al-
lows agents to understand all requirements for plans to achieve a team goal
[Grosz and Sidner, 1990], even if the individuals do not know the specific details
of the collaborative plan or how to met the requirements The SharedPlans the-
ory of collaboration is based on a rich view of plans. Rather than associating a
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plan for some goal with a group of actions that can achieve it, a plan is instead a
structure describing relationships between intentions (commitments) and infor-
mation needs. Having a SharedPlan implies a joint mental state to do a group
action: (1) mutual beliefs of a (partial) recipe; (2) individual intentions that
the joint action will be carried over; (3) individual intentions that collaborators
succeed in performing the constituent subactions; and (4) individual or collab-
orative plans for subplans. As a way of describing motivational attitudes, four
different intention operators are introduced [Grosz and Kraus, 1993]: intention-
to, intention-that, potential-intention to and potential intention-that. The first
two are intentions that can be adopted by an agent, while potential intentions
represent and agent’s mental state when it is considering adopting and inten-
tion, but it is yet considering another possible courses of action. An intention-to
perform some action represents an individual commitment on the part of an
agent to perform that action, while an intention-that instead represents a com-
mitment to certain states or conditions holding. Intentions-to serve a number of
functions: (a) they constrain deliberations (an agent will seek ways to accom-
plish an intended action); (b) they represent commitments to action (an agent
will not normally adopt new intentions that conflict with existing ones); and (c)
agents monitor the success or failure of attempts to achieve an intention (failures
can engender replanning). In contrast to an intention-to, an intention-that does
not directly connote an action; rather, it implies that an agent will behave in a
manner consistent with a collaborative effort, and can engender helpful behav-
ior and also spawn monitoring actions. Communication requirements may arise
from intentions-that, as opposed from being mandatory in the Joint Intentions
model. If an agent has an intention-that about some group action to succeed
then it will adopt a potential intention to perform any action it believes will help
the group action to succeed. Therefore if an agent believes communicating some
event or belief will aid in successfully prosecuting the group action, then it will
be communicated.

The two former models have implicitly assumed that when agents estab-
lish either a Joint Commitment or a SharedPlan, they do so immediately and
completely [Wilsker, 1996]; without any allowance for an intermediate mental
attitude, like an expression of interest. Unlike the two previous theories, in the
Planned Team Activity approach [Kinny et al., 1992, Sonenberg et al., 1994] is
that plans to achieve some goal are supplied in advance, not generated by the
agents, and that agents have complete knowledge of the full plans prior to joining
a team. Therefore, agent behavior is bound and predictable, making this model
advantageous in dynamic and real-time environments. On the other hand, team-
work is more brittle, since plans may fail within unpredictable environments. In
addition, there is a greater responsibility on the agent designed, since the suc-
cess of teamwork is tightly dependent on how well the plans are specified. The
semantics of team’s beliefs, goals and intentions are different from those in Joint
Intentions. Specifically, the joint intentions of a team are expressed in terms
of the joint intentions of its members, which reduce to single agent attitudes
rather than by modal operators expressing shared attitudes. A team has a joint
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intention towards a plan if: (1) every member has the joint intention towards
the plan; (2) every member believes that the joint intention is held by the team;
and (3) every member believes that all the members executing their respective
individual plans results in the team executing the plan. This definition is simi-
lar to that of SharedPlans but without the intention that collaborators succeed.
The process of Team Formation begins with an agent wishing to achieve some
goal, but realizing that it is unable to do so by himself. The agent communicates
with other potential participants by announcing the joint goal, joint plan and
the individual roles to be assumed by each participant. An agent is capable of
adopting a joint goal, a joint plan and a role within a plan if and only if: (a)
has the necessary skills; (b) does not already believe the formula that needs to
be adopted as a joint goal; (c) the preconditions of the plan are already believed
by the team; (d) the joint goal is compatible with the current goals of the agent;
and (e) the joint plan and role plan are compatible with the current intentions
of the team member. Two strategies for Team Formation are considered by this
proposal [Kinny et al., 1992]: (1) commit-and-cancel, and (2) agree-and-execute.
In the commit-and-cancel strategy the team leader sends a request to each par-
ticipant to “commit” to the joint goal, joint plan and role. If all the participants
reply with a “committed” message within the permitted time the team has been
formed; else the team leader sends a “cancel” message to them each agent com-
mitted and any team activity is abandoned. In the agree-and-execute strategy
the team leader sends an “agree” to all participants, and if all reply affirma-
tively, sends an explicit request to all of them to execute the plan. Only at that
point are the joint goal, joint plan and roles adopted by participants. Unlike the
former strategy, no explicit message needs to be sent when an agent does not
agree to participate, as the other agents have made no commitment yet. If a
member is unable to achieve its goals within the team it has the responsibility
to make other team members aware of its failure.

Another direction in multi-agent planning research is oriented towards mod-
elling teamwork explicitly. This is particularly helpful in dynamic environments
where team members may fail or where they may encounter new opportunities.
For instance [Singh, 1994] proposes a family of logics for representing intentions,
beliefs, knowledge, know-how, and communication in a branching-time frame-
work. Whereas other theories are based exclusively on mental concepts, this
approach combines mental and social concepts and proposes a formal theory of
intentions for teams that considers the structure of teams explicitly, in terms
of their members’ commitments and coordination requirements [Singh, 1998].
Furthermore, this approach distinguishes between exodeictic (outward) and en-
dodeictic (inward) intentions, which considers team structure. A team structure
is defined by the constraints on the interactions —at the commitment and coor-
dination levels— of its members.

Other works on collaboration based in multi-agent planning can be found
for example in the Social Plans proposal [Rao et al., 1992] and in the Shared
Planning and Activity Representation (SPAR) effort [Tate, 1998].
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Coordination frameworks

Partial Global Planning (PGP) is a flexible approach to coordination that
does not assume any particular distribution of sub-problems, expertise or
other resources, but instead allows nodes to coordinate themselves dynamically
[Durfee, 1988]. Cooperating agents adjust its own local planning so that the
common planning goals are met, and communicate its plan to others to improve
predictability and network coherence. The PGP approach to distributed coordi-
nation improved the coordination of agents in a network by scheduling the timely
generation of partial results, avoiding redundant activities, shifting tasks to idle
nodes, and indicating compatibility between goals. Identifying and generalizing
the types of coordination relationships that were used by the basic PGP al-
gorithm has lead to the Generalized PGP (GPGP) [Decker and Lesser, 1992].
Generalized Partial Global Planning(GPGP) is a coordination algorithm de-
scribed in a modular, domain independent way, which can be tuned for par-
ticular intra-task environment behaviors(primarily the creation and refinement
of local scheduling constraints). GPGP extends (as well as generalizes) the PGP
algorithm along two lines: handling real-time deadlines and improving the dis-
tributed search among schedulers. GPGP can be seen as an extendable family
of coordination mechanisms that form a basic set of mechanisms for teams of
cooperative autonomous agents [Decker and Lesser, 1995]. This approach pro-
vides a set of modular coordination mechanisms; a general specification of these
mechanisms involving the detection and response to certain abstract coordina-
tion relationships (not tied to a particular domain); and a more clear separation
of the coordination mechanisms from an agent’s local scheduler that allows each
to better do the job for which it was designed.

TAEMS [Decker, 1996] was designed as a modelling language for describing
the task structures of agents, supporting the GPGP approach to coordinated
agent behavior. The acronym stands for Task Analysis, Environmental Mod-
elling and Simulation. A TAEMS task structure is essentially an annotated
task decomposition tree (actually a graph). The highest level nodes in the tree,
called task groups, represent goals that an agent may try to achieve. Below a
task group there will be a sequence of tasks and methods which describe how
that task group may be performed. Tasks represent sub-goals, which can be
further decomposed in the same manner. Methods, on the other hand, are ter-
minal, and represent the primitive actions an agent can perform. Annotations
on a task describe how its subtasks may be combined to satisfy it. Another
form of annotation, called an interrelationship, describes how the execution of a
method, or achievement of a goal, will affect other nodes in the structure. The
TAEMS framework is designed to handle issues of real-time (e.g. scheduling to
deadlines) and meta-control (e.g. to avoid the need of detailed planning at all
possible node interactions). Much of what is represented in TAEMS structures
is also quantitatively described, including expected execution characteristics, re-
source usage and specific ways to derive the quality of a task from the qualities of
the combined subtasks. These quantitative aspects allow the agent to compare
and contrast possible plans, predict their effects, and reason about the need for



2.4. Multi Agent Systems 35

coordination with other agents.
TEAMCORE [Tambe, 1997, Pynadath et al., 1999, Tambe et al., 2000] is an

agent architecture that integrates many of the basic principles of the joint in-
tentions theory and the Shared Plans approach. This is a perspective based on
an explicit, domain independent model of teamwork that has include learning
[Tambe et al., 1999] as the most remarkable issue.

The Cooperative Problem-Solving process

A general framework for the Cooperative Problem-Solving process has been de-
scribed in [Wooldridge and Jennings, 1999], with four stages: recognition (an
agent identifies the potential for cooperation), Team Formation, plan formation
(collective attempts to construct an agreed plan) and execution. The authors
adopts an internal (endodeictic) perspective, the approach is to characterize the
mental states of the agents that leads them to solicit and take part in coopera-
tive action. The model is formalized by expressing it as a theory in a quantified
multi-modal logic . Starts from the following desiderata: agents are autonomous,
cooperation can fail, communication is essential, communicative acts are charac-
terized by their effects, agents initiate social processes, are mutually supportive
and are reactive.

The view on Multi-Agent Systems as decoupled networks of autonomous
entities is usually associated to a distributed model of expertise, regarded as a
collection of specialized agents with complementary skills. Thus team selection
is defined as the process of selecting a group of agents that have complimentary
skills to achieve a given goal [Tidhar et al., 1996].

2.4.2 Team Formation

Team Formation is defined as the process of selecting a group of agents
that have complimentary skills to achieve a given goal [Tidhar et al., 1996].
Most approaches to team selection view the process of achieving team
goals as means-end analysis [Bratman et al., 1991, Rao, 1994] with two steps:
first, selecting a group of agents that will attempt to achieve a goal
[Levesque, 1990, Cohen and Levesque, 1991, Wooldridge and Jennings, 1994,
Rao and Georgeff, 1995]; and second, selecting a combination of actions that
agents must perform to achieve the goal [Grosz and Kraus, 1996, Tambe, 1997,
Wooldridge and Jennings, 1999]. This combination of actions is typically de-
scribed as a sequence of actions or a plan, like in in the Social Plans ap-
proach [Rao et al., 1992], the Planned Team Activity model [Kinny et al., 1992,
Sonenberg et al., 1994], and the SPAR proposal (Shared Planning and Activity
Representation) [Tate, 1998].

There are several approaches and variations over this basic schema.
One of the more extended approach is to use plans as “recipes”
[Georgeff and Lansky, 1987, Bratman et al., 1991, Sonenberg et al., 1994,
Tidhar et al., 1996]. Since plans are provided by the user at compile time
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the process of planning in the classical sense is unnecessary and can lead to
significantly better performance.

Centralized Task allocation

One of the first methods for selecting agents for cooperative action was the
contract-net protocol [Smith, 1940]. Given a task to perform, an agent deter-
mines whether the task can be decomposed into subtasks and announce these
tasks to other agents by sending a “call for proposals”. Bidders can reply with
a bid to perform a task, indicating how well (price, quality, time, etc.) can
they perform it and, finally, the contractor collects the bids and awards the
task to the best bidder. This protocol enables dynamic task allocation, allows
agents to bid for multiple tasks at a time, and provides natural load balancing
[Jennings et al., 1998]. This protocol has however some limitations, like the ab-
sence of conflict detection and resolution, the impossibility for agents to refuse
bids, or the absence of pre-emption in task execution [Jennings et al., 1998].
Some extensions of the protocol have been proposed to rectify some of its short-
comings [Sandholm, 1993]. The contract net protocol has been so extensively
used, modified and extended by researchers in the field of multi-agent coor-
dination [Sandholm, 1993, Dignum et al., 2001], that it has been included in
the standardization effort carried out by the Foundation for Intelligent Physical
Agents (FIPA) [FIPA, 2002]. However, the suitability of the Contract Net pro-
tocol for open MAS is under analysis, as it seems to be very dependent on the
value of the deadline used when waiting for bids, and in the number of agents
[Juhasz and Paul, 2002]. Such unguided team selection involves an exponential
number of possible team combinations, and a blow-out in the number of inter-
actions required to select the members of a team. Some attempts to overcome
these problems that still rely on some kind of global plan employ problem re-
quirements to guide the team selection and reduce the number of possible teams
[Tidhar et al., 1996].

Distributed Task Allocation

Anytime algorithms with low ratio bounds have been proposed based
on distributed coalition formation algorithms [Shehory et al., 1997,
Shehory and Kraus, 1998]. A coalition is defined as “a group of agents
who have decided to cooperate in order to achieve a common goal”. Given a
set of tasks and agents, these algorithms search a combination of coalitions
(overlapping or not) to solve each task, taking into account the agents limited
resources.

Distributed task allocation methods are appropriate for DPS and cooper-
ative MAS [Sycara et al., 1996], since agents cooperate to increase the overall
outcome of the system. Non super-additive environments (in a super-additive
environment any combination of two groups of agents into a new group is benefi-
cial) consider also task dependencies (task precedence and competing resources).
Other examples of distributed planning propose methods for coordinating plans
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at abstract levels [Clement and Durfee, 1999] by using information about how
abstract plans can be refined in order to identify and avoid potential conflicts.

In the Team Formation by dialog approach [Dignum et al., 2001] autonomous
agents are able to discuss the Team Formation, using structured dialogues, with
an emphasis on persuasion. Follows the four stages model of the Cooperative
Problem-Solving process drawn in [Wooldridge and Jennings, 1999]. This ap-
proach is based on the Dialogue theory [Walton and Krabbe, 1995], that pro-
poses to structure dialogues by rules, so dialogues are not completely free neither
completely fixed. The initial situation of negotiation is a conflict of interests,
together with a need for cooperation, where the main goal is to make a deal.
This theory adopts an internal view on agents based on a BDI model and an
architecture containing reasoning, planning, communication and social reason-
ing modules. The initiator agent makes a partial plan for the achievement of
a goal and looks for potential teams based on abilities (static), opportunities
(situational), and willingness.

2.4.3 Interoperation in open environments

One of the current factors fostering MAS development is the increasing popu-
larity of the Internet, which provides the basis for an open environment where
agents interact with each other to reach their individual or shared goals. To
successfully communicate in such an environment, agents need to overcome two
fundamental problems: first, they must be able to find each other (since agents
might appear or disappear at any time), and once they have done that, they
must be able to interact [Jennings et al., 1998].

Interaction is one of the most important features of an agent
[Nwana and Woolridge, 1996]. It is in the nature of agents to interact to share
information, knowledge and goals to achieve. Three key elements have been
outlined for a successful interaction:

• A common agent communication language and protocol

• A common format for the content of communication

• A shared ontology

Furthermore, in open environment there is a need of mechanisms for ad-
vertising, finding, using, combining, managing and updating agent services and
information [Decker et al., 1997b]. Next follow a very brief section on agent com-
munication topics and a review of middle agents as one way of implementing the
aforementioned requirements.

Agent Communication

Agents must share a communication language to be able to interoper-
ate. There are two main approaches to agent communication languages
[Genesereth and Ketchpel, 1997]: in the procedural approach communication
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is based on executable content, which can be accomplished by using pro-
gramming and scripting languages, e.g. Tcl [Ousterhout, 1990]. Since pro-
cedural languages are difficult to control, coordinate and merge, declarative
languages are preferred for the design of agent communication languages,
specially in open environments. Most declarative communication languages
[FIPA, 2003, Finin et al., 1994, Labrou and Finin, 1997] are based on the speech
acts theory [Searle, 1969]. For this approach, communication is modelled
through illocutionary acts called performatives (e.g. request, inform, agree),
which are conceptualized as actions intending to produce some effect on the re-
ceiver, like performing some task (request) or giving some information (query).
Although such performatives can characterize message types, efficient lan-
guages for expressing message content so as to allow a meaningful communi-
cation, have not been effectively demonstrated [Jennings et al., 1998]; thus the
problem of representing and sharing meaning through ontologies is still open
[Gruber, 1993b].

Middle agents

A common approach to overcome the interoperability problems agents face in
open environments is the introduction of a middleware layer between requesters
and providers of services and the use of a shared language and ontologies for
describing both the tasks to be solved and the capabilities available. Having
a mediation service is very useful since problem solving agents can advertise
their capabilities, and the requester may look for agents with the capabilities
more appropriate for the problem at hand. Usually, the mediation layer is real-
ized by middle agents [Decker et al., 1997b] specialized in reasoning about and
supporting the activities of other agents.

Many ideas about middle agents have precedents in the work on medi-
ators. The notion of mediators was initially proposed in the field of In-
formation Systems. A foundational paper is [Wiederhold, 1992], which in-
troduces mediators as a technique to handle large-scale information systems
in open and distributed environments. Thus, it is not strange that cur-
rent ideas on middle agents were initially applied in the field of Intelli-
gent Information Integration [Wiederhold, 1993] and Information Brokering
[Jeusfeld and Papazoglou, 1996, Martin et al., 1997] as a way to locate and com-
bine information coming from multiple and heterogeneous sources, e.g. rela-
tional and object-oriented databases. The notion of mediators is also studied as
a software pattern [Rising, 2000] and is used in multi-layer information archi-
tectures [Wiederhold and Genesereth, 1997]. Mediators and brokers have been
originally conceived as providing an added-value services for information-based
applications. A middle agent can be seen as a mediator between requesters and
providers of services, in which the information being mediated is constituted by
the description of available services. Some introductions to middle agents can
be found in [Decker et al., 1996] and [Decker et al., 1997b], and a taxonomy of
middle agents appears in [Wong and Sycara, 2000]. Below follows a brief review
of approaches to middle agents, though there is not clear differentiation between
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the different types considered.

• Facilitators are agents to which other agents surrender their au-
tonomy in exchange of the facilitator’s services [Erickson, 1996a,
Genesereth and Ketchpel, 1997]. Facilitators can coordinate agents’ ac-
tivities and can satisfy requests on behalf of their subordinated agents.

• Mediators are agents that exploit encoded knowledge to create ser-
vices for a higher level of applications [Wiederhold, 1992]. For a de-
tailed account of the differences between mediators and facilitators see
[Wiederhold and Genesereth, 1997].

• Matchmakers and yellow pages assist service requesters to find service
providers based on advertised capabilities. Services found that matches
a given request are communicated to the requester, thus it must choose
and contact the selected provider directly. [Decker et al., 1996].

• Brokers are agents that receive requests and are able to contacting with
appropriate providers on behave of the requester. Thus, tasks are del-
egated to brokers that locate and communicate with suitable by them-
selves, freeing the requester of knowing the details required to communi-
cate with a specific provider. The difference between brokers and match-
makers is that the matchmaker only introduces matching agents to each
other, whereas a broker handles all the communication with the capability
providers [Decker et al., 1996].

• Blackboards are repository agents that receive and hold requests for other
agents to process [Nii, 1989].

Preliminary experiments [Decker et al., 1997b] shows that each type of mid-
dle agent have its own performance characteristics and is best suited for a cer-
tain type of environment. For example, while brokered architectures ar more
vulnerable to failures, they are also able to cope more quickly with a rapidly
fluctuating agent work-force. A general problem with the existing systems is
that they do not overcome the gap between push and pull access to informa-
tion [Haustein and Ludecke, 2000], since they commit to only one access model.
There is, however, a considerable interest in combining both ways of accessing
information. By caching data from a “push” source, a combination of a mediator
and a broker could solve the access mismatch problem, providing both access
modes.

Matchmaking and Agent Capability Description Languages

Typically, the function of middle agents is to match service-requests with ser-
vice providers, where services are provided by agents. To enable matchmaking,
both providers and requesters should share a common language to describe both
service-requests and agent capabilities, which is called an Agent Capability De-
scription Language (ACDL) [Sycara et al., 2001] (called also an Agent Service
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Description Language, due to the quite usual view on agent capabilities as “ser-
vices” provided to clients).

Matchmaking is the process of finding an appropriate provider of capabilities
(or services) for a requester [Sycara et al., 1999a, Sycara et al., 1999b]. Some
ACDLs supporting matchmaking are reviewed below, namely: the Logical De-
duction Language (LDL++), the Interagent Communication Language (ICL),
the Language for Advertisement and Request for Knowledge Sharing (LARKS),
and the DARPA Agent Markup Language (DAML-S).

• LDL++ is a logical deduction language similar to Prolog that is used by
brokers in the Infosleuth [Nodine et al., 1999] distributed agent architec-
ture. LDL++ supports inferences about whether an expression of require-
ments matches a set of advertised capabilities.

• ICL is the interface, communication, and task coordination language
shared by OAA agents, regardless of what platform they run or on
what computer language they are programmed in [Martin et al., 1999,
Cheyer and Martin, 2001]. OAA agents employ ICL to perform queries,
execute actions, exchange information, and manipulate data in the agent
community. ICL includes a layer of conversational protocols (such as
KQML or FIPA), and a content layer. The content layer has been de-
signed as an extension of PROLOG, to take advantage of unification and
other features of PROLOG. Every agent participating in an OAA-based
system defines and publishes its capabilities expressed in ICL. These dec-
larations are used by a facilitator to communicate with the agent and also
for delegating service requests to the agent.

• LARKS [Sycara et al., 2002] (Language for Advertisement and Request
for Knowledge Sharing) is a language used by matchmaking agents to
pair service-requesting agents with service-providing agents that meet
the requesting agents [Sycara et al., 1999a], and is used by agents in the
RETSINA [Sycara et al., 2001] agent infrastructure. When a service-
providing agent registers a description of its capabilities with a middle
agent, it is stored as an “advertisement” and added to the middle agent’s
database. Therefore, when an agent inputs a request for services, the mid-
dle agent searches its database of advertisements for a service-providing
agent that can fill such a request. Requests are filled when the provider’s
advertisement is sufficiently similar to the description of the requested
service. LARKS is capable of supporting inferences. It also incorpo-
rates application domain knowledge in agent advertisements and requests.
Domain-specific knowledge is specified as local ontologies in the concept
language ITL.

• ATLAS (Agent Transaction language for Advertising Services) is a DAML-
based agent advertising language that will enable agents and devices to lo-
cate each other and interoperate [Paolucci et al., 2002]. ATLAS is based in
DAML-S, an ontology to annotate Web Services with semantic information
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[The DAML-S Consortium, 2001]. The DAML-S ontology uses concepts
that are similar to the purpose and the requirements of an Agent Capabil-
ity Description Language. Therefore, we find very similar elements in both
ACDLs and Semantic Web Services description languages. Specifically, the
view of the DAML-S consortium is that DAML-S descriptions are used by
agents in support of the automated discovery, interoperation, composition,
execution and monitoring of services. A matchmaker for DAML-S match-
making has been proposed that utilizes two separate filters: one compares
Functional Attributes to determine the applicability of advertisements, and
the other compares Services Functionalities. Subsumption is the inference
operation used to determine if two specifications match.

There are other proposals for ACDLs, based upon some extension of Petri
Nets, like Possibilistic Petri Nets [Jonathan Lee and Chiang, 2002], the object-
based extension called G-Net [Xu and Shatz, 2001] and the constraint-based
model of fitness-for-purpose [White and Sleeman, 1999], among others.

It is also interesting to review other research on capability descrip-
tions not specifically designed to describe agent capabilities, although they
can be adapted for that purpose, like skills modelling in human or-
ganizations [Stader and Macintosh, 1999], capability descriptions for PSMs
[Aitken et al., 1998], or process/action modelling techniques such as SPAR
[Tate, 1998] and ADL [Pednault, 1989]. See [Wickler and Tate, 1999] for a wide
survey on capability description for software agents.

Agent infrastructures for Cooperative Problem-Solving

There are several architectures and standards focused on open agent architec-
tures and mechanisms to achieve interoperability. These infrastructures are
based on some notion of mediation or middle agents: like yellow-pages in the
FIPA abstract architecture , matchmakers in Retsina, brokers in OAA and task-
planning agents in UMDL. However, there are some architectures oriented to-
wards industrial applications, e.g. GRATE and ARCHON.

• FIPA1 has produced a collection of specifications which aim is to become
an standard for the interoperability of heterogeneous software agents. The
standardization effort includes an Abstract Architecture dealing with the
abstract entities that are required to build agent services and an agent
environment. A FIPA platform contains a communication channel, an
Agent Name Server (ANS) that is used as a “white pages” service, and a
Directory Facilitator(DF), which acts as a “yellow pages” service.

• UMDL2 provides a distributed architecture [Birmingham et al., 1995] for
a digital library that can continually reconfigure itself as users, contents,
and services come and go. This has been achieved by the development

1FIPA stands for the Foundation for Intelligent Physical Agents
2University of Michigan Digital Library.
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of a multi-agent infrastructure with agents that buy and sell services
from each other by using commerce and communication services/protocols
[Vidal et al., 1998], that is called the Service Market Society (SMS). The
SMS allows for the decentralized configuration of an extensible set of users
and services [Durfee et al., 1998]. There are many types of agents in the
UMDL agent architecture: there are information agents specialized in com-
plementary knowledge areas; there are user interface agents that support
the user in specifying queries; and there are also task planning agents
[Vidal and Durfee, 1995] that are able to perform matchmaking between
queries and agent services. Services are described in Loom.

• RETSINA3 is an open multi-agent architecture that supports communi-
ties of heterogeneous agents [Sycara et al., 2001]. Distributed approach to
information and problem-solving tasks (search, gathering, filtering, fusion,
etc). The RETSINA system has been implemented on the premise that
agents in a system should form a community of peers that engage in peer to
peer interactions. Any coordination structure in the community of agents
should emerge from the relations between agents, rather than as a result of
the imposed constraints of the infrastructure itself. In accordance with this
premise, RETSINA does not employ centralized control within the MAS;
rather, it implements distributed infrastructure services that facilitate the
interactions between agents, as opposed to managing them.

• OAA4 [Cheyer and Martin, 2001] is a framework for building flexible, dy-
namic communities of distributed software agents. OAA enables a coop-
erative computing style wherein members of an agent community work
together to perform computation, retrieve information, and serve user in-
teraction tasks. Communication and cooperation between agents are bro-
kered by one or more facilitators, which are responsible for matching re-
quests, from users and agents, with descriptions of the capabilities of other
agents [Martin et al., 1999].

• DECAF (Distributed, Environment-Centered Agent Framework) is a
toolkit which allows a principled software engineering approach to building
Multi-Agent Systems. The toolkit provides a platform to design, develop,
and execute agents. DECAF provides the necessary architectural services
of a large-grained intelligent agent: communication, planning, schedul-
ing, execution monitoring, coordination, and eventually learning and self-
diagnosis . This is essentially, the internal “operating system” of a software
agent, to which application programmers have strictly limited access. The
control or programming of DECAF agents is provided via a GUI called the
Plan-Editor. In the Plan-Editor, executable actions are treated as basic
building blocks which can be chained together to achieve a more com-
plex goals in the style of a Hierarchical Task Network. This issue provides

3Reusable Environment for Task-Structured Intelligent Networked Agents.
4OAA stands for the Open Agent Architecture, developed at the SRI International’s Arti-

ficial Intelligence Center (AIC)
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a software component-style programming interface with desirable proper-
ties such as component reuse (eventually, automated via the planner) and
some design-time error-checking. The chaining of activities can involve
traditional looping and if-then-else constructs. This part of DECAF is an
extension of the RETSINA and TAEMS task structure frameworks. Unlike
traditional software engineering, each action can also have attached to it a
performance profile which is then used and updated internally by DECAF
to provide real-time local scheduling services . The reuse of common agent
behaviors is thus increased, since the execution of agent behaviors does not
depend only on the specific construction of the task network but also on
the dynamic environment in which the agent is operating. Furthermore,
this model allows for a certain level of non-determinism in the use of the
agent action building-blocks.

GRATE [Jennings et al., 1992] is a general framework which enables to
construct MAS for the domain of industrial process control. Embodies
in-built knowledge related to cooperation, situation assessment and con-
trol. Designer can utilize this knowledge (reuse , configuration of preexist-
ing knowledge) and augment it with domain specific information, rather
than starting from scratch. More focused on agent architecture than MAS
architecture. The in-built knowledge is represented by generic rules en-
coding sequences of actions. ARCHON [Wittig et al., 1994] is an exten-
sion of GRATE [Jennings et al., 1992] with reactive mechanisms. Many of
GRATE’s generic rules encode sequences of actions resulting in common
patterns of rule firing, these patterns can be grouped into units of activ-
ity similar in nature to reactive planning systems (precompiled plans that
behaves like in an unplanned, reactive manner). The result is a hybrid
approach in which both general rules and reactive mechanisms are com-
bined. ARCHON concentrates upon loose coupling of semiautonomous
agents. There is no representation of an overall goal, but only goals of
the agents that together met the overall goals of the community. AR-
CHON has been applied to pre-existing computational systems, although
its concepts may well be used as enhancements to more conventional (e.g.
client/server) integration architectures.

2.4.4 Social approaches

There are some aspects of complex system development that become more dif-
ficult by adopting an agent-based approach [Jennings, 2000]. Since agents are
autonomous, the patterns and the effects of their interactions are uncertain, and
it is extremely difficult to predict the behavior of the overall system based on its
constituent components, because of the strong possibility of emergent behavior.
These problems can be circumvented by imposing rigid and preset organiza-
tional structures, but these restrictions also limit the power of the agent-based
approach. As an answer to these difficulties a social level view has been proposed
[Jennings and Campos, 1997] that takes the knowledge level [Newell, 1982] anal-
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ysis approach as a starting point. Whereas the knowledge level view stripped
away implementation and application specific details from problem solvers, the
social level view focuses on the organizational aspects of agent societies with
the primary goal of analyzing system behaviors abstracted from implementa-
tion details or specific interaction protocols [Jennings and Campos, 1997]. The
GAIA methodology [Wooldridge et al., 2000] follows this approach which allows
to describe agent-based systems as computational organizations that are defined
in terms of roles, interactions and obligations.

The Civil Agent Societies (CAS) [Dellarocas, 2000] is a framework for de-
veloping agent organizations which follows the metaphor of civil human soci-
eties based on social contracts, and is oriented towards marketplaces and B2B
e-commerce. The CAS approach uses the Contract Net interaction protocol,
social norms, notary services and exception handling services.

Another social approach to Multi-Agent Systems is described in
[Panzarasa and Jennings, 2001] that is based on a conception of cognition, both
at the individual and the collective level, and examined in relation to contem-
porary organization theory. Yet another organization-oriented model for agent
societies is found [Dignum et al., 2002].

Another view of open agent organizations is that of electronic institutions
as a metaphor of human institutions. A electronic institution is a virtual
place where agents meet and interact according to the communication poli-
cies and norms defined by the institution. Formalization of electronic insti-
tutions [Esteva et al., 2001] underpins the use of structured design techniques
and formal analysis, and facilitates development, composition and reuse. IS-
LANDER is a formal language with a graphical representation that allows to
define [Esteva et al., 2002a] and verify [Huguet et al., 2002] the specification of
an electronic institutions. Another advantage of such a formal language is that,
given the specification of an electronic institution, it is possible to generate skele-
tons for the development of agents for that institution [Vasconcelos et al., 2001].

2.4.5 Agent-Oriented Methodologies

Agent technology has received a great deal of attention in the last few years
and is also beginning to attract the industry. But in spite of the extensive
research and successful application of agent theories, languages and architec-
tures, there is little work for specifying techniques and methodologies to de-
velop agent-based applications. Furthermore, the usual approach to the devel-
opment of agent-oriented methodologies have been to adapt or extend an exist-
ing methodology to deal with the relevant aspects of agent-oriented program-
ming [Iglesias et al., 1998]. These extensions have been carried out mainly in
three areas: object-oriented methodologies, software engineering and knowledge-
engineering.
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Extensions of Object-Oriented Methodologies

There are several reasons to use object-oriented methodologies as the basis for
an agent-oriented methodology: (1) there are many similarities between both
paradigms [Burmeister, 1996, Kinny and Georgeff, 1996], and specifically, there
is a close relationship between DAI and object-based concurrent programming
[Bond and Gasser, 1988b, Gasser and Briot, 1992, Yoav Shoham, 1993]; and (2)
there is a considerable experience is using object-oriented languages to imple-
ment agent-based systems.

Some examples of agent-oriented methodologies based on OOP are the follow-
ing: Agent-Oriented Analysis and Design [Burmeister, 1996], Agent Modelling
Technique for Systems of BDI agents [Kinny and Georgeff, 1996], Multi-Agent
Scenario-Based Method (MASB) [Moulin and Brassard, 1996] and Agent Ori-
ented Methodology for Enterprize Modelling [Kendall et al., 1995]

However, there are some aspect of agents not addressed by object oriented
methodologies [Burmeister, 1996, Yoav Shoham, 1993, Kendall et al., 1995]: (1)
the agent style of communication can be much more complex than the method
invocation style in OOP; (2) agents can be characterized by their mental state;
and (3) agents can include a social dimension not existing in OOP.

Extensions of Knowledge-Engineering Methodologies

Knowledge engineering methodologies can provide a good basis for MAS
modelling by exploiting a human inspired style of problem solving. Since
agents have cognitive features, the experience achieved in knowledge acquisi-
tion and knowledge modelling methodologies can be applied to agent devel-
opment. In addition, existing tools and libraries of Problem-Solving Methods
[Breuker and Van de Velde, 1994] can be reused.

CoMoMAS [Glaser, 1996] is an extension of CommonKADS
[Schreiber et al., 1994a] for MAS modelling. The following models are
defined:

• The Agent Model defines the agent architecture and the agent knowledge,
that is classified as social, cooperative, control, cognitive or reactive knowl-
edge.

• The Expertise Model defines the cognitive and reactive competencies of
agents, distinguishing between tasks, problem solving (PSM) and reactive
knowledge.

• The Task Model describes the task decomposition and details if a task is
solved by an user or an agent

• The Cooperation Model specifies the communication primitives and inter-
action protocols required to cooperate and resolve conflicts

• The System Model defines the organizational aspects of the agent society
together with the architectural aspects of agents
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• The Design Model collects the previous models and captures the non func-
tional requirements required to operationalize them.

MAS-CommonKADS [Iglesias et al., 1997] extends the models defined in
CommonKADS adding techniques from object-oriented methodologies (OOSE,
OMT) and from protocol engineering (MSC and SDL). This methodology starts
with an informal conceptualization phase used to obtain the user requirements
and a first description of the system from the user point of view. For this pur-
pose, use cases from OOSE are used, and its interactions are formalized with
Message Sequence Charts. Then, the different models described below are used
for analysis and design of the system, that are developed following a risk-driven
life cycle. For each model the methodology defines the constituents (entities to
be modelled) and the relationships between the constituents. A textual template
and a set of activities for building each model are provided according to a devel-
opment state (empty, identified, described or validated). MAS-CommonKADS
defines the following models:

• Agent model : describes the main characteristics of agents, including capa-
bilities, skills (sensors/effectors), services, goals, etc.

• Task model : describes the tasks (goals) carried out by agents and tasks
decomposition, using textual templates and diagrams.

• Expertise model : follows the KADS approach, that distinguishes domain,
task, inference and problem solving knowledge. The MAS-CommonKADS
methodlogy proposes a distinction between autonomous PSMs, that can
be carried out by the agent itself, and cooperative PSM, that decompose
a goal into subgoals that are carried out by the agent in cooperation with
other agents.

• Coordination model : describes the conversations between agents. A first
milestone is intended to identify the conversations and the interactions.
The second milestone is intended to improve conversation with more flexi-
ble protocols such as negotiation and identification of groups and coalitions.
The interactions are specified using MSC (Message Sequence Charts) and
SDL (Specification and Description Language).

• Organization model : describes the organization in which the MAS is going
to be introduced and the organization of the agent society. The agent
society is described using an extension of the object model of OMT, and
describes the agent hierarchy, the relationship between the agents and their
environment, and the agent society structure.

• Communication model : details the human-software agent interactions, and
the human factors for developing these user interfaces.

• Design model : collects the previous models and is subdivided into three
submodels: application design, architecture design, and platform design.
The application design is about the composition or decomposition of the
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agents according to pragmatic criteria and selection of the most suitable
agent architecture for each agent. The architecture design deals with the
relevant aspects of the agent network: required network, knowledge and
telematic facilities. The platform design refers to the selection of the agent
development platform for each agent architecture.

Other approaches

Several formal approaches have tried to bridge the gap between formal theories
and implementations [d’Inverno et al., 1997]. Formal agent theories are specifi-
cations that allow the complete specification of agent systems. Though formal
methods are not easily scalable [Fisher et al., 1997], they are specially useful for
verifying and analyzing critical applications, prototypes and complex cooperat-
ing systems. Some examples include the use of Z [Luck et al., 1997], temporal
modal logics [Wooldridge, 1998], and DESIRE [Brazier et al., 1997]. DESIRE
(DEsign and Specification of Interacting REasoning components) proposes a
component-based approach to specify the following aspects: task decomposition,
information exchange, sequencing of subtasks, subtask delegation and knowledge
structures. It is well suited to specify the task, interaction and coordination of
complex tasks and reasoning capabilities in agent systems.

During the development of Multi-Agent Systems some developers have
adopted a software engineering approach that can be used as the basis for an
agent oriented methodology. Although in some cases they have not explicitly
defined an agent oriented methodology, they have given general guidance, and
in some other cases, they have proposed a methodology based on their personal
experience. Some examples are:

• In ARCHON [Wittig et al., 1994], the analysis combines a top-down ap-
proach, that identifies the system goals, the main tasks and their decom-
position, and a bottom-up approach, that allows the reuse of preexisting
systems, thus constraining the top-down approach. The design is subdi-
vided into agent community design (defines the agent granularity and the
role of each agent) and agent design (encodes the skills for each agent).

• MADE [O’Hare and Woolridge, 1992] is a development environment for
rapid prototyping of MAS. It proposes a methodology that extend the five
stages of knowledge acquisition proposed in [Buchanan et al., 1983]: Iden-
tification, Conceptualization, Decomposition (added for agent identifica-
tion), Formalization, Implementation and Testing (adding the integration
of the MAS).

• The AWIC [Müller, 1996] method proposes an iterative design. In ev-
ery cycle five models are developed: Agent model (tasks, sensors and
actuators, world knowledge and planning abilities), World model, Inter-
operability model (between the world and the agents), and Coordination
model (protocols and messages, study the suitability of joint plans or social
structuring).
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• The Decentralizing Refinement Method [Singh et al., 1993] proposes to
start with a centralized solution to the problem. Then a general PSM
is abstracted out. Next step is the identification of the assumptions made
on the agent’s knowledge and capabilities, and the relaxation of these as-
sumptions in order to obtain a more realistic version of the distributed
system. Finally, the system is formally specified. The method takes into
account the reuse of the PSMs by identifying connections among parts of
the problems and the agents that solve them.

2.4.6 Conclusions

Most research in the field of Cooperative Problem Solving (CPS)
falls within the context of the Cooperative Problem Solving process
[Wooldridge and Jennings, 1994], with four stages: recognition, Team Forma-
tion, planning and execution. In this framework the problem solving pro-
cess starts with an agent willing to solve a task and realizing the poten-
tial for cooperation, but the process of deciding the goals to achieve and
the way to achieve them is skipped, assuming that they are provided by
the user [Wooldridge and Jennings, 1999]. Moreover, task allocation among
cooperating agents is typically based on a preplan that decomposes a task
into subtasks [Shehory and Kraus, 1998], without specifying the algorithms to
build such a plan, neither the criteria to be taken into account, e.g. the
Planned Team Activity [Sonenberg et al., 1994] and the SharedPlans approach
[Grosz and Kraus, 1996]. Our work focuses on the feasibility and utility of a
componential approach to build such initial plans using the the knowledge-level
description of the Multi-Agent system (i.e. building a configuration of tasks,
capabilities and domain knowledge).

When addressing the problem of designing the behavior of a Multi-Agent Sys-
tem we agree with other researchers that users matter [Erickson, 1996b]: people
may need to understand what happened and why a system alters its responses,
have some control over the actions of the system, even though agents are au-
tonomous, or predict the overall system behavior. There is a need for methods
to guide the Team Formation process according to stated problem requirements
and user needs. Existing frameworks for developing cooperative MAS assume
that both team plans and individual plans are known beforehand, and the stage
called “planning” in fact is a re-planing stage, because agents refine the initial
plans until a agreed plan is decided.

We claim the need of a framework with two integrates the problem specifica-
tion within the CPS process; and second, provides a fully automated configura-
tion process (equivalent to build a plan) of a MAS on-demand. The idea of the
configuration process is to build a hierarchical TMD structure encompassing the
capabilities required for a Team to solve a particular problem, and this process is
driven by problem requirements in place of beforehand plans. We contribute to
this issue by introducing a Knowledge Configuration process as the initial stage
of the Cooperative Problem Solving process. Such a TMD configuration is an
extension of the idea of matchmaking to deal with the domain, which facilitates
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the reuse of existing capabilities not only for new requirements, but also for new
application domains.

There is another MAS topic we have to have a closer look, matchmaking.
While existing frameworks support matchmaking between tasks and capabilities,
we are also considering matchmaking among capabilities and domain models in
order to enhances the reusability of agent capabilities across different applica-
tion domain. Moreover, the ORCAS Knowledge Configuration process fills the
gap between the matchmaking process, that pairs a specification to a capabil-
ity, and the global configuration of a team plan, which is required to solve the
“bottom-up design problem” (§2.2): given a set of requirements, find a set of
agent capabilities and domain knowledge within a MAS whose aggregated com-
petence satisfies the requirements. The fundamental difficulty when considering
this problem is how to decompose the requirements in such a way as to yield
component specifications (i.e. capabilities and domain-models). Our approach
to this problem is to search the space of all possible compositions of components
—configurations— until one satisfying the requirements is found. Moreover, our
work has extended the Knowledge Configuration process to apply Case-Based
Reasoning during the selection of components. The idea is that past experience
can be used to improve the search process by guiding the exploration of possible
configurations according to the similarity of the current problem to past config-
uration problems. The reader is referred to §4.4 for the general configuration
strategy and §4.5 for the case-based configuration approach

Concerning the topic on Agent Capability Description Languages (ACDL),
most approaches distinguish among tasks (or goals) and capabilities (or ser-
vices), but these components are tightly coupled to a particular application
domain. Our approach to improve the reuse of agent capabilities is using the
TDM approach for describing agent capabilities and tasks in a domain inde-
pendent manner, abstracted from the application domain. This decoupling of
capabilities and domain is enabled by allowing agent capabilities and domain
knowledge to be described independently, as proposed by TMD frameworks to
specify knowledge-systems. Capability descriptions are compared to domain-
models during the Knowledge Configuration process to verify that the domain
knowledge satisfies the capability assumptions, and this process is fully auto-
mated to enable the on-demand, on-the-fly configuration of the MAS.

In addition to the reuse issue, there are another aspects of MAS design that
can benefit from a Knowledge Modelling framework:

• Domain knowledge acquisition is facilitated by an abstract description or
model of the domain knowledge required for some application, that can be
used as a guide during the knowledge acquisition process.

• Problem specifications are also oriented by the abstract level description
of a system, which facilitates the task of posing appropriate problem re-
quirements to the user.

Moreover, there are some limitations of TMD frameworks to be applied in
MAS configuration. These methodologies conceive a knowledge system as a cen-
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tralized one, without considering neither the social dimension of agents, nor the
issue of autonomy. On the other hand, agents are autonomous entities that can
decide if accepting or refusing requested actions. Consequently, TMD frame-
works must be extended to allow some kind of distributed control and coordi-
nation rather than applying a centralized control schema. On the other hand,
usually agents interoperate through a conversational model, using speech-acts to
communicate the purpose of a message, and following structured interaction pro-
tocols. In consequence, and to sum up, our framework should deal with specific
agent properties, deserving special attention to the fact agents are autonomous
and communication is based on speech-acts and interaction protocols.

Concerning software libraries and MAS, the idea of reusable software libraries
is related to concepts from Multi-Agent Systems, like directory facilitator or
yellow pages services. In addition, selection of components in software reuse
is defined in terms matching, in a similar way to the matchmaking process as
performed by middle agents in open MAS. Our approach aims at integrating
research on software libraries and reuse together with recent work on open agent
architectures, more specifically, we propose the following ideas:

• that agent capabilities can be registered and managed as components in a
library (or a middle agent), and can be queried by other agents in order
to locate them;

• and knowledge modelling can be used to describe the components with
semantic information, abstracting them from implementation details in
order to maximize reuse.

2.5 Semantic Web services

Semantic Web Services are defined as “self contained, self describing mod-
ular applications that can be published, located and accessed across the
Web” [Tidwell, 2000], and also as “loosely coupled, reusable software com-
ponents that semantically encapsulate discrete functionality and are dis-
tributed and programmatically accessible over standard internet protocols”
[McIlraith et al., 2001]). Today’s Web was designed primarily for human in-
terpretation, to be used as a repository of information. But nowadays the
Web is becoming also an open environment for distributed computing, where
new applications can be built by assembling information services on-demand
from a montage of networked legacy applications and information sources
[International Foundation on Cooperative Information Systems, 1994].

Web services technologies are beginning to emerge as a defacto standard for
integrating disparate applications and systems [Peltz, 2003]. Nevertheless, most
Web service interoperation is realized through APIs that incorporate hard code
to locate and extract content from HTML pages. These mechanisms are not
suited to deal with an open, changing environment like the Internet. In order
to implement reliable, large scale interoperation of Web services it is fundamen-
tal to make such services computer interpretable, which could be achieved by
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creating a Semantic Web [Berners-Lee et al., 1999] of services whose properties,
capabilities, interfaces and effects are encoded in an unambiguous, machine un-
derstandable form. The realization of the Semantic Web is underway with the de-
velopment of new markup languages with well defined semantics and able to ma-
nipulate complex relations between entities [Stab et al., 2003]. Some examples
of such languages are OIL [Fensel et al., 2000], DAML+OIL [Horrocks, 2002]
and DAML-S [The DAML-S Consortium, 2001].

Semantically annotated Web services can support the automated discovery,
execution, composition and interoperation of services by computer programs or
agents [McIlraith et al., 2001]. The distributed control nature of agents make
them suited to become accessible through the Internet likewise services. From
that view, agent capabilities can be seen as services provided to users or other
agents through mediation services such as yellow pages; therefore, developing
agent-based applications by reusing existing agent capabilities in open environ-
ments like the Internet will face the same problems encountered in the research
on Semantic Web Services; and there is likewise a need for languages and in-
frastructures supporting the automated discovery, execution, composition and
interoperation of agent capabilities.

Agent description languages could be used for describing Web services and
viceversa with little adaptation effort. Markup of services exploits ontologies to
facilitate sharing, reuse, composition, mapping and markup [Fensel et al., 1997,
Fensel and Bussler, 2002]. Service description should include a functional view
to enable automatic service discovery, a pragmatic view, or some kind of oper-
ational metrics are also very desirable, e.g. QoS [Cardoso and Sheth, 2002],
but also a process model of the service designed to facilitate service com-
position. While there are a considerable level of consensus with respect to
the functional aspects of a service (inputs, outputs, preconditions or pre-
requisites and postconditions or effects), and few standardization proposals
(WSDL, DAML-S profile ontology), the panorama is quite different when talk-
ing about the process model. There are a lot of languages proposed for this
purpose, including WSFL, XLANG, WSCI, BPML, BPEL4WS and YAWL
[van der Aalst and ter Hofstede, 2002]. These languages are called Web Service
composition languages, workflow languages, process languages, and Web Service
orchestration languages.

An introduction to the Web Services approach can be found
in [Vaughan-Nichols, 2002] and recent trends and controversies in
[Stab et al., 2003].

2.5.1 Semantic Web Services Frameworks

For an overview of existing technologies and research directions on service de-
scription, advertising and discovery, the reader is referred to [Lemahieu, 2001].
A brief review of the most influencing proposals is provided below:

• The Web Service Modelling Framework (WSMF)
[Fensel and Bussler, 2002, Bussler et al., 2002] proposes a conceptual
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model for developing and describing services and their compositions.
WSMF is based on maximal decoupling and scalable mediation services.

• DAML-S [The DAML-S Consortium, 2001, Ankolekar et al., 2002] is a
DAML+OIL [Horrocks, 2002] ontology for describing the properties and
capabilities of Web Services. The purpose of the DAML-S ontology is to al-
low automatic reasoning about Web services in order to improve the discov-
ery, access, composition and interoperation of Web services. The approach
to do that is to enrich service markup with semantics. An example of se-
mantic matching for service discovery is described in [Paolucci et al., 2002].

• DLML [Euzenat, 2001] proposes to describe Web services using a Descrip-
tion Logics Markup Language (DLML) for ensuring interoperability among
semantically heterogeneous Web services. DL allows to formally define
transformations(mappings), proof of properties, and checking of compound
transformations.

• WSTL Web Service Transaction Language [Piresa et al., 2003]. Extends
WSDL for enabling the composition of Web services.

• Web Services Semantic Architecture is based upon a mix of standard Web
services technology (UDDI, WSFL and DAML-S) and the DAML-S ontol-
ogy.

2.5.2 Composition and interoperation of Web services

The most extended approach for composing Web services is the use of a work-
flow language. But there is a lack of consensus [Wil M. P. van der Aalst, 2002],
which results in a variety of languages to describe service composition from
a workflow approach , like WSFL, XLANG, WSCI, BPML and more recently
BPEL4WS (see for instance [Peltz, 2003] for a review of emerging technologies,
tools and standards). A particular approach is to use Petri Nets as the compu-
tational formalism of a workflow language, like WRL [van der Aalst et al., 2001]
and YAWL [van der Aalst and ter Hofstede, 2002]. A great challenge is to in-
tegrate heterogeneous services, which requires to address the interoperability
issue not only at the syntactic level, but also at the semantic level. For example,
[Cardoso and Sheth, 2002] describes an ontology-based approach for the discov-
ery and integration of heterogeneous Web services within workflow processes.
This approach takes into account both functional and operational requirements
(Quality of Services) and provides some algorithms to measure the degree of
integration.

Action-based planning [Wil M. P. van der Aalst, 2002] is an approach to ser-
vices composition that views Web Services as a collection of actions available
to build a plan. An example of this approach is demonstrated by ConGolog
[McIlraith et al., 2001, McIlraith and Son, 2001], a concurrent logic program-
ming language based on situation calculus. ConGolog can be used to program
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agents which can perform simulation and execution of composite Web services
customized for the user.

Transactional approaches are inspired by a business perspective; for exam-
ple, in [Piresa et al., 2003] a multi-layered mediated architecture is presented
together with a language to compose Web services from a transactional view-
point.

To conclude, there is yet another approach that thinks of Web services
as behavioral extensions of agent capabilities. From this point of view, Web
services are located, invoked, composed and integrated by intelligent software
agents [Bryson et al., 2002, McIlraith and Son, 2001]. DAML-S is proposed as
a language for the semantic markup of Web services. Semantic markup of ser-
vices could enable to apply simulation, verification and automatic composition
of services, for instance using Petri Nets [Narayan and McIlraith, 2002]. An
agent-oriented architectural framework for Web services based on the notion of
a Flexible Agent Society (FAS) has been proposed [Narendra, 2003] based on
the Contractual Agent Society (CAS).

2.5.3 Conclusions

Semantic Web Services (SWS) is an emergent field. While there is a well defined
approach to describe Semantic Web Services and some generalized standards,
there is still much discussion on the operational description of services, and
there are many proposals of frameworks for the composition of complex services.
There are some notable similarities when comparing SWS frameworks and Agent
Capability Description Languages used in open MAS. There are, however, some
notable differences between both fields: While SWS are passive entities that are
executed by direct invocation, agent capabilities are provided by autonomous
agents that can decide autonomously whether to apply or not to apply a re-
quired capability, or the terms of commitment when accepting some request.
Consequently, ACDLs can benefit only partially of SWS research, specifically,
ACDLs and SWS languages share may common requirements, but differ on the
operational aspects of composition: while SWS are well suited for a centralized
control, autonomous agents are appropriate for a distributed control style.

SWS frameworks are designed to facilitate reuse and composition of services
to achieve more complex tasks within a concrete domain, but SWS are not ori-
ented towards domain-based reuse. Typically the knowledge used by a SWS is
encapsulated or hidden, thus it is not possible to reason about the domain knowl-
edge, neither to use a service for a new domain. Configuring a MAS on-demand
from reusable capabilities and knowledge, requires a language for describing and
reasoning about a MAS at an abstract level. But, although this level could
be provided by semantic languages and compositional frameworks based in ei-
ther SWS or TMD frameworks, there is required much work to integrate these
approaches with cooperative MAS.





Chapter 3

Overview of the ORCAS
framework

This chapter provides an overall view of the ORCAS framework that
accounts for its multi-layered structure, and highlights the outstand-
ing points.

Now that we have reviewed the most relevant bibliography, it is time to
summarize which are the open problems we are dealing with and the kind of
solutions we propose; to get a view of the tree in order to avoid getting lost
when accounting for the leaves.

The main goal of this thesis is to provide a framework for open Multi-Agent
Systems that maximizes the reuse of agent capabilities through multiple appli-
cation domains, and supports the automatic, on-demand configuration of agent
teams according to stated problem requirements.

There are some agent infrastructures relying on formal languages for de-
scribing both available capabilities and requests to solve problems using those
capabilities; these infrastructures are usually based on middle agents to han-
dle the interoperation issues. Middle agents — matchmakers and brokers—
are able to match requests to advertised capabilities in order to find appropri-
ate capability providers. However, no mechanism has been proposed to design
the competence of a team in such a way that global problem requirements are
satisfied. Therefore, automated design mechanisms supporting the on-demand,
configuration of agent teams are required beyond existing matchmaking algo-
rithms. Our proposal is to introduce a Knowledge Modelling Framework (KMF)
to describe agent capabilities at a domain independent level, and to apply a com-
positional approach to design Multi-Agent Systems on-demand. The ORCAS
KMF is based on the Task-Method-Domain paradigm, which distinguishes three
classes of components: Tasks, Problem-Solving Methods and domain-models. In
the ORCAS KMF we consider also three classes of components, namely agent
capabilities (corresponding to Problem-Solving Methods), application tasks and
domain-models.

55
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The idea of the ORCAS KMF is to apply an abstract compositional architec-
ture to configure agent-based applications on-the-fly, by selecting and connecting
components that satisfy the requirements of each specific problem. To do so,
we have transferred the “bottom-up design problem” [Mili et al., 1995] from the
field of software reuse (§2.3) to the field of Multi-Agent Systems. As a result,
we have defined the problem of designing a team as follows:

given a set of requirements, find a set of agent capabilities and
domain-models whose combined competence satisfy the require-
ments.

The main difficulty when considering a ‘bottom-up design problem” is how
to decompose the requirements in such a way as to yield component specifica-
tions. We adopt here an abstract view that approaches this problem as a search
process, namely one that can be solved by a search process over the space of
all possible component compositions, until one satisfying the requirements is
found [Hall, 1993, Zhang, 2000]. Specifically, the composition of components is
regarded as a composition of their specifications [Butler and Duke, 1998], which
in our case are provided by the Knowledge Modelling Framework and consist of
tasks, capabilities and domain-models.

Our proposal to configure a MAS is the separation of two layers in the con-
figuration process: the knowledge and the operational layers. At the knowledge
layer a MAS is described and configured in terms of component specifications
and connections, at an abstract, implementation independent level. At the op-
erational layer a team of agents is formed and each agent receives instructions
on how to cooperate and coordinate in solving a problem according to this ab-
stract (knowledge-level) configuration. Figure 3.1 shows the two layers MAS
configuration model.

Knowledge
Configuration

Team
Formation

Problem
requirements

Task-configuration

team-configuration

Knowledge
layer

Operational
Layer

Figure 3.1: The two layers MAS configuration model.

(1) Configuration at the knowledge layer refers to the process of finding a
configuration of components (tasks, capabilities and domain-models) adequate
for the problem to be solved. We call this process Knowledge Configuration,
and the result of the process is a task-configuration: a hierarchical structure of
tasks, capabilities and domain-models satisfying the problem requirements. The
Knowledge Configuration process is intended to take a specification of problem
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requirements as input and producing a configuration of components such that
the problem requirements are satisfied. The main goal of the Knowledge Config-
uration process is to determine which task decomposition, which competencies
and which domain knowledge is required by a team of agents to solve a given
problem.

(2) Configuration at the operational layer refers to the process of operational-
izing a configuration into an executable system; in other words, to form a team of
agents that is equipped with the capabilities and knowledge specified by a task-
configuration (it means that the team is customized for the problem at hand).
The operational configuration layer has the goal of ensuring that the multiple
components involved in a task-configuration can interoperate and cooperate to
solve a problem together.

There are some efforts on using a componential approach for
the compositional-specification and design of intelligent agents
[Decker et al., 1997a, Herlea et al., 1999, Splunter et al., 2003], and Multi-
Agent Systems [Brazier et al., 2002], but these frameworks are mostly oriented
to the development of agents, whereas our work is about forming and customiz-
ing agent teams on-demand, by composing components provided by already
existing agents. We take the view on Multi-Agent Systems as decoupled
networks of autonomous entities associated to a distributed model of expertise,
regarded as a collection of specialized agents with complementary skills.
According to this setting, a general framework for the Cooperative Problem
Solving (CPS) process has been described [Wooldridge and Jennings, 1999] as
having four stages: recognition (an agent identifies the potential for coopera-
tion), team formation (the process of selecting team members), plan formation
(collective attempts to construct an agreed plan) and execution (agents engage
in cooperative efforts to solve the problem according to the agreed plan).

The result of separating the configuration of a MAS in two layers is a new
model of Cooperative Problem Solving process that includes a Knowledge Con-
figuration process before the Team Formation process. Moreover, the planning
stage as presented in existing frameworks is removed from the ORCAS frame-
work, since planning is usually associated to a particular agent architecture and
is focused on internal agent processes, while our approach here is to take a macro-
view, focused on the external, observable phenomena of teamwork, rather than
imposing a particular agent model. In some aspects, the role played by the plan-
ning stage in the CPS process is substituted by the Knowledge Configuration
process, since a task-configuration is a kind of global plan that will be used as
a recipe to guide the team formation and to coordinate agents during the ex-
ecution stage, that we call the Teamwork process (notice that the CPS model
includes the Teamwork process within).

The ORCAS model of the Cooperative Problem Solving process compre-
hends four sub-processes, as showed in Figure 3.2, namely Problem Specification,
Knowledge Configuration, Team Formation and Teamwork. The result of the
Problem Specification process is a specification of a set of problem requirements
to be satisfied, and problem data to be used during the Teamwork process.
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Task-
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Figure 3.2: Overview of the ORCAS Cooperative Problem Solving process

The Knowledge Configuration uses the problem requirements to produce a task-
configuration, which is used to guide the Team Formation process. Next, during
the Teamwork process, the configured team resulting of the Team Formation
stage applies the capabilities and knowledge specified in the task-configuration
in order to solve the problem.

We claim that the separation between the knowledge (abstract) layer and
the operational (computational) layer helps to distinguish between the static
and dynamic aspects of agents to be taken into account during the configuration
of a MAS. The idea is to exploit the fact that the abstract specification of
agent capabilities remains stable over long periods of time, whereas there are
dynamic aspects of the system or its environment that change very quickly,
e.g. the agent workload or the network traffic. Therefore, it is useful to make
a task-configuration in terms of a stable, abstract description of capabilities,
and thereafter use the task-configuration to select the “best” candidate agents1

according to dynamic and context-based information. While other frameworks
and infrastructures focus on the task allocation stage carried on during Team
Formation, the Knowledge Configuration process is situated just before Team
Formation in the ORCAS Cooperative Problem-Solving model.

However, the CPS model should not be understood as a fixed sequence of
steps, it is rather a process model of CPS. Thus, although the Knowledge Con-
figuration is situated before Team Formation in the model, this does not imply
that the Knowledge Configuration process should be fully completed before Team
Formation begins. In fact, we have implemented strategies that interleave both
activities with Teamwork, enabling distributed configuration, lazy configuration
and dynamic reconfiguration on runtime (§5.7).

1The notion of agent goodness is specified as a criteria to be optimized, i.e. cost, speed,
reliability, etc. and the possible trade-offs among them.
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An interesting issue addressed by our framework concerns Team Formation
in large systems: agent selection during Team Formation may involve an expo-
nential number of possible team combinations, and a blow-out in the number of
interactions required to select the members of a team. The performance of the
Knowledge Configuration process brings about a task-configuration that can be
used to guide the Team Formation process: only agents with capabilities selected
during the Knowledge Configuration process are candidates to join a team, thus
reducing the number of potential teams to be considered during the selection
of team members, and drastically decreasing the amount of interaction required
among agents. Throughout, the combinatorial problem is transferred (although
mitigated) from the Team Formation process to the Knowledge Configuration
process. Our proposal to further improve this issue is the use of Case-Based
Reasoning to constrain the search over the space of possible configurations. The
idea is to use past configuration problems (cases) to heuristically guide the search
process over the space of possible configurations, as explained in §4.5.

Lastly, our objective is to develop an open agent infrastructure backing the
on-demand configuration of Cooperative MAS according to stated problem re-
quirements, based on both the Knowledge Modelling and the Operational Frame-
work. Our purpose is to provide an open but trustworthy infrastructure where to
test the proposed frameworks. Specifically, we propose to introduce a social me-
diation layer where specialized agents provide the services required to perform
the different processes of the CPS model: Problem Specification, Knowledge
Configuration, Team Formation and Teamwork. Since we want to avoid im-
posing architectural constrains over individual agents, we adopt a macro-view
centered on the interaction protocols and communication language rather focus-
ing on any particular agent architecture. Therefore, we decided to use a social
oriented approach to build an open agent infrastructure, and more specifically,
we adopted the electronic institutions (§2.4.4) approach.

An electronic institution is an infrastructure providing the mediation ser-
vices required for agents to successfully interact in open environments under
controlled conditions. This means that the institution imposes some constrains
over the agents observable behavior. In other words, an electronic institution
provides the specification of the rules of encounter for a successful interaction.
The theoretical loss of autonomy that supposes joining an electronic institution
brings, however, the advantage of allowing external agents to be more informed
about other agents, since the overall system behavior becomes more predictable
by virtue of the institution. The ORCAS infrastructure has been designed and
implemented as an electronic institution, that we call the ORCAS e-Institution.
In the ORCAS e-Institution requesters and providers of capabilities join and in-
teract by using the services provided by institutional agents. Institutional agents
are middle agents offering services beyond the usual matchmaking service. In
particular, the ORCAS e-Institution includes agents that are able of: (1) keeping
a repository (a library) of components available in a MAS, including applica-
tion tasks, agent capabilities, and domain-models; (2) configuring the task to
be achieved by a team in order to solve a given problem, according to an ab-
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stract specification of problem requirements; (3) forming and instructing agent
teams that are customized for each particular problem; and (4) coordinating
team members behavior during the Teamwork process.

The main outcome of this work is a two-layered framework for integrat-
ing Knowledge-Modelling and Cooperative Multi-Agent Systems together, called
ORCAS that stands for Open, Reusable and Configurable multi-Agent Systems.
The feasibility of the ORCAS framework has been demonstrated by implementing
the ORCAS e-Institution, an infrastructure for MAS development and deploy-
ment that supports the on-demand configuration of teams and the coordination
of agent behaviors during teamwork, according to the ORCAS two-layered frame-
work. The applicability of the framework has been tested by building WIM a
multi-agent application running upon the ORCAS e-Institution. WIM is a config-
urable MAS application to look for bibliographic references in a medical domain,
and is explained in Chapter 7. We show that the clear separation of layers will
support a flexible utilization and extension of the framework to fit different
needs, and to build other infrastructures different from the implemented ORCAS
e-Institution.

These are the two layers of the ORCAS framework, namely the Knowledge
Modelling Framework, and the Operational Framework:

1. The Knowledge Modelling Framework (KMF) (Chapter 4) is about the
conceptual description of a problem-solving system from a knowledge-level
view, abstracting the specification of components from implementation
details. Our approach is to describe agent capabilities abstracted from
implementation details in order to support the configuration of the MAS
independently of the programming language and the agent platform. The
configuration of a Multi-Agent System in terms of abstract (knowledge-
level) descriptions is automated to enable the MAS configuration to occur
on-demand, according to the requirements of the problem at hand. This
layer consists of an Abstract Architecture, and Object Language and a
Knowledge Configuration process:

• The Abstract Architecture defines the different components used to
model a MAS, which is based on the Task-Method-Domain-modelling
paradigm; the features proposed to describe each component; and the
functional relations that constrain the way components can be con-
nected to become a meaningful system. The elements of the Abstract
Architecture are explicitly declared as an ontology, called the Knowl-
edge Modelling Ontology.

• The Object Language is the language used to formally specify com-
ponent features, and the inference mechanism used to reason about
the specification of components (e.g. to determine if a capability is
suitable to solve a task).

• The Knowledge Configuration process is a search process aiming at
finding a configuration of components (tasks, capabilities and domain-
models) fulfilling the specification of the problem at hand. The result
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of the Knowledge Configuration process is a hierarchical decomposi-
tion of the initial task into subtasks, capabilities bound to each task,
and domain models bound to capabilities requiring domain knowl-
edge. The result of the Knowledge Configuration process is called a
task-configuration.

2. The Operational Framework (Chapter 5) describes the link between the
characterization of the problem solving components and its implemen-
tation by Multi-Agent Systems. This framework describes how a task-
configuration at the knowledge-level can be operationalized into a team of
agents that is formed on-demand and is customized to satisfy the specific
requirements of each problem. This layer introduces a team model based
on the KMF, the ORCAS ACDL, the Team Formation process, and the
Teamwork process.

• The Team model describes the structure and the organization of teams
according to a task-configuration as obtained by the Knowledge Con-
figuration process. The team model establishes a mapping between
KMF concepts and concepts from teamwork and Multi-Agent Sys-
tems.

• The Agent Capability Description Language (ACDL) is a language
for describing and reasoning about agent capabilities in such a way
that enables the automatic location (by performing matchmaking),
invocation, composition, and monitoring of agent capabilities. The
ORCAS ACDL is defined as a refinement or extension of the Knowl-
edge Modelling Ontology. Specifically, the ORCAS ACDL introduces
an agent based formalism to describe the operational aspects of a
capability: the operational description and the communication.

• The Team Formation process deals with the selection of agents to join
a team, and the instruction of the selected team members to solve a
specified problem according to a task-configuration, as established by
the Knowledge Configuration process. During the Team Formation
process, the tasks required to solve a problem are allocated to suitable
agents through a bidding mechanism, and selected agents receive in-
structions on which roles to play and how to cooperate with the rest
of the team. The result is a collection of team roles and commit-
ments of each team-member to their assigned roles that allows the
team solving the overall problem.

• The Teamwork process addresses the interaction and the coordina-
tion required for teams to successfully solve a problem according to
requirements of a task-configuration. During the Teamwork process,
the members of a team suitable for the problem (as established by
the Team Formation process) engage in cooperative work until the
global problem is solved, a reconfiguration of the team is needed, or
it is impossible to solve the problem. Cooperation is basically a pro-
cess of delegating subtasks to other agents in a team and aggregating
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or distributing the results of the different subtasks at appropriate
synchronization points.

Architecture Language Processes
Knowledge
Layer

Abstract
Architecture

Knowledge-Modelling
Ontology and
Object Language

Problem
Specification &
Knowledge Configuration

Operational
Layer

Team model ACDL (Communication
and Coordination)

Team Formation &
Teamwork

Table 3.1: Summary of the two-layered framework

Table 3 is summarizes the main elements addressed at each layer, attending
to three aspects: architectures, languages and processes. Furthermore, we can
consider the ORCAS e-Institution as a third layer referring to a particular im-
plementation of the former layers. We can then represent the two ORCAS layers
plus the ORCAS e-Institution as a pyramid, as illustrated in Figure 3.3. The
layer at the bottom addresses the more abstract issues, while upper layers cor-
respond to increasingly implementation dependent layers. Therefore, developers
and system engineers can decide to use only a portion of the framework, starting
from the bottom, and modifying or changing the other layers according to its
preferences and needs.

Institutional 
Framework

Operational
 Framework

Knowledge
Modelling Framework

Communication &
Coordination Lang.

Infrastructure for 
MAS deployment

Team model

Abstract architecture
Object Language

Middle (institutional)
agents

Abstract

Concret

Figure 3.3: The three layers of the ORCAS framework

The structure of the thesis follows this direction from the most abstract layer
to the more concrete, implementation dependent layers. Chapter 4 describes the
KMF; Chapter 5 deals with the Operational Framework; Chapter 6 describes the
implemented ORCAS e-Institution, and Chapter 7 demonstrates the feasibility
of the framework through examples of an implemented application (WIM).
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Figure 3.4: Cognitive map for the main topics involved in ORCAS

Figure 3.4 shows a map of the main topics addressed within the ORCAS
framework and the relation with the subjects reviewed in the related work (Chap-
ter 2).





Chapter 4

The Knowledge Modelling
Framework

This chapter describes a framework to specify agent capabilities at
the knowledge-level, which allows to reason about agent capabilities
in order to design the competence of agent teams according to the
requirements of the problem at hand.

4.1 Introduction

The Knowledge Modelling Framework (KMF) is a framework for describing and
configuring Multi-Agent Systems from an abstract, implementation independent
level.

The purpose of the KMF is twofold: On the one hand, the KMF is a concep-
tual tool to guide developers in the analysis and design of Multi-Agent Systems
in a way that maximizes reuse; on the other hand, the KMF provides the basis
of an Agent Capability Description Language supporting the automatic config-
uration of Multi-Agent Systems according to stated problem requirements.

The Knowledge Modelling Framework (KMF) proposes a conceptual descrip-
tion of cooperative Multi-Agent Systems at the knowledge level [Newell, 1982],
abstracting the specification of components from implementation details. This
framework is designed to maximize reuse and to support the formation and the
coordination of customized agent teams during the Cooperative Problem-Solving
process [Wooldridge and Jennings, 1999].

The KMF is the more abstract layer of the ORCAS framework for cooper-
ative MAS. This layer consists of three main elements, namely: the Abstract
Architecture, the Object Language, and the Knowledge Configuration process:

• The Abstract Architecture defines the types of components in the model,
the features required to describe each component, and the relations con-
straining the way in which components can be connected. The ORCAS

65
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Abstract Architecture is based on the Task-Method-Domain paradigm pre-
vailing in existing Knowledge Modelling frameworks, which distinguish be-
tween three classes of components: Tasks, Problem-Solving Methods and
Domain-models. In ORCAS there are tasks and domain models, while
PSMs are replaced by agent capabilities, playing the same role than a
PSM, but including agent specific features, like a description of a com-
munication protocol and other features required of an Agent Capability
Description Language. Nonetheless, in order to keep the KMF indepen-
dent of agent details, these agent-specific aspects of ORCAS components
remain unspecified here, and are described at the Operational Framework
(Chapter 5).

• The Object Language defines the representation language used to formally
specify component features. Many languages can be used as the Object
Language, as far as they provide a way of specifying component features as
signatures and formulae, and endorsing an inference mechanism enabling
automated reasoning processes over component specifications.

• The Knowledge Configuration process is a search process aiming at finding
a configuration of components (tasks, capabilities and domain-models) ful-
filling the specification of the problem at hand. The result of the Knowl-
edge Configuration process is a hierarchical decomposition of the initial
task into subtasks called a task-configuration.

This chapter is organized as follows: Section §4.2 describes the components
of the architecture and the relations between components that determines if
two components can be connected (matching relations); Section §4.3 justifies
the approach adopted here to the Object Language as a way to increase the
flexibility of the ORCAS KMF, and introduces a specific Object Language; next,
Section §4.4 describes the Knowledge Configuration process as a search process
over the space of possible configurations; the specific approach for the Knowledge
Configuration process using Case-Based Reasoning to guide the search process
is described in §4.5; and finally, we end the chapter with a brief discussion on
Knowledge Configuration reuse in §4.6.

4.2 The Abstract Architecture

The Abstract Architecture is a general modelling framework that is not specifi-
cally designed to describe Multi-Agent Systems, but to describe problem-solving
(knowledge-based) systems in general. It rather plays the role of a skeleton that
should be specialized or refined to deal with a concrete kind of software system,
like Cooperative Multi-Agent Systems (CooMAS).

The main goal of the Abstract Architecture is to provide a way of specifying
systems that maximizes the reuse of existing components and favors a compo-
sitional approach to software development. The Abstract Architecture specifies
which are the components used to build an application (the “building blocks”),
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and the way in which these components should be connected (the componential
framework) in order to produce a valid application.

This architecture is intended to become a conceptual tool for the solution
of the “bottom-up design problem” [Mili et al., 1995] and its application to the
field of Multi-Agent Systems, stated as as one of main goals of this thesis (§1.1,
bibliographic references in §2.3.1):

given a set of requirements, find a set of agent capabilities and
domain-models whose combined competence satisfy the require-
ments.

Each component in the Abstract Architecture is characterized by some fea-
tures (i.e. inputs and outputs), but the particular language used to specify these
features is independent of the Abstract Architecture, and belongs to the Object
Language. The different components in the Abstract Architecture and the fea-
tures characterizing them have been conceptualized and represented explicitly
as an ontology, called the Knowledge Modelling Ontology (KMO). The KMO
is used for analyzing, designing and describing problem-solving systems at an
abstract, implementation independent level, thus it can be further refined to
deal with specific architectures, including non agent-based architectures. In ad-
dition, this architecture is designed to facilitate the integration of heterogeneous
systems whenever they share the same abstract architecture, i.e. using the same
KMO for describing the components at the abstract level.

The Abstract Architecture enables a compositional approach supporting the
on-the-fly configuration of Multi-Agent Systems at the knowledge level. A con-
figuration is constructed by reasoning about the knowledge-level description of
agent capabilities, tasks (goals) to achieve, and domain-models describing spe-
cific domain knowledge. From this approach, a system is described and config-
ured by reusing and composing existing components. In particular, our view of
components is based on the Task-Method-Domain (TMD) paradigm in Knowl-
edge Modelling. TMD models propose three classes of components to model a
knowledge system: tasks, Problem-Solving Methods(PSMs) and domain-models.

1. Tasks are used to characterize generic and reusable types of problems. This
characterization is based on properties of the input, output, and nature of
the operations that map the input to the output. Usually, there is a main
task that describes an application problem, but tasks can be decomposed
into subtasks with input/output relations between them, resulting in a
task structure [Chandrasekaran et al., 1992].

2. Problem-Solving Methods (PSMs) specify the reasoning part of a knowl-
edge system [Fensel et al., 1999]. PSMs are used to describe different ways
of solving a task. A problem-solving method may decompose a task into
subtasks or may apply a primitive inference step without further decom-
posing the task [Poek and Gappa, 1993]. PSMs can use domain knowledge
to apply a reasoning step, create or change intermediary knowledge struc-
tures, perform actions to gather more data, etc. [Steels, 1990]. Problem-
Solving Methods are described with independence of the domain knowledge



68 Chapter 4. The Knowledge Modelling Framework

in order to maximize reuse [McDermott, 1988]. Some examples of prob-
lem solving methods are hill climbing, cover and differentiate, propose and
revise, etc. [Breuker, 1994]

3. Domain-models describe domain specific knowledge that is used by
Problem-Solving Methods to perform inference steps [Fensel et al., 1999].
Models can be constructed from different perspectives (for example, there
are functional models, causal models, behavioral models and structural mod-
els) and represented in heterogeneous forms, like rules, hierarchies or net-
works [Steels, 1990].

4. Ontologies provide the terminology and its properties used to define tasks,
problem solving methods and domain definitions [Fensel et al., 1999]. An
ontology provides an explicit specification of a conceptualization, which
can be shared by multiple reasoning components communicating during a
problem solving process.

In our framework, tasks are used to describe the types of problems that
a Multi-Agent System is able to solve. On the other hand, problem solving
methods are used to specify the different capabilities agents are equipped with
to solve tasks, wether they solve some task directly by applying some domain
knowledge or by decomposing a task into subtasks and delegating them to other
agents. While tasks are just generic problem specifications abstracted from
any particular implementation, agent capabilities refer to concrete, implemented
methods to solve problems that are provided by specific agents. Finally, domain-
models are used to represent specific knowledge and information sources, whether
the knowledge is provided by a shared repository, hold by an agent, or provided
by an external information source.

The Abstract Architecture specifies the components and the way of connect-
ing components that is necessary for the knowledge-level configuration of Multi-
Agent Systems. Two kind of connections are included in our framework: on the
one hand, connections between tasks and capabilities; on the other hand, connec-
tions between domain-models and capabilities. Such connections are based on
the idea of matching and mapping. A matching relationship is a binary relation
between two components that is verified by comparing its specifications. The
verification of a matching relationship is often called matchmaking (e.g. match-
making can be used to determine if two components are substitutable). On the
other hand, a mapping function is an isomorphism between two specifications,
in other words, a mapping is an explicit specification of the transformations
required to match elements expressed in different terms —using different ontolo-
gies, with the same meaning (equivalent semantics).

In the ORCAS KMF the components —tasks, capabilities and
domain-models— are described with explicit, independent ontologies
[Fensel et al., 1997]. Because of this conceptual decoupling, ontology mappings
may be required to match capabilities to tasks, and domain-models to capabil-
ities when there is an ontology mismatch. Nevertheless, we will focus on the
matching relations, assuming that the necessary ontology mappings are already
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built, or assuming that all the components share the same ontologies. This is a
reasonable assumption, since it is feasible and convenient to built the mappings
beforehand, previously to make a component available for its use.

4.2.1 Components

There are three types of knowledge components in the Abstract Architecture
(Figure 4.1 ), namely tasks, capabilities (playing the role of PSMs) and domain-
models. Furthermore, each of these components is described using concepts
defined at an explicit ontology, as indicated by the arrows in the figure. Herein
every component can be specified using its own ontology, which entails that
component specifications can be decoupled in order to maximize reuse (§4.2.1).

CapabilityTask

Domain
Model

Ontologies

Figure 4.1: Components in the Abstract Architecture

In addition to describe component features using ontologies, the concepts
used by the Knowledge Modelling Framework have been explicitly declared as
an ontology, the so called Knowledge Modelling Ontology (KMO). Since the
KMO is about components that are further specialized with specific component’s
ontologies, it can be seen a meta-ontology for describing software systems. Our
approach is to keep a clear separation between the Abstract Architecture and
the Object Language. Whilst the Abstract Architecture defines the components
of the architecture and the features characterizing each component, the Object
Language is used to describe component features in terms of signature elements
and formulae in the Object Language.

These concepts in the KMO are organized into a hierarchy of sorts (Figure
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Concept

Component

Task

Capability

Task decomposer

Problem solving skill

Domain model

Ontology

Pragmatics

Pragmatics-descriptor

Competence

Renaming

Communication

Task-capability match

Capability-domain match

Binary relation

Matching

Signature element

Formula

Operational description

Knowledge Modelling

Figure 4.2: Hierarchy of sorts in the The Knowledge Modelling Ontology

4.2). There are two main sorts, namely Component and Binary-Relation, from
which all the other sorts are specializations of. Most of these sorts have features
that describe them, which are described by primitive types (e.g. string) or by
other sorts in KMO (e.g. inputs and outputs are described with elements of the
sort Signature).

Although the Knowledge-Modelling Framework is not dependent of any par-
ticular Object Language, the Knowledge Modelling Ontology declares two con-
cepts that should be provided by the Object Language: signature-elements and
formulae. Theses concepts are defined by the sorts Signature-element and For-
mula in the KMO, which should be further refined to yield a precise, inter-
pretable meaning. In our search of a trade-off between expressive power and
computational efficiency we are using Feature Terms as the Object Language,
and subsumption as the inference mechanism (explained later, in §4.3.1).

All the components of the Abstract Architecture are subsorts of the sort
Knowledge-Component. The description of elements of the sort Knowledge-
Component contains a specification of pragmatics aspects of a component (e.g.
name, description, creator, publisher, evaluation, etc.); and a collection of on-
tologies providing the terminology (the “universe of discourse”) used to specify
other features of a component. Moreover, the pragmatics slot can be customized
by including new attributes (e.g. cost, performance measures, classification in-
dexes, reputation, etc.) to better fit the needs or preferences of the developer.

Figure 4.3 shows the features characterizing the sort Knowledge-Component.
The symbol is-a means subtype (subsort): S is-a S’ means that the sort S’ is a
subtype (subsort) of the sort S’. The symbol → indicates the sort used to specify
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Knowledge-Component is-a Concept
pragmatics → set-of Pragmatics
ontologies → set-of Ontology

Figure 4.3: The Knowledge-Component sort

a feature: f → S means that the feature f is specified as an element of sort S
(an instance of S ). The slot ontologies is defined as set of elements of the sort
Ontology, and the pragmatics slot is described with an element of the sort Prag-
matics. The sort Pragmatics, subsort of Concept (Figure 4.4) contains a number
of specific features (name, creator, subject, description, publisher, etc.) speci-
fied by a String, and application descriptors, defined as a set of elements of the
sort Pragmatics-descriptor, which are represented as attribute-value pairs (Fig-
ure 4.4). Thus, pragmatic-descriptors allow the definition and use of application
specific attributes, which should be represented as attribute-value pairs.

Pragmatics is-a Concept
name → String
creator → String
subject → String
description → String
publisher → String
other contributor → String
date → String
format → String
resource identifier → String
source → String
language → String
relation → String
rights management → String
las date of modification → String
when and where be used → String
evaluation → String
application descriptors → Pragmatics− descriptor

Pragmatics-descriptor is-a Concept
attribute → String
value → Any

Figure 4.4: Sorts Pragmatics and Pragmatics-descriptor
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Task

A task is a knowledge-level description of a type of problem to be solved. A
task can also be seen as a set of goals characterizing “what” is to be achieve
by solving some type of problem, in contrast to “how” that type of problem
can be solved, which is represented as a capability. Since it is possible to have
different ways of solving a problem, different capabilities might be able to solve
a particular task.

The sort Task (Figure 4.5) is defined as a subsort of the sort Knowledge-
Component. In addition to have a name, a description, pragmatics and ontolo-
gies, like any component, a task is described by a functional description, in terms
of inputs, outputs and competence.

• The inputs feature represent the data required to solve the kind of problems
represented by a task. This feature is specified by a set of elements of the
sort Signature (see Figure 4.6), which is specified by a name, represented
by a String; and a signature-element, of sort Signature-element). The sort
Signature-element is kept undefined in the KMO, since it is refined by
the sort Signature-element in the Object Language. The inputs can be
constrained by preconditions in the competence.

• The outputs represent the type of data that is expected as a solution to
the kind of problem a task represents. The outputs, like the inputs, are
specified by a set of elements of the sort Signature. The outputs can be
constrained by postconditions in the competence.

• The competence feature of a task expresses the relation between the input
and the output. Since it is unfeasible to specify an input-output relation
extensively (through an extensive list of input-output pairs) some form of
formal representation is required. In particular, we adopt the approach
of specifying the competence as a set of preconditions and postconditions
(figure 4.7). Preconditions are conditions that have to hold prior to solve
a task, in order to enable it, while postconditions are the properties that
have to hold after solving the task (also referred in the literature as the
goals or the effects to bring about). Both preconditions and postconditions
are represented as a set of elements of the sort Formula, which is refined
by the sort Formula in the Object Language. By keeping the Formula and
Signature-element sorts undefined in the KMO, the Object Language could
vary without affecting the Abstract Architecture, neither the matching
relations at the object level (the two levels of the matching relations are
explained later, in §4.2.2).

Capability

A capability describes the reasoning steps required to solve a class of problems
(a task), that is to say, it describes the process applied by the capability to
the input in order to obtain the output of the problem, and the use of required
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Task is-a Knowledge-Component
pragmatics → set-of Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence

Figure 4.5: The Task sort

Signature is-a Concept
name → String
signature-element → Signature-element

Figure 4.6: The Signature sort, where the Signature-element sort is to be defined
by the Object Langauge

Competence is-a Concept
preconditions → set-of Formula
postconditions → set-of Formula

Figure 4.7: The Competence sort
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knowledge to solve it. There are two types of capabilities, task-decomposers and
skills. Skills are used to describe primitive or atomic reasoning steps, that are
not further decomposed, while task decomposers are used to describe complex
reasoning processes that decompose a problem into more specialized subtasks.

As showed in Figure 4.8, the sort Capability is defined as a subsort of the
sort Knowledge-Component, and as such, it has two features for defining the
ontologies used by the capability and its pragmatics. In addition, a capability
includes a functional description that is specified as a collection of inputs, out-
puts and the competence, which is an intensional description of the capability
input/output relation. Another aspect of a capability is relative to the domain
knowledge it requires to operate: in order to be domain independent a capability
explicitly declares the type of knowledge it can operate with. The type of do-
main knowledge required by a capability is specified as a collection of signatures
in the knowledge-roles feature. Moreover, a capability includes a specification
of assumptions, which are properties that should be verified by a domain-model
providing some knowledge-role, in order to be sensibly used by the capability.
Furthermore, a capability includes another feature called communication, which
is used to describe the technical aspects required to invoke and interact with a
capability. Since the information provided by the communication slot depends
on implementation details it is explained later, within the Operational Frame-
work (Chapter 5).

Capability is-a Knowledge-Component
pragmatics → Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence
knowledge-roles → set-of Signature
assumptions → set-of Assumptions
communication → Communication

Figure 4.8: The Capability sort

A more detailed description of the different features characterizing a capa-
bility (Figure 4.8) follows:

• The inputs feature represents the data required to apply the capability.
This feature is represented by a set of elements of the sort Signature,
which is defined by sort consisting of a name and a signature element. A
signature element is defined by an element of the sort Signature-element,
to be refined by a sort in the Object Language (Figure 4.6). Inputs can be
constrained by the the preconditions specified in the competence feature.

• The outputs feature represents the type of the data that is expected as
a result of applying the capability to solve the tasks it is suitable for.
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The outputs are represented by elements of the sort Signature and can be
constrained by postconditions in the competence feature.

• The competence of a capability represents the relation between the input
and the output, and (as for tasks) is specified as a set of preconditions
and postconditions (Figure 4.7). Preconditions are conditions that have to
verify in order to enable the inference process provided by the capability,
while postconditions are the new conditions produced by the application
of the capability (also referred as the effects brought about), whenever the
preconditions hold. Both preconditions and postconditions are specified as
elements of the sort Formula, which is defined in the Object Language.

• The knowledge-roles are specifications of “inputs” to be provided by some
domain knowledge. Knowledge-roles refer to concepts characterizing the
application domain, and are used during the Knowledge Configuration to
select domain models that are compatible with a capability. Only the
domain models providing the concepts required by a knowledge-role are
suitable for a capability. A knowledge-role is defined as an element of the
sort Signature, like the inputs and outputs, and as such it is defined by the
sort Signature-element, to be refined in the Object Language.

• The assumptions of a capability are necessary criteria for the achievement
of the desired competence of the capability. Assumptions are conditions
required from a domain model providing a particular knowledge-role to be
sensibly used by the capability. Assumptions are associated to a particular
knowledge-role, from those specified in the knowledge-roles feature of the
capability. Assumptions are represented as elements of the homonym sort:
Assumptions (Figure 4.9). An assumption is specified as a pair consisting
of a knowledge-role, and a collection of conditions over the domain-model
providing such knowledge-role. If a capability introduces more than one
knowledge-role, then a domain-model is required to fill in every knowledge-
role, and each domain-model has to verify the conditions associated to that
knowledge-role.

• The communication slot defines technical information about the interac-
tion protocol and the data format used to communicate with the provider
of the capability. Since capabilities in ORCAS are provided by agents, the
communication information is basically defined by the agent communica-
tion language and some kind of interaction protocol describing the pattern
of communication between the requester and the provider of the capa-
bility. The information provided by the communication slot is required
during the Cooperative Problem-Solving process to request an agent to
apply a capability for solving a task. Since the communication property
is closer than other aspects of a capability to the implementation details,
it is avoided at the Knowledge Configuration process, and is instead pre-
sented as an operational property required for the ORCAS KMF to become
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a full-fledged Agent Capability Description Language. Consequently, com-
munication aspects are described in the Operational Framework (Chapter
§5).

Assumptions
knowledge-role → Signature
conditions → set-of Formula

Figure 4.9: The Assumptions sort

Skills

A skill describes a primitive reasoning capability, without decomposing the prob-
lem to be solved into subproblems. The sort Skill (Figure 4.10) is defined as a
subsort of the sort Capability. A skill does not need to introduce any new fea-
ture beyond the properties defined by the sort Capability. Therefore, a skill has
pragmatics and ontologies inherited from the sort Knowledge-Component; and
inputs, outputs, competence, knowledge-roles and assumptions inherited from
the sort Capability.

Skill is-a Capability
pragmatics → Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence
knowledge-roles → set-of Signature
assumptions → set-of Assumptions
communication → Communication

Figure 4.10: The Skill sort

Task-decomposers

A task-decomposer is a capability that decomposes a problem in subproblems.
A task-decomposer capability describes how a task is decomposed into a num-
ber of subtasks which combined competence satisfies the postconditions of the
capability, whenever the preconditions of the capability hold.

The sort Task-Decomposer (Figure 4.11) is defined as a subsort of the sort Ca-
pability. Like a capability, a task-decomposer is described with inputs, outputs,
knowledge-roles, competence, assumptions and communication, but in addition
a task-decomposer provides the subtasks in which it decomposes a task, and the
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operational description of the problem-solving process, representing the control
and data flow among subtasks.

• The subtasks feature specifies a collection of tasks the combined compe-
tence of which can achieve the competence defined by the task-decomposer.
The subtasks feature is defined as a set of elements of the sort Task.

• The operational description feature specifies the reasoning steps applied
by a capability in order to achieve its competence. In the Knowledge-
Modelling Ontology, the operational description is defined as an element
of the sort Operational-Description. Like the sort Communication, the
sort Operational-Description is more closer to the implementation details
than the other features characterizing a task-decomposer, and consequently
it will be defined at the Operational Framework, as another element to
be extend the KMF in order to become an Agent Capability Description
Language (section 5.4.3).

Task-Decomposer is-a Capability
pragmatics → Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence
knowledge-roles → set-of Signature
assumptions → set-of Formula
communication → Communication
subtasks → set-of Task
operational-description → Operational-Description

Figure 4.11: The Task-Decomposer sort

While other Knowledge Modelling frameworks describe the reasoning pro-
cess of a capability in terms of inference steps, we prefer to describe complex
capabilities in terms of a decomposition of interrelated subtasks (§5.4.3), with-
out further specifying which capability is applied to solve each subtask (this is
decided during the configuration of the task-decomposer at the Knowledge Con-
figuration process). Therefore, an operational description should be understood
as a template for decomposing a complex task into subtasks, without specifying
the way each subtask is solved, only the way they are combined. This way of
representing a task decomposition in terms of subtasks and not in terms of capa-
bilities maximizes reuse and allows a flexible configuration of a task by assigning
the most appropriate capabilities for each specified problem. A task-decomposer
is then a problem decomposition schema that can be instantiated or configured
on-demand, by selecting capabilities and domain-models suitable for a specific
problem. This way of decomposing a problem into subtasks is a key element
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of the Knowledge Configuration process backing the on-demand configuration
of Multi-Agent Systems to satisfy specified problem requirements. We do not
introduce now a concrete language for specifying the operational-description,
since this feature, like the communication feature, pertains to the Operational
Framework.

Both the Communication and the Operational-Description sorts are excluded
from the Knowledge Configuration process and the Knowledge Modelling On-
tology, thus they are described at the Operational Framework (Section §5.4).
The idea is to keep the Knowledge Configuration process independent of the
operational-level details of agent capabilities.

While a task decomposer corresponds to a white-box model of a capability,
a skill is described using a black-box model. This consideration implies a weak
notion of the difference between task-decomposers and skills according to the
two ways of modelling a process: white-box vs black-box, i.e. choosing a skill to
represent a capability does not necessarily mean that a very simple capability
is being represented, but it can obey to some interest in hiding the details of a
complex reasoning process. The purpose of introducing this consideration is to
support a more flexible approach to the operational framework. For example,
an agent may prefer to hide the details of a capability in order to keep it under
local control. Therefore, autonomous agents may decide to declare a capability
as a task-decomposer or as a skill according to its own preferences or to some
conditions.

Domain-models

A domain-model (DM) specifies the concepts, relations and properties charac-
terizing the knowledge of some application domain.

The sort Domain-Model (Figure 4.12) is defined as a subsort of the sort
Knowledge-Component, and as such a domain-model has a name, a textual
description, pragmatics and ontologies. Moreover, the sort domain-model in-
troduces some new features, namely knowledge-roles, properties and meta-
knowledge.

• The knowledge-roles define the concepts provided by the domain-model
ontologies to describe domain knowledge that can be used by a capabil-
ity. The knowledge-roles are specified as a set of elements of the sort
Signature-element, to be refined by the sort Signature-element in the Ob-
ject Language.

• The properties feature is used to represent properties verified by the knowl-
edge characterized by the domain-model.

• The meta-knowledge feature represents properties of the knowledge that
are assumed to be true though they cannot be verified.

Domain-models are used to explicitly describe the knowledge required by a
capability to solve a problem. Therefore, the concepts defined by a domain-
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model ontology should be understood by a capability in order to use the knowl-
edge characterized by that domain-model, or there must exist a mapping between
the concepts defined in the capability ontology and equivalent concepts in the
domain-model ontology. Moreover, in addition to fill in the knowledge-roles of a
capability with domain-models, the assumptions of a capability must be satisfied
by the domain-models of choice. These assumptions can be verified by either
the domain-model’s properties or the meta-knowledge.

Domain-Model is-a Knowledge-Component
pragmatics → Pragmatics
ontologies → set-of Ontology
knowledge-roles → set-of Signature-element
properties → set-of Formula
meta-knowledge → set-of Formula

Figure 4.12: The Domain-Model sort

Ontologies

Concerning ontologies, we agree with [Guarino, 1997b] about the potential role
of explicit ontologies to support reuse. Although a definition of what on-
tologies are is still a debated issue, it is a topic of active research in the
AI community, and has been declared as a key issue in maximizing reuse
[Fensel, 1997a, Fensel and Benjamins, 1998b]. From that view, the main goal
of an ontology is to make knowledge explicit and sharable. Below follows a
concrete definition that expresses worth the role played by ontologies in our
framework.

Ontologies are shared agreements about shared conceptualizations.
Shared conceptualizations include conceptual frameworks for mod-
elling domain knowledge; content-specific protocols for communicat-
ing among interoperating agents; and agreements about the repre-
sentation of particular domain theories. In the knowledge sharing
context, ontologies are specified in the form of definitions of repre-
sentational vocabulary [Guarino, 1997b].

In ORCAS, ontologies are used to explicitly declare the concepts used to spec-
ify the features characterizing a component. In particular, any concept should
be specified as a refinement (a subsort) of two sorts provided by the Object
Language: Signature-element and Formula. We adopt the usual approach to
represent ontologies as hierarchies of concepts and relations. Specifically, we
use the Feature Terms [Armengol and Plaza, 1997, Arcos, 1997] formalism to
describe the sorts defined by an ontology, as described in §4.3.

In Feature Terms, concepts are organized as a hierarchy of sorts, and both
descriptions and individuals as represented as collections of functional relations.
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Any ontology used to specify components in ORCAS provides two basic sorts
from which all the other sorts are descendant: the sort Signature-element and
the sort Formula.

The sort Ontology is defined as a subsort of the sort Knowledge-Component
(Figure 4.13), and as such it inherits the pragmatics feature, and the ontolo-
gies feature. But the information characterizing an ontology is mainly pro-
vided by a hierarchy of sorts below two main sorts: Signature-element and For-
mula. Therefore, an ontology includes a collection of sorts defined as subsorts
of Signature-element, and a collection of sorts defined as subsorts of Formula.
Furthermore, an element (an instance) of the sort Ontology can import other
ontologies through the “ontologies” feature, inherited from the sort Knowledge-
Component, and specified as a collection of elements of sort Ontology.

Ontology is-a Knowledge-Component
pragmatics → Pragmatics
ontologies → set-of Ontology
signature → set-of Signature-element
formulae → set-of Formula

Figure 4.13: The Ontology sort

Figure 4.14 shows the sorts defined by the ontology used to describe the
tasks and capabilities in the WIM application (Chapter 7). The sort Signature-
element is used to describe the inputs and outputs of a task or capability, and
the knowledge-roles of a capability or a domain-model. The sort Formula is
used to specify the preconditions and postconditions of a task or capability,
the assumptions of a capability, and the properties and meta-knowledge of a
domain-model.

The explicit, declarative and shared nature of component’s ontologies make
them appropriate to annotate components with semantic information; thus
enabling to compare component specifications on a semantic matching basis
[Guarino, 1997a, Paolucci et al., 2002]. Semantic matching has been defined as
an operator that takes two graph-like structures (e.g., database schemas or on-
tologies) and produces a mapping between elements of the two graphs that cor-
respond semantically to each other [Giunchiglia and Shvaiko, 2003].

4.2.2 Matching relations

This section describes the different relationships that may be established between
components in the Abstract Architecture and the role these relations play in the
Knowledge Configuration process.

The ORCAS KMF describes a system as a collection of tasks, capabilities
and domain-models. Nevertheless, an enumeration of classes of components
is not enough to describe a system, some structuring principle is needed. In
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Figure 4.14: Hierarchy of sorts in the ISA-Ontology (from the WIM application,
Chapter 7)
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ORCAS this structure derives from the functional relations that can be estab-
lished among components in the Abstract Architecture. Specifically, the ORCAS
KMF includes two types of binary relations between components, namely Task-
Capability matching and Capability-Domain matching.

• A Task-capability matching relation is defined between a task and a capa-
bility. Intuitively, a task-capability matching denotes a suitability relation:
a task-capability relation is verified (is evaluated as true) when the capabil-
ity is suitable for the task. In other words, a task “matches” a capability if
the capability is able to solve the type of problems defined by the task. This
relation compares the inputs, outputs and competence of a task against
the homonym features of a capability to determine wether the application
of the capability is able to achieve the postconditions of the task, whenever
the preconditions of the task hold.

• A Capability-domain matching relation is defined between a capability
and a collection of domain models characterizing the application domain.
Since a capability may include many knowledge-roles, then a domain-
model would be required to fill in each knowledge-role. Intuitively, a
capability-domain matching denotes a relation of satisfiability : a capabil-
ity “matches” a set of domain-models when the knowledge characterized
by those domain-models satisfies the knowledge requirements (the assump-
tions) of the capability for each knowledge-role. This relation is defined in
terms of knowledge-roles and capability assumptions that are satisfied by
the properties and meta-knowledge of the domain-models.

Task TMC

CMD

Matching

Capability

Domain
Model

Ontology

suitable for

compatible
 with

Figure 4.15: Matching relations in the Abstract Architecture

Figure 4.15 shows the components in the Abstract Architecture and the
matching relations than can be established among components.

Understanding the matching relations is important because the operations
to be performed during the Knowledge Configuration process are based on these
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relations, and also because these relations are necessary to drive the analysis
and the knowledge acquisition phases of software development.

The second point will be realized progressively through the rest of the chap-
ter, but the main idea is using the matching relations to constrain the selection
of components during the Knowledge Configuration process.

A matching relation (also referred as a “match”) is determined by comparing
two specifications, and has the goal of determining whether two software com-
ponents are related in some way, e.g. two software components “match” if they
are substitutable or if one component can be adapted to fit the requirements of
another one.

The definition of a matching relation between components is built upon the
definition of a more basic relation between component features. Since compo-
nent features are specified in terms of the Object Language, matching will be
defined upon a relation between elements (signature-elements and formulae) of
the Object Language. Hence, in order to maximize the reuse of the Abstract
Architecture over different Object Languages, we introduce two levels in the def-
inition of a matching relation: the abstract-level matching and the object-level
matching.

• The abstract-level matching is situated at the level of the Abstract Archi-
tecture. Matching relations at this level are based on an abstract relation
between component features. Therefore, any system using the ORCAS
Abstract Architecture can use the matching relations at the abstract level.

• The object-level matching is concerned with the Object Language. Match-
ing relations at this level are defined as a refinement of the matching re-
lations at the abstract level. This refinement is achieved by replacing the
abstract relation by an object relation that is defined between elements
(signature-elements and formulae) in the Object Language.

Before providing specific definitions of the ORCAS matching rela-
tions we will give some basic definitions concerning matching. Our
approach to component matching is based on a combination of sig-
nature matching [Zaremski and Wing, 1995] and specification matching
[Zaremski and Wing, 1997], that we prefer to call competence matching. Signa-
ture matching relations compare the interface of two components in terms of
the types of information (and knowledge) they use (inputs and knowledge-roles)
and produce (output). Competence matching relations compare the features
characterizing the competence (preconditions and postconditions) of two com-
ponents to determine if two components are substitutable, or if a component
satisfies the requirements of another (e.g. a capability that is suitable for a task
must satisfy all postconditions of that task).

In general, a matching relation is defined between two component specifica-
tions as follows:

Match(S, S′) = matchsig(S, S) ∧ matchcomp(Q,S)
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where S, S′ are the specification of two components, matchsig is a signature
matching and matchcomp is a competence matching.

The particular definition of signature matching and competence matching
will be different for the different types of matching relation (Task-Capability
matching or Capability-Domain matching).

Task-capability matching

A Task-capability match is defined between a task T and a capability C to
determine wether C is suitable for the T (i.e. C can be applied to solve the type
of problems characterized by T ).

We define a Task-capability match as the conjunction of a Generalized Type
Match over the input signature specification, and a Specialized Type Match over
the output signature specification [Zaremski and Wing, 1995], and a Plug-in
Match [Zaremski and Wing, 1997] over the competence specification.

Definition 4.1 (Task-capability match)
match(T,C) = matchgen(Tin, Cin) ∧matchspec(Tout, Cout) ∧matchplugin(T, C)

where T is a task C and is a capability, matchgen is a Generalized Signature
Match, matchspec is a Specialized Signature Match, and matchplugin is a Plug-in
match defined over the competence specification (preconditions and postcondi-
tions).

The Generalized Signature Match over the input signatures means that the
capability has an input signature Cin equal or more general than task input
signature Tin.

matchgen(Tin, Cin) = (Tin ≥ Cin)

Inversely, the Specialized Signature Match over the output signatures means
that the capability output is of the same type or of a more specific type than
the task output.

matchspec(Tout, Cout) = (Tout ≤ Cout)

This combination of generalized and specialized matchings has the following
justification:

• On the one hand, a capability with a more general input than a task
implies the capability can extract from the task input all the information
it requires. However, if we select a capability with an input more specific
than a task (with more information), then the capability cannot obtain
all the information it uses as input, and this fact could result on a bad
capability operation.

• On the other hand, a capability with an output signature more specific
means that it is able to provide all the information characterizing the
output signature of a task, which is not true if the output of the capability
is more general (with less information) than the output of the task.
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Moreover, the Plug-in Match (matchplugin) [Zaremski and Wing, 1997] re-
quires a capability C to have equal or weaker preconditions than a task T and
equal or stronger postconditions than T :

matchplugin(T, C) = (Tpre ⇒ Cpre) ∧ (Cpost ⇒ Tpost)

The reason to use that kind of matching is the following: we want to use
capabilities that are suitable for (able to solve) a task, thus we want that when-
ever the preconditions specified by the task hold, the application of the capability
guaranteed that the postconditions of the task will hold after its application.

The demonstration of the former property from the definition of the plug-in
match is as follows: Tpre entails that Cpre holds, due to the first conjunct of the
Plug-in Match, and C guarantees that Cpre ⇒ Cpost; consequently, it’s assured
that Cpost will hold after executing C, which entails also Tpost, due to the second
conjunct (Cpost ⇒ Tpost).

These definitions will be refined later in terms of object-level matching rela-
tions on signatures and on formulae (§4.3.3).

Capability-domain matching

Matching of domain-models and capabilities is slightly different, since a domain-
model does not include a competence specification, neither an input nor an
output. However, a capability may introduce more than one knowledge-role,
consequently many domain-models would be required to match a single capabil-
ity.

If a capability introduces only one knowledge-role, then we can say that a
capability matches a domain model when the domain-model provides the kind of
knowledge characterized by that knowledge-role, and satisfies the assumptions
established by the capability for that knowledge-role. Moreover, if a capabil-
ity specifies more than one knowledge-role, then for each knowledge-role there
should exist one domain-model matching the specification of the capability .

Let’s define the set of knowledge-roles of a capability as Ckr = {Ci
kr : i =

1 . . . n}, and let’s represent the set of assumptions of a capability over a particular
knowledge-role as Ci

asm. A matching relation between a knowledge-role of a
capability (Ci

kr ∈ Ckr) and one domain-model (M) is called a partial capability-
domain match. A partial capability-domain match is defined such that there is at
least one knowledge-roles in the domain-model (Mkr) that is equivalent or more
specific than the knowledge-role of the capability (Ci

kr), and the assumptions
of the capability for that knowledge-role Ci

asm are satisfied by the union of the
properties and meta-knowledge of the domain-model (Mprop ∪Mmk), namely

Matchpartial(C, M, Ci
kr) = matchesp(Ci

kr,Mkr) ∧ (Mprop ∪Mmk ⇒ Ci
asm)

where Ci
kr is a knowledge-role of a capability and M is a domain-model;

matchspec is a Specialized Signature Match; Mprop and Mmk are the proper-
ties and meta-knowledge of M , and Ci

asm are the assumptions of capability C
for the knowledge-role Ci

kr.
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In this definition, a partial capability-domain match is expressed as a combi-
nation of a Specialized Type Match between the signature specification of a ca-
pability knowledge-role and the specification of the knowledge-roles of a domain-
model, and a special kind of Plug-in Match defined between the specification of
the assumptions of a capability for a single knowledge-role, and the properties
and meta-knowledge of the domain-model.

The Specialized Type Match between a knowledge-role and a domain-model
is defined as follows:

matchesp(Ci
kr,Mkr) = (Ci

kr ≤ Mkr)

The reason to use a Specialized Type Match here is that we must ensure the
knowledge-roles characterized by a domain-model M can provide at least all the
information required by a knowledge-role of a capability Ci

kr. This condition
is guaranteed when the signature specification of the knowledge-roles of the
domain-model (Mkr) is equal to or specializes the signature specification of the
capability knowledge-role (Ci

kr). If Mkr was more general than Ci
kr, then it

may occur than some of the information required by Ci
kr cannot be provided by

the knowledge characterized by Mkr, and thus the capability cannot use that
knowledge appropriately.

Moreover, in order for a capability to use the information characterized by a
knowledge-role (Ci

kr), the domain-model providing that knowledge-role should
guarantee that the assumptions of the capability over that role (Ci

asm) are sat-
isfied by M . The specification of a domain-model is divided in two parts called
properties (Mprop) and meta-knowledge (Mmk), consequently we define that the
assumptions of a capability for a knowledge-role Ci

asm are satisfied by a domain-
model when these assumptions are implied by the union of both the properties
and meta-knowledge of the domain-model (Mprop ∪Mmk), as follows:

(Mprop ∪Mmk ⇒ Ci
asm)

Now we can define a matching relation between a capability and a collec-
tion of domain models M that satisfy C as a conjunction of matching relations
between pairs consisting of a knowledge-role (a signature element) and a do-
main model that matches it, such that there is a domain-model matching every
knowledge-role specified by the capability.

Definition 4.2 (Capability-domain match)

match(C,M) = ∀Ci
kr ∈ Ckr : ∃M ∈M|Matchpartial(C,M,Ci

kr)
= ∀Ci

kr ∈ Ckr : ∃M ∈M| (Ci
kr ≤ Mkr) ∧ (Mprop ∪Mmk ⇒ Ci

asm)

where C is a capability, M is a set of domain-models; matchspec is a Specialized
Signature Match; Mprop and Mmk are the properties and meta-knowledge of M ,
and Casm are the assumptions of capability C.
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Ontology mappings

Since ORCAS components declare its conceptualizations (the “universe of dis-
course”) as ontologies, and two components may be declared using different on-
tologies, then it can be necessary to establish a mapping between the concepts
of the two ontologies, what is called a ontology mapping.

An ontology mapping is a declarative specification of the transformations
required to match elements of one ontology to elements of another ontology.
An example of a mapping is a renaming, but a mapping can include any kind
of syntactic or semantic transformation: numerical mapping, lexical mapping,
regular expression mapping and others [Park et al., 1998].

Nevertheless, in this thesis we focus on the matchmaking process (the process
of verifying if a matching relation holds) assuming that all the components share
the same ontologies or the required ontology mappings are already built.

4.3 The Object Language

This section presents a specific Object Language to be used within the ORCAS
KMF to specify component features, and a particular relation (subsumption) to
compare the specification of components in order to verify whether a matching
relation holds.

We need an Object Language O in which to write the specification of ca-
pabilities, tasks and domain-models. Moreover, the Object Language has to be
used also to represent other objects required by the Knowledge Configuration
process, including the specification of problem requirements, task-configurations
(the result of the Knowledge-Configuration process), and search states (Knowl-
edge Configuration is approached as a search process over the space of possible
configurations).

The Object Language provides a formalism for defining the terminologies
used to specify component features. As we have introduced when describing the
Abstract Architecture (§4.2.1), most of the features used to describe a component
are specified by either signature elements or formulae in the Object Language:
The sort Signature-element is used to describe the input and output of tasks
and capabilities, and the knowledge-roles of capabilities and domain-models as
well. The sort Formula is used to specify the preconditions and postconditions
of tasks and capabilities, the assumptions of a capability, and the properties
and meta-knowledge of a domain-model1. In ORCAS the terminologies used to
specify component features are represented by ontologies, thus the elements of
the Object Language are specified as sorts of some ontology.

Figure 4.14 shows an example of an Object Language onotology used to
specify tasks and capabilities in the WIM application (Chapter 7). Notice that

1Usually, knowledge-modelling languages describe these kind of specifications with a formal
language, some examples are LOOM [Gaspari et al., 1998], OCML [Motta, 1999] and KARL
[Studer et al., 1996]
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every sort is a specialization (a subtype) of either the sort Signature-element or
the sort Formula.

Many languages could be used as the Object Language while keeping the
ORCAS Abstract Architecture, thanks to a clear separation of two levels in the
definition of a matching relation: the abstract level matching and the object level
matching.

We have already defined the matching relations at the abstract level, now
we are going to describe the Feature Terms formalism to be used as the Object
Language. Following, the ORCAS matching relations will be rewrited using
subsumption between feature terms as the object-level matching relation..

4.3.1 The Language of Feature Terms

The ORCAS Object Language is based on the Feature Terms formalism to rep-
resent ontologies and component features. Feature Terms (also called feature
structures or ψ-terms) are a generalization of first order terms. The difference
between feature terms and first order terms is the following: a first order term,
e.g. f(x, y, g(x, y)) can be formally described as a tree and a fixed tree-traversal
order. In other words, parameters are identified by position. The intuition be-
hind a feature term is that it can be described as a labelled graph i.e. parameters
are identified by name.

Specifically, we use a concrete implementation of feature terms as em-
bodied in the NOOS representation language [Arcos, 1997], in which sev-
eral Case Based Reasoning systems have been described and implemented
[Arcos et al., 1998, Arcos, 2001]. This formalism organizes concepts into a hi-
erarchy of sorts, and represents descriptions and individuals as collections of
features (functional relations) called feature terms. The attributes used to de-
scribe a component (signature-elements and formulae) will be specified as feature
terms in the Feature Terms formalism.

Before to define Feature Terms formally we need to introduce the following
elements:

1. a signature Σ = 〈S,F ,≤〉 (where S is a set of sort symbols that includes
⊥; F is a set of feature symbols; and ≤ is a decidable partial order on S
such that ⊥ is the least element),

2. and a set ϑ of variables;

Succinctly, we can now define a feature term ψ as an expression of the form:

ψ ::= X : s[f1
.= Ψ1 . . . fn

.= Ψn] (4.1)

where X is a variable in ϑ that is called the root of the feature term, s is a sort
in S (the root sort), f1 . . . fn are features in F , n ≤ 0, and each Ψi is a set
of Feature Terms and variables. When n = 0 we are defining a term without
features. The set of variables occurring in ψ is noted as ϑψ.
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Sorts have an informational order relation (≤) among them, where ψ ≤ ψ′

means that ψ has less information than ψ′ (or equivalently that ψ is more general
than ψ′). The minimal element (⊥) is called any and represents the minimum
information. A feature with an unknown value is represented as having the value
any. All other sorts are more specific than any.

4.3.2 Subsumption

A basic notion of the Feature Terms formalism is that of subsumption, which we
use as the inference mechanism. Subsumption is an order relation among terms
built on the top of the ≤ relation among sorts.

Intuitively, we say of two Feature Terms ψ, ψ′ ∈ Φ that ψ subsumes ψ′

(ψ v ψ′) when all that is true for ψ is also true for ψ′. A more formal definition
of subsumption is introduced below, but first we need to introduce some notation
and basic definitions:

• Root(ψ) is defined as a function that returns the root of a term (a variable
X).

• Sort(X) is defined as a function that returns the sort of the variable X.

• A path ρ(X, fi) is defined as a sequence of features going from the variable
X to the feature fi. There is a path equality when two paths point to the
same value. Path equality is equivalent to variable equality in first order
terms.

• We use a “dot notation” to reference a particular feature within a term,
thus ψ.f refers to the feature f of the term ψ.

Now we can define subsumption as follows:

Definition 4.3 (Subsumption) Feature term ψ subsumes ψ′ (ψ v ψ′) if:

1. Sort(Root(ψ)) ≤ Sort(Root(ψ′)), i.e. the root sort of ψ′ is the same sort
or a subsort of the root sort of ψ.

2. ∀f ∈ F : ψ.f 6= ⊥ ⇒ ψ′.f 6= ⊥, i.e. every defined feature in ψ is also
defined (has a value different from ⊥) in ψ′.

3. ∀f ∈ F : ψ.f = v 6= ⊥ ⇒ v v v′ = ψ′.f if v is a singleton,

4. otherwise if ψ.f is a set ψ.f = V = {v1 . . . vm} then ∀vi ∈ V : ∃v′j ∈ V ′ =
ψ′.f : vi v v′j), i.e. there is a subsumption mapping between the sets.

5. (ρ(Root(ψ), f1) = ρ((Root(ψ), f2) = v) ⇒ (ρ(Root(ψ′), f1) =
ρ((Root(ψ′), f2) = v′ ∧ v v v′); i.e., path equality is satisfied downwards.
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Figure 4.16: Representation of feature terms as labelled graphs

Notice that step 4 of Definition 4.3 provides a concrete interpretation of the
subsumption between two sets: thus given two sets of feature terms Ψ, Ψ′ we
say that Ψ v Ψ′ if step 4 of Definition 4.3 is verified.

Figure 4.16 shows an example of two features that verify a subsumption
relation. This picture shows feature terms as labelled directed graphs: for each
variable X : s there is a node q labelled with sort s, while an arc from q to
another node q′ is labelled by f , for each feature f defined in q with feature
value q′.

In this example there are two feature terms ψ, ψ′ with the same root sort,
person. Notice that ψ subsumes ψ′, ψ v ψ′, since ψ′ contains more information
than ψ (ψ′ is a specialization of ψ, which entails that all that is true for ψ′ is
also true for ψ, ψ ⇒ ψ): Both ψ and ψ′ are of sort person. ψ has two features,
name and father, specified as elements of sort name and person respectively. The
feature name is specified as terms of sort name, which has a feature called last
representing the father’s name. For both terms the father’s name has a single
feature called name which is the same (there is path equality) than the last name
of the person. However, ψ′ specializes ψ in the following aspects: the last name
of ψ is specified as a term of sort family-name, and the last name of ψ′ is John,
which identifies a term of sort family name, and thus it is just a specialization of
the last name of ψ′. Finally, ψ′ has another feature not existing in ψ (lives-at)
that contains a partial description of their home address. ψ′ is a specialization
of psi, since ψ′ contains more information than ψ, and thus we conclude than
ψ′ is subsumed by ψ.
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4.3.3 Matching by subsumption

Subsumption can be now used to define the matching relations at the object-
level. Both signatures and formulae in our Object Language are represented
using terms in the Feature Terms formalism. Moreover, each term ψ has an
associated root sort (Sort(ψ)), and these sorts are organized into a hierarchy of
sorts in the component’s ontology. As a consequence, terms without any feature
can be directly evaluated upon the informational partial order relation (≤) over
their root sorts.

In general a signature or a formula can be expressed as a full fledged Feature
Terms structure, and therefore the relations (≤ and⇒) used to define the match-
ing relations should be reformulated using Feature Terms concepts, namely the
informational partial order relation ≤ and the implication ⇒ relation. These
relations will be specialized by the subsumption relation among Feature Terms
(Definition 4.3) as follows.

• On the one hand, if a term ψ subsumes another term ψ′ (ψ v ψ′), then the
root sorts for these terms verify a partial order relation (Step 1 of Definition
4.3): ψ v ψ′ ⇒ Sort(ψ) ≤ Sort(ψ′). Intuitively, the subsumption relation
can be regarded as a generalization of the informational order relation (≤)
to compare terms having no empty features (features with a value different
of ⊥) with structures, in place of single sorts. Therefore, the partial order
relation (≤) introduced at the abstract-level matching is replaced by the
subsumption relation at the object-level matching.

• On the other hand, the implication relation (⇒) introduced at the abstract-
level matching boils down to subsumption over Feature Terms at the
object-level matching. Intuitively, a term ψ subsuming another term ψ′

(ψ v ψ′) means that ψ′ is more specific or has more information than ψ,
and this implies that all that is true for ψ is also true for ψ′: ψ ⇒ ψ′.

Now we can express signature matching over inputs and outputs using sub-
sumption over Feature Terms, as follows:

matchsig(T, C) = Tin v Cin ∧ Tout v Cout

where subsumption (v) is among sets (step 4 of Definition 4.3).
Similarly, we can reformulate the definition of a Plug-in Match between a

task and a capability as follows:

matchplugin(T, C) = Tpre v Cpre ∧ Cpost v Tpost

Now that we have defined the basic matching relations between signature-
elements and formulae expressed at the object-level, we are ready to reformulate
the whole definition of a Task-capability match (Definition 4.1) to the language
of Feature Terms using subsumption:

Definition 4.4 (Task-capability match by subsumption)
match(T,C) = Tin v Cin ∧ Cout v Tout ∧ Cpre v Tpre ∧ Tpost v Cpost
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Intuitively, this definition is justified as follows: If the input of the capa-
bility subsumes the input of the task (Cin v Tin) then the input for the task
will provide at least all the information required by the capability, since the
input of the task is more specific or has more information that the input of the
task. Complementarily, the output of the capability subsumes the output of
task (Cout v Tout) implies that the output of the capability is more specific than
the output of the task and, consequently, the application of the capability can
provide at least all the information required by the task output.

Concerning the competence, the fact that the preconditions of the capability
subsume the preconditions of the task (Cpre v Tpre) means that all the precondi-
tions of the capability are guaranteed by the equal or more specific preconditions
of the task, and viceversa: the fact that the postconditions of the task subsume
the capability postconditions (Tpost v Cpost) means that all task postconditions
are guaranteed by the capability postconditions.

Similarly, we can specialize the definition of a Capability-domain match (Def-
inition 4.1) to the language of Feature Terms by using subsumption as the basic
matching:

Definition 4.5 (Capability-domain match)

match(C,M) = ∀Ci
kr ∈ Ckr : ∃M ∈M|Matchpartial(C,M,Ci

kr)
= ∀Ci

kr ∈ Ckr : ∃M ∈M| (Ci
kr v Mkr) ∧ (Ci

asm v Mprop ∪Mmk)

where C is a capability, M is a set of domain-models; Ckr are the knowledge-
roles, and Ci

asm are the assumptions of the capability for the ith knowledge-role,
specified as a set of signature-elements and formulae respectively; and Mprop,
Mmk are the properties and meta-knowledge of a domain-model, specified as
formulae. Both signature-elements and formulae are specified by feature terms.

In this definition, two conditions are imposed for establishing a match be-
tween a capability and a collection of domain-model:

1. the specification of knowledge-role signatures by the domain-models must
provide at least as much information as required by the signature specifi-
cation of the knowledge-role of the capability. This condition is ensured
if for each signature specifying a knowledge-role of the capability, there is
a specification of domain-model signatures that refines or is more specific
than it, which in feature terms is expressed by the idea of being subsumed
(Ci

kr v Mkr);

2. the assumptions of the capability for each knowledge-role Ci
kr must be

satisfied by the properties and meta-knowledge of a domain-model that in
addition verifies the matching between the signature specification: this is
assured if all that is true for the domain-model is also true for the assump-
tions of the capability ((Mprop ∪Mmk) ⇒ Ci

asm). Using feature terms this
condition can be expressed using subsumption as Casm v (Mprop ∪Mmk).
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4.4 Knowledge Configuration

We have defined the MAS configuration process as being performed at two lay-
ers: the Knowledge Configuration process, that is situated at the knowledge-
layer (this chapter), and the Team Formation process, that is carried on at the
operational-layer (Chapter 5).

During the previous sections of the chapter the Abstract Architecture and
a concrete Object Language for the ORCAS KMF have been described. In ad-
dition, we have formally defined the matching relations to be used during the
Knowledge Configuration process in order to verify whether a capability is suit-
able for a task, and whether a domain-model satisfies a capability. Hence, we
have described the basic concepts required to explain the Knowledge Configura-
tion process itself, which is the aim of this section.

The Knowledge Configuration process has the goal of finding a configuration
in terms of a composition of application tasks, agent capabilities and domain-
models, in such a way that the requirements of the problem at hand are satisfied.
This process actually follows a Problem Specification process, the main purpose
of which is the characterization of the problem at hand in order to later select
the most appropriate components during the Knowledge Configuration process.
This characterization of a problem is formalized by a specification of problem
requirements to be satisfied by a Task-Configuration.

After introducing some basic definitions and notation (§4.4.1) we will describe
the Problem Specification process (§4.4.2) and the Knowledge Configuration
process (§4.4.3). Next, three strategies for the Knowledge Configuration process
(§4.4.4) are presented.

4.4.1 Notation and basic definitions

We have already seen the components defined in the Abstract Architecture and
the different relations constraining the way in which components can be con-
nected, which have been defined as matching relations. This section summarizes
the specification of components in the Abstract Architecture and introduces
some basic definitions.

We deal with three main types of knowledge-level components, namely: task,
domain-model and capability, which have two further subtypes: skill and task-
decomposer.

Knowl.-Component X
Task T < X T = 〈in, out, pre, post〉
Capability C < X C = 〈in, out, pre, post, com, asm, kr〉
Task-Decomposer D < C < X D = 〈in, out, pre, post, com, asm, kr, st〉
Skill S < C < X S = 〈in, out, pre, post, com, asm, kr〉
Domain Model M < X M = 〈kr, prop, mk〉

Table 4.1: Types of knowledge components an their main features
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Table 4.1 sums up the hierarchy of sorts used to describe the components
in the Abstract Architecture, and the features used to specify each compo-
nent, where A < B means that A is a subsort (subtype) of B, st are sub-
tasks (st ⊂ T ), in, out, kr are inputs, outputs and knowledge-roles, specified as
signature-elements in the Object Language O, pre, post, asm are preconditions,
postconditions and assumptions, specified as formulae in the same language O,
com, od are the communication aspects and the operational description of a ca-
pability respectively, and pro,mk are the properties and the metaknowledge of
a domain model, specified by formulae in O.

We will note an element of a tuple specification as subscript, e.g. Tin is the
input signature of task T and Tpost are the postconditions of T .

However, since the Knowledge Configuration process requires a repository of
components as an input to choose from the components of a task-configuration,
we will introduce the idea of a repository of components or a library.

A Library is a collection of tasks and capabilities specified using some Object
Language. A Library is independent of the domain because both tasks and
capabilities are described in terms of their own ontologies, and not in terms of
the domain ontology.

Definition 4.6 (Library)
L = 〈T , C,O〉,
where

• T is a set of tasks,

• C is a set of capabilities,

• and O is the Object Language.

In the following definitions we will note T and C as the set of tasks and
capabilities in the library used by the Knowledge Configuration process.

The Knowledge Configuration process takes a specification of stated prob-
lem requirements and a library of components as input and produces a task-
configuration as output. Since a task-configuration is a complex structure we
need first to define its constituent elements, called configuration schemas. We
will note κ ∈ k as a configuration schema and the set of all configuration schemas;
moreover, we will note (T .= U) ∈ B as a binding and the set of all bindings,
where a binding is a link between a task and a capability or a configuration
schema that is selected to solve that task. More formally:

Definition 4.7 (Binding) A binding (T .= U) is a pair with a task T ∈ T in
the head and a capability C ∈ C or a configuration schema k ∈ k in the tail:
U ∈ C ∪ k

Definition 4.8 (Configuration schema) A configuration schema κ ∈ k is
a pair 〈(T .= C), {(Ti

.= κji)}i=1...n〉 where T, T1, . . . , Tn ∈ T , C ∈ C, and
κj1 , . . . , κjn ∈ k, and T1, . . . , Tn ∈ Cst.



4.4. Knowledge Configuration 95

A configuration schema specifies in the head of the pair a binding between
a task T and a capability C (T .= C). The tail of the configuration schema is a
set of bindings from Cst (the subtasks of C) (which will be empty if C is a skill,
since skills have no subtasks) to other configuration schemas. A configuration
schema can be complete or partial, defined as follows:

Complete(κ) ⇔ ∀Ti ∈ Cst ∃κji
: (Ti

.= κji
) ∈ tail(κ)

i.e. if all subtasks of C are bound to another schema in the tail; otherwise κ is
partial.

We define a configuration relation R among schemas as follows:

R(κ, κ′) ⇔ ∃(Ti
.= κ′) ∈ tail(κ)

i.e. two schemas are related if one of them is bound to a subtask in the tail of
the other.

Noting R∗ the closure of R we can now define a task-configuration as follows:

Definition 4.9 (Task-configuration) A task-configuration is defined in terms
of configuration schemas Conf(κ) = {κ′ ∈ k|R∗(κ, κ′)}. A task-configuration
Conf(κ) can be complete or partial: Complete(Conf(κ)) iff ∀κ′ ∈ Conf(κ) :
Complete(κ′); otherwise Conf(κ) is partial.

Thus, a task-configuration is a collection of interrelated configuration schemas
(starting from a root schema κ). A task-configuration is complete when all
schemas belonging to it are complete.

We will note K a task-configuration and K the set of all the task-
configurations (K ∈ K).

4.4.2 The Problem Specification process

The Problem Specification process aims at characterizing the problem to be
solved in terms of a task to be solved and a set of requirements the configured
system must comply to. We are not interested on the particular strategy to
carry on this process; actually we are interested in the result of the Problem
Specification process, since this is an input (the other input is a library of com-
ponents) for the Knowledge Configuration process (Figure 4.17). Nonetheless,
we will succinctly describe a iterative approach to specify problem requirements
by interacting with the user and using a matching relation between problem re-
quirements and tasks to find out which tasks are representative of the problem
at hand.

The Problem Specification process starts with the specification of some ini-
tial requirements that are used to select the application task T0. The idea is
that a configured system is an application that results of assembling existing
components such that the resulting composition satisfies the requirements of
the problem at hand. We call this class of application that is designed and as-
sembled on-demand by reusing and existing components over a (probably new)
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Figure 4.17: Problem Specification process

specific domain, an on-the-fly application. The task that is decided as the better
characterization of the problem at hand is the starting point for the Knowledge
Configuration process and is called the application task.

Since many tasks may satisfy the initial problem requirements, these require-
ments can be further refined and modified to better characterize the problem at
hand, according to the needs and preferences of the requester (a human user or
a software agent).

Problem requirements are used by two processes: Problem Specification and
Knowledge Configuration. On the one hand, problems requirements are used
as both input and output of the Problem Specification process; on the other
hand the final output of the Problem Specification process is a collection of
requirements that becomes an input for the Knowledge Configuration process.

The Problem Specification process starts with a query containing some prob-
lem requirements, and proceeds by selecting a set of tasks characterizing the
problem at hand. Afterwards the user may select a task he thinks is a better
characterization of his problem (the application task T0) and may add or delete
requirements from the query to be satisfied by the configuration of that task.

Definition 4.10 (Query) A query Q is a tuple Q = 〈in, out, pre, post, dm〉
where in, out are the query input and output signatures, which specify the type of
the data provided to solve a problem, and the type of data expected as a result
to that problem; pre are preconditions, which characterize the circumstances
holding before starting the problem solving process, post are postconditions, or
the effects to bring about after solving the problem; and dm ⊂ M is a set of
domain-models characterizing the application domain..

Notice that the specification of a query is like the specification of a task,
but a query adds in a collection of domain-models characterizing the application
domain.
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In order to find out which tasks in the library satisfy the requirements stated
by a query, it is necessary to establish a matching relation between a query Q
and a task (T ∈ T ). We define a query-task matching relation following the idea
of a task-capability match (Def. 4.4), but in this case the query plays the role of
the task, and the task plays the role of the capability.

match(Q,T ) = matchgen(Qin, Tin) ∧matchspec(Qout, Tout) ∧matchplugin(Q,T )

We specialize this definition for the case of using Feature Terms as the Object
Language, by using the subsumption (v) relation as the basic matching relation.

match(Q,T ) = Tin v Qin ∧ Tout v Qout ∧ Tpre v Qpre ∧Qpost v Tpost

The idea of this matching relation is to assess whether a task is representative
of a problem. A task is considered to be representative of a problem if, given
an input of the type specified by the query, and assumed that the preconditions
stated by the query holds, the solution to the task will provide all the infor-
mation required by the query output signature, and guarantees that the query
postconditions will hold afterwards.

The task-selection activity can be described as function (Q × T → T ) that
retrieves from a library a set of tasks that are representative of the problem at
hand, where representativeness is decided upon the verification of a query-task
match. This function takes a query and the tasks in a library as input and return
those tasks that verify a matching relation with the query. We can now define
the result of the task-selection activity as a set TQ of tasks satisfying a matching
with Q, formally:

TQ = {Ti ∈ T |match(Q,Ti)}

At the end of the Problem Specification process one task is selected by the
user as the application task: T0 ∈ TQ. Otherwise, all the tasks satisfying (match-
ing) the query can be used as legitimate starting points for the Knowledge Con-
figuration process.

The final result of the Problem Specification is a collection of problem require-
ments and problem data. The resulting specification of problem requirements
(Figure 4.18) includes an application task (the task to be configured), a specifi-
cation of the kind of inputs provided to and outputs expected from the Problem
Solving process, a collection of preconditions that are assumed to hold, a collec-
tion of postconditions to be satisfied, and a specification of domain-models to be
used. It does not matter whether the task is straightforwardly selected by the
user, by an automated service, or through an interactive problem-specification
support tool, like the interactive broker presented in §4.4.4.

Problem requirements are specified by the following features (Figure 4.18):

• Application task : the task characterizing the type of problem to be solved.
This task characterizes the type of problems to which the current problem
is supposed to belong to.
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Problem-Requirements
application-task → String
ontology → Ontology
inputs → set-of Signature
outputs → set-of Signature
preconditions → set-of Formula
postconditions → set-of Formula
domain-models → set-of Domain-Model
configuration-options → set-of Configuration-Options

Figure 4.18: Features used to specify problem requirements

• Inputs and outputs are specified as signature elements in the Object Lan-
guage. These signatures characterize the kind of data provided as an input
to the problem and the kind of data expected or required as a solution.
These signatures verify the signature matching relation between of a query-
task matching with respect to the application task T0. More formally,
Tin v Qin ∧ Tout v Qout.

• Preconditions are also used to select a task during the initial problem
specification, but can be extended to better characterize the problem in
order to refine the collection of candidate tasks. Finally, the preconditions
included as problem requirements must guarantee that the preconditions of
the application task hold, which is achieved by the condition Tpre v Qpre

applied during the task-selection activity.

• Postconditions are the most outstanding element of problem requirements,
since they characterize the goals of the problem. Postconditions are used
twice: once during the selection of the application task; and afterwards,
during the Knowledge Configuration process, to verify whether a task-
configuration is valid (satisfies the requirements). The application task
must assure that the postconditions of the query will hold after solving
that task, which is endorsed when all that is true for the postconditions of
the task is also true for the postconditions of the query. This condition is
represented by the conjunct Qpost v Tpost in the specification of a query-
task matching relation.

• Domain-models are used to restrict the domain knowledge that can be
used by the selected capabilities during the Problem Solving process. Only
domain-models included in the query are considered during the Knowledge
Configuration process.

• Configuration Options are used to setup the Knowledge Configuration pro-
cess. The main configuration option is the strategy to be used for the
Knowledge Configuration process (§4.4.4). Three strategies have been im-
plemented: one based on a deep-first search strategy, another one based
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on a best-first strategy guided by past-configuration cases, and one more
that is guided by the user though the user is provided with a heuristic help
to decide which components are used. Other options control parameters
that are specific of a particular configuration strategy.

The problem is specified using the same ontology used by the application task
or there is an ontology mapping between the problem requirements ontology and
the task ontology.

Figure 4.19 shows a screenshot of the problem specification interface as pre-
sented to the user when using the Interactive Configuration strategy (§4.4.4.
This screen shows the user the collection of signature-elements and formulae
that can be chosen by the user in order to specify the inputs, preconditions,
postconditions characterizing his problem.

Figure 4.19: User Interface used to specify problem requirements.

Figure 4.20 shows a screenshots of the problem specification interface where
the user can define the domain-models he is interested in.

4.4.3 Overview of the Knowledge Configuration process

The input for the Knowledge Configuration process is twofold: on the one hand
it uses a collection of problem requirements, as described above, and on the
other hand it uses a repository or library of component specifications to build
up a configuration. The result of the Knowledge Configuration process is a task-
configuration that, if complete and correct verifies the following: a) each task is
bound at least to one capability that can achieve it, b) each capability requiring
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Figure 4.20: User Interface where the user defines the domain-models to be used
during the Knowledge Configuration process.

knowledge is assigned a set of domain-models satisfying its assumptions, and c)
the whole configuration complies to the problem requirements.

The Knowledge Configuration process has been designed and implemented as
a search process in the space of partial configurations, where each state represents
a partial configuration of a task.

The main information to be represented in a state is the set of task-capability
bindings used in a partial configuration, but it also holds information about
the requirements (inputs, preconditions and postconditions, domain-models and
assumptions), those ones already satisfied and the ones yet to be satisfied.

The Knowledge Configuration process uses the problem requirements to gen-
erate an initial state. From the initial state, new states are generated by binding
capabilities to tasks, where the bindings are realized through the verification of
the matching relation between tasks and capabilities. The generation of new
states continues until one of the new states is considered a final state; which
occurs when the following conditions occur simultaneously: all tasks are bound
to suitable capabilities, there are domain models satisfying the requirements of
every capability included, and all the problem requirements are satisfied.

Figure 4.21 shows the main activities performed during the Knowledge Con-
figuration process: task-configuration, capability-configuration and verification.

1. Task-configuration: The Knowledge Configuration process starts with an
initial task and chooses a capability suitable for it (i.e. verifying a task-
capability match).
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Figure 4.21: Main activities of the Knowledge Configuration process

2. Capability-configuration: The selected capability is configured by selecting
domain-models compatible with it (verifying a capability-domain match).
If a capability is a task-decomposer, then the task-configuration process
should be performed for each subtask, which then becomes a recursive
activity.

3. Verification: finally, verification is the process of checking whether the
global problem requirements are met or not. If the global problem re-
quirements are met —configuration is correct— and the configuration is
complete, then the Knowledge Configuration ends, and the resulting task-
configuration can be used to guide the Team Formation process. The
point is that a verified task-configuration can be considered as design-level
description of an application to be performed by a team of agents.

A task-configuration is recursively defined in term of a capability-
configuration that boils down to a task-configuration for each subtask of the
task-decomposer (a configuration schema), until all tasks are bound to a capa-
bility and thus there are no more subtasks to spawn from. The result is a tree of
tasks that are bound to capabilities, and capabilities bound to domain-models,
as shown in Figure 4.22.

4.4.4 Strategies for the Knowledge Configuration process

We have already introduced the notion of the Knowledge Configuration as a
search process among the space of possible configurations: from an initial state
the Knowledge Configuration process explores successor states according to some
order until reaching a final state. We have implemented three different strategies
for the search process, depending on the kind of user and the availability of past
configuration cases, namely.

We differentiate between experts users, which are knowledgeable of the OR-
CAS KMF and the Knowledge Configuration process (usually the knowledge
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Figure 4.22: Example of a task-configuration

engineer), and the final user, which does not have such a knowledge.
The three strategies implemented for the Knowledge Configuration process

are the following, namely: Search and Subsumes, Constructive Adaption and
Interactive Configuration.

• Search and Subsume is appropriate for non expert users whether past con-
figurations are not available or are not desired. The Search and Subsume
configuration mode implements a depth first strategy for searching. This
strategy uses subsumption for retrieving capabilities that match a task.
For each retrieved capability, a new state (called successor state) is gener-
ated. The new states generated are added to a stack of open states; and
the next state to be explored is always the head of this stack.

• Constructive Adaption is appropriate when the user (expert or not) wants
to use Case-Based Reasoning (CBR) to drive the search process. The
Constructive Adaptation strategy follows a best-first search process in the
state space [Plaza and Arcos, 2002]. There is a heuristic function that
assesses which state is “best”, based on problem requirements previously
used to configure a system (i.e. previous configurations here used as cases).
This strategy uses past configurations to order the successor states accord-
ing to a measure of similarity to the current state. A similarity measure
called SHAUD [Armengol and Plaza, 2001] is used to evaluates the simi-
larity between Feature Terms structures. The result is a ranking of past
configuration cases that are used to order the states. Then, once we have
reordered the states, the search process selects to expand the state with a
higher heuristic value based on case-based similarity.

• Interactive Configuration is appropriate for expert users who want to have
more control over the Knowledge Configuration process. This strategy in-
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terleaves the specification and the configuration phases until a complete
configuration is found. The Interactive Configuration strategy operates
through a graphical user interface that shows the partial configuration,
the available components and other information. Once the user selects a
task to be configured, the interface presents the capabilities that are suit-
able for that task (those matching that task). These capabilities are ranked
with the similarity measure used in the case-based strategy (Constructive
Adaptation) in order to guide the user about which are the capabilities
recommended by the system upon past configuration experience, but the
user is free to select any capability based in its own criteria. If the selected
capability is a task-decomposer, then the capability selection process is
repeated for every subtask. In order to facilitate the user decision, the
interface presents some extra information about the components and in-
formation about the current state of the configuration. The configuration
service interleaves the problem specification and the task-configuration ac-
tivities, and brings the user the possibility of deciding the next state to
follow by selecting the capability to bind to the current task (from the
set of suitable capabilities for that task). This mode is also useful for a
knowledge engineer to build a initial case-base of configuration examples,
thus allowing the end-user to use the constructive-adaptation strategy.

Figure 4.23 shows an example of a partial configuration as presented by the
interface of the Interactive Configuration mode. The left part shows the current
configuration of a task; and the rest of the interface shows from left to right
and up to down the following information: first row shows available capabilities
that are suitable for the task at hand, ranked according to the similarity of the
current problem to past configuration cases, and a description of the capability
currently selected by the user; the second row includes the pending precondi-
tions, assumptions and goals (postconditions), and the unavailable or missing
knowledge-roles; and finally, the bottom row of the interface shows the already
achieved preconditions, postconditions, assumptions and knowledge-roles. In
particular, this is an example from the WIM configurable application, which is
described in Chapter 7. In this example, the Information-Search task is being
configured. Only the configuration of the subtask Aggregate-Items remains un-
concluded. The user has to select one of the four aggregation capabilities that
are suitable for that task: the Average, the Weighted-mean, the OWA or the
WOWA.

4.4.5 Searching the Configuration Space

The Knowledge Configuration process is approached as a search process over the
space of possible configurations in order to find a configuration that is complete
and satisfies all the requirements of the problem at hand.

The search space is K(L), the set of possible (partial and complete) config-
urations given a component library L and a query containing the requirements
of the problem (Q). Moreover, a configuration K ∈ K can be a solution for the
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Figure 4.23: Interface that shows a partial task-configuration

query only if K is complete.
Let’s start defining a query as a collection of problem requirements and op-

tionally a selected application task.

Definition 4.11 (Query) A query Q ∈ Q is a tuple Q =
〈T0, in, out, pre, post, dm〉

where T0 is the application task, which characterizes the type of problem the
application will be configured for, in, out are the input and output signatures
describing the type of data available and the type of data expected as a result of
the Cooperative Problem-Solving process, preconditions pre are properties that
are stated to be true, postconditions post are properties to be achieved by the
“execution” of the configuration (the performance of a CPS process based on
that configuration), and dm ⊂M is the set of allowed domain-models.

The Knowledge Configuration search process starts with a query Q and an
empty configuration, and searches new states that model more detailed configu-
rations by adding configuration schemas and recursively configuring them until
a complete configuration is found. The Constructive Adaptation model tells us
that we can improve the construction of the solution by using cases to decide
which states to explore first—i.e. which configuration schemas to add to a given
partial configuration. This search process adds configuration schemas until a
complete configuration K is reached, and then checks if this K satisfies the
query Q: if correct then a solution has been found and the process terminates;
otherwise the search algorithm proceeds exploring other branches.

We turn now to consider how to represent a state in the Knowledge Con-
figuration process. The main issue to be represented in a state is the set of
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task-capability bindings (T .= C) in effect within a partial configuration. For
this purpose the state needs not to represent the whole configuration K but
only the subset of tasks included in a configuration TK ⊂ T that are bound to
a capability.

The second important issue for a state is determining which pre- and post-
conditions of the query Q are satisfied by the components involved in a partial
configuration—and which are not yet satisfied. Finally, we are interested in
states that represent valid configurations, so states have to satisfy the task-
capability matching relation for every task-capability binding (T .= C) in a
state.

Definition 4.12 (State) A state Z for a configuration K in a Knowl-
edge Configuration process with a query Q is a tuple Z(K, Q) =
〈cpre, cpost, opre, opost, okr, ckr, ot, tc〉

where cpre and cpost are the closed preconditions and postconditions respec-
tively (those in query Q that are satisfied in Z), opre and opost are the open
pre- and post conditions (those in query Q that are not satisfied in Z), okr
and ckr are the open and closed knowledge-roles (those required by capabilities
bound to a task), tc is a set of task-capability bindings (T .= C), and ot is the
set of open tasks (those tasks in the configuration K that are not bound to any
capability).

A state Z is valid iff ∀(T .= C) ∈ Ztc ⇒ match(T,C) = true.

State
open-postconditions → set-of Formula
open-preconditions → set-of Formula
closed-postconditions → set-of Formula
closed-preconditions → set-of Formula
open-knowledge-roles → set-of Signature
closed-knowledge-roles → set-of Signature
open-tasks → set-of Task
tc-bindings → set-of Task-Capability-binding

Figure 4.24: Features characterizing a state

Figure 4.24 shows the features characterizing a state: open-postconditions
and open-preconditions are those postconditions and preconditions not yet sat-
isfied in the current state; closed-postconditions and closed-preconditions are the
preconditions and postconditions satisfied by the partial configuration; open-
tasks attribute holds the tasks that have no capability bound to them; open-
and closed-knowledge-roles refer to the knowledge-roles to be filled or already
filled respectively, by a domain-model (from those established by the query);
and tc-bindings is a collection of task-capability bindings (i.e. pairs composed
of a task bound to a capability (T .= C)).
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Next we are going to explain how the search proceeds for the Knowledge
Configuration process. For this purpose we are going to answer with the following
questions:

1. how initial states are generated from the library of components (§ 4.4.5);

2. how succesor states are generated (§ 4.4.5);

3. how the state search is guided by case-based retrieval (only for the Con-
structive Adaptation strategy, described in § 4.5);

4. and how final states (solutions) are detected (§ 4.4.5).

Initializing the search process

The initialization process takes the specification of problem requirements or
query Q and a library of components L as inputs and produces the initial state
as output (initial-states: Q× L→ Z).

The first state is generate according to the application task T0 specified in
the query Q:

Z0 = 〈∅, ∅, Qpre, Qpost, T0, ∅〉

The application task T0 is a starting point for the search process, thus
this task becomes an open task, since there is no capability bound to it yet.
The pre-conditions and post-conditions of the query Q become open pre- and
post-conditions, and there are neither closed pre- and post-conditions, nor task-
capability bindings.

If there is no application task selected, then all tasks satisfying the query
TQ = {Ti ∈ T |match(Q, Ti) are established instead as legitimate starting points
for the search process. Consequently, for each task T i

Q ⊆ TQ an initial state is
generated as follows:

Zi = 〈∅, ∅, Qpre, Qpost, T
i
Q, ∅〉

Successor states

The process of generating successor states from a given state (the successors
function) is basically the addition of a new task-capability binding to those
present in the tc-bindings of the given state (Ztc). We are interested in retrieving
from the library a capability that matches one of the open tasks (Zot).

We take, for a state Z, a task from open tasks T ∈ Zot and retrieve2 a
collection CT of capabilities such that they match with T . In addition, only
capabilities which knowledge-roles can be filled in by domain-models included

2The particular retrieval method (based on subsumption) that we use has been described
in [Arcos and López de Mántaras, 1997].
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in the query Qdm, and which assumptions are guaranteed for all its knowledge-
roles, are allowed. Therefore, we can now define the set of capabilities CT that
can be bound to a task, as follows:

CT = { C ∈ C | match(T,C) ∧match(C,Qdm)}

where match(T, C) is a task-capability match (definitions 4.1 and 4.4) and
match(C, Qdm)) is a capability-domain match (definitions 4.2 and 4.5), and Qdm

is the set of domain-models specified in the query Q.
A new successor state of Z is generated for each capability Ch ∈ CT . A

successor state Zh has no longer T as an open task and has a new binding
(T .= Ch) ∈ CT . In addition, incorporating a new capability Ch achieves some
new postconditions that were not yet achieved in Z; therefore the generation
of the successor state updates the pre- and post-conditions that are open and
closed.

When Ch is a task decomposer, it will introduce new subtasks that are to be
considered now as open tasks—and, since a new open task can introduce new
pre- and postconditions, the open and closed pre- and postconditions have to be
revised accordingly. Thus, the successor state is

succ(Z, Ch) = 〈cpreh, cposth, opreh, oposth, Zot ∪ Ch
st, Ztp ∪ (T .= Ch)〉

and cpreh, cposth, opreh, oposth are the task-decomposer open and closed pre-
and postconditions.

Another source of variability depends on the domain-models that can be
sensibly used by the capability Ch. Let us consider the set of domain-models in
the query Mh ⊆ Qdm that satisfy the signature specification of the capability
knowledge-roles Ch

kr. If there is a one to one mapping from the domain-models
in Mh to the signatures in Ch

kr then the pair (Ch,Mh) is unique. However,
if there is a many to one (non-injective) mapping from the domain-models in
Mh to the signatures in Ch

kr then there may be several pairs (Ch,Mh
i ) where

Mh
i ⊂Mh has a one to one mapping to the signatures in Ch. In this situation

one successor state is generated for each pair.

Final states

The verification of whether a state ZG is a solution to the configuration problem
(the goal-test function) has to test whether a (task) configuration is complete
and valid :

1. A configuration is complete if all tasks are bound to some capability, thus
all we need to check is whether there are no open tasks, i.e. whether
ZG

ot = ∅.
2. A configuration is valid if all the problem-requirements are satisfied, that

is verified when there are no open-postconditions in the state, i.e. whether
Zopost = ∅
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A more formal definition of a valid configuration is based on the verification
of a satisfiability relation between the configuration obtained in state ZG and
the problem requirements imposed by the query Q (sat(Q,ZG)) as follows:

sat(Q, ZG) ⇐⇒ (Qpre ⇒ ZG
pre) ∧ (ZG

post ⇒ Qpost)

The same definition specialized with the subsumption relation over Feature
Terms is the following:

sat(Q,ZG) ⇐⇒ (Qpost v ZG
post) ∧ (ZG

pre v Qpre)

That is to say, the state ZG satisfies the initial query Q when all postcon-
ditions imposed by the query are satisfied (subsumed) by the postconditions of
state ZG and when all preconditions required by the capabilities included in
the configuration of the state ZG are satisfied (subsumed) by the preconditions
established by the query.

We know, by construction, that the completeness condition is assured by
ZG

ot = ∅ and the validness condition is assured by Zopost = ∅.

4.5 Case-based Knowledge Configuration

The Constructive Adaptation strategy views the Knowledge Configuration pro-
cess as a search process guided by case-base information.

The idea of using a case-based retrieval approach to rank the successor states
according to the similarity of the current problem to past configuration problems.
This is the reason to introduce the notion of a configuration case as a pair
composed by a query and a past solution; specifically a configuration case is a
pair (Q,K) where Q is a query containing problem requirements and K is a
configuration of components (a task configuration) that satisfies Q.

Definition 4.13 (Configuration Case) A configuration case is a pair (Q,K)
where Q ∈ Q is a query containing problem requirements, and K ∈ K is a
complete and valid configuration.

A case base B is a collection of configuration cases B = {(Q,K)}1...N .
Constructive Adaptation uses information of similar cases to guide the search

process. Since in the ORCAS Knowledge Configuration process the main step is
to choose a new capability hypothesis to include in a successor state, the retrieved
cases are used to decide the selection of capability hypothesis. Let us suppose
that we are trying to find the configuration for a query Q, that CB = {(Qi,Ki)}
is a case base (a collection of cases), and that Sim(Q,Qi) is a similarity measure
that assesses the relevance of cases in CB with respect to the problem query Q.

Since a new successor state of Z is generated for each capability in CT let us
call ZT the set of those states. Moreover, at any point in the search process there
is a set of states that are “open”, i.e. states from which successor states have
yet to be generated; let us call Zopen the set of those states. We will use similar
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cases to order the set of all open states ZT ∪ Zopen; the search process will use
this ordering to decide the next state from which successor states are spawned.
Therefore, the search process follows a best-search strategy where a similarity
assessment of states against past configuration cases is used as an heuristics to
decide the “best” successor state.

We use the similarity measure Sim(Q,Qi) to rank the cases in the case base
CB = {(Qi,Ki)} with respect to their similarity to our current problem Q.
Once they are ordered, we need to transfer this ordering to the the set of all
open states ZT ∪ Zopen. For this purpose, let us define two new elements:

• CKi
is the set of capabilities used in some task on configuration Ki.

• CZj
is the new capability that has been introduced as hypothesis when

state Zj was generated.

Now, the new ordering over states is computed by transferring similarity S
over cases to a similarity SZ over states. Specifically, we define state similarity
SZ(Q, Zj) as follows:

SZ(Q,Zj) = max
Qi∈CB

{Sim(Q,Qi)|CZj ∈ CKi}

That is to say, for each open state Zj ∈ ZT ∪ Zopen we consider the newly
added hypothesis (CZj ), then we check in which cases the capability CZj appears
as part of the configuration (CKi), and we take the most similar (to Q) as the
degree of similarity for state Zj .

Thus, Constructive Adaptation proceeds by constructing the solution guided
by the information of cases embodied by the similarity measure SZ . At every
decision step, Constructive Adaptation selects the state Zmax w.r.t SZ as the
best node to expand the search tree. Or, in other words, the best-first process
uses SZ in the cost function that decides whether a state Z is better than another
state Z ′, as follows

Similarity-fn(Z, Z ′) = SZ(Q,Z) > SZ(Q, Z ′)

.
Figure 4.25 shows the relation between the problem space and the solution

space according to a similarity (distance) assessment. In ORCAS the problem
space is defined by the set of possible problem requirements, while the solution
space is the set of possible configurations. Given a problem that is similar to
the current problem (R distance), then the solution of the previous case will be
near to the solution for the current problem (A distance).

4.6 Configuration as reuse

One of the motivations of this work can be summed up in the idea of reuse, which
is closely related to the notion of domain independence. We aim at providing a
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Problem space
(requirements)

Solution space
(configurations)
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R

Figure 4.25: Relation between similarities in the problem space and the solution
space

framework that maximizes the reuse of agent capabilities over new application
domains. But what we mean by “reuse”?

Looking at the literature we have realized that there are two main approaches
to the reuse issue, though they can adopt different nomenclatures and may be
representative of different research lines, yet we can classify them in two general
categories, that we call engineering-oriented reuse and execution-oriented reuse.

• Engineering-oriented reuse: this category includes those efforts devoted to
the design of new applications by retrieving and adapting existing compo-
nents. In general, we consider this class of reuse when components cannot
be automatically composed and connected, but they rather require some
adaptation in order to be executed. Most of the work carried over in the
field of Knowledge Engineering and CBSD fall within this category. In
general, there are very general components (like the so called “Off-the-
Shelf” components) that can be parameterized to fit the requirements of
a new problem, or it is necessary to modify the code of some components
and then recompile. Usually there is a single application that is configured
of tailored for a specific application by a software or knowledge engineer.
This approach allows to develop very specific applications with reduced
development costs, and enables the interoperation of fairly heterogeneous
components, but requires the participation of an expert (the knowledge or
software engineer).

• Execution-oriented reuse: this category includes those systems where com-
ponents can be connected and executed in a very dynamic way, with min-
imal human guidance. The point is that the final user should be able
to drive the reuse of existing components without a deep knowledge of
the components. The notions of “on-the-fly or ”plug-and-play” applica-
tions fall within this category. The idea is that there exist a library of
components that can be straightforward connected to interact, without
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adaptation or modification of the code. Therefore, there are many pos-
sible configurations that can be configured on-demand to better fit the
problem at hand, rather than configuring a single application for a very
specific problem.

The ORCAS framework maximizes the reuse of existing components in both
the above approaches to reuse. The key to maximize reuse is the decoupling
of the different types of components in the Abstract Architecture, even at the
semantic level, by allowing them to be specified using independent ontologies
providing the semantics of the components.

However, the Knowledge Configuration process as discussed here falls within
the second approach to reuse (Execution-oriented reuse), since it is an auto-
mated process that allows a non expert user to specify the requirements of the
problem at hand, and is able to obtain a configuration of components that can
be then operationalized on runtime by forming a team of agents customized for
that configuration. We assume that all the components share the same ontolo-
gies and use the same infrastructure to communicate; otherwise, it cannot be
guaranteed that a configuration is found, or that two agents selected for a team
can interact. Further work can be started here to work upon the consideration of
different ontologies and the application of ontology-mappings to avoid ontology
mismatches.

The engineering aspects concerning the use of the ORCAS KMF (e.g. the use
of ontology mappings) are out of the scope of this work, which is focused on the
automatic configuration of MAS based applications.

Concerning the issues of reuse and configurable applications, we give now
some definitions to better characterize the idea of reuse as used in the Knowledge
Configuration process. First of all we introduce the notion of library and on-
the-fly application, and then the notion of a configurable application.

An On-the-fly Application is a particular configuration of problem-solving
components (tasks and capabilities) that are able to solve a task T0 in some
application domain, according to some problem requirements. An on-the-fly
application is the result of connecting some tasks and capabilities of a particular
task-configuration to the domain-models characterizing an specific application
domain.

Definition 4.14 (On-the-fly Application) An on-the-fly application A is a
tuple A(Q,L) = 〈T,C,M, K,O〉

where L is a library of domain-independent problem-solving components (tasks
and capabilities, represented as T and C) Q is a query containing problem
requirements, including an application task T0 ∈ T , and a collection of domain-
model characterizing the application domain Qdm; K is a task-configuration
for the application task T0; T ⊆ T is the set of tasks used in K, C ⊆ C is a set
of capabilities included in K; M is a set of domain-models to be used by the
capabilities in C; and O is the Object Language.
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A Configurable application is the result of linking a library of components
(tasks and capabilities) to a collection of domain-models characterizing some
application domain. In a configurable application there are multiple possible
configurations over the components of the library. While an on-the-fly applica-
tion is a particular configuration of components to solve a specific task, a con-
figurable application is potentially able to solve many types of problems (each
task defines a problem type), and the same type of problems can be solved in
different ways, using different task-configurations. A configurable application
have multiple, alternative capabilities to solve the same class of problems, or
there are multiple domain-models available to choose from.

Definition 4.15 (Configurable Application) A configurable application is a
tuple A(L,M) = 〈T , C,M,K,O〉

where L is a library of problem-solving components (tasks and capabilities), M
is a collection of domain-models characterizing the application domain, T is the
set of tasks in L, C is the set of capabilities in L, M is a set of domain-models
to be used by C (all the components share a common ontology or there exist a
collection of mappings between ontologies such that they be treated as sharing
a single ontology), and there exist a collection of task-configurations over the
components K (K ∈ K). A configurable application is not an application in the
classical sense, it is rather a collection of components that can be connected and
configured “on-the-fly”, by finding one of the possible configurations in K that
satisfies the requirements of a specific problem, as far as the problem can be
characterized by one the tasks in T . In other words, a configurable application
can be seen as a collection of potential on-the-fly applications sharing the same
application domain.

An example of a configurable application is shown in Chapter ??, WIM.
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Figure 4.26: Library, application and configurable application





Chapter 5

The Operational Framework

This chapter describes an operational model of the Cooperative
Problem-Solving process for Multi-Agent Systems, and which is the
role played by the Knowledge-Modelling Framework within this pro-
cess.

5.1 Introduction

The Operational Framework describes a mapping from the concepts in the
Knowledge-Modelling Framework to concepts from Multi-Agent Systems and
Cooperative Problem Solving. Specifically, the Operational Framework describes
how a task-configuration —obtained by the Knowledge Configuration process—
can be operationalized by forming a customized team of problem solving agents
on-demand, according to stated problem requirements. Moreover, the Opera-
tional Framework describes also the communication and the coordination mecha-
nisms required by agents to carry over the Cooperative Problem-Solving process
according to a task-configuration.

The Operational Framework extends the Knowledge Modelling Framework
to develop a full-fledged Agent Capability Description Language (ACDL). The
ORCAS ACDL is used in open Multi-Agent Systems by requesters willing to
solve a problem, providers of problem solving capabilities, and middle agents
responsible for mediating between them (e.g. brokers and matchmakers).

1. Requesters use the ACDL to put a query Q describing the type of problem
to be solved, characterized by a task (the application task T0), a collection
of domain models characterizing the application domain (Qdm), and other
requirements of the problem (preconditions and postconditions).

2. Providers use the ACDL to describe the tasks they can solved and the
capabilities they are equipped with.

3. Middle agents are used in open MAS to mediate between requesters and
providers. Middle agents are responsible for locating appropriate providers

115



116 Chapter 5. The Operational Framework

for a given request and facilitating the interaction between requester and
providers. For instance, a broker frees the requester of knowing the details
required to invoke and interact with each specific provider, so the requester
only have to know how to interact with the middle agent and not with each
potential provider.

In our approach to the Cooperative Problem Solving (CPS) process and
also in our particular implementation of an open agent platform supporting
the CPS process, the ACDL is used for the following activities: (1) in the
automatic design of agent teams at the knowledge level, as a configuration of
components (tasks, agent capabilities and domain models) satisfying stated
problem requirements; (2) to guide the team formation process according to the
configuration of components at the knowledge-level; and (3) to coordinate the
behavior of team members during the teamwork.

This chapter is divided as follows: we start with an overview of the Coopera-
tive Problem-Solving (CPS) process in §5.2; the extensions of the ORCAS KMF
to become an Agent Capability Description Language (ACDL) are described
in §5.4; the main concepts of the ORCAS team model are defined in §5.3; the
Team Formation process is described in §5.5; the ORCAS model of Teamwork is
presented next, in §5.6; and the Chapter ends with a brief discussion of some
extensions of the CPS process in §5.7 .

5.2 The Cooperative Problem-Solving process

The view on Multi-Agent Systems as decoupled networks of autonomous entities
is usually associated to a distributed model of expertise: A MAS is regarded as
a collection of specialized agents with complementary skills.

Most of the research done in the field of Cooperative Problem Solving (CPS)
(e.g. the models based in the Contract Net protocol [Smith, 1940] or derived
from the Generalized Global Planning approach [Durfee, 1988]) falls into one
or more or the stages of a general model of the Cooperative Problem-Solving
process as presented in [Wooldridge and Jennings, 1994], which consists of four
stages: recognition, team formation, planning and execution.

1. Recognition: the CPS begins when some agent recognizes the potential for
cooperative action. This recognition may come about because an agent has
a goal that it does not have either the ability or the resources to achieve
on its own, or else because the agent prefers a cooperative solution in
expectation of getting some benefit.

2. Team formation: during this stage, the agent that recognized the potential
for the cooperative action at stage (1) requests assistance. If this stage is
successful, it will end with a group of agents having some kind of nominal
commitment to collective action.
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3. Plan negotiation: during this stage, the agents proceed to negotiate a joint
plan which they believe will achieve the desired goal.

4. Execution (Team action): During this stage, the newly agreed plan of joint
action is executed by the agents, which maintain a close-knit relationship
throughout. This relationship is defined by a convention, which every
agent follows.

Actually, these four stages are iterative, in that if one stage fails, agents may
return to previous stages. Although the proposers of this model believe that
most instances of CPS exhibit these stages in some form (either explicitly or
implicitly), they stressed that the model is idealized. In other words, there are
cases that the model cannot account for [Wooldridge and Jennings, 1999].

In concordance with the proposers of this model, we think it is well suited for
a number of situations, but it is not adequate for others (the reader is referred to
[Wooldridge and Jennings, 1994, Wooldridge and Jennings, 1999] for a deeper
understanding of the model). Since team formation is not guided by a preplan
to achieve the overall goal, but is just a commitment to joint action, neither the
agents joining a team (committing to carry on joint action) are guaranteed to
play one role in the team once a plan was decided at the subsequent planning
stage, nor the resulting team assures that a global plan can be found.

This uncertainty may be not a problem if the MAS is composed of quite
homogeneous problem solving agents with a common range of skills. In such
homogeneous (in term of functionalities) agent societies, the very same agent
could potentially occupy many different positions within a team, and thus
the possibility of forming a successful team grows up. This approach has
been adopted mostly when cooperation is defined as acting with others for
a common purpose and a common benefit [Norman, 1994] where the pur-
pose should be motivated by an intention to act together —a joint intention
[Cohen and Levesque, 1990, Levesque, 1990, Cohen and Levesque, 1991], and
resolved by a commitment to joint activity [Bratman, 1992, Jennings, 1993].

This class of cooperation relying on motivational attitudes is sometimes
called collaboration [Wilsker, 1996, Grosz and Kraus, 1996] to differentiate it
from other classes of cooperation. It is not surprising then that implemented
frameworks inspired by a collaborative approach to cooperation are usually ap-
plied in scenarios where the team-oriented agents are homogeneous and their
roles typically represent either authority relations, such as military rank, or
high-level capability descriptions [Tambe, 1997, Pynadath et al., 1999].

Moreover, if the MAS is composed of specialized agents equipped with very
specific capabilities, the following bizarre situations may happen: first, agents
that have joined the team may not be needed after the plan negotiation have
finished; second, team roles may remain still unassigned to agents after negoti-
ating the plan; and third, the plan may remain incomplete. In order to prevent
these types of failure (specially the second and third cases, which suppose the
team is not able to achieve the global goal at all), specialized agents should be
able to reason about goals and plans in order to acquire team goals, to identify
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the roles that contribute to the fulfillment of a team goal, and to decide whether
to commit to a particular team role. Team formation and also plan negotiation
without a initial guide on the types of tasks to be solved and the capabilities
required, can provoke an exponential grow in the number of teams and plans
to be considered, and a blow-out in communication overload as the size of the
population grows up or the complexity of the team goal increases.

Other researchers have explored the utility of using an initial plan to guide the
team formation process. The SharedPlans theory [Grosz and Kraus, 1996] and
the frameworks based on it, e.g. [Giampapa and Sycara, 2002], have emphasized
the need for a common, high-level team model that allows agents to understand
all requirements for plans that might achieve a team goal. Team plans are used
by agents to acquire goals, to identify roles and to relate individual goals to team
goals. An initiator of a cooperative activity can use an initial team plan to know
the functionalities or competencies required to achieve the overall goals.

An initial plan allows the initiator of the team formation process to know
which are the subgoals and (optionally) the actions or capabilities required to
achieve each subgoal. Therefore, the initiator can use the initial plan to guide
the team formation process [Tidhar et al., 1996]. An initial team plan allows
the initiator of the cooperative activity to contact only with the agents holding
the required capabilities, thus increasing the possibility of success, and reducing
the complexity of both the team formation and the plan negotiation processes.

Another issue concerning the CPS process and related with the idea of guided
team formation is that of problem requirements: how to design a team according
to the requirements of a specific problem, rather than selecting a plan according
to a fixed task. The CPS model in [Wooldridge and Jennings, 1999] does not ex-
plicitly address the utility of constraining the competence or behavior of a team
to satisfy stated problem requirements or comply to user preferences. Recent ini-
tiatives in MAS planning have introduced case-based [Munoz-Avila et al., 1999]
and conversational planners to build the initial plans to be adopted by a team
[Giampapa and Sycara, 2001].

Moreover, that model of the CPS process devises an internal perspective on
agents, in which the agent’s internal state is used as the basis for evaluation.
Concerning this issue, though we recognize there are well founded reasons to
adopt an internal perspective, we think a external view has also some advantages
and, in particular, it is more appropriate for open systems because it avoids
imposing a model of the agent architecture to external agent developers. We
are developing our model under this assumption, and thus we try to impose
minimal requirements on the internals of agents willing to participate in a CPS
process beyond the use of the ORCAS Knowledge Modelling Ontology. These
requirements consist basically of a shared communication language and a set
of interaction protocols enabling team action. Therefore, we avoid imposing
neither a specific agent architecture, nor a model of cooperation based on mental
attitudes. Instead, an external view centered on the observable patterns of agent
communication and commitment is adopted here.

Summarizing, there are some issues related to Cooperative MAS not covered
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by the general model of the CPS process in [Wooldridge and Jennings, 1999]:
(1) the generation of an initial plan to guide the team formation process; (2) the
consideration of user preferences and specific problem requirements to constrain
the composition of a team; and (3) the use of a external view centered on ob-
servable events like the illocutionary acts rather than an internal view imposing
a particular agent architecture.

As a result of our work upon these issues we have conceived a new model of
the CPS process that is based on the use of a Knowledge-Modelling Framework to
describe a MAS at an abstract-level, and introduces a Knowledge-Configuration
process as a mechanism to design the behavior of an agent team by building an
initial team “plan” satisfying stated problem requirements. Such initial plans
can be used to drive the team formation process and to coordinate agent behavior
during the teamwork.

Now we are going to carry out a more detailed review of the main activi-
ties involved in the CPS process —team formation, planning and execution—
in order to compare our approach to the planning based approaches that are
commonly used in cooperative MAS.

Team formation is defined as the process of selecting a group
of agents that have complimentary skills to achieve a given goal
[Tidhar et al., 1996]. Typically, team formation has been divided in two
activities: selecting a group of agents that will attempt to achieve the
team goal, and selecting a combination of actions that agents must
perform to achieve the goal [Levesque, 1990, Cohen and Levesque, 1991,
Rao and Georgeff, 1995, Grosz and Kraus, 1996, Tambe, 1997], also approached
as a plan negotiation process [Wooldridge and Jennings, 1999]. This
combination of actions is typically described as a sequence of ac-
tions or a plan [Georgeff and Lansky, 1987, Bratman, 1988, Rao et al., 1992,
Grosz and Kraus, 1993, Sonenberg et al., 1994, Grosz et al., 1999, Tate, 1998].
In many approaches there are partial plans hold by different agents that must
negotiate a given plan until consensus is reached about an agreed global plan
[Ephrati and Rosenschein, 1996]. In other approaches the plan is built by merg-
ing individual plans —like the approaches based on the SharedPlans theory,
for instance in the RETSINA teamwork model [Giampapa and Sycara, 2002],
— until all the tasks required by the global plan are assigned. While some
approaches start the selection of team members without an initial plan, other
approaches [Tidhar et al., 1996, Giampapa and Sycara, 2001] use it to drive the
team formation process, even when the planning process is distributed among
agents [Clement and Durfee, 1999].

One of the preferred approaches to represent plans in MAS is based on us-
ing some kind of hierarchical plans, like Hierarchical Task Networks (HTN)
[Erol et al., 1994, Erol, 1995]. The way in which an HTN structure decomposes
a task into subtasks is similar to the way tasks are decomposed by a task-
decomposer in the ORCAS KMF. Nevertheless, ORCAS configuration structures
are not oriented towards planning algorithms; instead, ORCAS structures are
designed to maximize the reuse of agent capabilities by decoupling the descrip-
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tion of capabilities from the application domain through the use of independent
ontologies to describe them both. In spite of these differences, ORCAS configu-
ration structures are used as recipes about the tasks (or goals) to achieve and
the capabilities (or actions) required to achieve them, and thus they play the
same role than a plan.

In ORCAS there are three types of structure concerning planning: task-
decomposition schemas (subtasks introduced by a task-decomposer and ordered
by the operational description); configuration schemas resulting of binding a
task-decomposition schema to a collection of capabilities (one capability is bound
to each subtask); and task-configurations, which are composed of interrelated
configuration schemas (see §4.4.1).

An approach to multi-agent planning is that of obtaining a global plan by
merging individual, (usually partial) plans. In ORCAS the individual plans are
partial (agents have a local view), and are represented by task-decomposers
and configuration-schemas, which are two ways of representing how to achieve a
task by decomposing it into subtasks. A configuration-schema is a more specific
representation than a task-decomposer, since the former includes the capabilities
required to solve each task, while a task-decomposer informs only about the
subtasks of a decomposition, but not about the capabilities required to achieve
them.

The role of a global team plan in ORCAS is played by a task-configuration,
since a task-configuration is used as a recipe about the actions (the capabilities)
required from team members to achieve the goals of the team (represented in
ORCAS by an application task plus some extra problem requirements).

Task-configurations obtained at the Knowledge Configuration process are
used to guide the team formation process and to coordinate team members dur-
ing the Teamwork process: an agent willing to start a cooperative activity uses
such an initial plan to know which are the tasks to be solved, which are the
capabilities to apply, and which is the knowledge to be used by the selected
capabilities. The agent responsible for coordinating the team formation process
can use the information provided by a task-configuration to select the agents
that are potential candidates to join the team (though a yellow pages service):
only agents with the required capabilities are considered, thus the number of
possible teams to be considered is reduced and the communication requirements
decrease. In addition, the Knowledge-Configuration process ensures that a task-
configuration satisfies stated problem requirements, therefore the teams that are
formed complying to a task-configuration are guaranteed to satisfy the require-
ments of the problem too.

Teamwork is the process carried out by a team of agents in order to achieve a
global team goal. In ORCAS the team goal is initially represented by the applica-
tion task and subsequently refined by a task-configuration. A task-configuration
contains a specification of tasks and subtasks to be achieved (a hierarchical task
decomposition structure), the competence required to solve those tasks (the ca-
pabilities), and the specification of the application domain (the domain-models).
The global behavior of a team during the Teamwork process is guided by the



5.2. The Cooperative Problem-Solving process 121

task-configuration, since team members commit to solve the application task by
applying the capabilities and domain-models specified in the task-configuration.

To move from the knowledge level to the operational level, we have to match
concepts from a task-configuration to agent concepts. Our proposal is to define a
one-to-one mapping between tasks in a task-configuration and roles played within
a team, that we call team-roles. There is one team-role for each task, where each
team-role contains the information an agent needs to solve a task in the context of
a team. During the execution stage of the Cooperative Problem-Solving process,
team members have to cooperate with other team mates in order to achieve the
overall goal. Specifically, we are interested here in a hierarchical, top-down style
of cooperation, since this style of cooperation fits well the hierarchical structure
of a task-configuration.

A motivation for separating the Knowledge Configuration process from the
Team Formation process is to exploit the fact that the specification of agent
capabilities remains stable throughout long periods of time, whereas there are
dynamic aspects of the system or the environment that change very quickly
and are not deterministic (i.e. workload, network traffic, system failures). The
Knowledge Configuration process aims to explore the utility of a configuration of
capabilities in terms of their static and abstract descriptions, and keeping those
descriptions aside from the the dynamic and operational aspects involved in the
CPS process (e.g. the workload of a problem solving agent), which are managed
during the Team Formation and Teamwork processes.

Task-
Configuration

Knowledge
Configuration

Team Formation Problem-Solving

Problem
Specification

MAS
Configuration

Problem
requirements

Team-roles

Problem
data

Figure 5.1: The ORCAS model of the Cooperative Problem-Solving process

Figure 5.1 shows the main elements of the Cooperative Problem Solving pro-
cess and the main relations between them. The CPS process starts with a Prob-
lem Specification process in which the problem requirements and the problem
data are supplied. The Knowledge Configuration process takes the problem re-
quirements and a library of components as input and builds a task-configuration.
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The Team Formation process uses a task-configuration to form a new team
of agents satisfying the conditions established by that task-configuration (i.e.
agents commit to the conditions enforced on the tasks allocated to it, its team
roles). The outcome of the Team Formation process is a configuration of the
team expressed as a collection of interrelated team roles to be played by the
selected team members, and a group of specific agents assigned to these roles.
Finally, during the Teamwork process the new team solves the problem at hand
according to the task-configuration obtained at the Knowledge Configuration
process and a specification of the input data provided at the Problem Specifica-
tion process.

Although the CPS process as showed in Figure 5.1 seems to follow a sequen-
tial control flow, this model is just a simplification that is intended to highlight
the cornerstones of the model. Once the different subprocesses of the CPS pro-
cess have been explained we are in a better position to extend the model in order
to deal with more complex situations. Actually, we have added mechanisms for
interleaving all the stages of the Cooperative Problem-Solving process. This
feature will allow a team to be reconfigured in order to deal with dynamic con-
ditions and events encountered during the different stages of the CPS process.
Some extensions of this model are described in §
refsec:extensions.

5.3 Team model

The ORCAS team model is defined upon concepts from the Knowledge Mod-
elling Framework, specifically, ORCAS teams are defined according to an ab-
stract model of teamwork based on the structure and the meaning of a task-
configuration.

A team is a group of agents that commits to solve a problem in a cooperative
way, according to a task-configuration. A team is composed of agents that have
complimentary capabilities to achieve a global goal and are assigned to different
roles within the team. A team has the goal of solving a specific problem by
using a task-configuration as a recipe about the task to be solved (specifying the
global goal), a decomposition of the main task into subtasks, the capabilities to
be applied, and the domain knowledge required.

As explained in §4.4, the result of the Knowledge Configuration process is
a task-configuration, a hierarchical structure where nodes are triplets consisting
of a task, a capability bound to the task, and optionally some domain-model
satisfying the assumptions of the capability. In order to understand the way
a task-configuration is operationalized by a team of agents, it is necessary to
establish a mapping between the concepts involved in a task-configuration and
concepts from Multi-Agent Systems.

A task-configuration in the ORCAS team model plays the role of a team plan,
since it is used as a recipe of actions to achieve a global goal. The configured
task represents a global team goal and a plan to achieve that goal. Specifically,
tasks represent goals and subgoals; skills represent primitive, non decompos-
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able actions to achieve goals; and task decomposers play the role of sub-plans
in decomposing a task (a goal) into subtasks (subgoals). Multiple capabilities
allowed for the same task represent alternative ways of solving a problem, or
alternative ways of decomposing a problem into subproblems. In addition, a
task-configuration contain the domain models satisfying the knowledge require-
ments of the selected capabilities.

In order to map elements from the KMF to elements of agent-based team-
work, we introduce the notion of team-role. A team-role defines the functions
assigned to a position within the team. We establish a one-to-one correspon-
dence between tasks and team-roles: there is a team-role for each task within
a task-configuration. A task-configuration follows a hierarchical task decompo-
sition structure, and a team in ORCAS is based on a task-configuration; conse-
quently, teams are also organized hierarchically, as a nested structure of teams
and subteams (Figure 5.2).

Team-roles define the competence required by the different members of a
team in order to achieve a team goal. A team-role includes all the information
required to solve one of the tasks of a task-configuration, that is to say, a task,
a capability bound to it, and optionally a set of domain models required by the
selected capability. When the capability bound to a task is a task-decomposer,
a team role is defined for the task being decomposed, and a new team-role is
created for each subtask. The agent playing the role of the task-decomposer
acts as the coordinator (supervisor or leader) of the team-roles assigned to each
subtask, that are in some sense “subordinated” to the coordinator, though the
precise nature of the relationship between the task-decomposer role and its sub-
ordinated team-roles may vary according to features like the degree of agent
autonomy or the degree of openness of the MAS.

Figure 5.2 shows an example of a team modelled as a hierarchy of team-
roles that is organized as a nested structure of teams, and the straightforward
mapping of tasks and capabilities from a task-configuration to team-roles. There
is a team-role for each task in the task-configuration, and there is one team for
each task-decomposer bound to a task. Each team consist of a “coordinator”
team-role responsible for the task being decomposed, plus a set of “subordinated”
team-roles, one per subtask. In Figure 5.2, the Team-role 1 (TR1) is assigned to
the information-search task, and has to to apply the meta-search task-decomposer
capability, which introduces four subtasks. Therefore, TR1 has to coordinate the
activity of their subordinated team-roles, one for each subtasks: elaborate-query
(TR2), customize-query (TR3), retrieve (TR4) and aggregate (TR5). Moreover,
since TR5 is itself assigned to task-decomposer (aggregation), it has to play
the coordinator role to interact with their own subordinated team-roles, those
associated to their two subtasks, namely elaborate-items (TR6) and aggregate-
items (TR7).

5.3.1 Team-roles and team-components

A team-role describes the functional, operational and pragmatic aspects required
of an agent to occupy a position within a team. The basic information included
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Figure 5.2: Model of a team as a hierarchical team-roles structure

within a team-role comprehends a task to be solved (a goal), a capability to be
applied (suitable for the goal task), and interaction elements (communication
language and interaction protocols) required to communicate with the agent
playing that team-role. In addition, if the capability is a task-decomposer, then
the team-role can include information about team members selected for solving
each subtask, the communication elements required to delegate each subtask to
the selected agent, and optionally a group of agents to keep in reserve.

Formally, a team-role is defined as follows:

Definition 5.1 (Team-Role) A team-role is defined as a tuple

π = 〈R, I, T, C,M, Com, S,AS , AR〉

where

• R is a unique team-role identifier,

• I is a unique team identifier,

• T is a task,

• C is a capability,

• M is a set of domain-models,

• Com is a specification of communication requirements,

• AS is a set of selected agents,
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• AR is a set of reserve agents,

• S is a subteam, specified as a set of team-components.

The team-role identifier (R) is required to unambiguously identify the posi-
tion of a team-role in the team hierarchy. The name of the task is not enough
to identify a team-role because the task could appear multiple times within a
task-configuration. The team identifier (I) is required because one agent can
participate in multiple teams simultaneously. A team-role includes also the name
of the task to be achieved (T ), the name of the capability selected (C) to solve
that task (according to a task-capability binding in the task-configuration), and a
set of domain-models (M) satisfying the knowledge requirements of the selected
capability. In order to instantiate a team model with specific team-members, a
team-role includes also two slots to specify a set of agents selected for it (AS),
and a set of reserve agents (AR). Moreover, a team-role specifies the communi-
cation (Com) model to be used by both the requester or coordinator of R, and
the agent assigned to R.

Finally, a team-role includes a subteam feature to be filled only when the
team-role’s capability (C) is a task-decomposer. A subteam is specified as a
set of team-components, where each team-component holds information about a
team-role associated to one subtask. A team-component is defined as follows:

Definition 5.2 (Team-Component) A team-component is defined as a tuple

ξ = 〈R, T, AS , AR, Com〉

where

• R is a unique team-role identifier,

• T is a task

• AS is a set of selected agents

• AR is a set of reserve agents

• Com is a specification of communication requirements

A team-component is defined for each subtask introduced by a task-
decomposer. The team-role identifier (R) determines the precise position of
the team-component in the team hierarchy. There is a set of agents selected
(AS) to carry out the team-role, and there is a set of agents to keep in reserve
(AR) for the case that some of the selected agents fail during the Teamwork
process. Finally, a team-component includes a specification of the communica-
tion (Com) required to interact with the agent playing the team-component’s
team-role (R).

Figure 5.3 shows an example of a team-role assigned to a task-decomposer
with two subtasks. Team-role 5 (TR5) is assigned to the Aggregate task, that
is bound to the Aggregation capability. This capability is a task-decomposer
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that introduces two subtasks: Elaborate-Items and Aggregate-Items. Therefore,
the TR5 team-role has a subteam with two team-components, TR6 and TR7,
assigned to the Elaborate-Items and the Aggregate-Items tasks respectively.

Figure 5.3: From tasks to team-roles and team-components

We note π and Π as a team-role and the set of all the team-roles, and ξ and
Ξ as a team-component and the set of all the team-components. We can define
now a team as a structure made of interrelated team-roles and team-components,
but first we define the subordinated relation S among team-roles as follows:

Definition 5.3 (Subordinated)

S(π, π′) ⇔ ∃ξi ∈ πS | ξi
R = π′

where

• π, π′ ∈ Π are team-roles;

• πS ⊆ Ξ is the subteam of π (a set of team-components);

• ξi ∈ Ξ is the i-th element of πS

• ξi
R ∈ Π is the team-role associated to ξi

Briefly, a team-role is subordinated to another if the first team-role is bound
to a team-component contained in the subteam of the second team-role.

Noting S∗ the closure of S we can now define a team as follows:

Definition 5.4 (Team) A team is defined for a team-role and a task-
configuration

Team(π0, Conf(κ)) = {π ∈ Π|S∗(π0, π) ∧ (head(κ) = π0
T )}

where
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• π0 ∈ Π is a team leader’s team-role, the only team-role that is not subor-
dinated to another;

• Conf(κ) is a task-configuration,

• head(κ) is the root task of the task-configuration (Conf(κ)),

• and π0
T is the task assigned to the team leader’s team-role.

A team is a collection of interrelated team-roles, starting from the team-
leader π, that is assigned to the root task of a task-configuration. The ORCAS
team model provides an abstract view of the competence required by a group
of agents to solve a global problem. Teams are instantiated during the Team
Formation process (§5.5) by selecting a set of agents to play each team-role,
and a set of agents to keep in reserve.

Team-roles are used during the Team Formation and the Teamwork processes
to interchange information among agents. During the Team Formation process,
team-roles are used as advertisements or proposals to join a team: team-roles
are used to inform potential team members of the tasks to be solved, the capa-
bilities to apply, the knowledge to use, and optionally the terms of commitment
and pragmatic issues. Team-roles can also be used by agents to send counter-
proposals during the Team Formation process. After finishing the task allocation
and the agent selection process, team-roles are used to inform agents about the
result of the process.

During the Teamwork process, team-roles are used by team members to know
every thing they need to achieve his tasks, to delegate subtasks to other agents, to
cooperate with other agents when requested, and even to rescue from unexpected
situations like agent failures preempting a task to be achieved by the selected
agent, or communication problems avoiding an agent to send or receive messages
from other team member. A team-role has the information required by an agent
to play a team-role: the name of the task to be solved, the capability to apply,
the knowledge to use, and optionally a set of team-components (a subteam)
with the information required to delegate the team-role’s subtasks to other team
members. This information includes the identifiers of subordinated team-roles
(those to whom delegate some subtask), a set of selected agents to play each
subordinated team-role and a set of agents to keep in reserve for each one, but it
does not include information about the capability that should be used by each
subordinated team-role.

A team member willing to carry out the task assigned to a team-role during
the Teamwork process has to check whether the capability to be applied is a
task-decomposer or a skill. On the one hand, if the capability assigned to a
team-role is a skill, the agent will engage in communication with the requester.
The interaction protocol, the vocabulary and the language to be used will be
defined also within a team-role, using the communication feature, as described
in §5.4.2. On the other hand, an agent willing to apply a task-decomposer
capability has to engage in communication with a requester, just like an agent
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applying a skill, but in addition the agent must know which agents are assigned
to the task-decomposer’s subtasks, so as to request them to carry out their
subtasks. The communication to be used so as to delegate a task to another
agent is also provided within a team-role structure.

However, an agent applying a task-decomposer does not need to know which
capability will be used by the different components of a sub-team, because this
information will be sent to those agents separately. In few words, each member
of the team knows what to do, which tasks to delegate and to whom, but a team
member does not know the precise way a task he delegates to another agent
will be solved by it. The last statement is not mandatory, is just a question
of information economy, but can be modified to accommodate better to specific
situations.

5.4 The ORCAS Agent Capability Description
Language

The notion of an Agent Capability Description Language (ACDL) has been in-
troduced recently [Sycara et al., 1999a] as a key element in enabling MAS in-
teroperation in open environments. An ACDL is a shared language that al-
lows heterogeneous agents to coordinate effectively across distributed networks.
Sometimes, capabilities are referred as “services” and, consequently, an ACDL
can alternatively be called an Agent Service Description Language (ASDL).

In the literature, an ACDL is defined as a language to describe both agent
advertisements and requests, and is primarily used by middle agents (e.g. brokers
and matchmakers) to pair service-requests with service-providing agents that
meet the requirements of the request [Sycara et al., 1999b, Sycara et al., 1999a].

Some desirable features for such a language are expressiveness, efficient rea-
soning and easy use:

• Expressiveness: the language should be expressive enough to represent
not only data and knowledge, but also the meaning of a capability. Agent
capabilities should be described at an abstract rather than implementation
level.

• Efficient reasoning : inferences on descriptions written in this language
should be supported. Automatic reasoning and comparison on the de-
scriptions should be both feasible and efficient.

• Easy use: descriptions should not only be easy to read and understand,
but also easy to write. The language should support the specification of
knowledge requirements (in order to link capabilities to domain knowledge)
and the use of ontologies for specifying agent capabilities in a way that
favors reuse.

Another important aspect to take into account for designing an ACDL
is the idea of enriching capability descriptions with semantic information
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[Paolucci et al., 2002]. Semantic markup, which is based on the use of shared
ontologies [Guarino, 1997a], improves the matchmaking process and facilitates
interoperation.

Although the ORCAS KMF satisfies these requirements, we think an
ACDL should bring support to some activities involved in MAS interoperation
beyond the discovery of capability providers. An ACDL should facilitate the
automation of the following activities, namely discovery, execution, composition
and interoperation of capabilities:

Automatic capability discovering (matchmaking): This activity takes
the specification of a request and looks for capabilities that are able to satisfy
such request. This activity involves the automatic location of capabilities that
adhere to requested constraints, which is usually described as a matchmaking
process between the request and a library or repository of capabilities (typically
hold by a middle agent). An ACDL must allow capability providers to advertise
their capabilities to the matchmaker or yellow pages service in order to become
available for automatic capability discovery. In ORCAS the discovery of capabil-
ities satisfying a problem specification is also achieved through a matchmaking
process (§4.2.2), but the ORCAS Knowledge Configuration process goes beyond
this requirements and introduces the idea of configuring (designing) a complete
MAS-based application (a configured team) that satisfies a specification of stated
problem requirements, rather than finding appropriate providers of capabilities
suitable for a a single task. The aspects of a capability description required for
these activities are the functional descriptions described in the previous chapter:
the interface (inputs and outputs) and the competence (preconditions and post-
conditions), plus the aspects of a capability used to filter out those capabilities
which knowledge requirements are not fulfilled.

Automatic capability execution (communication): Having selected a
capability, the process of enacting or executing it. Agents should be able to in-
terpret the description of a capability to understand what input is necessary to
execute a capability, what information will be returned and which are the effects
or postconditions that will hold after applying the capability. In addition, the
requester of a capability must know the communication protocol, the communi-
cation language and the data format required by the provider of the capability
in order to sucessfully communicate with it. Summing up, an ACDL should
provide declarative descriptions of both the interfaces and the communication
requirements required for executing agent capabilities on request. In ORCAS
these aspects of a capability are partially fullfilled by the already described
functional aspects of a capability (inputs and outputs, competence, and knowl-
edge requirements), but the communication aspects (interaction protocol and
language, and data format) has not been described yet, though we have afore-
mentioned them when talking about the communication feature of a capability
(§4.2.1). These aspects are anticipated in the ORCAS KMF, where two features
of a capability have been earmarked for further extension of the KM-Ontology
into a fullfledged ACDL: the communication and the operational description. A
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proposal for describing these features is introduced later, in §5.4.2 and §5.4.3.
Automatic capability composition (configuration): In order to achieve

more complex tasks, capabilities may be combined or aggregated to achieve com-
plex goals that existing capabilities cannot achieve alone. This process may
require a combination of matchmaking, capability selection among alternative
candidates, and verification of wether the aggregated functionality satisfies the
specification of a high-level goal. In ORCAS capabilities are composed during
the configuration of a task at the Knowledge Configuration process, using the
matching relations introduced in the Knowledge Modelling Framework (§4.2.2),
and ensuring that the resulting configuration satisfies the stated problem re-
quirements.

Automatic capability interoperation (coordination): Multiples
agents involved in solving a task by applying a composed capability to solve
a global task should interoperate between them. Sharing an agent commu-
nication language, a common vocabulary and the same interaction protocols
are necessary, but not sufficient for cooperation to succeed. In addition to
the communication aspects, interoperation among specialized agents during
teamwork has to deal with the coordination of agent activities according
to the sequencing of tasks and possible task-dependencies. In ORCAS, the
information required to coordinate agent behaviors during teamwork is provided
by the operational-description of the capabilities composing a task-configuration.

The functional description of a capability as provided in the Knowledge-
Modelling Framework (Figure 4.8) enables the automated discovery and compo-
sition of capabilities (configuration). Nonetheless, the execution of capabilities
and the interoperation of multiple agents during teamwork are not supported by
the functional description of a capability.

In order to deal with these activities, we have included two extra features to
characterize a capability: the communication and the operational description.
Since we keep the knowledge-level aspects of a capability separated from the op-
erational aspects, we avoid including them within the description of a capability
in the KMF. This decision allows the ORCAS KMF to be used across different
implementations of a MAS and even different types of computational system,
like semantic Web services.

The usual approach to overcome the interoperability problems arising in open
MAS is to assume a common language and interaction protocols, while the op-
erational aspects of a capability are assumed to be part of the own agent control
and thus, they are not declared by an agent when registering its capabilities
to a middle agent. While the former elements must be shared by a group of
agents in order to work together, open agent environments are encouraged to
support more flexible approaches. Therefore, we think the use of declarative
descriptions of the communicative and the operational aspects of a capability
will support a more flexible architecture where cooperating agents can choose
from their repertoire of languages and protocols those that are more appropriate
at the moment.



5.4. The ORCAS Agent Capability Description Language 131

Figure 5.4: Main elements of the ORCAS ACDL concerning capabilities

Figure 5.4 shows the main elements of the ORCAS ACDL. A capability is
provided by an agent, and can be either a skill or a task-decomposer. The
knowledge-level description of a capability as provided in the Knowledge Mod-
elling Framework (§4.2.1) answers the question “what a capability does?”; that is
to say, the KMF provides a functional view of agent capabilities. When a capabil-
ity is task-decomposer, the ORCAS ACDL provides an operational-description
specifying how a task is decomposed into subtasks. In addition, the ORCAS
ACDL introduces a communication model that specifies how to interact with
an agent so as to request him to apply a capability. The communication model
describes the language and the interaction protocol supported by an agent in pro-
viding his services to other agents. In general, the same communication model
can be used for different capabilities, but some capabilities may not suit some
communication models. Therefore, communication models and capabilities are
described independently, so as to maximize reuse of both communication models
and capabilities. Nonetheless, agents keep the link between the capabilities they
provide and the communication models they support over each capability.

The functional aspects of capability are covered by the KMF, which is
focused only on those aspects required by the Knowledge-Configuration pro-
cess. Therefore, those aspects involving agent concepts, like the communica-
tion and the operational description, are subjects of the Operational Frame-
work. Specifically, they are presented as two subsections (§5.4.2 and §5.4.3)
of the ORCAS ACDL section. concerning the agent approach (e.g. the com-
munication) have been left undefined at the KMF and are addressed at the
Operational Framework. But prior to describe these elements in detail we are
going to overview the formalism used to specify them: electronic institutions
[Esteva et al., 2001, Esteva et al., 2002b].
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5.4.1 Electronic Institutions

We have stated previously (Chapter 1) our decision of adopting a social, macro-
view of Multi-Agent Systems. In particular, we adopt the formal approach
of electronic institutions [Esteva et al., 2001, Esteva et al., 2002b] to specifying
open agent societies, which is based on a computational metaphor of human
institutions.

Human institutions are places where people meet to achieve some goals fol-
lowing specific procedures, e.g. auction houses, parliaments, stock exchange
markets, etc. Intuitively, the notion of agent-mediated institution or electronic
institution proposes a sort of virtual places where agents interact according to
explicit conventions. The institution is the responsible for defining the rules of
the game, to enforce them and impose the penalties in case of violation.

An electronic institution, or e-Institution, is a “virtual place” designed to sup-
port and facilitate certain goals to be achieved by human and software agents
concurring to that place. Since these goals are achieved by means of the interac-
tion of agents, an e-institution must provide the social mediation layer required
to achieve a successful interaction: interaction protocols, shared ontologies, com-
munication languages and social behavior rules. An example of such an insti-
tution is an Auction House. An Auction House has institutional agents, those
agents (like the auctioneer) that manage the tasks required for the institution to
exist; but Auction Houses are open: they allow other agents (buyers and sellers)
to “enter” that place in order to achieve their own goals.

The main goal of the e-Institutions approach is the specification and au-
tomatic generation of infrastructures for open agent organizations. Electronic
institutions are architecturally-neutral with respect to agents, focused on the
macro-level (social view) of agents, and not in their micro-level (internal view).

We are interested on using the concepts proposed by the e-Institutions ap-
proach as a way to specify the interaction and coordination needs of teamwork
without imposing neither a specific agent architecture, nor a mentalistic theory
of cooperation . In electronic institutions, all agent interactions can be reduced
to illocutions. Therefore, accountability is expressible in terms of how illocu-
tions are constrained, or what characteristics can be predicated and tested on
illocution utterance, and on illocution reception.

A more precise definition of electronic institutions follows [IIIA, 2003]:

An electronic institution is the computational realization of a set of
explicit, possibly enforceable restrictions imposed on a collection of
dialogical agent types that concur in space and time to perform a
finite repertoire of satisfiable actions.

This definition assumes that agents are “dialogical entities” that interact
with other agents within a multi-agent context which is relatively static in on-
tological terms. We can assume also that agents exhibit rational behavior by
engaging in dialogical exchanges, i.e. that agent interactions are systematically
linked to illocutions that are comprehensible to participants and refer to a ba-
sic shared ontology, and that the exchanges can be (externally) construed as



5.4. The ORCAS Agent Capability Description Language 133

rational. Moreover, the institution is the real depositary of the ontology and
interaction conventions used by the participating agents.

Dialogical agents are entities that are capable of expressing illocutions and
react to illocutions addressed to them and, furthermore, only illocutions (and
the contextual effects of their associated actions, e.g. commitments to sell a
good) constitute observable agent behavior. Individual agents may have other
capabilities —perception, intentions, beliefs, etc.—, but we assume that as long
as agents interact within the institution, only illocutions are perceivable by other
agents (and the meaning and conditions of satisfaction of the associated actions
can be objectively established and accounted for within the shared context).
Moreover, agents within an institution can only utter illocutions that are consis-
tent with the “role” they are playing. Definitively, the e-Institutions approach is
social or exodeitic [Singh, 1998], focused on the macro-level view of Multi-Agent
Systems and not on any particular agent architecture.

An e-institution is modelled with the following components [Noriega, 1997,
Rodŕıguez-Aguilar, 1997, Esteva et al., 2001]:

1. Agent roles: Agents are the players in an electronic institution, interacting
by the exchange of speech acts, whereas roles are standardized patterns of
behavior required by agents playing part in given functional relationships.
Any agent within an electronic institution is required to adopt some role.

2. Dialogic framework: A dialogic framework determines the valid illocutions
that can be exchanged among the agents participating in an electronic in-
stitution. In dialogical institutions, agents interact through speech acts,
thus the institution establishes the acceptable speech acts by defining the
ontological elements (the vocabulary) and the agent communication lan-
guage (ACL). By sharing a dialogic framework, an electronic institution
enables heterogeneous agents to meaningfully interact with others.

3. Communication scenes: Interaction protocols are articulated through
agent group meetings called scenes. A scene defines an interaction pro-
tocol among a set of agent roles using a specific dialogic framework. A
scene is a formal specification of a pattern of structured communication
which constrains the possible patterns of dialogues that can be used by the
participating agents adopting one of the roles in the scene (agents have to
adopt some role in order to participate).

4. Performative structure: A performative structure is a network of connected
scenes that captures the relationships among scenes. The specification
of a performative structure contains a description of how the different
agent roles can move from one scene to another. Furthermore, agents may
participate in different scenes, playing different roles at the same time, or
engage in multiple instances of the same scene simultaneously.

5. Normative rules: Agent actions may have consequences that either limit or
enlarge its subsequent acting possibilities. Such consequences are specified
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through normative rules, which impose obligations to the agents and affect
their possible paths across the performative structure.

ORCAS approaches open agent organizations as virtual, agent based institu-
tions composed of heterogeneous agents playing different roles and interacting by
means of speech acts. However, while electronic institutions have been proposed
as a way to describe static or predefined organizations, we are rather inter-
ested on a more dynamic approach in which the institution is built on-the-fly by
putting existing pieces together. While tasks and capabilities where combined
during the Knowledge Configuration process to compose a task-configuration,
scenes and performative structures are combined and integrated during the Team
Formation process. The result is an electronic institution ad-hoc, which provides
the communication and the coordination elements required for a team to achieve
a global problem according to stated problem requirements.

The following subsections describe the elements required to communicate and
coordinate with other agents during the Teamwork process. We will introduce
the required notions from electronic institutions and then the way we use those
concepts in ORCAS.

5.4.2 Communication

The communication aspects of a capability describe the elements required to in-
teract with an agent providing that capability. Interaction is required, basically,
to send input data to an agent willing to execute a capability, and to receive
back the output produced by the application of a capability from another agent.
ORCAS agents are dialogical entities that communicate using speech acts or illo-
cutions; more specifically, we use elements of the electronic-institutions approach
to describe the communication aspects associated to a capability. The commu-
nication requirements of a capability are specified as scenes using some dialogic
framework. A dialogic framework contains the elements for the construction of
the communication language, expressions used within the capability communica-
tion scenes. Scenes are dialogical patterns of interactions based on the illocutions
and vocabulary defined by the dialogic framework. In ORCAS scenes are used
to describe the interaction protocols supported by an agent providing some ca-
pability. Therefore, scenes are bound to some capabilities within the context
of an agent equipped with that capability. The idea here is that of individual
agents equipped with a set of capabilities and a set of scenes supported by each
capability.

Communication
scenes → set-of Scene
dialogic-frameworks → set-of Dialogic-Framework

Figure 5.5: The Communication and Communication-scenes sorts
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Figure 5.5 shows the Communication sort, used to describe the communi-
cation features of a capability: a set of scenes describing different interaction
protocols supported by an agent, and a set of dialogic-frameworks describing the
vocabulary and the languages supported by an agent.

The following subsections describe the two elements of the electronic insti-
tutions formalism used in ORCAS to describe the communication aspects of a
capability: dialogic frameworks and scenes.

Dialogic framework

In open environments agents can be endowed with its own inner language and
ontology. In order to allow agents to successfully interact with other agents their
languages and ontologies must be put in relation. For this purpose, the electronic
institutions approach establishes that agents must share a dialogic framework
that contains the elements for the construction of the communication language
expressions that are required within the institution or within a specific scene.
By sharing a dialogic framework, heterogeneous agents can exchange knowledge
by means of illocutionary acts.

The electronic institutions formalism defines a dialogic framework as follows
[Esteva, 1997]:

Definition 5.5 (Dialogic Framework) A dialogic framework is defined as a
tuple DF = 〈O, L, I, RI , RE , RS〉, where

• O stands for an ontology (vocabulary);

• L stands for a content language to express the information exchanged be-
tween agents;

• I is the a of illocutionary particles;

• RI is a set of internal roles;

• RE is a set of external roles;

• RS is a set of relationships over roles.

The dialogic framework determines the valid illocutions (I) that can be ex-
changed between the participants. In order to do so, an ontology (O) that fixes
what are the possible values for the concepts in a given domain is defined, e.g
goods, participants, locations, etc. Moreover, the dialogic framework defines
which are the roles that participating agents may play within the institution or
within a particular communication scene the dialogic framework is bound to.

Each role defines a pattern of behavior within the institution. Roles allow to
abstract from the individuals agents participating in the electronic institution.
This feature is specially important in open environments in which the identity
of the agents that could participate in the institution is not known in advance.
Furthermore, in open environments agents may change over time, since new
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agents may join the institution and agents already in the institution may come
to leave. For this reason, all the actions that can be done within an institution
are associated to roles, and not to individual agents. Intuitively we can think
of roles as agent types characterized by a set of actions allowed for that type.
For instance, within an auction, an agent playing the buyer role is capable of
submitting bids, while the agent playing the auctioneer role can offer goods at
auction. In order to take part in an electronic institution, an agent is obliged to
adopt some role(s). An agent playing a given role must conform to the pattern
of behavior attached to that particular role. However, all agents adopting a
specific role are guaranteed to have the same rights, duties and opportunities.

A dialogic framework distinguishes internal roles (RI) from external roles
(RE). Internal roles define the roles to be played by staff agents, which are
equivalent the employees of a human institution. Those agents are in charge of
guaranteeing the correct functioning of an institution. For instance, an auction-
eer is in charge of auctioning goods following the specified protocol and the buyer
admitter is in charge of guaranteeing that only buyers satisfying the admission
conditions are allowed to participate.

Two types of agent relationships over roles can be specified, namely: su-
perclass and static separation of duties (SSD). Superclass relationships indicate
whether a role belongs to a more general class. If a role r is a superclass of
another role r′ (r º r′), then an agent playing r is enabled to play r′. However,
since agents can play several roles at the same time, role relationships stand-
ing for conflict of interests must be defined with the purpose of protecting the
institution against an agent’s malicious behavior. For instance, in an auction
house the auctioneer and the buyer roles are mutually exclusive. A static sepa-
ration of duties policy is defined to avoid two mutually exclusive roles of being
authorized to the same agent. The static separation of duties is defined as the
relation ssd ⊆ Roles × Roles. A pair (r, r′) ∈ ssd denotes that r, r′ cannot be
authorized to the same agent. See [Esteva et al., 2001] for an enumeration of
the requirements for the ssd relation and some inferred properties.

The content language (L) allows for the encoding of the knowledge to be
exchanged among agents using the vocabulary offered by the ontology. The
propositions built with the aid of the content language are embedded into an
“outer language”, the communication language(CL), which expresses the inten-
tions of the utterance by means of the illocutionary particles.

Expressions in the communication language are constructed as formulae of
the type (ι (αi πi) (β)ϕ τ) where ι is an illocutionary particle, αi is a term which
can be either an agent variable or an agent identifier, πi is a term which can
be either a role variable or a role identifier, β represents the addressee(s) of the
message (which can be an agent or a group of agents), ϕ is an expression in the
content language and τ is a term which can be either a time variable or a time
constant. The CL allows to express that an illocution is addressed to an agent,
to all the agents playing a role or to all the agents in the scene.

Notice that a dialogic framework determines the ontological elements and
the valid elements for constructing expressions in the communication language.
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Thus a dialogic framework must be regarded as a necessary ingredient to specify
scenes.

Using dialogic-frameworks in ORCAS: the Teamwork ontology

Given a capability C, one can think that some of the ontological elements re-
quired to interact with the agent providing C are those used to specify C, like
the signature-elements used to specify the input and the output. Nonetheless,
we have preferred to keep the knowledge-level elements away from the opera-
tional and communication aspects so as to maximize the reuse of these elements
too. In order to do that, we have decided to specify the communication of a
capability independently of other features of the capability: we specify the com-
munication aspects using generic, easy to reuse concepts, like the notion of input
and output, and not in terms of a particular type of input (a signature-element).

Since the ORCAS framework aims to maximize reuse (of both capabilities and
communication elements), thus we try to impose as few requirements as possible
to agents willing to cooperate, thus we have imposed a minimum set of concepts
to be understood by agents in order to participate in an ORCAS e-Institution.
These concepts should be shared by all the members of a team in order to coop-
erate, thus they are explicitly represented as an ontology. This ontology consist
of the previously presented notions of Team-role (§5.1) and Team-component
(§5.2), plus some concepts relating the different types of messages that can be
exchanged during the Teamwork process. A basic model of communication for
teamwork includes the following type of messages:

• Perform: requests to solve the tasks associated to a specific team-role.

• Result : messages containing the results of having performed some task.

• Done: messages to confirm that some request has been achieved

• Refusal : messages to inform that the requested petition won’t be carried
on.

• Failure: messages to inform of some failure occurred while performing the
tasks associated to a team-role.

Figure 5.6 shows the basic concepts included in the Teamwork ontology, and
the features characterizing each concept. These concepts and their features
are defined as sorts in the Teamwork ontology, and are used within scenes to
constrain the type of messages allowed in the following way: only messages
complying with the illocutionary schemas defined by the scene are permitted.
For example, if an illocutionary schema specifies that a message should have a
content of the type Perform, then only messages with that type of content would
be allowed. The sort Any subsumes any other sort and is used to allow further
specialization by developers, for instance, the reason for a refusal or the error
code when informing about a failure.
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Teamwork ontology

Team-role Definition 5.1
Team-component Definition 5.2
Perform team-id:Symbol, team-role:Symbol, input-data:Signature-element
Result team-id:Symbol, team-role:Symbol, output-data:Signature-element
Done team-id:Symbol, team-role:Symbol
Refusal team-id:Symbol, team-role:Symbol, reason:Any
Failure team-id:Symbol, team-role:Symbol, error:Any

Figure 5.6: Basic Teamwork concepts

Capabilities should be specified independently of other capabilities in order
to maximize their reuse and facilitate their specification by third party agent
developers. In the general case, agent developers do not know a priori the tasks
that could be achieved by an agent capability, since teams are formed on-demand
according to specified problem requirements, and thus the same capability could
be used to solve different tasks (as far as the the capability is suitable for the
task, as defined by a task-capability matching relation) or the same task in the
context of a different task-decomposition. As a consequence, the team roles an
agent can play using a capability are not known in advance. Therefore, the roles
used to specify the communication scenes of a capability cannot be specified in
terms of specific team-roles.

Our approach to overcome the former difficulty is to specify the communi-
cation aspects of a capability in terms of abstract, generic roles, rather than
specific team-roles. As already explained, ORCAS teams are hierarchically or-
ganized according to task-configurations, and thus the teamwork itself can be
easily coordinated using a hierarchical communication style. There are agents
decomposing a task into subtasks and requesting other agents to solve some of
the subtasks. An agent that applies a task-decomposer capability to solve a task
is responsible for delegating subtasks to other agents, receiving the results, and
performing intermediate data processing between subtasks. In such a scenario,
we can establish an abstract communication model with two basic roles:

1. the coordinator role is adopted by an agent willing to decompose a task
into subtasks, requesting other agents to carry on the different subtasks
in an appropriate order, receiving the different results, and obtaining the
final result of the task; and

2. the operator role, one the other side, is adopted by the agent having to
perform a task on demand, using the data provided by another agent that
acts as coordinator, and having to bring the result back to the coordinator.

The operator and the coordinator roles are defined as keeping a static sepa-
ration of duties (SSD) relationship, so as to avoid an agent to adopt both roles
simultaneously within the same scene. However, the same agent can act as coor-
dinator and operator simultaneously, but playing those roles in different scenes.
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Figure 5.7: Example of team-role relations and role-policy for Teamwork

This situation occurs when a team-role is neither the root neither a leave in
the team-roles hierarchy. The agent playing such a team-role has to adopt the
operator role to communicate with the agent assigned the task-decomposer on
top of it (one level above in the team hierarchy). Nonetheless, in order to finish
its task, this agent has to communicate with other agents assigned to its own
subtasks, and adopting the coordinator role itself. Figure 5.7 shows an example
of such a situation. The agent playing Team-role 5 (TR5) has to act as operator
to communicate with TR1. Notice that TR5 (the agent playing TR5) has to
solve the task Aggregate using the input data received from TR1, and send the
result back to TR1; but in order to do that, TR5 must delegate its own subtasks
(elaborate-items and aggregate-items) to its subordinated team-roles, TR6 and
TR7. In order to do that, TR5 has to communicate with TR6 and TR7 acting
himself as the coordinator, and TR6 and TR7 as the operator (each one in a
different scene).

Moreover, we introduce another role that is a superclass of both the coordi-
nator and the operator roles, the Problem-Solving Agent (PSA) role.

(PSA º Coordinator) ∧ (PSA º coordinator) (5.1)

Consequently, any agent enabled playing a PSA role can play also the coor-
dinator and the operator roles (albeit never in the same scene instance). Figure
5.8 depicts the relationships among the basic ORCAS roles. The PSA role is a
superclass of both the coordinator and the operator roles, and there is a static
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Figure 5.8: Basic roles and role relationships

separation of duties between the coordinator and the operator roles.
Figure 5.9 summarizes the specification of the dialogic framework in the

ORCAS ACDL: A shared Teamwork ontology, and the coordinator and operators
as the only roles. There is a static separation of duties (SSD) between the
coordinator and the operator roles. This relation means that an agent cannot
be coordinator and operator within the same scene, since it has no sense for
an agent to communicate with himself. There are no internal roles and both
the content language and the illocutionary particles remain open (the example
shows the typical illocutions and specifies NOOS as the content-language).

ontology Teamwork-ontology
illocutionary-particles e.g. (request inform agree refuse inform failure)
internal-roles ∅
external-roles (coordinator operator)
social-structure (coordinator SSD operator)
content-language e.g.NOOS

Figure 5.9: Dialogic frameworks in the ORCAS ACDL

Scenes

A scene is the main element used to describe the communication features of a
capability, it describes what is commonly known as an agent interaction protocol.
The same capability can support different interaction protocols, and thus a scene
is required to specify each interaction protocol.

Recall that a scene is a conversation protocol shared by a group of agents
playing some roles. More precisely, a scene defines a generic pattern of con-
versation among roles. Any agent participating in a scene has to play one of
its roles. A scene is generic in the sense that it can be repeatedly played by
different groups of agents, in the same sense that the same theater scene can be
performed by different actors playing the same roles.

Electronic institutions use finite state machines (FSM) to specify scenes1,

1An account of the reasons to adopt such a formalism is found in [Esteva, 1997],
while another examples on using FSMs to specify agent conversations can be found in
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which are represented by finite, directed graphs. A scene is defined as follows in
the electronic institutions formalism [Esteva, 1997]:

Definition 5.6 (Scene) A scene is a tuple:

s = 〈R,DF, W,w0,Wf , (WAr)r∈R, (WEr)r∈R, Θ, λ,min, Max〉

where

• R is the set of roles of the scene;

• DF is a dialogic framework (Definition 5.5);

• W is a finite, non-empty set of scene states;

• w0 ∈ W is the initial state;

• Wf ⊆ W is the non-empty set of final states;

• (WAr)r∈R ⊆ W is a family of non-empty sets such that WAr stands for
the set of access states for the role r ∈ R;

• (WEr)r∈R ⊆ W is a family of non-empty sets such that WEr stands for
the set of exit states for the role r ∈ R;

• Θ ⊆ W ×W is a set of directed edges;

• λ : Θ −→ L is a labelling function, where L can be a timeout, an illocution
scheme or an illocutions scheme and a list of constraints;

• min,Max are two functions that return respectively the minimum and
maximum number of agents that can play a role r ∈ R;

The nodes of the scene graph represent the different states (W ) of the con-
versation, and the directed edges (Θ) connecting the nodes are labelled (λ) with
the actions that make the scene state evolve: illocution schemes and timeouts.
The graph has a single initial state (w0, non-reachable once left) and a set of
final states (Wf ) representing the different endings of the conversation (there is
no edge connecting a final state to another state).

A scene allows agents either to join it or leave it at specific states during
an ongoing conversation, depending on their role. For this purpose, the sets of
access (WAr) states and exit states (WEr) are differentiated for each role.

Normally the correct evolution of a conversation protocol requires a certain
number of agents for each role involved in the scene. Thus, a minimum (min)
and a maximum (Max) number of agents per role is defined and the number of
agents playing each role has to be always between them.

The final states have to be an exit state for each role, in order to allow all
the agents to leave when the scene is finished. On the other hand, the initial

[Barbuceanu and Fox, 1995, Nodine and Unruh, 1999, d’Inverno et al., 1998]
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state has to be an access state for the roles whose minimum is greater than zero,
in order to start the scene.

The information exchanged between agents is expressed in the form of illo-
cution schemes from the scene dialogic framework. In order for the protocol to
be generic some details have to be abstracted. This means that state transitions
cannot be labelled by grounded illocutions. Instead, illocutions schemes must
be used, where the terms referring to agents and time are variables while the
other terms can be variables or constants.

The other element that can label an edge is a timeout. Timeouts trigger
on transitions after a given number of time units have passed since the state
was reached. This is specially important for robustness —to evolve from states
where agents dying and hence not talking any more, or where agents trying to
foot-drag the other agents by remaining silent, could block the scene execution.

In addition to defining the valid sequences of illocutions that agents can
exchange, a scene establishes the conversation context. Context is a funda-
mental aspect that humans use in order to interpret the information they
receive. The same message in different contexts may certainly have a different
meaning. Thus, a scene establishes what can be said, by who, and to whom,
and allows to specify how past interactions may affect the future evolution of
the conversation. The contextual information may restrict the valid messages
in a certain state of the conversation. For instance, imagine a scene auctioning
goods following the English auction protocol: as bids are submitted by buyers
the valid bids for them are reduced to bids greater than the last one. That is
to say, each submitted bid reduces the valid illocutions that buyers can utter,
although the scene may continue in the same state. Such contextual information
is encoded as constrains, which are used to restrict the set of values to create
new bindings of the variables in the illocution schemes, as well as the paths
that a scene conversation can follow. The reader is referred to [Esteva, 1997]
for a detailed account on the use of variables and constrains in the electronic
institutions formalism.

A scene has both a textual and a graphical representation. Figure 5.10
shows an example of an auction scene specifying a sealed-bid protocol. In this
scene the participating agents can play the auctioneer and buyer roles. The
graph depicts the states of the scene, along with the edges representing the legal
transitions between scene states which are labelled either with illocution schemes
of the communication language (according to elements defined within a dialogic
framework) or with timeouts. Notice that apart from the initial and final states,
the w1 state is labelled as an access and exit state for buyers, which means that
buyers can leave and new buyers might be admitted between bidding rounds.
Variable identifiers appearing in the illocution schemes can start with either ‘?’
or ‘!’, which is used to differentiate whether the variable can be bound to a new
value or must be substituted by its last bound value.
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1 (inform (?x auctioneer) (buyer) open auction(?r))
2 (inform (!x auctioneer) (buyer) start round(?good id, ?bidding time,

?reserve price))
3 (commit (?y buyer) (!x auctioneer) bid(!good id, ?offer))
4 !bidding time
5 (inform (!x auctioneer) (buyer) sold(!good id, ?price, ?winner))
6 (inform (!x auctioneer) (buyer) withdrawn(!good id))
7 (inform (!x auctioneer) (buyer) end auction(!r))

Figure 5.10: Specification of a sealed-bid auction protocol
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Using scenes in ORCAS

In the electronic institutions formalism, when a new institution is defined, there
is a global view of the system and thus it is possible to define in advance all the
roles that can be played by the participating agents. Scenes in ORCAS are used
to describe the patterns of interaction required to delegate a task to other agent,
exclusively from the point of view of the agent providing the capability required
to achieve that task. An agent providing a capability does not know in advance
the potential team-roles it can get to play using that capability. Consequently,
a scene describing the communication requirements of a capability can not be
specified in terms of team-roles. The ORCAS approach to deal with issue is to
define scenes in terms of two generic roles: the coordinator and the operator roles.
The agent applying a task-decomposer and willing to delegate some subtask
takes the coordinator role to communicate with each of the agents assigned to
a subtask within the task-decomposer, engaging in a new scene for each task
being delegated. Realize that the communication between an agent applying a
task-decomposer and an agent responsible of one subtask is necessary only both
the agents are the same; otherwise, if the agent assigned a task-decomposer were
the same assigned a subtask, then there is no need for communication for that
subtask.

1 (request (?x Coordinator) (?y Operator) perform(?team-role ?input))
2 (agree (!y Operator) (!x Coordinator) perform(!team-role !input))
3 (inform (!y Operator) (!x Coordinator) result(!team-role ?ouput))
4 (refuse (!y Operator) (Coordinator null) perform(!team-role !input))
5 (failure (!x Operator) (!y Coordinator) perform(!team-role !input))

Figure 5.11: Request-Inform protocol described by a scene

Figure 5.13 shows a scene specifying a FIPA-like Request-Inform protocol
for a capability C. There are two roles, the coordinator and the operator roles.
The coordinator role is played by the agent that has to delegate a task T to
the agent providing C (assuming that T can be solved by C). The operator
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role is played by the agent providing C. The coordinator is the initiator of
the scene, that begins with the coordinator sending a “request” message to the
operator. That message contains the identifier of the team-role to be played by
the operator, and the data to be used as input. The operator checks whether it
is assigned to that team-role, and sends either an “agree” or a “refuse” message
accordingly (if an agent is assigned to a team-role, it is supposed to agree, owing
to the commitment implicit on an agent accepting a team-role during the Team
Formation process). The operator agent holds the information required to carry
out its accepted team-roles, as that information was provided during the Team
formation process; therefore, the operator can solve the task assigned to that
team-role by applying the capability bound to it, using the data provided as
input by the coordinator, and the selected domain knowledge. If the capability
is applied to the input data successfully, then the operator sends the result to the
coordinator with an “inform” message, otherwise the operator sends a “failure”
message. There are three final states that are reached when the operator refuses
the request from the coordinator (w4), the application of the capability fails
(w5), or it ends successfully (w3).

A wide range of communication styles can be specified using scenes, from very
simple protocols involving two roles to very complex interaction protocols with
several agent roles, time-outs, transition constrains and so on, thus giving quite
expressiveness to developers. Nevertheless, using a reduced set of standardized
basic protocols is encouraged in ORCAS to maximize capability reuse. In order
to have an intuitive idea of possible styles of interaction we can consider the
basic interaction protocols defined for Web services, which are called operations
in WSDL and processes in DAML-S [The DAML-S Consortium, 2001]. There
are four basic types of “operations” according to these proposals:

• request-response operation (an atomic process with both inputs and out-
puts in DAML-S);

• one-way operation (an atomic process with inputs but no outputs);

• notification operation (an atomic process with outputs, but no inputs);

• solicit-response operation (a composite process with both outputs and in-
puts, and with the sending of outputs specified as coming before the re-
ception of inputs).

The request-response operation corresponds to the request-inform protocol
showed in Figure 5.13 as an example of a scene. The one-way and the noti-
fication operations can be specified by the same scene but with different edge
labels, as showed in Figure 5.12. Finally, the solicit-response operation requires
some minor changes in the scene; there is required a new state, w6, and a new
transition (Transition 6) from w5 with an inform message to be send by the
Coordinator to the Operator, containing the input.

Summing-up, scenes provide a flexible and precise (not ambiguous) way of
defining interaction protocols to communicate with agents in order to delegate
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One-way operation (only input)

1 (request (?x Coordinator) (?y Operator) perform(?team-role ?input))
2 (agree (!y Operator) (!x Coordinator) perform(!team-role !input))
3 (inform (!y Operator) (!x Coordinator) done(perform(!team-role !input))
4 (refuse (!y Operator) (Coordinator null) refusal(perform(!team-role !input) reason)
5 (failure (!x Operator) (!y Coordinator) failure(perform(!team-role !input) reason)

Notification: (only output)

1 (request (?x Coordinator) (?y Operator) perform(?team-role))
2 (agree (!y Operator) (!x Coordinator) perform(!team-role))
3 (inform (!y Operator) (!x Coordinator) result(!team-role !output))
4 (refuse (!y Operator) (!xCoordinator) perform(!team-role))
5 (failure (!x Operator) (!y Coordinator) perform(!team-role))

Solicit-Response (both input and output, but input cames after the output is provided

1 (request (?x Coordinator) (?y Operator) perform(?team-role))
2 (agree (!y Operator) (!x Coordinator) perform(!team-role))
3 (inform (!y Operator) (!x Coordinator) result(!team-role !output))
4 (inform (!x Coordinator) (!x Operator) response(!team-role !input))
5 (refuse (!y Operator) (Coordinator null) inform(!team-role ?input))
6 (failure (!x Operator) (!y Coordinator) perform(!team-role))

Figure 5.12: Variations and alternatives to the Request-Inform protocol

Figure 5.13: Solicit-Response protocol described by a scene
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tasks to other agents. Every time an agent has to delegate a task to another
in the context of a teamwork process, it has to engage in communication with
the agent assigned to the task’s team-role. This communication will follow the
specification of a scene supported by the agent providing that capability. The
decision on which specific scene is to be used between two agents is negotiated
during the Team Formation process, as explained in §5.5.

5.4.3 Operational description

The purpose of the operational description is to specify the data and control flow
among the subtasks of a task-decomposer. Control flow languages are based on
the notion of control constructs like iteration, parallelism, branching conditions
and so on. Control flow modelling has been a research area that attracted
significant interest in the last decade. Nevertheless, little consensus has been
reached as to what the essential ingredients of a control flow specification lan-
guage should be, and there are notable differences in the expressive power of
control flow specification languages [Kiepuszewski, 2002].

Since our approach is based on Knowledge Modelling frameworks we have
considered some proposals from the Knowledge Modelling community, like
KARL [Fensel et al., 1998a] and Modal Change Logic [Fensel et al., 1998b], but
we found that these proposals rely on a sequentiality assumption that is not ap-
propriate for MAS. Therefore, it seems more appropriate to use agent concepts
for describing the interaction among subtasks in order to deal with parallelism.
Such a language must capture dependency relationships, temporal relationships,
and parallelism in order to support the team configuration during the Team
Formation process, and the coordination of team mates during the Teamwork
process. In order to describe these aspects, we will continue using the concepts
on electronic institutions: specifically, we will use the notion of a performative
structure to describe the operational description of task-decomposers.

We want to increase the reusability of capabilities by describing the opera-
tional description of task-decomposers from a compositional approach, maximiz-
ing the reuse of capabilities by keeping them separated from both the tasks and
the domain models. In addition, we want to use a formalism supporting paral-
lelism and allowing for the specification of synchronization points, and multiple
task instantiation (i.e. tasks that can be played several times during the same
teamwork process).

In order to deal with these issues, the ORCAS ACDL proposes the specifi-
cation of the operational description as a task network, using the concept of a
performative structure from the electronic institutions formalism. The point is
to describe the operational description of a task-decomposer as a composition of
several scenes, where each scene corresponds to a scene describing the commu-
nication between the agents playing the coordinator and the operator roles for
that capability during the Teamwork process.

While a scene models a particular multi-agent dialogical activity, more com-
plex activities can be specified by establishing relationships among scenes. This
issue arises when conversations are embedded in a broader context, such as, for
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instance, organizations and institutions. If this is the case, it does make sense
to capture the relationships among scenes. For these purpose a performative
structure defines which are the scenes of the electronic institution and the role
flow policy among them. That is to say, how the agents can move among the
different scenes depending on their role, and when new scenes have to be started,
taking into account the relationships among the different scenes.

Performative structure

A performative structure is a network of connected scenes that captures the rela-
tionships among scenes. The specification of a performative structure contains a
description of how the different agent roles can move from one scene to another.
More formally, a performative structure is defined as follows [Esteva, 1997]:

Definition 5.7 (Performative Structure) A performative structure is a tu-
ple

PS = 〈S, T, s0, sΩ, E, fL, fT , fO
E , C, µ〉

where

• S is a finite, non-empty set of typed scenes, where each scene is defined by
a name (Sname) and a type (Stype) (Def. 5.6);

• T is a finite and non-empty set of transitions;

• s0 ∈ S is the initial scene;

• sΩ ∈ S is the final scene;

• E = EI
⋃

EO is a set of edge identifiers where EI ⊆ S × T is a set of
edges from scenes to transitions and EO ⊆ T × S is a set of edges from
transitions to scenes;

• fL : E −→ V maps each edge to an edge label V, represented as a disjunc-
tive normal form (DNF)2 in which literals are pairs composed of an agent
variable and a role identifier representing an edge label;

• fT : T −→ T maps each transition to its type;

• fO
E : EO −→ E maps each edge to its type;

• C : EI −→ CONS maps each edge to a expression representing the edge’s
constraints.

• µ : S −→ {0, 1} establishes whether a scene can be multiply instantiated at
execution time;

2Disjunctive Normal Form or DNF is a method of standardizing and normalizing logical
formulae. A logical formula is considered to be in DNF if and only if it is a single disjunction
of conjunctions. More simply stated, the outermost operators of the formula are all ORs, and
there is only one level of nesting allowed, which may only contain literals or conjunctions of
literals
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A performative structure contains a set of typed scenes (S). The scene type
is the specification of the scene according to Definition 5.6), thus different scenes
within a performative structure can refer to the same type of scene. There are
two scenes defined as the initial (s0) and final (sΩ) scenes. Relationships among
scenes are specified as transitions (T ) agents must traverse in order to move
from one scene to another, and edges going from scenes to transitions (incoming
edges, EI), and from transitions to scenes (outgoing edges, EO). In order to
move from one scene to another, an agent has to progress through a transition
(direct connections between scenes are forbidden). In general, the activity rep-
resented by a performative structure can be depicted as a collection of multiple,
concurrent scenes, and agents navigating from scene to scene constrained by
transitions. A performative structure can specify also whether a scene can be
multiple instantiated or not at execution time (µ).

The edges of a performative structure are labelled so as to specify which
agents can progress through an edge depending on their roles. These labels are
expressed as conjunctions and disjunctions of pairs composed of an agent variable
and a role identifier. The role identifier determines which type of agent is allowed
to follow the edge, while agent variables are used to differentiate among agents
playing the same role. For instance, an edge labelled with (xR1)∧ (y R2) means
that this edge can be followed only by pairs of agents where one of them is
playing the role R1 and the other is playing the role R2. On the other hand, an
edge labelled with (xR1) ∨ (y R2) means that any agent playing either the role
R1 or the role R2 can progress through that edge. The scope of an agent variable
includes all the incoming and outgoing edges of a transition. That is to say, if
an agent reaches a transition following an incoming edge labelled with (xR1),
it can only leave the transition by following those outgoing edges containing the
variable x in their label. However, there is a relation between the agent variables
labelling the incoming and the outgoing edges of a scene. A conjunction over a
incoming edge (from a scene to a transition) means that the agents have to leave
the scene together (and reach the transition together too), whereas a conjunction
labelling an outgoing edge (from a transition to a scene) means that the agents
must enter the target scene together, that is to say, agents must enter into the
same scene instance.

There are two types of transitions (fT ) according to how agents coming from
several edges can progress through them:

• AND transitions establish synchronization points and parallelism. Agents
reaching a transition from several incoming edges have to wait for agents
coming from all the incoming edges in order to progress through the tran-
sition, and must follow all the outgoing edges where they appear (the
variables they are bound to).

• OR transitions allow agents to progress through them in an asynchronous
way and are used to define choice points. Agents reaching an OR transition
can progress through it without waiting for other agents, and are allowed
to choose which outgoing edge to follow when leaving the transition.
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Figure 5.14: Graphical elements used to specify a performative structure

Figure 5.14 shows the graphical elements used to specify a performative struc-
ture: scenes, transitions and edges. There are different symbols to distinguish
the initial and final scenes from other scenes, and to differentiate whether a
scene can be multiple instantiated or not (single). Notice there are two types
of transitions, AND and OR; and two ways of labelling an edge, conjuntion and
disjuntion.

An example of a performative structure for an agoric market is shown in
Figure 5.15 (extracted from [Esteva, 1997]). The root scene is the Admission
scene, where any agent enters the institution. Buyers and sellers can move from
the Admission scene to the Agora scene, where they can try to buy and sell
goods. When a buy/sell operation is agreed, both the involved buyer and seller
together meet with an accountant agent in the Settlement scene to formalize
the operation. Finally, agents can exit the institution by reaching the Departure
scene.

Using performative structures in ORCAS

Our approach to specify the operational description of a task-decomposer is
based on performative structures, with some distinctive features.

A first feature characterizing the use of performative structures to specify
the operational description of a task-decomposer arises from the fact that the
precise team-role applying a task-decomposer is not known, because a task-
decomposer is defined for a capability, independently of any particular task that
can solved applying that capability. Our approach to overcome this problem is
the use of two generic roles, as explained in §5.4.2 and §5.4.2: the coordinator
and the operator roles. Therefore, when defining an operational description as
a performative structure, we know that the agent providing a task-decomposer
adopts the role of the coordinator, while the agents assigned to every subtask
adopt the operator role, and thus, the performative structure can be defined in
terms of these generic roles.

The second feature distinguishing a performative structure in ORCAS from
the electronic institutions approach results from the decoupling of tasks and ca-
pabilities. In ORCAS, each scene within the performative structure corresponds



5.4. The ORCAS Agent Capability Description Language 151

t1

t2 t3

t4
t5

t6

Figure 5.15: Performative structure of an agora

to an interaction protocol describing the communication required between a
task-decomposer team-role acting as a coordinator, and a subordinated team-
role acting as operator. In other words, each scene within the performative
structure refers to a task to be delegated to another agent. In ORCAS, each
task (T ) is solved using a capability (C); therefore the coordinator agent has to
communicate with the agent providing C, using one of the scenes supported by
that agent (acting as operator) over C. Consequently, the specific scenes to be
used within a performative structure must be decided before starting the Team-
work process. In ORCAS this process is carried over during the Team Formation
process. The goal is to select the scenes from those supported from both the
provider and the requester of a capability. We note AC an agent providing C
and AC

S as the set of scenes it supports over C. The provider of a capability
must play the operator role and the requester must play the coordinator role.
Both the coordinator and the operator must follow the same scene in order to
communicate, and as a consequence, the scene must be chosen out of the scenes
supported by both agents (the intersection of two set of scenes, the scenes sup-
ported by the coordinator, and the scenes supported by the operator).

In order to specify the operational description of a task-decomposer, we adapt
the notion of a performative structure to fit better in the ORCAS framework.
Specifically, the constraints and the edge typing functions are not used in an
operational description, the scenes are not typed (a), and two scenes called
Start and End are defined as the initial and final scenes. More formally, an
operational description in ORCAS is defined as follows [Esteva, 1997]:
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Definition 5.8 (Operational description) A operational description is de-
fined for a task-decomposer D as a tuple

OD(D) = 〈S, T, s0, sΩ, E, fL, fT , fO
E , µ〉

where

• S is a set of untyped scenes named after the subtasks introduced by the
task-decomposer, plus an initial and a final scene called Start and End
respectively;

• s0 ∈ S = Start (the initial scene);

• sΩ = End (the final scene);

• T is a finite and non-empty set of transitions;

• E = EI
⋃

EO is a set of edge identifiers where EI ⊆ S × T is a set of
edges from scenes to transitions and EO ⊆ T × S is a set of edges from
transitions to scenes;

• fL : E −→ V maps each edge to an edge label V, represented as a disjunc-
tive normal form (DNF) over pairs composed of an agent variable and a
role identifier representing an edge label;

• fT : T −→ {AND,OR} maps each transition to its type;

• µ : S −→ {0, 1} establishes whether a scene can be multiply instantiated at
execution time;

Notice that the set of scenes of an operational description has no type, that
is to say, scenes are not bound to a scene specification, but they have just a
name. Moreover, scenes are named as the subtasks of the task-decomposer, plus
two scenes called Start and End.

Figure 5.16 shows an example of a performative structure specifying the
operational description of the Aggregation task-decomposer, which decomposes
a task into two subtasks: Elaborate-items and Aggregate-items. Therefore, the
performative structure has two scenes (in addition to the Start and End scenes),
one for each subtask. There are three roles (x, y, z) involved in that performative
structure, a coordinator to be played by the agent applying the task-decomposer,
and as many operators as subtasks. In the example there are two operators, one
(y) participating in the Elaborate-items (EI) scene, and another (z) participating
in the Aggregate-Items (AI) scene. Notice that the coordinator (x) should be the
same in both scenes, it enters first the EI scene, and can enter the AI scene only
after finishing the EI scene.

The task-based performative structure used for specifying the operational
description of a task decomposer keeps the decoupling of tasks and capabili-
ties. This approach, which aims at maximizing capability reuse, leads to the
use of scenes based on two generic roles. And the low granularity of the two-
role scenes used as the building blocks of a performative structure, together
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Figure 5.16: Task-decomposer operational description

with the existence of the-facto standards for one-to-one interaction (e.g. the
FIPA Request-Inform protocol), are two extra features supporting the goal of
maximizing reuse.

Using performative structures to describe the operational description of a
capability enables parallelism and provides an abstract view of the coordina-
tion required for Teamwork, which can be sensibly used to improve the Team
Formation process by producing more robust teams and improving the overall
performance of the team.

We have explained the ORCAS model of the Cooperative Problem Solving
process, and the ORCAS team-model. Moreover we have introduced a formalism
to describe the communication and the operational aspects required to turn the
Knowledge Modelling Ontology into a full-fledged ACDL. Now we are in position
to focus on the two operational stages of the CPS process: Team Formation and
Teamwork.

5.5 Team Formation

Team Formation is the process of selecting a group of agents that have com-
plimentary skills to achieve a global goal (the team goal), and providing team
members with the information required to achieve the global goal in a coopera-
tive way.

Team Formation in ORCAS is guided by a task configuration. Since a task-
configuration specifies the tasks to be solved and the capabilities to apply, the
number of possible teams is reduced, making Team Formation feasible in prac-
tice. In large systems, team selection may involve an exponential number of pos-
sible team combinations, and a blow-out in the number of interactions required
to select the members of a team [Kinny et al., 1992]. ORCAS addresses this prob-
lem by introducing the Knowledge Configuration process before Team Formation
in the Cooperative Problem-Solving process [Wooldridge and Jennings, 1999].
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Our model of the Team Formation process considers three activities, namely:
task allocation, team selection and team instruction.

• During the task allocation process candidate agents are obtained for each
task, according to the requirements of a task-configuration;

• next, during the team selection process, some agents are selected for each
specific team-role, while other agents are kept in reserve for the case of
agent failure;

• finally, during the team instruction process, agents involved in the team
formation process are informed about the result of the team configuration
stage: the team roles they have to play, and the social knowledge required
to cooperate with other team-members during the Teamwork process.

Later, in Chapter 6 a particular agent infrastructure supporting the ORCAS
framework is presented. This infrastructure provides the services required from
both providers and requesters of capabilities to form customized teams of agent
on-demand. The approach there is to include institutional agents acting as
middle-agents with the capabilities required to configure tasks and coordinate
the Team Formation and the Teamwork processes. Since there are a lot of
strategies and algorithms for team formation and agent coalition formation, we
want to explain Team Formation from a more conceptual point of view, focusing
on the inputs, the outputs and the requirements of the Team Formation process,
rather than describing how the process is carried on in the ORCAS implemented
infrastructure, addressed in Chapter 6.

5.5.1 Task allocation

Task allocation is the process of selecting a group of candidate agents to form
a team, such that their aggregated competence satisfies the requirements of the
problem at hand. This process follows the task decomposition structure defined
by a task-configuration to know which are the tasks to be allocated, and looks
for candidate agents that are suitable to solve each task.

Task-allocation can be performed by a middle agent, facilitated by it, or
distributed among several agents. Since the ORCAS implemented infrastructure
aims at minimizing agent requirements and facilitate teamwork, the ORCAS
infrastructure relies upon middle agents to support both providers and requesters
of capabilities during the CPS process. Specifically, the ORCAS infrastructure
provides a kind of broker called Team-Broker, which is able to form teams on-
demand, according to a task-configuration.

A team is defined as a hierarchy of team-roles derived from a task-
configuration. Each subtask within a task configuration defines a team-role
that should be played by someone, and more specifically, at least one agent
must commit to each team-role in order to complete the task allocation process.
Candidate agents are those than in addition to be equipped with the capability
required for a team-role, accepts to play that team-role.
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Figure 5.17: Task allocation

Figure 5.17 shows the task-allocation process as a filtering process. From
the Problem-Solving Agents (PSA) available, only those equipped with a team-
role’s capability are potential candidate. At the end, only the agents accepting to
play a team-role with the specified requirements (the capability and the domain-
knowledge to use in order to solve the team-role’s task) become candidate agents.
The Task Allocation process proceeds until there are candidate agents for all the
team-roles composing a team. In the example, there are three agents equipped
with the required capability (C), which become potential candidates. In the end,
only two agents have accepted to play that team-role.

Although we avoid establishing a model of commitment based on mental at-
titudes (joint intentions, joint commitment) some model of agency is required
to implement the CPS process. Herein we will rely on a weak notion of agency,
specifically, an implicit model of commitment will be assumed. From this ap-
proach, commitment is implicit in the act of accepting a team-role proposal;
in other words, when an agent accepts a team-role proposal during the team
selection process, one assumes that the agent is committing to achieve the corre-
sponding task using the selected capability, as specified in the task-configuration.

In the ORCAS implementation of an agent infrastructure supporting the
Team Formation process, task allocation is a responsibility of the Team Bro-
ker role. Although individual agents may be self-interested, we assume that
there is a global interest for the team to offer together a good service, and thus,
some service provided by the infrastructure to select appropriate agents appears
as an interesting feature, for instance, selecting the agents with lower workload,
or agents with a cheaper cost, depending on the preferences specified for the
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problem at hand.
In the ORCAS infrastructure, a Team-Broker role is defined that is able to

obtain candidate agents by using a task configuration as the source to generate
team-roles, and sending team-role proposals to potential candidate agents. The
agents receiving a team-role proposal can autonomously decide to agree, to refuse
the proposal, or to make a counter-proposal. The Team-Broker role has to wait
until all the available agents have answered or a time-out is reached. Candidate
agents will be used to select the members of the team, as explained in the next
subsection.

5.5.2 Team selection

Team selection is the process of selecting a set of team members from the col-
lection of candidate agents obtained during the task-allocation process.

The result of the Team Selection process in ORCAS is a team-configuration,
which results of instantiating the abstract team-roles of a team model with
specific agents selected from candidate agents. A team-configuration is obtained
by selecting a group of agents, and optionally some reserve agents, for each
team-role. All agents selected and kept in reserve for some team-role become
team-members.

A team-configuration is complete when all the team-roles composing a team
(Definition 5.4) are complete:

Complete(Team(π0, Conf(κ))) ⇐⇒ ∀π ∈ Team(π0, Conf(κ)) : πAS 6= ∅

where πAS
is the set of agents selected to play team-role π. Otherwise

Team(π,Conf(κ)) is partial. In other words, a team-configuration is complete
when there are agents selected to play all the team-roles composing a team.
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TR4

(Retrieve)

TR5
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(Aggregate-Items)
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Selected Agents

Reserve Agents

Selected Agents
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Figure 5.18: Example of Team-configuration
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Figure 5.18 shows an example of a team-configuration. In particular, this
example shows a team-configuration for a team that has to solve the Information-
search task. Some team-roles are assigned a single agent (TR1, TR2, TR5, TR6),
while other team-roles have several agents selected (TR3, TR4 and TR7), besides
some team-roles include reserve agents (TR1, TR4). In some cases, the agent
selected to apply a task-decomposer has to delegate all the subtasks to other
agents (TR1), while in other cases the task-decomposer agent is assigned some
(or all) of their own subtasks (TR5).

A second goal of team selection is to decide the scenes to be used between
agents requiring some communication. Since ORCAS teams are hierarchically
organized, every interaction occurring during the Teamwork process involves an
agent playing a task-decomposer team-role and acting as the coordinator, and
one agent playing a subordinated team-role (there is one subordinated team-role
for each subtask). The coordinator is responsible for decomposing the problem
and delegating the subtasks to the agents selected for a subordinated team-role,
distributing data to other agents, receiving back the results, and performing
intermediate data processing between subtasks.

Team selection in the ORCAS Operational Framework can use different se-
lection criteria and can be carried on according to different strategies and in-
teraction protocols. There are just a few requisites imposed by the ORCAS
operational framework to be satisfied by the Team selection process:

• Selecting at least one agent for each team-role, except when there are alter-
native team-roles, since then, an agent selected for any of the alternative
team-roles is enough.

• Selecting a scene for each team-role, such that the scene is shared by both
the agent willing to play the coordinator team-role, and the agent willing
to play the operator team-role. In other words, two agents must share a
common scene in order to communicate.

• Optionally, non-selected candidate agents can be kept as reserve agents for
the case the selected ones could not achieve their tasks.

In the ORCAS infrastructure, described in Chapter 6, the team selection
process is performed through an auction-like protocol driven by the Team-Broker
role.

Figure 5.19 sums up the process of choosing the communication scenes to
be used for each team-role. First of all, one or more agents are selected to play
every team-role. Secondly, a single scene is selected for every team-role. These
scenes are selected from the scenes shared by both the agent willing to act as the
operator, and the agent willing to act as the coordinator. In the example, agent A
is selected to play Team-Role 7, which is subordinated to Team-Role 5), allocated
to agent B. Therefore, some moment during the problem solving process A and B
must communicate following certain scene, B acting as coordinator and A acting
as operator. Such a scene specifying the communication between both team-
roles is selected from the intersection of the communication scenes supported by
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Figure 5.19: Choosing communication scenes during the team selection process

both agents, and is assigned to the communication slot of Team-role 7, the one
playing the operator role.

Summarizing, the result of the Team selection process is a team-configuration,
a hierarchical structure of interrelated team-roles complying with a task-
configuration. Each team-role within a team-configuration defines the follow-
ing elements (Definition 5.1): a task to be achieved; a capability to achieve the
task; a set of agents selected to play the team-role; a set of agents to keep in
reserve; a communication scene specifying the interaction protocol; optionally,
the domain knowledge to be used by the capability; and finally, if the capability
is a task-decomposer, a team-role must include a subteam feature describing the
team-roles subordinated to this team-role (see §5.3.1), and specified as team-
components (Definition 5.2).

Although there are multiple strategies allowed by the ORCAS framework to
assign agents to team-roles (to allocate tasks to agents), there are some general
considerations to take into account.

On the one hand, agents can play more than one role in a team and thus
they can be selected to occupy several positions. Consequently, an agent playing
both a task-decomposer team-role and some of the subordinated team-roles can
reduce communication costs by performing the tasks assigned to both the task-
decomposer and the subordinated roles. However, agents may be selected taking
into account their workload, in order to balance the global performance of the
MAS, that can be performing multiple tasks in parallel.

On the other hand, the ORCAS approach aims at exploiting the information
provided by the operational description of a task-decomposer to know which
are the task dependencies. This information can be used when selecting the
agents that will play each team-role, trying to increase the possibility of success
and improving the overall team performance. We consider four types of task
relationships that can be very useful during the Team Formation process, namely
sequences, choices, parallelism and multiple-instances.
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Figure 5.20: Representing control-flow in a performative structure

In order to characterize the task relationships involving a group of alternative
(choices) or parallel tasks, we will use the term “fade-in” transition to refer to
an initial transition agents are forced to traverse before performing any of the
tasks in the group, and the term “fade-out”is used to denote the transition
agents must reach in the end, after performing any of the tasks. The fade-in
transition has outgoing edges going to the alternative/parallel tasks, and the
fade-out transition has incoming edges coming from all these tasks. We describe
below the four types of relationships considered within the ORCAS framework,
and discuss briefly the way they can be used to improve the Team Formation
process:

• Sequences (Figure 5.20.a) are defined among tasks than should be solved
one after another. Usually, two tasks should be performed sequentially
when there is some data dependencies between them (the output of one
task is the input of another task). Tasks to be performed sequentially
have an AND transition between them. Sequential tasks do not allow
parallelism, therefore it is not advantageous to select different agents to
solve them. The agent selection criteria for sequential tasks is independent
from the other tasks.

• Choices (Figure 5.20.b) are used to define alternative tasks to choose from.
An agent faced with a set of alternative tasks can choose any of them to
progress through the performative structure. Choices are specified by a set
of alternative tasks preceded by an OR (fade-in) transition and followed
by an OR (fade-out) transition too. There are an outgoing edge from the
fade-in OR transition to each alternative task, thus an agent traversing
that transition can move to any of the following tasks by choosing one
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among the outgoing edges. The OR transition after the alternative tasks
allow an agent having performed some task to progress through it without
waiting for agents performing other tasks. In general, one single agent
is sufficient to allocate a set of alternative tasks, since only one task is
strictly to proceed further. However, some times may be useful to try
several alternative tasks and then retain the result of only one task, for
instance, the first finished task. Therefore, when there are candidate agents
for several alternative tasks, it might be interesting (though not necessary)
to select agents suitable for several alternative tasks.

• Parallelism (Figure 5.20.b) means that several tasks must be performed in
parallel. Parallel tasks are represented between an AND fade-in transition,
an AND fade-out transition, and several outgoing edges connecting the
fade-in transition to every task. All the tasks between the fade-in and
fade-out must be performed in parallel. The fade-in (AND) forces agents
traversing it to follow all the outgoing edges. The fade-out transition
(AND) ensures that all the tasks to be performed in parallel have finished
to allow agents to proceed further. In order to exploit parallelism the
Team-Formation process should select different agents to perform parallel
tasks.

• Multiple instances (Figure 5.20.b) means that a task can be performed mul-
tiple times in parallel. Multiple instances are represented by overlapped
tasks within an ORCAS performative structure. For example, the Retrieve
task appears within the Meta-search task-decomposer’s operational descrip-
tion as allowing multiple-instances. This is due to the fact that Retrieve
takes a single query as input, while the previous task (Customize-Query)
produces a set of queries. For this reason the Retrieve task must be repeated
for each query produced by the Customize-query task. Since multiple in-
stances of a task may be solved in parallel, it could be beneficial to assign
several agents to that task.

5.5.3 Team instruction

Team Instruction is the process of informing each team member about all the
information they need to play their team-roles during the Teamwork process.
Team-roles have been defined in Section §5.3, and we have stated that team-
role structures are used during the Team Formation process not only to send
proposals to join a team during the task allocation process, but also to instruct
team members on the tasks they have to solve, the capabilities to apply, and all
the information required to communicate with other team-members. Specifically,
we use team-roles to inform an agent willing to apply a task-decomposer on
which tasks to be delegated to other agents, to whom, and which communication
scenes to use. A useful distinction is established distinguish between team-roles
assigned to a skill, and team-role assigned to a task-decomposer.

Figure 5.21 shows an example of a team-role endowed with a skill. This
team-role is associated to the task Elaborate-query, and specifies that the ca-
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pability Query-elaboration-with-thesaurus, which is a skill, should be applied for
solving Elaborate-query. Furthermore, that skill has to use the domain knowledge
characterized by the MeSH thesaurus domain model.

Team-Role
Task
Team-Id
Role-Id
Capability
Domain-Models

Elaborate-Query
Team-23
Role-2
Query-elaboration-with-thesaurus
MeSH-Thesaurus

Figure 5.21: Team-role example for a skill

Figure 5.22 shows an example of a team-role endowed with a task-
decomposer. This team-role corresponds to the Information-search task, which
is bound to the Meta-search capability. This capability is a task-decomposer
introducing four subtasks: Elaborate-query, Customize-query, Retrieve and Aggre-
gate. Therefore, the subteam for this capability has four team-components, one
per subtask. Each team-component in the sub-team identifies both the agents
selected to solve one of the subtasks, the agents to keep in reserve for each sub-
task, together with the task and the identifier of the team-role associated to
that task. For instance, in Figure 5.22, the Red agent is selected to play the
role assigned to the Elaborate-query task, while the Green agent is kept in re-
serve. However, sometimes it is desirable to allocate the same task to several
agents. In that example there are two agents selected for the Retrieve task, Red
and Blue, because that task may be executed multiple times while applying a
meta-search capability: the task Retrieve takes a single query as input, while
other tasks that are executed previously (Elaborate-query and Customize-query)
usually output several queries; thus the task Retrieve has to be performed once
for each query. Since these multiple executions may be carried over in parallel, it
can be beneficial to distribute the multiple instances of the task among different
agents.

The information provided by a team-role to a team-member agent during the
team instruction process is used in the following way: an agent being requested
to perform a task is provided with a team-identifier and a team-role identifier,
so as to allow that agent to retrieve the information about the requested team-
role from his local knowledge base. First of all, the agent checks whether is it
committed to that team-role or not. Following, the agent finds out whether the
team-role’s capability is a skill or a task-decomposer. If the team-role capability
is a skill, then the agent applies that skill and sends the result back to the
requesting agent. Otherwise the capability is a task-decomposer, and the agent
has to check the team-role subteam to find out whether it has to delegate some
subtask to another agent. This information is provided by team-components; if a
team-component has selected agents different of himself, then the corresponding
subtask must be delegated to that agent. The communication scenes to be used
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Team-Role
Task
Team-Id
Role-Id
Capability
Subteam

Information-Search
Team-23
Role-1
Meta-Search

Subtask Role-Id Selected Reserve
Elaborate-quey Role-2 Red Green
Customize-query Role-3 Red Yellow
Retrieve Role-4 Red, Blue
Aggregate Role-5 Blue Cyan

Figure 5.22: Team-role example for a task-decomposer

are also specified by the team-components.
To sum up, the team instruction process provides team-members with all the

information they require activity to cooperate with other team-members during
the Teamwork process.

5.6 The Teamwork process

The Teamwork process comprehends all the activities a team must carry out to
solve a problem. In ORCAS the Teamwork process aims at solving a problem
according to its requirements. In order to do that, during the Team Formation
process a group of agents have joined a team by committing to some team-roles.
The resulting team is customized for the problem at hand, since it is based on a
task-configuration satisfying the stated problem requirements. Team members
have been instructed on the tasks they have to solve (one task for each team-
role), and on the capabilities they must apply to solve each task.

Whilst the Knowledge-Configuration process operates over static information
describing agent capabilities from an abstract view, the Teamwork process has
to take into account the dynamic nature of the environment. A team solving a
problem in a real environment has to deal with events and conditions occurring
at runtime, which may difficult the achievement of the team goals, e.g. excessive
workload, agent failures or communication problems.

A team is composed of a task-coordinator playing a task-decomposer team-
role, and a sub-team. The sub-team coordinator has to apply a task-decomposer
capability to achieve its goals. The operational description of a task-decomposer
describes the control flow over subtasks as a performative structure (§5.4.3).

The performative structure describing a task-decomposer’s operational de-
scription is specified as a network of interrelated scenes, one for each subtask.
Each scene requires at least two agents to be carried out: a coordinator, which
is played by the agent assigned to the task-decomposer team-role, and one agent
assigned to a subordinated team-role and playing the operator role. The for-
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mal scenes describing the communication required to achieve each task have
been decided during the team selection process (§5.5.2). Consequently, in order
to apply a task-decomposer, the coordinator agent has to initiate the different
scenes while following the performative structure.

TR 5

TR 6 TR 7

Elaborate

Items (EI)

Aggregate

Items (AI)

Aggregate

Figure 5.23: Teamwork model for a task-decomposer

Figure 5.23 shows the role flow policy through the performative structure
describing the operational description of a task decomposer. Specifically, this
figure shows the operational description of the Aggregation capability, which is
bound to Team-role 5 (TR5), together with the paths to be followed by the agents
selected for this team-role and the subordinated team-roles: TR6, TR7. The
Aggregation capability is a task-decomposer introducing two subtasks: Elaborate-
items (TR6) and Aggregate-items (TR7). We note ATRi as the agent selected to
play Team-Role i. All the agents begin at the Start scene, and then:

1. ATR5 and ATR6 move from the Start scene to the Elab.Items (EI) scene;
ATR5 adopts the Coordinator role (x:Coord), while ATR6 takes the Op-
erator role (y:Op). Both roles are required to perform the scene, so the
edge going from the first transition to this scene is a conjunction of them
(x:Coord, y:Op).

2. ATR7 moves from the Start scene to the Ag.Items(AI) by taking the Opera-
tor role (z:Op) and waiting ATR5 at the AND transition placed between the
Elab.Items scene and the Ag.Items scene. ATR5 gets to that AND transi-
tion after playing the Coordinator role at the Elab.Items scene (x : Coord).
The AND transition forces the incoming agents (x : Coord, y : Op) to
synchronize before proceeding to the Ag.Items scene. As we can see in the
picture, after crossing that transition, both agents continue playing their
previous roles, ATR5 as Coordinator, and ATR7 as Operator.

3. Agents acting as operators can leave the performative structure just af-
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ter finishing the scenes they have participated in. In particular, ATR6

and ATR7 can move to the End scene through an OR transition from the
Elab.Items and the Ag.Items scenes respectively. However, the Coordinator
role cannot abandon the performative structure until all the scenes have
finished.

Teamwork is guided by a task-decomposer performative structure. Since
some subordinated team-roles are also assigned to task-decomposers, new per-
formative structures should be initiated when an agent assigned to a task-
decomposer is requested by his coordinator. Therefore, the Teamwork process
can be modelled as a nested structure of performative structures. There is one
performative structure for each task-decomposer, starting from the top team-
role.

Figure 5.24: Teamwork model for a team

Figure 5.24 sums up the specification of the teamwork activity as a nested
structure of performative structures. Notice that there is a performative struc-
ture for each task-decomposer in the task-configuration and one scene describes
the interaction protocol required to delegate one task to another agent. The
performative structures indicate which roles are required to play each scene, and
the dependencies among scenes, e.g. some scenes must be finished before start-
ing another scene, other scenes can be performed in parallel, or an scene can be
instantiated multiple times in parallel. Moreover, the agent acting as the coor-
dinator within a performative structure is as well holding the information about
the team mates assigned to its subtask, specified within its team-role subteam
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(Definitions 5.1 and 5.2). The coordinator agent can initiate each scene at the
right moment by contacting the agent or agents assigned to the corresponding
team-role and following the selected scene. The agents playing some team-role
must wait until a new scene is initiated by the coordinator. Moreover, a perfor-
mative structure can include choice points that give the coordinator alternative
paths to follow. It is a design decision to develop complex task-decomposers with
many alternatives or to build many simpler decomposers with few alternatives
or no alternatives at all.

The teamwork process follows the hierarchical structure of the task-
configuration, decomposing a task into subtasks when there is a task-
decomposer, and delegating some subtasks to other team members. The team-
work process starts with the team-leader (the agent assigned to the root task
in the task-configuration) having to apply a task-decomposer. The team-leader
starts the team-work process by following the performative structure that speci-
fies the operational description of its task-decomposer. The team-leader engages
in conversations with their subordinated agents in order to delegate them the
subtasks specified in its task-decomposers. A task is delegated by following the
scene specified by a team-role, providing the input for the data to the selected
agent (as indicated by the selected agents feature of the team-role), and receiving
the result for that task.

When a subordinated agent has to apply a task-decomposer itself, it does
the same that the team-leader: delegates subtasks to selected agents and wait
for the results, aggregate the results when opportune and send the global result
to its own coordinator. The process of applying a task-decomposer follows the
performative structure. Since some of the subtasks may be bound to task-
decomposers too, a new performative structure must be carried over for each
task-decomposer. The first performative structure (the one initiated by the
team-leader) cannot finish until the new performative structures are finished.
Therefore, performative structures are nested, a performative structure cannot
finish until any performative structure under it finishes.

When a subtask is allocated to the same agent applying the task-decomposer,
the scene associated to that task in the performative structure is skipped, since
there is no need for communication. Instead, the agent solves the subtask himself
by applying the required capability, realize that communicating with himself has
no sense.

When a subtask is allocated to another agent, the agent applying a task-
decomposer initiates the scene specified in the team-component associated to
that subtask by sending the first message. For instance, if the scene specifies a
Request-Inform protocol, then the coordinator sends a request with the following
information:

1. a team identifier;

2. a team-role identifier;

3. the input-data required by the subtasks associated to that team-role
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All this information is included within an object of the sort Perform, as
defined in the Teamwork ontology 5.6.

5.7 Extensions of the Operational Framework

The Cooperative Problem Solving process already presented has some limitations
that arise when addressing runtime time dependencies among tasks and dynamic
events altering the expected outcome of the Teamwork activity.

On the one hand, two common perturbations in the CPS process came from
agent failures (i.e. an agent is unable to achieve a task) and communication
errors (e.g. a message does not get to its destination). Since Team Formation
can assign reserve agents, some times it is still feasible to resume the CPS process
after an agent failure, without reconfiguration, by requesting reserve agents to
play the associated team-role. However, sometimes there are no reserve agents to
perform the unfinished tasks, and then a reconfiguration mechanism is required
to look for agents equipped with alternative capabilities (i.e. other capabilities
suitable for the task at hand and compatible with the problem requirements if
possible).

On the other hand, some tasks may need or may benefit from information
obtained at runtime in order to be configured. A task is configured by selecting a
capability suitable for it, binding the capability to the task, and recursively con-
figuring the subtasks of the capability when it is a task-decomposer. Sometimes,
the selection of one capability or another may be improved or requires some in-
formation obtained at runtime. Therefore, the Knowledge Configuration process
should be delayed for those tasks until the required information is obtained. In
order to configure those tasks, we allow a capability to produce information to
be used by the Knowledge Configuration process, such as a new precondition
stated to be true, a new postcondition to be achieved, or a new domain model
characterizing new domain knowledge (some capabilities may generate domain
knowledge).

A more flexible CPS process is required to deal with such situations; there-
fore, we introduce some extensions to the CPS process that consist in different
ways of interleaving the Knowledge Configuration, the Team Formation and the
Teamwork processes.

5.7.1 Interleaving Teamwork, Knowledge Configuration
and Team Formation

We consider three strategies that interleave Teamwork, Knowledge Configuration
and Team Formation, namely Reconfiguration, Delayed-Configuration and Lazy
Configuration .

Reconfiguration occurs when a task bound to a capability cannot be achieved
by neither the selected nor the reserve agents allocated to it. The purpose of
reconfiguring a task is to find another capability suitable for that task.
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Figure 5.25: Extended model of the Cooperative Problem Solving process

Figure 5.25 shows an extended model of the Cooperative Problem Solving
process capturing the notion of Reconfiguration. If the new capability bound to
the task is a task-decomposer, then their subtasks must be further configured.
A capability satisfying the global problem requirements is required, though a
partial satisfaction criteria can be used instead to allow the Knowledge Configu-
ration to succeed even when a fully satisfactory condition is unreachable. If the
new capability bound to the task is a skill, then the reconfiguration ends there,
otherwise the capability is a task-decomposer requiring a recursive configuration
of the new subtasks.

The Delayed-Configuration strategy is used to hold the configuration of some
task up until some event happens or some information is obtained.

Figure 5.26 shows a capability that performs a Propose-Critique-Modify
method over the Information Search task, by decomposing it into three subtasks:
P-Search (Propose-Search), C-Search (Critique-Search) and M-Search (Modify
Search). The M-Search task is decomposed by the task-decomposer Modify-
metasearch into four subtasks; the first of these tasks, Adapt-query, can be solved
by two skills: Query-generalization and Query-specialization. The selection of one
skill out of the two former skills depends on the result of the P-Search task:
on the one hand, if P-Search obtains too many results then the capability skill
Query-specialization is preferred; on the other hand, if the are slender results
that are considered not enough then Query-generalization is better. Otherwise,
the number of results is considered adequate and the task M-Search is discarded
without further configuration.

In order to use the information obtained in runtime at the Knowledge
Configuration process, we have specified the Query-generalization and Query-
specialization capabilities as having different, incompatible postconditions:
Query-generalization includes the postcondition Generalize-query, while Query-
specialization includes the postcondition Specialize-query. There is only one capa-
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Figure 5.26: Propose-Critique-Modify Search

bility suitable for the task C-Search, Search-assessment. Search-assessment brings
about one of the two former formulae according to whether there are too many
results for the query, or there are not enough results as to be useful. Furthermore,
if the number of results obtained for the task P-Search is considered adequate,
Search-assessment outputs a different formula expressing that condition, so as to
allow the coordinator realize the task M-Search can be omitted.

The coordinator of a task specified as requiring a Delayed-Configuration,
must be aware of the conditions in order to to interrupt and resume the Team-
work process when required, and perform the necessary actions to assure a new
Knowledge Configuration process is initiated using the new conditions bring
about in runtime. Similarly, the coordinator of a task that cannot be achieved
using the current configuration must initiate a new Knowledge Configuration
process in order to find an alternative task-configuration.

In both cases, after a new Knowledge Configuration process is over a new
Team Formation process is required to allocate the new tasks to a new team.
The resulting team acts as a subteam of the original team, taking responsibility
of the team-role corresponding to the task that has just been configured.

In addition, other situations characterized by very dynamic environments
may benefit of a systematic delayed configuration strategy, because it has no
sense to completely configure a task in advance in such a situation, or tasks
will probably require a reconfiguration too often. We call this strategy Lazy
Configuration. The idea of the Lazy Configuration strategy is to avoid configu-
ration whilst possible, configuring a task just when it is required to be solved.
Lazy configuration is used to handle very dynamic environments that made prof-
itable to gradually configure a task whereas the Teamwork process progresses.
In our implementation of Lazy Configuration, the Knowledge Configuration pro-
cess operates by configuring every time just one level of the task decomposition
structure of a task-configuration. Using this strategy, when a task-decomposer
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is bound to a task, each subtask is bound a capability, but the newly introduced
task-decomposers are not further expanded into new tasks. Once a task is con-
figured one-level deep, the Teamwork process runs until a new task-decomposer
has to be applied that introduces some new tasks to be configured, and then the
Knowledge Configuration process should be performed again following the Lazy
Configuration strategy, and so forth for each new task-decomposer going to be
applied. A variation of the Lazy Configuration strategy is the introduction of
variable deep levels during the Knowledge Configuration stage.

An interesting possibility is to perform the different activities of the CPS
process simultaneously. After starting a Knowledge Configuration process using
the Lazy Configuration strategy, perform Team Formation and Teamwork next,
but instead of stopping the Knowledge Configuration process after starting Team
Formation, continue with the Knowledge Configuration while possible, running
in parallel with the Team Formation and the Teamwork processes, in such a way
that when the Teamwork has to solve a task that is bound to a task-decomposer,
the task will be already configured. We call this strategy far-sighted strategy.

The consequence of introducing these variations is a greater flexibility of the
original model of the CPS process to handle different kind of scenarios, though
the more flexible the configuration strategy is, the more communication activity
is required.

5.7.2 Operational scenarios: dimensions and some proto-
typical scenarios

This subsection will draft a future work discussion on dimensions that may
constrain the application of the ORCAS framework, and some typical scenarios
that can fit well in the ORCAS framework.

The autonomy dimension deals with the degree of autonomy possessed by
agents. Very autonomous agents are designed for distributed control approaches
in which agents keep local control during most of the problem solving process.
In addition to decide the commitment to a team-role, autonomous agents may
prefer to decide by themselves the plans to use for achieving the goals of a team-
role, i.e. configure a task by himself, and deciding when and whom to delegate
a task. On the other hand, agents may prefer to delegate some activities of the
cooperative process to specialized agents, like brokers and matchmaker agents.
Team Formation and Teamwork strategies may adopt a wide range of strategies
according to the degree agents keep local control during the problem solving
process. While a distributed control approach is more appropriate for dynamic
environments and real-time applications, a more centralized control is better
suited for a service-oriented model of the CPS process. The ORCAS Operational
Framework is neutral about the autonomy dimension. We are not specifying here
which agents are responsible for configuring a task or forming a team. Later,
in Chapter 6, an infrastructure for developing and deploying agents according
to this framework is presented. This infrastructure is based on the electronic
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institutions approach, which adopts and external view and is based in the idea
of standardized patterns of behavior called agent roles.

Distributed control approaches may be implemented over this infrastructure
by equipping problem solving agents with the capabilities and the permissions re-
quired to play institutional roles: the Knowledge-Broker, responsible for config-
uring a task during the Knowledge Configuration process, and the Team-Broker,
responsible for selecting and instructing agents during the Team-Formation pro-
cess. Although we have initially defined the Knowledge Configuration process
and the Team Formation process as being entirely completed before moving to
the following stage, we have presented also some extensions of the Operational
Framework that allow to interleave all the processes involved in the CPS pro-
cess: Knowledge Configuration, Team Formation and Teamwork. Specifically,
the combined use of the Lazy Configuration strategy during the Knowledge
Configuration process and the adoption of the Knowledge-Broker and Team-
Broker roles by problem solving agents covers most of the existing distributed
approaches to team formation with autonomous agents.

The ORCAS implementation of an agent infrastructure (Chapter 6) aims
to support agents developed by third parties to partake in the CPS process,
and thus there are institutional agents equipped with the reasoning abilities
required to configure tasks and form teams. However, it does not imply that
control is centralized in a classical sense, it rather means that requesters and
providers are mediated by institutional agents facilitating their work. From a
service oriented or a component-based software development (CBSD) approach
(e.g. “off-the-shelf” components), providers (problem solving agents) may
be interested on cooperating with other agents and relying on institutional
agents to carry out the Knowledge Configuration process and drive the Team
Formation process. The point is that in these approaches the global interest
represented by the problem requirements or the user preferences is usually
favored against the interest of individual capability providers. The institutional
agents included in the ORCAS infrastructure bring an added value to both
the requesters and the providers of capabilities, freeing them of complex and
computationally intensive tasks like configuring a task or selecting the members
of a team. Therefore, this facility promotes a light-weight approach to agent
development, and is oriented towards compositional software development
approaches in which applications are composed rather than constructed, by
reusing existing components (agent capabilities and domain knowledge).

The openness dimension deals with the capacity of integrating external
agents and other components (like knowledge repositories, databases and Web
services). Open agent societies allow external agents to joint the society on
runtime, on a dynamic basis, without having to recompile the system code.
Openness is also related to the maintenance, extensibility and adaptiveness of a
system, since a system can be modified or extended by incorporating or elimi-
nating agents. Open agent systems are designed to facilitate the integration of
heterogenous agents provided by different developers. However, the greater the
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openness, the greater the complexity.
A main topic concerning this subject is the management of ontology mis-

matches, that is to say, allowing agents to use different ontologies and handling
the mapping required to translate concepts from one ontology to another. Con-
nectors between components can be introduced to implement ontology mappings;
like the bridges proposed in the UPML software architecture [Fensel et al., 1999].
In the current implementation of ORCAS we are using a common ontology to
avoid ontology mismatching and focus on other aspects such as the coordination
of agents. Nonetheless, the ORCAS Abstract Architecture is well suited to intro-
duce such kind of components, indeed, because of the conceptual decoupling of
tasks, capabilities and domain models. In ORCAS connectors could be inserted
between capabilities and domain-models, and between tasks and capabilities as
well. The use of connectors in ORCAS would has two dimensions: a knowledge-
level specification, which allows to match components specified with different
ontologies; and the implemented counterpart, which allows semantically (or syn-
tactically) heterogeneous agents to interoperate during the Teamwork process.

To sum up, both the configuration and the coordination of agent teams can
be distributed using the same basic model of the Cooperative Problem Solving
process. Current research on coalition formation algorithms use distributed
algorithms to deal with the combinatorial nature of this class of problems.
Optimal anytime coalition structure generation algorithms has been devised
[Shehory and Kraus, 1998, Sandholm et al., 1998, Larson and Sandholm, 2000].
Some minor modifications of the ORCAS framework are required to support
a distributed approach to the Knowledge Configuration and the Team For-
mation processes. In a distributed scenario, agents should consider both
task-dependencies and problem requirements when configuring a task. Since
independent agents have a partial view of the problem, cooperation and coordi-
nation with other agents to look for an optimal global solution would be required.

We consider now some prototypical scenarios that may fit into the ORCAS
framework for the Cooperative Problem Solving process: the Agent Factory
model, the Service Orchestration model, and the Contractual Agent Society.

The Agent Factory model is based on a notion of production factories, and
has been proposed as a design pattern by the Object Oriented Programming
(OOP) community. The idea is to assemble existing components to build cus-
tomized solutions. This model fits well with the “Off-the-Shelf” Components
approach to software development and shares some similarities with the Soft-
ware Configuration community. Concerning agents, the Agent Factory model
can be applied to build agents or teams on-demand, according to some existing
requirements, rather than forming a team from a set of pre-existing agents. We
consider two approaches to the Agent Factory model:

• building and assembling team-specific agents from elementary components;

• instantiating and coordinating generic agent types.

In the first approach, agents can be as complex as necessary in order to
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minimize the number of agents participating in a team, so as to reduce commu-
nication overhead. In the second approach, agents are pre-built, though they
can be somehow parameterizable. While the first approach favors Teamwork,
the second one speeds up Team Formation.

The Service Orchestration model refers to the activities required to select,
compose and execute several Web services to achieve a global task. The Ser-
vice Orchestration model proposed by the Semantic Web Services approach has
similar goals and shares many similarities with the ORCAS framework when com-
paring services against capabilities. Semantic Web services can be conceptually
described as capabilities in ORCAS. The DAML-S ontology defines the following
aspects of a service: a profile that brings the information needed by service-
seeking agents to determine whether the service meets its needs; an process
model on how does the service works, which should facilitate service composi-
tion and monitoring; and the grounding, which specifies the way to invoke and
interact with a service:

Figure 5.27: Service description according to DAML-S

Figure 5.27 shows the main elements of a service description according to
the DAML-S ontology [The DAML-S Consortium, 2001]. All these aspects of a
service have an equivalent in ORCAS:

• The aspects playing the role of the profile are provided by the knowledge-
level description of capabilities.

• The purpose of communication of a capability is equivalent to the ground-
ing of a service.

• The operational-description addresses the same features covered by the
process model of a service.

Table 8.1 summarizes the relation between the features characterizing a ca-
pability in ORCAS, the features proposed to describe agent-enabled semantic
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DAML-S Agent activities ORCAS ACDL
Profile Discovering (matchmaking) Inputs, outputs and compe-

tence
Grounding Invocation and Execution Communication
Operational
model

Composition and Interoper-
ation

Subtasks and operational de-
scription

Table 5.1: Comparison of the ORCAS ACDL and DAML-S

Web services in the DAML-S ontology [The DAML-S Consortium, 2001], and
the kind of activities these features are required for [Bansal and Vidal, 2003,
Bryson et al., 2002, Park et al., 1998, Payne et al., 2001].

Due to these similarities between the Semantic Web Services (SWS) approach
and the ORCAS framework, we think the ORCAS framework could be easily
adapted to work upon SWSs as the providers of capabilities. Moreover, the use
of agent wrappers over SWSs will allow the full integration of SWSs and agents
within the ORCAS infrastructure.

The proposed Contractual Agent Society (CAS) model [Dellarocas, 2000] re-
lies on a contractual agreement strategy for trusting agent interaction. Both
providers and requesters of a service must agree upon the conditions associated
to the provision of a service. Both the requesters and the providers have to
comply with the conditions established by the contract, moreover, the contract
specifies also the consequences of violating those conditions. The idea of using
contracts fits well with the electronic institutions approach, in fact, we are con-
sidering as future work the introduction of what we call “terms of commitment”
(Chapter 8), as a mechanism to agree upon by team members when accepting a
team-role. This feature remains for the future work. e-Commerce applications
like supply chains, auctions and e-markets are all based on contracts, therefore
these applications are good candidates to apply the ORCAS framework.

5.8 Conclusions

Starting with a general set of requirements, we have stated the operational in-
formation to attach to the knowledge-level description of capabilities in order
to become a full-fledged Agent Capability Description Language: the commu-
nication requirements of any capability, and the operational description of task
decomposer capabilities. We have proposed electronic institutions concepts to
specify such aspects of a capability. Specifically, communication requirements
are specified as scenes —interaction protocols— and dialogic frameworks. More-
over, performative structures are used to specify the operational description of
a task-decomposer.

The ORCAS infrastructure has been designed and implemented as an elec-
tronic institution. Actually, the ORCAS infrastructure can be seen as a meta
institution where dynamic problem-solving institutions are configured on-the-fly,
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according to stated problem requirements. Some elements from the electronic in-
stitution formalism have been incorporated as components of the ORCAS Agent
Capability Description Language. These elements —scenes, dialogic frameworks
and performative structures— are defined for each capability, and are composed
during the configuration of an agent team, which is done in two steps: first
a task-configuration is obtained that specifies the competence required for a
team to comply with stated problem requirements, and second, a team of agents
is formed according to the task-configuration and ensuring that all the agents
involved can interoperate by sharing a common institutional framework: com-
munication language, ontologies, and interaction protocols (scenes).



Chapter 6

The Institutional
Framework

This chapter describes an open agent infrastructure to develop and
deploy MAS according to the ORCAS framework. This infrastructure
is an electronic institution where problem solving agents meet to
form teams and solve problems on-demand, according to the ORCAS
model of the Cooperative Problem-Solving process.

6.1 Introduction

This chapter presents a particular implementation of the Knowledge Modelling
Framework and the Operational Framework as an electronic institution, which
is called the ORCAS e-Institution. The ORCAS e-Institution is an infrastructure
for developing and deploying cooperative Multi-Agent Systems that supports
both providers and requesters of capabilities along the different stages of the
CPS process.

We have already presented a model to configure a MAS at two layers: the
knowledge layer, called Knowledge Configuration, and the operational layer,
called Team Formation. Moreover, we have presented a framework for the exe-
cution stage of the CPS process, that we call Teamwork.

This chapter describes an open agent infrastructure designed to use the OR-
CAS KMF as and Agent Capability Description Language, according to the
two layers configuration model. The goal of this infrastructure is to allow the
development and deployment of open, reusable and configurable Multi-Agent
Systems:

• Open: agents can be created in multiple programming languages and in-
terface with existing legacy systems.

• Reusable: tasks and capabilities are declared in a domain-independent way
using its own domain-independent ontologies

175
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• Configurable on-demand: components (capabilities and domain knowl-
edge) are selected according to problem requirements and user preferences

During the rest of the chapter, and after a general overview of the ORCAS
e-Institution in §6.2, we are going to review its dialogic framework §6.3, perfor-
mative structure §6.4, and the communication scenes §6.5, in this order.

6.2 Overview of the ORCAS e-Institution

The ORCAS e-Institution acts as a mediation service for both clients and
providers of capabilities. Both requesters and providers of capabilities are ruled
by well defined interaction protocols (scenes), and mediated by institutional
agents that reason about application tasks, agent capabilities and problem re-
quirements using the ORCAS KMF as the Agent Capability Description Lan-
guage. The ORCAS e-Institution is used to configure a MAS for a particu-
lar problem, which involves all the stages of the Cooperative Problem Solving
process as described in the Operational Framework: Knowledge Configuration,
Team Formation and Teamwork. The configuration of the MAS includes the
Knowledge Configuration and the Team Formation process, and the result is a
customized team of agents that is tailored to solve a specific problem according
to its requirements. ORCAS teams are created and instructed to solve specific
problems by obtaining a knowledge level configuration (a task-configuration) in
terms of goals to achieve (represented as tasks), the competence (the capabilities)
required by team members to achieve those goals, and the domain knowledge
(satisfying the assumptions of the selected capabilities).

Figure 6.1: The ORCAS e-Institution as a mediation service between requesters
and providers of capabilities

The ORCAS institutional framework is based on a client-server architecture
extended with the notion of middle-agents [Decker et al., 1997b]. This model
involves three kind of agents: providers, requesters and middle agents.
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• Providers: agents providing specific capabilities to solve application tasks.
In our architecture we call them Problem-Solving Agents (PSA).

• Requester: human or software agents requesting to solve a problem. We
have included a class of agent called Personal Assistant to act on behalf of
a human user. The Personal Assistant frees users of knowing the technical
details needed to interact with other agents.

• Middle agents: agents mediating between requesters and providers. These
agents are responsible for finding providers and instructing them to solve a
problem. We consider three classes of middle agents: librarians, knowledge-
brokers and team-brokers. Librarians act like a “yellow pages” service.
They are dynamic repositories of agent capabilities, providing the link be-
tween the knowledge layer (task-configurations) and the operational layer
(agent teams). Knowledge-brokers are able to obtain configurations of the
MAS in a declarative manner, according to a problem specification. Team-
brokers deal with the operationalization of a configuration, which consist
in forming a team of problem solving agents with the capabilities required
by a task-configuration.

Figure 6.2: ORCAS e-Institution: main agent roles and activities where they are
involved

Figure 6.2 shows the main agent roles that can be played by agents partici-
pating in the ORCAS e-Institution: Personal Assistant, Problem Solving Agent,
Knowledge-Broker, Team-Broker, and Librarian. Bidirectional arrows represent
the communication scenes where agent participate to carry out the different
stages of the CPS process: Registering/Deregistering, Problem specification,
Knowledge Configuration, Team Formation and Teamwork.
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The rest of the chapter explains in detail the ORCAS e-Institution, using the
ORCAS KMF as the ACDL and supporting all the stages of the ORCAS model of
the CPS process (Knowledge Configuration, Team Formation and Teamwork).
Since many elements of the electronic institutions formalism used within this
chapter are described in Chapter 5 (The Operational Framework), we will refer
the reader to the appropriate sections within that chapter when introducing each
element of the ORCAS e-Institution.

6.3 Dialogic Framework

The dialogic framework specifies the ontological elements and communication
language (ACL) employed during agent interactions. A dialogic framework can
be defined either globally, for the entire e-institution, or using one dialogic frame-
work per scene.

There are two kinds of agent roles in an electronic institution: external roles,
than can be played by external agents, and internal, institutional roles. In
our case, we consider as external roles the ones played by both requesters and
providers of capabilities, namely the Personal Assistant (PA) and the Problem-
Solving Agent (PSA) roles. However, middle agents are defined as internal roles,
belonging to the institution: Librarian, Knowledge-Broker and Team-Broker (T-
Broker).

There are five main agent roles in the ORCAS e-institution, namely Personal
Assistant (PA), Librarian, Knowledge-Broker, Team-Broker, Problem-Solving
Agent (PSA), plus two subroles of the PSA role: Coordinator and Operator.

1. Personal assistant (PA): An agent acting on behalf of a human user. This
agent is responsible for mediating between the user request and the services
offered by the application. The PA is able to specify problems in terms
understood by the Knowledge-Broker, that is to say using the ORCAS
KMF meta-ontology and Feature Terms as the object language. Further-
more, the PA is able to interact with the Team-Broker during the Team
Formation process, and to start the Teamwork activity once the team is
formed.

2. Librarian: This agent holds the knowledge descriptions of the reusable
components: tasks, capabilities, domain-models and ontologies. The li-
brary can be dynamically updated or extended with new component de-
scriptions by following a registering/deregistering procedure. Therefore
new agents can enter the system by registering their capabilities to the
Librarian using the ORCAS KMF as ACDL. The Librarian agent is a dy-
namic repository of ORCAS KMF components, allowing other agents or
humans to query about them. Hence, the Librarian can be used as a “yel-
low pages” service, just keeping an up-to-date record of the association
between ORCAS components and the agents that registered them. In the
ORCAS e-institution, the Librarian is queried by the Knowledge-Broker to
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know which are the components available to the Knowledge-Configuration
process.

3. Knowledge-Broker: The purpose of the Knowledge-Broker is to configure
an application for a user (represented by the PA) requesting to solve some
problem. The Knowledge-Broker uses the specification of a problem as an
input to generate a task-configuration: a structure of ORCAS components
matching the problem specification, using tasks, capabilities and domain-
models. The Knowledge-Broker is thus the responsible for performing the
Knowledge Configuration process.

4. Team-Broker: The purpose of the Team-Broker is to operationalize a task-
configuration by forming a team of problem solving agents. A team is a
group of agents committed to solve a problem together, according to a
task-configuration. A team is formed by finding and selecting agents with
the required capabilities, and instructing them to cooperate in solving a
problem together.

5. Problem-Solving Agent (PSA): This role is adopted by the agents willing
to provide some capabilities. Problem-Solving Agents can join or leave the
system dynamically, just registering or deregistering their capabilities to
the Librarian. This is a simple way to make the Librarian aware of the
capabilities available in the system at any moment.

Figure 6.3 shows the agent roles defined by the ORCAS e-Institution. Notice
how they are organized according to the two kinds of agent relationships estab-
lished by the electronic institutions formalism: SSD (dotted lines), and a partial
order relation defined as a subclass relationship (º).

Since the Knowledge Broker, the Team Broker and the Librarian roles are
institutional roles, they are preempted of being adopted by an agent playing
an external —non institutional— role. This SSD policy protects the institution
from being used by external agents to favor themselves in detriment of other
agents. This constraint reinforces the trust of external agents on the institution.

Moreover, we have defined two subclasses of the PSA role, which can thus be
adopted by any agent playing a PSA role: the Coordinator and the Operator.

• The Coordinator role is adopted by an agent playing a task-decomposer
team role and having to delegate some subtask to other agents. Dur-
ing the Teamwork process, any agent having to apply task-decomposer
must initiate the scene specified each subtasks within its team-role sub-
team. Meanwhile, the agents assigned to team-roles associated to a subtask
adopt the operator role. The coordinator is responsible for distributing
problem data and intermediate results among the operator agents, and is
responsible for coordinating them. An agent acting as coordinator follows
the performative structure that specifies the operational description of its
task-decomposer, initiates communication scenes to interoperate with its
subordinated agents, and performs any intermediate data processing when
required.
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Figure 6.3: ORCAS e-institution roles

• The Operator role is adopted by the agents willing to perform a subtask
of a task-decomposer. The agent assigned to the task-decomposer adopts
the coordinator role and is the initiator of the scenes used to interact with
every operator. The operators receive the data they require to solve their
tasks from the coordinator, perform the capabilities assigned to their tasks,
and send back the results to the coordinator.

Both the Coordinator and the Operator roles are dynamically assigned to
PSAs, that is to say, they are not assigned to an agent when it enters the in-
stitution, but during the Teamwork process. An agent playing the PSA role
switches to either the Coordinator or the Operator roles during the Teamwork
stage, according to the following rules: when an agent has to communicate with
another agent playing a subordinated role, the first agent adopt the Coordinator
role and initiates a scene in which the second agent takes the Operator role;
complementarily, if an agent has to communicate with an agent he is subordi-
nated to, he adopt the Operator role on-demand, just after receiving a message
from another agent adopting the Coordinator role.

A PSA can be playing both the Coordinator and the Operator roles simul-
taneously at different scene instances. Since a subtask may itself be bound to a
task-decomposer, the agent selected for such a subtask has to act as the Operator
with respect to the agent he is subordinated to, but before finishing that inter-
action, the same agent may partake in other scenes with its subordinated agents
as operators, and acting himself as coordinator. Figure 5.18 shows an example
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of a team where this condition will happen: the agent selected for Team-role 5
(TR5) is assigned the task Aggregate, which is a subtask subordinated to TR1
(task Information-Search); thus the agent in charge of TR5 has to play the op-
erator role with respect to the agent in charge of TR1. But while engaged in a
scene with the agent playing TR1, the agent playing TR5 has to engage a scene
acting itself as coordinator, while the agent playing TR7 acts as operator, since
TR7 is assigned the task Aggregate-items, which is subordinated to TR5.

The Coordinator and the Operator role are not under a SSD relationship,
because an agent can play, as exemplified above, both roles at the same time. As
we explain later concerning Teamwork, during the Teamwork scene 6.5.4, team
members can engage new problem solving scenes when needed, adopting either
the Coordinator or the Operator role according to the subordination relations
established by the hierarchical structure of a team-configuration ??.

(define-dialogic-framework ORCAS_e-Institution_df as
ontology = (KM-Ontology Teamwork-Ontology Brokering-Ontology)
content-language = NOOS
illocutionary-particles = (request inform accept refuse)
external-roles = (PSA PA)
internal-roles = (Librarian T-Broker K-Broker)
social-structure ((PA ssd PSA)))

Figure 6.4: ORCAS e-institution dialogical framework

Figure 6.4 shows the dialogic framework of the ORCAS e-institution. The on-
tology contains the vocabulary and the concepts used by agents to communicate
when other agents participating in the institution. Any ORCAS e-Institution
comprehends at least three ontologies, the Knowledge-Modelling Ontology, the
Brokering Ontology (describe later, in §6.5.2), and the Teamwork Ontology,
which contain all the concepts required by the different roles of the ORCAS e-
Institution to participate in the institution. Moreover, any application of the
ORCAS e-Institution adds library specific concepts that should be shared by the
agents participating in that application, like the concepts included in the ISA-
Ontology (D), which is used by the agent participating in the WIM application
(§7). The content language is NOOS [Arcos, 1997], a reflective object-centered
representation language designed to support systems integrating knowledge-
modelling and learning.

In order to implement the ORCAS framework as an electronic-institution,
we have added some concepts to the Teamwork ontology which are required
by institutional agents to communicate at the different scenes of the ORCAS
e-Institution. These concepts should be understood by both the external and
the internal, institutional agents in order to interoperate. These concepts will
be introduced as needed when describing the different scenes of the ORCAS e-
Institution within this chapter. As we have introduced in Chapter 5, we use
elements of e-Institutions to specify the operational description and the commu-
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nication requirements of agent capabilities; however, these elements should be
distinguished from the ORCAS e-Institution.

On the one hand, the ORCAS infrastructure follows the original electronic
institutions formalism ([Esteva et al., 2002b]) in that is is specified as a fixed
structure of scenes (a performative structure), which are known beforehand.

On the one hand, the communication supported by an agent over a capa-
bility is specified as a scene (§5.4.2), while the the operational description of
a task-decomposer is specified as a performative structure (§5.4.3), but these,
these elements do not make up an electronic institution as conceived in the re-
ferred formalism; instead, they constitute a collection of incomplete performative
structures (recall that scenes are not typed) that are completed (by selecting the
scene types) and composed dynamically during the Teamwork process following
a nested structure. These structures can be seen as special class of electronic
institutions that we like to call dynamic e-Institutions, since they are configured
on-the-fly, according to the requirements of the problem at hand.

Actually, since the nesting of performative structures occurs within the Team-
work scene in the ORCAS e-Institution, the ORCAS e-Institution can be seen as
a meta-institution that defines the environment for the execution of dynamic,
throw-away e-Institutions. This idea introduces becomes a new topic we put off
as deserving further research (Chapter 8).

6.4 Performative structure

The performative structure of an ORCAS e-institution represents the network of
interaction scenes, together with the relationships among scenes, that describe
the paths followed by agents playing some role in the institution. The ORCAS
performative structure contains four communication scenes, plus the Start and
the End scenes, from where agents enter and exit the institution. The main
scenes of this institution are the following:

1. Registering scene: where a PSA can register its capabilities to the Librarian
in order to become available for the CPS process, as well as deregister
when leaving the institution. The registering/deregistering process keeps
the Librarian with an up-to-date description of the capabilities available
at the system at any moment.

2. Brokering scene: this scene describes the pattern of interaction needed
to obtain a task-configuration by the Knowledge Configuration process.
The participants are a PA requesting to find a task-configuration, the
Knowledge-Broker responsible for building the task-configuration, and the
Librarian, holding the current description of the capabilities available in
the system (the library of problem-solving components).

3. Team Formation scene: this scene describes the communication protocol
for selecting and instructing the members of a team. The agents involved
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are the PA, that holds the task-configuration obtained by the Knowledge-
Broker at the Brokering scene, the available Problem-Solving Agents, that
wait for team-role proposals to join a team, and the Team-Broker, respon-
sible for selecting the team members and instructing them on the way to
cooperate and coordinate with other team mates.

4. Teamwork scene: finally, once a team of agents has been formed and in-
structed to cooperate, the team-mates go to this scene to solve the problem
in a cooperative way, using the information provided to them during the
Team Formation scene by the T-Broker. The agents involved are the PA,
holding the input data for the problem at hand, and the selected team
members (PSAs).

Figure 6.5: Performative structure of the ORCAS e-institution

Figure 6.5 shows the graphical representation of the ORCAS e-Institution per-
formative structure. In addition to the four main scenes (Registering, Brokering,
Team Formation and Teamwork) there is a root scene and an output scene as
the initial and final scenes respectively. The role-flow policy is represented by
the edge labels and transitions between scenes. Notice a PSA has to move first
to the Registering scene, and only then can a PSA move to the Team Formation
scene to wait for team-role proposals. The PA must start in the Brokering scene
to request the K-Broker for a task-configuration satisfying the requirements of
a problem; afterwards the PA moves to the Team Formation scene to request
the Team-Broker for a new team-configuration. Afterwards, the PA moves to
the Teamwork scene to request the team-leader of the recently formed team to
solve the problem. Finally, the PA provides the team-leader with the input data
for the problem at hand, and waits for the results. The different communication
scenes are described in the following section, devoting one subsection for each
scene.
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6.5 Communication scenes

This section describes the different communication scenes in the performative
structure of the ORCAS e-institution: registering and deregistering (§6.5.1), bro-
kering (§6.5.2), Team Formation (§6.5.3) and Teamwork (§6.5.4).

6.5.1 Registering scene

The Registering scene describes the communication activities used to allow the
Librarian to be aware of the agents available in the system at any moment, and
the capabilities they are equipped with.

Actually, there are two complementary activities, registering and deregis-
tering. On the one hand, PSAs willing to join the ORCAS e-Institution must
register their capabilities to the Librarian agent; on the other hand, PSAs willing
to exit the institution must inform the Librarian they are leaving, so as to allow
the Librarian update the library.

The Registering scene follows a request-inform protocol. When a PSA enters
the agent platform, it sends a “register” message with the set of capabilities
it is equipped with. The Librarian builds a table with the bindings between
capabilities and agents, and keeps it updated by tracking the registering and
deregistering activities of PSAs.

Figure 6.6 shows the registering scene specified as a request-inform protocol.
The scene starts with a PSA requesting the Librarian to register a set of ca-
pabilities (transition 1). The Librarian can then accept (transition 2) or refuse
that request. If accepted, the Librarian informs the PSA whether the requested
capabilities have been successfully registered (transition 3) or there was some
problem (transition 5).

6.5.2 Brokering scene

The purpose of the Brokering scene is to allow the PA to obtain a task-
configuration satisfying specific problem requirements. Recall that a task-
configuration is obtained through a Knowledge Configuration process (§4.4),
which takes a specification of problem requirements and a specification of the
components in the library (tasks, capabilities and domain-models) as inputs,
and produces a task-configuration as output.

There are three roles participating in the Brokering scene: the Knowledge-
Broker, the Personal-Assistant and the Librarian.

The Knowledge-Broker (K-Broker) is the role played by the agent responsi-
ble for the Knowledge Configuration process, which is implemented as a search
over the space of possible configurations, where the problem requirements are
constraints to be satisfied by the configuration.

The Personal Assistant (PA) role represents the user and deals with all the
human-computer interaction. The PA is defined as an external role, since only
the communication layer of the PA are domain-independent. In general, the
PA has a common social layer that defines the acceptable behavior of the PA
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1. (W0 W1) request (?x PSA) (?y Librarian) register(?capabilities))
2. (W1 W2) accept (!y Librarian) (!x PSA) register(!capabilities))
3. (W2 W3) inform (!y Librarian) (x! PSA) register(!capabilities))
4. (W1 W4) refuse (! Librarian) (!x PSA) refusal(?reason))
5. (W2 W5) inform (!y Librarian) (!x PSA) failure(?error))

Figure 6.6: Specification of the Registering scene

within the institution, while there is an application specific and even a user
specific layer dealing with the particularities of a specific application or user.
In the ORCAS implemented e-Institution, the domain-independent layer of the
PA is separated from the application specific details, which are implemented
separately, as as pseudo-agent that manage the graphical interfaces. There are
several interfaces, some of them are general, domain-independent, and oriented
towards expert users (e.g. the knowledge engineer), whilst others are application
specific, like those included in the WIM application to interact with the end-user
(Chapter 7). An example of a domain-independent interface is shown in Figure
4.19, while examples of domain-dependent interfaces are depicted in Figure 7.17
and Figure F.4.

Moreover, the PA role defines just the communication requirements for an
agent holding the specification of a problem to be solved so as to interact with
the rest of agents in the institution. The basic function of the PA is to me-
diate between the user and the institution so as to relieve the user of holding
any knowledge about how to locate and interoperate with other agents. Rather
than including domain-specific knowledge as part of the PA, we preferred to
implement a generic, domain-independent PA, and include domain-dependent
knowledge as part of the interface (interfaces are implemented as pseudo-agent
that can communicate with an agent using the agent communication language).
To sum up, the PA brings an added value to the application tasks by provid-
ing customization services, and domain-informed support to the decision taking
during the Problem Specification process.

The problem specification process is skipped here, since it is performed out-
side the institution; however, we assume that the PA is holding a complete
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specification of a problem to be solved, represented using the ORCAS ACDL
and the vocabulary from the application ontology (e.g. the ISA-Ontology in
WIM).

The Brokering scene begins when the PA sends a request message to the
Knowledge-Broker (K-Broker) containing a specification of problem require-
ments. The K-Broker is an agent that is able to obtain a task-configuration
satisfying specified problem requirements on-demand, out of the component
specifications hold by the Librarian.

Once the K-Broker receives a request from the PA, it asks the Librarian to get
an updated version of the components registered in the library at the moment,
searches a task-configuration satisfying the problem requirements, following one
of the three configuration strategies described in §4.4.4.

The K-Broker can ask the Librarian for the entire library at the beginning,
or it can ask the Librarian several times, requesting only those components
satisfying a matching criteria so as to retrieve only useful specifications. For
instance, when going to bind a capability to a task, the K-Broker can ask the
Librarian for just those capabilities matching that task.

The concepts required to participate by the PA and the K-Broker to par-
ticipate in the Brokering scene are included in the Brokering ontology Figure
6.7.

subtask-conf: Task-configuration*

TD-configuration

task: Id

inputs: Signature-element*

configuration: C-Configuration

Task-configuration

application-task: Symbol

ontology: String

inputs: Signature-element*

outputs: Signature-element*

preconditions: Formula*

postconditions: Formula*

domain-models: Symbol*

configuration-options: String

Problem-requirements

Subsort relation

Part-of relation

Set of
*

Subsort relation

Part-of relation

Set of
*

inputs: Signature-element*

capability: Symbol

domain-models: Symbol*

C-configuration

Skill-configuration

Figure 6.7: Broker Ontology

The input for the Knowledge-Configuration process is a specification of prob-
lem requirements composed of a) the name of the task to be achieved, b) the
pre-conditions that are established to hold, c) the postconditions that have to
be hold when the task is achieved, and d) the domain-models that are available
for achieving the task. The outcome of the Knowledge-Configuration process is
a task-configuration: a tree of triplets containing a task, a capability suitable for
that task, and one or more domain models satisfying the knowledge requirements
of that capability.
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Figure 6.8 shows the interaction protocol for the Brokering scene. The scene
starts (w0) with the PA sending a message to the K-Broker. This message
(transition 1) is a request to obtain a task-configuration using the problem spec-
ification included in the content of the message. In the next state (w1), the
K-Broker can either asks the Librarian for the entire library (transitions 2, 4),
or it can ask for a partial set of tasks or capabilities satisfying some matching
criteria (transitions 3, 5). The purpose of these actions are to make the K-Broker
work with an updated version of the library during the Knowledge Configuration
process, while the use of one or another mode depends on the strategy adopted
by the K-Broker. In the first case the K-Broker gets the entire library in one
single interaction, while in the second case the K-Broker takes several steps to
obtain all the required information, but can retrieve only the information that is
strictly necessary to configure a particular task, rather than using the complete
library. The first step in the Knowledge Configuration process is to choose which
task characterizes better the problem at hand. In order to do that, the K-Broker
sends the set of tasks matching the initial problem specification to the PA (w6),
ranking those tasks according to the similarity measure defined in the context
of the Case-Based Knowledge-Configuration strategy (§4.5). The PA chooses
one task from that set and informs the K-Broker (transition 7) on the selected
task and the configuration strategy to use. After receiving the specification of
components from the Librarian, the K-Broker starts a Knowledge Configuration
process over those specifications. If the K-Broker succeeds obtaining a task-
configuration satisfying the requirements, it sends a inform message containing
the resulting task-configuration to the PA (tr. 8), and the scene ends.

Notice that the process may fail at several points, causing the scene to end
without obtaining a task-configuration. The Brokering scene (Figure 6.8) in-
cludes a second final state that is reached either when the K-Broker cannot find
a task satisfying the requirements of the problem (tr. 10), or when the K-Broker
cannot obtain a task-configuration (tr. 9).

The Knowledge-Configuration process has been described in Section §4.4.
This process is performed by the K-Broker during the Brokering scene, at state
w4. The Knowledge Configuration process is performed by the K-Broker as a
state-space search in the space of partial configurations (Section §4.4.5).

6.5.3 Team Formation scene

The Team Formation scene describes the communication required to form a
team of agents that is able to solve a problem according to a task-configuration.
During the Team Formation scene, a team structure composed of team-roles is
build according to a task-configuration, and a group of agents is selected and
instructed to play every team-role.

We have already described the Team Formation process as having three stages
(§5.5): task allocation, team selection and team instruction.

During the task allocation stage, candidate agents are obtained for every
team-role. Next, team selection decides the team members to play each team-
role out of candidate agents, and keeps other candidate agents in reserve for the



188 Chapter 6. The Institutional Framework

1. (W0 W1) request (?x PA) (?y TB) configure(Problem-Specification))
2. (W1 W2) request (!y TB) (?z Lib) retrieve-component(?specification))
3. (W1 W2) request (!y KB) (?z Lib) retrieve-library)
4. (W2 W1) inform (!z Lib) (!y KB) found(?components))
5. (W2 W1) inform (!y Lib) (!z KB) nothing-found)
6. (W1 W3) request (!KB null) (!PA null) choose-task(?task-list) ) ( ) ))
7. (W3 W4) inform (!x A) (!y KB) configure(?task ?mode) ) ( ) ))
8. (W4 W5) inform (!y KB) (!x PA) configured(?task-configuration))
9. (W4 W6) failure (!y KB) (!z PA) partial-configuration(?task-configuration) ) ( ) ))

10. (W1 W6) failure (!y KB) (!z PA) no-task-found)

Figure 6.8: Specification of the Brokering scene
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case of failures during Teamwork. Finally, the agents involved in the process
are informed on the result of the team selection process, and the agents selected
are instructed on the way they should coordinate with other agents during the
Teamwork process.

The Team-Broker (T-Broker) is the responsible of guiding the Team Forma-
tion process; it mediates between the PA willing to solve a problem and the PSAs
providing their capabilities and waiting for requests to join a team. The T-Broker
is able to reason about the component specifications and task-configurations, but
it is specialized in forming teams, and has specific knowledge about operational
descriptions that are useful to improve the team selection process (and so the
performance of Teamwork). Section ?? describes the constructs of an operational
description that can be used for that purpose: sequences, choices, parallelism,
choices and multiple-instances (Figure 5.20).

First, the Team-Broker obtains candidate agents willing to play some team-
role by sending team-role proposals and accounting for the agents accepting.
Agents accepting a team-role proposal are considered as committing (by dia-
logue) to play that team-role, and are consequently expected to try to achieve
the associated tasks when required during the Teamwork process. The Team-
Broker will analyze the task-configuration to know which tasks should be solved
by the team and which capabilities are required to solve each task. Using that in-
formation the Team-Broker can generate the team-model, one team-role for each
task in the task-configuration, and propose those team-roles to agents willing to
join the team.

Problem-Solving Agents (PSA) can decide autonomously whether to accept
or to refuse a team-role proposal. The Team-Broker waits until all the available
agents have answered or a time out is reached, then, the Team-Broker decides
among alternative agents for the same task which ones to select as members of
the team.

Different algorithms and strategies can be used within the Team Formation
scene to allocate tasks to candidate agents. It is possible for instance to select
agents after each team-role proposal. Another strategy is first to obtain candi-
date agents for all the team-roles, and then to select agents for all the team-roles.
Moreover, the infrastructure presented here is suitable for a wide range of se-
lection strategies that can be embodied within the Team-Broker agent. The
team selection strategy belongs to the Team-Broker internal decision-making
strategies, and not to the institutional framework.

Figure 6.9 shows the specification of the Team Formation scene. There are
three roles involved: the PA, the Team-Broker and the Problem Solving Agents.

The Team Formation scene starts at w0 with the PA requesting the T-Broker
to form a new team (transition 1) given a task-configuration. Next, the T-Broker
initiates the task allocation activity by informing available agents that a new
team formation process is going to start (tr. 2).

The task-allocation and team selection processes follow an auction-like ap-
proach similar to the contract-net protocol [Smith, 1940]: team-roles are pro-
posed to PSA agents willing to join the team (transitions 3); agents have then a



190 Chapter 6. The Institutional Framework

1. (W0 W1) request (?x PA) (?y TB) team-formation(?task-configuration))
2. (W1 W2) inform (!y TB) (all PSA) start-team-formation(?team-id))
3. (W2 W3) request (!y TB) (all PSA) commit(?team-role))
4. (W3 W3) accept (?z PSA) (!y TB) join-team(!team-role))
5. (W3 W3) refuse (?z PSA) (!y TB) join-team(!team-role))
6. (W3 W2) inform (!y TB) (all PSA) time-out(!team-role))
7. (W2 W4) inform (!y TB) (all PSA) start-team-configuration(?team-id))
8. (W4 W4) inform (!y TB) (?z PSA) commit(?team-role))
9. (W4 W5) inform (!y TB) (all PSA) finish-team-configuration(?team-id))

10. (W5 W6) inform (!y TB) (all PSA) finish-team-formation(?team-id))
11. (W2 W5) inform (!y TB) (all PSA) team-failure(?team-id))

Figure 6.9: Team Formation scene
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limited period of time to accept (tr. 4) of refuse the proposal (tr. 6) before the
time-out is reached (tr. 6).

If there are no candidate agents for all the team-roles, the team can not be
formed at all. After performing several attempts without succeeding, the T-
Broker informs participating agents of a team-failure (tr. 11) in order to call off
the Team Formation scene and discard the ongoing team.

If there are candidate agents for all the team-roles, the task-allocation process
succeeds and the T-Broker announces the beginning of the team selection process
(tr. 7). During the team selection process, the T-Broker has to select the agents
to play each team-role, and the agents to keep in reserve, using the information
provided by both the operational description of task-decomposers (containing
information about paralellism) and any application specific criteria considered.
After being selected to play some team-role (w4), team-members are informed
on the team-roles they are assigned to and have to commit to (tr. 8). After
finishing the team selection process, the T-Broker informs participating agents
the team-selection is finished successfully (tr. 9).

As described in §5.3.1, team-roles are used to inform team-members about
all they need to carry out a task within the team: the task to be solved, the
capability to apply, the knowledge to use, and optionally, if the capability is
a task decomposer, the information required to delegate subtasks to another
team-members.

After selecting the agents to play every team-role, the identifier of the team
and the information required to communicate with the team-leader (the top level
team-role) are sent to the PA (tr. 10), and the scene ends. The PA does not
require a complete team description because the information on each specific
team-role has been submitted to each team member during the Team Formation
scene.

6.5.4 Teamwork scene

This section describes the process of solving a problem by a team of problem
solving agents (PSAs), once the team has been formed and instructed during the
Team Formation stage, in such a way that the specified problem requirements
are met.

The already introduced scenes (Registering, Brokering and Team Formation)
are single scenes. However, the Teamwork scene is not specified by a single scene,
though there is an initial scene that is used by the PA to request the team-leader
to begin teamwork, provide the team-leader with the data for the problem and
wait for the results. Nonetheless, the teamwork activity is not reduced to this
initial scene, but will follow a nested structure of performative structures, one for
each task-decomposer team-role (§5.6). Moreover, the scenes to be used within
these performative structures are not predefined, but have been selected during
the Team Formation scene from the set of communication scenes supported
by the two agents involved in any task, one playing the Coordinator role, and
another one playing the Operator role (§5.4.2).
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The Teamwork process is initiated by the PA once the Team Formation has
succeeded. The Teamwork scene defines just the initial scene of the Teamwork
process, involving two agent roles, the PA and the PSA roles. There is a single
agent playing the PA role, while all the team-members play the PSA role. This
scene is used by the PA to send the problem data to the team-leader and get
the final result back.

The Teamwork follows a request-inform protocol; the PA sends a “request”
message to a PSA playing the team-leader team-role, (the responsible for the
root task within the corresponding task-configuration). This message contains a
team-identifier, a team-role identifier corresponding to the team-leader, and the
input data for the problem at hand.

The team-role identifier is required by the team-leader to check up whether
it is committed to that team-role, and to retrieve the information associated to
that team-role so as to carry out the task associated to it. Since a PSA can
participate in different teams at the same time, a unique team identifier is also
required to avoid ambiguity.

When a PSA receives a request from the PA, the PSA checks whether it is
committed to the team-role specified in the request. If the target PSA founds
that team-role stored in its local memory, it accepts the request, or refuses the
request in the opposite case.

Next, the PSA checks the type of capability assigned to that team-role in
order to figure whether it is a skill or a capability. According to the type of
capability assigned to a team-role a PSA can face two situations:

If the capability assigned to the team-leader’s team-role is a skill, the PSA
has just to apply that skill over the input data and give back the result to the
PA. In this situation, the team is composed of only one team-role. Therefore,
the Teamwork activity involves only one scene and two agents, one agent playing
the PA role, and another agent playing PSA role.

Otherwise, the capability is a task-decomposer, and the PSA has to consider
delegating some subtasks to other agents. This information is provided by the
team-role’s subteam, which specifies the agents selected for each subtask, as well
as the scene to be used to communicate with those agents. In this situation, a
team is composed of several team-roles, and the Teamwork activity involves
one or more performative structures describing the task decomposition control
flow, and several scenes to be played, one for each subtask to be delegated to
another agent. Recall that there is one performative structure (an operational
description) for each task-decomposer capability assigned to a team-role. The
idea is that the teamwork activity can be modelled by a electronic institution
whose primitive elements are assembled on-runtime, during the team-formation
process. Therefore, the teamwork activity follows the performative structure of
that institution, expanding to a new performative structure each time a new
task-decomposer is applied. Agents adopt the coordinator and operator roles as
required, according to whether they are attending a request from another agent
(operator) or they are applying a task-decomposer and have to delegate some
subtask to other agents (coordinator).
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As team members applying skills finish their tasks, the results are sent back
to the coordinators, which are responsible for obtaining the result for his task
using the result of the many subtasks, and propagating his own result back to
his respective coordinators, and so on, until the team-leader obtains the final
result and sends it to the PA.





Chapter 7

Application: The Web
Information Mediator

This chapter describes the Web Information Mediator (WIM), a spe-
cific MAS application that uses the ORCAS framework and is im-
plemented over the the ORCAS e-Institution. WIM is a configurable
meta-search application to find bibliographical references in the In-
ternet. WIM is based in a collection of domain-independent cooper-
ative information agents, while the current application domain is
medicine. This chapter describes this application, and some ex-
tra work performed concerning the interoperability of the ORCAS
e-Institution.

7.1 Introduction

The process of information search and aggregation on the Internet is essentially a
process of mediation between the goal of the user and the information resources
that are distributed and heterogeneous. Therefore, an application dealing with
such information processing tasks can be seen as a Web Information Mediator
(WIM). The overall goal of WIM is to provide a mediation service for infor-
mation search tasks of a professional user in some domain. A mediator is an
agent that offers an added value to the information accessed in other sources
[Wiederhold, 1992]. Typical services offered by a mediator include selection of
information sources, information retrieval, ranking and fusion of information
from different sources.

WIM has been developed and specified according to the ORCAS framework,
and it is deployed over an ORCAS e-Institution (implemented over the NOOS
Agent Platform). WIM is a configurable application according to Definition 4.15,
and as such it has the following properties:

• WIM functionality is hold by a library of tasks and capabilities provided
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by agents and specified in a domain independent manner. The application
domain is characterized by a collection of domain models characterizing
the domain knowledge. However, WIM adds like wrappers to the ORCAS
e-Institution architecture, which are used to agentify external information
sources.

• Problems are specified as a collection of problem requirements and prob-
lem data. A specification of problem requirements includes the name of
the task to be solved, domain models characterizing specific domain knowl-
edge, preconditions stated to hold, and postconditions to be satisfied after
solving the problem.

• There is a clear separation between the problem solving agents, which
are the providers of the capabilities, and the domain knowledge, which is
defined independently. The domain models characterizing the application
domain are specified for any particular problem as part of the problem
requirements.

• WIM applications are configured on-the-fly for a particular request by de-
composing the problem task into subtasks, binding capabilities to tasks,
and verifying that the assumptions of the capabilities are verified by the
domain models specified in the problem requirements.

• WIM on-the-fly applications are designed, operationalized and executed
according to ORCAS model of the CPS process (S5.2), which is made up
of four subprocesses: Problem Specification, a Knowledge-Configuration,
Team Formation and Teamwork.

In few words, WIM is a configurable application that exploits the ORCAS
framework to customize agent teams on-demand, according to stated problem
requirements. The separation of tasks and capabilities from the domain is an ar-
chitectural pattern that aims at maximizing the reuse of agent capabilities. The
matching relations allow to verify whether a set of domain models characterizing
the application domain satisfies the knowledge assumptions of a capability. As
a result, WIM agents can be reused over new application domains by specify-
ing the new domain knowledge as a collection of domain-models, and building
appropriate ontology matchings when there is an ontological mismatch between
the concepts used to specify the new domain and the concepts defined in the
WIM ontology.

The WIM mediation process can be seen as a sequence of adaptation steps:
to begin with, WIM adapts the user request (a consultation) to generate domain
queries, using knowledge from the specific application domain, like medicine;
secondly, WIM agents have to adapt the queries expressed in terms of the appli-
cation domain to the features of specific information sources; lastly, the infor-
mation retrieved from several queries and different sources is adapted again to
obtain a global result to the user request.

An important distinction in WIM is established between a domain query and
a source-query. On the one hand, a domain-query is a description of the type of
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information to search from an abstract, conceptual viewpoint, and is expressed
in terms of application domain. On the other hand, a source-query is used to
specify a query to a specific information source, in terms of the search strategies
and the filters allowed by that particular source.

A second consideration is the paradigmatic distinction between the concept
of “relevance” in classical information retrieval (IR), and the richer conceptu-
alizations currently in use for intelligent information agents [Carbonell, 2000].
The canonical concept of relevance in IR is a test where the results of a query by
a retrieval engine are compared to a gold standard provided by a human expert
that assesses false positives and false negatives. The problem of that approach
is that relevance is independent from the purpose of the specific user in posing
a query. Therefore, current research also tries to establish a utility measure that
is task-dependent: retrieved items are evaluated to determine in which degree
satisfy the intended purpose expressed in the user’s query [Carbonell, 2000].

WIM takes into account both considerations: on the one hand, WIM allows
the user to specify an information search problem in terms of a domain query,
and then it uses domain knowledge to transform the domain query into source
specific queries; on the other hand, the result of applying each query can be
interpreted according to a notion of utility to the task and not only of relevance
with respect to the content of the query.

Modern information systems should manage or have access to large amounts
of information and computing services. The different system components can
conduct computation concurrently, communicating and cooperating to achieve
a common goal. These systems have been called Cooperative Information Sys-
tems [International Foundation on Cooperative Information Systems, 1994]. A
major goal of this field is to develop and build information systems from reusable
software components. This goal can be achieved by assembling information ser-
vices on-demand from a collection of networked legacy applications and infor-
mation sources. WIM is a specialization of that general class of systems in the
field of MAS, for it is built by connecting the capabilities provided by a society
of agents to some domain knowledge specified as a collection of domain-models.
WIM is designed as a configurable MAS according to the ORCAS framework,
and has been implemented as a society of information agents participating in
an ORCAS e-Institution (developed upon the Noos Agent Platform). The WIM
application is configured by selecting and configuring the capabilities brought
by the WIM information agents, and linking them to a medical domain knowl-
edge (medicine in general, and Evidence Based Medicine in particular). The
configuration of an information task (a task-configuration) is operationalized by
forming a team of agents with the capabilities encompassed by the configura-
tion, and imposing team members a commitment to that configuration. WIM is
configured on-the-fly for each request to solve a problem, and the configuration
is built according to the kind of problem and the preferences of the user.

To sum up, WIM tasks and capabilities are reusable because they are defined
in a domain independent manner, thus the same agents can be used to build a
new application with a new domain knowledge.
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This chapter begins introducing the WIM approach to information search
(§7.2) and briefly describing the WIM architecture (§7.3). Following, the main
elements of the WIM application are described at the knowledge level: the in-
formation search ontology (§7.4) first, the specification of tasks and capabilities
(§7.5) second, and the domain-models (§7.6) third. Besides, the chapter devotes
an entire section to usage aspects such as the interfaces to the application (§??),
another section to exemplify the use of the WIM library (§7.7), and another one
describing an interlibrary application (§7.10) made in cooperation with other
partners in the IBROW project.

7.2 The WIM approach to information search

The vast amount of information available in the Web causes some serious prob-
lems to the users when looking for information. It is difficult to find all the
relevant information, for it is distributed among several information sources. In
addition, the information retrieved is rarely ranked according to the users utility
criteria. Meta-search (Figure 7.1) is one of the most promising approaches to
solve the first problem. If the single search-engines store only a portion of all
the existing information about some particular domain, several search engines
should be queried to increase the search coverage. But often in practice, meta-
search is under-exploited; existing meta-search engines do not combine results
from the different single engines, neither they rank the information retrieved,
or the ranking mechanisms are quite poor. Our approach overcomes these two
limitations. The WIM application tasks allow to rank documents retrieved from
information sources that originally do not perform any ranking; and it allows also
to aggregate information retrieved from different search engines. The originality
of our vision is that we exploit the filtering capabilities of existing search-engines,
thus ranking is achieved with a little computation and storage cost.

These are, in brief, the main requirements we pose to the information search
process:

• it should be possible to rank information retrieved from sources that are
not able to rank information by themselves;

• to retrieve and combine information coming from multiple, heterogeneous,
sources;

• to aggregate the rankings of information retrieved for several queries, so
as to bring a unique, overall ranking; and

• to rank information according to the users utility, enabling for an easy
modification or customization of the utility criteria.

WIM approach to information search can be described as an adaptation pro-
cess with three main stages: query adaptation, information retrieval and aggre-
gation. Query adaptation refers to the process of elaborating the user consulta-
tion to better fulfill his interest, as well as adapting queries expressed in terms of
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Figure 7.1: Meta-search and aggregation

a domain language (independent of any specific information source) to the lan-
guage used by particular information sources. Once the retrieval is performed,
the results from different queries are aggregated for each source, and finally the
results for each source are aggregated again to obtain a unique result for the
user consultation.

WIM approach to information search is based on query weighting and numeri-
cal aggregation operators [Gómez and Abasolo, 2003]. Query weighting refers to
the process of assigning weights to queries generated according to some domain
knowledge, while numerical aggregation operators are used to merge information
retrieved from different information sources or different queries. Aggregation al-
lows to combine the different ranking obtained by bits or items of information
obtained for different queries, so as to obtain a unique ranking or score for each
retrieved item. This approach allows to rank items retrieved from sources that
originally do not give any ranking, and to define user-oriented utility measures
simply by defining the appropriate knowledge categories (§7.6).

7.2.1 Adaptation of queries

WIM subscribes to the well known approach of representing queries as keyword
vectors. This decision is justified because nowadays professional databases could
often be accessed through the use of a web-based search-engine, whose queries
are made of keywords belonging to a particular domain. In addition to keywords,
WIM queries allow specifying search filters as optional constrains for narrowing
the retrieval process. An ontology on bibliographic data has been used to model
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the kind of filters allowed by professional bibliography search-engines, like pub-
lication type, language and so on.

There are two types of query: domain-query and source-query (§7.4.2). Do-
main queries are expressed in terms of the application domain, like medicine,
while source queries are customized for a particular information source. In our
implementation, the application domain is medicine, and the type of informa-
tion retrieved is about bibliographical references. Therefore, WIM performs two
types of adaptation:

• Query elaboration is performed at the domain level, using application do-
main knowledge to adapt queries to a particular user interest, within a
particular domain, like medicine bibliography. Domain queries are elabo-
rated using domain knowledge, like synonyms, hypernyms and hyponyms
provided by a thesaurus, which can be used to obtain semantically equiv-
alent queries, and to either generalize or specialize a query.

• Query customization is performed at the source level, using descriptions of
information sources (Web-based search engines) to customize a query for a
particular information source. Source queries are generated by translating
keywords and filters from the domain level ontology into the search modes
and filters supported by a particular information source.

Very abstract, 
is given 

by the user

Consultation

    In terms of the  
domain model

Domain queries

Customised 
for specific
information
source

Source queries

Figure 7.2: Domain and source query elaboration

Figure 7.2 sums up the idea of the query adaptation process at the two levels:
domain level and source level.

1. The consultation introduced by the user is expressed as a domain-query,
afterwards it is expanded into a collection of new domain-queries, using do-
main knowledge and utility criteria to elaborate queries. Resulting queries
are weighted according to the similarity of the new domain queries to the
user consultation.

2. Domain queries are transformed into source queries customized for spe-
cific information sources, using domain knowledge about the information
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sources.

In our approach to query adaptation, new queries are not only enriched with
domain knowledge, but they are also weighted according to the strength of the
relationship between the original query and the new query (which depends on
the type of query adaptation as well as on specific information represented as
domain knowledge). For instance, query adaptation at the domain level (query
elaboration) uses semantic similarities to generate new queries, while query adap-
tation at the source level uses information on the search modes supported by an
information source and the type of filters applied. Once the query adaptation
finishes, the selected information sources are queried through the use of wrap-
pers, which are responsible for adapting the queries represented in terms of the
WIM ontology to fit the particular interface of each information source. Queries
generated during the query adaptation phase allow to score the items retrieved
even though the information source does not give any ranking. Ranking can be
straightforwardly applied because the queries are weighted in advance, during
the adaptation process, thus their answers can be considered as inheriting the
weight of the query as an assessment of relevance or utility.

A more formal description of the query weighting approach used by WIM
information agents is provided as an Appendix in B.

7.2.2 Aggregation of results

The answers to all the queries are the items retrieved from different information
sources, ranked according to the weights of the queries they are a result to.
These items are combined to obtain a unique set of items, where repeated items
are eliminated, keeping only one instance of each item with a unique, overall
ranking.

Ranking synthesis is achieved by applying some aggregation operator. Ag-
gregation is a kind of merging where the rankings assigned to different occur-
rences of an item are combined using an aggregation operator to obtain a unique
ranking that summarizes the utility or relevance of each item for the user. A
numerical aggregation operator is necessary because during the query adapta-
tion process queries are weighted with numerical values. Hence, the results of
a query (the retrieved items) inherit the weight of the query. If the queries
are weighted according to some utility criteria rather than relevance, then the
results are ranked taking into account these utility criteria. Notice that the
same item may be retrieved as a result of several queries, and each query may
have a different weight. Therefore, the aggregation process has to compute an
overall score for each retrieved item based on the evidence degree contributed
by the weights of the queries in which each item is retrieved. For this purpose,
four numerical aggregation operators have been implemented as capabilities in
the the library: the arithmetic-mean, the weighted-mean, the Ordered Weighting
Average (OWA) and the Weighted OWA [Torra, 1996].

Sometimes, the term “fusion” is used to refer to the aggregation of items
retrieved from different information sources. In our framework, the same pro-
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cedure is used to aggregate items retrieved from a unique search-engine can be
used in fusion. In this case, each source is assigned a weight expressing the
reliability of that source or other kind of “goodness”. A query customized for
multiple search-engines is weighted using a combination of the weight assigned
to the query during the query elaboration stage, and the weight assigned to the
source in the source description.

7.3 WIM architecture

The WIM configurable application has been specified according to the ORCAS
framework, both at the knowledge and the operational levels (i.e. using the
ORCAS ACDL), and is configured through the institutional agents provided by
the ORCAS e-Institution (Chapter 6).

WIM is based on a collection of domain-independent information agents reg-
istered in the ORCAS e-Institution as Problem Solving Agents (PSA), plus a
repository of domain knowledge accessible by these agents.

We can distinguish three groups of agents in the WIM application:

• Institutional agents implementing the internal roles of the ORCAS institu-
tional framework: Librarian, Knowledge-Broker and Team-Broker. These
agents are common for any ORCAS-based application, they just offer the
infrastructure to build a configurable application. We have built one agent
for each role: there is one Librarian, one Knowledge-Broker and one Team-
Broker.

• Problem Solving Agents equipped with capabilities to perform information
search and aggregation tasks. These agents can participate in the insti-
tution by adopting the PSA role and registering their capabilities to a
Librarian agent. From now on we will refer to the set of tasks and capabil-
ities registered in WIM as the Information Search and Aggregation (ISA)
library.

• Personal Assistants specialized in the WIM information tasks. These
agents interact with the user (or a software agent) to obtain a specification
of the problem, and bring back the results to the user (or agent).

In addition, there are several pseudo-agents providing connectivity to exter-
nal agents and to non agent resources as well, namely: wrappers, FIPA-mediator
and WWW-mediator.

• Wrappers are used to agentify external resources, like Web-based informa-
tion sources (Pubmed, IGM-Healthstar, IGM-Medline, and iSOCO wrap-
pers) and external domain knowledge (MeSH wrapper).

• The FIPA-mediator provides connectivity to external agents willing to
access the WIM application.
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• The WWW-mediator provides connectivity to an http protocol, and thus
it supports Web based access to the WIM application.

However, the WIM library needs some domain models satisfying its knowledge
requirements to become a complete application. We have specified as domain
models some knowledge bases containing the knowledge on medicine and bib-
liographic data required by WIM capabilities to be applied. This knowledge is
stored within a shared repository that can be accessed by any agent playing the
PSA role.

Figure 7.3: WIM architecture and interoperation

Figure 7.3 sums up the main elements of the WIM architecture integrated
through the ORCAS e-Institution. There is a library on Information Search
and Aggregation that is composed by the capabilities and tasks registered by
several information agents (Problem Solving Agents), represented using some
ontologies; there is a repository of domain knowledge characterized by domain-
model; and there are some wrappers allowing agents to interoperate with exter-
nal information sources. Moreover, there is a Personal Assistant agent respon-
sible for processing mediating between the user and the application. The OR-
CAS e-Institution is the central element, constituting a middleware layer where
agents meet to interact according to the shared social knowledge (ontologies,
communication language and interaction protocols) provided by the institution.
The ORCAS e-Institution provides an added value to both providers and re-
questers through a collection of middle agents that mediate between requesters
and providers: Librarian, Knowledge-Broker, Team Broker, and Personal Assis-
tant.
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WIM interface to external agents is based on the idea of services. Each
service defines a type of operation that can be requested by other agents, and is
specified by an interaction protocol and a data format specified according to the
FIPA proposals. WIM services specialize the ORCAS services to handle concepts
from the the Information Search and Aggregation (ISA) ontology, as described
in Appendix F.

7.4 The Information Search and Aggregation
Ontology

Ontologies are extensively used through WIM including the following:

• the Knowledge-Modelling Ontology (KMO) at the knowledge level;

• the ontologies defined by the ORCAS e-Institution, which are the Teamwork
Ontology and the Brokering Ontology; and

• the ontology used to specify the components in the ISA-Library (the ISA-
Ontology) and the ontologies used to specify the domain-models used in
WIM.

The concepts of the Knowledge-Modelling Ontology are described in Chap-
ter 4 and Appendix A. The ontologies used within the ORCAS e-Institution
are described through several sections of Chapter 6. This section describes the
ontologies used to specify the ISA-Library, that is to say, the vocabulary used to
specify the features characterizing the tasks and capabilities in the WIM appli-
cation. Recall that this vocabulary is represented using the Object Language,
and we are using of Feature Terms (§4.3).

The ontologies and the components expressed in terms of those ontologies are
both represented using the NOOS [Arcos, 1997] representation language. There
are several reasons endorsing this decision. First, the ORCAS KMF provides and
architectural framework that is neutral about the content language (the Object
Language). Second, there is an implementation of an agent platform in NOOS
that is compatible with FIPA, so describing the ISA-Library in NOOS facilitates
the development of an agent based system for the WIM application. Morevoer,
the NOOS agent platform has some facilities to translate XML-based information
and is an object-centered representation language; therefore NOOS is compatible
with RDF-based representations like those used in describing Semantic Web
Services (e.g. DAML-OIL) and by the Protégé editor suite used in Knowledge
Modelling and Ontology Engineering.

The approach taken here has been to depart as few as possible from the core
assumptions of the ORCAS KMF while using NOOS in a easy and understandable
way. For this purpose, we have designed a few macros on top of the NOOS
language; these macros are used to generate the NOOS code in the agent-based
implementation of the ISA-Library. The point here is to make agents use ORCAS
concepts as part of their content language in the agent communication language.
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Figure 7.4: Overview of the ISA Ontology

The ISA-Ontology consists of two different parts: one encompasses the con-
cepts used as signature elements and is used to describe the inputs, outputs and
knowledge-roles, and the other encompasses the formulae and is used to specify
the preconditions, postconditions and assumptions.

There are two sorts that are not subsorts of other sorts: the sort FT-Signature-
Element, which is used to specify signature elements in the Object Language of
Feature Terms, and the sort FT-Formula, which is used to specify the formulae
(realize that these sorts are refinements of the abstract sorts defined by the
Knowledge Modelling Ontology, named Signature-Element and Formula).

The main sorts of the the ISA-Ontology used to specify signature elements
in the WIM library, and the relations among these sorts are drawn in Figure 7.4.
These sorts are described step-by-step in the following subsections, while the
formal specification is included in Appendix D. The concepts used to specify
formulae are not described as a separate entity; instead, some of them are intro-
duced as needed when describing the tasks and capabilities in the ISA-Library
(§7.5).

7.4.1 Items

An item (Figure §7.5) is the informational unit used during the information
search tasks. It is defined in very generic terms, so as to be refined for different
purposes, as follows:

The sort item has the following features:
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Figure 7.5: Sort definitions of Item, Scored-item and Bibliographic-item

• Identifier (Id): it is used as a reference to the piece of information embod-
ied by the item. An item exists initially with a value in its Id slot and the
remaining slots empty. As long as the search processes take place, the rest
of fields are gradually fulfilled.

• Content: it corresponds to the actual piece of textual information (e.g.
lists of words) that will be gathered from external sources. Its format
depends on the source it comes from. For example, a typical content in
Internet is an HTML page (and following this Internet analogy, the Id
would correspond to the URL) whereas in a Data Base, a content will
correspond to a specific record and the ID would be the index number.

• Date: it is necessary to keep track of the moment that an item of infor-
mation is obtained or updated. Their values are numerical (they represent
number of seconds) so that numerical operators can be easily applied to
compare two dates.

• InfoExtra: There is additional information used to check if a content should
be updated yet or not. For example, this field includes a code for any
problem obtaining the content and the language of the content.

The sort Item can be refined to deal with specific types of information; specifi-
cally, we are interested in searching bibliographic information, so we have defined
a Bibliographic-Item sort that introduces bibliographic data within the speci-
fication of an item. Figure §7.5 shows the sort definition for the sorts Item
and Bibliographic-item, which is defined as a subsort of the former. The sort
Bibliographic-item adds some slots to those inherited by the Item sort, namely
a unique identifier (UID), a title, a set of authors, a publication date, a set of
languages, a publication type, a subject (usually specified as a set of keywords),
and an abstract.

A scored-item is a pair that associates an item with a number which repre-
sents its score with respect to the user consultation. The score of an item may
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Figure 7.6: Sort definitions of Query, Filter, Term, and Query-model

be given as the result of a query to a source or as the result of an aggregation
process over the results of several queries.

7.4.2 Queries, Filters and Terms

The information about what is being searched on behalf of a user is expressed
in this ontology by queries, filters, terms and categories. Figure 7.6 shows these
sorts and their relationships.

Queries

The general sort query represents the user’s consult. There are several types of
queries that share only a feature, called filters.

The user’s consults are specified as instances of the sort Domain-query that
in addition to filters contains a list of terms and one category.

When the domain query is translated to the concrete vocabulary of the source
to be accessed, i.e. it is customized, the query is of sort source-query. The
information in a domain-query is translated to filters and t-filters in a source-
query.

Filters

Filters are constraints over objects of the search. They are represented by the
sort filter that has two features:

• an attribute, which specifies the name of a filter to constrain the search of
information; and
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• a value for that attribute, to be satisfied by the the results to retrieved.

For instance, let us suppose that our goal is to search in the medical database
Medline for documents published after 1990. A filter of a domain query will
contain as attribute “begin year” and as value “1990”.

Terms

Terms are words pertaining to an ontology used in a query. There are relations
between terms (in a ontology) that embody domain knowledge and, as such, they
are located in a domain model that uses this ontology. These relations between
terms are included in the features parent and children of sort Term (Figure 7.6).

The feature parent represents the relation of a term with other more general
terms. The children feature represents the relation of a term with more specific
terms. The feature term-correlation represents the relation between two terms.
The sort Term-correlation has two features : term and weight. Weight is the
correlation degree of term with the current term. When the weight is 1 it means
that both terms are synonyms.

Categories

A category is an intensional definition of a class of search objects in the context
of a particular domain ontology. For instance, we have specified some categories
concerning clinical medicine such as diagnosis, therapy, and clinical guidelines
(Figure 7.12).

attribute: String

value: String

Filter

term: Term

weight: Number

Term-correlationterms: Term-correlation*

filters: Filter-weighting*

Category

filter: Filter

weight: Number

Filter-weighting

Figure 7.7: Sort definition of Category

A category (Figure 7.7) express its intensional meaning as a collection of
correlated terms, which are specified as elements of sort Term-correlation, and a
collection of filters, which are specified as elements of sort Filter-Weighting. A
Filter-Weighting is a pair composed of a filter and a weight .
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name: String

weight: Number

basic-attribute: Attribute-weighting

search-attributes: Attribute-weighting*

filter-attributes: Attribute-translation *

Source

name: String

weight: Number

basic-attribute: Attribute-weighting

search-attributes: Attribute-weighting*

filter-attributes: Attribute-translation *

Source

attribute: String

weight: Number

Attribute-weighting

Domain-attribute: String

Source-attribute: String

Attribute-translation

Figure 7.8: Sort definitions of Source, Attribute-weighting, and Attribute-
translation

7.4.3 Sources

We consider a source as composed of two parts: the content of a database (for
instance Medline or HealthStar) and a particular search engine that can be used
to access that content (for instance PubMed or IGM). A source is modelled using
the sort source that has the following features:

• Name: that represents the name of a source.

• Weight : a weight assessing the reliability of a source.

• Search-attributes: the set of attributes allowed within a query the source.
These attributes may be record fields of a database or search modes of
the search-engine. Search modes indicate accesses that are combination of
several fields. For instance, the attribute “subject” of the IGM method
searches a word both as a MesH term and in the abstract.

• Basic-attribute: represents the basic or default search mode of a source
For instance, the basic attribute of the PubMed-Medline is called “all”,
which means that the search is performed using all the available search
fields, thus it is the more general way of searching Medline.

• Filter-attributes: is a set of attributes that can be applied in order to limit
the search. Some examples of filter attributes are the kind of publication,
date, language, etc.

• Content : The name of the database. For instance, Medline that is a
database on medical bibliographical data.

The features name, search-attributes, basic-attribute, and filter-attributes, are
referred to the method that allows to access the database.

The values in search-attributes are of sort Attribute-weighting, which has two
features: attribute and weight. The weight indicates the semantic importance of
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item: Item

Pairs: Weighted-pair*

Item-info

value Number

Weight Number

Weighted-pair

Figure 7.9: Sort definition of Item-info

the attribute. For instance, in the Medline information source the weight of the
feature title is greater than the weight of the feature abstract. This means that
the same keyword is more important when it appears in the title than when it
appears in the abstract.

The feature filter-attributes is specified by elements of type Attribute-
translation (see Fig. 7.8), which is composed of a domain-attribute and a source-
attribute (both of sort String), and specifies a mapping schema between the
domain ontology and the source ontology.

7.4.4 Query-models

The Query-model sort (Figure 7.6) encapsulates a query and all extra informa-
tion to be associated to a query during the performance of the task Information
Search, which includes the following features:

• Query: the query we are talking about (§7.4.2)

• Source: the source to which this query is addressed (§7.4.3)

• Result: a set of scored-items (§7.4.1) returned by the source as answer to
query.

• Weight: the weight assessing the utility or relevance of the query

• Children: the set of query models related with the query. For instance, the
query model representing the user’s consult is related with query models
containing elaborated queries.

7.4.5 Item-info

The aggregation capabilities need all the information about an item in order to
calculate a global score for that item. This information is represented by the sort
Item-info, which is composed of an item and a collection of pairs. The feature
pairs (see Figure 7.9) contains pairs value-weight where value is the importance
of the item and weight is the importance of the query that has produced the
retrieval of the item.
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Figure 7.10: Hierarchy of components in the WIM library

7.5 The WIM library

The WIM library is composed of a collection of tasks and capabilities concerning
information search and aggregation of information in the Internet. Figure 7.10
shows the hierarchy of components in the WIM library, including 14 tasks, 10
skills, and 5 tasks decomposers. These components are all instances of a sort
in the Knowledge-Modelling Ontology, whether it is the Task, Skill, or Task-
Decomposer sort.

Tasks are decomposed into subtasks by tasks-decomposers following a hi-
erarchical task/subtask decomposition schema. The top-level task is called
Information-search, and have the goal of obtaining a set of items answering a
user’s consult. Commonly, the user’s consult can be expressed as a set of key-
words and filters, and several kinds of results are possible (e.g. documents, Web
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pages, images, etc.). Within this section the different tasks and capabilities of
the ISA-Library are described in terms of the ontology described in the previous
section.

Before to go through the specification of components in the library some
notes on the Object Language are pertinent. We have considered two formalisms
as the Object Language: Lisp-like predicates (predicate ?var1 ... ?varN ) and
Feature Terms (see §4.3). Although we have used only the Features Terms
formalism in the final implementation of WIM due to pragmatic consideration,
some examples of the predicate-based representation will be provided at some
points for illustration purposes.

7.5.1 Information Search task

(define (Task :id Information-Search)
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’consult)
(sort Domain-Queries))

(define (var)
(name ’available-sources)
(sort Source)))

(output-roles
(define (var)
(name ’s-items)
(sort Scored-Item)))

(competence
(define (Competence)
(postconditions
SATISFY-CONSULT
))))

The input for the task Information Search is a consultation by the user, spec-
ified as a Domain-Query and a collection of information sources, specified by
elements of sort Source. The output is a collection of elements of sort Scored-
Item and the goal is to obtain items satisfying the user consultation, which is
represented by the formula Satisfy-consult, which is a subsort instance of
the sort Formula-FT (from now onwards formulae identifiers are specified using
capitalized characters).

There are several capabilities that are suitable for the Information-search task,
where suitable means “being able to solve”, as established by a task-capability
matching relation (Definition 4.1). Specifically, there are 4 capabilities suitable
for the task Information-Search, and all of them are task-decomposers:
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1. Metasearch,

2. Propose-Critique-Modify-Search (PCM-Search),

3. Metasearch-with-source-selection, and

4. Metasearch-without-elaboration.

We are going to describe here the Metasearch and the PCM-Search capabili-
ties. The Metasearch capability is a task-decomposer that decomposes the task
Information-Search in four subtasks: Elaborate-query, Customize-query, Retrieve
and Aggregate.

(define (Task-Decomposer :id Metasearch)
(name "Metasearch")
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’consult)
(sort Domain-Queries))

(define (var)
(name ’available-sources)
(sort Source)))

(output-roles
(define (var)
(name ’s-items)
(sort Scored-Items)))

(competence
(define (Competence)
(postconditions
SATISFY-CONSULT
)))

(subtasks
Elaborate-query
Customise-query
Retrieve
Aggregate))

Recall that a task-capability matching is defined at the knowledge level as a
combination of signature and specification match (Definition 4.1):

match(T,C) = (Tin ≥ Cin) ∧ (Tout ≤ Cout) ∧ (Tpre ⇒ Cpre)∧ (Cpost ⇒ Tpost)

The former relation is specialized for the Feature Terms Object Language
using subsumption as the inference mechanism (Definition 4.4):
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Figure 7.11: Overview of the capability Metasearch-with-source-selection

match(T,C) = Tin v Cin ∧ Cout v Tout ∧ Cpre v Tpre ∧ Tpost v Cpost

The former relation holds between the Information-Search task and the
Metasearch capability; specifically, there is an exact match rather than a plug-
in match between them, that is to say: the input, output, preconditions and
postconditions of the tasks are exactly the same than those of the capability.

The capability Metasearch-without-elaboration is similar to Metasearch, but
omits the task Elaborate-query; moreover, the Metasearch-with-source-selection
capability is also similar to Metasearch but introduces a new task dealing with
the selection of a subset of information sources from the set of available sources.

However, the capability PCM-Search introduces three subtasks: Propose-
Search, Critique-Search and Modify-Search. The first and the third of the former
tasks are similar to the task Information-Search, thus they can be solved by any
of the two Metasearch capabilities.

Figure 7.11 shows the subtasks introduced by the task-decomposer
Metasearch-with-source-selection and the data flow among subtasks, which is rep-
resented by the sorts of their inputs and outputs.

The task Elaborate-query takes as input the user’s consult (a domain-query
embedded within a query-model) with the goal of generating new queries so as
to increase the recall and the precision of the original query. The idea of this
task is to enrich the user’s consult using semantic relationships between terms
in the query and terms within a knowledge repository such as a thesaurus.
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The queries resulting of the Elaborate-query task may be asked to all the
available sources or only to a subset of them. For this reason there is a subtask
called Select-sources, which takes a collection of sources (available sources) as
input and has the goal of determining the subset of those sources where it’s
worthwhile to search information for a particular consult (selected sources).

The Customize-query task embodies the process of adapting the domain-
queries obtained by the Elaborate-query task to the idiosyncratic features of a
specific information source. As a result, a set of source-queries are generated as
output and further used as input of the Retrieve task together with the set of
selected-sources resulting of the Select-sources task.

The Retrieve task is performed on query-by-query basis, for it takes a single
source-query and a source as inputs. The result of the Retrieve task is a set
of scored items retrieved from that source (embodied within the query-model
containing the source-query). Since that task may be performed several times,
several collections of items would be retrieved, probably involving repeated ap-
paritions on the same item with a different weight. The next task deals with
this multiplicity of gathered information.

The Aggregate task has the goal of integrating all the information about
an item retrieved as a result of different queries, perhaps obtained from differ-
ent sources. The input of the Aggregate task encompasses all the scored-items
contained within the query-models resulting of the many performances of the
Retrieve task. Each query-model has a set of scored-items in the results slot, i.e.
the items retrieved from one source and their associated weight. The goal of
the Aggregate task is to eliminate repetitions and to obtain an overall weight for
ranking each of the retrieved items —detecting whether two items refer to the
same information and using the capabilities on aggregation (see §7.5.8). Thus,
the output of this task —that is also the output of the information-search task—
is a single set of scored-items.

In the following sections the subtasks of the task-decomposer Metasearch-
with-source-selection are described, as well as some related capabilities (some
capabilities suitable for the those subtasks).

7.5.2 Elaborate-query task

(define (Task :id Elaborate-query)
(name "Elaborate-query")
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’?consult)
(sort Domain-Query)))

(output-roles
(define (var)
(name ’?elab-queries)
(sort Domain-Query)))
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(competence
(define (Competence)
(postconditions
ELABORATE-CONSULT))))

The Elaborate-query task takes the user’s consultation (?consult) as input,
specified as a Domain-query, and has the goal of generating new domain queries
(?elab-queries) as output, so as to increase the recall and the precision of the
original query. The idea of this task is to enrich the user’s consult using semantic
relationships between terms in the query and terms within a knowledge repos-
itory such as a thesaurus. The elaboration of a query is useful when the user
wants to search documents about a topic that can be expressed using different,
alternative keywords and filters. In order to go through the Elaborate-query task,
a capability generates new queries taking into account some domain knowledge
(e.g. a thesaurus) without the user having to declare it. The output of the
Elaborate-query task is a set of elements of sort Domain-query.

An alternative specification of the Elaborate-query task is provided below
using a predicate-based representation in place of the Feature Terms formalism.

(define (Task :id Elaborate-query
(ontology ISA-Ontology)
(input (?consult :sort Query-model))
(output (?elab-queries :sort Query-model))
(preconditions (subsumes domain-query ?consult.query))
(postcondition (forall (?qm in ?elab-queries)

(elaborated-from ?qm.query ?consult.query))))

There are four capabilities, all of them skills, suitable for the Elaborate-query
task:

1. Query-expansion-with-thesaurus,

2. Query-expansion-with-categories,

3. Exhaustive-query-expansion-with-thesaurus,

4. Exhaustive-query-expansion-with-categories,

The capability Query-expansion-with-thesaurus is a skill that generates new
queries in which some terms —the keywords— are replaced by synonyms or re-
lated terms, and the queries are weighted according to the semantic similarity
between the original term and the new term (represented with a correlation co-
efficient). The capability Query-expansion-with-categories does not replace terms
by other terms; this method generates new queries by adding new keywords and
filters to the user consultation according to a category (a topic) selected by the
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user. The knowledge used to enrich the queries is obtained from a collection of
predefined categories or topics. The exhaustive versions of the former capabil-
ities do the same work but they generate a greater number of queries by using
more complex variations of the original query (replacing more than one keyword
or filter per query).

(define (Skill :id Query-expansion-with-thesaurus)
(ontologies ISA-Ontology)
(input-roles
(input-roles
(define (var)
(name ’?consult)
(sort Domain-Query)))

(output-roles
(define (var)
(name ’?elab-queries)
(sort Domain-Query)))

(competence
(define (Competence)
(postconditions
ELABORATE-WITH-THESAURUS)))

(knowledge-roles
Thesaurus))

The Query-expansion-with-thesaurus skill takes a domain-query as input
(?consult) and produces a collection of domain-queries as output (?elab-queries);
the goal is to build new goals by changing or adding elements of the original
query, which is represented by the formula Elaborate-with-thesaurus. This
formula means that the new queries are modifications of the input query using
knowledge from a thesaurus (synonyms and related words), so a knowledge-role
of sort Thesaurus is specified within the knowledge-roles slot. If we compare the
specification of this skill with the specification of the Elaborate-query task we
realize that they match, though it is not an exact match but a plug-in match.

A task-capability matching holds between the Information-search task and the
Query-expansion-with-thesaurus skill, though there is not an exact competence
match, but a plug-in match. Specifically, the formula Elaborate-consult
specified as a postcondition of the task and the formula Elaborate-with-
thesaurus satisfy the subsumption relation established by a task-capability
matching, for the sort of Elaborate-with-thesaurus is a subsort of the sort
of Elaborate-consult (Figure 4.14), and thus the condition Tpos v Cpos

holds.
An alternative version of the former skill is provided below using a predicate-

based representation.
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(define (Skill :id Query-expansion-with-thesaurus
(ontology IS-Ontology)
(input (?consult :sort Query-model))
(output (?elab-queries :sort Query-model))
(knowledge thesaurus)
(preconditions (subsumes domain-query ?consult.query))
(postconditions

(forall (?el-q in ?elab-queries)
(and (elaborated-from ?el-q.query ?consult.query))

(uses-synonyms ?el-q.query ?consult.query))))

Again, one can verify that a task-capability matching relation holds between
the Information-search task and the Query-expansion-with-thesaurus skill, though
a renaming of ?el-q to ?qm is required. If we compare the postconditions of
both specifications we found that the postconditions of the capability imply the
postconditions of the task, since they are more specific (notice the capability
incorporates an additional clause in the postconditions with the predicate (uses-
synonyms ?el-q.query ?consult.query).

7.5.3 Select-sources task

Given a domain query and a set of available sources, the goal of the Select-sources
task is to determine a subset of the input sources useful for the query.

There are several capabilities for solving the Select-sources task. The simplest
one is Ask-user; this skill shows the available sources to the user and lets him
choosing the subset to be used for retrieving information. This capability is used
when the user has some knowledge about which sources may be more useful.

Another capability for solving the Select-sources task is the Case-based-source-
selection capability, which is based on using similarity measures. The capability
Case-based-source-selection imports a domain model that has a case base and a
similarity measure. Each case represents a domain query that has been success-
fully asked to a specific source.

7.5.4 Customize-query task

The Customize-query task deals with the adaptation of domain queries to the
features of a specific information source. The goal of the customize-query task
is to translate a query expressed using the terms of the domain into a collec-
tion of new queries expressed in the terminology of a particular source. The
customization focuses on the attributes of the filters used in the input query.
There are two possible cases: 1) an attribute is allowed by the source, and 2)
an attribute has to be translated to the ontology used by the source. In case
1) no translation is needed, and in case 2) the capability uses knowledge storing
a description of the source to know which are the mapping schemes between
the domain vocabulary and the source vocabulary. One of the attributes of a
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source is the collection of search modes allowed. The point is that the keywords
in the domain query may be searched using different modes or strategies, hence
more than one source query can be generated for the same domain query using
different search strategies and trying alternative filters. The purpose of trying
different search strategies and filters is to obtain more information to rank the
items retrieved. For instance, if search information for a query using a very
general search mode and then repeats the same query using a more restrictive
search mode, one can compare the items appearing in both queries to determine
which results are more relevant to the query (the ones appearing as a result of
the two queries, see §7.7).

(define (Task :id Customize-query)
(ontologies ISA-Ontology)
(input
(define (var)
(name ’?query)
(sort Domain-Query)

(define (var)
(name ’?source)
(sort Source)))

(output-roles
(define (var)
(name ’?s-queries)
(sort Source-Query)))

(competence
(define (Competence)
(postconditions

CUSTOMIZE-DOMAIN-QUERY))))

The input of this task consists of a query of sort Domain-query (as those
resulting from the Elaborate-Query task) and one specific source from those ones
specified in the user’s consultation or selected by the Select-source task. The
output is a collection of source queries (?s-queries) which are customized for the
input source, as expressed by the formula Customize-domain-query.

There are three capabilities, all of them skills, that match the Customize-query
task:

1. Query-customization,

2. Exhaustive-query-customization, and

3. Basic-query-customization.
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(define (Skill :id Query-customization)
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’?query)
(sort Domain-Query)

(define (var)
(name ’?source)
(sort Source)))

(output-roles
(define (var)
(name ’?s-queries)
(sort Source-Query)))

(competence
(define (Competence)
(postconditions
NON-EXHAUSTIVE-CUSTOMISATION
)))

(knowledge-roles
Source-Descriptions))

7.5.5 Retrieve task

The goal of the Retrieve task is to effectively retrieve from a source a set of
items satisfying the input query. The Retrieve task takes a source-query and a
source as input, and produces a set of scored-items as output (specified within a
Query-Model, in the results slot), such that an item’s score expresses the degree
the item satisfies the input query.

(define (Task :id Retrieve)
(name "Retrieve")
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’query)
(sort Source-Query)

(define (var)
(name ’source)
(sort Source)))

(output-roles
(define (var)
(name ’result)
(sort Query-Model)))

(competence
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(define (Competence)
(postconditions
SATISFY-QUERY))))

There is only one capability suitable for the Retrieve task, the Wrapper-based-
retrieval skill, with a specification matching exactly the specification of the Re-
trieve task. We have decided to use Internet as the place to look for information;
specifically, we focus on Web-based search engines dealing with medical biblio-
graphic databases, such as Medline (accessed through the Pubmed search engine)
and Healthstar (accessed through the Internet Grateful Med search engine).

From this point of view, the real retrieval capabilities are the Web-based
retrieval engines, and the Wrapper-based-retrieval capability is a mere bridge to a
source-specific wrapper that agentifies the Web-based search engine by handling
the query and parsing the html results to obtain a structured representation of
the information.

7.5.6 Aggregate task

(define (Task :id Aggregate)
(name "Aggregate")
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’q-models)
(sort Query-Model)))

(output-roles
(define (var)
(name ’s-items)
(sort Scored-Item)))

(competence
(define (Competence)
(postconditions
AGGREGATE-ALL))))

The goal of the Aggregate task is to achieve a coherent and unique set of
scored items from all the items retrieved from all the queries originated from the
user’s consult. The input for this task is a collection of query-models, each one
containing the results concerning a single source-query. The output is a set of
scored items, where all the information concerning the same piece of information
is aggregated to obtain a unique scored item summing up the scores assigned to
the different references to the same information unit.

There is a capability suitable for this task, the Aggregation task-decomposer.
This task decomposer introduces two subtasks: Elaborate-item-infos and
Aggregate-item-infos.
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The Elaborate-item-infos task (see §7.5.7) transforms the information con-
tained in a collection of query-models into a collection of item-infos, each one
gathering all the information about a single piece of information originally dis-
tributed among several query models. The purpose of this task is to represent
the information in a format more appropriate for the numerical aggregation op-
erators implemented in the ISA-Library (see §7.5.8). The Aggregate-item-infos
subtasks receives (iteratively) the information about an item (an item-info) and
uses a mathematical function like a mean to compute a single score for that
item. For this reason, the capability Aggregation performs an iteration of the
Aggregate-item-infos subtask over the set of item-infos that are the output of the
Elaborate-item-infos subtask.

(define (Task-Decomposer :id Aggregation)
(name "Aggregation")
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’q-models)
(sort Query-model)))

(output-roles
(define (var)
(name ’s-items)
(sort Scored-Item)))

(competence
(define (Competence)
(postconditions
AGGREGATE-ALL
)))

(subtasks
Elaborate-items
Aggregate-items))

Notice there is an exact match between the Aggregate task and the Aggrega-
tion capability.

7.5.7 Elaborate-item-infos task

(define (Task :id Elaborate-items)
(name "Elaborate-items")
(ontologies ISA-Ontology)
(input-roles
(define (var)
(name ’q-models)



7.5. The WIM library 223

(sort Query-Models)))
(output-roles
(define (var)
(name ’item-infos)
(sort Item-Infos)))

(competence
(define (Competence)
(postconditions
ELABORATE-ITEM-INFOS))))

The Elaborate-item-infos task has the goal of grouping all the information
about the same unit of information (e.g. the same bibliographical reference)
that is distributed among several query models as a result of retrieval information
several times. The objects encompassing all the information on a single unit of
information are created as instances of the sort Item-info. The input for this
task is a set of query models containing a set of scored items each one, and the
output is a set of item-infos.

There is only a capability suitable for this task, the Items-elaboration skill.
This capability operates by taking the results (the scored items) of a collection
of queries (represented as query models) and looking for those items referring
to the same piece of information, like a bibliographic reference. As a result of
the query expansion process carried out for the Elaborate-query task and the
Customize-query task, the same piece of information may have been retrieved for
different queries, thus appearing as different items. The goal of this capability
is to detect whether different scored items refer to the same piece of information
in order to eliminate redundancy. However, the aggregation of the different
scores assigned to the same piece of information is performed by a capability
suitable for the Aggregate-item-infos task. The Items-elaboration skill keeps a set
of item-infos, one for each new piece of information, and iteratively compares
each scored item with the set of item-infos to decide whether they refer to the
same piece of information; if the answer is yes, the information on the item is
added to the item-info, else a new item-info is created. Item infos encompass
two types of information: weights and scores. Weights are obtained from the
weights assigned to the query models where an item appears, whilst scores are
assigned during the retrieval process by the information source or assigned on
a default basis: a maximum score of 1 for each apparition of an item within a
query-model, and 0 for each absence. In conclusion, an item info is a collection
of pairs composed of a value and a weight (vi, wi), the former representing the
relevance assigned to an item by the retrieval engine, and the later expressing
the combined utility and relevance estimated during the elaboration and the
customization of a query.
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7.5.8 Aggregate-item-infos task

The Aggregate-item-infos task is a purely mathematical task and the capabilities
that can solve this task are capabilities embodying mathematical aggregation
functions like a weighted mean. The input of this task is a collection of weighted-
pairs (vi, wi) consisting of a value (vi) and a weight (wi). The goal of this task is
to obtain a single value for all the items referring to the same piece of information
by aggregating its weighted values. Within the context of the Aggregation task-
decomposer, this task is applied several times, one for each Item-info obtained
during the Elaborate-item-infos task. Recall that an item-info encompasses all
the information retrieved about a piece of information, like a bibliographical
reference.

There are several methods that can be found in the literature for aggregating
information based on numerical aggregation operators functions. We have in-
cluded four methods in the library to perform this task: the average, the weighted
mean, the ordered weighted averaging (OWA) and the weighted ordered weighted
averaging (WOWA).

The average applies an arithmetic mean. The weighted mean is a lineal
combination of values according to a vector of normalized weights. The weighted
mean expects a number (say n) of weighted pairs to obtain a unique, aggregated
value:

∑n
i=1 viwi∑n
i=1 wi

The ordered weighted averaging (OWA) operator is, as the weighted mean, a
lineal combination of the values according to a vector of weights. However, the
difference is that OWA has a weighting function that establishes weights as a
function of an ordering of the values to be aggregated.

First, using the OWA operator, the input values {vi} are (increasingly or
decreasingly) ordered, giving an ordered collection of values {vσ(i)} where σ is
the permutation performed. Then a weighting function Q assigns a weight to a
value according to its position in that order:

ω(i) = Q

(
i

n

)
−Q

(
i− 1

n

)

Finally, a lineal combination of the values with the assigned weights is com-
puted:

n∑

i=1

ωivσ(i)

OWA is parametric with respect to the weighting function: domain knowledge
establishes the weighting function to be used in an application domain. Our
approach is that the capability OWA imports a domain model or a particular
application where the weighting function to be used is given as part of the domain
knowledge.
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The weighted ordered weighted averaging (WOWA) operator is a generaliza-
tion of both the weighted mean and the OWA.

As in the OWA operator, the values {vi} are (increasingly or decreasingly)
ordered. Then they are weighted according to their order using a weighting
function, giving an ordered collection of values {vσ(i)} where σ is the permutation
performed.

However, in addition to the weights derived from the order, WOWA uses the
weights associated to the values in the weighted pairs. The combined weight ω
is computed as follows:

ω(i) = Q


∑

j≤i

wσ(i)


−Q


∑

j<i

wσ(i)




where wσ(i) denotes the permutation performed by the ordering upon the weights
of the pairs (vi, wi).

Finally, a lineal combination of the values with the combined weights ωi is
computed as follows:

n∑

i=1

ωivσ(i)

Let us remark here that the selection about which aggregation capability
should be used is based on the preferences of the user as well as the type of
information retrieved.

7.6 WIM domain knowledge

WIM uses domain knowledge from the fields of medicine and bibliographic data.
This domain knowledge has been characterized by a collection of domain-models,
which are specified by an ontology, plus a collection of properties and meta-
knowledge, as described in §4.2.1 (Figure 4.12).

The main task for the WIM application is searching medical literature, and
the utility criteria used to rank documents can be provided either by a medical
thesaurus or by a collection of specific knowledge categories. In addition, in order
to specify queries from an abstract, conceptual view, WIM needs bibliographic
knowledge so as to specify queries to bibliographical search engines and handle
bibliographical information. These are the three types of domain knowledge in-
cluded in the WIM application, and thus there are three domain-models in WIM,
one for each type of knowledge, namely the MeSH thesaurus, a categorization of
Evidence Based Medicine, and a description of several bibliographical databases
accessible through the Internet.

• MeSH is a general medical thesaurus that contains a huge collection of med-
ical terms, and relations between terms. WIM agents include capabilities
that can elaborate queries using terms from such a medical thesaurus. The
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semantic relations contained in the thesaurus (synonyms, hyponyms and
hypernyms, etc.) can be used by query elaboration capabilities to build
new queries that are a generalization or a specialization of the original
query.

• A collection of source descriptions is used to specify the search modes and
filters allowed by each information source. In WIM information sources
are accessed through agentified Web-based search engines, like Pubmed,
which is used to access the Medline database, and Internet Grateful Med
(IGM), which is used to access both Medline and HealthStar. A source
description contains also a mapping between the bibliographical concepts
used to generate queries at the conceptual level, and the concepts used
by specific information sources. Source descriptions are used to customize
queries for specific information sources.

• A collection of categories characterizing concepts from Evidence-based
Medicine. This domain model characterizes a collection of categories in
terms of keywords (terms) and filters that are useful to rank documents
according to the EBM concepts. This knowledge is required by query
elaboration capabilities such as the skill Query-expansion-with-category, to
generate domain queries using the EBM category preferred by the user.

7.6.1 Evidence-Based Medicine

From the point of view of the Evidence-Based Medicine, it is very important to
use the bibliographic references according to the quality of the evidence they rely
on; hence, we have defined some categories expressing concepts about medical
evidence quality in terms of a medical thesaurus and the defined ontology for
bibliographic data, furthermore these concepts are weighted, allowing to weight
the queries according to these “evidence quality” indicators.

Specifically, we have build 15 categories about EBM and some medical cat-
egories that are often required by medicine professionals using EBM. These
categories belong to four different topics: Evidence-Quality, Clinical Categories,
Analysis and Evidence Integration. See Figure 7.12 for a taxonomy of the med-
ical categories defined in the EBM domain-model.

A category is defined as a structure of terms and filters associated to one
topic, in which both filters and terms are weighted according to the strength of
that association. Figure 7.7 shows the main concepts used to describe categories.
For example Guidelines is a category that defines some filters to get only papers
offering clinical advice based on good evidence quality. Table 7.6.1 shows the
attribute-value definitions of the Guidelines category.

7.6.2 The MeSH thesaurus

A thesaurus is a book or a digital repository of synonyms, often including related
and contrasting words and antonyms. There are general thesaurus concerning
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Medical
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Good Evidence Quality
Medium Evidence Quality
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Diagnosis
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Guidelines
Nursing
Evidence-Based Medicine
Review

Figure 7.12: Categories on Evidence-based Medicine

Category Guidelines
Attribute Value Weight

Publication Type Guidelines 1.0
Publication Type Practice Guidelines 0.8
Publication Type Guideline Adherence 0.6
Publication Type Clinical Protocols 0.4

Table 7.1: Definition of the category Guidelines
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MeSH Heading Pneumonia
Tree Number C08.381.677
Tree Number C08.730.610
Scope Note Inflammation of the lungs
Entry Term Experimental Lung Inflammation
Entry Term Lung Inflammation
Entry Term Pneumonitis
Entry Term Pulmonary Inflammation

Allowable Qualifiers BL CF CI CL CN ...
Unique ID D011014

Table 7.2: Definition of the term Pneumonia in Mesh

an entire language, but there are also specialized thesaurus containing concepts
and vocabulary of a particular field, as of medicine or music.

The Medical Subject Headings (MeSH) is a controlled vocabulary produced
by the National Library of Medicine and used for indexing, cataloging, and
searching for biomedical and health-related information and documents. MeSH
is the thesaurus used to index the bibliographic references stored in Medline,
which is main database accessed by WIM information retrieval agents.

Table 7.6.2 shows an example of the information provided for the term Pneu-
monia, which is a MeSH heading. Each MeSH heading has a collection of syn-
onyms specified as Entry Terms (e.g. Lung Inflammation, Pneumonitis and
Pulmonary Inflammation), several tree numbers identifying the position of the
term in the MeSH structure, and a collection of allowable modifiers (e.g. BL
refers to Blood, used for the presence or analysis of substances in the blood; also
for examination of, or changes in, the blood in disease states).

However, WIM capabilities can not use the MeSH information straight-
forwardly; instead, WIM capabilities are based on the ISA Ontology, which
defines a term as having parent terms, children terms and other related terms
specified as term-correlations. Therefore, we have implemented a mapping
from MeSH headings to WIM terms so as to allow WIM capabilities to work
with them. Entry terms become term-correlations with a correlation equal to
one, which the maximum, because entry terms are synonyms of the main term
(a MeSH heading). The parents (hyponyms) and the children (hypernyms)
of a term are obtained from the MeSH structure using the tree number. For
instance, Pneumonia has Lung Diseases as parent, and Bronchopneumonia,
Pleuropneumonia, Aspiration Pneumonia, Bacterial Pneumonia and others as
children. Although it is possible to download MeSH from the Web to use it
locally, we have decided to access MeSH directly through the Web-based MeSH
Browser, thus we have built a Wrapper to retrieve MeSH information from
the Web and transform it into WIM terms. An example of a term is the following:
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(define (term :id Pneumonia)
(name "Pneumonia")
(term-correlations (define (Term-Correlation)

(term Lung Inflammation)
(weight 1))

(define (Term-Correlation)
(term Pneumonitis)
(weight 1))

(define (Term-Correlation)
(term Lung Inflammation)
(weight 1))

(define (Term-Correlation)
(term Pulmonary Inflammation)
(weight 1))))

(parent Lung Diseases)
(children Bronchopneumonia

Pleuropneumonia
Aspiration
Pneumonia
Bacterial
Pneumonia))

The idea of using term-correlations instead of synonyms is to allow more com-
plex relations between words, like those provided by a Latent Semantic Analysis.

7.6.3 Medical sources

In order to facilitate the integration of multiple information sources, we have
decoupled the knowledge on information sources from the query customization
and retrieval capabilities. The idea of WIM is to provide a mediation service
between the user putting a query, and multiple information sources. Such a
mediation service must offer the user a single interface to many search engines,
and aggregate information coming from heterogeneous sources. This type of
mediation is often called Intelligent Information Integration (I3). As a result
of reviewing many Information Integration systems (e.g. the Information Mani-
fold [Kirk et al., 1995, Levy et al., 1996], TSIMMIS [Chawathe et al., 1994], In-
fomaster [Genesereth et al., 1997], Infosleuth [Nodine et al., 1999], and SIMS
[Arens et al., 1993, Knoblock et al., 1994]), we concluded the importance of us-
ing a lingua franca to specify user level queries, and mapping schemas to trans-
form concepts specified in the lingua franca into concepts used by specific infor-
mation sources. In WIM, the queries expressed in the lingua franca are called
domain queries, and the source-specific queries are called source queries.

On the one hand, we have elaborated a bibliographic-data ontology (Figure
7.13) encompassing the usual concepts found in the most popular bibliographical
databases in medicine: Medline and Healthstar. Some of these concepts are the
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Figure 7.13: Bibliographic-data ontology

following:

• author name,

• publication type (e.g. journal, book chapter, proceedings, etc.),

• language,

• affiliation of the authors,

• begin year (lower-limit for publication date),

• end year (upper-limit for publication date),

• substance (drugs and pharmacologic terms),

• study groups (for statistically-based studies)

• age groups (for statistically-based studies)

On the other hand we have build an ontology to describe information sources
. Recall that information sources in WIM are not databases as such, instead they
are Web based search engines used to access the content within a database; for
example, Pubmed is used to access Medline, and Internet Grateful Med is used
to access Healthstar. There are two types of elements used to specify queries
in Web-based search engines concerning bibliographical databases (Figure 7.8):
search modes and search filters. Search attributes refer to different search modes
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allowed by a search engine (e.g. searching a keyword only at the title, the
abstract or both); moreover, we distinguish between the basic or default search
mode (basic attribute), and other search modes supported by a search engine
(search-attributes). Filters are used to constrain the search, using bibliographic
concepts from the subsect of bibliographic concepts selected.

In WIM search modes are not specified by the user, they are incorporated
into a query by the query customization capabilities in order to assess the results
(§7.2) of a query. Therefore, only the filters require a mapping schema definition
to translate the filters specified by the user (domain attributes) to equivalent
filters expressed in a source-specific vocabulary (source attributes). An example
of a source description is included in §7.7.2.

7.7 Exemplification of the WIM library

We have already introduced the domain knowledge used in the WIM application:
the MeSH thesaurus, the EBM categories and the information sources encom-
passing bibliographical references about medicine. In this section we will show
by means of an example how the domain knowledge is used to generate queries
from a user consultation, and how the results are aggregated and ranked with re-
spect to the relevance and utility of the user consultation. Section 7.7 shows how
WIM configures a team for a specific problem, from the problem specification
stage to the solution of the problem by a team of agents.

7.7.1 Query Elaboration using EBM

Suppose the user wants to find information about guidelines on the use of lev-
ofloxacin in the treatment of pneumonia. Therefore, the selected keywords
should be the name of the substance (levofloxacin), the disease (pneumonia),
and the type of information searched (guidelines). In addition, the user decides
to limit the search to articles published after 1980, thereby he specifies a filter
for the attribute Begin Year with a value of 1980. The consultation is equivalent
to the the following query

query.terms: levofloxacin, pneumonia, guidelines
query.filters: (Begin Year, 1980)

The agent applying the Query-expansion-with-categories skill takes the knowl-
edge on the Guidelines category (see Table 7.6.1) from the EBM knowledge base.
That agent find that the Guidelines category is related (with a specific corre-
lation strength) to the following terms: “practice-guidelines” (with strength of
0.8), “guideline-adherence” (with strength 0.6), and “clinical-protocols” (with
strength 0.4).

The system uses term correlations to generate new query models where the
original keywords are replaced by the correlated terms. The output of the capa-
bility is a collection of query models with weights corresponding to the correla-
tion strength of the term being used. Only one term is replaced by a correlated
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term at each output query. In the example, the generated query models have
a domain query whose terms are the same terms specified as keywords in the
user’s query except for “guidelines”, that is replaced by one of their correlated
terms —practice-guidelines, guideline-adherence and clinical-protocols.

Query model 1 Query.terms:
levofloxacin pneumonia guidelines Query.filters: (Begin Year,
1980) Weight: 1

Query model 2 Query.terms: levofloxacin pneumonia
practice-guidelines Query.filters: (Begin Year, 1980) Weight: 0.8

Query model 3 Query.terms: levofloxacin pneumonia
guideline-adherence Query.filters: (Begin Year, 1980) Weight: 0.6

Query model 4 Query.terms: levofloxacin pneumonia
clinical-protocols Query.filters: (Begin Year, 1980) Weight: 0.4

7.7.2 Basic Query Customization

Once the Elaborate-query task is finished, and before the start of the Customize-
query task, some information sources are selected from a set of allowable sources.
For simplicity, let’s assume the two sources have been selected: Pubmed and
HealthStar. Then, the capability selected to solve the Customize-query has to
adapt the domain queries obtained by the Query-expansion-with-categories capa-
bility to those two information sources.

The Query-customization capability expands a query expressed in a source
independent way (a domain query) into a collection of queries in terms of a
particular information source (source queries), using the search modes and fil-
ters allowed by each source. The properties of this knowledgeare character-
ized by a domain-model called Source-Descriptions. The source-description for
the Pubmed information source (a Web-based retrieval engine to the Medline
database) is included below as an example.

(define (source :id Pubmed)
(name "PubMed")
(weight 1)
(search-attributes

(define (Attribute-Weighting)
(attribute "MAJR")
(weight 1))

(define (Attribute-Weighting)
(attribute "MH:NOEXP")
(weight 0.8))

(define (Attribute-Weighting)
(attribute "MH")
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(weight 0.6))
(define (Attribute-Weighting)

(attribute "TI")
(weight 0.5))

(define (Attribute-Weighting)
(attribute "TW")
(weight 0.4)))

(basic-attribute (define (Attribute-Weighting)
(attribute "ALL")
(weight 0.2)))

(filter-attributes
(define (Attribute-Translation)

(domain-attribute "Author Name")
(source-attribute "AU"))

(define (Attribute-Translation)
(domain-attribute "Publication Type")
(source-attribute "PT"))

(define (Attribute-Translation)
(domain-attribute "Language")
(source-attribute "LA"))

(define (Attribute-Translation)
(domain-attribute "Affiliation")
(source-attribute "AF"))

(define (Attribute-Translation)
(domain-attribute "Journal")
(source-attribute "JO"))

(define (Attribute-Translation)
(domain-attribute "Begin Year")
(source-attribute "MINDATE"))

(define (Attribute-Translation)
(domain-attribute "End Year")
(source-attribute "MAXDATE"))))

The Query-customization capability (a skill) performs two kind of transfor-
mations for each pair consisting of a query and a source:

• from domain filters to source filters: the query filters, written in terms of
the domain terminology (bibliographic data) are rewritten in terms of the
source terminology, according to the attribute-translations in the source
domain-model; and

• from keywords to search-attributes: each search term is transformed into
a filter where the value is the term and the attribute is one of the search-
attributes allowed by the source. These filters are called t-filters in the
ISA-Ontology, though they are objects of sort Filter.

A new query model is created using the basic-attribute to build the t-filters.
The filters are translated using the translation rules defined in the Source De-
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scriptions. For example, for the Query Model 1 and the source Pubmed, the
following transformation is applied.

Query Model 1 before the customization:
Query.terms: levofloxacin pneumonia guidelines
Query.filters: (Begin Year, 1980)
Weight: 1

Query Model 1 after the customization:
Query.t-filters: (ALL, levofloxacin), (ALL, pneumonia),

(ALL, clinical-protocols)
Query.filters: (MINDATE, 1980)
Source: PubMed-Medline weight: 0.2

Note that all the t-filters use the basic attribute (called “ALL”) and the
attribute “Begin Year” is replaced by MINDATE.

A new query model is created for each term and each search-attribute in the
source domain-model. The following query models are obtained when using the
PubMed search-attributes (TW, TI, MH, MH:NOEXP and MJR) in place of the
basic-attribute (ALL), for the first term.

Query model 1.2.a
query.t-filters: (TW, levofloxacin), (ALL, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)
weight: 0.4

Query model 1.3.a
query.t-filters: (TI, levofloxacin), (ALL, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)
weight: 0.5

Query model 1.4.a
query.t-filters: (MH, levofloxacin), (ALL, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)
weight: 0.6

Query model 1.5.a
query.t-filters: (MHNOEXP, levofloxacin), (ALL, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)
weight: 0.8
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Query model 1.6.a
query.t-filters: (MAJR, levofloxacin), (ALL, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)
weight: 1

In the example above each query model is identified by two numbers and
a letter separated by dots: QM x.y.z identifies the yth query-model (containing
a source query) obtained for the xth query-model (containing a domain query)
and source z (a for Pubmed and b for IGM-HealthStar). The weights of the
resulting query-models are calculated multiplying the weight of the input query-
model by the weight of the search-attribute used, or multiplying by the weight
of the basic-attribute if no search-attribute is used (e.g. QM 1.1.a).

Modifying the search-attribute for the second or third term and keeping the
other terms associated to the basic-attribute results in 10 new query models, 5
per term (QM 1.7a – 1.11a and 1.12a – 1.16a).

Query model 1.7.a
query.t-filters: (ALL, levofloxacin), (TW, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)
weight: 0.4
...

Query model 1.11.a
query.t-filters: (ALL, levofloxacin), (MAJR, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)
weight: 1
...

Query model 1.16.a
query.t-filters: (ALL, levofloxacin), (ALL, pneumonia),

(MAJR, guidelines)
query.filters: (MINDATE, 1980)
weight: 1

At the end, each domain-query has originated 16 source-queries when cus-
tomized for PubMed; therefore, since the user consultation has produced 4
domain-queries (QM1a, QM4), a total of 4*16 = 84 source-queries are obtained
for PubMed. The same domain-queries are customized for HealthStar, which has
only search-attribute different from the basic-attribute, therefore only 4 source
queries are generated for each domain-query, summing 16 queries in total.

Finally, the 84 Pubmed queries and the 16 Healthstar queries are sent to the
wrappers to each information source, which perform the final transformation of
the queries to fit the specific interface of each information source.
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Let us briefly explain the operation of a wrapper, for instance the Pubmed-
wrapper. The wrapper concatenates at least three strings: the server URL,
a path to the source location in the server and the query itself, according to
the source query format. For example, for the Pubmed-wrapper and the Query
Model 1.6.a:

Server URL: "http://www.ncbi.nlm.nih.gov/"
Path: "entrez/query.fcgi?"
query.t-filters: (MAJR, levofloxacin), (ALL, pneumonia),

(ALL, guidelines)
query.filters: (MINDATE, 1980)

The resulting URL is

entrez/query.fcgi?CMD=search\& DB=PubMed\&term=
levofloxacin[MAJR]+AND+pneumonia[ALL]+AND+
guidelines[ALL]+AND+1980[MINDATE]

The wrapper also deals with the problem of the format in which results are
retrieved, the number of items to retrieve and other technical issues.

7.7.3 Aggregation

When a weight is assigned to a query after applying some transformation, this is
expressing the relative importance or representativity of that query with respect
to the original one. The meaning of a weight assigned to a query is logically
inherited by the documents or items retrieved for that query, thus we can say that
the weights associated to the items retrieved represent the membership of those
elements to the topic requested by the user. Aggregation operators for numeric
values can be used here. The most widely used operators are the arithmetic mean
and the weighted mean, but there is a family of aggregation operators, including
fuzzy measures; WIM implements several operators reviewed in [Torra, 1996].

Let’s see an example. First, suppose that Pubmed has been queried using
four queries with the following weights: 1, 0.8, 0.6, and 0.4. Suppose that one of
the retrieved items appears in queries 1 and 2, but not in 3 and 4. As PubMed
does not rank documents, WIM assigns by default a maximum score of one to
both occurrences of the same item. When doing the aggregation, absence of
items are also taken into account; each absence is represented like a “presence”
with a value equals to 0, as showed below.

Query wi w̄i scorei

Q1 1,0 0,36 1
Q2 0,8 0,29 1
Q3 0,6 0,21 0
Q4 0,4 0,14 0

Before any aggregation, the weights of the queries have to normalize, because
aggregation operators assume that wi ∈ [0, 1] and

∑
∀i wi = 1. We denote this
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normalized weight as w̄. We can apply for instance a weighted-mean operator,
defined as WM(Q1, . . . , Qn) =

∑
i=1...n w̄i · scorei, and the aggregate value is

0,65.
After finishing the aggregation the user gets the results of his consultation;

some examples of the scored-items obtained are shown below:

Scored item 1
identifier: PMID10743984
title: Economic assessment of the community-acquired pneumonia
intervention trial employing levofloxacin.
score: 0.187

Scored item 2
identifier: PMID10683053
title: A controlled trial of a critical pathway for treatment
of community-acquired pneumonia
score: 0.172

Scored item 1
identifier: PMID11557471
title: Pharmacodynamics of fluoroquinolones against
Streptococcus pneumoniae in patients with community-acquired
respiratory tract infections
score: 0.062

7.8 Experimental results

We have developed two applications where the query weighting approach has
been used: MELISA and WIM.

MELISA [Abasolo and Gómez, 2000] is a single agent to look for medical
literature, which is based on the use of ontologies to separate the domain knowl-
edge from source descriptions. The notions of query weighting and exploiting the
filtering capabilities of existing search-engines are already used here, but only
one search-engine is included. Although the aggregation procedures were not
systematized yet, the system demonstrated that the query weighting and aggre-
gating framework provides an accurate and flexible approach to rank documents.
MELISA has proven the flexibility of this framework to apply utility-criteria to
rank documents. In particular, a collection of knowledge categories has been used
to rank medical references according to the quality of the evidence they are based
on, which is called Evidence Based Medicine [Feinstein and Horwitz, 1997]. The
query weighting process is applied twice, one at the domain level and the other
at the source level. Query weighting at the domain level is carried over using
knowledge categories; each category is a medical topic described as a collec-
tion of weighted elements. The elements used to describe medical categories are
medical terms, used as keywords, and other search attributes used to look for
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bibliographic references, like publication type, related terms, and so on. Query
expansion at the source level is achieved by using the search modes described in
§7.7.2 for the Pubmed source.

We have compared the results of MELISA (using PubMed as the search
engine) against those results obtained with the PubMed for some user queries.
An expert has proposed us 5 cases to look for medical references based on his
everyday work. Every case has been translated into a query suitable for both
PubMed and MELISA. The results have been scored by two different evaluators,
instructing them to score the references according to their degree of relevance for
the corresponding query and the quality of the evidence. The first 40 references
retrieved for each query have been evaluated by the experts. An ordinal scale
with three levels has been used to score references: 2 for references that satisfy
the user’s need, 1 if the reference is simply related, 0 if it is not relevant, and
“?” if the expert has no enough information (the expert has only the title and
abstract of the documents) about a bibliographic reference to asses its relevance.

Table 7.3 sums up the results of the assessment procedure for the relevance.
As you can see in the table, the results obtained by MELISA have been evaluated
as being more relevant than those obtained by querying Pubmed directly. Specif-
ically, there are more bibliographic references considered relevant for the user’s
need, and fewer references ranked irrelevant or without enough information to
be evaluated.

Relevance PubMed MELISA
2 38% 48%
1 16% 17%
0 13% 9%
? 34% 27%

Table 7.3: Assessment of relevance

The utility of the proposed framework to develop and use new ranking criteria
has also been tested. Some of the implemented medical categories are specifically
designed to represent notions about evidence quality in medical references. Using
these categories to enrich queries during the query expansion has demonstrated
that the resulting references are well ranked according to the quality of the
evidence. The testers have been instructed to classify references into three levels:
good, medium and poor evidence. The symbol “?” is used to note references
without enough information to be evaluated according to the quality of the
evidence.

Table 7.4 sums up the results of the assessment procedure concerning the
quality of the evidence. As you can see in the table, results are not so easy
to interpret as for the relevance. Notice that there are a greater percentage of
items assessed as being based on a good evidence quality (20% to 7%), though
surprisingly there are also more items that have been assessed as backed with a
poor evidence quality (9% to 2%). Another datum to be remarked is the very
high percentage of items with not enough information. The point is that we
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are working with the bibliographic references only, and not with the documents
(mainly articles) being referenced, thus usually there is no enough information
to assess the quality of the evidence a referenced document is based on.

Evidence PubMed MELISA
Good 7% 20%
Medium 2% 3%
Poor 2% 9%
? 89% 69%

Table 7.4: Assessment of evidence quality

To sum up, MELISA has proven the utility of the information search ap-
proach adopted in WIM to rank documents according to utility criteria like
EBM quality: in our experiments, MELISA has received a stronger approval
assessment from expert user than PubMed.

However, we expect WIM to obtain similar or even better results than
MELISA, since WIM extends the core functionality implemented in MELISA.
The reason is that MELISA implements a fixed combination of query elabora-
tion, customization and aggregation methods, whilst WIM allows for a multi-
plicity of tasks and methods that can be combined in different ways through
the Knowledge Configuration process. Moreover, WIM is configured on-demand
according to problem requirements, thus the resulting agent team is tailored to
the problem at hand to better fit the needs and preferences of the user. The
present evaluation, assesses just the core functionality of the new information
search techniques implemented in WIM’s library.

7.9 Example of the Cooperative Problem Solv-
ing process in WIM

This section illustrates the use of the ORCAS framework in the WIM application
to carry out an information search task by customizing a team of problem solving
agents on-demand, according to the ORCAS model of the Cooperative Problem
Solving process. We show a complete example on how WIM operates, following
the different stages of the CPS process as implemented in the ORCAS institution,
which encompasses the following processes: Registering of capabilities, Brokering
(Knowledge Configuration), Team Formation and Teamwork. In addition, the
Problem Specification process is included to show the way a problem is specified
by a user or an external agent.

The WIM example is illustrated with some snapshots from the Agent World,
a 3D World environment that represents the agent communication and agent
flow between scenes in the e-institution (external view), together with informa-
tion on agents state (internal view). The Agent World external view shows an
e-Institution as a set of rooms representing the scenes (big rectangles), and cor-
ridors representing transitions between scenes (little rectangles connecting one
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Figure 7.14: Overview of the ORCAS e-Institution

scene to another). Agents are represented as eyed-balls staying at a room or
moving between rooms through transitions, and the messages they send are rep-
resented as little balls colored according to the type of message (e.g. request,
inform, etc.).

Image 7.14 shows a zoomed out view of the ORCAS e-Institution in the
Agent World tool. One can see the main scenes of the ORCAS e-Institution and
the allowed transitions between scenes, together with some institutional agents
waiting for other agents. At the Registering scene there is a Librarian agent
waiting for new Problem Solving Agents (PSAs) willing to join the institution; at
the Brokering scene there is a Knowledge-Broker waiting for a Personal Assistant
(PA) having a problem to be solved; and at the Team Formation scene there is
a Team-Broker waiting for both a PA willing to form a team of agents, and a
set of PSAs providing their capabilities.

7.9.1 Registering capabilities

In order to become available to other agents, PSAs must register their capabili-
ties to a Librarian agent, according to the specification of the Registering scene.
Capabilities are registered using the ORCAS Knowledge Modelling Ontology and
Feature Terms as the Object Language.

Figure 7.15 shows a screenshot of the Registering scene. After registering
their capabilities to the Librarian, the PSAs move to the Team Formation scene
to wait for team-role proposals to joining a team. At the moment captured, the
PSA Marteen has just finished the Registering scene and is moving to the Team
Formation scene.

The Registering scene is instantiated once for each new PSA entering the
institution, but the Agent World monitoring tool shows only one scene that is
a synthesis of all the instances of the scene occurring simultaneously; therefore,
several PSAs can be shown in the Registering scene at a time.
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Figure 7.15: Screenshot of the Registering scene

The Librarian keeps an updated register of the capabilities registered by
the PSAs that have joined the system. Figure 7.16 shows a screenshot of the
Librarian internal state displaying the record of capabilities registered in the
institution by WIM PSAs.

7.9.2 Problem specification

The WIM application can process requests coming from different sources: from a
windows-like client, from Web pages, and from external agents using either the
NOOS Agent Communication Language (ACL) or the FIPA-ACL (§7.3 describes
the overall architecture). We will show the way a problem is specified by the
end user and the way it is encoded in agent terms.

A problem is specified by input data and problem requirements, as described
in §4.4.2. The input data for an information search task in WIM is a consultation,
composed of a set of keywords and filters plus a set of information sources and
optionally a knowledge category. We are going to show first how a problem is
specified using the WIM panel, and the way a problem is specified using the
Agent Communication Language afterwards.

Figure 7.17 shows the consultation screen where the user specifies a consul-
tation, including just a portion of all the filters allowed by the WIM application
(see §F.3). In the example, the user has introduced three keywords (ofloxacin,
pneumonia and guidelines) and a filter (from year 1980). The user has a limited
control over the type of task to be solved, either the task Information Search
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Figure 7.16: Example of the Librarian internal state

Figure 7.17: Consultation example
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(buttons labelled Search and PCM-Search) and the task Retrieve-full-reference
(button labelled Retrieve in the figure). Furthermore, the user can decide
whether to apply the task-decomposer Metasearch or the task-decomposer PCM-
Search to solve the Information Search task; which is discriminated by pushing
either the button labelled Search or the one labelled PCM-Search.

Figure 7.18: Consultation example

Figure 7.18 shows the screen where the user specifies the problem require-
ments. That screen is an interface where the user chooses some among a limited
number of requirements organized according to the tasks they are related with
(as a curiosity, compare it with the interface showed in 4.23, which is addressed
to the knowledge/software engineer and offers all the requirements available in
the library following a plain, quite raw style).

In our example, the user has selected some options corresponding to the
following postconditions:

• Elaborate-query-with-thesaurus

• Non-exhaustive-customization

• Aggregate-with-arithmetic-mean

Each option corresponds to a postcondition added to the problem require-
ments to discriminate among alternative capabilities for the same task. Other re-
quirements are added automatically by the GUI depending on the button pushed
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by the user. For instance, if the user pushes the button labelled PCM-Search, two
extra postconditions will be added to the requirements to ensure that the capa-
bility PCM-Search will be selected during the Knowledge Configuration process
instead of Metasearch:

• Satisfy-consult

• Asses-search-results

Moreover, the options screen allows the user to select either the Search and
Subsume or the Constructive Adaptation strategy (see §4.4.4) for the Knowledge
Configuration process.

Once a problem has been specified using whatever means, it should be en-
coded in agent understandable terms, using either the NOOS ACL or the FIPA-
ACL. We show below a FIPA-ACL specification of a message requesting the
WIM PA to perform a Cooperative Problem Solving process according to the
requirements stated above, assuming the user has pushed the button labelled
PCM-Search.

The request message includes both the problem requirements and the prob-
lem data corresponding to the former example, encoded in XML within the
content of the message. Notice that the XML encoded data is embedded within
a FIPA-SL0 envelop defining an “action”. See Appendix F for a more detailed
account of the ORCAS services.

(request
:sender (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
:receiver (set (agent-identifier :name \wim-PA@wim.iiia.csic.es:7778/NOOS))
:reply-with cps-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id cps18236
:content

(action
(agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
(Cooperative-Problem-Solving

:problem-requirements
(Problem-Requirements

:encoding <xml? version="1.0" encoding ="ISO-8859-1"?>
:value

<problem-requirements>
<task-name>PCM-Search</task-name>
<postconditions>

<formula>Elaborate-With-Thesaurus</formula>
<formula>Non-Exhaustive-Customization</formula>
<formula>Aggregate-With-Arithmetic-Mean</formula>
<formula>Satisfy-Consult</formula>
<formula>Assess-Search-Results</formula>

</postconditions>
<input-roles>

<signature-element>Query-Model</signature-element>
</input-roles>
<domain-models>

<domain-model>Medical-Sources</domain-model>
<domain-model>MeSH</domain-model>
<domain-model>EBM</domain-model>

</domain-models>
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</problem-requirements>)
:problem-data

(User-Consult
:encoding <xml? version="1.0" encoding ="ISO-8859-1"?>

:value
<user-consult>
<query>
<keywords>

<keyword>Ofloxacin</keyword>
<keyword>Pneumonia</keyword>
<keyword>Guidelines</keyword>

</keywords>
<filters>

<filter>
<attribute>Begin-year</attribute>
<value>1980</value>

</filter>
</filters>
</query>
<sources>

<source>Pubmed</source>
</sources>
</user-consult>))))

The application task is Information-Search, and there are five postconditions
in total, the first three ones specified by the user, and the other two added by the
GUI, as explained above. Notice there are three domain-models added to the
problem specification: Medical-sources, that provides a knowledge-role of sort
Information-Sources, MeSH, that provides a knowledge-role of sort Thesaurus,
and EBM, that provides a knowledge-role of sort Categories. Recall that the
knowledge to be used by the selected capabilities must conform to the properties
of the domain-models specified within the problem requirements (see §4.4.2 or
§4.4.5). Therefore, all the domain-models available in WIM are included in
the request; only the capabilities which knowledge-requirements are satisfied
by one of these domain-models are potential candidates to be selected during
the Knowledge Configuration process.

The Personal Assistant is able to parse messages specified in FIPA-ACL,
extract the embedded data and translate them into the NOOS ACL before com-
municating with other agents to carry out the requested action, performing a
Cooperative Problem Solving process throughout. To do that, the PA must
participate in three different scenes within the ORCAS e-Institution: first, the
PA goes to the Brokering scene to request the Knowledge-Broker for a task-
configuration satisfying the problem requirements; second, the PA moves to the
Team Formation scene and request the Team-Broker to form a team according
to the just obtained task-configuration; and third, the PA moves to the Team-
work scene and solicits the team-leader to solve the problem using the specified
problem data.

7.9.3 Knowledge Configuration

The Knowledge Configuration process has the goal of finding a configuration of
agent capabilities satisfying the requirements of a problem to be solved. These
requirements are specified as signatures (inputs, outputs and domain-models)
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and formulae (preconditions and postconditions), represented with the same
language that the agent capabilities, thus allowing to match the problem speci-
fication against the registered agent capabilities.

Recall that the Knowledge Configuration process is performed by the
Knowledge-Broker (K-Broker) at the Brokering scene. The Brokering scene
(§6.5.2) starts with the PA sending a problem specification to the K-Broker to
request for a task-configuration satisfying that specification. Figure 7.19 shows
the Brokering scene when the PA has just send the request message (represented
by a small ball in the figure) to the K-Broker.

Figure 7.19: Screenshot of a Brokering scene

Following, the K-Broker asks the Librarian to get an up-to-date version of
the tasks and capabilities available in the system, and after that, the K-Broker
starts a Knowledge Configuration process over those specifications.

Figure 7.20 shows a screenshot of the K-Broker internal state some mo-
ment before finding a task-configuration. The left side of the screen shows the
assumptions and postconditions (called goals), both the already satisfied ones
(green/light gray) and the ones to be yet satisfied (red/dark gray), plus the
selected domain models (knowledge). The right side of the screen shows the
ongoing task-configuration.

Notice that there are more postconditions than those specified by the problem
requirements, like Satisfy-query and Aggregate-all. These postconditions
have been introduced to the search state as a result of the tasks having been
added during the Knowledge Configuration process by a task-decomposer. For
instance, the postcondition Satisfy-query has been added by the task Retrieve.

The task Information-Search has been bound to the task-decomposer PCM-
Metasearch, which introduces three new tasks: P-Search, C-Search and M-Search.
The task P-Search is bound to the capability Metasearch, which introduces four
subtasks: Elaborate-query, Customize-query, Retrieve and Aggregate.

The task Elaborate-query is bound to the skill Query-expansion-with-thesaurus,
because this is the only capability satisfying the user specified postcondition
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Figure 7.20: Example of the K-Broker internal state

Elaborate-query-with-thesaurus. Customize-query is bound to Query-
customization, due to the postcondition Non-exhaustive-customization. Re-
trieve is bound to Retrieval, which is the only capability matching that task.
However, Aggregate is not bound to a capability yet, and in accordance with it,
the postcondition Aggregate-with-arithmetic-mean has yet to be satisfied.

Figure 7.21 shows the final task-configuration for the current example. Notice
that the task M-Search is not being configured because it depends on the result
of the task P-Search, or more specifically, it depends on the result of the C-Search
task, which has the purpose of assessing the result of P-Search. This example
corresponds to the Delayed Configuration mode described in §5.7.1.

Finally, the K-Broker will send the PA an “inform” message containing the
task-configuration in Figure 7.21, and after that the PA will move to the Team
Formation scene where it will request the T-Broker to form a new team according
to that task-configuration.

7.9.4 Team-formation

Team Formation is decomposed into three different activities: task allocation,
team selection, and team instruction (§6.5.3). All these activities are coordinated
by an agent playing the Team-Broker (T-Broker) role, following an auction-like
interaction protocol.

Figure 7.22 captures the moment when the Team-Broker is sending team-role
proposals to the available PSAs (e.g. Santi, Didac, Jordi), which will answer
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Figure 7.21: Task-configuration with a task in delayed configuration mode

Figure 7.22: Screenshot of a Team Formation scene
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whether they accept or refuse such a proposal. PSAs accepting a team-role
proposal are considered candidate agents for the corresponding task (recall there
is one team-role per task) by the T-Broker.

The T-Broker sends proposals until all the tasks are allocated to some agent
or some failure criterion is reached that leads the T-Broker to abort the pro-
cess without having succeeded. After that, if the task-allocation succeeded, the
Team-broker chooses among alternative agents for the same task, and inform
selected agents of the result.

Figure 7.23 shows a screenshot of the T-Broker internal state after having
obtained candidates for all the tasks. The tasks to be allocated are on the left,
while candidate agents are represented on the right. Agents already selected for
a task are recognized by a square surrounding them. At the moment shown,
the T-Broker has already finished the task-allocation process and is performing
the team selection process (selecting agents for each task); for instance, Ester
has been just selected for the task Retrieve, to the detriment of Marc, who
is also a candidate agent for that task. Notice that the team selection activity
proceeds following a bottom-up direction, from the tasks in the leaves of the task-
configuration tree upwards, until reaching the top level task. Tasks with delayed
configuration, such as M-Search, are not being allocated, since the capabilities
to be applied for those tasks are not known yet.

Figure 7.23: Example of the T-Broker internal state

After finishing the team selection process, the T-Broker informs the partici-
pating agents on the result of the team selection process, and instructs selected
agents about the team-roles they will play. A team-role (§5.3) includes the fol-
lowing information: a task to be carried out, the capability required to solve
that task, and all the information required to cooperate with other team mates,
which is encompassed by a collection of team-components. The agents obtained
as candidates for some task but not selected in the end, are kept in reserve to
replace a team-member if it fails during the Teamwork process, just in case.
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At the end of the Team Formation scene, the T-Broker sends the resulting
team-configuration to the PA, which is then ready to initiate the Teamwork
scene. Meanwhile, the PSAs selected to participate in the team move to the
Teamwork scene (in Figure 7.25 one can see the agent Marc waiting in the
Team Formation scene, while all the selected agents have already moved to the
Teamwork scene).

7.9.5 Teamwork

The Teamwork scene starts when the PA sends the data of the problem to
be solved to the agent assigned the top-level task in the task-configuration,
the so called team-leader. In the example, the team-leader is Marteen, who
is assigned the task Information-Search, and has to apply the task-decomposer
PCM-Metasearch.

The team-leader starts the problem solving activity using the information
provided by the team-role for the top-level task, Information Search in our ex-
ample. The information about which specific capability the team-leader has to
apply for solving that task, and the name of the agents to whom delegate a task
are described by a team-role provided to the team-leader by the T-Broker at the
Team Formation scene. Besides this, any agent does the same when requested
to play a team-role: consulting the information provided by the R-Broker and
applying the specified capability.

Figure 7.24 shows a screenshot of a PSA internal state, indicating the ca-
pabilities it is equipped with and the team-roles it has to play, represented by
pairs composed of a task and a capability bound to it. If a PSA has to ap-
ply a task-decomposer, the information contained in the team-role includes also
the subtasks introduced by the task-decomposer and the agents to whom dele-
gate each subtask. Figure 7.24 shows Marti’s internal state, which is equipped
with three capabilities: Metasearch, Metasearch-without-elaboration, and Modify-
Metasearch. Marti has been assigned the team-role associated to the task P-
Search, which is bound to Metasearch, a task-decomposer. The figure shows
also the names of the agents assigned to each of the subtasks introduced by the
task-decomposer Metasearch: Teresa is assigned to Aggregate, Ester to Retrieve,
Didac to Customize-query, and Santi to Elaborate-query.

A Problem-Solving Agent (PSA) can form part of different teams at the same
time, thus when a PSA receives a request to carry out the task associated to a
specific team-role, it has to check whether it is assigned to that team-role and
which capability to apply. Next, the PSA checks whether that capability is a skill
or task-decomposer: if it is a skill the PSA applies that skill to solve the task and
sends the result to the requester; otherwise the capability is a task-decomposer
and the PSA will follow the task-decomposer’s operational description.

During the Teamwork scene, the control flow follows the performative struc-
ture specified by the operational description of the task-decomposers in the task-
configuration, as described in §5.6.

Figure 7.25 shows a picture of the teamwork scene, just when the PSA as-
signed to the retrieve task is sending queries to the Pubmed information source
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Figure 7.24: Example of a PSA internal state

through the Internet, using the Pubmed wrapper.
If all tasks are solved successfully, the final result is hold by the team-leader,

who sends it to the PA, and the Cooperative Problem Solving finishes.
In our example, there is a task that is not bound to any capability because

this decision depends on the result of another task, Critique-Search. Conse-
quently, the agent detecting that condition (the agent assigned to the task in
top of the delayed task) informs the PA. In our example, that agent is Marteen,
responsible for the task Information-Search. Marteen informs the PA of that
condition, and provides it with the information required to configure the task
with delayed configuration. In the example, the result of P-Search contained
a number of items considered insufficient by the capability Search-Assessment.
Consequently, Search-Assessment outputs the formula Generalize-query (the
reader is referred to §5.7.1 for a more detailed account of this mechanism) to
indicate that it is convenient to generalize the scope of the query in order to
get more results. Marteen informs the PA that the task M-Search has to be
configured using the formula Generalize-query as a new postcondition for
the Knowledge Configuration process. Therefore, the PA moves again to the
Knowledge Configuration scene to request the K-Broker to configure the task
M-Search using the new postcondition.

Figure 7.26 shows a screenshot of the K-Broker internal state during the new
Knowledge Configuration process. Notice that the K-Broker has selected the
capability Query-generalization to solve the task Adapt-query, since it is the only
capability specifying the formula Generalize-query as a postcondition.

After configuring the task Modify-Search, the PA engages a Team Formation
scene again to form a team for that task. The agents involved in the original
team are waiting in the Teamwork scene, that remains active, but in the mean-
time, they are requested again to form part of the new team responsible for
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Figure 7.25: Screenshot of the Teamwork scene

Figure 7.26: Example of the K-Broker internal state for a delayed task
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the Modify-Search task. Recall that an agent can participate simultaneously in
several scenes, though the Agent World monitoring tool is unable to represent
that condition.

Finally, the PA sends the result back to the GUI (or to the agent that orig-
inated the CPS process). Figure 7.27 shows the results for the consultation
example described above (§7.9.2).

Figure 7.27: Team broker internal state

If the results have to be sent to an external agent using FIPA-ACL, the PA
encodes them using XML and sends them within the content of a FIPA inform
message to that agent.

(inform
:sender (agent-identifier :name WIM-PA@\wim\.iiia.csic.es:7778/NOOS)
:receiver (set (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE))
:reply-with cps-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id cps18236
:content

(result
(action \ldots )
(Problem-Solution:

:encoding <xml? version="1.0" encoding ="ISO-8859-1"?>
:value

<scored-items>
scored-item>

<IDENTIFIER>PMID10683053</IDENTIFIER>
<RANKING> 0.56</RANKING>
<TITLE>A controlled trial of a critical pathway for treatment of

community-acquired pneumonia.</TITLE>
<AUTHORS>Marrie TJ, Lau CY, Wheeler SL, Wong CJ, Vandervoort MK,

Feagan BG.</AUTHORS>
</scored-item>
<scored-item>

<IDENTIFIER>PMID10418757</IDENTIFIER>
<RANKING> 0.34</RANKING>
<TITLE>Selection of resistant variants of respiratory pathogens

by quinolones.</TITLE>
<AUTHORS>Sefton AM, Maskell JP, Williams JD.</AUTHORS>

</scored-item>
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</scored-items>))))

7.10 Other experiments

The WIM application has been developed in the framework of the European
Project IBROW, which stands for Intelligent Brokering Service for Knowledge-
Component Reuse on the World-Wide Web. The objective of IBROW is to
develop intelligent brokers that are able to distributively configure reusable com-
ponents into knowledge systems through the World-Wide Web, which leads in-
terdisciplinary research on areas such as heterogeneous DB, interoperability and
Web technology with knowledge-system technology and ontologies. Concern-
ing the feasibility and the applicability of the IBROW ideas, the project has
encouraged the development of interlibrary applications involving components
implemented by different partners. Some of these efforts have focused on agent
technology, whilst other efforts have turned to new technological developments
such as the Semantic Web Services.

Now we are going to review two applications: (1) an application concerning
two libraries implemented by agents running on different platforms, and (2) a
Semantic Web Service communicating with the WIM application.

7.10.1 Inter-library application

The idea of inter-library applications is to configure applications that involve
problem solving components from different libraries, and running in different
platforms as well. In such an scenario, three types of interoperation problems
arise: semantic, syntactic and relative to the interaction protocols.

At the semantic level, in order to compare (match) specifications from dif-
ferent libraries, either a shared ontology specifying the concepts used by the
different libraries or a collection of mappings between the different ontologies is
required.

At the syntactic level, a common language, a encoding data format and a
serialization mechanism to send and receive data between components from dif-
ferent libraries are necessary, specially when two libraries are implemented over
heterogenous platforms. For instance, in the IBROW project we have connected
the ORCAS agent platform with a JADE platform through the FIPA-Mediator,
using the FIPA-ACL, and either XML or RDF to encode the content of a mes-
sage.

Finally, agents must share some interaction protocol in order to communi-
cate meaningfully. Therefore, we have developed interaction protocols based in
the FIPA Request-Inform protocol and using the FIPA Agent Communication
Language.

The interlibrary application involves two libraries: one library is the one pro-
vided by the WIM application, running over the NOOS agent platform, which
uses LISP; the other library is intended for document classification tasks, has
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been developed by the SWI group, from the UVA University, and is implemented
over the JADE platform, which uses Java. The are two agents interconnecting
both, the FIPA-Mediator running in the NOOS platform, and the NOOS-Proxy
running in the SWI agent platform. These (pseudo) agents implement the com-
munication and the data translation between both agent platforms using FIPA-
ACL as the communication language, and SL0 as the content language. Figure
7.28 shows the interconnection of both platforms and the agents responsible for
the interoperation: a Broker and a User Agent in the SWI platform, and a
Librarian and a Personal Assistant in WIM.

Figure 7.28: Interlibrary application

The SWI Broker asks the WIM Librarian about the tasks and capabilities
available in WIM to check whether a configuration of the application task using
WIM components is possible. The User Agent interacts with the user to get
a specification of the problem and interacts with the SWI Broker to obtain a
configuration of components for the application task, that is called Search &
Classify. The Search & Classify task is decomposed into three subtasks by the
Search, Retrieve & Classify task-decomposer, as shown in Figure 7.29.

The WIM PA acts as a mediator between the SWI broker and the ORCAS
brokers: The Knowledge-Broker and the Team-Broker. The idea is that the WIM
brokers operate locally over the tasks to be performed by WIM agents, while the
global task is configured by the SWI broker, that delegates the configuration
and execution of some tasks to WIM agents.

The ORCAS e-Institution in which the WIM application is deployed offers
some services to external agents, including the following (Appendix F):

1. Brokering : Obtaining a task-configuration according to a specification of
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Figure 7.29: Interlibrary application

problem requirements.

2. Team formation: forming and instructing a team of agents with the capa-
bilities required by a task-configuration

3. Teamwork : performing the teamwork activity to solve a problem instance,
given a team-identifier of a previously instructed team.

4. Cooperative Problem-solving : this service comprises all the previous ser-
vices within a single request-inform protocol.

5. Retrieve specification: this service provides a pattern-based retrieval ser-
vice to gather component specifications from the library.

Figure 7.30 shows the subtasks and data involved by the interlibrary appli-
cation task, Search & Classify. The goal of this task is to search bibliographical
references, and then retrieve all extra information available for some references
in order to classify them. This task is decomposed into tree subtasks by our
task-decomposer: Information-search, Retrieve-extra-info and Classify.

The input data to the Information-search task is a query, and the result is
set of items containing bibliographical references, and ranked according to the
relevance to the query. These items include only the basic information: an
identifier, a title and the list of authors. Next, some of these items are used as
inputs of the Retrieve-extra-info task, which is able to retrieve all the information
available for a reference, like the language, subject (keywords), abstract, year
and so on. Since several items may be selected for classification, then several
instances of this task may be required, one for each item selected. Finally, the
retrieved items are clustered and classified by some classification method in the
SWI library, using the information provided by the WIM task Retrieve-extra-info.



7.11. Conclusions 257

Figure 7.30: Interlibrary application

7.11 Conclusions

Finding relevant information can be described only with respect to the purpose
for which this information is sought, for the kind of use we have in mind for
that information. However, classical information retrieval (IR) based on key-
words assumes all the information provided by the user is flat and in the form
of keywords. The documents being searched are abstracted as vectors of key-
words to be compared with the “document query” of the user also abstracted
as a vector of keywords. This approach focuses on the notions of content and
relevance: the content of documents are expressed as vectors of keywords and
the similarity measure that compares them with the query vector expresses the
degree of relevance of each document to that query.

Let us consider the query example we have used in this article: a user is inter-
ested in information about guidelines on the use of levofloxacin in the treatment
of pneumonia. The keyword based approach would recommend simply to use
the keywords (guidelines, levofloxacin, pneumonia) as a flat representa-
tion of the user request. However, we know that the user is in fact talking about
a substance (levofloxacin), a disease (pneumonia), and a type of information
searched (guidelines).

The approach taken in the Web Information Mediator has been to provide
a bridge (a mediation service) between the user’s expression of the kind of in-
formation to be found and the existing repositories of medical information that
use keyword-based retrieval. WIM distinguishes between keywords that define
content (e.g. searching documents about pneumonia) from categories that de-
fine the intended use of the information (e.g. using information on guidelines
instead of, say, diagnosis). Categories are thus used to transform the initial user
request into a collection of keyword-based queries that include the knowledge
needed to find occurrences of keywords related to that category. As we have
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seen, different keywords related to guidelines are used in these queries—while
a keyword-based retrieval would have only used the keyword guidelines. The
retrieved documents are ranked in accordance to how useful they are for the
intended purpose of the category guidelines, but they also include documents
indexed as clinical protocols. Other utility criteria used in WIM are related to
specifying a broad and costly search towards a narrow and fast search. We have
shown no example here but the idea is very similar in that a thesaurus is used
(instead of a category) to elaborate further queries using synonyms and related
words. The criterion of utility is here related to the type of search and can be
combined with the criteria based on EBM.



Chapter 8

Conclusions and future
work

This chapter sums up the contributions of our thesis, compares our
contributions with some related works, and presents some open issues
and shortcomings to be addressed by future work.

8.1 Introduction

As our work was advancing, we introduced and discussed many ideas, and put
some of them in practice, but there are other issues deserving our attention
that we could not afford in the context of this thesis. We have been faced with
so many difficulties that we have had to focus on a limited set of issues, barely
tackling other subject matters. This chapter sums up the outcomes of our efforts
and recapitulate both the achievements and the still open issues.

We have stated our aim at the Introduction: to provide a framework for
developing and deploying open Multi-Agent Systems supporting the automatic,
on-demand configuration of agent teams according to stated problem require-
ments. As a result of our efforts, we have developed a multi-layered framework
for MAS development and deployment that integrates Knowledge Modelling and
Cooperative Multi-Agent Systems together. This framework is called ORCAS,
which stands for Open, Reusable and Configurable multi-Agent Systems.

The ORCAS framework encompasses three separated layers, the Knowledge
Modelling Framework, the Operational Framework, and the Institutional Frame-
work, also called the ORCAS e-Institution. The purpose of separating the frame-
work in layers is to bring developers an extra flexibility in adapting the frame-
work to their own requirements, preferences and needs. Now we are going to
review the main features of this framework, focusing on those issues we have
made more contributions.

The ORCAS Knowledge Modelling Framework provides a conceptual frame-
work for the design of open MAS that aims at maximizing capability reuse

259
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[Gómez and Plaza, 2004a]. The main features of this framework are, in brief,
the following:

• the components of a MAS are described at the knowledge-level
[Gómez et al., 2003a], abstracted from any implementation details, and
enriched with semantic information specified as shared ontologies;

• there is a clear separation of tasks and capabilities from the application do-
main, through the specification of domain-models using its own ontologies
[Gómez et al., 2001];

• a compositional, bottom up approach to system design is proposed
based on two types of matching relations: task-capability matching and
capability-domain matching [Gómez and Plaza, 2004a];

• automated, on-demand design of agent teams according to the require-
ments of the problem at hand (Knowledge Configuration), implemented
as a search process supporting three strategies [Gómez and Plaza, 2004b]:
interactive, depth first (Search and Subsumes) and best first (Constructive
Adaptation); and

• a clear separation of two levels in the description of a MAS: on the one
hand, the Abstract Architecture states the type of components used to
describe a system, the features characterizing each type of component,
and the relations constraining the way components can be connected; on
the other hand, the Object Language refers to the representation language
used to specify component features and the inference mechanism used to
reason about component specifications (to compare components in order
to verify a matching relation).

The Operational Framework provides a link between the KMF and coop-
erative MAS; specifically, it extends the Abstract Architecture to become a
full-fledged Agent Capability Description Language (ACDL), and describes an
alternative model of the Cooperative Problem Solving (CPS) process based on
a Knowledge Modelling approach [Gómez and Plaza, 2004b]. The main features
of the ORCAS ACDL addressed by the Operational Framework are the following:

• the ORCAS ACDL includes both the communication aspects required
to enact an agent capability, and the operational description of a task-
decomposer, specifying the control flow among subtasks;

• the communication and the operational description of capabilities are de-
coupled from the functional aspects, thus maximizing the reuse of agent
capabilities through different interaction protocols; and

• both the communication and the operational description of a capability
are specified at the macro (social) level, using concepts from the electronic
institutions formalism.
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The main characteristics of the ORCAS model of the CPS process are the
following:

• it includes a Problem Specification stage and a Knowledge Configuration
stage to guide the Team Formation process according to the requirements
of the problem;

• the different stages of the CPS process can be interleaved, allowing an
agent society to react to runtime events and adapt to the dynamic nature
of open environments; and

• the multiagent planning stage is partially substituted by the Knowledge
Configuration process, and somehow by the team configuration stage car-
ried out during the Team Formation process.

The Institutional Framework describes an implemented infrastructure for
developing and deploying Multi-Agent Systems following the electronic institu-
tions formalism. The ORCAS framework has been implemented as an electronic
institution [Esteva et al., 2002b] in which institutional agents are responsible
for mediating between providers and requesters of problem-solving capabilities
[Gómez et al., 2003b].

While the KMF and CPS processes provide the tools to design the compe-
tence and the social requirements of agents, the ORCAS e-Institution provides
the protocols for registering services, configuring tasks and customizing agent
teams to solve those tasks. It is a tool to deploy flexible, extensible and con-
figurable Multi-Agent Systems. An application of this infrastructure has been
successfully developed and tested, WIM, a configurable meta-search application
[Gómez and Abasolo, 2002] in a medical domain [Gómez et al., 2002]. The OR-
CAS e-Institution has set a precedent as the first multiagent infrastructure based
on the electronic institutions approach. Moreover, we are somehow contributing
to the field of electronic institutions by providing a framework for configuring
electronic institutions dynamically, out of scenes and performative structures
describing the communication and operational aspects of agent capabilities.

We have summarized the main features of the ORCAS framework, and now
we are going to discuss some of this features, comparing them with related work.

8.2 Discussion

With the introduction of the knowledge level [Newell, 1982] in the de-
velopment of Knowledge Based Systems, the knowledge acquisition phase
turned from a knowledge transfer approach to a model construction ap-
proach [Clancey, 1989, Studer et al., 1998]. Knowledge Modelling Frameworks
propose methodologies, architectures and languages for analyzing, describ-
ing and developing knowledge systems [Steels, 1990, Chandrasekaran, 1986,
McDermott, 1988, Schreiber et al., 1994a, Fensel et al., 1999]. The goal of a
KMF is to provide a conceptual model of a system that describes the re-
quired knowledge and inferences at an implementation independent way. This
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model is intended to support the engineer in the knowledge acquisition phase
[Van de Velde, 1993] and to facilitate reuse [Fensel, 1997a]. The reuse issue has
received a lot of attention last years from the knowledge modelling commu-
nity [Benjamins et al., 1996a, Motta, 1999, Fensel and Motta, 2001]; focusing
on ontology-based reuse [John H. Gennari and Musen, 1998, Studer et al., 1996]
and automated reuse mechanisms [Gaspari et al., 1999, Motta et al., 1999,
Fensel and Benjamins, 1998b].

Surprisingly, Knowledge Modelling Frameworks have been rarely applied in
the field of MAS to deal with the reuse and interoperation problems; two ex-
ceptions are found in [Iglesias et al., 1997, Glaser, 1996], which have adapted
the CommonKADs methodology [Schreiber et al., 1994a] to provide a MAS de-
velopment methodology. Unlike the former proposals, instead of providing a
methodology, we provide a conceptual framework that aims to maximize the
reuse of agent capabilities across different application domains. Furthermore,
we have developed a MAS infrastructure supporting the on-demand configu-
ration of agent teams according to the requirements of the problem at hand.
An outstanding difference between our framework and other frameworks is the
inclusion of domain-models as an independent entity, and the definition of a
matching relation between domain-models and capabilities, so as to facilitate
reuse of agent capabilities across different domains.

Herein, we adhere to the view of Internet as an open environment where
providers and requesters of capabilities meet and interact to solve specific prob-
lems by using the resources at hand. This view of Internet as a distributed
computational platform is in spirit the same of the Semantic Web initiative, in
particular, our view of agent capabilities shows some aspects closer to issues from
the Semantic Web. From the Semantic Web approach building an application is
basically a process of composing, connecting and verifying the properties of Se-
mantic Web Services (SWS) in a way that resembles our compositional approach
to team design.

There are, however, two outstanding differences between the Semantic Web
and ORCAS. On the one hand, ORCAS agents are autonomous entities that can
decide to accept or to refuse a request, while services are reactive, passive enti-
ties which are directly invoked by the client; therefore, instead of a centralized
composition of services, we view the composition of capabilities as a negotia-
tion process among autonomous agents. On the other hand, our language for
describing capabilities is domain independent, thus it is intended to maximize
reuse, while Web Services frameworks ignore this issue, since they are domain
dependent by nature (a Web service is associated to some concrete domain, like
the weather of a specific country in a weather forecasting service).

8.2.1 On Agent Capability Description Languages

Some of the first languages for describing agents in open environments were based
on logical deduction languages like Prolog; two well known examples are the In-
terface Communication Language (ICL) used in the Open Agent Architecture
[Martin et al., 1999, Cheyer and Martin, 2001] to describe agents as goals, and
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LDL++, used in the InfoSleuth infrastructure [Nodine et al., 1999]. Nonethe-
less, our way of describing the components of a Multi-Agent System is more
similar to LARKS [Sycara et al., 2002], a newer language used in the RETSINA
infrastructure [Sycara et al., 2001] for describing agent capabilities and perform-
ing matchmaking.

The major difference between the languages above and ORCAS lies up in the
ORCAS KMF, which decouples the specification of tasks and capabilities from
the application domain in order to maximize reuse. Moreover, while RETSINA
relies on HTN (Hierarchical Task Network) planning and scheduling, the ORCAS
framework substitutes plans by task-configurations, and keeps the scheduling
activities out of the framework due to its endodeictic nature (belonging to the
agent architecture and thus falling into the micro-level, whereas we are focused
on the macro, social level). Moreover, while existing frameworks for MAS co-
operation usually assume that plans are obtained beforehand (prior to engage
in cooperative activities) or provided by the user, our proposal is to obtain the
task-configuration on-demand, out of the capabilities and knowledge available
at the moment of receiving a request.

8.2.2 On MAS Coordination and Cooperation

Despite the large research efforts done in the field of Cooperative Problem Solv-
ing (CPS), most of the work done falls into one or several stages of the CPS
process as presented in [Wooldridge and Jennings, 1994], which has four stages:
recognition, team formation, planning and execution. The problem solving pro-
cess starts with an agent willing to solve a task and realizing the potential for co-
operation. The process until the task to be solved is decided is usually skipped,
assuming that it is already given [Wooldridge and Jennings, 1999]. Moreover,
task allocation among cooperating agents requires some kind of preplan specify-
ing how to decompose a task into subtasks [Shehory and Kraus, 1998], without
specifying the algorithms to build such plan, neither the criteria to be taken into
account.

In this thesis we have studied the feasibility and utility of a componential,
bottom up design approach to build something similar to an initial plan, what
we call a task-configuration. When addressing the problem of configuring a
team according to problem requirements we agree with other researchers that
users matter [Erickson, 1996b]; people may need to understand what happened
and why a system alters it response, to have some control over the actions of
a system, even when agents are still autonomous, and furthermore, users may
need to predict what will happen.

Some frameworks have addressed the question of the user; we can mention for
instance the Guided Team Selection approach described in [Tidhar et al., 1996],
the top-down search approach proposed in [Clement and Durfee, 1999], and the
case-based conversational broker described in [Munoz-Avila et al., 1999].

The main difference of our approach is that a task-configuration contains
more information than a Hierarchical Task Network, since it includes domain-
models in addition to tasks and capabilities (equivalent to actions in an HTN).
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We claim that our separation of the knowledge and the operational aspects
involved in the CPS process helps understand the aspects underpinning agent
cooperation, since it accounts for the static vs dynamic dimension of agent soci-
eties. The idea is to exploit the fact that the specification of agent capabilities
remains stable for long periods of time, whereas there are dynamic aspects of
the system or its environment that change very quickly, i.e. the agent workload
or the network traffic. Therefore, it is useful to make a configuration in terms
of the static description of capabilities, and thereafter the static configuration
can be used to select the “best” candidate agents1 according to dynamic and
context-based information.

While other frameworks and infrastructures concentrate on the task alloca-
tion stage carried on during Team Formation, the ORCAS Knowledge Configu-
ration process is situated before Team Formation in the Cooperative Problem-
Solving model. This does not mean, however, that the Knowledge Configuration
process should be completed prior to initiate Team Formation; in fact, we have
proposed strategies to interleave both activities with the execution: distributed
configuration, lazy configuration, and dynamic reconfiguration.

8.2.3 On Semantic Web Services

From the Semantic Web approach Internet is viewed as a network of distributed
and heterogeneous services that must be composed and “orchestrated” to achieve
complex tasks. From that view, a Service Description Language must support
just the same type of activities we want to be supported by the ORCAS ACDL:
discovery, execution, composition and interoperation. Actually, there is ongoing
work to put services and agents together, for instance, the Web Service Mod-
elling Framework (WSMF) [Fensel and Bussler, 2002] and the DAML-S ontology
[The DAML-S Consortium, 2001] are being developed with a similar set of re-
quirements in mind, though the same concepts are expressed using a different
vocabulary.

Our way of describing the functional aspects of a capability is equivalent to
a service profile in DAML-S, the communication supported by an agent over a
capability corresponds to the grounding of a service, and the operational de-
scription of a task-decomposer plays a role similar to the process model of a
service.

There are minor technical differences concerning the communication aspects
of the two approaches. There is, however, an outstanding conceptual differ-
ence: agents are autonomous entities capable of refusing a request, whereas Web
Services are passive entities that are directly invoked by the requester. Con-
sequently, agents engage in cooperation following some kind of negotiation or
communication activity in which they take an active role, whereas Web Services
are composed and “orchestrated ” under the baton of another entity (usually
through the use of workflow-based specifications) without active participation of

1The notion of agent goodness is specified as a criteria to be optimized, i.e. cost, speed,
reliability and so on.
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DAML-S Agent activities ORCAS ACDL
Profile Discovering (matchmaking) Inputs, outputs and compe-

tence
Grounding Invocation and Execution Communication
Operational
model

Composition and Interoper-
ation

Subtasks and operational de-
scription

Table 8.1: Comparison of the ORCAS ACDL against DAML-S

the Web Services.
Table 8.1 summarizes the relation between the features characterizing a ca-

pability in ORCAS, the features proposed to describe agent-enabled Semantic
Web Services in the DAML-S ontology [The DAML-S Consortium, 2001], and
the kind of activities these features are required for [Bansal and Vidal, 2003,
Bryson et al., 2002, Park et al., 1998, Payne et al., 2001].

8.2.4 On the design of agent teams

Design is a fundamental aspect of engineering in general and software develop-
ment in particular, and there are some efforts to provide design methodologies
for agents and even multiagent systems, but the idea of design has not been
applied to coalition or team formation. Therefore, our idea of introducing a
design perspective in the team formation process is new. Specifically, we have
introduced a design stage, that we called the Knowledge Configuration process.
The Knowledge Configuration process aimsat deciding the competence required
for a team of agents to achieve a goal satisfying global requirements. This pro-
cess has been implemented as a search process over the space of possible task
configurations (designs). Such a search-based approach opens the door to a large
number of techniques to be applied, and CBR is just an example of that (§4.5).

8.3 Future work

The objectives of this work were ambitious; the complexity of the problems
faced and the wide, interdisciplinary scope of the challenges encountered make
us concentrate on some specific aspects, while others issues have been disregarded
or postponed. This section will introduce still open problems and will draw up
some research lines to be followed by future work in order to advance forwards
towards the realization of full-fledged open MAS.

Open systems allow the involvement of agents from diverse design teams,
with diverse objectives that may be unknown at the time of design. Multia-
gent infrastructures are expected to provide a critical enabler for development
of scalable interoperable systems, however, in order to successfully communicate
in such an environment, agents need to overcome two fundamental problems:
first, they must be able to find each other (since agents might appear or disap-
pear at any time), and once they have done that, they must be able to interact
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[Nwana and Woolridge, 1996, Jennings et al., 1998]. Although existing infras-
tructures are incorporating mechanisms for advertising, finding, using, combin-
ing and updating agent services and information [Decker et al., 1997b], most of
them are still relying on homogeneity assumptions to achieve a successful inter-
action: a common communication language and protocol; a common format for
the content of communication; and a shared ontology.

As stated in the Introduction (Chapter 1), full-fledged open MAS must sup-
port cooperative work spanning multiple application domains and assembly of
teams out of heterogeneous agents (and legacy applications) developed by dif-
ferent teams, using different communication languages and ontologies. For this
reason, there is a standing interest on semantic interoperability and semantic
middleware.

In the ORCAS KMF, components can be described using its own, independent
ontologies [Fensel et al., 1997]. Because of this conceptual decoupling, ontology
mappings may be required to match capabilities to tasks and domain-models
to capabilities when there is an ontology mismatch between two specifications.
Nevertheless, we have focused here on the matching relations, assuming that
the necessary ontology mappings are already built, or assuming that all the
components share the same ontologies. This is a reasonable assumption, since
it is feasible and convenient to built the mappings beforehand, previously to
make a component available for its use. But we expect ontology engineering to
become a very important ingredient of agent middleware, as well as other fields
in which semantic interoperability may play a role (e.g. Semantic Web Services
and Cooperative Information Systems).

Taking into account our general motivations, some lines of research deserving
further attention are those concerned with ontology engineering, including the
following topics:

• ontology alignment and mapping;

• languages for representing mappings; and

• metrics for measuring semantic similarity and semantic distance.

The ORCAS framework could highly benefit from technological advances
supporting the automatization of ontology-related activities like reasoning with
mappings and mapping discovery. The idea of introducing a new kind of reusable
connectors to bridge the gap between semantically differing specifications seems
considerably interesting. Some inspiring works concerning that subject are found
in [Park et al., 1998, Gómez and Benjamins, 1999]. In ORCAS connectors could
be inserted between capabilities and domain-models, and between tasks and ca-
pabilities as well. A connector in ORCAS involves two dimensions: a knowledge-
level specification, which allows to match components specified with different
ontologies; and the implemented counterpart, which allows semantically (or syn-
tactically) heterogeneous agents to interoperate during the Teamwork process.

The idea of ontology agents specialized in discovering mappings fits well in
the context of the ORCAS infrastructure, since ORCAS relies on institutional
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agents providing specialized services to other agents (e.g. the Librarian and the
Team-Broker).

Other aspects of our work deserving a deeper study are those concerning the
adaptation of agent teams to the dynamic nature of open environments to deal
with unexpected events and handle errors. We have already draw the notions
of reconfiguration, delayed configuration and lazy configuration as extensions to
the core model of the ORCAS Operational Framework. We think a lot of work
remains to be done yet in order to improve the adaptability of agent teams to
changes in the environment, like introducing learning or incorporating some kind
of meta-strategy to decide the better strategy at each particular moment.

Another point that can be addressed by future work is the extension of the
ORCAS ACDL to provide fully declarative description for the operational model
of a task-decomposer, including not only control flow but also intermediate data
processing. Such a feature will allow task-decomposers to exist in a purely
declarative form, thus any agent understanding that language would be able to
follow a task-decomposer, rather than having specific agents implementing each
new task-decomposer.

The ORCAS e-Institution is subject to large modifications and improvements;
for instance, we think two interesting areas to work upon are security matters
and extended interoperation.

Concerning security, we have not considered any security issues yet in the
ORCAS framework, though we are aware of their critical importance to the field
in order to develop industrial and commercial applications. An interesting line
to be followed through is that of introducing specialized agents to take care of
supervision and security tasks, like sentinels [Dellarocas and Klein, 1999] and
governors [Esteva et al., 2002b].

Concerning a greater support to interoperation, the idea of federated elec-
tronic institutions raises as a very interesting concept. The point is to allow
configuring agent teams out of agents running in separate agent infrastructures.
Although we have carried out some experiments involving several libraries and
heterogenous agent platforms (we have connected the NOOS Agent Platform,
that uses Lisp, and JADE, that uses Java), they have been conducted on a rather
ad-hoc manner; therefore, we think the ORCAS framework could be improved by
including a principled approach to form federations embracing several ORCAS
compliant infrastructures.

Still another issue deserving work in the future is the inclusion of contractual
mechanisms to support e-Commerce applications like supply chains, auctions
and e-markets. Concerning this research line, we are thinking about the aspects
required to implement what we like to call “terms of commitment”, a mechanism
to agree upon by team members when accepting a team-role. We envision agent
societies negotiating the terms of service to which agents commit to partake
in a team. An ontology of possible terms of commitment (e.g. exclusive vs.
non exclusive, pulls vs. push, quality of service measures, cost, etc.) together
with some interaction protocols has to be developed to deal with such a kind of
negotiation.
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Finally, we want to mention the advisability of a complete methodology for
the design an development of MAS according to the ORCAS framework.



Appendix A

Specification of the
Knowledge Modelling
Ontology

(in-package noos)

(define-ontology KM-Ontology

(creator "IIIA - CSIC")

(description "KM-Ontology describes the elements of the \orcas\ KMF"))

(define-sort KM-Ontology)

(define-sort (KM-Ontology Concept))

(define-sort (KM-Ontology Binary-Relation)

(argument1 Concept)

(argument2 Concept))

(define-sort (Concept Knowledge-Component)

(name String)

(pragmatics Pragmatics)

(ontologies Ontology Empty-Set))

(define-sort (Knowledge-Component Ontology))

(define-sort (Knowledge-Component Task)

(uses Task Empty-Set)

(input-roles Var Empty-Set)

(output-roles Var Empty-Set)

(competence Competence)

(assumptions Formula))
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(define-sort (Knowledge-Component Domain-Model)

(uses Domain-Model Empty-Set)

(properties Formula Empty-Set)

(metaknowledge Formula Empty-Set)

(knowledge Signature-Element Empty-Set))

(define-sort (Knowledge-Component Capability)

(communication Communication)

(input-roles Var Empty-Set)

(output-roles Var Empty-Set)

(competence Competence))

(define-sort (Capability Task-Decomposer)

(subtasks Task Empty-Set)

(operational-description Operational-Description))

(define-sort (Capability Skill)

(knowledge-roles Signature-Element Empty-Set)

(assumptions Formula Empty-Set))

(define-sort (Concept Pragmatics)

(title string)

(creator string)

(subject string)

(description string)

(publisher string)

(other-contributor string)

(date string)

(resource-type string)

(format string)

(resource-identifier string)

(source string)

(language string)

(relation string)

(rights-mangement string)

(last-date string)

(be-used string)

(evaluation string)

(application-descriptors Pragmatics-Descriptor Empty-Set))

(define-sort (Concept Pragmatics-Descriptor)

(name string)

(value string))

(define-sort (Concept Competence)

(preconditions Formula)

(postconditions Formula))

(define-sort (Concept Signature-Element)
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(name String))

(define-sort (Concept Formula)

(name String))

(define-sort (Concept Operational-Description)

(intermediate-roles Signature-Element Empty-Set)

(programs string))

(define-sort (Concept Renaming)

(in Signature-Element)

(out Signature-Element))

(define-sort (Concept Communication)

(communication string))

(define-sort (Binary-Relation Adapter)

(argument1 Knowledge-Component)

(argument2 Knowledge-Component)

(pragmatics Pragmatics)

(ontologies Application-Ontology Empty-Set)

(renamings Renaming Empty-Set))

(define-sort (Adapter Bridge)

(uses Bridge Empty-Set)

(mapping-axioms Formula Empty-Set)

(assumptions Formula Empty-Set))

(define-sort (Bridge Capability-Domain-Bridge)

(argument1 Capability)

(argument2 Domain-Model)

(uses Capability-Domain-Bridge Empty-Set))

(define-sort (Bridge Capability-Task-Bridge)

(argument1 Capability)

(argument2 Task)

(uses Capability-Task-Bridge Empty-Set))

(define-sort (Bridge Task-Domain-Bridge)

(argument1 Task)

(argument2 Domain-Model)

(uses Task-Domain-Bridge Empty-Set))

(define-sort (Adapter Refiner)

(in Knowledge-Component)

(out Knowledge-Component))

(define-sort (Refiner Ontology-Refiner)

(in Application-Ontology)

(out Application-Ontology))
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(define-sort (Refiner Domain-Refiner)

(in Domain-Model)

(out Domain-Model)

(properties Formula Empty-Set)

(metaknowledge Formula Empty-Set)

(knowledge Formula Empty-Set))

(define-Sort (Refiner Task-Refiner)

(in Task)

(out Task)

(input Input-Roles)

(output Output-Roles)

(competence Competence)

(assumptions Formula Empty-Set))

(define-sort (Refiner Capability-Refiner)

(in Capability)

(out Capability)

(communication Communication)

(input Input-Roles)

(output Output-Roles)

(competence Competence))

(define-sort (Capability-Refiner Task-Decomposer-Refiner)

(in Task-Decomposer)

(out Task-Decomposer)

(subtasks Task Empty-Set))

(define-sort (Capability-Refiner Skill-Refiner)

(in Skill)

(out Skill)

(knowledge Signature-Element Empty-Set)

(assumptions Formula Empty-Set))



Appendix B

Formalization of the Query
Weighting Metasearch
Approach

The capabilities used in the WIM application are based on a query weighting
framework [Gómez and Abasolo, 2003] that is applied to transform queries dur-
ing the query adaptation stage: to transform the user query into a collection of
domain queries, and to transform each domain query into a collection of source
queries. This framework relies on a keyword based representation of queries,
plus the use of search filters, which are the common elements used by existing
search engines in the Web.

A query Q is defined as a vector of non-repeated elements, which can be
keywords, search filters or another element.

Q = 〈k1 . . . kn〉 ∀i, j : 1 ≤ i, j ≤ n; ki 6= kj (B.1)

A weighted-query QW is a pair composed of a query and a weight in the
interval [0, 1].

WQ = 〈Q,w〉 w ∈ [0, 1] (B.2)

A query-transformation τ is a relation between two queries (Q1, Q2) and a
weight (w), defined as follows:

τ(Q1, Q2, w) ⇔ (∃!k|k ∈ Q1 ∧ k /∈ Q2) ∧ (∃!k′|k′ ∈ Q2 ∧ k′ /∈ Q1) ∧ σ(k, k′, w)
(B.3)

where k and k’ are elements of queries, and σ(k, k′, w) is a relation between two
elements and a weight in the interval [0,1].

Intuitively, this definition means that one query is exactly like the other but a
single query element. In other words, there is a unique element k in Q1 not in Q2,
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and there exists an unique element k′ in Q2 not in Q1, such that these elements
are related by a weight (σ(k, k′, w)). If there exists a query transformation
between two queries and a weight w, one can transform one query into the other
by replacing the element k by k′, assigning the new query with a weight = w.

The query transformation relation is used to weight a query during a query
adaptation process. In WIM, domain queries are generated from the original user
consultation by using domain knowledge, such as a thesaurus or a collection of
knowledge categories. The idea is that if one query is the result of a query
transformation, then we can weight the new query with the weight relating both
the original and the new query.

Notice that the weighted relationships between query elements (i.e. between
two keywords) are encoded or can be derived from application domain knowl-
edge. For instance, WIM uses a thesaurus to obtain semantic relationships be-
tween keywords, applying a mapping from the qualitative relationships (e.g.
synonym) defined in the thesaurus to numeric values which are then used as
weights (e.g. two synonyms are related with a weight w = 1). Moreover, dur-
ing the query customization stage, domain queries are transformed into source
queries by using a description of information sources. A description of a infor-
mation source contains a mapping from concepts specified at the domain level
to concepts used by a particular information source. The weight applied to a
source query resulting of transforming a domain query into a source query (query
customization) is obtained from the description of that source. The weighting
values depend on the relation between the domain level concept and the source
level concept, and have been decided during the knowledge acquisition phase
with the help of an expert in medical bibliography.

We have not discussed yet how to assign weights when two or more query
elements are changed between two queries, or how to assign a weigh to an al-
ready weighted query. Both problems are in fact the same, how to combine or
synthesize weights.

Different functions can be used to combine weights. In the Query Weighting
framework one can consider weights as membership values with respect to the
user interest when posing a query, as well as logical values expressing the de-
gree of relevance or utility of a query with respect to the user query. Therefore,
weights can be combined by using numerical aggregation operators or multival-
ued logical operators (e.g. t-norms). The Query Weighting framework states
a general rule that constrains the type of query synthesizing functions allowed.
This rule states that the weight of a query cannot be increased after applying a
transformation; the meaning is that query transformations move queries further
away from the user request. In other words, if we transform a query q with a
weight w into a new query q’ with a weight w’, w’ cannot be greater than w.
Such class of operators includes -but is not reduced to- the family of t-norm
operators.

The composition or synthesis of weights is defined from the notion of a chain
of query transformation. A chain of query transformations T between two queries
indicates that there exist a sequence of query-transformations between the two
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queries. A chain of query transformations T is defined as a relation between two
queries and a weight, as follows:

T (Q1, Q2, w) ⇔




(Q1, Q2, w)∧
∃Q′, τ |τ ∧ τ(Q′, Q2, w

′) ∧ T (Q1, Q
′, w′′)

∧w = Θ(w′, w′′)
(B.4)

where Θ is a t-norm operator.
Now we are going to define the functions used to obtain the weight for a

query after applying a query transformation.
A Query-weighting function Γ is a function to obtain a weight between two

queries according to the chain of query-transformations between those queries.
This function is defined as follows:

Γ : Q×Q→ [0, 1]

Γ(Q1, Q2) =
{

w iff T (Q1, Q2, w)
0 otherwise

(B.5)

where Q1, Q2 ∈ Q, are queries and T is a chain of query-transformations.
A weighted-query-weighting function Ω is a function to calculate a weight

according to the chain of query-transformations between a weighted query and
a non-weighted query. Given a query Q1 and a weighted query 〈Q2, w〉, we define
a weighted-query-weighting as follows:

Ω : Q×Q×W→ [0, 1]

Ω(Q1, Q2, w) =
{

Θ(w, w′) iff T (Q1, Q2, w
′)

0 otherwise
(B.6)

where Q1, Q2, are queries, w is the weight assigned to one of the queries, T is a
chain of query-transformations and Θ is a t-norm operator.

The query-weighting and weighted-query-weighting functions are used to ob-
tain the weight for the query resulting of applying one or more query transfor-
mations. The former is used when the original query is not weighted, and the
last when the original query is already weighted. In fact, both functions can be
reduced to a unique function if we consider the non-weighted queries as having
a weight equal to 1.

When query is weighted after applying a transformation, this expresses the
relative importance or representativity of that query with respect to the original
one. The meaning of a weight assigned to a query is logically inherited by the
documents or items retrieved for that query, thus we can say that the weights
associated to the items retrieved represent the membership of those elements to
the topic requested by the user.





Appendix C

Specification of the ORCAS
e-Institution

(in-package noos)

(define-institution \orcas\_institution as

dialogic-framework = \orcas\-dialogical-framework

performative-structure = \orcas\_performative_structure

norms = ())

(define-performative-structure \orcas\_performative_structure as

scenes = (

(Root Root-Scene)

(Output Output-Scene)

(Brokering Brokering-Scene)

(Registering Registering-Scene)

(Team-formation Team-Formation-Scene)

(Problem-solving Problem-Solving-Scene)

(Request-inform Request-Inform-Scene)

(Request-wrapper Request-Wrapper-Scene)

(Full-Problem-solving Full-Problem-Solving-Scene))

transitions = ((T0 AND-AND)

(T1 AND-AND)

(T2 AND-AND)

(T3 AND-AND)

(T4 AND-AND)

(T5 AND-AND)

(T6 AND-AND)

(T7 AND-AND))

connections = (

(Root T0((x PSA)(y Librarian)))

(Root T1((x PA)(y Broker)))

(Root T2 ((x Team-broker)))
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(Registering T1((z Librarian)))

(Registering T2((x PSA)))

(Brokering T2((x PA)))

(Brokering T3((x Librarian)))

(Team-formation T5((y Team-broker)))

(Team-formation T4((x PA)(z PSA)))

(Problem-solving T6 ((x PA) (y PSA)))

(T0 Registering((x PSA)))

(T0 Registering((y Librarian)))

(T1 Brokering((x PA)))

(T1 Brokering((y Broker)))

(T1 Brokering((z Librarian)))

(T3 Output((x Librarian)))

(T3 Output((y Broker)))

(T2 Team-formation((z PSA)))

(T2 Team-formation((y Team-broker)))

(T2 Team-formation((x PA)))

(T5 Output((x Team-broker)))

(T6 Output((x PA)))

(T6 Output((y PSA)))

(T4 Problem-solving((x PA)))

(T4 Problem-solving((y PSA)))

(Root T7 ((x Requester) (y PA)))

(T7 Full-Problem-solving ((x Requester) (y PA))))

initial-scene = Root

final-scene = Output)

(define-scene Root-Scene as

roles = (PSA PA Librarian Broker)

scene-dialogic-framework = IBROW-Library

states = (W0)

initial-state = W0

final-states = (W0)

acces-states = ((PSA (W0)) (PA (W0)) (Librarian (W0)) (Broker (W0)) )

exit-states = ((PSA (W0)) (PA (W0)) (Librarian (W0)) (Broker (W0)) )

connections = (

))

(define-noos-scene Team-Formation-Scene

:description "The Team Broker forms a team to solve a problem"

:roles (PA PSA Team-broker)

:states (W6 W5 W4 W3 W2 W1 W0)

:initial-state W0

:final-states (W6)

:connections ((W0 W1 (request (?x PA) (?y Team-broker) Task-Configuration))

(W1 W2 (inform (!y Team-broker) (All PSA) Start-Team-formation))

(W2 W3 (request (!y Team-broker) (All PSA) Team-role))

(W3 W3 (accept (?z PSA) (!y Team-broker) Team-role))

(W3 W3 (refuse (?z PSA) (!y Team-broker) Team-role))

(W3 W2 (inform (!y Team-broker) (?z PSA) Team-role))
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(W2 W4 (inform (!y Team-broker) (All PSA) Start-Team-configuration))

(W4 W4 (commit (!y Team-broker) (?z PSA) Team-role))

(W4 W5 (inform (!y Team-broker) (All PSA) Finish-Team-configuration))

(W5 W6 (inform (!y Team-broker) (!x PA) Finish-Team-formation))

(W2 W5 (inform (!y Team-broker) (All PSA) Finish-Team-configuration))

))

(define-noos-scene Registering-Scene

:description "PSAs register their capabilities to the Librarian"

:roles (PSA Librarian)

:states (W2 W1 W0)

:initial-state W0

:final-states (W2)

:connections ((W0 W1 (Register (?x PSA) (?y Librarian) Capability-Set))

(W1 W2 (Inform (!y Librarian) (!x PSA) Capability-Set))

))

(define-noos-scene Brokering-Scene

:description "PA request Broker for a Constructive Adaptation or First-Depth

Search configuration"

:roles (Librarian Broker PA)

:states (W6 W5 W4 W3 W2 W1 W0)

:initial-state W0

:final-states (W6)

:connections ((W0 W1 (request (?x PA) (?y Broker) Problem-Specification))

(W1 W2 (request (!y Broker) (?z Librarian) any))

(W2 W3 (inform (!z Librarian) (!y Broker) Library))

(W3 W4 (inform (!y Broker) (!x PA) Broker-Message))

(W4 W5 (request (!x PA) (!y Broker) GUI-Message))

(W4 W6 (accept (!x PA) (!y Broker) Broker-Message))

(W5 W6 (inform (!y Broker) (!x PA) Broker-Message)))

)

(define-noos-scene Problem-Solving-Scene

:description "PA request a team of PSAs to solve a problem"

:roles (PSA PA)

:states (W2 W1 W0)

:initial-state W0

:final-states (W2)

:connections ((W0 W1 (Request (?x PA) (?y PSA) Start-Problem-solving))

(W1 W2 (Inform (!y PSA) (!x PA) Finish-Problem-solving))))

(define-scene Output-Scene as

roles = (Broker Librarian PA PSA)

states = (W0)

initial-state = W0

final-states = (W0)
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acces-states = ((PA (W0)) (PSA (W0)) )

exit-states = ((PA (W0)) (PSA (W0)) )

connections = ())

(define-noos-scene Request-Inform-Scene

:description "PSA requests another PSA in the team to solve some subtask"

:roles (PSA)

:states (W2 W1 W0)

:initial-state W0

:final-states (W2)

:connections ((W0 W1 (Request (?x Requester) (?y Informer) Start-Problem-solving))

(W1 W2 (Inform (!y Informer) (!x Requester) Finish-Problem-solving))))

(define-noos-scene Request-Wrapper-Scene

:description "PSA request a Wrapper to query some information source"

:roles (PSA)

:states (W2 W1 W0)

:initial-state W0

:final-states (W2)

:connections ((W0 W1 (Request (?x Requester) (?y Informer) any))

(W1 W2 (Inform (!y Informer) (!x Requester) any))))

(define-noos-scene Full-Problem-Solving-Scene

:description "External agent or GUI request PA to solve a problem using all

the steps (Full mode)"

:grid ((3 . 1)

((W0 0 0) (W1 1 0) (W2 2 0))

((W0 W1 :U) (W1 W2 :U)))

:roles (PA Requester)

:states (W2 W1 W0)

:initial-state W0

:final-states (W2)

:connections ((W0 W1 (Request (?x Requester) (?y PA) Full-Problem))

(W1 W2 (Inform (!y PA) (!x Requester) any))))



Appendix D

Specification of the
ISA-Ontology

(define-ontology ISA-Ontology

(creator "IIIA - CSIC")

(description "Information Search and Aggregation (ISA) Ontology")

(uses KM-Ontology))

(define-sort Var

(name any)

(sort Symbol))

(define-sort FT-Signature-Element

(name String))

(define-sort FT-Formula

(name String))

(define-sort (FT-Signature-Element Query-Model)

(name String "Query-Model")

(query Query)

(result Scored-Item Empty-Set)

(weight Number 1)

(source Source Empty-Set))

(define-sort (FT-Signature-Element Query-Models)

(name String "Query-Models")

(q-models Query-Model Empty-Set))

(define-sort (FT-Signature-Element Query)

(name String "Query")

(filters Filter Empty-Set))
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(define-sort (Query Domain-Query)

(name String "Domain-Query")

(terms Term Empty-Set)

(category Category))

(define-sort (Query Source-Query)

(name String "Source-Query")

(t-filters Filter Empty-Set)

(source Source))

(define-sort (Source-Query PMID-Query)

(name String "PMID-Query")

(pmid String))

(define-sort (Query Source-Queries)

(name String "Source-Queries")

(s-queries Source-Query Empty-Set))

(define-sort (FT-Signature-Element Term)

(name String "Term")

(term-correlations Term-Correlation Empty-Set)

(parent Term Empty-Set)

(children Term Empty-Set))

(define-sort (FT-Signature-Element Category)

(name String "Category")

(terms Term-Correlation Empty-Set)

(filters Filter-Weighting Empty-Set))

(define-sort (FT-Signature-Element Term-Correlation)

(name String "Term-Correlation")

(term Term)

(weight Number 1))

(define-sort (FT-Signature-Element Filter)

(name String "Filter")

(attribute String)

(value String))

(define-sort (FT-Signature-Element Filter-Weighting)

(name String "Filter-Weighting")

(filter Filter)

(weight Number 1))

(define-sort (FT-Signature-Element Item)

(name String "Item")

(id String)

(content any)

(date number)

(infoextra string))
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(define-sort (Item Bibliographic-Item)

(name String "Bibliographic-Item")

(UID String)

(Title String)

(Author String)

(Publication-date Date)

(Languages String)

(Publication-type String))

(define-sort (FT-Signature-Element Scored-Item)

(name String "Scored-Item")

(item Item)

(score Number))

(define-sort (FT-Signature-Element Scored-Items)

(name String "Scored-Items")

(s-items Scored-Item Empty-Set))

(define-sort (Sources Source)

(name String "Source")

(weight Number 1)

(search-attributes Attribute-Weighting Empty-Set)

(basic-attribute Attribute-Weighting)

(filter-attributes Attribute-Translation Empty-Set)

(content domain-model))

(define-sort (FT-Signature-Element Sources)

(name String "Sources")

(sources Source Empty-Set))

(define-sort (FT-Signature-Element Attribute-Weighting)

(name String "Attribute-Weighting")

(attribute String)

(weight Number))

(define-sort (FT-Signature-Element Attribute-Translation)

(name String "Attribute-Translation")

(domain-attribute String)

(source-attribute String))

(define-sort (FT-Signature-Element Search-Assessment)

(name String "Search-Assessment")

(assessment FT-Formula)

)

(define-sort (FT-Signature-Element Weighted-Pair)

(name String "Weighted-Pair")

(weight number)

(value number))



284 Appendix D. Specification of the ISA-Ontology

(define-sort (FT-Signature-Element Weighted-Pairs)

(name String "Weighted-Pairs")

(w-pairs Weighted-Pair Empty-Set))

(define-sort (FT-Signature-Element Item-Info)

(name String "Item-Info")

(item Item)

(pairs Weighted-Pair Empty-Set))

(define-sort (FT-Signature-Element Item-Infos)

(name String "Item-Infos")

(item-infos Item-Info Empty-Set))

(define-sort (FT-Signature-Element Weighting-Function)

(name "Weighting-Function"))
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Specification of the
ISA-Library

(define (Library Wim-Library

(creator "IIA-CSIC")

(description "WIM ISA Library with feature terms")

(uses ORCAS-KM-Ontology ISA-Ontology))

(define (Task :id Information-Search)

(name "Search")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

SATISFY-CONSULT

))))

(define (Task :id PCM-search)

(name "PCM-Search")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))
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(output-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

ASSESS-SEARCH-RESULT

SATISFY-CONSULT

))))

(define (Task :id Modify-search)

(name "Modify-Search")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

SATISFY-CONSULT

CHANGE-SCOPE

)))

(configuration-options "Configurable On Runtime")

)

(define (Task :id Critique-search)

(name "Critique-Search")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(output-roles

(define (var)

(name ’assesment)

(sort Assess-results)))

(competence

(define (Competence)

(postconditions

ASSESS-SEARCH-RESULT

)))

;(configuration-options "Produces-new-competence")

)
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(define (Skill :id Search-Assessment)

(name "Assess-results")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(output-roles

(define (var)

(name ’assesment)

(sort Search-Assessment)))

(competence

(define (Competence)

(postconditions

ASSESS-SEARCH-RESULT

)))

)

(define (Task :id Adapt-query)

(name "Adapt-query")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’elab-queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

ELABORATE-CONSULT

CHANGE-SCOPE

)))

)

(define (Skill :id Query-generalization)

(name "Query-generalization")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)
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(name ’elab-queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

GENERALIZE-QUERY

ELABORATE-CONSULT

)))

(knowledge-roles

Thesaurus)

)

(define (Skill :id Query-specialization)

(name "Query-specialization")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’elab-queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

SPECIALIZE-QUERY

ELABORATE-CONSULT

)))

(knowledge-roles

Thesaurus)

)

(define (Task :id Elaborate-query)

(name "Elaborate-query")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’?elab-queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

ELABORATE-CONSULT

))))
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(define (Skill :id Query-expansion-with-thesaurus)

(name "Query-expansion-with-thesaurus")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’elab-queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

ELABORATE-WITH-THESAURUS

)))

(knowledge-roles

Thesaurus)

)

(define (Skill :id Exhaustive-query-expansion-with-thesaurus)

(name "Exhaustive-query-expansion-with-thesaurus")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’elab-queries)

(sort Query-models)))

(competence

(define (Competence)

(postconditions

ELABORATE-WITH-THESAURUS-EXHAUSTIVE

)))

(knowledge-roles

Thesaurus)

)

(define (Skill :id Query-expansion-with-categories)

(name "Query-expansion-with-categories")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)
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(name ’elab-queries)

(sort Query-models)))

(competence

(define (Competence)

(postconditions

ELABORATE-WITH-CATEGORIES

)))

(knowledge-roles

Categories)

)

(define (Skill :id Exhaustive-query-expansion-with-categories)

(name "Exhaustive-query-expansion-with-categories")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’elab-queries)

(sort Query-models)))

(competence

(define (Competence)

(postconditions

ELABORATE-WITH-CATEGORIES-EXHAUSTIVE

)))

(knowledge-roles

Categories)

)

(define (Task :id Customise-query)

(name "Customise-query")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’query)

(sort Query-Model))

)

(output-roles

(define (var)

(name ’queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

CUSTOMISE-DOMAIN-QUERY

)))

)
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(define (Skill :id Query-customisation)

(name "Query-customisation")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’query)

(sort Query-Model))

)

(output-roles

(define (var)

(name ’queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

NON-EXHAUSTIVE-CUSTOMISATION

)))

(knowledge-roles

Source-Descriptions)

)

(define (Skill :id Exhaustive-query-customisation)

(name "Exhaustive-query-customisation")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’query)

(sort Query-Model))

)

(output-roles

(define (var)

(name ’queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

EXHAUSTIVE-CUSTOMISATION

)))

(knowledge-roles

Source-Descriptions)

)

(define (Skill :id Basic-query-customisation)

(name "Basic-query-customisation")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’query)
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(sort Query-Model))

)

(output-roles

(define (var)

(name ’queries)

(sort Query-Models)))

(competence

(define (Competence)

(postconditions

BASIC-CUSTOMISATION

)))

(knowledge-roles

Source-Descriptions)

)

(define (Task :id Retrieve)

(name "Retrieve")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’query)

(sort Query-Model))

)

(output-roles

(define (var)

(name ’result)

(sort Query-Model)))

(competence

(define (Competence)

(postconditions

SATISFY-QUERY

)))

)

(define (Skill :id Retrieval)

(name "Retrieval")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’query)

(sort Query-Model))

)

(output-roles

(define (var)

(name ’result)

(sort Query-Model)))

(competence

(define (Competence)

(postconditions

SATISFY-QUERY
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)))

)

(define (Task :id Retrieve-PMID)

(name "Retrieve-PMID")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’pmid)

(sort PMID-Query))

)

(output-roles

(define (var)

(name ’pubmedarticle)

(sort String)))

(competence

(define (Competence)

(postconditions

SATISFY-PMID

)))

)

(define (Skill :id Retrieval-PMID)

(name "Retrieval-PMID")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’pmid)

(sort PMID-Query))

)

(output-roles

(define (var)

(name ’pubmedarticle)

(sort String)))

(competence

(define (Competence)

(postconditions

SATISFY-PMID

)))

)

(define (Task :id Aggregate)

(name "Aggregate")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’q-models)

(sort Query-Models)))

(output-roles

(define (var)
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(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

AGGREGATE-ALL

)))

)

(define (Task :id Elaborate-items)

(name "Elaborate-items")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’q-models)

(sort Query-Models)))

(output-roles

(define (var)

(name ’item-infos)

(sort Item-Infos)))

(competence

(define (Competence)

(postconditions

ELABORATE-ITEM-INFOS

)))

)

(define (Skill :id Items-elaboration)

(name "Items-elaboration")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’q-model)

(sort Query-models)))

(output-roles

(define (var)

(name ’item-infos)

(sort Item-Infos)))

(competence

(define (Competence)

(postconditions

ELABORATE-ITEM-INFOS

))))

(define (Task :id Aggregate-items)
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(name "Aggregate-items")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’item-inf)

(sort Item-Info)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Item)))

(competence

(define (Competence)

(postconditions

AGGREGATE-ITEM-INFOS

)))

)

(define (Skill :id Arithmetic-mean)

(name "Arithmetic-mean")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’item-inf)

(sort Item-Info)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Item)))

(competence

(define (Competence)

(postconditions

AGGREGATE-WITH-ARITHMETIC-MEAN

)))

)

(define (Skill :id Weighted-mean)

(name "Weighted-mean")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’item-inf)

(sort Item-Info)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Item)))

(competence

(define (Competence)

(postconditions

AGGREGATE-WITH-WEIGHTED-MEAN
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)))

)

(define (Skill :id OWA)

(name "OWA")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’item-inf)

(sort Item-Info)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Item)))

(competence

(define (Competence)

(postconditions

AGGREGATE-WITH-OWA

)))

(knowledge-roles

Weighting-Function)

)

(define (Skill :id WOWA)

(name "WOWA")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’item-inf)

(sort Item-Info)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Item)))

(competence

(define (Competence)

(postconditions

AGGREGATE-WITH-WOWA

)))

(knowledge-roles

Weighting-Function))

(define (Task-Decomposer :id Metasearch)

(name "Metasearch")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)
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(sort Query-Model)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

SATISFY-CONSULT

)))

(subtasks

Elaborate-query

Customise-query

Retrieve

Aggregate

))

(define (Task-Decomposer :id Metasearch-without-elaboration)

(name "Metasearch-without-elaboration")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

SATISFY-CONSULT

)))

(subtasks

Customise-query

Retrieve

Aggregate

))

(define (Task-Decomposer :id Aggregation)

(name "Aggregation")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’q-models)

(sort Query-models)))

(output-roles

(define (var)

(name ’s-items)
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(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

AGGREGATE-ALL

)))

(subtasks

Elaborate-items

Aggregate-items

))

(define (Task-Decomposer :id PCM-metasearch)

(name "PCM-Metasearch")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

ASSESS-SEARCH-RESULT

SATISFY-CONSULT

)))

(subtasks

Search

Critique-search

Modify-search

)

)

(define (Task-Decomposer :id Modify-metasearch)

(name "Modify-metasearch")

(ontologies ISA-Ontology)

(input-roles

(define (var)

(name ’consult)

(sort Query-Model)))

(output-roles

(define (var)

(name ’s-items)

(sort Scored-Items)))

(competence

(define (Competence)

(postconditions

SATISFY-CONSULT
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CHANGE-SCOPE

)))

(subtasks

Adapt-query

Customise-query

Retrieve

Aggregate

)

)





Appendix F

ORCAS Services

This appendix describes the interaction protocol and the format of the messages
to communicate between agents in the ORCAS e-Institution and external agents
requesting some ORCAS service.

We distinguish between two types of services:

• information services are used to provide external agents information on
the components registered in a library;

• operation services are used by external agents to request institutional
agents to perform some action, like configuring a team.

These are the ORCAS operation services:

1. Brokering : to obtain a task-configuration satisfying a specification of prob-
lem requirements.

2. Team formation: to form and instruct a team of agents with the capabili-
ties required by a task-configuration.

3. Teamwork : solving a problem by a recently configured team, given a team-
identifier.

4. Cooperative Problem Solving : this service comprises all the previous ser-
vices within a single request-inform protocol.

The ORCAS institutional services are accessed through a Personal Assistant
(PA) agent, except the informational services, which are provided by the Librar-
ian and can be accessed directly by an external agent. The PA is the mediator
between the user and the system, but also between the ORCAS institution and
external agents willing to request some of the ORCAS services. The PA agent
understands both the ORCAS ontology and the specific application ontology (e.g.
the WIM library), freeing the user of knowing them.

In ORCAS the PA role is defined as an external role, since a PA is responsible
for interacting with a human user, and needs application specific knowledge in
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order to support the user during the problem specification stage. Nonetheless,
the ORCAS agent platform provides a generic model of PA that is equipped
with the social knowledge required to participate in the ORCAS e-Institution.
This PA acts as a broker with respect to other agent willing to use the ORCAS
services. In spite of learning the different scenes of the ORCAS institution and
communicating other agents directly, an external requester have to communicate
only with the PA.

Since the language used by an external agent may differ from the local com-
munication language, there is another kind of agent that mediates between the
external agent, and the PA running locally: the FIPA-Mediator. The ORCAS-
proxy is responsible for adapting the language used by the external agent to the
local language, and viceversa; specifically, it is able to translate messages from
the FIPA-ACL to the NOOS ACL, and viceversa. The content is encoded using
the FIPA Specification Language (SL) and either XML or RDF to serialize the
data.

We focus now on the technical aspects required by external agents to use the
ORCAS services through the FIPA-Mediator agent. §F.1 describes the data and
protocol for the different services. §F.2 deals with the ontologies and format of
the data required by the interaction protocols. §F.4 three contains examples of
the FIPA-ACL messages to be interchanged.

F.1 Interaction protocols for the ORCAS ser-
vices

Figure F.1 shows the interaction protocols for the different ORCAS services using
the FIPA style. These diagrams are called Message Sequence Charts (MSC).
Each vertical line represents the time running, and horizontal lines represent
messages, the vertical rectangles represent agent processing operations, and the
rhombuses represent choice points.

Figure F.1.a) shows the MSC for the Brokering sevice: The MAS partici-
pating in the ORCAS e-institution is configured at the knowledge-level, using
the ORCAS-KMF as the Agent Capability Description Language. The external,
FIPA-compliant agent, sends a request message with a problem-specification and
receives a task-configuration.

Figure F.1.b) shows the MSC for the Team Formation service: a team of
problem-solving agents is formed and instructed to solve problems according
to a task configuration. The external client sends a request message with a
task-configuration and receives the identifier of the already formed team.

Figure F.1.c) shows the MSC for the Teamwork service: a problem is solved
by a team of problem-solving agents. The team should be previously formed,
ensuring that team members have committed to solve the tasks required by
the task-configuration in cooperation with the other team-mates. The external
FIPA compliant client sends a request message with a problem instance and
the identifier of a previously formed team. Data structures for this protocol are
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Figure F.1: FIPA Message Sequence Charts for the ORCAS services
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described in §F.2.
Figure F.1.d) shows the MSC for the Cooperative Problem-Solving service:

The requester sends a request message to the FIPA-Mediator containing a prob-
lem specification that is made up of the problem requirements and the problem
data. If all goes right with the protocol, at the end the PA sends the result
to the FIPA-Mediator, which serializes the data and sends an inform with the
result, a set of scored items.

F.2 Data structures and XML format

Problem-Specification
Parameter Description Type Cardinality
task-name Name of the task to be

configured
String Single

preconditions Constraints over the
inputs of the task

Signature-element Multiple

postconditions Constraints over the
output of the task, re-
lations between ouput
and input

Signature-element Multiple

input-roles Inputs of task Formula Multiple
knowledge-
roles

Domain models of the
knowledge to be used

Signature-element Multiple

Table F.1: Problem specification

Task-Configuration
Parameter Description Type Cardinality
task-name Name of the task being

configured
Symbol Single

input-roles Input roles of the task Signature-element Multiple
capability-
configuration

A configuration for a
capability bound to the
task.

Capability-
configuration

Single

Table F.2: Task configuration

This is XML grammar for the content language to be used when accessing
ORCAS services.

Problem-Specification:=
<problem-specification>
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TD-Configuration (is a Capability-Configuration)
Parameter Description Type Cardinality
capability-
name

Name of the capability
being configured

Symbol Multiple

input-roles Input roles of the Task
Decomposer

Signature-
Element

Multiple

subtasks-
configuration

Configuration for the
subtasks

Task-
configuration

Multiple

operational-
description

Intermediate roles and
program description

Operational-
Description

Single

Table F.3: Task-Decomposer configuration

Skill-Configuration (is a Capability-Configuration)
Parameter Description Type Cardinality
capability-
name

Name of the capability
being configured

Symbol Multiple

input-roles Input roles of the Skill Signature-
Element

Multiple

domain-
models

Names of the domain-
models to be used

Symbol Multiple

knowledge-
roles

Domain models to be
used by the capability

Signature-element Multiple

Table F.4: Skill configuration
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<task-name> Symbol</task-name>
<preconditions>Formula*</preconditions>
<postconditions>Formula*</postconditions>
<inputs>Signature-Element*</preconditions>
<knowledge-roles>Signature-Element*</ knowledge-roles >

</problem-specification>

Task-Configuration :=
<task-configuration>

<task-name> Symbol </task-name>
<capability-configuration>Capability-Configuration</capability-configuration>

</task-configuration>

Capability-Configuration:= Task-Decomposer-Configuration |
Skill-Configuration

Task-Decomposer-Configuration :=
<task-decomposer-configuration>

<capability-name> Symbol </capability-name>
<subtasks-configuration>Task-Configuration</subtasks-configuration>

</Task-Decomposer-configuration>

Skill-Configuration :=
<skill-configuration>

<capability-name> Symbol </task-id>
<domain-models>Symbol*</domain-models>

</skill-configuration>

Formula:= <formula>String</formula>

Signature-Element:= <signature-element>String</signature-element>

Symbol:= String

F.3 ORCAS services in the WIM application

This section describes the aspects of the WIM ontology to be used by external
clients requesting for some of the ORCAS services in the WIM application. Only
those concepts used to communicate with the FIPA-Mediator are considered,
which are basically keyword-based queries and scored-items, while other con-
cepts concepts not required by an external agent to communicate with WIM are
omitted..

User-Consult:=
<user-consult>

<query>Domain-Query </query>
<sources>Source*</source>

</user-consult>

Domain-Query :=
<query>

<keywords> Keyword* </keywords>
<filters>Filter*</filters>
<category>Category</category>

</query>

Filter:=
<filter>

<attribute>Attribute</attribute>
<value>String</value>

</filter >
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Source:= <source>Symbol</source>

Keyword:= <keyword>Symbol</keyword>

Scored-Item :=
<scored-item>

<item>Item</item>
<score>Number</score>

</scored-item>

Item :=
<item>

<id>String </id>
<title>String</title>
<author>String</author>

</item>

Source := Pubmed | Medline-IGM | Healthstar-IGM | ISOCO

Category:= Good-Evidence | Medium-Evidence |
Poor-Evidence | Evidence

Attribute:= Author Name | Begin Year | End Year |
Publication Type | Language | Journal

F.4 FIPA examples

F.4.1 Brokering

(request
:sender (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
:receiver (set (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS))
:reply-with configuration-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content

(action
(agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
(Brokering
:problem-specification
(Problem-Specification
:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?> :value
<problem-specification>

<task-name> Search </task-name>
<postconditions>

<formula>Satisfy-Consult</formula>
<formula>Non-Exhaustive-Customization</formula>
<formula>Aggregate-With-Arithmetic-mean</formula>

</postconditions>
<input-roles>

<signature-element>Query-Model</signature-element>
</input-roles>
<knowledge-roles>

<signature-element>Source-Descriptions</signature-element>
</knowledge-roles>
</problem-specification>))))

(agree ...)

(inform
:sender (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS)
:receiver (set (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE))
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:reply-with configuration-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content

(result
(action )
(Task-configuration

:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?>
:value <task-configuration></task-configuration>))))

F.4.2 Team formation

(request
:sender (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
:receiver (set (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS))
:reply-with team-request 18237
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content
(action

(agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS)
(Team-Formation
:task-configuration
(Task-Configuration
:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?> :value
<task-configuration>...</task-configuration>))))))

(agree ...)

(inform
:sender (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS)
:receiver (set (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE))
:reply-with team-request 18237
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content

(result
(action ... )

(Team-ID
:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?> :value
<team-id> Team-18237 </team-id>))))

F.4.3 Problem-Solving

(request
:sender (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
:receiver (set (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS))
:reply-with problem-solving-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content

(action
(agent-identifier :name \wim\-Proxy@wim.iiia.csic.es:7778/NOOS)
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(Problem-Solving
:problem-instance
(Problem-Instance
:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?> :value
<user-consult>

<query>
<keywords>

<keyword>Ofloxacin</keyword>
<keyword>Ofloxacin</keyword>
<keyword>Guidelines</keyword>

</keywords>
</query>
<sources>

<source>Pubmed</source>
<source>ISOCO<source>

</sources>
</user-consul
:team-ID
(Team-ID:

:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?> :value
<team-id> Team-18237 </team-id>))))

(agree ...)

(inform
:sender (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS)
:receiver (set (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE))
:reply-with problem-solving-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content

(result
(action ...)
(Problem-Solution
:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?>
:value
<scored-items>...</scored-items>))))

F.4.4 Cooperative Problem-Solving
(request

:sender (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
:receiver (set (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS))
:reply-with configuration-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content

(action
(agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE)
(FullProblemSolving
:problem-specification

(ProblemSpecification
:encoding <xml? version="1.0" encoding ="ISO-8859-1"> :value
<problem-specification>

<task-name> Search </task-name>
<postconditions>

<formula>Satisfy-Consult</formula>
<formula>Non-Exhaustive-Customization</formula>
<formula>Aggregate-With-Arithmetic-mean</formula>

</postconditions>
<input-roles>
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<signature-element>Query-Model</signature-element>
</input-roles>
<knowledge-roles>

<signature-element>Source-Descriptions</signature-element>
</knowledge-roles>
</problem-specification>)

:problem-instance
(Problem-Instance

:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?> :value
<user-consult>

<query>
<keywords>

<keyword>Ofloxacin</keyword>
<keyword>Ofloxacin</keyword>
<keyword>Guidelines</keyword>

</keywords>
</query>
<sources>

<source>Pubmed</source>
<source>ISOCO<source>

</sources>
</user-consul
:team-ID
(Team-ID:

:encoding <xml? version=’1.0’ encoding =’ISO-8859-1’?> :value
<team-id> Team-18237 </team-id>))))

(agree ...)

(inform
:sender (agent-identifier :name WIM-Proxy@wim.iiia.csic.es:7778/NOOS)
:receiver (set (agent-identifier :name uva-agent@a1136.fmg-uva-nl:1099/JADE))
:reply-with problem-solving-request18236
:encoding String
:language FIPA-SL0
:ontology WIM-Ontology
:protocol FIPA-request
:conversation-id configuration18236
:content

(result
(action ... )
(Problem Solution: :encoding <xml? version="1.0"

encoding ="ISO-8859-1"?> :value
<scored-items>

<scored-item>
<item>

<Identifier>PMID1756688</Identifier>
<Title>Treatment of lower respiratory infections in outpatients
with ofloxacin compared with erythromycin.</title>
<Author>Peugeot RL, Lipsky BA, Hooton TM, Pecoraro RE.</Author>

</item>
<score>0.02</score>

</scored-item>
<scored-item>

<item>
<Identifier>PMID1864291</Identifier>
<Title>Role of quinolones in the treatment of bronchopulmonary infections,
particularly pneumococcal and community-acquired pneumonia..</Title>
<Author>Thys JP, Jacobs F, Byl B.</Author>

</item>
<score>0.02</score>

</scored-item>
</scored-items>))))
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F.5 The Personal Assistant

The Personal Assistant (PA) mediates between the human user or an external
agent and the other agents (institutional and PSAs). The PA helps the user
specifying a problem by using the user’s domain ontology, and avoids him know-
ing technical details like the agent communication language and the interaction
protocols (scenes in the ORCAS e-Institution underlying the WIM application).
Specifically, the PA is able to transform the user specification of the problem
into a problem specification using the ORCAS Agent Capability Description Lan-
guage (ACDL). This problem specification contains the problem requirements to
be used by the institutional agents to form a new team of agents that is able to
solve the problem at hand according to the requirements specified by the user.

The PA brings an added value to the WIM services, for it is able to organize
the user tasks as a collection of interests and goals and schedule them to update
the results periodically. An interest refers to a topic or a subject the user is
interested in while goals are specific issues the user wants to search information
on and are represented as specific queries to look up on bibliographic databases.
An interest is specified as a collection of goals together with a set of preferences
(problem requirements, configuration strategy, scheduling options, etc.), and
each goal is specified as a consultation (keywords, filters, category, information
sources, etc.), plus a set of preferences. The preferences of a goal are inherited
from the interest, but they can be refined for any particular goal. We will show
some examples of the functionality offered by the PA to human users through
a Web interfaced defined for the WIM application. In order to provide a Web
interface to the application, we have connected the ORCAS e-Institution to an
http server through a pseudo agent called the www-mediator, as showed in Figure
F.2.

Figure F.2: Web interface to WIM

The http-server calls a function of the www-mediator using data obtained
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from a Web form, and builds a results http page using the data returned by the
www-mediator after communicating with the PA. Therefore, the www-mediator
can be seen as an adaptor or wrapper that agentifies the http-server so as to allow
the PA to interact with it. The www-mediator operates by accepting function
calls from the http-server, translating the Web data format to the data format
used in the NOOS agent platform, and communicating with the PA using the
agent communication language.

Figure F.3 shows an example of a user interested in three topics: Cannabis,
AIDS, and Pneumonia prognosis and therapy. On the right side, the figure
shows the specification of the interest called AIDS, which has two goals: AIDS
classification and AIDS therapy.

Figure F.3: Managing Interests and goals

Figure F.4 shows the interface used to edit one goal. The user can specify up
to three keywords to characterize the subject of the information search, together
with a category from the knowledge base on Evidence Based Medicine (EBM).
Categories can be used to enrich the user’s query and rank the information
retrieved in form of scored items according to some of the subjects typically
required by EBM practitioners (e.g. references on diagnosis and therapy, or
clinical protocols), or by a desired degree of evidence for the references to be
retrieved (this is defined by a three-levels ordinal scale: Good, Medium, and
Poor Evidence Quality). The user may also specify requirements, such as the
type of query elaboration desired and the aggregation operator preferred. Search
filters like publication date periods (Begin-Year and End-Year), author name,
publication type, language, and journal.

In addition, goals can be scheduled by the PA to repeat the consultation
periodically, allowing the user to automatically update the results for each goal.
Figure F.5 shows the interface used to schedule the execution of one goal. A goal
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Figure F.4: Goal editing

can be defined as permanent or volatile (executed only once). When it is stated
as permanent, the user can specify the typical schedulling options for periodic
execution of tasks, such as time, week-day and month-day.
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Figure F.5: Scheduling



Appendix G

Glossary of abbreviations

ACDL Agent Capability Description Language

CPS Cooperative Problem Solving (a process involving agents)

DAML DARPA Agent Markup Language

EBM Evidence-Based Medicine

HTN Hierarchical Task Network (a type of planning)

IGM Internet Grateful Med (a Web-based search-engine)

ISA Information Search Library

KB Knowledge-Broker (an ORCAS agent role)

KMF Knowledge Modelling Framework

KMO Knowledge Modelling Ontology

MAS Multi Agent Systems

MSC Message Chart Diagram

MeSH Medical Subject Headings

ORCAS Open, Reusable and Configurable multi-Agent Systems

OWA Ordered Weighted Average

PA Personal Assistant (an ORCAS agent role)

PSA Problem-Solving Agent (an ORCAS agent role)

PSM Problem Solving Method

Pubmed Public Medline (a Web-based search-engine)
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SWS Semantic Web Services

TB Team-Broker (an ORCAS agent role)

TMD Task-Method-Domain (a model used in Knowledge Modelling)

WIM Web Information Mediator (an ORCAS based application to search in-
formation in the Internet)

WOWA Weighted OWA
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Saxex : a case-based reasoning system for generating expressive musical per-
formances. Journal of New Music Research, 27 (3):194–210.

[Arens et al., 1993] Arens, Y., Chee, C. Y., Hsu, C.-N., and Knoblock, C. A.
(1993). Retrieving and integrating data from multiple information sources.
International Journal of Cooperative Information Systems, 2(2):127–158.

[Armengol and Plaza, 1997] Armengol, E. and Plaza, E. (1997). Induction of
feature terms with indie. In van Someren, M. and Widmer, G., editors, Euro-

317



318 Bibliography

pean Conference on Machine Learning, Lecture Notes in Artificial Intelligence.
Springer-Verlag.

[Armengol and Plaza, 2001] Armengol, E. and Plaza, E. (2001). Similarity as-
sessment for relational CBR. In Case-Based Reasoning Research and Devel-
opment, volume 2080 of Lecture Notes in Computer Science, pages 44–58.

[Atkinson, 1997] Atkinson, S. (1997). Engineering Software Library Systems.
PhD thesis, School of Information Technology, University of Queensland, 1997.
To appear.

[Bansal and Vidal, 2003] Bansal, S. and Vidal, J. M. (2003). Matchmaking of
web services based on the DAML-S service model. In Proceedings of the
Second International Joint Conference on Autonomous Agents and Multiagent
Systems.

[Barbuceanu and Fox, 1995] Barbuceanu, M. and Fox, M. (1995). COOL: a
language for describing coordination in multi-agent systems. In Proceedings of
the First International Conference in Multi-Agent Systems ICMAS’95, pages
17–24. AAAI Press.

[Bastide et al., 1999] Bastide, R., Sy, O., and Palanque, P. (1999). Formal spec-
ification and prototyping of corba systems. In Proceedings of 13th European
Conference on Object-Oriented Programming, volume 1628 of Lecture Notes
in Computer Science, pages 474–494. Springer-Verlag.

[Beckers et al., 1994] Beckers, R., Holland, O., and Deneubourg, J. (1994). From
local actions to global tasks: Stigmergy and collective robotics. In Artificial
Life IV. 4th International Workshop on the Synthesis and Simulation of Living
Systems. MIT Press.

[Benjamins, 1993] Benjamins, R. (1993). Problem Solving Methods for Diagno-
sis. PhD thesis, University of Amsterdam.

[Benjamins, 1997] Benjamins, R. (1997). Problem-solving methods in cy-
berspace. In Proceedingsof the Workshop on Problem-Solving Methods for
Knowledge-based Systems of IJCAI.

[Benjamins et al., 1996a] Benjamins, R., Fensel, D., and Chandrasekaran, B.
(1996a). PSMs do IT. Summary of track on Sharable and Reusable Problem-
Solving Methods. KAW’96.

[Benjamins et al., 1999] Benjamins, R., Wielinga, B., Wielemaker, J., and
Fensel, D. (1999). Towards brokering problem-solving knowledge on the in-
ternet. In Knowledge Acquisition, Modeling and Management, pages 33–48.

[Benjamins et al., 1996b] Benjamins, V., de Barros, L., and Andre, V. (1996b).
Constructing planners through problem-solving methods. In Proceedings of the
10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop.



Bibliography 319

[Benjamins et al., 1998] Benjamins, V., Plaza, E., Motta, E., Fensel, D., Studer,
R., Wielinga, B., Schreiber, G., Zdrahal, Z., and Decker, S. (1998). Ibrow3:
An intelligent brokering service for knowledge-component reuse on the world-
wide web.

[Benjamins et al., 1996c] Benjamins, V. R., Fensel, D., and Straatman, R.
(1996c). Assumptions of problem-solving methods and their role in knowl-
edge engineering. In European Conference on Artificial Intelligence, pages
408–412.

[Berners-Lee et al., 1999] Berners-Lee, T., Fischetti, M., and Dertouzos, M.
(1999). Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web by its Inventor. Harper, San Francisco.

[Biggerstaff and Perlis, 1989] Biggerstaff, T. J. and Perlis, A. J., editors (1989).
Software Reusability. ACM press.

[Birmingham et al., 1995] Birmingham, W. P., Durfee, E. H., Mullen, T., and
Wellman, M. P. (1995). The distributed agent architecture of the university
of michigan digital library (extended abstract). In AAAI Spring Symposium
on Information Gathering.

[Bond and Gasser, 1988a] Bond, A. and Gasser, L., editors (1988a). Readings
in distributed Artificial Intelligence. Morgan Kaufmann Publishers.

[Bond and Gasser, 1988b] Bond, A. H. and Gasser, L. (1988b). An analysis of
problems and research in dai. In Bond, A. H. and Gasser, L., editors, Readings
in Distributed Artificial Intelligence, pages 61–70. Kaufmann, San Mateo, CA.

[Börstler, 1995] Börstler, J. (1995). Feature-oriented classification for software
reuse. In Proceedings Seventh International Conference of Software Engineer-
ing and Knowledge Engineering.

[Bratman, 1988] Bratman, M. E. (1988). Plans and resource bounded practical
reasoning. Computational Intelligence, 4:249–355.

[Bratman, 1990] Bratman, M. E. (1990). What is intention? In Cohen, P. R.,
Morgan, J., and Pollack, M. E., editors, Intentions in Communication, pages
15–31. MIT Press, Cambridge, MA.

[Bratman, 1992] Bratman, M. E. (1992). Shared cooperative activity. Philo-
sophical Review, 101:327–341.

[Bratman et al., 1991] Bratman, M. E., Israel, D., and Pollack, M. (1991). Plans
and resource-bounded practical reasoning. In Cummins, R. and Pollock, J. L.,
editors, Philosophy and AI: Essays at the Interface, pages 1–22. The MIT
Press, Cambridge, Massachusetts.



320 Bibliography

[Brazier et al., 1997] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R.,
and Treur, J. (1997). DESIRE: Modelling multi-agent systems in a compo-
sitional formal framework. International Journal of Cooperative Information
Systems, 6(1):67–94.

[Brazier et al., 2002] Brazier, F. M. T., Jonker, C. M., and Treur, J. (2002).
Principles of component-based design of intelligent agents. Data Knowledge
Engineering, 41(1):1–27.

[Breuker, 1994] Breuker, J. (1994). A suite of problem types. In Breuker, J. and
Van de Velde, W. W., editors, CommonKADS Library for Expertise Modeling,
volume 21 of Frontiers in Artificial Intelligence and Applications, pages 57–88.
IOS-Press.

[Breuker and Van de Velde, 1994] Breuker, J. and Van de Velde, W., editors
(1994). COMMONKADS Library for Expertise Modelling. IOS Press.

[Brown and Wallnau, 1996] Brown, A. W. and Wallnau, K. C. (1996). Engineer-
ing of component-based systems. In Component-Based Software Engineering:
Selected Papers from the Software Engineering Institute, pages 7–15. IEEE
Computer Society Press.

[Bryson et al., 2002] Bryson, J. J., Martin, D., McIlraith, S., and Stein, L. A.
(2002). Agent-based composite services in daml-s: The behavior-oriented
design of an intelligent semantic web. In Zhong, N., Liu, J., and Yao, Y.,
editors, Web Intelligence. Springer-Verlag.

[Buchanan et al., 1983] Buchanan, B. et al. (1983). Constructing an expert sys-
tem. In Hayes-Roth, F., Waterman, D., and D.Lenat, editors, Building Expert
Systems. Addison-Wesley.

[Burmeister, 1996] Burmeister, B. (1996). Models and methodology for agent-
oriented analysis and design. In Fischer, K., editor, Proceedings of the Work-
shop on Agent-Oriented Programming and Distributed Systems. DFKI Docu-
ment D-96-06.

[Bussler et al., 2002] Bussler, C., Maedche, A., and Fensel, D. (2002). A con-
ceptual architecture for semantic web enabled web services. SIGMOD Record,
31(4):24–29.

[Butler and Duke, 1998] Butler, S. and Duke, R. (1998). Defining composition
operators for object interaction. Object Oriented Systems, 5(1):1–16.

[Bylander and Chandrasekaran, 1988] Bylander, T. and Chandrasekaran, B.
(1988). Generic tasks in knowledge-based reasoning: The right level of ab-
straction for knowledge acquisition. In Gaines, B. and Boose, J., editors,
Knowledge Acquisition for Knowledge Based Systems, volume 1, pages 65–77.
Academic Press.



Bibliography 321

[Cammarata et al., 1983] Cammarata, S., MacArthur, D., and Steeb, R. (1983).
Strategies of cooperation in distributed problem solving. In Proceedins of the
Eighth International Joint Conference on Artificial Intelligence.

[Canal et al., 2001] Canal, C., Fuentes, L., Pimentel, E., Troya, J. M., and Val-
lecillo, A. (2001). Extending CORBA interfaces with protocols. The Computer
Journal, 44(5):448–462.

[Carbonell, 2000] Carbonell, J. (2000). ISMIS invited talk.

[Cardoso and Sheth, 2002] Cardoso, J. and Sheth, A. P. (2002). Semantic e-
workflow composition. Technical report, LSDIS Lab, Department of Computer
Science, University of Georgia.

[Chandrasekaran, 1986] Chandrasekaran, B. (1986). Generic tasks in knowledge-
based reasoning: High-level building blocks for expert system design. IEEE
Expert, 1:23–30.

[Chandrasekaran, 1987] Chandrasekaran, B. (1987). Towards a functional ar-
chitecture for intelligence based on generic information processing tasks. In
International Joint Conference on Artificial Intelligence, pages 1183–1192.

[Chandrasekaran, 1990] Chandrasekaran, B. (1990). Design problem solving: A
task analysis. AI Magazine, 11(4):59–71.

[Chandrasekaran and Johnson, 1993] Chandrasekaran, B. and Johnson, T.
(1993). Generic tasks and task structures: History, critique and new direc-
tions. In David, J., Krivine, J., and Simmons, R., editors, Second Generation
Expert Systems, pages 239–280. Springer-Verlag.

[Chandrasekaran et al., 1992] Chandrasekaran, B., Johnson, T., and Smith, J.
(1992). Task structure analysis for knowledge modeling. Communications of
the ACM, 33(9):124–136.

[Chandrasekaran et al., 1998] Chandrasekaran, B., Josephson, J., and Ben-
jamins, R. (1998). The ontology of tasks and methods. In In Proceedings of the
11th Knowledge Acquisition Modeling and Management Workshop, KAW’98,
Banff, Canada, April 1998.

[Chawathe et al., 1994] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland,
K., Papakonstantinou, Y., Ullman, J., and Widom, J. (1994). The TSIMMIS
project: Integration of heterogeneous information sources. In 16th Meeting of
the Information Processing Society of Japan, pages 7–18.

[Cheyer and Martin, 2001] Cheyer, A. and Martin, D. (2001). The open agent
architecture. Journal of Autonomous Agents and Multi-Agent Systems,
4(1):143–148. OAA.

[Clancey, 1989] Clancey, W. (1989). The knowlede level reinterpreted. Machine
Learning, 4:285–291.



322 Bibliography

[Clement and Durfee, 1999] Clement, B. J. and Durfee, E. H. (1999). Top-down
search for coordinating the hierarchical plans or multiple agents. In Etzioni,
O., Muller, J. P., and Bradshaw, J. M., editors, Proceedings of the Third
International Conference on Autonomous Agents (Agents’99), pages 252–259,
Seattle, WA, USA. ACM Press.

[Clements, 1996] Clements, P. C. (1996). From subroutines to subsystems:
Component-based software development. In Component-Based Software En-
gineering: Selected Papers from the Software Engineering Institute, pages 3–6.
IEEE Computer Society Press.

[Cohen and Levesque, 1990] Cohen, P. R. and Levesque, H. J. (1990). Persis-
tence, intention, and commitment. In Cohen, P. R., Morgan, J., and Pollack,
M. E., editors, Intentions in Communication, pages 33–69. MIT Press, Cam-
bridge, MA.

[Cohen and Levesque, 1991] Cohen, P. R. and Levesque, H. J. (1991). Team-
work. Nous, 25(4):487–512.

[Decker, 1996] Decker, K. (1996). TAEMS: A Framework for Environment Cen-
tered Analysis and Design of Coordination Mechanisms. In Foundations of
Distributed Artificial Intelligence, pages 429–448. G. O’Hare and N. Jennings
(eds.), Wiley Inter-Science.

[Decker and Lesser, 1995] Decker, K. and Lesser, V. R. (1995). Designing a fam-
ily of coordination algorithms. In Lesser, V., editor, Proceedings of the First
International Conference on Multi-Agent Systems, pages 73–80, San Francisco,
CA, USA. The MIT Press: Cambridge, MA, USA.

[Decker et al., 1997a] Decker, K., Pannu, A., Sycara, K., and Williamson, M.
(1997a). Designing behaviors for information agents. In Proceedings of the 1st
International Conference on Autonomous Agents, pages 404–412. ACM Press.

[Decker et al., 1997b] Decker, K., Sycara, K., and Williamson, M. (1997b).
Middle-agents for the internet. In Proceedings the 15th International Joint
Conference on Artificial Intelligence, pages 578–583.

[Decker et al., 1996] Decker, K., Williamson, M., and Sycara, K. (1996). Match-
making and brokering. In Proceedings of the 2nd International Conference in
Multi-Agent Systems.

[Decker and Lesser, 1992] Decker, K. S. and Lesser, V. R. (1992). Generalizing
the partial global planning algorithm. International Journal of Intelligent and
Cooperative Information Systems, 1(2):319–346.

[Dellarocas, 2000] Dellarocas, C. (2000). Contractual agent societies negotiated
shared connote and social control in open multi-agent systems. In Proceed-
ings of the Workshop on Norms and Institutions in Multi-Agent Systems,
ICMAS’02.



Bibliography 323

[Dellarocas and Klein, 1999] Dellarocas, C. and Klein, M. (1999). Civil agent
societies: Tools for inventing open agent-mediated electronic marketplaces. In
Proceedings ACM Conference on Electronic Commerce (EC-99).

[Dignum et al., 2001] Dignum, F., Dunin-Keplicz, B., and Verbrugge, R. (2001).
Agent theory for team formation by dialogue. In Intelligent Agents VII, Agent
Theories Architectures and Languages, volume 1986 of Lecture Notes in Arti-
ficial Intelligence, pages 150–166. Springer-Verlag.

[Dignum et al., 2002] Dignum, V., Meyer, J.-J., Weigand, H., and Dignum, F.
(2002). An organization-oriented model for agent societies. In Proceedings of
International Workshop on Regulated Agent-Based Social Systems: Theories
and Applications.

[d’Inverno et al., 1997] d’Inverno, M., Fisher, M., Lomuscio, A., Luck, M.,
de Rijke, M., Ryan, M., and Wooldridge, M. (1997). Formalisms for multi-
agent systems. Knowledge Engineering Review, 12(3).

[d’Inverno et al., 1998] d’Inverno, M., Kinny, D., and M.Luck (1998). Interac-
tion protocols in agentis. In Proceedings of the Third International Conference
on Multi-Agent Systems ICMAS’98, pages 112–119.

[Doran and Palmer, 1995] Doran, J. and Palmer, M. (1995). The eos project:
modelling prehistoric sociocultural trajectories. In Aplicaciones informaticas
en Arqueologia: Teoria y Sistemas. Proceedings of First International Sympo-
sium on Computing and Archaeology (1991), volume 1.

[Doran et al., 1997] Doran, J., S.Franklin, Jennings, N., and T.J.Norman
(1997). On cooperation in multi-agent systems. The Knowledge Engineering
Review, 12(3):1–6. Panel Discussion at the First UK Workshop on Founda-
tions of Multi-Agent Systems.

[Duke et al., 1991] Duke, R., King, P., Rose, G., and Smith, G. (1991). The
object-z specification language. Technical report, Department of Computer
Science, University of Queensland.

[Durfee, 1988] Durfee, E. H. (1988). Coordination of Distributed Problem
Solvers. Kluwer Academic Publishers.

[Durfee and Lesser, 1989] Durfee, E. H. and Lesser, V. (1989). Negotiating task
decomposition and allocation using partial global planning. In Gasser, L. and
Huhn, M., editors, Distributed Artificial Intelligence Volume II, pages 229–
244. Pitman Publishing.

[Durfee et al., 1998] Durfee, E. H., Mullen, T., Park, S., Vidal, J. M., and Wein-
stein, P. (1998). The dynamics of the UMDL service market society. In Klusch,
M. and Weiss, G., editors, Cooperative Information Agents II, Lecture Notes
in Artificial Intelligence, pages 55–78. Springer.



324 Bibliography

[Ephrati and Rosenschein, 1996] Ephrati, E. and Rosenschein, J. S. (1996). De-
riving consensus in multiagent systems. Artificial Intelligence, 87(1-2):21–74.

[Erickson, 1996a] Erickson, T. (1996a). An agent-based framework for interop-
erability. In Bradshaw, J. M., editor, Software Agents. AAAI Press.

[Erickson, 1996b] Erickson, T. (1996b). Designing agents as if people mattered.
In Bradshaw, J. M., editor, Software Agents. AAAI Press.

[Eriksson et al., 1995] Eriksson, H., Shahar, Y., Tu, S. W., Puerta, A. R., and
Musen, M. A. (1995). Task modeling with reusable problem-solving methods.
Artificial Intelligence, 79(2):293–326.

[Erol, 1995] Erol, K. (1995). Hierarchical Task Network Planning: Formaliza-
tion, Analysis and Implementation. PhD thesis, University of Maryland.

[Erol et al., 1994] Erol, K., Hendler, J., and Nau, D. S. (1994). HTN planning:
Complexity and expressivity. In Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence (AAAI-94), volume 2, pages 1123–1128, Seattle,
Washington, USA. AAAI Press/MIT Press.

[Esteva, 1997] Esteva, M. (1997). Electronic Institutions: From Specification to
Development. PhD thesis, Universitat Autnoma de Barcelona.

[Esteva et al., 2002a] Esteva, M., de la Cruz, D., and Sierra, C. (2002a). Is-
lander: an electronic institutions editor. In Proceedings 1th International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 1045–1052.

[Esteva et al., 2002b] Esteva, M., Padget, J., and Sierra, C. (2002b). Formaliz-
ing a language for institutions and norms. In Intelligent Agents VIII: Lecture
Notes in Artificial Intelligence, volume 2333 of Lecture Notes in Artificial
Intelligence, pages 348–366. Springer-Verlag.

[Esteva et al., 2001] Esteva, M., Rodriguez, J. A., Sierra, C., Garcia, P., and
Arcos, J. L. (2001). On the formal specifications of electronic institutions. In
Agent-mediated Electronic commerce. The European AgentLink Perspective,
volume 1991 of Lecture Notes in Artificial Intelligence, pages 126–147.

[Euzenat, 2001] Euzenat, J. (2001). An infrastructure for formally ensuring in-
teroperability in a heterogeneous semantic web. In Proc. 1st internationnal
on semantic web working symposium (SWWS), Stanford (CA US), pages 345–
360.

[Feinstein and Horwitz, 1997] Feinstein, A. and Horwitz, R. (1997). Problems
in the evidence of evidence-based medicine. American Journal of Medicine,
103:529–535.

[Fensel, 1997a] Fensel, D. (1997a). An ontology-based broker: Making problem-
solving method reuse work. In Proceedings Workshop on Problem-solving
Methods for Knowledge-based Systems at IJCAI’97.



Bibliography 325

[Fensel, 1997b] Fensel, D. (1997b). The tower-of-adapter method for developing
and reusing problem-solving methods. In Knowledge Acquisition, Modeling
and Management, pages 97–112.

[Fensel et al., 1998a] Fensel, D., Angele, J., and Studer, R. (1998a). The knowl-
edge acquisition and representation language karl. IEEE Transcactions on
Knowledge and Data Engineering, 10(4):527–550.

[Fensel and Benjamins, 1998a] Fensel, D. and Benjamins, R. (1998a). The role
of assumptions in knowledge engineering. International Journal of Intelligent
Systems.

[Fensel and Benjamins, 1998b] Fensel, D. and Benjamins, V. (1998b). Key is-
sues for automated problem-solving methods reuse. In Proceedings 13th Eu-
ropean Conference on Artificial Intelligence.

[Fensel et al., 1999] Fensel, D., Benjamins, V., Motta, E., and Wielinga, B.
(1999). UPML: A framework for knowledge system reuse. In International
Joint Conference on AI, pages 16–23.

[Fensel and Bussler, 2002] Fensel, D. and Bussler, C. (2002). The web service
modelling framework. Technical report, Vrijer Universiteit Amsterdam.

[Fensel et al., 1997] Fensel, D., Decker, S., Motta, E., and Zdrahal, Z. (1997).
Using ontologies for defining task, problem-solving methods and their map-
pings. In Proceedings European Knowledge Acquisition Workshop, Lecture
Notes in Artificial Intelligence.

[Fensel et al., 1998b] Fensel, D., Groenboom, R., and de Lavalette, G. (1998b).
Modal change logic (mcl): Specifying the reasoning of knowledge-based sys-
tems. Data and Knowledge Engineering, 26(3):243–269.

[Fensel et al., 2000] Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erd-
mann, M., and Klein, M. C. A. (2000). OIL in a nutshell. In Proceedings of
the European Knowledge Acquisition, Modeling and Management Conference
(EKAW), Lecture Notes in Artificial Intelligence, pages 1–16. Springer-Verlag.

[Fensel and Motta, 2001] Fensel, D. and Motta, E. (2001). Structured devel-
opment of problem solving methods. Knowledge and Data Engineering,
13(6):913–932.

[Fensel and Straatman, 1996] Fensel, D. and Straatman, R. (1996). Problem-
solving methods: Making assumptions for efficiency reasons. Lecture Notes in
Computer Science, 1076:17–??

[Finin et al., 1994] Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994).
KQML as an Agent Communication Language. In Adam, N., Bhargava, B.,
and Yesha, Y., editors, Proceedings of the 3rd International Conference on In-
formation and Knowledge Management (CIKM’94), pages 456–463, Gaithers-
burg, MD, USA. ACM Press.



326 Bibliography

[Fink, 1998] Fink, E. (1998). How to solve it automatically: Selection among
problem-solving methods. In Proceedings of AIPS, pages 128–136.

[FIPA, 2002] FIPA (2002). FIPA contract net interaction protocol specification.

[FIPA, 2003] FIPA (2003). Agent Communication Language Specifications.
http://www.fipa.org/repository/aclspecs.html.

[Fischer et al., 1995] Fischer, B., Kievernagel, M., and Struckmann, W. (1995).
VCR: A VDM-based software component retrieval tool. In Proc. ICSE-17
Workshop on Formal Methods Application in Software Engineering Practice.

[Fisher et al., 1997] Fisher, M., Muller, J., Schroeder, M., Staniford, G., and
Wagner, G. (1997). Methodological foundations for agentbased systems.
Knowledge Engineering Review, 12(3):323–329.

[Franklin, ] Franklin, S. Coordination without communication.
http://www.msci.memphis.edu/ franklin/coord.html.

[Franklin and Graesser, 1996] Franklin, S. and Graesser, A. (1996). Is it an
Agent, or just a Program?: A Taxonomy for Autonomous Agents. In Intel-
ligent Agents III. Agent Theories, Architectures and Languages (ATAL’96),
volume 1193, Berlin, Germany. Springer-Verlag.

[Garland and Perry, 1995] Garland, D. and Perry, D. (1995). Special issue on
software architectures. IEEE Transactions on Software Engineering.

[Garland et al., 1993] Garland, S. J., Guttag, J. V., and Horning, J. J. (1993).
An overview of Larch. In Functional Programming, Concurrency, Simulation
and Automated Reasoning, volume 693 of Lecture Notes in Computer Science,
pages 329–348. Springer-Verlag.

[Gaspari et al., 1998] Gaspari, M., Motta, E., and Fensel, D. (1998). Exploit-
ing automated theorem proving in UPML: Automatic configuration of PSM
from PSMs libraries. Technical report, Robotics Institute, Carnegie Mellon
University.

[Gaspari et al., 1999] Gaspari, M., Motta, E., and Fensel, D. (1999). Auto-
matic selection of problem solving libraries based on competence matching.
In ECOOP Workshops, pages 10–11.

[Gasser and Briot, 1992] Gasser, L. and Briot, J.-P. (1992). Object-based con-
current programming and distributed artificial intelligence. In Avouris, N. M.
and Gasser, L., editors, Distributed Artificial Intelligence: Theory and Praxis,
pages 81–107. Kluwer, Dordrecht.

[Genesereth et al., 1997] Genesereth, M., Keller, A., and Duschka, O. (1997).
Infomaster: an information integration system. In Proceedings ACM SIGMOD
International Conference on Management of Data, pages 539–542.



Bibliography 327

[Genesereth and Ketchpel, 1997] Genesereth, M. R. and Ketchpel, S. P. (1997).
Software agents. Communications of the ACM, 37(7).

[Gennari and Tu, 1994] Gennari, J. and Tu, S. (1994). Mapping domains to
methods in support of reuse. International Journal on Human Computer
Studies, 41:399–42.

[Georgeff, 1983] Georgeff, M. (1983). Communication and interaction in multi-
agent planning. In Proceedings of the Third National Conference on Artificial
Intelligence.

[Georgeff and Lansky, 1987] Georgeff, M. and Lansky, A. (1987). Reactive rea-
soning and planning. In Proceedings of the Sixth National Conference on
Artificial Intelligence, volume 2, pages 677–682.

[Giampapa and Sycara, 2001] Giampapa, J. A. and Sycara, K. (2001). Conver-
sational case-based planning for agent team coordination. Lecture Notes in
Computer Science, 2080.

[Giampapa and Sycara, 2002] Giampapa, J. A. and Sycara, K. (2002). Team-
oriented agent coordination in the retsina multi-agent system. Technical
Report CMU-RI-TR-02-34, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA. Presented at AAMAS 2002 Workshop on Teamwork and
Coalition Formation.

[Giunchiglia and Shvaiko, 2003] Giunchiglia, F. and Shvaiko, P. (2003). Seman-
tic matching. Technical Report DIT-03-013, Informatica e Telecomunicazioni,
University of Trento.

[Glaser, 1996] Glaser, N. (1996). Contribution to Knowledge Modelling in a
Multi-Agent Framework. PhD thesis, L’Université Henri Poincaré, Nancy I,
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