
MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 31

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

On Non-clausal Horn-like Satisfiability
Problems

Edgar Altamirano Carmona

Foreword by
Prof. Gonzalo Escalada Imaz

and
Prof. Ana Maŕıa Mart́ınez Enŕıquez

2007 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Prof. Gonzalo Escalada Imaz
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques
and
Prof. Ana Maŕıa Mart́ınez Enŕıquez
Centro de Investigación y de Estudios Avanzados
Instituto Politécnico Nacional

Volume Author
Edgar Altamirano Carmona
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

c© 2007 by Edgar Altamirano Carmona
NIPO: 653-07-096-1
ISBN: 978-84-00-08573-5
Dip. Legal: B.50670-2007

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Contents

Foreword ix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Structure of the thesis . 2

2 Propositional Logic: Basic Concepts 5
2.1 Introduction . 5
2.2 The CP0 language . 6
2.3 Semantics . 7
2.4 Classes of sentences . 9
2.5 Logical Consequence . 10
2.6 Logical Equivalence . 11
2.7 Conjunctive Normal Form . 11
2.8 Proof procedures . 13
2.9 Resolution . 14

2.9.1 Clausal Form . 14
2.9.2 Resolution Principle . 15

3 The Antecedents: The Horn-CNF SAT problem 17
3.1 Introduction . 17
3.2 Classical Horn-CNF SAT problem 18

3.2.1 Syntax and semantic . 18
3.2.2 Logical Calculus . 18
3.2.3 PPUR Algorithm . 19

3.3 Many-valued Horn-CNF-SAT problem 21
3.3.1 Syntax and semantic . 21
3.3.2 Logical Calculus . 22
3.3.3 MPUR-PROP algorithm 23

3.4 Regular Horn-CNF SAT problem 27
3.4.1 Syntax and semantic . 27
3.4.2 Logical Calculus and an almost linear algorithm 28

v

4 The Horn-NNF propositional SAT Problem 31
4.1 Introduction . 31
4.2 Related Work . 33
4.3 Proof Methodology of the main result 35

4.3.1 Description of the Proof Methodology 35
4.3.2 Main Theorems of the Proof Methodology 37

4.4 The SIMPLE-HORN-NNF-SAT problem is linear 39
4.4.1 The SIMPLE-HORN-NNF formulas 39
4.4.2 Logical Calculus . 43
4.4.3 Logical Calculus: Its polynomial algorithmic version . . . 49
4.4.4 A quadratic SIMPLE-HORN-NNF SAT algorithm 51
4.4.5 A Linear SIMPLE-HORN-NNF-SAT Algorithm 58

4.5 Linearity of the HORN-NNF-SAT problem 63
4.5.1 The HORN-NNF-SAT problem 63
4.5.2 Logical Calculus . 67
4.5.3 A Quadratic Algorithm 71
4.5.4 A Linear Algorithm for the HORN-NNF-SAT problem . . 73

4.6 Conclusions . 77

5 The Regular HORN-NNF SAT problem 79
5.1 Introduction

79
5.2 Related Work . 80
5.3 Proof Methodology . 82

5.3.1 Description of the Proof Methodology 82
5.3.2 Theorems of the Proof methodology 84

5.4 The Regular SIMPLE-HORN-NNF-SAT problem 86
5.4.1 Regular SIMPLE-HORN-NNF formulas 86
5.4.2 Logical Calculus . 89
5.4.3 Logical Calculus: Its polynomial algorithmic version . . . 95
5.4.4 A quadratic algorithm . 98
5.4.5 An almost linear Algorithm 102

5.5 The Regular HORN-NNF-SAT problem 109
5.5.1 The Regular HORN-NNF formulas 109
5.5.2 Logical Calculus . 110
5.5.3 A Quadratic Algorithm 112

5.6 Conclusions . 113

6 Conclusions 115

vi

List of Figures

4.1 Bidimensional representation of the fourth clause 41
4.2 A formula path . 41
4.3 Bidimensional representation of the subformula 65
4.4 A path in the formula . 65
4.5 The tree of the sixth clause . 66

5.1 Bi-dimensional representation of the fourth clause 88
5.2 A formula path . 88
5.3 A path in the formula . 110

vii

Foreword

Many applications in Computer Science require to represent knowledge and to
reason with non-clausal form formulas. However, most of the advances obtained
in tractable reasoning are applied only to CNF formulas. In this book, the au-
thor extends tractability (even linearity) to certain non-clausal formulas of high
practical interest. For instance, the real applications of the Knowledge Rule-
Based Systems can increase allowing a richer language and preserving a high
efficiency level for performing reasoning.
The non-clausal formulas proposed and treated in this book codify the same
problems that the Horn Formulas but with significantly, even exponentially, less
variables. To show the interest of the representation and computation of these
Horn-like Non-clausal formulas, the author establishes a sound and refutation
complete logical calculus. After, a correct and strictly linear running time SAT
algorithm is designed. As a result, the time required by algorithms designed
in the book running on the defined Horn-like Non-Clausal formulas, can be ex-
ponentially less than the required by the existing linear Horn-SAT algorithms,
running on the logically equivalent Horn formulas.
The presented work is of interest to those searching mechanisms to efficiently
apply inferences. In the book, it is argued that the proposed algorithms are of
theoretical as well as practical interest for applications coming from very het-
erogeneous areas such as: Expert Systems, Deductive Data Bases, Hardware
Design, Automated Software Verification, Logic Programming, Automated The-
orem Proving, etc.

Bellaterra, August, 2005
Prof. Gonzalo Escalada Imaz

Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

and
Prof. Ana Maŕıa Mart́ınez Enŕıquez

Centro de Investigación y de Estudios Avanzados
Instituto Politécnico Nacional

ix

Abstract

This thesis is devoted to prove that several classes of non-clausal formulas
are strictly linear in the two-valued paradigm of the logic and almost linear in
the case of many-valued regular non-clausal Horn-like formulas.

Our scientific contribution can be viewed from two points of view: theoretical
and practical.

On the theoretical side, our results aims at pushing further the frontiers of
non clausal tractability. Thus, we firstly have defined several classes of non-
clausal formulas in Negation Normal Form having a Horn-like shape. Secondly,
we have established a Logical Calculus for each one of these classes, consisting
of sets of inference rules which we prove they are sound and refutationally com-
plete. In third place, we have designed several strictly linear algorithms for the
cases of bi-valued paradigms and we also have developed several almost linear al-
gorithms for the many-valued regular cases. These algorithms resolve efficiently
the satisfiability problem in their related classes of formulas.

On the practical side, as the non-clausal formulas keep a Horn-like structure,
they are of relevant interest in many and very heterogenous applications as for
instance all those based on Rule Based Systems. Indeed, rules and questions of
many real applications require to represent and to reason with a richer language
than the Horn formulas language. In this sense, our formulas absorb the Horn
language as a particular case. Additionally, our formulas represent logically
equivalent classical Horn problems but with exponentially less symbols. Hence,
as the described algorithms run in linear or an almost linear time on these classes,
the gain of execution time could be of an exponential order with respect to the
known algorithms running over classical Horn formulas.

xi

Resumen

Esta tesis está dedicada a probar que existen varias clases de fórmulas en
formas no clausales que son estrictamente lineales en el caso de la lógica proposi-
cional y casi-lineales en el caso de la lógica multivaluada.

Nuestra contribución cient́ıfica puede ser considerada desde dos puntos de
vista: teórico y práctico.

En cuanto al aspecto teórico, nuestros resultados ampĺıan el campo de la
tratabilidad no clausal. Aśı, en un primer lugar hemos definido varias clases de
fórmulas no-clausales en forma normal negada con una estructura de Horn. En
segundo lugar, hemos establecido un cálculo lógico para cada una de estas clases,
consistente en un conjunto de reglas de inferencia que probamos que forman un
cálculo sólido y refutacionalmente completo. En tercer lugar, hemos diseñado
algoritmos estrictamente lineales para el caso de la lógica proposicional y hemos
desarrollado algoritmos casi-lineales para el caso de la lógica multivaluada. Estos
algoritmos resuelven eficientemente el problema de la satisfactibilidad en cada
clase correspondiente.

En cuanto al aspecto práctico, como las fórmulas mantienen una estructura
de Horn, son de relevante interés en varias aplicaciones como por ejemplo las
provenientes de los sistemas basados en reglas. De hecho, las reglas y preguntas
en muchas aplicaciones reales requieren representar y razonar con un lenguage
más rico que el ofrecido por el lenguaje de fórmulas de Horn. En este sen-
tido, nuestras fórmulas absorben las fórmulas de Horn como un caso particular.
Además, nuestras fórmulas son lógicamente equivalentes a fórmulas de Horn pero
utilizan un número exponencialmente inferior de śımbolos. Por lo tanto, como
los algoritmos descritos corren en tiempo lineal o casi lineal sobre estas clases de
problemas, la ganancia experimentada puede ser de un orden exponencial con
respecto a los algoritmos conocidos ejecutándose sobre las clásicas fórmulas de
Horn.

xiii

A mi querida esposa Alfredina Morales
Mart́ınez.

A mis amigos y asesores Ana Maŕıa
Mart́ınez Enŕıquez y Gonzalo Escalada
Imaz.

A todos los amigos inolvidables del
IIIA-CSIC y CINVESTAV-IPN.

xv

Chapter 1

Introduction

1.1 Motivation

In some practical applications of Computer Science, the well-known Normal
Forms CNF (conjunctive normal form) and DNF (disjunctive normal form) do
not provide a natural framework to represent knowledge and to reason. In
fact, performing inferences efficiently with formulas whose forms are non re-
stricted to the classical ones is a matter of major interest in many practical
applications inside very heterogeneous areas such as Expert Systems, Deductive
Data Bases, Hardware Design, Automated Software Verification, Symbolic Opti-
mization, Logic Programming, Automated Theorem Proving, Petri Nets, Truth
Maintenance Systems, etc.

However, most of the existing efficient proof methods are designed to work
with CNF formulas. So, it is a common practice to translate knowledge represen-
tations from general forms to CNF’s [35, 92]. This transformation was originally
proposed in 1970 by Tseitin [96] who published the first algorithm. Now, it is
known that any propositional formula can be translated to another equivalent
formula in the CNF form applying only the Morgan’s rules or other optimized
algorithms [92]. The resulting formula is no necessarily unique except if the
connectives in the original formula are only ¬, ∧ and the or-exclusive connective
[64]. The translation process occurs in polynomial time if some auxiliary propo-
sitions are allowed in the CNF formula, but it takes exponential time if they
are not allowed [47]. A discussion of the advantages of the CNF formulas in the
context of theorem proving can be found in [86, 84] In the case of other logics,
Henschen et all [61] included the case for first-order logic, Mints [80] covered
the cases for modal and intuitionistic logics and finally, Hähnle [57] investigated
the problem of translating arbitrary finitely valued logics to short CNF signed
formulas.

Currently, two transformations are applied, one preserve the logical equiva-
lence and the other only the satisfiability equivalence.

1. In the first case, the translation cannot skip the explosion of the number

1

of symbols due to the ∧/∨ distribution operation and thus the size of the
resulting CNF formula can increase exponentially.

2. The other approach consists in modifying the formula by introducing artifi-
cial literals [96] aiming at preserving the satisfiability relation. This second
line of solution has two strong drawbacks. First, the logical equivalence
relation is lost which could be invalid for certain applications. Second, to
solve the SAT problem two procedures are required: the first one trans-
forms the original formula into a CNF formula, and the second one, taking
as its input the translated CNF formula which is bigger than the original
one, applies properly the satisfiability test.

Hence, processing directly the non-clausal formula in an appropriated way arises
as the most efficient approach of solving non-clausal SAT problems.

1.2 Contributions

On the theoretical side, our contribution described here aims at pushing further
the frontiers of non-clausal tractability. Thus, we firstly have defined a new class
of formulas in Negation Normal Form having a Horn-like shape. In this sense,
the proposed formulas absorb the Horn language as a particular case. Secondly,
we have established a set of inference rules which are sound and refutationally
complete. In third place, we have designed respectively, strictly linear algorithms
to solve the propositional satisfiability problem and almost linear algorithms to
solve the many-valued satisfiability problem.

On the practical side, as the formulas keep a Horn-like structure, they are of
relevant interest in such applications as for instance those based in Rule Based
Systems. Indeed, the rules and the questions of many real applications require to
represent and reason with a richer language than the Horn formulas language.
The proposed formulas represent logically equivalent pure Horn problems but
with exponentially less symbols. Hence, as the described algorithm runs in
linear time on this class, the gain of time can be of an exponential order with
respect to the known linear algorithms running on the Horn formulas.

1.3 Structure of the thesis

The thesis is organized in six chapters, whose contents are summarized below:

Chapter 1. Introduction
In this chapter, we describe first the motivations which lead us to work on this
research. Second, we mention briefly the importance we believe our results and
scientific contributions have. Finally the structure of this thesis is described.

Chapter 2. Propositional Logic: Basic Concepts
In this chapter, we give the basic propositional concepts employed in the next

2

chapters of this thesis. This chapter is introduced aiming at a self contained
thesis memory.
Chapter 3. The antecedents: The Horn-CNF SAT problem
In this chapter, we set out some basic definitions and the terminology that will
be used in the thesis. In the first section we describe syntax, semantic, infer-
ence rules and a strictly linear algorithm for solving the classical two-valued
Horn-CNF SAT problem. In the second section we do the same but for the
many-valued Horn-CNF-SAT problem and finally in the third section we deal
with the case of the SAT problem for Regular Horn-CNF propositional formulas.

Chapter 4. The propositional Horn-NNF SAT problem
In this chapter, we prove that the Horn-NNF-SAT problem of the two-valued
propositional logic can be solved in strictly linear time. In order to proof this
result, we first define syntax, semantic and inference rules for the logical sys-
tem of the Horn-NNF formulas we introduce here. Next, we develop a strictly
linear algorithm to solve the SAT problem in this class of formulas. In order
to prove the correctness of the algorithm we apply a methodology which proves
progressively the logical properties of the final and complicated linear algorithm.
This methodology is firstly applied to a sub-case of the Horn-NNF-SAT problem
which we call the Simple-Horn-NNF-SAT problem and afterwards it is extended
to the general Horn-NNF-SAT problem.

Chapter 5. The Regular Horn-NNF SAT problem
In this chapter, we define two Many-valued Non-clausal Horn-like SAT prob-
lems: the Regular Simple-Horn-NNF SAT problem and the Regular Horn-NNF
SAT problem. These problems are solved efficiently in O(n · log(n)) and O(n2)
time respectively. Thus, we have generalized some existing results about many-
valued clausal tractability to the more general many-valued non-clausal frame-
work. The non-clausal formulas considered here could be of significant interest
in applications because they present a Horn-like structure. An important advan-
tage of the proposed method is that it does not need to transform the original
formula. Indeed, it processes the original formula preserving in this way all its
logical properties contrarily to what happens when the formula is transformed
to clausal forms by introducing artificial literals.

Chapter 6. Conclusions
In this chapter, we summarize the previous chapters and conclude on the con-
tributions provided in this thesis.

3

Chapter 2

Propositional Logic: Basic
Concepts

2.1 Introduction

The current chapter defines the basic concepts of propositional Logic employed
in this thesis. This material can be found in any classical book of Logic as for
instance [68], [29], [78] and [38].

Mathematical Logic is the science addressed to study the valid reasonings.
We say that a reasoning is valid if each time that the premisses are true the
conclusion is necessarily true. Logic does not study the truth or the falseness of
the premisses and the conclusion in an isolated way, rather it studies the relation
between the truth or falseness of the premisses and the truth or falseness of the
conclusion. In other words, Logic is interested in how the truth is propagated
from the premisses towards the conclusion.

The validity of a reasoning has no relation at all with the topic treated by
the premisses and the conclusion, nor with its truth or falseness. The validity,
from a logic point of view, depends on the structure of the reasoning. One valid
reasoning has the following form:

If A then B
A

therefore B

Thus, if we substitute A and B by any sentence, we obtain a valid reasoning.
The previous reasoning is not the only valid one. There are other ones, as for
instance,

If A then B
If B then C

therefore if A then C

5

Logicians build systems that formalize the notion of valid reasoning. The first
step, in order to build these systems, is to define a formal language suitable to
represent the premisses and the conclusions as sentences of this language. This
part is denominated syntax of the logic. Yet, as we are interested in how the
truth is propagated from the premisses to the conclusion, we have to define when
a sentence of the formal language is true or false for a particular interpretation.
This part is concerned with the semantics or models theory. In addition to the
syntax and the semantics, a logic is associated with a proof theory. Proof Theory
studies the procedures that can be mechanized (and their properties) and that
permit to find whether a reasoning is valid by means of a symbolic manipulation
of the sentences of the language, without taking into account their semantics.

The logic that we will study in this chapter is the Propositional Logic known
as well as Calculus of Predicates of order zero (CP0).

2.2 The CP0 language

The CP0 language will be used to represent sentences of the natural language
of which we can establish they are true of they are false. This kind of sentences
are called declarative sentences and are used to make reasonings. The simple
declarative sentences are represented by the capital letters P, Q and R and
they will be denominated atoms. The composed declarative sentences will be
represented as a combination of atoms and connectives. The connectives are a
formalization of the particles not, and, or, conditional construction if...then...
and the bi-conditional if and only if :

• ¬ denotes the particle not and it is denominated negation

• ∧ denotes the particle and and it is denominated conjunction

• ∨ denotes the particle or and it is denominated disjunction

• → denotes the construction if...then... and it is denominated conditional

• ↔ denotes the construction if and only if and it is denominated bi-conditional

The CP0 language is a formal language and it will be defined by giving the
alphabet of its symbols and the grammatical rules needed for the construction
of formulas or sentences.

Definition 2.2.1 The alphabet Σ of the CP0 language has the following com-
ponents:

• A set of atom symbols {P,Q,R,P1,P2,P3, . . . }
• A set of connective symbols { ¬, ∧, ∨, →, ↔}
• A set of auxiliary symbols {(,)}

6

Σ={ ¬, ∧, ∨, →, ↔,(,),P,Q,R,P1,P2,P3, . . .}

Definition 2.2.2 (sentence)Given an alphabet Σ

• Every atom of Σ is a sentence

• If A is a sentence then ¬A is also a sentence

• If A and B are sentences, then (A ∧B), (A ∨B), (A → B) and (A ↔ B)
are also sentences.

• There are not other sentences

Notation The letters A, B, C, A1, A2, A3, . . ., denote sentences and the
Greek letters Γ, ∆, Θ, Γ1, Γ2, Γ3, . . . denote set of sentences.

The set of all sentences that can be constructed from the alphabet Σ em-
ploying the previous rules form the CP0 language. It can be remarked that we
do not define a language but a family of languages since the set of atoms is not
prefixed. We will note L(P) a propositional language that contains P as the set
of atom symbols. Usually, P is known as the set of propositional variables.

For the sake of readability, we can relax the notation with the following
conventions:

1. To remove the external parenthesis. For example, P1 ∧ P2 is read as
(P1 ∧ P2)

2. To associate a priority to each connective in decreasing order as follows:

↔, →, ∨, ∧, ¬

in a way that the connective with higher priority has more scope. For
instance, ¬P1 ∧ P2 is read as ((¬P1) ∧ P2) and Q → R ↔ P is read as
((Q → R) ↔ P)

3. When there are several occurrences of a same connective we follow the left
associativity rule. For example, P1 → P2 → P3 is read as ((P1 → P2) →
P3).

2.3 Semantics

Semantics refer to the study of the relationship between a formal language and
its interpretations, by using the concept of truth of a sentence as a bridge con-
cept. From a syntax point of view, a language is a set of sentences, where the
sentences are formed by a set of connectives and symbols of atoms. In other
words, sentences are strings of characters built according to certain grammatical
rules and they have no meaning.

To attribute meaning to a symbol of an atom consists of assigning to it one
of the two truth values: true or false. The true value is assigned when the simple

7

declarative sentence denoting the atom is believed to be true in our reasoning
context; otherwise, the false value is assigned. The meaning of a sentence formed
by two more simple sentences and a connective is defined as a function of the
truth value of the simple sentences. As the sentences are built by combining
atoms and connectives, if we know the truth values of the atoms involved in the
sentence then we can know the truth value of the sentence, since the meaning of
the connective does not depend on the context reasoning.

Definition 2.3.1 Let L(P) be a CP0 language, where P is the set of proposi-
tional variables. An interpretation of L(P) is a function I with domain the set
of propositional variables P and with rank the set of truth values {T,F}

Hence, an interpretation consists of assigning a truth value to each proposi-
tional variable. If A is a sentence of a language L(P) for which an interpretation
I has been defined and P1, P2, ...,Pn are the atoms involved in A, the function
I restricted to P1, P2, ...,Pn is an interpretation of A.

The next definition establishes the meaning of the connectives and gives
the rules that permit to know the truth value of a sentence assigned by an
interpretation.

Definition 2.3.2 Semantics of the sentences Let A and B be sentences.
The meaning of a sentence in an interpretation is defined as follows:

• If A is an atom then A is true in I if I assigns the value T to A (I(A)=T).
Otherwise A is false

• ¬A is true in I when A is false, and false when A is true

• (A ∧B) is true in I when A and B are true. Otherwise it is false

• (A ∨B) is true in I when A or B are true. Otherwise it is false

• (A → B) is true in I when A is false or B is true. Otherwise it is false

• (A ↔ B) is true in I when A and B have the same truth values. Otherwise
it is false.

The previous rules can be expressed by means of the so called truth tables.

A B A ∧B A ∨B A → B A ↔ B
V V V V V V
V F F V F F
F V F V V F
F F F F V V

When the connective is the negation then there is only one sentence involved.

A ¬A
V F
F V

8

Note that, if a sentence has n different atoms, then there are 2n possible
interpretations.

Definition 2.3.3 Model of a sentence. Let I be an interpretation and A a
sentence. I is a model of A or I satisfies A, noted |=I A, iff I assigns the value
true to A. Otherwise, I falsifies A and it will be noted 2I A.

An interpretation I is a model of a set of sentences Γ iff it is a model of every
sentence. Note that if Γ={A1,...,An}, then I is a model of Γ iff it is a model of
A1 ∧ ... ∧An

2.4 Classes of sentences

In this section we define the concepts of valid sentence and unsatisfiable sentence.
These sentences take always the same truth value for all the interpretations.

Definition 2.4.1 (Valid sentence or tautology) A sentence A is valid iff all
the possible interpretations satisfy A. Also it is called tautology and it is noted
² A. In the opposite case A is invalid and it is noted 2 A.

A possible manner of checking whether a sentence is a tautology consists of
building the truth table and checking whether the sentence is evaluated to true
in any interpretation.

Example 2.4.1 Let us check that ¬A ∨A is a tautology (² ¬A ∨A)

A ¬A ¬A ∨A
V F V
F V V

Theorem 2.4.1 If A and A → B are tautologies then B is a tautology.

Definition 2.4.2 (Unsatisfiable sentence) A sentence A is unsatisfiable if
all the interpretations falsify A. Also A is called inconsistent and it is noted
² ¬A. In the opposite case A is satisfiable and it is noted 2 ¬A.

Example 2.4.2 Check that ¬A ∧A is unsatisfiable (² ¬(¬A ∧A))

A ¬A ¬A ∧A
V F F
F V F

Theorem 2.4.2 A is valid iff ¬A is unsatisfiable.

This theorem establishes that there are two ways of proving whether a sen-
tence is valid: by either constructing the truth table for A and checking that
A is true for all the interpretations or by verifying indirectly whether ¬A is
unsatisfiable. The latter is called refutation.

9

A set of sentences Γ = {A1, ..., An} is satisfiable iff it has at least one model,
it is valid iff all the interpretations are models of Γ and it is unsatisfiable iff it
has no model. Remark that to prove the satisfiability, validity o unsatisfiability
of Γ is equivalent to prove it for the sentence A1 ∧A2 . . . ∧An.

Note that not all the sentences are valid or unsatisfiable sentences. The
sentences that are invalid and satisfiable ones are denominated contingent sen-
tences.

Definition 2.4.3 (contingent sentence) A sentence is contingent iff there
exist interpretations that satisfy A and interpretations that falsify A.

The different classes of sentences are modeled by the following figure.

² A (valid) 2 A (invalid) 2 A (invalid)

A valid A contingent A unsatisfiable

2 ¬A (satisfiable) 2 ¬A (satisfiable) ² ¬A (unsatisfiable)

Fig.1. Types of sentences

2.5 Logical Consequence

In a reasoning process, the premisses and the conclusion are distinguished. A
reasoning is valid if each time that the premisses are certain the conclusion is
necessarily certain. The concept of logical consequence formalizes the idea of
valid reasoning.

Definition 2.5.1 (Logical Consequence) Let {A1, A2, ..., An} be a finite set
of sentences and B be a sentence. B is logical consequence of {A1, A2, ..., An} iff
for any interpretation I that satisfies A1 ∧A2 ∧ ...∧An, I satisfies also B. The
logical consequence relationship is noted by A1 ∧A2 ∧ ... ∧An ² B.

If Γ = {A1, A2, ..., An} is a finite set of sentences, the relation A1 ∧A2 ∧ ...∧
An ² B is written Γ ² B.

The next theorems reduce the problem of proving that a sentence is logi-
cal consequence of a set of sentences to the problem of proving the validity or
unsatisfiability of these sentences.

Theorem 2.5.1 Let A1, A2, ..., An and B be sentences. B is logical consequence
of A1, A2, ..., An iff ((A1 ∧A2 ∧ ... ∧An) → B) is a valid sentence.

Theorem 2.5.2 Let A1, A2, ..., An and B be sentences. B is logical consequence
of A1, A2, ..., An iff ((A1 ∧A2 ∧ ... ∧An) ∧ ¬B) is unsatisfiable.

Example 2.5.1 A possible manner of verifying P, P → Q ² Q is proving that
(P ∧ (P → Q)) → Q is valid. Another different way is verifying that the set of
sentences {P, P → Q,¬Q} is unsatisfiable. Both checkings can be done with the
truth tables.

10

2.6 Logical Equivalence

In this section we will study when two sentences are logically equivalent.

Definition 2.6.1 (Logically equivalent sentences) Let us A and B two sen-
tences. A and B are logically equivalent iff they have the same models. It is
noted A ≡ B. The expression A ≡ B is denominated equivalence.

Next, we give some examples of logical equivalences:

A ∧A ≡ A (Idempotence)
A ∨A ≡ A (Idempotence)

A ∧B ≡ B ∧A (Commutativity)
A ∨B ≡ B ∨A (Commutativity)

(A ∧B) ∧ C ≡ A ∧ (B ∧ C) (Associativity)
(A ∨B) ∨ C ≡ A ∨ (B ∨ C) (Associativity)

(A ∧ (A ∨B)) ≡ A (Absorption)
(A ∨ (A ∧B)) ≡ A (Absorption)

(A ∧ (B ∨ C)) ≡ ((A ∧B) ∨ (A ∧ C)) (Distributivity)
(A ∨ (B ∧ C)) ≡ ((A ∨B) ∧ (A ∨ C)) (Distributivity)

¬(¬A) ≡ A (Double Negation)

¬(A ∧B) ≡ ¬A ∨ ¬B (De Morgan’s Law)
¬(A ∨B) ≡ ¬A ∧ ¬B (De Morgan’s Law)

(A ∧B) ≡ B, If A is a tautology (Tautology’s law)
(A ∨B) ≡ A, If A is a tautology (Tautology’s law)

(A ∧B) ≡ A, If A is unsatisfiable (Unsatisfiability’s law)
(A ∨B) ≡ B, If A is unsatisfiable (Unsatisfiability’s law)

Example 2.6.1 If we need to prove that P ∧ Q ≡ ¬(¬P ∨ ¬Q), we begin with
P ∧ Q and apply the double negation law on the complete formula. Then, we
obtain P ∧ Q ≡ ¬¬(P ∧ Q). Afterwards, we apply the De Morgan’s law to the
sub-sentence ¬(P ∧Q) and we obtain ¬¬(P ∧Q) ≡ ¬(¬P ∨ ¬Q).

2.7 Conjunctive Normal Form

Given a sentence of the CP0, we want to find a sentence logically equivalent
having a syntax structure more regular in such a way that it will be easier to be
able to accomplish automatic proofs.

11

Definition 2.7.1 (Literal) A literal is an atom or an atom with a negation
symbol.

Definition 2.7.2 (Conjunctive Normal Form)A sentence A is in Conjunc-
tive Normal Form (CNF) iff it has the form A1 ∧A2 ∧ ...∧An, n ≥ 1, and each
Ai is a disjunction of literals.

Any sentence can be converted into a CNF employing the following algorithm:

Step 1. To remove the connectives→ and↔ by using the logical equivalences:

A ↔ B ≡ (A → B) ∧ (B → A) (1)
A → B ≡ ¬A ∨B (2)

Step 2. To reduce the scope of the negation symbols by employing the fol-
lowing equivalences as many times as might be necessary:

¬(¬A) ≡ A (3)
¬(A ∨B) ≡ ¬A ∧ ¬B (4)
¬(A ∧B) ≡ ¬A ∨ ¬B (5)

Step 3. To obtain the conjunctive normal form employing the following equiv-
alences as many times as it will be necessary.

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) (6)
A ∨B ≡ B ∨A (7)
A ∧B ≡ B ∧A (8)

(A ∨B) ∨ C ≡ A ∨ (B ∨ C) (9)
(A ∧B) ∧ C ≡ A ∧ (B ∧ C) (10)

Example 2.7.1 The CNF of the sentence

(¬P ∨Q) → R

is

(¬P ∨Q) → R
¬(¬P ∨Q) ∨R applying (2)

(¬¬P ∧ ¬Q) ∨R applying (4)
(P ∧ ¬Q) ∨R applying (3)
R ∨ (P ∧ ¬Q) applying (7)

(R ∨ P) ∧ (R ∨ ¬Q) applying (6)

Note that the transformation algorithm preserves the logical equivalence.
Therefore, another way of verifying whether two sentences are equivalent consists
in checking whether they have the same normal form.

12

2.8 Proof procedures

We have seen in previous sections that the truth tables let solve the validity
problem and the satisfiability problem. However, constructing truth tables is
computationally expensive, since if the number of different atoms of a sentence
is n, then 2n rows are required. In addition, the truth tables do not form an
intuitive method, because they do not reflect the way of reasoning of humans.
In this section, we will see other decision procedures, called proof procedures,
that let solve the validity problem and the satisfiability problem using the proof
concept instead of that of interpretation. Until now, to check whether Γ |= A,
we verified whether all the interpretations that satisfy Γ satisfy also A. From
now on, to check whether Γ |= A we will verify whether there exists a proof of
A from Γ.

In order to understand the proof concept, we first need to define the calculus
concept. A calculus for a language is composed by a set of inference rules.
The inference rules formalize schemes of valid reasoning and enable to derive
sentences from other sentences of the language. An example of inference rule is
the modus ponens:

A,A → B

B

This inference rule establishes that given a sentence A and a sentence A → B
the sentence B can be derived. For instance, if we have the sentence P ∨Q and
the sentence P∨Q → R we can derive R. As the inference rules formalize schemes
of valid reasoning, we have P ∨Q,P ∨Q → R |= R.

Notice we have only employed the rule and we have not constructed any
truth table.

Another example of inference rule is the disjunction introduction rule:

A

A ∨B

This inference rule establishes that given a sentence A, we can derive the
sentence A ∨B, where B is any sentence . For instance, if we have the sentence
P we can derive the sentence P ∨Q. Since rules model valid reasonings, we have
P |= P ∨Q. Remark we have employed one rule and we have not used any truth
table.

If beginning from a set of sentences Γ and applying inference rules, we can
derive A, we have found a proof of A from Γ and that will be noted Γ ` A. We
will call the sequence of sentences generated until finding A a proof of Γ ` A.

We know that checking Γ |= A is equivalent to checking that Γ ∪ {¬A} is
unsatisfiable. If beginning from a set of sentences and applying inference rules,
we derive the empty set, then we have found a refutation of Γ ∪ {¬A} and that
will be noted Γ ` A.

Notice that the satisfiability relationship has been defined as a function of the
interpretation concept. Differently, the deduction relationship has been defined

13

as a function of the derivation of sentences applying inference rules. Thus, a
calculus will be useful if it has the following properties:

1. Soundness. Each sentence A deducible from a set of sentences Γ is logical
consequence of Γ. Namely, Γ ` A ⇒ Γ |= A. This property is required
to all the calculus, since otherwise we can deduce sentences that are not
logical consequence.

2. Completeness. For each sentence A that is a logical consequence of a set
of sentences Γ there exists a proof of A from Γ. Namely, Γ |= A ⇒ Γ ` A

In the next section, we study resolution which is a proof procedure by refu-
tation.

2.9 Resolution

In this section, we will study the Resolution calculus. This calculus is charac-
terized by having a unique inference denominated Resolution Principle. To be
able to apply resolution, we need to transform the sentences to the clausal form.

2.9.1 Clausal Form

The clausal form is a compact representation of the conjunctive normal form
(CNF). We remind that any sentence of the CP0 can be transformed to a logical
equivalent sentence in CNF. Now, we give some few definitions in order to study
the transformation from the CNF to the clausal form.

Definition 2.9.1 (Dual literal) If L is a literal identic to an atom P then the
dual of L, noted Ld, is equal to ¬P . Otherwise, if L is of the form ¬P , then
Ld = P .

Definition 2.9.2 (Clause). A clause is a finite set of literals that represents
the disjunction of these literals.

Example 2.9.1 The disjunction P ∨ Q ∨ ¬R can be represented by the clause
{P, Q,¬R}.

A clause is unitary if it contains a unique literal. The clause without literals
is the empty clause and it is noted by 2. As the empty clause has no literals to
be satisfied it is always unsatisfiable and denotes the truth value F.

Definition 2.9.3 (Clausal Form). Let A = (L1,1 ∨ . . .∨L1,n1)∧ . . .∧ (Lk,1 ∨
. . . ∨ Lk,nk

) be a sentence in CNF where each Li,j is a literal. The clausal
representation is given by the following set of clauses:

A = {{L1,1, . . . , L1,n1}, . . . , {Lk,1, . . . , Lk,nk
}}

A clause represents a disjunction. A coma separating two literals in a clause
represents a disjunction symbol, meanwhile a coma separating two clauses rep-
resents a conjunction symbol.

14

2.9.2 Resolution Principle

As we have mentioned, the resolution calculus has a unique inference rule, de-
nominated Resolution Principle. The inconvenient of having one unique rule is
that sentences must be translated to the clausal form.

Definition 2.9.4 (Resolution Principle). Let C1 = {L1, . . . , Ln} and C2 =
{L′1, . . . , L′m} be two clauses. The clause R = (C1 − {Li}) ∪ (C2 − {L′j}) is a
resolvent of C1 and C2 if Li ∈ C1, L′j ∈ C2 and Ld

i = L′j.

Notice that if C1 = {L} and C2 = {Ld} then the empty clause is obtained.

Example 2.9.2 Next we give some examples of resolvents:

C1 = {P,¬Q,R} C2 = {Q, R,¬S} R = {P, R,¬S}
C1 = {Q} C2 = {¬P,¬Q,R} R = {¬P, R}
C1 = {¬P} C2 = {P} R = 2

Definition 2.9.5 Let C be a set of clauses and C ′ a clause. A resolution proof
of C ′ from C is a finite sequence C1, C2, . . . , Cn of clauses such that each Ci,
1 ≥ i ≥ n, is a clause of C or it is a resolvent of two clauses Cj, Ck, 1 ≥ j, k < i,
and Cn = C ′. A proof of 2 from C is denominated a refutation of C.
Example 2.9.3 A refutation by resolution of the set of clauses:

C = {{P, Q,¬R}, {¬P}, {P,Q, R}, {P,¬Q}}
is

C1 = {P, Q,¬R} (clause of C)
C2 = {P, Q,R} (clause of C)
C3 = {P, Q} (resolvent of C1, C2)
C4 = {P,¬Q} (clause of C)
C5 = {P} (resolvent of C3, C4)
C6 = {¬P} (clause of C)
C7 = 2 (resolvent of C5, C6)

C1, C2, C3, C4, C5, C6, C7 is a refutation of C.
Theorem 2.9.1 (Resolution lemma) Let C be a set of clauses, C1 and C2 two
clauses of C and R a resolvent of C1 and C2. Then, C and C ∪ R are logically
equivalents.

Theorem 2.9.2 (Resolution theorem) A set of clauses C is unsatisfiable iff
there exists a refutation of C.

The previous theorem warrants the soundness and completeness of resolution
for refutation, namely Γ |= A iff Γ,¬A ` 2. However, it does not warrant
Γ |= A iff Γ ` A. By the soundness property, one can state that if Γ ` A then
Γ |= A, but the inverse is not true. That can be seen with a counterexample:
P |= P ∨Q, however P 0 P ∨Q. Due to this constraint, it is common to consider
that resolution is complete for refutation but it is not complete as a deductive
calculus.

15

Chapter 3

The Antecedents: The
Horn-CNF SAT problem

3.1 Introduction

The propositional satisfiability (CNF-SAT) problem is at the core in Computer
Science. It was the first NP-complete problem found [33]. Since then, a rather
big effort has been done to determine some CNF-SAT islands of tractability
with significant repercussions in applications. The most important classes that
can be resolved in deterministic polynomial time are: 2-CNF, for which linear
algorithms were designed in [17, 46, 39], and Horn-SAT, that admits also lin-
ear algorithms as showed in [66, 37, 79, 48, 90, 50]. Several variants of the
Horn-SAT problem have been also found out to be solvable in polynomial time:
renamable Horn [16, 70], extended Horn [31], CC-balanced [32], SLUR [89] and
q-Horn [28, 27].

The Horn-SAT problem is polynomially solvable since the work of Karp [67]. Af-
ter that, Henschen and Wos [62] showed that if a Horn formula is unsatisfiable,
then, there exists a refutation proof employing unit propagation only. Jones and
Laaser [66] showed that a direct implementation of this principle leads to an al-
gorithm of quadratic complexity. Later, Dowling and Gallier [37] presented two
linear algorithms to resolve the Horn-SAT problem: one with a forward chaining
strategy and the second one based on backward chaining. In [90] and [50] it is
proved that the backward algorithm is incomplete and not linear respectively.
In [79, 48, 41, 3] were proposed different linear versions, all of them based on
a forward chaining strategy. A linear and complete algorithm with backward
chaining strategy is described in [50].

In this chapter we review three variants of the Horn-CNF SAT problem.
First, we review the well known classical (bi-valued) Horn-SAT problem, where
syntax, semantic and a complete calculus is stated; also we develop a strictly

17

linear algorithm to solve, using only a stack and counters the related SAT prob-
lem. We also prove the complexity and correctness of this algorithm. In the next
section we review the case of the Many-valued Horn-SAT problem as it is stated
in [42]. Finally, in the last section, the Regular Horn-SAT problem [43, 21, 75]
is described.

3.2 Classical Horn-CNF SAT problem

3.2.1 Syntax and semantic

A clause signature is a pair <P,O> such that P= {p1, . . . , pn} is a set of n
propositional variables and O= {∧,∨,¬} is a set of logical connectives.

Definition 3.2.1 An atomic proposition (or Boolean variable) p is a symbol
and P is a finite set of atomic propositions. A literal L is either an atomic
proposition p ∈ P, noted L+ or its negation ¬p, noted L−. A clause C is a finite
disjunction of literals: C = (L1∨. . .∨Lm). A Horn clause is a clause with at most
one non-negative literal. We have three types of Horn clauses: pure negative like
C = (L−1 ∨ L−2 . . . ∨ L−m), pure non-negative as in the unit clause C = (L+) and
pure Horn clauses as in C = (L−1 ∨ L−2 . . . ∨ L−m−1 ∨ L+

m). A propositional CNF
formula Γ is a finite conjunction of clauses: Γ = C1 ∧ . . . ∧ Cn. A Horn formula
is a finite conjunction of Horn clauses.

Definition 3.2.2 An interpretation I assigns to each formula Γ one value in
the set {0, 1} and it satisfies:

• A literal p (¬p) iff I(p) = 1 (I(p) = 0).

• A clause C = L1 ∨ . . . ∨ Lk, iff I(Li) = 1, for at least one Li.

• A formula Γ if I satisfies all clauses of the formula.

An interpretation I is a model of a formula Γ if satisfies the formula. We
say that Γ is satisfiable if it has at least one model, otherwise, it is unsatisfiable.

3.2.2 Logical Calculus

Methods based on unit resolution (UR) [49] are known as the most efficient to
resolve the general problem of deduction in Horn logics [41, 45]. In this class of
formulas, UR is a sound and complete [62, 63] inference rule.

Definition 3.2.3 Let C = (¬p ∨ ¬p1 ∨ . . . ∨ ¬pn ∨ pn+1) and C′ = (p) two
clauses. Then, the positive unit resolution (PUR) generates the resolvent clause
C′′ = (¬p1 ∨ . . . ∨ ¬pn ∨ pn+1).

Definition 3.2.4 A deduction of a clause Cn from an original formula Γ is a
succession of clauses < C1, . . . , Cn > such that for each 1 ≤ i ≤ n, Ci ∈ Γ or Ci

is a resolvent from two preceding clauses in the succession.

18

Unit resolution rule introduces the restriction that one of the clauses must
contain only a proposition (positive literal). We will denote the deductive system
by `PUR. The following results for correctness of the `PUR are well known
[62, 63] and easy to prove.

Theorem 3.2.1 Soundness Let Γ be a theory and C a clause, then Γ `PUR

C ⇒ Γ |= C.

Theorem 3.2.2 Completeness Let Γ be a HORN-formula. If Γ is unsatisfi-
able, then Γ `PUR 2.

The next theorem extends `PUR completeness to atomic clauses.

Theorem 3.2.3 Completeness Let Γ be a HORN-formula and C = (L) a unit
clause, then Γ |= C ⇒ Γ `PUR C.

A set of clauses is satisfiable if it has at least one model. Concerning this
point, there exist two known results:

Proposition 3.2.1 Let Γ a HORN-formula:

1. Γ+ = ∅ ⇒ ∃I, I |= Γ

2. Γ− = ∅ ⇒ ∃I, I |= Γ

Proof (1) Γ does not contain positive clauses, then all clauses contain at least
one negated variable; if we assign to all of them the truth value 0 (false), we will
obtain a model. (2) Proof is dual with respect to (1). ¥

3.2.3 PPUR Algorithm

The principle of the PPUR algorithm (Propagation of the PPUR inference rule)
consists in applying repeatedly the positive unit resolution until either deriving
the empty clause (Γ is unsatisfiable) or until there could not be derived new unit
clauses (Γ is satisfiable).

The most important characteristics of the PPUR algorithm are the following:
its complexity is strictly linear and its presentation given in pseudo code is more
simple than the existing and published algorithms like [37, 45, 48, 79].

The associated Data structures are:

Concerning each C clause
Cont(C) : It is a counter which in each moment of the process indicates the
number of negative literals ¬p such that the associated propositions p, has not
been deduced until that moment.
Initially, Cont(C) indicates the number of negative literals in C.

19

Lit.Pos(C) : Positive literal of the clause C.

Concerning the formula Γ
Prop(Γ) : Set of propositions p in Γ.

Concerning each proposition p
Neg(p) : Set of pointers to clauses containing ¬p
V al(p) : V al(p) ∈ {0, 1} and V al(p) = 1 iff p is logical consequence of the for-
mula Γ.

Auxiliary structure
Pila : Data structure of type Stack.

Input: Γ: A Horn formula
Output : ’Satisfiable’ iff Γ is satisfiable.

Algorithm 3.2.1 PPUR(Γ)

1. Stack ← ∅;
2. for ∀p ∈ Prop(Γ) do:
3. Val(p) ← 0, Neg(p) ← {};
4. for ∀C ∈ Γ do:
5. if C 6= {p} then do:
6. Cont(C) ← 0;
7. if ∃p ∈ C then Lit.Pos(C) ← p;
8. else Lit.Pos(C) ← Nil;
9. for ∀¬pi ∈ C do:
10. Increment Cont(C);
11. Add C to Neg(pi);
12. else: If Val(p)=0 then:
13. push(p, Stack), Val(p) ← 1;
14. while Stack 6= ∅ do:
15. p ← pop(Stack);
16. for ∀C ∈ Neg(p) do:
17. Cont(C) ← Cont(C)− 1;
18. if Cont(C) = 0 then do:
19. if Lit.Pos(C) 6= Nil then do:
20. if Val(Lit.Pos(C)) = 0
21. then: push(Lit.Pos(C),Stack);
22. Val(Lit.Pos(C)) ← 1;
23. else return ’Unsatisfiable’;
24. return ’Satisfiable’;

Theorem 3.2.4 Complexity: PPUR(Γ) is in O(n).

Proof. Initialization: (lines 1–12) The first two “for” iterations require a pro-
portional time to the number of propositions and clauses respectively. Third

20

iteration “for” is proportional to the set of occurrences of negative literals in the
non-unitary clauses.
While Cycle: (lines 13-22) The maximum number of iterations of the While
instruction is bounded by the number of different propositions in the formula
because a same proposition can not be pushed in the Stack more than once. This
can be checked by the following facts: 1) In the initialization block a proposi-
tion p is introduced in the stack only if exists a unit clause C = (p). Once it
is introduced, it is marked with: V al(p) = 1. 2) Next, in the While iteration,
before is introduced a proposition in the Stack, it is verified that is not marked
to 1, i.e. V al(p) = 0. Only in this case is inserted in the Stack and immediately
is marked V al(p) ← 1, avoiding that can be pushed for a second time.
Like “Neg(p)” list has an element for each occurrence of ¬p, the number of it-
erations of the ”for” instruction within the While instruction is limited to the
number of occurrences ¬p of propositions of the original formula. Consequently,
the complexity of the algorithm is linear. ¥

Theorem 3.2.5 Soundness and Completeness The PPUR(Γ) algorithm re-
turns ’Unsatisfiable’ iff Γ is unsatisfiable.

3.3 Many-valued Horn-CNF-SAT problem

We consider as [42] that a many-valued sentence is an ordered pair (S;α) in
which S is a classical sentence and α is a truth value attached to the sentence
S. The set of truth values is the infinite ordered set formed by the unit rational
interval Σ = [0, 1]. This logic can be viewed also as a subclass [58] of the regular
logic [56, 60].

3.3.1 Syntax and semantic

Definition 3.3.1 Many-valued formulas A many-valued literal is a pair of
the form (L; α) where L is a classical propositional literal and α ∈ Σ. A many-
valued clause is a pair of the form ((L1 ∨ . . . ∨ Lm); α) where Li is a classical
propositional literal and α ∈ Σ. We denote the many-valued empty clause as
2. A many-valued formula is a conjunction of many-valued clauses. Any many-
valued formula S containing the many-valued empty clause is denoted by S2.

Example 3.3.1 An example of a many-valued formula is: S = {(p1; 0.75),
(p3; 0.80), ((¬p1∨¬p2∨p4); 0.50), ((¬p2∨¬p3∨p1∨p5); 0.60), ((¬p2∨¬p5); 0.65)}.
Definition 3.3.2 Many-valued Horn formula A many-valued Horn clause
is a many-valued clause whose first component has at most one non negated
literal. A many-valued Horn formula is a finite conjunction of many-valued
Horn clauses.

Example 3.3.2 An example of a many-valued Horn formula is:
S = {(p1; 0.75), (p3; 0.80), ((¬p1 ∨ p4); 0.50), ((¬p2 ∨ ¬p3 ∨ p5); 0.60),
((¬p2 ∨ ¬p5); 0.65)}.

21

Definition 3.3.3 Interpretation An interpretation I is a mapping from the
first components of the sentences (Literals, clauses and formulas) to the set Σ
of truth values. An interpretation I verifies the following properties:

I(¬S) = 1− I(S)
I(S1 ∨ S2) = max(I(S1), I(S2))
I(S1 ∧ S2) = min(I(S1), I(S2))

Definition 3.3.4 Satisfiability An interpretation I satisfies a many-valued
clause C = ((L1 ∨ . . . ∨ Lm); α), iff for some literal Li, I(Li) ∈ [α, 1], i.e.
iff I(Li) ≥ α. A many-valued formula S is satisfiable iff there exists an inter-
pretation that satisfies all the many-valued clauses in S. A many-valued formula
that is not satisfiable is unsatisfiable. The empty many-valued clause 2 is always
unsatisfiable and the empty many-valued formula S = {} is always satisfiable.

Example 3.3.3 An interpretation that satisfies the formula in the previous ex-
ample is for instance I(p1) = I(p3) = I(p5) = 0.8, I(p2) = I(p4) = 0.

Proposition 3.3.1 Let S be any many-valued formula; if S contains two many-
valued clauses (p;α) and (¬p;α′) such that α + α′ > 1 then, S is unsatisfiable

Proof:
I(p) ≥ α, I(¬p) ≥ α′ ⇒ I(p) + I(¬p) ≥ α + α′.
If α + α′ > 1 then I(p) + I(¬p) > 1.
But @I t.q. I(p) + I(¬p) > 1
because ∀I, I(p) + I(¬p) = 1
according to the first axiom of I.

3.3.2 Logical Calculus

Only one inference rule called many valued positive unit resolution (MPUR) by
[42] is needed to obtain a refutation complete calculus for Many valued Horn
formulas.

Definition 3.3.5 The rule MPUR derives from a many valued Horn clause
((¬p ∨ D− ∨ q); α) and a unitary many valued Horn clause (p;α′) the many
valued Horn clause ((D− ∨ q); α) provided that α + α′ > 1. The many valued
Horn clause derived from the clauses (¬p;α) and (p; α′) given that α + α′ > 1
is the empty many valued Horn clause, which is denoted by 2. A many valued
Horn formula containing the empty clause is denoted by Γ2.

Theorem 3.3.1 Soundness Γ `MPUR Γ′ ⇒ Γ |= Γ′

Proof: Since the empty many valued Horn clause is by definition unsatisfiable
and it is obtained by a finite number of applications of MPUR rule, it suffices to
show that if there exists an interpretation that satisfies both ((¬p∨D−); α) and
((p); α′) provided that α + α′ > 1; then, this interpretation satisfies ((D−); α).

22

Assume that ((¬p∨D−); α) and ((p); α′) are satisfiable. Let I be an interpreta-
tion that satisfies both ((¬p∨D−); α) and ((p); α′). So, it must be that I(p) ≥ α′

and I(¬p) ≤ 1 − α′. Since I(¬p) ≤ 1 − α′ and 1 − α′ < α, the interpretation I
satisfies ((D−); α).

Theorem 3.3.2 Completeness Γ is unsatisfiable iff Γ ` Γ2

The proof is given in [42].

Definition 3.3.6 A refutation proof of a many valued Horn formula Γ denoted
by Γ `MPUR 2 is a finite succession of many value Horn clauses C1, . . . , Cm such
that Cm = 2 and, for each k(1 ≤ k ≤ m), either Ck is a clause of Γ or Ck is
obtained from Ci and Cj(k ≥ i, j) applying the MPUR rule.

3.3.3 MPUR-PROP algorithm

A polynomial algorithm can be obtained directly applying the MPUR rule: the
input of the algorithm is a many-valued Γ-formula whose (un)satisfiability will
be proved by successive applications of the MPUR inference rule. This rule
is applied in a forward chaining strategy until one of the following two cases
arises: either the empty clause is derived meaning that the original formula is
unsatisfiable, or no more inference rules can be applied which means that the
formula Γ is satisfiable. A first version of the algorithm MPUR-PROP(Γ) which
propagates the MPUR inference rule is the following:

MPUR-PROP(Γ)
If Γ+ = {} then return(sat)
If 2 ∈ Γ then return(unsat)
If (p; α) ∈ Γ then

return(MPUR-PROP(MPUR Γ (p; α)))
return (sat)

where:

(MPUR Γ (p; α)): It applies the MPUR rule returning the formula Γ′ re-
sulting of removing the unit clause (p; α), and all the occurrences of the literals
¬p in clauses ((¬p ∨D− ∨ q); α′) such that α + α′ > 1.

It can be remarked that the number of recursive calls to the main proce-
dure is in O(size(Γ)). Also, the complexity of each execution of MPUR is in
O(size(Γ)) since the blind search of clauses involved in a MPUR step, namely
clauses having a ¬p occurrence, requires O(size(Γ)) time. Hence, the worst-case
complexity of the above presented algorithm is in O(n2).

A more efficient algorithm. Improving algorithm efficiency requires to
integrate optimizations as we describe below.

23

Searching for ¬p occurrences. The aim is to avoid the exhaustive search
for clauses containing the literals ¬p after a given deduction (p;α) is made. To
this end, we apply a formula pre-process in which a set of pointers Neg(p) for
each p ∈ Prop(Γ) is obtained. These pointers are links between propositions
p and the clauses containing a literal ¬p. Thus, these pointers, allow to access
directly the clauses involved in a MPUR procedure avoiding the blind search for
such clauses.

Removals of literals. The MPUR procedure removes certain occurrences
of literals. From an algorithmic point of view, each removal is in O(| D |), where
| D | is the cardinal of a disjunction D of a clause C = ((D− ∨ q); α). But with
the help of a counter (Neg.Counter(C)) the complexity of a removal literal can
be reduced to O(1) as indicated below.

Remember that a negative literal ¬p in the part D− of a clause C = (D− ∨
q; α) is removed when a many valued literal (p; α′) is deduced and α + α′ > 1.
Now, these removals will be substituted by decrements of the counter Counter(C).
This way, Counter(C) indicates the number of negative literals remaining in D−

not having been affected by the previous many valued literal deductions.
Thus, although no information about which negative literals have been re-

moved from C is stocked, the necessary information of how many negative literals
there are left in C is furnished by the counter at each moment of the inference
process. When a counter Neg.Counter(C) reaches the zero value, it means that
the initial clause C = ((D− ∨ q); α), owing to the virtual removals, has become
a positive clause C = (q; α), namely, it is generated a new unit clause. If the
atom q does not exists, then it means that the original Γ formula is unsatisfiable.

Treatment of MPUR sequences In the sequential applications of the
MPUR rule, a same proposition with different truth value can be deduced. For
instance, assume that first (p; α) is deduced and later is deduced (p; α′) with
α′ < α. It can be easily checked that the last deduction will produce an MPUR
that will simplify the formula. Indeed, the sooner (p; α) deduction removed all
the information that could be removed by the later (p; α′) deduction. However if
α′ > α new virtual removals can be performed. To apply the MPUR inferences
adequately we stock the maximal truth degree α with which p has been deduced
so far, in a data structure V al(p) . Thus in the previous cases, the operations for
the MPUR inference are launched only when (p; α′) is deduced and α′ > V al(p).
If this is the case V al(p) will be updated with V al(p) ← α′.

Finally, we store the deduced unit clauses (p; α) in a Stack data structure as
the basis for an iterative bottom-up algorithmic process.

Henceforth, [X] denotes a pointer to the object X. For example [C] is a pointer
to the clause C.

Given the previous data structures and algorithmic operations, the main
procedure remains as follows:

24

MPUR-PROP(Γ)
while Stack 6= ∅ do:

(p; α) ← pop(Stack)
if V al(p) < α do:

V al(p) ← α
for ∀[C] ∈Neg(p) do:

if V al(C) + α > 1 then
Decrement Neg.Counter(C)
if Neg.Counter(C) = 0 then do:

if C+ = {} ∈ C then return ’Unsat’
Else (C+ = q) push((q;V al(C)), Stack)

return ’Sat’

Main procedure complexity. The algorithm is of course more efficient
than the previous one. But nevertheless, the complexity is still quadratic.

Theorem 3.3.3 The complexity of the main procedure is in O(k ·m), where k
is the maximum number of clauses concluding a same non-negated proposition p
and m is the maximum number of clauses sharing the same negated proposition
¬p.

Proof: For each new unit clause (p; α′) deduced, the set Neg(p) is scanned. This
search is done at most as many times as occurrences of p exist in Γ. So, the
computational cost is in O(k ·m).

The aim of the following optimization is to design a strictly linear Main pro-
cedure. The non-linear complexity factor will be confined to only the Pre-process
step.

Ordering Neg(p). Once the Neg(p) lists are obtained, we sort them as
follow Neg(p) = {[C1 = (S1; α1)], . . . , [Ck = (Sk; αk)]} with α1 ≥ . . . ≥ αk. This
is done with a call to the well known procedure MergeSort [51], namely Neg(p) ←
MergeSort(Neg(p)). Once the Neg(p) lists are obtained, the removals can be
performed in a more efficient way.

When a many-valued literal (p, α) is deduced, the first pointer [C1] to a
clause (S1, α1) in Neg(p) is considered checking whether α + α1 > 1. In the
affirmative case, the pointer is removed from Neg(p), the counter decrements
are executed and the same check is carried out with the second clause pointer
in Neg(p). These operations are repeated till a certain check is negative and
at that moment, the removal of pointers from Neg(p) is stopped. This process
ensures that the list Neg(p) is revised at most once.

The definitive algorithm is given below. We first describe the initialization
procedure and afterwards the main procedure:

25

Preprocess-MPUR-PROP(Γ)
Stack ← ∅
for ∀p ∈ Prop(Γ) do: Val(p) ← 0, Neg(p) ← {}
for ∀C ∈ Γ do:

if C = 2 then return(’unsatisfiable’)
else C = ((¬p1 ∨ . . . ∨ ¬pk ∨ C+); α) do:

if k 6= 0 then do:
Neg.Counter(C) ← k
for 1 ≤ i ≤ k do: Add [C] to Neg(pi)

else do: push((p; V al(C)), Stack)
for ∀p ∈ Prop(Γ) do:

Neg(p) ← MergeSort(Neg(p))
Main-MPUR-PROP
End

Main-MPUR-PROP
while Stack 6= ∅ do:

(p; α) ← pop(Stack) {PROCEDURE MPUR}
if α > V al(p) then do:

V al(p) ← α
while V al(First.clause(Neg(p))) + α > 1 do:

Remove First.clause(Neg(p)) from Neg(p)
Decrement Neg.Counter(C)
if Neg.Counter(C) = 0 then do:

if q = {} ∈ C then return ’Unsat’
else do: push((q; V al(C)), Stack)

return ’Sat’
End

Theorem 3.3.4 The complexity of the Preprocess procedure is in O(n.log(m)),
where n is the number of different propositions and m is the maximal number of
negative occurrences of a same proposition.

Proof: The cost of the first “for” loop is trivially in O(p), where p is the number
of propositions in Γ. The second for instruction is in O(n), where n is the size
of Γ. This is because there is only one iteration for each clause and in such
iteration the literals of the clause are scanned only once. As the complexity of
MergeSort is known to be in O(n.log(m)) in the worst case, so is the complexity
of the last line, where n is the number of different propositions and m is the
maximal number of negative occurrences of a same proposition. Consequently,
the final pre-process complexity is also in O(n.log(n)).

Theorem 3.3.5 The complexity of the Main procedure is in O(n).

The proof follows from the previous explained optimizations of the steps of
this procedure.

Thus, it could be seen that the main procedure is strictly linear and that the
non-linear factor has been confined to the preprocess step.

26

3.4 Regular Horn-CNF SAT problem

3.4.1 Syntax and semantic

The following definitions describe the syntax and semantics of the regular HORN-
CNF formulas. A more detailed description about these concepts can be found
in [9, 42, 56, 58, 12].

Definition 3.4.1 Signed formulas Let N = {i1, i2, . . . , in} be a finite set of
truth values, S a subset of N (S ⊆ N) and p a proposition. A total order ≤ is
associated with N . An expression of the form S :p is a signed literal and S is its
sign. Given a signed literal S :p and a set of truth values N , (N \ S) :p denotes
the complement of S : p. A signed clause is a disjunction of signed literals. A
signed formula is a conjunction of signed clauses.

Definition 3.4.2 Interpretation and satisfiability An interpretation I is a
mapping that assigns to every proposition a value in the set of truth values N .
An interpretation I satisfies a signed literal S :p iff I(p) ∈ S. An interpretation I
satisfies a signed clause iff I satisfies at least one of its signed literals. A signed
formula Γ is satisfiable iff there exists at least one interpretation that satisfies all
the signed clauses in Γ. A signed formula that is not satisfiable is unsatisfiable.
The empty signed clause 2 is unsatisfiable and the empty signed formula Γ = {}
is satisfiable.

Definition 3.4.3 Regular sign Let ↑ i denote the set {j ∈ N | j ≥ i} and ↓ i
the set {j ∈ N | j ≤ i}, where N is the set of truth values, ≤ and ≥ are linear
orders on N and i ∈ N . If a sign S is equal to either ↓ i or ↑ i, then it is a
regular sign. A signed literal S :p has positive (resp. negative) polarity if S =↑ i
(resp. S =↓ i).

Definition 3.4.4 Regular formulas Let R be a regular sign. A regular literal
is a signed literal whose sign is regular. A regular clause C is a disjunction of
regular literals C = R1 : p1 ∨ R2 : p2 ∨ . . . ∨ Rm : pm. A regular Horn clause is
a regular clause with at most one regular literal with positive polarity. A regular
unit clause is a regular clause containing only one regular literal. A regular Horn
formula is a conjunction of regular Horn clauses.

Example 3.4.1 The following formula is an unsatisfiable regular Horn-CNF
formula:

Γ = {C1 = (↑0.7 : p1),
C2 = (↑0.6 : p3),
C3 = (↑0.8 : p6),
C4 = ((↓0.2 : p1∨ ↓0.1 : p2∨ ↓0.15 : p3)∨

(↓0.25 : p4∨ ↓0.4 : p5∨ ↓0.2 : p6)∨
(↑0.8 : p7)),

C5 = (↓0.1 : p8)}

27

3.4.2 Logical Calculus and an almost linear algorithm

The Logical Calculus and the associated SAT algorithm are similar to those of
the previous section. In fact, the Regular Logic is a simple extension of the
multi-valued logic of the previous section. Indeed, a clause C = ((¬p1 ∨ p2 ∨
. . .∨¬pk∨p); α) in the previous multi-valued language can be represented in the
regular logic by the clause: (↓1−α : p1∨1−α : p2∨ . . .∨ ↓1−α : pk ∨1−α : p)
However, a regular clause (↓ i1 : p1∨ ↓ i2 : p2 ∨ . . .∨ ↓ ik : pk∨ ↑ i : p) can not be
represented in the previous multi-valued language.

The Logical Calculus is formed by only one rule that we call the Regular
Unit Resolution (RUR).

Definition 3.4.5

(↑j : p), (↓ i : p ∨D)(j > i)
(D)

(RUR)

Obviously, when D is empty the empty clause 2 is deduced.

Theorem 3.4.1 correctness Γ `RUR 2 iff Γ is unsatisfiable.

The proof is in [58].

As the inference rule and multivalued logic of the previous section and the cur-
rent one are similar, the corresponding SAT algorithm is similar to that of the
previous section.

28

Preprocess-RUR-PROP(Γ)
Stack ← ∅
for ∀p ∈ Prop(Γ) do: Val(p) ← 0, Neg(p) ← {}
for ∀C ∈ Γ do:

if C = 2 then return(’unsatisfiable’)
else (↓ i1 : p1∨ ↓ i2 : p2 ∨ . . .∨ ↓ ik : pk∨ ↑ i : p) do:

if k 6= 0 then do:
Neg.Counter(C) ← k
for 1 ≤ j ≤ k do: Add ([C]; ij) to Neg(pj)

else do: push((↑ i : p), Stack)
for ∀p ∈ Prop(Γ) do:

Neg(p) ← MergeSort(Neg(p))
Main-MPUR-PROP
End

Main-RUR-PROP
while Stack 6= ∅ do:

(↑ i : p) ← pop(Stack)
if i > V al(p) then do:

V al(p) ← i
while V al(First.clause(Neg(p))) < i do:

Remove First.clause(Neg(p)) from Neg(p)
Decrement Neg.Counter(C)
if Neg.Counter(C) = 0 then do:

if q = {} ∈ C then return ’Unsat’
else do: push((↑ i : p), Stack)

return ’Sat’
End

The current algorithm is almost linear. This statement derives from the
similarity between the previous algorithm in precedent section and the current
one. The proof is very similar to those of the previous theorems 3.3.4 and 3.3.5.

29

Chapter 4

The Horn-NNF
propositional SAT Problem

4.1 Introduction

In some practical applications of Computer Science, the well-known Normal
Forms CNF and DNF do not provide a natural framework to represent knowl-
edge and reason. In fact, performing inferences efficiently with formulas whose
syntactic forms are non restricted to the well-known ones is a matter of major
interest in many practical applications inside very heterogeneous areas such as
Expert Systems, Deductive Data Bases, Hardware Design, Automated Software
Verification, Symbolic Optimization, Logic Programming, Automated Theorem
Proving, Petri Nets, Truth Maintenance Systems, etc. For example, in Rule
Based Systems, it is interesting to allow rules with a more general syntactic
form than the standard A1 ∧ A2 ∧ . . . An → B. Indeed, for example, rules of
kind (((A1 ∨A2) ∧A3) ∨A4) ∧A5 ∧A6 → B1 ∧B2 could be allowed.

However, most of the existing efficient proof methods are designed to work
with CNF formulas. So, it is a common practice to translate knowledge rep-
resentations from general forms to CNF’s [35, 92, 65, 83]. This transformation
was originally proposed in 1970 by Tseitin [96] who published the first algo-
rithm, later [61] included the case for first-order logic, [80] covered the cases
for modal and intuitionist logics, finally, Hähnle [57] investigated the problem of
translating arbitrary finitely valued logics to short CNF signed formulas.

Currently, two kind of CNF translations are known, one preserves the logical
equivalence and the other only the satisfiability equivalence.

1. In the first case, the translation cannot skip the explosion of the number
of symbols due to the ∧/∨ distribution operation and thus the size of the
resulting CNF formula can increase exponentially.

2. The other approach consists in modifying the formula by introducing ar-
tificial literals [96] aiming at preserving the satisfiability relation. This

31

second line of solution has two strong drawbacks. First, the logical equiv-
alence relation is lost which could be invalid for certain applications. For
example, in Expert Systems each proposition has a practical and semanti-
cal meaning which is vanished if the original propositions are substituted
by artificial ones. Second, to solve the SAT problem two procedures are
required: the first one transforms the original formula into a CNF formula,
and the second one, taking as its input the translated CNF formula which
is bigger than the original one, applies properly the satisfiability test.

Hence, we claim that processing directly the non-clausal formula in an appropri-
ate way arises as the most efficient approach to solve non-clausal SAT problems.

In spite of the large number of potential applications, few studies have been
devoted to non-clausal reasoning. Thus, we present new results related to this
field and more precisely to tractable methods for reasoning with formulas in
Negation Normal Form (NNF). More specifically, the main result of this chapter
is twofold. Firstly, we identify Negation Normal Form (NNF) formulas Γ having
a Horn-like structure and second, and more interestingly, we prove that their
associated SAT problem is strictly linear.

The NNF generalization of the well-known Horn CNF formulas

Γ = Γ1 ∧ Γ2 ∧ . . . ∧ Γn

where clauses have the syntax:

Γi = ¬pi,1 ∨ ¬pi,2 ∨ . . . ∨ ¬pi,n(i) ∨ pi

or, in an analogous notation,

Γi = p−i,1 ∨ p−i,2 ∨ . . . ∨ p−i,n(i) ∨ p+
i ,

is

Γi = NNF−i,1 ∨NNF−i,2 ∨ . . . ∨NNF−i,n(i) ∨ C+
i ,

where terms NNF−i,j are general NNF formulas formed exclusively by negated
propositions (negative literals). The term C+

i is a conjunction composed exclu-
sively by propositions (positive literals). These restrictions are indicated respec-
tively with the symbols “-” and “+” in the exponent. We call the associated
SAT problem, namely knowing whether Horn-like non-clausal formulas of kind
Γ are satisfiable, the HORN-NNF-SAT problem.

The kind of Horn-like NNF (HORN-NNF) formulas we dealt with in this
chapter, can arise from an original non-clausal representation of the problem, or
if the problem is modelled by a classical Horn formula relied on Knowledge Rule
Based Systems, as a result of a factorization operation of its Horn rules. The
Horn-like NNF formulas are compact representations of Horn formulas given that
they require less symbols than Horn formulas to codify identical problems; this
reduction can be in an exponential rate. For instance the HORN-NNF clause:

32

(¬p1,1 ∨ ¬p1,2 ∨ . . . ∨ ¬p1,n)

∧
(¬p2,1 ∨ ¬p2,2 ∨ . . . ∨ ¬p2,n)

∧
. . .

∧
(¬pk,1 ∨ ¬pk,2 ∨ . . . ∨ ¬pk,n)

∨
(p1 ∧ p2 ∧ . . . ∧ pn)

is equivalent to nk+1 Horn clauses.
This chapter is structured as follows. In the next section we briefly review

the research already done about tractable satisfiability and related issues. After,
we define the SIMPLE-HORN-NNF-SAT problem and the HORN-NNF-SAT
problem. The former serves to introduce in a simplified form, the concepts and
algorithmic principles required to solve linearly the latter, the general HORN-
NNF-SAT problem. Then, for each one of these two SAT problems, we allocate a
section composed by the following subsections. The first one defines a sound and
refutation complete Logical Calculus. The next one describes the algorithmic
schema materializing the Logical Calculus. The third subsection provides an
almost linear algorithm following the designed algorithmic schema and finally, in
the last subsection, we detail a strictly linear algorithm to resolve the (SIMPLE)-
HORN-NNF-SAT problem along with the proofs of its logical correctness and of
its strict linearity.

4.2 Related Work

In this section, we briefly review successively the existing computational results
of the SAT problem with CNF and NNF formulas.

The propositional satisfiability (CNF-SAT) problem is fundamental at the
core in Computer Science. It was the first NP-complete problem found [33]. Since
then, a rather big effort has been done to determine some CNF-SAT islands of
tractability with significant repercussions in applications. The most important
classes that can be resolved in deterministic polynomial time are: 2-CNF, for
which linear algorithms were designed in [17, 46, 36], and HORN-SAT, that
admits also linear algorithms as showed in [37, 48, 50]. In addition to these
classes, certain variants of the HORN-SAT problem have been also found out to
be solvable in polynomial time.

Several methods have been developed to infer with non-clausal formulas.
This is the case of Matings [10], Matrix Connection [26], NC-Resolution [81],

33

Dissolution [82], TAS [1, 52, 85] and polWSAT [95]. Also in [88] a decision
procedure for propositional formulas is presented where the original formulas
are previously translated into NNF forms. More recently, in [30] a method
based on the DPLL [34] algorithm has been designed to deal with non clausal
satisfiability. However, no studies relative to NNF tractability employing one of
these methods have been carried out.

With some of the previous mentioned methods, the satisfiability of the HORN-
NNF formulas can be obtained with a polynomial number of inferences. How-
ever, there is not result about the algorithmic complexity. What we claim in
this chapter is that the HORN-NNF formulas can be solved in strictly linear
algorithmic complexity time which is a much stronger assertion than the infer-
ential polynomiality exhibited by the known methods. Even if the number of
inferences of some of the previous mentioned methods was linear this would not
imply a linear complexity time. Proving a strictly linear time is a much stronger
result than proving a linear number of the inferences. Indeed, in addition to
the inferential calculus, we provide an optimized algorithm with appropriately
selected data structures. Both elements are essential in the proof of linear time
of the computational problem dealt with here.

To our knowledge, the first published results concerning non-clausal tractabil-
ity comes from [40, 41, 45] where a strictly linear forward chaining algorithm
to test for the satisfiability of certain NNF formulas subclass is detailed. Such
a class embeds the Horn case as a particular case. In [50] a linear backward
algorithm is given for the same NNF subclass of formulas.

New results concerning NNF tractability are reported in [87] where a method
called Restricted Fact Propagation is presented which is a quadratic, incomplete
non-clausal inference procedure.

More recently, in [93, 94] a significant advance in NNF tractability has been
accomplished. The author define a class of formulas by extending the Horn
formulas to the field of the NNF formulas. Such extension relies on the concept
of polarity. The non-clausal formulas in [93] are somewhat different from the
HORN-NNF formulas defined here. A more detailed description of the kind of
formulas in [93] goes beyond the subject of this chapter and it can be consulted in
such reference. A method to make inferences and potentially to detect refutation
formulas is designed. In [93], a SLD-resolution variant with the property of
being refutationally complete is showed but its computational complexity is not
studied. In [94] a method for propositional Horn-like NNF formulas is described
and it is stated that the method is sound, incomplete and linear.

However, concerning the last issue, no algorithm is specified. Indeed the
steps of the method are described as different propagations of some truth values
in a sparse tree. Then, although it seems that the number of inferences of the
proposed method is linear, it is not proved the resulting complexity (w.r.t. the
number of computer instructions) of a linear number of truth value propagations
on the employed sparse trees.

In previous work carried out by the authors [7, 6], the linearity of some
sub-classes of formulas of the general NNF formulas presented here is proved.

34

4.3 Proof Methodology of the main result

As mentioned in the introduction section, our aim is to prove that the HORN-
NNF-SAT problem can be solved in linear time. This proof requires to design
a correct algorithm to solve the HORN-NNF-SAT problem with strictly linear
complexity. But the design of such kind of optimized algorithms leads to a long
and sophisticated algorithm given in section 4.5.4 mainly by two reasons:

• The processed formulas are not in canonical forms, in other words, formulas
can have a big nesting degree of the connectors ∧/∨;

• The optimization of an algorithm requires careful choices of the data struc-
ture and the computer operations to be performed.

Therefore, for the case of our algorithm, to prove its correctness w.r.t. the
satisfiability test of NNF formulas, directly from the pseudo-code, is an unfeasi-
ble goal. Indeed, such proofs turn out to be very long, full of notations and small
details and therefore of small readability. Altogether, we can state that checking
the correction of such proof will be an arduous task. In other words, the proof
of the logical properties, more precisely its SAT correction, of such kind of so-
phisticated algorithms often are not error-free and however these ones are hard
to detect. Thus, this kind of proofs could lead to invalid theorem assertions.

To circumvent this problem, we propose the methodology below. In order to
prove progressively the logical properties, i.e. the SAT correction, of the final
complicated linear algorithm, our methodology is firstly applied to a sub-case
of the HORN-NNF-SAT problem, that we call the SIMPLE-HORN-NNF-SAT
problem, and afterward it is extended to the general HORN-NNF-SAT problem.
So, the whole proof is split into two phases and each phase is decomposed in
four steps which are briefly described in this section.

4.3.1 Description of the Proof Methodology

The first step consists in defining a Sound and Refutation Complete Logical
Calculus LC. In the second one, we define a SAT algorithm A1 based on the
previous Logical Calculus without taking care in its design of the optimization
complexity aspects. In the fourth step, we specify a strictly linear SAT al-
gorithm A3, and so, A3 is carefully designed. The third one is to define an
intermediate algorithm A2 whose structural design complexity is between the
initial algorithm A1, and the final one A3. Thus, the linear SAT algorithm,
namely A3, is the final step of our complexity optimization process, represented
by the sequence < LC,A1, A2, A3 >.

The following fact gives rise to the mentioned difficulty of the correctness
proof of the linear SAT algorithm: the more optimized is an algorithm, the more
complex is its design and the more complicated is its SAT correctness proof.

To solve this difficulty, the idea behind our approach is, conducting the opti-
mization process verifying that each SAT algorithm in the sequence, is satisfiabil-

35

ity equivalent to the previous one in the sequence (The equivalence relationship
between LC and A1 is to be specified later).

We can describe these steps precisely with a simple First Order Logic for-
malism. Variables are written in small letters and constants in capital letters.
We use four first order predicates:

• SRC, to assert the Soundness and Refutation Completeness of a Logical
Calculus x, i.e. SRC(x) is true iff x is a Sound and Refutation Complete
Logical Calculus.

• CORSAT , to assert the CORrectness of a SAT algorithm x, namely
CORSAT (x) stands for: x is a SAT algorithm that running on a formula
Γ returns “UNSAT” iff Γ is unsatisfiable

• SATEQU , to assert that two SAT algorithms are satisfiability equivalents,
i.e. SATEQU(x1, x2) says that, for any formula Γ, x1 is a SAT algorithm
which, running on a formula Γ, returns “UNSAT” iff x2 is also a SAT
algorithm which, running on the same formula Γ returns “UNSAT” too.

• LCEQUSAT (x, y), to assert the equivalence between a Logical Calculus
and a SAT algorithm with the following meaning: LCEQUSAT (x, y) is
true whenever x is a Logical Calculus and y is a SAT algorithm such that,
for any formula Γ, x derives 2 from Γ iff y running on Γ returns “UNSAT”.

More formally, noting:

UNSAT (Γ) ≡ Γ is unsatisfiable

and x(Γ) the value returned by algorithm x running on formula Γ, the pre-
vious logical predicates are precisely defined respectively by the following equiv-
alences:

∀x, SRC(x) ⇐⇒ ∀Γ, Γ `x 2 ⇔ UNSAT (Γ)

∀x,CORSAT (x) ⇐⇒ ∀Γ, x(Γ) = “UNSAT ′′ ⇔ UNSAT (Γ)

∀x, y, SATEQU(x, y) ⇐⇒ ∀Γ, x(Γ) = y(Γ)

∀x, y, LCEQUSAT (x, y) ⇐⇒ ∀Γ,Γ `x 2 ⇔ y(Γ) =′′ UNSAT ′′

With this notation, the following corollaries are straightforward:

Corollary 4.3.1

∀x, y, LCEQUSAT (x, y) ∧ SRC(x) =⇒ CORSAT (y)

Proof. It follows from the definitions of the predicates in the statements. ¥

36

Corollary 4.3.2

∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y)

Proof. It follows from the definitions of the predicates in the statements. ¥

As mentioned before, trying to prove the SAT correction of an algorithm
with a complex design structure is not the right way to proceed, because the
more complex is an algorithm the more difficult is to analyze it.

Thus, in order to prove CORSAT (Ai+1) directly and exclusively from its
structural design, we prove CORSAT (Ai)∧SATEQU(Ai, Ai+1), that together
with the previous Corollary, implies CORSAT (Ai+1). Thus, transferring this
approach throughout the optimization sequence < LC, A1, A2, A3 >, we have
that the difficulty of proving CORSAT(A3) has been reduced to the simpler
proofs SRC(LC), LCEQUSAT(LC,A1), SATEQU(A1,A2) and SATEQU(A2,A3).

• The proof of SRC(LC) is a quite standard proof and it is based on known
techniques.

• The remaining three proofs are simple ones because we can choice an al-
gorithm whose structural design is close to its predecessor object in the
sequential optimization process. Thus, making a straight parallelism be-
tween the instructions of the two algorithms, we can state their SAT equiv-
alence.

Thus, in order to prove the correctness of a linear (SIMPLE)-HORN-NNF-
SAT algorithm, we prove successively:

1. The existence of a Sound and Refutation Complete Logical Calculus (LC).
This proof will be done via well-known mathematical techniques.

2. The existence of a correct SAT algorithm SATALGP that is a direct im-
plementation of the previous Logical Calculus LC and whose complexity
is polynomial.

3. The existence of a correct SAT algorithm SATALGQ with quadratic com-
plexity issued from SATALGP via an optimization step.

4. The existence of a SAT correct algorithm SATALGL with a strictly linear
complexity issued from SATALGQ via an optimization step.

4.3.2 Main Theorems of the Proof Methodology

We distinguish four MAIN THEOREMS in our proof methodology, one for each
step of the proof of linearity of the (SIMPLE-)HORN-NNF SAT problem. They
are stated below together with a sketch of their proof. In addition to the previous
First Order Predicates, we also use PSAT (x), QSAT (x) and LSAT (x) which
state that x is a SAT algorithm of respectively Polynomial, Quadratic and Linear
complexity.

37

1. Logical Calculus (LC) This step consists in establishing a Logical Calcu-
lus appropriate to solve the (SIMPLE)-HORN-NNF-SAT problem. Thus,
we must prove its Soundness and Refutation Completeness.

MAIN THEOREM 1: ∃x, SRC(x)

Proof Sketch. The proof consists in finding a particular Logical Calculus
LC and proving its Soundness and Refutation Completeness. As it will be
shown, this proof follows standard mathematical techniques. ¥

2. Algorithmic Version of the Logical Calculus This step consists in
defining an Algorithmic Version of the Logical Calculus (AVLC), proving
its correctness, w.r.t. the satisfiability test, and its polynomial complexity.

MAIN THEOREM 2: ∃x,CORSAT (x) ∧ PSAT (x)

Proof Sketch. The proof is based on the first corollary and it is divided
in two steps:

(a) Firstly, we choose a particular SATALGP for x, namely a polynomial
SAT algorithm such that the proof of LCEQUSAT (LC, SATALGP)
is straightforward. Namely, our proposed SATALGP is a direct algo-
rithmic materialization of the concrete LC defined in the first theo-
rem. Then, applying corollary 1, we deduce CORSAT (SATALGP).

(b) Second, the proof of PSAT (SATALGP) follows from a very simple
complexity analyze of the designed SATALGP .

¥

3. Quadratic Algorithm (QA) This step consists in modelling the vari-
ables of the previous SATALGP with specific data structures, and in
proving that there exists a Quadratic Algorithm SATALGQ derived from
SATALGP .

MAIN THEOREM 3 ∃x, CORSAT (x) ∧QSAT (x)

Proof Sketch. It is based on corollary 4.3.2. We show that there exists a
quadratic algorithm SATALGQ very similar to the previous SATALGP .
Given such similarity, we prove easily the statement
SATEQU(SATALGP , SATALGQ). Thus, CORSAT (SATALGQ) fol-
lows from SATEQU(SATALGP , SATALGQ), CORSAT (SATALGP),
proved in the previous theorem, and the corollary 2. QSAT (SATALGQ)
is obtained by an easy complexity analyze. ¥

38

4. Linear Algorithm (LA) Finally, the optimal algorithm is described pro-
gressively by choosing appropriately the data structures and the computer
instructions, aiming at the design of a strictly linear algorithm. The sub-
stitutions of the initial data structure and the initial computer instructions
by the new ones are explained accurately.

MAIN THEOREM 4 ∃x, CORSAT (x) ∧ LSAT (x)

Proof Sketch. SATEQU(SATALGQ, SATALGL) follows from the tight
similarity between SATALGQ and SATALGL. CORSAT (SATALGL) is
straightforwardly derived from such SAT equivalency, from
CORSAT (SATALGQ), proved in the previous theorem, and from the
corollary 4.3.2. ¥

The advantage of proposed methodology is that the difficulty of obtaining
a proof of the logical properties of the final complex algorithm is simplified,
substituting the original proof by the proof of the Soundness and Refutation
Completeness of a Logical Calculus, which is done as mentioned by standard
formal techniques. The other three SAT equivalence proofs are trivial. In that
way, we eliminate many possible sources of error when proving our main re-
sult, namely that (SIMPLE-)HORN-NNF-SAT is strictly linear and hence, by
showing that there exists a correct and strictly linear algorithm to solve it.

4.4 The SIMPLE-HORN-NNF-SAT problem is
linear

In this section, we will develop the four steps of the methodology previously
described to obtain an algorithm with strict linear worst-case complexity for the
SIMPLE-HORN-NNF-SAT problem.

4.4.1 The SIMPLE-HORN-NNF formulas

Firstly, we recall the required definitions of classical logic and afterward, we
introduce the class of HORN-NNF formulas dealt with here and then, we define
their associated SAT problem.

Definition 4.4.1 A literal L is either an atomic proposition p ∈ P, or its nega-
tion ¬p. A (negated) proposition (resp. negated proposition) is called positive
(resp. negative) literal. A classical clause is a finite disjunction of literals:
(L1∨ . . .∨Lk). A unit clause (L) includes only one literal. We denote the empty
clause () by 2. A Horn clause is a classical clause with at most one positive
literal. A Horn formula is a conjunction of Horn clauses.

Definition 4.4.2 D− (resp. C−) stands for a disjunction (resp. conjunction)
of negative literals, namely D− = (¬p1 ∨ ¬p2 . . . ∨ ¬pk) (resp. C− = {¬p1 ∧

39

¬p2 ∧ . . . ∧ ¬pk}. C+ = {p1 ∧ p2 ∧ . . . ∧ pk} stands for a conjunction formed
exclusively by positive literals.

Definition 4.4.3 A CNF− (resp. DNF−) formula is a CNF (resp. DNF)
formula formed exclusively by negative literals. We write them respectively:

{D−
1 ∧D−

2 ∧ . . . ∧D−
k }

(C−1 ∨ C−2 ∨ . . . ∨ C−n)

Remark. Whenever there will not be confusion, we will not use the ’()’ to
begin and to end a disjunction, and we will write:

C−1 ∨ C−2 ∨ . . . ∨ C−n

Definition 4.4.4 A SIMPLE-HORN-NNF sub-formula F is a positive unit sub-
formula (p), or a disjunction of three optional terms, noted F = (DNF− ∨
CNF− ∨C+). Sub-formulas without (resp. with) the C+ term are said negative
(resp. non-negative) sub-formulas.

Example 4.4.1 The following sub-formula is an example of a SIMPLE-HORN-
NNF sub-formula:

({¬p1 ∧ ¬p2} ∨ {¬p3} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7 ∧ p8})

where the three terms DNF−, CNF− and C+, can be easily identified:

CNF− = {(¬p4 ∨ ¬p5) ∧ (¬p6)}

DNF− = {¬p1 ∧ ¬p2} ∨ {¬p3}
C+ = {p7 ∧ p8}

Definition 4.4.5 A SIMPLE-HORN-NNF formula Γ is a finite conjunction of
SIMPLE-HORN-NNF sub-formulas Γi. We note Γ2 any formula containing the
empty clause 2.

Example 4.4.2 An example of this kind of formulas is (the fourth sub-formula
is the sub-formula of the previous example):

F = {(p1) ∧ (p3) ∧ (p6)

∧
({¬p1 ∧ ¬p2} ∨ {¬p3} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7 ∧ p8})

∧
({(¬p1 ∨ ¬p7) ∧ (¬p9)} ∨ {p8 ∧ p9})

∧

40

¬p1 ¬p4 ∨ ¬p5 p7

∧ ∨ ¬p3 ∨ ∧ ∨ ∧
¬p2 ¬p6 p8

Figure 4.1: Bidimensional representation of the fourth clause

-

z
*

. -¬p1

∧
¬p2

∨ ¬p3 ∨
¬p4 ∨ ¬p5

∧

¬p6

∨
p7

∧

p8

Figure 4.2: A formula path

({¬p8})}
The fourth (non-unitary) sub-formula is equivalent to the following eight

clauses:
(¬p1 ∨ ¬p3 ∨ ¬p4 ∨ ¬p5 ∨ p7)

(¬p1 ∨ ¬p3 ∨ ¬p4 ∨ ¬p5 ∨ p8)

(¬p1 ∨ ¬p3 ∨ ¬p6 ∨ p7)

(¬p1 ∨ ¬p3 ∨ ¬p6 ∨ p8)

(¬p2 ∨ ¬p3 ∨ ¬p4 ∨ ¬p5 ∨ p7)

(¬p2 ∨ ¬p3 ∨ ¬p4 ∨ ¬p5 ∨ p8)

(¬p2 ∨ ¬p3 ∨ ¬p6 ∨ p7)

(¬p2 ∨ ¬p3 ∨ ¬p6 ∨ p8)

The CNF clause represented by a SIMPLE-HORN-NNF sub-formula can be
obtained by an exhaustive enumerating of the paths (defined below) in a bi-
dimensional representation of the formula. The fourth sub-formula of Γ can be
represented graphically in two dimensions as follows:

Definition 4.4.6 Bi-dimensional Representation In the graphical represen-
tation of a formula, terms in a conjunction (resp. disjunction) are represented
vertically (resp. horizontally).

Definition 4.4.7 A formula path crosses throughout only one (resp. all) literal
(resp. literals) that form(s) a conjunction (resp. disjunction).

Example 4.4.3 In the previous example there are exactly eight formula paths.

41

The set of literals in each classical simple clause represented in a factorized
way by a SIMPLE-HORN-NNF clause, can be obtained by taking the literals
crossed in a specific formula path in the graphical representation corresponding
to the SIMPLE-HORN-NNF clause.

Example 4.4.4 The clause corresponding to the path indicated by a dashed line
in the previous figure is:

¬p1 ∨ ¬p3 ∨ ¬p4 ∨ ¬p5 ∨ p7

Proposition 4.4.1 There is a bijection between the set of simple clauses rep-
resented in a SIMPLE-HORN-NNF clause and the set of paths defined in its
bi-dimensional representation.

The proof is trivial.

Now, we define the classical semantic concepts related to the formula satis-
fiability problem.

Definition 4.4.8 An interpretation I assigns to each formula Γ one value in
the set {0, 1} and it satisfies a:

• pos. literal p (resp. neg. literal ¬p) iff I(p) = 1 (I(p) = 0)

• pos. conjunction I(C+) = I({p1 ∧ p2 ∧ . . . ∧ pk}) = 1, iff ∀pi, I(pi) = 1

• neg. conjunction I(C−) = I({¬p1∧¬p2∧ . . .∧¬pk}) = 1, iff ∀pi, I(pi) = 0

• neg. disjunction I(D−) = I((¬p1 ∨¬p2 ∨ . . .∨¬pk)) = 1, iff ∃pi, I(pi) = 0

• CNF− term I(CNF−) = I({D−
1 ∧D−

2 ∧. . .∧D−
k }) = 1, iff ∀Di, I(D−

i) = 1

• DNF− term I(DNF−) = I((C−1 ∨C−2 ∨. . .∨C−k)) = 1, iff ∃C−i , I(C−i) = 1

• SIMPLE-HORN-NNF clause I(F) = I(CNF− ∨ DNF− ∨ C+)) = 1, iff
I(DNF−) = 1 or I(CNF−) = 1 or I(C+) = 1.

• SIMPLE-HORN-NNF formula Γ iff I satisfies all its SIMPLE-HORN-
NNF clauses.

Definition 4.4.9 An interpretation I is a model of a formula Γ if it satisfies
the formula. We say that Γ is satisfiable if it has at least one model, otherwise,
it is unsatisfiable.

Definition 4.4.10 By definition, the conjunction {()} and the disjunction () ≡
2 are unsatisfiable. On the other hand, the conjunction {} and the disjunction
({}) are satisfiable.

Definition 4.4.11 The SIMPLE-HORN-NNF-SAT problem is the problem of
deciding whether a SIMPLE-HORN-NNF formula is satisfiable.

42

4.4.2 Logical Calculus

In this sub-section, we are going to prove the first theorem of our proof method-
ology, namely:

MAIN THEOREM 1: ∃x, SRC(x)

The Logical Calculus needed to prove the (un)satisfiability of SIMPLE-
HORN-NNF formulas is formed by rules derived from the general NNF reso-
lution [81]. More specifically, the nucleus of our Logical Calculus is a particular
case of the Non-clausal Resolution rule by considering that one of the resolved
formulas is a unit clause. The relationships between, on the one hand, the stan-
dard Resolution rule and the well-known Unit Resolution rule, and on the other
hand, between the Non-clausal Resolution and the Unit General Resolution rules
proposed here, are alike.

RESOLUTION ⇒Horn UNIT-RESOLUTION

NON-CLAUSAL RESOL. ⇒Horn−NNF GENERAL UNIT-RESOL.

Definition 4.4.12 The Logical Calculus is formed by four rules. The first one,
called SIMPLIF , allows to simplify formulas. The second and third rules are
two Positive General Unit Resolution rules, called DUR and CUR, for respec-
tively Disjunction Unit Resolution and Conjunction Unit Resolution appropriate
for the SIMPLE-HORN-NNF formulas. The last rule, called the And Elimina-
tion rule (AE), enables to obtain unit clauses from a positive conjunction (C+).
We recall that both “()” and 2 denote the empty clause.

({2 ∧D−
2 ∧ . . . ∧D−

k } ∨DNF− ∨ C+)
(DNF− ∨ C+)

(SIMPLIF)

(p1), ({(¬p1 ∨ ¬p2 . . . ∨ ¬pn) ∧D−
2 ∧ . . . ∧D−

k } ∨DNF− ∨ C+), n ≥ 1
({(¬p2 ∨ . . . ∨ ¬pn) ∧D−

2 ∧ . . . ∧D−
k } ∨DNF− ∨ C+)

(DUR)

(p1), (CNF− ∨ {¬p1 ∧ ¬p2 ∧ . . .¬pn} ∨ C−2 ∨ . . . ∨ C−k ∨ C+), n ≥ 1
(CNF− ∨ C−2 ∨ . . . ∨ C−k ∨ C+)

(CUR)

({p1 ∧ . . . ∧ pi ∧ . . . ∧ pn})
(p1) ∧ . . . ∧ (pi) ∧ . . . ∧ (pn)

(AE)

Remark Note that if the DUR rule is applied with n=1 then the deduced term
is of kind ({2 ∧D−

2 ∧ . . . ∧D−
k } ∨DNF− ∨ C+).

Remark If the formula Γi, to be matched with the antecedent of an inference
rule in the previous Logical Calculus, has only one or two terms among the three

43

possible terms CNF−, DNF− or C+ of a SIMPLE-HORN-NNF clause, the
missing(s) term(s) in the antecedent is (are) missing also in the consequent. For
example, assume that Γi = ({¬p1∧¬p2}∨{p4}), then Γi is of kind (DNF−∨C+).
As Γi has no a CNF− term, if we apply the CUR rule over Γi with unit clause
(p1), the result is ({p4}) = (C+), i.e. CUR has been applied ignoring the term
CNF− in its antecedent and consequent.

Remark Note that when we have a unit clause (p1), the computation steps to
apply the corresponding inference rules DUR or CUR depend on whether ¬p1

is in a negative disjunction D− or in a negative conjunction C−, but they are
analogous ones. Indeed, whenever ¬p1 is in a disjunction:

D− = (¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn)

or in a conjunction:
C−1 = {¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn}

which in turn, it is in a DNF− term:

DNF− = C−1 ∨ C−2 ∨ . . . ∨ C−n

such literal ¬p1 (resp. that conjunction C−1) is removed from the disjunction D−

(resp. DNF−) with rule DUR (resp. CUR). If literal ¬p1 (resp. conjunction
C−1) was the only one in the original disjunction D− (resp. term CNF−), or
it was the last remaining literal (resp. conjunction) from the initial disjunction
D−, (resp. term CNF−) because the other original literals

(¬p2 . . . ∨ ¬pn) (resp. conjunctions C2 ∨ . . . ∨ Cn)

have been removed previously, then 2 is derived. In other words, D− (resp.
DNF−) is transformed in 2 after the removals of all of its propositions ¬pi

(resp. conjunctions C−i).

Definition 4.4.13 Refutation Proof A refutation of a SIMPLE-HORN-NNF
formula Γ, is a finite succession of SIMPLE-HORN-NNF sub-formulas

< F1, F2, . . . , Fn >, ending with Fn = 2

where Fi, 1 ≤ i ≤ n, is a subformula in Γ or it is obtained by applying
one inference rule of the Logical Calculus, in previous definition 4.4.12, upon
one subformula (SIMPLIF, AE) or two sub-formulas (DUR,CUR) in the set
{F1, . . . , Fi−1}.

Example 4.4.5 Let us consider the formula of the previous example:

Γ = {(p1) ∧ (p3) ∧ (p6)

∧

44

({¬p1 ∧ ¬p2} ∨ {¬p3} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {¬p7})
∧

({(¬p1 ∨ ¬p7) ∧ (¬p9)} ∨ {¬p8 ∧ p9})
∧

({¬p8})}
With the following notations:

Γ1 = (p1), Γ2 = (p3), Γ3 = (p6),

Γ4 = ({¬p1 ∧ ¬p2} ∨ {¬p3} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7}),

Γ5 = ({(¬p1 ∨ ¬p7) ∧ (¬p9)} ∨ {p8 ∧ p9}),

Γ6 = ({¬p8});
a proof sequence of the unsatisfiability of this formula Γ is the following:

Γ1 = (p1),Γ4 = ({¬p1 ∧ ¬p2} ∨ {¬p3} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7})
F7 = ({¬p3} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7}) (CUR)

Γ2 = (p3),F7 = ({¬p3} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7})
F8 = ({(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7}) (CUR)

Γ3 = (p6),F8 = ({(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {p7})
F9 = ({(¬p4 ∨ ¬p5) ∧2} ∨ {p7}) (DUR)

F9 = ({(¬p4 ∨ ¬p5) ∧2} ∨ {p7})
F10 = ({p7}) (SIMPLIF)

F10 = ({p7})
F11 = (p7)

(AE)

Γ5 = ({(¬p1 ∨ ¬p7) ∧ (¬p9)} ∨ {p8 ∧ p9}),F11 = (p7)
F12 = ({(¬p1) ∧ (¬p9)} ∨ {p8 ∧ p9}) (DUR)

F12 = ({(¬p1) ∧ (¬p9)} ∨ {p8 ∧ p9}),Γ1 = (p1)
F13 = ({2 ∧ (¬p9)} ∨ {p8 ∧ p9}) (DUR)

45

F13 = ({2 ∧ (¬p9)} ∨ {p8 ∧ p9})
F14 = ({p8 ∧ p9}) (SIMPLIF)

F14 = ({p8 ∧ p9})
F15 = (p8),F16 = (p9)

(AE)

Γ6 = ({¬p8})
F17 = (¬p8)

(AE)

F15 = (p8),F17 = (¬p8)
F18 = 2

(CUR)

Theorem 4.4.1 Correctness Let us LC={SIMPL,DUR,CUR,AE}.

SRC(LC)

Or in other terms,

Γ `LC 2 ⇐⇒ UNSAT (Γ)

To prove the previous theorem, we have to prove the Soundness and Refuta-
tion Completeness of the defined Logical Calculus.

Lemma 4.4.1 Soundness

Γ `SIMPLIF F =⇒ Γ |= F

Γ `DUR F =⇒ Γ |= F
Γ `CUR F =⇒ Γ |= F
Γ `AE (p) =⇒ Γ |= (p)

Proof. The soundness of each rule of the Logical Calculus follows from the defi-
nitions of model and that of logical consequence. ¥

Lemma 4.4.2 Refutation Completeness

UNSAT (Γ) =⇒ Γ ` 2

Proof. Base case

Assume the formula has no literals. The only formulas without literals are:

Γ = {}

46

and
Γ = {Γ1

2 ∧ Γ2
2 ∧ . . . ∧ Γk

2}
where each clause Γi

2 is formed by the following three optional terms:

Γi
2 = ({() ∧ () . . . ∧ ()} ∨ −{} ∨ {} ∨ . . . ∨ {} − ∨{})

Given that the DNF− = {} ∨ {} ∨ . . . ∨ {} term and the C+ = {} term are
satisfiable ones, the only unsatisfiable formulas are those containing at least one
clause Γi

2 without anyone of the three terms, Γi
2 = () ≡ 2, or only containing

the CNF− term Γi
2 = ({()∧ () . . .∧ ()}). In these both cases, Γi

2 is unsatisfiable
and hence, the formula Γ is also unsatisfiable.

So, we need to prove the theorem only for these two cases of formulas.

1. Case Γi
2 = 2. 2 is deduced by the reflexivity property of the inference

relation `.

2. Case Γi
2 = ({() ∧ () . . . ∧ ()}). In this case, applying the SIMPLIF rule,

the clause () ≡ 2 is deduced.

Let us prove the theorem for formulas with literals.

We note F = (C−1 ∨ C−2 ∨ . . . ∨ C−k ∨ {D−
1 ∧D−

2 ∧ . . . ∧D−
n } ∨ C+)

Let us pos(p) = {F1,F2, . . . ,Fk} be the set of clauses s. t. p ∈ C+
i , 1 ≤ i ≤ k.

We define rank(p) as follows:

If F = (C+) and p ∈ C+ then rank(p) = 1.
If ¬p ∈ F and pos(p) = ∅ then rank(p) = 1.

rank(p) = 1 + max{rank(pi) : ¬pi ∈ F ∈ pos(p)}
We note Γ+ the set of clauses of Γ containing a positive conjunction C+ and

Γ− the set of clauses of Γ containing exclusively negated literals.

Lemma 4.4.3 If Γ+ |= p and rank(p) = k then there exists at least one clause
F = (C−1 ∨ C−2 ∨ . . . ∨ C−k ∨ {D−

1 ∧D−
2 ∧ . . . ∧D−

n } ∨ C+) such that

1. p ∈ C+, or similarly, F ∈ pos(p)

2. ∀¬pi ∈ F , rank(pi) < k

3. ∀C−i ,∃¬pi, ¬pi ∈ C−i s.t. Γ+ |= pi and ∃D−
j , ∀¬pj,¬pj ∈ D−

j s.t. Γ+ |=
pj.

Proof.

1. Assume @F ,F ∈ pos(p). Let us I be a model of Γ+ such that I(p) = 1.
Let us consider an interpretation I ′ with the same mapping that I except
for I ′(p) = 0. Obviously I is also a model of Γ+ because I ′ satisfies more
literals than I since all the occurrences of p in Γ+ are negated. Hence,
Γ+ 2 p.

47

2. Assume that ∃¬pi such that rank(pi) = l ≥ k. Then by definition of rank,
rank(p) = l + 1 > k.

3. Assume that ∃C−i ,∀¬pi, ¬pi ∈ C−i such that Γ+ 2 pi or assume that ∀D−
j ,

∃¬pj ,¬pj ∈ D−
j , Γ+ 2 pj . We provide the proof for the first alternative,

the proof for the second one is completely similar. If pi is not a logical
consequence means that there is a model of Γ+ such that I(pi) = 0 and
then I(C−i) = 1. But, taking into account this fact, defining I ′ equal to I
except for the mapping I ′(p) = 0 is also a model and then we have Γ+ 2 p.

¥

Lemma 4.4.4 Γ+ |= p =⇒ Γ ` (p)

Proof. By induction of the statement: If propositions of rank < k are deduced
then, propositions of rank k are also deduced.

INDUCTION BASE: The statement is true for propositions of rank 1. Ob-
viously if rank(p)=1, by definition, p ∈ C+ ∈ Γ. Then applying AE(C+) we
produce (p) because p ∈ C+.

INDUCTION HYPOTHESIS: Assume that the induction statement is true for
literals of rank smaller than k and consider that p is of rank k. Then, by previous
lemma there exists at least one clause
F = (C−1 ∨ C−2 ∨ . . . ∨ C−k ∨ {D−

1 ∧D−
2 ∧ . . . ∧D−

n } ∨ C+) such that

1. p ∈ C+, or similarly, F ∈ pos(p)

2. ∀¬pi ∈ F , rank(pi) ≤ k

3. ∀C−i ,∃¬pi, ¬pi ∈ C−i s.t. Γ+ |= pi and ∃D−
j , ∀¬pj ,¬pj ∈ D−

j s.t. Γ+ |= pj .

Then, by induction hypothesis, Γ+ ` (pi) and Γ+ ` (pj). Applying iteratively
the CUR rule upon F and each pi we obtain F = ({D−

1 ∧D−
2 ∧ . . .∧D−

n }∨C+).
Next, applying iteratively the DUR rule upon F and each pj we obtain F =
({D−

1 ∧D−
2 ∧ . . .∧D−

j−1 ∧2∧D−
j+1 ∧ . . .∧D−

n }∨C+). Next, applying SIMPLIF
rule upon F , we deduce (C+) and followed by an AE rule we derive (p) because
p ∈ C+. ¥

Lemma 4.4.5 UNSAT (Γ) =⇒ ∃F−,F− ∈ Γ− such that:

1. F− = (C−1 ∨ C−2 ∨ . . . ∨ C−k ∨ {D−
1 ∧D−

2 ∧ . . . ∧D−
n })

2. ∀C−i , ∃¬pi, ¬pi ∈ C−i s.t. Γ+ |= pi

3. ∃D−
j , ∀¬pj,¬pj ∈ D−

j s.t. Γ+ |= pj

Proof.

1. By definition of Γ−, F− has the correct structure.

48

2. The proof is by contradiction. Assume ∃C−i , ∀¬pi,¬pi ∈ C−i s.t. Γ+ 2 pi.
Take a model I of Γ+ such that I(pi) = 0. Such a model exists because by
hypothesis Γ+ 2 pi. We have also I(F−) = 1 and hence I(Γ−) = 1 and as
I is a model of Γ+ it turns out that Γ is satisfiable.

3. Assume ∀D−
j , ∃¬pj ,¬pj ∈ D−

j s.t. Γ+ 2 pj . The proof of this case is
similar to the previous case.

¥

Lemma 4.4.6 UNSAT (Γ) =⇒ Γ ` 2

Proof. As we have Γ+ |= pi, by the previous lemma, Γ+ ` (pi). Applying
iteratively CUR rule upon each pi and F we get F− = ({D−

1 ∧D−
2 ∧ . . .∧D−

n }).
Now applying iteratively DUR upon each pj and F− we get F− = ({D−

1 ∧D−
2 ∧

. . . ∧D−
j−1 ∧ 2 ∧D−

j+1 ∧ . . . ∧D−
n }). Applying SIMPLIF upon F we obtain (),

that is logically equivalent by definition to 2. ¥

As the previous lemma is the same that the completeness theorem, the proof
of this last lemma concludes the proof of the completeness theorem ¥

This proves MAIN THEOREM 1 of our proof methodology.

4.4.3 Logical Calculus: Its polynomial algorithmic version

In this section, we were going to prove MAIN THEOREM 2 of our proof method-
ology:

MAIN THEOREM 2: ∃x, CORSAT (x) ∧ PSAT (x)

A proof of the unsatisfiability of a SIMPLE-HORN-NNF formula is con-
structed by applying consecutively inferences rules, as it has been indicated in
the definition of Refutation Proof and in the subsequent example. Applying
this process of inference rules sequencing does not lead to an efficient SAT
algorithm. One of the original causes is because new sub-formulas of the orig-
inal formula, are generated and then added to the original formula. Thus, the
formula obtained after a certain number of inferences is the original formula
augmented with copies of some of their sub-formulas. However, it is easy to
prove that the upper-bound complexity of a SAT algorithm implementing
the Logical Calculus is Polynomial

Definition 4.4.14 Let us define SATALGP , an algorithm that implements the
defined Logical Calculus as follows:

1. It choices the inferences to be applied according to a deterministic criterion

2. It returns “UNSAT” iff the defined Logical Calculus derives 2

More specifically, the algorithm scheme is the following, where Γ is the initial
set of subformulas.

49

SATALGP (Γ)
While the set of executables inference rules is not empty do:
∀(C+) ∈ Γ do: ∀p ∈ (C+) ∈ Γ: add (p) to Γ
Execute applicable DUR rules adding the deduced subformulas to Γ
Execute applicable CUR rules adding the deduced subformulas to Γ
Execute applicable SIMPLIF rules adding the deduced subformulas to Γ

EndWhile
If () ∈ Γ then return(“UNSAT”) Else return(“SAT”)

Theorem 4.4.2 CORSAT (SATALGP) ∧ PSAT (SATALGP).

Proof. It is trivial that the previous algorithm is sound because it executes only
rules that are in the original Logical Calculus. Now let us prove
LCEQUSAT (LC, SATALGP). Concerning the completeness of the algorithm,
one can check that the difference with respect to the Logical Calculus is that
in the algorithm the inference rules are executed in a certain order. Aiming at
proving LCEQUSAT (LC, SATALGP), we need to prove that the order followed
by the algorithm preserves the completeness of the Logical Calculus. To this end,
we need to prove that if we execute first a certain inference rule the applicable
inference rules before such execution remain applicable after the execution. For
instance, assume that we execute first a DUR rule. Thus, if we execute first
a DUR rule with (p) and F the resulting subformula Fp is added to Γ and
no subformula is eliminated from Γ. Thus, inference rules applicable before
the execution of the DUR rule remain applicable after executing it. The same
reasoning can be done when the first inference executed is CUR, SIMPLIF or
AE. Therefore, this proves LCEQUSAT (LC, SATALGP) and this, together
with SRC(LC) and corollary 1, leads to CORSAT (SATALGP). Now, we shall
prove PSAT (SATALGP).

1. It could be checked that the maximal number of executable DUR and CUR
inference rules is bounded by the number n of proposition occurrences in
the original formula because each time that a DUR or a CUR is applied,
a negative occurrence of a proposition or a whole conjunction is removed.

2. As the size of the inferred sub-formula Fi is bounded by the size of the
original formula F0 = Γ in an inference rule, we have:

< F0, F1, . . . , Fn >, with F0 = Γ, Fi+1 = Fi ∧ Fi, Fn = Fn−1 ∧2,

where:
size(F0) = n

size(F1) = size(F0) + size(F0) < size(F0) + size(F0) = 2.n

size(Fi) = size(F0) + size(F0) + size(F1) + . . . + size(Fi−1) <

size(F0) + size(F0) + size(F0) + . . . + size(F0).

size(Fi) < (i + 1).n

50

size(Fn) ∈ O(n2)

∀i, 1 ≤ i ≤ n, size(Fi) ∈ O(n2)

In complexity terms, the length of an inferred formula created by SATALGP

increases in O(n2).

3. On the other hand, as the inferred formula increases in O(n2), the search
time for the two involved clauses in an inference rule requires to scan the
current inferred formula and hence, it is in O(n2).

4. Having searched the two involved clauses, executing with them an inference
step can be done in a time bounded by O(n), the time required to copy a
sub-formula Fi.

5. Then, searching and executing one inference rule is limited by O(n2).

6. As the number of inferences is bounded by size(F0) = n, the total com-
plexity of the construction of an Refutation proof in SATALGP is in
O(n3).

7. Therefore, that proves that the SIMPLE-HORN-NNF SAT problem is in
P.

¥

Altogether, a straight computer implementation in a SAT algorithm SATALGP ,
of the generation of Refutation Proofs corresponding to the defined Logical
Calculus, is in O(n3). This proves the MAIN THEOREM 2, i.e. that the
SIMPLE-HORN-NNF SAT problem is polynomial.

4.4.4 A quadratic SIMPLE-HORN-NNF SAT algorithm

In this section, we are going to prove our MAIN THEOREM 3, namely

MAIN THEOREM 3: ∃x,CORSAT (x) ∧QSAT (x)

The first step aiming at an optimal complexity procedure is to avoid the
copies of sub-formulas. Thus, we are going to rewrite the Logical Calculus in
an “algorithmic way” by writing each inference rule in a way such that, each
application of an inference rule will reduce the size of the formula.

As can be checked observing the inference rules, the inferred formula (the
consequent part) is formed from the original one (the antecedent part) by elimi-
nating some sub-formulas, more specifically literals or conjunctions, in the origi-
nal formula. This fact allows us to redefine the inference rules by making explicit
which sub-formulas should be eliminated.

So, in this case, the complexity of searching for a pair of clauses becomes
in O(n) and O(n) is also, the maximal time required to explore the formula in
order to remove a literal ¬p, a conjunction C− or a term CNF−. Therefore, as
the maximal number of inferences is bounded by n, the process complexity is
improved and it becomes in O(n2) in the worst case.

51

Quadratic Algorithmic Version of the Logical Calculus (QAVLC)

Let us take the nucleus of our Logical Calculus, and rewrite them according to
the criterion of algorithmic efficiency.

Definition 4.4.15 Let us ¬p (resp. C−j) be a disjunct in D−
j (resp. DNF−)

which in turn belongs to sub-formula Γi. We note RemoveLiteral(¬p,D−
j ,Γi),

(resp. RemoveConjunction(C−, DNF, Γi)) the algorithmic function that re-
moves physically the occurrence of the literal ¬p in D− (resp. the whole con-
junction C− in the DNF− term) from Γi by acting directly on the data structure
representing the sub-formula Γi. Similarly, RemoveCNFterm(2, CNF−, Γi)
removes physically a CNF− term of Γi if 2 ∈ CNF−.

Definition 4.4.16 The new inference rules using functions Remove are called
RCNF , RL, and RC for respectively RemoveCNF (SIMPLIF), RemoveLiteral
(DUR) and RemoveConjunction (CUR), and they are defined as follows:

Γi = (CNF− = {D−
1 ∧ . . . ∧2 ∧ . . . ∧D−

M} ∨DNF− ∨ C+)
Γi = RemoveCNF (CNF−, Γi)

(RCNF)

(pj),Γi=({D−
1 ∧...∧D−

k =(¬p1∨...∨¬pj∨...¬pN)∧...∧D−
M}∨DNF−∨C+)

Γi=RemoveLiteral(¬pj ,D
−
k ,Γi)

(RL)

(pj),Γi=(CNF−∨DNF−=[C−1 ∨...∨C−k ={¬p1∧...∧¬pj∧...∧¬pN}∨...C−M]∨C+)

Γi=RemoveConjunction(C−k ,DNF−,Γi)
(RC)

Corollary 4.4.1 Let us QAV LC = {RCNF, RL,RC, AE}.
SRC(QAV LC)

Proof. It is trivial that:

∀I, I ∈ LC, ∃J, J ∈ QAV LC, I(Γ) ≡ J(Γ)

∀J, J ∈ QAV LC, ∃I, I ∈ LC, J(Γ) ≡ I(Γ)

As initially the input formula for LC and QAV LC is the same Γ, by induction
of the previous two statements on n, the number of Formulas (the length) of a
Refutation Proof, we have

∀Γ′∃Γ′′, Γ `LC Γ′,Γ `QAV LC Γ′′ and Γ′ ≡ Γ′′

SRC(LC) ∧ previous assertions =⇒ SRC(QAV LC)

¥

Another step forward before obtaining an Algorithmic Version of the Logical
Calculus consists in applying DUR with (p1), as many times as occurrences of
¬p1 exist in disjunctions D−

i integrated in a CNF term {D1 ∧D−
2 ∧ . . . ∧D−

k }
of any sub-formula Γi. Afterward, the CUR follows with the same principle:
removing all the conjunctions C− containing ¬p from a sub-formula Γi.

52

Definition 4.4.17 Let us ¬p be a disjunct in D− (resp. conjunct in C−) which
in turn is in a CNF− (resp. DNF−) term. We note RemAllLitSubForm(¬p, Γi)
(resp. RemAllConjSubForm(¬p, Γi)) the algorithmic function that removes
physically all the occurrences of the literal ¬p (resp. conjunctions containing
a ¬p occurrence) from Γi, by acting directly on the data structure representing
the sub-formula Γi.

This new function leads to new inference rules.

Definition 4.4.18 The new inference rules using functions RemAllLitSubForm
and RemAllConjSubForm are called RALSF and RACSF and are defined as
follows:

(p), Γi = (CNF− ∨DNF− ∨ C+)
Γi = RemAllLitSubForm(¬p,Γi)

(RALSF)

(p), Γi = (CNF− ∨DNF− ∨ C+)
Γi = RemAllConjSubForm(¬p, Γi)

(RACSF)

Corollary 4.4.2 RALSF is sound.

Proof. The proof of the soundness of RALSF follows from the soundness of RL
and the definition of the algorithmic function RemoveAllLitSubForm.

RALSF is strictly a sequence of RL rules:

S = (RL1, RL2, . . . , RLn)

such that

RALSF removes ¬pi ∈ Di

iff
∃RL ∈ S that removes ¬pi ∈ D−

i .

As each RLi is sound, by the corollary 4.4.1,
RALSF is hence sound.

¥

Corollary 4.4.3 RACSF is sound.

Proof. The proof is analogous to the proof of RALSF . ¥

Definition 4.4.19 Quadratic Algorithmic Version of the LC (QAVLC)
We redefine the Quadratic Algorithmic Version of the Logical Calculus as the set
of inferences rules formed by: QAV LC = {RCNF,RALSF,RACSF, AE}.

Theorem 4.4.3 Correctness ∀Γ, Γ `QAV LC 2 ⇐⇒ UNSAT (Γ)

53

Lemma 4.4.7 Soundness ∀Γ,Γ `QAV LC 2 =⇒ UNSAT (Γ).

Proof. RCNF and AE are the same rules as previously defined in 4.4.16 and
4.4.12 respectively. On the other hand, the soundness of RALSF and RACSF
have been established in the last two corollaries. ¥

Lemma 4.4.8 Refutation Completeness UNSAT (Γ) ⇒ Γ `QAV LC 2

Proof. The Completeness of the current Logical Calculus (QAVLC) derives straight-
forwardly from the Completeness of the previous calculus. Indeed, there are only
two differences with respect to the calculus as defined in definition 4.4.12.

1. New clauses are not generated now. Instead, a formula Γi in Γ is
transformed in a sub-formula fi, i.e. Γ is substituted by

Γ′ = Γ ∗ {Γi/fi}

where Γ ∗ {Γi/fi} denotes the formula resulting of substituting in Γ its
subformula Γi by the formula fi.

Each transformation causes to change the original formula Γ by a new one
Γ′ by applying one of the four inference rules. As the AE is the same
for the LC and for QAV LC, we have to prove that the SAT equivalence
is preserved in the transformation caused by the other three algorithmic
rules RCNF , RALSF and RACSF :

(a) By definition,

Γi = (CNF− = {2 ∧D−
2 ∧ . . . D−

k } ∨DNF− ∨ C+)
Γi ← (DNF− ∨ C+)

(RCNF)

Hence, it is trivial that Γi ≡ RCNF (Γi)

(b) By definition,

(p),Γi = (CNF− ∨DNF− ∨ C+)
Γi ∗ {CNF− ← RemoveAllLiterals(¬p, CNF−)} (RALSF)

Therefore, it is trivial that (p) ∧ Γi ≡ RALSF (¬p, Γi)

(c) finally, by definition,

(p), Γi = (CNF− ∨DNF− ∨ C+)
Γi ∗ {DNF− ← RemoveAllConjunctions(¬p, DNF−)} (RACSF)

Thus, it is straightforward that (p) ∧ Γi ≡ RACSF (¬p,Γi)

54

(d) Thus, if Γ is modified in Γ′ by one of the inferences I in LC =
{AE, SIMPLIF, DUR, CUR} and Γ is modified in Γ′′ by the corre-
sponding inference J in QAV LC = {AE, RACNF, RALSF,RACSF},
then Γ′ ≡ Γ′′. In addition, as the logical equivalence relationship ≡
implies the SAT equivalence, Γ′ is SAT equivalent to Γ′′.
The previous statement indicates that there is no need for copies of
subformulas. Thus, the formula in an automated proof is composed
by a set of unit clauses (p1), (p2), . . . , (pn) and a formula Γ′ obtained
from the original formula Γ and according to the logical equivalences
shown in the three previous points, we have

(p1) ∧ (p2) ∧ . . . ∧ (pn) ∧ Γ′ ≡ Γ

2. The order of the applications of the rules has been restricted. Now a par-
ticular rule is applied several times, each time with a different occurrence
of the same negated literal, i.e. the negated literal of the proposition in
a unit clause. But the order considered is the same that the order in the
previous definition of the algorithm SATALGP and as it was proved such
order did not prevent completeness (it acts only improving efficiency, see
proof of theorem 4.4.2).

¥

The definitive algorithmic inferences derived from the Logical Calculus and
which will serve to design an efficient SAT algorithm are the following.

Definition 4.4.20 We note RemoveAllLiterals(¬p, Γ) (resp.
RemoveAllConjunctions(¬p, Γ)) the algorithmic function that removes phys-
ically all the occurrences of the literal ¬p (resp. conjunctions containing a ¬p
occurrence) from the formula Γ, by acting directly on the data structure repre-
senting Γ. The algorithmic function RemoveAllCNFs removes physically all
the CNF terms containing the empty clause 2.

These new functions lead to new inference rules.

Definition 4.4.21 The new inferences rule are called RAL, RAC and RACNF
for respectively RemoveAllLiterals, RemoveAllConjunctions and RemoveAllCNF
and are defined as follows:

(p), Γ
Γ = RemoveAllLiterals(¬p,Γ)

(RAL)

(p), Γ
Γ = RemoveAllConjunctions(¬p, Γ)

(RAC)

Γ
RemoveAllCNFs(2,Γ)

(RACNF)

55

Theorem 4.4.4 Correctness. Let us QAVLC={RAL, RAC, RACNF, AE}.

∀Γ, Γ `QAV LC 2 ⇐⇒ UNSAT (Γ)

Proof. The proof is straightforward from the previous correctness of theorem
4.4.3. ¥

A Correct Quadratic Algorithm

Once established the Quadratic Algorithmic Version of the Logical Calculus, we
can design a first algorithm which is a strict materialization of the mechanization
of the inference rules in the QAV LC (last definition).

When all the sub-formulas Γi of Γ contain a negative sub-formula NNF−

then Γ is trivially satisfiable: a model is obtained by assigning 0 to all the propo-
sitional variables. So assume that some positive conjunctions C+ are present in
Γ. Thus, applying the AE rule over these conjunctions C+ in Γ, produces unit
clauses (p). Altogether, this leads to the statement that: the formula Γ is satis-
fiable or otherwise, some unit clauses can be deduced.

Thus, the next step is to apply the inference rules defined above with the unit
clauses. This process is repeated until either no more unit clauses are generated,
or the empty clause is produced. In the first case, the formula is satisfiable and
in the second one, it is unsatisfiable.

The principle of the algorithm is the following. First, the AE inference is
applied to positive conjunctions C+ and the propositions in the deduced unit
clauses are pushed in a stack (function ApplyAE(Γ, Stack)). For each proposi-
tion in the Stack, the rules RAL, RAC and RACNF are applied throughout the
respective algorithmic functions RemoveAllLiterals, RemoveAllConjunctions
and RemoveAllCNFs. If as a consequence of the Remove applications, some
subformulas become positive conjunctions C+, the AE rule is applied upon C+

adding new propositions to the Stack. This process finishes when the Stack
becomes empty, which means that there is no more applicable inferences. Thus,
if in such situation, the empty clause 2 has not been deduced, the input formula
Γ is satisfiable and else it is unsatisfiable.

56

SATALGQ1(Γ)
1 ApplyAE(Γ, Stack)
2 While Stack 6= {} do:
3 p ← pop(Stack)
4 RemoveAllLiterals(¬p, Γ)
5 RemoveAllCNFs(2, Γ)
6 RemoveAllConjunctions(¬p, Γ)
7 ApplyAE(Γ, Stack)
8 EndWhile
9 If () = F ∈ Γ then return(“UNSAT”) Else return(“SAT”)

Theorem 4.4.5 Correctness SATALGQ1(Γ) returns “UNSAT” iff Γ is un-
satisfiable.

Proof. This theorem is a direct consequence of the Soundness and Refutation
Completeness of the QAVLC, stated in theorem 4.4.4.

Indeed, we have the following parallelism. The line 1 starts the executions
of inferences with AE. The lines 4,5, 6 and 7 correspond respectively to the
applications of the RAL, RACNF , RAC and AE rules. The order of application
of the inferences does not prevent completeness (see theorem 4.4.2).

When the line 9 is executed, the “while” iteration is finished. But the condi-
tion for termination of the “while” loop is verified when there is no more inference
applicable. So, as indicated in line 9, Γ is satisfiable iff the empty clause has
not been deduced. So we have LCALGSAT (QAV LC, SATALGQ1). The proof
continues as follows:

1. ∀x, y, LCALGSAT (x, y) ∧ SRC(x) =⇒ CORSAT (y), corollary 3.3.1

2. LCALGSAT (QAV LC, SATALGQ1), by the construction of SATALGQ1,

3. SRC(QAV LC), proved in 4.4.4.

We obtain: CORSAT (SATALGQ1). ¥

Theorem 4.4.6 The complexity of the algorithm SATALGQ1 is O(n2).

Proof. The execution of each line 4, 5, 6 and 7 takes a time bounded by O(n).
As the number maximum of iterations is also bounded by ΣC+∈Γ|C+| < O(n),
therefore the complexity is in O(n2). ¥

Thus, we have proved our

MAIN THEOREM 3: ∃x,CORSAT (x) ∧QSAT (x)

where x is the previously described algorithm SATALGQ1.
Our next goal is to design a suitable data structure for the QAVLC and prove

that a strictly linear algorithm can be derived from it.

57

4.4.5 A Linear SIMPLE-HORN-NNF-SAT Algorithm

The goal of this section is to prove the last main theorem:

MAIN THEOREM 4: ∃x, CORSAT (x) ∧ LSAT (x)

Before describing the final linear algorithm, we describe first a preliminary
almost linear incorrect algorithm containing all the data structure, except two
subtle data structure to be presented later. This is done as a previous step in
order to help to understand the final correct linear SAT algorithm. So, firstly
we describe the required data structure and then, we give the corresponding
algorithm.

Data Structure. To each proposition pk, we associate two lists of pointers
D−(k) and C−(k). Each element (i, j) in D−(k) (resp. C−(k)) is a pointer to a
disjunction D−

j (resp. conjunction C−j) in Γi. For each sub-formula Γi, we note
C+(i) the list of positive propositions in the C+ term of Γi.

Input: Γ = Γ1 ∧ Γ2 ∧ . . . ∧ Γn

Output: “SAT” or “UNSAT”.

Initialization procedure. In this step, all the data structure, i.e. D−(k),
C−(k) and C+(i), are initialized according to their definition and the input
formula Γ.

SATALGQ2(Γ)
1 ∀Γi = (C+) do: ∀p ∈ C+ do: push(p, Stack)
2 While Stack 6= {} do:
3 pk ← pop(Stack)
4 ∀(i, j) ∈ D−(k) do: Remove(¬pk, Di,j)
5 ∀(i, j) ∈ D−(k) do: If Di,j = ∅ then Remove(CNF−i ,Γi)
6 ∀(i, j) ∈ C−(k) do: Remove(Ci,j , Γi)
7 ∀(i, j) ∈ D−(k)

⋃
C−(k) do: If Γi = (C+

i): ∀p ∈ C+(i) push(p, Stack)
8 Endwhile
9 If ∃i, 1 ≤ i ≤ n with Γi = () then return(“UNSAT”) Else return(“SAT”)

Theorem 4.4.7 SATALGQ2(Γ) returns “SAT” iff Γ is satisfiable.

Proof. The parallelism between the instructions of this algorithm and those of
the previous one is straightforward. For example, previous line:

4 RemoveAllLiterals(¬p, Γ).

is substituted by the current line:

4 ∀(i, j) ∈ D−(p) do: Remove(p,Di,j).

Both lines have the same effects: removing occurrences of ¬p from disjunc-
tions in the input formula Γ. In the former this statement is clearly verified. In

58

the latter, one can check that the occurrences of ¬p are exactly those indicated
by list D−(p), and line 4 removes exactly these occurrences. The same analysis
can be done to prove the algorithmic equivalence of lines 5, 6, and 7 of the pre-
vious algorithm and the current one which lead to the proof of the theorem as
follows:

1. ∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y), corollary 4.3.2

2. SATEQU(SATALGQ1,SATALGQ2), by the construction of both algo-
rithms

3. CORSAT (SATALGQ2), by previous theorem 4.4.7

and hence, we obtain CORSAT (SATALGQ2).
¥

Theorem 4.4.8 SATALGQ2 is in O(n2)

Proof. It is based on the two following statements:

• Each pair (i,j) in D−(k) or C−(k) is associated with an occurrence of a
proposition variable in the formula Γ. Hence, the number of iterations is
less than n, the size of Γ.

• Each Remove function can be done in O(n) time because to remove a
sub-formula we need only to scan the formula.

¥

The complexity can be improved by executing the Remove functions in O(1)
time. This is achieved by introducing two counters in the data structure.

• RAL: removing ¬p occurrences. To each disjunction D−
j in clause

Γi, a counter Counter(i, j) is associated. A decrement of Counter(i, j)
indicates the removal of a falsified literal ¬p in D−

j .

• RACNF: removing CNF− terms. If any Counter(i, j) is set to 0
means that the disjunction D−

j in Γi is falsified and hence the whole CNF−

term is also falsified. This is implemented by setting to 0 a flag CNF (i)
associated with each subformula Γi.

• RAC: removing conjunctions C−. A counter Counter.DNF (i) is
associated with the DNF− term in each clause Γi. Each decrement of
Counter.DNF (i) represents a removal of a falsified conjunction C− in the
DNF− term.

Remark Notice that we do not need to know exactly which literal occur-
rences (resp. conjunctions) have been removed. What we need to know is merely
how many elements have been removed in order to detect when a disjunction
(resp. a whole CNF− term) has been removed totally, i.e. has been falsified, to

59

subsequently apply the And-Elimination rule to the new positive clause C+.

With these new data structures, the corresponding algorithm is:
Input: Γ = Γ1 ∧ Γ2 ∧ . . . ∧ Γn

Output: “SAT” or “UNSAT”.

Initialization procedure. In addition to the previous data structure (D−(k),
C−(k) and C+(i)), Counter(i, j) and Counter.DNF (i) are initialized according
to their definition and the input formula Γ.

60

SATALGL(Γ)
1 ∀Γi = (C+) do: ∀p ∈ C+ do: push(p, Stack)
2 While Stack 6= {} do:
3 pk ← pop(Stack)
4 ∀(i, j) ∈ D−(k) do: Decrement Counter(i, j)
5 ∀(i, j) ∈ D−(k) do: If Counter(i, j) = 0 then CNF−(i) ← 0
6 ∀(i, j) ∈ C−(k) do: Decrement Counter.DNF−(i)
7 ∀(i, j) ∈ (D−(k)

⋃
C−(k)) and CNF−(i) = Counter.DNF (i) = 0 do:

∀p ∈ C+(i) do: push(p, Stack)
8 Endwhile
9 If ∃i, 1 ≤ i ≤ n, with CNF (i) = Counter.DNF (i) = 0 and C+(i) = () then:

return(“UNSAT”)
11 Else return(“SAT”)

The structure of the last algorithm is the same that the previous one. The
sequence of applications of the inference rules is strictly the same in both al-
gorithms. The parallelism between the operations performed by this algorithm
and those of the previous Algorithmic Structure is straightforward.

However, the last algorithm is not correct. Indeed, when we apply the infer-
ence by removing elements, there were not exist the problem of modifying erro-
neously the data structure representing the deduced formula. However, with the
counters, that can happen because as the application of the inferences is done
via the decrement of counters, for a same unit clause (p) derived several times, a
counter can be decremented several times. Actually, we have two types of errors
in the previous algorithm:

• Given that a same proposition p can be present in several C+ terms of
the clauses Γi, each proposition p can be introduced in the stack several
times. To avoid to execute several times the inference rules with the same
proposition, we employ a flag First(p). Thus, if First(p) = 1 indicates
that the inference rules with clause (p) have not been applied and then,
these are allowed. Once the inference rules with clause (p) are applied,
the flag First(p) is set to 0 disallowing further executions of the inference
rules with the same unit clause.

• The second problem comes from the decrements of Counter.DNF (i). Each
decrement must correspond to the removal (i.e. falsification) of one con-
junct of the DNF− term in Γi. This counter should be set to 0 only when
all the conjuncts are falsified. Nevertheless, in the previous algorithm,
the deductions of n literals that could belong to a same conjunct C− of
the DNF−i term, implies n decrements of Counter.DNF (i). Thus, if the
number of conjunctions is n, the counter is set to 0, indicating that the
DNF− term has been removed, and however not all the conjuncts in the
DNF− have been falsified. To overcome this problem, we use a flag call
First(C−) for each conjunct C− in the DNF−. Initially, this flag is set
to 1. After the first falsification of any literal in C−, the flag is set to

61

0. In this way, only one decrement of Counter.DNF is allowed for each
conjunct C− in DNF−.

Thus, correcting the previous algorithm with the previous defined data struc-
ture, we have:

If First(i, j)= 1 then do: decrement Counter.DNF (i)
First(i, j) ← 0

The resulting algorithm is therefore:

SATALGL(Γ)
1 ∀(C+) ∈ Γ do: ∀p ∈ (C+) do: push(p, Stack)
2 While Stack 6= {} do:
3 pk ← pop(Stack)
4 If First(k) = 1 then do:
5 First(k) ← 0
6 ∀(i, j) ∈ D−(k) do: Decrement Counter(i, j)
7 ∀(i, j) ∈ D−(k) do: If Counter(i, j) = 0 then CNF−(j) ← 0
8 ∀(i, j) ∈ C−(k) do: If First(i, j) = 1 then do:
9 Decrement Counter.DNF−(i); First(i, j) ← 0
10 ∀(i, j) ∈ (D−(k)

⋃
C−(k)) and CNF (i) = Counter.DNF (i) = 0 do:

11 ∀p ∈ C+(i) do: push(p, Stack)
12 Endwhile
13 If ∃i, 1 ≤ i ≤ n, with CNF (i) = Counter.DNF (i) = 0 and C+(i) = () then
14 return(“UNSAT”)
15 Else return(“SAT”)

Now, we can ensure the correctness of the algorithm:

Theorem 4.4.9 Correctness. SATALGL(Γ) returns “SAT” iff Γ is satisfi-
able.

Proof. The proof is a consequence of the correctness of the previous SATALGQ2

(theorem 4.4.7) and the evident parallelism between the previous instructions
and the current ones. Indeed, previous lines 4, 5, 6 and 7, corresponding to
inferences RAL, RACNF, RAC and AE respectively, are substituted now by
lines 6 (RAL), 7 (RACNF), then 8, 9 and 10 (RAC) and finally 11 (AE).

Then, we have:

1. ∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y), corollary 4.3.2

2. SATEQU(SATALGQ2,SATALGL), by the construction of both algo-
rithms

3. CORSAT (SATALGQ2), by previous theorem 4.4.7

and hence, we obtain CORSAT (SATALGL). ¥

62

Concerning the algorithms’ complexity, the last algorithm is strictly linear.

Theorem 4.4.10 Complexity The algorithm SATALGL is in O(n).

Proof. It follows from the fact that the maximal number of the main iteration is
bounded by n, the number of different proposition variables of the formula and
the cost of each iteration is limited by the number of occurrences of a particular
proposition variable. Altogether the number of operations executed is bounded
by the number of occurrences in the input formula. ¥

Following the methodology, we have proved the last theorem:

MAIN THEOREM 4: ∃x, CORSAT (x) ∧ LSAT (x)

where x is the previous linear algorithm SATALGL

4.5 Linearity of the HORN-NNF-SAT problem

4.5.1 The HORN-NNF-SAT problem

In this section, we introduce the syntax and semantic elements to define the
HORN-NNF-SAT problem. As this problem is a generalization of the previous
SIMPLE-HORN-NNF-SAT problem, most of the definitions and concepts given
below are straightforward extensions of the previous ones defined in the section
corresponding to the linearity of the SIMPLE-HORN-NNF-SAT problem.

We keep the definitions and notations of propositions p, literals L and that
of the empty clause “()”, or 2, and empty formula {}. All the other notions and
concepts used in the SIMPLE-HORN-NNF-SAT problem require to be adapted
to the more general context of the HORN-NNF formulas.

Definition 4.5.1 A NNF formula is a classical non-clausal formula formed by
the well-known induction over the set of propositions P and the connectors ¬,
∨, and ∧ and with the only restriction that the scope of the negation operator
¬ is a single proposition. A negative NNF formula, noted NNF−, is a NNF
formula formed exclusively by negative literals.

63

Example 4.5.1 The formula below is a NNF formula:

F = {(p1) ∧ (p2) ∧ (p3) ∧ (p6)

∧
({(¬p1∨¬p8)∧ (¬p2)} ∨ {(¬p4∨¬p5)∧ (¬p6)} ∨ {¬p3∧¬p7} ∨ {p7∧p5})

∧
({({(¬p1 ∨ ¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7} ∨ {¬p1 ∧ ¬p9}) ∧ (¬p4)} ∨ {p8 ∧ p9})

∧
(¬p8)}

We can see that the clause in second row is not a SIMPLE-HORN-NNF
clause because it has two CNF terms. The clause in the third row is not either a
SIMPLE-HORN-NNF formula because it presents a double recursive SIMPLE-
HORN-NNF nesting. Indeed it can be written recursively as:

((F ∨G ∨H) ∧ (¬p4)} ∨ {p8 ∧ p9})
which is a SIMPLE-HORN-NNF formula without DNF− term, where F , G

and H are in turn the respective CNF− formulas:

F = {(¬p1 ∨ ¬p8) ∧ (¬p2) ∧ (¬p6)}
G = {¬p7}

H = {¬p1 ∧ ¬p9}
Thus, the fifth formula has two levels of nested SIMPLE-HORN-NNF for-

mulas.

The graphical representation of the fifth clause of this formula is given in
figure 3 following a straightforward extension of the previous principle in sec-
tion 4.4.1. The conjunct (resp. disjunct) sub-formulas of a conjunction (resp.
disjunction) are represented vertically (resp. horizontally).

The set of literals in a simple classical Horn clause included in a HORN-
NNF clause can be obtained, similarly as previously, by following a specific path
throughout its bi-dimensional representation.

Definition 4.5.2 A path crosses only one (resp. all the) conjunct (resp. dis-
junct) sub-formula(s) of a conjunctive (resp. disjunctive) subformula. The only
path throughout a literal is the proper literal.

The indicated path in dashed line correspond to the Horn clause:

(¬p2 ∨ ¬p7 ∨ ¬p9 ∨ p8)

The formula can be also represented graphically by a tree as indicated in
figure 5.

64

¬p1 ∨ ¬p8 ¬p1

∧ ∨¬p7 ∨ ∧
¬p2 ¬p9

∧ p8

¬p6 ∨ ∧
p9

∧
¬p4

Figure 4.3: Bidimensional representation of the subformula

-

-
- -

j *

*

¬p1 ∨ ¬p8

∧

∧

¬p6

¬p2

∧
¬p4

¬p1

∧
¬p9

∨
p8

∧
p9

∨ ¬p7 ∨

Figure 4.4: A path in the formula

65

∨

∧

∨

∧

∨
¬p1 ¬p8

¬p2 ¬p6

¬p7 ∧
¬p1 ¬p9

¬p4

∧
p8 p9

Figure 4.5: The tree of the sixth clause

Definition 4.5.3 A conjunctive NNF− formula

{NNF−1 ∧NNF−2 ∧ . . . ∧NNF−k },

is said to be in CNNF− form. Similarly, a disjunctive NNF− formula:

(NNF−1 ∨NNF−2 ∨ . . . ∨NNF−k),

is said to be in DNNF− form.

Definition 4.5.4 As an extension of the CNF− case, any disjunctive DNNF−

formula can be called a NNF− clause.

Definition 4.5.5 A HORN-NNF clause is a clause formed by three optional
terms F = CNNF− ∨ DNNF− ∨ C+. A HORN-NNF formula is a set of
HORN-NNF clauses.

Now, we define the classical semantic concepts related to satisfiability of
formulas

Definition 4.5.6 An interpretation I assigns to each formula Γ one value in the
set {0, 1} and its satisfiability property is extended from SIMPLE-HORN-NNF
formulas to HORN-NNF formulas as follows. An interpretation I satisfies:

• A NNF− conjunctive formula CNNF− = {NNF−1 ∧ . . . ∧ NNF−k }, iff
I(NNF−i) = 1 for every NNF−i .

• A NNF− disjunctive formula DNNF− = (NNF−1 ∨ . . . ∨ NNF−k), iff
I(NNF−i) = 1 for at least one NNF−i .

66

• A HORN-NNF clause F = (CNNF−∨DNNF−∨C+) iff I(CNNF−) = 1
or I(DNNF−) = 1 or I(C+) = 1.

• A HORN-NNF formula iff I satisfies all its HORN-NNF clauses.

An interpretation I is a model of a formula Γ if it satisfies the formula. We
say that Γ is satisfiable if it has at least one model, otherwise, it is unsatisfiable.

Definition 4.5.7 By definition, the formula Γ = {()} and the clause () ≡ 2 are
unsatisfiable; the formula {} is satisfiable.

Definition 4.5.8 The HORN-NNF-SAT problem is the problem of deciding whether
a HORN-NNF formula is satisfiable.

Definition 4.5.9 A clause F is a logical consequence of a formula Γ, noted
Γ |= F , iff every model of Γ is a model of F .

4.5.2 Logical Calculus

The Logical Calculus for the HORN-NNF formulas is obtained by substituting
terms D−, C−, CNF− and DNF− in the previous four rules, by general NNF−

formulas. Also, the level of nesting allowed can be of any finite order.
As in the simple case, we need two kinds of Unit Resolution rules:

• DUR, for the case where the negated literal ¬p of a unit clause (p) is in a
disjunction, and

• CUR, similarly when ¬p is in a conjunction.

In order to extend the Logical Calculus of the SIMPLE-HORN-NNF-SAT
problem to the HORN-NNF-SAT problem, we take separately each inference
rule and we generalize the terms D−, C−, CNF− and DNF− existing in the
inference rule by replacing them appropriately by general NNF− terms.

Definition 4.5.10 The rule DUR for the HORN-NNF formulas where the old
terms have been substituted by general NNF− formulas is the following:

(p), ({(¬p ∨NNF−1) ∧NNF−2 } ∨NNF−3 ∨ C+)
({(NNF−1) ∧NNF−2 } ∨NNF−3 ∨ C+)

(DUR)

Now we need to extend the nesting level from 3 to any order k:

(p), ({(. . . ({(¬p ∨NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)

({(. . . ({(NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)
(DUR)

Remark: The term NNFk can be a conjunct or a disjunct depending only
on the number k of layers of nesting. If k is even, NNFk is a conjunct and else,
if k is odd, it is a disjunct.

Thus, the new inference rule antecedent are obtained from the previous ones
by:

67

• substituting in the rule antecedent, the terms (¬p2 ∨ . . . ∨ ¬pn), {D−
2 ∧

. . . ∧D−
k } and DNF− by general NNF− formulas, and by

• generalizing from the level 3 of nesting of the operators ∨/∧ in formulas
SIMPLE-HORN-NNF to a general level k of nesting in HORN-NNF.

Then, with the antecedent defined, the consequent is easily derived. Applying
the previous principle to the three inference rules of the previous LC for the
SIMPLE-HORN-NNF formulas, we obtain the definitive inference rules for the
general HORN-NNF case.

Definition 4.5.11 The Logical Calculus for the general HORN-NNF formulas
is the following:

({(. . . {({2 ∧NNF−1 } ∨NNF−2) ∧NNF−3 } ∨ . . . ∨NNF−k−1) ∧NNF−k } ∨ C+)

({(. . . {(NNF−2) ∧NNF−3 } ∨ . . . ∨NNF−k−1) ∧NNF−k } ∨ C+)
(SIMPLIF)

(p), ({(. . . ({(¬p ∨NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)

({(. . . ({(NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)
(DUR)

(p), ({(. . . {({¬p ∧NNF−1 } ∨NNF−2) ∧NNF−3 } ∨ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)

({(. . . {(NNF−2) ∧NNF−3 } ∨ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)
(CUR)

({p1 ∧ . . . ∧ pi ∧ . . . ∧ pn})
(p1) ∧ . . . ∧ (pi) ∧ . . . ∧ (pn)

(AE)

Example 4.5.2 Let us take the previous example:

F = {(p1) ∧ (p2) ∧ (p3) ∧ (p6)

∧
({(¬p1∨¬p8)∧ (¬p2)} ∨ {(¬p4∨¬p5)∧ (¬p6)} ∨ {¬p3∧¬p7} ∨ {p7∧p5})

∧
({({(¬p1 ∨ ¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7} ∨ {¬p1 ∧ ¬p9}) ∧ (¬p4)} ∨ {p8 ∧ p9})

∧
(¬p8)}

(p2), ({(¬p1 ∨ ¬p8) ∧ (¬p2)} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {¬p3 ∧ ¬p7}) ∨ {p7 ∧ p5})
({(¬p1 ∨ ¬p8) ∧2} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {¬p3 ∧ ¬p7} ∨ {p7 ∧ p5}) (DUR)

68

({(¬p1 ∨ ¬p8) ∧2} ∨ {(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {¬p3 ∧ ¬p7} ∨ {p7 ∧ p5})
{(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {¬p3 ∧ ¬p7} ∨ {p7 ∧ p5}) (SIMPLIF)

(p6)({(¬p4 ∨ ¬p5) ∧ (¬p6)} ∨ {¬p3 ∧ ¬p7} ∨ {p7 ∧ p5})
{(¬p4 ∨ ¬p5) ∧2} ∨ {¬p3 ∧ ¬p7} ∨ {p7 ∧ p5}) (DUR)

{(¬p4 ∨ ¬p5) ∧2} ∨ {¬p3 ∧ ¬p7} ∨ {p7 ∧ p5})
{¬p3 ∧ ¬p7}) ∨ {p7 ∧ p5}) (SIMPLIF)

(p3), ({¬p3 ∧ ¬p7} ∨ {p7 ∧ p5})
({p7 ∧ p5}) (CUR)

({p7 ∧ p5})
(p7), (p5)

(AE)

(p1), ({({(¬p1 ∨ ¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7} ∨ {¬p1 ∧ ¬p9}) ∧ (¬p4)} ∨ {p8 ∧ p9})
({({(¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7} ∨ {¬p1 ∨ ¬p9}) ∧ (¬p4)} ∨ {p8 ∧ p9}) (DUR)

(p1), ({({(¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7} ∨ {¬p1 ∧ ¬p9}) ∧ (¬p4)} ∨ {p8 ∧ p9})
({({(¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7}) ∧ (¬p4)} ∨ {p8 ∧ p9}) (CUR)

(p2), ({({(¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7}) ∧ (¬p4)} ∨ {p8 ∧ p9})
({({(¬p8) ∧2 ∧ (¬p6)} ∨ {¬p7}) ∧ (¬p4)} ∨ {p8 ∧ p9}) (DUR)

({({(¬p8) ∧2 ∧ (¬p6)} ∨ {¬p7}) ∧ (¬p4)} ∨ {p8 ∧ p9})
({({¬p7}) ∧ (¬p4)} ∨ {p8 ∧ p9}) (SIMPLIF)

(p7), {({¬p7}) ∧ (¬p4)} ∨ {p8 ∧ p9})
({2 ∧ (¬p4)} ∨ {p8 ∧ p9}) (DUR)

({2 ∧ (¬p4)} ∨ {p8 ∧ p9})
({p8 ∧ p9}) (SIMPLIF)

({p8 ∧ p9})
(p8), (p9)

(AE)

(¬p8), (p8)
2

(DUR)

Now, we can state the first main theorem.

69

Theorem 4.5.1 The previous Logical Calculus is Sound and Refutation Com-
plete for the HORN-NNF formulas.

Proof. The soundness is trivial and the completeness theorem proof is very sim-
ilar to that of the logical calculus for the SIMPLE-HORN-NNF-SAT problem.
Let us take as an example the first lemma equivalent to lemma 4.4.3.

Lemma 4.5.1 If Γ+ |= p and rank(p) = k then there exists at least one clause
F = (CNNF−1 ∨ CNNF−2 ∨ . . . ∨ CNNF−k ∨ {DNNF−1 ∧ DNNF−2 ∧ . . . ∧
DNNF−n } ∨ C+) such that:

1. p ∈ C+, or similarly, F ∈ pos(p)

2. ∀¬pi ∈ F , rank(pi) < k

3. ∀CNNF−i , ∃DNNF−, DNNF− ∈ CNNF−i s.t. Γ+ |= ¬DNNF− and
∃DNNF−j , ∀CNNF−, CNNF− ∈ DNNF−j s.t. Γ+ |= ¬CNNF−.

Proof.

1. Assume @F ,F ∈ pos(p). Let us I be a model of Γ+ such that I(p) = 1.
Let us consider an interpretation I ′ with the same mapping that I except
for I ′(p) = 0. Obviously I is also a model of Γ+ because I ′ satisfies more
literals than I since all the occurrences of p in Γ+ are negated. Hence,
Γ+ 2 p.

2. Assume that ∃¬pi such that rank(pi) = l ≥ k. Then by definition of rank,
rank(p) = l + 1 > k.

3. Assume that ∃CNNFi, ∀DNNF−, DNNF− ∈ CNNF−i such that Γ+ 2
¬DNNF− or assume that ∀DNNFj , ∃CNNF−, CNNF− ∈ DNNF−j ,
Γ+ 2 ¬CNNF−. We provide the proof for the first alternative, the proof
for the second one is completely similar. If ¬DNNF− is not a logical
consequence means that there is a model I of Γ+ such that I(DNNF−) = 1
and then I(CNNF−i) = 1. But, taking into account this fact, defining I ′

equal to I except for the mapping I ′(p) = 0 is also a model and then we
have Γ+ 2 p.

¥

The remaining lemmas of the proof are proved similarly using the same kind
of generalization followed in the previous lemma with respect to the equivalent
lemma in the MAIN THEOREM 1 for the SIMPLE-HORN-NNF-SAT problem.

¥

Thus, MAIN THEOREM 1: ∃x, SRC(x) is true for the previous LC,
namely we have, SRC(LC).

70

4.5.3 A Quadratic Algorithm

The algorithmic version of the current Logical Calculus is the same that the
previous one, defined in 4.4.20.

(p), Γ
Γ = RemoveAllLiterals(¬p,Γ)

(RAL)

(p), Γ
Γ = RemoveAllConjunctions(¬p, Γ)

(RAC)

Γ
Γ = RemoveAllCNFs(2,Γ)

(RACNF)

As the calculus is the same that the previous one, the corresponding quadratic
algorithm differs in only one point with respect to the previous one for the
SIMPLE-HORN-NNF-SAT problem.

In the current HORN-NNF-SAT problem the nesting of formulas oblige to
propagate the situations appearing when disjunctions are converted in the empty
clause 2. Removing terms in disjunctions can make reduce a disjunction to the
empty clause. To its turn, this empty clause can be a term in a conjunction that
contains the removed disjunction, and removing this conjunction could yield an
empty disjunction. Thus, propagation of the empty clause in the formulas is
required.

Let us take an example. Consider the sixth subformula of the previous
HORN-NNF formula:

({({(¬p1 ∨ ¬p8) ∧ (¬p2) ∧ (¬p6)} ∨ {¬p7} ∨ {¬p1 ∧ ¬p9}) ∧ (¬p4)} ∨ {p8 ∧ p9})

Its representation by a tree is :
∨

∧

∨

∧

∨
¬p1 ¬p8

¬p2 ¬p6

¬p7 ∧
¬p1 ¬p9

¬p4

∧
p8 p9

71

Assume that firstly unit clauses (p8), (p7) have been deduced. After applying
the correspondent inferences, the resulting formula becomes:

∨

∧

∨

∧

∨

¬p1

¬p2 ¬p6

∧
¬p1 ¬p9

¬p4

∧
p8 p9

If now (p1) is deduced, the formula is simplified as follows:
∨

∧

∨

∧

2 ¬p2 ¬p6

¬p4

∧
p8 p9

Now propagating the clause 2, we obtain the tree:
∨

∧
2 ¬p4

∧
p8 p9

Now propagating again the empty clause 2 leads to the tree:
∨

∧
p8 p9

These last steps of propagation of the 2 make the difference between the
previous algorithms and the current ones for the HORN-NNF-SAT problem. The
following algorithm is a quadratic algorithm for the HORN-NNF-SAT problem:

SATALGQ1(Γ)

72

1 ApplyAE(Γ, Stack)
2 While Stack 6= {} do:
3 p ← pop(Stack)
4 RemoveAllLiterals(¬p, Γ)
5 RemoveAllCNFs(2, Γ)
6 RemoveAllConjunctions(¬p, Γ)
7 Propagate(2, Γ)
8 ApplyAE(Γ, Stack)
9 EndWhile
10 If () = F ∈ Γ then return(“UNSAT”) Else return(“SAT”)

Theorem 4.5.2 The previous algorithm is correct.

Proof. The correctness of the algorithm follows from that of SATALGQ1 for the
SIMPLE-HORN-NNF SAT problem. ¥

Theorem 4.5.3 The previous algorithm is quadratic.

Proof. The quadratic complexity is derived from the quadratic complexity of
the algorithm SATALGQ1 for the SIMPLE-HORN-NNF-SAT problem. Indeed
the function “Propagate” is linear like the other operations in lines 4, 5, and 6,
and as the maximal number of iterations is limited by the number of different
propositions, the global complexity is quadratic. ¥

This proves the MAIN THEOREM 3 for the HORN-NNF-SAT problem:

CORSAT (SATALGQ1) ∧QSAT (SATALGQ1)

4.5.4 A Linear Algorithm for the HORN-NNF-SAT prob-
lem

Before defining the data structure, we introduce some notations needed.
If a subformula α in Γ is of the form α = α1 ∨ α2 ∨ . . . ∨ αi ∨ . . . ∨ αk

or α = α1 ∧ α2 ∧ . . . ∧ αi ∧ . . . ∧ αk then we will consider that α contains αi

or, similarly, αi is included in α. Also, from a practical point of view, we will
consider that α is the father of each αi and that the set {α1, α2, . . . , αn} are the
successors of α. Each subformula α is implemented by associating a connector,
namely a set of pointers, to the set of successors and to each successor αi a
pointer toward its father. This father will be noted D−(αi) if αi is a disjunctive
term in α or C−(αi) if αi is a conjunctive term in α.

Input: Γ = Γ1 ∧ Γ2 ∧ . . . ∧ Γn

Output: “SAT” or “UNSAT”.

Initialization procedure. In this procedure, all the data structure are initial-
ized, namely D−(k) and C−(k) are pointers to the occurrences of proposition pk

appearing in disjunctions and conjunctions respectively. Now, in addition, there

73

are also pointers D−(αi) or C−(αi) of each subformula αi to the father formula
α that contains it. Conversely, there is a list of pointers Succ(α) associated to
each formula α toward the successor formulas αi.(Like previously, [α] denotes a
pointer to the formula α).

The following is a SAT algorithm with quadratic complexity that employs
the above described data structure.

SATALGQ2(Γ)
1 ∀Γi = (C+) do: ∀p ∈ C+ do: push(p, Stack)
2 While Stack 6= {} do:
3 pk ← pop(Stack)
4 ∀[α] ∈ D−(k) do: Remove(¬pk, α)
5 ∀[α] ∈ D−(k) do: If α = ∅ then PROPAGATE([α])
6 ∀[α] ∈ C−(k) do: Remove(α, D−(α))
7 ∀[α] ∈ C−(k) do: If Succ(D−(α)) = ∅ ∨ Succ(D−(α)) = (C+) then

PROPAGATE([D−(α)])
8 Endwhile
9 If ∃i, 1 ≤ i ≤ n with Γi = () then return(“UNSAT”) Else return(“SAT”)
10 End

PROPAGATE([β]){β is a ∨ node}
1 If Succ(β) = (C+) then do: ∀p ∈ C+ do: push(p, Stack)
2 Else If C−(β) 6= Γ do:
3 γ ← C−(β); Remove(γ, D−(γ))
4 If Succ(D−(γ)) = ∅ ∨ Succ(D−(γ)) = (C+) then PROPAGATE([D−(γ)])
5 End

Theorem 4.5.4 SATALGQ2 together with only line 1 of PROPAGATE is cor-
rect for the SIMPLE-HORN-NNF SAT problem.

Proof. The proof derives straightforwardly from the correctness of the first al-
gorithm in section 4.4.5 for the SIMPLE-HORN-NNF-SAT problem and the
parallelism of the above algorithm and the mentioned algorithm in section 4.4.5.
Indeed, the only difference is reduced to the different notations employed in both
algorithms.

¥

Theorem 4.5.5 SATALGQ2 and PROPAGATE form a correct decision SAT
algorithm for the HORN-NNF SAT problem.

Proof. Due to the construction of SATALGQ1 and SATALGQ2 algorithms, it
is easy to check that SATEQU(SATALGQ1, SATALGQ2). Then, we have:

1. ∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y), corollary 4.3.2

2. SATEQU(SATALGQ1,SATALGQ2), by the construction of both algo-
rithms

74

3. CORSAT (SATALGQ1), by previous theorem 4.5.2

and hence, we obtain CORSAT (SATALGQ2) ¥

Theorem 4.5.6 SATALGQ2 and PROPAGATE decide in O(n2) whether a
formula is Satisfiable.

Proof. Firstly, we analyze SATALGQ2, then PROPAGATE and finally the
global complexity. Thus, the complexity of “remove” operations in the SATALGQ2

function is in O(n), where n is the size of Γ. On the other hand, the maxi-
mal number of iterations of this function is bounded by the total number of
propositional variable occurrences in the C+ terms of sub-formulas Γi. Thus,
SATALGQ2 is in O(n2) in the worst-case. Concerning the PROPAGATE pro-
cedure, each recursion is associated to an arc in a tree representing a subformula.
Once the arc has been crossed, it is removed with the “remove” function. This
warrants that each arc representing a subformula is crossed only once. Thus,
PROPAGATE is in O(k), where k is the total number of subformulas in Γ.
Altogether, SATALGQ2(Γ) ends in O(n2) time. ¥

Having obtained a quadratic algorithm, the next step is to optimize it with
appropriate data structure in order to obtain a strictly linear complexity al-
gorithm. The data structures are chosen similarly like in the case SIMPLE-
HORN-NNF to advance from the SATALGQ2 to SATALGL. More concretely
we employ counters for processing removal in disjunctions and flags to prevent
repeating inferences.

Data Structures First(k) is a flag associated to each proposition pk. It
avoids to repeat the same inference with a proposition pk more than once. A flag
First(α) is associated with each conjunctive subformula α = α1∧α2∧. . .∧αn. Its
use is the same that for the SIMPLE-HORN-NNF-SAT problem. First(D−(α))
prevent removing more than one conjunction from the disjunction D−(α) when
several deduction propagations belonging to the same conjunction are carried
out. Finally, there is a counter associated with each disjunctive subformula
α = α1 ∨ α2 ∨ . . . ∨ αn, Counter(α). Its role, like in the disjunctions in the
SIMPLE-HORN-NNF case, is to keep the number of disjunct terms not removed
yet by effect of the different deductions.

SATALGL(Γ)
1 ∀Γi = (C+) do: ∀p ∈ C+ do: push(p, Stack)
2 While Stack 6= {} do:
3 pk ← pop(Stack)
4 If First(k) = 1 then do:
5 First(k) ← 0
6 ∀[α] ∈ D−(k) do: Decrement Counter(α)
7 ∀[α] ∈ D−(k) do: If Counter(α) = 0 then PROPAGATE([α])
8 ∀[α] ∈ C−(k) do: If First(α) = 1 then do:
9 First(α) ← 0; Decrement Counter(D−(α))
10 ∀[α] ∈ C−(k) do: If Counter(D−(α)) = 0 then PROPAGATE(D−(α))

75

11 Endwhile
12 If ∃Γi, 1 ≤ i ≤ n, with Counter(Γi) = 0 then return(“UNSAT”) Else return(“SAT”)
13 End

PROPAGATE([β]){β is a disjunctive formula}
1 If Succ(β) = (C+) then do: ∀p ∈ C+ do: push(p, Stack)
2 Else If C−(β) 6= Γ do:
3 If First(C−(β)) = 1 then do:
4 First(C−(β))) ← 0
5 Decrement Counter(D−(C−(β)))
6 If Counter(D−(C−(β))) = 0 then PROPAGATE(D−(C−(β)))
7 End

Theorem 4.5.7 SATALGL(Γ) returns “SAT” iff Γ is satisfiable.

Proof. This function is like the previous one with the following substitutions: 1)
Remove functions have been transformed by counter decrements and, 2) Tests
for empty formulas have been transformed by tests for 0 in the corresponding
counters associated to the corresponding formulas. Hence, by construction of
SATALGL, SATEQU(SATALGQ2, SATALGL) is obtained. Then, we have:

1. ∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y), corollary 4.3.2

2. SATEQU(SATALGQ2,SATALGL), by the construction of both algo-
rithms

3. CORSAT (SATALGQ2), by previous theorem 4.5.5

and hence, we obtain CORSAT (SATALGL) ¥

Theorem 4.5.8 SATALGL and PROPAGATE form a SAT decision proce-
dure with strictly O(n) complexity.

Proof. Each line in the SATALGL iteration is executed in time proportional to
the number of occurrences of a particular proposition pk in the formula. The
number of iterations is bounded by the number m of different propositions in the
formula. Hence, the operations executed in the whole set of iterations is in O(n),
namely proportional to the number of occurrences of propositional variables in
the input formula Γ.

The execution of the first line in the PROPAGATE function is executed as
many times as occurrences of propositions exist in the C+ parts of subformulas
Γi. The remaining operations of PROPAGATE are executed in constant time.
Thus, we have to check that the total number of calls to the PROPAGATE
function is at most proportional to the number of symbols in the input formula
Γ.

A call to the function PROPAGATE is executed each time the counter asso-
ciated with a disjunctive formula is set to 0. Then, the PROPAGATE function
is executed at most the number of disjunctive subformulas existing in the input

76

formula. Thus, the number of calls to the PROPAGATE function is in O(k),
where k is the number of ∨ symbols in the input formula Γ.

Thus, the whole algorithm SATALGL − PROPAGATE is in O(n + k),
where n and k are respectively the number of propositional occurrences and the
number of ∨ symbols in the input formula Γ.

¥

The last two theorems prove the MAIN THEOREM 4 for the general HORN-
NNF SAT problem:

CORSAT (SATALGL) ∧ LSAT (SATALGL)

Thus, the main result of this chapter is proved.

4.6 Conclusions

On the theoretical side, our contribution described here aims at pushing further
the frontiers of non-clausal tractability. Thus, we firstly have defined a new class
of formulas in Negation Normal Form having a Horn-like shape. In this sense,
the proposed formulas absorb the Horn language as a particular case. Secondly,
we have established a set of inference rules which are sound and refutationally
complete. In third place, we have designed strictly linear algorithms to solve the
satisfiability problem in this class of formulas.

On the practical side, as the formulas keep a Horn-like structure, they are of
relevant interest in such applications as for instance those based in Rule Based
Systems. Indeed, the rules and the questions of many real applications require to
represent and reason with a richer language than the Horn formulas language.
The proposed formulas represent logically equivalent pure Horn problems but
with exponentially less symbols. Hence, as the described algorithm runs in
linear time on this class, the gain of time can be of an exponential order with
respect to the known linear algorithms running on the Horn formulas.

77

Chapter 5

The Regular HORN-NNF
SAT problem

5.1 Introduction

Solving the SAT problem in many-valued logics is an important challenge due to
the repercussions in many different areas of computer Science such as Theorem
Proving, Approximated Reasoning, Hardware Design, Deductive Data Bases,
Automated Software Validation, Planning, Logic Programming, Knowledge-
based Control Systems, etc. The interest of considering many-valued logic in-
stead of classical logic lies mainly in the fact that many valued logics can cope
with certain uncertainty aspects existing almost always in real world applica-
tions. For a survey on Many-valued Automated Deduction issues the reader can
see [59, 77, 19, 25, 20].

For these reasons, at the beginning of the last decade, Automated Deduction
in many-valued logics emerged as a new and promising research topic for the AI
community.

In this chapter, we will deal with the non clausal signed logic SAT problem.
Signed logic is a kind of many-valued logic that is an extension of the classical
logic in the following sense. Atoms in propositional bi-valued logic are noted by
p and ¬p. Knowing that the set of truth values is {0, 1}, these atoms could be
written also as {1} :p and {0} :p respectively. Thus, in a many-valued case, if N
is the set of truth values an atom in signed logic is denoted S :p, where S ⊆ N ,
and its negated proposition is N/S :p.

Regular logic is a particular case of signed logic with two assumptions 1) N
is a total ordered set {0, 1

N−1 , 2
N−1 , . . . , 1} and, 2) the set S can be either of

positive polarity or negative polarity. Positive (resp. negative) polarity means
that S takes the interval of values comprised between a given value j ∈ N and
1 (resp. 0 and the given value j).

79

The satisfiability relation varies only w.r.t. the literal level. Namely, an
interpretation I satisfies S : p iff I(p) ∈ S and it satisfies a conjunction (resp.
disjunction) of formulas iff it satisfies each (resp. at least one) formula of the
conjunction (resp. disjunction).

Although the extension from classical to signed logic seems quite straightfor-
ward, signed Automated Deduction is recognized to require the use of techniques
associated with non classical logics. Thus, the signed SAT problem treated here
is considered to be within the Non-classical Automated Deduction field.

The signed SAT problem keeps a particular relevance with respect to any
other many-valued SAT problem. This is because in [57] has been proved that
a SAT problem expressed in any finite many-valued logic can be transformed
into an equivalent signed SAT problem in polynomial time. This means that a
solver of the signed SAT problem can act as a general many-valued SAT solver.
Indeed, in order to solve a many-valued SAT problem first one could transform
the problem into a signed SAT problem and then applying the signed SAT solver.
So, any finite many-valued SAT problem can be solved by means of the signed
SAT solver. Thus, advances in the signed SAT problem have direct consequences
on any finite many-valued SAT problem. In other words, the signed SAT problem
could be seen as a representative problem of the many-valued SAT problems.

This chapter is structured as follows. In the next section we present a survey
of the related work. In section three, we describe the methodology utilized to
prove that the Regular SIMPLE-HORN-NNF-SAT problem can be solved in
polynomial time. In section four (resp. five), we apply this methodology to
prove the almost linearity (resp. quadratic complexity) of the Regular SIMPLE-
HORN-NNF-SAT (resp. HORN-NNF-SAT) problem and we provide a almost
linear (resp. quadratic) algorithm to solve it. Finally, we explain the conclusions
we have obtained in this research work.

5.2 Related Work

We review successively the main works concerning signed and regular logic, non-
clausal tractability and many-valued tractability.

Some relevant works related to signed and regular logic.
Signed logic was formally developed by Hähnle [53] and Lu, Murray and Rosen-
thal [71] for Automated Deduction with tableau approaches and resolution in
the context of finitely-valued logics. The notion of a signed formula was first
introduced by Smullyan in [91] within the classical logic context. In [54] a
generalization of this concept to the many-valued logic is given. Later [55]
defined the concepts of regular signs and regular formulas. Murray and Rosen-
thal [82] developed Resolution for signed formulas. In [42] the notion of Horn
many-valued formula was introduced by the first time and it was proved that the
Horn SAT problem for a sub-case of the regular logic is almost linear. In [58],
and later in [73], the regular unit resolution rule is given and proved that it is
refutationally complete for regular Horn clauses. [60] proves the completeness
of regular connected tableaux and NC-resolution for non-clausal formulas. [72]

80

analyzes the cases of first-order signed formulas, annotated and fuzzy logic. [69]
describes an inference rule based on resolution for regular many-valued logics
which has interesting properties for automated reasoning. [76] analyzes the
transition phase phenomenon in the regular CNF satisfiability problem, [18]
shows two transformations between signed and classical CNF logics, [13] de-
fines a collection of mappings that transform many-valued clausal forms into
satisfiability equivalent Boolean clausal forms. [74, 77, 20] deals with the signed
2-SAT problem and [11, 15, 24, 14] studies the interface between P and NP in
Mono+pPartiallySigned-2SAT and Regular+pSigned-2SAT and other particular
problems are studied in [22, 23].

Non-clausal Tractability Tractability has attracted much attention, spe-
cially in classical logic. As far as we know, the first published results concerning
non-clausal tractability comes from [40, 41, 45] where a strictly linear bottom-
up algorithm to test the satisfiability of a subclass of non-clausal formulas is
detailed. Such a class embeds the Horn case as a particular case. In [50] a lin-
ear top-down algorithm is given for the same non-clausal subclass of formulas.

New results concerning non-clausal tractability are reported in [87] where a
method called Restricted Fact Propagation is presented which is a quadratic,
incomplete non-clausal inference procedure.

More recently, in [93, 94] a significant advance in non-clausal tractability
has been accomplished. The author defines a class of formulas by extending
the Horn formulas to the field of non-clausal formulas. Such extension relies on
the concept of polarity. In [93], a SLD-resolution variant with the property of
being refutationally complete is showed, although its computational complexity
is not studied. In [94] a method for propositional and some many-valued non-
clausal Horn-like formulas is described and it is stated that the method is sound,
incomplete and linear.

However, concerning the last issue, no algorithm is specified, indeed the steps
of the method are described as different propagations of some truth values in
a sparse tree. Then, although it seems that the number of inferences of the
proposed method is linear, it is not proved the resulting complexity (w.r.t. the
number of computer instructions) of a linear number of truth value propagations
on the employed sparse trees.

In a previous work carried out by the authors [2, 7, 6] the linearity of
some sub-classes of formulas of the general classical (bi-valued) NNF formulas
is proved.

Many-valued tractability The earliest work on this topic is due to [42]
where the SAT problem and other related problems for a sub-class of the regular
Horn logic is proved to be almost linear. In [58] the regular Horn problem is
proved to be also almost linear. Then, in [44] the 2-SAT problem is analyzed
proving that the regular 2-SAT and the special case of the signed 2-SAT in
which all the signs are singletons are polynomials. In [18] the regular Horn SAT
problem where the truth values form a finite lattice is proved to be polynomial.

In [94] the first many-valued non-clausal SAT problem that can be deter-
mined in polynomial time has been defined. More recently, another many-valued

81

non-clausal SAT problem with a polynomial complexity has been identified [5, 9].
The many-valued logic and the non-clausal form studied there are sub-cases re-
spectively of the regular logic and the non-clausal form analyzed in this chapter.

5.3 Proof Methodology

In this section we explain our methodology to prove that the Regular SIMPLE-
HORN-NNF-SAT problem can be solved in polynomial time. We used in the
previous chapter this methodology to prove that the general HORN-NNF-SAT
problem of classical (bi-valued) logic can be solved strictly in linear time. Now
we extend the application of our methodology by applying a similar strategy
to the more complicated case of propositional many valued logic, specifically
to the formulas we name as regular HORN-NNF formulas. Our methodology
has as an ultimate goal the design of an algorithm which resolves the related
Regular HORN-NNF-SAT problem in polynomial time; another objective is to
prove progressively the logical properties of the final and complicated algorithm.

5.3.1 Description of the Proof Methodology

This proof is decomposed in four steps: the first step consists in defining a
Sound and Refutation Complete Logical Calculus LC. In the second one, we
define a SAT algorithm A1 based on the previous Logical Calculus which is
correct but it needs some refinements to optimization complexity aspects. In
the three step, we specify a better polynomial SAT algorithm A2. Then, the
objective of the final fourth step is to write a definitive algorithm A3 whose
structural design complexity is carefully designed. So, our final polynomial SAT
algorithm, namely A3, is the final step of the complexity optimization process,
represented by the sequence < LC, A1, A2, A3 >.

The idea behind our approach is, conducting the optimization process veri-
fying that each SAT algorithm in the sequence, is satisfiability equivalent to the
previous one in the sequence (The equivalence relationship between LC and A1
will be specified later).

We describe these steps with a simple First Order Logic formalism. Variables
are written in small letters and constants in capital letters. We use four first
order predicates:

• SRC, to assert the Soundness and Refutation Completeness of a Logical
Calculus x, i.e. SRC(x) is true iff x is Sound and Refutation Complete.

• CORSAT , to assert the CORrectness of a SAT algorithm x, namely
CORSAT (x) stands for: x is a SAT algorithm that running on a formula
Γ returns “UNSAT” iff Γ is unsatisfiable.

• SATEQU , to assert that two SAT algorithms are satisfiability equivalents,
namely SATEQU(x1, x2) says that, for any formula Γ, if x1 and x2 are
both SAT algorithms and, if x1 running on Γ returns “UNSAT”, then x2

running on the same formula Γ returns “UNSAT” too.

82

• LCEQUSAT (x, y), to assert the equivalence between a Logical Calculus
x and a SAT algorithm y in the following sense: LCEQUSAT (x, y) is
true iff x derives 2 from Γ when y running on the same formula Γ returns
“UNSAT”.

More formally, noting:

UNSAT (Γ) ≡ Γ is unsatisfiable

and x(Γ) the value returned by algorithm x running on formula Γ, the pre-
vious logical predicates are precisely defined respectively by the following equiv-
alences:

∀x, SRC(x) ⇐⇒ ∀Γ, Γ `x 2 ⇔ UNSAT (Γ)

∀x,CORSAT (x) ⇐⇒ ∀Γ, x(Γ) = “UNSAT ′′ ⇔ UNSAT (Γ)

∀x, y, SATEQU(x, y) ⇐⇒ ∀Γ, x(Γ) = y(Γ)

∀x, y, LCEQUSAT (x, y) ⇐⇒ ∀Γ,Γ `x 2 ⇔ y(Γ) =′′ UNSAT ′′

With, this notation, the following corollaries are straightforward:

Corollary 5.3.1

∀x, y, LCEQUSAT (x, y) ∧ SRC(x) =⇒ CORSAT (y)

Proof. It follows from the definitions of the predicates in the statements. ¥

Corollary 5.3.2

∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y)

Proof. It follows from the definitions of the predicates in the statements. ¥

As mentioned before, trying to prove the SAT correction of an algorithm
with a complex design structure is not the right way to proceed, because the
more complex is an algorithm the more difficult is to analyze it.

Thus, in order to prove CORSAT (Ai+1) directly and exclusively from its
structural design, we prove CORSAT (Ai)∧SATEQU(Ai, Ai+1), that together
with the previous Corollary, implies CORSAT (Ai+1). Thus, transferring this
approach throughout the optimization sequence < LC, A1, A2, A3 >, we have
that the difficulty of proving CORSAT(A3) has been reduced to the simpler
proofs SRC(LC), LCEQUSAT(LC,A1), SATEQU(A1,A2) and SATEQU(A2,A3).

• The proof of SRC(LC) is a quite standard proof and it is based on known
techniques.

83

• The remaining three proofs are simple ones because we can choice an al-
gorithm whose structural design is close to its predecessor object in the
sequential optimization process. Thus, making a straight parallelism be-
tween the instructions of the two algorithms, we can state their SAT equiv-
alence.

Thus, in order to prove the correctness of an almost linear Regular SIMPLE-
HORN-NNF-SAT algorithm and a quadratic Regular HORN-NNF-SAT algo-
rithm, we prove successively:

1. The existence of a Sound and Refutation Complete Logical Calculus (LC).
This proof will be done via well-known mathematical techniques.

2. The existence of a correct SAT algorithm SATALGP that is a direct im-
plementation of the previous Logical Calculus LC and whose complexity
is polynomial.

3. The existence of a correct SAT algorithm SATALGQ with quadratic com-
plexity issued from SATALGP via an optimization step.

4. The existence of a SAT correct algorithm SATALGAL with an almost
linear complexity issued from SATALGQ via an optimization step.

Remark. For the Regular HORN-NNF-SAT problem, we have only specified
the first three steps.

5.3.2 Theorems of the Proof methodology

We distinguish four MAIN THEOREMS in our proof methodology, one for each
step of the proof of polynomiality of the Regular (SIMPLE-)HORN-NNF SAT
problem. They are stated below together with a sketch of their proof. In addition
to the previous First Order Predicates, we also use PSAT (x), QSAT (x) and
ALSAT (x) which state that x is a SAT algorithm of respectively Polynomial,
Quadratic and an Almost Linear complexity.

1. Logical Calculus (LC) This step consists in establishing a Logical Calcu-
lus appropriated to solve the Regular (SIMPLE)-HORN-NNF-SAT prob-
lem. Thus, we must prove its Soundness and Refutation Completeness.

MAIN THEOREM 1: ∃x, SRC(x)

Proof Sketch. The proof consists in finding a particular Logical Calculus
LC and proving its Soundness and Refutation Completeness. As it will be
shown, this proof follows standard mathematical techniques. ¥

2. Algorithmic Version of the Logical Calculus This step consists in
defining an Algorithmic Version of the Logical Calculus (AVLC), proving
its correctness, w.r.t. the satisfiability test, and its polynomial complexity.

MAIN THEOREM 2: ∃x,CORSAT (x) ∧ PSAT (x)

84

Proof Sketch. The proof is based on the first corollary and it is divided
in two steps:

(a) Firstly, we choose a particular SATALGP for x, namely a polynomial
SAT algorithm such that the proof of LCEQUSAT (LC, SATALGP)
is straightforward. Namely, our proposed SATALGP is a direct al-
gorithmic materialization of the concrete LC defined in the first theo-
rem. Then, applying corollary 5.3.1, we deduce CORSAT (SATALGP).

(b) Second, the proof of PSAT (SATALGP) follows from a very simple
complexity analyze of the designed SATALGP .

¥

3. Quadratic Algorithm (QA) This step consists in modelling the vari-
ables of the previous SATALGP with specific data structures, and in
proving that there exists a Quadratic Algorithm SATALGQ derived from
SATALGP .

MAIN THEOREM 3 ∃x, CORSAT (x) ∧QSAT (x)

Proof Sketch. It is based on corollary 5.3.2. We show that there exists a
quadratic algorithm SATALGQ very similar to the previous SATALGP .
Given such similarity, we prove easily the statement
SATEQU(SATALGP , SATALGQ). Thus, CORSAT (SATALGQ) fol-
lows from SATEQU(SATALGP , SATALGQ), CORSAT (SATALGP),
proved in the previous theorem, and the corollary 5.3.2. QSAT (SATALGQ)
is obtained by an easy complexity analyze. ¥

4. An almost linear algorithm. Finally, the optimal algorithm is de-
scribed progressively by choosing appropriately the data structures and
the computer instructions, aiming at the design of an almost linear al-
gorithm. The substitutions of the initial data structures and the initial
computer instructions by new ones are explained accurately.

MAIN THEOREM 4 ∃x, CORSAT (x) ∧ALSAT (x)

Proof Sketch. SATEQU(SATALGQ, SATALGAL) follows from the tight
similarity between SATALGQ and SATALGAL. CORSAT (SATALGAL)
is straightforwardly derived from such SAT equivalency, from
CORSAT (SATALGQ), proved in the previous theorem, and from the
corollary 5.3.2. ¥

Remark The theorem 4 is obtained for the Regular SIMPLE-HORN-NNF-
SAT problem. For the regular HORN-NNF SAT problem only the first three
theorems apply. The obtaining of the four theorem for this problem is left as
future work.

85

The advantage of the proposed methodology is that the difficulty of obtaining
a proof of the logical properties of the final complex algorithm is simplified,
substituting the original proof by the proof of the Soundness and Refutation
Completeness of a Logical Calculus, which is done as mentioned by standard
formal techniques. The other three SAT equivalence proofs are trivial. In that
way, we eliminate many possible sources of error when proving our main results,
namely that the Regular SIMPLE-HORN-NNF-SAT (resp. HORN-NNF-SAT
) problem is almost linear (resp. quadratic) and hence, by showing that there
exists a correct and an almost linear (resp. quadratic) algorithm to solve it.

5.4 The Regular SIMPLE-HORN-NNF-SAT prob-
lem

In this section we apply the methodology described in the previous section to
prove the polynomiality or almost linearity of the Regular SIMPLE-HORN-NNF
SAT problem.

5.4.1 Regular SIMPLE-HORN-NNF formulas

Firstly, we introduce the class of Regular SIMPLE-HORN-NNF formulas end-
ing with the definition of the related satisfiability problem. A more detailed
discussion about foundations of these concepts can be found in [8, 4, 42, 56, 58].

Definition 5.4.1 Signed literal. Let N = {i1, i2, . . . , in} be a finite set of
truth values, S a subset of N (S ⊆ N), p a proposition and ≤ a total order
associated with N . An expression of the form S : p is a signed literal and S is
its sign. Given a signed literal S :p and a set of truth values N , then (N \ S) :p
denotes the complement of S :p.

Definition 5.4.2 Regular sign. Let ↑ i denote the set {j ∈ N | i ≤ j} and ↓ i
the set {j ∈ N | j ≤ i}, where N is the set of truth values, ≤ is a linear order on
N and i ∈ N . If a sign S is equal to either ↓ i or ↑ i, then it is a regular sign. A
signed literal S :p has positive (resp. negative) polarity if S =↑ i (resp. S =↓ i).

Definition 5.4.3 Regular formulas. Let R be a regular sign. A regular
literal is a signed literal whose sign is regular. A regular clause C is a disjunction
of regular literals C = R1 : p1 ∨R2 : p2 ∨ . . .∨Rm : pm. A regular Horn clause is
a regular clause with at most one regular literal with positive polarity. A regular
unit clause is a regular clause containing only one regular literal. We denote the
empty regular clause () by 2. A regular Horn formula is a conjunction of regular
Horn clauses.

Definition 5.4.4 A negative disjunction, noted D−, is a disjunction of regular
literals with negative polarity, namely D− = (↓ i1 : p1∨ ↓ i2 : p2 ∨ . . .∨ ↓ in : pn).
Similarly, a negative conjunction C− is a conjunction of regular literals with
negative polarity, i.e. C− = {↓ i1 : p1∧ ↓ i2 : p2 ∧ . . .∧ ↓ in : pn}. Also C+ = {↑

86

i1 : p1∧ ↑ i2 : p2 ∧ . . .∧ ↑ in : pn} stands for a conjunction of regular literals with
positive polarity.

Definition 5.4.5 Regular SIMPLE-HORN NNF clauses. A negative
conjunctive normal form, noted CNF−, is a conjunction of negative disjunc-
tions, i.e. CNF− = D−

1 ∧D−
2 ∧ . . . ∧D−

k . A negative disjunctive normal form
DNF− is a disjunction of negative conjunctions, namely DNF− = C−1 ∨ C−2 ∨ . . . ∨ C−k .
A regular SIMPLE-HORN-NNF clause C is a disjunction of three optional terms
C = DNF− ∨ CNF− ∨ C+. Clauses without the C+ term are said negative
clauses.

Example 5.4.1 From the following regular SIMPLE-HORN-NNF clause:
C = (({↓0.2 : p1∧ ↓0.1 : p2}∨ ↓0.15 : p3) ∨ {(↓0.25 : p4∨ ↓0.4 : p5)∧ ↓0.2 : p6}∨
{↑0.8 : p7∧ ↑0.7 : p8}),

we can easily identify:
DNF− = ({↓0.2 : p1∧ ↓0.1 : p2}∨ ↓0.15 : p3)
CNF− = {(↓0.25 : p4∨ ↓0.4 : p5)∧ ↓0.2 : p6}
C+ = {↑0.8 : p7∧ ↑0.7 : p8}
Definition 5.4.6 A Regular SIMPLE-HORN NNF formula Γ is a finite con-
junction of Regular SIMPLE-HORN-NNF clauses C. We denote Γ2 any Γ-
formula containing the empty clause.

Example 5.4.2 The following formula is an example of a Regular SIMPLE-
HORN-NNF formula:

Γ = {(↑0.7 : p1) ∧ (↑0.6 : p3) ∧ (↑0.8 : p6)

∧
(({↓0.2 : p1∧ ↓0.1 : p2} ∨ {↓0.15 : p3}) ∨ {(↓0.25 : p4∨ ↓0.4 : p5) ∧ (↓0.2 : p6)}∨

{↑0.8 : p7∧ ↑0.7 : p8}),
∧

(↓0.1 : p8)}
The fourth (non-unitary) sub-formula is equivalent to the following eight

clauses:
(↓0.2 : p1∨ ↓0.15 : p3∨ ↓0.25 : p4∨ ↓0.4 : p5∨ ↑0.8 : p7)

(↓0.2 : p1∨ ↓0.15 : p3∨ ↓0.25 : p4∨ ↓0.4 : p5∨ ↑0.7 : p8)

(↓0.2 : p1∨ ↓0.15 : p3∨ ↓0.2 : p6∨ ↑0.8 : p7)

(↓0.2 : p1∨ ↓0.15 : p3∨ ↓0.2 : p6∨ ↑0.7 : p8)

(↓0.1 : p2∨ ↓0.15 : p3∨ ↓0.25 : p4∨ ↓0.4 : p5∨ ↑0.8 : p7)

(↓0.1 : p2∨ ↓0.15 : p3∨ ↓0.25 : p4∨ ↓0.4 : p5∨ ↑0.7 : p8)

(↓0.1 : p2∨ ↓0.15 : p3∨ ↓0.2 : p6∨ ↑0.8 : p7)

(↓0.1 : p2∨ ↓0.15 : p3∨ ↓0.2 : p6∨ ↑0.7 : p8)

87

The CNF clause represented by a Regular SIMPLE-HORN-NNF sub-formula
can be obtained by an exhaustive enumerating of the paths (defined below) in a
bi-dimensional representation of the formula. The fourth sub-formula of Γ can
be represented graphically in two dimensions as follows:

¯0.2p1 ¯0.25p4Ú¯0.4p5

¯0.1p2 ¯0.2p6

0.8p7

0.7p8

¯0.15p3Ù ÙÚ Ú Ú Ù

Figure 5.1: Bi-dimensional representation of the fourth clause

Definition 5.4.7 Bi-dimensional Representation In the graphical represen-
tation of a formula, terms in a conjunction (resp. disjunction) are represented
vertically (resp. horizontally).

Definition 5.4.8 A formula path crosses throughout only one (resp. all) literal
(resp. literals) that form(s) a conjunction (resp. disjunction).

¯0.2p1 ¯0.25p4Ú¯0.4p5

¯0.1p2 ¯0.2p6

0.8p7

0.7p8

¯0.15p3Ù ÙÚ Ú Ú Ù

Figure 5.2: A formula path

Example 5.4.3 In the previous example there are exactly eight formula paths.

The set of literals in each classical simple clause represented in a factorized
way by a Regular SIMPLE-HORN-NNF clause, can be obtained by taking the
literals crossed in a specific formula path in the graphical representation corre-
sponding to the Regular SIMPLE-HORN-NNF clause.

Example 5.4.4 The clause corresponding to the path indicated by a continuos
line in the previous figure is:

↓0.2 : p1∨ ↓0.15 : p3∨ ↓0.25 : p4∨ ↓0.4 : p5∨ ↑0.8 : p7

Proposition 5.4.1 There is a bijection between the set of simple clauses repre-
sented in a Regular SIMPLE-HORN-NNF clause and the set of paths defined in
its bi-dimensional representation.

88

The proof is trivial.

Now, we define the classical semantic concepts related to the formula satis-
fiability problem.

Definition 5.4.9 An interpretation I assigns to each proposition p one value
in the set N = {i1, i2, . . . , in} and it satisfies:

• A regular literal ↓ i :p (resp. ↑ i :p) iff I(p) ≤ i (resp. I(p) ≥ i)

• A negative disjunction D− = (↓ i1 :p1∨ ↓ i2 :p2 ∨ . . .∨ ↓ in :pn),
iff I(pj) ≤ ij, for at least one ↓ ij :pj.

• A negative conjunction C− = {↓ i1 :p1∧ ↓ i2 :p2 ∧ . . .∧ ↓ in :pn},
iff I(pj) ≤ ij, for every ↓ ij :pj.

• A positive conjunction C+ = {↑ i1 :p1∧ ↑ i2 :p2 ∧ . . .∧ ↑ in :pn},
iff I(pj) ≥ ij, for every ↑ ij :pj.

• A term CNF− = {D−
1 ∧ . . . ∧D−

k }, iff I satisfies D−
i for every D−

i .

• A term DNF− = (C−1 ∨ . . . ∨ C−k), iff I satisfies at least one C−i .

• A SIMPLE-HORN-NNF clause C = (DNF−∨CNF−∨C+), iff I satisfies
DNF− or CNF− or C+.

• A SIMPLE-HORN-NNF formula Γ iff I satisfies all its SIMPLE-HORN-
NNF clauses.

Definition 5.4.10 An interpretation I is a model of a formula Γ if it satisfies
the formula. We say that Γ is satisfiable if it has at least one model, otherwise,
it is unsatisfiable.

Definition 5.4.11 By definition, the conjunction {()} and the disjunction () ≡
2 are unsatisfiable. On the other hand, the conjunction {} and the disjunction
({}) are satisfiable.

Definition 5.4.12 The Regular SIMPLE-HORN-NNF-SAT problem is the prob-
lem of deciding whether a Regular SIMPLE-HORN-NNF formula is satisfiable.

5.4.2 Logical Calculus

In this sub-section, we are going to prove the first theorem of our proof method-
ology, namely:

MAIN THEOREM 1: ∃x, SRC(x)

The Logical Calculus needed to prove the (un)satisfiability of Regular SIMPLE-
HORN-NNF formulas is formed by rules extended from the case of classical
SIMPLE-HORN-NNF formulas developed in the previous chapter.

89

Definition 5.4.13 The Logical Calculus is formed by four rules. The first one,
called RSIMPLIF , allows to simplify formulas. The second and third rules
are two Positive General Unit Resolution rules, called RDUR and RCUR, for
respectively Regular Disjunction Unit Resolution and Regular Conjunction Unit
Resolution appropriated for the Regular SIMPLE-HORN-NNF formulas. The
last rule, called Regular And Elimination rule (RAE), enables to obtain regular
unit clauses from the regular positive conjunction (C+). We recall that both “()”
and 2 denote the empty clause.

({2 ∧D−
2 ∧ . . . ∧D−

k } ∨DNF− ∨ C+)
(DNF− ∨ C+)

(RSIMPLIF)

i1>j1,(↑i1:p1),({(↓j1:p1∨↓j2:p2...∨↓jn:pn)∧D−
2 ∧...∧D−k }∨DNF−∨C+)

({(↓j2:p2∨...∨↓jn:pn)∧D−2 ∧...∧D−k }∨DNF−∨C+)
(RDUR)

i1>j1,(↑i1:p1),(CNF−∨{↓j1:p1∧↓j2:p2∧...↓jn:pn}∨C−2 ∨...∨C−k ∨C+)

(CNF−∨C−2 ∨...∨C−k ∨C+)
(RCUR)

({L1 ∧ . . . ∧ Li ∧ . . . ∧ Ln})
(L1) ∧ . . . ∧ (Li) ∧ . . . (Ln)

(RAE)

Remark Note that when we have a unit clause (↑ i : p), the computation steps
to apply the corresponding inferences depending on the cases that i > j is true
and either (↓ j : p) is in a regular conjunction C− or a regular disjunction D−.
Whenever (↓ j : p) is in a disjunction D− (resp. in a conjunction C− which
in turn it is in a disjunction D−) then, this literal (resp. conjunction C−) is
removed from the disjunction D− with rule RDUR (resp. with rule RCUR). If
this literal (resp. conjunction) was the only one in the original disjunction D−,
or it was the last remaining literal (resp. conjunction) in the initial disjunction
D− because the other original literals (resp. conjunctions) have been removed
previously then, the 2 is derived. In other words D− is transformed in 2 after
some removals of regular literals and regular conjunctions in D.

Definition 5.4.14 Refutation Proof
A refutation of a Regular SIMPLE-HORN-NNF formula Γ, is a finite succession
of Regular SIMPLE-HORN-NNF formulas

< F1, F2, . . . , Fn >, with Fn = 2

where Fi, 1 ≤ i ≤ n, is a subformula in Γ or it is obtained by applying one
inference rule of the Logical Calculus in previous definition 5.4.13 upon a unit
clause and a sub-formula, both in F1, . . . , Fi−1.

Example 5.4.5 Let us consider the following formula:

Γ = {(↑0.7 : p1) ∧ (↑0.6 : p3) ∧ (↑0.8 : p6)

90

∧
(({↓0.2 : p1∧ ↓0.1 : p2}∨ {↓0.15 : p3})∨{(↓0.25 : p4∨ ↓0.4 : p5)∧ (↓0.2 : p6)}∨
{↑0.8 : p7∧ ↑0.7 : p8})

∧
({(↓0.3 : p1∨ ↓0.3 : p7) ∧ (↓0.2 : p9)} ∨ {↑0.2 : p8∧ ↑0.8 : p9})

∧
({↓0.1 : p8})}

We note that:

C1 = (↑0.7 : p1) C2 = (↑0.6 : p3) C3 = (↑0.8 : p6)

C4 = ({↓0.2 : p1∧ ↓0.1 : p2} ∨ {↓0.15 : p3} ∨ {(↓0.25 : p4∨ ↓0.4 : p5) ∧
(↓0.2 : p6)} ∨ {↑0.8 : p7∧ ↑0.7 : p8})

C5 = ({(↓0.3 : p1∨ ↓0.3 : p7) ∧ (↓0.2 : p9)} ∨ {↑0.2 : p8∧ ↑0.8 : p9})

C6 = ({↓0.1 : p8})

A proof sequence of the unsatisfiability of this formula Γ is the following:

C1 = (↑0.7 : p1),
C4 = ({↓0.2 : p1∧ ↓0.1 : p2} ∨ {↓0.15 : p3} ∨ {(↓0.25 : p4∨ ↓0.4 : p5) ∧
(↓0.2 : p6)} ∨ {↑0.8 : p7∧ ↑0.7 : p8})
`RDUR

C7 = ({↓0.15 : p3} ∨ {(↓0.25 : p4∨ ↓0.4 : p5) ∧ (↓0.2 : p6)} ∨ {↑0.8 : p7∧ ↑0.7 : p8})

C2 = (↑0.6 : p3),
C7 = ({↓0.15 : p3}∨{(↓0.25 : p4∨ ↓0.4 : p5)∧(↓0.2 : p6)}∨{↑0.8 : p7∧ ↑0.7 : p8})
`RDUR C8 = ({(↓0.25 : p4∨ ↓0.4 : p5) ∧ (↓0.2 : p6)} ∨ {↑0.8 : p7∧ ↑0.7 : p8})

C3 = (↑0.8 : p6),
C8 = ({(↓0.25 : p4∨ ↓0.4 : p5) ∧ (↓0.2 : p6)} ∨ {↑0.8 : p7∧ ↑0.7 : p8})
`RCUR C9 = ({↑0.8 : p7∧ ↑0.7 : p8})

C9 = ({↑0.8 : p7∧ ↑0.7 : p8})
C10 = (↑0.8 : p7), C11 = (↑0.7 : p8)

(RAE)

C6 = ({↓0.1 : p8})
C12 = (↓0.1 : p8)

(RAE)

C11 = (↑0.7 : p8), C12 = (↓0.1 : p8)
C13 = 2

(RDUR)

91

Theorem 5.4.1 Correctness Let us LC={RSIMPLIF,RDUR,RCUR,RAE}.

SRC(LC)

Or in other terms,

Γ `LC 2 ⇐⇒ UNSAT (Γ)

To prove the previous theorem, we have to prove the Soundness and Refuta-
tion Completeness of the defined Logical Calculus.

Lemma 5.4.1 Soundness

Γ `RSIMPLIF F =⇒ Γ |= F

Γ `RDUR F =⇒ Γ |= F
Γ `RCUR F =⇒ Γ |= F
Γ `RAE (p) =⇒ Γ |= (p)

Proof. The soundness of each rule of the Logical Calculus follows from the defi-
nitions of model and that of logical consequence. ¥

Lemma 5.4.2 Refutation Completeness

UNSAT (Γ) =⇒ Γ ` 2

Proof. Base case

Assume the formula has no literals. The only formulas without literals are:

Γ = {}

and
Γ = {Γ1

2 ∧ Γ2
2 ∧ . . . ∧ Γk

2}
where each clause Γi

2 is formed by the following three optional terms:

Γi
2 = ({() ∧ () . . . ∧ ()} ∨ −{} ∨ {} ∨ . . . ∨ {} − ∨{})

Given that the DNF− = {} ∨ {} ∨ . . . ∨ {} term and the C+ = {} term are
satisfiable ones, the only unsatisfiable formulas are those containing at least one
clause Γi

2 without anyone of the three terms, Γi
2 = () ≡ 2, or only containing

the CNF− term Γi
2 = ({()∧ () . . .∧ ()}). In these both cases, Γi

2 is unsatisfiable
and hence, the formula Γ is also unsatisfiable.

So, we need to prove the theorem only for these two cases of formulas.

1. Case Γi
2 = 2. 2 is deduced by the reflexivity property of the inference

relation `.

92

2. Case Γi
2 = ({()∧ () . . .∧ ()}). In this case, applying the RSIMPLIF rule,

the clause () ≡ 2 is deduced.

Let us prove the theorem for formulas with literals.

We note F = (C1 ∨ C2 ∨ . . . ∨ Ck ∨ {D1 ∧D2 ∧ . . . ∧Dn} ∨ C+)

notation. For readability, in this proof we will write C instead of C− and
D instead of D−.

Let us pos(p) = {F1,F2, . . . ,Fk} be the set of clauses such that (↑xi : p) ∈ C+
i ,

1 ≤ i ≤ k. We define the rank of a literal as follows:

If F = (C+) and (↑x : p) ∈ C+ then rank((↑x : p)) = 1.
If (↓y : p) ∈ F and pos(p) = ∅ then rank((↓y : p)) = 1.
Otherwise:

rank((↑x : p)) = 1 + max{rank((↓y : pi)) : (↓y : pi) ∈ F ∈ pos(p)}
rank((↓x : p)) = max{rank((↑y : p)) : y ≥ x, (↑y : p) ∈ pos(p)}

We note Γ+ the set of clauses of Γ containing a positive conjunction C+ and
Γ− the set of clauses of Γ containing exclusively negated literals.

Lemma 5.4.3 If Γ+ |= (↑ x′ : p) then there exists at least one clause F =
(C1 ∨ C2 ∨ . . . ∨ Ck ∨ {D1 ∧D2 ∧ . . . ∧Dn} ∨ C+) such that

1. (↑ x : p) ∈ C+, or similarly, F ∈ pos(p), with rank((↑ x : p)) = k and
x ≥ x′.

2. ∀(↓y : pi) ∈ F , rank((↓y : pi)) < k

3. ∀Ci,∃(↓yi : pi), (↓yi : pi) ∈ Ci s.t. Γ+ |= (↑xi : pi) with xi > yi and ∃Dj,
∀(↓yj : pj),(↓yj : pj) ∈ Dj s.t. Γ+ |= (↑xj : pj) with xj > yj.

Proof.

1. Assume @F ,F ∈ pos(p) and x ≥ x′. Let us I be a model of Γ+ such that
I(p) ≥ x′. Let us consider an interpretation I ′ with the same mapping
that I except for I ′(p) = x′ − ε where ε is almost 0. Obviously I is also
a model of Γ+ because I ′ satisfies the same literals that I since all the
occurrences of p in Γ+ have less polarity than x′. Hence, Γ+ 2 (↑x′ : p).

2. Assume that ∃(↓ y : pi) such that rank((↓ y : pi)) = l ≥ k. Then by
definition of rank, rank((↑x : p)) = l + 1 > k.

3. Assume that ∃Ci,∀(↓yi : pi), (↓yi : pi) ∈ Ci such that Γ+ 2 (↑xi : pi) with
xi > yi or assume that ∀Dj , ∃(↓yj : pj), Γ+ 2 (↑xj : pj) with xj > yj . We
provide the proof for the first alternative, the proof for the second one is
completely similar. If (↑xi : pi) with xi > yi is not a logical consequence

93

means that there is a model of Γ+ such that I(pi) < xi, namely I satisfies
(↓yi : pi) and then, Ci is satisfied by I. But, taking into account this fact,
defining I ′ equal to I except for the mapping I ′(p) < x is also a model and
then we have Γ+ 2 (↑x : p).

¥

Lemma 5.4.4 Γ+ |= (↑x′ : p) =⇒ Γ ` ((↑x : p)), x ≥ x′.

Proof. By induction of the statement: If literals (↑x : p) of rank smaller than k
are deduced then, literals of rank k are also deduced.

INDUCTION BASE: The statement is true for propositions of rank 1. By de-
finition, the only literals (↑ x : p) with rank 1 and such that Γ |= (↑ x : p) are
those that (↑x : p) ∈ C+ ∈ Γ. Then applying RAE(C+) we produce ((↑x : p))
because (↑x : p) ∈ C+.

INDUCTION HYPOTHESIS: Assume that the induction statement is true for
literals of rank smaller than k and consider that (↑x : p) is of rank k. Then, by
previous lemma there exists at least one clause
F = (C1 ∨ C2 ∨ . . . ∨ Ck ∨ {D1 ∧D2 ∧ . . . ∧Dn} ∨ C+) such that

1. (↑x : p) ∈ C+, or similarly, F ∈ pos(p).

2. ∀(↓y : pi) ∈ F , rank((↓y : pi)) < k.

3. ∀Ci,∃(↓yi : pi), (↓yi : pi) ∈ Ci s.t. Γ+ |= (↑x′i : pi) with x′i > yi and ∃Dj ,
∀(↓yj : pj),(↓yj : pj) ∈ Dj s.t. Γ+ |= (↑x′j : pj) with x′j > yj .

Then, by induction hypothesis, Γ+ ` ((↑ xi : pi)) with xi ≥ x′i and Γ+ `
((↑ xj : pj)) with xj ≥ x′j . Applying iteratively the RCUR rule upon F and
each (↑ xi : pi) we obtain F = ({D1 ∧ D2 ∧ . . . ∧ Dn} ∨ C+). Next, applying
iteratively the RDUR rule upon F and each (↑ xj : pj) we obtain F = ({D1 ∧
D2∧. . .∧Dj−1∧2∧Dj+1∧. . .∧Dn}∨C+). Next, applying RSIMPLIF rule upon
F , we deduce (C+) and followed by a RAE rule we derive ((↑ x : p)) because
(↑x : p) ∈ C+. ¥

Lemma 5.4.5 UNSAT (Γ) =⇒ ∃F−,F− ∈ Γ such that:

1. F− = (C1 ∨ C2 ∨ . . . ∨ Ck ∨ {D1 ∧D2 ∧ . . . ∧Dn})

2. ∀Ci, ∃(↓yi : pi), (↓yi : pi) ∈ Ci s.t. Γ+ |= (↑xi : pi), xi > yi

3. ∃Dj, ∀(↓yj : pj),(↓yj : pj) ∈ Dj s.t. Γ+ |= (↑xj : pj), xj > yj

Proof.

1. By definition of Γ−, F− has the correct structure.

94

2. The proof is by contradiction. Assume ∃Ci,∀(↓yi : pi), (↓yi : pi) ∈ Ci s.t.
Γ+ 2 (↑xi : pi) with xi > yi. Take a model I of Γ+ such that I(pi) < xi.
Such a model exists because by hypothesis Γ+ 2 (↑xi : pi). We have that
Ci is satisfied by I and then F− and Γ− are also satisfied and as I is a
model of Γ+ it turns out that Γ is satisfiable.

3. Assume ∀Dj , ∃(↓ yj : pj), (↓ yj : pj) ∈ Dj s.t. Γ+ 2 (↑xj : pj). The proof
of this case is similar to the previous case.

¥

Lemma 5.4.6 UNSAT (Γ) =⇒ Γ ` 2

Proof. By the previous lemma, we have

1. Γ+ |= (↑xi : pi)

2. Γ+ |= (↑xj : pj)

and, by the lemma 5.4.4, we have

1. Γ+ ` ((↑x′i : pi)), x′i ≥ xi

2. Γ+ ` ((↑x′j : pj)), x′j ≥ xj

Applying iteratively the RCUR rule upon each (↑ x′i : pi) and F we get F− =
({D1 ∧ D2 ∧ . . . ∧ Dn}). Now applying iteratively the RDUR rule upon each
(↑x′j : pj) and F− we get F− = ({D1 ∧D2 ∧ . . .∧Dj−1 ∧2∧Dj+1 ∧ . . .∧Dn}).
Then, applying the RSIMPLIF upon F we obtain (), that is logically equivalent
by definition to 2. ¥

As the previous lemma is the same that the completeness theorem, the proof
of this last lemma concludes the proof of the completeness theorem ¥

This proves MAIN THEOREM 1 of our proof methodology.

5.4.3 Logical Calculus: Its polynomial algorithmic version

In this section, we are going to prove the MAIN THEOREM 2 of our proof
methodology:

MAIN THEOREM 2: ∃x, CORSAT (x) ∧ PSAT (x)

A proof of the unsatisfiability of a Regular SIMPLE-HORN-NNF formula is
constructed by applying consecutively inferences rules, as it has been indicated in
the definition of Refutation Proof and in the subsequent example. Applying this
process of inference rules sequencing does not lead to an efficient SAT algorithm.
One of the original causes is because new sub-formulas of the original formula, are
generated and then added to the original formula. Thus, the formula obtained
after a certain number of inferences is the original formula augmented with copies
of some of their sub-formulas. However, it is easy to prove that the upper-bound
complexity of a SAT algorithm implementing the Logical Calculus is Polynomial.

95

Definition 5.4.15 Let us define SATALGP , an algorithm that implements the
defined Logical Calculus as follows:

1. It choices the inferences to be applied according to a deterministic criterion

2. It returns “UNSAT” iff the defined Logical Calculus derives 2.

More specifically, the algorithm scheme is the following, where Γ is the initial
set of subformulas.

SATALGP (Γ)
While the set of executables inference rules is not empty do:
∀(C+) ∈ Γ do: ∀(↑ i : pi) ∈ (C+) ∈ Γ: add (↑ i : pi) to Γ
Execute applicable RDUR rules adding the deduced subformulas to Γ
Execute applicable RCUR rules adding the deduced subformulas to Γ
Execute applicable RSIMPLIF rules adding the deduced subformulas to Γ

EndWhile
If () ∈ Γ then return(“UNSAT”) Else return(“SAT”)

Theorem 5.4.2 CORSAT (SATALGP) ∧ PSAT (SATALGP).

Proof. It is trivial that the previous algorithm is sound because it executes only
rules that are in the original Logical Calculus. Now let us prove
LCSATALG(LC, SATALGP). Concerning the completeness of the algorithm,
one can check that the difference with respect to the Logical Calculus is that
in the algorithm the inference rules are executed in a certain order. Aiming at
proving LCSATALG(LC, SATALGP), we need to prove that the order followed
by the algorithm preserves the completeness of the Logical Calculus. To this end,
we need to prove that if we execute first a certain inference rule the applicable
inference rules before such execution remain applicable after the execution. For
instance, assume that we execute first a RDUR rule. Thus, if we execute first
a RDUR rule with (p) and F the resulting subformula Fp is added to Γ and
no subformula is eliminated from Γ. Thus, inference rules applicable before
the execution of the RDUR rule remain applicable after executing it. The same
reasoning can be done when the first inference executed is RCUR, RSIMPLIF or
RAE. Therefore, this proves LCSATALG(LC, SATALGP) and this, together
with SRC(LC) and corollary 5.3.2, leads to CORSAT (SATALGP). Now, we
shall prove PSAT (SATALGP).

1. It could be checked that the maximal number of executable RDUR and
RCUR inference rules is bounded by the number n of proposition occur-
rences in the original formula because each time that a RDUR or a RCUR
is applied, a negative occurrence of a proposition or a whole conjunction
is removed.

2. As the size of the inferred sub-formula Fi is bounded by the size of the
original formula F0 = Γ in an inference rule, we have:

< F0, F1, . . . , Fn >, with F0 = Γ, Fi+1 = Fi ∧ Fi, Fn = Fn−1 ∧2,

96

where:
size(F0) = n

size(F1) = size(F0) + size(F0) < size(F0) + size(F0) = 2.n

size(Fi) = size(F0) + size(F0) + size(F1) + . . . + size(Fi−1) <

size(F0) + size(F0) + size(F0) + . . . + size(F0) <

size(Fi) < (i + 1).n

size(Fn) ∈ O(n2)

∀i, 1 ≤ i ≤ n, size(Fi) ∈ O(n2)

In complexity terms, the length of an inferred formula created by SATALGP

increases in O(n2).

3. On the other hand, as the inferred formula increases in O(n2), the search
time for the two involved clauses in an inference rule requires to scan the
current inferred formula and hence, it is in O(n2).

4. Having searched the two involved clauses, executing with them an inference
step can be done in a time bounded by O(n), the time required to copy a
sub-formula Fi.

5. Then, searching and executing one inference rule is limited by O(n2).

6. As the number of inferences is bounded by size(F0) = n, the total com-
plexity of the construction of an Refutation proof in SATALGP is in
O(n3).

7. Therefore, that proves that the Regular SIMPLE-HORN-NNF SAT prob-
lem is in P.

¥

Altogether, a straight computer implementation in a SAT algorithm SATALGP ,
of the generation of Refutation Proofs corresponding to the defined Logical
Calculus, is in O(n3). This proves the MAIN THEOREM 2, i.e. that the
SIMPLE-HORN-NNF SAT problem is polynomial.

97

5.4.4 A quadratic algorithm

Now, in this section we are going to prove the third theorem. This means that
we will try to find a quadratic algorithm to resolve the Regular SIMPLE-HORN-
NNF SAT problem. We will do it in several optimization steps.

A first optimization, is to avoid multiple copies of subformulas. To do that,
we rewrite the logical calculus in an “algorithmic way” by the redefinition of each
inference rule in such a way that, each rule will be applied over the input formula
eliminating symbols and, in this way, the original formula will reduce sequentially
its original size. As it can be checked observing the inference rules, the inferred
formula (the consequent part) is formed from the original one (antecedent part)
by removing subformulas, i.e. literals or conjunctions in the input formula. This
fact allows us to redefine the inference rules by making explicit which subformulas
should be eliminated.

Quadratic Algorithmic Version of the Logical Calculus (QAVLC)

Definition 5.4.16 Let us (↓ j : p) be a disjunct in D− which in turn belongs
to subformula Γx. We note RemoveLiteral((↓ j : p), D−, Γx), the algorithmic
function that removes physically the occurrence of the literal (↓j : p) in D− with
i > j from Γx by acting directly on the data structure representing the subformula
Γx.

Definition 5.4.17 Similarly to the above definition, let us C− be a disjunct in a
DNF− term which in turn belongs to a subformula Γx. We note RemoveConjunc
tion(C−, DNF−, Γx)) the algorithmic function that removes physically the oc-
currence of the conjunction C− in the DNF− term from Γx by acting directly in
the data structure representing the subformula Γx. Also, RemoveCNFterm(2,
CNF−, Γx) removes physically a CNF− term of Γx if 2 ∈ CNF−.

Definition 5.4.18 The new inference rules using functions Remove are named
RCNF , RL, and RC for the previous RSIMPLIF , RDUR and RCUR func-
tions, respectively, and they are defined as follows:

Γx = (CNF− = {D−
1 ∧ . . . ∧2 ∧ . . . ∧D−

k } ∨DNF− ∨ C+)
Γx = RemoveCNFterm(2, CNF−, Γi)

(RCNF)

ri > ji, (↑ri : pi),
Γx=({D−1 ∧...∧D−j =(↓j1:p1∨...∨↓ji:pi∨...∨↓jn:pn)∧...∧D−s }∨DNF−∨C+)

Γx=RemoveLiteral((↓ji:pi),D
−
j ,Γx)

(RL)

ri > ji, (↑ri : pi),
Γx=(CNF−∨DNF−=[C−1 ∨...∨C−j ={↓j1:p1∧...∧↓ji:pi∧...∧↓jn:pn}∨...∨C−m]∨C+)

Γx=RemoveConjunction(C−j ,DNF−,Γx)
(RC)

Corollary 5.4.1 Let us QAV LC = {RCNF,RL, RC, RAE}, then SRC(QAV LC).

Proof. It is similar to the proof of corollary 4.4.1 in previous chapter. ¥

98

Another step forward before obtaining an Algorithmic Version of the Logical
Calculus consists in applying RL with (↑ i : p), as many times as there are
occurrences of (↓j : p), and such that i > j exists in D−

k disjunctions integrated
in a CNF term {D1∧D−

2 ∧ . . .∧D−
m} of any subformula Γx. Afterwards, the RC

follows with the same principle: removing all the conjunctions C− containing
(↓j : p) such that i > j from a subformula Γx

Definition 5.4.19 Let us (↓ j : p) be a disjunct in D− (resp. conjunct in C−)
which in turn is in a CNF− (resp. DNF−) term. We note RemAllLitSubForm((↑
i : p), Γx) (resp. RemAllConjSubForm((↑ i : p), Γx)) the algorithmic function
that removes physically all the occurrences of (↓j : p) literals (resp. conjunctions
containing a (↓ j : p) occurrence) with i > j from Γx, by acting directly on the
data structure representing the subformula Γx.

This new function leads to new inference rules.

Definition 5.4.20 The new inference rules using RemAllLitSubForm
and RemAllConjSubForm functions are called RALSF and RACSF and they
are defined as follows:

(↑ i : p), Γx = (CNF− ∨DNF− ∨ C+)
Γx = RemAllLitSubForm((↑ i : p), Γx)

(RALSF)

(↑ i : p), Γx = (CNF− ∨DNF− ∨ C+)
Γx = RemAllConjSubForm((↑ i : p), Γx)

(RACSF)

Corollary 5.4.2 RALSF and RACSF are sound.

Proof. It is similar to the proof of corollary 4.4.2 in previous chapter. ¥

Definition 5.4.21 Quadratic Algorithmic Version of the Logical Cal-
culus (QAVLC) We redefine the Quadratic Algorithmic Version of the Logical
Calculus as the set of inference rules formed by: QAV LC = {RCNF,RALSF,
RACSF, RAE}.

Theorem 5.4.3 Correctness ∀Γ, Γ `QAV LC 2 ⇐⇒ UNSAT (Γ)

Lemma 5.4.7 Soundness ∀Γ,Γ `QAV LC 2 =⇒ UNSAT (Γ).

Proof. RCNF and RAE are the same rules as previously defined in 5.4.18 and
5.4.13 respectively. On the other hand, the soundness of RALSF and RACSF
have been established in the last two corollaries. ¥

Lemma 5.4.8 Refutation Completeness UNSAT (Γ) ⇒ Γ `QAV LC 2

Proof. It is very similar to the proof of lemma 4.4.8 in previous chapter. ¥

99

The definitive algorithmic inferences derived from the Logical Calculus and
which will serve to design an efficient SAT algorithm are the following ones.

Definition 5.4.22 We note RemoveAllLiterals((↑ i : p),Γ) (resp. RemoveAll
Conjunctions((↑ i : p), Γ)) the algorithmic function that removes physically all
the occurrences of literals (↓ j : p) (resp. conjunctions containing a (↓ j : p)
occurrence) with i > j from the formula Γ, by acting directly on the data structure
representing Γ. The algorithmic function RemoveAllCNFs removes physically
all the CNF terms containing the empty clause 2.

These new functions lead to new inference rules.

Definition 5.4.23 The new inference rules are called RAL, RAC and RACNF
for RemoveAllLiterals, RemoveAllConjunctions, RemoveAllCNFs and they
are defined as follows:

(↑ i : p), Γ
Γ = RemoveAllLiterals((↑ i : p), Γ)

(RAL)

(↑ i : p), Γ
Γ = RemoveAllConjunctions((↑ i : p),Γ)

(RAC)

Γ
Γ = RemoveAllCNFs(2, Γ))

(RACNF)

Theorem 5.4.4 Correctness. Let us QAVLC={RAL, RAC, RACNF, RAE}.
∀Γ, Γ `QAV LC 2 ⇐⇒ UNSAT (Γ)

Proof. The proof is straightforward from the previous correctness of theorem
5.4.3. ¥

A Correct Quadratic Algorithm

Once established the Algorithmic Version of the Logical Calculus, we can design
a first algorithm which is a strict materialization of the mechanization of the
inference rules in QAV LC (last definition).

When all subformulas Γx of Γ contain a negative subformula NNF− then Γ
is trivially satisfiable: a model is obtained by assigning the value 0 to all propo-
sitional variables. So assume that some positive conjunctions C+ are present in
Γ. Thus, applying the RAE rule over these conjunctions produces unit clauses
(↑ i : p). Altogether, this leads to the statement that the formula Γ is satisfiable
or otherwise, some unit clauses can be deduced.

Thus, the next step is applying the inference rules in QAV LC defined in 5.4.4
with unit clauses. This process is repeated until either no more unit clauses are
generated or an empty clause is produced. In the first case, the formula is
satisfiable and in the second one, it is unsatisfiable.

100

The principle of the algorithm is the following. First, the RAE inference rule
is applied to positive conjunctions C+ giving as result several unit clauses which
are then pushed in a stack (function ApplyRAE(Γ, Stack)). For each proposition
in the Stack, the rules RAL, RAC and RACNF are applied throughout the
respective algorithmic functions RemoveAllLiterals, RemoveAllConjunctions
and RemoveAllCNFs. If as a consequence of the Remove functions, some
subformulas become positive conjunctions C+, the RAE rule is applied upon
C+ adding new propositions to the Stack. This process finishes when the Stack
becomes empty, which means that there is no more inferences to apply. Thus,
if in that situation the empty clause has not been deduced yet, then the input
formula Γ is satisfiable and else is unsatisfiable.

SATALGQ1(Γ)
1 ApplyRAE(Γ, Stack)
2 While Stack 6= {} do:
3 (↑ i : p) ← pop(Stack)
4 RemoveAllLiterals((↑ i : p),Γ)
5 RemoveAllCNFs(2, Γ)
6 RemoveAllConjunctions((↑ i : p), Γ)
7 ApplyRAE(Γ, Stack)
8 EndWhile
9 If () = Γx ∈ Γ then return(“UNSAT”) Else return(“SAT”)

Theorem 5.4.5 Correctness SATALGQ1(Γ) returns “UNSAT” iff Γ is un-
satisfiable.

Proof. This theorem is a direct consequence of the Soundness and Refutation
Completeness of the QAVLC, stated in theorem 5.4.4.

Indeed, we have the following parallelism. The line 1 starts the executions of
inferences with RAE. The lines 4,5, 6 and 7 correspond respectively to the ap-
plications of the RAL, RACNF , RAC and RAE rules. The order of application
of the inferences does not prevent completeness (see theorem 5.4.2).

When the line 9 is executed, the “while” iteration is finished. But the condi-
tion for termination of the “while” loop is verified when there is no more inference
applicable. So, as indicated in line 9, Γ is satisfiable iff the empty clause has
not been deduced. So, we have LCSATALG(QAV LC, SATALGQ1). The proof
continues as follows:

1. ∀x, y, LCSATALG(x, y) ∧ SRC(x) =⇒ CORSAT (y), corollary 4.3.1

2. LCSATALG(QAV LC, SATALGQ1), by the construction of SATALGQ1,

3. SRC(QAV LC), proved in 5.4.4.

We obtain: CORSAT (SATALGQ1). ¥

Theorem 5.4.6 The complexity of the algorithm SATALGQ1 is O(n2).

101

Proof. The execution of each line 4, 5, 6 and 7 takes a time bounded by O(n).
As the number maximum of iterations is also bounded by ΣC+∈Γ|C+| < O(n),
therefore the complexity is in O(n2). ¥

Our next goal is to design a data structure for the previous Algorithmic
Schema and to prove that an almost linear algorithm can be derived from it.

5.4.5 An almost linear Algorithm

Before describing the final algorithm, we describe first a preliminary and almost
linear incorrect algorithm containing all the data structures (except one subtle
data structure to be presented later). This is done as a previous steps in order
to help to understand the final correct polynomial SAT algorithm. So, firstly
we describe the required data structure and then, we give the corresponding
algorithms.

Data Structure. To each proposition pk, we associate two lists of pointers
D−(k) and C−(k). Each element (i, j) in D−(k) (resp. C−(k)) is a pointer to
a disjunction D−

j (resp. conjunction C−j) in Γi. A couple (i, j) in D−(k) (resp.
C−(k)) means that (↓k : pk) ∈ D−

i ∈ Γj (resp. (↓k : pk) ∈ C−i ∈ Γj). For each
subformula Γi, we note C+(i) the list of positive propositions in the C+ term of
Γi.

Input: Γ = Γ1 ∧ Γ2 ∧ . . . ∧ Γn

Output: “SAT” or “UNSAT”.

Initialization procedure. In this step, all the data structure, i.e. D−(k),
C−(k) and C+(i), are initialized according to their definition and the input
formula Γ.

SATALGQ2(Γ)
1 ∀Γi = (C+) do: ∀(↑x : p) ∈ C+ do:push((↑x : p), Stack)
2 While Stack 6= {} do:
3 (↑x : pk) ← pop(Stack)
4 ∀(i, j) ∈ D−(k) do: Remove((↓y : p), Di,j) if x > y
5 ∀(i, j) ∈ D−(k) do: If Di,j = ∅ then Remove(CNF−i, Γi)
6 ∀(i, j) ∈ C−(k) do: Remove((↓y : p), Ci,j) if x > y
7 ∀(i, j) ∈ D−(k)

⋃
C−(k) do: If Γi = C+

i : ∀(↑x : p) ∈ C+(i) do: push((↑x : p), Stack)
8 Endwhile
9 ∀i, 1 ≤ i ≤ n, do: If Γi = () then return(“UNSAT”) Else return(“SAT”)

Theorem 5.4.7 SATALGQ2(Γ) returns “SAT” iff Γ is satisfiable.

Proof. The parallelism between the instructions of this algorithm and those of
the previous one is straightforward. For example, the previous line:

4 RemoveAllLiterals((↑ i : p), Γ).

102

is substituted by the current line:

4 ∀(i, j) ∈ D−(k) do: Remove((↓y : p), Di,j) if x > y.

Both lines have the same effects: removing occurrences of (↓ y : p) from
disjunctions in the input formula Γ. In the former this statement is clearly
verified. In the latter, one can check that the occurrences of (↓y : p) are exactly
those indicated by list D−(k), and line 4 removes exactly these occurrences. The
same analysis can be done to prove the algorithmic equivalence of lines 5, 6, and
7 of the previous algorithm and the current one which leads to the proof of the
theorem. Then, we have:

1. ∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y), corollary 5.3.2

2. SATEQU(SATALGQ1,SATALGQ2), by the construction of both algo-
rithms

3. CORSAT (SATALGQ1), by previous theorem 5.4.5

and hence, we obtain CORSAT (SATALGQ2) ¥

We can check that in the previous algorithm the Remove functions have a
O(n) complexity because a subformula must be scanned. This complexity can be
improved to obtain a O(1) complexity for removing the pertinent element of the
subformula. This is achieved by introducing two counters in the data structure.

Remark Notice that we do not need to know exactly which literal occur-
rences (resp. conjunctions) have been removed. What we need to know is merely
how many elements have been removed in order to detect when a disjunction
(resp. a whole CNF− term) has been removed, i.e. has been falsified.

• RALs: removing (↓ y : p) occurrences. To each disjunction D−
j in

clause Γi, a counter Counter(i, j) is associated. A decrement of Counter(i, j)
indicates the removal of a falsified literal (↓y : p) in D−

j .

• RACNFs: removing CNF− terms. If any counter(i, j) is set to 0
means that the disjunction D−

j in Γi is falsified and hence the whole CNF−

term is also falsified. This is implemented by setting to 0 a flag CNF (j)
associated with each clause Γj .

• Removes the DNF term. A counter Counter.DNF (i) is associated
with the DNF− term in each clause Γi. Each decrement of Counter.DNF (i)
represents a removal of a falsified conjunction C− in the DNF− term.

With these new data structures, the corresponding algorithm is:
Input: Γ = Γ1 ∧ Γ2 ∧ . . . Γn

Output: “SAT” or “UNSAT”.

103

Initialization procedure. In addition to the previous data structure (D−(k),
C−(k) and C+(i)), Counter(i, j) and Counter.DNF (i) are initialized according
to their definition. A further data structure is required: T (i, j, k) is a table that
stocks the sign y of literal (↓y : pk) occurring in position (i, j).

SATALGAL(Γ)
1 ∀Γi = (C+) do: ∀(↑x : p) ∈ C+ do:push((↑x : p), Stack)
2 While Stack 6= {} do:
3 (↑x : pk) ← pop(Stack)
4 ∀(i, j) ∈ D−(k) do: Decrement Counter(i, j) if T (i, j, k) ≤ x
5 ∀(i, j) ∈ D−(k) do: If Counter(i, j) = 0 then CNF−(i) ← 0
6 ∀(i, j) ∈ C−(k) do: Decrement Counter.DNF−(i) if T (i, j, k) ≤ x
7 ∀(i, j) ∈ (D−(k)

⋃
C−(p)) and CNF−(i) = Counter.DNF (i) = 0 do:

∀(↑x : p) ∈ C+(i) do: push((↑x : p), Stack)
8 Endwhile
9 ∀i, 1 ≤ i ≤ n, do:
10 If CNF (i) = Counter.DNF (i) = C+(k) = 0 then return(“UNSAT”)
11 Else return(“SAT”)

The structure of the last algorithm is the same that the previous one. The
sequence of applications of the inference rules is strictly the same in both al-
gorithms. The parallelism between the operations performed by this algorithm
and those of the previous Algorithmic Structure is straightforward.

However, the previous algorithm is not correct. Indeed, when we applied the
inference by removing elements, there were not exist the problem of modifying
erroneously the data structure representing the deduced formula. However, with
the counters, that can happen because as the application of the inferences is
done via the decrements of counters, for a same unit clause (p) a counter can be
decremented several times. Actually, we have two types of errors in the previous
algorithm:

• Given that a same proposition p can be present in several C+ terms of
the clauses Γi, each proposition p can be introduced in the stack several
times. To avoid to execute several times the inference rules with the same
proposition, we have to change the first two iterations. Thus, we organize
the D−(k) and C−(k) sorting the occurrences (i, j) in incremental order,
namely (i, j) is before (i′, j′), in the lists D−(k) or C−(k), if T (i, j, k) ≤
T (i′, j′, k). This is explained in detail in section 2.3.3. After (↑ x : pk)
is deduced all the occurrences of (pk, T (i, j, k)) such that x ≥ T (i, j, k)
are removed. The removing of couples (i, j) is identic to the remove of
literals from the formula and that ensures that an inference is not repeated
applying it to the same couples of literals.
The two lines of the previous algorithm:
4 ∀(i, j) ∈ D−(k) do: Decrement Counter(i, j) if T (i, j, k) < x
5 ∀(i, j) ∈ D−(k) do: If Counter(i, j) = 0 then CNF−(i) ← 0

104

are substituted by an While-EndWhile iteration in the next algorithm as
follows:

7 (i, j) ← First(D−(k))
8 y ← T (i, j, k)
9 While (x > y) do:
10 Decrement Counter(i, j)
11 If Counter(i, j) = 0 then CNF−(j) ← 0
12 Set1 ← Set1 ∪ {(i, j)}
13 Remove First(D−(k)) from D−(k)
14 (i, j) ← First(D−(k))
15 y ← T (i, j, k)
16 Endwhile

Similarly, the line 6 of the previous algorithm:

6 ∀(i, j) ∈ C−(k) do: Decrement Counter.DNF−(i) if T (i, j, k) ≤ x

is substituted by another End-While iteration with the same operations
that the previous one:

17 (i, j) ← First(C−(k))
18 y ← T (i, j, k)
19 While (x > y) do:
20 If First(i, j) = 1 then do:
21 Decrement Counter.DNF−(i)
22 First(i, j) ← 0
23 Set2 ← Set2 ∪ {(i, j)}
24 Remove First(C−(k)) from C−(k)
25 (i, j) ← First(C−(k))
26 y ← T (i, j, k)
27 Endwhile

• The second problem comes from the decrements of Counter.DNF (i). Each
decrement must correspond to the removal (i.e. falsification) of one con-
junct of the DNF− term. This counter should be set to 0 only when all the
conjuncts are falsified. Nevertheless, in the previous algorithm, the deduc-
tions of n literals that could belong to a same conjunct C− of the DNF−i
term, implies n decrements of Counter.DNF (i). Thus, the counter could
be set to 0, indicating that the DNF− term has been removed, in cases
where not all the conjuncts in the DNF− have been falsified. To over-
come this problem, we use a flag call First(C−) for each conjunct C− in
the DNF−. Initially, this flag is set to 1. After the first falsification of
any literal in C−, the flag is set to 0. In this way, only one decrement of
Counter.DNF is allowed for each conjunct C− in DNF−.

105

Thus, correcting the previous algorithm with the previous defined data struc-
ture, we have:

If First(i, j)= 1 then do: decrement Counter.DNF (i)
First(i, j) ← 0

The resulting algorithm is therefore:

106

SATALGAL(Γ)
1 ∀(C+) ∈ Γ do: ∀(↑x : p) ∈ C+ do: push((↑x : p), Stack)
2 While Stack 6= {} do:
3 (↑x : pk) ← pop(Stack)
4 If x > V al(pk) then do:
5 V al(pk) ← x
6 Set1 ← ∅; Set2 ← ∅
7 (i, j) ← FirstElement(D−(k))
8 y ← T (i, j, k)
9 While (x > y) do:
10 Decrement Counter(i, j)
11 If Counter(i, j) = 0 then CNF−(i) ← 0
12 Set1 ← Set1 ∪ {(i, j)}
13 Remove FirstElement(D−(k)) from D−(k)
14 (i, j) ← FirstElement(D−(k))
15 y ← T (i, j, k)
16 Endwhile
17 (i, j) ← FirstElement(C−(k))
18 y ← T (i, j, k)
19 While (x > y) do:
20 If First(i, j) = 1 then do:
21 Decrement Counter.DNF−(i)
22 First(i, j) ← 0
23 Set2 ← Set2 ∪ {(i, j)}
24 Remove FirstElement(C−(k)) from C−(k)
25 (i, j) ← FirstElement(C−(k))
26 y ← T (i, j, k)
27 Endwhile
28 ∀(i, j) ∈ Set1

⋃
Set2 and CNF (i) = Counter.DNF (i) = 0 do:

29 ∀(↑x : p) ∈ C+(i) do: push((↑x : p), Stack)
30 Endwhile
31 ∀i, 1 ≤ i ≤ n, do:
32 If CNF (i) = Counter.DNF (i) = C+(i) = 0 then return(“UNSAT”)
33 Else return(“SAT”)

Now, we can ensure the correctness of the algorithm:

Theorem 5.4.8 Correctness. SATALGAL(Γ) returns “SAT” iff Γ is satisfi-
able.

Proof. The parallelism between the instructions of this algorithm and those of
the previous one is mentioned above. For example, lines in the algorithm 4, 5,
y 6 are substituted by the two iterations specified.

Both lines 4, 5, and 6 and iterations While-EndWhile have the same effects:
removing occurrences of (↓y : p) from disjunctions and conjunctions in the input

107

formula Γ. In the former, this statement is clearly verified. In the latter, one can
check that the occurrences of (↓y : p) are exactly those indicated by lists D−(k)
and C−(k), and the iterations remove exactly these occurrences proceeding as
it is detailed in section 2.3.3. Then, we have:

1. ∀x, y, SATEQU(x, y) ∧ CORSAT (x) =⇒ CORSAT (y), corollary 5.3.2

2. SATEQU(SATALGQ2,SATALGAL), by the construction of both algo-
rithms

3. CORSAT (SATALGQ2), by previous theorem 5.4.7

and hence, we obtain CORSAT (SATALGAL) ¥

Concerning the algorithms’ complexity, the last algorithm is almost linear.

Theorem 5.4.9 Complexity The algorithm SATALGAL is in O(n.log(m)),
where n is the number of different propositions and m is the maximal number of
negative occurrences of a proposition in the formula.

Proof. The number of propositions inserted into the stack is bounded by the
number of literals in positive conjunctions C+

i of subformulas Γi. The number
of iterations in the While-Endwhile blocks is limited by the number of negative
literals in the formula. Altogether, the number of operations is in O(n). In
the initialization procedure all the operations are linear except the operations of
ordering D− and C− which are in O(n.log(m)), where where n is the number
of different propositions and m is the maximal number of negative occurrences
of a proposition in the formula. For more details about the calculus of this
complexity, see section 2.3.3. ¥

Following the methodology, we have proved the last theorem:

MAIN THEOREM 4: ∃x,CORSAT (x), ALSAT (x)

where x is the previous linear algorithm SATALGAL

108

5.5 The Regular HORN-NNF-SAT problem

5.5.1 The Regular HORN-NNF formulas

In this section we define the syntax and semantic elements to the case of general
Regular HORN-NNF formulas ending with the definition of the related SAT
problem. We define those formulas as a generalization of the previous Regular
SIMPLE-HORN-NNF formulas giving as a consequence that most of the defin-
itions and related concepts are direct extensions of the previous ones defined in
the corresponding section for the Regular SIMPLE-HORN-NNF formulas.

Definition 5.5.1 Regular HORN-NNF formulas A Regular NNF formula
is a regular formula formed by the well known induction over the set of regular
literals L and the connectives ∨ and ∧. A negative NNF formula, noted NNF−,
is an NNF formula formed exclusively by regular literals with negative polarity.

Example 5.5.1 The following formula is a Regular NNF formula.

Γ = ((↑0.7 : p1) ∧ (↑0.6 : p3) ∧ (↑0.8 : p6)

∧
({((↓0.2 : p1) ∨ (↓0.1 : p8)) ∧ (↓0.15 : p2)} ∨ (↓0.25 : p3) ∨ {((↓0.25 : p4)∨

(↓0.4 : p5)) ∧ (↓0.2 : p6)} ∨ {(↑0.3 : p7) ∧ (↑0.7 : p8)})
∧

((((((↓0.2 : p1)∨(↓0.3 : p8))∧(↓0.2 : p2))∨(↓0.15 : p7))∧(↓0.3 : p9))∨((↑0.2 : p8)∧(↑0.2 : p9))

∧
(↓0.1 : p8))

∨

∧

∨

∧

∨

↓0.2p1 ↓0.3p8

↓0.2p2

↓0.15p7

↓0.3p9

∧

↑0.2p8 ↑0.2p9

Definition 5.5.2 Regular HORN-NNF formulas A regular HORN-NNF
clause is a regular clause formed by two optional terms: a regular NNF− for-
mula and a non-negative regular conjunction C: C = NNF− ∨ C+. Finally a
Regular HORN-NNF formula is a set of Regular HORN-NNF clauses.

109

The graphical representation of the fifth clause of this formula is given below
following a straightforward extension of the previous principle. The conjunct
(resp. disjunct) sub-formulas of a conjunction (resp. disjunction) are represented
vertically (resp. horizontally).

¯ Ú0.2p1 ¯0.3p8

¯0.2p2

0.2p8

0.2p9

¯0.15p7

¯0.3p9

Ù Ú Ú Ù

Ù

Figure 5.3: A path in the formula

5.5.2 Logical Calculus

The Logical Calculus for Regular HORN-NNF formulas is drawn by substituting
the regular terms D−, C−, CNF− and DNF− in the previous four rules, by
general regular NNF− formulas. Also, the level of nesting allowed can be of
any finite order.

As in the simple case, we need two kinds of Regular Unit Resolution rules:

• RDUR, for the case where the regular literal (↓ j : p) of a unit regular
clause (↑ i : p) is in a disjunction, i > j is true, and

• RCUR, similarly when i > j is true and (↓j : p) is in a conjunction.

To extend the Logical Calculus of the Regular SIMPLE-HORN-NNF-SAT
problem to the case of the general Regular HORN-NNF-SAT problem, we take
separately each inference rule and we generalize the regular terms D−, C−,
CNF− and DNF− existing in the inference rules by replacing them appropri-
ately by general regular NNF− terms.

Definition 5.5.3 The rule RDUR for the Regular HORN-NNF formulas where
the old terms have been substituted by general Regular NNF− formulas is the
following:

110

(↑ i : p), ({((↓j : p) ∨NNF−1) ∧NNF−2 } ∨NNF−3 ∨ C+)
({(NNF−1) ∧NNF−2 } ∨NNF−3 ∨ C+)

(DUR)

Now we need to extend the nesting level from 3 to any order k:

(↑ i : p), ({(. . . ({((↓j : p) ∨NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)

({(. . . ({(NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)
(DUR)

Remark: Note that i > j must be true to apply this inference rule. The
regular term NNFk can be a conjunct or a disjunct depending only on the
number k of layers of nesting. If k is even, NNFk is a regular conjunct and else,
if k is odd, it is a regular disjunct.

Thus, the antecedents of the new inference rules are obtained from the pre-
vious ones by:

• substituting in the correspondent rule antecedent, the regular terms

(↓j2 : p2 ∨ . . .∨ ↓jn : pn), {D−
2 ∧ . . .∧D−

k } and DNF− by general regular
NNF− formulas, and by

• generalizing from the level 3 of nesting of the operators ∨/∧ in Regular
SIMPLE-HORN-NNF formulas to a general level k of nesting in HORN-
NNF.

Then, with the antecedent defined, the consequent is easily derived. Applying
the previous principle to the three inference rules of the previous LC for the
Regular SIMPLE-HORN-NNF formulas, we obtain the definitive inference rules
for the case of general Regular HORN-NNF formulas.

Definition 5.5.4 Given that i > j is true, the Logical Calculus for the case of
general Regular HORN-NNF formulas is the following:

({(. . . {({2 ∧NNF−1 } ∨NNF−2) ∧NNF−3 } ∨ . . . ∨NNF−k−1) ∧NNF−k } ∨ C+)

({(. . . {(NNF−2) ∧NNF−3 } ∨ . . . ∨NNF−k−1) ∧NNF−k } ∨ C+)
(RSIMPLIF)

(↑ i : p), ({(. . . ({(↓j : p ∨NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)

({(. . . ({(NNF−1) ∧NNF−2 } ∨NNF−3) ∧ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)
(RDUR)

(↑ i : p), ({(. . . {({↓j : p ∧NNF−1 } ∨NNF−2) ∧NNF−3 } ∨ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)

({(. . . {(NNF−2) ∧NNF−3 } ∨ . . .) ∧NNF−k−1} ∨NNF−k ∨ C+)
(RCUR)

({↑ i1 : p1 ∧ . . .∧ ↑ ik : pk ∧ . . .∧ ↑ in : pn})
(↑ i1 : p1) ∧ . . . ∧ (↑ ik : pk) ∧ . . . ∧ (↑ in : pn)

(RAE)

Now, we can state the first main theorem.

111

Theorem 5.5.1 The previous Logical Calculus is Sound and Refutation Com-
plete for the case of general Regular HORN-NNF formulas.

Proof. The soundness is trivial and the completeness theorem proof is very sim-
ilar to that of the logical calculus for the Regular SIMPLE-HORN-NNF-SAT
problem. Let us take as an example the first lemma equivalent to lemma 5.4.3.

Lemma 5.5.1 If Γ+ |= (↑ i : p) and rank(p) = k then there exists at least one
clause F = (CNNF−1 ∨ CNNF−2 ∨ . . . ∨ CNNF−k ∨ {DNNF−1 ∧ DNNF−2 ∧
. . . ∧DNNF−n } ∨ C+) such that

1. (↑j : p) ∈ C+, or similarly, F ∈ pos(p)

2. ∀(↓ji : pi) ∈ F , rank(pi) < k

3. j > ji

4. ∀CNNF−i , ∃DNNF−, DNNF− ∈ CNNF−i s.t. Γ+ |= ¬DNNF− and
∃DNNF−j , ∀CNNF−, CNNF− ∈ DNNF−j s.t. Γ+ |= ¬CNNF−.

The remaining lemmas of the proof are proved similarly using the same kind
of generalization followed in the previous lemma with respect to the equivalent
lemma in the MAIN THEOREM 1 for the Regular SIMPLE-HORN-NNF-SAT
problem.

¥

Thus, MAIN THEOREM 1: ∃x, SRC(x) is true for the previous LC,
namely we have, SRC(LC).

5.5.3 A Quadratic Algorithm

The algorithmic version of the current Logical Calculus is the same that the
previous one, defined in 5.4.23.

Definition 5.5.5 The new inference rules are called Regular RAL, Regular
RAC and Regular RACNF for RemoveAllRegularLiterals, RemoveAllRegularConjunctions,
RemoveAllRegularCNFs and they are defined as follows:

(↑ i : p),Γ
Γ = RemoveAllLiterals((↑ i : p), Γ)

(RegularRAL)

(↑ i : p), Γ
Γ = RemoveAllConjunctions((↑ i : p), Γ)

(RegularRAC)

Γ
Γ = RemoveAllCNFs(2,Γ))

(RegularRACNF)

112

As the calculus is the same that the previous one, the corresponding quadratic
algorithm differs in only one point with respect to the previous one for the
Regular SIMPLE-HORN-NNF-SAT problem.

In the current Regular HORN-NNF-SAT problem the nesting of formulas
oblige to propagate the situations appearing when disjunctions are converted in
the empty clause 2. Removing terms in disjunctions can make reduce a dis-
junction to the empty clause. To its turn, this empty clause can be a term in a
conjunction that contains the removed disjunction, and removing this conjunc-
tion could yield an empty disjunction. Thus, propagation of the empty clause
in the formulas is required.

The following algorithm is a quadratic algorithm for the Regular HORN-
NNF-SAT problem:

SATALGQ1(Γ)
1 ApplyRAE(Γ, Stack)
2 While Stack 6= {} do:
3 (↑ i : p) ← pop(Stack)
4 RemoveAllLiterals((↓j : p),Γ) when i > j
5 RemoveAllCNFs(2, Γ)
6 RemoveAllConjunctions((↓j : p), Γ) when i > j
7 Propagate(2, Γ)
8 ApplyRAE(Γ, Stack)
9 EndWhile
10 If () = F ∈ Γ then return(“UNSAT”) Else return(“SAT”)

Theorem 5.5.2 The previous algorithm is quadratic.

Proof. The quadratic complexity is derived from the quadratic complexity of
the algorithm for the Regular SIMPLE-HORN-NNF-SAT problem. Indeed the
function “Propagate” has the same complexity that the other operations in lines
4, 5, and 6, and as the maximal number of iterations is limited by the number
of different propositions, the global complexity is quadratic. ¥

This proves the MAIN THEOREM 3 for the Regular HORN-NNF-SAT prob-
lem:

CORSAT (SATALGQ1) ∧QSAT (SATALGQ1)

5.6 Conclusions

In this chapter, we have dealt with the Regular Simple-Horn-NNF SAT problem
and the Regular Horn-NNF-SAT problem. The former is a special case of the
latter.

For the first problem, we have proposed a Sound and Refutation Complete
Logical Calculus and an almost linear SAT algorithm. Indeed, the non linear
operation has been kept in the initialization procedure. The main deduction
algorithm remains strictly linear.

113

For the Horn-NNF SAT problem, we have furnished a Sound and Refutation
Complete Logical Calculus and a quadratic SAT algorithm.

On the theoretical part, these are (to our knowledge) the first tractability
results concerning Regular non-clausal SAT problems. Indeed, until now, there
are some well known results regarding Regular clausal satisfiability. Most of them
have been referenced in this chapter. But, the Regular non-clausal tractability
had not been tackled until now.

On the practical side, the algorithms developed can be of relevant interest
to the Rule Based Systems. Actually, the multi-valued Regular Logic has been
turned out to be an appropriate language to represent and reason with uncer-
tainty. Many Expert Systems and other Rule Based Systems rely on this logic.
Thus, with the developed algorithms the rules and questions in a Rule Based
System can be extended allowing more general forms than the classical simple
ones: a conjunction in the antecedent and a proposition in the consequent. Rules
now can be composed by a Negation Normal Form term in the antecedent and
a conjunction in the consequent.

The proposed algorithms run with the same complexity than their coun-
terpart classical algorithms, but the proposed algorithms work with a smaller
formula, and in the most favorable case, the difference in size of the classical con-
junctions and the Negation Normal Form term could be of an exponential order.
Thus, the gain in time, of the proposed method with respect to the classical
algorithms can be of an exponential rate.

114

Chapter 6

Conclusions

In this thesis, we have dealt with the Satisfiability problem in Non-Clausal forms.
More specifically, we have treated a kind of Non-Clausal Horn-like SAT problems
in propositional logic and in multi-valued Regular Logic. For each logic, we have
solved two main problems: The Simple-Horn-NNF SAT problem and the Horn-
NNF SAT problem. The former is a particular case of the later.

The Simple-Horn-NNF SAT problem consists in verifying the satisfiability of
a formula where the clauses C = (CNF− ∨ DNF− ∨ C+) have the following
terms:

• A Conjunctive Normal Form term formed by a conjunction of disjunctions
of negative literals CNF− = {D−

1 ∧ D−
2 ∧ . . . ∧ D−

n }, where D−
i in the

propositional case is D−
i = (¬pi,1 ∨¬pi,2 ∨ . . .∨¬pi,ni), and in the regular

case is D−
i = (↓ i, i1 :pi,1∨ ↓ i, i2 :pi,2 ∨ . . .∨ ↓ i, ini :pi,ni);

• A Disjunctive Normal Form term formed by a disjunction of conjunctions
of negative literals DNF− = (C−1 ∨ C−2 ∨ . . . ∨ C−m), where Cj in the
propositional case is Cj = {¬pj,1 ∧¬pj,2 ∧ . . .∧¬pj,nj}, and in the regular
case is C−j = {↓j, i1 :pj,1∧ ↓j, i2 :pj,2 ∧ . . .∧ ↓j, inj :pj,nj};

• A conjunction formed by positive literals which in the propositional case
is C+ = {p1∧p2∧ . . .∧ . . . pk}, and in the regular case is C+ = {↑ i1 :p1∧ ↑
i2 :p2 ∧ . . .∧ ↑ in :pn}.

In this thesis memory, we have provided:

• for the propositional SAT problem formed by a set of the described clauses,
first a Sound and Refutation Complete Logical Calculus and second, a
strictly linear SAT algorithm;

• for the Regular SAT problem formed by a set of the mentioned clauses
containing regular literals -instead of propositional literals-, first a Sound
and Refutation Complete Logical Calculus and second, an almost linear
SAT algorithm (the non linear operations have been confined to the ini-
tialization procedure, the main algorithm is kept linear).

115

The more general Horn-NNF SAT problem has been studied also in this
thesis, in the propositional case as well as in the Regular case. The Horn-NNF
SAT problem consists in verifying the satisfiability of a set of clauses where each
clause C = NNF− ∨ C+ is formed by two terms:

• a Negation Normal Form term NNF− formed exclusively by negative lit-
erals;

• a conjunction C+ formed exclusively by positive literals (equally to the
previous simple case).

For the associated SAT problem composed by a set of theses clauses, we have
provided:

• for the propositional case, a Sound and Refutation Complete Logical Cal-
culus and a strictly linear SAT algorithm;

• for the Regular case, a Sound and Refutation Complete Logical Calculus
and a quadratic SAT algorithm.

All the four proposed algorithms have been obtained by means of an original
methodology that facilitates the proofs of correction and complexity of the issued
algorithms. This methodology decomposes the proof of correction of a complex
algorithm into the proof of correction of a Logical Calculus and a sequence of
three algorithms. The last algorithm in the sequence is the final linear algorithm
of complex structure.

Firstly, the proof of correction of the Logical Calculus follows standard math-
ematical technics. Afterwards, the proof of the correction of each of the three
algorithms is based on the correction of its precedent algorithm in the sequence.
This proof relies on the close similarity between two consecutive algorithms in
the sequence.

On the practical side, the results obtained can be of benefic interest for the
applications relying on the SAT problem such as Expert Systems, Hardware
Design, Automated Software Verification, Symbolic Optimization, Logic Pro-
gramming, Automated Theorem Proving, Truth Maintenance Systems, etc.

More specifically, the Rule Based Systems can take advantage of the proposed
linear and almost linear algorithms developed in this thesis. Indeed, with the
new algorithms the rules and questions in Rule Based Systems are allowed to
have new more general forms. The rules now can be formed in its antecedent
part by Negation Normal Forms (composed exclusively by positive -propositional
and regular- literals) and in its consequent part by a conjunction of propositions
or regular literals.

The interpreters of the Rule Based Systems constructed from these new al-
gorithms introduce an exponential gain in time and in memory because they
run in linear or almost linear time with exponentially less symbols than their
counterpart classical interpreters.

On the theoretical side, we have pushed further the frontiers of tractability
of the SAT problem. It has been established that new SAT problems can be

116

resolved in linear and almost linear time. The first case applies to the non-
clausal formulas in propositional logic and the second case to the non-clausal
regular logic.

117

Bibliography

[1] G. Aguilera, I.P. de Guzman, and M. Ojeda. Increasing the efficiency of au-
tomated theorem proving. Journal of Applied Non-classical Logics, 5(1):9–
29, 1995.

[2] E. Altamirano and G. Escalada-Imaz. Algoritmos óptimos para algunas
teoŕıas de Horn factorizadas. In II Congrés Catalá d’Intel-ligència Artificial,
CCIA’99, pages 31–38, Girona, Spain, october 1999.

[3] E. Altamirano and G. Escalada-Imaz. Dos algoritmos eficientes para teoŕıas
de Horn factorizadas. In V Conferencia de Ingenieŕıa Eléctrica, CIE’99,
Mexico, D.F., september 1999.

[4] E. Altamirano and G. Escalada-Imaz. A quadratic algorithm for many-
valued non-clausal Horn-like formulas. In III Congrés Catalá d’Intel.ligència
Artificial, CCIA’00, pages 201–208, Vilanova i la Geltrú, Barcelona, Spain,
october 2000.

[5] E. Altamirano and G. Escalada-Imaz. An almost linear class of multiple-
valued non-clausal Horn formulas. In X Congreso Español sobre Tecnoloǵıas
y Lógica Fuzzy, ESTYLF’00, pages 145–150, Sevilla, Spain, September 2000.

[6] E. Altamirano and G. Escalada-Imaz. An efficient proof method for non-
clausal reasoning. In XII International Symposium on Methodologies for
Intelligent Systems, volume 1932 of LNAI, pages 534–542, Charlotte, USA,
October 2000. Springer-Verlag.

[7] E. Altamirano and G. Escalada-Imaz. Finding tractable formulas in NNF.
In I International Conference on Computational Logic, volume 1861 of
LNAI, pages 493–507, London, UK, July 2000. Springer-Verlag.

[8] E. Altamirano and G. Escalada-Imaz. Un Algoritmo casi lineal para
fórmulas de Horn multivaluadas no clausales. In VI Conferencia de In-
genieŕıa Eléctrica, CIE’00, Mexico, D.F., september 2000.

[9] E. Altamirano and G. Escalada-Imaz. Extending polynomiality to a class
of non-clausal many-valued Horn-like formulas. In 6th European Conference
ECSQARU 2001, volume 2143 of LNAI, pages 792–804, Toulouse, France,
September 2001. Springer-Verlag.

119

[10] P.B. Andrews. Theorem proving via general matings. Journal of Association
Computing Machinery, 28, 1981.

[11] C. Ansótegui, R. Béjar, A. Cabiscol, and F. Manyà. The interface between
P and NP in signed CNF formulas. In Proceedings, 34th International
Symposium on Multiple-Valued Logics (ISMVL), Toronto, Canada, pages
251–256. IEEE CS Press, Los Alamitos, 2004.

[12] C. Ansótegui and F. Manyà. New logical and complexity results for Signed-
SAT. In Proceedings, 33rd International Symposium on Multiple-Valued
Logics (ISMVL), Tokyo, Japan, pages 181–187. IEEE CS Press, Los Alami-
tos, 2003.

[13] C. Ansótegui and F. Manyà. Mapping problems with finite-domain variables
to problems with boolean variables. In Proceedings of the 7th International
Conference on the Theory and Applications of Satisfiability Testing, SAT-
2004, Vancouver, Canada, pages 111–119. Springer LNCS, 2004.

[14] Carlos Ansótegui, Ramón Béjar, Alba Cabiscol, and Felip Manyà. The inter-
face between P and NP in signed CNF formulas. In Proceedings, 34th Inter-
national Symposium on Multiple-Valued Logics (ISMVL), Toronto, Canada,
pages 251–256. IEEE CS Press, Los Alamitos, 2004.

[15] Carlos Ansótegui and Felip Manyà. Mapping problems with finite-domain
variables into problems with boolean variables. In Proceedings of the 7th
International Conference on Theory and Applications of Satisfiability Test-
ing (Revised Selected Papers), SAT-2004, Vancouver, Canada, pages 1–15.
Springer LNCS 3542, 2004.

[16] B. Aspvall. Recognising disguised NR(1) instances of the satisfiability prob-
lem. Journal of Algorithms, (1):97–103, 1980.

[17] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing
the truth of certain quantified Boolean formulas. Information Processing
Letters, 8(3):121–132, 1979.

[18] B. Beckert, R. Hähnle, and F. Manya. Transformations between signed
and classical clause logic. In Proc. Int. Symp. on Multiple Valued Logics,
ISMVL’99, Freiburg, Germany, 1999.

[19] Bernhard Beckert, Reiner Hähnle, and Felip Manyà. Transformations be-
tween signed and classical clause logic. In Proceedings, 29th International
Symposium on Multiple-Valued Logics (ISMVL), Freiburg, Germany, pages
248–255. IEEE Press, Los Alamitos, 1999.

[20] Bernhard Beckert, Reiner Hähnle, and Felip Manyà. The 2-SAT problem of
regular signed CNF formulas. In Proceedings, 30th International Symposium
on Multiple-Valued Logics (ISMVL), Portland/OR, USA, pages 331–336.
IEEE CS Press, Los Alamitos, 2000.

120

[21] Bernhard Beckert, Reiner Hähnle, and Felip Manyà. The SAT problem of
signed CNF formulas. In David Basin, Marcello D’Agostino, Dov Gabbay,
Seán Matthews, and Luca Viganò, editors, Labelled Deduction, volume 17
of Applied Logic Series, pages 61–82. Kluwer, Dordrecht, 2000.

[22] R. Béjar and F. Manyà. A comparison of systematic and local search al-
gorithms for regular CNF formulas. In Proceedings of the 5th European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, ECSQARU’99, London, England, pages 22–31. Springer LNAI
1638, 1999.

[23] R. Béjar and F. Manyà. Phase transitions in the regular random 3-SAT
problem. In Proceedings of the 11th International Symposium on Method-
ologies for Intelligent Systems, ISMIS’99, Warsaw, Poland, pages 292–300.
Springer LNAI 1609, 1999.

[24] R. Béjar and F. Manyà. Solving combinatorial problems with regular lo-
cal search algorithms. In Proceedings of the 6th International Conference
on Logic for Programming and Automated Reasoning, LPAR’99, Tbilisi,
Republic of Georgia, pages 33–43. Springer LNAI 1705, 1999.

[25] Ramón Béjar, Reiner Hähnle, and Felip Manyà. A modular reduction of
regular logic to classical logic. In Proceedings, 31st International Symposium
on Multiple-Valued Logics (ISMVL), Warsaw, Poland, pages 221–226. IEEE
CS Press, Los Alamitos, 2001.

[26] W. Bibel. Automated theorem proving. Fiedr, Vieweg and Sohn, 1982.

[27] E. Boros, Y. Crama, P.L. Hammer, and M. Saks. A complexity index for
satisfiability problems. SIAM Journal on Computing, (23):45–49, 1994.

[28] E. Boros, P.L. Hammer, and X. Sun. Recognition of q-Horn formulae in
linear time. Discrete Applied Mathematics, (55):1–13, 1994.

[29] H.K. Buning, T. Lettmann, and C.J. van Rijsbergen. Propositional Logic:
Deduction and Algorithms. Cambridge University Press, 1999.

[30] F. Bacchus C. Thiffault and T. Walsh. Solving Non-clausal Formulas with
DPLL search. In Tenth International Conference on Principles and Practice
of Constraint Programming, pages 663–678, 2004.

[31] V. Chandru and J.N. Hooker. Extended Horn sets in propositional logic.
Journal of ACM, (38):205–221, 1991.

[32] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vusković, and M.R. Rao. Bal-
anced matrices. In J.R. Birge and K.G. Murty, editors, Mathematical Pro-
gramming: State of the Art. 1994.

[33] S.A. Cook. The complexity of theorem-proving procedures. In Third ACM
Symposium on theory of Computing, pages 151–158, 1971.

121

[34] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 4:394–397, 1962.

[35] T. Boy de la Tour. Minimising the number of clauses by renaming. In
CADE-10, pages 558–572, 1990.

[36] A. del Val. On 2-SAT and Renamable Horn. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence, pages 279–284,
Austin, Texas, 2000.

[37] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the sat-
isfiability of propositional Horn formulae. Journal of Logic Programming,
(3):267–284, 1984.

[38] H.B. Enderton. A Mathematical Introduction to Logic, 2nd edition. Acad-
emic Press, 2000.

[39] G. Escalada-Imaz. A quadratic algorithm and a linear algorithm for 2-CNF
(in French). Technical Report LAAS-89378, Laboratoire D’Automatique et
Analyse des Systemes, Toulouse, France, 1989.

[40] G. Escalada-Imaz. Moteurs d’Inférence Lineaires en Châınage-Avant pour
une classe de Systèmes de Règles. Technical Report LAAS-89172, Labora-
toire D’Automatique et Analyse des Systemes, Toulouse, France, 1989.

[41] G. Escalada-Imaz. Optimisation d’algorithmes d’inference monotone en
logique des propositions et du premier ordre. PhD thesis, Université Paul
Sabatier, Toulouse, France, 1989.

[42] G. Escalada-Imaz and F. Manya. The satisfiability problem for multiple-
valued horn formulae. In Proc. International Symposium on Multiple-Valued
Logics, ISMVL’94, pages 250–256, Boston/MA, USA, 1994. IEEE Press,
Los Alamitos.

[43] G. Escalada-Imaz and F. Manyà. The satisfiability problem for multiple-
valued Horn formulæ. In Proceedings, International Symposium on Multiple-
Valued Logics, ISMVL’94, Boston/MA, USA, pages 250–256. IEEE Press,
Los Alamitos, 1994.

[44] G. Escalada-Imaz and F. Manya. On the 2-SAT problem for signed formu-
las. In Proc. Workshop/Conference on Many-Valued Logics for Computer
Science Applications, COST Action 15., Barcelona, Spain, 1996.

[45] G. Escalada-Imaz and A.M. Mart́ınez-Enŕıquez. Motores de Inferencia de
Complejidad Optima de encadenamiento hacia adelante para diversas clases
de sistemas de reglas. Informática y Automática, 27(3):23–30, 1994.

[46] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM J. of Computing, (5):691–703, 1976.

122

[47] J.W. Freeman. Improvements to propositional satisfiability search algo-
rithms. PhD thesis, University of Pennsylvania, 1995.

[48] G. Gallo and G. Urbani. Algorithms for testing the satisfiability of propo-
sitional formulae. Journal of Logic Programming, (7):45–61, 1989.

[49] M.R. Genesereth and N.J. Nilsson. Logical foundations of artificial intelli-
gence. Morgan Kaufmann, 1987.

[50] M. Ghallab and G. Escalada-Imaz. A linear control algorithm for a class of
rule-based systems. Journal of Logic Programming, (11):117–132, 1991.

[51] M.T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java.
Jon Wiley and Sons, 2001.

[52] G. Gutiérrez, I. P. de Guzmán, J. Mart́ınez, M. Ojeda-Aciego, and
A. Valverde. Satisfiability testing for Boolean formulas using ∆-trees. Studia
Logica, 72:33–60, 2002.

[53] R. Hähnle. Towards an efficient Tableau proof procedure for multiple-valued
logics. In Proc. of Computer Science Logic CSL’90, Heidelberg, Germany,
1990.

[54] R. Hähnle. Uniform notation of Tableau rules for multiple-valued logics. In
Proc. ISMVL’91, Victoria, Canada, 1991.

[55] R. Hähnle. A new translation from deduction into integer programming.
In Proc. Int. Conf. on Artificial Intelligence and Symbolic Mathematical
Computing AISMC-1, Karlsruhe, Germany, 1992.

[56] R. Hähnle. Automated deduction in multiple-valued logics, volume 10 of In-
ternational Series of Monographs in Computer Sciences. Oxford University
Press, 1993.

[57] R. Hähnle. Short conjunctive normal forms in finitely-valued logics. Journal
of Logic and Computation, 4(6):905–927, 1994.

[58] R. Hähnle. Exploiting data dependencies in many-valued logics. Journal of
Applied Non-classical Logics, (6):49–69, 1996.

[59] R. Hahnle and G. Escalada-Imaz. Deduction in many-valued logics: A
survey. Mathware and Soft Computing, 4(2):69–97, 1997.

[60] R. Hähnle, N.V. Murray, and E. Rosenthal. Completeness for linear regular
negation normal form inference systems. In Proceedings ISMIS’97, 1997.

[61] L. Henschen, E. Lusk, R. Overbeek, B.T. Smith, R. Veroff, S. Winker, and
L. Wos. Challenge problem 1. SIGART Newsletter, (72):30–31, July 1980.

[62] L. Henschen and L. Wos. Unit refutations and Horn sets. Journal of the
Association for Computing Machinery, 21(4):590–605, 1974.

123

[63] W. Hodges. Logical features of Horn clauses. In Handbook of Logic in
Artificial Intelligence and Logic Programming. Vol 1, pages 459–466. 1993.

[64] J. Hsiang. Refutational theorem proving using term-rewriting systems. Ar-
tificial Intelligence, pages 255–300, 1985.

[65] P. Jackson and D. Sheridan. Clause Form Conversions for Boolean Cir-
cuits. In 7th International Symposium on the Theory and Applications of
Satisfiability Testing, pages 183–198, 2004.

[66] N. Jones and W. Laaser. Complete problems for deterministic polynomial
time. Theoretical Computer Science, (3):105–117, 1977.

[67] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller
and J.W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press. N.Y., 1972.

[68] S.C. Kleene. Mathematical Logic. Dover Publications, 2002.

[69] S.M. Leach, J.J. Lu, N.V. Murray, and E. Rosenthal. Mho-resolution: an
inference rule for regular multiple-valued logics. In 6th European Workshop
on Logics in AI JELIA’98, 1998.

[70] H.R. Lewis. Renaming a set of clauses as a Horn set. Journal of the ACM,
(25):134–135, 1978.

[71] J.J. Lu, N.V. Murray, and E. Rosenthal. Signed formulas and annotated
logics. In Proc. 23st International Symposium on Multiple-Valued Logic,
pages 48–53. IEEE Computer Society Press, Los Alamitos, 1993.

[72] J.J. Lu, N.V. Murray, and E. Rosenthal. A framework for automated reason-
ing in multiple-valued logics. Journal of Automated Reasoning, (21):39–67,
1998.

[73] F. Manya. Proof Procedures for Multiple-Valued Propositional Logics. PhD
thesis, Universidad Autónoma de Barcelona, 1996.

[74] F. Manya. The 2-SAT problem in signed CNF formulas. Journal of Multiple-
Valued Logic, 5(4):307–325, 2000.

[75] F. Manyà, R. Béjar, and G. Escalada-Imaz. The satisfiability problem in
regular CNF-formulas. Soft Computing: A Fusion of Foundations, Method-
ologies and Applications, 2(3):116–123, 1998.

[76] F. Manya, R. Béjar, and G. Escalada-Imaz. The satisfiability problem in
regular cnf-formulas. Soft Computing: A Fusion on Foundations, Method-
ologies and Applications, 2(3):116–123, 1998.

[77] Felip Manyà. The 2-SAT problem in signed CNF formulas. Multiple-Valued
Logic. An International Journal, 5(4):307–325, 2000.

124

[78] E. Mendelson. Introduction to Mathematical Logic, Fourth Edition. Chap-
man and Hall, 1997.

[79] M. Minoux. LTUR: A simplified linear-time unit resolution algorithm for
Horn formulae and computer implementation. Information Processing Let-
ters, (29):1–12, 1988.

[80] G. Mints. Gentzen-type systems and resolution rules, part 1: Propositional
logic. In Proc. COLOG-88, Tallin, volume 417 of LNCS, pages 198–231.
Springer, 1990.

[81] N.V. Murray. Completely Non-Clausal Theorem Proving. Artificial Intelli-
gence, 18(1):67–85, 1982.

[82] N.V. Murray and E. Rosenthal. Dissolution: making paths vanish. Journal
of the ACM, 3:504–535, 1993.

[83] J.A. Navarro and A. Voronkov. Generation of Hard Non-Clausal Random
Satisfiability Problems. In The Twentieth National Conference on Artificial
Intelligence, pages 436–436, 2005.

[84] N.J. Nilsson. Principles of artificial intelligence. Tioga Publishing Com-
pany, 1980.

[85] M. Ojeda-Aciego and A. Valverde. tascpl: TAS solver for Classical Proposi-
tional Logic. In Logics in Artificial Intelligence, JELIA’04, pages 731–735.
Lect. Notes in Artificial Intelligence 3229, 2004.

[86] D.A. Plaisted. Formal techniques in artificial intelligence, chapter Mechan-
ical Theorem Proving. Elsevier Science Publishers, 1990.

[87] R. Roy-Chowdhury-Dalal. Model theoretic semantics and tractable algo-
rithm for CNF-BCP. In Proc. of the AAAI-97, pages 227–232, 1997.

[88] A. Sakharov. A transformational decision procedure for non-clausal propo-
sitional formulas. CoRR, cs.LO/0306035, 2003.

[89] J.S. Schlipf, F. Annextein, J. Franco, and R.P. Swaminathan. On find-
ing solutions for extended Horn formulas. Information Processing Letters,
(54):133–137, 1995.

[90] M.G. Scutellà. A note on Dowling and Gallier’s top-down algorithm for
propositional Horn satisfiability. Journal of Logic Programming, (8):265–
273, 1990.

[91] R.M. Smullyan. First-Order Logic. Springer-Verlag, 1968.

[92] R. Socher. Optimising the clausal normal form transformation. Journal of
Automated Reasoning, (7):325–336, 1991.

125

[93] Z. Stachniak. Non-clausal reasoning with propositional definite theories. In
International Conference on Artificial Intelligence and Symbolic Computa-
tion, volume 1476 of Lecture Notes in Computer Science, pages 296–307.
Springer Verlag, 1998.

[94] Z. Stachniak. Polarity guided tractable reasoning. In International Ameri-
can Association on Artificial Intelligence, AAAI-99, pages 751–758, 1999.

[95] Z. Stachniak. Going Non-clausal. In Fifth International Symposium on the
Theory and Applications of Satisfiability Testing, pages 316–322, 2002.

[96] G. Tseitin. On the complexity of proofs in propositional logics. In J. Siek-
mann and G. Wrightson, editors, Automation of Reasoning 2: Classical
Papers on Computational Logic, pages 466–483. Springer, 1983.

126

Monografies de l’Institut d’Investigació en Intel·ligència
Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Sys-
tems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology

Num. 5 E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

Num. 6 J. Ll. Arcos, The Noos Representation Language
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Con-

straint Satisfaction
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket

Metaphor
Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional

Logics
Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special

Relations
Num. 11 M. López-Sánchez, Approaches to Map Generation by means of

Collaborative Autonomous Robots
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents
Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-

mediated Electronis Institutions
Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Im-

precise Constants: Possibilistic Semantics and Automated De-
duction

Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory - A Possibilistic Approach

Num. 17 A. Valls, ClusDM: A multiple criteria decision method for het-
erogeneous data sets

Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics

Num. 19 M. Esteva, Electronic Institutions: from specification to devel-
opment

Num. 20 J. Sabater, Trust and Reputation for Agent Societies

Num. 21 J. Cerquides, Improving Algorithms for Learning Bayesian Net-
work Classifiers

Num. 22 M. Villaret, On Some Variants of Second-Order Unification
Num. 23 M. Gómez, Open, Reusable and Configurable Multi-Agent Sys-

tems: A Knowledge Modelling Approach
Num. 24 S. Ramchurn, Multi-Agent Negotiation Using Trust and Per-

suasion
Num. 25 S. Ontañon, Ensemble Case-Based Learning for Multi-Agent

Systems
Num. 26 M. Sánchez, Contributions to Search and Inference Algorithms

for CSP and Weighted CSP
Num. 27 C. Noguera, Algebraic Study of Axiomatic Extensions of Trian-

gular Norm Bassed Fuzzy Logics
Num. 28 E. Marchioni, Functional Definability Issues in Logics Based on

Triangular Norms
Num. 29 M. Grachten, Expressivity-Aware Tempo Transformations of

Music Performances Using Case Based Reasoning
Num. 30 I. Brito, Distributed Constraint Satisfaction
Num. 31 E. Altamirano, On Non-clausal Horn-like Satisfiability Prob-

lems

