MONOGRAFIES DE L’INSTITUT D'INVESTIGACIO
EN INTEL-LIGENCIA ARTIFICIAL
Number 2

[ . . .y
/ Institut d’Investigacid
en Intel-ligéncia Artificial



Monografies de I'Institut d’Investigacio en
Intel-ligencia Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge—Based
Systems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge-Based Systems

Num. 4 M. Domingo, An Ezpert System Architecture for Identification
in Biology



The Calculus of Refinements, a Formal
Specification Model Based on Inclusions

Jordi Levy Diaz

Foreword by Jaume Agusti
Institut d’Investigacié en Intel-ligéncia Artificial
Bellaterra, Catalonia, Spain.



Series Editor
Institut d’Investigacié en Intel-ligeéncia Artificial
Consell Superior d’Investigacions Cientifiques

Foreword by

Jaume Agusti

Institut d’Investigacié en Intel-ligéncia Artificial
Consell Superior d’Investigacions Cientifiques

Volume Author

Jordi Levy Diaz

Institut d’Investigacié en Intel-ligéncia Artificial
Consell Superior d’Investigacions Cientifiques

7 Institut d’Investigacid
en Intel-ligéncia Artificial

ISBN: 84-00-07500-5
ISSN: 1135-4100
Dep. Legal: B-34741-95

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
ITTA, Institut d’Investigaci6 en Intel-ligéncia Artificial, Campus de la Universitat
Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

© 1995 by Jordi Levy Diaz
Printed in Spain

Printed by Cardellach Cépies, — CBS, S.A.
Sant Pere, 40. 08221 Terrassa.



Als meus pares






Contents

Foreword

Preface

Abstract

1 Introduction
A Specification Language Based on Inclusions . . . . .. .. ...

1.1
1.2
1.3
1.4
1.5

2 The
2.1
2.2
2.3
2.4
2.5

2.6

Motivation . . ... ... ... ....
Objectives and Contributions . . . . .
Related Work . . . . ... ... ....
Overview of the Thesis . . . . . .. ..

Class of Models

Introduction . . . . . ... ... ....
COR-syntax and COR-theories . . . .
COR-models . ... ..........
Soundness and Completeness . . . . .
Concrete COR-models . . . .. .. ..
2.5.1 TheModel P, .........
25.2 TheModel Doy . . . .. .. ..
Conclusions . . . . ... ... .....

3 An Ideal Model for COR

3.1
3.2

3.3

Introduction . . . . . ... ... ....
Value Domain Construction . . . . . .
3.2.1 The Standard Technique . . . .
3.2.2 The FunctorZ ... ... ...
3.2.3 The Category of Domains . . .
3.2.4 The Functor 7 . . ... .. ..
3.2.5 The Contravariant Functor J€
3.2.6 The Functor S ... ... ...
3.2.7 Well-Founded Domains . . . .
Type Domain Construction . . .. ..

vii

ix

x1

xiii

-~ O O1 W N =



3.3.1 The Embedding Codey : S(D) x S(E)S(D x E) . ... 45

3.3.2 The Isomorphism Codey : S(D) x S(E) = §(D + E) Y

3.3.3 The Embedding Code_, : §(D) — S(E)S(D — E) ... 48

3.3.4 The Embedding Code_, : §(D) — S(E)1S8(S(D) — E) . 53

3.4 AnlIdeal Model for COR. . . . ... . ... ... ... ..... 56
3.5 Conclusions . . . . ... . ... ... e 57

4 First-Order Bi-rewriting Systems 59
4.1 Introduction. . . . . . . . .. . . .. 59
4.2 Inclusions and Bi-rewriting Systems . . .. .. .. ... .. ... 61
4.3 Bi-rewriting Modulo a Set of Inclusions . . . ... .. ... ... 68
4.3.1 From Church-Rosser to Local Bi-Confluence . . . . . . .. 68

4.3.2 From Local Bi-Confluence to (Extended) Critical Pairs. . 75

4.4 Three Examples: Towards a Completion Procedure . . . . . . . . 80
4.4.1 Inclusion Theory of the Union Operator . . ... .. ... 80

4.4.2 Inclusion Theory of Non-Distributive Lattices . . . . . . . 82

4.4.3 Inclusion Theory of Distributive Lattices. . . . . .. .. . 84

4.5 Why Inclusions and not Equations . . ... ............ 86
4.6 Related Work . . . . . . . ... .. .. 88
4.7 Conclusions . . . . . . . . . . 88

5 Second-Order Bi-Rewriting Systems 89
5.1 Introduction. . . . . ... ... . ... e 89
5.2 Codifying Rule Schemes by means of Second-Order Rules . ... 90
5.3 Some Problems of Second-Order Rewriting Systems . . ... .. 92
5.4 Linear Second-Order Typed A-Calculus. . . . ... ... .. ... 92
5.5 A Second-Order Unification Procedure . . . . . .. ... .. ... 94
5.6 The Critical Pairs Lemma for Second-Order Bi-rewriting Systems 106
5.7 An Example of Completion . . ... ... ... .. ........ 108
5.8 Conclusions . . . . . ... ... L e 112

6 Implementing Nondeterministic Specifications 113
6.1 Introduction. . .. ... . ... ... ..., 113
6.2 Using Bi-rewriting Systems to Verify Specifications . . . . . . . . 114
6.3 Characterizing Terms by Sets of Normal Forms . . ... ... .. 118
6.4 An Example of Nondeterministic Specification . . . . . . .. ... 122
6.5 Conclusions . . . . . ... ... ... e 123

7 Conclusions and Further Work 125
7.1 Further Work and Open Problems . . ... ............ 126
References 129
Index 139

viii



Foreword

The research presented in this book started with a very practical aim: to in-
vestigate methods of incremental description. One approach to this has been
the design of specification languages with good structuring operations. The
approach taken in this book comes from a simple idea: to consider types as
approximate values which can be specified by means of the order relation of its
information content, an inclusion relation. To investigate in depth this idea,
a formal model is proposed. The model can be seen, on one hand, from the
point of view of type theory where the value-type relation has been substituted
by an inclusion relation between types or approximate values. On the other
hand, it can be seen as a higher order specification language where conventional
equational specifications have been generalized to inclusion specifications.

The strength of the book lies in the creative use of existing techniques, ex-
tending them when necessary. In the domain of denotational semantics, a new
model of A-calculus has been found and a new rewriting technique has been in-
troduced to give operational semantics to inclusion specifications. The attentive
reader of this book I am sure will enjoy and learn from this long and intensive
research effort, going from a simple idea to its accurate realization in a formal
model.

Bellaterra, February 1996
Jaume Agusti
Head of the

Formal Methods Department
of the IITA, CSIC

ix






Preface

Moltes persones han contribuit d’una o altre manera a la realitzacié d’aquesta
tesi, i de ben segur que m’en oblidaré d’alguna. En primer lloc, vull agrair a en
Jaume Agusti, el director d’aquesta tesi, el recolzament que m’ha donat durant
aquests cinc anys i ’haver-se volgut embarcar en aquesta dificultosa aventura.
A en Pere Garcia, en Lluis Godo, en Ramon Lépez de Méntaras, n’Enric
Plaza, en Josep Puyol, en Carles Sierra i a tots els meus companys del Institut
d’Investigacié en Intel-ligéncia Artificial la seva col-laboracid, suggeriments i
ajuda. I en especial, a en Francesc Esteva I’haver tingut la paciéncia infinita
de revisar moltes de les demostracions que aqui es presenten.

Tampoc voldria oblidar-me de donar gracies a en Gabriel Ciobano, n’Hubert
Comon, en Harald Ganzinger, en Claudio Hermida, I’Helene Kirchner, en Pierre
Lescanne, en Karl Meinke, en José Meseguer, en Peter Mosses, en Roberto
Nieuwenhuis, en Tobias Nipkow, en Fernando Orejas, en Mario Rodriguez
Artalejo, en Klaus Schulz, en Gert Smolka, n’Andrzej Tarlecki i a totes les
persones amb les que he tingut ’oportunitat de discutir algun aspecte d’aquesta
tesi pels seus suggeriments i profitoses idees. Agraeixo especialment a la Jane
Hesketh, en Dave Robertson, en Don Sannella i a tots els investigadors del
Department of Artificial Intelligence 1 del Department of Computer Science de
la Universitat d’Edinburgh la calurosa acollida amb que em varen rebre durant
les meves estades.

La CICYT, la Generalitat de Catalunya i el CSIC han subvencionat part
d’aquesta investigacié mitjancant un contracte com a Titular Superior a carrec
del projecte SPES financiat per la CICYT (TIC 880j380), una Beca de Formacié
d’Investigadors de la Generalitat de Catalunya (DOGC 1638 de 28-8-1992) i una
Beca para Ingenieros, Arquitectos y Licenciados en Informaética del CSIC (BOE
14-11-1992). Esperem que ho continuin fent.

També vull donar gracies a tots els meus amics del Centre d’Estudis Avancgats
de Blanes i a la vila de Blanes per haver-me acollit durant la realitzacié d’aquesta
tesi. Molt especialment a en Felip Manya, en Gabriel Valiente i en Lluis Vila
per la seva amistat i tots els bons moments i sopars que hem pogut compartir,
i dels que espero continuem gaudint.

Resto en deute amb la Clara Barroso per tot el que m’ha ensenyat i per la
seva ajuda en els moments més dificils i importants d’aquesta tesi.

xi



Tanmateix dono gracies a la Xus Grau per tot el que m’ha cuidat, mimat i
ajudat al llarg de la nostra prolongada amistat, especialment en els moments de
desesperacié i flaquesa.

Finalment, als meus pares els he d’agrair tot, ja que sense ells res de tot aixo
hauria estat possible.

xii



Abstract

Programming in the large require the use of formal specification languages for
describing program requirements and a method to test (automatically) such
requirements. These methods can also be applied in other areas like complex
system modeling. In this thesis we study the theoretical kernel of a formal
specification language, named Calculus of Refinements (COR), based on the use
of monotonic inclusion relations. These relations are more general than equality
relations, therefore inclusion specifications can be considered as a generalization
of equational specifications. Moreover, we propose the substitution of the typing
relation “:” by an inclusion relation, therefore, the Calculus of Refinements can
also be considered as a new typing discipline. The theoretical study of the
Calculus of Refinements consists of the definition of a denotational semantics
and of an operational semantics for it. They are described on the two first parts
of the thesis. In the third part we approach the specification of nondeterministic
programs by means of inclusions.

In the first part of the thesis we describe the Calculus of refinements as a
logic, giving its syntax, a set of inference rules and defining a class of models
based on the class of environment models of the A-calculus. We also study a
concrete model where expressions are interpreted as order ideals. Such ideal
domains have been used to give semantics to polymorphic types. On it we base
the view of the Calculus of Refinements as a typing discipline.

In the second part we give an operational semantics based on rewrite tech-
niques. We define a pair of rewriting systems, namely a bi-rewriting system,
which implement the deduction on inclusion theories. The main idea is using
one of the relations to rewrite terms into smaller terms, and the other one to
rewrite terms into bigger terms. Using a bi-rewriting system is possible to im-
plement an algorithm to test if an inclusion a C b is deducible in a theory. We
rewrite a into bigger terms, and b into smaller terms till we obtain a common
term. We have studied such technique for first-order theories and linear second-
order theories (where bindings bind one and only one variable occurrence).

xiii



In the third part, we propose the use of bi-rewriting systems for the verifi-
cation of nondeterministic program specifications. We model nondeterministic
computation by means of a relation satisfying, among others, the inclusion ax-
ioms. Therefore, the rewriting technique is sound (although not necessarily com-
plete). We prove that adding more axioms to the specification such technique is
also complete.

xiv



Chapter 1

Introduction

Development of large-scale programs require the use of a formal language for
describing program requirements and a method to test (automatically) such re-
quirements. After some early attempts to specify requirements for imperative
programs (based on state pre- and post-conditions) it became clear that spec-
ification languages are closely related with programming languages, and both
must have a clean and simple mathematical semantics. Nowadays, most of the
specification languages are developed following an algebraic approach. Basic
programming techniques, like modularity and parametrization, have also been
applied to specification methodologies.

One of the most successful specification methodologies is the stepwise refine-
ment discipline. It proposes the incremental program construction by gradually
transforming an original specification till we obtain such a low-level specification
that it can be considered as a program. We obtain in such way a sequence of
specifications leading from the original specification to the final program. The
correctness of the resulting program is ensured provided that each transforma-
tion step is correct. We say that a transformation step SP ~» SP’ is correct
(namely, SP refines to SP', or SP' implements SP) if every model of SP’ is
a model of SP. The development of a program consist of a sequence of refine-
ment steps SPp ~ SP; ~» -+ ~» SP,. The refinement relation ~+ must be
transitive (vertical composition) and monotonic (horizontal composition). Ver-
tical composability ensures the correctness of the final program SP, w.r.t. the
original specification SP; if every refinement step SP; ~» SP; 4 is correct. Hor-
izontal composability guarantees that if we have a parameterized specification
P(SP) then any refinement P’ of P and any refinement SP’ of SP results on a
refinement P'(SP’) of P(SP).

This thesis describes a formal model for the development of a specification
methodology within the stepwise refinement and algebraic specification disci-
plines. Algebraic specifications are mainly based on the use of equality relations.
We generalize drastically such approach by introducing a more general kind of
relations: inclusion relations. These relations share the same properties than
an equality relation with the exception of the symmetry property. Their use



2 Chapter 1. Introduction

is motivated by their expressiveness. Furthermore, we also propose the use of
inclusion relations as a new typing relation (substituting each typing declaration
t : 7 by an inclusion axiom ¢t C 7). The practical consequences of these deci-
sions are out of the scope of this thesis and are the matter of current and future
research work. However, the future practical use of the specification model has
guided us in all the technical decisions in its definition.

Our main objective, in the thesis, has been to develop the formal basis of
this methodology. In order to achieve such objective we have defined the Cal-
culus of Refinements (COR). We describe its denotational semantics, on which
it has to be based the future specification language, and its operational seman-
tics, which sets the techniques for the automation of the deduction in COR.
These constitute the two main parts of the thesis. The Calculus of Refine-
ments can also be seen as a first approach to a computing with sets of wval-
ues model. In such computation model the user starts defining how functions
work for big sets of values (for instance product(int, int) C int for the prod-
uct function), refines this specification defining how it works for smaller sets
of values (product(even,odd) C even) and, finally, defines how it works for
singletons (product(2,3) = 6). This methodology is closely related with the
non-deterministic computation and specification paradigm. In the third part of
the thesis we present a first relation between both paradigms.

1.1 A Specification Language Based on
Inclusions

Our approach can be analyzed from the point of view of the following two
paradigms:

e Algebraic specifications
e Type theories

Algebraic specifications make an intensive use of equality relations, although
there have been proposed some extensions based on the use of other rela-
tions: inclusion relations (Mosses, 1989b; Mosses, 1989c), membership rela-
tions (Manca et al., 1990; Comon, 1993), transitive relations (Bachmair and
Ganzinger, 1993b), rewrite relations (Meseguer, 1990; Meseguer, 1992). Our
approach is based on the use of monotonic inclusion relations. Unlike Bachmair
and Ganzinger, our transitive relations are monotonic, and in relation to Mosses
we give an operational semantics to these relations. In our case this is based
on bi-rewriting systems, a rewriting technique used to check when a term is
included into another term.

Algebraic specifications also use to be based on many-sorted signatures, i.e.
terms are built using a set F of function symbols and each symbol f € F has an
assigned type f : s1X---X8, — s where s1,..., s, s are sorts (basic types). If we
want terms to be higher-order then such types may be more complex including, at
least, all those type expressions generated by the grammar 7 ::= b | 7 — 7 where



1.2. Motivation 3

b stands for any base type. Many extensions to this simple type theory there have
also been proposed, i.e. polymorphic types (Milner, 1978; Cardelli and Wegner,
1985; MacQueen et al., 1986), Calculus of Constructions (Coquand and Huet,
1988),...). They consist mainly on enlarging the set of type expressions being
considered (and therefore, the set of typing rules). Most of them require any
well-formed term ¢ to have a unique type 7 and the existence of an algorithm to
find such type for any given term. On the contrary, we propose not to distinguish
between types and values and substitute the typing relation “:” between values
and types by an inclusion relation. Our approach can be seen as a language with
a unique universe of types and a subtyping relation, where the typing relation
t : 7 is interpreted as a special case of subtyping relation {¢t} C 7. Thus, the
bi-rewriting method, implementing the inclusion relation, is also a kind of type
checker.

1.2 Motivation

Our research work started five years ago with the practical study of some specifi-
cations languages such as Nuprl (Constable et al., 1986), LCF (Paulson, 1987), Z
(Spivey, 1988) and, specially, Standard ML (Sannella and Tarlecki, 1984; Harper,
1986; Milner et al., 1990) and Extended ML (Sannella and Tarlecki, 1991a). Si-
multaneously, we also begun to study the application of specification techniques
in areas other than program requirement specification, such as the specification
of ecological models.! From this experience we concluded that all these lan-
guages share a often unnecessarily complex higher-order type theory, specially if
we use them in knowledge representation applications (Robertson et al., 1993).

The following pair of examples have been included to show how program
requirements can be captured with the use of inclusion relations. They are not
developed in detail and must be considered only as a justification for the use
of such relations. Let us consider the following toy example in Standard ML,
consisting of a signature specification and a program.

signature SIG_TOY = structure STRUCT_TOY : SIG_TOY =
sig struct
type s ~ type s = int
val x : s val x = 3
end end

In COR we propose do not distinguish between types and values, and between
signatures and programs. Thus, we can consider such example as a program
refinement. In the first version we declare s as a type, i.e. as something smaller
than top (T), and x as something smaller than s. In the second version be assign
concrete values to s and x. The same example in COR would be as follows.

1We started a collaboration with Dr. Sannella of the Laboratory for Foundation of Computer
Science and Prof. Robertson of the Department of Artificial Intelligence, both at the University
of Edinburgh.



4 Chapter 1. Introduction

sCT s = int

zCs z=3

If we take into account that 3 : int, i.e. 3 C int expressed as an inclusion,
then we can prove that the models of the second specification are also models
of the first one. Notice that whereas in Standard ML we have type and value
declarations, in COR we have a unique kind of axioms (inclusions and equalities).

Let us consider another example in a more theoretical framework, the Cal-
culus of Constructions (Coquand and Huet, 1988). This calculus uses three
universes of expressions: contexts (A), types (P) and terms (t), being contexts
a kind of “types of types”. Judgments are built using a context (T'), like in the
sequent calculus, and may be of two forms: 1) typing judgments, built using
a typing relation “” between terms and types (¢ : P) or between types and
contexts (P : A); or 2) conversion judgments built using a conversion relation
“>” between types (P; = P,) or between terms (¢; =2 t3). There are also two
kinds of variable bindings: products [z : P;]P; and A-abstractions (Az : P)t.
The following are the typing rule for A-abstractions, assigning a product to each
abstraction, and the conversion rules for products and for abstractions.

Tlz: PilFt: Py
THQz: Pt : [z: P1]P;

P =P
I‘[m : Pl] F tl = tz
I‘[m : Pl] I‘tl : P3
T (Az: Pty = (Az : Pyt

FFP =P
I‘[m:Pl] }—P3EP4
Thz:P|P3=[z: PP,

We can reformulate the Calculus of Constructions applying the principle of
no distinction between types and values (in this case between contexts, types an
values). No distinction is made then between A-abstractions and products, the
typing relation “:”is substituted by the inclusion relation C, and the conversion
relation = by the equality relation —. The later is interpreted as a pair of
inclusions, i.e. t = u <t C u A u Ct. With such reformulation, all the above
rules are subsumed by the following one:

'ty =1,
I‘,:L‘.gtlf_tggt‘;
I‘"Amltl.tgg)\mltz.t‘;

that tells us when a A-abstraction is included into another one. With this refor-
mulation we obtain a higher-order type theory sharing some properties with the
Calculus of Construction, in particular, if ' k5. ¢ : P is provable in the Calculus
of Constructions, then IV koo t' C P’ is provable in the reformulated calculus,
where IV, ¢ and P’ are respectively the reformulation of T, ¢ and P. Similarly,
T boo t1 =ty implies IV Foor t) = t,,. But as the three universes of terms are
mixed, other properties of the Calculus of Constructions are lost, in particular,
we lose the following unigque type property:
IfTlhoot:PrandT oo t: Py thenThoo P =2 Py

(Coquand and Huet, 1988; lemma 5).



1.3. Objectives and Contributions 5

As the reader may assume, the many-sorted equational logic also admits a
translation into such inclusion formalism.

We are aware that many important problems have been obviated in these
examples; however our aim has been showing the expressive power of inclusion
relations and the adequacy of using them in stepwise refinement disciplines.
Another specification approach which also shares such conviction is the Unified
Algebras (Mosses, 1989b; Mosses, 1989c; Mosses, 1989a). Thus we think that
the advantage of using inclusion relations in program specifications, as well as
in other kind of system specification do not require further discussion, from
the point of view of simplicity, expressiveness and orthogonality of the resulting
language.

1.3 Objectives and Contributions

Our main objective is to define and formalize a higher-order theory of monotonic
inclusion relations. This objective has to consider the following three subobjec-
tives:

1. define a syntax, a formal theory and a denotational semantics for the
higher-order inclusion logic.

2. study the proof theory and automate the deduction for such logic.

3. find and propose application areas for such logic.

Although in this thesis we focus our attention on the first two objectives,
we have also worked on some applications of the formalism (see chapter 6 and
(Levy et al., 1992¢; Robertson et al., 1993)).

Our principal contributions can be summarized as an answer to the following
two questions:

1. To give denotational semantics to a higher-order logic of inclusions it seems
sensible to interpret terms as sets of values and the inclusion relation as
the inclusion relation of the set theory (as is usually done in type theories).
Then, since our approach is higher-order, how can we interpret a function
as a set of values?

2. The operational semantics of equational logic is usually based on rewriting
techniques, i.e. on replacing terms by equal terms. If our principal relation
is an inclusion relation, then can similar techniques be applied?

To answer the first question we define an ideal domain J(U) —that is, a
subset of the power set of U— and an interpretation function

Fun : (7(U) - J(U)) - J(U)

(see subsections 3.3.3 and 3.3.4), which we used to map functions on such domain
to elements of the domain, i.e. to interpret functions on sets as a sets of values.



6 Chapter 1. Introduction

To automate the deduction in the monotonic inclusion logic we use a pair of
rewriting relations —— and ——, one to replace subterms by bigger terms and
C 2

the other to replace subterms by smaller terms. A sound and complete proof
procedure is defined based on such pair of rewriting systems (named bi-rewriting
system).

1.4 Related Work

This thesis makes use of very different techniques, therefore the related work
come from very different areas, and we have decided to introduce them separately
in each chapter. In this section we will only present the principal references we
have used.

As usual, we use A-calculus (i.e. the subject of (Barendregt, 1981) and
(Hindley and Seldin, 1986)) as the skeleton of functional programming lan-
guages (Landin, 1964). It has also been used as a higher order parameterization
mechanism in some specification languages (Sannella and Tarlecki, 1991b). Fur-
thermore, we also view A-calculus as a low-level specification formalism. The
refinement relation we define can be compared with the subtype relation in
(Reynolds, 1985; Cardelli, 1988), with the containment relation between types
in (Mitchell, 1988) and in general with several typing systems (Martin-Lo6f, 1979;
Constable et al., 1986; Coquand and Huet, 1988; Lampson and Burstall, 1988).
In most of them (Martin-L6f, 1979; Coquand and Huet, 1988), however, value
expressions and type expressions are rigorously distinguished and a type rela-
tion between values and types is formalized. Less rigorous is this distinction
in Nuprl (Constable et al., 1986) and in Pebble (Lampson and Burstall, 1988).
On the contrary, we drop such distinction from the very beginning and the type
membership relation is replaced by a particular case of subtype relation. Unified
Algebras (Mosses, 1989b; Mosses, 1989c), Type Logic (Manca et al., 1990) and
Rewrite Logic (Meseguer, 1990; Meseguer, 1992) share the same principle.

The definition of the class of models of COR, in chapter 2, is based on the
characterization of A-calculus environment models of (Meyer, 1982; Koymans,
1982). There, we prove that the P, model of the A-calculus (Scott, 1976) is also
a model of COR

The use of order ideals as a semantic domain for types, as we propose in
chapter 3, is not new and is also motivated in (Milner, 1978; MacQueen et al.,
1986; Mitchell, 1988). The solution of the value recursive domain equation, in
the definition of the ideal model, is based on the category-theoretic solution of
such kind of equation formalized in (Smyth and Plotkin, 1982), other works
also summarize such results (Plotkin, 1983; Schmidt, 1988; Pierce, 1991). The
technique for constructing solutions of this kind of equations based on universal
domains was originally presented in (Scott, 1976), and is summarized in (Gunter
and Scott, 1990). Other papers describing the inverse limit construction without
using category concepts are (Scott, 1972; Stoy, 1978).

The operational semantics of our language, described in chapters 4 and 5, is
based on rewriting techniques. There is a huge number of papers on rewriting



1.5. Overview of the Thesis 7

techniques. They can be found good introductions to the subject in (Knuth and
Bendix, 1970; Huet, 1980; Klop, 1987; Dershowitz and Jouannaud, 1990). We
extend our technique for rewriting on equivalence classes and for rewriting using
a higher-order language. The techniques for rewriting on equivalence classes are
described in (Huet, 1980; Peterson and Stickel, 1981; Kirchner, 1985a; Kirch-
ner, 1985b; Jouannaud and Kirchner, 1986; Bachmair and Dershowitz, 1989a).
Higher-order rewriting systems are defined in (Nipkow, 1991; Nipkow, 1992; Nip-
kow, 1993) and are based on a higher-order unification algorithm described in
(Miller, 1991a; Miller, 1991b). An introduction to unification theory can be
found in (Siekmann, 1989; Gallier and Snyder, 1990). In chapter 5 we define an
unification procedure for our higher-order language. Other higher-order unifica-
tion procedures are described in (Huet, 1975; Jensen and Pietrzykowski, 1976).
The decidability of the unification problem we present remains as an open ques-
tion. Related unification problems are the undecidable (Goldfarb, 1981) second-
order unification problem and the decidable (Makanin, 1977) string unification
problem. Comon (Comon, 1993) defines a language based on expression schemes
quite similar to ours.

The nondeterministic specification approach we use in chapter 6 is introduced
in (Kaplan, 1986a; Kaplan, 1988; Hussmann, 1991; Hussmann, 1992).

1.5 Overview of the Thesis

The thesis is organized in three parts:

Part I (chapters 2 and 3) introduces the Calculus of Refinements as a logic and
defines its denotational semantics.

Part IT (chapters 4 and 5) gives an operational semantics of the calculus.

Part IIT (chapter 6) shows a first application of the calculus.

The contents of each chapter are summarized in the following.

Chapter 2. We describe the Calculus of Refinements (COR) as a logic, giving
its syntax and inference rules. The main contribution of the chapter is
a characterization of COR-models. It is based on the characterization of
A-calculus models done by Meyer (Meyer, 1982) in terms of environment
models and functional domains. We prove a soundness and complete-
ness theorem for the COR-theories w.r.t. the COR-environment models.
Finally, we show that two concrete classical A-calculus models —the P,
model of Scott (Scott, 1976) and the Dy, model— are also COR-models.
Any COR-domain has a lattice structure which we use for giving seman-
tics to the inclusion (subtyping) relation C. The P, and Dy models have
also such lattice structure, however in such cases the lattice order relation
is also used for modeling the computational ordering (Scott, 1972; Scott,
1976). Therefore, in those models computational and refinement orderings
are identified. This could cause problems and leads us to define a new
concrete COR-model. This is the subject of chapter 3.



8 Chapter 1. Introduction

Chapter 3 Types are usually modeled by sets of values sharing a common
structure, where structure represents notions like being a function or being
a pair. These notions are modeled by a partial order < defined by a < b
if a s more structured than b. Then, types are ideals of such ordering
(Milner, 1978; MacQueen et al., 1986). The structural ordering < and
the computational ordering T are related. In this chapter we define the
relation < by @ < b iff b C a. An order ideal model may be defined using
such structural ordering. Then we interpret the refinement relation as the
inclusion relation C between ideals. We proof that if built the ideal domain
over a functional domain of values, then the resulting ideal domain is also
functional (a retract of its corresponding functional space). It means that
the type domain is rich enough for modeling A-calculus and the use of two
distinct universes (types and values) is no longer necessary.

Chapter 4 The use of an inclusion relation between terms makes necessary to
extend rewriting techniques to deal with non-symmetric relations. In this
chapter we propose how deduction in an inclusion theory I may be auto-
mated using a pair of rewriting systems (Rc, R5) (a bi-rewriting system).
To prove that I - a C b we seek a common expression ¢ such that a R—*c) c
and b R—*3> c. The decidability and completeness of the method is based on
the commutation and termination of both rewriting relations. We extend
such result for bi-rewriting modulo a set of inclusions and we show some
concrete examples.

Chapter 5 The method proposed in chapter 4 is not free from problems. The
use of the Knuth-Bendix completion process (Knuth and Bendix, 1970), in
the presence of non-left linear rules may introduce rule schemes (resulting
from orienting schemes of critical pairs, named eztended critical pairs). In
this chapter we propose the use of linear second-order typed A-calculus to
incorporate those rule schemes into the language. We show the adequacy of
using such restricted second-order language as a new higher-order rewriting
paradigm. A complete unification procedure is described for such language.
However, the decidability of this unification problem remains as an open
question, for which we think we will be able to prove an affirmative answer
in the future.

Chapter 6 This is the only chapter devoted to applications of the Calculus
of Refinements. We view non-deterministic specifications (Kaplan, 1986a;
Hussmann, 1992) as a special case of inclusion specifications. Therefore,
the bi-rewriting technique is a sound although not always complete deduc-
tion method for those specifications. We show how a non-deterministic
specification may be completed (without modifying the underlieing in-
tended models) in order to have also a completeness result.

Although we have tried to write a basically self-contained document, the
great variety of techniques used to present this formal model makes impossible
to be completely exhaustive in such purpose. Therefore, some previous basic



1.5. Overview of the Thesis 9

knowledge on category theory and rewrite techniques is supposed. Anyway,
we cite some basic literature on such subjects. What we call ezamples in the
first part of the thesis are really alternative definitions or unsuccessful lines of
argument. Examples shown in the second part have not been checked by a
computer, thus they may be not free from errors.

Even though we use different theoretical formalisms along the thesis, we have
tried to use an uniform notation. This is always introduced at the beginning of
each chapter and can also be found in the index at the end of the thesis.



10

Chapter 1.

Introduction



Chapter 2

The Class of Models

Abstract: The Calculus of Refinements (COR) presented here takes the
idea of types as specifications and subtyping as refinement and pushes it
to an extreme. Types and values are no longer distinguished; in COR
we consider a unique hierarchy of objects. A good way to deal with this
hierarchy of objects is to structure it as a complete lattice. If functions
are to be considered as first class citizens in the hierarchy, then the lattice
must be reflexive: it must have the space of functions (some of them) as
a sublattice. To represent reflexive lattices, the most simple language is
an extension of the A-calculus with lattice operators: this is the language
of COR. The aim of this chapter is to show that the results about the
soundness and the completeness of A-calculus w.r.t. the model of terms
(Meyer, 1982; Koymans, 1982) can be extended without problems to COR.
We show also that two classical A-models, the P, and the Do models,
are also COR-models.

2.1 Introduction

Data and its classification into types are kept separated and used distinctively
in most programming languages. Types are mainly used as a discipline that
contributes to program correctness and computation is not done on types. Nev-
ertheless types have also been considered as specifications in (Martin-Lof, 1979;
Constable et al., 1986; Coquand and Huet, 1988; Lampson and Burstall, 1988;
Cardelli and Longo, 1990). The subtyping can be seen as a kind of specification
refinement defining a type hierarchy where programs are the leaves on which
computation is done. The Calculus of Refinements (COR) presented here takes
this idea of types as specifications and subtyping as refinement and pushes it to
an extreme. Types and values are no longer distinguished; in COR we consider
a unique hierarchy of objects without distinctions between leaves and the rest
of nodes. The subtyping relation is the only relation between objects and it is
called refinement: an object is a refinement of another if the latter is a more
specified version of the former. A good way to deal with the hierarchy of objects

11



12 Chapter 2. The Class of Models

is to structure it as a complete lattice. And if functions are to be considered
elements of the hierarchy then the lattice must be reflexive: there must be an
injection from a subset of the space of functions to the lattice. So complete
reflexive lattices are the intended semantic domains we want to use to model
specifications or types (upper objects in the hierarchy) and programs or values
(lower objects in the hierarchy).

To represent reflexive lattices, the most simple language is an extension of
the A-calculus with lattice operators, this is the language of COR. The results
about soundness and completeness of A-calculus w.r.t. to the term model can
be extended without problems to COR. Moreover, we show that many concrete
models of the A-calculus are also models of COR. Unfortunately, the partial
order defining the lattice structure of such models represents the computational
order between A-terms. This computational order (introduced by Scott (Scott,
1972)) justifies, for instance, the use of continuous functions (w.r.t. the topology
defined by such order) and can be interpreted in terms of information: a C b
if a is more undefined (contents less information) than b. On the contrary, the
subtyping order is usually interpreted in terms of containment: a C b if the set
of values represented by a is included into the set of values represented by b.
Therefore, the identification of both orderings may leads to problems. We define
in chapter 3 a concrete COR-model where such problems are considered.

This chapter proceeds as follows. In section 2.2 the syntax of COR is in-
troduced, COR-terms and COR-formulas are defined and then the axioms and
inference rules defining COR-theories are given. Section 2.3 describes the class of
models of COR. The main result of the chapter is the extension of the soundness
and completeness results of A-calculus to COR, proved in section 2.4. Section 2.5
presents some concrete models of the A-calculus, which are also models of COR.

2.2 COR-syntax and COR-theories

In the following we will be concerned with a denumerable signature F of con-
stants and an infinity and denumerable set of variables X'. The set of COR-
terms is defined inductively by the following grammar

term == c¢ |z | L | T | termNterm | termU term
| Az.term | term(term)

where 2 € X stands for variables and ¢ € F for constants.
COR-formulas are defined by

formula ::=term C term | term = term



2.2. COR-syntax and COR-theories 13

Definition 2.1 A COR-theory 7 over a set F of constants is a set of formulas
closed under the following COR-inference rules.

T ) ct (M
tCv uCw (L)
tCtUu uCtUu tUu Cu
vCt vCu (n)
tNuCt tNuCu vCitNu
tCu uCwo
i1 (Reflez) —ice (Trans)
tCu ucCt t=u t=1u .
= e e, (Antisym)

{y ¢ .'F’V(t)} (a)

et = 3y ily/a] Doty ) = tu/s] &)

tCu t=u
W (Apl monot) W (Apl COTLg'l")
tCu
Azt C dz.u (A monot)

It is quasi-extensional if in addition it is closed under:

(Azt)Nn(Az.u) CArztNu (An) (tUu)(v) Ct(v) Uu(v) (Aplu)
{z ¢ 7V(t)} ()
t C dz.t(z)
and extensional if it is also closed under:
AztUu C (Az.t) U (Az.u) (AU) t(v) Nu(v) C (N u)(v) (Apin)
{z ¢ 7V(t)} (n)
t = dz.t(z)

Given a finite set of COR-formulas I, the sets Th(I), Thi¢(I) and The(I)
denote respectively the minimum COR-theory, quasi-extensional COR-theory
and extensional COR-theory containing I.

The notation I Foor © C v means that the formula u C v belongs to the
theory Th(I), i.e. there exists a deduction of v C v from I. The same for
Itoora-- v C v and Th® ¢(I) and for I Foore w C v and The(I). We say that
u C v is a COR-theorem, noted Foor u C v, if the formula v C v belongs to any
COR-theory.

The relation between terms u and v, defined by u ~ v if u = v belongs to a
given theory, is an equivalence relation. The set of equivalence classes will be a
key point used to prove the completeness theorem.



14 Chapter 2. The Class of Models

Antisymmetry rules prove the equivalence ©u = v 4 v C v A v C wu, therefore,
from now on we will consider © = v as an abbreviation foru Cv A v C u.

It is not hard to prove from monotonicity rules that simultaneous substitution
preserves formulas, i. e., if 7 F u; = v; for every 7 € {1,...,n} and 7 F ug C vo,
then 7 F uglu1/z1, ..., Un/zn] C volvi/Z1, .. s Un/Zn]-

2.3 COR-models

In this section we define the class of COR-models, like the one defined in (Meyer,
1982; Koymans, 1982) for the A-calculus. In section 2.4 we will prove the com-
pleteness and correctness of this class of models in relation to COR-theories.

Definition 2.2 A value model of COR is a poset (D, <) whose elements are
named values, and a function []_ from COR-terms and valuation functions p
to D such that if [u1], < [vills, .-y [Unll, < [vn], then [uo], < [vo], for every
COR-inference rule u; C vq,...,un C vy F ug C vo and valuation p.

Value models are a mere reformulation of COR-theories, it is an essentially
syntactic notion which don’t justify or explain the COR-inference rules. To
capture the notion of COR-terms as descriptions of functions in a lattice, we need
to introduce the notion of functional domain on which is based our definition of
COR-models.

Definition 2.3 Let D be a nonempty set. Given two functions

Fun : D — (D — D)
Graph : Fun(D) — D

the triplet E = (D, Fun, Graph) is said to be a functional domain if f =
Fun(Graph(f)) for every f € Fun(D) C D — D, that is, Fun(D) is a retract of
D via the retraction pair (Fun, Graph).

It is extensional if w = Graph(Fun(u)) for every u € D.

Notice that since Fun maps D onto D — D, it follows from cardinality
considerations that D — D ¢ Fun(D), the mapping Graph is not defined for
any function. This characterization of D is enough for the A-calculus, but in the
COR-calculus we need an additional condition to enable the definition of the
lattice operators T, L, U and N, and the inclusion relation C.

Definition 2.4 The tuple ¥ = (D,<p,Fun, Graph) is said to be a COR-
domain if
(i) (D, Fun, Graph) is a functional domain.
(ii) (D,<p) is a complete lattice with maximum T, and minimum 1 p.
(iii) If we use <, to define a pointwise ordering® in D — D then Fun and Graph
are monotonous functions.

L The pointwise ordering is defined by f <p_.p gif Vz € D. f(z) <p g(z).



2.3. COR-models 15

It is quasi-extensional if in addition u <, Graph(Fun(u)) for every u € D, and
extensional if u = Graph(Fun(u)).

Notice that if we use <, to define a pointwise ordering <,_,, in D — D,
then (D — D,<p_p) is also a complete lattice with

(fNo_p g)(w) = f(u) N g(u)
(f Up_p g)(u) = f(u) Up g(u)
J_D_,D('u,) =15
TD_,D('U,) =Tp

for any f,g € D — D and u € D.
The same classification of models is given in (Sanchis, 1980), with little dif-
ferences, but completely different purposes.

Lemma 2.5 For any u,v € D and f,g € D — D we have
(i) If (D, Fun, Graph) is quasi-extensional then

Fun(uUpw) = Fun(u)Up_p Fun(v)
Graph(uMp_pv) = Graph(u)Mp Graph(v)

(ii) If (D, Fun, Graph) is extensional then

Fun(uMNpv) = Fun(u)Mp_p Fun(v)
Graph(uUp_pv) = Graph(u)Up Graph(v)

Proof: Since Fun is monotonous we have Fun(u) <, Fun(uUyv) and Fun(v) <p
Fun(u Up v), therefore Fun(u) Up_» Fun(v) <p Fun(u Up v).

On the opposite direction, the monotonicity of Graph and the quasi-
extensionality allow to prove u <, Graph(Fun(u)) <, Graph(Fun('u.) Up_p
Fun(v)), the same for v and therefore u Lip v <p, Graph(Fun(u) Up_p Fun('u)).
Now, the monotonicity of Fun and the condition of being a functional do-
main allow to prove Fun(u Up v) <p_p Fun(Graph(Fun(u) Up_p Fun('u))) =
Fun(u) Up_p Fun(v).

Concluding Fun(uUp v) = Fun(u)Up_ » Fun(v). For the rest of equalities the
proof is quite similar. [ |

This lemma concludes that if (*) is sound in a COR-domain, then (AN) and
(AplU) are also sound; and if (7) is sound then (AU) and (A4piN) are also sound.

In the context of A-calculus, the assignment of values to free variables are
referred to as environments. Formally, an environment p over D is a map of
the set of variables X' into D. The set of environments over D will be noted
by D_Env. Given a COR-domain, the corresponding COR-model is defined as
follows.

Definition 2.6 Given a (quasi-extensional, extensional) COR-domain (D, <,
Fun, Graph) and the valuation function

V : COR-terms x D_Env — D

defined inductively as follows



16 Chapter 2. The Class of Models

(i) Viz], = p(=) for all variables z € X
() V[Tl = Tn

(i) VL], = Lo

(iv) V[uUu], = V[u], Up V[v],
(v) Vlunv], =V[ul, M V[vl,

() VIu(w)l, = Fun(V[ul,)(VTu],)

(vii) V[Az.u], = Graph(Ad : D.V[u],[4/z])

if the function Ad : D .V[u],4/2) belongs to Fun(D) for any term w and en-
vironment p, then the tuple M = (D, <, Fun, Graph, V) is said to be a (quasi-
extensional, extensional) COR-environment model.

The condition Ad : D.V[u],4/s] € Fun(D) in the previous definition is neces-
sary to ensure that Graph(Ad : D.V([u],[4/4]) is defined (notice that the domain
of Graph is the rang of Fun). This restriction defines some kind of closure con-
dition on the set of functions Fun(D) used in functional domains. In concrete
models, presented in section 2.5, Fun(D) is the set of functions on D continuous
w.r.t. the computational ordering, i.e. a subset of the computable functions
(Scott, 1972).

The notions of satisfaction and validity are defined as usual. A formulau C v
is said to be satisfied in a COR-model M, noted M = u C v, if V[u], < V[v],
for every environment p € D_Enwv. A formula is said to be valid, noted = v C v
if it is satisfied for every COR-model.

2.4 Soundness and Completeness

In this section we prove a soundness and completeness theorem for the COR-

theories w.r.t. the COR-environment models we have defined. We will prove

that the inclusions valid in a COR-model form a COR-theory, and that for any

COR-theory we can find a COR-environment model, namely the model of terms.
We can prove a substitution lemma, like in A-calculus:

Lemma 2.7 V[u[v/z]], = V[u]p[v[U]P/m].

Proof: By induction on the structure of COR-terms. A complete proof can be
found for the A-calculus in (Stoy, 1978), and ours is quite similar. ]

Theorem 2.8 soundness. The equations valid in a (quasi-extensional, exten-
sional) COR-model form a (quasi-extensional, extensional) COR-theory. More-
over, if u C v is a theorem (v C v) then u C v is valid (Fu C v).

Proof: The complete lattice structure of D corresponds to axioms and rules
(L), (T), (N), (V), (Reflez), (Antisim) and (Trans). Axioms (8) and (a) can
be proved from the substitution lemma (for a complete proof see (Meyer, 1982)).

The Graph monotonicity and pointwise order in D — D can be used to prove
(XA monot), and the Fun monotonicity and pointwise order to prove (Apl monot).



2.4. Soundness and Completeness 17

For a quasi-extensional model, using the definition of V it is easy to see

V[(u Uv)(w)], = Fun(V[u], Up V[v],)(V[w],)
VI(u(w) Uv(w)], = Fun(V[u],)(V[w],) Us Fun(V[v],)(V[w],)

Now, the properties Fun(aUyb) = Fun(a)Up_ 5 Fun(b) of lemma 2.5 and (fUp_p
g)(a) = f(a)Up g(a) can be used to prove the equality between both values, that
is, the (AplU) axiom. Axiom (AN) can be proved from properties Graph(fMp_p
g) = Graph(f) Ny Graph(g) (lemma 2.5) and (f Mp_pr g)(a) = f(a) Mp g(a) in a
similar way.

Using the definition of V we can see also V[Az.u(z)], = Graph(Ad :
D.Fun(V[u],)(d)) = Graph(Fun(V[u],)) if z is not free in u. If the domain is
quasi-extensional then V[u], C Fun(Graph(V[u],)) holds, and (n*) can be proved.

For an extensional model (4piN), (AU) and (n) can be proved similarly to
(4plu), (AN) and (n7).

Finally, if - v C v is a theorem, then for any COR-theory, 7 - u C v holds.
In particular for the COR-theory formed by the satisfiable formulas of a COR-
model M. Therefore M |=u C v for any COR-model M. Thus = u C v is valid.

|

In the following we will prove the completeness theorem, showing that given
a COR-theory 7 it can be constructed a COR-model M7 which valid equations
are the ones deducible from the COR-theory. Such model is named term model.

Given a COR-theory 7, we note the set of 7-equivalence classes of terms
by & and the 7 -equivalence class of u by w. The relation <C & x & and the
functions Fung : & — (¥ — ) and Graph, : (8 — ) — S defined by

u<gv ff THuCw
Fung (@) = AT § . u(v)

Graphg(Fun(z)) = Jz.u(z) for z ¢ FV(u)

—_

can be used to define a COR-domain.
Lemma 2.9 The tuple (S, <g, Fung, Graph,) is a COR-domain.

Proof: It is easy to prove that Funs and Graph, are well defined and that
Fung o Graph, = Id holds. Therefore (S, Fung, Graph,,) is a functional domain.

From the lattice inference rules (L), (T), (N) and (V) it can be proved the
lattice structure of &, where

1leg = n
Tg = T
zlgy = zly
zlUsy = zlUy

The monotonicity of Fung and Graph, can be proved from (Apl monot) and
(A monot). [ |



18 Chapter 2. The Class of Models

Lemma 2.10 The valuation functionV : COR-termsx S_Env — S correspond-
ing to the COR-domain (S, <, Fung, Graph,) is defined by

V[ul, = ulp(z;)/z:]

where {z;} Is the set of free variables of u.
Moreover, it satisfies Add : . V[u],4/2] € Fung(S) for any term u and valuation p.

From this lemma we can prove the following completeness theorem:

Theorem 2.11 completeness For every COR-theory 7, there exists a COR-
environment model Mt such that

ThruCv f Mr EuCo
Moreover, if u C v is valid (= v C v), then w C v is a theorem (F u C v).

Proof: Given a COR-theory 7, let My be the COR-model defined in lem-
mas 2.9 and 2.10. Suppose 7  u C v then 7 F u, C v, for every assign-
ment function p since simultaneous substitutions preserves equation. Therefore
V{u], C V[v], for every p, thus Mr Eu Cwv.

Suppose M7 = u C v, then V[u], C V[v], for every p. In particular for pg
such that po(2) = Z. Then w = V[u],, CV[v],, =7. Thatis 7 Fu Cv.

Finally, if = u C v is valid, then for all COR-model M, M = u C v. In
particular for the COR-model M7 obtained from any COR-theory 7, therefore
T F u C v for every theory. Thus F u C v. [ |

These two theorems prove the equivalence between = v C v and + v C v,
that is the weak soundness and completeness properties. To prove the (strong)
soundness and completeness properties, i.e. the equivalence between I' = u C v
and T' F u C v, we would need the initiality property for the term model.

2.5 Concrete COR-models

Some of the models proposed classically for the A-calculus have a lattice struc-
ture. The order relation C defining this structure is based on computation
considerations, i.e. t C u if u is more defined than ¢, therefore 1 is the more
undefined term (that is, the program that never finishes). Such models take
Fun(D) = [D — D], being [D — D] the set of continuous functions from D to
D. (Continuous functions are defined using the topology generated by the order
relation C). These continuous functions include computable functions.

In this section we show how the P, and the D, models of the A-calculus
are also models of the COR-calculus. However, we are interested in modeling a
kind of subtyping relation with C, incompatible with the computation ordering.
Because of that, we will develop a new model for COR (and therefore for the A-
calculus) in chapter 3. There we propose a relationship between both orderings.



2.5. Concrete COR-models 19

2.5.1 The Model P,

In the P, model of the A-calculus Scott (Scott, 1976) takes the set P, as func-
tional domain and the functions Fun : P, — [P, — P,] and Graph : [P, —
P,] — P, named fun and graph respectively, defined as follows

Fun(u) “ xv:P,{m| Je, Cv.(n,m) € u}
Graph(f) = {(n,m) | m € f(en)}

where (_, ) : INxIN — IN is a pair encoding function; {e, }nen is an enumeration
of the finite subsets of P,,; and [P,, — P,] is the set of continuous functions from
P, to P,.

The lattice structure of P, is evident, with L, T, <, LI and I defined as 0,
IN, C, U and N respectively. We have in addition, using the continuity of f

Fun(Graph(f)) = Au: P,.{m | Jep, C u.(n,m) € fen)} = Au: P,.f(u) = f
and

Graph(Fun(w)) = {{n,m) | me {m' | Je, Ce,.(n',m') € u}} =
={(n,m) | Jen Cen.(n',m) cu} Du

The tuple (P,, C, Fun, Graph) is a quasi-extensional COR-domain that allows
to define a quasi-extensional COR-model defining V in the usual way. It has to be
checked that f = Au: P, .V[u] /s is a continuous function for any COR-term
u. This proof can be done by induction in the structure of w.

If we restrict the domain to those elements u of P, such that

(n',m)€u A en Cep, = (n,m) €u

then Fun(Graph(z)) = v and P,, becomes an extensional COR-model.

2.5.2 The Model D
This model is built solving the recursive domain equation
D = [D — D]

in the category of lattices and continuous morphisms between lattices.? The
solution is a lattice (Dy, <p. ) and an isomorphism function

©: Dy — [Dy — D)

The functions Fun and Graph are defined by Fun = © and Graph = ®~1, and
satisfy FunoGraph = Id,__ _p_, and GraphoFun = Id,_ . Therefore, the domain
(Do, <p.,©,071) is an extensional model of COR.

2In section 3.2 we show how a similar equation can be solved in a given category.



20 Chapter 2. The Class of Models

2.6 Conclusions

A main point is worth noticing as a conclusion: the easiness with which envi-
ronment models for A-calculus have been extended to COR. COR-models are a
subcategory of A-calculus models keeping its main properties. Notice that, in
principle, in these models functions need not to be continuous nor monotonous
w.r.t. the subtyping order <. Nevertheless the concrete models presented take
continuous functions as morphisms. This fact is related with the identification
of the computational order and the subtyping order. That will be treated in
detail in subsection 3.2.6.



Chapter 3

An Ideal Model for COR

Abstract: Types are usually modeled by sets of values sharing a com-
mon structure, where structure represents notions like being a function or
being a pair. These structural notions are modeled using a partial order
relation < between terms, defined intuitively by a < b if a is more struc-
tured than b. Then, types are interpreted as order ideals of such ordering
(Milner, 1978; MacQueen et al., 1986). This structural ordering < and the
computational ordering T, introduced by Scott (Scott, 1972; Scott, 1976),
are related. In this chapter we identify the relation < with the inverse
of the relation C, and we define an ideal model based on such structural
ordering. We interpret the refinement relation between types as the set
inclusion relation C between ideals. We proof that if the ideal domain is
built over a functional domain of values, then the resulting ideal domain is
also functional (a retract of its corresponding functional space). It means
that the type domain is rich enough for modeling A-calculus and the use
of two distinct universes of types and values is superfluous.

3.1 Introduction

We interpret A-calculus as a typing formalism which admits a precise notion
of refinement or inclusion between MA-expressions. By type we mean here an
intensional description of a set of values sharing some structure, where structure
represents notions like being a function or being a pair. These notions are
modeled by a structural order < defined intuitively by ¢ < t’ if t is more structured
than t'. For instance, we say that completely undefined value L is less structured
than any other value Vz.z < L, or that (¢1,%2) is more structured than (¢},t5) if
t; is more structured than ¢} and ¢; more structured than ¢},. Lambda expressions
can be considered types so far we make them denote not elements of a domain,
as usual, but a particular set of them. Then an expression can be refined by
giving another expression whose denotation is included in the denotation of
the former, i.e. we model the refinement relation between expressions as the
inclusion relation between sets.

21



22 Chapter 3. An Ideal Model for COR

Having in mind the interpretation of A-expressions as types, we have taken
closed <-order ideals (Milner, 1978; MacQueen et al., 1986) as denotations of
M-expressions. There are different reasons that support this decision. Ideals
establish a coherent link between the ordering defined by the inclusion relation
between ideals and the structural order of its elements. Milner (Milner, 1978)
notes that any typing formalism must share the following two properties:

e Ift: 7 and t < ¢t then ¢/ : 7. Types are inherited from less structured
terms.

o Ift; <t3 < ...t < ...1s a sequence of 7-typed terms (¢; : 7 for i € IN)
then U;ewt; : 7. The least structured term of a sequence of terms sharing
the same type, also shares such type.

These properties are perfectly modeled by closed <-order ideals. These and
other similar reasons have also been given in (MacQueen et al., 1986) to model
polymorphic types as ideals.

Given that we want A-expressions to denote ideals and that the set of ideals
is closed under union, intersection and cartesian product (see lemma 3.25) it
seems natural to extend pure A-calculus with these set operators. We want to
give semantics to these expressions in a domain of closed order ideals J(U) built
over a functional domain U, i.e. over the initial solution of a recursive domain
equation like:

U=2=C+UxU+U-U

where C is any initially given domain and U — U stands for the set of continuous
functions w.r.t. the compuiational orderrelation C. The notion of computational
order was introduced by Scott (Scott, 1972; Scott, 1976) and is defined intuitively
by t C ¢’ if ¢t contains less computational information than t'. Our principal
decision is to identify the structural order < and the inverse of computational
order C, i.e. to define ¢t < t' iff ' C t. We prove that if the value domain U is
functional (it can be defined a retract from a subset of U — U to U), then the
domain of <-order ideals J(U) is a semantic model of the extended A-calculus
(it can also be defined a retract from a subset of 7(U) — J(U) to J(U)).

This chapter proceeds as follows. We start summarizing the standard tech-
nique formalized by Smyth and Plotkin (Smyth and Plotkin, 1982) for solving
recursive domain equations in a given category. They use some categorical con-
cepts that we introduce (not in detail) just to make the chapter self-contained.
The rest of section 3.2 is devoted to the search of an “deal” functor —a functor
mapping domains to domains of <-ideals. We study four candidates and we try
to justify each one of the decisions leading to the final choice (the functor §).
These candidates are the following ones:

Z(D) The structural and the computational orderings are identified (442‘ 0),
the computational ordering between ideals is defined by I; C I if I; C I3,
and the domain is built using (not necessarily closed) <-order ideals over
a cpo structure.



3.2. Value Domain Construction 23

J(D) Like the previous one, but using closed order ideals and domains instead
of cpos.

JC(D) The relations < and L are identified, but the computational ordering
between ideals is defined by I; C I, iff I C I;.

S§(D) Finally, we decide to identify the structural order and the inverse of the

computational order ({ig 1) and define the computational order between
idealsas I C I iff I; D I.

This is not the shortest way to introduce the functor &, but we think it
reflects closely the way how we found it. We prove the local continuity property
for such functor. This ensures the existence of an initial solution for a wide
range of domain equations, like U = C+ U x U 4+ S(U) — U, which we will
also use. In section 3.3 we prove the main result of this chapter: the domain
of <-order ideals S(U), built over a functional domain U = ...+ U - U +.. .,
is also a functional domain. It allows to interpret A-expressions not as values
(in U) but as types (in S(U)). Finally, we show in section 3.4 how a semantic
interpretation function can be defined for such ideal model.

3.2 Value Domain Construction

In this section we will prove in detail the existence of a least fixed point of the
recursive domain equation:

D = F,(D) (3.1)

that is, the existence of an initial F,-algebra (U, @), where U is the initial fixed
point of the domain equation, and « is the isomorphism

a:F,(U)—>TU

Usually, the endofunctor F,, used to give semantics to values in a functional
language, has the form F, (D) = C+ (D x D)+ (D — D) where +, x and — are
well-known continuous functors. Techniques to solve the domain equation (3.1)
in this case have been studied and do no require a further analysis (we summarize
such technique in subsection 3.2.1). Such recursive domain is enough for inter-
preting constants (in C), pairs of values (in U x U), and computable functions
(in U — U) as values (in U) by means of the isomorphism a: F,,(U) — U.

Scott (Scott, 1972) was the first to face the solution of such kind of re-
cursive domain equations using the inverse limit construction. This was the
first statement of the limit-colimit coincidence. Later he showed (Scott, 1976)
how this construction can be avoided using an universal domain and a least
fixed point construction. Wand (Wand, 1979) formalized the inverse limit con-
struction in terms of enriched categories, the O-categories. Finally, Smyth and
Plotkin (Smyth and Plotkin, 1982) studied the sufficient condition that a func-
tor F' and an O-category K have to satisfy in order to ensure the existence of



24 Chapter 3. An Ideal Model for COR

a solution of the domain equation D = FEZ(D) in a category KZ, where KF is
the subcategory of K resulting from restricting arrows to be embeddings, and
FE . KF _ KB is a covariant functor on K¥ defined from F. Such formulation
is based on the coincidence of colimits (inverse limits) in KZ and limits in K.
This is the most general formulation of the limit-colimit coincidence that we
know. As Smyth and Plotkin says (Smyth and Plotkin, 1982), “the relation be-
tween the category-theoretic treatment [based on the inverse-limit construction
or limit-colimit coincidence] and the universal domain method has, until now,
remained rather obscure”. The relation between both methods still remains
obscure, and this chapter contributes to close the gap between them. We will
use the category-theoretic approach mainly to solve the valued domain equa-
tion (3.1), obtaining a functional value domain U, which we use to build over an
ideal domain J(U). Such ideal domain is an universal domain used to found a
solution to the type domain equation, using the universal domain method.

In the following we give some references describing the standard technique
that we present in subsection 3.2.1. Pierce (Pierce, 1991) summarizes the Smith
and Plotkin’s paper and also introduces the necessary basic categorical defini-
tions. The Plotkin’s course notes on domains (Plotkin, 1983) and the Schmidt’s
book (Schmidt, 1988) are good introductions to denotational semantics and do-
main theory. Stoy (Stoy, 1978) also makes a good introduction to the inverse
limit construction, however he does not use the categorical formulation. Gunter
and Scott (Gunter and Scott, 1990) summarize the main techniques for the se-
mantic domain construction based on the universal domain method.

In some cases we will want to solve the domain equation (3.1) using the
endofunctor F,(D) = C + D x D 4 (8(D) — D), where S is a functor map-
ping a domain D to a subset of its corresponding power set. Some kinds of
powerdomains have already been studied, for instance, the Plotkin’s powerdo-
main (Plotkin, 1976) and the Smyth’s powerdomain (Smyth, 1978), but none of
them satisfies our requirements. The concrete definition of the functor & will be
motivated step by step in subsections from 3.2.2 to 3.2.6.

3.2.1 The Standard Technique

In this subsection we present some well-known definitions of category concepts
and we summarize the Smyth and Plotkin results of (Smyth and Plotkin, 1982).
They have been included just to make the chapter self-contained.

Definition 3.1 A partial ordered set (poset) (D,C,) is said to be a complete
partial order, cpo for short, if
(i) D has a minimum (or bottom) element, noted by 1, and
(ii) every increasing sequence {z;};cn has a least upper bound (lub) in D,
noted by | |, -

If it exists, the greatest lower bound (glb) of a decreasing sequence is noted by
MieN®;.

Given two cpos (D,C_) and (E,C,), amap f : D — FE is said to be con-
tinuous if for every increasing sequence {z;};cn of elements of D we have



3.2. Value Domain Construction 25

Lienf(2i) = F(Ueni)-*

Definition 3.2 Let CPO be the category of cpos and continuous functions
between cpos, and let D, E, D', E' be objects and f : D — D', g : E — E’ be
arrows of such category, the functors _+ _,_x _: CPO x CPO — CPO and
_— _: CPO x CPO — CPO are defined as follows.
(i) coalesced sum
D+E= {{d,L,)|de DYU{(L,e)|ec E}
where (d,e) C,_ , (d',e') ifdC, d' and e C € for objects, and
f+a((z,v) = (f(z), g(y)) for arrows
We also define ini(d) = (d,Llp), is1(z) = true if ¢ = (d,L,),
out1((d, L) = d, and similarly ins, is2 and outs.
We have lp,p=(Ll,,1l,) and |_|iEN(ai, b;) = <|_|i€Na,i, |—|ier7:>
(ii) smash product
DxE* {(de) | dEDANecENd=1,e= 15}
(d,e) .5 (dye') ifdC, d andeC €

Fxg((z9) < (f(2),9(v))

lpye = <J‘D’J‘E> and |_|ieu<a'i’bi> = <|_|ieua’i: Llieubi>
(iii) continuous function space

D - E*™ {f:D— E | f is continuous}

fEp_g 9 if for any z € D we have f(z) C, g(z)

[f — gl(h) = gohof

Lipog =Az. 1, and |_|i€Nfi =Az. |_|i€Nfi(m).
The same functors can be defined in the category Dom of domains (see defini-
tion 3.16) and continuous functions between domains.

Definition 3.3 A fixed point of a recursive domain equation X = F(X) in a
category K, where F : K — K is an endofunctor, is as a pair (D,0) where D is
an object of K and 6 : F(D) — D is an isomorphism of K.

It is an initial fixed point if for any other fixed point (D', ') there is a unique
arrow f : D — D' such that 8'cF(f) = fo0.

The initiality of such solutions is important in order to ensure the validity of
structural induction principles.

To understand the Smith and Plotkin (Smyth and Plotkin, 1982) category-
theoretic formulation, for the solution of such kind of equations, it is useful to
have in mind the well-known theorem that ensures that any continuous function
f in a cpo has a least fixed point, and this one is |_|n€Nf"(J_). Using this analogy,
cpos would be equivalent to w-categories, where the elements of the cpo are
equivalent to the objects of the category and the @ C b pairs are equivalent
to the @ — b arrows, a function would be equivalent to a functor, the bottom
element of the cpo to the initial object of the category, an increasing sequence
of elements to an w-chain, the least upper bound of an increasing sequence to

!Note that f continuous implies f monotonic and, therefore, { f(X;)};cm is an increasing
sequence.



26 Chapter 3. An Ideal Model for COR

the colimit of the corresponding w-chain, and a continuous function to a w-
continuous functor. The formal definitions of the categoric concepts we have
introduced are as follows.

Definition 3.4 Let K be a category, then

(i) Lk is an initial object of K if for any object A there exists a unique
arrow f: 1, — A,

(ii) A = (An, fa)nen Is a w-chain if f, : A, — Ap4q for every n € IN,

(iii) if F: K — K is an endofunctor, F(A) is the w-chain defined by the arrows
F(fa) : F(An) = F(Ans1),

(iv) p:A — A is a cone if there exists a sequence {p,}neN of arrows p, :
A, — A such that p, = pnyi10fs for any n € IN,

(v) p:A — Aisa colimiting cone if A is initial, that is, for any other cone
'+ A — A’ there exists a unique arrow 6 : A — A’ such that pl, = 6op,
for any n € IN; here 0 is named the mediating morphism,

(vi) terminal object, w°?-chain, cocone and limit are respectively, the
dual? definitions of initial object, w-chain, cone and colimit.

(vil) K is a w-category If it has an initial object L, and any w-chain has
colimit,

(viii) a functor F : K — K' is w-continuous if whenever p: A — A is a
colimiting cone, F(u) : F(A) — F(A) is also a colimiting cone.

Notice that colimits of w-chains are unique up to isomorphisms, that is, if A
and A’ are both colimits of the same w-chain, then the (unique) arrow from A’
to A is an isomorphism.

The following lemma is an adaptation of Smyth and Plotkin basic lemma 2.

Lemma 3.5 (Smyth and Plotkin, 1982; lemma 2). Let K be a w-category and
let F : K — K be aw-continuous functor, then there exists an initial fixed point
of X = F(X). The initial fixed point is (A, ), where A is the colimit of the
w-chain defined by

€ n(£)
J_K;,F(J_K)L,...F”(J_K)L)FH-H(J_K)...

where 1, is an initial object of the category and f is the unique arrow from this
object L, to F(Lk); and 0 : F(A) — A is the mediating morphism from F(A)
to the colimit A.

Proof: Notice that A and F(A) are the same w-chain shifted one position to
the right, therefore they have the same colimit up to isomorphism. Initiality is
proved taking into account that we have built the w-chain starting from an initial
object L. The complete proof can be found in (Smyth and Plotkin, 1982). W

2Where all arrows have been oriented in the opposite direction.



3.2. Value Domain Construction 27

Unfortunately, the categories Dom and CPO, usually used to build such
chains, are not w-categories. Intuitively, using the analogy with cpos, the prob-
lem is that w-chains are equivalent to sequences, and not every sequence has a
lub. We have to restrict w-chains to be increasing. The solution is to restrict the
arrows we use to build a chain. It can be done defining a subcategory Dom?®
of Dom or CPO¥ of CPO. This is the main contribution of the Smyth and
Plotkin’s paper (Smyth and Plotkin, 1982).

First, to define K ¥, the category K has to be an O-category. O-categories are
enriched categories where a partial order between arrows with the same domain
and codomain is defined.

Definition 3.6 A category K is said to be a O-category (Wand, 1979) if
(i) for any pair of objects A and B we can define a cpo structure in the set of
arrows K (A, B) from A to B, and
(ii) composition Is monotonic w.r.t. this order between arrows, that is f C

f"ANgEgG = fog T flog’ and | | (frogn) = (L,entn)o(l,cn9n)-

If K is an O-category then we can consider a special kind of arrows named
embeddings and projections.

Definition 3.7 Let K be an O-category, then the K-arrow f: A — B is said
to be an embedding and f® : B — A to be a projection if

(1) fRof = idA, and

(i) foff Cidp.

Given an embedding (or a projection) the corresponding projection (or em-
bedding) is uniquely determined. We will note f : D<E when f is an embedding,
f: D > FE when it is a projection, and f: D = F when it is an isomorphism.

The category K has as objects the objects of K and as arrows those arrows
of K that are embeddings. It is easy to prove that if K is an O-category then
K¥F is a subcategory of K. Smith and Plotkin prove also the following result.

Theorem 3.8 (Smyth and Plotkin, 1982; theorems 1 and 2) Let K be an O-
category, then

(i) if L is a terminal object in K, then it is also an initial object in K%,

(ii) if every w°P-chain in K has limit, then every w-chain in KZ has colimit.

This lemma will be used to prove that Dom? is a w-category. The coinci-
dence between limit and colimits stated by the previous theorem was already
discovered by Scott (Scott, 1972).

Secondly, we have to translate any functor F : K — K into a functor FZ :
KE® — KE and study which conditions F has to satisfy in order to be F¥ w-
continuous. This translation is made in such way that contravariant, covariant,
and mixed functors are all them translated into covariant functors.

Definition 3.9 Let F : K; x K3 — K be a functor contravariant in its first
argument and covariant in the second, then we define F¥ : KE x K2 — K% by



28 Chapter 3. An Ideal Model for COR

(i) FZ(A, B) = F(A4, B) for objects,
(i) FE(f,g) = F(fF,g) for arrows.

This definition can be made completely general to functors with several co-
variant or contravariant arguments.

Definition 3.10 Let F : K; x K3 — K be a functor contravariant in its first
argument and covariant in the second, then it is said to be locally continuous
if for any increasing sequence {fn}new in K;¥ and any increasing sequence

{gn}nen In Ky we have F(|_|nEan, |_|nENgn) = LlnENF(fn’ gn)-

Smith and Plotkin prove also the following result.

Theorem 3.11 (Smyth and Plotkin, 1982; theorem 3) Let K be an O-category
where any w°P-chain has a limit, and F : K X ... x K be a locally continuous
functor, then F¥ is a w-continuous functor.

Theorems 3.8 and 3.11 prove the premises of theorem 3.5, and this one proves
the existence of an initial fixed point of a recursive domain equation X = F(X)
in a given category K.

It is well-known (Smyth and Plotkin, 1982; Plotkin, 1983) that the categories
CPO and Dom have terminal object (the domain with a unique point L), and
any w-chain has a limit. As far the category CPO has not categorical sums,
we have to take CP O, i.e. the category of cpos and continuous strict functions
between cpos (a function is strict if f(_L) = ). It makes no difference because
embeddings and projections are strict functions, therefore CPOf = CPOf.
Then it has been proved that the coalesced sum _ + _ (the disjoint union of two
cpos where the bottom elements are identified), the smash product _ x _ (the
cartesian product where pairs (a, L) and (L, a) with @ # L are not considered),
and the strict continuous function space [- — _] defined in 3.2 are all them locally
continuous functors.

Therefore, the only point that remains to be proved —and this is our original
contribution in this section— is the local continuity of any functor used in the
definition of F, apart from these three ones.

3.2.2 The Functor 7

As we have said, in some cases we would need to solve the domain equation (3.1)
using an endofunctor F, (D) = ...+ 8(D) — D +... where functions from types
to values are also considered. In such definition, if D is the domain of values,
8(D) will be the domain of types of values. Given a domain of values there
is not a unique way of building its corresponding domain of types. One of the
proposed constructions are order ideals (see (MacQueen et al., 1986)) defined as
follows.

Definition 3.12 Given a cpo (D,C,), a subset I C D is said to be an order
ideal, noted I € Z(D), if



3.2. Value Domain Construction 29

(i) I+#0 and

(ii) whenever yC_ z and z € I we havey € I.
An order ideal I C D is said to be a closed ideal, noted I € J(D), ifin addition
(iii) for every increasing sequence {z;};cw in I we have I—lieNzi el

It makes sense to use (not necessarily closed) order ideals and defining a 7
functor as follows.

Definition 3.13 The functor 7 : CPO — CPO is defined by
I(D) ={I C D | I is an order ideal}

with the order relation given by I C I' iff I C I', for any object D (cpo),

and

(D)

I(f)=M.{ye E |z ecl.yC, f(z)}

for any arrow f : D — E (continuous function between cpos).

Proof: We have to prove that 7 is really a functor.

If D is a cpo, it is easy to prove that the set of order ideals of D with the set
inclusion order relation is a cpo with bottom element 1,5y = {L,} and least
upper bound | | In = U, In-

We have to prove that if f: D — E is a continuous function between cpos,
then Z(f) : Z(D) — Z(FE) is also a continuous function between cpos. Trivially,
for any set I, theset {y € E |z € I.y C, f(z)} is an order ideal of E. Let’s

prove now that Z(f) is continuous.

Z(H(UnenIn) = {y€E[FzcU,In-yEs f2)}
Ueenlv € E |3z €L, .y Ty f(2)}
UnenZ(£)(In)

Finally, we have to prove the compositional properties:

Il

Il

I(idp)I)={yeD|Jzecl.yCya}=1
and

Z(g)oZ(£) (1)

Il

{zeF|Iyc{ycE|Feecl.yC, f(2)}.-2C, 9(y)}
{zeF|3zel.IycE.yC, f(z) A 2C, g(v)}

we have f(z) € E for any z € I C D, thus we can take y 2 f(z) and then

— [zeF|Teel.zC, o(f(=))}

= Z(gof)(I) .

We could define the cpo Z(D) using the opposite order relation, that is,
IC, ., I' iff I' C I. In this case the bottom element would be D, and the lub of
an increasing sequence {I,}new would be (J, nIn. We discuss this possibility

in subsection 3.2.5.



30 Chapter 3. An Ideal Model for COR

Lemma 3.14 The functor 7 is locally monotonic, but it is not locally continu-
ous.

Proof: Tt is easy to prove that it is monotonic and therefore

UnenZ(fn) EZ(U,entn)

However the inclusion in the opposite direction does not hold. We have

I(l_lneufn)(I) = {yeE|3zcl.y Cg Llneuf’n-(m)}
U, enZ(f2)(T) Usen{v € E | F2 € I.yCy fu(2)}

For any 2 € I we can define the sequence {fn}nenw such that {fn(2)}nen
is an increasing sequence with || . fu(z) # fm(z) for any m € IN. Then,

Uenfr(2) € Z(LUenfn)(I) but || o fn(2) € U, enZ(Fa)(D)- u

As we have said, to prove the existence of a solution of a recursive equation
X = F(X), based on an initial fix point theorem, it is essential the local continu-
ity of the functor F (see theorem 3.11). The non-continuity of 7 impossibilities
such prove.

The problem is due to the non-closure of ( J, _ Z(f)(I). (Thelub| | _, fn(z)
belongs to Z(| |, ., fn)(I) but not to |J,_ Z(fn)(I)). The solution to such prob-
lem comes from using closed order ideals. In subsection 3.2.4 we define the func-
tor J mapping domains to the corresponding set of closed order ideals. This
functor maps continuous functions between domains f : D — F to a function
J(f) : T(D) — J(E). The function J(f) has to map any closed ideal I € J(D)
to the minimum closed ideal containing J(f)(I). It requires to close J(f)(I)
by smaller elements and by lub of increasing sequences. The first closure was al-
ready studied for Z. The second one requires the definition of a closure operator
for lub of increasing sequences, that will be discussed in next subsection.

3.2.3 The Category of Domains

Solutions to isomorphism equations like (3.1) are usually found using cpos. How-
ever, it is rather difficult to face the solution of this equation using only the
properties of cpos. For instance, the definition 3.20 of the functor J, the proof
of its continuity (theorem 3.29), and the definition 3.46 of the encoding function
Code_, rely on having a constructive way to calculate the least upper bound
(lub) of increasing sequences of ideals, and the minimum closed ideal that con-
tains a given set. There is no a constructive way to find these ideals working
with the set of closed ideals J(U) of a cpo U, even knowing that J(U) is a
complete lattice and, therefore, such ideals exist. As has been shown in (Mac-
Queen et al., 1986) when ideals are involved the suitable structure to work with
is the category Dom of domains and continuous functions between domains.

If we close a set A adding all the lub of increasing sequences of elements from
A, we obtain a set A with new elements which makes possible to define new

increasing sequences and makes necessary to close the set again A. The natural



3.2. Value Domain Construction 31

property of cpo ensuring that A = A is the w-algebraic property. However, the
function space construction does not preserve w-algebraic property (see (Plotkin,
1983) for a counter-example). Fortunately, this problem can be avoided if we
require cpos to be also consistently complete. Consistently complete w-algebraic
cpos are usually named domains.

In this subsection we introduce the standard definitions of w-algebraic and
consistent completeness, that is, of domains. Here domain has a precise meaning:
is a cpo with some additional properties. Basically, it is a cpo with a denumerable
basis of elements, such that any other element is the lub of an increasing sequence
of elements from the base.

Definition 3.15 Let D be a cpo.
(i) We say that z € D is w-finite if for any increasing sequence {a;}icw with
zC |_|I.ENai there exists k € N such that z C ay.
(ii) A countable subset B of D is a w-basis of D if for any © € D the set
B(z) 2 {y € B |y is w-finite A y T, z} is directed and LIB(z) = z.

Definition 3.16 Let D be a cpo.
(i) We say that D is consistently complete if every upper bound set X C D
has least upper bound.
(ii) We say that D is w-algebraic if D has a w-basis of finite elements.
(iii) And, we say that D is a domain if D is consistently complete and D is
w-algebraic.

From now on, Dom will be the category of domains and continuous functions
between domains.

The following lemma gives an alternative definition of w-algebraic and justi-
fies the intuition we have given: w-algebraic elements of a domain are a countable
basis that generates all the domain elements using only the least upper bound
operator LI.

Lemma 3.17 Let D be a w-algebraic cpo. For every # € D there exists an
increasing sequence {z;};cn of w-finite elements of D with |_|I.€N:1:i = z.

Proof: The set of w-finite elements less than z is countable and directed. Let
{@1,...,an,...} be this set. Because it is directed, we can construct the increas-
ing chain @3 C ¢12 C ... C ¢1,2,..,n = ... where ¢15,...» is an upper bound
of {c1,..n—1,an} belonging to the set of w-finite elements less than z, that is,
belonging to {ai,...,axs,...}. Thus, it’s easy to see that | |,_c1,...i = 2. [ |

3.2.4 The Functor J

In this section we define the functor J in the category Dom of domains and
continuous functions between domains.

The set of closed ideals of a cpo, like the set of order ideals, with the order
relation defined by the inclusion relation form a cpo. However, the calcula-
tion of the lub of an increasing sequence of ideals is not straightforward (see



32 Chapter 3. An Ideal Model for COR

lemma 3.25). The set of closed ideals of a domain, with the same order relation,
form a domain (see lemma 3.26). In this case, the lub of increasing sequences
is easily calculable (see lemma 3.19) thanks to the existence of a closure opera-
tor. As we have said, the definition of the J functor also relies on such closure
operator. This operator is defined as follows.

Definition 3.18 Let D be a domain, and let X C D be a subset. We define

Ix; 2 {zeD|IyecX.zCy}
Xx° * {z¢cX |z isw-finite}

x = {ll;cx@: | {@i}iew is an increasing sequence in X}

We can prove the following properties of these operators.

Lemma 3.19 Let D be a domain, and X C D a subset, then
(i) the set Zjx) is an order ideal,
(ii) if X is finite then Zjx) is also a closed order ideal,
(iii) the map C :Z(D) — J(D) defined by C(X) = X is a closure operator.
(iv) for any I € J(D) we have I° = I.
(v) for any increasing sequence {I;}icw in J(D) we have
LlieNIi = UieNIia
Many other properties, as VI1,Io € (D). Iy = I, & I{ =13 or (||, [)° =
UI.ENI", of closed ideals of a domain are not mentioned. Some of them are used
in the proof of the following lemmas and theorems, and may be easily proved.
We define the functor J as follows.

Definition 3.20 The functor J is defined in the category of domains and con-
tinuous function between domains by:

J(D)={IC D|Iis a closed ideal}

for objects, and by

J(f)=M.{yeE|FzcI.yC, f(z)}

for arrows (continuous function f : D — E between domains).

Notice that J(f)(I) is the minimum closed order ideal containing f(I).

In the following we will prove that J is really a functor in the category of
domains.

In order to prove that the set of closed order ideals of a domain is a domain,
we characterize the set of w-finite elements of J (D), that is, the set 7(D)°. We
need to introduce the following definition.

Definition 3.21 A set X is said to be maximal complete if for every element
z € X, there exists a maximal element m € X such that £ C m. Here, m € X
being maximal means that Vy € X . m [Z y.



3.2. Value Domain Construction 33

The following lemma relates the set of maximal elements of an ideal and the
ideals generated by a finite set of elements.

Lemma 3.22 Any ideal 7j; generated by a finite set M is maximal complete
and the set of maximal elements of Iy is a subset of M.

Any maximal complete ideal I is generated by the set M of its maximal elements
I =T.

These properties allow us to characterize the w-finite ideals of J (D).

Lemma 3.23 If D is a w-algebraic cpo, then a closed ideal I € J(D) is w-finite
(I € J(D)°) if, and only if, it is maximal complete and the set of maximal
elements is finite and contains only w-finite elements of D.

Proof:

<) We have to prove that if I C |—|1’.ENA7: then there exists a k such that I C
Ai. Let {a1,...,a,} be the finite set of maximal elements of I. We have
I C |—|1’.ENA7: = UiENAf, therefore, for any maximal elements a, we can say

a, € UiENAf. But, as far as a, is an w-finite element there exists k, € IN such
that a, € A; . There are a finite number of maximal elements, thus there exists
k = max{ky,...,k,} such that a, € A} for all r = 1,...,n. Using lemma 3.22
it is easy to see that I C Ag.

=) As far as D is w-algebraic, I° must be countable. Let I° = {a; | € N} be an
enumeration of I°, and J[{4,}] T J[{a0,a:}] C - - - E T{ao,.ryan}] & - - - £ I be the
increasing sequence of ideals generated by {ao}, {@o0,a1},. .-, {@0,-.-,an},...An
easy computation shows that I = J° = Uiendao, -+ ai} = UiEN‘Y[‘{Jau,...,ai}] =
|_|1',€N‘7[{0-0,---70-i}]' Now, if I is w-algebraic then there exists & € IN such that
I = J{a,,..,an})- Lemma 3.22 ensures that J[{,,,...,a,}] is maximal complete,
and the set of maximal elements is a subset of {ao,...,ar} (there are finite
many of them, and they are w-finite). [ |

Lemma 3.24 If D is w-algebraic, J (D) is also w-algebraic.

Proof: First, there are countably many w-finite ideals because they are charac-
terized by a finite number of w-finite elements from D, and the w-finite elements
of D are denumerable.

Second, the set of w-finite ideals less than a given closed ideal I € J(D) is
directed. The proof is an easy consequence of the equality

Tar,emant] Y Tb1,ebm ] = T[{a1,0amib1,e0nbm }]
Third, the lub of such set is I. If D is w-algebraic then

I= I_a = UiEN{a'O’ R a”i} = UieN‘7[?a.0,...,a..;}] = |—|i€N‘7[{"-07---7"-i}]

where I° = {a;}ien. The ideals J{q,,....0;}] are w-algebraic, which proves that
I is less than the lub of w-algebraic ideals less that I. ]



34 Chapter 3. An Ideal Model for COR

To prove that the set J(D) is consistently complete we use the following
lemma.

Lemma 3.25 Let (J(D), EJ(D)) be the cpo of closed ideals of D. If X,Y €
J(D) then XUY,XNY, X QY € J(D). Moreover (J(D),, V) is a complete
lattice where the meet operator is the usual intersection and the joint operator
is defined by | |, ., X; = | J{I € J(D) | Vi€ R.X; C I}.

Consequently, any bound subset of J(D) has a least upper bound (given by the
joint operator).

Notice that in general, the infinite union of closed ideals is not a closed
ideal. This fact makes necessary the definition of the previous non-calculable
joint operator. However, if D is w-algebraic then | |,  X; = [J, . X7 which is
computable.

Lemmas 3.24 and 3.25 may be summarized in the following lemma.

Lemma 3.26 If D is a domain, then J(D) is also a domain.

It can be proved easily that J(f) maps closed ideals over a domain to closed
ideals.

The following lemma gives an alternative definition for J(f). This lemma is
used widely to prove the following theorems.

Lemma 3.27

TJ(f)A)={ycE|Fzc A.yC f(z)} ={y € E° [Tz c A°.y C f(=)}

Proof: Using I = I°, that we have proved in 3.19, we have

{yeE|FzcA.yC f(z)} ={ycE° |z c A.yC f(z)}

Now, if z is not w-finite, there exists an increasing sequence {z;}icn of
w-finite elements with z = | |,_ #;. Using the continuity of f, y C f(z) =
F(Uien®:) = [;cnf(2i), and using the w-finiteness of y, there exists n € N such
that y C f(zn), with z, € A°, because z, C z and A is an ideal set. Therefore,
we can say that if there exists z € 4 with y C f(z), then there exists 2’ € A°
with y C f(2') C f(z), which ensures:

{yveEe|dzcA.yC f(z)} ={y€ E°|Tzc A°.yC f(z)}

Theorem 3.28 The mapping J is a functor in the category of domains.

Proof: We know that J maps domains to domains (lemma 3.26). It is easy to
prove that if f: D — F is a function between domains then J(f) maps closed
ideals of D to closed ideals of E.



3.2. Value Domain Construction 35

We have to prove now that if f : D — E is continuous then so it is J(f) :

T Upendn) = {ycBo Tzl o Inl°-
{yeB |3z e, 05 v
Upen{y € B° [Tz € I3y

= UnENj(f)(In) = I_lneuj(f)( n

Let’s proof now the compositional equalities.

J(Idp)I)={zeD|Iyecl.aCy} =1

(T(9) o T(N(A) = {z€F°|TyeT(f)(A).2C g(y)}

= {zeFe|ye{yecEo|TzcAc.¥yC f(z)}.2C g(y)}
= {z€F°|JycFEe.Jzec A°.yC f(z) and .z C g(y)}

But, because z C g(y) and y C f(z), by the monotonicity of g we can ensure
that z C g(f(z)). Then

. Clz€F° [T € 4° 2 E g(J(@))} = T(g 0 £)(A)

In the other direction, from z C g(f(z)) we have to find an w-finite element
y such that z C g(y) and y C f(z). We already know that z and z are w-finite.
If f(z) is w-finite we can take y = f(z). If this is not the case, then there exists
an increasing sequence {t;};cn of w-finite elements such that f(z) = |_|I.€Nti.
Using the continuity of g we can say 2z C g(f(z)) C g(| |,y ti) = [l;cn9(%:)- And
using the w-finiteness of z, there exists n € N such that z C g(¢,). We can take

then y = ¢,,, which ensures y C f(z) and the w-finite of y, therefore we can say

. 2(z€F [T € 4° 2 E g(J(2))} = T(g 0 £)(A) .

Theorem 3.29 The functor J is locally continuous.

Proof: For any increasing sequence {f;};cw and any ideal I € J(D) we have
to prove that J(| |,cp fi)(I) = [ien T (£:)(I)-

Using lemma 3.27 we have

T(Uinfi) D) ={y€EB° [Tz cI°.yC [ _ filz)} = ...

Using now that y is w-finite, we can say that there exists n € IN such that
y C fn(z). Then

{veE |Fzeel°.Ine N .yC fu(2)} = Uien T (£)I)° = Lien T (£:)(T)

Using domains and closed ideals we have got a locally continuous functor
which makes possible the solution of (3.1).



36 Chapter 3. An Ideal Model for COR

Ezample. Alternatively, we could define the functor J for each arrow f : D — F
as follows

J(f)=M:J(D) {y|Fzel.yC, f(=)}
Such definition does not make use of the closure operator. However, as we show
in figure 3.1, such definition is not correct because in general the set {y | 3z €
I.y C, f(z)} is non-closed. Notice that the set {l,,a0,a1,...,8n,...} is a

closed ideal, whereas its image { L g, bo, b1, ..., bn, ...} is an open ideal. We have
to take its closure {Llg,bo,b1,...,bn,...,[ |, i} as image to obtain a closed
ideal.

|_|~;er’5
b
f:D—E

o
=

e Q- Q1 ag——»

N

—-5—

where Vn € N. f(a,) = by,
and VYneIN. |_|1'.er7: # by,

l_
]

Figure 3.1: A counter-example to an alternative definition of the functor J.

3.2.5 The Contravariant Functor J°¢

The properties proved for the functor J allow to find an initial fix point of our
recursive domain equation. However, the solution is not completely satisfactory.
Since Scott (Scott, 1972) proposed the use of lattices to find solutions to such
kind of equations, the order relation C had an intended semantics in terms of
information containment. The inequality ¢ C b is interpreted as b has more
(computational) information than a or a is a computational approzimation of
b. In the same way, if there exists an embedding f : D — E between two
cpos, then it is said that elements of D are approximations of those elements
of E. Thus, the embedding f maps elements of D to elements of E with the
same information, and the corresponding projection f* maps elements of E to
their best approzimation in D. The equality f®of(z) = z is interpreted as “the
best approximation to any element containing the same information than z is
z itself”; and fofF(z) C z is interpreted as “an element, containing the same
information than the best approximation of z, contains less information than
z”.

We interpret terms as sets of values (as closed order ideals), therefore, the
most sensible thing would be to consider a smaller set as containing more infor-
mation than a bigger set. (The term 1 U 2 contains less information than the
term 1). The bottom element, the term not containing any information at all,
is the term interpreted as the hole domain of values.



3.2. Value Domain Construction 37

If we choose this interpretation, then the computational order between ideals
we have proposed is not the correct one. We would have to define

.[1; Iz@Ingl

J(D)

Fortunately, the set of closed ideals with the relation C have a complete
lattice structure. Thus, if we take the inverse order we also obtain a cpo with

J—J(D) = D
LlnENIn = Une]NI’”-

The infinite intersection of closed ideals is also a closed ideal, so by the
moment, we do not need the w-algebraic property.

Even if f is a continuous function J(f), as was defined in the previous
subsection, is not necessarily a continuous function w.r.t. the new order re-
lation, and J is no longer a functor. Fortunately, it is possible to define an
w-continuous functor 7 in CPOZ. The idea is to define a contravariant func-
tor 7¢ : CPO? — CPO such that (7°)f : CPO? — CPO® would be
w-continuous.

The functor J€ may be introduced in a very natural fashion. We know that
any embedding of CPO® hasa corresponding projection. The projection fitting
the embedding J(f) is given by:

JHE = TR
= M:J(BE){zeD|Fyel.aC, fRy)}
M :J(E).{z€D|3yel.f(z) Ty y}
M J(E). {z € D| f(z) € I}
= M:J(E).{zeD| f(z) eI}

where we use the implication {z € D | f(z) € I} is a closed ideal if f is
continuous and I is a closed ideal, the equivalence z C fF(y) & f(z) C vy, and
the property F(f)® = F(f®) for functors.

We have already said that with the order relation D, the function J(f) is not
continuous and J is not a functor. Conversely, with the opposite order relation
C, the function J(f)F is not necessarily continuous. However, notice that if f
is an embedding, then J(f) ! J(f)® is the projection corresponding to the
embedding J(f), and therefore it is continuous.

The above equality suggests the definition of the following contravariant func-
tor.

Definition 3.30 The functor 7€ : CPO% — CPO is defined by

des

JC (D) {I|I is a closed ideal, w.r.t. the order relation defined by C
for any object D, and by
Tf) = M : I(E) {z € D | f(=) € I}

for any arrow f : D — E.

2}

—JC(D) - =



38 Chapter 3. An Ideal Model for COR

Theorem 3.31

(1) JC is a contravariant functor
(i) JE€ is locally continuous.

Proof: It is a straightforward exercise. ]

We have J(D) # J¢(D) for objects. Notice also that JZ # (J¢)E (1)
because although J(fF) = J°(f) by definition, we have JE(f) = J(f) C
TO(fF) = (T°)(f) but in general TZ(f) = T(f) 2 T°(fF) = (T°)®(f).

We can concluded that a w-continuous functor 72 : CPO? — CPOF can
be defined without using the properties of domains, and considering the order

def

relation between closed ideals given by ch(D) =D.

3.2.6 The Functor S

In the previous subsection we have motivated the following definition of compu-
tational ordering between types (sets of values): a type I is a better approxi-
mation than other type I, (written I; C I) if it contains less values (that is if
I, C I). However, there are two different orders involved which we have misled,
the computational order C (used to define continuous functions, the only ones
that are computable), and the typing order < (used to define the order ideals).
Both orderings relate with the structure of the terms. For instance, the term
(L, 1) is a computational approximation of any other pair —(L, 1) C (z, y)—,
or the term (nat,nat) is the type of any pair of natural numbers —if 1 < nat
and 2 < nat then (1,2) < (nat,nat)—. It means that there is some kind of
relationship between both orderings. However, if we do not want to distinguish
between both orders,® the most sensible thing would be defining

z<y iff yCz

For instance, 1 has type nat, written 1 < nat iff nat is an approximation to 1,
written nat C 1. Then, <-order ideals, used to give semantics to types, become
C-order filters. In other words, if a term ¢ has type 7 (that is, ¢ € 7 where 7 is
a <-order ideal), then any term u more accurate than ¢ has (at least) the same
type (also satisfies u € 7). Therefore, 7 is a C-order filter, defined as follows.

Definition 3.32 Given a cpo (D,C,), a subset S C D is said to be a filter if
(i) S# D and
(ii) whenever z C, y and z € I we have y € I.
A filter S C D is said to be a open filter if in addition
(iii) for every increasing sequence {z;}iew If | |
1 € IN such that z; € S.

.cnZi € S, then there exists a

3 Another possibility would be to define both order relations separately. However, —we
think— such option makes the theory unnecessarily complicate.



3.2. Value Domain Construction 39

Notice that a set S C D is a (open) filter if, and only if, D\ S is a (closed)
ideal.
Given a pair of filters S, S’ C D, we define the computational order relation

S Egm S’ by § D §’. Therefore,
S Coioy S iff D\S C, o D\ S
The set of filters of a cpo is also a cpo where
Lsmy = D\{l}
LlieNSi = UieNSi
The set of open filters of a domain is also a domain where
Lseoy = D\{l}
LlieNSi = UzE]NSo = Uien(D\Si)a

This duality will allow to extend most of the properties of ideals to filters.
In particular, it allows to define a filter functor in the category of domains.

Definition 3.33 The function § : Dom — Dom is defined by

S(D) ¥ {S| S is aopen filter, with the order C_ . "D}

S(f) = AS:8(D).E \ J(f)D\S)

—=S(D)

for any object D and any arrow f : D — E is a functor in the category of
domains and continuous functions between domains.

Proof: The prove for the correctness of this definition is based on the following
points.

(i) S is a w-finite open filter iff D\ S is a w-finite closed ideal.
Let’s prove the implication in one direction (in the opposite direction it is

completely equivalent) Let S be a w-finite open filter, we define I * D\S
For any increasing sequence I; C, I, Com - .I; ... we can construct another
increasing sequence D\I; T, ,, D\ C,, - D\Ii .. such that if I C_
[ ;enZis then S = DNITC ) [ [P\ L. Notice that | [, D\ L = D\| ;.. 1i,
where the left hand is a lub in S(D) and the right one a lub in J(D). As far
as S is w-finite, there exists a n € IN such that S C_ D\In, and therefore,

IC I,,. We can conclude that I is a w-finite closed 1dea1

=7(D)
(ii) (S(D),Egp,y) is a domain.

There are denumerable many w-finite closed ideals of a domain, therefore,
there are also denumerable many w-finite open filters.

Now we have to prove that for any open filter S there exists an increasing
sequence Sp I:S(D) S1 I:S(D) ..S; ... of w-finite open filters such that S =
|_|’ENS Using the equivalent result for closed ideals, we know that there exists

I, C ... I ... of w-finite closed ideals with

—J(Db) —J(D)
D\ S = ||, Li- The result can be extended to open filters if we take S;
D\ L.

an 1ncrea51ng sequence IO C
def



40 Chapter 3. An Ideal Model for COR

(iii) S(f) : S(D) — S(E) is a continuous function for any continuous function
f:D—E.
Notice that for any increasing sequence of filters S C
we have

51E "Si"';

s(D) s(p) °

w8 = DAL (D S:)

1EN iEN

This equality and the continuity of J(f) allow to prove easily the continuity
of S(f).

iv e compositional properties of S are easily derived from the compositiona
iv) Th positional properties of S ily derived fi th positional
properties of J. ]

The local continuity of S also arises from the duality between J and S.
Theorem 3.34 The functor § : Dom — Dom is locally continuous.

Proof: The proof is based on the equality
D\LP&L = 2D\ 1) (3.2)
which relates the least upper bound of both domains J(D) and S(D). [ |
Another way to introduce this functor, independently from 7, is defining:
S(HIE Y AS:S(E).{z € D] f(z) € S}

for any arrow f : D — E. We know that each projection determines a unique
embedding (and biceversa), which may be computed easily as

fz) =n{y € E | f*(y) = =}
Let’s prove such result.

Lemma 3.35 Let D and E be cpos, and f® : E — D be a projection function.
(i) There exists a unique function f : D — E satisfying ffof = Id, and
fofR C Idy.
(ii) Moreover, such embedding is given by f(z) = N{y € E | fE(y) = z}.

Proof:

(i) Let fi and f» be two functions satisfying such equations. Then f; =
fao(fRof1) = (f20f®)of1 C f1. Conversely fi T fa.

(ii) Let f : D — E the projection corresponding to fF. First, %0 f(z) = z there-
fore f(z) € {y € E | f®(y) = z}. Second, for any y € E we have foff(y) C, vy
andify € {y € E | fB(y) = z} then f(z) = f(fF(y)) C, y- Concluding, if f(z)
belongs to such set and it is smaller than any element of the set then it is the
greatest upper bound of the set. ]



3.2. Value Domain Construction 41

Notice that previous lemma ensures that whenever f¥ is a projection, that is,
when its corresponding embedding exists, then it is f(z) = N{y € E | fR®(y) =
z}. It does not mean that f(z) will be always an embedding for any continuous
function f®, even when NS exists for any set S.

We can use previous lemma to find a more practical definition of S(f).

Theorem 3.36 The S functor, defined in 3.33, satisfies

S(f) = AS:S8(D).{yeE°|VYeeD.yC, f(z) >z c S}
S()f = XS:S(E).{zeD| f(z) € S}

for any embedding f : D — E.
Proof: First, we prove that it satisfies the second equality.

S(HT = S(f*)=A5:8(E).D\IT(fF)(E\S)
= MS:S(E).D\{zeD| f(z) e E\S}
AS:S(E).{zeD| f(z) € S}

Therefore, the function defined by such expression is a projection and we can
apply lemma 3.35.

S(f) = A8:8(D). n{Y € S(E) | S(/)*(Y) = X}
AS:S8(D).\ {Y €S(E) |VzeD.z2cS& f(z) €Y}

Such expression can be simplified. For that, we will compute the glb of such
set of filters.

First, we prove that Z < {y ¢ E |Vz € D.y C, f(z) = z € S} satisfies
Vee D.z€ S & f(z) € Z. We have to prove

VeeD.ze S& (V2' e D.f(z) C, f(2') => 2’ € 8)

There are to cases:

< It is trivial if we take 2’ = 2.

= We have z € S and f(z) C, f(2'). Now z = fRof(z) C, fRof(z') = 2/,
and therefore z’ € S because S is a filter and z € S.

Unfortunately, Z is a filter, but not an open filter. We have to take then
Z° which is the bigger open filter contained in Z. However, Z° also satisfies
Vec D.z €S <« f(z) € Z°. If 2 € D is w-finite, it is trivial because Z and Z°
contains the same w-finite elements and f(z) is also w-finite. If z is not w-finite,
then =z = |_|I.€N:z:i where z; are w-finite. We can prove the result taking into
account that z € S iff there exists an 2 € IN such that z; € S (because S is an
open filter) and f(| |, %:) = [ |, f(2i) € Z° iff there exists an i € IN such that
f(z:) € Z° (because Z° is also an open filter).

Second, we prove that any open filter Y satisfyingVe € D.z € S & f(z) €Y
satisfies also ¥ C Z, and consequently Y C Z°. Let be y € Y. Then, for any
z € FifyC, f(z) then f(z) € Y (because Y is a filter) and z € S (by definition
of Y). Therefore y € Z which proves the inclusion. ]




42 Chapter 3. An Ideal Model for COR

The domains J(D) and §(D) are in fact isomorphic. We can define an
isomorphism Cy, : J(D) — S(D) by C5(S) = D\ S for any domain D. We have
Cp! = Cp, and the equation (3.2) proves the continuity of Cp, therefore Cy, is an
embedding. The existence of such a isomorphism will be very helpful to prove
some results in next section.

Ezample. Another possibility would be defining S(f)(S) for any arrow f :
D — E and any open filter S € S(D) as the minimum open filter contain-
ing {f(z) | ¢ € S}. This set is not uniquely defined. If f(z) is not an w-finite
value of E then in order to be open, S(f)(S) has to contain an smaller w-finite
value, which is not determined. We can define then S(f)(S) as the minimum
open filter containing {f(z) | z € S A f(z) is w-finite}, that is:

S(f)=25:8(D).{ycE°|3zeS.f(z) T, y}

f:D>E

T4

i

1p

Figure 3.2: A counter-example for the alternative definition of S.

However, it does not works because S(f) is not a continuous function. Let
D, E and f: D — E be the two domains and the morphism shown in figure 3.2.
If we take the increasing sequence of open filters S; = {z;,ziy1, ...}, with the
previous &’ definition we have S'(f)(| |, S:) = 0 whereas | |,_, S'(f)(S:) = {y}-
Using the correct definition we obtain S(f)(| |;cxSi) = | icnS(£)(S:) = {y}-

3.2.7 Well-Founded Domains

In the previous section we have taken open filters over a domain as the semantic
domain. These open filters are 1) closed for bigger elements (w.r.t. the computa-
tional order relation C) and 2) open for increasing sequences (if | |, z; belongs
to the set then there exists an n € IN such that z, also belongs to the set). In
the introduction we have justified the use of closed <-order ideals as semantic
domain, i.e. sets which are 1) closed for smaller elements (w.r.t. the structural
order relation <) and 2) closed for <-increasing sequences (if z; belongs to the
set for any 2 € IN then Uieuzi also belongs to the set). We identify the struc-
tural order relation < with the inverse of the computational order relation C,
therefore the first property of open C-filters is equivalent to the first property



3.2. Value Domain Construction 43

of closed <-ideals. However, the second properties of both definitions are not
equivalent. The second condition of open C-filters is necessary in order to ob-
tain a domain; notice that the set of (not necessarily open) filters of a domain is
not, in general, a domain. Now, we introduce a new condition for domains that
we will use to prove some of the following theorems, in particular lemma 3.46.
This condition ensures that any element of an open filter has a minimal in the
filter (filters are minimal complete), however this condition is still not enough
for ensuring that any decreasing sequence in a filter has its glb in the filter, i.e.
the second property of closed <-order ideals.

Definition 3.37 A domain (D,C,) is said to be well-founded if the relation
C, defines a well-founded order over the set of w-finite elements of D; i.e. there
does not exist any infinite strictly decreasing sequence z1 J #3 J ---Zp -+ of
w-finite elements.

Lemma 3.38 Every open filter over a well-founded domain is minimally
complete.* Moreover, any minimal element is w-finite.

Proof: First, we proof for any element of the filter that either it is minimal or
there exists another strictly smaller w-finite element in the filter. If an element
is not minimal then there exists another element strictly smaller than it in the
filter. Let z be such element. Using lemma 3.17 we can ensure that there
exists an increasing sequence {z;};cw of w-finite elements with z as least upper
bound. Now, if the filter is open then at least one of the w-finite elements
z, belongs to the filter, and z, C z. Second, if such strictly smaller w-finite
element is not minimal in the filter, then we can repeat the same reasoning.
This process can not be repeated indefinitely, otherwise we would construct an
infinite strictly decreasing sequence of w-finite elements. We conclude that any
element of the filter has a minimal element below it. Finally, we prove that
any minimal element z of the filter is w-finite. Otherwise, there would be an
increasing sequence {z;}ien of w-finite elements with | |,  #; = z and z; # =
for any j € IN (notice that z; is w-finite and z is not). As far as the filter is
open, there exists an n € IN such that z, belongs to the filter and z will be not
minimal in the filter. ]

Notice that in the previous proof we need filters to be open. Otherwise, we
would need the finiteness of every strictly decreasing sequence, not only of every
sequence of w-finite elements.

From now on, we will work in the category of well-founded domains and
continuous functions on them. This simplifies some proofs. For instance, to
prove that a filter is included into another filter it is enough to prove that any
minimumw-finite element of the first one belongs to the second one. However, we
have to prove that the functors used to construct the reflexive domain preserve
the well-foundation property.

4See definition 3.21.



44 Chapter 3. An Ideal Model for COR

Lemma 3.39 The functors 4+, x, — J and § map well-founded domains to
well-founded domains.

Proof: For + and x the proof is rather simple. For the functors J and § it is
based on the well-foundation property of finite-multiset® orderings. Let <, be
an order relation on D. We define an order relation <, 5, on the finite subsets
of D by 81 <ppy S2if Vo € §;.3y € S3.2 <, y. Then, as a consequence of
Konig’s lemma (Dershowitz and Manna, 1979) if <, is well-founded then so it
is <p(py. Now, let I; and I; be two w-finite ideals over a well-founded domain
(D,C,), and let M; and M; be their sets of maximal elements. As far as I; and
I, are w-finite, M; and M, are finite and only contain w-finite elements. It is not
difficult to prove that Iy T ,, Io iff My C, ,, Mz, being C, ,, the finite-set
ordering induced by C,. The well-foundation property for C, ,, proves then
that J(D) is also a well-founded domain.

Any decreasing sequence S1 Jspy S2 Jspy *-*Sn -+ -in 8(D) has associated
a decreasing sequence D\ Sy J,py D\ S2 Jspy -+ D\ Sp---in J(D). It allows
to conclude that if C, oo is well-founded, then so it is Ceoy- [ |
Lemma 3.40 Every ordered® set S of a maximal complete cpo has a greatest
lower bound NS.

Proof: We define the set X 2 {z € D |Vy € S.z T, y}. This set is nonempty
(it contains 1) and bounded (any element of S is an upper bound), therefore,
if D is maximal complete then X has a least upper bound. Such least upper
bound of X is a greater lower bound of S. ]

3.3 Type Domain Construction

We have motivated in the introduction the adequacy of using a semantic domain
(type domain) consisting on the set of <-order ideals of another set of values
(value domain). Considerations of subsection 3.2.6 about the computational (C)
and the structural (<) orderings suggest the use of C-order filters instead of
order ideals, i.e. the identification of < and . We define a value domain U
as the initial fixed point of a recursive domain equation F,(D) = D, where
the endofunctor F, may be defined by F,(D) = C+ D x D + [D — D]. The
existence and uniqueness (up to isomorphism) of such domain U is proved using
standard techniques described in subsection 3.2.1. The isomorphism mapping
F,(U) to U will be noted by a : F,(U) — U. This is enough for giving semantics
to values. For types, we will use the semantic domain S(U). If we use value
constructors (cartesian product and functional space) and lattice constructors
(union, intersection, top and bottom) as type constructors, then it seem natural
to require S(U) to be also an F,-algebra. That is, to prove the existence of an

5The following result was proved for finite multisets. However, for our purposes it is enough
to work with finite sets.

6 A subset S of a cpo D is said to be ordered if for any pair of elements z,y € S we have
eitherz C, yory L, .



3.3. Type Domain Construction 45

embedding F,(S(U))<S(U). Nevertheless, as we will see in this section, this is
not reasonable (even not possible) to use the same endofunctor F for types and
for values. Main reasons are:

1. The pairing constructor (for values) and the cartesian product (for types)
are not equivalent. The product constructor only satisfies the inclusion S C
proji1(S) x projz(S), but not the inclusion in the opposite direction, which
would be needed to prove the universal property for such construction (see
subsection 3.3.1).

2. A value may be either a constant, a pair of values or a function, but not
two of them simultaneously. This motivates the use of coalesced sum + in
the definition of F,. However, a type may be composed by more than one
type of values, thus it has a component consisting on a set of constants,
other consisting on a set of pairs of values and another of functions. It
motivates the use of the x constructor, instead of +, in the definition of
F. (see subsection 3.3.2).

The last reason motivates the following definition for the endofunctor F.
F.(D) 2 S(K) x [D x D] x [D — D] (3.3)

In the following we prove that S(U) is a F.-algebra, i.e. the existence of an
embedding

B: F.(S(U))<S(U)

The basic idea is defining an embedding Codec : C(S(D)) — S(C(D)) for each
type constructor C. It would allow to define an embedding Codep, : F.(S(D)) —
S(F(D)), which composed with §(a) : S(F(D)) — S(D) results on the desired
embedding. As we will see such embedding is given by

B = S(a)oCodeyo (Idsxy x Codey x Code_,)

where a : F(U) — U is the mediating morphism of F(D) = D, and Codey,
Code; and Code_, are defined in the following subsections.

This technique may be compared with Scott’s work (Scott, 1976; Gunter
and Scott, 1990). Thus, S(U) may be considered as an universal domain, and
Codec functions would be the embeddings used to prove representativeness of
the operator C.

3.3.1 The Embedding Codey : (D) x S(E)<S(D x E)

We will use a pairing constructor x for types, together with its corresponding
projections proj; and projz. Such constructor is represented (in the sense of
Scott) as a set of pairs of values. The codification embedding is the cartesian
product defined as follows.



46 Chapter 3. An Ideal Model for COR

Definition-lemma 3.41 The function Codeyx : S(D) x S(E) — S(D x E)
defined by

Codex<Sl,Sz> dg Sl X Sz

for any Sy € 8(D), S2 € S(E) is an embedding.
Its corresponding projection satisfies

Codef(S) = (S(proji)(S), S(projz)(S))

where S(proj;)(S) = {proji(z) | ¢ € S}, for any S € S(D x E).

Proof: It has to be proved that such equalities define an embedding between
domains. Continuity of both functions is a straightforward exercise. Composi-
tional properties are proved by

CodefoCodex((Sl, S2)) = ({proji(z) | ¢ € S1 x S3}, {proj2(z) | z € S1 x S2})
= (51, 52)

{{z,y) | 3s € S.z = proji(s) A 3s' € S.y = proja(s')}

S

CodeXoCodef(S)

Il

Notice that such embedding satisfies S(proj;)oCodex (X1, X2) = X; but only
the inclusion Codey (S(proji)(S),S(proj2)(S)) O S holds in general. There-
fore, Codey is not a proper pairing function because the universal property
VX . (proji(X),proj2(X)) = X does not hold.

The codification function Codey and the embedding 8 : F(S(U))<S(U)
allow to define three interpretation functions which will be used to give semantics
to the pairing x and the projection proj; constructors.

Definition 3.42 The interpretation functions for products and projections
are defined as follows

Intery : S(U)xSU) — S(U)

P — B((0,P,0)) = S(aoing)oCodey (P)
Interprog; ¢ SU) — S{U)

S projioprojzeB%(S) = S(proj;)oS(outzea)

They satisfy the following inequalities.

Lemma 3.43 Functions Intery and Intery,,;, satisfy:

Interproj; (Intery (S1,.52)) = S;
Inter (Interproj, (S), Interproi, (S)) C S

=s(U)



3.3. Type Domain Construction 47

3.3.2 The Isomorphism Code, : S(D) x S(E) = S(D + E)

Definition of an embedding Code, : S(D) + S(E)<S(D + E) is not possible, as
the following example shows.

Ezample. The function Codey : S(D) + S(E) — S(D + E) defined by

, if X = lsoyse then D+ E\{lp,s}
Codey (X) 2 { if isi(X) then {ini(y) | y € out1(X)}
if is2(X) then {ina(y) | y € outa(X)}

for any X € S(D)+S8(FE), is continuous and injective, but it is not an embedding.
The only monotonic function Codef :8(D + E) — 8(D) + S(F) satisfying
CodefoCode} = Idg(pyys(m) is defined by

if Vee S.isi(z) then ini({outi(z) |z € S})
Codef(S) =1 if Vz € S.isa(z) then ina({outz(z) |z € S})
otherwise L s(py+s(m)

for any S € S(D+ E). However, such function is not continuous as the following
example shows.

Consider an infinite sequence of values d; € D, a value e € FE
and the increasing sequence of filters S; € S(D + E) defined by S; =
{inz(e), in1(d;), in1(di41), - - .} and satisfying US; = {inz(e)}. It is easy to prove
that Codef(Si) = L spyrsm for any ¢ € IN, whereas COdef(l_l.;ENSi) = iny({e}).
Therefore COdEf(l_l.;eNSi) + UiENCodef(Si).

As we have mentioned, coalesced sum is not adequate to put together the
different kinds of types. A value has a unique kind, whereas a type may be
composed by different kinds of values. Thus, it is more sensible to decompose
a type —an element of S(D + E)— into its different components —an element
of §(D) x S(E)—, instead of classifying it into two kinds of types —an element
of §(D) + S(E)—. We see then that a type is uniquely characterized by its
components. It means that we can define an isomorphism between the universe
of mized types S(D + E) and the product of pure types S(D) x S(E).

Definition-lemma 3.44 The continuous function Codey : §(D) x S(E) —
8(D + E) defined by

def

Code; (81, 52) = {ina(y) | y € $1} U {ina(y) | y € S2}
is an isomorphism. Its inverse is defined by
Code_T_l(S) = ({out1(z) | z € S A isi(z)}, {outa(z) | z € S A isz(2)})

for any S, € 8(D), S, € S(E) and S € S(D + E).



48 Chapter 3. An Ideal Model for COR

3.3.3 The Embedding Code_, : §(D) —» S(E)<S(D — E)

Contrary to previous cases, definition of an embedding from §(D) — S(E) to
S(D — E) is not so easy as it could seem. Thus, many simple definitions
fail when we try to prove their continuity or the inclusion relations defining
an embedding. There is no room here to present all unsuccessful attempts, so
we have selected only a pair of them to show the complexity of the task. The
definition of such codification function is one of the most important contributions
of this thesis. The first one presents one of the more aesthetic solutions that can
be proposed. The second one is based on the first one. The final solution is a
slight modification of this second example.

Ezample. Our experience suggests us to define an embedding-projection pair
proposing a projection candidate first, and using lemma 3.35 to find the corre-
sponding embedding later. Suppose we have a singleton open filter S = {f} €
S(D — E). If we have to choose a function Code® ({f}) : §(D) — S(E) being
codified by f, the more appropriate candidate would be S(f). Now, if S contains
more than one function then each element belonging to S contributes to “make
Codei(S) more undefined”. In other words, if Codei is a projection then it is

monotonic and as much bigger S is (smaller w.r.t. ES(D_,E)), more undefined
Code® (S) is (smaller w.r.t. Cs(py—s(my)- We could define Code® (8) = 5(NS).
But this is not a good choice, because it is equivalent to trying to codify a
function in §(D) — S(E) using a unique function in D — E, which is clearly

impossible. It is better to define:
Code® (8) 2 MyesS(F)

If such function is a projection, then its corresponding embedding will be:

Code_,(F) = {f S (D - E)o | F ES(D)—»S(E) S(f)}

Continuity of such functions may be easily proved, as well as the following
inequalities:

Code® oCode_,(F) = Mpcs(nS(f) I F
Code_,0Code® (S) = {f € (D — E)° | Mpes S(F)CS(F}IC S

In fact, given a continuous function, like Code® | it is always possible to find
another function, like Code_,, satisfying such inequalities. Problems arise when
we try to prove CodeioCode_, (F) C F. This inequality only holds when for
any X € §(D) and any y € F(X) we can find a function f : D — E such that
F C S(f) and y € S(f)(X). Unfortunately, first example of figure 3.3 shows
that it is not possible to find such function for X = {d>} and y = es.

Ezample. In previous example we have chosen Codei({f}) = S(f). Thisis the
smallest function satisfying z € X < f(z) € S(f)(X). We can take the biggest



3.3. Type Domain Construction 49

F:8(D) - S(E)

N A
1p 1E
4 F:8(D) — S(E) e
P
1p 1E

Figure 3.3: Two counter-examples for two possible definitions of Code_,.

one of such functions. In this case, we obtain:

Code,(F) = {fe(D—E)|VX cS(D).Vze X.f(z) € F(X)}
Code®(S) = AX:8(D).{f(z)|z€ X A f€ S}

Then, inequality Code® oCode_, (F) C F only holds if for any X € S(D) and
any y € F(X) we can find an f: D — E such that VX € §(D).Vz € X . f(z) €
F(X) and 3z € X .y = f(z). Second example of figure 3.3 also shows that it is
not possible to find such function for X = {d;,d>} and y = e;.

A careful analysis shows that the function Code_, only codifies correctly U-
additive function. If z € X; UX, and VX € §(D).z € X . f(z) € F(X) then
f(z) € F(X,) or f(z) € F(X3). Therefore,

CodeioCode_,(F)(Xl UXy) = CodeioCode_,(F)(Xl) u CodeioCode_, (F)(X2)

Such problem always appears when we try to codify a function on sets using
the set of functions mapping each element from a set of the domain to an element
of the corresponding image set (see (Sannella et al., 1990)). We already men-
tion such problem in (Levy et al., 1990), where we propose the definition of an
encoding function from S(D) — S(E) to §(S(D) — E) (see subsection 3.3.4).
The set of functions used to codify a function on sets is then larger and we
get the desired embedding. However, now we know that it is possible to define
a codification function being an embedding without enlarging the codification
space.

The only way to avoid CodeioCode_,(F) be additive is using more functions
to codify F. We can do that introducing in Code(F') functions satisfying Vz €



50 Chapter 3. An Ideal Model for COR

X1 U X,. f(2) € F(X; U X3) but neither Ve € X;. f(z) € F(X;) nor Vz €
X, . f(z) € F(X3). We define then

Code,(F) ™ {f € (D — E)° [ 3X € S(D)°\{0}.Vz € X . f(z) € F(X)}

Then, f(z) € Codei(S)(X) for any ¢ € X and any f € S is no longer
true and we have to restrict the set of functions f used to define Code®™. The
corresponding projection is, more or less

Code® =2S:8(D).AX :S(D).{y€D|Fec X.3fcS.La# f(z)Cy y
A fis minimalin S A (V2' € X . f(2') = J_E)}

Here, more or less means that this function is not continuous and we have
to modify it slightly to obtain a continuous function. We define continuous
extensions for such purpose.

Definition 3.45 Let D and E be domains, and f : D° — E be a monotonic
function. Then, there exists a unique continuous function f*** : D — E, named

continuous extension, satisfying f*=*(z) = f(z) for any w-finite element z €
De.

Proof: Lemma 3.17 ensure that if D is a domain and =z € D, then either z €
D° or there exists an increasing sequence of w-finite elements {z;};cw such
that z = |_|i€Nzi. Evidently, such sequence is not unique. We define f*=* by
fe=t(z) = f(z) if z € D° and f*=*(z) = | |, f(2:) for one of such sequences if
z is not w-finite. However, we have to prove then the result is independent from
the chosen sequence.

Let {z;}iew and {z}};en be two sequences satisfying z = | |, yzi = ||, n2i-
For any i € IN we have z; C |_|J.€N:z:;- and, as longer as ; is w-finite we have also
Vi€ IN.3j € N.z; C z;. If f is monotonic, then Vi € N. 35 € IN. f(z;) C f(z;)
and we conclude | |, f(z:) C || f(z}). Similarly we prove | |, . f(z:) =
U en (5.

Now, we prove the continuity of the function defined in this way. (No-
tice that the function f : D° — E is continuous if, and only if, it is mono-
tonic). Let {z;}icn be an increasing sequence in D. For any ¢ € IN we can
find an increasing sequence {P;'}je]N such that z; = |_|J.€Np;-. It is not diffi-
cult to prove that Vi € N.dk € IN.z; C p?jl using the w-finiteness defini-
tion. Therefore, we can define a sequence of k; such that P11c1 C piE C ...

is an increasing sequence satisfying |_|I.€Nmi = UiENpii. Now, using the defi-
nition of f*=* we have f=*(| |, %) = f**(L;cnPk,) = Licn =" (pL,) and on
the other hand |_|i€Nf°”(zi.) = |_|i€Nf°”(|_|j€Np;-).: |_|iEN|_|jENf”‘(p;-). Clearly,
feﬂ(l_lieuzi) = Llieufeﬂ(p;ci) C Llieul_ljeufeﬂ(p;') = I_lienfeu(m’i)' The inclu-
sion in the opposite direction is derived from the monotonicity of f<=*. This
concludes the proof. [ |

This lemma can be extended to functions with several arguments. Thus,
if f : D° — E° — F is monotonous, then its continuous extension is



3.3. Type Domain Construction 51

(Az : D°.(Ay : E°. f(z,y))"™")"", which is continuous in both arguments. We
can conclude also that two continuous functions are equal (f = g) if, and only
if, they are equal for any w-finite argument (Vz € D°. f(z) = g(z)).

From now on, we will to take care of defining monotonic functions on w-finite
arguments, it does not mind if they are also continuous or not. Then, we will
use their continuous extensions to obtain a continuous function.

Definition-lemma 3.46 The function Code_, defined by

Code_,(F)™ {f € (D — E)° | 3X € S(D)°\{0}.Vz € X . f(z) € F(X)}

for any F : §(D) — S(E) is an embedding. Its corresponding projection is

Code® = (AS:S(D)".AX:S(D)".{yED |JecX.3f€S. Lo# f(2) T,y y
A1 is minimal in § A (V2 ¢ X . f(s') = 1a)}) "

Proof: The proof of correctness of the previous definition is based on the fol-
lowing points.

(i) Function Code_, is continuous.

We prove first that f € (UiENCode_,(Fi))o implies f € (Code_, (l—liENFi))o'
If fe (UiENCode_,(Fi))a, then for any 7 € IN there exists an X € §(D)°\ {0}
such that Vz € X . f(z) € F;(X). Let X; be the maximum? filter satisfying
such proposition for each ¢z € IN, then it is easy to prove that the sequences
{X:;}iew and {F;(X;)}icw are both increasing. Now, if f is w-finite, then its
set of images is a finite set of w-finite elements.Therefore, if each filter F;(X;)
contains at least one of such images, then Uie]NFi(Xi)o will contain also at least
one of them. Let p be one of them. It is not difficult to prove that the set X =
{z € D | pC f(z)} is a nonempty open filter, and it satisfies Vz € X . f(z) €
Uie]NFi(Xi)o- As far as F; are continuous functions we have Uie]N(Fi(Xi))o =
UiENUjE]N(Fi(Xj))a = Uie]N(Fi(UjeNX;))o = (l_lieNFi(X))o' Therefore, we
conclude that f € (Code_,(UiENFi))o. Implication in the other direction is
ensured by the monotonicity of Code_,. We have then (UiENCode_,(Fi))o =
(Code_,(uiENFi))a which proves the continuity of Code_,.

(ii) Continuity of Code® is ensured by lemma 3.45.

(iii) Code® oCode_, = Id.
First, we prove that if p € Code® oCode_, (F)(X) then p € F(X), where we
can suppose without loose of generality® that X € (S(D))° and p € E° are both

"Notice that the union of filters satisfying such proposition also satisfies it, therefore the
maximum filter exists.

8Notice that two continuous functions are equal iff they are equal for any w-finite element
and that two closed ideals are equal iff they contains the same minimal w-finite elements.



52 Chapter 3. An Ideal Model for COR

w-finite and p is minimal. Therefore, there exists a function f € Code_,(F) and
a z € X such that

p=f(z) # Lls (3.4
Ve! ¢ X . f(2') = Lg

f is minimal in Code_, (F)

—_
w W
[= %
— ~—

We can suppose without lose of generality that f € Code_, (F) is w-finite (because
it is minimal) therefore there exists a nonempty set X’ € §(D)° such that

ve' € X'. f(2') € F(X') (3.7
It is easy to prove that the condition (3.6) ensures
Ve' ¢ X' f(z') = Lg (3.8)

otherwise, the function f/ defined by f'(z) = f(z)if z € X’ and by f'(z) =,
otherwise, belonging to Code_,(F), would be smaller than f. Now, as f(z)
p # L condition (3.8) ensures z € X’ and, using (3.7), p = f(z) € F(X'). O
the other hand, for any z’ ¢ X the condition (3.5) ensures f(z') = Lz ¢ F(X
and, using (3.7), 2’ ¢ X'. From that we conclude X’ C X and F(X') C F(X).
Those two fact prove p = f(z) € F(X') C F(X) which finishes the proof.
Second, we prove that if p € F(X) then p € Code® oCode_, (F)(X), where we
can also suppose without loose of generality that X € S§(D)° and p € F(X)° are
both w-finite and p is minimal. We define X,,;, C X as being a filter such that
P € F(Xmin) and and no other filter contained in X, satisfies such property.®
We use such filter to define the following function

— B

def p 1,f rc Xmin
f(z) = { 1, otherwise
This function satisfies evidently f € Code_,(F) and f(z) = p for some z € X.
As X,nin € X we have also Vz' ¢ X . f(2') = Lg. Finally the minimallity of f
is ensured by the fact that there is not any filter X’ such that X’ C X,.;», and
p € F(X') and p is minimal in F(X) and therefore in F(Xm;n)-

(iv) Code_,oCodeI_i,(S) D S.

We prove that if f € S then f € Code_,oCodeI_{,(S), where we can suppose
without loose of generality'® that f € S° and f is minimum in S. First, we will
that the set

Don(f) =2 {z €D | f(z) # L}

9The Kuratowski-Zorn theorem ensures the existence of at least one of such filters. We can
construct a maximal ordered set (i.e. a set where any pair of elements are comparable and no
other element can be added) of filters, containing the filter X and satisfying p € F(X). The
least upper bound X,,;n of such maximal set exists and also satisfies p € F(Xmin) (because
F is continuous for lub of ordered sets). As the ordered set is maximal, there will not be any
set bigger than (contained in) X, and satisfying p € F(X).
10 Again, a filter is included into another one if the set of minimal elements of the first one
is included into the second one.




3.3. Type Domain Construction 53

is a nonempty open filter. Suppose that z € Dan(f) and ¢ C_ ', then 15 #
f(z) E; f(z') and therefore z' € Dan(f). Suppose now that | |, z; € Dam(f),
then |_|I.ENf(zi) = f(l_l-;en) # 1 and therefore f(z,) # Ly for some n € IN.
We conclude that Dan(f) is an open filter. Moreover Don(f) # 0, otherwise we
would have f = | ,_, 5 which contradicts 1,5 & S for any filter S. It can also
been easily proved that if f is w-finite function then Dan(f) is also an w-finite
open filter.

Then, Vz ¢ Don(f). f(z) = L and, as far as f is minimal in S, we will have
f(z) € Codei(S)(’Da’n(f)) for any z € Dan(f). Now, as Don(f) is a nonempty
open filter we have f € Code_,oCode® (S). [ ]

In this case the interpretation functions are Fun and Graph. On such func-
tions, relies the soundness of 8 and n-rules, as we have shown in chapter 2.

Definition 3.47 The interpretation functions for A-abstractions and applica-
tions are defined as follows

Graph: S(U)—-SU) — S8{)

F — pB((0,0,F)) = S(aoing)oCode_, (F)
Fun : S(U) — SU)—-S)

S s projzoBf(S) = CodeioS(outgoa)

They satisfy the following inequalities.

Lemma 3.48 Functions Fun and Graph satisfy:

FunoGraph(F) = F
GraphoFun(S) 2> S

This lemma sets that our ideal model is a quasi-extensional COR-model.

3.3.4 The Embedding Code_, : §(D) - S(E)<S(S(D) — E)

The problems to define an embedding between S(D) — S(F) and §(D — E) can
be avoided if we enlarge the codification space. The main problem in previous
subsection was that the pointwise extension of a set of functions in D — FE
always results in a U additive function on (D) — S(E) (see second example
in subsection 3.3.3). To avoid such problem we can enlarge the domain of the
functions used to codify. One possible solution is defining an embedding between
§(D) — S(E) and S(S(D) — E). For simplicity, we will do it in two steps.
First, we will define an embedding between J (D) — J(E) and J(J(D) — E).
Second, using the isomorphism J(D) = §(D), we will define the embedding
between S(D) — S(F) and S(S(D) — E).

Definition-lemma 3.49 The pair of functions

Code_, : J(D)— J(E) — J(J(D)— E)
Code® : J(J(D)—E) — J(D)— J(E)



54 Chapter 3. An Ideal Model for COR

defined by
Code_,(F) “ {f:J(D)— E|VX € J(D).f(X) € F(X)}
Code®(I) ¢ AXx:7(D).{F(X) [ Fel}

form an embedding-projection pair.

Proof: This proof is based on the following points.

(i) Code(F) € J(J(D) — E).

If f € Code,(F) and g C f, then for any ideal X € J(U) we have g(X) C
f(X) € F(X). Now, if F(X) is an ideal then g(X) € F(X), and therefore
g € Code_,(F). .

If for any ¢ € IN, f; € Code_(F), then for any X € J(U) we have
fi(X) € F(X). Now, as F(X) is closed for increasing sequences [U;enfi](X) =
Uien fi(X) € F(X), and therefore U;ew fi € Code_, (F).

(ii) Code® (I)(X) € T(E).

Using the domain properties, it is enough to prove that C’c‘Ee}_{, (D)(X)
{f(X) € E° | f € I} is a (may be open) order ideal.

For any p € E we have to prove that if p C Ef(X) and f € I, then there
exist a function g : J(D) — E such that ¢(X) = p and g € I. Using again the
domain properties, there exists a sequence {p;}icn of w-algebraic values with
U;enp; = p. We define then

open 4ef

9 ¥ AX :J(D).| {p: | i Cp F(X)}

which trivially satisfies g C f and g(X) = p. Consequently, g € I.
The continuity of f, and the w-finiteness of y; prove the continuity of g:

g(UjenX;) = | Hyi [ C f(UjenX;)}=[{w | i C Ujenf(X;)}
= [Ny 3 €Ny C f(X;)} = Ujen| Hui | vi E f(X;)}
Ujeng(X;)

(iii) C:O\Eei (I): J(D) — J(F) is continuous. -

Coiti_{, I) is obviously monotonic, let’s prove then Codei(I)(l_Iie]NXi) C
UiewCodel (I)(X5).

Suppose p € Codel_z,(I)(I_Iie]NXi)"’“m then there exists ¢ € I such
that p = g(UienXsi). So, by the continuity of g we have p
Usewg(X;), where for any j € IN evidently ¢(X;) € Fun(I)(X;)
UienCode® (I)(X;). Therefore, by the definition of closure, p = Ljeng(X;)
UsenCode® (I)(X;) = UjenCode® (I)(X;). Concluding, Code® (I)(UienX:)
Code™ (I)(LienXi)Pe™ = LiiewCode™ (I)(X;) = UsenCode® (I)(X:).

(iv) C/oEeioC/oEe_, =Id

The inclusion CodeioCode_,(F) C F is easy to prove, let’s prove the inclu-

sion Code® oCode_,(F) D F.

m N

I




3.3. Type Domain Construction 55

We have to prove that for every X € J(D) the inclusion

FX)C{f(X)|3f:TJ(D)—-E.VY €e J(U).f(Y) e F(Y)}

holds. Let p € F(X) be any element of the first set. By lemma 3.17, there exists
an increasing sequence of w-finite elements such that U;cnp; = p. We define

FEAX:J(D).| {pi | pi € F(X')}

Following the same reasoning than in point (ii), the continuity of F and the
w-finiteness of p; prove the continuity of f. On the other hand, it is evident that
for any X' € J(U) we have f(X') € F(X'). Therefore, f € CE)Ee_,(F). It is
also evident that f(X) = p. We can conclude that p € Code}_{,oCode_,(F)(X).

(v) C/oEe_,oC/oEei C Id is easily proved. [ ]

Now, if Cp, : J(D) — S(D) is the isomorphism defined by C, = AI :
J(D).D\1I for each domain D, we can define the embedding Code_, as fol-
lows.

Definition-lemma 3.50 The function
Code_, * Cypy_50T(C5t — Idg)oCode_,o(Cp — C51)
defines an embedding between S(D) — S(E) and S(S(D) — E).

Proof: Notice that Cp, and C;! are both embeddings for any domain D. Taking
into account that Id, is evidently an embedding, the application of a continuous
functor (like — or J) to an embedding is also an embedding, and the composition
of embeddings is also an embedding, then Code_, is an embedding, as far as we
have yet proved (see lemma 3.49) that Code_, is an embedding. [ |

This alternative definition of the embedding Code_, also leads to a functional
ideal model provided that we define the value domain U as the initial solution

of:
U=C+UxU+8U)—-TU

instead of using equation (3.1).
We can also mix both solutions and define U as the initial solution of:

U2C+UxU+U->U+8(U)—-TU
Then, two kinds of A-abstraction may be defined, one interpreted in S(U — U)

using the first definition of Code_,, and the other interpreted in S(S(U) — U)
using the second Code_, definition.



56 Chapter 3. An Ideal Model for COR

3.4 An Ideal Model for COR

In this section we present the semantic rules used to map the language expres-
sions over the semantic domain. As we have seen, we use S(U) as semantic
domain. As usual, the semantic function is parametric in a valuation function.
These valuation functions map identifiers to domain values: p: Ident — S(U).

Definition 3.51 The semantic interpretation function
7 : Ezpressions — (Ident — S(U)) — S(U)

is defined inductively by:

T[IJ—]]p =0

T[IT]]p = U\ {ls}

[z], = plz]

[t1Utz], = 7[td], U [t2],

Tﬂtl n tz]]p = Tﬂtl]]p N T[[t2]]p

T[t1 X 2], = Intery (7[t1], , T[t20,)

Tlproji (1), = Interpro;; ([])
T[Az.t], Graph(Xe. 7[[t] o))
T[t1(t2)], = Fun(r[ta],)(7[t2],)

where ple/z] is the valuation p, except that it maps z to e.

Lemmas 3.46 and 3.50 proves that (S(U), Fun, Graph) is, in both cases, a
COR-domain (see definition 2.4). The interpretation function 7[-] has been
defined following the definition 2.6, therefore to prove that (S(U), Fun, Graph, 7)
is a COR-environment model we only need to prove the following lemma.

Lemma 3.52 For any COR-term ¢ the function f X \S € S(U) . 1[t]prs/2) is
continuous.

Proof: The proof is done by induction on the structure of the term ¢.

(i) Suppose that t = Ay. u.
We have the following sequence of equalities

T[[t]]p[l_lieusi/m] - T[[Ay ) u]]/’[l_lieusi/m]

= Graph()S. T[[u]]/’[l_l,-ensi/m][s/?/]) definition of 7
= Graph(AS .| |, 7[ulos:/2]is/4])induction hypothesis
= Graph(uiENAS T[] prsi/2)is/4])

=|J;cnGraph(AS . 7[u] 5is;/2]is/y]) continuity of Graph

= LliENTIIt]] P[Si/m])

which prove f(| |, Si) = [ |;cn f(Si)-



3.5. Conclusions 57

(ii) Suppose that t = u(v).
Then we have

T, 0721 = T ) i/
= Fun(T[Iu']]p[UiENSi/m])(T[[v]]p[quNSj/m]) definition of 7
= Fun(| ;. 7lullpis:/2)) (L, cn T[] o15;/2))Jinduction hypothesis
= |ienldjenFun(rlullpisi/e1)(T[v] ois;/21)  continuity of Fun
= LlewFun(r[ulpis:/a1)(r[vDots./21)
= LlieNTIIt]]P[Si/m])

For the rest of cases the proof is very similar and is also based on the conti-
nuity of the interpretation functions. [ |

Theorem 3.53 The tuple (S(U), Fun, Graph, 7) is a COR-environment model.

Proof: The proof is based on the previous lemma and the equality Fun(S(U)) =
S(U) — S(U). The former means that the image of any filter for Fun is a
continuous function, which has been already proved. [ |

Our model, being a COR-model, is also a A-model, and satisfies all provable
equations of A-calculus. Furthermore, our model allows to define a new type of
formulas based on the refinement relation C.

Definition 3.54 A term t; is a refinement of another term t; (noted t; C t3)
if for any valuation p the inclusion £[[t1]], C £[[t2], holds.

3.5 Conclusions

We have proved that if we identify the structurel order relation < with the
inverse of the computational ordering C in a functional domain U, then we can
build over a COR ideal model S(U). It is also a A-calculus model and allows to
interpret A-expressions as types. The definition of a functor & spreads out the
family of A-models. The study of such kind of models has not finished. We plan
to prove some kind of initial property for them and to propose some other cases
where both orderings would not be identified.



58

Chapter 3. An Ideal Model for COR



Chapter 4

First-Order Bi-rewriting
Systems

Abstract: In this chapter we propose an extension of term rewriting
techniques to automate the deduction in monotone pre-order theories. To
prove an inclusion a C b from a given set I of them, we generate from
I, using a completion procedure, a bi-rewriting system (Rc, R5), that is,
a pair of rewriting relations = and 5 and seek a common term
¢ such that a R—*c) ¢ and bR—*D;c. Each component of the bi-rewriting
system = and = is allowed to be a subset of the corresponding
inclusion relation C or O defined by the theory of I. In order to assure
the decidability and completeness of such proof procedure we study the
termination and commutation of = and = The proof of the com-
mutation property is based on a critical pairs lemma, using an eztended
definition of critical pair. We also extend the existing techniques of rewrit-
ing modulo equalities to bi-rewriting modulo a set of inclusions. Although
we center our attention on the completion process a la Knuth-Bendix,
the same notion of extended critical pair is suitable of being applied to
the so called unfailing completion procedures. The completion process
is illustrated by means of three examples corresponding to the theory of
the union operator, non-distributive lattices and distributive lattices. We
show that confluence of eztendedcritical pairs may be ensured adding rule
schemes. Such rule schemes contain variables denoting schemes of expres-
sions, instead of expressions. We compare the results with the classical
rewriting formulation.

4.1 Introduction
Rewriting systems are usually associated with rewriting on equivalence classes

of terms, defined by a set of equations. However term rewriting techniques may
be used to compute other relations than congruence. Particularly interesting

59



60 Chapter 4. First-Order Bi-rewriting Systems

are non-symmetric relations like pre-orders. In this chapter we will show the
applicability of rewriting techniques to monotonic pre-order relations on terms,
that is the deduction of inequalities —here we call them inclusions— from a
given set of them.

The idea of applying rewriting techniques to the deduction of inclusions be-
tween terms, like @ C b, is very simple. We compute by repeatedly replacing
both 1) subterms of a by “bigger” terms using the axioms and 2) subterms of b
by “smaller” terms using the same axioms until a path is found between a and .
Evidently there are many paths starting from a in the direction —£- and from
b in the direction —2- (see figure 4.1). Many of them are blind alleys and oth-
ers are not terminating. It is essential that the search procedure avoids infinite
sequences of rewriting steps with infinitely many different terms (infinite paths
due to cycles can be avoided if we control the introduction of repeated terms).
Obviously infinitely many different rewriting steps would prevent the termina-
tion of the procedure. The solution to non-termination is, like in term rewriting
systems, to orient the axioms using a well founded ordering on terms. Because
the relation is non-symmetric, the orientation results in a pair of rewriting sys-
tems (Rc, R>), i.e. we get what we call a bi-rewriting system. We introduce the
definitions of Church-Rosser and quasi-terminating bi-rewriting system in order
to assure the soundness, completeness and termination of the search procedure.
That is, given a set of axioms, if we can orient and complete them obtaining a
quasi-terminating and Church-Rosser bi-rewriting system, then we will have a
decision algorithm to test @ C b.

a
c (an)UaR cy bUa j c
aU(aUb) (bUa.)Ua.—gb-bU(a.Ua) b<— aUb

=NaUu(bua) =N (aUa)ub au(buc)

< eg bue
XUuY =-YUuX =
C
Rc = (XUuY)uz —=-Xu(YuUZ)

C
XuX —X

alUc

[ xuy 2 x
Xuy 2. v

Figure 4.1: A graphical representation of the bi-rewriting algorithm

Most of the notions of rewriting developed for the equational case can be
extended to bi-rewriting and the development of the chapter follows the same
pattern as equational rewriting: the Church-Rosser property is proved by means
of a critical pairs lemma, and we use a completion process to ensure the con-
fluence of the critical pairs (Knuth and Bendix, 1970; Huet, 1980; Klop, 1987;
Dershowitz and Jouannaud, 1990). However there are also some differences.
Equational rewriting is in essence a theory of normal forms, while bi-rewriting



4.2. Inclusions and Bi-rewriting Systems 61

disregards this notion. Bi-rewriting can also be seen as a generalization of equa-
tional rewriting: equations can be translated to pairs of inclusions and then we
can reproduce the equational case. One of the costs of this generalization is
that bi-rewriting is based on a search procedure, which is avoided in canonical
rewriting systems thanks to the existence of unique normal forms. Another cost
is that now critical pairs must be computed considering variable overlapping,
producing possibly infinitely many of them, which are represented as critical
pair schemes.

This chapter proceeds as follows.

In section 4.2 we present a version of the critical pairs lemma for bi-rewriting
systems using an eztended definition of critical pairs. We also give a counter-
example that invalidates this lemma stated only in terms of stendard critical
pairs.

In section 4.3 we generalize the results of section 4.2 to bi-rewriting systems
modulo a set of (non-orientable) inclusions. We have divided this section in two
subsections, the first devoted to abstract bi-rewriting properties and the second
to term dependent properties.

In section 4.4 we present three examples of canonical bi-rewriting systems
for the theories of union, non-distributive lattices and distributive lattices. We
show that although in general extended critical pairs could be intractable, there
exist for this theory, and possibly for others, practical ways to handle them.

We also show in section 4.5 some of the disadvantages of using equations to
model inclusions in lattice theories.

4.2 Inclusions and Bi-rewriting Systems

If nothing is said, we follow the notation and the standard definitions used in
(Huet, 1980; Klop, 1987; Dershowitz and Jouannaud, 1990). We are concerned
with first-order terms T(F, X') over a nonempty signature F = | J, , Fn of func-
tion symbols, and a denumerable set X of variables.! A position p is a sequence
of positive integers. Given two positions, p; - p2 denotes their concatenation.
We write p; < p, when p; is a prefix of p; and p;|p; when they are disjoint.?
The occurrence® of a subexpression at a position p of a term ¢ is denoted by .
The expression t[u], denotes the result of replacing in ¢ the occurrence of t|, by
u.* A contezt F[-], is an expression with a hole [-] at a distinguished position

p. The set of (free) variables of a term t is denoted by FV(t). A substitution

1 As we will see later, in most cases we also require the finiteness of 7. We suppose that
Frn are disjoint sets. The set T7(F, X) is defined as the smallest set containing X such that if
f€Fnandt; € T(F,X)fori=1,...,n then f(t1,...,tn) € T(F, X).

2We write p; < pa when there exists a sequence g such that p» = p; - ¢, and p; |p when
p1 A p2 and ps £ p1.

. . de e . .
3If p is an empty sequence then t|p is defined by t|<> “ { otherwise it is defined inductively
def
by f(t1, - stn)l<isin,iin> = bial<io, . in>
4If p is the empty sequence then t[u]<> acd u, otherwise f(t1,...,tn)[t]<is,... im> =

Fltr, oo ootig [u]cin, . im>y -+ En)-



62 Chapter 4. First-Order Bi-rewriting Systems

oc=[X;+1t1,...,Xn — t,] is a mapping from a finite set {X1,...,X,} C X of
variables to 7 (F, X'), extended as a morphism5 to 7 (F, X)) — 7 (F, X). The set
Dom(o) 2 {X1,...,X,} is called the domain of the substitution. We use the
relational logic® notation (deKogel, 1992; Baumer, 1992) to present the abstract
bi-rewriting properties. The inverse of the relation R is denoted by R™1, its
reflexive-transitive closure by R*, the transitive composition by Ri0R3, and the
union by R; U R,. Notation RT is a shorthand for RoR*. A relation R is said
to be terminating if RT is a well-founded ordering, quasi-terminating if the set
{u |t R* u} is finite for any value ¢; and finitely branching if {u |t R u} is finite
for any t. A binary relation R on terms is said to be closed under substitutions
if t R u implies o(t) R o(u), for any substitution ¢ and pair of terms ¢ and u;
monotonic if t R w implies F[t], R F[u],, for any context F[.],; and a rewrite
relation if it is closed under substitutions and monotonic. We denote by ——
the rewrite relation defined by the set of rules R.” Notation «+— is a shorthand
for (—— )_1.

An inclusion is a pair of terms s,t € 7(F,X) written s C ¢. Given a
finite set of inclusions Az and a pair of terms s and ¢, we say that s C,, ¢
iff Az Fpop s C t, where POL stands for Partial Order Logic and b, is the
entailment relation defined by the following inference rules

Abe,sCt Al tCu

A,sCthprsCt Abtpr, sCs AlbprsCu
Abp, sCt AbporsCt
AFpoy o(s) Co(t) A Feop uls]y C ult],

where o is a substitution, p a position in u, i.e. u[], is a context, and A is a
finite set of inclusions.

Meseguer (Meseguer, 1990; Meseguer, 1992) has studied widely the logic of
conditional inequalities, which he names rewriting logic, and its models.

The set of inclusions s C ¢ that can be inferred from Az using b5, forms an
inclusion theory, noted by Th(Az). Notice that, in first-order logic, Th(Az) is a
denumerable set and the deduction problem Az .., s C t is semi-decidable. In
the following we will propose sufficient conditions to have a decision algorithm
for Az Fpo, s C t based on rewriting techniques.

Given an inclusion s C ¢ of Az, we can orient it obtaining a term rewriting
rule s £t or a rule t —=2-s. Thus, the orientation, for rewriting purposes,
of a finite set of inclusions Az results in two sets of rewriting rules, Rc with
rules like s —=— ¢ and R5 with rules like s —2-¢. The pair (Rc, R5) is called a
bi-rewriting system.

. def

5That is, o(f(t1,..-,tn)) = Fflo(t1),--.,0(tn)).

8This is an extension of the Kleen algebra for regular expressions, i.e. those built up using
the constructors U, o and .

7The minimal rewriting relation satisfying s —z— tfor any rule s — ¢ € R.



4.2. Inclusions and Bi-rewriting Systems 63

Definition 4.1 A (term) bi-rewriting system is a pair (Rc, R5) of finite
sets of (term) rewriting rules Rc = {s; < ty,...,8, —<>t,} and Ry =
{ur =501, U 5 0}

Given a bi-rewriting system (Rc, R>), its corresponding inclusion theory is
defined by the set of axioms Az = {s Ct|s—<=st€ Rc V t-—25s€ Ry}

The orientation criteria is based, like in rewriting systems, on a well-founded
ordering on terms (noted as =) (Dershowitz, 1987). In this section we suppose
that each inclusion s C ¢t in Az may be oriented, putting s —~¢ in Rc if s >,
ort—2ssin Ry ift = s. In the next section we will consider the case of
inclusions which can not be oriented because s ¥ t and ¢ ¥ s. For example,
inclusions defining the inclusion theory of the union may be oriented using a
simplification ordering as it is shown in figure 4.2.

— . <
XUXCX Re={rm: Xux-5X
Az = })fcg;fj;: o[ M Xuy-2X
= 27 | r3: XUY 25Y

Figure 4.2: Orientation of the inclusion theory of the union.

Given a bi-rewriting system (Rc, R5) the monotonic and substitution closure
of each one of its components Ec and R5 results in a rewriting relation, noted
by = and = respectively, defined as follows.

Definition 4.2 We say that s R-rewrites to t, written s —— t, if there exist
a rule | — r € R, a position p in s, and a substitution o, such that s|, = o(l)
and t = s[o(r)],.

If s|, = o(l) then we say that s|, and I match. Notice that if FV(r) C FV(I)
then the substitution o in the previous definition, with its domain restricted to
Dan(c) C FVY(l), is unique.

A variant of the theorem of Birkhoff (Birkhoff, 1935) allows to prove the
following lemma.

Lemma 4.3 Given a bi-rewriting system (Rc, R>) and its corresponding inclu-
sion theory Awz, for any pair of terms s, t we have s (— U «— )* t if, and
c 2

only if, Az pop, s C 1.

However, the relation ( —— U «z— )* is in general not computable, i.e. given

c >
two terms s and ¢ there does not exist a decision algorithm for s (R—c) U
5 )* t. We are interested in reducing the previous relation into the subre-

lation —— o «z—, which we will show is computable.
C 2

Based on the bi-rewriting system (Rc,R>) a deduction procedure for its
corresponding inclusion theory Th(Az) can be easily defined (see figure 4.1). To



64 Chapter 4. First-Order Bi-rewriting Systems

prove Az po, s C t the procedure enumerates recursively the nodes of two trees
T, and T3, defined by rooty, = s, rooty, = t, branchy,(s1) = {s2 | 51 R—C>sz}
and branchg,(t1) = {t2 | t1 R—D>t2}, avoiding repeated nodes. If the procedure
finds a common node in both trees then it stops and answers true, otherwise if
both sets of nodes are finite then it stops and answers false or else it does not
stop.

Notice that the nodes of both trees are always recursively enumerable, al-
though the trees may be infinitely branching. We say that a tree is infinitely
branching if it contains a node with infinitely many branches.

The following definition states sufficient conditions for the soundness and
completeness, and for the termination of this procedure. Notice that the sound-
ness and completeness properties are based on the equivalence of the relation
% o % computed by the algorithm and the relation ( T YU s )* imple-
menting the inclusion relation defined by the theory. The termination property
is based on the finiteness of both search trees.

Definition 4.4 A bi-rewriting system (Rc, R>) is said to be

* is a well-founded ordering;®

(i) terminating iff (— U —)
B¢ i)
(ii) quasi-terminating or globally finite iff the sets {u | tR—*Cwu.} and

{v|t R—*D> v} are both finite for any term t; and

(iii) Church-Rosser iff = Y5y »* C R—*g> 0 % .

We can prove the following results for the decision procedure based on a bi-
rewriting system, and the Az b5, t C u deduction problem of its corresponding
inclusion theory.

Lemma 4.5 If the bi-rewriting system (Rc, R>) is Church-Rosser then the de-
cision procedure based on it is sound and complete, i.e. Az Fpop, t C u holds if,
and only if, the procedure terminates and answers true.

If the bi-rewriting system is Church-Rosser and quasi-terminating then the de-
cision procedure is sound, complete and terminates, therefore the satisfiability
problem is decidable.

We only need to require the quasi-termination property of the bi-rewriting
system —which is (strictly) weaker than the termination property— in order
to prove the termination of the procedure; whereas in the equational case, the
termination property of the rewriting system is needed to prove the termination
of a procedure based on the computation of the normal form.

Lemma 4.6 Any terminating term bi-rewriting system is quasi-terminating.

81n a previous version of this work (Levy and Agusti, 1993c), a bi-rewriting system (Rc,Ro)
is said to be terminating iff both —R*—> and R;> are well-founded orderings. This is a weaker
condition and it is not enough to prove the equivalence between the Church-Rosser and the

local bi-confluence properties. This error was communicated to the authors by Professor Harald
Ganzinger.



4.2. Inclusions and Bi-rewriting Systems 65

Proof: If ( o U R—j))* is terminating then both R—*C> and R—;> are termi-
nating, and the problem is reduced to prove that any terminating term rewriting
system is quasi-terminating.

First we prove that any terminating term rewriting relation is finitely branch-
ing. If —— is terminating then any rewriting rule I —r in R satisfies
FV(r) C FV(l) (otherwise it would be easy to construct a non terminating
sequence of terms taking a convenient instantiation of one the variables of
FV(r)\FV(l)). Now, to rewrite a term we have finitely many ways to choose
a rule [ — r and a subterm t|,. Once we have fixed them, if it exists, there
is a unique substitution satisfying Dom(c) C FV(I) and t|, = o(l). Finally, if
FV(r) C FV(l), such substitution determines the result of the rewriting step.

Second we prove that any finitely branching and terminating relation is quasi-
terminating. This is a straightforward application of the Koenig’s lemma, al-
though it can also be proved directly by noetherian induction. Let P be the
predicate P(s) 2 “the set {t | s ——1} is finite”. Evidently, it holds for the
base case, i.e. for the —— -normal terms. For the induction case we have
{zlt—2} ={t} Ulucgu | tT)u}{y | v ——y}. Now, as far as each one
of the sets {y | u —— y} is finite by induction hypothesis, and there are finitely
many of this sets, because —— 1is finitely branching, we have that {z |t — =}
is also finite. By induction we conclude that P(s) holds for any term s and ——
is quasi-terminating. ]

In order to test automatically the Church-Rosser property we extend the
standard procedure used in term rewriting to bi-rewriting. So we reduce the
Church-Rosser property to three simpler properties, namely bi-confluence (or
commutativity), local bi-confluence and critical pairs bi-confluence.

Definition 4.7 A bi-rewriting system (Rc, R>) is said to be

(i) bi-confluent iff «—— o0 —-— C —o0«—; and
2 c c 2

(ii) locally bi-confluent iff % o= C R—*g> o % .

A pair of terms (s, t) is said to be bi-confluent iff s R—1> o % t.

A variant of the Newman’s lemma (Newman, 1942; Huet, 1980) proves the
following result for bi-rewriting systems.

Lemma 4.8 A terminating bi-rewriting system is Church-Rosser iff it is locally
bi-confluent.

Proof: The only if implication is trivially proved since G5 om © ( = U

e )*. The proof for the if implication is done by noetherian induction and is
quite similar to the standard proof for the confluence of terminating and locally
confluent term rewriting systems (Huet, 1980). If fact the statement is implied

by lemma 1.2 in (Bachmair and Dershowitz, 1986a).



66 Chapter 4. First-Order Bi-rewriting Systems

Y \\*‘ We prove that property

%  induc. ¢ v def
\\*\ ;deuc P(t) = Vu,v.ug—t 200 = upoog -
1" *
¢ N holds for any term ¢ by noetherian induction. The
\ base case t = u or t — v is trivially satisfied. The
induction case follows directly from the induction
. ; N .
\ - = hypothesis P(u') and P(v') using the diagram on
< the left.

= e — | |
/ i)

Notice that in the previous lemma we require the union of both rewriting
relations to be well-founded, and it is not sufficient if both relations are well-
founded separately. For instance, the bi-rewriting system defined by Rc =
{b—S5c,c—<~>d} and R5 = {c—25b,b—2>a} is locally bi-confluent and both
rewriting relations = and &5 are terminating, not their union. However,
the bi-rewriting system is not Church-Rosser.

A simple adaptation of the standard critical pairs definition (Knuth and
Bendix, 1970) can be given for bi-rewriting systems. However, as we will see,
it is not sufficient to prove the critical pairs lemma. This simple definition of
critical pair arises from the most general non-variable overlap between the left
hand side of a rule in Rc and a sub-expression of the left hand side of a rule in
R, (or viceversa). Given a pair of rules 1-557 and s —2>¢, a position p of a
non-variable subterm of s, and the most general unifier ¢ of [ and s|,, the pair
o(t) C o(s[r]p) is a (standard) critical pair between Rc and R5; and similarly
for critical pairs between R5 and Rc.

Unfortunately, in the presence of non-left-linear rules,® the critical pair
lemma stated in terms of such standard critical pairs can not be proved because
the confluence of variable overlaps is no longer possible. The same fact has al-
ready been discussed in (Bachmair, 1991). Here is a simple counter-example to
the validity of this lemma.

Counter-ezample. The following bi-rewriting system
Rc = {f(X,X) S X} Ry ={a—2-b}

is terminating and has no standard critical pairs, however the divergence
f(a,b) G f(a,a) Foa does not satisfy the Church-Rosser property (the pair

f(a,b) C a is not bi-c;)nﬂuent). This problem would be avoided if a —<- b € Rc,
but then the inclusion theory corresponding to the bi-rewriting system would be
different.

°A rule I —— 7 is left- (right-) linear iff any variable in I (in ) occurs at most once in I
(in 7).



4.2. Inclusions and Bi-rewriting Systems 67

Non-left-linear rules also invalidate the bi-rewrite parallel of Toyama’s theo-
rem (Toyama, 1987) as the following counter-example shows.

Counter-ezample. The following bi-rewriting system

Xuy =X

B XUy Y

=<{ XUY -SYUX Ry =
Xu(Yuz)—S(XuY)uz

N

XuX-SX {

is Church-Rosser and quasi-terminating, if we consider a signature containing
uniquely constants and the binary union operator, i.e. F5 = {U} and F; = 0 for
1 ¢ {0,2}. However, if we introduce a new l-ary symbol in the signature f € 7
then we have the following divergence which is not bi-confluent.

FX) UF(¥) 5 F(X) U (X UY) e F(X UY)U F(X UY) o f(X UY)

This means that many properties of bi-rewriting systems depend not only on
the axioms of the theory but also on the signature.

Using the standard definition of critical pairs, the critical pairs lemma is only
true for left-linear systems: a terminating and left-linear bi-rewriting system is
Church-Rosser iff all standard critical pairs are bi-confluent. In order to keep
this lemma for non-left-linear bi-rewriting systems, we have to enlarge the set of
critical pairs to be considered as follows.

Definition 4.9 If| <> r ¢ Rc and s —te R5 are two rewriting rules (with
variables distinct) and p a position in s, then
(i) if s|, is a non-variable subterm and o is the most general unifier of s|, and
I then
o(t) C o(sfrly) € ECP(Re, Ro)

is a (standard) critical pair,

(ii) if s| = @ Is a repeated variable in s, F Is a term containing only fresh
variables, q is an occurrence in F, and 1 5—*3) r does not hold,'° then

a(t) C o(s[Frle]p) € ECP(Rc, R3)

is an (extended) critical pair where ¢ = [z — F[I],].
Similarly for critical pairs between R5 and Rc, ECP(R>, Rc).

The set of (extended) critical pairs of the previous definition is in general
infinite, o(t) C o(s[F[r],lp) is really a critical pair scheme because we do not
impose any restriction on the contezt F[-],. In section 4.4 we will see an example
where we use such kind of schemes. So the critical pairs lemma even if true with
this definition of critical pairs, will be of little practical help to test bi-confluence.
Then the conditions of bi-confluence have to be studied in each case taking into
account the particular shape of the non-left-linear rules. In section 5.2 we face
the problem of testing bi-confluence automatically by codifying extended critical
pairs using the linear second-order typed A-calculus.

L101f this condition is satisfied then we can make the pair resulting from the variable overlap-
ping confluent like in the equational case.



68 Chapter 4. First-Order Bi-rewriting Systems

Theorem 4.10 extended critical pair lemma. A terminating bi-rewriting
system (Rc, R>) is Church-Rosser iff any (standard or extended) critical pair s C
tin ECP(Rc,R>) ors Dtin ECP(R>, Rc) is bi-confluent, i.e. s R—*c) o ——1t.

Ry

Proof: For the if part, see the proof of theorem 4.19, which states a more general

result, taking Ic = 0. For the only if part, extended critical pairs are sound
deductions, therefore if s C ¢ is an extended critical pair, then s( el )*t

holds. Now, if the bi-rewriting system is Church-Rosser, then s R;c_) 0 4% t. m

This theorem, lemma 4.17 and theorem 4.19 may be considered as instances
of the general critical pair theorem proved by Geser in his thesis (Geser, 1990).
Nevertheless, we have decided to include a sketch of their proof for completeness.

The extended critical pair theorem generalizes the critical pairs lemma
(Knuth and Bendix, 1970) for bi-rewriting systems. However, we require the
bi-confluence of not only the standard critical pairs, but also of the extended
critical pairs. Nevertheless, if all rules come from the translation of an equational
theory E, then any equation @ = b with @ > b results in two bi-rewriting rules
a—<-bin Rc and a —5bin R5 and both bi-rewriting relations ol
are equal. Then we only obtain standard critical pairs because the condition
lR—*Dwr' in the definition 4.9 of extended critical pair is always satisfied. So we

recover the old results for the equational case.

4.3 Bi-rewriting Modulo a Set of Inclusions

Like in equational rewriting, in bi-rewriting it is not always possible to orient
all inclusions of a theory presentation in two terminating rewrite relations, as
was assumed in the previous section. Frequently enough, we must handle three
rewrite relations, the terminating relations = and = resulting from the
inclusions Rc and Ry oriented to the right and to the left respectively, and
the non-terminating relation T resulting from the non-oriented inclusions I.

Then we say to have a (Rc, R5> bi-rewriting system modulo I.1! Figure 4.3
in section 4.4 shows an example of these bi-rewriting systems. The inverse

of the relation T is noted el The Birkhoff theorem is stated then as
AszOLtguiﬁt(R—g> U o u %)* Uu.

4.3.1 From Church-Rosser to Local Bi-Confluence

The simplest way to have a complete and decidable proof procedure based on
the (Rc, R5) bi-rewriting system modulo I is reducing it to the bi-rewriting
system (Rc UI, R5 UI) and, using the results of the previous section, requiring
of it the following properties:

1 Although we use the word “modulo”, it does not mean that % is a congruence, be

aware it is a non-symmetric relation (monotonic pre-order).



4.3. Bi-rewriting Modulo a Set of Inclusions 69

1. The relations —— U <— and —— U «;— are both quasi-terminating,
c c > >

and

2. they satisfy the (weak) Church-Rosser property
( Rg U Ig U RQ )* g ( Rg U Ig )*O( RQ U Ig '
However, as we have seen in the previous section the quasi-termination of
—— U — and —— U «— is not enough to reduce the (weak) Church-
C C 2 2

Rosser property to the local bi-confluence property (? U o )*o( s U

&) C (== U &= )*(+z— U +—)* using lemma 4.8. To do this we would

c c c 2 c

need the termination of — U «<— U —— U «—, which, of course, never
c c > 2

holds.'? The solution to this problem comes from requiring the termination of

% o R ] % ° 3’ Using this termination property, the weak Church-

Rosser property can be reduced to a local bi-confluence property.

Lemma 4.11 If the relation «— o — U «— o0 —— lis terminating, then the
c c 2 2

following properties
(o Ve Vas ) € (s U )olagg Uas)

Zweak) Church-Rosser

* C * * * * *
Ry ° %1 ° TRC = ( Ic . ° TRc )° Ic °( Ry °IC )
(weak) local bi-confluence

are equivalent.

Proof: Using the equalities (A U B)* = (A*oB)*0A* = A*o(BoA*)* we prove
that right hand sides of both inclusions are equal. Now G50 % o w2 C
(R—C> U U g )* shows that local bi-confluence implies Church-Rosser.
For the converse we use (4 U B)* C A*oB* & B*0A* C A*oB* to prove the
equivalence between the Church-Rosser property and the following one.

I* O( R ° I'* *0( I* 0 R )*O I* C ( 1')k 0 R )*O 1')k O( R ° I* )*
c 2 c c c c - c c c 2 c

Now, if % o5 U %> o F? is terminating we can prove by noetherian
induction that this property is equivalent to the local bi-confluence property.
The following diagram shows the scheme of the proof.

12The relation +7— U «;— is never terminating.
c 2



70 Chapter 4. First-Order Bi-rewriting Systems

Where the proposition proved by noetherian induction is the following one.

P(t) = Yu, 0.0 s o G500 )t A H gm0 Vo g

. " s
:>u(<—>1c o—>RC ) o(—)rc o(<—RD o<—>1c ) v

|

If G s symmetric (T = ?) the above termination property be-

comes similar to the termination property required in rewriting modulo a set of
equations (Bachmair and Dershowitz, 1989a). That is, T symmetric means

we can define equivalence classes ([s], —— [t], iff s = o —— 0 <= ) and, the

termination of % o F> U %> ° w3 is ensured by the existence of a well-
founded I—compat_ible ql_lasi—ord;:ringls_ < satisfying = Cy, =5 C»> and
G Cr, where the equivalence relation & is the intersection of > and < and

the strict ordering > is the difference of > and ~. The quasi-termination prop-
erty of 7 is equivalent then to the finiteness of the equivalence classes.

However, like in the equational case, rewriting by =0 —— is inefficient,
and the local commutativity of 4% o & and % o &5 can not be reduced
to the bi-confluence of a selected set of critical pairs. Therefore we will approxi-
mate them by two weaker, but more practical rewriting relations, named I\ R¢
and I\ R> respectively by similarity to the corresponding equational definitions.
In the fo_llowing, we prove the abstract properties of these relations. We will
suppose that they satisfy:1*

I*

— C ——— C 0 ——
Rc' = "I\Rc = I R¢
—— C ——— C 30—
Ry = TI\Ry = "1 Ro

leaving their definition for the next subsection.
We require these new rewriting relations to satisfy what we call a strong
Church-Rosser modulo I property, defined as follows.

Definition 4.12 The bi-rewriting system (Rc,R5) modulo I is (strong)
Church-Rosser iff

*
— U — U — C —>o<—>o<—
( R Ic Ry ) \RC Ic \R5

The following lemma states sufficient conditions to define a search decision
procedure for Az by, t C u based on the relations I\ Rc and I\R>.

Lemma 4.13 If the relations v and nRg are both computable'®
and quasi-terminating, the relation 4% is decidable, and (Rc,R>) is strong
Church-Rosser modulo I, then there exists a decision procedure for the inclusion

relation defined by these relations.

13 A well-founded quasi-ordering is a well-founded, reflexive and transitive relation.

14Notice that although we use the notation avad it does not means that this relation is

the monotonic and substitution closure of a set of rules, I\ R is just the name of the relation.
18We say that a relation —— is computable iff the set {u | t —— u} is finite and com-

putable for any given term ¢.



4.3. Bi-rewriting Modulo a Set of Inclusions 71

Proof: Like in the simpler case of the previous section, given two terms s and

t, the algorithm generates the sets {s’ | s ﬁ s'}and {t' | ¢ ﬁt'} and

seek for a term s’ from the first set and a term ¢’ from the second one such that

s' —t'. If relations —— and - satisfy the above inclusions and the
C \R I\RD
Church-Rosser property then ( o U N u e )= REg?° T ° “RAg

Now, it is easy to prove that the algorlthm is a decision procedure for the relation
WOTol\—D and Az bFgo, s C t is equivalent to S(R—C) U U
= )*t. B T m

The solution we propose of reducing the strong Church-Rosser property to
a local bi-confluence property is inspired mainly by the two solutions known for
the equational case. In the following we consider how they can be adapted to
bi-rewriting.

Huet (Huet, 1980; Kirchner, 1985a; Jouannaud and Kirchner, 1986) prove
that given a set of rules R and equations E such that «—o—— is terminat-
ing, R is strong Church-Rosser modulo E iff all peaks and cliffs are confluent:
Fo—gx> g %o%o% and Fro—Fgx> g %)o%o%. Notice
that these are sufficient and, what is also important, necessary conditions. Be-
sides, the finiteness of the E-equivalence classes is not required. However, these
confluence properties are too strong and can not be reduced to the confluence
of critical pairs unless the rules are left-linear.

To overcome this limitation for non-left-linear systems Peterson and Stickel
(Peterson and Stickel, 1981) propose the use of a new rewriting relation E'\ R sat-
isfying —» C —z—> € ¢~ o ——. They prove that when this relation is E-
compatible, that is when «5- 0 —— C —(Fz2 05 o «5—0+%—)*, and ter-

minating, then the Church-Rosser property becomes equlvalent to the confluence

*

of peaks of the form 57— o0 —57z= C —Fg~ 0 5> o g - Lhey also study

how a rewriting relation R can be extended to obtain a E-compatible rewriting

relation F\ R when F is an assoclative and commutative theory. However, in this
case the problem is that the set of critical pairs of the form ¢ “E Y a2
is in general infinite.

Jouannaud and Kirchner (Jouannaud and Kirchner, 1986) (see also theo-
rem 4, chapter 2 of (Kirchner, 1985b)) prove that when «——o0—f>0«—— is
terminating then the following three conditions are equivalent

1. Church-Rosser modulo F
( R U B U R ) C EB\R ° ° EB\R

\ \

2. confluence of (global) peaks and (global) cliffs:

—> —
B\rR ° B\R C e ° B °“E\r
. . N
— 0 —— ———— 0 — 0 ————
5 ° B\R C R ° B °“B\r

- - -
—o0 C 0 ¢—> 0 ¢———
R B\R =  B\R B B\R

- - N
<—>o—>C o o

E\R = B\R B E\R



72 Chapter 4. First-Order Bi-rewriting Systems

Then these local confluences can be reduced to critical pairs confluence and
to extended rules respectively.

Jouannaud and Kirchner also notice that their theorem is false if we require
termination of —— instead of that for «Z-o-—420¢5>. As a counter-
example we can take the rewriting system R = E\R = {b——a,a — d} with
E = {a = b,b = c}. It satisfies local confluence properties and termination
of —m but it is not Church-Rosser. However, termination of ——— is
enough to prove the equivalence between Church-Rosser property and “global”
confluence properties. (Evidently, it is not enough to prove equivalence between
local and global confluence properties).

As we will see in next subsection, proving confluence of local or of global
peaks and cliffs makes no difference, therefore we have chosen this second option
because imposes a weaker termination condition. If we would adopt the first
option, then we will need a well-founded and E-compatible ordering on terms,
i.e. a well-founded ordering on E-equivalence classes of terms. In our case, this

E-compatible ordering on terms would be equivalent to requiring termination of

((—> U <—>)*o( \R¢

Ic Iy I\R5 )

As we will see in the following subsection, after proving lemma 4.17, there is no
gain choosing this first option.

The following lemma adapts to bi-rewriting this second version of the results
of Jouannaud and Kirchner.

Lemma 4.14 Let TV and v be two rewriting relations satisfying
T & T € Goewe d w5 © we € oy I their
union —z— U —xg_ Is terminating then the following three conditions
Ic ° I\Rc C I\R¢ 0 Ic 0 I\Ry
cliffs
Ty 9 & TRRC O ey
T I\R5 ° I\RC g I\RC ° Ic ° I\Ro peaks

and the strong Church-Rosser property

(—>U<—>U<— *PC — L oo e———
R Ic RS = TI\R¢ Ic I\R5

are equivalent.

Proof: It is evident that the Church-Rosser property implies the three local
bi-confluence properties, so we will prove the opposite implication. Such proof
is based on the ideas of proof transformation and proof ordering proposed by
Bachmair in his thesis (Bachmair, 1991) and in (Bachmair et al., 1986b).
Given a sequence of terms (vy,...v,), we say that it is e proof of s C ¢ iff

vy = 8, Uy = t, and for any 7 € [1..n — 1] we have v; g Vi1 OF Ui rp— iyl



4.3. Bi-rewriting Modulo a Set of Inclusions 73

or v; % v;+1. Notice that we allow to concentrate one or more T rewriting
steps in a single proof step. Evidently, ¢ C u has a proof iff #( R—c_) U U
(E )*'U.. - )

In the following we define a set of transformations on the proofs of an in-
clusion. Given a proof transformation rule (s,%,u) = (s,v,u), we can use it to
transform (wr, s,t,u, wz) = (wy, 8,0, u, w3). To prove the termination of such
transformation relation we associate a multiset S({v1,...,v,)) of terms to each
proof (v1,...,v,) defined as follows.

5((v)) =0

{Vn_1,vn} ifvn_1 R Un

S({(v1,-.yvn)) = S({v1,- -+, Vn_1)) U Of Un —Rz5~ Un-1

2 2 : +-
{Un—livn} if Un—1 Ic Un

where U denotes the multiset union operator and superscripts denote the num-
ber of occurrences of an element in a multiset. We define a well-founded or-
dering >~ on these term multisets as the multiset extension of the order re-
lation 1\;c I\;D which we have supposed terminating. This order-
ing on associated multisets defines a well-founded ordering on proofs. No-
tice that this ordering is monotonic, i.e. if S({(s,t,u)) > S({(s,7,u)}), then
S((wr, s, %, u,wz)) > S({(wr, s, v, u, wz)). This is a key point to prove that if any
proof transformation rule (s,%,u) = (s,7,u) satisfies S((s,%,u)) = S((s,7,u))
then the proof transformation relation is terminating.

If cliffs are bi-confluent, then for any cliff s <IL> t —5— u we have
C \Rc

-
s I\RC Uy VUp-1 I\RC Up Ic Wy I\R~ Wg—1+-W1 I\R~ u

and we can apply one of the following proof transformations rules to eliminate
it

(s,t,u) = (8,V1,...,Vp, Wg,..., W, u) if'up%wq

(s,t,u) = (8,V1,...,Vp_1,Wq, ..., W, u) ifs%vp = w,
(s,t,u) = (s, wq—1,..., w1, u) if s = v, = w, %u
(s,t,u) = (s) fs=vp,=w;,=u

where p,q > 0, except in the second rule where p > 1, and the third rule where
g > 1. Now, taking into account that s > vy > --- > v, and t > u > w; >
-+ > wy, we can prove that the multiset associated to the left part of the rules
S((s,t,u)) = {s%,13,u} is strictly greater than the multisets associated to the
right part of the rules, which are respectively:

S({8,v1,...,Vp, Wgy..., w1, u)) :{s,v%,...,vg
S({8,v1, ..oy Vp_1, Wqy ..., w1, u)) = {s,vf,...,’u}z)_l,w yee ey wiul
5((

5(¢

S, Wg—1,..., W1, U)) = {s,wg_l,...,wf,u}



74 Chapter 4. First-Order Bi-rewriting Systems

Similarly, if peaks are bi-confluent, then we can also apply the same proof trans-

formations rule to any peak s “RAs t prvr And, taking into account that

nowt > s> vy > -++>v,andt > u > wy > -+ > Wy, we can also prove that
the multiset associated to the left part of the rule, now S((s,t,u)) = {s,t?,u}
is also strictly greater than the multisets associated to the corresponding right
parts of the rules.

Evidently, if we iterate this process, the resulting canonical (normal) proof
will not contain any cliffs nor peaks. Therefore it will be of the form

ﬁ o % o ﬁ The process can not be applied infinitely, because the

transformation relation is terminating. We conclude that if s C ¢ has a proof,

then it has a canonical proof of the form s —— 0 7 o ¢5z—t. Therefore,
C C \R>

the Church-Rosser property holds for these rewriting relations. [ |

Now, the logical process would be to reduce the bi-confluence of peaks of the

form “Nes ° Theg” to the bi-confluence of peaks of the form TR ° RS

O =0 —REc ) as Jouannaud and Kirchner suggested for the equational case.
However, as the following counter-example shows, not any definition of e

o . . .
satisfying —— C —F7z— C 53— o5~ permits such reduction, unless we

. L .
require termination of(T U T) of v U vy ).

Counter-ezample. Consider the rewriting relations defined by the following sets
of rules.

Ic = {aléb,béaz}

.R_g = {(1,1 é b, as A) Cz}

RQ = {(1,2 é b, al A) Cl}

c1 e a1 Ie b s a3 Be c2
N T N S
B¢ Ry
If we define —— = — U 50— and —— =2 — U
I\RC Rc Ic Rc I\R5 Ry

G570 =y, We will obtain two rewriting relations such that e Y e
is terminating and the properties —— C —7— C —— o —— hold, however,
although any peak of the form “TEs 0 ES 9T B30 ThE” and any cliff is

bi-confluent, there is a peak c; v b R ©2 which is not bi-confluent.

Fortunately, the method of rule eztensions and the concrete definition of

the relation —hg > ensures that, if inclusions in I are linear, then «— and
. . . . .
—g— commute, l.e. <o e C RE 0T This property is stronger

than the confluence of cliffs, and permits the desired reduction. However, such
method takes into account the structure of terms, so we will describe it in the
next subsection.

16Notice that in this case we can have s = vp, u = wq or both together. With such union
we capture four cases.



4.3. Bi-rewriting Modulo a Set of Inclusions 75

4.3.2 From Local Bi-Confluence to (Extended) Critical
Pairs

Till now, we have studied Church-Rosser, termination and bi-confluence prop-
erties in the framework of relational algebra (Baumer, 1992). All proofs are
done without any reference to the structure of terms. In the following, we will
consider the term structure in order to reduce the bi-confluence properties to
the bi-confluence of critical pairs and rule extensions.

We begin defining the rewrite relations I\ Rc and I\ R5 that were only ax-
lomatically characterized by —» C —z— C ——o—— in the previous
subsection.

Definition 4.15 We say that s Rc-rewrites to ¢ modulo Ic, written

sr\—a>t iff there exists a rule ] — r in Rc, an occurrence p in s, and a

substitution o such that s|, % o(l) and t = s[o(r)],.

Similarly for s R-rewrites to t modulo I5, written s v t.

With this definition IV really verifies — C —7— C «—o0—5—
c Rc — \R¢c = Ic Rc

although in general %o = Z Erivrad The choice of such definition is
motivated, as in the equational case, by the fact that local bi-confluence of

peaks G5 ° ThAC and Rey ° Rg® Cal be reduce to the bi-confluence of a

selected set of critical pairs.

We will use the notions of E-matching and E-unification from (Peterson and
Stickel, 1981) but adapted to bi-rewriting. Given two terms s and t, we say
that s I-matches t iff there exists a substitution o such that s 4% o(t), and

s I~ 1-matches ¢ iff there exists a substitution o such that s % a_(t). We say
that s I-unifies with ¢ iff there exists a substitution o such that o(s) 4%» o(t).

This substitution is said to be a minimum unifier if for any other unifier ¢,
if ¢ = poc’, then p is a renaming of variables. Notice that, since g is not

necessarily symmetric, I-matching and I~!-matching are in general different
non-symmetric relations, and I-unification is neither a symmetric relation. We
will suppose in the following that I-unification and I and I~ '-matching are
decidable.

As in the equational case (to prove bi-confluence of cliffs or E-compatibility),
we will prove the commutativity properties by means of the rule extension and
the extensionally closed property defined as follows.

Definition 4.16 Given an inclusion | C r in I, and a rule s =<t in Rc, ifr|,
I-unify with s, being ¢ a minimum unifier, and r|, Is neither a variable nor equal
to r, then we say that o(l) —=- o(r[t],) is a right-I-extended rule of Rc.
Given a set of rules Rc and inclusions I, R is said to be right-I-extensionally
closed iff any right-I-extended rule | —<-r of R satisfies | pravrad % T.

We define left-I-extended rule and left-I-extensionally closed similarly changing
C by D and “r|, I-unify with s” by “s I-unify with r|,”.



76 Chapter 4. First-Order Bi-rewriting Systems

Notice that in the previous definition, to consider a rewriting system exten-
sionally closed, we require any rule extension I —=- r to satisfy ! R <=,
c c

it is not enough to require the pair I C r to be bi-confluent.

Since «—— may be non-symmetric, we have had to distinguish between right-
and left-extensionality in the previous definition. We will use a completion
procedure to ensure that the final bi-rewriting system satisfies that Rc is right-
I-extensionally closed, and that R5 is left-I-extensionally closed. -

The following lemma states that, if all inclusions in I are linear, then the
extensionally closed property ensures the commutativity of «— and e
Notice that this property is stronger than the bi-confluence of cliffs required in
the previous subsection.

Lemma 4.17 Critical cliff lemma. If all inclusions in I are linear, and

Rc is right-I-extensionally closed, then % and neg” commute, I.e.

- 0
I\RC = I\R¢ Ic

Similarly for —— and —;— if the later is left-I-extensionally closed.
2 \B

*
—> 0
Ic

Proof: The conclusion of the lemma is equivalent to o —mar C

*,.s b then th ist iti in a, a
—hRE 0“7 Suppose @ ;— b —xz— ¢, then there exists a position p; in @, a

position p; in b, two substitutions o1 and o3, an inclusion s Tt in I and a

rule | —— r in R such that:

alp, = a1(s) blps = 02(l)

b = alo1(t)],, ¢ = bloa(r)]p,
We have to consider the following three cases.

case p1|ps Applying the definition of rewriting modulo we prove that
a —z— aloa(r)]p,- Now, if both redex do not overlap then alos(t)]p, =

blo1(D]p. [02(8)]p, = blo2(t)]pslo1(D]p. = clo1(D]p,. Finally, we have

a —rz— a[oa(r)]p, = cloi(l)]p, « e

case py < p2 Let v satisfy p; = p1-v. We have o4(t)|, «<— o3(l). There are two
possibilities:

e Ifv is a position in ¢, and t|, is not a variable, we are in the conditions
of definition 4.16, i.e. t|, I-unify with ! being ¢ a minimum unifier
(smaller than 1003, s0 01002 = poo for some substitution p), and we
can generate an extensional rule with s C ¢ and I —— r. Now, if R is
I-extensionally closed, then this rule, or a generalization of this rule,
will belong to R and we can rewrite a into ¢ using it at position p;
with the substitution p.

e Otherwise, there exist two occurrences vy and v, satisfying p;-v1-v2 =
p2 and being t|,, = z a variable. If all inclusions in I are right-linear
then %|,, is the only occurrence of z in ¢, moreover if all inclusions are
left-linear then z occurs once in s. Let vj be this occurrence of z in



4.3. Bi-rewriting Modulo a Set of Inclusions 7

s. We have a,|;,,1.7,:1.7,2 —— o3(l) and therefore a e 0'[0'2(7')];:1-71’1-112-
Finally, we prove that a[oa(r)]p,.4!.u, < c using the same equation
s Ct, at the same position p;, but with a substitution o} defined as
o' (y) = o1(y) for any y # &, and o(z) = o1(z)[o2(r)]s,- Notice that
is in this case, with variable overlapping, when we have to require

both left- and right-linearity of s C .

case p1 > pa Let v be the occurrence such that p;-v = p;. We prove a|p, < b|p,
using the equation s C ¢ at position v with the substitution o;. Now, as
far as alp, ¢ blp, «5— 02(l), we have a —z— c using the rule [ —r
and oy at position ps.
|

Notice that the conclusion of the previous lemma, not only ensures the bi-
confluence of cliffs, but also allows to reduce the bi-confluence of peaks of the
form “Rag~° \—C> to the confluence of the peaks of the form %5 ° Theg”

OF “Ray ° &’ using the following sequence of inclusions

—— o —— C <—o<—>o—> C <—o—>o<—> C...

\R5 NRc = = "Ry Ic NRc ~ = "Ry N\R¢ e =

— L o o0é———o0—> C - if peaks are bi-confluent
INRC Ic I\Ro I = P

S SN AP I SN . S if cliffs commute
I\R¢ Ic Ic I\R5

Notice also that like in (Peterson and Stickel, 1981), and differently from
(Jouannaud and Kirchner, 1986), the inclusions in I are required to be (both
left- and right-) linear.

There is a way to avoid left-linearity in the previous lemma. The reader may
check that to prove local commutativity G o

. .
e © REC O (where

several RV rewriting steps are allowed to eliminate the variable overlap-

ping cliff) we only would need right-linearity. If we use a well-founded and
(% U %) compatible ordering to prove the termination of the relation

nec” Y has (like it is done in the equationa case), we can reduce the

(global) commutativity property «% o

ne—— € —ma—o¢— to the previ-
c ¢ = I\Ec e

ous local commutativity. Unfortunately, it seems that we can not avoid right-
linearity unless we use some kind of “extended critical cliff”. However, even not
being necessary in this case, left-linearity will be necessary to prove commutativ-
ity of «;— and —xz=— . Therefore, there is no gain in choosing this alternative,

2 2

because linearity is always necessary unless we use some kind of extended critical
cliffs.

For the bi-confluence of peaks we use a definition of (extended) critical pairs
similar to the one introduced in the previous section.

Definition 4.18 Ifl -S»r ¢ Rc and s 25t ¢ R are two rewriting rules
normalized apart, and p is a position in s, then



78 Chapter 4. First-Order Bi-rewriting Systems

(i) if s|, is not a variable and o is a minimum I-unifier of s|, and [, then
a(t) Co(s[rl,) € ECP(I\Rc, R))

is a (standard) critical pair,
(ii) if s|, = @ Is a repeated variable in s, F Is a term containing only fresh
variables, q is a position in F, and lﬁ o «% r does not hold, then

o(t) C o(sIFIrlly) € ECP(I\Rc, Ro)
is an (extended) critical pair where the domain of ¢ is {z} and o(z) =

Fli],.
The set ECP(Rc,I\R>) can be defined similarly.

Again we have had to introduce critical pair schemes which may generate
infinitely many critical pairs. Using this extended definition of critical pairs
and the definition of extensionally closed bi-rewriting system we can prove the
following theorem which characterizes the strong Church-Rosser property of a
(Rc, R>) bi-rewriting system modulo I.

Theorem 4.19 Critical pair lemma. Given two sets of rules Rc and R

and a set of inclusions I, if pvs U nES is terminating, e is right-
I-extensionally closed, v is left-I-extensionally closed, all inclusions in

I are linear, and all standard and extended critical pairs ECP(I\Rc, R>)
and ECP(Rc,I\R>) are bi-confluent, then (I\Rc,I\R>) is (strongly) Church-
Rosser modulo I.

Proof: We use lemma 4.14 to prove the Church-Rosser property. We are in
the conditions of lemma 4.17, therefore we can ensure the bi-confluence of cliffs.
Furthermore, as we have already commented, we can reduce the confluence of

peaks to the confluence of peaks of the form F3° ThEC Let’s study then

this condition.

Suppose we have a g5 b arivradd where reductions take place at two posi-

tions p; and p, of b, usiné two rules s —2-¢ and [ —S 7 respectively:

blp, = o1(s) blp, > oa(l)
a = b[o'l(t)]m c= b[O’z(’I")]p2

Three cases must be considered:

case p1|pa As in the commutativity case, we prove that both reductions

can be permuted and we reduce a = I)[z)’l(t)]plWw[al(t)]p1 =

bloa(r)]pa[1(t)]p, and ¢ = bloa(r)]p, &5 aloa(r)lp, = blow(t)p, [02(m)]p,
to the same term.

case p1 < py Let v be the occurrence such that p, = p; - v. We have
o1(8)]u % o2(l). There are three possibilities:



4.3. Bi-rewriting Modulo a Set of Inclusions 79

e Position v is a non-variable occurrence of s.
Then the divergence o4(2) F3 o1(s) v o1(s)[o2(r)], we are con-
sidering is an instance of the standard critical pair o(t) C o(s)[o(7)]s

generated by I-unifying s|, and I, and therefore it is bi-confluent as
far as any standard critical pair in ECP(I\Rc, R>) is bi-confluent.

e Subterm s|, is a repeated variable z of s, or the occurrence of v in
o1(8)|v is bellow a repeated variable  of s, i.e. there exists a pair of
positions vy - v3 = v such that s|,, is a repeated variable z of s.

In this case the divergence being studied is an instance of the extended
critical pair t[z — F[l],,] C (s[z — F[U,])[F[rlv,)u., and therefore it
will be bi-confluent if any extended critical pair of ECP(I\Rc, R>)
is bi-confluent.

e Subterm s|, is a non-repeated variable or o(s)|, is bellow a non-
repeated variable z of s, i.e. there exist two positions such that v =
vy - v and s|,, = z is a non-repeated variable of s.

In this case we can rewrite ¢ and ¢ into a common term
in the following way. We apply the rewriting step oi(z)

o1(8)]u, v o1(z)[o2(r)]s, to any occurrence of z in ¢, i.e. of o1(z)

in @ = b[o1(t)],,. On the other hand, we apply the rule s —2- ¢ to the
position p; of ¢, but using the substitution o} defined as o} (y) = o1(y)
for any y # z and o} (z) = o1(z)[o2(r)]s, instead of 1. In both cases
we obtain the same result.

case p; = py Here we can suppose that the A7 rewriting steps, between
the e and the = rewriting steps, occur bellow p; and p;, like
it is also argued in the equational case: if the divergence a C ¢ be-
ing studied is generated as awb%b[oz(l)]m Fg* ¢ We can use
lemma 4.17 to commute the step A5 and the steps % obtaining

\ = =
a«% dﬁ bloa()]p, gl for some term d. Now, we only need to
prove the bi-confluence of the peak d < — blo2(D)]p, — ¢. However, this

situation is completely equivalent to the previous second case p; < py if we
5 c avs by ney therefore all divergences
of this kind will be bi-confluent if all critical pairs in ECP(Rc,I\R>) are
bi-confluent.

change =’ by = and

Notice that at this point it becomes clear that if the commutativity of
—s— and <~ did not hold and we only had bi-confluence of cliffs,
then we could not suppose that the «—-— rewriting steps in the peak
%5 0 ThEc” always occur bellow the innermost of the redexes, and we
would have to change the definition of critical pair.



80 Chapter 4. First-Order Bi-rewriting Systems

4.4 Three Examples: Towards a Completion
Procedure

As we said in the previous sections, bi-rewriting compared with equational
rewriting, faces the extra difficulty of a possible infinite set of critical pairs.
Non-left-linear rules may generate what we called critical pair schemes (see defi-
nitions 4.9 and 4.18). In this section instead of giving the completion procedure
we sketch out the possibilities of completion a la Knuth-Bendix of three examples
of bi-rewriting systems by means of rule schemes. Other completion methods,
like unfailing completion (Bachmair et al., 1989b) are also suitable of being
applied to automate the deduction in theories with monotonic order relations,
using the same notion of extended critical pair.

4.4.1 Inclusion Theory of the Union Operator

The inclusions defining the theory of the union operator can be oriented following
a simplification ordering as follows:

rn XUX-5X
r, XUY 25X
ra XUY Y

Although the standard critical pairs (scp) of this system are bi-confluent, the
presence of the non-left-linear rule X U X —5- X also makes necessary the con-
sideration of the extended critical pairs (ecp). We will do this in two steps. First,
we consider scp and the finite subset of ecp of the particular form (o (t), o(s[r],))
where s|, = z is a repeated variable in the non-left-linear rule (s —=—t) € Rc,
(1257 ¢ R5 being the other rule, and o substitutes z by I. It corresponds to
the general extended critical pair definition where the context F[-], is a hole [-]
itself. Using the standard Knuth-Bendix completion procedure and a reduction
ordering, we generate, among others, the following rules:

rq YUXUY)-SXUY ecp from r; and r3
rs YUX <& XUY scp from ry and 74
re (XUY)UY SsXUY ecp from r; and r3
r7 (XUY)U(YUZ)A)XU(YUZ) ecp from 73 and rg
T8 (XUY)UZAXU(YUZ) scp from r3 and 77

Rules r5 and rg, corresponding to the commutativity and associativity (AC)
properties of the union, make redundant any other rule generated by the subset
of ecp we are considering. It is well known that these rules can not be oriented
in a reduction ordering. This fact makes necessary the use of ({ri},{r2}) bi-

rewriting modulo I = {rs,7s}. Notice that in this case the relation defined
by non-orientable rules is symmetric, i.e. —— = %>, thus we can use the

C 2
standard algorithms of AC-matching and AC-unification, as well as the flat
notation for the infix operator U.



4.4, Three Examples: Towards a Completion Procedure 81

Let’s consider now the general form of ecp, i.e. (o(t),o(s[F[r],],)) where
F[]p is a context and o substitutes s|, = # by F[l],. Using them we generate
an extended critical pair which is made bi-confluent adding the following rule
scheme:

rg F[XJUF[XUY]-S5F[XUY] ecp fromr; and ry

The orientation of this rule does not depend on the instance we take of the
critical pair scheme, and it will be the same for any simplification ordering. This
rule scheme generates the following scp:

F[X|UF[Y]C F[XUY] scp from rp and rg

Now, the orientation of this critical pair depends on the reduction ordering
being used. If we use a lexicographic path ordering where U is greater than any
other symbol of the signature, then it will be oriented as follows for any instance
of the critical pair.

rio F[X]UF[Y]—5- F[XUY] from r; and rg

Now rg is subsumed by r; and r1o.

Notice that we are dealing with rule schemes instead of ordinary rules, thus we
can not continue the completion process unless we have a critical pair definition
for rule schemes.

The repeated context F[-] in the left hand side of the rule originates a problem
similar to the one caused by non-left-linear rules. We can consider the following
particular form of 71, where we suppose that F[-] is a context containing X’ UY’

as a subexpression, i.e. F[.]*= G[X'UY’,].
r1 GX'UY , X]JUGX'UY', Y] G[X'UY', X UY]

This instantiation of the rule scheme r1o generates new non-confluent critical
pairs with r;, which introduces the following rule schemes:

G[X', X]UG[X'UY'", Y] -5 GIX'UY', X UY]
G[X', X]UG[Y",Y] -5 QX' UY', X UY]

It can be induced then that the completion process would introduce infinitely
many rule schemes with the form:

ri2 G[X1,...,Xa]UG[YY,..., Y, ] =5 G[X1UY,..., X, UY,]

for any n > 0.

If we are interested in an unfailing completion procedure, the fact that this
set of rules would be infinite is not relevant, but we can not obtain a canonical
bi-rewriting system (in the sense of Knuth-Bendix completion) in this way. How-
ever, in this case, if the signature F is finite, these (infinite) set of rule schemes
will be subsumed by the following (finite) set of rules:

P f(Xy, . X)) U XL, X)) =S f(XLUXS,. ., X, UXD)



82 Chapter 4. First-Order Bi-rewriting Systems

for any n > 0 and any f € F,.
To prove this result we decompose an application of the rule scheme r;5 into
simple applications of the rules r;3 using the following compositional property:

FIG[X:...X,]JUF[G[Y:...Y,]] -5 F[G[Xy...X,]UG[Y:...Y,]]
<5 FIGIX1UY:...X,UY,]]

Finally, using this “manual” completion process we obtain the canonical
(Rc, Ry) bi-rewriting modulo I system shown in figure 4.3. Rules r{®* and r{%?

are the I-extensions of the rules r; and ri3.

rn XUX-S5X
ré?t XUXUY S XUY
VfeFn
c riz f(X1.. . Xp)Uf(Y1...Y,) S f(X1UY;... X, UY,)
P8 f(Xy.. . Xa)Uf(Y1...¥,)UZ 5>
S f(X1UY... X, UY,)UZ

Ry= {r, XUY-2X

I rs YUX <SS XUY
- rg (XUY)UZ&ESXU(YUZ)

Figure 4.3: A canonical bi-rewriting system for the inclusion theory of the union.

4.4.2 Inclusion Theory of Non-Distributive Lattices

The presentation of non-distributive lattices theory may be given by the following
set of inclusions:

XUXcXx XCXnX
X CXUY XNYCX
Y CXUY XNYCY

Applying to them the completion process of the previous subsection we get
the canonical (Rc, R>) bi-rewriting modulo I system shown in figure 4.4. This
is basically a duplication of the bi-rewriting system of figure 4.3. Notice that
rule rg for f=nN: (X1 NX3)U(Y1NY3) -£, (X1UY1)N (X2 UY3) is subsumed
by r3 , and rg for f = U is subsumed by r7.

We don’t know of any canonical rewriting system for non-distributive lat-
tices, although it exists for distributive lattices (Hullot, 1980) and for boolean
rings (Hsiang and Dershowitz, 1983). So its modeling by a bi-rewriting sys-
tem represents a contribution to rewriting techniques. The lack of disjunctive
and conjunctive normal forms in non-distributive lattices is the cause of non-
existence of a canonical rewriting system for them. On the contrary, the pro-
posed bi-rewriting system has two normalizing rules. Rules r3 and r7 acting
in opposite directions allow to get a disjunctive normal form the first, and the



4.4, Three Examples: Towards a Completion Procedure 83

(11 XUX-S5X
ré®t XUXUY S XUY
) Xny S5X
3 XU(YNZ) S (XUuY)n(XUZ2)
Rc= { r# XU(YNZ)UT - ((XUY)n(XUZ))uT
VfeFn
T4 f(XlXn)Uf(YlYn)éf(XlquXnUYn)
e f(Xy. . Xa)Uf(Yi... Y,)UZ 5>
S f(X1UY... X, UY,)UZ

(rs XNX-2X
re®t XNXNY =XNnY
re XUY 25X
rm XN(YUuZ)—2(XNnY)u(Xn2Z)
Ry= { reot Xm(YuZ)mTi)((XmY)u(XmZ))mT
VfeFn
rs f(X1... X )N f(Y1.. V)2 f(X1inYi...X,NY,)
rg®t f(Xy... X)Nf(Yi... V)N Z =2
2 f(XinY1... X, nY,)NZ

(rg YUX &S XUY
I = 11 YﬂX(LXﬂY
- ro (XUY)UZESSXU(YUZ)
[ 12 (XNY)NZ<&SXn(YN2)

Figure 4.4: A canonical bi-rewriting system for the inclusion theory of non-
distributive lattices.



84 Chapter 4. First-Order Bi-rewriting Systems

other a conjunctive normal form. In a non-distributive lattice these rules are
strict inclusions therefore they can not be used as equational rewrite rules. Fur-
thermore, if they are put together in a unique rewriting system then we lose the
termination property.

4.4.3 Inclusion Theory of Distributive Lattices

The example we present now is the inequality specification of distributive lat-
tices. This specification is the base for many other specifications or specifica-
tion languages like the Unified Algebras (Mosses, 1989b; Mosses, 1989c; Mosses,
1989a). The presentation of the distributive lattice theory may be given by the
following set of inclusions:

XUXCX XNXDX
XUYDX XNYCX
XUYDY XNYCY

XNYUuZ)T(XNY)u(Xn2Z)

As we have seen in the previous examples, the orientation of all these inclu-
sions to the right results in a terminating bi-rewriting system where all standard
critical pairs are confluent. However, the presence of the two non-left-linear
rules X UX —5 X and X N X —2> X makes necessary the consideration of the
extended critical pairs. If we only take into account, in a first step, all those
extended critical pairs of the form (o(a1[B2]p),o(61)), which correspond to the
particular case where the position ¢ in F is the most external one ¢ = A, then
we can generate the following sequence of new rules:

@1 YU(XUY)-SXUuY
g2 YUX &S XUY

g3 (XUY)UY SXUY
gs (XUY)u(Yuz)-SXUu((Yuz)
s (XUY)UZ&ESXU(YUZ)

and the equivalent ones for N. The rules g2 and g5 are non-orientable and
subsume the rest of rules. They make necessary the use of the bi-rewriting
modulo a set of inclusions technique. These rules are symmetric —they are really
equations—, therefore we can apply the standard commutative-associative closure
definition (Peterson and Stickel, 1981). We obtain then the following set of rules.

r1 XUXA)X
r$?t XUXUY S XUY
R = T2 XOYAX
= 3 XNYUZ) S (XNnY)u(XnZ)
@“;EMYUHOTJ%«XHYMMXHH)OT
Ta XﬂXi)X

R,={ r&® XNXNY-—2XnY
Ts XUYA)X

V)



4.4, Three Examples: Towards a Completion Procedure 85

re YUX X UY
r (XUY)UZ <SS XU(YUZ)
rg YNX<<XNY
rg (XNY)NZ&ESXN(YNZ)

In a second step we have to consider also those rules needed to make confluent
the rest of extended critical pairs. They are the following ones:

F[X]UF[XUY]C F[XUY]
F[XNY]C F[X]NF[XNY]

First, we will study the second extended critical pair. If we orient it to the
left, we obtain the rule scheme F[X]NF[XNY] — F[X NY]. This rule scheme
generates a standard critical pair with the rule X N Y —5»Y, which is made
confluent adding the rule scheme F[X]N F[Y] —- F[X NY]. The overlapping
of the context F[] of this rule scheme with the left part of the rule XNY —5-Y
generates infinitely many rule schemes F[Xy,..., X,]NF[Y3,...,¥,] == F[X1N
Y1,...,Xp,NY,] for n > 1. The following (normal) rules subsume these rule
schemes.

ro XNYuZ)—=2(XnY)u(Xn2)
Vfexn.
P (X, X)) N (Y., V) =25 f(X N Y, .., XaNY)

The rule rio subsumes the instantiation of 'r'gji) for the symbol U € X2,
The dual solution is not applicable to F[X]U F[X UY] C F[X UY] because
Xu((¥yn2z -£, (X UY)N (X U Z) and the distributive rule r3 would lead
to the non-termination of the system. This problem can be avoided using the
alternative set of rules:

P8 f(Xiy s, Xn) U f(Y, . ¥a) =5 f(X1 UYL, .., Xa UY,)
P (X nf(,.. ., Y)) U (XN f(Z,..., 2,)) -
S XNnfY1UZy,...,YoUZ,)
They do not subsume F[X]UF[Y] —£» F[XUY], but are particular instances
of this rule schema. The last rule ri3 is non-left-linear and generates a new
extended critical pair which becomes confluent if we add the following rule.

P (XN f(,.. L Y) U (Znf(,.. ., V) =
S (XUZ)nf(vaiuW,...,. Y, UV,)
Rules r:(lf;) and r; subsume rgé).

Let us prove now that rules r15 and r;4 makes confluent the extended
critical pair F[X]UF[X UY] C F[X UY]. Rules 'r'gj;) and rgj;) subsume
F[X]UF[Y] -5 F[X UY] when the schema'” F[-] can be expressed as a compo-
sition F[-] = Fi[...F,[-].. ] of schemas, where each one of this schemes satisfies

17As usual, an schema is an expression with a hole in it, a selected position, denoted by
an dot “.”. The schema composition F[-]oG[-] is defined by the substitution of this selected
position by the other schema, noted F[G[-]].



86 Chapter 4. First-Order Bi-rewriting Systems

Fll=f(..,,...),or Fi[]=E1Nf(...,-,...)N E; for any symbol f different
from N, and any expressions Ei, E3. It can be proved that any scheme F[-] can
be expressed as F[-] = G[E1N-N E3] where the schema G[-] satisfies the previous
condition and F1, F5 are two common expressions. This property allows to trans-
late the inclusion schema (the extended critical pair) F[X]UF[XUY]| C F[XUY]
into

GIXNHUG(XUY)NH|CG[(XUY)NnH]

where G[-] can be rewritten using F[X] U F[Y] -5 F[X UY]. We prove then
that this extended critical pair is bi-confluent using the following proof.

GIXNH|UG(XUY)NnH] = G[XNnH)U((XUY)NH)]
<5 GXNH)U(XNH)U(YNH)
<5 GXNH)U(YNH)
& GXUY)nH)|

A commutative and terminating bi-rewriting system for the distributive lat-

tice theory is given by rules ri...7r12, 714 and their corresponding U and N
associative-commutative extensions, as shown in figure 4.5.

4.5 Why Inclusions and not Equations

In section 4.4 we have seen the possibility of modeling the deduction in a non-
distributive free lattice by a canonical bi-rewriting system. This represents
an advantage of the inclusion theory over the equational theory of lattices be-
cause there is not a canonical rewrite system for the equational theory of lat-
tices (Freese et al., 1993). In general inclusions express weaker constraints be-
tween terms than equations. Even in the case of lattices where inclusions may
be modeled by equations —the inclusion @ C b is modeled by a Ub = b or
by a Nb = a— inclusions are more natural and have some advantages. The
transitivity and monotonicity of inclusions which are captured implicitly by bi-
rewriting systems, must be “implemented” explicitly by equational rewrite rules.
Let’s consider an example. The inclusions ¢ C b and b C ¢ can be oriented like
a—<-b and b—5>¢ and we can prove a C c rewriting a into b and b into c.
However, their translation into equations results in two rules a Ub—— b and
bUc —— c. These rules generate non-confluent critical pairs with the other rules
XN(XUY)— X and X U(X NY) — X defining the union and intersec-
tion, and the completion process leads to add the following rules anNb—a
and bN¢c——b. And, what is worse, it introduces the rules ¢ Uc — ¢ and
a N c¢——a. It means that in general the completion of a theory where the
sequence a; C ... C a, can be proved leads to add rules a; U a; — a; and
a; Na; — a; for any i < j, during the completion process.

The transitivity of inclusions is not captured by the transitivity of the equal-
ity relation or by the transitivity of the rewriting relation —— , weakening in
this way the power of rewriting systems, and loosing in most cases the possibility
of having a canonical rewriting system for a theory.



4.5. Why Inclusions and not Equations 87

(11 XUX -5 X
r¢?t XUXUY S5 XUY

T2 XHYA)X

r3 XnN(YUuZ)-S(XNnY)u(Xn2Z)

re®t Xm(YuZ)mTi»((XmY)u(XmZ))mT
VfeFn

Rg: < T12 f(Xl,.. ,Xn)

. f(Y1, V) S5 f(X1UYq,..., X, UY,)
P2t f(X1,.. ., Xn)

f(r,...,.Y)uz 5
S (X UYL, ., Xa UY,)UZ
ria (XN f(Y,..., %)) U(Z0f(W,..., V) =
S (XUZ)Nf(VaUW,..., Y, UVW,)
regt (X0 f(Ya,..,Y)U (20 f(Vi,..., V) UW -
S (XUZ)NfViUW, ..., UR))UW

U
U

(ry, XNX—=2-X
r®t XNXNY =XNnY
rs XUy 22X
ro XNYUZ)=2(XNnY)U(XnNZ)
Ry= { regt Xn(YuZ)mT%((XmY)u(XmZ))mT
VfeFr
11 f(XlXn)ﬂf(ylYn)i)f(XlﬂlenﬂYn)
8 f(Xy . X )N f(Yi... Y,)NnZ 25
2 f(X1NY... X, NY,)NZ

(r6 YUX &S XUY
rm YNX<&ESXNY
rg (XUY)UZ<ESXU(YUZ)
re (XNY)NZ<&SXN(YNnZ)

Figure 4.5: A canonical bi-rewriting system for the inclusion theory of distribu-
tive lattices.



88 Chapter 4. First-Order Bi-rewriting Systems

Moreover, the stability (closure for congruence) of the rewriting relation cap-
tures the congruence property for =, but not the monotonicity property for C.
This would make necessary to consider the inclusion f(X) C f(X UY) and the
corresponding rule f(X)U f(X UY) — f(X UY) for each symbol f in the
signature if we use the implementation described below.

4.6 Related Work

In the context of automated theorem proving, resolution is not very effective in
dealing with transitive relations. Special techniques have been devised for such
relations, specially for equivalence relations which have attracted most of the
attention. Slagle (Slagle, 1972) was the first to encode resolution with the tran-
sitivity axiom in a chaining system with paramodulation (Robinson and Wos,
1969) for theories with equality, orders and sets. Chaining into variables, which
is needed for completeness, is too prolific, like our extended critical pairs or like
variable instance pairs in (Bachmair et al., 1986b). For special order theories
this problem can be avoided. For dense total orderings without endpoints, Bled-
soe and Hines (Bledsoe and Hines, 1980) proposed techniques for eliminating
certain occurrences of variables from formulas. Bledsoe, Kunen and Shostak
(Bledsoe et al., 1985) and Hines (Hines, 1992) gave completeness results for
these restricted chaining systems. Monotonicity or anti-monotonicity of func-
tions with respect to special (transitive) relations led Manna and Waldinger
(Manna and Waldinger, 1986) to propose subterm chaining methods for gen-
eral clauses but the proposed calculus was shown to be incomplete (Manna and
Waldinger, 1992). In (Levy and Agusti, 1993c) we were the first to apply rewrite
techniques to non-symmetric and monotonic relations by means of bi-rewriting
systems. Bachmair and Ganzinger (Bachmair and Ganzinger, 1993c) used the
idea of bi-rewriting to give a refutationally complete inference system of ordered
chaining for general clauses and general transitive relations. They studied the
particular case of dense total orderings using this technique in (Bachmair and
Ganzinger, 1993a).

4.7 Conclusions

We have shown the adequacy of using a pair of rewriting systems and a bi-
directional search procedure to automate the deduction with monotonic inclu-
sions. Like in the equational case, a soundness and completeness theorem can be
stated. However, in this case, they are based on an eztended definition of critical
pair which include schemes of critical pairs. It means that, if we want to use a
kind of Knuth-Bendix completion algorithm, then we have to face the problem
of working with schemes of rules. In chapter 5 we undertake this problem by
means of second-order rules.



Chapter 5

Second-Order Bi-Rewriting
Systems

Abstract: In the previous chapter we proved a critical pairs lemma,
based on an extended definition of critical pair. This lemma is used
to prove the completeness of bi-rewriting systems as deduction methods.
However, the orientation of divergent extended critical pairs may give rise
to rule schemes which disallow to automate the Knuth-Bendix comple-
tion process. In this chapter we propose the use of the linear second-order
A-calculus to codify these schemes. We provide a unification algorithm for
such language and we prove a new critical pairs lemma for second-order
bi-rewriting systems. Like in the previous chapter, the completion pro-
cess is described by means of an example. Linear second-order A-calculus
can also be seen as another approach to the definition of Higher-Order
Rewriting Systems besides the one based on patterns (Nipkow, 1991).

5.1 Introduction

Term Rewriting Systems (Dershowitz and Jouannaud, 1990) have been usually
associated with the implementation of equational theories. Term Bi-rewriting
Systems introduced in the previous chapter play the same role for inclusion
theories. The orientation of a set of inclusions I (axioms with the form a C b)
may result then in two sets of rewriting rules Rc and R5 and, therefore, two
rewriting relations = and 5 A bi-rewriting system (Rg , Rg) is said to
be 1) guasi-terminating (or globally terminating) if the sets {u | ¢ R—*Cwu.} and
{u]|t R—*Dwu} are both finite for any term ¢, 2) Church-Rosser if the property

(R—C> U_? > C R—*C>o % holds and 3) canonical if both conditions are
satisfied. As we have shown, these conditions are sufficient to prove the existence
of a terminating and complete procedure for deriving inclusions a C b based on

the bi-directional search of a common reduct of a and b (an expression ¢ such

89



90 Chapter 5. Second-Order Bi-Rewriting Systems

that aR—*Cw and ba—*3>c).

If a rewriting relation is finitely branching,® as it is the case of first-order
rewriting when any rewriting rule [—r satisfies V(r) C V(I), and terminating,
then it is also quasi-terminating. This result is used to prove the first condition.

The second condition is proved by means of a critical pairs lemma (theo-
rems 4.10 and 4.19). However, the bi-rewriting version of this lemmais based on
an eztended definition of critical pair (definition 4.9). This set of critical pairs is
in general infinite (we are completely free to choose the context F[-], appearing
in the definition of extended critical pairs). Although there exists canonical bi-
rewriting systems for many inclusion theories (see the examples in section 4.4),
the standard Knuth-Bendix completion procedure is of little practical help to
automatically complete a bi-rewriting system. In this chapter we present an
approach to this problem by means of second-order bi-rewriting systems.

In section 5.2 we show how these infinitely many extended critical pairs can
be made confluent introducing rule schemes. These rule schemes can be im-
plemented using second-order rules. However, the use of the full simple typed
second-order A-calculus for rewriting purposes introduces some problems, stated
in section 5.3. Because of that, we define a restricted second-order language
called linear second-order A-calculus, which is described in section 5.4. Sec-
tion 5.5 defines an unification procedure for this language. The new critical pairs
lemma for second-order bi-rewriting systems is proved in section 5.6. Finally, we
illustrate how the Knuth-Bendix completion procedure could be implemented
throughout an example in section 5.7.

5.2 Codifying Rule Schemes by means of
Second-Order Rules

From now on we will be concerned with the simply typed second-order A-calculus.
Thus, we will deal with a set of types 7 = UnENT” built up over a set 71 of
base (first-order) types; where, as usual, 7™ is the set of n-ordered types defined
inductively as the minimum set containing 7"~ ! and such that if 7 € 77!
and 7/ € 7™ then 7 — 7/ € 7T™. Terms of the simply typed second-order
A-calculus 7 (F, X) are defined over a signature of third-order typed constants
F = U,s2Fr and second-order typed variables X' = (J _,:&7. The typing
relation ¢ : 7 is defined by the following set of inference rules

{ce 7} {z € X;} z:T t:7! t:T— 1 t:T
c: T T:T Az:7.t):7—> 7 t(t'): 7

The term ¢ is said to be a well-formed n-order typed term, noted ¢t € 7"(F, X),
if ¢ : 7 can be inferred from the set of rules below and 7 € 7". The set of
free variables of a term (noted FV(t)), replacement (noted ¢[X +— u]), and other
concepts commonly used in A-calculus are defined as usual (Barendregt, 1981;
Hindley and Seldin, 1986). We will note free variables with capital letters (by

LA relation — is finitely branching if the set {u | t—u} is finite for any term ¢.



5.2. Codifying Rule Schemes by means of Second-Order Rules 91

X,Y,Z,...when they are first-order typed and by F,G, H,I,... when they are
second-order typed), bound variables and constants are noted using lower case
letters.

Definition 5.1 A (second-order typed) substitutiono = [X; — t1,---, X —
t,] is a mapping from a finite set of variables Don(c) = {X1,..., X} C X to
7 (F,X) such that X; and t; have the same type. This mapping is extended as
a type-preserving mapping o : T(F,X) — T (F,X) defined by?

o(u) = (AX1...Xn  u)(t1,-. . tn) = (u[Xl — 1] .. )[Xn — i
The set of free variables of a substitution o is defined as follows.

)= U X))

X €Dan(o)

Composition of two substitutions o and 7 is a substitution, noted Too, such
that Dom(To0) e Dan(c) and Too(X) = 7(0(X)) for any X € Dan(c).2

A partial order between substitutions can be defined as usual, i.e. we say
that p < o if there exists a substitution w such that o = mop.

The inclusion theory of the union operator is used throughout to motivate the
definition of second-order bi-rewriting systems. In subsection 4.4.1 we proved the
existence of a canonical first-order bi-rewriting system for such a theory (shown
in figure 4.2). The same example is completed in section 5.7 for the second-order
case. Our intention is to replace the set of rules of such example

F(X1y ey X)) U (Y1, V) =55 f(X1 UYL, ..., X, UYS)

by a second-order rule. If we take up again the completion process described in
subsection 4.4.1, we have that this set of rules is generated by the rule schema
F[X]U F[Y] -5 F[X U Y], which results of making bi-confluent an extended
critical pair, and where F[-] denotes a context. We will see now that we can
translate this rule scheme into the second-order rule G(X)UG(Y) —=» G(XUY),
where now G denotes a second-order typed variable. Then, it is easy to see that
this second-order rule subsumes the previous rule schema because the function
variable G can be instantiated by Az . F[z]. However, it does not subsume other
rules like f(X1,..., Xn)U f(¥Y1,...,Yn) 5= f(X1 UYy,..., X, UY,) for n > 2.
To obtain second-order rules subsuming them we must complete the system by
generating all the critical pairs between G(X)UG(Y) —<- G(X UY) and other
rules.

The simply typed second-order A-calculus is enough to model an untyped
first-order language with contexts variables, like the one described by Comon in
(Comon, 1993). In such a model, we can suppose that there exists an unique

2Notice that (u[Xl — t]_])[Xg — t3] = u[X1 — t1,Xs — t3], but in general, u[X; —
t]_,Xg = tg] ;é u[Xg (g tg,X]_ = t]_].
3Notice that Toa(t) # 7(o(t)) unless we have Dan(t) C FV(0).



92 Chapter 5. Second-Order Bi-Rewriting Systems

first-order type Term € 7. Any n-ary symbol f of the signature is interpreted
as a unary second-order typed constant f : Term —.%.— Term — Term, any
variable X as a first-order typed variable X : Term and any context variable
F[] as a second-order typed variable F' : Term — Term.

5.3 Some Problems of Second-Order
Rewriting Systems

The use of full simple typed second-order typed A-calculus in rewriting systems
is not free from problems. If we unify a term (pattern) with a ground term
(a term without free variables), the resulting unifier(s) do not necessarily in-
stantiate all the free variables of the pattern. For instance, if we unify the
pattern F(X) with the ground expression f(a), a minimum unifier p may assign
p(F) = Xz. f(a) and leave X non instantiated. It means that, although all vari-
ables appearing in the right part of a rule would also appear in its left part, not
all the instantiations of such rule will satisfy that property. Therefore, the use
of this rule can introduce new free variables during the rewriting process. For
instance, the rule F(X) — X satisfies 7V(X) = {X} C {X, F} = FV(F(X)),
even so it introduces a fresh variable X when is used to rewrite a into X using
the substitution p = [F +— Az.a]. That problem prevents the orientation of
the rules to obtain a terminating rewriting system. In the previous example,
we can rewrite a —— a ——a —— - - - using the rule F(X) — X and the sub-
stitution p = [F + Az .a][X — a]. The first-order matching problem satisfies
the following property: given a pair of terms ¢ and u there exists finitely many
substitutions p such that Dan(p) C FV(t) and p(t) = u. This result does not
hold in general for second-order languages. It means that a second-order rewrit-
ing relation can be infinitely branching and many properties of term rewriting
system do not hold. In particular, a second-order terminating rewriting system
is not necessarily quasi-terminating.

In next section we define the linear second-order typed A-calculus which avoids
these problems (see lemma 5.4). The same kind of problems are studied by
Nipkow (Nipkow, 1991; Nipkow, 1992) to justify his definition of higher-order
rewriting systems based on patterns. A term ¢ in Bn-normal form is said to be
a pattern if every occurrence of a free variable F is in a subterm F(u,) such
that @, is a list of distinct bound variables (Nipkow, 1991; definition 3.1). Our
approach can be seen as a new kind of higher-order rewriting systems based on
the linear second-order typed A-calculus.

5.4 Linear Second-Order Typed A-Calculus

In this section we present the linear second-order typed A-calculus used to im-
plement expression schemes. The main idea is to define a second-order calculus
where A-abstractions always bound one and only one occurrence of a variable.



5.4. Linear Second-Order Typed A-Calculus 93

This language is more expressive than a language based on context variables, as
the one described by Comon (Comon, 1993), and can be more easily formalized.
The inference rules for defining well-typed linear second-order (LSO) typed
terms ¢ : 7 are the following ones.
zc X, ccF, z:T t‘.Tz
- e {z occurs once in t} O
Az.t:7 — T 2
Like in the simply second-order typed A-calculus, we also consider the 8 and
7 equations:

t:m — 7 U:T

(Az.t)(u) =p tlz — u]
Az .t(z) =, t

Notice that the side condition z ¢ FV(t) is not necessary in the n-rule be-
cause, if Az .t(z) is well-typed, then this condition is ensured. Notice also that
these rules transform linear terms into linear terms with the same type. These
equations, used as rewriting rules:

(Az.t)(u) —p t[z — u]
t —, Az.t(z) if it does not introduce new [-redex

constitute a normalizing rewriting system. The normal form of a term ¢ is
denoted by t|g, and has the form Az, ...z, .a(t1,...,tn) where a can be either
a bound variable, a free variable or a constant, a(ti,...,tm) is a first-order
typed term, and ¢; ...t,, are also normal terms. We require linearity to prove
the following lemma.

Lemma 5.2 For any pair of linear second-order terms t and u, ift =g, u then

V() = FV(w).

Proof: For the n-equation it is trivial because FV(Az .t(z)) = FV(t) \ {z}, but
since z ¢ FV(t) we have FV(Az .t(z)) = FV(t). For the B-equation it is necessary
to take linear terms. Thus, if (Az.t)(u) is a well-formed linear term then z €

FV(t). Therefore FV(t[z — u]) = (FV() \{z}) UFV(u) = FV((Az.t)(u)). =

We consider any kind of second-order unification problem, and we only re-
strict the set of possible unifiers.

Definition 5.3 A second-order unification (SOU) problem is a finite set
of pairs {t; = u1,...,tn = u,}, where t; and u; are second-order typed terms
and have the same type, for any i € [1..n].

A linear second order (LSO) substitution ¢ is a second-order typed substi-
tution such that o(X) is a LSO-term for any X € Don(o).

A substitution o is said to be an LSO-unifier of a SOU problem {t; =
Uty -y tn = Un} if 0(t;) =gy o(u;) for any i € [1..n] and o is idempotent.*

“The relation =pgn is the congruence defined by the 8 and 7 rules of the A-calculus. A
sufficient condition for the idempotence of ¢ is either X = ¢(X) or Dan(c) N AV (a(X)) = 0.

This restriction does not suppose a loss of generality.



94 Chapter 5. Second-Order Bi-Rewriting Systems

Then we can prove the following lemmas.

Lemma 5.4 The composition of two LSO-substitutions is also a LSO-subs-
titution.

Given two termst and u, there are finitely many (not necessarily minimal) LSO-
substitutions o such that t = o(u) and Dan(c) C FV(u).

Proof: Like in the non-linear case, the composition of two substitutions is also
type preserving and idempotent. Let us prove that linearity is preserved by
composition. It is not difficult to see that if ¢ is a LSO-term and ¢ is a LSO-
substitution, then o(t) is also a linear term. Moreover, 3-reduction and #-
expansion are both linearity preserving, therefore even if we normalize the new
term after applying the substitution o(t)|g, would be linear.

The proof of the second part of the lemma is based on the matching algorithm
described at the end of the section 5.5. ]

LSO-unification recovers some properties of first-order unification that we
lose when we pass to the second-order. In particular, we recover the finiteness
of the (non-minimal) matching problem. This makes LSO-unification specially
adequate for defining LSO rewriting systems because we avoid the infinitely
branching problem.

5.5 A Second-Order Unification Procedure

Like in the first-order case, to prove the completeness of a second-order bi-
rewriting system we have to generate all the possible (extended) critical pairs
between rules in Ec and rules in R5 and prove their bi-confluence. This process
requires the use of a unification procedure for the linear second-order A-calculus.

The first sound and complete second-order unification procedure was de-
scribed by Pietrzykowski (Pietrzykowski, 1973), and subsequently a modified
version of this algorithm was proposed to solve the unification problem for the
simply typed A-calculus (Jensen and Pietrzykowski, 1976). Based on it, Huet
(Huet, 1975) proposed the computation of the so called independent pre-unifiers
using a pre-unification procedure. This procedure does not try to solve the
flexible-flexible pairs of a unification problem for which there always exist a uni-
fier, thus a pre-unification procedure is enough if we only want to check if a
unification problem is satisfiable. Unfortunately, the simply typed A-calculus
unification problem, and even the second-order unification problems are unde-
cidable (Goldfarb, 1981).

Since then many decidable classes of higher-order unification problems have
been described. Miller (Miller, 1991a; Miller, 1991b) in the context of logic pro-
gramming and Nipkow (Nipkow, 1991; Nipkow, 1992) in the context of rewriting
systems, propose a restricted higher-order language —which expressions they call
patterns— preserving the good properties of the first-order logic. If there exists
a minimum unifier of two patterns, then it is unique. They also define a unifi-
cation algorithm (Nipkow, 1991; theorem 3.2) to find this most general pattern



5.5. A Second-Order Unification Procedure 95

unifier and prove its termination. However, in our case we need a more expres-
sive language. If we consider the rule G(X) U G(Y) —=» G(X UY) for example,
we realize that neither the left-part nor the right part of the rule is a pattern.
In general, if we look at the particular form of extended critical pairs we will see
that they always contain a subexpression F'(t) where F is a free variable and ¢
is the right hand side of a rewriting rule, so we can not suppose that ¢ is a list
of distinct bounded variables, as the definition of patterns requires. Recently
Prehofer has proved in his thesis (Prehofer, 1995) decidability results for some
unification problems based on Nipkow’s patterns. He proves, for instance, that
unification of linear second-order systems is decidable (theorem 5.3.1). Unfor-
tunately, linear refers here to the system, not to terms: a linear second-order

system of equations is of the form Az . X, (E) = )\Zj .t, where X,, are distinct
and not occurring elsewhere second-order variables and Az . ¢, and Azg . %, are
patterns. This decidable case neither covers our needs. Comon (Comon, 1993),
as we have said, describes a first-order language based on context variables (a
second-order language without A-abstractions and where second-order variables
are restricted to be unary). He also proves the decidability of the unification
problem for his language and provides a unification algorithm. However, a rather
strong condition is imposed: any occurrence of a free variable F is always ap-
plied to the same argument ¢. This restriction is also violated in our case: in the
rule G(X)UG(Y) -5 G(X UY), the second-order variable G is applied to two
different terms, X and Y. Finally, Schmidt-SchaufB proves that second-order
unification of stratified terms is decidable. Here stratified terms means that the
string of second-order variables on the path from the root of the term to every
occurrence of a given variable is always the same.

Other cases are currently being proposed, but none of them is adequate for
the computation of extended critical pairs. The most specific unification prob-
lem subsuming ours is the general second-order case studied by Pietrzykowski.
However our particular case turns up to be attracting as long as it enjoys bet-
ter properties, as we shall see at the end of this section. On the other hand,
the linear second-order unification problem generalizes the associative unification
(Makanin, 1977) and monadic second-order unification (Farmer, 1988) problems.
These unification problems are known to be decidable, although such result is
not as easy to prove as one may suppose in a first approach. Thus, as far as we
know, the decidability of the linear second-order A-calculus unification problem
is still an open question, and the procedure we give in this section is in general
non-terminating.

In the definition of the algorithm we use a compact notation based on sets
of indexes and indexed sets of indexes. For any set of indexes P = {p1,...,pn},
the expression a(bp) denotes a(by,,...,bp,), and for any P-indexed set of in-
dexes Qp = {Qp,,---, Qp.} = {{a},--- a7}, -+ -, {g%,--.,¢7}} the expression
a(bp(tg,)) denotes a(by, (qu CeaCpm )se--1bp.(cqr .. .cqmn)). Notice that capital
letters denote set of indexes whereas lower case letters denote concrete indexes.

We use the notation on transformations introduced by Gallier and Snyder
(Gallier and Snyder, 1990) for describing unification processes. Any state of the



96 Chapter 5. Second-Order Bi-Rewriting Systems

process is represented by a pair (S,c) where S = {t; = u1,...,t, = un} is the
set of unification problems still to be solved and o is the substitution leading
from the initial problem to the actual one. The algorithm is described by means
of transformation rules on states (S,o) = (S’,0’). The initial state is (So, Id).
If it can be transformed into a state where the unification problem is empty
(So, Id) =* (D, o) then o is a solution —unifier— of the unification problem Sy.

The normal forms of a unification problem and of a substitution are defined
as follows.

def

{tlé"f-la---:tné"f'n}mn = {t1|ﬁné“1|ﬁm---:tn|ﬁn é'“'n|ﬁn}
de
[Xl r—>t1,...,an—>tn]|ﬁ.,, =4 [ X1 — tl[Xthz,---,XnthHﬁm

Xn_1 tn—l[Xn’_’thﬁ‘r]:
Xn = tn|ﬁ’fl]

The projection of a substitution o over a set of variables V is a substitution
o' such that Dan(c’) = V and for any z € V we have o(z) = o'(z). We
suppose that the initial state (S, Id) is in normal form, and that after applying
any transformation rule the resulting unification problem is normalized and the
substitution is also normalized and projected over FV(Sg). Therefore, we can
suppose that any pair ¢ = u € S has the form A\zy . a(tp) = Mzx . b(ug) where a,
b may be either a constant, a bound or a free variable; and if (So, Id) =* (S, o)
then Dan(c) C FV(So).

Definition 5.5 The unification problem transformation rules have the
form:
(Su{t = u},0) = (p(S UR), poc)

where the transformationt = u = R and the LSO-substitution p are defined by
the following cases.

1. Rigid-rigid rule (or Simplification rule). If @ is a constant, or a bound
variable then

AzZy .a(tp) £ XZy .a(up) = U {Aﬁ.tié)\ﬁ.m}
pZId 1€P

2. Imitation rule. If a is a constant and F is a free variable, and {R;}icp is a
P-indexed family of disjoint lists of indexes satisfying® Uiep R; = Q, then

Xew . a(fp) £ daw . F(ug) = | {)\W.ti L3 Aﬁ.Fi’(u_m)}
1€P
p=|F~)7g.a(Fp(m,))]

where {FJ-'}]-EQ are fresh free variables of the appropriate type that can be
inferred from the context.

5Union and comparison of lists of indexes is computed without considering their order.



5.5. A Second-Order Unification Procedure 97

3. Projection rule. If a is a constant or a bound variable and F is a free
variable, and a(tp) and u have the same type, then

AZy .a(tp) = XzZy . F(u) = {Aﬁ.a(ﬁ) = Aﬁ.u}
p=I[F—Ay.y

4. Flexible-flexible rule with equal heads (or Simplification rule). If F is a
free variable, then

Xzy . F(tp) = Xzy . F(up) = U{Aﬁ.tié)\ﬁ.m}
p:Id 1€P

5. Flexible-flexible rule with distinct heads (or Distinct-heads rule). If F and
G are free different variables, P’ C P and Q' C @ are two lists of indexes,
and {R;}jcq' is a Q'-indexed and {S;}icp a P'-indexed family of disjoint
lists of indexes satisfying

(UjeQ'Rj)UP'ZP (Ujeq,Rj)mP’:(z)
(UieP' Si) uR' =@ (UieP’ Si) ne' =10
then
Yew . F(ip) = Xaw . G(ig) = | {AH.F;(E) £ )\ﬁ.uj} U
]Ej {Aﬁ.ti < Xzw . Gg(u—si)}

icPp!
p= {F > /\y_p-H’(Fc’y(yRQ,), yT)}
6 -2zg B (757, Gr(75,,) )|
where H', {G}}icp and {F}};cq' are fresh free variables of the appropriate
types.

Ezample. This procedure can be more easily understood if we compare if with
the following string unification procedure. Hence, an string is a sequence of
constants or variables and S; - S; denotes the concatenation of S; and S;. Con-
catenation operator satisfies the associative property Sy -(S2-S3) = (S1-S2)- Ss.
The transformations defining the procedure have also the following form

{t ZuluS,o) = (p(S' US), poo)

where the transformation {¢ = u} => S’ and the substitution p are defined by
the same cases.

1. Rigid-rigid step. If a is a constant then

(L'Sléa'Szﬁ{Sl?:Sz}
p=1Id



98 Chapter 5. Second-Order Bi-Rewriting Systems

2. Imitation step. If a is a constant and F is a variable then

F515a52:>{H51552}

where H is a fresh free variable.

3. Projection step. If a is a constant and F' is a variable then

F'Sléa-52:>{51éa'52}
p=[F ()]

4. Flezible-flezible step with equal heads. If F is a variable then

F51£F52j{51£52}
p=1d

5. Flezible-flexible step with distinct heads. If F and G are both variables
with F # G then either

p=[F s H|[G o H - W]

or
p=|F— H-V][G~ H|

where H, W and V are fresh variables.

Notice that in the string case, as well as in the second-order case, we have
the following possibilities:

(i) Both expressions have a constant @ and b in the head (rigid-rigid case).
Then they have to be the same constant for both expressions a = b.

(ii) One expression has a constant a and the other a variable F in the head
(rigid-flexible case). There are two possibilities: either the variable is
instantiated with the empty string [F — ()] (projection step) or it is in-
stantiated with a string with the constant as head [F +— a - H| (imitation
step). In the second case a fresh variable H is introduced.

(iii) Both expressions have a variable in the head (flexible-flexible case). There
are two possibilities: either both expressions have the same variable in the
head or both variables are different.

In the following we will prove the soundness and completeness theorems for
our unification procedure.

Theorem 5.6 soundness. If (S,Id) =* (0,0), then o is an unifier of the
unification problem S.

Proof: To prove this theorem we will prove previously the following induction
lemma.



5.5. A Second-Order Unification Procedure 99

Lemma 5.7 For every transformation rule ({t = u} U S,0) = (p(S' U S), poc),

(i) if{t £ u}US isa SOU problem and ¢ is a LSO substitution, then p(S’'US)
also is a SOU problem and poo is a LSO substitution.

(ii) if 7 is a LSO unifier of p(S’ U S) then Top is a LSO unifier of {t = u} U S.

Proof: Firstly, we prove that in all the cases p is a LSO substitution. It is
a straightforward exercise to cheek that p always instantiate free second-order
variables by linear second-order terms with the same type, and it only introduces
second-order typed fresh free variables. In order to ensure that, we add side
conditions on the lists of indexes Rp of the imitation rule; conditions on the
lists of indexes P’, @', Rg: and Spr of the flexible-flexible rule; and a side
condition on the type of F : 7 — 7 of the projection rule.

To prove that {t; = u;} is a SOU problem, we have to make sure that #; and
u; are well-typed terms, which only contains second-order free variables, and ¢;
and u; have the same type. Given that S is a SOU problem, the union of two
SOU problems is also a SOU problem, and the instantiation of a SOU problem,
using a LSO substitution, is also a SOU problem, it suffices to prove that S’ is
a SOU problem. This is trivial for the simplification rules, provided that they
do not free bound variables. For the rest of rules it is also easy to prove, if we
decompose them as a LSO instantiation step followed by a simplification step.
For instance, the imitation rule is decomposed as follows

Mzw.a(tp) = Azy . F(ug) = dzn.a(tp) = Azn.a(Fh(Tr,))
= Uiep {ti = F{(ugr;)

Composition of LSO substitutions also is a LSO substitution, therefore poc
will be a LSO substitution.

For the second part of the lemma, if 7 is a LSO of p(S’ U S), then it is also a
LSO unifier of p(S), and Top is a LSO unifier of S. Now, if we take into account
that p(S’) is the simplification of p({t = u}), and simplification rules preserve
unifiers, we can conclude that if 7 is a LSO unifier of S/, then it is also a LSO
unifier of p({t = u}). Therefore, Top is a LSO unifier of {t = u}. [ |

Once we have proved the induction lemma, we are in a position to prove that
the predicate P defined as follows

P((S,0)) Y Y7 .7 is an unifier of § = Too is an unifier of Sy

holds for any state (S, o) derived from the initial state. We prove it by induction
on the length of the sequence of transformations leading from (So, Id) to (S, o).

The initial case P(({So, Id)) is clearly a tautology.

For the induction case we use the induction lemma. Suppose that 7 is a
unifier of p(S’ U S), then Top will be a unifier of {¢ £ u} U S. Using now the
induction hypothesis P(({t = u} U S, o), we have Topoo is an unifier of Sy and
therefore P((p(S’' U S), poc)).

We conclude that the property P holds for all accessible states. For
the final state this property is written P((0,0)) = V7.7 is an unifier of § =



100 Chapter 5. Second-Order Bi-Rewriting Systems

Too 1s an unifier of So. In particular given that 7 = Id is an unifier of 0, we
have o is an unifier of So. The first part of the induction lemma ensures also
that o is a LSO-substitution. ]

Theorem 5.8 completeness. If o is a unifier of the unification problem S,
then there exists a transformation sequence (S, Id) =* (0, c).

Proof: The proof of this theorem is organized in two parts. First we prove that,
given a unification problem Sy and one of its minimum linear unifiers o, we can
generate a transformation sequence

<SO)Id> = <Slaal> == <Sn:o-n> = e

satisfying 0, < o for any n > 0, and either this sequence is infinite or its
last state is (§, o). Second, we prove that such transformation sequence always
terminates, if o, < o for any n > 0. The following lemma suffices to generate
such transformation sequence.

Lemma 5.9 () If o is a unifier of S then either S = 0 or there exists an unifica-
tion problem S’ and a substitution p such that ¢ = o’op, where ¢’ is an unifier
of ', and (S, 7) = (S, por) for any LSO substitution .

Proof: If S is nonempty, let us consider the first unification problem
Azn .a(tp) = Azn .b(ug) of S. If the unification problem is satisfiable (there
exists an unifier o) then there are five possibilities. We present an sketch of the
proof for each case.

(i) a and b are both constants or bound variables. Then, if the problem is
satisfiable, they have to be the same constant or bound variable applied to
the same number of parameters. Moreover, these parameters have to be
unificable one to one. Therefore, the rigid-rigid rule is applicable.

(ii) @ is a bound variable and b is a free variable (or vice versa). The solution
o has to assign an identity function Az .z to b and it can be proved that
the projection rule is applicable. Notice that if we were looking for a non-
second order unifier, other possibility would be F — A7qg.v:(Fp(Yr:))]
where 35 € Q. zn.u; £ A Xy .a. However, we have to discard such
possibility if we consider that F is second-order typed.

(iii) @ is a constant and b a free variable (or vice versa). The substitution
o assigns b either a function with @ in the head (in this case it can be
proved that the imitation rule is applicable) or the identity function (then
projection rule would be applicable).

(iv) a and b are both the same free variable. Whatever the value that o assigns
to this variable, the number of parameters have to be the same, and they
are unificable one-to-one, therefore the simplification transformation is ap-
plicable. If we were considering any kind of second-order unifier, then o
could instantiate a by a term which discards one of its arguments. Then,
we would not have to unify one-to-one all the parameters of a, and the
elimination rule would be necessary for completeness, to eliminate the pa-
rameters discarded by o(a).



5.5. A Second-Order Unification Procedure 101

(v) a and b are two distinct free variables. This is the most complex case.
We prove that the flexible-flexible transformation is enough to treat this
case, and the iteration and elimination rules of the general second-order
unification procedure (Jensen and Pietrzykowski, 1976) are not necessary.
We have o(AZx . a(tp)) = o(AZn . b(uq)), and since we only consider linear

substitutions, the instantiations of the parameters o(tp) and o(ug) will
appear once, and only once, in o(AZy .a(tp)). Then we reason about
the relative positions of such occurrences. So P’ is the list of indexes of
the terms o(t;) which are not below any o(u;), and R; for j € Q' is the
list of indexes of such terms o(¢;) which are below o(u;). (Notice that
if o(t;) is bellow o(u;), then o(u;) can not be bellow any other o(tx),
therefore the list of indexes R; is indexed by @', and not by Q). We
can see that o(H’) is the comon part of o(a) and o(b), i.e. the part
of o(AZx .a(tp)) = o(AZx .b(ug)) which does not overlaps with any of
the parameters of @ nor b. The iteration and elimination rules of the
general case are avoided because we do not need to eliminate or duplicate
occurrences of the parameters. -

Now we prove by induction that the predicate
P((Sn,00n)) “ 31, .0 = Thoon A T is a unifier of S,

holds for any state of a sequence (So, Id) =* (Sn,0n) = ---, generated from a
SOU problem Sy with minimum unifier o.

For the initial state (So,Id) we have 70 = o and it is trivially true. For
the other states, if P(({Sn,0,) holds then, using the previous lemma, we have
that either S,, = 0 or there exists a unification problem S,;1 and a substitution
p such that 7, = Tn410p where 6,41 = poo, and 7,41 is a unifier of Sp41.
Therefore ¢ = Th00n = Tn410p00n = Tn4100n4+1. This proves o, < o for any
n > 0.

Now, to prove the termination of the sequence (Sg, Id) =* (S,,0,), we have
to define a well-founded ordering on the transformation states. However, we
know that the transformation relation is in general non terminating. Take as
counter-example the imitation step:

({F(a) = G(F(a))},0) = ({F'(a) = G(F'(a)}, [F — Az G(F'(2))]o0)

which generates an infinite transformation sequence. It becomes clear that we
have to use the fact that our particular transformation sequence (So,Id) =*
(Sn,0n) satisfies o, < o for any n > 0, where ¢ is a minimum unifier of S, to
prove its termination. Therefore the well-founded ordering we define depends
on the unifier of Sy we are considering.

Dealing with first-order terms, we can define the size of a term as the number
of applications it contains, and the size of a substitution as the sum of the sizes
of o(X) for all variables X of its domain. It is easy to prove that size(t) <
size(p(t)) and size(o) < size(poo), for any term ¢ and substitutions o and p.



102 Chapter 5. Second-Order Bi-Rewriting Systems

Then the sequence Id < 01 X --- X o, X --- < 0 would be evidently finite
because o, = poo,_1 and either p composed with o,,_1 strictly increases its size
or p = Id and S, is strictly smaller than S,,_;. On the other hand, if o, < o, the
size of the o, can not exceed the size of . However, this reasoning is not valid
for second-order terms, because the substitution p = [F + Az . z] decreases the
size of any term ¢t if F € FV(t), and of any substitution o it is composed with,
if F € FV(o). Therefore, we will have to consider projection rule separately.

The ordering we define is based on a function from substitutions to integers
named free arity (which will be decreased by projection rules), and a function
to measure the size of terms and substitutions w.r.t. another substitution.

Definition 5.10 The free arity of a substitution o is defined as follows,

arity(c) = Z arity(X)
XeFv(o)

where as usual the arity n of a variable X is the maximal number of parameters
it admits.®

The size of a term and a substitution is defined like we would do it for first-
order substitutions, but we use the unifier of the original unification problem as
reference.

Definition 5.11 The size of a term ¢t w.r.t. a substitution p satisfying

Dan(p) C FV(t) is defined as follows

. N — . 0 ifpla) =dz.x
size(AZTp . a(tg), p) = Z size(ty, p) + { 20 ot]pi(en)zvise

q€ERQ
where #@ is the cardinality of @, and for LSO substitutions is defined as follows
size(o, p) = Z size(o(X), p)
X € Dom ()

We can prove that any substitution increases the size of a term it is applied
to and of a substitution it is composed with. However, we have to consider a
change in the substitution which we use as reference.

Lemma 5.12 For any LSO term t and LSO substitutions o, p and T we have

size(t, Top) < size( p(t), 7)
size( o, Top) < size( poo, T)

Proof: For the first part of the lemma suppose that t = AZp . a(tg). We prove
the inequality by structural induction of the term ¢, therefore we will suppose
that size(ty, Top) < size(p(ty),T) for any ¢ € Q. Now, if a is a bound variable

6If X :7 — ... — Tn — 7 and 7 is a first-order type, then arity(X) = n.



5.5. A Second-Order Unification Procedure 103

or a constant then induction hypothesis are enough to prove the result directly.
If @ is a free variable then

' B . 0 if Top(a) = Az .z
size(t,Top) = },cq size(ty, Top) + { #Q otherwise

size(p(t), 7) = quQ size(p(ty), T) + size(p(a), T)

Induction hypothesis prove that the first summary is smaller or equal than
the second summary. Comparing second terms of both expressions we have to
consider three cases. If Top(a) = Az .z then independently from the value of
p(a) we can prove that size(p(a),7) = 0. If Top(a) is equal to a free variable
then size(p(a),7) = #Q. Finally for any other value of 7op(a) there are several
possibilities, but in all cases size(p(a), 7) > #Q.

Second inequality of the lemma is easy to prove once we have proved the first
part. |

This lemma allows us to define a distance between LSO substitutions.

Definition 5.13 Given two LSO substitutions a and @ satisfying < 8, the
distance between substitutions o and 8 is defined as follows

dist(a, B) = size(B, Id) — size(a, p)
where p a LSO substitution satisfying 8 = poc: and Dam(p) = FV ().
Corollary 5.14 () For any three LSO substitutions & < 8 < v we have
dist(8,7) < dist(a,7)

Now we can define the size of state (S,, 0) as a triplet where first and second
component are integers and the third component is a multiset of integers:

size({Sn,0n), Tn) = <a'r‘ity(0'n) , dist(on,0) , U {size(t, ), size(u, Tn)}>

t"':uES.,L

where 7, is a LSO substitution satisfying o = 7,00,.
This size may be used to compare states of our particular transformation
sequence:

(Sny0n) 2 (Sm,om) iff size((Sp,0n)) < size((Sm,0m))

where < is lexicographic extension of the usual ordering on integers and the
multiset extension of the ordering on integers. As far as the usual ordering
on integers is well-founded, as well as any lexicographic or multiset extension
of a well-founded ordering, this ordering based on the size of a state will be
well-founded.

To conclude the proof we have to prove that any transformation step in
our sequence satisfies size({Sy,,0,)) > size((Spt1,0n+1)), where > is the strict
ordering resulting from the well-founded ordering we have defined.



104 Chapter 5. Second-Order Bi-Rewriting Systems

The reader may check that any projection step reduces the arity of the sub-
stitution, leaving its size and the size of the unification problem unchanged. Any
other transformation does not affect to the arity of the substitution. In imita-
tion steps and flexible-flexible steps the result depends on the size of the variable
(or variables) being instantiated. If it is zero, then the size of the substitution
remains unchanged but the size of the problem decreases. Otherwise, although
the size of the problem increases, the size of the substitution also increases (the
difference size(o, Id) — size(o,, 7,) decreases). In simplification steps, the sub-
stitution does not change (neither its size) but the size of the problem decreases.

|

Notice that this result proves the completeness of the unification procedure,
but not its termination and, therefore, not the decidability of the unification
problem. The function size defined in the proof could be used to prove the
termination of the procedure if we would be able to fix an upper bound size(o) <
k for the size of a minimum unifier of an unification problem.

Compared with the general procedure (Jensen and Pietrzykowski, 1976), we
avoid the use of the prolific elimination and iteration rules. These rules always
compromise the termination of Jensen and Pietrzykowski’s procedure. On the
contrary, our procedure always finishes for the practical cases where we have
used it. In particular, if no free variable occurs more than twice in an unification
problem (as use to be the case), then the procedure always finishes. This fact
is related with the termination of the naive string unification procedure when
variables occurs at most twice (Schulz, 1991).

Theorem 5.15 termination. If no free variable occurs more than twice in a
linear second-order unification problem, then this problem is decidable.

Proof: We define the following size function, where we suppose that any term
is normalized previously to compute its size.

size(a) = 0 For any constant, free or bound variable
size(Az1...2n.a(t1,..., 1)) = P+ Yo, size(t;)
size({t1 T u1,...,tn T un}) = Do, size(u;) + size(t;)

We prove now that if (S,0) = (S’, poo) and any free variable appears at
most twice in S then size(S’) < size(S) and any free variable also appears at
most twice in S’. There are five cases.

1. Rigid-rigid rule

AzZy .a(tp) = Azy .a(up) = U {Aﬁ.tié)\ﬁ.m}
i€P

The size of the problem decreases in 2 - # P, where #P is the cardinality
of the list of indexes P, and no new variable occurrences are introduced.



5.5. A Second-Order Unification Procedure 105

2. Imitation rule

Xzw . a(fp) = New . F(ag) = |J {Aﬁ.ti L3 Aﬁ.Fi'(u—m)}
i€P
p=|F~)7g.a(Fp(m,))]

The size of the problem decreases in #P and is increased in #P for any
other occurrence of the variable F. Thus as far as there is at most one
more occurrence, the net decrement will be zero or #P. We also introduce,
at most, one occurrence of each one of the fresh variables {Fy}.

3. Projection rule

3z .a(ly) £ Azw . Fu) = {,\ﬁ.a@) L )\W.u}
p=I[F2y.y

The size of the problem decreases one unity if F' occurs once or 2 if it
occurs twice. No new free-variable occurrences are introduced.

4. Flexible-flexible rule with equal heads

Xzy . F(tp) = Xzy . F(up) = U{Aﬁ.tié)\ﬁ.m}
ieP

The problem decreases 2 - # P and no new variables are introduced.

5. Flexible-flexible rule with different heads

Xaw . F(tp) = Xaw.G(ag) = | {AW.F;(E)éAW.u]}U
]Ej {haw .t L ew . Giws)) }
1€ P!

p=F g5 B (Fo(3my,) yTE)] ¢z 1 (777, G55,

The size of the problem decreases in #P+#Q—> .. ps #Si_ZjeQ' #R; =
#P’' + #Q' and is increased in #Q’ for any instantiation of F' and in # P’
for any instantiation of G. Therefore, in the worst case, the size of the
problem remains equal. It is also easy to see that in the worst case we
introduce two occurrences of each one of the fresh variables H, {F/} and
{G;}-

Although the condition of this theorem may seem very restrictive, it is not
so. Given an inclusion, or a critical pair, where a variable occurs more than



106 Chapter 5. Second-Order Bi-Rewriting Systems

twice in one of its sides, we can find a set of refutationally equivalent inclusions
such that no variable occurs more than twice. Let us see an example.

a(F(X),F(Y),F(2),F(T)) CbX,Y,Z, T, z.F(z)), A F [J
iff
a(F(X),F(Y), F’(Z) "(T)) C equals(Az . F(z), Az . F'(z)), - O
equals(Az . F(z), dz . F'(2)) Cb(X,Y,Z,T, ez . F(z)) , A

Where equals is supposed to be a fresh function symbol. A similar process
can be applied for any number of occurrences of any free variable. The details
of such kind of transformations are left for further work.

We can define a matching algorithm for this linear second-order language
based on the unification procedure. In this case, we only use the first four rules
(the flezible-flezible step with distinct heads rule is not necessary) and we must
take into account that = is not symmetric now and the substitution p applied
to a matching problem S = {¢t; = uy,...,t, = u,} only instantiates the left side
of the equalities p(S) = {p(t1) = u1,...,p(tn) = un}. Both changes make the
procedure terminating apart from sound and complete. Proof of lemma 5.4 is
based on this matching algorithm.

5.6 The Critical Pairs Lemma for
Second-Order Bi-rewriting Systems

Second-order bi-rewriting rules are defined, as usual, as pairs of linear second-
order terms. However we need to impose two restrictions to second-order bi-
rewriting systems.

Definition 5.16 Given two sets of second-order bi-rewriting rules Rc and R,
we say that (Rc,R>) is a second-order bi-rewriting system if any rule
!|—£>r in Rc and any rule l —2>r in Ry satisfy FV(r) C FV(l) and | and r
have (the same) base type.

The first restriction is imposed to avoid the infinitely branching problem.
The second restriction is required to avoid the introduction of free variables
with type order higher than two during the completion process, as it will be
motivated later.

Rewriting relations are defined as usual.

Definition 5.17 We say that t rewrites to u using the set of bi-rewriting rules
R, noted t —— w, if there exists an occurrence pint, arulel —r € R, and a
substitution ¢ such that t|, = o(l) and u = t[o(r)],.

We can prove then the following result.

Lemma 5.18 For any second-order bi-rewriting system we have:



5.6. The Critical Pairs Lemma for Second-Order Bi-rewriting Systems 107

i) If the termst and u are related by t —— u, then FV(u) C FV(t).
R
i1) For any term t there are finitely many terms w such that t —— u.
R

Proof: (i) If s ——t then there exists a context u[]p, arulel — r € R and
a substitution ¢ such that s =g, u[o(l)], and t = u[o(r)]p|g,. Relation
=gy preserves free variables in linear second-order A-calculus (lemma 5.2),
therefore we only need to prove FV(o(r)) C FV(o(l)). This may be con-
cluded from FV(o(s)) = (FV(s)\Dan(c)) U FV(c) and FV(r) C FV(I)
which holds for any rule | — r.

(i) We can apply finitely many rules I —— 7 on finitely many different po-
sitions p of a term s to rewrite it. We only have to consider substitu-
tions o satisfying Don(c) C FV(r) in order to instantiate ». Now, if
FV(r) C FV(I), lemma 5.4 ensures that we only obtain finitely many substi-
tutions o satisfying s|, =g, o(!) and Dan(c) C FV(r) C FV(I). Any rule,
position and substitution determine completely a term ¢ = s[o(r)],|a,
thus we will obtain finitely many of them. ]

It means that no new variables are introduced during the rewriting process
and it guarantees that the rewriting relation is finitely branching. We can prove,
then, that any terminating bi-rewriting system is quasi-terminating (globally
terminating).

The use of second-order terms simplifies the definition of critical pairs.

Definition 5.19 Let oy —<- 3, in R_ and o —2, 8, in R be two second-
order bi-rewriting rules (with distinct free variables). If o belongs to the set of
minimum unifiers of a; and F(a;), being F a fresh free variable, then

o(F(B2)) C o(B1)

is a (second-order) critical pair. The same for critical pairs between R
and R_. B
c

Nipkow (Nipkow, 1991) cannot define critical pairs in this way because F(c3)
violates his definition of pattern. In our case, we have to take into account
that the variable F in a; = F(az) has to be second-order typed, therefore
we have to require all rewriting rules to be first-order typed. If this condition
is satisfied, then p(B1) and p(F(B2)) will also be base typed, and if we have
to introduce p(F(Bz2)) —= p(B1) or p(B1) —2= p(F(B2)) as new rewriting rules
during the completion process, they will also be base typed.

We can prove then the following critical pairs lemma.

Theorem 5.20 A terminating second-order bi-rewriting system (R_,R.) is
Church-Rosser if all the second-order critical pairs are bi-confluent. =~

Proof: The most general way in which two expressions a; and ag (the left
part of two rules) can overlap is given by o(F(az)) C o(c1). All these pairs
of captured by the definition of critical pair, and as far as when the two left



108 Chapter 5. Second-Order Bi-Rewriting Systems

parts of the rules do not overlap the resulting pair is always commutative, we
can conclude that the system is locally commutative iff all second-order critical
pairs are commutative. The Church-Rosser property is proved by noetherian
induction in the usual way. [ |

The conditions for the termination of second-order rewriting systems are not
studied in this thesis but will be considered in future works. The decidability of
the linear second-order unification problem remains as an open question, and it
seems not to have an easy answer, although we think it is a decidable problem.
These two issues are left as further research work.

5.7 An Example of Completion

To conclude, we illustrate the use of the second-order completion method by
means of the example in figure 4.2 (the same example is completed in subsec-
tion 4.4.1 for the first-order case). We start with the rules ry, r§{*%, r3, 74 and
r5. The commutativity and associativity properties of the union operator (rules
r4 and 75) make necessary to consider bi-rewriting modulo a set of inclusions.
This theory was developed in section 4.3, and it will not be considered in detail
in this example. We shall use a set of non-oriented rules I, and we shall suppose
that the second-order unification algorithm can be extended to second-order
unification modulo commutativity and associativity.

The initial rules define the inclusion theory of the union, but they do not
form a canonical bi-rewriting system. We can generate an extended critical pair
unifying the left part of the rule r3 with a subexpression of the left part of the
rule r;. The solution p of this unification problem F(X UY) = Z U Z is used
to compute the critical pair p(F(X)) C p(Z). This unification problem has two
minimum unifiers (up to U associativity and commutativity):

p [FAz.z][X — Z][Y — Z]
p = [F—AG(z)UG(XUY)[Z— G(XUY)

Let us see how they are computed using the unification procedure:

{F(XuY)Z=ZuZ}, Id)

:>projectio’n. <{X uY = ZU Z} y [F — A:L‘v:l:])

Srigid—rigia ({X = Z,Y £Z}, [Fr Az.z))
{Y £ 2}, [Fdz.z][X — Z])
(0, [Frdz.z][X — Z|[Y — Z])

= imitation

= imitation

{F(XUY)LZUuZ}, Id)

Simitation ({H1(XUY)Z Z,Hy = Z}, [F— Az. Hi(z) U Hyl)
Zimitation ({Ha=Z}, [F— dz.Hy(z) U H][Z — Hi (X UY)])
imitation (0, [F = Az.Hi(z)U H3)[Z — Hi (X UY)][Z — H;))



5.7. An Example of Completion 109

These two unifiers generate two critical pairs. The first one is confluent. The
second one makes necessary to introduce the following rule:

rs : G(X)UG(XUY) -5 G(X UY)

This rule generates new critical pairs with r3 (the only rule belonging to R5),
the following one among them:

re : G(X)UG(Y) A>G(X uY)

This new rule rg subsumes rs.

Contrary to the previous cases, the orientation of the rule rg is no so clear,
but we do not consider the problem of orienting second-order rules in this thesis.
Nevertheless, r¢ generates new critical pairs with r3. The unification problem of
the left part of 76, G(X')UG(Y’), and the variable F applied to the left part of
r1, X UY, has the following unifiers (up to U commutativity and associativity,
and interchange of X’ and Y”'):

p = [F—lz.z][X —» GX)Y — G(Y")]

p = [F—lz . Hz, X )UH(XUY,Y)|[G— Az . HX UY,z)]

p = [F—I2z.GH(z)UGY)[X'— H(X UY)]

p = [F—Xz.Hz)UHI(Y)UY)][X — I(X")[G— dz.H(I(z)UY)]
p = [F—Xz.HEz)UHIY)UX)][X — I(X)][G— dz.H(I(z)U X)]
p = [F—2z.Gz) UGY')][X'— X UY]

They generate the following critical pairs:

G(X') C G(X' UY)

H(X,X')UH(XUY,Y')C H(XUY,X'UY’)
G(H(X))UG(Y') C G(H(X UY)UY")
H(I(X'))UH(I(Y)UY) C H(I(X' UY')UY)
H(Y)UH(I(Y')UY)C HI(X' UY')UY)
G(X)UG(Y) CG(XUY UY)

All of them, except the second one, are confluent. The second one makes
necessary to introduce the following rule:

re: HX,X'YUH(XUY,Y') S H(XUY, X' UY’)
Again this rule generates a new critical pair with r3 and requires introducing:
rg: H(X, X YUH(Y,Y') S HXUY, X' UY’)

which subsumes r7 (the rule r7 can be decomposed into one application of rg
followed by an application of rq).
In this way we introduce, among others, the following infinitely many rules:

H(Xy,...,X,) UH(Yy,...,Y,) 5 H(X, UYy,..., X, UY,)



110 Chapter 5. Second-Order Bi-Rewriting Systems

The bi-rewriting system can not be completed in this way. A solution to
prevent the non-termination of this completion process is using G-reduction ex-
plicitly. We use now three symbols in the signature:

U: T—=T—=T
lambda: (71— 7)—>7T
apply: T—=T—>T

and the following initial set of rules:

7t Xux -5 X

ré?t: XUXUY SSXUY

ry:  apply(lambda(F), X) —5- F(X)
r3: XUy 22X

rq:  apply(lambda(F),X) =2 F(X)

All standard critical pairs of this system are bi-confluent, thus we have to
concentrate our attention on two cases, the critical pairs obtained by overlapping
the repeated variable of rule r; (or of rule r¢**) with the left part of rule r3 in the
first case and with 74 in the second case. In the second case, as far as the rule
r4 also appears in the other rewriting system (as rule r;), all extended critical
pairs generated by it will be trivially bi-confluent. Therefore, we only have to
consider the extended critical pair generated by r; and r3, i.e.:

rs: F(X)UF(XUY)-S F(XUY)

As we know, this rule generates a new rule rg which properly oriented sub-

sumes 7s.
re F(X)UF(Y) <> F(XUY)

This rule is non-left-linear and may initiate an infinite sequence of non-
confluent critical pairs, as we have seen. However, it also generates a standard
critical pair with r4. It is interesting to see that, using second-order bi-rewriting
systems, we can generate standard critical pairs between rules not sharing any
symbol of the signature. The reader can figure out that the same happens dealing
with equational second-order rewriting systems.

Let’s concentrate our attention on this standard critical pair. It is obtained
unifying H (apply(lambda(F), X)) and G(Y) U G(Z) using:

o= [Hr Az.Hi(z)U Hi(apply(Z, X))]
[G — Az. Hi(apply(z, X))]
[Y — lambda(F)]

The resulting rule is:
r7 2 Hi(F(X)) U Hy(apply(Z, X)) —= H;(apply(lambda(F) U Z, X))

This rule generates a new critical pair with r4 which introduces rg, and rg
a critical pair with r3 which introduces rg, and finally rg a critical pair with r3



5.7. An Example of Completion 111

which introduces rig.

rg: H1(F(X))U H.(G(X)) _£, Hl(apply(lambda(F) U lambda(G), X))
Tg . Hl(F(Hz(X))) U Hl(G(Hz(X U Y))
-, Hl(apply(lambda( ) U lambda(G), H2(X UY)))
o : Hi(F(Ha(X))) U Hy(G(Ha(Y))) —
—5 H;(apply(lambda(F) U lambda(G), Hz(X UY)))

It is easy to see that we only need the instance of rio obtained by [H;
Az . z]|[Hy — Az . z] to subsume rule r5 and to make bi-confluent all critical pairs
obtained from it.

rio: F(X)UG(Y) - apply(lambda(F) U lambda(G), X UY)

However, this rule generates new critical pairs with r4 which introduce the
following rules.

r11 - F(G(X)) @] H(Y) A)
£ apply(lambda(Az . F(apply(z, X))) U lambda( H), lambda(G) UY)
—5 apply(lambda()z . F(apply(z, X))) U lambda(Az . H(apply(z,Y))),
lambda(G) U lambda(I))

Rule 715 concludes the completion process which results in a finite canonical
bi-rewriting system shown in figure 5.1.

(XUX -5 X

apply(lambda(Az . F(z)), X) —<- F(X)

F(X)UG(Y) N apply(lambda(Az . F(z)) U lambda(Az . G(z)), X UY)
Rc ={ F(G(X))UH(Y) 5>

I apply(lambda(Az . F(apply(z, X))) U lambda( H ), lambda(G) U Y")

F(G(X))UH(I(Y)) =

—£ apply(lambda(Az . F(apply(z, X))) U lambda(Az . H(apply(z, Y))),
L lambda(G) U lambda(7))

Rs =

{X uY 2 X
apply(lambda(Az . F(z)), X) —=— F(X)

; {XUY«L,YUX
C(Xu)uZ<ESXU(Yu)

Figure 5.1: A canonical higher-order bi-rewriting system for the inclusion theory
of the union with B-reduction.



112 Chapter 5. Second-Order Bi-Rewriting Systems

5.8 Conclusions

The use of higher-order terms in rewriting systems introduces some problems.
Some of them have been expounded in this chapter. Because of that, there is not
a unique proposal of higher-order rewriting system in the literature. We have
discussed some of them and we have also proposed a definition of second-order
bi-rewriting systems based on the use of the linear second-order typed A-calculus.
This proposal can also be seen as a new kind of higher-order rewriting system.
We have described a new sound and complete second-order unification proce-
dure for such restricted second-order language. This procedure avoids the use
of the iteration and elimination transformation rules of the general second-order
unification procedure defined in (Jensen and Pietrzykowski, 1976). These trans-
formation rules, in the general case, always make the procedure non terminating.
Unfortunately, the decidability of our unification problem is still an open ques-
tion and the termination of the procedure we have described is not guaranteed.
Anyway, in the examples we have completed, the procedure always finishes and
is therefore usable.



Chapter 6

Implementing
Nondeterministic
Specifications

Abstract: In this chapter we show the applicability of bi-rewriting sys-
tems to the verification of nondeterministic specifications. If nondetermin-
istic specifications are viewed as inclusion specifications, then bi-rewriting
systems are a sound and complete deduction method with respect to the
class of models based on preorders. However, the models usually proposed
for these specifications are multialgebras, and both classes of models are
not equivalent. We show how a nondeterministic specification can be com-
pleted in order to get the equivalence between both semantics. We see
also that these requirements prove the initiality of a model based on sets
of normal forms. Moreover, the completion process does not modify the
rewriting relation = used to model the nondeterministic computation.

6.1 Introduction

It is well known that term rewriting techniques can be used to test the equiv-
alence of terms in a equational logic specification E. The method consists in
finding the normal form of both sides of the tested equality and checking if they
are equal. The method is sound and complete for ground terms if the set of
ground normal forms is an initial model of the specification; and for terms with
variables if the set of normal forms is isomorphic to 7(X,X)/E (Dershowitz
and Jouannaud, 1990). It is also well known that the confluence and termina-
tion of the rewriting system resulting from orienting the equations is a sufficient
condition for this completeness result.

Term rewriting techniques have also been proposed as the implementation
language of nondeterministic specifications (Kaplan, 1986a; Hussmann, 1992).

113



114 Chapter 6. Implementing Nondeterministic Specifications

In all these approaches the signature includes a nondeterministic choice opera-
tor —noted by 1 in (Kaplan, 1986a; Kaplan, 1988), by or(_,.) in (Hussmann,
1991; Hussmann, 1992), or by U in our work— which makes nondeterministic
computation loose the symmetry property. Otherwise, the rules XUY — X and
X UY —Y proposed for the choice operator would allow to prove the equiv-
alence of any two terms. Therefore, the confluence property makes no sense,
and a nondeterministic specification is presented in general as a set of (non sym-
metric) inclusions. This suggests the use of bi-rewriting systems to verify such
nondeterministic specifications. However, the models of inclusion specifications
are based on preorder algebras, whereas the models of nondeterministic specifi-
cations are based on multialgebras, and both classes of models are not equivalent
(as we show in a counter-example).

In section 6.2, we describe how a nondeterministic specification can be com-
pleted in order to obtain the same semantics using the preorder or the multialge-
bra class of models. In section 6.3 we prove that the set of normal forms (w.r.t.
the rewriting relation = ) of a completed nondeterministic specifications forms
an initial model of the specification. Moreover, the method consisting on, given
a pair of terms a and b, finding the set of normal forms of both terms and check-
ing if one set is included into the other one is a sound and complete method to
test @ C b. Theorem 6.16 summarizes all these results. Finally, in section 6.4
we show by means of an example how a nondeterministic specification can be
completed.

6.2 Using Bi-rewriting Systems to Verify
Specifications

The models usually proposed for nondeterministic specifications are based on
¥-multialgebras (Hesselink, 1988; Nipkow, 1986), which capture the essence of
nondeterminism better than the ¥-algebras used in equational specifications.

Definition 6.1 A Z-multialgebra A is a tuple (S4, F4) where S4 is a non
empty carrier set, and F4 is a set of set-valued functions f4 : §4x .7. x§4 —
P+(S4) for each f € X" function symbol of the signature.

Models are defined as follows.

Definition 6.2 Given a nondeterministic specification I over a signature ¥, a
Y-multialgebra A is said to be a model of I, noted A € MAlg(I), if the inter-
pretation function I4[]: (X — §4) — T(%,X) — P*(S4) defined inductively
by!

It [z] = {p(z)} foranyz € X

I;q[f(tl,...,tn)] = U{fA(v1,---,vm) | w € I;q[ti]} for any f € ¥"

l'P‘l'(S) denotes the set of nonempty subsets of S, and US, where S is a set of sets, denotes
the union of all the elements belonging to S, i.e. U

z€s



6.2. Using Bi-rewriting Systems to Verify Specifications 115

satisfies I;‘1 [t] C I;‘1 [u] for any axiom t C wu In the specification I, and any
valuation function p: X — S§4.

An inclusion t C w is valid in a ¥-multialgebra model A, noted A =t C wu, if for
any valuation p we have I [t] C I [u].

Bi-rewriting systems introduced in chapters 4 and 5 automate the deduc-
tion in the Partial Order Logic POL (also for the rewriting logic of Meseguer
(Meseguer, 1992)). The models of this logic are preorder algebras, defined as
follows.

Definition 6.3 A X-preorder algebra A is a triplet (S#, C4, F4) where S4
is a carrier set, C 4 is a preorder relation and F4 is a set of monotonic functions
fA:84x .m. x84 — S4 for each symbol f € T,

Definition 6.4 Given a specification I over 3. a X-preorder algebra A is said
to be a model of I, noted A € POAlg(I), if the interpretation function I4[] :
(X — S4) - T (%, X) — S4 defined inductively by

It [z] = p(z) foranyz €¢ X
I;“[f(tl,...,tn)] = fA(I;“[tl],...,I;“[tn]) for any f € ™

satisfies I,[t] Ca I,[u] for any axiom t C w In the specification I and any
valuation p: X — S4.

A soundness and completeness theorem, similar to the Birkhoff theorem, can
be stated for this logic.

Lemma 6.5 For any specification I and any pair of terms t and u we have
POAlg(I) =t Cuiff Ik, t C u.

Commutative and terminating bi-rewriting systems automate the deduc-
tion in F,,,. They are a sound and complete method w.r.t. the semantics
of specifications based on preorder algebras. However, POAlg(I) =t C u and
MAlg(I) E t C u are not equivalent (the implication does not hold in none of
both directions) as the following counter-example shows.

Ezample. A counter-example to MAlg(I) =t C u = POAlg(I) Et C u is
given by the following additivity axiom which is sound in multialgebra models,
but not in preorder algebra models.

X UY) € fR) U f(7) A4t
The counter-example to POAlg(I) =t C u = MAlg(I) =t C u» is not so
evident, and causes more problems. The following substitution rule is sound in
preorder models, but not in multialgebra models, in the presence of repeated

variables.
tCu

WS’ubstztutwn



116 Chapter 6. Implementing Nondeterministic Specifications

For instance, the deduction
F(X,X) Cg(X), XCXUY , Y CXUY by F(X,Y)Cg(X UY)

is correct in POL. However, it is not sound in a multialgebra model. The mul-
tialgebra A = (S4, 74) defined by:

fA(z,y) = if z =y then {a} else {b}
§4 = {a,5} A(oy) = {a)
zUty = {z,y}
is a model of I = {f(X,X) C ¢(X),X C XUY,Y C X UY}, however
IAf(X,Y) Z IHg(X UY)] for p=[a — X, b Y].

We understand variables in a specification denoting terms and being univer-
sally quantified. Therefore, we think that the substitution rule has to be sound
in any specification model. Multialgebra models may satisfy this requirement if
we modify the definition of interpretation and model:

Definition 6.6 A Y-multialgebra A is said to be a strong model of a spec-
ification I, noted A € MAIlg(I), if the interpretation function I“[] : (X —
PH(84)) - T(%,X) — P+ (S#) defined inductively by

I/‘f [z] = p(z) foranyz € X
I;q[f(tl,...,tn)] = U{fA(v1,---,vm) | v € I;q[ti]} for any f € ¥"

satisfies I,[t] C I,[u] for any axiomt C wu in the specification I, and any valuation
p: X — PH(S4).

Notice that the valuation function p now ranges over sets and not over values.
Lemma 6.7 For any specification I we have MAlg(I) C MAlg(I).

Using this smaller class of models the preorder logic entailment I-,,, becomes
sound in it.

Theorem 6.8 If POAlg(I) =t C u holds, then MAlg(I) =t C u also holds.
Therefore, bi-rewriting is a sound deduction method.

Proof: Tt is sufficient to prove that
VA € MAlg.3B € POAlg.(Vp. I2[t] C I#[u]) & (Vo' . IZ[t] Cp IZ[u])

Notice that we use one implication direction to prove A € MAlg(I) = B €
POAlg(I), and the opposite direction to prove B=tCu= A =t C u.

Any ¥-multialgebra A has a ¥-preorder algebra B naturally associated. This
preorder algebra B is defined by

SB = pt(s4)
fB(sl,...,sn) = U{fA(vl,...,vn) | v; € s;} for any f € &7



6.2. Using Bi-rewriting Systems to Verify Specifications 117

The carrier Sp is a power set, and the set inclusion relation C used in the
multialgebra model A4, and the partial order relation Cp used in the preorder
model B are equal. We can prove by structural induction on the term ¢ that

It = IP[t].

I[z] =p(z) =1}
D[t ta)] = B(f[tl] Plta]) = U{f4(v1 .. .vn) | v € IZ[t:]}
— Ut @) | vi € I[t]} = I [f(t1 - - 1n)]

Then the initial double implication becomes a tautology. [ |

In the following we will study which conditions I has to satisfy in order to
be POAlg(I) =t C u and MAlg(I) =t C u equivalent.

Theorem 6.9 If the specification I satisfies:
(i) I contains the union theory as a subtheory:

IF,,XUXCX, XCXUY,YCXUY.

(ii) I bppp t = Uf{u € Atomic(I) | I b, u C t}, for any term t, where
Atomic(I) 2 {u € T(,X) | if I+, v C u then v = u}.

(i) I ko, f(o..tUn..) C f(...t...)U f(...u...) for any n-ary symbol
fexm.

(iv) Ift € Atomic(I) and I I
I, tCu.

Then, whenever MAlg(I) =t C u holds, then POAlg(I) |= t C u also holds.

Therefore, bi-rewriting is a complete deduction method for these specifications.

t C uw U then either I I t C uor

POL = POL

Proof: Tt is sufficient to prove that
VB € POAlg.3A € MAlg.(Vp. I2[t] C I#[u]) & (Vo' . IZ[t] Cp IZ[u))
We can also associate a multialgebra A to each preorder algebra B as follows.

54 2 Atomic(S®B)
FAMe, ..o 2 {se 54 | sCp fB(v1,...,v,)} for any f € £"

def

where for any preorder S, we define Atomic(S) = {s€ S|s' Cs=>s=1s'}.2
Notice that in this case C is the set inclusion in P+ (S®), and Cp is a preorder
relation on S®, and they are different relations.

Case ‘v’p’.Elp.I;q[t] C I;f[u] = If,‘[t] Cs If['u.].

The conditions of the theorem can be translated directly to properties of
the preorder algebra B:

vUBvCpv v CeviUBvy vy CpuiUB
fB(...’UlLJB’Uz...) gB fB(...’Ul...)UBfB(...’Uz...)
v = UB{v' € Atomic(SP) | v/ Cp v}

v € Atomic(SB) A vCuviUvy = vCu V v o

2Notice that for the free algebra of terms T(X, X)/I this definition and the previous one
becomes equivalent.



118 Chapter 6. Implementing Nondeterministic Specifications

If we define p(z) 2 {s € S4 | s Cp p'(z)} then using the properties below
we can prove by structural induction on the term ¢ that

151t = Bt

where, as usual UB{v;,...,v,} = v, UB ... UB v, for any v; ...v, € SB.
Then the monotonicity of U? proves that I;;1 [t] C 1;4 [u] implies If; [t] C
If [u].

Case Vp.EIp’.Iﬁ[t] Ca Iﬁ[u] = IA[t] C I [u].
The last two conditions of the theorem prove that if t € Atomic(I) and

IF,_.,.tC f(ui,-..,uy,) then there exist v1,...,v, € Atomic(I) such that
Ik, tC f(vi,...,v,) for any f € ™.

If we define p/(z) = UBp(z) then we can prove
L't)={s € $* | s Cp L[]}

for any term ¢ by structural induction.

Then Iﬁ [t] CB If, [u] implies I2[t] C I [u]. .

The conditions of the previous theorem are usually satisfied in any nondeter-
ministic specification I. We will find the same conditions in the next subsection
where we try to prove the existence and initiality of a model based on sets of
normal forms.

6.3 Characterizing Terms by Sets of Normal
Forms

In nondeterministic computations terms can not be characterized by a unique
normal form, but we will try to characterize them by its set of normal forms. In
this case, a method to test inclusions of terms in a nondeterministic specification
would consist in searching the set of normal forms of each side of the inclusion,
and checking if one set is included in the other one. We will prove that the
soundness and completeness of this nondeterministic computation method relies
on the existence and initiality of a model of set of normal forms —like in the
equational case with the normal form model-. The main goal of this section
is to give the conditions for the existence and for the initially of this model —
like it is characterized in the equational case by the confluence and termination
properties—.

First we will present the formal definition of the set of normal forms model,
SNF-model for short, and later we will study the nondeterministic computation
method, NDC-method for short.

Nondeterministic computation is based on the computation of normal forms
only using the rewriting system R_. As we will see, the other rewriting system



6.3. Characterizing Terms by Sets of Normal Forms 119

R_ does not play a computational role, but its rules may be understood as
semantic constraints on the class of models of the specification. The example at
the end of the section shows this clearly. Adding new rules to Rc we can prove
a soundness and completeness result for the nondeterministic computation and
the bi-rewriting methods w.r.t. the models of the extended specification.

Given a rewriting system R>, we will denote the set of its R5-normal forms
by NF2 and the set of R5-normal forms of a term ¢t by NF2[t].

The set of normal forms multialgebra, SNF-multialgebra for short, is defined
as follows.

Definition 6.10 Given a rewriting system R, the SNF-multialgebra SNF =
(SSNF | FSNF) s defined by the carrier set SSNF ! NF2, and the set of func-
tions fSNF . NF2x ». xNF2 — ’P+(NF2) defined by fNF(t1,...,t,) =
NF2 [f(t1,...,ts)] for each functional symbol f € X" of the signature.

Notice that the SNF-multialgebra is defined syntactically using R, and in-
dependently of I. The rewriting rules of 5 come from the orientation of the
axioms of I, as explained in previous chapters. However, this fact is not enough
to prove that the SNF-multialgebra is a multialgebra model of I.

Lemma 6.11 Given a specification I and a rewriting system R, if the following
conditions hold.
(i) For any inclusion t C u in I, and any substitution p: X — NF?2, we have

NF>[p(t)] C NF2[p(u)].

(i) Ift € NF2[f(...,u,...)], then there exists w' € NF=2[u] such that t €
NF2[f(...,,..)].

then the SNF-multialgebra is a multialgebra model of I, SNF € MAlg(I), and

the interpretation function is IfNF [t] = NF2[p(t)].

Additionally, if the following condition also holds

(iii) NF2[tUw] C NF2[t]U NF2[u],

then the SNF-multialgebra is a strong multialgebra model of I, SNF € MAlg(I),

and IfNF [t] = NF2[g/(t)], where for any z € X, o'(z) = Up(z).

Proof: First we prove that IJVF[t] = NF2[p(t)] are equal. That
is, NFQ[p(t)] satisfies the inductive definition of multialgebra interpre-
tation function: 1) I>[z] = p(z) for any variable z € X.
As far as p maps variables to normal forms, NFQ[p(:z:)] = {p(2)}.

2) I;?NF[f(tl,...,tn)] = U{F™ (v1,...,0m) | u € IfNF[ti]}, which is equiv-
alent to NF2[f(p(t1), -, plta))] = ULNF2[f(vs, ., va)] | v € NF2[p(t:)]}.
The inclusion D is always satisfied and it can be proved using the monotonicity

of f. The inclusion C is proved by the second condition of the lemma.
Second the first condition of the lemma and IV [t] = NF=2[p(t)] prove that

I;?NF [t] C I/‘?NF [u] for any inclusion ¢t C w of I, and any substitution p.
The proof of the second part of the lemma is quite similar. In this case we
need the third condition to prove I>NF[t] = p(z) = NF2[Up(z)] = NF2[¢'(2)].
|



120 Chapter 6. Implementing Nondeterministic Specifications

As we have seen in the previous subsection we can associate a preorder alge-
bra to the SNF-multialgebra, and this preorder algebra will be a preorder model
of I if the SNF-multialgebra is a strong multialgebra model of I.

Lemma 6.12 If the following conditions are satisfied:
(i) IfIt,_,tCuthen NF2[t] C NF2[u].
(i) Ift € NF2[f(...,u,...)], then there exists u' € NF2[u] such that t €
NF2[f(...,u,...)].
(iii) NF2[tUw] C NF2[t]U NF2[u],
then, the SNF-preorder algebra defined by the carrier set SSNF = 'P+(NF2)
and the set of functions f*MF (s;...s,) = U{NFQ[f(vl v)] | v Esitisa
preorder model of I.
If in addition
(iv) If NF2[t] C NF2[u] then I .., t C u.
then the SNF-preorder model is initial in POAlg(I), and the associated SNF-
multialgebra is initial in MAlg(I).
Moreover, MAlg(I) =t C u and POAlg(I) =t C u are equivalent.

Proof: The proof of the first part of the lemma is a consequence of the previous
lemma. The proof for the initiality of the model relies on the completeness of
Foor W.I.t. the class of models POAlg. The initiality of the model SNF w.r.t.

the class POAlg(I), and the fact that its associated multialgebra is a strong
multialgebra model of I proves the last equivalence. [ |

The conditions of this lemma reproduce the condition of theorem 6.9. Before
reducing the four conditions of this lemma to syntactic conditions more easily
provable, we will discuss its meaning.

The first condition NF2[t;] D NF=2[ty] = I b, t1 D t; expresses the sound-
ness of the NDC-method with respect to the specification. However, the user
usually only gives the rewriting rules R, leaving the specification incomplete
—as we will see in the examples—. This specification must be completed in order
to verify this condition. Hence, we prefer to name this condition completeness
of the specification with respect to the NDC-method.

The forth condition T F,,, t; D t; = NF2[t;] D NF2[t;] expresses the
completeness of the method with respect to the specification. This condition
is very easily satisfied. As it is noticed by Hussmann (Hussmann, 1992) the
more difficult point working with nondeterministic specifications is the soundness
property of the method (or soundness of the Birkhoff theorem). Kaplan gives the
theorem (theorem 2.3 in (Kaplan, 1986a)) MODg = M = N iff {NF(M)} =
{NF(N)}, although he does not use multialgebra models, and the theorem is
stated in terms of equality, instead of inclusions.

The second property t; € NFQ[f(...,tl,...)] = 3tz € NF2[t1] . t; €
NFQ[f(. ..,t3,...)] is named additivity property. It is related with the use of
multialgebra models. The functions in these models (from values to sets) can be
extended point wise to set arguments (from sets to sets) by the additive property
of the functions, obtaining a preorder model. It means that the interpretation



6.3. Characterizing Terms by Sets of Normal Forms 121

mapping I has to be defined inductively by additivity. As we will see, to ensure
this property we will require the additivity property for all the functions in the
signature. This condition is also required by Hussmann (Hussmann, 1992). In
fact, it becomes his DET-additive property by translating t5 € NFQ[f(tl)] into
f(t1)—t2 A DET(t2).

To reduce these four properties to syntactic ones, easier to prove, we need
the following lemma.

Lemma 6.13 Given a specification I containing at least the union axioms, if the
orientation and completion of its axioms result in a commutative and terminating
bi-rewriting system (R_, R_), then
(i) If NF2 C NFS, then I b, t; D t; implies NF2(t;) D NF=(ty).
(i) IfI ko, t C U{ | tR—D>t’} for any term t ¢ NF2, then NFg(tl) D
NFg(tz) implies I F_ . tl_Q ta.

(iii) If in addition the additive property f(...,X UY,...) = f(...,X,..)U
f(...,Y,...) for any function symbol f € 3 holds in the specification I, and
the bi-rewriting system satisfies NF2 [t Uty] = NF2[t1] U NF=[t;] for any
pair of terms t, and t,, then t; € NFQ[f(tl)] implies 3t3 € NFg[tl] .ty €
NF>[f(ts)].

Proof:

(i) Let I F,.,, t1 D t2 hold, the commutation and termination properties of
(Rc,R,) prove t; ——o«=—1t3. Let t € NFQ[tz] hold, we have then t; —=—t.
The commutation and termination properties prove again t; —— o «5—t. How-
ever t € NF2, thus, t € NFE by hypothesis, and we have #; ——t and therefore
t € NF2[ty].

(ii) The termination property and I F,,, ¢t C |J{t' | t —2=#'} allow to prove by
noetherian induction I F_ , t C UNFg[t]. The union axioms prove I k., ¢t D
UNF2[t] and I+, |JNF2[t;] D UNF=[ty] if NF2[t;] D NF2[t;]. Therefore,
we have by transitivity I ., t1 D ta.

(iii) Using the conditions of the previous point we proved ¢; = [ JNF2[t1]; and by
e el . . )

the additional conditions of this point we have f(UNF=[t:]) = U,, wp2p, f(t3)

and NFQ[UQSENFQ[tl]f(t:S)] = UQSENFQ[tl]NFQ[f(t:S)]' Therefore, if t; belongs to

this union of sets, then it belongs to one of them, that is, there exists a term

ts € NF2[t;] such that t, € NF2[f(t3)]. [

Inspired in this SNF-model we can define a new method for checking in-
clusions. We name this method nondeterministic computation method, NDC-
method for short, and we define it as follows.

Definition 6.14 Given a rewriting system R and two terms t and wu, the
NDC-method is defined by NDC(t,u) = true if, and only if, NF2[t] C
NF=[u].



122 Chapter 6. Implementing Nondeterministic Specifications

Lemma 6.15 If the conditions I -, , t C u and NF2[t] C NF2[u] are equiv-
alent, the the NDC-method is sound and complete w.r.t. the class of models
POAlg(I).

The following theorem is the main result of this section, and summarizes the
results of all the previous lemmas.

Theorem 6.16 Given a nondeterministic specification I, and a bi-rewriting
system (R_, R.) resulting from the orientation of its axioms, if the following
conditions are satisfied
(i) the bi-rewriting system is commutative and terminating,

) the axioms defining the union operator can be deduced from I,
) NF2 C NFS,
(iv) Ik, tCU{t'|t—251t'} holds for any term t ¢ NF=,

) Ik, f(..,XUY,..)) = f(...,X,...)Uf(...,Y,...) for any symbol
fex
(vi) NFZ2[t; Uty] = NF2[t;] U NF2[t,] for any terms t; and t,,
then the following sentences are equivalent:

POAlg(I) =t Cu I+ ,tCu tR—*Cm%u,
MAlg(I) =t C u NF2[t] C NF2[u]

Although these conditions could seem very strange, they hold (or may hold)
in most of the nondeterministic specifications. As we will see in the next example,
when they do not hold is due to the incompleteness of the specification, the lack of
inclusions in R_ without computational meaning, and not to the incompleteness
of the rewriting rules R, used to compute. In these cases it is necessary to add
new axioms to the specification, which of course, reduce the number of models,
and make the NDC-method and the bi-rewriting method sound and complete.

The same kind of specification completion method has been studied by Huss-
mann (Hussmann, 1992).

6.4 An Example of Nondeterministic
Specification

To show this specification completion method we will use the classical nondeter-
ministic specification of a nondeterministic automata, in this case an automata
to recognize the patterns (0U1)*0(0U1)* and (0U1)*1(0U1)*. A first attempt
to get a specification is shown in figure 6.1 where all inclusions can be oriented
to the right, obtaining a commutative bi-rewriting system (where R_ = 0).
However, it it easy to see that trans(s1, X) can be reduced by —25 to 81
or to trans(sg, X), and I I, trans(s1, X) C s; Utrans(so, X) does not hold.
Therefore the condition I F,., ¢ C [J{t' | t —=='} does not hold for all re-
ducible terms ¢. This problem can be avoided adding the axiom trans(s1, X) C
s1Utrans(sg, X) to the specification. The same happens with X U X that can be



6.5. Conclusions 123

1 XUYDX XUuY DY
trans(so,0) D s; trans(so,1) D s2
\ Q 0,1 trans(s1, X) D s1  trans(si, X) D trans(so, X)
trans(sz, X) D sz trans(sz, X) D trans(so, X)

prog(X,nill) D X
prog(X, cons(Y, Z)) D prog(trans(X,Y), Z)

Figure 6.1: A nondeterministic automata and its nondeterministic specification.

reduced only to X but XUX C X does not hold; and so on. The additivity con-
dition makes necessary to introduce trans(XUY, Z) C trans(X, Z)Utrans(Y, Z)
and the same for the second argument and for prog. If we complete the specifica-
tion in this way we obtain the completed specification shown in figure 6.2. This
specification can be oriented and completed using the Knuth-Bendix completion
process to obtain the bi-rewriting system of figure 6.3. This bi-rewriting system
satisfies all the restrictions of the theorem 6.16.

XUY DX XUuYDY
XDOXUX

trans(sog,0) D s1 trans(so, 1) D s3

trans(sy, X) = s1 Utrans(so, X) trans(sz, X) = sz Utrans(sg, X)

prog(X,nill) = X

prog(X,cons(Y, Z)) = prog(trans(X,Y), Z)
trans(X, Z) Utrans(Y, Z) D trans(X UY, Z)
trans(Z,X) Utrans(Z,Y) D trans(Z,X UY)
prog(X, 7) Uprog(¥, 7) 2 prog(X U, 2)
prog(Z,X)Uprog(Z,Y) D prog(Z, X UY)

Figure 6.2: The completed specification of the automata.

The process described in this example, where a specification is completed
~leaving the computational rewriting system —- unchanged— corresponds to
the selection of a maximally deterministic model described by Hussmann in
(Hussmann, 1992).

6.5 Conclusions

We have shown the usefulness of bi-rewriting systems to relate the mathematical
and the operational semantics of nondeterministic specifications. We have given
the conditions for the soundness and completeness of a normal form computation
procedure and the bi-rewriting method, used to automate the deduction in non-
deterministic specifications. We have also given the conditions for the existence



124

Chapter 6. Implementing Nondeterministic Specifications

(( XUY 25X

XUy Y
trans(so,0) 2,5
trans(so, 1) 2,5,
trans(sy, X)

trans(sy, X) —2- trans(so, X)

trans(sz, X) 2,5,

trans(sz, X) —2- trans(so, X)
prog(X,nill) = X

prog(X,cons(Y, Z)) —2- prog(trans(X,Y), Z)

Xux-S5Xx

trans(X UY, Z) 5> trans(X, Z) Utrans(Y, Z)
trans(Z, X UY) <> trans(Z, X) Utrans(Z,Y)
prog(X UY, Z) - prog(X, Z) U prog(Y, Z)
prog(Z, X UY) —5- prog(Z, X) Uprog(Z,Y)

trans(X1, X3) Utrans(Y1,Y3) A>1;'r'a,'n,s(X1 UYy, X UY))
prog(Xi1, X2) Uprog(Y1,Yz2) A>prog(X1 UYy, X UY2)

(Modulo the associative and commutative axioms for the union)

Figure 6.3: The completed bi-rewriting system automating the deduction in the

automata specification.

and initiality of a model based on sets of normal forms.




Chapter 7

Conclusions and Further

Work

The course of this thesis has been oriented by one main objective: the definition
of the formal basis for the development of a specification methodology based on
monotonic inclusion relations. This goal has leaded us to use a wide variety of
different formal techniques' with a common purpose. Thus, the contributions
of the thesis reach different research areas. We would like to distinguish the
following ones:

1. The definition of the Calculus of Refinements (COR), an extension of the
A-calculus with lattice operations and based on monotonic inclusions. This
calculus is proposed as an unified formalism. On the one hand inclusion
relations generalize equational relations, and the calculus is an extension
of the equational specification formalisms; on the other hand the inclusion
relation can be used instead of the typing relation “:”, and the calculus
can be seen as a typing calculus.

2. The definition of a class of models for the Calculus of Refinements as a
restriction of the environment models used for the A-calculus. This was
possible because the operationallity of COR, like the A-calculus, is based
on the B-reduction rule, and the lattice operators are a natural extension
not interfering with the semantics of the rest of operators (A-abstraction
and application).

3. Some standard models of the A-calculus, the D, and the P, models, are
also models of the Calculus of Refinements. However, in all these models
the computational ordering (the one providing the lattice structure of the
models) and the structural ordering (the one used to model the inclusion
relation) are identified. In order to distinguish them we have to define a
new model.

1This, in principle, additional difficulty has allowed us to visit a wide spectrum of theoretical
issues and in this way to have now a broad picture of what is going on in computer science.

125



126 Chapter 7. Conclusions and Further Work

4. The definition of a new kind of COR-models, the ideal model, based on
the set of order ideals of a domain. Here, the structural ordering used to
define the order ideals, and the inverse of the computational ordering, used
to define continuous functions, are identified. This is the usual intended
semantics of type theories. Thus, such model makes the proposal of COR
to be a typing formalism. It is a means of interpreting functions as sets,
i.e. of interpreting functions as types. We prove that the set of order ideals
of a functional domain (where continuous functions can be interpreted as
elements of the domain) is also a functional domain.

5. The proposal of a new rewriting technique, the bi-rewriting systems, in-
tended to automate the deduction in inclusion theories. This methodol-
ogy extends the result of term rewriting techniques to the case of non-
symmetric relations. Main properties of rewriting systems are kept, and
we point where difficulties turn up.

6. The definition of a new concept of higher-order rewriting systems based
on a restricted second-order typed language, and the description of a uni-
fication procedure for this language. This definition is an alternative to
the existing definitions of higher-order rewriting systems, and solves the
extended critical pairs problem of first-order bi-rewriting systems.

7. A contribution to the automatic verification of non-deterministic specifi-
cations, based on the use of bi-rewriting systems. Nondeterministic com-
putation can be modeled by means of an inclusion relation as follows. If
a can be evaluated nondeterministically to b then @ O b. However, the
nondeterministic computation relation fulfills more properties than the in-
clusion relation. For instance if ¢ only can be evaluated to a or b, then
f(t) only can be evaluated to f(a) or f(b). We prove that if we complete a
nondeterministic specifications with these additional properties not shared
by the inclusion relation, then the bi-rewriting technique is a sound and
complete method to test the verification of these specifications.

7.1 Further Work and Open Problems

Some problems appeared during this research have a still pending solution. We
want to emphasize the following ones:

1. The description of application areas and the practical use of this method-
ology, as well as the creation (implementation) of a specification language.
The examples we have studied (not described in this thesis) suggested us
the use of the Calculus of Refinements as a typing formalism where the
inclusion relation substitutes the typing relation. The ideal model for-
malizes this idea, however the utility of such bold proposal has still to be
motivated.



7.1.

Further Work and Open Problems 127

. The statement of an initiality property for the ideal model. The initiality

property of a semantic domain is important in order to ensure the validity
of induction principles. The category-theoretic solution of recursive do-
main equations ensures that this property holds for the resulting solution.
We use this category-theoretic technique to obtain a value domain, and
we prove that the set of order ideals of such domain satisfies a type re-
cursive equation, however the initiality of this ideal domain is not proved.
We think that the ideal domain is the initial solution of a pair of recur-
sive equations, one is the type recursive equation, and the other is a still
not determined equation ensuring that the domain has enough different
elements.

. The decidability of the linear second-order typed A-calculus unification

problem. On the one hand, we know that the general second-order uni-
fication problem is semi-decidable, on the other, we know that the string
unification problem is decidable. The linear second-order unification prob-
lem is just between both of them, and it has still not been proved if it is
decidable or not. We have an unfinished proof of the decidability of such
problem. However, the proof is not easy and has to be finished before
stating such important result.

. The termination problem in second-order bi-rewriting systems. As far as

we know the termination of higher-order rewriting systems as never been
studied. In our case, it is also left as a future research line.



128 Chapter 7. Conclusions and Further Work



References

Agusti, J., Esteva, F., Garcia, P. and Levy, J. (1992). A Calculus of Refinements:
its class of models. In 12 Congreso de Programacién Declarativa, ProDe’92, pages
118-126, Madrid, Spain.

Ait-Kaci, H., Podelski, A. and Goldstein, S. C. (1993). Order-sorted feature
theory unification. Technical report, Digital Paris Research Laboratory.

Allester, D. M., Givan, B. and Fatima, T. (1989). Taxonomic syntax for first
order inference. In Proc. of the First Int. Conf. on Princ. of Knowledge Repre-
sentation and Reasoning, pages 289-300.

Antimirov, V. (1992). Term rewriting in unified algebras: an order-sorted ap-
proach. In 9th WADT - jth Compass Workshop, Caldes de Malavella, Spain.

Bachmair, L. and Dershowitz, N. (1986a). Commutation, transformation and
termination. In Siekmann, J., editor, 8th Conference in Automated Deduction,
CADE-8, volume 230 of Lecture Notes in Computer Science, pages 5-20.

Bachmair, L., Dershowitz, N. and Hsiang, J. (1986b). Orderings for equational
proofs. In Proc. Symp. on Logic in Computer Science, LICS’86, pages 346-357,
Boston, Massachusetts.

Bachmair, L. and Dershowitz, N. (1989a). Completion for rewriting module a
congruence. J. of Theoretical Computer Science, 67:173-201.

Bachmair, L., Dershowitz, N. and Plaisted, D. (1989b). Completion without fail-
ure. In Ait-Kaci, H. and Nivat, M., editors, Resolution of Equations in Algebraic
Structures, volume 2: Rewriting Techniques, chapter 1, pages 1-30. Academic
Press, New York.

Bachmair, L. (1991). Canonical Equational Proofs. Birkhduser, Boston, Mas-
sachusetts.

Bachmair, L., Ganzinger, H., Lynch, C. and Snyder, W. (1992). Basic paramod-
ulation and superposition. In Kapur, D., editor, Int. Conference on Automated
Deduction CADE’11, volume 607 of Lecture Notes in Computer Science, pages
462-476. Springer-Verlag.

129



130 References

Bachmair, L. and Ganzinger, H. (1993a). Ordered chaining for total or-
derings. Technical Report MPI-I-93-250, Max-Planck-Institut fur Informatik,
Saarbriicken, Germany. Short version in Proceedings of CADE’94.

Bachmair, L. and Ganzinger, H. (1993b). Rewrite techniques for transitive re-
lations. Technical Report MPI-I-93-249, Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany.

Bachmair, L. and Ganzinger, H. (1993c). Rewrite techniques for transitive re-
lations. Technical Report MPI-I-93-249, Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany. Short version in Proceedings of LICS’94.

Barendregt, H. (1981). The Lambda Calculus: its syntaz and semantics. Studies
in Logic and the Foundations of Mathematics. Elsevier Science Publishers B. V.

Baumer, H. (1992). On the use of relation algebra in the theory of reduction
systems. Technical report, Dept. Informatica, Univ. of Twente, Enschede, The
Netherlands.

Bidoit, M., Kreowski, H.-J., Lescanne, P., Orejas, F. and Sannella, D. (1991).
Algebraic System Specification and Development. A Survey and Annotated Bib-
liography. Lecture Notes in Computer Science 501, Springer-Verlag, Berlin.

Birkhoff, G. (1935). On the structure of abstract algebras. Proc. Cambridge
Philos. Soc., 31:433-454.

Bledsoe, W. and Hines, L. M. (1980). Variable elimination and chaining in a
resolution-based prover for inequalities. In Bibel, W. and Kowalski, R., editors,
5th Conference in Automated Deduction, CADE-5, volume 87 of Lecture Notes
in Computer Science, pages 70-87, Les Arcs, France. Springer-Verlag.

Bledsoe, W., Kunen, K. and Shostak, R. (1985). Completeness results for in-
equality provers. Artificial Intelligence, 27:255-288.

Cardelli, L. and Wegner, P. (1985). On understanding types, data abstraction
and polymorphism. ACM Computing Surveys, 17(4):471-522.

Cardelli, L. (1988). A semantics of multiple inheritance. Information and Com-
putation, 76:138—164.

Cardelli, L. and Longo, G. (1990). A semantic basis for quest. Technical Re-
port 55, DIGITAL Systems Research Center, Palo Alto, California.

Comon, H. (1993). Completion of rewrite systems with membership constraints.
Technical report, CNRS and LRI, Université de Paris Sud.

Constable, R. L., Allen, S. F., Bromley, H. M. and Cleaveland, W. R. (1986).
Implementing Mathematics with the Nuprl Proof Development System. Series in
Computer Science. Prentice-Hall International.



References 131

Coquand, T. and Huet, G. (1988). The calculus of constructions. Information
and Computation, 76:95-120.

Darlington, J. L. (1971). A partial mechanization of second-order logic. Machine
Intelligence, 6:91-100.

Darlington, J. L. (1973). Automatic program synthesis in second-order logic. In
Proc. of the 3rd Inter. Joint Conf. on Artificial Intelligence, pages 537-542.

de Kogel, E. (1992). Relational algebra and equational proofs. Technical report,
Department of Philosophy, Tilburg University.

Dershowitz, N. and Manna, Z. (1979). Proving termination with multiset order-
ings. Communications of the ACM, 22(8):465—476.

Dershowitz, N. (1987). Termination of rewriting. J. of Symbolic Computation,
3:69-115.

Dershowitz, N. and Jouannaud, J.-P. (1990). Rewrite systems. In Leeuwen, J. V.,
editor, Handbook of Theoretical Computer Science. Elsevier Science Publishers.

Ehrig, H., Jiménez, R. M. and Orejas, F. (1991). Compositionality results for
different types of parameterization and parameter passing in specification lan-
guages. Technical report.

Farmer, W. M. (1988). A unification algorithm for second-order monadic terms.
Annals of Pure and Applied Logic, 39:131-174.

Fisch, A. M. and Cohn, A. G. (1992). An abstract view of sorted unification. In
11th International Conference on Automated Deduction. LNCS North-Holland
P. C.

Freese, R., Jezek, J. and Nation, J. B. (1993). Term rewrite systems for lattice
theory. J. of Symbolic Computation, 16:279-288.

Gallier, J. (1985). The semantics of recursive programs with function parameters
of finite types: n-rational algebras and logic of inequalities. In Nivat, N. and
Reynolds, J., editors, Algebraic Methods in Semantics. Cambridge University
Press.

Gallier, J. H. and Snyder, W. (1990). Designing unification procedures using
transformations: A survey. Bulletin of the FATCS, 40:273-326.

Geser, A. (1990). Relative Termination. PhD thesis, Universitdt Passau.

Goguen, J. A. and Meseguer, J. (1992). Order-sorted algebra I: Equational de-
duction for multiple inheritance, overloading, exceptions and partial operations.
J. of Theoretical Computer Science.

Goldfarb, D. (1981). The undecidability of the second order unification problem.
J. of Theoretical Computer Science, 13:225-230.



132 References

Guesarian, I. (1981). Algebraic Semantics, volume 99 of Lecture Notes in Com-
puter Science. Springer-Verlag.

Gunter, C. A. and Scott, D. S. (1990). Semantic domains. In Leeuwen, J. V., ed-
itor, Handbook of Theoretical Computer Science, pages 633—674. Elsevier Science
Publishers.

Harper, R. (1986). Introduction to Standard ML. Technical Report ECS-LFCS-
86-14, LFCS Laboratory for Foundations of Computer Science, Edinburgh.

Hesselink, W. H. (1988). A mathematical approach to nondeterminism in data
types. ACM Trans. Programming Languages and Systems, 10:87-117.

Hindley, J. R. and Seldin, J. P. (1986). Introduction to Combinators and A-
Calculus. London Mathematical Society Student Texts. Cambridge University
Press.

Hines, L. M. (1992). Completeness of a prover for dense linear logics. J. of
Automated Reasoning, 8:45-T5.

Hsiang, J. and Dershowitz, N. (1983). Rewrite methods for clausal and non-
clausal theorem proving. In 10th Int. Colloguium on Automate, Languages and
Programming, Barcelona, Spain. Springer-Verlag.

Huet, G. (1975). A unification algorithm for typed A-calculus. J. of Theoretical
Computer Science, 1:27-57.

Huet, G. (1980). Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM, 27(4):797-821.

Hullot, J.-M. (1980). A catalogue of canonical term rewriting systems. Technical
Report CSL-113, Computer Science Laboratory, Menlo Park, California.

Hussmann, H. (1991). Nondeterministic Algebraic Specifications. PhD thesis,
Institut fur Informatik, Technische Universitat Minchen, Miinchen, Germany.

Hussmann, H. (1992). Nondeterministic algebraic specifications and nonconflu-
ent term rewriting. Journal of Logic Programming, 12:237-255.

Jayaraman, B. (1992). Impplementation of subset-equational programs. J. of
Logic Programmang, 12:229-324.

Jensen, D. C. and Pietrzykowski, T. (1976). Mechanizing w-order type theory
through unification. Theoretical Computer Science, 3:123-171.

Jouannaud, J.-P. and Kirchner, H. (1986). Completion on a set of rules modulo
a set of equations. SIAM J. computing, 15(1):1155-1194.

Kaplan, S. (1986a). Rewriting with a nondeterministic choice operator: from
algebra to proofs. In Proc. 1986 European Symp. on Programming, volume 213
of Lecture Notes in Computer Science, pages 351-374. Springer.



References 133

Kaplan, S. (1986b). Simplifying conditional term rewriting systems: Unification,
termination and confluence. Technical Report 316, Laboratoire de Recherche en
Informatique, Universite de Paris-Sud, Orsay, France.

Kaplan, S. (1988). Rewriting with a nondeterministic choice operator. J. of
Theoretical Computer Science, 56:37-57.

Kirchner, C. (1985a).  Methodes et Outils de Conception Systematique
d’Algorithmes d’Unification dans les Theories Equationnelles. PhD thesis, Uni-
versite de Nancy I.

Kirchner, H. (1985b). Preuves par Completion dans les Varietes d’Algebres. PhD
thesis, Universite de Nancy I.

Klop, J. W. (1987). Term rewriting systems: A tutorial. Bulletin of the EATCS,
32:143-183.

Knuth, D. E. and Bendix, P. B. (1970). Simple word problems in universal
algebras. In Leech, J., editor, Computational Problems in Abstract Algebra,
pages 263-297. Pergamon Press, Elmsford, N. Y.

Koymans, C. P. J. (1982). Models of tha lambda calculus. Information and
Control, 52:306-332.

Lampson, B. and Burstall, R. M. (1988). Pebble, a kernel language for modules
and abstract data types. Information and Computation, 76:278—346.

Landin, P. (1964). The next 700 programming languages. Comm. ACM, 9:157—
166.

Levy, J., Agusti, J., Esteva, F. and Garcia, P. (1990). COR: A calculus of refine-
ments. Technical Report GRIAL-90-19, Centre d’Estudis Avancats de Blanes,
Blanes, Spain.

Levy, J., Agusti, J., Esteva, F. and Garcia, P. (1991). An ideal model for
an extended A-calculus with refinements. Technical Report ECS-LFCS-91-188,
Laboratory for Foundations of Computer Science, Edinburgh, Great Britain.

Levy, J. and Agusti, J. (1992a). Implementing inequality and nondeterministic
specifications with bi-rewriting systems. In Ehrig, H. and Orejas, F., editors,
Recent Trends in Data Type Specification, volume 785 of Lecture Notes in Com-
puter Science, pages 252-267, Caldes de Malavella, Spain. Springer-Verlag.

Levy, J. and Agusti, J. (1992b). Proving confluence without termination. Techni-
cal Report IITA-92-27, Institut d’Investigaci6 en Intel-ligencia Artificial, Blanes,
Spain.

Levy, J., Agusti, J. and Mafid, F. (1992c). Functional lattices for taxonomic
reasoning. Technical report, Department of Artificial Intelligence, University of
Edinburgh, Edinburgh, Great Britain.



134 References

Levy, J. (1993a). A higher-order unification algorithm for bi-rewriting systems.
In 22 Congreso de Programacién Declarativa, ProDe’93, Blanes, Spain. Also in
2nd CCL workshop, L’Escala, Spain, 1993.

Levy, J. (1993b). Second-order bi-rewriting systems. Technical Report ITTA-93-
11, Institut d’Investigacid en Intel-ligéncia Artificial, Blanes, Spain.

Levy, J. and Agusti, J. (1993c). Bi-rewriting, a term rewriting technique for
monotonic order relations. In Kirchner, C., editor, Rewriting Techniques and
Applications, volume 690 of Lecture Notes in Computer Science, pages 17-31,
Montreal, Canada. Springer-Verlag.

MacQueen, D., Plotkin, G. D. and Sethi, R. (1986). An ideal model for recursive
polymorphic types. Information and Control, 71:95-130.

Makanin, G. S. (1977). The problem of solvability of equations in a free semi-
group. Math. USSR Sbornik, 32(2):129-198.

Maifi4, F., Agusti, J., Garcia, P. and Levy, J. (1992). Técnicas de reescritura en
reticulos funcionales. In 12 Congreso de Programacién Declarativa, ProDe’92,
pages 165-172, Madrid, Spain.

Manca, V., Salibra, A. and Scollo, G. (1990). Equational type logic. J. of
Theoretical Computer Science, 77:131-159.

Manna, Z. and Waldinger, R. (1986). Special relations in automated deduction.
J. of the ACM, 33:1-60.

Manna, Z. and Waldinger, R. (1992). The special-relation rules are incomplete.
In Kapur, D., editor, 11th Int. Conf. on Automated Deduction, CADE-11, vol-
ume 607 of Lecture Notes in Artificial Intelligence, Saratoga Springs, New York.
Springer-Verlag.

Marti-Oliet, N. and Meseguer, J. (1993). Rewriting logic as a logical and se-
mantic framework. Technical Report SRI-CSL-93-05, SRI International, Menlo
Park, California.

Martin-Lof, P. (1979). Constructive mathematics and computer programming.
In Proc. of the sizth International Congress for Logic, Methodology and Philos-
ophy of Science. North Holland.

Meseguer, J. (1990). Rewriting as a unified model of concurrency. In Concur’90,
Lecture Notes in Computer Science, Amsterdam, The Netherlands. Springer-
Verlag.

Meseguer, J. (1992). Conditional rewriting logic as a unified model of concur-
rency. J. of Theoretical Computer Science, 96:73—155.

Meseguer, J. (1993). A logical theory of concurrent objects and its realization
in the maude language. In Agha, G., Wegner, P. and Yoneyawa, A., editors, Re-



References 135

search Directions in Concurrent Object-Oriented Programming. The MIT Press.
(Also as technical report SRI-CSL-92-08R).

Meyer, A. R. (1982). What is a model of the lambda calculus? Information end
Control, 52:87-122.

Miller, D. (1990). Abstractions in logic programs. In Odifreddi, P., editor, Logic
and Computer Science, volume 31 of APIC Studies in Data Processing, pages
329-359. Academic Press.

Miller, D. (1991a). A logic programming language with lambda-abstraction,
function variables, and simple unification. Technical Report ECS-LFCS-91-159,
Laboratory for Foundations of Computer Science, Edinburgh, Great Britain.

Miller, D. (1991b). Unification of simply typed lambda-terms as logic program-
ming. Technical Report ECS-LFCS-91-160, Laboratory for Foundations of Com-
puter Science, Edinburgh, Great Britain.

Milner, R. (1978). A theory of type polymorphism in programming. J. of
Computer System Science, 17(3):348-375.

Milner, R., Tofte, M. and Harper, R. (1990). The definition of Standard ML.
MIT Press.

Mitchell, J. C. (1988). Polymorphic type inference and containment. Information
and Control, 76:211-249.

Moreno-Navarro, J. J. and Rodriguez-Artalejo, M. (1992). Logic programming
with functions and predicates: The language BABEL. J. of Logic Programming,
12:189-223.

Mosses, P. D. (1989a). Unified algebras and action semantics. In Proceedings
of the 6th Ann. Symp. on Theoretical Aspects of Computer Science, STACS’89,
volume 349 of Lecture Notes in Computer Science, pages 17-35. Springer-Verlag.

Mosses, P. D. (1989b). Unified algebras and institutions. In Proceedings of the
4th IEEE Symp. on Logic in Computer Science, LICS’89, pages 304-312.

Mosses, P. D. (1989c). Unified algebras and modules. In Proceedings of the
16th ACM Symp. on Principles of Programming Languages, POPL’89, pages
329-343.

Mosses, P. D. (1990). Denotational semantics. In Leeuwen, J. V., editor, Hand-
book of Theoretical Computer Science, pages 575—-632. Elsevier Science Publish-
ers.

Mosses, P. D. (1992). Action Semantics, volume 26 of Cambridge Tracks in
Theoretical Computer Science. Cambridge University Press.

Nebel, B. (1990). Reasoning and Revision in Hybrid Representation Systems.
Lecture Notes in Artificial Intelligence. Springer-Verlag.



136 References

Newman, M. H. A. (1942). On theories with a combinatorial definition of “equiv-
alence”. Annals of Math., 43(2):223-243.

Nieuwenhuis, R. and Rubio, A. (1992). Basic superposition is complete. In
ESOP’92, volume 582 of Lecture Notes in Computer Science, pages 371-389.
Springer-Verlag.

Nipkow, T. (1986). Nondeterministic data types: Models and implementations.
Acta Informatica, 22:629-661.

Nipkow, T. (1991). Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic
in Computer Science, pages 342—-349.

Nipkow, T. (1992). Functional unification of higher-order patterns. Technical
report, Institut fliir Informatik, TU Minchen.

Nipkow, T. (1993). Orthogonal higher-order rewrite systems are confluent. In
Typed Lambda Calculi and Applications.

O’Donnell, M. J. (1987). Term-rewriting implementation of equational logic
programming. In Lescanne, P., editor, Proc. of Rewriting Techniques and Ap-
plications, pages 1-12, Bordeaux, France. Springer-Verlag.

Orejas, F. (1987). A characterization of passing compatibility for parameterized
specifications. J. of Theoretical Computer Science, 51:205-214.

Paulson, L. C. (1987). Logic and Computation: Interactive Proof with Cambridge
LCF. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, Great Britain.

Peterson, G. E. and Stickel, M. E. (1981). Complete sets of reductions for some
equational theories. Journal of the ACM, 28(2):233-264.

Pierce, B. C. (1991). Basic Category Theory for Computer Scientists. The MIT
Press, Cambridge, Massachusetts.

Pietrzykowski, T. (1973). A complete mechanization of second-order type theory.
J. of the ACM, 20:333-364.

Plotkin, G. D. (1976). A powerdomain construction. SIAM J. of Computing,
5:452-487.

Plotkin, G. (1983). Domains. Department of Computer Science, University of
Edinburgh. (Course Notes edited by Y. Kashiwagi and H. Kondoh).

Prehofer, C. (1995). Solving Higher-Order Equations: From Logic to Program-
ming. PhD thesis, Technische Universitat Minchen.

Reynolds, J. C. (1985). Three Approaches to Type Structure. Springer-Verlag.



References 137

Robertson, D., Agusti, J., Hesketh, J. and Levy, J. (1993). Expressing program
requirements using refinement lattices. In Komorowski, J. and Ras, Z. W,
editors, Metodologies for Intelligent Systems, volume 689 of Lecture Notes in
Artificial Intelligence, pages 245-254, Trondheim, Norway. Springer-Verlag. (To
be published in Fundamenta Informatica.).

Robinson, G. A. and Wos, L. T. (1969). Paramodulation and theorem proving
in first order theories with equality. Machine Intelligence, 4:133—150.

Sanchis, L. E. (1980). Reflexive domains. In Seldin, J. P. and Hindley, J. R.,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism. Academic Press.

Sannella, D. and Tarlecki, A. (1984). Program specification and development in
Standard ML. ACM, 4:67-77.

Sannella, D., Sokolowski, S. and Tarlecki, A. (1990). Toward formal development
of programs from algebraic specifications: parameterisation revisited. (Draft).

Sannella, D. and Tarlecki, A. (1991a). Extended ML: Past, present and future.
In Proc. 7 th Workshop on Specification of Abstract Data Types, Wusterhausen,
GDR. Springer-Verlag.

Sannella, D. and Tarlecki, A. (1991b). A kernel specification formalism with
higher-order parameterisation. In Proc. 7 th Workshop on Specification of Ab-
stract Data Types, Wusterhausen, GDR. Springer-Verlag.

Schmidt, D. A. (1988). Denotational Semantics: A Methodology for Language
Development. Wm. C. Brown Publishers, Dubuque, Iowa.

Schulz, K. U. (1991). Makanin’s algorithm, two improvements and a gener-
alization. Technical Report CIS-Bericht-91-39, Centrum fiir Informations und
Sprachverarbeitung, Universitat Minchen.

Scott, D. (1972). Continuous lattices. In Lawvere, F. W., editor, Toposes,
Algebraic Geometry and Logic, volume 274 of Lecture Notes in Mathematics,
pages 97-136. Springer-Verlag.

Scott, D. (1976). Data types as lattices. STAM Journal on Computing, 5(3):522—
587.

Siekmann, J. H. (1989). Unification theory. J. of Symbolic Computation, 7:207-
274.

Slagle, J. R. (1972). Automatic theorem proving for theories with built-in the-
ories including equality, partial orderings, and sets. J. of the ACM, 19:120-135.

Smolka, G. and Ait-Kaci, H. (1989). Inheritance hierarchies: Semantics and
unification. Journal of Symbolic Computation, 7:343-370.



138 References

Smyth, M. (1978). Power domains. J. of Computer System Science, 16:23-36.

Smyth, M. B. and Plotkin, G. D. (1982). Category-theoretic solution of recursive
domain equations. SIAM Journal on Computing, 11:761-783.

Spivey, J. M. (1988). Understanding Z: a specification language and its for-
mal semantics. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press.

Stoy, J. E. (1978). Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, Massachusetts.

Toyama, Y. (1987). On the Church-Roser property for the direct sum of term
rewriting systems. J. of the ACM, 34(1):128-143.

von Wright, J. (1990). A Lattice-theoretical Basis for Program Refinement. PhD
thesis, Abo Akademi.

Wand, M. (1979). Fixed-point constructions in order-enriched categories. J. of
Theoretical Computer Science, 8:13-30.



Index

+ (coalesced sum), 25

F[-], context, 61

FE functor, 27

KF category, 27

X° (set of w-finite elements), 32
CPO category, 25

Dom category, 31

Fun interpretation function, 14, 53
FV(t) (free) variables, 61

Graph interpretation function, 14, 53
Iix) (ideal generator), 32

1 (bottom element), 24

T(F, X) first order terms, 61
Code; isomorphism, 47

Codey embedding, 46

Code_, embedding, 51, 55

Don(c) domain, 62

Intery interpretation function, 46
Interp,oj, interpretation function, 46
w-algebraic cpo, 31

w-basis, 31

w-category, 26

w-chain, 26

w-continuous functor, 26

w-finite element, 31

X (closure operator), 32

M (greatest lower bound), 24

U (least upper bound), 24

x (smash product), 25

— (continuous function space), 25
t|, occurrence, 61

t[u], replacement, 61

algebraic cpo, 31

basis, 31
bi-confluent bi-rewriting system, 65

bi-rewriting system, 62, 106
bottom element, 24

category, 26

category CPO, 25

category Dom, 31

category K¥, 27

chain, 26

Church-Rosser, 64, 69, 70
cliff, 72

closed order ideal, 28

closure operator, 32
coalesced sum, 25

cocone, 26

colimit, 26

colimiting cone, 26

complete partial order, 24
completeness theorem, 18, 100
composition of substitutions, 91
cone, 26

consistently complete cpo, 31
context, 61

continuous extension, 50
continuous function, 24
continuous function space, 25
continuous functor, 26
COR-domain, 14
COR-environment model, 15
COR-formulas, 12
COR-inference rules, 12
COR-terms, 12

COR-theory, 12

cpo (complete partial order), 24
critical pair, 67, 77, 107

distance between substitutions, 103
domain, 31, 62

139



140

embedding, 27

embedding Codey, 46
embedding Code_,, 51, 55
environment, 15
environment model, 15
extended critical pair, 67, 77
extended rule, 75
extensional COR-domain, 14
extensional COR-theory, 12
extensionally closed, 75

filter, 38

finite element, 31

finitely branching relation, 62, 90
first-order bi-rewriting system, 62
first-order term, 61

fixed point, 25

free arity, 102

free variable, 61

free variables of a substitution, 91
functional domain, 14

functor Z, 29

functor J, 32

functor J¢, 37

functor S, 39

functor FZ, 27

glb (greatest lower bound), 24

globally finite bi-rewriting system, 64

greatest lower bound, 24
hole, 61

ideal, 28

ideal generator, 32

inclusion, 62

inclusion theory, 62

increasing sequence, 24

indexed set of indexes, 95

initial fixed point, 25

initial object, 26

interpretation function, 14, 46, 53
isomorphism Code, 47

least fixed point, 25
least upper bound, 24
left extended rule, 75

Index

left extensionally closed, 75

limit, 26

limiting cocone, 26

linear second-order A-calculus, 92

linear second-order substitution, 93

linear second-order term, 93

locally bi-confluent bi-rewriting system,
65

locally continuous functor, 28

LSO substitution, 93

LSO term, 93

lub (least upper bound), 24

maximal complete set, 32
mediating morphism, 26
minimum element, 24
monotonic function, 24
multialgebra, 114
multialgebra model, 114

NDC-method, 121

O-category, 27

occurrence, 61

open order filter, 38

order filter, 38

order ideal, 28

ordering on substitutions, 91

Partial Order Logic, 62
partial ordered set, 24

peak, 72

pointwise ordering, 14

POL, 62

poset (partial ordered set), 24
position, 61

preorder algebra, 115
preorder algebra model, 115
projection, 27

quasi-extensional COR-domain, 14

quasi-extensional COR-theory, 12

quasi-terminating bi-rewriting system,
64

quasi-terminating relation, 62

relational logic, 62



Index 141

replacement, 61

rewrite, 63, 106

rewrite modulo, 75

rewriting logic, 62

rewriting relation, 62

right extended rule, 75

right extensionally closed, 75

satisfactivility, 16

second-order bi-rewriting system, 106
second-order critical pair, 107
second-order rewrite, 106
second-order substitution, 91
second-order unification problem, 93
set of indexes, 95

size of a substitution, 102

size of a term, 102

smash product, 25
SNF-multialgebra, 119

SOU problem, 93

soundness theorem, 16, 98

standard critical pair, 67, 77

strong Church-Rosser, 70

strong multialgebra model, 116
substitution, 61, 91, 93

term bi-rewriting system, 62

term model, 17

terminal object, 26

terminating bi-rewriting system, 64
terminating relation, 62
transformation rules, 96

unification problem, 93
unification procedure, 96
unifier, 93

validity, 16

valuation function, 15
value model, 14
variable, 61

weak Church-Roser, 69
well-founded domain, 43



