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Foreword

Nowadays we are withessing an important transformatioheftay organizations op-
erate to fulfill their objectives. We are moving from monbii structures to collab-
orative structures whose components tend to reduce ttzeis.siThis means that we
are moving toward the paradigm of virtual organizationsthiis setting, the ability to
quickly and efficiently collaborate to design, develop,droe and sell a new product
has become a key competitive advantage.

In this environment, enterprises face critical strategicisions on whether to col-
laborate with other firms to complete some tasks acrossjifglgehain. In this setting
there is a need for an increased automation across the stipgily. Indeed, static and
vertical integrated supply chains are quickly giving wayrtore flexible value chains
composed of partners that can be assembled in real time toumigge requirements.

This thesis is the result of a pioneer work on automating tbegss of collaborative
supply chain network formation. At this aim, it proposes ael@ombinatorial auction
model, the so-called Mixed Multi-Unit Combinatorial Auati, that supports not only
to trade and exchange goods but also to trade and exchangéautamning operations.
This model has achieved international recognition, hasege new line of research in
our institute and shows a high potential for industrial &glon.

We have been lucky to work with Andrea Giovannucci along e¢hgsars. Our
collaboration has been very fruitful and enjoyable botlestfically and personally.
Thanks to his enthusiasm, generosity, friendliness, aombfor knowledge and team
making capabilities, Andrea has been the PhD student edeiga would like to work
with.

We wish the reader an experience as pleasant as the one wehitadawising the
author.

The supervisors

Juan Antonio Rodriguez Aguilar and Jesus Cerquides
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Abstract

The need for automating the process of supply chain formaionotivated by the ad-
vent of Internet technologies supporting B2B and B2C negjotis: the speed at which
market requirements change has dramatically increasethidrscenario enterprises
must become flexible in the process of product customisatiorder fulfilment. This
can be only achieved if the supply chain formation procesgite, and thus the need
for automation.

The main goal of this dissertation is to provide computalynefficient market-
based auction mechanisms for automating the process ofalgupply chain partner
selection. This is achieved by means of two progressivetrigial extensions of com-
binatorial auctions (CA).

On the one hand, we extend CAs to determine optimal outsoyistiategies. Thus,
we provide computational means, via the so-called Multt-Gombinatorial Auctions
with Transformation Relationships (MUCRALR), for an eqpiése to optimise itsnake-
or-buydecisions across the supply chain, namely to decide whedtmrtsource some
production processes or not. At this aim, we add a new dimens the goods at
auction. A buyer can express its internal production and stvacture. Firstly, we
introduce such information in the winner determinationtppeon (WDP) so that an auc-
tioneer/buyer can assess what goods to buy, from whom, aatinternal operations
to performin order to obtain the required resources. Inwlaig, an auctioneer can build
his supply chain minimising its costs. Secondly, since taeigion problem faced by
the auctioneer is extremely hard, we also provide a fornsh&work to analyse the
computational properties of the WDP and to facilitate trassification of WDPs, and
hence to provide guidance for developing efficient solugétgorithms.

On the other hand, we propose a novel CA, the so-called Mixeltifdnit Combi-
natorial Auction (MMUCA), that automates the process ofalmbrative supply chain
network formation. The outcome of such a new auction is tltegdioated plan of a to-
tally integrated supply chain (the selection of a set of suppain partners along with
the ordered set of operations that each partner must perfoifm manage to provide
computational means to optimisgake-or-buy-or-collaboratdecisions, and therefore
to tightly link sourcing, outsourcing, and collaboratidrasegies. In this context, make,
buy, and collaborate mean that a stakeholder of the suppin decides whether to per-
form a set of services or operations by himself (make), te@uice them (buy), or to
perform them in collaboration with other stakeholdersl@mrate). A MMUCA allows
agents to bid for bundles of goods to buy, to sell, and for besdf (manufacturing)

XXi



operations across the supply chain. One such operationeagghrded as a step in a
production process, and thus winner determination in a MM ounts to choosing
the sequence in which the winning bids must be implementdtewhinimising total
cost. Furthermore, we introduce a bidding language for MMIS@nd analyse the
corresponding WDP. Finally, we succeed in providing vefficiefnt optimisations to
the MMUCA WDP, based on a formal analysis of its topologi¢alsture, which can
found their practical application to actual-world sceoari
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Chapter 1

Introduction

The main goal of this dissertation is to provide computalyrefficient market-based
auction mechanisms for automating the process of optingglgichain partner selec-
tion. This is achieved by means of two progressive, nonalrxtensions of combina-
torial auctions (CA). On the one hand, we extend CAs to ddtexmptimal outsourcing
strategies. Thus, we aim at providing a useful tool to o@émake-or-buy decisions
across the supply chain. On the other hand, we propose a @Gévidlat automates the
process of collaborative supply chain network design, rpjhxﬂ, and formation. The
outcome of such a new auction is the coordinated plan of diytatdegrated supply
chain (the selection of a set of supply chain partners aloitiy tive ordered set of op-
erations that each partner must perform). Analogouslyh@latter case we aim at
providing a useful tool to optimise make-or-buy-or-cothasite decisions, and therefore
to tightly link sourcing, outsourcing, and collaboratidrasegies. In this contextake,
buy, and collaboratemean that a stakeholder of the supply chain decides whather t
perform a set of services or operations by himself (make)utsource them (buy), or
to perform them in collaboration with other stakeholdedl&borate).

This chapter is organised as follows. In secfiod 1.1 we éxpidny some think
that our economy is undergoing profound changes in the reatsy In sectiof 112, we
go back to reality and explain what is currently changingun @economy and what is
required to adapt to such changes. In sedfich 1.3 we recak smncepts and termi-
nology related to supply chain management. In se€fidn ledspecify and thoroughly
exemplify the problems we cope with in this PhD thesis. Irtise€@.3 we highlight the
contributions of this dissertation with respect to theestaftthe-art. Finally, in section
L8, we elaborate on the structure of this dissertation.

1.1 A hypothesis for the future: Wikinomics

In his recent article, Burkemah (Burkeman, 2005) summarésel discusses the eye-
opening new book of Don Tapscott call®dIKINOMICS: How Mass Collaboration
Changes Everythinfirapscott and Williams, 2006). According to Don Tapscotjueu

1We remark thasupply chain planningonsists in assessing who will do what and when in a supplycha
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2 Chapter 1. Introduction

of the Web, “we have barely begun to imagine how the Interrikktiange the way we
live and work”. We are living a revolution that is undermigithe very basis of tradi-
tional economy. In his article, Burkeman recalls three gxasof this transformation
from theWikinomicsbook:

e Self-OrganisersChina’s flourishing motorbike industry is not composed igf b
organised firms hiring thousand of employees and outsogitagks to small sub-
contractors. Instead, a myriad of smaller companies cotkte and self-organise
in order to share risks and profits. Their representativest inetea-shops or in
on-line places and jointly plan a product, to which they cidite with the ser-
vice they are best at. Even the final assembly is a service. elfi-6sganised
system of design and production” has emerged.

e Prosumerswhen amateurs began to hack the computerised parts atainedfie
the Lego Mindstorm rangé (Shaeffer, 2007), the companiallyitthreatened to
sue them. Then, perceiving the wind of change, Lego staotedi¢courage them
to beprosumersconsumers that have an active role in the design of a product
This lead to an increased satisfaction of customers withatrhing the enterprise
profit.

e The new gold rushthe Gold mine at the Red Lake in Ontario, owned by Gold-
corp, was in a terrible crisis in 1999. When the chief exeeuRob McEwen
heard a talk about Linus Torvald, the inventor of Linux, heneaup with a revo-
lutionary idea. If developers collaboratively code on thebMvhy not share the
mining activity on the web? Then, he put Goldcorp secretagiohl data on the
web and set a 575,000 $ prize to reward the discovery of nednghs in Red
Lakes’s mine. Around 80 valid targets were identified andabmpany value
turned from $100m to $9bn.

Those three cases above aim at showing that the collaberstiucture, recently
emerged in social and collaborative networks as Wikipéldia 003) and Sourceforge
(SourceForge, S.F., 2007), could be far more radical andgshtne way we think about
manufacturing. In his book, Tapscottintroduces his refhary idea of “wikinomics”,
an idea that originates in a work that dates back to 1937 @€d&s37). At that time,
Ronald Coase, a Nobel prize economist, noticed somethidgochpitalism. Capital-
ism predicates the free market and exchange. If capithksiryy was correct American
or British people should do business among them as indilddnaan open market,
and not organise themselves in firms, as it happens. The atiotiv(Coase, 1937) is
that making things requires collaboration, and that findind linking up all the people
who need to collaborate costs money. Companies emerge wisechieaper gathering
people, materials, and tools under the same roof, ratharghimg out looking for the
best deal every time a few hours’ work is required. Howeves,Ihternet is radically
lowering the cost of collaborating. Consequently, big canmips are doomed to reduce
their size in order to leave space to more agile and flexibllaloorative structures. A
symptom of this new collaborative reorganisation is thatjristance, large companies,
from media outlets to clothes shops, are trying to make pbgfiincorporating final
customers in the creation of their products. HoweWdikinomicsforecasts a further
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radical revolution: it is not given that the company willgia the driving seat at all.
Quoting Tapscott: “We are talking about a new means of prisolucCollaboration can
occur at an astronomical scale, so if you can create an epsdia with a bunch of
people, could you create a mutual fund, a motorcycle?”.

Tapscott is not the only one prohetising a wiki future. Fatamce, Laubaucher and
Malone [Laubacher and Malone, 2003) claim that “The mosteddew organisational
form, the virtual corporation, involves small firms and fleecers, or even e-lancers
— electronically connected free-lancers, who post the#ijoations and find assign-
ments on the Internet — joining forces on a temporary basiskiwg together on a
project, then disbanding when the work is completed. Virtwaporations of this sort
have long characterised film production and constructiahae increasingly preva-
lent in the most dynamic and fastest-growing sectors of to@emy — computers and
telecommunications, entertainment, biotechnology.”

Other terms employed to indicate analogous conceptsidtel corporation vir-
tual organisation(Mowshowitz, 200R), anéxtended enterprig®yer, 2000).

1.2 With the feet in the air & the head on the ground

The provocative title quotes The Pixies’ sovhere is my mindIt aims at highlight-
ing the fact that wikinomics is a far goal. However, any renimn takes its time to
entirely develop, and probably several intermediate stepsequired to approach the
new economy envisaged by Tapscott and Couse. Then, in tiisrseve stay witithe
head on the groundnd we analyse what is going on in the business world now. We
will summarise what is changing and why. At the same time wieasimment on the
requirements that originate from such changes.

We are witnessing an important transformation of the firmaargational structure.
Today’s business world is experiencing a progressive wigination of the traditional
vertical integritﬂ of the enterprises’ organisational structure. This is aésed by a
heavy increment in the use of outsourcing. Quoting Greddeedver, 1999), “Out-
sourcing is the act of transferring some of an organisatigaeturring internal activities
and decision rights to the outside providers, as set forthgontract”. Outsourcing is
one of the success keys of western economies and is wideliogetp Indeed, a re-
cent on-line news (DMReview.com online news, 2005) abotga@urcing claims that,
“According to a newly released IDC study, the worldwide BRBDIginess Process Out-
sourcing) market is vibrant and brimming with opportunithe comprehensive BPO
report finds that worldwide BPO spending will experience e-frear compound annual
growth rate (CAGR) of 10.9 percent, growing from $382.5bilin 2004 to $641.2 bil-
lion in 2009. This forecast covers eight BPO markets: huneaspurces, procurement,
finance & accounting, customer service, logistics, sales &keting, product engi-
neering, and training”. Another on-line neWs (DMReviemtonline news, 2006) says
that “According to a newly released IDC study, the businagsaurcing market pro-
gressed positively in 2005, experiencing a 33 percent asgrén the volume of deals
signed. [...]. Small and mid-size deals are fuelling growtinderlying this trend is

2|n microeconomics and management the teertical integrationdescribes the degree to which a firm
owns its upstream suppliers and its downstream buyers.
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an increase in the share of new deals versus extensions medals, which indicates
that a growing number of new organisations are buying inéohihsiness outsourcing
model. [...]. Manufacturing, financial services, and gowveent verticals registered the
strongest adoption of business outsourcing overall”.

The trend is quite clear. We are moving from vertically imtggd struc-
tures to collaborative structures whose components tendetluce their sizes
(Cucking-Relley and Spulber, 200L; Hammer, 2001). This msethat we are slowly
moving towards the paradigm of virtual enterprises. Thia s&/mptom endorsing the
Wikinomicstheory. Such transformation is due to many factors.

Firstly, today’s business environment is getting tougtet @ugher. Indeed, nowa-
days customers are increasingly demanding better andatimegoods, as well as pro-
gressively more customised products. This new situatioailsrsome implicit produc-
tion requirements and constraints like timeliness, corarere, responsiveness, quality,
and reliability. Moreover, ever lower prices are imposealigrce market competition.

Secondly, the rapid pace of innovation has entailed a shameluct and technology
life cycle (for instance, the PC or phone industries wherg medels are introduced
each 3 to 9 months), and an increased uncertainty in supplyglamand. Notice that
the presence of technology, in particular the Internetafesmade the work of modern
organisations placeless. This has forced an increasedlpaiion of the operational
activities across an organisation.

Thirdly, we are experiencing a worldwide increment in cotitin (hyper-
competition). We are fastly moving from a best-in-class tmeat-in-world paradigm,
barriers are dropping quickly, competition is just onelclaavay from any customer.
Companies that recently were in separate fields now compeieisame narrow mar-
ket (for instance, Apple with the iPod efficiently enteretbithe MP3 player market).

Finally, we are witnessing a rapid commaoditisation of gﬂodee to the rapid price
decline and to the increased pressure for improved perfocesa

Thus, the ability to quickly and efficiently design, develppoduce and sell a new
product has become a key competitive advantage. That is kehgttuctural integrity
of organisations is breaking down; the traditional veiticantegrated organisations,
controlling as many of the production factors as possisléging quickly replaced by
better focused and more specialised organisations. Amased number of capable
service providers, the pressure deriving from the hypepditivity, and the pervasive
presence of technology impose a new strategic vision. As@trenew supply chain
managemenf (Simchi-Levi et al., 2000) strategies are enmggrike strategic outsourc-
ing (Quinn and Hillmer, 1994; Greaver, 1999; Corbett, 2004 collaborative supply
chain network design (Viswanadham, 2D02).

Notice that the intersection between portions of supplyrehef different firms is
often non empty. For instanceriginal equipment manufacture(®©EM) are typical in
rapidly chaining markets. The teroniginal equipment manufacturé©OEM) refers to a
company that sells a manufacturing component to anothepaoynthat in turn resells
it as its own, usually as a part of a larger product.

3In essence, commoditisation occurs as a good or servicertescondifferentiated across its supply base
by the diffusion of the intellectual capital necessary tguae or produce it efficiently. As such, many
products which formerly carried premium margins for marnatticipants have become commodities, such
as generic pharmaceuticals and silicon cHips (Schrage])200
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In this environment, the selection of the right businesdngas is critical, which
are quickly moving from the role of suppliers, manufactareustomers, to the role of
collaborators Hence, many enterprises now face criticelke-or-buy-or-collaborate
strategic decisions across their supply chain: differgpés$ of actors, as component
suppliers, contract manufacturers, service purchasagstic providers, and final cus-
tomers have to be efficiently integrated into the supply mhdn particular, one of
the main objectives of current supply chain managenentc¢Rinievi et al., 2000) is
to integrate as much as possible theck-endof the supply chain (its production and
manufacturing portion) to thigont-end(the final customer).

Another fundamental requirement stemming from the busingsvironmental
changes explained above is a need for an increased autaraatimss the supply chain.
Indeed, static and vertically integrated supply chainscaiiekly giving way to more
flexible value chains composed of partners that can be assénnbreal time to meet
unique requirements. This phenomenon is being accelebgtéte Internet, that low-
ered the communication barriers transforming a game thaffia against firm into a
game that is supply chain network against supply chain mét{kdswanadham, 2002).

A spectrum of possible solutions is possibly needed by prites. On the one ex-
treme, companies must make decisions about whether towratspart of their produc-
tion processes (buy/make decisions) in business envirotsnkaracterised by myriads
of possible partners (lower barriers caused an incremegtrnnpetition). On the other
extreme of the spectrum, virtual enterprises may need dgitésion support systems
(DSSs) that allow them to automatically form self-orgamissupply chains.

Indeed, we do believe that nowadays firms, or group of firmguire DSSs that
allow them to nimbly and automatically select strategicitess partners. With this
goal, those DSSs should allow firms to:

e automate the process of partner selection, optimisingatinake-or-buydeci-
sions across the supply chain (i.e. trading off decisiongigfrnal vs external
production) with myriads of potential partners. Clearlisthntails a tight inte-
gration of the procurement and outsourcing strategies.

e decide whether to collaborate with other firms to complet@esadasks across
its supply chain. In this case companies need to autommeatiee-or-buy-or-
collaboratecritical decisions across the supply chain with myriads ateptial
partners.

e automate the process of collaborative supply chain netdesign and planning
with a large number of potential partners. In particulag thecision support
should allow them to self-organise by allowing to:

— integrate and coordinate all the supply chain stakeholders

— include component suppliers, contract manufacturersstiogroviders and
final customers into the supply chain design process;

— optimise the overall performance of the supply chain (i@ anlocal opti-
misation);
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— easily support mass customisaflpand

— integrate potential suppliers and final customers into nexdyoct develop-
ments.

Obviously, decisions like the ones considered above camgenaes long as the sup-
ply chain stakeholders collaborate and share informatiendapacity, schedule, and
cost structures. However, full transparency and collaimras rather unlikely. Then,
all the previous requirements should come with the possilid share only part of a
stakeholder’s internal information, without being for¢edeveal every piece of critical
production information.

With the above-mentioned requirements fulfilled, compagitompanies could eas-
ily cope with a wide range of difficult business decisionsnfrthe selection of optimal,
tightly connected procurement, outsourcing, and collation strategies, to the forma-
tion of virtual enterprises.

In the next section, we briefly introduce the definition of glypchain and we pro-
vide some terminology that will be useful in the remainingtef chapter.

1.3 Supply Chain and Supply Chain Management

According to [Simchi-Levi et al., 2000), “In a typical sugpthain, raw materials are
procured and items are produced at one or more factoriggethito warehouses, for
intermediate storage, and then shipped to retailers antdroess. [...] The supply
chain, consists of suppliers, manufacturing centers, earges, distribution centers,
and retail outlets.”.

Supply chain management (SCM) “is a set of approachesadilis efficiently in-
tegrate suppliers, manufacturers, warehouses, and ssarélsat merchandise is pro-
duced and distributed at the right quantities, to the rigbations, and at the right time,
in order to minimise system-wide costs while satisfyingvesr level requirements”
(Simchi-Levi et al., 2000). One of the core objectives ofshpply chain is to perform
a global optimisation across the supply chain. But manyfeatof the way businesses
are run today prevent this from happening: the uncertaintiedying the supply, the
demand, the transportation time, the vehicles and the twelskdowns. Furthermore
the various stakeholders across the supply chain locallyimise their utility disre-
garding the performances of the other elements within tipplguwchain. In fact, the
different components often have even conflicting objestiv@raditional SCM deals
with all these problems acting on different aspects of @ntistribution network con-
figuration, supply contracts, distribution strategie@my chain integration and strate-
gic partnering, inventory control, outsourcing and preenent strategies, information
technology and DSSs, etc.

In particular, aspects relevant to our work are:

(1) outsourcing and procurement strategies considerdukifirst part of this disser-
tation; and

4According to [[Simchi-Levi et al., 2000) “mass customisatiovolves the delivery of a wide variety of
customised goods or services quickly and efficiently at lost’t
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(2) supply chain integration and strategic partneringsibered in the second part
of the PhD thesis.

Since our work mainly focuses on outsourcing issues, in fdilavs we provide some
basic related terminology. Different operational asp&étthe supply chain can be
outsourced. More specifically, we classify the types of fssupply chain partners
into four categories:

e component supplieralso called providers, that supply raw or intermediatedgoo
across the supply chain;

e contract manufacturerghat provide services or manufacturing operations across
the supply chain;

e service purchaserghat require services or manufacturing operations adhess
supply chain;

e |ogistic providersin charge of the transportation, distribution, and steraigaw,
intermediate or manufactured goods; and

o final customersat the end of the supply chain, be them either retailersn dhe
new Internet era, final clients.

In this dissertation we narrow the focus of the investigatmthe collaboration of
component suppliers, contract manufacturers, servicehasers, and final customers.
We deem necessary the incorporation of the logistic poititmthe problem. However,
in this dissertation the collaboration with logistic praers is left out, and will be thor-
oughly discussed as a path of future work in chajpker 9. Thesefn this dissertation
we assume that logistics are negotiated independently.

1.4 The Problem

Once outlined in sectidn.2 the requirements originatingifthe vertiginous changes

in today’s business world, we focus on the requirementsitleatackle in this disserta-
tion. In particular, we present two motivating examplesaayning the main issues we
intend to face in this thesis: the problem of efficiently sofymake-or-buyandmake-
or-buy-or-collaboratedecisions across the supply chain. Both examples consider a
imaginary company devoted to produce and sell apple pi¢sdd@alandma & co The
examples, along with the emerging implicit requirements,thoroughly presented in

section§ 1.4]1 arld 1.3.2.

1.4.1 Optimising make-or-buy decisions

The first example aims at making explicit the requiremergarging the automation of
make-or-buydecisions.
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Example 1.1. Consider a company, name&dandma & cq devoted to produce and sell
apple pies. The internal production structure of the comipiam. the way apple pies
are prepared, is presented in figlrd 1.1. Each circle repieseraw, intermediate or
manufactured good. Squares connecting goods represeunfawturing operations. An
arc connecting a good to an operation indicates that the ig@dnputto the operation,
whereas an arc connecting an operation to a good indicaethi good is aoutput
of the operation. Therjutter, sugar, andflour are input goodsto the Make Dough
operation, whereadoughis anoutput goodof the Make Doughoperation. The labels
on the arcs connectingput goodgo operations, and the labels on the arcs connecting
output gooddo operations indicate the units required of e&gbut goodto perform
an operation and the units generated @etput goodrespectively. In our example, the
preparation of two units adoughrequires one unit abutter, three units osugar, and
two units offlour.

Each operation has an associated cost every time it is dastie We label each
operation with a cost. In our example, thiake Doughoperation costs & .

1
€5

3 Make| 2
2 Dough

Baking—4> A;)_ple
1 £6 4 ies

M Make| 2 €14
8 Filling

appleg

2

Figure 1.1: Apple pie production flow.

Consider that the marketing departmenGaindma & coforecasts that two hun-
dred apple pies will be sold within a month. Therefore, thmpany starts an automated
sourcing|(Minahan et al., 2002) process to acquire the lregiedients needed for pro-
ducing pies, namelputter, sugar, flour, apples andmargarine

However, the production management staff decides to testvasourcing process.
Instead of limiting the procurement to basic ingrediertisytdecide to incorporate in
the sourcing process intermediate and final goods as weflelyadough filling, and
apple piesn figure[I1. More precisely, the production managementdeonwhether
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to outsourcepart of its production process. In fact, the executive staffced that more
and more specialised enterprises are entering the orgasdaharket. Sinc&randma
& co is a well-known brand for pies, it decides that in order touelcosts, it could be
suitable to negotiate and collaborate with those new brands

As an additional constraint, the production managemenivknibhat strong com-
plementarities among the negotiated goods exist on thelisugide. For instance,
suppliers often sell margarine and butter as indivisibleddeis. Thus, it is required that
those complementarities are taken into account. O

Grandma & corealises that it faces a decision problem: shall it buy tlgired in-
gredients and internally produce apple pies, or buy alrendgle apple pies (outsource
all its production), or opt for anixed purchasand buy some ingredients for internal
production and some already-made apple pies? This congegasonable since the
cost of ingredients plus preparation costs may eventualypigher than the cost of
already-made apple pie&srandma & comust take a decision among many possible
mutually exclusive options:

e buy all the basic ingredients to internally produce all thesp

e buy from suppliers all the pies and resell them under its name

buy already-made dough and filling from suppliers , and btdadfithe cake;

prepare part of the dough and part of the filling, and buy tkefrem suppliers;

buy part of the pies from suppliers and produce the resft;tsel
e and so on.

Grandma & cois interested in quantitatively assessing what to buy amah fivhom, as
well as what to produce in house. Such assessment dependsgrfawtors:

(1) the market cost of the basic ingredients (butter, suftrauy, apples, and mar-
garine);

(2) the market cost of dough, filling, and pies;
(3) the stock goods &randma & cq
(4) the finally required goods (the sales forecast);

(5) the cost for performing aBrandma & cothe operationdMake Dough Make
Filling, andBaking(the internal cost structure);

(6) the number of units of each good either produced or reduir each operation
(the internal production structure); and

(7) the complementarity relationships among goods holdimthe suppliers’ side.
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Hence,Grandma & corequires a complex decision support system along with a-nego
tiation mechanism that helps it in detecting which is theerexe maximising buying
configuration and the internal operations to perform in otdeobtain the finally re-
quired goods. It is easy to understand from the example liegptocurement and out-
sourcing decisions are tightly linked. Notice that thera imutual dependency among
the outsourcing opportunity, the ingredients’ market@sitas Dough, Apples,etc.) and
other factors. This kind of dependencies must be absolatgdyured by any proposed
solution.

The literature on procurement has introduced combindteriarse auctions to deal
with the problem of complementarities among goods on thdévigl side. In the fol-
lowing section we briefly recall some knowledge about etettr sourcing and combi-
natorial auctions.

The procurement phase

In the everyday business world, the sourcing process of gaod services usually
involves complex negotiations. With the advent of the In&tya plethora of commer-
cial products to electronically support this process (ersing tools) have started to be
commercialised by a significant number of vendors (e.g. &rifimptoris, Perfect, and
iSOCO to name a fdffy. Thus, e-sourcing tools have become an established ptré of
business landscape (Team, 2001). Re tions are at the heart of most of these
tools as the mechanism for buying companies to automateribgbtiations with the
qualified providers in their supply chains.

Although reverse auctions are certainly valuable to syvfdgotiate with providers,
combinatorial (reverse) auctions may lead to more effiédintations whenever com-
plementarities among the goods at auction hold, as argué8andholm, 2002). A
combinatorial (reverse) auction (Cramton et al., 2006 nisuaction where bidders can
sell (buy) entire bundles of goods in a single transactiolthcugh computationally
very complex, selling (buying) items in bundles has the gagaantage of eliminating
the risk for a bidder of not being able to obtain (sell) compdaitary items at a rea-
sonable cost (price) in a follow-up auction (think of a condiorial auction for a pair
of shoes, as opposed to two consecutive single-item asctioreach of the individual
shoes).

In particular, connected with the introduction of combaoré&l auctions are
bidding languages| (Nisan, 2006) and the winner deterngnaproblem (WPD)
(Cehmann et al., 2006). Winner determination is the probliated by the auctioneer,
of choosing what goods to award to which bidder so as to maeiit$ revenue. The
winner determination for combinatorial auctions is a cagmpomputational problem.
In particular, it has been shown that the WDP is NP-completet{kopf et al., 1998).
Bidding is the process of transmitting one’s valuation timrtover the set of goods at
offer to the auctioneer (or ratheomevaluation function — the bidders are of course
not required to reveal their true valuation —).

5We refer the reader tf (Bartels et al., 2005) for an analyisissmurcing tools.
6An auction is callecdirect when the auctioneer aims at selling goods, whereas we talit aéverse
auction when the auctioneer is interested in buying goods.
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SinceGrandma & coaims at dealing with the case in which complementarities
among goods hold at the bidder’s side, combinatorial anstis for sure the more
suitable sourcing method. Then, in order to cope vV@tlandma & cds problem, we
employ combinatorial auctions. Anyway, combinatorial thuts cannot be directly
employed for the problem explained in exanipld 1.1 due to satriasic limitations.

To the best of our knowledge, no author directly dealt with itiake-or-buyde-
cision problem employing reverse combinatorial auctio® the one hand, combi-
natorial reverse auctions solve the problem of procuremér@n complementarities
among goods exist on the supplier side. On the other handatipes research has
studied the beshake-or-buydecisions based on past production information, sell fore-
cast, providers’ offers, et¢ (Aissaoui et al., 2ﬁ)7)—|owever, nobody embedded the
decision problem into the procurement problem when comefearities among goods
hold, nobody analysed the procurement decisions in cotipmwith the outsourcing
decisions in a combinatorial scenario. Then, in what foipwe analyse the require-
ments associated with tireake-or-buydecision problem that are not fulfilled by com-
binatorial auctions, and we discuss the extensions redjirirerder to deal with such
decision problem.

Combinatorial Auction limitations

Say that Grandma & co opts for running a combinatorial reverse auction
(Sandholm et al., 2002) with qualified providers for the pr@enent of all the required
goods. Unfortunately, traditional combinatorial revessetions cannot be applied to
solve such a problem for three reasons. Firstly, becausgpoéssiveness limitations,
namely an auctionee6Gfandma & ¢ cannot express:

e its internal manufacturing operations along with the prticonsumer relation-
ships holding among them (for instance, in figiurd 1.1, thewunf Make Dough
is an input ofBaking;

¢ the relationships between the manufacturing operatiodstemauctioned goods
(for instance, in figurEZIl1, the input to thdake Doughoperation is three units
of sugar, two units offlour and one unit obutter, whereas its output is two units
of dough);

o the relationships between the received bids and the irdtaraaufacturing oper-
ations;

¢ the requirements sent to bidders. This is clarified by obisgrthat even though
the final requirements dbrandma & coare two hundred apple pies, multiple
request configurations fulfil such outcome, for instance:
— two hundred already-made apple pies

— the basic ingredients plus in-house production of two heddpple pies

“For a general review on decision support to supply chain gemant refer td (Erenguc et al., 1999).
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How canGrandma & coformally describe its requirements? What should be the
requirements sent to bidders? In fact, the optimal requerémndepends on the
received offers, and therefore cannot be stated a priori.

e the cost associated to performing each internal operatianset of internal op-
erations.

The second problem is that the outcome of a combinatorial@uonly provides
information about what goods to buy and from whom. However,ibhformation about
which internal manufacturing operations to perform andatteer in which the auction-
eer has to perform them (in the example of figiird 1.1, the ane&r cannot perform
the Bakingoperation befordlake Dougtor Make Filling) is not provided.

Table[IT.1 summarises the requirements stemming fronmtlee-or-buydecisions
that are not supported by any state-of-the art solution.

TYPE LIMITATION
(1) internal manufacturing operations and the
producer/consumer relationships amang
them

(2) specification of an auctioneer’s final r

19
i

. quirements
Expressiveness

(3) relationships among the manufacturipg
operations, the auctioned goods, and the
received bids

(4) specification of an auctioneer’s internal
cost structure

WDP (5) information about which in-house operg-

tions to perform and in which order

Table 1.1: Summary of unfulfilled requirements.

Although combinatorial auctions help set the market priteach good, they do
not incorporate the notion of internal manufacturing ogieres. This is why all the
above-mentioned difficulties arise.

SummarisingGrandma & corequires an extended combinatorial reverse auction
that provides:

(1) aformallanguage to quantitatively express, analysg¢cammunicate its internal
production structure and requirements; and

(2) an efficient cost minimising winner determination soltleat not only assesses
which goods to buy and from whom, but also the sequence afiatenanufac-
turing operations needed to obtain the finally required good
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1.4.2 Optimising make-or-buy-or-collaborate decisions

In what follows, we further increase the complexity of thersario illustrated in exam-
ple[I7. Besides component supplieBsandma & cobrings contract manufacturers,
service purchasers, and final customers into the auction.clsvdy what we stated
above by means of the following example.

Example 1.2. Consider again the example @fandma & co The revolutionary pro-
duction management (PM) staff decides that, besides afjabds Grandma & cowill
negotiate all the operations along its supply chain. Thusyites to the auction sup-
pliers of goods, suppliers of manufacturing operationdake Douglor Baking, and
final customers/buyers of the final product (apple pies)c&Brandma & cois often
asked to perform some service operationBakingfor instance) for other companies,
it decides to bring into the auction service purchasers dls & @mmarisingGrandma
& co, acting as auctioneer, receives offers from four types adéis, namely:

(1) component suppliers:bidders that offer goods (for instance, two hundreds units
of flour and a hundred units of sugar for 8€0;

(2) contract manufacturers: bidders that offer manufacturing operations (for in-
stance, perform the operatitddake Doughat 4€);

(3) service purchasers:bidders that require manufacturing operations (for instan
willing to pay<€ 42 for having the operatiodMake Fillingdone seven times); and

(4) final customers: bidders that ask for goods (for instance, two hundred uifits o
apple pies for 240&).

O

Resorting to examplg_ll.2, in what follows we clarify what wéeind formake-
or-buy-or-collaboratedecisions. Say that there is a contract manufacturer thegris
able to efficiently and cheaply perform tiBaking operation, i.e. at a cost & 10.
However, it performs very poorly thdake Fillingand theMake Dougloperations. In
such a case, the way to optimally produce apple pies for bottsfis tocollaborate
i.e Grandma & cowill be in charge of buying the basic ingredients to subsetjye
transform them int@oughandFilling, whereas the other firm of tigakingoperation.
Together they can offer a more competitive price.

Observe that it might be the case taandma & coacts as a pure intermediary for
some or all the operations. Eventually, someone might partbe Bakingoperation
and someone else might require Bakingoperation. In this case the operation is per-
formedby a bidderfor another bidder, an@randma & coacts just as an intermediary
that makes profit by connecting the service provider andraske

From examplé_T]2, we see that more stakeholders, besidgsooemt suppliers,
have to be brought into the negotiation. In particular, wech® incorporate contract
manufacturers, service purchasers, and final customersce;ié is compulsory to
introduce a unified formal language for describing all thegilole types of operations
that supply chain stakeholder can negotiate upon. We tfamsth operations in four

types:
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(1) Supply of manufacturing, assembly, disassembly opesmatibor instance, the
cost of assembling a personal computer given a mother ba&gU, two mem-
ory units and a hard drive cos&12. This type of operation will typically de-
scribe services offered by contract manufacturers.

(2) Demand of manufacturing, assembly, disassembly opegatiBar instance, a
bidder is willing to pay € to have his PC assembled given that he provides the
components (e.g. a mother board, a CPU, two memory unitsahdra drive).

(3) Supply of goods For instance, a supplier offers 100 units of RAM memories
and 100 units of CPUs & 4000. This type of operation will typically describe
services offered by component suppliers.

(4) Demand of goodg-or instance, a customer is willing to p&5000 for 20 PCs.
This will typically describe operations associated to firizdtomers.

We will refer to any of the possible operations mentionedvabaith the termsupply
chain operationSCO).

Grandma & cofaces a decision problem more complex than the one explaned
sectior”LLZ11. Although the use of combinatorial reversgians may allowGrandma
& co to improve its supply chain, there are further limitationattprevent its use:

(1) Even though combinatorial auctions allow to expressrsfbr requests on bun-
dles of goods, there exists no language to express offersquests of manu-
facturing operations across the supply chain. Furthermedoang the lines of
expressive commerce (Sandholm, 2006@)s desirable to provide bidders with
a language rich enough to compactly express several pessgfbl alternatives.

(2) Besides complementarities among goods, further oglghiips must be taken into
account. Those relationships link all the stakeholdersxufply chain by means
of producer/consumer relationships. For instance, tteesegroducer/consumer
relationship between any producer or suppliedotighand any supplier of the
Bakingoperation sinceloughis requested to perform thHgakingoperation (see
figure[IT.1). Those relationships have only been partiakgnainto account by
current combinatorial auction models despite being pteisemost real-world
scenarios. In fact, the inputs and outputs of a productiocgss are strongly
connected since a manufacturer may risk:

e to produce unsold goods, thus losing money; and
e to fail to produce already sold goods when no able to obtanréguired
inputs, thus losing credibility on the market.

Hence, a supply chain can be regarded as an intricate netfstdppliers, man-
ufacturers (entities transforming input goods into outpads at a certain cost),
and consumers interacting in a complex way. The complemgasaarising

8Expressive commerce is a new sourcing paradigm in whichlgau demand are expressed in greater
detail than in traditional electronic commerce. A subsegatimisation allows to discover the most prof-
itable alternatives.
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in the scenario of exampl[e_1.2 are different from the ones wéirdl in CAs.
They arise because of the preconditions and postcondiifonanufacturing pro-
cesses: precedences and dependencies along the supplynttstibe taken into
account. Hence, whilst in CAs the complementarities canirbplg represented
as relationships among goods, in supply chains the compliamites involve
not only goods, but also interrelated manufacturing refeships across several
levels of the supply chain.

(3) Similarly to the case discussed in secfion1.4.1, theae of a combinatorial
auction does not provide an ordered sequence of supply olpairation to per-
form. However, an auctioneer must know the sequence of tpasao perform
in order to make its supply chain operate.

The most significant attempt to deal with the shortcomingsosgd above has
been undertaken by Walsh et. fal (Walsh et al., 2000). Althahgy mainly focus on
analysing the problem of distributed supply chain forma8CF), in which no auc-
tioneer is leading the formation process, the underlyirdpjam is similar to a certain
degree. Quoting Walsh et al._(Walsh and Wellman, 2003), f8u@hain Formation
is the process of determining the participants in a supp8irchwho will exchange
what with whom, and the terms of the exchanges”. They defirenatype of auction,
the combinatorial auction for supply chain formatipwhich deals with scenarios in
which multiple agents must form a supply chain. In order tpecwith some of the
above-mentioned combinatorial auction limitations, \Wads al. [Walsh et al., 2000)
introduce the notion of task dependency network (TDN). TMsr the means to ex-
press:

o offers on bundles of goods;
e demands of bundles of goods; and

o offers on a single manufacturing operation (with only onépati product and
multiple input components).

Furthermore, TDNs well describe the production compleudtigs we highlighted in
point (2) of the combinatorial auctions shortcomings tistdbove, which is the possi-
bility of expressing producer/consumer relationships.

Nonetheless, although TDNs are indeed valuable to mode| &@fer require-
ments must be addressed to fully support automated negasaacross the supply
chain. In fact, Walsh et all_(Walsh et al., 2000) mainly foonsgame theoretical and
economical issues, and do not elaborate on computatiodag@oressiveness issues.
Hence, due to some intrinsic limitations, TDNs cannot cojié @il the requirements
we exposed above. In particular, the requirements assdciatthemake-or-buy-or-
collaboratedecision problem that TDNs do not support are the following:

(1) the ability to represent all possible supply chain neknopologies (TDNs only
supports acyclic networks);

(2) the possibility to express complementarities amongughain operations (for
instance, ifMake Doughand Make Filling share some machine, they can be
cheaper if offered together) ;
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(3) the possibility for bidders to require supply chain gigEms (TDNs only allow
to offer them);

(4) the possibility to express resource sharing (for instaan oven is a resource that
can be shared);

(5) the possibility to express minimum/maximum capacitygstaaints on the number
of times each supply chain operation can be performed (&tairte, in presence
of economies of scdlethere is a critical number of operations that drastically
reduce the price of a manufacturing process);

(6) the possibility to express any type of manufacturingrapien (for instance,
TDNs only allow operations with a single output);

(7) providing a coordinated scheduling plan among the sugimhin stakeholders;

(8) solvingMake-or-Buy-or-Collaboratelecisions (i.e. not only supply chain for-
mation problems);

(9) the ability to specify the configuration an auctioneensito end up with (the
sales forecast fdbrandma & cq.

Then, although TDNSs are indeed valuable to model SCF, furdguirements (re-
garding expressivenesand computability must be addressed to fully support auto-
mated supply chain network design and planning.

As to expressiveness requirement® shall need:

(1) to support a wide range of supply chain topologies beyamydlic nets;

(2) to provide bidders with means for expressing severasyqf preferences over
supply chain operations;

(3) the configuration to end up with (i.e. the sale forecast);
As to computational requiremente/e must ensure;

(1) that the outcome of the optimisation problem is not ohky $et of winning bids,
but also a coordinated and integrated plan of all the supmdyncstakeholders;

(2) the computational tractability of supply chain netwddsign and planning while
preserving optimality. This is an important requiremenmicsi, as explained in
sectioZLR, myriads of agents could potentially partitpa

In table[T.P we list the requirements associated tontla&e-or-buy-or-collaborate
decision problem that are not currently supported by anyg sththe art methodology
or tool. SummarisingiGrandma & coneeds:

9Economies of scale characterise a production process thvelni increase in the scale of the firm causes
a decrease in the long run average cost of each unit.
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TYPE REQUIREMENTS
(1) support any supply chain topology

_ (2) provide bidders with a language for ex-
EXxpressiveness pressing several types of preferences over
supply chain operations

(3) configuration to end up with

(4) compute the scheduled sequence of qup-
ply chain operations to perform

Computational (5) computational tractability of supply chain
network planning while preserving optj-
mality

Table 1.2: Requirements associatedtake-or-buy-or-collaboratdecisions.

(1) alanguage for expressing the offers/requests of tfierdift actors involved in the
auction. This language should be able to represent demaddsffars of supply
chain operation, and should be expressive enough to overtmershortcomings
of TDNs.

(2) a scalable winner determination solver that not onhessss the supply chain
partners that maximise the auctioneer’s revenue, but atsddes an integrated
coordination/scheduling plan for the emerging supply khdihat is, it should
provide information about the synchronised sequence gilgugihain operations
that must be performed.

In the previous two sections, we introduced the requiremeannected with the
solution ofmake-or-buyand ofmake-or-buy-or-collaboratdecisions. In the following
section we will outline the approach we employed to fulfillsuequirements.

1.5 Contributions

In this dissertation we contribute with two generalisasiai combinatorial auctions
providing support to thenake-or-buyand make-or-buy-or-collaboratédecision prob-
lems.

In the first part of this dissertation we present an extensi@ombinatorial auctions
that we shall refer to aslulti-Unit Combinatorial Reverse Auction with Transforma
bility Relationships Among GoodMUCRA(R). MUCRAtR automatesnake-or-buy
decision problems in scenarios characterised by combiabfmeferences. This new
auction type provides an auctioneer with a framework tomjst its outsourcing and
procurement strategy. In particular, it allows an auctene
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o to formally express its internal production structure; and

e to automatically and efficiently assess which goods to bualfeom whom, along
with the sequencef internal operations to perform in order to obtain some re-
quired resources.

In order to provide a language to express the internal ptimtustructure of an auc-
tioneer, we extend Petri Nets (refer to secfiod 2.3 of to @ri98p9)), a well-known
graphical and formal tool to analyse discrete dynamicaksys. We call such extended
modelWeighted Place Transition Nef8/PTNs). The semantics of WPTNs naturally
captures:

e the producer/consumer relationships holding among matwiag operations;
and

o the relationships among goods at auction, auctioneegsriat operations, and
bids.

Next, in order to provide a formal definition to the auctior®eecision problem, we
define a new optimisation problem on WPTNs, tBenstrained Maximum Weighted
Occurrence Sequence Probld@MWOSP). The resulting optimisation problem per-
fectly captures the nature of the auctioneer’s decisioblpra. We anticipate that
the newly introduced optimisation framework allows to impa wide body of anal-
ysis methods from Petri Nets theory and apply them to ours@atiproblem, thus
providing methods and tools for its analysis. Subsequemtlyrder to practically
solve the auctioneer’s decision problem, we exploit anslggethods imported from
Petri Nets theory and manage to provide an efficient Integexdr Programming (ILP)
(Hiier and Lieberman, 1986) formulation of the problemowkver, this formulation
only works when an auctioneer’s internal production stiteets acyclic. That s, there
are no cycles in a production process.

In the second part of the dissertation we present anothensixin of combinatorial
auctions, nameliMixed Multi-Unit Combinatorial AuctionfMMUCA), that allows to
deal with make-or-buy-or-collaborateecisions. This new auction type provides an
auctioneer with an automatic method to optimally selecipsuphain partners. Our
contribution develops along three dimensions:

(1) Bidding Language We provide a novel language that allows agents to express
a range of preferences over complementary operationssatresupply chain.
We build this language by extending and generalising prsvianguages for
Combinatorial Auctions. In particular, we introduce theian of supply chain
operation(SCO). The notion of SCO encompasses several types of apesat
across the supply chain. Then, we provide bidders an expeelssiguage to
trade SCOs.

(2) Winner Determination Problem. We provide a definition of the auctioneer’s
decision problem that selects, among the received bidsgetleue-maximising
ordered sequencef SCOs to perform. More precisely, this definition, besides
fulfilling the semantics of the newly introduced bidding darage, provides a
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sequencef SCOs that is feasible. A feasible sequence guaranteeg\ibey
SCO can be performed whenever the preceding SCOs in therssmaee run.
Moreover, the definition of WDP also allows to specify the wfitg of goods

initially available (the stock), and the quantity of gootie fauctioneer aims to
end up with.

(3) Winner Determination Problem Solvers We provide three different ILP-based
solvers to deal with the practical solution of the WDP for MKZA.

(&) We succeed in mapping the auctioneer decision probleanGMWOSP
(analogously to the case of MUCRALR). In this way, we can impdody
of analysis tools. In this case as well, by relying on thes#yesis tools, we
obtain a very efficient way of solving the decision problenonidtheless,
this method can only be applied when the supply chain omeratio not
form a cycle within the production process (acyclic supgigia network).
We shall refer to this as theMWOSP-basesdolver.

(b) Afterwards, we show that limiting the supply chain netlwto be acyclic
prevents MMUCA's application to many significant scenarid@hus, we
provide a new Integer Linear Programming solver, called, BBt solves
the winner determination problem in the general case.

(c) Although very general, the introduced method is comgutally hard to
solve, and therefore hinders the applicability of MMUCA toall-size and
middle-size scenarios. In order to overcome such a probdemntroduce
a new solver, called CCIP, that exploits some domain spdaifieviedge to
reduce the search space.

Finally, we provide two empirical evaluations. The first amapirically quanti-
fies the scalability gain provided by the CCIP solver withpess to the DIP solver
in terms of computational time and size of solvable instancehe second one
assesses the performances of the CMWOSP-based solversigaith methods
on acyclic instances and then we compare the obtainedsesitiitthe results for
DIP and CCIP of the former experiment.

Finally, we claim that MMUCA generalises and extends a watege of auction types,
namely:

e single-unit direct, reverse and double auctions (KrisRG82);
e multi-unit direct, reverse, and double auctions (Krisfiti#)2);

e multi-unit combinatorial direct, reverse and double auui
(Sandholm et al., 2002);

o MUCRAIR (the first contribution of this dissertation); and

e Combinatorial Auctions for Supply Chain Formation
(Walsh and Wellman, 2003).

Therefore, all the results that we can derive for MMUCA cardbectly applied to the
above-listed auction types.
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1.6 Dissertation Outline

The remaining of this dissertation is organised as follows.

Chapter @ We provide some background knowledge on Integer ProgragfiiP),
Place Transition Nets, order and graph theory. This chaptereded for understanding
the concepts developed in chapfdiEl 814, 6 [&nd 7.

Chapter[@ We put in context our work with respect to the state of the @ur work
is placed at the intersection of two sub-areas, combiradtatctions and supply chain
management. Thus, firstly we introduce auctions and contrilmbauctions. In partic-
ular we elaborate on bidding languages, winner deterntingaroblem and test suites.
Next, we explore some aspects related to supply chain marege In particular, the
problem of centralised supply chain formation and cergealisupply chain scheduling
and planning are thoroughly described.

Chapter@ We present Multi-unit combinatorial auctions with tramshability rela-
tionships among goods (MUCRALtR). This is an extension to Bioatorial Auctions
that allows to solve thenake-or-buydecision problem. In this chapter, we also in-
troduce Weighted Place Transition Nets (WPTN) and we defineva optimisation
problem on them, the Constrained Maximum Weighted Occeg&equence Problem
(CMWOSP). Finally, we show that the CMWOSP on acyclic nets ba solved by
means of IP. The material contained in this chapter has belglished in:

e Giovannucci, A., Rodriguez-Aguilar, J. A. and Cerquidesiudctioning substi-
tutable goodsVolume 131 ofLecture Notes in Atrtificial Intelligenc@ages 381-
388.

e Giovannucci, A., Rodriguez-Aguilar, J. and Cerquidegyldlti-unit combina-
torial reverse auctions with transformability relatioripg among goodsProc.
Workshop on Internet and Networking Economiéé NE 2009, pages 858—-867.
Volume 3828/2005 of Lecture Notes in Computer Science.ngpriVerlag.

e Giovannucci, A., Rodriguez-Aguilar, J. and Cerquidegyldlti-unit combina-
torial reverse auctions with substitutability relationph among goodsProc. of
the first Networking and electronic commerce research eente NAEC 2005,
pages 324-337. Riva del Garda, Italy, 2005.

e Giovannucci, A., Rodriguez-Aguilar, J. A. and CerquidesBdnefits of combi-
natorial auctions with transformability relationshipsProc. of the 17th euro-
pean conference on artificial intelligendeQAl 2006, pages 717-718. Riva del
Garda, Italy, 7/2006.

e Giovannucci, A., Rodriguez-Aguilar, J. A. and CerquidesSavings in com-
binatorial auctions through transformation relationskipln O. Sheory and M.
Fasli, editors, The TADA AMEC joint workshop at aamas 200Q&ding agent
design and analysis & agent mediated electronic commerkeldcture Notes
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in Computer Sciencédakodate, Japan, 5/2006, pages 17-30, volume 4452/2007
of Lecture Notes in Computer Science.

e Giovannucci, A., Rodriguez-Aguilar, J. A. and CerquidesAudctioning trans-
formable goodsProc. of the fifth international joint conference on autoows
agents and multi-agent systemSAMAS 2005 pages 893-895. Hakodate,
Japan, 5/2006.

ChapterB We provide a further extension of combinatorial auctisghe Mixed Multi-
unit Combinatorial AuctiofMMUCA). By means of MMUCA, an auctioneer can au-
tomatemake-or-buy-or-collaboratdecisions. In particular, we provide an expressive
bidding language and a definition of the winner determimagimoblem for MMUCA.
The material contained in this chapter has been published in

e Cerquides, J., Endriss, U., Giovannucci, A. and Rodrighgaiar, J. A. Bid-
ding languages and winner determination for mixed mulii-@wombinatorial
auctions Proc. of the 20th intl. joint conferences on artif. intgdihce [JCAI
2007), pages 1221-1226. Hyderabad, India, 1/2007.

ChapterB Analogously to chaptdd 4, we provide a mapping of the MMUCA®
to CMWOSP. With this purpose we introduce thiixed Auction Neta WPTN that
compactly represents the whole search space associated dNIUCA WDP. We
show the equivalence between the MMUCAs WDP and a CMWOSP emiked
Auction Net As a consequence of this mapping, we obtain an IP formulaifcthe
WDP for a wide class of supply chain network topologies (#cy.c After showing
that the hypothesis that the underlying supply chain is lacgometimes may not hold,
we introduce a general IP model of the MMUCA WDP that dealdaity network
topologies, namely the DIP. DIP is built applying a directpping of the definition of
the WDP to IP. The result is a solver that can find a solutiomtpiastance of WDP.
The material explained in this chapter has been published in

e Giovannucci, A., Rodriguez-Aguilar, J., Cerquides, J. &mdiriss, U.Winner
determination for mixed multi-unit combinatorial auct®wia petri nets Twen-
tieth International Conference on Autonomous Agents anttiMgent Systems
(AAMAS 200Y. Hawaai, USA, 5/2007. To appear.

Chapter[d We present the CCIP, an IP formulation of the MMUCA WDP thab&ts
DIP. The new model exploits the precedence relationshigmgrthe SCOs to enforce
an a-priori ordering of the solution. In this way, we can prangreat part of the search
space. In this chapter we formally prove that CCIP is correct

ChapterB The aim of this chapter is to empirically evaluate and compiae solvers
presented in chaptef$ 6 alld 7. For this purpose, firstly weritbesthe state-of-the-
art methodology for generating an MMUCA benchmdrk (Vinyd307h). Then, we
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perform some preliminary experiments to compare the perdoices in terms of CPU
time of the three solvers.

Chapter@ We draw some conclusions and thoroughly describe pathgttoef re-
search.



Chapter 2

Mathematical Background

In this chapter we introduce some technical background kedye in order to ease the
understanding of this dissertation. In secfiod 2.1 we surs@avhat Integer Program-
ming is, why it is useful for our purposes, and we argue onrits and cons. Next, in
sectiofZP we briefly recall what multisets are, and we disswme of their properties.
Next, in sectioi.2]3, we thoroughly describe Petri Nets (Phisd in particular Place
Transition Nets (PTNs), a formalism for analysing and setinb discrete dynamical
systems. Finally, in sectidn 2.4, we summarise some priegest graphs and binary
relations from the perspective of order theory.

2.1 Linear and Integer Programming

In this section we introduce some basic concepts regarttiagrd and integer program-
ming. Both are widely employed for solving complex optintisa problems. The
former can solve bigger problems (in terms of decision \éeis) but is limited in its
expressiveness (only linear function can be employed)redsethe latter is more com-
plex but allows to solve a wider class of problems.

2.1.1 Linear Programming

Linear programming has been considered one of the techicaldgreakthroughs of
the mid-20th century (Hillier and Lieberman, 1986). Thiergtard tool has saved thou-
sands or even millions of dollars to companies that have eyepl it. At the heart
of linear programming lies the problem of “allocatitimited resourcesamongcom-
peting activitiesn the best possible (i.eptimal) way.” (Hillier and Lieberman, 1986).
In particular, linear programming helps in determining kel of each resource that
is allocated to each activity. This pattern applies to ssveral-world problems such
as allocation of production facilities to products, politiccelection, shipping partners
selection, etc.

Linear programming employs mathematical models to reptesee above-
mentioned problems. In particular, the adjectivesar illustrates the fact that only

23
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linear functions can be employed to model problems. The vpoodrammingis in-
tended as semantically equivalentgianning Hence linear programmind‘involves
the planning of activities to obtain an optimal result,,izeresult that reaches the spec-
ified best goal among all the feasible alternatives.” (Elilknd Lieberman, 1986).

A very interesting characteristic of linear programminthiat there exists a very ef-
ficient solution method called tH&implex MethogPapadimitriou and Steiglitz, 1982).
In particular, the simplex method can be applied to problefmsnormous size. No-
tice that it has been shown that linear programming is in thescof the polynomial
algorithms|(Papadimitriou and Steiglitz, 1982).

In what follows we present an example of linear programmiglet.

Example 2.1. A farmer has a piece of farm land, saysquare kilometres large, to be
planted with either wheat or barley or some combination eftthio. The farmer has
a limited permissible amounf of fertiliser andP of insecticide which can be used,
each of which is required in different amounts per unit amavwheat ¢, P;) and
barley (F», P,). Let S; be the selling price of wheat, arfth the price of barley. If
we denote the area planted with wheat and barleybgindx, respectively, then the
optimal number of square kilometres to plant with wheat u$dyacan be expressed as
a linear programming problem:

maximiseSiz1 + Saza revenue bound asbjective function (2.1)
subjecttar; + z2 < A limit on total area (2.2)
Fix, + Foxs < F limit on fertiliser (2.3)
Pixy+ Poxo < P limit on insecticide (2.4)
21 >0,29>0 cannot plant a negative area (2.5)
O

The linear program in example®.1 can be directly solved byroercial or free
solvers, like ILOG CPLEX|(ILOG, 2007), LINDQ (Lindo Systerrs., 2007) (com-
mercial), and GLPK|[(Makhorin, 2001) (free). The reader cadarstand the reasons
of the tremendous impact of linear programming in recenades: even knowing little
of the technical details it is possible to solve massive dgtii complex optimisation
problems.

2.1.2 Integer Programming

One key limitation of linear programming is the fact thatigates are allowed to take on
any fractional value. In some circumstances, this does ostitute a great problem.
For instance, if the result of the optimisation is that weéhsw build 400.5 bicycles,

rounding the result to 400 does not change the result a Istedwl, if the result is to
employ 2.5 Boeing airplanes to perform a shipping, the rinmtb 2 or 3 air planes

is not an easy decision. Moreover, in some problems theisolabakes sense only
if some variables take on an integer value. Whenever the dsliation from a linear

programming approach is the fact the variables can only imédjer values, we have
the so callednteger Programming
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The modelling language underlying Integer Programmingacty equivalent to
the one of linear programming, except that some variabkes@mstrained to be integer.
In particular, if all the variables involved in a problem leao be integer, then we talk
aboutpure integer programmingwhereas if both integer and fractional variables are
allowed we talk aboumixed integer programming

Other problems for which the use of integer programming relamental are the
problems involving interrelated “yes-or-no decisions’or instance, should we make
an investment? Should we buy a new truck? And so on.

In what follows we present an example of integer progranxptans how to model
the knapsack problerq (Kellerer et al., 2D04).

Example 2.2(Knapsack problem)Given a set of items, each with an associated cost
and value, th&napsack problemonsists in determining the subset of items to include
in a collection so that the total cost is less than a giventland the total value is as
large as possible. Itis a very typical combinatorial praoiland can be easily expressed
by means of integer programming.

Say that there are items. Each item is indexed bye [1,n]. Then, say that each
item ¢ has associated the valugand the cost;. The problem is thus finding the set of
items that costs less than a constarand maximises the value. In order to model this
decision we assign a variahig to each item. z; takes on valué if item i is selected
ando otherwise. Then, the function that we have to maximise ivéhee associated to
the selected items, namely:

i=1

this is called thebjective functiorof the integer program.
Additionally, we have to make sure that the cost of the setediems does not
exceed the permitted coSt Then, the following constraint must hold:

ZL‘Q‘ <C (2.7)
i=1

These are called th@de constraint®f the integer program.

O

In the previous example the decision variables can only takgalues 0 or 1 (it
would make no sense accepting 0.33 of an item). All the problgharing this feature
are calledbinary integer programmingroblems and the corresponding variables are
calledbinary variables Analogously to linear programming, a lot of software pag&
are available to solve integer linear programming problassell. For instance, Excel
(Microsoft, 2007), ILOG CPLEX|(ILOG, 2007), LINDQ (Lindo Sgems Inc., 2007)
are commercial solvers, whereas GLPK (Makhorin, 2001) iea $olver.

The case presented in exampl€el 2.2 is very simple. Howevigen program-
ming models are often very difficult to formalise, since malifferent type of deci-
sion variables and constraints are required. Modellinglages are useful for easing
the implementation of such complex models. There exist anfimdelling languages,
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the most famous being AMPL (Fourer et al., 1089), MathPfogKRMorin]), and OPL
(Van Hentenryck, 1999). For a survey on modelling languagfes to [Kallrath, 2004).

Solving Integer Programming Problems

It may be tempting to think that Integer Programming proldesme easier to solve
than Linear Programming problems. In fact, one could ardna¢ since the deci-
sion variables can only hold few values instead of real \athe search space is re-
duced, that only a finite number of solutions have to be enatedr It is possible
to demonstrate that this argument is not valid: solvinggateprogramming prob-
lems is much more difficult than solving linear programmimglgems in most cases
(Papadimitriou and Steiglitz, 19@)

For this reason, most algorithms for solving Integer Progréng incorporate
the simplex method as a solution step. We will not get intos¢éhaletails, for
a detailed treatment of the subject refer [fo (Papadimitundi Steightz, 1982) and
(Himier and Lieberman, 1986). The only aspect we aim at higdtiing is that the two
factors determining the computational hardness of an émtegogramming problem
instance are_(Hilller and Lieberman, 1986):

(1) the number of integer decision variables; and
(2) any special structure in the problems.

Current solution methods and commercial solvers can dehlpybblems ranging
from hundreds to thousands of decision variables. The tstreof the problem can
sometimes make smaller problems much more difficult to stite@ bigger ones. In
general, reducing the number of constraints can help as aldtiough with a minor
effect.

We briefly mention that huge instances of integer progrargroan not be solved
optimally. For this reason, meta-heuristics have beemtgcemployed to solve those
huge problems non-optimally. Even if they can not guaraatgebound on their per-
formances, they usually perform quite well. For a review ogtarheuristics refer to
(Blum and Roli, 2003).

2.2 Multi-sets

A multi-set(Blizard and File, 198¢; Syropoulds, ) is an extension tortbgon of set,
considering the possibility ahultiple appearancesf the same element. An example
of multiset i A = {a,a,a,b,b,c}.

In general, anulti-set A over a setX is a functionA4 : X — IN mappingX to the
cardinal numbers. In the example aboVe= {a, b, c}.

Foranyx € X, A(zx) € N is called themultiplicity of «. For instance, in the
example above, the cardinality of the elemeiig 3 (A(a) = 3).

1There are some particular problems having a special steutiiat makes them as easy as a linear pro-
gram.
2Henceforth we employ calligraphic letters to indicate riasts.
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There are different ways of denoting multisets. We will stibem by means of the
three representations below:

e A={a,a,a,b,b,c}

e A= {(a’ 3)7 (b, 2)7 (c, 1)}
e A={3a+2b+1c}

An elementr € X belongsto the multi-setd if A(z) # 0 and we writex € A.
We denote the set of multi-sets ovErby NX .

The total number of elements in a multiset, including theetitjons is thecardinal-
ity associated to the multiset. The cardinality of multisetdenoted in the same way
as in the case of sets. For instanic4|, = 6 in the example above.

2.2.1 Operations on Multisets

In what follows we list the operations between multisetsve@itwo multisets4, 5 €
N¥, we have the following operations or relations among them:

o sum A(z) W B(z) = A(z) + B(z) Ve e X

e intersection A(z) N B(z) = min(A(z), B(x)) Vre X
e uniort A(x) U B(x) = max(A(x),B(x)) Vze X

o subsetd(z) C B(z) — A(x) < B(z) Ve X

2.3 Petri Nets

In this section we introduce and describe carefully theiégts formalism. Petri
Nets are a powerful mathematical and graphical tool for tescdption of discrete
distributed systems. Petri Nets (PNs) were firstly intraglin 1962 by Karl Adam
Petri in his seminal dissertation ((Petri, 1966) in Enghstd [Petri, 1962) in German).
In particular PNs are suitable for describing systems irctvipiarallelism, concurrency,
and synchronisation play an important role. For a very gewiew on Petri nets, refer
to (Murata, 1989).

Petri Nets can provide some distinctive advantages witheedo other approaches
(Reisig, 198p) like finite state machines:

e Causal dependencies or independence among the differamgorents of the
system can be explicitly represented.

e They allow to describe a system that is not inherently setigien

e They can represent different levels of abstraction withwauing to change the
description language. These abstraction levels range themepresentation of
a single bit in a PC to the representation of the PC in its enwirent within the
same framework.
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P1

SO

Figure 2.1: Example of a Place Transition Net.

e They provide a set of formal tools useful to analyse and desdiscrete dynam-
ical systems. For instance, it is possible to verify seveyatem properties as
deadlock avoidangdoundednes®tc.

I will not get into the details of all those properties. We yonémark that a vast
amount of analysis tool§ (Murata, 1989) are available fdrifrets. Thus, everything
that is modelled by means of Petri nets can directly empliaphase tools.

An example of Petri net is shown in figutePR.1. A PN is a bipargjtaph: it has
place nodes,transition nodes, and directed arcs connecting places to transitioths a
transitions to places. The places connected to a trangiffaneans of input arcs are
called theinput placesof the transition, and the ones connected by outgoing aoes fr
the transition are theutput place®f the transition. Places contain tokens. The graph-
ical representation of a PTNS is composed of the followirapical elements: places
are represented as circles, transitions are representedtangles, arcs connect places
to transitions or transitions to places, andaan expression functio’ labels arcs with
values.

Different classes of Petri Nets exist. A survey of the défarexisting types of Petri
nets is made ir{ (Bernardinello and de Cindio, 1992). In thaskwthree levels of Petri
nets are identified:

(1) Level 1nets whose places can contain at most one token;
(2) Level 2nets whose places can contain more than one token; and

(3) Level 3nets whose tokens are labelled by a type (tokens of diffeygiet within
the same place can be distinguished).

We will focus on a particulatevel 2 net called Place Transition Net (PTN).
Place/Transition Nets are Petri Nets characterised byipfeutokens in the same place
and arc weighEs More formally, following (Murata, 1989),

Definition 2.1 (Place/Transition Net Structure)A Place/Transition Net Structure
(PTNS) is atupleV = (P, T, A, E) such that:

3Actually, there should be a limit on the capacity of each @lacterm of contained tokens. However, it
is not crucial in our work and we can set it to infinite.
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(1) Pis asetofplaces
(2) T is afinite set ofransitionssuch thatP N T' = ;
(3) AC(PxT)U(T x P)is asetofarcs

(4) E : A — N7 is anarc expressioriunction (it represents the weights associated
to the arcs, standing for the number of input/output tokesrssumed/produced
by the transition).

(]
Furthermore, we have that = {p € P | (t,p) € A} are theoutput placesf ¢,
andthatt = {p € P | (p,t) € A} are theinput placesof ¢.

yan

D2 b3

Figure 2.2: Example of a Place Transition Net Structure.

Example 2.3. In figure[Z2 we illustrate a PTNS defined as:
(1) P = {p1,p2,ps} is the set oplaces
(2) T = {t1} is the set ofransitions
(3) A={(p1,t1), (t1,p2), (t1,p3)} is the set ofarcs
(4) E(p1,t1) = 2; E(t1,p2) = 1; E(t1, p3) = 2; is thearc expression functian

Moreover, the input and output placestofare:

t1 = {p2, ps} (2.8)
*t1 = {p1} (2.9)
O

A distribution of tokens over the set of places is calledaking and it stands for
the state of the Petri net.

Definition 2.2 (Marking). A marking M : P — N of a PTNS is a multiset ovep.
M(p) = k means that place € P containsk tokens for marking\1.
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O
Example 2.4. The markingM, of figure[Z1 is
Mo(pr) =2 (2.10)
Mo(p2) =0 (2.11)
Mo(ps) =1 (2.12)

or equivalently, employing the notation for multisets, wvanaepresent marking in a
more compact form:
Mo =2'p1 +1'ps (2.13)

O

A PTNS S with a given initial marking\1 is called aPlace/Transition Ne(PTN)
and is noted S, My).

Given a marking\, we say that a transition enabledf all its input places contain
at least as many tokens as required by the the transitiopig @rcs. If the transition
is enable it cariire consuming tokens of the input places and producing toketfsein
output places. Intuitively, a transition is enabled if egbtokens are present in its input
places. In what follows we state more formally the concepsnmabled transitiorand
firing of a transition

A transitiont € T is said to beenabledf each input place of t is marked with at
leastE(p, t) tokens, wherdZ(p, t) represents the weight of the arc connectin t.
More formally,

Definition 2.3 (Enabled Transition)Given a markingM, a transitiont € T' is enabled
iff:
M(p) > E(p,t) Vpe®t (2.14)
o

Example 2.5. For instance in figurE2.1 transitidn is enabled in marking\1, since
E(pl,tl) =2 and./\/lo(pl) =2, thUSM()(pl) > E(pl,tl).

o
An enabled transition may or may not fire. If it fires, it chasgfge current marking
to a new marking by removing tokens from the input places ariting tokens into the
output places. More formally

Definition 2.4 (Firing of an enabled transition)The firing of an enabled transitioh
removesE (p;, t) tokens from each input plage and addsE(t,p,) tokens to each
output placep,. The firing of a transitiort changes marking1,_; to a markingM,.
The new marking can be computed employing the following B’mﬂi

Mi(p) = Mr—1(p) + Z(t,p) Vpe tUt® (2.15)

whereZ(t,p) = E(t,p) — E(p,t). In this case we writeM;_; [t > M, for denoting
that the firing of transition changes the\,._; marking into theM,, marking.

4Henceforth, for simplicity, we implicitly assume th&(p,t) = 0if (p,t) € A and E(t,p) = 0 if
(t,p) & A.
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O

Example 2.6. Consider figuré2]1, the firing af in marking M, leads to marking
My = 1'py + 3'p3. We illustrate in figuré 213 the state of the PTN of figlird 2 teaf
thatt, fires.

O

P

D2 p3

Figure 2.3: Place Transition Net of figUreR.1 after firing

2.3.1 Reachability

An important property we are interested in is whether we each a particular state of
a PTN departing from a given initial state. This leads to tbfnition of reachability.
Reachability is a fundamental concept that will be widelypéwged in this dissertation.
In this section, we will introduce several concepts reldtedeachability. Intuitively,
given an initial marking\, and a final marking\ 4, the reachability problem consists
in deciding if there exists a sequence of firings leading frbotg to M.

The firing of an enabled transition changes the token digioh (marking) in a net
according to the firing rule of definitidn2.4. Then, a sequeeoicfirings will result in a
sequence of markings.

Definition 2.5 (Reachability) A marking M,, is reachablefrom a markingM, in a
PTN structures if there exists a sequence of firings that transfotg into M,,. M,
is called thestart marking while M,, is called theend marking

O
All the markings reachable froov in a PTN Structures’ are noted a® (.S, Mo),
and are called theeachable sebf a PTN.

Definition 2.6. (Firing Sequence) Given a PTN structfeand a marking\,, afiring
or occurrence sequenck: N — T'is a sequence of transitions:

J = (t1, ta,..., tn)

that changes the marking(, into the markingM,,. In this case we writd{,[J > M.,
as a shorthand to represent that the firing sequéneads fromM, to M,,.
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O
Notice that in diring sequencall the transitions must be enabled and fire with the
order established by the very same sequence.
It can be shown that the start and end markings are relatdwebigliowing equation:

Vpe P Mu(p) = Molp) + > Z(t,p). (2.16)

teJ

Definition 2.7. Thefiring count multi-setissociated to firing or occurrence sequence
J is a multiset; € N7 such that the multiplicity of each transition stands for the
number of times it appears in the firing sequence. That is:

Ks(t) =71t vteT (2.17)

where|J~1(¢)| is the number of times transitiaris fired in the firing sequencé.

2.3.2 The state equation

In this section we aim at providing an algebraic representadf Petri nets. Such
representation will allow us to compactly represent thehahility set in some cases.
For a Petri NetV with r transitions anch places, théncidence matrix4d = [a;;]
is anr x n matrix of integers. Each entry is given by; = a:rj — a;;, Whereajj =
E(t;,p;) stands for the weight of the arc connecting thegansition to its output place
pj,» anda;; = E(p;,t;) stands for the weight of the incoming arc connecting place

to transitiont;.

Example 2.7. In the example of figue2.2, the incidence matrix is:

a” =1[200] (2.18)
at =1012] (2.19)
A=[-2 1 2] (2.20)
O
It is straightforward thahjj, a;;, anda;; represent the number of tokens added to,

removed from, and changed in plate/hen transition fires once.
Notice that in this new representation a transitipis enabled in a marking iff

a; <Mp;) j=12,....n

Example 2.8. In the example of figurE=2.1, transitign is enabled in marking\{y
sincea;; = 2 < Mo(p1).

O
In order to obtain an algebraic representation of a Petriwetcan represent a
markingM; as am x 1 column vector\/;, such that thg — th entry of M), represents
the number of tokens present in plageafter thek — ¢ firing in some firing sequence
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(Mi[j] = My(p;))- For instance, the markings of the nets in figure$ 2.1[afd¢an3
be represented as

[\

My=10

and

M= |1

Finally, we define thdiring vectoruy as anr x 1 column vector ofr — 1 zeros and
one nonzero entry. By setting alan thei — th position (u[¢] = 1), we indicate that
transitiont; fires at thek-th firing. We can now express equati@n{2.15) in matrix form:

My =M1+ ATu, k=1,2,... (2.21)

Example 2.9. The state equation associated to the firing of transitjotransforming
the PTN in figurdZ]1 into the one in figufeR.3, is:

—2 0
+l1]1=1]1 (2.22)
2 3

My :M0+ATu1 =

= O N

u1[1] takes on valué because transition is fired once.

O

Say thatM,, is reachable fronM, via the firing sequencé = (t1,ta,...,t,). We

represent the transitions ih by means of their firing vector&i;, us, . . ., u,). Then,
by applying recursively equatiof{Z121), we obtain:

Mn:MO—i—ZAT-uk:MO—i—ATZuk:MO—i—ATKJ (2.23)

k=1 k=1

whereK ; is anr x 1 vector representing the firing count multiges, defined in equa-

tion ZI1), namely:
Kli) = Ky (t:) = T~ (t:)] Vi€ [1,r] (2.24)

K ; is thefiring count vectorssociated to the firing sequente

2.3.3 State equation and reachability

All the results that we report from here to the end of the chiapre taken from
(Murata, 198P). Say that, is reachable fromM,, then there exists a firing se-
quence(us, ua, ..., uq) bringing from M, to M,. Therefore, anecessary condition
on reachabilitycan be expressed in terms of a matrix equation:
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Theorem 2.1. If M, is reachable fromM,, then the following equation has a non-
negative integer solutior:
My;= My + ATx (2.25)

wherex = ZZ:1 ug is ther x 1 column vector of non-negative integers we called
firing count vector

O

Notice that the — th entry of vectorx encodes the number of times a transitipn
must be fired to transform\ into M.

Equation[[Z2b) is called thetate Equationsince it describes the states that a Petri
net would reach if the transitions encodedxirwere fired. However, notice that not
all the states encoded by the state equation are actuatthabk. That means that
there may exist solutions to equati@n(2.25) that are nathaale states of a Petri net.
However, it can be shown that sometimes all the states rblchg a Petri net are
described by the state equation. In particular, this happdren the net is acyclic.

Before defining the concept of acyclicity, we have to explairat is a cycle. Since
a Petri Net is a bipartite graph, a cycle in a Petri net is a sece of

Definition 2.8. A directed cycleén a Petri Net StructureP, T, A, E) is a sequence of
places and transition®, t1, pa,ta, - . ., Pn, tn, p1) SUCh thatvi € [1,n] (p;, ;) € A
and(tl-,piﬂ) € A.

Definition 2.9 (Acyclicity). A PTNS is said to be acyclic if it does not contain any
directed circuit.

O
In (Murata, 198P), it is shown that in actyclic Petri Net, the condition expressed
by theoreniZ]1 is not only necessary, but also sufficient.

Theorem 2.2.1n an acyclic PTNSM  is reachable fromM iff the following equation
has a non-negative integer solutionsn

Mg = Mo+ ATx (2.26)

O

That is, if there exists a solution to equatibn(2.26), adisequence reachingy
from M, is guaranteed to exist, ardrepresents its firing count vector.

Moreover, Murata further extends the class of Petri netsvfdch the condition is
still sufficient. These particular nets (trap-circuit aryglson-circuit nets) have special
topologies with particular types of circuits. For such n#te state equation represents
all the reachable states if the initial markinlg, satisfies some constraints. Further
efforts have been made for extending the validity of theesé@fuation to more classes
of Petri nets|(Tarek and Lopez-Benitez, 2004).

2.4 Preliminaries on binary relations and graphs

In this section we recall some definitions about binary retet, graphs, and order re-
lations. In sectiofi 2.4l 1 we will recall binary relationsdasome of their properties. In
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sectioZZ we will recall the definition of directed graptiirected acyclic graph, and
we will summarise some concepts and properties relatechgghgt In section2.4.3 we
recall some concepts related to order relations, and weembitimem to graphs.

All the definitions and theorems contained in this sectioe #ken from
(Cormen, 2001), where the interested reader can find theothesponding proofs.

2.4.1 Relations

In this section we will recall what a binary relation is alongh the properties of such
relations that we are interested in.

A binary relation R on two setsd andB is a subset of the Cartesian produck B.
If (a,b) € A x B we writeaRb and we say that is in relation withb. We say that?
is a binary relation o if it is a subset ofA x A.

Example 2.10. Theless tharis a binary relation defined dN as follows
{(a,b) e Nx N:a< b} (2.27)

O
There are special features that are particularly impoftartiinary relations. Thus,
a binary relationR C A x Ais:

o reflexive if Va € A aRa. For instance, £” and “<” are reflexive on4, while
“<"is not.

e symmetric if aRb = bRa. For instance, the=" relation is symmetric, while
“<"is not.

e transitive aRb andbRc impliesaRc. For instance, =" is transitive.

e antisymmetricif a Rb andbRa thena = b. For instance, £” is antisymmetric.

Equivalence classes

A binary relation that igeflexive, symmetriandtransitiveis called anequivalence
relation. For instance, =" is an equivalence relation, whereas™is not. If R is an
equivalence relation on a sét then for alla € A we denote witHa] the set of element
in relation witha, and we call it theequivalence classf a.

A well known result about equivalence classes is

Theorem 2.3 (An equivalence relation is the same as a partitiolle equivalence
classes of any equivalence relati®on a setd form a partition ofA, and any partition
of A determines an equivalence relation drfor which the sets in the partition are the
equivalence class.

O
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2.4.2 Graphs and Paths

In this section, we introduce the definition of graph, path igraph, and strongly con-
nected components of a graph.

A directed graphG is a pair(V, E), whereV is a finite set, ande C V x Visa
binary relation ori/. The set is called thenodesor vertexeset, whileFE is the set of
arcsor edgeslf (u,v) € E we say thav is adjacentto . Each edge of the type, u)
is called aself-loop In figure[Z2 we show the graphical representation of a graph

Figure 2.4: Example of a Graph

Definition 2.10(Path in a graph)A pathof lengthk from a vertex to a vertexy’ in a
graph(V, E), is a sequencéy, . . ., vi) of vertexes such that = v, andv’ = v, and
(vi,viy41) € E fori = {1,...,k}. There is always &-length path fromv to v. The
path is said to beimpleif all the vertexes in the path are distinct.

o
For instance, in the graph of figureP (4, y, v) is a path frome to v.

Definition 2.11 (Cycle in a Graph) In a directed graph a patf, ..., v) is a cycle
if v9 = v, and the path contains at least one edge. A cycséinipleif all the vertexes
(v1,...,v;) are distinct. Aself-loopis a cycle of length one.

O
For instance, in the graph of figureP (4, ) is a self-loop.

Strongly Connected Components

A directed graph istrongly connected for every pair of vertexes andwv there is a
path fromu to v and a path fromv to u, i.e. if every two vertexes are connected by a
directed path. Thetrongly connected compone®&CC) of a graph are theguivalence
classesof the vertexes under the “are mutually reachable” relatisrequivalently its
maximal strongly connected sub-grapghs (Cormen, RO01yaial999). FigurE215(b)
shows the SCCs of the graph in figlitel2.5(a).
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(a) A graph (b) SCCs of the graph

Figure 2.5: A graph and the corresponding SCCs

More formally, given a grapllV, E), we define arelatio®® C V x V' such that.Rv
iff there exists a directed path fromto v and a path from to . It is easy to check that
this relation is reflexiV& transitive, and symmetric. Thus, it is aguivalence relation
The equivalence class associated to an elem&hsuch that:

[u] = {v € V. exists a path from u to v and a path fromvtpu (2.28)

2.4.3 Order relations

A relation that is antisymmetric, reflexive and transitigeapartial order, and we call
a set on which a partial order is definegartially ordered set In a partial order it is
possible to have some elements that are not in relation artemgy. Then, a partial
order R on a setl is atotal or linear orderif for all a,b € A we haveaRb or bRa.
Notice that, given a directed acyclic graph, we can defineragbarder. The partial
order is such that a nodecomes befora nodev if there exists a directed path from
to v. The relation is a partial order since it is trivially tratige and reflexive. It is also
antisymmetric since the acyclicity hypothesis implieg ththere is a path from a node
u 1o a nodev there cannot be a path fronto u without having a cycle.

Example 2.11. Consider the graph of figufe2.4 without the self-loop, itresgents a
partial order such that:

u <z u<v (2.29)
<y y<z (2.30)
y<w <z (2.31)
T < (2.32)

O

SRecall that there exists always a 0-length path from a nodeet.
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What happens when there is a cycle in the graph? Obviousthisrcase the re-
lation exists a patldoes not define anymore a partial order. We lose one propleety,
antisymmetric property. In fact, if a cycle is present, b# hodes along the cycle will
be mutually connected by a two-way directed path. Consinleinktance the graph of
figure[ZB, which is the order among transitigasts and¢,? In such a case it is not
possible to define an order among them. This type of reldtipris called apreorder
(Davey and Priestley, 20D2).

More formally, a relation that is reflexive and transitivajsreorder Normally, this
is due to the presence of a cycle in the precedence relatiaarder theory, a preorder
is noted as<. Thus we will writeu < v when a path exists fromto w.

Figure 2.6: The strict ordex

Given a preorder < on a set V, several interesting properties
(Davey and Priestley, 20D2) hold:

e the relation~ on V' such thatv ~ w ifand only ifv < wandv < wis an
equivalence relation

e the relation< on the quotient se¥’/.. such thafv] < [u] iff v < w is a (strict)
partial order. Intuitively, this operation eliminates ttycles by collapsing each
SCC to a single element. We say then that the cyclic graplagsdls into an
acyclic graph,

¢ the equivalence classes defined-byare the Strongly Connected Components
(SCC) of the graph associated to the relation. Thus, fromarowe will employ
equivalently the terms SCC and equivalence class.

Figure[Z® graphically represents the strict preordetticela< corresponding to the
graph of figuréZ15(b).
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Related Work

In this chapter, we recall some related work. The problenit déthin this dissertation
is indeed original, and, to the best of our knowledge, has loedy marginally treated
by different disciplines like operations research, aitfiintelligence, manufacturing
engineering, and economics. Although a massive amount df has been devoted
to cope with different aspects of timeake-or-buyor make-or-buy-or-collaboratprob-
lems, to the best of our knowledge nobody has entirely toetéem. In this chapter we
will summarise the literature close to our problem.

The chapter is organised as follows. In secfian 3.1, we wihil some basic con-
cepts about auctions. Next, in sectfonl 3.2, we will thordy@xplain combinatorial
auctions, a particular type of auctions. Then, in sectlofs ®e will introduce the
problems of supply chain scheduling and supply chain folonatspectively. Next, in
sectio 34, we will put in relation the work presented irstissertation with respect
to the state of the art.

3.1 Auctions

The most employed definition of auction is due to McAfee et. al
(McAfee and McMillan, 198J7): An auction is a market institution with an ex-
plicit set of rules determining resource allocation andaas on the basis of bids from
the market participants

Auctions play an important role in economics. In their moasib form, they are
one of the ways in which various commodities, financial asaet concession rights
are allocated to individuals and firms, particularly in a kegforiented setting. Some
very famous examples of auction houses are Sotheby’s (Bgfh&007), Christie’s
(Christie’s, 200]7), and Ebaly (Ebay, 2007).

The introduction and use of auctions is motivated by the tiaat the value of an
item (or of a set of items) is often not known a-priori. Then,auction is a way to
“let the market decide” the value associated to the itens. dtvery flexible mechanism
that is employed with several different variations. Furnthere, it is dynamic, since it
allows a meaningful interaction between buyers and sellerem our point of view,

39
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the distinguishing feature of auctions is that they supfutiautomation. In fact, they
are a mechanism with predetermined rules. Hence, they eadfiok computer imple-
mentation. Finally, they are in most cases economicallgiefft [Milgrom, 2004).

3.1.1 Taxonomy of Auctions

Klemperer|(Klemperer, 2004) classifies auctions in fouidgups based both on the
modality the auction is run with and on the associated paynuder

(1) theascending-biduction, also known as English or Open-outcry;
(2) thedescending-biduction, also known as Dutch;

(3) thefirst-price sealed-bicuction; and

(4) thesecond-price sealed-baliction, also known as Vickrey auction.

In the ascending-bid auction, the price is raised sucoglgsintil only one bidder re-
mains. Such bidder wins the object and pays the final prieggd bre two variants of
this auction. One (called Japanese) considers that the isri@aised by the auctioneer,
and the bidders that are not willing to pay the correspongdiiag at a given round quit
the auction. The other one, known as English, let the bidckdt®utthe prices.

The descending auction works in exactly the opposite wayptite starts at a very
high price and it is successively decremented until somddsidxpresses his willing-
ness to accept that price.

In the first-price sealed-bid auction, all the bidders sulbngir offer without seeing
the other bidders’ offers. The bidder offering the highadtwins paying his bid (that
is the highest price, whereby the nafirst-price).

In the second-price sealed-bid, the process is similah thi¢ exception that the
bidder pays the price offered in the second highest bid, @hethe namesecond price

Another classification can be done based on the number ofrbwred sellers,
namely:

e directauction when there is one seller and multiple buyers;

e reverseauction when there is one buyer and multiple sellers. Indase the item
at auction is bought and not sold; and

e doubleauction when there are multiple buyers and multiple sellers

Finally, a classification can be done based on the quantitgimfs sold/bought and
on the features of the items (i.e. price is not the only disgrant of the value associated
to an item). In this case we shall refemtailtidimensional auctionsT'here are different
types of multidimensional auctions:

e multi-unitauctions when multiple identical items are bought/sold;

e multi-attributeauctions when the value associated to an object is detedrbine
a set of features (shipping time, quality, and so on); and
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e multi-item or combinatorialauctions when multiple distinguishable items are
bought/sold.

There exists a lot of hybrid auctions joining the featuredifierent auction classes.
In particular, very relevant to our work afe (Cramton et2006):

e combinatorial reverse auctions;
e multi-unit combinatorial reverse auctions.; and
o multi-unit combinatorial auctions.

Since combinatorial auctions (CAs) are of central impar&am our work, in what
follows we provide a detailed account on the state-of-tiéaCAs.

3.2 Combinatorial Auctions

A combinatorial (reverse) auction. (Cramton et al., 2086 auction where bidders
can sell (buy) entire bundles of goods in a single transactidthough computation-
ally very complex|(Sandholm et al., 2002), the fact that bidccan express their prefer-
ences over bundles of goods may help an auctioneer obtaéar deals. In fact, buying
items in bundles has the great advantage of eliminatingiskdar a bidder of not be-
ing able to sell/lbuy complementary items at a reasonabde jimi a follow-up auction
(think of a combinatorial auction to acquire a pair of shaesppposed to two con-
secutive single-item auctions for each of the individuales). Indeed, combinatorial
auctions may lead to more efficient allocations whenevemtementarities among the
goods at auction hold. For a detailed survey on CAs refef tarfiton et al., 2006;
de Vries and Vohra, 200B; Kalagnanam and Parkes,|2003).

CAs have a high potential to be employed as an allocation arésin in a wide
variety of real-world domains. They have been proposed termployed for allo-
cating loads to trucks in the transportation market (Caphed Sheffi, 2006), routes
to buses[(Cantillon and Pesendorfer, 4006), goods/serticéuyers/providers in in-
dustrial procurement scenari@s (Bichler et al., 2006pairarrival and departure slots
(Ball et al., 200B), and radio-frequency spectrum for véisslcommunications services
(Pekec and Rothkopf, 2003). Walsh |n (Walsh et al., 2000)leyenl them for supply
chain formation.

The study of the mathematical, game-theoretical and alguoic properties of com-
binatorial auctions has recently become a popular reséapatin Al. This is not only
due to their relevance to important application areas sscblectronic commerce or
supply chain management, but also to the range of deep obsqaestions raised by
this auction model.

In the last decades, different topics related to CAs have lbeesidered, namely
the design of auction mechanisms, bidding languages, @uditims for the Winner
Determination Problem. In the following sections, we sumrrisgthe most relevant
contributions on those topics.
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3.2.1 Mechanism Design

Auction theory studies the formal properties of auctionssaswn in the sur-
veys of [Krishna, 2002) and (Milgrom, 2004). NonethelesssCiave recently
attracted the attention of economists and game theoristsssodated to auc-
tion theory is also the design of auctianechanismsdevoted to studyhow to

run an auction in order to guarantee some economic propestieh as, for in-
stance, efficiency, incentive compatibility, individuationality, etc. For instance,
(Ausubel and Milgrom, 2006b), [ (Parkes, 2006), | (Ausubelfiigrom, 20064),

(Cramton, 2006), [(Ausubeletal., 2006), and (Land et aDg20 describe some
mechanisms for CAs.

3.2.2 Bidding Languages

Bidding is the process of transmitting one’s valuation tisrtover the set of goods on
offer to the auctioneer (or ratheomevaluation function — the bidders are of course
not required to reveal their true valuation —). In princigtedoes not matter how the
valuation function is being encoded, as long as senderé€bjdahd receiver (auctioneer)
agree on the semantics of what is being transmiftedas long as the auctioneer can
understand the message(s) sent by the bidder. Indeed, égs@hte to fully specify
an auction mechanism (allocation and pricing rules) witheference to a concrete
bidding language. In practice, however, the choice of aibgithnguage is of central
importance.

Early work on combinatorial auctions has typically ignotieel issue of bidding lan-
guages. The standard assumption used to be that if a partltidder submits several
atomic bids (a bundle together with a proposed price), theratictioneer may accept
any set of bids from that bidder for which the bundles do na@rlap, and charge the
sum of the specified prices. This is how sometimes calle@DfRdanguage But other
interpretations of a set of atomic bids are possible. Fdait®, we may take it to mean
that the auctioneer may accept at most one bid per bidderijghmow known as the
XOR language

The first systematic study of bidding languages is due torN({Basan, 2006) (an
early version|[(Nisan, 2000) appeared in 2000). Nisan’s pgapeovide an excellent
introduction to the topic and clarify a number of issues thed previously remained
somewhat fuzzy. Nisan classifies several types of biddinguages, providing expres-
siveness results for each of them. At the basis of his expadies the concept of
atomic bid Formally, an atomic bid is a pafS, p), whereS is a subset of the items at
auction, ang is the price a bidder is willing to pay to obtain the goodsinBy com-
bining in different ways atomic bids we obtain several biddlanguages. The most
widely employed are:

e OR Each bidder submits an arbitrary number of atomic bids. duioneer is
allowed to accept any disjoint subset of them.

e XOR Each bidder submits an arbitrary number of atomic bids. dtationeer is
allowed to accept at most one among them.
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o OR-of-XOREach bidder can submit any number of XOR bids. The auctideee
allowed to accept any subset of these bids.

¢ XOR-of-OREach bidder can submit an arbitrary number of OR bids. Tlte au
tioneer is allowed to accept at most one of these bids.

Consider the following example explaining the semantia® &fand X OR bids.
Example 3.1. Say that the set of goods at auction$ i B, C'}. Then, we have:

e OR ({A},3) OR ({B,C}%,3) means that if the bidder is allocatéd!, B, C},
then he will pay 6.

e XOR ({A4},3) XOR ({B},3) XOR ({4, B},5) means that if he is allocated
{A, B} he will pay 5 (not 6).

Another interesting paper about bidding language$5 1s _(Bewand Hoos, 2001),
where Boutilier et al. present a logical bidding languags @ilows the expression
of complex utility functions in a natural and concise way. this language bids are
given by propositional formulae whose sub-formulae canm®tated with prices, thus
allowing for a natural and concise formulation of biddersiity functions.

To the best of our knowledge, no bidding language has coresid® far services or
manufacturing operations as entities that can be tradedx@lained in chaptél 1, in or-
der to apply combinatorial auctions to theake-or-buyf make-or-buy-or-collaborate
decisions, itis required to predicate about manufactwperations and services across
the supply chain.

3.2.3 Winner Determination Problem

Connected with the introduction of combinatorial auctiésishe winner determina-
tion problem (WDP). Winner determination is the problemcef@d by the auction-
eer, of choosing which goods to award to which bidder so as dwimmise its rev-
enue. The winner determination for combinatorial auctiena complex computa-
tional problem. Indeed, one of the fundamental issuesitigithe applicability of CAs
to real-world scenarios is the computational complexityoagated to the winner de-
termination problem. In particular, it has been proved thatWDP is NP-complete
(Rothkopf etal., 1998). General IP solvers (Andersson.ePA0D0) and special pur-
pose algorithms (Sandholm, 2002; Fujishima et al., 199%tdre Brown et al., 2000)
have been employed to solve the WDP, but it is well known thger@eral solver that
performs well in all situations does not exist. For an exeshceview on the winner
determination problem and related issues refer to (Lehreaah, 2005, Muller, 2006;
Sandholm, 2006b).

Here we aim at presenting the traditional ILP (see se€i@f? formulation em-
ployed to model the combinatorial auction winner deterrtiamgproblem, given that its
comprehension is required to understand the remainingeadigsertation.
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ILP formulation for the Combinatorial Auction WDP

Say that an auctioneer wants to sefjoods. Each good is denotedgswherel < i <

n. In a combinatorial auction bidders can setidor-nothingoffers over a set of goods.
Say that each of the: bidders participating in the auction only submits onedldig

1 < j <m. Each bid is represented by a p&jr= (5;, p;) such thap; is the price that
the bidder is willing to pay for obtaining the set of goo#ls How can the auctioneer
select the bids that maximise his revenue? This problem eagakily modelled by
means of Integer Programming (refer to secfion ?.1.2 fortailde explanation). We
associate to each big a binary decision variable; € {0,1} that takes on value

if bid b; is selected, and otherwise. Then, the function that the auctioneer wants to
maximise is his revenue, namely:

> aip; (3.2)
j=1

that is theobjective functiorof the integer program.

Additionally, we have to make sure that each good is sold tm@dt one bidder
since the auctioneer only owns one copy of each good. Thugmydoy coefficients
ci; to model that either goog; is required in bidb; (c;; = 1), or not ¢;; = 0). Then,
the following constraints must hold:

Zcijxj S 1 1 S 7 S n (32)
7j=1

In what follows we list some attempts carried out in the pastdal with the gener-
ation of benchmarks for testing combinatorial auctions \ag®rithms.

3.2.4 Test Suites

No real-world benchmark of CAs has been reported in thedlitee. Many efforts
have been done so far to generate plausible data sets to beyeohpo test WDP al-
gorithms. Some experiments have been run with human bidBerss et al., 19§9).
Nonetheless, as pointed out [n (Leyton-Brown and ShohaffR2&uch data sets are
not useful for assessing the WDP computational complexitythe absence of test
suites, it is common practice to artificially generate daits.s Some examples are
(Fupshima et al., 1999; Boutilier et al., 1999; de Vries afwihra, 20038) for single-unit
CAs, and [(Leyton-Brown et al., 2000) for multi-unit CAs. Mulnit CAs have also
been tested employing multidimensional knapsack problemcihmarks, borrowed
from the operations research community. A more realistigragch to generate bids
is presented in/ (Leyton-Brown and Shoham, 2006), where tamgntarity relation-
ships among goods are made explicit at bid generation timeth#r realistic approach
is taken in|[(An et al., 2005), where the authors design bgldirategies that efficiently

1Wwe do this simplified hypothesis for the sake of comprehensite extension to the OR or XOR bidding
language is eas)/ (Lenmann et al., 2006).
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identify desirable bundles in the framewaork of the tranggiion industry domain (fo-
cusing therefore on single-round, first-price, sealedfxidbard CAS).

Finally, a master student has elaborated on subjects defl@this thesis. Vinyals
(Vinyals, 2007b; Vinyals et al., 20077a; Vinyals et al., 28D has implemented a very
powerful simulator of the behaviour of agents bidding in aMWMICA, and has tested
the performances of some of the algorithms presented irdibéertation.

In what follows we change of subject and introduce the worthestate-of-the-art
related to supply chain scheduling and supply chain foromati

3.3 Supply Chain Scheduling and Supply Chain For-
mation

In this section, we will talk about supply chain schedulimgiglanning, and supply
chain formation. On the one hand, the problem of supply cfaimation concerns the
selection of the participants to the supply chain and theseof the exchange, with
the purpose of maximising the efficiency of the supply chaiformally, supply chain
formation is the problem of decidingho will supply what who will do what and
who will buy what On the other hand, the problem of supply chain schedulirty an
planning is more focused on the coordination among the réiffieoperations across
the supply chain with the purpose of minimising the cost ofgrening operations and
transportation, and the time required to perform all therapens. Informally, supply
chain scheduling and planning is the problem of decidilngneach agent within the
supply chain has to perform a given operation or job in orddinish all the operations
before a given deadline.

There is a fundamental difference between the problem gflgughain formation
and the problem of supply chain scheduling and planning faimeer deals with finding
a set of supply chain partners, whereas the latter dealshéthroblem of coordinating
them. Nevertheless, the two problems are tightly conneckedact, in order to ef-
fectively select the participants to the supply chain, &gshould make sure that there
exists a feasible scheduling of their operations. This &dee since each stakeholder
along the supply chain:

e provides resources subsequently employed by other stidespor
e employs or consumes resources previously produced by stthiezholders; or

e produces resources subsequently employed by other stdkghequiring as in-
puts resources previously supplied by other stakeholders.

Then, the selection of partners can be greatly improvecifélasibility of the schedul-
ing is taken into account.

In the literature there have been many attempts to solvertit®em of supply chain
planning and scheduling and some attempts dealing withupplg chain formation
problem. However, to the best of our knowledge, no attemgbtee the problem of
supply chain formation taking into account the feasibibifythe scheduling has been
done so far.
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3.3.1 Supply Chain Scheduling and Planning

There exist two approaches to supply chain planning andisting (Lau et al., 2006):
centralisedanddistributed

The Centralised Approach

The centralised approach to supply chain scheduling has ibeestigated for many
years. In this approach a central authority collects allitifiermation from the peers
and then computes the optimal plannipg (Cohen and Lee] 1B&8gral et al., 1998;
Sabri and Beamon, 2000; Jayaraman and Pirkul,|2001; Lee g0DaR). A good sur-
vey on centralised planning can be foundin (Erenguc et @891

The information required to optimise the scheduling makegitoe centralised or
distributed, according to the nature of the problem. Fotainse, inside an enterprise
there may be a central repository of information, whereasdansortium of enterprises
each firm holds its private information. The informationtthaust be provided in or-
der to compute the planning concerns the production fesitnfréhe participants (the
required time to perform an operation, the associated ttesprecedence relationships
among operations, and so on). One of the firm acts as a cotodiaad, after receiving
the production data, computes an optimal plan, that is sjulesgly communicated to
the other supply chain stakeholders. In this approache timesst be information sharing
among the supply chain stakeholders in order to obtain ariegifiplan.

Many methods have been proposed to solve the underlying - plan
ning problem, for instance metaheuristics| (Kallrath, 2002 stochastic
algorithms  [(Alonso-Ayuso et al., 2003), or  mixed-integer rogramming
(Gaonkar and Viswanadham, 2001).

The centralised approach suffers from some drawbacksly-seme firms may be
reluctant to share very sensitive internal informatiorcd@elly, the computational time
required to solve even small instances is huge. Finallycémralised approach makes
it difficult to react to fails and breakdowns across the symblain. In case some of
these events occur, the scheduled plan must be recompatedératch.

The Distributed Approach

In the distributed approach, the decisions about the sdimgdare taken locally. That
is, a supply chain stakeholder builds its schedule relymthe communications with its
neighbours along the supply chain. The decision is basetelotal information and
objectives of each supply chain stakeholder. The intevastamong the supply chain
participants continue until a global scheduling is foundame termination condition
is met.

The major advantages of the distributed approach versistitealised one are:

o the information is shared only at a local level;

¢ the computational complexity of the problemis reduced;esthe problem solved
locally by each supply chain stakeholder is by far less diffithan the global
optimisation problem; and
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e since enterprises act locally, the capacity of reactingéakdowns or shortcom-
ings is increased with respect to the centralised approach.

Many methods have been proposed to solve the schedulingepratith a decen-
tralised approach. For a good review, refer{to (Lau et aDE20The most celebrated
distributed approach for centralised supply chain schiegudnd planning has been
the Contract Net Protocol (CNP), along with all its varianitis his original formula-
tion, the CNP specifies a bidding approach that enables tastation among mul-
tiple agents[(Smith, T980). The multi agent systém (Wodlggiand Jennings, 1995)
based approach has been widely employed in the past as |welling;2002;
Zhang, 2002| Reis et al., 2001; Lee et al., 2003; Wagner ,2@03;/Lau et al., 2006;
He et al., 2003; Norman et al., 2004).

The distributed approach suffers as well from some drawhadke main short-
comings regard the feasibility and optimality of solutionslt has been shown
(Jennings and Wooldridge, 1998) that, since agents acteasbn locally, they disre-
gard the other agents’ constraints and the global perfocmahthe supply chain.

To conclude, choosing between a centralised or a distdbagp@roach strongly de-
pends on the problem to be solved and on the availability nfragtational resources.

3.3.2 Supply Chain Formation

Very little work has been devoted to the problem of autongainpply chain forma-
tion. In this chapter, we will not consider the literaturermn-automated supply chain
formation because its contributions stem from the areas@fi@mics and negotiation
rather than from optimisation. Thus, it is out of the scopthefdissertation.

Supply chain formation studies the problem of automatimgaitocess of determin-
ing the supply chain partners, under the assumption thantbenation required by the
decision making process is decentralised.

In the area of supply chain formation two approaches have beesidered as well,
namely the centralised and the distributed approach.

The Centralised Approach

As far as we are concerned, little effort has been devotdugtaentralised approach to
the supply chain formation problem.

A significant attempt to provide a mechanism to select thiet higsiness partners in
a supply chain has been undertaken[by (Gaonkar and Viswangd®05). This work
is probably at the edge between supply chain planning angdlgwghain formation.
This very interesting paper focuses on the problem from bwedd point of view:
what happens when there is a roll-over of products in a margebuld a firm maintain
the same business partners? Should it change them? Thesaptoeide a mixed
integer programming formulation of the underlying deaisproblem. This approach
suffers from some limitations:

(1) itis not completely automated, because the interadt&iween the supply chain
stakeholders is performed through an Internet-enablefbpha;
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(2) there is no communication language among the supplyaiakeholders (like,
for instance, a bidding language); and

(3) it has a high computational cost and subsequent poatsts/.

However, it substantially differs from our approach, sititcis not based on a market
mechanism. Itis more a static decision support system tostedtegic decision making
under particular market conditions.

In (Walsh, 2001} Walsh et al., 2000), Walsh et. al introdum@binatorial auctions
for supply chain formation. These represent an extensi@owibinatorial auctions in
which a whole supply chain is negotiated via an auction. lchsa context, askers,
sellers and manufacturers participate and submit bidsmiitie same auction. In order
to cope with this new auction Walsh et. al introduce the Taskbdéhdency Network
(TDN), a network representing all the producer/consumaticgships among the bid-
ders. We consider that this work has dealt with a problem semjiar to ours. In fact
both our and their work:

e are built upon a market-based mechanism, namely combiakdoictions;

o explicitly represent producer-consumer relationshipisling across the supply
chain; and

e model resource contention (i.e. the fact that in the systeretare less resources
available than the overall required ones).

However, as explained in sectibn114.2, Task Dependenaydtks and combinatorial
auctions for Supply Chain Formation are limited along seMgimensions: they do not
possess the expressiveness, computational, and fornmigssn@ols required to deal
with the make-or-buy-or-collaboratdecision problem.

Collins et. al in[(Collins, 200Z; Babanov et al., 2003) dei#thva problem similar
to the supply chain formation introducing time and precegeronstraints. However
they do not explicitly model the multiple levels within a sy chain and the resource
contention across it. They also provide a bidding languagieiding information about
the time required to perform operations.

Finally, Norman et. al[(Norman et al., 2004) describe a comtorial auction to
form virtual organisations. They also provide an advandedibg language for ex-
pressing offers in which the time dimension is consideredi@s Although very in-
novative, we find that its applicability to the problem of plypchain formation is lim-
ited since neither resource contention nor the produceswoer relationships present
across a supply chain can be modelled.

The Distributed Approach

Distributed approaches to supply chain formation are neotessely related to our work.
However, we will point out the two most relevant works in theddithat employ a market
based mechanism.

Rosenschein and Zlotkin in (Rosenschein and Zlotkin, [1994;
Zlotkin and Rosenschein, 1996) introduce Task Oriented &bom (TODs). A
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TOD is a set of tasks that must be completed, and a cost funotier bundles of tasks.
They fix a set of negotiation rules and provide some theahtisults on the properties
of the negotiation outcome.

Walsh and Wellman irf (Walsh and Wellman, 2003) provide a dieabised version
of the auction mechanism provided|in (Walsh et al., 2000)¢kvis based on a variation
of the Contract Net Protocol.

We stress that both approaches suffer from limitations. l@nane hand, TODs
do not incorporate nor implicitly neither explicitly the plendencies among operations
across a supply chain, whereas the mode]l in (Walsh and We]lBt®3) suffers from
the same expressiveness, computation and formal anafysigsmings as combinato-
rial auctions for supply chain formation do.

3.4 Conclusions

Little work has been done so far to solweake-or-buyor make-or-buy-or-collaborate
decisions with a centralised market-based approach. Mapgrs have focused on sim-
ilar problems though none of them captures all the requirgsnexpressed in sections
L4 andT.412.

Our work is placed somewhere in betwemmtralised supply chain plannirend
centralised supply chain formatio®ur work is not entirely included in the field of sup-
ply chain formation because we do not only assess the gatits to a supply chain,
but we also provide a feasible sequence of supply chain tipesao perform. Anal-
ogously, our work is not completely included in the field opply chain scheduling
since the participants to the supply chain are not fixed aripthut determined on the
fly based on a market mechanism. Furthermore, we do not neiledltme the time
dimension into the problem to provide a feasible scheduléadt, the precedence rela-
tionships among operations are implicitly representetiénformalism that we employ
to model resource contention at each level of the supplyichai

Summarising, in the state of the art we find solutions to bogps/ chain schedul-
ing and planning and to supply chain formation problems. el@v, none of the solu-
tions we are aware of possesses all the features requireti/fmtsthmake-or-buyand
make-or-buy-or-collaboratdecision via a market-based approach.

(1) As thoroughly explained in sectionsT}4.1 &nd1.ddmbinatorial auctiongack
of the possibility to express manufacturing operationgguivalently production
relationships among the goods at auction. However, theyigea good model
to build upon because they allow to express complemems@atinong the goods
at auction [(Cramton et al., 2006); they can count on thezaiyi well-founded
bidding language$ (Nisan, 2006), and there have been sigmiftontributions to
the study of their winner determination problem (Lehmanale2006).

(2) As detailed in sectiof1.4.2, combinatorial auctionssiepply chain formation
and the associated Task Dependency Networks help neggtiahnufacturing
operations. However, they suffer frdiormal, computationalandexpressiveness
limitations.
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(3) We deem that distributed approaches are not suitablet@mblem. In fact,
to the best of our knowledge, they do not guarantee nor ofitinteor feasi-
bility. The literature in combinatorial auctions has thegbly demonstrated the
efforts in finding optimal solutions to the winner deterntioa problem. In to-
day’s business world, to provide methodologies that saerdptimality when big
quantities of money are in play is a risky business.



Chapter 4

MUCRALtR

In this chapter we deal with theake-or-buylecision problem when complementarities
among goods hold at the bidders’ side. With this aim, we thice a new type of com-
binatorial auction, th&ulti-unit Combinatorial Reverse Auction with transforhility
Relationships among goods (MUCRAtBjtending traditional combinatorial auctions.
We also provide a mapping of the MUCRALR winner determinapiooblem to an opti-
misation problem on Place/Transition Nets (PTN). Such apimpallows to efficiently
solve the WDP for some problem classes, and provides a sewarful formal tools
for describing the underlying optimisation problem.

This chapter is organised as follows. In section] 4.1 weothice the problem we
aim at solving and informally outline the proposed solutiém sectiofZPR, by means
of some examples and intuitions, we introduce the limitetiassociated to CAs with
respect to thenake-or-buydecision problem in a combinatorial scenario. In section
3, we introduce a formalism, based on PTN, that overcoragsop such problems.
In sectio 4K we extend PTN in order to amend the expresssgeshortcomings of the
PTN model. In particular, we introduce a new type of PTN ahliMeighted Place Tran-
sition Net(WPTN). Moreover, we define a new reachability problem ové&TM, the
Constrained Maximum Weight Occurrence Sequence ProfBwWOSP). In section
E3, relying on WPTNs, we succeed in formally representinguactioneer’s internal
production and cost structure along with the set of recedfesds from bidders under a
unified formalism. Building upon such framework, we forngalefine the WDP for the
new auction as a particular CMWOSP. In secfion 4.7, we priogethe CMWOSP, and
thus the WDP formalised in secti@n}.6, can be solved by meft under suitable
conditions. Finally, sectioin4.8 draws some comments andlading remarks.

4.1 Beyond Combinatorial Auctions
In the introductory chapter we mentioned that we are dealiii two main issues
in this dissertation. The first one is the automatiomalke-or-buydecisions across the

supply chain, and the second is the automatianaie-or-buy-or-collaboratdecisions
across the supply chain. In this chapter we focus omrthke-or-buylecision problem,
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namely the problem of selecting what to produce in-houseveimat to outsource in
order to obtain some required goods. We argued in seEfiafl thdt this concern is
reasonable because the cost of the raw materials plus thefcttee manufacturing
operations could eventually be higher than the cost of dyreaade goods. As an ad-
ditional constraint, we require that the complementagiimong goods on the bidders
side are taken into account: bidders should be allowed tgogeall-or-nothingoffers
over bundles of goods.

In sectio”T.411, through the example of Beandma & cofirm, we showed that
the make-or-buydecision problem represents a challenging problem in assiewith
complementarities among the goods. We highlighted @andma & corequires a
complex decision support system along with a combinatowglotiation mechanism
that helps it in detecting the cost-minimising buying coufegion and the internal op-
erations to perform in order to obtain the finally requiredds.

For this reason, we decided to build upon combinatorialianstto cope with the
make-or-buydecision problem. We recall that the distinguishing featfrcombinato-
rial auctions is that bidders can submlitor-nothingoffers over bundle of goods. This
allows to mitigate the risks connected with markets witbrsty complementarities, like
for instance depressed bidcﬂng

Unfortunately, as we thoroughly showed in secfion.4.inestimitations prevent
the application of combinatorial auctions to thake-or-buydecision problem. That
is mainly due to two types of limitationsexpressivenesand winner determination
problem We recall in tablg—Z]1 the limitations of combinatorial eians thoroughly
explained in section 1.4.1.

Hence, in this chapter we exteMlltiunit Combinatorial Reverse AuctiosU-
CRAﬂ in order to overcome the intrinsic limitations of CAs for tiag with themake-
or-buy decision problem. The resulting auction model is calédlti-unit Combina-
torial Reverse Auction with transformability Relationshiamong goods (MUCRALtR)
This new auction type allows a buyer/auctioneer to expned€ammunicate to bidders
its internal production structure and its final requirerse@idders can then formulate
appropriate offers and send them back to the auctioneer.n Upeeiving the offers,
an auctioneer can determine, by means of a public seleatienthe cost minimising
combination of bids along with the internal operations lagdo its final requirements.

Then, firstly we try to model an auctioneer’s internal maotifang operations by
means of Place Transition Nets (PTNs, thoroughly desciibbedctioZB). They per-
fectly represent the manufacturing operations by spewifyhe quantity of resources
both required an produced by each manufacturing operakarthermore, they natu-
rally model the producer/consumer relationships holdimgag them. Then, the PTN
representing the internal manufacturing operations llfdquirement (1) in tab[e4.1.

Next, we incorporate the offers received by the auctionaterthe PTN encoding
the auctioneer’s production structure. This idea is basgt@intuition that the selected
offers inject goods into the auctioneer production procegthout ingredients it is not
possible to produce pies. This solves issue (3) in fable 4.1.

1Depressed bidding is a phenomenon associated to the fadtitlieers may risk to obtain only a part of
a set of complementary goods, and therefore bid less agglyss

2We recall that a MUCRA is simply a combinatorial reverse @mucin which multiple copies of each item
are auctionddi (Sandholm, 2002).



4.1. Beyond Combinatorial Auctions 53

TYPE REQUIREMENTS

(1) specification of the internal manufactyr
ing operations and the producer/consumer
relationships among them

D
1

(2) specification of an auctioneer’s final r

. quirements
Expressiveness
(3) relationships among the manufacturipg
operations, the auctioned goods, and the
received bids
(4) specification of an auctioneer’s internal
cost structure
WDP (5) information about which in-house operg-

tions to perform and in which order

Table 4.1: Summary of requirements for theke-or-buydecision problem.

More in details, we build two PTNs: one representing therirdeémanufacturing
operations of an auctioneer, that we nafiEN; (I from Internal), and another one
extendingPT N; to incorporate offers, calleBT Ny (E from Extendedl

The dynamic behaviour of PTNs serves to describe the setssilge outcomes of
a MUCRACR. In particular, PTNs can naturally model:

(1) the preconditions of each manufacturing operation #ugiired inputs must be
present);

(2) the resources consumed and produced by each manufeotyperation;
(3) the quantity of resources injected into the system wimeafier is selected; and

(4) the quantity of resources available to an auctioneer pftrforming a given man-
ufacturing operation.

According to item (4) in the list above, an auctioneer can ehdd resource availability
at any step of its manufacturing process. ConsequeRilyyVr can compactly encode
the outcomes (in terms of finally available resources) offadl possible decisions an
auctioneer may talle The encoded information concerns the level of resourcait-av
able at the end of a production process fed by a set of offeksamposed of a sequence
of internal operations. Furthermore, the rules governiegdynamics of PTNs enforce
that each of the possible decisions is implementable, iléheamanufacturing opera-
tions are run in the correct order and only if the requireditmpsources are provided.

“Notice that by decision we mean the selection of a set of ffed of a set of internal manufacturing
operations.
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However, an auctioneer is not simply interested in chootiadpids and the internal
operations leading to a satisfactory level of availableueses. Above all he is inter-
ested in minimising its costs while doing this. Unfortudgt®TNs allow to express
neither the cost associated to performing manufacturirggaijpns nor the cost asso-
ciated to selecting a set of bids. Due to this expressiveliragation, we decided to
extend the notion of PTN to incorporate the cost associatednanufacturing opera-
tion and the cost associated to a bid. Such extension, dAkgghted Place Transition
Nets (WPTN)allows associating a cost to each transition of a PTN.

With this tool at hand, we firstly associate a cost to eaclsttiam of PT N;. This
creates a WPTN allowing to reason about the manufacturiegadipns internal to an
auctioneer. | name such WPTNansformability Network Structur€lNS). It incor-
porates the following information about an auctioneerterinal manufacturing opera-
tions:

(1) the required input goods;

(2) the produced output goods;

(3) the cost associated to each operation; and

(4) the eventual producer/consumer relationships witkrodiperations.

By means of a TNS, an auctioneer can also compactly commterticdidders all the
possible RFQ configurations leading to its final requiremeS8ummarising, the infor-
mation contained in a TNS along with the auctioneer’s finediguired goods provide
to bidders sufficient information to compose meaningfutrdf This overcome require-
ment (2) of tabl€Z]1.

As mentioned above, our strategy shall be to map the intenaalufacturing op-
erations and the received offers into a PTRI{Vg). If we associate a cost to each
of its transitions, we obtain a WPTN that provides a unifiesadigtion framework for
themake-or-buyecision problem. | call such extensidaction Netbecause it permits
to encode the information about an auctioneer’s internadipetion and cost structures
and about the offers it receives. The formal language adfeseanAuction Nethelps
fulfill expressiveness requirements (1), (3) and (4) ofe&hll.

By means of arAuction Netan auctioneer can compactly express the outcome of
any of its possible decisions (acceptance of some bids agxliggn of some internal
operations), and also quantify the cost associated to €asich outcomes. Further-
more, theAuction Netllows to incorporate the information about an auctiorsseitial
stock.

We recall that the goal of the auctioneer is selecting a casinmising outcome
fulfilling its final requirements. This can be achieved otffllgé can express constraints
over possible outcomes. Then, the last requirement foremsprg the decision problem
is allowing an auctioneer to express constraints over thefgmssible outcomes.

Against this background, the MUCRAIR winner determinatmoblem can be
stated as a problem over &uction Net(a WPTN), where the goal is minimising the
cost associated to a sequence of steps that brings to a faalfsifilling some con-
straints. Then, we define a new optimisation problem on WPTiNe Constrained
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Maximum Weighted Occurrence Sequence ProleMWOSP). The objective of a
CMWOSP is finding a cost minimising sequence of steps leaidfinal state fulfill-
ing a set of constraints. This provides a solution to reqoéet (5) in tabl€Z]1.

Notice that the result of a CMWOSP idieing sequencgd.e. an ordered sequence of
transitions. This reflects a critical feature of thake-or-buylecision problem. An auc-
tioneer cannot run its internal manufacturing operatiors iandom order. Because of
producer/consumer relationships among manufacturingatipas, an auctioneer must
be aware of the implementation order. For instancg&rdndma & codecides to only
buy the basic ingredients and to perform all the manufaatuoperations internally, it
cannot perform th@&akingoperation before th&lake Doughor Make Filling opera-
tions, since the latter ones provide the inputs to the foroner(cf. figuré_L1).

Then, the definition of the winner determination problemsipet only assess the
optimal set of goods to buy, but also the optimal ordered secel of in-house opera-
tions to perform in order to obtain the goods finally requiogdhe auctioneer.

Two direct benefits stem from the mapping of the MUCRAtR WDPAMBTNSs.
Firstly, it is possible to directly import all the PTNs ansily tools and theoretical re-
sults and apply them to our problem. This provides the tepies for dealing with
requirement (5) in table4.1. In fact, we manage to modekfaide class of problems,
the WDP via integer programming (see secflon2.1.2), anciefiily solve it by means
of black-box solvers as ILOG CPLEX (ILOG, 2007) or GNU GLRK#Kkhorin, 200[1).

4.2 The problem

In what follows we further specify the extensions to CAs rezktbr dealing with the
make-or-buydecision problem. With this aim we extend exaniplé 1.1 in tbdp. We
recall that the example was abdatandma & cq a company devoted to produce and
sell apple pies. According to the example, the marketincgadepent atGrandma &
co has forecast a sale of two hundreds apple pies within themerth, and therefore
Grandma & costarts an automated sourcing procéssandma & coopts for running
a combinatorial auction to source the required ingredieH@wvever, as explained in
sectio .41, besides inviting providers of basic ingeats putter, sugar, flour, apples,
margaring, Grandma & coinvites providers of intermediate gooddofugh, filling,
and even of final goodspple pie}. The production management department aims at
evaluating the opportunity to outsource part of the proidmgbrocess.
UnfortunatelyGrandma & cofaces a decision problem that cannot be solely treated
by means of combinatorial auctions because of the intrilisitations listed in table
Ed. In exampld—Z]1 we provide an extended version of exafhdlehat explicitly
illustrates such limitations.

Example 4.1. The data characterising ti@&andma & cds decision problem are:
(1) The cost of its internal manufacturing operations:

(a) A Make Doughoperation cost€ 5 each time it is carried out. It requires
one unit ofbutter, three units okugar, and two units oflour as inputs; and
it produces two units afloughas output.
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(b) A Make Fillingoperation cost&€ 6 each time it is carried out It requires one
unit of flour, eight units ofapple and two units omargarineas inputs; and
it produces two units dilling as output.

(c) A Bakingoperation cost€ 14 each time it is carried out. It requires four
units ofdoughand four units ofilling as inputs; and it produces four units
of apple pieas output.

(2) A sale forecast of 200 apple pies. This represents thé fatpirements of
Grandma & co

(3) A stock of one hundred units @bor and two hundreds units slugar

O
Then, if Grandma & cointends to run a combinatorial auction and to invite all its
providers, it must be able to

e send them a request for quotes (RFQ) containing the numlseqaired units for
each good; and

e once received all bids, it must be able to determine whicls bidaccept and
which internal manufacturing operations to perform in orgteobtain the 200
apple pies.

Unfortunately, life is not that easy f@randma & co Firstly, it is not possible to a
priori establish how many units of each good the auction@exrfdma & cg requires.
In fact, this depends on the production plan, that can onlgidmded upon receiving
the offers. Secondly, once received all bi@sandma & coneeds a winning rule for the
optimal, efficient and automatic selection of the best sbtas and in-house operations.
In the two following sections we illustrate the first and sedt@roblem.

4.2.1 Communicating the RFQ

In a traditional Multi-Unit Combinatorial Reverse AuctigMUCRA) scenario, &Re-
quest for QuotatioiRFQ) [Reyes-Moro et al., 20D3) expresses the number ofrestju
units for each good. However, whenever an auction8earfdma & cq facesmake-or-
buydecision problems, it happens that the requirement sendt®ts (the RFQ) is not
equivalent to the quantity of goods that the auctioneeradigtoequires (the 200 apple
pies). When internal manufacturing operations are takemaocount, an auctioneer
has to distinguish between the objective quantity of goddseaend of its production
process and what to ask providers for. This occurs becauaaaioneer Grandma &
co) can opt for several, possible buying options and seveossiple levels of internal
production. All these options differ in the number of reguaimnits and in the level of
internal production. For instance,

¢ if Grandma & codecides to buy only already-made pies without producing any
thing, then it must ask providers offers for two hundredsioftapple pies. This
results in the RFQ expressed in tabld 4.2(a) and in the iateperations quanti-
fied in tabldZR(b).
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Resource| Required Units Resource | Required Units
butter 0 butter 100
sugar 0 sugar 500
flour 0 flour 300
apples 0 apples 800

margarine 0 margarine 200
dough 0 dough 0
filling 0 filling 0

apple pies 200 apple pies 0

(a) Request for quotes for apple pies only. (c) Request fotegpufor basic ingredients only.

Operation | Quantity Operation | Quantity
Make Dough 0 Make Dough 100
Make Filling 0 Make Filling 100
Baking 0 Baking 50
(b) Internal operations to perform. (d) Internal operagitmperform.

Table 4.2: Request for quotes for different scenarios.

o if Grandma & codecides to produce everything in house, then it must require
for each ingredient the quantity needed for producing 2Qf)eapies, and must
perform theMake Dough, Make Fillingand Bakingoperations as many times
as required. This corresponds to the RFQ expressed in[igh(e) 4nd in the
internal operations quantified in talflel4.2(d).

Itis easy to understand wiyrandma & cocannot completely specify its exact require-
ments a-priori (limitation (2) in tablE4.1). The number efjaired units will depend
on the received offers.

In order to overcome such difficultgrandma & coshould be able to communicate
to bidders its internal production relationships alongwtite producer/consumer rela-
tionships among them (limitation (1) in tallle}.1). Whendgds have this information
available,Grandma & cosimply has to communicate to bidders the quantity of each
good it aims at obtaining at the end of the production pro@essur case two hundred
apple pie$. The bidders can then infer the required quantity for eambdglimitation
(2) in table[Z1).

4.2.2 Selecting the optimal decision

Even under the hypothesis thatandma & cowas able to uniquely communicate its
requirements to bidders, once received the bids it wouldoeadble to decide which
bids to accept and which internal operations to perform deoto minimise its costs
and to obtain the 200 apple pies. More importantly, it woudd mave any public rule
stating how to win in the auction. How can bidders particdoand submit bids if they
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are not aware of the winning bids’ selection mechanism%rindma & cocannot
determine who the winners are, there can be no auction.

In order to express all the possible outcomes of any of itsiptesdecisions, an
auctioneer must be able to link its internal production aost structure, the received
offers, and its final requirements (the 200 apple pies).

If it also wants to select the best among those possibleidasisthen it must be
able to quantify the cost associated to each of the aboveioned decision outcomes.

Then, in the following section, we make a first attempt at isgivthe above-
mentioned problems relying on PTNs (sectiol 2.3). In thiy,wee will succeed in
modelling all the possible decisions an auctioneer may. take

4.3 Afirst attempt: Place/Transition Nets

PTNs (see sectidn2.3) are a very powerful tool to describerelie dynamical systems,
like for instance operating systems, workflows, finite stagehines, parallel activities,
data-flow computation, producers-consumers systems withity, and so on. The
firing of a transition in PTNs represents a state change irserelie system. Such a
state change can only take place if some preconditions dceuthe transition must be
enabled). For instance, if we model manufacturing opematity means of transitions in
a PTN, the execution of a manufacturing operation changesttite of the production
system: some goods are consumed, while other goods aregaehduhenever enough
input goods are available.

In this section we try to model the problem@fandma & coby means of PTNs. In
sectioTZ.31 we model via PTNs the internal productiorcstme of an auctioneer, and
in sectioTZ3R, we complement such PTN model by incorpuydhe offers received
by the auctioneer.

4.3.1 Modelling the internal production structure

In this section we model an auctioneer internal productinucsure by means of PTN.
Consider the following example.

Example 4.2. In figure[ZZ1, we associate a Place/Transition Net Stru¢®@ifé&l$) to
the internal production structure @randma & cq characterised in examdleh.1. In
doing this we associatglaces(P) to goods.transitions(7") to manufacturing opera-
tions, and input/output arcsAj and their weights £) to the quantity of goods con-
sumed/produced by each manufacturing operation. Formally

e The set of places i> = {butter, sugar, flour, apples, margarine, dough,
filling, applepie}

e The set of transitions i$' = {makedough, makefilling, baking}

e The set of arcs isA = {(butter,makedough), (sugar, makedough),
(flour, makedough), (sugar, makefilling), (flour, make filling),

SRefer to definitiolZZ11.
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3 Make| 2
2 Dough

Baking 4 AFE)_pIe

1 4 ies
Make| 2

8 Filling

Figure 4.1: PTNS associated to exanfplé 4.1.

(apples, make filling), (margarine, make filling), (makedough, dough),
(makefilling, filling), (filling, baking), (dough, baking),
(baking, applepie)}.

e The arc weight functio’ is:

E(butter, makedough
E(flour, makedough
E(flour,makefilling

) =1 E(sugar, makedough) =
)
)
E(margarine, makefilling)
)
)

- ) =3
=2 E(sugar, makefilling) = 2
=1 E(apples, makefilling) = 8
2 E(makedough, dough) = 2
y=4
)=4

E(makefilling, filling
E(dough, baking

=2 E(filling, baking) =
=4 E(baking, applepie) =

Then, with this tool at hand, we can quantitatively représiea input resources
needed and consumed by each manufacturing operation, tinet oesources produced,
and the producer consumer relationships among the mantifagbperations.

We recall that a PTN is a PTNS with associated an initial nmayki1, (see section
E3). The initial marking in a PTN usually represents theiahistate of a discrete
dynamic system. In the case@fandma & cowe can provide a similar semantics. The
following example clarifies this point.

Example 4.3. The initial markingM, stands for the initial stock arandma & co
Indeed, the stock of a firm represents the “initial state’t®supply chain. The initial
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stock atGrandma & cois two hundreds units of sugar and a hundred units of flour (see
exampldZl). The multiset (refer to section 2.2) repredant of the initial state would
be:

Mg = 200'sugar + 100’ flour
Thus, in figurd 4R, we graphically depict the initial mawgiof the PTN by means

of numbers within places (circles). We call the resultingNPPPT' N; (I stands for
Internal).

sugan 3 Make| 2 (doug
200 > | Dough 0

Make| 2
Filling

Baking

Figure 4.2:PT Ny associated to examdle¥.1.

Recall from sectiof 213 that a transition in a PTN is enablag i its input places
contain enough tokens. For instance, in figure 4.2, tramsklake Doughis enabled
only if at leastone unit ofbutter, three units obugar, and two units oflour are within
its input places. This is exactly what we require for a maatufdng operation to be
enabled it can not be performed unless the required goods are alaildoreover,
looking at theBakingoperation in figur€412, we observe that the producer/coesum
relationships betweekMake DoughandBakingon one side, and betwedfake Filling
andBakingon the other side, is quantitatively described by the PTNidedahat the
enabling condition guarantees that a producer/consuraioreship is not only quan-
titatively represented, but also it is constrained to bel@mgnted in its dynamics.

If a transition is enabled in a marking it céire (see definitiof.214). If a transition
fires it consumes some input goods and produces some outpd$.g@nce more, this
is the semantics we require for a manufacturing operatianaaufacturing operation
consumes a set of input resources and produces a set of oegputces.
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Example 4.4. In table[Z3B we show what happens when WMake Doughtransition
fires. In the leftimagdake Douglis enabled. The execution bfake Douglprovides
some inputs to thBakingoperation, as shown in the image on the right, thus perfectly
describing the producer/consumer relationship among them

O

ee\3 [Makd 2 3 Makd 2
oo 2 |Doug 4 * 2 ,Doug 4
2 2 g
.o Bakin 4 Bakin 4
1 4 00 |1 4
LN
Make 2 Make 2
8 Filling| 8 Filling|
(O O/

Table 4.3: Execution of a manufacturing operationfSAN;.

What does it happen when there is a sequence of firings? Aaierglin section
31, the PTN will pass through a succession of markingsgs}. What does a marking
represent in the case Grandma & c® We recall that anarkingis a distribution of
tokens over the set of places. It associates an integer t@akeg&ch place. What is the
meaning of associating valdé0 to flour? The answer is thatraarkingstands for the
state of a production process, i.e. it describes the ressanailable at each state of the
transformation process. In fact, it associates to each #tatnumber of units of each
good available to the auctioneer in that state. Accordirgipanufacturing operation
can be performed in a given state only if enough tokens atigablain its input places
in that state. The firing of a transition adds tokens into itpat places likewise a
manufacturing operation produces new available resotodt® auctioneer.

If markingsdescribe the level of resources currently available to ati@ueer, they
naturally apply to describe the requirements of an aucéoas well. An auctioneer
aims atreachinga marking that fulfils its requirements (at least two hundrexkens
in the applepieplace). This helps linking an auctioneer’s requirementisstinternal
production structure.

In section[Z.311, we illustrated the problem of reachahiiie. the problem of
reaching a given marking1, departing from an initial marking\t,. We explained
that it is a well studied problem in the PTN literature. Thader can imagine that the
auctioneer is dealing with a similar problem: reachimgarkingthat fulfils its needs.

Summarising, by means of the PTN representation we parfidfill requirements
(1) and (2) in tabl€Z]1. However, we still need to express:

o the relationships between the internal manufacturingatfmers and the received
offers (limitation (3) in tabl€4]1); and
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o the information about the cost associated to bids’ seleetial to manufacturing
operations’ carrying out (limitation (4) in tadle3.1).

Then, in the next section we incorporate the descriptiorhefreceived offers into
PTNj.

4.3.2 Incorporating Bids

In this section we cope with limitation (3) in taIe}.1. Theatto establish a relation-
ship among an auctioneer’s internal production structheegoods at auction, and the
received offers. This entails relating the PTN descriptbsectioZB PT N;) with
the bidders’ offers and the goods at auction.

Firstly, notice that the relation between the auctioneddgand the manufacturing
operations is already accountedBY'N;. It quantitatively specifies the goods required
and produced by each manufacturing operation. Hence, yt @mhains linking the
received combinatorial offers to tHeT' N;. In fact, the utility of PT'N; is very limited
if an auctioneer cannot link it to the received bids. Foranse, the PTN (production
process) described in figute}.2 cannot work: there are mmigintokens (goods) to
fire (run) any of the transitions (manufacturing operatjorBhe problem is that the
auctioneerGrandma & c9 needs tdouygoods to feed its production process. Buying
goods is equivalent to injecting tokens into the correspugnglaces. For instance, if
Grandma & codecides to accept a bid offering 100 unitsoattter, this will inject 100
units into thebutterplace and will correspondingly increment the marking of eN.
The counterpart of this operation would be putting0®into thebutter place of figure

732
100 ' !
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Figure 4.3:PT Ng. Incorporating bids into th&T N; of figure[4.2.
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As a consequence, incorporating bids into the PTN is quiterah Indeed, they can
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be easily modelled by means of transitions as well. If a bekigected, it must increase
the amount of some available resources. Correspondintfnaition adds tokens into
its output places when fired. However, two features disistgbids from manufactur-
ing operations. Firstly, bids do not consume any resoureeoi&dly, bids can be run
only once (it is not possible to accept a bid twice in our seiimap Therefore, each bid
will be represented by a special type of transition, whosglsiinput place will not be
a good, but a sort of controller. Such a controller, narieicplace,will enforce that a
transition representing a bid is selected at most once. Weallithis type of transitions
bid transitions In contrast, we will call the transitions correspondingrtanufacturing
operationperation transitionsand the places representing goga®d places We
make clear the process of bid incorporation by means of ampbea

Example 4.5. Say thatGrandma & coreceives the combinatorial offers in equations
&) to [L5) below from bidders. We represent an offer bgra provider as a multidbt

B € N%, whereG is the set of goods (in our case represented by places in Hglye
along with a cost. The multiplicity associated to each elenoéthe multiset stands for
the number of offered units for the element.

By — 100'butter + 200'margarine at€200 (4.2)
By — 200 flours + 300’ sugar at€ 100 (4.2)
Bs — 800 apples at€200 4.3)
By — 200'dough + 200’ filling at€ 1300 (4.4)
Bs — 200’ apple pies at€ 2400 (4.5)

For instanceB4 — 200’dough + 200’ filling at<€ 1300 stands for a combinatorial bid
offering two hundred units aough andwo hundred units ofilling at<€ 1300.

In figure[ZB we intuitively show how to incorporate bids iruatjons[[Z1l) to[{415)
into the PT Ny on figurd4.R.PT Ny is shadowed, whereas the incorporated bids are in
dark black. We will refer to the PTN in figure as tid" N (E from Extended). Notice
that:

(1) The input places dfid transitions(transitions associated to bids and represented
by Bi, Bz, B3, By, Bs in figure[Z3) only contain one token and their input arcs
weigh one. Therefore, a bid transition can fire once at most.

(2) A bid transitiondoes not have any other input place except frotvichplace
Thus, it does not consume any resources.

(3) The output places diid transitionsare the goods offered in the corresponding
bids, whereas the output arcs’ weights are the number ofeaffenits. Therefore,
they increase the number of tokens present on the net if fired.

In table[Z% we graphically depict the evolution of the PTNigure[Z2 when ap-
plying the firing sequencé = (B1, makedough). The upper picture shows the initial

SRefer to sectiofi2]2.
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Table 4.4: Applying the firing sequende= (BB1, makedough).
marking Mg = 100'butter + 200'margarine (the stock atGrandma & cg. The cen-

tral picture shows the marking obtained after firing traasit3; (i.e. after accepting bid
B1). Finally, the lower picture shows the marking obtainee@fiting makedough (af-
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ter performing thévlake Dougtoperation). Notice that in both cases transitihsand
Make Doughare enabled. Notice also that transitiBn cannot fire anymore, whereas
Make Dougtcan.

O
Summiarising, with the PTN in figufe3Grandma & cocan express:

(1) its internal manufacturing operations along with thedurcer/consumer relation-
ships among them (requirement (1) in talbld 4.1);

(2) the relations among the auctioned goods, the receifedspfand the manufac-
turing operations (rquirement (2)); and

(3) its final requirements (requirement (3)).

Furthermore, it can obtain all the possible productionestatachable by means
of any legal combination of bids and internal operationsatTih, it characterises the
combinatorial problem by providing a formalism to enumeit the possible solutions.
This can be achieved thanks to the dynamics of PTN (the fiyifigss is a crucial point:
the PT Ng in figure[Z:3 compactly represents all the possible decisibatGrandma
& co can take.

UnfortunatelyGrandma & cais not interested isimplyreaching a state that fulfils
its final requirements, it wants tminimiseits costs as well. How can we quantify that
performing manufacturing operations costs money? How caquantify that buying
goods costs money? It is under this point of view that PTNK lafcthe necessary
expressiveness and need to be extended. In the next sesgoexplain how to deal
with such extension.

4.4 Weighted Place Transition Nets

There is a feature of some discrete systems (in particudaotie we consider) that, to
the best of our knowledge, has never been considered sottae IRTN literature, and
that we deem fundamental. A change in the state of a systenhaeayan associated
cost. For instance, in our case, a manufacturing operatisrattost associated to each
time it is carried out. Thus, in order to model manufacturipgrations, we need to
extend Place Transition Nets to incorporate the notidresfsition cost Such extension
will allow us not only to represent the fact that a cost is aided to each transition
firing, but also to easily compute the cost associated fioiiag sequence

The extension of PTN to incorporate the costs of operatindas is quite natural
and consistent with all the properties of PTN. If we aim atrespnting the fact that
performing a manufacturing operation costs money, we sithale to associate a cost
to the firing of anoperation transition Similarly, if we aim at representing that buying
goods costs money, we have to associate a cost to the firingchbé transition In
general, since both bids and manufacturing operations eaagresented by means of
PTNSs, we have to associate a cost to each transition in a PTN.
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441 WPTNSs and WPTNs

We extend the notion of Place Transition Net (see sefigh®/3associating aost
to each transition. This leads us to the definitiorVddighted Place Transition Net
Structure(WPTNS) andMeighted Place Transition NGIVPTN).

Definition 4.1 (WPTNS) AWPTNS is a atupléP, T, A, E, C) where:
e P, T, A, E are defined exactly like in a PTNS.

e O : T — Ris a cost function that associates a cost to each transition.

@ 1
€5
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2 Dough 4

Baking—4> A;)_ple
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@ Make| 2 €14
8 Filling
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Figure 4.4: WPTNS associated to exanfplé 4.1.

Example 4.6. Let us associate a WPTNS to the internal production stractir
Grandma & cospecified in examplgE=4.1. At this aim we associptaces(P) to
goods,transitions(7") to manufacturing operations, transition cost§ o manufac-
turing costs, and input/output arcd)(and their weights £) to the quantity of goods
consumed/produced by each manufacturing operation. A \WWgP&iploys the same
graphical representation as a PTN (see sefidn 2.3), thediiférence being that a
cost labels each transition. We depict in figlird 4.4 the tiegyWPTNS, formally de-
fined as:

e The set of places i = {butter, sugar, flour, apples, margarine, dough,
filling, applepie}

e The set of transitions i¥ = {makedough, make filling, baking}
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e The set of arcs isA = {(butter,makedough), (sugar, makedough),
(flour, makedough), (sugar, makefilling), (flour, makefilling),
(apples, make filling), (margarine, make filling), (makedough, dough),
(makefilling, filling), (filling, baking), (dough, baking),
(baking, applepie)}.

e The arc weight functio’ is:

E(butter, makedough) =1 E(sugar, makedough
E(flour, makedough)
E(flour,makefilling)
)
)
)

E(sugar, make filling

)=3
P )=2
1 E(apples, makefilling) = 8
2 E(makedough, dough) = 2
2 y=4
4 )=14

E(margarine, make filling
E(makefilling, filling
E(dough, baking

E(filling, baking
E(baking, applepie

e The cost function€’ is defined d&

C(makedough) = —€ 5
C(makefilling) = — € 6
C(baking) = — € 14

O
In figure[Z4, the values af and the values oF label respectively transitions and
arcs.
Analogously to a PTNS, we define a WPTN by associating to a WRaN initial
marking M.

Definition 4.2 (WPTN). AWPTN is a pair(V, M), whereN is s WPTNS, and\is
a multiset of places that stands for its initial marking.

The initial marking in a PTN represents the initial state aligscrete dynamic sys-
tems. The very same semantics is inherited by WPTNs.

Example 4.7. The initial markingM, for the WPTNS in figur&Z4l&randma & cois:
Mgy = 200'sugar + 100’ flour

In figure[ZB, we graphically depict the initial marking o&tlVPTNS in figuréZl4.

4.4.2 Dynamics of WPTNs

WPTNSs and WPTNSs preserve all the properties of PTNSs and Pdaspectively, but
allow the quantitative representation of the cost of a itenms Therefore, we can natu-
rally extend to them all the concepts employed for PTNs. €hioslude the concepts of

“The sign convention employed is negative values each tinsietioneer incurs in a cost.
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€5
sugan 3 Make| 2 /doug
200 , 2 Dough 0 4
) 4 (PPPE
Baking Pies
1 €6 4 0

% Make 2 €14
8 Filling

Figure 4.5: WPTN associated to examipld 4.1.

enabling of a transition, firing of a transition, markingirf@ sequence, and so on (refer
to sectiofZRB).

In a PTN, if a transition is enabled in a marking it cée. If a transition fires it
consumes some input goods and produces some output goa8VRTN, something
more happens. If a transition fires it carries out a cost, tst associated to the fired
transition.

Example 4.8. In table[Z®b we show what happens when Make Doughtransition
fires. The transition generates a cost&$. In the upper right corner we show the
quantity of money spent by the auctioneer in the correspansiiate.

O
What does it happen when there is a sequence of firings? yi-itstt WPTN will
evolve through a succession of markings (states); and dgcarcost will be associated
to such a sequence of transitiofiisifig sequencén sectiolZ311). Considering this,
we can define the notion a@bst of a firing sequend€’'rs) as:

Definition 4.3 (Cost of a firing sequenceYhe costCrg associated to a firing sequence
J = (t1, 19, ..., tq) is the sum of all the costs of the transitions contained irsdtgience:

d

Crs(J) =) C(t) (4.6)

=1

If a transition fires more than once, slyimes, then its cost will be addédtimes.
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1 PUGTIGL : 1 PUCHIIp :
CD\ 5 ;COST=0. @\ €5 ;COST=€5;
ee\3 [Makd 2 L \3_ iMakd 2
(X} 9 2 |Doug 4 2 2 IEOEQJ 4
.o Bakin 4 Bakin 4
oo /L €6 4 ee )1 -€6 4
Make{ 2 €14 Make| 2 €14
Filling| 8 Filling|
@

%

Table 4.5: Cost of executing a manufacturing operation orPa W/

Example 4.9. In figure[45, analogously to figufe#.3, we incorporate ind/BTN
the bids expressed in equatiofis14.1) fa1(4.5). Notice thatcosts labellingid
transitionsis the cost associated to the bids. Furthermore, in fable Wiebrepeat
the firing sequence of table 3.4/ (= {B:, makedough}) when a cost is associ-
ated to each transition. In this case, the cost associat¢detdiring sequence is
Crs(J) = C(By) + C(makedough) =-€200— €5 =- €205. In upper right cor-
ner of each frame of table”3.6 we highlight the cost assatitighe corresponding
firing.

Baking 44>/-\pploe Pi
€6 d
€14
Make 2 200 200
Filling A
200

B4 | -€1300 Bs | -€240D

DO

Figure 4.6: Incorporating bids into the WPTN of figlirel4.5.
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(a) Initially.

_€5 ..................

Make 2 »
DougH 0 4
T 4 /oD

€6 ™| Baking———{ Pie
: 0

Make| 2
Filling 7’« o 00 €14 200t
—IB4-€1300 -€ 2400

SRS

Eln

<5 L ERITReYY

Make| 2 @
Dough 2 \4‘
4 Apple

€6 Baking——( Pie
4 v 9 0

Make| 2

F”ﬁ‘nge ’\ . goo\ €14 200}
~IB4-€1300 -€ 2400

A A

® ®

(c) After performingMake Dough

Table 4.6: Applying the firing sequende= (BB1, makedough).
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4.5 Representing auction outcomes with WPTNs

In the previous section we introduced WPTNs and showed tiairerful modelling
features. The examples tried to give the intuitions behirdapplication of WPTN to
our problem. In fact, we saw that the auctioneer facesale-or-buydecision prob-
lem, and decides to solve it by means of combinatorial anstidn this section, we
aim at representing each of the outcomes of such auctiom givéescription of the
internal manufacturing operations, of the received bids| af the auctioneer’s final
requirements . However, since an auctioneer is mostlydsted in assessing the cost
associated to each of such outcomes, we also associate tionaacs cost to each of
the outcomes.

Then, firstly we introduce th@ransformability Network Structu@NS), a WPTN
for modelling and communicating the internal manufactyoperations of an auction-
eer. Secondly, we extend the TNS in order to incorporatettoernation regarding the
received bids. This will result in the introduction of teiction Net This structure
compactly expresses all the possible decisions an auetionay take, and quantifies
the cost associated to each of such decisions. With thosefdools at hand, we can
then define what a MUCRALR is by providing an operational ddin of valid auction
outcome.

4.5.1 The Transformability Network Structure

In what follows we formally define th&ransformability Network Structurerhis cor-
responds to the net presented in figlre 4.4. TNSs are usefekfoessing the internal
manufacturing operations of an auctioneer. This tool wélVénto quantitatively rep-
resent the input resources needed and consumed by eachattaninfy operation, the
output resources produced, the producer consumer redaijmmamong the manufactur-
ing operations, and the cost associated to each manufagyperation. Summarising,
a TNS describes the different ways in which goods can befwemed and at which
cost. More formally,

Definition 4.4 (TNS). A transformability network structureis a Weighted
Place/Transition NeN = (P, T, A, E, M, C) such that we associate:

(1) theplacesin P to a set of good& to negotiate updh
(2) thetransitionsin T to a set of internal manufacturing operations;

(3) thedirected arcsn A along with their weights to the specification of the num-
ber of units of each good that are either consumed or prodogednanufactur-
ing operation.

(4) theinitial marking M, to the quantity of each good initially available to the auc-
tioneer (the stock). We indicate this particular initial tkiag with the multiset
Uin € NP, Then Mgy = U;,,.

8Notice that a place represents a good. Thus, in what folloasvil talk indifferently ofgood placesand
goods That is, P and G are employed indifferently.
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(5) acostC : T'— RT to each manufacturing operation.

In the next section we show how to incorporate the receivesl inito the TNS. The
resulting WPTN is calleduction Net

Example 4.10. The WPTN introduced in example.7 is the TNS associatedeo th
problem ofGrandma & cq previously described in examfle}.1.

Notice that if an auctioneer communicates to the bidderSNS along with some
constraints on the final marking (for instance, at least 2@8rts in the apple pie place),
the bidders have all the information for composing meanihgffers. This completely
fulfills the CAs expressiveness limitation in communicgtio bidders an auctioneer’s
requirements (issue (2) in tallle K. 1).

45.2 The Auction Net

In this section, we will thoroughly explain how to transfoenTNS (figurd-Z}K) into an
Auction net(figure[Z®). In the remaining of the chapter it is assumet this the set
of received bids. Each bid is represented by a muliset N* and has associated a
cost encoded by functiofis : B — R™ U {0}.

-€200
A

|

\ sugar\ 3 Make | 2 |
200 200 ™ Dough[ |
o 5 24 4 \ /

300 a 4 \

2\ Baking —»Applg Pi

1> t5, - 200 » 1 €6 v
T~ €14
-€100 ~ Make 2 200 200
Filling A
200

i,y [-€1300 | B85 |-€2400

Figure 4.7: Auction Net of the MUCRAIR in example}.1.

Definition 4.5 (Auction Net) Given a set of bidsB, and a TNSN =
(P, T, A, E, U, C), an Auction Netis a WPTNS* = (P*,T*, A*, E*, M, C*)
where:

P* =PUPp

™ =TUTR

A* =AUAp
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(1) Pgisthe set obid places That s, for each bi® € B add a places.
(2) T is the set obid transitions That is, for each bi® € B add a transitioti.

(3) Ap isthe set obid arcs lItis built as follows:

Ap = AiB UAg
where
Al ={(pp,tp) € Pg x T | VB € B} (4.7)
Ap ={(ts,p) € Tp x P | p € B} (4.8)

are theinput bid arcsandoutput bid arcgespectively.

(4) The arc expressiof™ function is built as follows:

E*(z,y) = E(z,y) (z,y) € A (4.9)
E*(ts,p) = B(p) (ts,p) € Ag (4.10)
E*(ps,t) =1 (ps,tB) € Ap (4.11)

(5) The cost functiotC* : T'U Ts — R is built as follows:
C*(t) =C(¢t) teT
C*(tg) = Cp(B) tg € 1p

(6) The initial marking is defined as

(4.12)

O

Example 4.11. We extend theTNSof exampldZI6 with the bids listed in equations
@) to [£D). This gives raise to thuction Netin figure[LTY. (P, T, A, E, My, C)
have been defined in examplel4.6. Theh= (P*,T*, A*, E*, M§, C*) is defined as
follows:

(1) P* = PU{pB,,PB,,PB;, DB, PBs }
(2) T =TU {ﬁlgl,tgz,tlgs,t&l,tgs}
(3) A* = AU A% U A% where

AlB = {(pBl s t31 )a (sz ) t52)7 (p33 ) tl’)’s), (p547 t15’4)7 (PBg, ) tB:,)}
A% = {(tg,, butter), (tp,, margarine), (tp,, sugar), (t,, flour), ...}
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(4) E*(z,y) = E(z,y) if (z,y) € A. When(z,y) € Ap we have:

E*(tg, , butter) = 100 E*(ts,, margarine) = 200
E*(tg,, sugar) = 300 E*(ts,, flour) = 200
E*(pBl’tBl):l E*(szath):l

(5) C*(t) = C(t) whent € T. Whent € T we have:

C*(tg,) = €200 C*(tg,) = €100
C*(tp,) = €200 C*(tp,) = -€1300
C*(tg,) = -€2400
O

Recall that by means of the PTN defined in exariplk 4.5, ananedi was able to
compactly represent all the possible outcomes associataytof its decisions. How-
ever, he had the problem to assess the cost associated tofeacin outcomes. Notice
that by means of the auction net, the auctioneer can now xpiah the outcomes of
its decisions and the cost associated to each of them.

In order to define the winner determination problem for MUGRAone further
step is required. We have to define an optimisation problems&lsolution retrieves
the optimal firing sequence to apply to the auction net in ot@ebtain a desired final
marking (in the case adBrandma & comore than 200 tokens in the apple pie place).
This is the purpose of the following section.

4.5.3 Constrained Maximum Weight Occurrence Sequence Preb
lem

Since there is a cost associated to each transition, one maydrested in finding a
maximum (minimurﬂ) cost firing sequence leading from an initial marking to some
final marking. More importantly, one may be interested in ifigda maximum cost
firing sequence leading from an initial markirlg to a final markingM, thatfulfils

a set of inequality constraintsFor instance, we may want to impose that in a final
marking M, each place contains exactly one tokew{(p) = 1,Vp € P), or at
least 200 tokens in a given place (for instance, Apple Pieplace in exampl€Zl1
M (applepie) > 200). With this aim we define th€onstrained Maximum Weight
Occurrence Sequence Probld@MWOSP).

Definition 4.6 (CMWOSP) Given a WPTNN = (P, T, A, E, My, C), a set of in-
equality/equality constraints that a final marking, must fulfil, expressed as:

Vp € P Ma(p)Ayhy (4.13)

9In any optimization problem maximising and minimising am@tdual representations of the very same
problem. We will talk about maximisation in what follows, thall the results can be easily applied to a
minimisation.
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whereA, € {<,<,=,>,>}andh, € NU {0}, find an occurrence sequenég,; =
(u1,us, ..., uq) that brings the initial marking{, to a final markingM,; such that: (1)
M fulfils all the constraints in equatiofi{4]13); and (2),, maximises the total cost
Cps.

We can express the inequatiofis{4.13) in matrix form:
MyAh (4.14)

whereMj is a vector whosé— th component represents the number of tokens in place
i, A is a vector whosé—th element containé<, >, <, >, =}, andh is a vector whose

i — th element containa,,. We will call the constraints in equation{4]113) br{4.14 th
final marking constraints

Proposition 4.1. CMWOSP is at least EXPSPACE-hard.

Proof. The reachability problem for PTN can be reduced to a CMWOSHad been
proved that the reachability problem is EXPSPACE-hardigmp1976). (]

4.6 The Winner Determination Problem

In this section, we formally define thveinner determination problefor MUCRALR.
Informally, given a TNS expressing the internal manufaotyoperations of an
auctioneer over a set of goods an auctioneer’s final requiremeifs,; € N¢, and a
set of received bid#®, thewinner determination problemmounts to finding the set of
bids and internal operations that minimise the auctiosemrst and produce at least the
required goods.
The formal definition of the WDP relies on tieiction Net

Definition 4.7 (Winner Determination Problem)Given an auction expressed as
(N,Upyt, B), where N = (P,T,A,E, M) is a TNS,U,,; € NY expresses
the auctioneer final requirements, afdis the set of received bids. Le§* =
(P*,T*, A*, E*, M§, C*) be the correspondinguction Net The Winner Determi-
nation Problemamounts to selecting the set of bi#s and the sequence of internal
operations/* that both minimise the auctioneer’s cost and satisfy thefdlewing
final marking constrainten theAuction Net

Ma(p) > Uput (p) Vpe P (4.15)
Ma(p) >0 Vp € P (4.16)

Proposition 4.2. The WDP for a MUCRARN, U,,..., B) can be reduced to a CM-
WOSP on the corresponding auction net. Such a CMWOSP is dieaised by the
following final marking constraints

Ma(p)
Ma(p)

Y

Uout (p) Vp e P (4.17)
0 Vp € Py (4.18)

Y

Proof. The proofis by construction:
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(1) Solve the CMWOSP on tha&uction NetNg. We name the CMWOSP solution

Jmin.
(2) The set of winning bid8* corresponds to thieid transitionscontained inJ™:

B* = {B € Bjtg € J™"} (4.19)

(3) The sequencé* of internal manufacturing operations that an auctionesrtba
perform internally is obtained by removing fra##*" all the transitions that are
notoperation transitionsWe denote this as follows:

JH =g (4.20)

O

Notice carefully that in a CMWOSP the sum of the weights ais¢ed to the overall
transitions is maximised. However, since negative cogtassociated to both bid tran-
sitions and operation transitions, maximising the sumeftkights implies minimising
the auctioneer’s costs.

Example 4.12. If Grandma & coreceives the bids in equatiods{¢.1)c14.5), the deci-
sion minimising its costs and allowing it to obtain the 20Qlampies is:

(1) to select bids, to obtaindoughandfilling; and

(2) to subsequently bake them@tandma & coafter running fifty times th&aking
operation.

If we look at it on the WPTN, this corresponds to the firing seee

J = (B4, Baking, Baking, Baking, ..., Baking) (4.21)

50 times
Then, the cost of this decision is assessed as follows:
cost(By4) + 50 - cost(Baking = —€ 1300 — € 700= —€ 2000. (4.22)

The reader can check that this is the best possible optiathéoauctioneer: it exploits
the initial stock, it brings to a marking that fulfiGrandma & corequirements, it min-
imises the costs.

o

Finally, the optimisation problem of the auctioneer is digatated, and there is a
rule for selecting the winners. Thus, we have solved iss)im table[Z1 as well. Since
we obtained this result by directly employing place trdositnets, we can import all
the techniques employed for them. As a first example, we sloowid solve the winner
determination problem by means of Integer Programming ¢segorlZIL). With this
aim, we just show that some particular CMWOSP can be solvemhégns of Integer
Programming.
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4.7 Solving the WDP by means of IP

In this section, firstly we show that the CMWQOSP can be solwedhkans of Integer
Programming under some special conditions. Then, we shaithibse conditions are
fulfilled when the underlying PTN is acyclic. Finally, we dixitly state the IP solving

the WDP.

4.7.1 Solving the CMWOSP by means of IP

In sectionfZ3R, we showed that under some hypothesis onN\a P15 possible to
express its overall reachability set by means of an equatien state equation (see
sectioZ.313). The state equation describes all the dteean acyclic PTN can reach,
and it is a linear equation. That is all we need to generaténbeger program.

We recall also that, by means of tetate equationit is possible to represent in
matrix form the firings and markings of a PTN (see sedfiori®: 3.

e Let us associate to each plage € P a position: in a vectorM, € NIPI,
The integer contained in the— th position of the M, vector corresponds to
the number of tokens contained in a a plageafter k firings in some sequence.
Then, My is the initial marking,M; is the marking obtained after the firing of
some transition, and so on.

e Let us associate to each transitione 7' a position; in a vector of integers
x € NIT!, The integer contained in thie— th position ofx encodes the number
of times transitiort; has been fired.

With this representation, the state equation can be writsen
M = My + ATx (4.23)

The very same formalism holds for WPTN. In fact, the onlyeliénce is that there
is a cost associated to each transition. Then, can we refriesmatrix form the cost
of a sequence bringing from/, to M via the transitions encoded tnas well? The
answer is quite easy. Notice thatin equation[[£23) stands for the number of times
each transition is fired for transforming markidd, into markingAZ. Then, if we
know the cost of each transition, according to definitionguagion [ZF), we have to
multiply the cost of each transition by the number of timds fired. Then, we define a
vectorCr € RITI whosej — th position represents the cost associated to transifion
(Crs(t;))- Hence, the cost associated to the firing sequence repeedeyx, noted as
Jx, is:

Crs(Jyx) =xTCr (4.24)

The idea behind the mapping to IP is finding a set of linear gopsthat:

(1) constrainsthe decision variables associated to transito hold a value encoding
a valid firing sequence;

(2) constrains the marking obtained by firing the selectadditions to fulfil a set of
equality/inequality constraints; and
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(3) maximises the sum of the costs associated to the selegatesitions.

Notice that point (1) can be easily fulfilled when the net igdic by means of the
state equationSince thestate equatiomepresents all the reachable states, it is enough
to apply to it a set of inequality/equality constraints téfifypoint (2). Finally, since in
a WPTN a cost is associated to each transition, maximisiagdst associated to the
selectediring sequenceve satisfy point (3) as well.

In what follows we go into the formal details of what we explkd above. The
following theorem states that if we can represent all thehahle states of a PTN by
means of the state equation, then the CMWOSP can be solve@é&ysof IP.

Theorem 4.1. Consider an WPTNP, T, A, E, My, C) with incidence matrBd A.
If the state equation describes all the reachable stdte®f the WPTN, then all the
non-negative integer solutions the following integer peog:

max x!cp (4.25)
subjectto M, + ATx Ah (4.26)

represent the firing count vectors of all the optimal soln§do the CMWOSP defined
by {~, h)

Proof. Notice that equation[{Z.26) simply imposes that the end mgrkulfils the
constraints defined by~ h) in equation[[4.113). Equatiof {4]25) maximises the cost
Crs(Jx), associated to the firing sequence represented (sge equatiod{4.24)). As

a result, a solutiox* to the IP defined by equations{4125) ahd (#.26) optimises the
sum of the costs associated to fired transitions, while émgtinat the final marking is
reachable and fulfils the constraints defined byh). O

According to the results stated in theorEm 2.2, it is poediblexpress the reacha-
bility set with the state equation when the PTN is acyclicefihwe apply this result to
our problem via the following corollary:

Corollary 4.1. Provided that a WPTN is acyclic, every CMWOSP defined on ibean
mapped into integer linear programming.

Proof. . Since the WPTN is acyclic, in virtue of theoréml?.2, all thachable states
M are the non-negative integer solutions of equafion]2.26&n, for theorerfi4l1 the
firing count vectors of all the solutions to the CMWOSP aredblitions to the IP in
equations[(4.35) and_{4126).

Hence, we solve the CMWOSP problem in two steps. First, werdehe the opti-
mal firing count vectox°? by solving the Integer Linear Program (ILP) in equations
#2Z3) and[[226). Then, we construky,, from x°P*, for which each step is enabled.
SinceS is acyclic, we can establish a partial order among transtso that; < ¢
iff ¢2 uses as input some outputfyf We can construct an occurrence sequehge
by ordering the transitions in the firing count vector, , non-decreasingly according
to our partial ordering. Every step in the so ordered octugesequence is guaran-
teed to be enabled. The occurrence sequéepgeis consequently the solution to our
CMWOSP. o

10Refer to sectiof 23 3.
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Thus, we can also cope with requirement (5) in tablé 4.1.

4.7.2 The IP Formulation in practise

We have shown that the CMWOSP can be solved by means of an It icase that
the underlying WPTN is acyclic in sectidn ZJ7.1. We showedection 4P that the
winner determination problem for MUCRALR is a CMWOSP. Insteection we show
that the WDP for MUCRALR can be solved by means of IP when tliti@ueer’'s TNS
is acyclic. Furthermore we will explicitly write down the Rodel.

The first assumption is that no cycles are added when we edédS into an
Auction Net. This is very easy to show.

Proposition 4.3. Given an acyclic TN$P, T, A, E, M,, C), the corresponding Auc-
tion Net(P U P, T UTg, AU Ap, Eg, MF*, Cp;4) will also be acyclic.

Proof. Say that there is hid transitiont; that includes a cycle that was not present in
the TNS. The output places of bid transitions are alway® {see definitiof.415). Then,
in order to have a cycle, there should be a transition withitigtaces inP that has the
input place oftz as an output place. However, this is impossible since, dawgto
definition[4%, the input places bfd transitionshave only output arcs. O

Naturally, it follows that:
Corollary 4.2. When the TNS is acyclic, the WDP can be solved by means of IP.

Next, we explicitly express the IP model solving thake-or-buylecision problem,
or equivalently solving the WDP for MUCRACtR.
The mathematical model is built according to the followintes:

(1) there aren goods, indexed with € {1,2,...,n}
(2) there aren internal manufacturing operations, indexed with {1,2,...,m}
(3) there aré multi-unit combinatorial bids, indexed withe {1,2,...,1}

(4) ay; is the difference between the weight of the arc connectirgatjon transition
j to goodi and the weight of the arc connecting gooih operation transition
in the auction net. Formally, in the WPTN language = E(j,i) — E(4, j).
Informally, this represents the flow of tokens in plaaghen transitiory is fired.

(5) ui™ is the quantity of good initially available to the auctioneer (the stock).

(6) ug“tis the quantity of goodfinally required by the auctioneer (the sale forecast).
(7) b is the weight of the arc connecting bid transitioto good:.

(8) bpy is the weight of the arc connecting the bid plad® the bid transitiork.

(9) buim is the quantity of tokens initially available in bid placeln .

1INotice that we know that this is always one. However, for takesof generality we consider it as a
parameter.
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(10) ¢y is the cost associated to internal operation
(11) py. is the price associated to bid

(12) yr € N U {0} is an integer decision variable (for each ide {1,2,...,1})
taking on valuew if bid k£ has been selected time§d.

(13) z; € N U {0} is an integer decision variable (for each transitipne
{1,2,...,m}) taking on valuew if transformationy is firedw times in the opti-
mal firing sequence.

With this in mind, the IP model is expressed with the follog/eguations:

max Zyk - pr + ij - Cj (4.27)
k J

D ek D ai > ug Vi (4.28)
k J

buy" — yi - bpy, > 0 Vi (4.29)

Equation [Z2l7) minimises (recall the the costs are negtive sum of the costs asso-
ciated to bids plus the costs associated to internal maturfag operations. Equations
E29) and[[£28) correspond to equatibn#.13) of the CM\WQ&e split it into two
equations since they implement different inequalitiesisT®imade clear if compared
with equations[{412)[1Z4.17), arld(4118). Indeed, equafiaZ8) implements equation
&11), whereas equation{4129) implements equalionl(4.18

If we observe equatiofi{ZPR9), and recall thaf" = 1 for all k (see equationZ.12),
and thatp, = 1 for all k (see equatiof4.11), the equation becomes:

-y, >0 vk (4.30)

Considering thagy, is an integer decision variable, it turns out clear that d¢dyees
a binary decision variablg;, € {0,1}. Hence, the whole optimisation problem in
equations[{4.47) td_(4.P9) can be rewritten under this Hypsis:

max Zyk - pr + ij - Cj (4.31)
k J

ul™ + Zyk “bgi + Z z; - a;; > udt Vi (4.32)
k ,

J

This ILP can be readily implemented with the aid of an optatien library (see
section[ZIR). The number of decision variables neededh¢odz this problem is
|T| + | B, whereT is the set of internal supply chain operations @ds the set of
received bids. The number of required constraint&is whereG is the set of goods.

12Notice carefully that we know that this variable can takeyorllue 0 or 1. Then, it is a binary decision
variable. However, in order to be formal, we hypothesiséithan integer variable for the moment.
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4.7.3 Comparison with a traditional MUCRA IP solver

In what follows we compare the IP formulation of the MUCRAtRDR with the IP for-
mulation of a traditional Multi-unit Combinatorial Rever&uction (MUCRA) WDP.
In order to solve the WDP for a MUCRA, as formalised [in_(Sardhet al., 200P),
we exploit the equivalence to the multi-dimensional knaggaroblem pointed out in
(Holte, 2001). Sandholm et al. if (Sandholm et al., 2002wshow MUCRA can be
solved by means of IP. In this case the problem is stated bynsnefthe following
parameters and variables:

(1) there aren goods, indexed with = {1,2,...,n}

(2) there aré multi-unit combinatorial bids, indexed with= {1,2,...,1}
(3) ug“tis the quantity of good finally required by the auctioneer.

(4) by, is the quantity of good offered in bidk.

(5) px is the price associated to bid

(6) yx € {0,1} is a binary decision variable (for each bide {1,2,...,1}) taking
on valuel if bid k£ has been selected afidtherwise.

Then, the problem of selecting the best offers can be exgaesih the following IP
model:

max Z Yk * Pk (4.33)
k

> yk - brs > udt Vi (4.34)
k

In this case the number of decision variableldis and the number of constraints is
|G|. Then, our formulation of the WDP can be clearly regardedesxtension of the
ILP we must solve for a MUCRA (as formalised above). In faog $econd component
of expressiofiZ-31 changes the overall cost as transfansadire applied, whereas the
second component of expression4.32 makes sure that theafrtite selected bids
fulfil a buyer’s requirements taking into account the unitessumed and produced by
transformations.

Observe the analogy between the IP in equatibnsi(4.31)[@B&)(4and the IP in
equations[{4.33) and{4134).

The first terms of both IP are equivalent. In the MUCRALR IP wld ¢he contribu-
tions due to the firing of transformations. It seems a trieitkension. However, notice
carefully that we showed that this cannot be done for evesgipte class of nets.

4.8 Conclusions

In this chapter we dealt with theanake-or-buydecision problem when combinatorial
offers are received by an auctioneer. We identified and oweecall the limitations
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that prevent the applicability of CAs tmake-or-buydecisions. These are grouped into
Expressiveness, Winner DeterminatiandFormal Analysidimitations.

We showed that PTNs are very useful for overcoming some o€th&expressive-
ness limitations. However, due to their inability to expgressts, we had to extend PTNs
in order to fully represent the internal production and isicture of an auctioneer.
This lead to the definition of Weighted Place/TransitionsN@/PTN), PTNs in which
it is possible to associate a cost to each transition firing.

By means of WPTN all the expressiveness issues are solvedn, Bm auction-
eer can employ WPTNSs to define its production and cost streicti/e called such a
representation @aransformability Network Structu@NS).

However, the TNS must be linked someway with the offers kezkfrom bidders
(the bids). Then, we extended the TNS in order to incorpdhetéformation about the
received combinatorial bids. This lead to the definitiontefAuction Net An Auction
Netis a WPTN that incorporates all the information about thening auction: internal
manufacturing operations and received offers.

Once the decision problem input is conveniently expressedprmalise its output.
With this aim, we introduced a new reachability problem onWB, theConstrained
Maximum Weight Occurrence Sequence Prob{@WOSP). We subsequently em-
ployed the CMWOSP to formally define the auctioneer decigimblem, or equiva-
lently, the winner determination problem.

Next, via the exploitation of some well-known results of Pifidory, we succeeded
in mapping the optimisation problem to an IP model, that cardivectly solved by
means of commercial or free optimisation libraries. Howgegech a solver can be
applied only in the case that the net is acyclic.

Notice as well that the representation via WPTN allows toana wide body of
methods and tools associatedR®Ns As a first example of this powerful approach,
we provided the above mentioned mapping to integer progiamof the MUCRAIR
WDP.

It seems quite natural at this point to consider an extendiban auctioneer can
incorporate into the auction its internal operations, why/to incorporate information
about the bidders’ internal operations as well? That is, MWCRAR an auctioneer
decides whether to produce in-house or to buy as already thadgoods he requires.
However, there is a third possibility, a bidder may offeparforman operation for the
auctioneer. In such a case, the auctioneer would be abletsowge not only goods,
but manufacturing operations or services as well. In thiefohg chapters we discuss
in depth such extension.



Chapter 5

Mixed Multi unit Combinatorial
Auctions

Along the lines of what we have done in chagier 4, where wedhiced MUCRAtR

to cope with themake-or-buydecision problem, in this chapter we provide a new
type of combinatorial auction (CA) to deal withake-or-buy-or-collaboratdecision
problems. This new auction type is calldtixed Multi-unit Combinatorial Auction
(MMUCA). It supports the trading of any operation across jagy chain: from supply
and request of goods to the request and offer of manufagtoperations and services.
In this chapter we introduce:

o a formal language that allows bidders to express offers aqdests over such
supply chain operations;

o aformalisation of the optimisation problem faced by an immeter when select-
ing the set of bids that maximises its revenue;

This chapter and the two following deal with different aggexf themake-or-buy-
or-collaboratedecision problem. In particular, this chapter deals veitipressiveness
requirements and formalises tkecision problenfaced by the auctioneer, whereas
chapter§le and 7 deal with computational and formal anahspgcts associated to the
decision problem.

This chapter is organised as follows. In secfiod 5.1, we ritlgss¢the requirements
of CAs when applied to thenake-or-buy-or-collaboratdecision problem. In section
B2, we introduce an example that helps clarifying tireke-or-buy-or-collaboratde-
cision problem. In sectioli 3.3 we introduce a novel formaglaage that supports the
negotiation of supply chain operations. In secfion 5.4, eventlly define an allocation
rule that automates thmake-or-buy-or-collaboratdecision, that is, we formalise the
decision problem that the auctioneer faces. In sefidn & %ist/the auction models
subsumed by MMUCA. Finally, in sectién®.6, we draw some tasions and remarks
about the expressiveness of the defined formal languagetand the types of auction
subsumed by our model.

83
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5.1 Beyond CAs for Supply Chain Formation

In chaptel#, we studied thmake-or-buydecision problem under the hypothesis that
complementarities among goods exist on the bidder siderderdo solve such a prob-
lem, we introduced a new type of combinatorial auction, thétMUnit Combinatorial
Reverse Auction with transformability Relationships am@oods (MUCRALR). In
this chapter instead, we deal with theake-or-buy-or-collaboratelecision problem,
namely the problem of selecting the most convenient suppéincpartners. In this
case, a new dimension is added to the decision problem. kr ¢odind a profitable
agreement, the parts negotiating a collaboration acr@ssupply chain, have to make
explicit and share some information about their internabpiction structure.

We approach this problem employing a market-based meaharisalogously to
chapteflt, we build upon combinatorial auctions since thedg bapturing the produc-
tion complementarities arising within a supply chain. Weaduce a new type of com-
binatorial auction that allows an auctioneer to trade,d®sgoods, operations across
the supply chain. As thoroughly explained in secfion1.th&,operations that can be
negotiated across a supply chain are:

(1) Supply of manufacturing, assembly, disassembly opesation
(2) Request of manufacturing, assembly, disassembly opegatio
(3) Supply of goods

(4) Request of goods

Combinatorial auctions for supply chain formation (SCRjraduced by Walsh et al.
in (Walsh and Wellman, 2003), have been the first attempt &bwith the problem of
supply chain formation by means of combinatorial aucti@gply chain formation is
the problem of selecting the set of participants in a suppgjirt, and of assessing who
will exchange what with whom, while maximising the utility the participants. We
consider the supply chain formation problem similar to aaiardegree to thenake-
or-buy-or-collaborateproblem. In fact, the objective of SCF is to provide to thepyp
chain stakeholders a mechanism to select the best way aboodting among them.
Combinatorial auctions for SCF relies on the Task Depeng®&tatworks (TDN) to
represent the production relationships among the sup@indtakeholders. However,
as illustrated in chapté&l 1, some intrinsic limitations &Ns hinder their application
to themake-or-buy-or-collaboratdecision problem.

In table[&1 we illustrate the requirements that we aim dtlliah when dealing
with the make-or-buy-or-collaboratdecision problem. In the table, we also mark the
requirements that are fulfilled by CAs and TDNs. Summarising can classify the
emerging requirements in three types:

(1) expressivenesgquirements (1-8 in table.1);
(2) WDPrequirements (9—13 in tadle’b.1); and

(3) computationatequirements (14-19 in tale’b.1); and
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Requirements CAs | TDN
express an offer/request on bundles of goods v v
express an offer of a SCO with a single output product v

express an offer of a SCO with multiple output products
express a request of a SCO

express the offer/request of a bundle of SCOs

express combinations of bids v
express the min/max number of times SCOs are performed
express resource sharing

express an auctioneer’s initial stock

express the auctioneer’s final requirements
supportacyclicsupply chain networks v
supportcyclic supply chain networks

compute thescheduled sequencé SCOs to perform
ensure computational tractability while preserving ogatlity
15 | solve SCF decision problem v
16 | solve themake-or-buy-or-collaboratdecision problem

17 | formally represent the search space

18 | graphically represent the search space

19 | assess the computational tractability based on the profileroture

PR k| e
SIRIE|B| oo~ oo & w| e

[ERN
o

Table 5.1: Requirements associated torttake-or-buy-or-collaboratproblem.

As to expressiveness requirements, it is clear that ananest intending to trade
any possible operation across the supply chain must prditters with a language
for expressing their preferences over such operationsifeggents 1-8 in tablgd.1).
Since we build upon CAs, in this chapter we firstly introduc®ael bidding language
that extends and generalises bidding languages for cotobialaauctions (bidding lan-
guages for CAs are summarised in sedfion 8.2.2). The pugd@& bidding languages
is to predicate about goods, in particular about bundle®otlg. However, in our case
the language must also allow to predicate about operaticnessithe supply chain. In
order to cope with this requirement, we defswgpply chain operation€SCOs). A sup-
ply chain operation is a concept that unifies under the samme s@mig of the supply
chain operations, namely:

e supplyof a manufacturing operation;
e supplyof a bundle of goods; and
e requestof a bundle of goods.

This abstraction considers that the only distinguishiregees of a supply chain oper-
ation are:

¢ the set of required and consumed inputs

¢ the set of produced outputs

lwe saysomeof the operations since threquestof a supply chain operation cannot be expressed as an
atomic operation. This point is clarified further on.



86 Chapter 5. Mixed Multi unit Combinatorial Auctions

Thus, while in combinatorial auctions a bidder bids on besdif goods, in this case

the objects predicated in the bidding language are bund®€0s. More precisely, as

pointed out by requirement (5) in talfleb.1, bidders mustide @ express preferences
over bundles of supply chain operations, and in particalartter offers for operations,

requests of operations, and offer/request alternatives.cel we solve those problems
by letting bidders:

(1) specify valuations over bundles of supply chain operesti Anatomic bidwill
allow bidders to associate a value to a bundle of supply cbpérations. The
semantics of atomic bids will be rich enough to specify bettjuests and offers
for bundles of supply chain operations (requirement (5abid[5.1);

(2) specify combinations of atomic bids (requirement (6aible[5.1).

Thus, on the one hand formiregomic bidsjoining supply chain operationperfectly
captures potential complementarities among such opegti®On the other hand, we
provide bidders a way to express combinations of bids repteyy alternative offers.
This is needed because the preferences of a bidder cannoliyoexXpressed only by
atomic bids. For this purpose, we introduce a bidding lagguaith several constructs
allowing the representation of several types of prefergneer set of atomic bids. For
instance XOR bidsallow a bidder to express a set of atomic bids such that ordyadin
them can be selected by an auction€2R bidsallow to express that any subset of its
atomic bids can be selected by an auctioneer. Other cots#anable the representation
of quantity ranges, volume-based discounts, and so on.

Next, we cope with the firstVDP requirements of CAs for SCF, represented by
requirements (9—13) in tadle.1. With a suitable languagedpresenting the bidders’
offers at hand, we can provide an operational definition efgfoblem of selecting the
winning bids while respecting the bidders’ constraintsotimer words, we have to pro-
vide a definition of the winner determination problem. Widspect to the traditional
combinatorial auction WDP a new dimension comes into playranst be considered:
the production preconditions of supply chain operationgatt, when supply chain op-
erations are dealt, not only it is important what SCOs tocielait also their execution
order. In fact, it must happen that at each step of the pramuptocess each SCO has
available the resources it requires to be performed. Sirsegply chain is a&hain of
SCOs, it may be the case that some SCOs provide the requpatsito other SCOs.
Hence, the former ones must be performed before the lates. drhen, an auctioneer
must select aequencef SCOs such that it:

(1) fulfils the constraints imposed by the bidders throughlifdding language (e.g.
if two atomic bids are in XOR, the auctioneer has to select@trane of them);

(2) is scheduled correctly, i.e. that each SCO has availtiglegequired input re-
sources; and

(3) produces as outpat leastas many resources as required by the auctioneer (i.e.
after performing the sequence of supply chain operatitiesatictioneer ends up
with the quantity of goods he initially required).
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Only in the case that the solution fulfils the above condgioan be consideredlid
and implementable. Then, we will consider thatadid solution that maximises the
auctioneer’s revenue is a solution to the winner deterrigingtroblem.

The provided definition of winner determination problem @ limited to any par-
ticular supply chain topology or SCO type. Then, by meansefdefinitions of bid-
ding language and WDP we overcome requirements 1-13 infi@bleThe remaining
requirements (14-19) in tale.1 are not considered irctiagpter, and will be solved
in the next chapter. Summarising, in this chapter we focusxmmessivenesgquire-
ments, and formalise ttaecision problenfaced by the auctioneer.

With a bidding language and an allocation rule (winner dateation problem), the
new auction type is completely defined. We shall call theltegpauction modeMixed
Multi-unit Combinatorial AuctiongMMUCAS).

5.2 The problem

In this section we continue the example®fandma & cointroduced in sectioh 1.4.2.
Relying on such example, we specify the auctioneer’s proble aim at solving.

Example 5.1. Grandma & cas a company devoted to producing and selling apple pies.
Traditionally, it was used to buying the basic ingrediewtsnternally produce apple
pies ready to sell. However, its revolutionary sourcingatépent is experimenting the
most bizarre innovations. In exam@le]l.1, we explained Grandma & codecided
to bring into the sourcing process producers of intermed@ough Filling) and final
goods Apple Pie¥ across the supply chain. This led to the introduction ofwa type
of auction, MUCRACR, as explained in chapigr 4.

In this example, we show how the restless sourcing depattdesides to imple-
ment a newer sourcing process. Besides inviting to the sauevent suppliers of all
the goods across the supply chain, it also invites suppdiedsrequesters ahanufac-
turing servicessuch as, for instancé/ake Doughor Baking Then,Grandma & co
runs a new type of combinatorial auction that involves:

e providers of goods (dough, filling, flour, and so on);
e requesters of goods (apple pies);

e providers of manufacturing operations (e.gMdke DoughMake Filling, or the
Bakingoperations); and

e requesters of manufacturing operations.

All these potential supply chain partners are bidders iratiation.
The data regardin@randma & cointernal production costs is equal to the one
defined in example4.1 and is expressed in fifiurke 5.1. We suiserigin the following:

(1) theMake Doughoperation cost€ 5 each time it is carried out, it requires as in-
puts one unit obutter, three units osugar, and two units oflour, and it produces
two units ofdoughas output;



88 Chapter 5. Mixed Multi unit Combinatorial Auctions

(2) the Make Filling operation costs€ 6 each time it is carried out, it requires as
inputs one unit oflour, eight units ofapple and two units ofmargarine and it
produces two units dflling as output; and

(3) theBakingoperation cost€ 14 each time it is carried out, it requires as inputs
four units ofdoughand four units ofilling, and it produces four units afpple
pie as output.

Furthermore, the data about the initial stock and the firglirements are:
(1) a stock of a hundred units @6ur and two hundred units afugar,

(2) Grandma & cowants to end up with at least two hundred apple pies in its ware
house.

Say thatGrandma & coreceives the following bids (expressed in natural langhage
from all the invited bidders:

(1) Bidder 1offers 100 units of butteAND 200 units of margarine & 200. Bidders
1 to 4 express multi-unit bids that offer combinations of d®o

(2) Bidder 2offers 200 units of flour&ND 300 units of sugar &€ 100.
(3) Bidder 3offers 800 units of apple pies €t200.
(4) Bidder 4offers 200 units of dougAND 200 units offilling at<€ 1300.

(5) Bidder 5requests 200 units of apple pies #2400. This bidder express a multi-
unit request of goods.

(6) Bidder 60offers 100 units of butter & 1500R (non-exclusive)ffers 200 units of
margarine a€ 100. This bidder proposes two alternative, not mutuallyuesice,
multi-unit offers. Notice that if the auctioneer acceptghobids, it must pay
€ 250.

(7) Bidder 7 offers 200 units of margarine &200XOR (exclusive OR)ffers 200
units of butter a€ 200. This bidder proposes two alternative mutually, exetys
multi-unit offers. The auctioneer can accept at most onbeaft

(8) Bidder 8offers 200 units of filling at€ 1400 XORrequests 100 units of apple
pies for€ 200.

(9) Bidder 9offers to perform theMake Doughoperation 50 times &€ 200. This
bidder, a contract manufacturer, offers to perform a SCQHerauctioneer ex-
actly fifty times.

(10) Bidder 10requests to have the operatiBakingperformed 50 times, and he is
willing to pay € 210 for it. This bidder requests that an operation is peréam
for him exactly fifty times.
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(11) Bidder 11offers to transform 2 units of dough and 2 units of filling idtainit of
apple pie a€ 20 each time the operation is performed. He offers to pertben
operation at most 50 times and at least 10 times. This bidfiensan operation
that was not previously present in the auctioneer’s infesapply chain (figure
E). Moreover, he expresses the operation can be perfeamadimum and a
maximum number of times.

(12) Bidder 12offers theBakingoperation:

e at€10 each time it runs if the operation is performed betweenritD39
times; and

e at€8 each time it runs if the operation is performed between 31L5h
times.

This bidder issues an offer for an operation that includeslaerbased discount.

(13) Bidder 13offers between 100 and 200 units of apples in bundles of 4 an& 2
per bundle. This bidder expresses quantity ranges.

(14) Bidder 14offers to transform 3 units of flour, 2 units of sugar, 1 unibotter, 4
units of apples, and 2 units of margarine into 2 units of doauggh2 units of filling
at<€ 10 each time the operation is performed. The operation cgeitfermed at
least 10 and at most 40 times. Similar to the offer of biddemith the difference
that this operation has multiple output goods.

(15) Bidder 150ffers to perform both th&ake Dough ANOhe Make Filling opera-
tion at€ 20. This bidder issues an offer ovebandleof SCOs.

(16) Bidder 160ffers to perform thélake Doughoperation a€ 20 only if provided
with an oven (it will give the oven back after performing thgeoation). This
bidder expresses an offer in which there is a resource sliiredven). In fact,
it can be employed again afterwards.

O

The reader can understand that not only the requiremendifficalt to express, but
also the underlying decision problem is actually very carpWhich is the best option
for Grandma & c® How to select the bids that maximise its revenue? The pmoble
of Grandma & cois thus twofold: on the one hand to provide a bidding language
expressing the bidders’ preferences, and on the other bdimtitan allocation rule for
assessing the revenue maximising sequence of SCOs thas dtlto obtain at least two
hundred apple pies at the end of the production process.

5.3 Bidding Language

In this section, we firstly define the notions siipply chain operatiomand valuation
oversupply chain operationgand subsequently we define a bidding language that can
be used to transmit an agent’s valuation (which may or maybadts true valuation)
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to the auctioneer. We also formally define the semanticseofahguage and introduce
a number of additional language constructs that allow feratincise encoding of typ-
ical features of valuation functions. Finally, we discuss expressive power of the
language.

5.3.1 Supply Chain Operation
In what follows we provide a formal definition of supply chaiperation.

Definition 5.1. Let G be the finite set of all the types of goods under considera#ion
Supply Chain Operatio(SCO) is a pair of multisgfoverG: (Z,0) € N¢ x N€,

O
An agent offering the SCQZ, ©O) declares that it can deliveép after having re-
ceivedZ. As we mentioned in sectidii’b.1, in our setting bidders céer ainy number
of such SCOs, including several copies of the same SCO. $hagents will be nego-
tiating overmultisets of SCQg$ormally over elements ARV XN

€5

Make| 2
Dough 4

Baking—4> Apple
€6 4 Pies
Make| 2 €14
Filling

Figure 5.1: TNS associated to examipld 5.1.

Example 5.2. In figure[5.1 we graphically represent the internal manuidet) opera-
tions of Grandma & coemploying the TNS introduced in in sectibnZ15.1. TWake
Doughoperation is represented as the following SCO:

Make Dough= (1'butter + 3'sugar + 2’ flour, 2'dough) (5.1)

2Refer to sectiofLZ]2 for some background on multi-sets.
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TheMake Filling operation is represented as:
Make Filling = (2'sugar + 1’ flour + 8 apples + 2'margarine, 2’ filling) (5.2)
O

Example 5.3. {(0,1'a), (1'b,1'c) } means that the agent in question is able to deliver
(no input required) and that it is able to delivef provided withb. Note that this is not
the same a$(1'b,1’a + 1’c)}. In the former case, if another agent is able to produce
b if provided with a, we can get from nothing; in the latter case this would not be
possible.

O
Notice that the formalism employed for describing SCOsvedlithe representation
of:

o offers for bundles of goodexpressed as SCOs with no inputs. That means that
nothing is taken as inpuf(= 0), and© is provided as output. For instance, the
offer of 200 units of butteand 100 units of margarine can be expressed as:

{1'(0,100"margarine + 200'butter)}

e requests of bundles of gogd@sxpressed as SCOs with no output. That means that
T is taken as input, and nothin@(= 0) is provided as output. For instance, the
request of 200 units of apple pie can be expressed as:

{1'(200"applepie, 0)}

o offers for bundles of SCQOsexpressed as:
{a1(Z1, 01) + a5(Z2, 02) + ... + 3, (Tin, O }

whereo € N represents the multiplicity of the SC@;, O;). For instance, an
offer to perform 10 times thilake Dougloperatiorand5 times theviake Filling
operation can be expressed as:

{10’'Make Dough+ 5'Make Filling} = (5.3)
{10'(Vbutter + 3'sugar + 2’ flour, 2'dough)+
5 (2'sugar + 1’ flour + 8'apples + 2'margarine, 2’ filling)}

e requests of bundles of SCQn order to understand how to represent this type of
request, we have to define what is meant by requiring a servidact, a bidder
requiring theBakingservice (see figuled.1) provides the inputs to perform the
Bakingoperation (dough and filling), and he is expected to recéieestitput of
the required operation (apple pie).
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Example 5.4. Consider the following multi-set of SCOs:
{1'(0, 4 dough + 4' filling), 1'(4'apple pie )}

This means that a bidder provides the dough and the filimghe is expected
to receive 4 apple pies. Notice that no precedence constrafween the two
operations is specified. The bidder is happy receiving tipdegpies both before
and after giving away the dough and filling.

If a bidder expresses his willingness to pag0 for having this multiset of SCOs
allocated, this means that he is requiring Bekingoperation for€ 20.

Notice that this isiotthe same as
{1'(4 apple pie4’dough + 4’ filling)}

In this case, the meaning would be that the biddquiresthe apple pies as input
beforegiving away the dough and filling. It is not what the bidder mea

O

In direct multi-unit combinatorial auctions, thoroughlypdained in chaptdil3, it is
typical to assumdree-disposafor bidders. Say that a bidder is willing to p&y10
for three units of dough. The free-disposal assumption gaststhe bidder is willing
to payat least€ 10 for four units of dough. This is a reasonable assumptimces
the bidder receives more than he has required paying the @aroent. Conversely, in
a multi-unit combinatoriateverseauction thefree-disposabssumption says that if a
bidder is willing to be paicE 10 for three units of dough, then it is willing to be paid
at most€ 10 for two units of dough. This is reasonable as well sincebiider gives
away less than offered and receives the same payment.

In the general case, tHeee-disposalhssumption says that a bidder is willing to
pay/be paid at least/at most the same amount if he is alld@aseiperset/subset of the
required/offered goods.

In what follows, we generalise this idea to supply chain apiens first, and then to
multisets of supply chain operations. The idea of supexnsietet is substituted with the
idea of subsumption.

We define asubsumption relatioi- over supply chain operations as follows:

(Z,0)C (Z,0)Y«ICIT'AOD O (5.4)

Intuitively, this means that the second supply chain op@nas at least as good as
the first (for the bidder), because he receives more and lgiga@way less.

Example 5.5. For instance, we have that:
(2'a+2'b,1c) C (3'a+3'b,1'c) (5.5)

o
The following definition extends this subsumption relattormultisets of supply
chain operations. It applies to multisets of the same catitjinwhere for each SCO in
the first set there exists a (distinct) SCO in the second sstusning the former.
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Definition 5.2 (Subsumption) Let D, D’ € NN“*N) e say thaD is subsumed by
D' (D C D) iff

(i) D andD’ have the same cardinalityD| = |D’|.

(i) There exists a surjective mappirig D — D’ such that, for all SCOs < D, we
havet C f(t).

O

Example 5.6. Employing a simplified notation for the innermost sets, wedia
{(a,bb), (cc,dd)} C {(cc,d), (aaa, b)} (5.7)

Notice that the functiory is such that the elemei(t, bb) maps to(aaa, b), and the
element(ce, dd) maps to(ce, d). In fact, we have thalu, bb) C (aaa, b) and(ce, dd) C
(ce,d).

O
Property(:) of definition[2.2 is needed, because giving less supply abyaémations
in some cases may diminish the valuation of a bidder. Thiisfied by the following
example.

Example 5.7. Consider that a bidder is willing to pag 10 for receiving two units of
and two units of:, namely for the SCQ (bb, 0), (cc, 0)}. Most probably, the biddes
not willing to pay at least the same quantity for having the nsett{ (b0, #)}, since he
is receiving less goods! Alternatively, consider the casetiich a bidder is willing to
be paid€ 10 for providing two units ob and two units of:, namely{ (0, bb), (0, cc)}.
Most probably, the bidder in this cagewilling to pay at least the same quantity for
being allocated the multis¢t(), bb)}, since he is giving away less goods!

O
Then, as shown in examdleb.7, there is not a general rulegtitat less supply
chain operations allocated is considered a better outconeelfidder.

5.3.2 Valuations

Our goal is having agents negotiating over bundles of SC@snwe have to introduce
a formalism that allows an agent to express preferenceshovetles of SCOs. Hence,
in what follows we provide a definition of valuation.

Definition 5.3. A valuationv : NN _, R js a (typically partial) mapping from
multisets of SCOs to the real numbers.

3 This is equivalent to

{(1'a,2'b), (2'c,2'd)} C {(2c,1d), (3'a, 1'b)} (5.6)
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O

Intuitively, v(D) = p means that the agent equipped with valuatida willing to
make a payment g in return for being allocated all the SCOsIn (in casep is a
negative number, this means that the agent will accept thkifde receivesan amount

of [p|).
Example 5.8(Valuations)

o v(1'(1oven + 1'dough,1’oven + 1'cake)}) = —20 means that a bidder can
produce a cake fo€ 20 if given an oven and some dough, and that it will return
the oven again afterwards.

o v({1'(1'butter + 3'sugar + 2’ flour,2'dough)}) = —4 means that a bidder is
able to perform théake Dougloperation for€ 4.

O
We write v(D) = L to express that is undefinedover the multisetD. Again
intuitively, this means the agent would be unable to acdeptdorresponding deal.
Valuation functions can often be assumed to be natimalisedandmonotonic:

Definition 5.4 (Normalised valuation)A valuationv is normalised iffo(D) = 0 when-
everZ = Oforall (Z,0) € D.

O
That s, a valuation is normalised iff exchanging a multifejoods for an identical
multiset does not incur any costs (this includes the speaisé off = O = (), i.e.the
case of not exchanging anything at all). The next definitiafsr to our subsumption
relationC (see Definitiof . 5l2).

Definition 5.5 (Monotonic valuation) A valuationv is monotonic iffu(D) < v(D’)
wheneveD C D'.

O
That is, an agent with a monotonic valuation does not minahtan more goods
and giving fewer away. This assumption is the generalinaticthe free-disposahs-
sumption we mentioned above when supply chain operati@saded.
Any given valuation function can darned intoa monotonic valuation by taking its
monotonic closufk

Definition 5.6 (Monotonic closure) The monotonic closurgof a valuatiorv is defined
ast(D) = max{v(D’) | D' C D}.

o
As we are working with multisets of goods, observe that tteengdd be infinitely
many bundles an agent may want to assign a (defined) value doweAshall see in
Sectiorf5.316, our bidding languages can only expresstimhsthat ardinitely-peaked
(or that are the monotonic closure of a finitely-peaked @b

4Here and throughout this chapter, we assume that any oocesef L are being removed from a set
before computing its maximum element, and that the maximiaineoempty set isL.
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Definition 5.7 (Finitely-peaked val.) A valuationu is finitely-peaked iffv is only de-
fined over finite multisets of pairs of finite multisets &ffd € N(NxNY) | v(D) # L}
is finite.

O

5.3.3 Atomic Bids

An atomic bidBID ({&} (Z1, 01) + ... + o, (Zn, On)}, p), Wherea, € N represents the
multiplicity of the SCO(Z;, O;), specifies a finite multiset of finite SCOs and a price.
To make the semantics of such an atomic bid precise, we neéecide whether or
not we want to make &ee disposahssumption. We can distinguish two types of free
disposal:

o Free disposaht the bidder’s sideneans that a bidder would always be prepared
to accept more goods and give fewer goods away, without riegua change in
payment. This affects the definition of the valuation fuoet used by bidders.

o Free disposait the auctioneer’s sidmeans that the auctioneer can freely dispose
of additional goodsi.e. accept more and give away fewer of them. This affects
the definition of what constitutes a valid solution to the mén determination
problem (see Sectidn®.4).

Under the assumption of free disposal at the bidder'’s siteptd Bid = BID(D, p)
defines the following valuation:

oy p fDCETD
vpia(D') = { 1 otherwise

To obtain the valuation function defined by the same bid witltbe free disposal as-
sumption, simply replace in the above definition by equality.

5.3.4 Combinations of Bids

A suitablebidding languageshould allow a bidder to encode choices between alter-
native bids and the like. To this end, several operatorsdantining bids have been
introduced in the literaturé (Nisan, 2006), which we arengdd adapt to our purposes
here. Informally, an OR-combination of several bids sigsifihat the bidder would be
happy to accept that any combination of the sub-bids spdd#iselected by the auc-
tioneer, if he gets paid/pays the sum of the associatedrie XOR-combination of
bids expresses that the bidder is prepared to accept thatshome of them is selectdd
We also suggest the use of an IMPLIES operator to expressticapting one bid
forces the auctioneer to also take the second. We shall takeN®-combination to
mean that the bidder will only accept if the respective sigds-bre selected together.
As it turns out, while all these operators are very usefukfoecifying typical val-
uations in a concise manner, any complex bid can altergtieerepresented by an

5 As Nisan [Nisan, 2006) put it, “purists may object” to the maXOR, as this is not the same as the
exclusive-or operator familiar from propositional logl@NE-OF may be a better name).
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XOR-combination of atomic bids. To simplify presentatioather than specifying the
exact semantics of all of our operators directly, we are Birgping to show how any

bid can be translated into suclmarmal form Firstly, any occurrences of IMPLIES and
OR can be eliminated by applying the following rewrite rules

X IMPLIESY ~ (X ANDY)XORY
X ORY ~ X XORY XOR(X ANDY)

Note that for single-unit auctions, OR cannot be translaterXOR like this (if X and
Y overlap, then they cannot be accepted together; in an MMU@Adepends on the
supply of the auctioneer). Next we show how to distribute Ab\2r XOR, so as to
push AND-operators to the inside of a formula:

(X XORY)AND Z ~» (X AND Z) XOR (Y AND Z)

Finally, we need to define how to turn an AND-combination ofaic bids into a single
atomic bid:

BID(D,p) AND BID (D', p') ~ BID(DWD',p+p)

Recall from sectiol 2.2 1 that the symbol is asum of multisetmeaning that the
multiplicity of the sum multiset for an element is the sum bftee multiplicities of the
addend multisets.

Observe that these rewrite rules together allow us to taéasiny expression of the
bidding language into an equivalent XOR-combination ofh@tobids. We also call
this theXOR-language To formally define the semantics of this language, it suffice
to define the semantics of the XOR-operator. Suppose we aa gibids Bid;, with
i € {l.n}. Let Bid = Bid; XOR --- XOR Bid,,. This bid defines the following
valuation:

vpia(D) = max{vpia, (D) |i € [1,n]}

That is, XOR simply selects the atomic bid correspondingpéovialuation giving max-
imum profit for the auctioneer.

5.3.5 Representing Quantity Ranges

As we prove in the next section, the XOR-language is expressiough to describe
any (finitely-peaked) valuation. Nevertheless, it may repbssible to express a given
valuation in a succinct manner. From a practical point ofwigis therefore useful to
introduce additional constructs that allow us to expregies) features more succinctly.
Here we consider the case of quantity ranges. We want to leetatd@xpress that a
certain number of copies of the same SCO are acceptable tlarbi

Letn € N. To express that up to copies of the samBid are acceptable, we use
the following notation:

Bid=™ = (Bid OR --- OR Bid)

n times
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This allows us to expresvundling constraintsin a concise manner: the bid
({a,a,a,b}, —10)=% expresses that we can sell up to 50 packages containing three
items of typen and one item of typé each, for 16 a package (for simplicity, we omit

O here). We also use the following shorthand:

Bid™ = (Bid AND --- AND Bid)

n times

Now we can express quantity ranges. hefn, € Nwith 0 < ny < nsy. The following
expression says that we may accept betweeandn, copies of the sam8id:

Bid"vm2l = Bid=<(m2—m1) \ypLIES Bid™

These constructs also allow us to express important comsaph as quantity discounts
in a concise manner. For instance, the bid

[(@,20)=1% IMPLIES (a, 25)°°] XOR (a, 25)=%°

says that we are prepared to buy up to 50 items of tyfur 25 € each, and then up to
100 more for20 € each.

5.3.6 Expressive Power

Next we are going to settle the precise expressive powereoXbR-language, and
thereby of the full bidding language. We have to distinguisb cases, as we have
defined the semantics of the language both with and witheetdisposal.

Proposition 5.1. The XOR-language without free disposal can represent atefin
peaked valuations, and only those.

Proof. Let v be any finitely-peaked valuation. To expresi the XOR-language, we
first compose one atomic bid for eath= {a}(Z1,01) + ... + &, (Z,,, O,)} with
v(D)=p# L

BID({}(Z1,01) + ... + &}, (Z,, On) }, p)

Joining all these bids together in one large XOR-combimatields a bid that expresses
v. Vice versa, it is clear that the XOR-language cannot exymag valuation that is not
finitely-peaked. O

Proposition 5.2. The XOR-language with free disposal can represent all vadna
that are the monotonic closure of a finitely-peaked valugtand only those.

Proof. The construction of a bid representing any given valuatiornks in analogy to
the proof of Propositiofh 5l 1. Note that for the semantictfriee disposal we precisely
obtain the monotonic closure of the valuation we would getdfwere to drop the free
disposal assumption. O
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These results correspond to the expressive power resuttefetandard XOR-language
for direct single-unit combinatorial auctions. With freisgbsal (the standard assump-
tion), the XOR-language can express all monotonic valaat{®lisan, 2006); and with-
out that assumption it can represent the complete rangelo@ti@ans (note thaany
valuation is finitely-peaked if we move from multisets tosyetNotice that this result
on the expressiveness shows that the provided bidding éyeyovercomes successfully
requirements (1-8) of table’.1.

Given those expressiveness results, in the remaining afifisertation we assume
that bidders express their preferences by means of the Xajuéage.

5.3.7 Examples of Bids

In this section we provide some examples of bids in ordergblight the better expres-
siveness offered by our bidding language. For this reasergngode the bids presented
in exampld 1.

(1) Bidder loffers 100 units of butteAND 200 units of margarine & 200:

BID(1'(0, 100" butter + 200'margarine), —200)

(2) Bidder 2offers 200 units of flour&AND 300 units of sugar &€ 100:

BID (1'(0, 200’ flour + 300" sugar), —100)
(3) Bidder 3offers 800 units of apple pies &200:
BID(1'((, 800"apple), —200)
(4) Bidder 4offers 200 units of dougAND 200 units offilling at<€ 1300:

BID(1'(0, 200"dough + 200’ filling), —1300)

(5) Bidder 5requests 200 units of apple pies #£2400:

BID(1'(800"apple pie ), 2400)

(6) Bidder 6offers 100 units of butter & 150 OR (non-exclusivedffers 200 units
of margarine a€ 100:

BID(1'((, 100’butter), —150) ORBID(1'(®, 200'margaring, —100)

(7) Bidder 7 offers 200 units of margarine & 200 XOR (exclusive OR)ffers 200
units of butter a&€ 200:

BID(1'(0, 200'margaring, —200) XORBID (1'((, 200’butter), —200)
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(8) Bidder 8offers 200 units of filling at€ 1400 XORrequests 100 units of apple
pies for€ 200:

BID(1(@, 200filling), —1400) XORBID(1'(100"apple pig (), 200)

(9) Bidder 9offers to perform théMake Douglpperation 50 times & 200:

BID (50" (1'butter + 3'sugar + 2’ flour, 2'dough), —200)

(10) Bidder 10requests the operati®@akingperformed 50 times, and he is willing to
pay< 210 for it:

BID(1/(0,4'dough + 4’ filling) + 1'(4'apple pie ), 4.2)*°
(since4.2 x 50 = 210)

(11) Bidder 11offers to transform 2 units of dough and 2 units of filling idtainit of
apple pie for€ 20 each time the operation is performed (whenever the dperat
is performed at least 10 times and at most 50 times):

BID(1'(2'dough + 2’ filling, 1'apple pig, 20)10:>C)

(12) Bidder 120offers theBakingoperation at:

BID(1'(4'dough + 4’ filling, 4'apple pig, 10)10-30)
XOR
BID(1'(4'dough + 4’ filling, 4'apple pig, 8)[31:5)

(13) Bidder 13offers between 100 and 200 units of apples in bundles of 4 aié 2
per bundle:
BID(1'((), 4’apple pig, 72)[25,50]

(14) Bidder 14offers to transform 3 units of flour, 2 units of sugar, 1 unibotter, 4
units of apples, 2 units of margarine into 2 units of dough 2nuhits of filling
at€ 10 each time the operation is performed. The operation caeifermed at
least 10 and at most 40 times:

BID(1' (1 butter + 2'sugar + 3' flour + 4'apple + 2'margarine,
2'dough + 2'fz'lling), ,10)[10,40]

(15) Bidder 150ffers to perform both th&lake Dough ANDOhe Make Filling opera-
tion at€ 20:

BID(1' (1 butter + 3'sugar + 3' flour, 2'dough)+
1" (8 apple + 2'margarine + 1 flour, 2’ filling), —20)
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Notice carefully that the offer of bidder 15 cannot be reteritas

BID(1'(1butter + 3'sugar + 3' flour + 8'apple + 2'margarine + 1’ flour,
2'dough + 2’ filling), —20)

The two bids do not represent the same thing. In the forme, ths two opera-
tions could be performed at different steps in the produqgtimcess. In the latter
case, it is a one shot operation that neatdhe same timall the input resources

1butter + 3'sugar + 3’ flour + 8'apple + 2'margarine + 1’ flour
available.

(16) Bidder 160ffers to perform thévlake Doughoperation for€ 20 only if provided
with an oven (it will give the oven back after performing theeoation):

BID(1'(4'dough + 4’ filling + 1'oven, 4'apple pie+ 1’oven), 10)

In what follows we provide an example showing that the intreed bidding lan-
guage can be employed not only to express bidders’ prefesefit also to encode
information about a particular market. As an example, wesim®r how to incorpo-
rate into the auction information about the expected salégriction of the sale price.
Consider the following example.

Example 5.9. Here we extend example’b.1 taking into account that morerimition
about the apple pie market becomes availablétandma & co Such information is
the sale forecast in function of the sale price:

¢ two hundreds apple pies if the sale pric&ig2 each, for a total o€ 2400;

¢ a hundred and thirty apple pies if the selling price is se€tb3, for a total of
€1690;

This information can be easily included in the auction by nseafbids from the mar-
kets

BID(1'(0, 200’ apple pies, 2400) XORBID (1'((), 130’apple pies, 1690) (5.8)

O

5.4 Winner Determination

In this section, we define the winner determination problé&/dP) for MMUCAS. We
first give an informal outline of the problem, and then a forefinition. We also
briefly comment on mechanism design issues.
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5.4.1 Informal Definition

Theinputto the WDP consists of a complex bid expression for each biddmulti-
setl;,, of goods the auctioneer holds to begin with, and a multisgt of goods the
auctioneer expects to end up with.

In standard combinatorial auctions, a solution to the WDR $&t of atomic bids
to accept. In our setting, however, tbeder in which the auctioneer “uses” the ac-
cepted SCOs matters. For instance, if the auctioneer holtts begin with, then
checking whether accepting the two bi#sd; = ({1’(1'a,1’b)},10) and Bidy =
({(1'b,1'¢)}, 20) is feasible involves realising that we have to use the SCQaged
in Bidy, before the one contained iRids. Thus, asolutionto the WDP will be a
sequence of SCOA valid solution has to meet two conditions:

(1) Bidder constraintsThe multiset of SCOs in the sequence haetpect the bids
submitted by the bidders. This is a standard requirememntinBtance, if a bidder
submits an XOR-combination of SCOs, at most one of them macbepted.

(2) Auctioneer constraintsThe sequence of SCOs has toitmplementable:

(a) checkthat/;, is a superset of the input set of the first SCO (there are enough
goods available to perform the first SCO);

(b) then update the set of goods held by the auctioneer adtgr 8CO and
check that it is a superset of the input set of the next SCCagt step there
are enough goods available to perform the remaining SCOSs);

(c) finally check that the set of items held by the auctioneethe end is a

superset oi4,,; (i.e. the auctioneer ends up with the resources initially
required).

RequiremenkR2 is specific to MMUCAs. Aoptimal solution is a valid solution that
maximises the sum of prices associated with the atomic leigsted.

5.4.2 Formal Definition

For the formal definition of the WDP, we restrict ourselvebitts in the XOR-language,
which we have showed to be fully expressive (over finitelglesl valuations) in propo-
sition[2]. For each biddeérlet Bid;; be thejth atomic bid occurring within the XOR-
bid submitted byi.

Recall that each atomic bid consists of a multiset of SCOsaapdce: Bid;; =
(Dyj,pij ), WhereD;; € N XN is a multiset of SCOs angl; € R is the associated
cost/price. We will employ the following notation:

o For eachBid;;, lett;;;, be thekth SCO inD;;.
o LetD;;(t;;x) be the multiplicity oft;; in D;;.

o LetD = Lﬂij D;; be the multiset of the overall SCOs received with their multi
plicity.
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e Letd be the overall number of SCOs mentioned anywhere in the béds,

§= Z |Dij| = Zpij(tijk)
ij

ijk

o LetT = {t;jx : Vijk} be the set of the overall SCOs in the bids disregarding
their multiplicity.

e Let G be the set of negotiated goods.
e U;, € N is a multiset of goods standing for the initial stock of thetianeer.

o U, € N is amultiset of goods standing for the number of goods thée@naer
desires to end up with.

e M™ c N% is a multiset of goods standing for the number of goods aviailn
the auctioneer after applying supply chain operations in a production process.

The auctioneer has to decide which SCOs to accept and in whiehn to implement
them. Thus, we define ailocation sequencas

Definition 5.8 (Allocation Sequence)An allocation sequencé& is a sequence of
SCOs:
¥:{1,2,...,0} >T

wherel € N is the length of the sequence.

O
We will say that a SCQ,;, is contained in the allocation sequence to say that the
kth SCO in thejth atomic bid of bidder belongs to the allocation sequence. More
formally, with an abuse of notation, we will write

tiyk €X <= Im e {1,..., 0} st.B(m) = tiji (5.9)

Furthermore, le{Zx(,,), Ox(m)) b€ the input and output multisets of the transition
holding them-th position ofX; and Iet|E‘1(tijk)| be the number of times;, occurs
within the sequenck.

Given an allocation sequen&kwe can obtain the set of goods held by the auction-
eer after each SCO. We illustrate this fact by means of tHeviirhig example.

Example 5.10. Say that an auctioneer begins with, = {2’'a + 2'd}. If we apply the
first SCO in a sequend@sx (1), Ox1)) = (2'a,1’c) (from two units ofa produce one
unit of ¢), the auctioneer ends up with! = {1’c + 2'd}. Formally, we can express
this operation as an equation over multisets:

M (g) = Uin(g) + Os1)(9) — Iz (9)

The application of the SCO above is only possible becauseutvits of gooda are
available. This condition maps to:

Uin(9) > Is1)(9)



5.4. Winner Determination 103

O
Let M™ ¢ N¢ be the goods held by the auctioneer after applyingtiie SCO in
an aIIocation sequence. We can generalise the two equations above as follows (let

- ln)
M™(g) = M™Hg) + Osm)(9) — Ts(m) (9) (5.10)
M™H(g) > Iy (9) (5.11)

Notice that the length of the solution sequerice- |X| will be at most equal to the
overall number of atomic transformations submitted, 4.€. 4.

Equatio 5.1 can be written in a more synthetic form by erdbreglinto one for-
mula its recursive structure:

m—1
)+ Z (Oswy(9) = Zs@y(9) = Isim)(9) (5.12)
=1

since
M™(g) +Z Osy(9) — Iz (9)) (5.13)

Notice that an allocation sequence WI|| not necessarily bal@a solution to the
MMUCA WDP. We are now ready to define under what circumstamacssquence of
SCOs constitutes a valid solution:

Definition 5.9 (Valid Solution Sequence)Given a multiset/;,, of available goods and
a multisetA,,,; of required goods, an allocation sequebci®r a given set of XOR bids
over SCOg,;y, is said to be &alid solution sequend#:

(1) X either contains all or none of the SCOs belonging to the saomiabid. That
is, the semantics of the BID operator is fulfilled:

dk - tijk €Y = Vk |271(tijk)| = Dlj(tljk>

Intuitively, this means that iE contains a SCO8;;;, of bid Bid;; = (D;j, pij),
then it must contain all thg ;. € D;; with the corresponding multiplicity.

(2) X does not contain two SCOs belonging to different atomic lbgthe same
bidder. That is, the semantics of the XOR operator is futfille

tijk, tijw €5 = j=7'
(3) Equation[[5111) holds at each step of the solution sezpiEn
M™Hg) > Tsmy(9) vm € [1,4),Vg € G (5.14)
that is equivalent to equation{5]12):

m—1
)+ Z (Oswy(9) = Zswy(9)) > Tsm)(9) (5.15)
=1

Ym € [1,{],Vg € G
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This condition ensures that all SCOs have enough input gaeaitable at each
step of the SCO sequence.

(4) The set of goods held by the auctioneer after implemgrtia SCO sequence is
a superset of the goods the auctioneer is expected to endhup wi

M (g) = Uour(g) Vg € G (5.16)

that is equivalent to:

4
Z/fzn(g) + Z (Oz(m) (g) — Iz(m) (g)) > uout(g) Vge G

m=1

O
The revenuefor the auctioneer associated with a vadiolution sequencg is the
sum of the prices of the bids associated to the supply chanatipns in the solution
sequence. Then, according to item (1) of definifion 5.9, aid;; = (D;;,p;;) isin
the winning set if all the transitions iR;; are in the winning set. Then, it is easy to see
that the set of winning bids can be expresse®és= {Bid,; € B|3k S.t.t;;r € X}.
Then, the revenue of the auctioneer is computed as:

Z Dij (517)

Bidij eB*

Definition 5.10 (WDP). Given a set of XOR bids and multisets,, andi{,,; of ini-
tial and final goods, respectively, the winner determimapooblem is the problem of
finding a valid solution sequenégthat maximises the revenue for the auctioneer.

O

Before going on, a comment on the definition of allocatiornuggrge is in place. In
the definition given above, we make the hypothesis that oméy®CO is performed at
each step of the solution sequence. However, it is cleattleatature of our problem
admits an eventual concurrency of SCOs. For instance, it lneathe case that two
SCOs can be performed in parallel, i.e. at the very same Btaghis reason we notice
that it is possible to extend the definition of allocationiserce to capture concurrency.
We leave out such generalisation as a matter of future work.

With this allocation rule at hand, plus the bidding languageoduced in section
B3, theMixed Multi-unit Combinatorial Auctiomodel is completely defined.

5.4.3 Mechanism Design

An important issue in auction design concerns tiggime-theoreticaproperties. We
note here that the central resultrirechanism desigion the incentive-compatibility of
the Vickrey-Clarke-Groves (VCG) mechanism (Ausubel antgkdim, 2006b), carries
over from standard combinatorial auctions to MMUCAs. REttedt the VCG mecha-
nism allocates goods in the most efficient manner and thearrd@tes the price to be
paid by each bidder by subtracting from their offer the défece of the overall value
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of the winning bids and the overall value that would have beésinable without that
bidder taking part. That is, this “discount” reflects the tritnution to the overall pro-
duction of value of the bidder in question. The VCG mechanisrstrategy-proof:
submitting their true valuation is a (weakly) dominant &gy for each bidder. As an
inspection of standard proofs of this result reveals (MagCet al., 1995), this does
not depend on the internal structure of the agreements gleatts make. Hence, it also
applies to MMUCAs.

However, notice that our focus is centred on an efficientallion rule, and we do
not argue about mechanism design issues.

5.5 Subsumed Auction Models

Our model of mixed multi-unit combinatorial auctions sulm&s a range of combinato-
rial auction models discussed in the combinatorial austiiberature (see sectign3.P.1),
namely:

e Single-unitdirect and reverse auctions;

e Multi-unit direct and reverse auctions, where there may be severatimgliish-
able copies of the same good available in the system;

e Multi-unit direct and reverse combinatorial auctions;

e Double auctions or combinatorial exchangeswhere the auctioneer will be
able to both sell and buy goods within a single auction. Weukhagtress
that there are important differences between our mixedi@stand models
known asdouble auction(Wurman et al., 1998) ofCombinatorial exchanges
(Sandhoim et al., 2002). The most important difference &t tfthese mod-
els do not incorporate the concept ofsaquenceof exchanges, which is re-
quired if the intention is to model some sort of productiorogass. In
the formulation of the WDP for combinatorial exchanges gy Sandholm
et al. (Sandholm et al., 2002), for instance, accepting “cincukads such as
BID({(1'a,1'b)},10) andBID({(1’b,1’a+1’c)}, 10), to obtainc for 20<€ , would
be considered a solution sequence. With our semantics id,ihowever, this al-
location sequence igot valid: the first agent needs to receiwebefore it can
produceb, but the second agent needs to recéilaefore it can produce and
¢. Hence, no deal should be possible. In fact, the MMUCA can ded uo
simulate combinatorial exchanges (and double auctions).irfstance, the bid
BID(1'(1’a, 1’b), 10) can be rewritten asip(1'(1’a,®) + 1/(, 1b), 10) to ex-
press that a bidder will only delivérif it receivesa, but that the order does not
matter. Of course, if no true SCOs (imposing an order) ard,uken the simpler
model of combinatorial exchanges is to be preferred.

e Multi-Unit Combinatorial Reverse Auctions with transfahility Relationships
among Goods A MUCRALtR, as proposed in chaptEl 4, can be modelled by
allowing the auctioneer to submit bids representing itsrimil SCOs along with
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their costs. In fact it increments its expressiveness ak alklwing to represent
XOR combinations of multisets of internal SCOs.

e Combinatorial Auctions for supply chain formationintroduced in
(Walsh and Wellman, 2003). Walsh and Wellman (Walsh andiil, 200B)
tackle a similar problem to ours, focusing on supply chamrfation. Although
their contribution is very significant, we find limitationkag three dimensions.
Firstly, they do not allow a provider to submit bids on burdief SCOs.
Secondly, they do not define a bidding language (in facty thgénts submit a
bid with a single SCO each). Finally, the SCO net that defihestipply chain
has to fulfil strict criteria: acyclicity, SCOs can only proze one output good,
etc.

Our bidding language as well can be viewed as a generalisatithe state-of-the-art
bidding languages for combinatorial auctiops (Nisan, 2006 fact, it can be easily
applied as well to all the above mentioned aucfions

e in single-unitdirect auctions, we only have atomic bids of the type

BID({(Z,0)},p)
whereZ is a set such thaf| = 1.

e in multi-unitdirect auctionsZ| = Z(g) < n, wheren is the number of units of
goody at auction (there is a single good at auction).

¢ in multi-unitdirect combinatorial auctiori&(g) < n, wheren, is the number of
units of goody at auction (there are multiple goods at auction).

e in combinatorial exchangese have bids of the type:

BID({(Z,0)},p)

and
BID({(0,0)}.p)

e in MUCRAtRbidders can send bids of the type

BID({(0,0)}, p)

and the auctioneer itself can send bids in the form:

BID({(Z,0)},p)="

where~ is an upper bound on the maximum number of times an operasion ¢
be performed by the auctioneer. We clarify this point by nseafithe following
example:

SWe provide here the direct cases. The reverse cases areaatasined with small changes.
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Example 5.11(MMUCA as MUCRALtR). This example aims at representing, by
means of the bidding language introduced in sedfich 5.3atltion described
in exampldZb. The bids, sent by the very same auctionegregmesenting its
internal production structure, are (from figlirel1.1):

BID (1'(1'butter 4 3'sugar + 2 flour, 2'dough), —5)<7* OR
BID(1'(2'margar. + 2'sugar + 1 flour + 8 apples, 2’ filling), —6)=72 OR
BID(1'(4’ filling + 4 dough, 4 apple pig, —14)=7

They represent thlake Dough Make Filling, and Baking operations respec-
tively. Notice thaty;, 2, and~s represent the maximum number of times each
internal operation can be performed by the auctioneer. i§tda example of the
richer expressiveness of our bidding language, since ircélse of MUCRAtR
we hady; = 72 = 73 = oo. Itis obvious that there always exists an upper bound
on the number of times each physical operation is perforriée. bids sent by
the bidders, as expressed in equati@nd (4.11d (4.5), cendly encoded in our
bidding language as follows:

By = BID(1'(0, 100" butter + 200'margarine), —200) (5.18)
By = BID(1'(0, 200" flours + 300" sugar), —100) (5.19)
Bs = BID(1'(0, 800 apples), —200) (5.20)
By = BID(1(0, 200 dough + 200’ filling), —1300) (5.21)
Bs = BID(1'(0, 200" apple pie$, —2400) (5.22)

o

e in Combinatorial Auctions for SCkidders can send bids in the form:

BID({(Z,0)},p)
such that:

— there are not cycles in the supply chain network topology
-10]=1

5.6 Conclusions

In this chapter we provided a solution to requirements 1$13me[5.2. In what follows
we list the solution provided by MMUCAS to the requiremergsaciated to thenake-
or-buy-or-collaboratedecision problem:

(1) MMUCAs support the representation of both cyclic anddicysupply chain
network topologies, since the bidding language and the itlefinof the WDP
are independent on the topology of the network;
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(2) MMUCAs allow to express complementarities among sumplgtin operations,
since they allow the submission of bids on multisets of SCOs;

(3) MMUCAs allow bidders to require supply chain operatioas explained by
means of exampl[ed.4;

(4) MMUCAs allow to express resource sharing, as showedeimfl® of section

B3,

(5) MMUCAs allow to express minimum/maximum capacity coastts on the num-
ber of times each supply chain operation can be performedheiaonstructs
introduced in section5.3.5;

(6) MMUCAs allow to express manufacturing operations withltiple outputs, as

shown in iten_I# of sectidn 5.3.7;

(7) MMUCAs provide a coordinated scheduling plan among tippsy chain stake-
holders: the output of the MMUCAs WDP is an ordered and imgetable
sequence of SCOs;

(8) MMUCAs allow to solveMake-or-buy Make-or-buy-or-collaborateand SCF
decision problems;

(9) MMUCAs support the specification of the configuration thestioneer expects
to end up with via thé/,,; multiset; and

(10) MMUCASs support the specification of the initial stoclahel/;,, multiset.

Summarising, the main extension introduced in this chapitérrespect to CAs for
SCF is that bidders can send bids in the form:

BID({)(Z1,01) + ... + &}, (Z,, On) }, p) XORBID(. . .)

i.e. to submit XOR combinations of atomic bidsmltisets of supply chain operatians
Hence, in particular, it improves the expressiveness amddhge of solvable problems
when employing Combinatorial Auctions for SCF.

Another important contribution of this chapter is the impormation of the concept of
a sequencef supply chain operations as a solution to the WDP. Thisdsiired if the
intention is to model some sort of production process. Weidmas a solution to the
WDP the sequence of operations maximising an auctionesreue and fulfilling the
bidders’ constraints.

Notice that there are two different ways in which an MMUCA damemployed.
The hypothesis underlying both possibilities is that theeemutual agreement between
bidders and providers on which goods are negoﬂat@iven this, we envisage two
possibilities:

o the first one is that bidders are constrained to bid on a fixeafspreviously
defined supply chain operations. For instance, an auctianag constrain the
bidding on supply chain operations like the ones in figure 5.1

“We call the set of goods at auction thegotiated goods
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Requirements MMUCA | TDN
1 | express an offer/request on bundles of goods v v
2 | express an offer of a SCO with a single output product v v
3 | express an offer of a SCO with multiple output products v
4 | express arequest of a SCO v
5 | express the offer/request of a bundle of SCOs v
6 | express combinations of bids v
7 | express the min/max number of times SCOs are performed v
8 | express resource sharing v
9 | express an auctioneer’s initial stock v
10 | express the auctioneer’s final requirements v
11 | supportacyclicsupply chain networks v v
12 | supportcyclic supply chain networks v
13 | compute thescheduled sequenoé SCOs to perform v
14 | ensure computational tractability while preserving ojatlity ?
15 | solve SCF decision problem v v
16 | solve themake-or-buy-or-collaborateecision problem v
17 | formally represent the search space ?
18 | graphically represent the search space ?
19 | assess the computational tractability based on the profileroture ?

Table 5.2: Requirements associated torttake-or-buy-or-collaboratproblem.

o the second one is that there is a complete freedom of biddireng supply chain

operation, as long as it only involves thegotiated goodas inputs or outputs.
For example, unlike in the previous point, a bidder may sebilaffering the
supply chain operatioklake Pig that takes as inputs all the basic ingredients and
provides a finished apple pie. Notice that this operatiorotspnesent in figure

B1.

With the introduction of MMUCAs and of the associated bidgianguage, we
consider solved requirements 1-13 in tdbld 5.2. Howevethawe not provided any
computational method for solving the WDP (requirements®}in tabld5.P). In the
following chapters we provide some solutions to this issue.






Chapter 6

Solving the MMUCA Winner
Determination Problem

By means of the MMUCA bidding language we make possible taesgany possi-
ble type of supply chain operation over any type of supplyircimetwork topology.
Moreover, the MMUCA winning rule on the one hand accountstf@ semantics of
the bidding language, and on the other hand automates tipéysthmin formation and
planning process. However, the auctioneer lacks of a coatipnal method to solve
the WDP. In this chapter, we provide a solution to such issue.

Firstly, applying a technique similar to the one employedMiJCRALR in section
E, we succeed in mapping the MMUCA WDP t€anstrained Maximum Weight Oc-
currence Sequence Probld@MWOSP). Likewise MUCRALR, two benefits stem from
this mapping. As a first benefit, we can inherit and importtadl Place Transition Nets
theoretical and formal results. As a second benefit, we sacireefficiently solving
the MMUCA WDP by means of Integer Programming (IP) for a witkess of supply
chain network topologies, namely the acyclic ones.

The fact that the WDP can be solved by means of IP only for &cgapply chain
network topologies poses a serious requirement to the cgtility of MMUCASs to
some real-world scenarios. Thus, as a second result of fiaigter, we extend the
class of solvable MMUCA WD problems at the price of an efficiedecrement. We
provide an IP model, built directly upon the definition of MNDA WDP, that allows
solving any class of problem on any network topology. Howgthe price to be paid is
that the computational complexity of the underlying opsation problem significantly
increases.

This chapter is organised as follows. In secfion ®.1.1 weeea mapping of the
MMUCA WDP to a CMWOSP. In sectioh 8.2 we provide an IP formiglatof the
MMUCA WDP that applies to any network topology. Next, in sen{&.3 we discuss
briefly on computational complexity. Finally, in sectiodléve draw some conclusions.

111
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6.1 Mapping MMUCA to WPTN

In this section we demonstrate that an instance of the MMUCBPAtan be trans-
formed into an instance of the Constrained Maximum Weightu®ence Sequence
Problem (CMWOSP), introduced in sectlon4]5.3. We recall hCMWOSP is an op-
timisation problem defined on Weighted Place TransitiorsN&/PTNs). WPTNs are
an extension of Place Transition Nets (PTNs) in which a sassociated to the firing
of each transition (see sectibnl4.4). We introduce this rimgppecause it allows:

e to incorporate analysis methods to analyse behaviourakpties of WPTNSs;

e exploiting such analysis methods we provide an IP formaifefor some classes
of WPTNSs, and therefore some classes of supply chain nettwpkogies.

6.1.1 The intuitions behind the mapping

The idea behind the mapping of the WDP to a CMWOSP is that aniatupply chain
operation(SCO) can be viewed as a transition in a WPTN. Consider th@foig offer,
expressed by a bidder in the bidding language introduceedtics[5.3B:

Bidy, = BlD(ll(Q/HQO, 1/02 + 2’H2), —8) (61)

This represents an offer over an hydrolysis process: 2 noflester are transformed
into 1 mole of oxygen and two moles of hydrogen at a pric&€®&. Then, consider
the transition depicted in figufe®.1, and say that each plmessents a good. Let the
place labelled withH,O be water H, be hydrogen, an@- be oxygen. The transition
in figure perfectly captures the semantics of a supply chpération: the input places
of the transitions are the input goods of the SCO, its outfadqgs are the output goods
of the SCO, and the transition cost is the cost associatdtet&§CO. Analogously, an
SCO offering goods can be represented as a transition wiytoaoitput places, whereas
an SCO asking for goods as a transition with only input places

\2.@

Figure 6.1: Example of an SCO represented as a transitiokMRaN.

Example 6.1. Say that the following bids, expressed in the bidding lagguaf sec-
tion[&3 and graphically represented in the WPTN of fiduré &r2 submitted to an
MMUCA:
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(1) Bid bid, offers two moles of water & 10 (the minus represents the fact that the
bidder gets paid):
bid, = BID(1'(0,2'H20), —10) (6.2)
(2) Bid bid, offers two moles of water & 14:

bidy = BID(1'(0,2'H,0), —14) (6.3)
(3) Bid bids stands for an offer to perform the hydrolysis processS@
bids = BlD(1/(2/H20, 1/02 + 2/H2), 78) (64)

(4) Bid bid4 represents an offer to buy the products resulting from thetien for
€ 23 (the positive cost represents the fact that the biddes peney):

bidy = BID(1'(2'Hy + 1'04, ), 23) (6.5)

(5) Bid bids5 represents an offer to buy the products of the reactiof@5:

bld5 = BlD(l/(Q/HQ + 1/02, (Z)), 25) (66)

bidy bidy | € —14

\/

2

€ 8| bids

€23 | bidy €25 7| bids

Figure 6.2: Example of bids in a MMUCA represented as a WPTN.

In exampld &1l finding the revenue maximising solution isigtrtforward. Firstly,
buy two moles of water frorhid, , then process the water through the SC@®iify, and
then sell the products of the reactionital;. The total revenue of the supply chain is
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25 — 8 — 10 =€ 7. Notice carefully that this solution is the solution to ORWOSH
defined on the WPTN in figufe®.2 with initial marking empty atebtination marking
M satisfying the following constrais

Ma(H20) >0 (6.7)
Mq(O2) >0 (6.8)
Ma(Hz) >0 (6.9)

Given the example above, we argue that if we:
(1) build a WPTN joining all the atomic SCOs received withidd
(2) set the initial marking to the goods initially availalitethe auctioneer; and
(3) set some constraints on the final marking,

then the solution to the CMWOSP corresponds to the solutidhe MMUCA WDP.

Informally, this is the kind of mapping we intend to demoastr We obtain several
advantages from this mapping. We can readily import a sefiessults and tools valid
for PTNs, as for instance tools to analyse the reachabititplem on the PTN. As a
major benefit, we manage to efficiently encode the MMUCA WDRM®ans of IP. In
particular, in response to the requirements 17-21 of [alllefchapteflb, this mapping
also allows us: (1) to visually and formally explicit the sgaspace associated to the
WDP; (2) to assess the computational tractability of the WWHaBed on the problem
structure; and (3) to study structural and behavioural @riigs of the resulting supply
chain. However, we have to take some more details into a¢coun

¢ In the previous example, given the WPTN representatiorh) 820 can be used
an arbitrarily number of times. Instead, the semantics efiidding language
imposes that SCOs must be used a limited number of times lIRemtave solved
such problem in the case of MUCRACIR introducioigl places(see figur&Z13).

e How can we express on the WPTN an offer/demand over a bundiepaiple-
mentary) SCOs? That is, how could we express a bid like

BID(1'(1'butter + 3'sugar + 3' flour, 2'dough)+ (6.10)
1"(8 apple + 2'margarine + 1’ flour, 2’ filling), —20)

offering to perform both th&lake DoughandMake Filling operations?

e How can we express on the WPTN a set of mutually exclusive (X&Bmic
bids? That is, how could we express a bid like:

BID(1'(M, 200'margaring, —200) XORBID (1'(0, 200'butter), —200)

In the following section we provide an answer to all thesestjoas.

1S0 far under the hypothesis that transitions can fire at nmust.oWe will solve the issue of limiting the
number of times each transition can fire further on.
?In case of no free-disposal on the auctioneer side reptasgth =.
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6.1.2 Representing Bids

Firstly, we must recall the notation employed in secfionZ.4
e Thej—th an atomic bid of bidderis represented by a pair
Bid;j = (Dij,pij)

wherep;; is the price a bidder is willing to pay/be paid to have allecathe
multiset of SCOD;;.

o For eachBid;;, lett;;;, be thekth SCO inD;;.

o LetD;;(t;;x) be the multiplicity oft;; in D;;.

o LetD = U;;D;; be the multiset of the overall SCOs received with their multi
plicity.

e Let o be the overall number of SCOs mentioned anywhere in the ba&ls) =
ID| = Zij |Dij|-

e LetT be the set of the overall SCOs in the bids without their mlitfiy, that is

e (G is the set of negotiated goods

e U;, € N is a multiset of goods standing for the initial stock of thetineer.

e U,,; € N%is amultiset of goods standing for the number of goods thé@nzer
desires to end up with.

e M™ € N¢ is a multiset of goods standing for the number of goods abvtailto
the auctioneer after applying supply chain operations in a production process.

In exampld&l1, we restrict ourselves to the case in whichtagan only submit one
atomic bid. Moreover, we only consider bids over a singleratoSCO, i.e.|D;;| =
1. Next, we progressively relax all these constraints. Fifstll, we explain how to
represent on a WPTN a bid on a bundle (multiset) of SCOs.

Expressing bids on bundles of SCOs

For a bidBid;;, combinatorial on SCOs, we have to ensure that:

ijs
e if an atomic SCQ;;;; in bid Bid;; is included in the solution sequence,

— it must be included in the solutidB;; (¢;;1 ) times;

— all the other atomic SCQ5;; within the same atomic bid (all the SCOs in
D;;) must be include®;; (¢, ) times as well;

this maps to item (1) of the definition of valid solution sence (definitior 519);
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e the price that has to be paid to (received by) the bidder iptle of the whole
bid (py;)-
We achieve this by introducing some auxiliary places anasiteons. The example in
figurel6.3 represents the following bid:

Bidij = BlD(ll(lel, 1’])2 + 2’p3) + 3/(1Ip4, 1/176 + 1’])7) + 2’(1/])5, 1ng + 1/p9), —20)
If we refer to the three atomic SCOs as:
tij1 = (2'p1, 1'p2 + 2'p3)
tij2 = (1'pa, 'pe +1'pr)
tijz = (1'ps, 1'ps + 1'pg)
We can rewrite the bid in a more readable way:
B’de = BlD(lltijl + 3/tij2 + 2/tij3; 720)

This is a bid on a bundle of SCQ$;;1, t;;2, tij3 } with associated pricg;; = —20€.

Cij’_
/N
(e 1
N_ 7 T~ |
| tij 1 €-20
7=
-7 / \
- / \
- / \
- / W2
_- / \
_ / \
e - @ e ‘ @ c--g\‘ - @
Jl, 7 N ij2, 7 N (VRN
( l ( | ( )
N N_A N _A
N N N
\\1 2 \\1 1 \\1 1
N N N
a N a
tij1 tijo tij3
2 1 1
1 1 1

Figure 6.3: Bids on bundles of SCOs.

In general, in order to incorporate a bid over multiple SC@sproceed as follows:

o for each bidBid;; we introduce an auxiliary transitiagy; (bid transitior) and an
auxiliary placec;; (bid placg.

o for each atomic SCQ;;;, within bid Bid;;, we add an auxiliary place;;
(¢ij1, cijo, @andejs in figure[GB), calledSCO place
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o we attach the valuatiop;; of bid Bid;; to the correspondinbid transitiont;;.
In the example, we associate the bid cpgt=-€ 20 to transitiont;;. Hence,
whenevet,;; fires, the cost/gaip;; is added to the cost of the firing sequence.

It is easy to check that the WPTN if figule—bh.3 allows for firingyasubset
of {tij1,tij2,ti;3} (depending on the tokens) with the corresponding muliifgis
(1,3,2). Notice also that firing at least one of the three trans#tioequires to previ-
ously fire transitiort;;, because this guarantees having the required tokens infié i
placesc;ji. In this way, we guarantee that firing at least one of the ttians im-
plies firing alsot;;, and therefore that the corresponding money is added tovéralb
cost/revenue (recall that we are dealing with a WPTN).

Any legal firing sequence on the WPTN in figlrel6.3 guaranteasgelecting at
least one of the; ;;, implies also selecting;. However, we need a further requirement:
either none of the, ;;, fires, or all of them fire. If they all fire, they have to fire as man
times as expressed by their multiplicities in the bids. kafigure, we have to enforce
that if tij fires, thenﬁijl fires once Dij (tijl) = 1), tijQ three timeSDij (tijg) = 3),
andtijg twice (DZ] (tijg) = 2)

The topology in figur€6l3 cannot guarantee such propertyseyf.i For instance, a
firing sequence in which only transitiohg, andt;;» fire (nott;;3) is legal but does not
comply with our all-or-none assumption. In order to enfatcere simply impose some
constraints on the final configuration of the net. Say thatmweose that in the final
configurationc;;1, ¢;;j2, andc;;3 contain no tokens. More formally, the final marking
should fulfil the constraints:

Md(cijl) =0
Md(cijg) =0 (6.11)
Md(Cijg) = 0

This implies that all the legal firing sequences leading ®fthal configurationM
contain either none or the three transitians, ¢;;2, t;;3 with multiplicities 1, 2, and3
respectively. In fact the only possible firing sequenceséher no firings/ = {}, or

J = (tij, tij1, tijo, tije, tijo, tijz, tijs) (6.12)
J = (tij, tijs, tija, tijo, tiji, tije, tij2) (6.13)
J=... (6.14)

We remark that the semantics of multiplicity of the SCOs w&tein bid Bid;; is
completely captured by the provided WPTN. The weights ofates connecting bid
transitionst;; and SCO places;;;, along with the constraints on the final marking,
enforces that none of the SCOsI; is used, or all of them are used as many times as
indicated by their multiplicities irD;;.

Expressing XOR of atomic bids

We are now able to represent an atomic bid on a WPTN. Howewestil have to
express the XOR relationships among the atomic bids thaedosm the same bidder
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tij1 tijo

eRclcRolcHCH

Figure 6.4: XOR of atomic bids

to fully represent our bidding language. Consider the foitg bid:

BID(1'(2'p1,1'p2 4+ 2'p3) + 3'(1'pa, 1'ps + 1'p7) + 2'(1'ps, 1'ps + 1'py), —20)
XOR
BID(1'(0,2'ps + 2'ps) + 1'(3'ps, 2'ps + 2'pg), —10)

If we refer to the five atomic SCOs as:

tij1 = (2'p1, 1'p2 + 2'ps3)
tijo = (1'pa, 1'ps + 1'p7)
tijz = (1'ps, 1'ps + 1'po)
tijn = (3'ps, 2'ps + 2'po)
tijra = (0,2'ps + 2'ps)
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We can rewrite the bid in a more readable way as follows:

BlD(l/tijl + 3/tij2 + 2/tij3; 720) (615)
XOR (6.16)
BlD(lltijfl + 1/t1‘j/2, 710) (617)

We refer to the two bids submitted by a bidden XOR as toBid;; and Bid;; . This
means that an auctioneer can select at most one of them (temEE3).

Figure[6.3 depicts bid®id;; and Bid,;. Bid Bid,; is over SCO%,;1, t;52, and
tij3, whereas bidBid;; is over SCOg;;,; andt;;». The cost associated #id;; is
c(ti;) = —€ 20, and the cost associatedB®od; ;- is c(t;j) = —€ 10.

In order to incorporate the semantics of the XOR operatartié WPTN, we in-
troduce a new place, labelled wittX ©%, calledXOR place Notice thatbid placesc;;
andc;;» have been substituted by tK©R place This WPTN topology enforces that at
most one of the two transitionts; and¢;; can fire. When either of them fires, it con-
sumes the unique token ji* ©% inhibiting the firing of the other one. It is clear from
previous section that transitiar; represents bidid,;; and transitiort;;; represents
bid Bid;; . This corresponds to selecting at most one bid out of Bitlg; andBid;; .
This reasoning applies to the casenobids in XOR among them as well.

6.1.3 The Mixed Auction Net

In the previous section, we showed the intuitions behindhtapping of the MMUCA
WDP to a CMWOSP. We recall that the CMWOSP is an optimisatiablem defined
on WPTNSs, thoroughly explained in section415.3.

In section[Zb we succeeded in mapping the MUCRAIR WinnerDeaination
Problem to a CMWOSP. In order to perform such mapping we hduniid a WPTN
departing from the internal production structure of an muneter and from the received
bids. This WPTN was called th&uction Net Along the lines of such strategy, in this
section we build a WPTN with a similar function for the MMUCADNP. We shall call
such WPTN theMixed Auction Neta WPTN that shall allow us to define the MMUCA
WDP as a CMWOSP.

We will now provide the definition oMixed Auction Net Informally, such net is
composed of three types of places, namely:

e good placesrepresenting goods at auction;

e SCO placesuseful to control the number of times each SCO is performed

e XOR placesuseful to control that at most one bid per bidder is selected
Then, it is composed of two types of transitions, namely:

e SCO transitionsthat represent the SCOs submitted by the bidders

¢ bid transitions useful to control the number of times each SCOs is employed
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The arc weights are associated so that some propertieslfitedu Finally, we asso-
ciate a cost to eadbid transition corresponding to the valuation associated to a bundle
of SCOs.

In what follows the notation employed for describing bid¢his one defined at the
beginning of sectiof6.11.2. Moreover, we indicate witly, andO;;; respectively the
input and output multisets of SC&);.

Definition 6.1. Given a finite set of bid#$3 in the XORbidding language over a set of
goodsG, aMixed Auction Nets a WPTNS* = (P*,T*, A*, E, My, C') where

P* :PgUPSCO U Pxor
T =T UL

SCO

A* =A_.,UApUAxor
and
(1) P¢ isthe set ofyood placesFor each goog € G add a place,.
(2) B, isthe set ofSCO placesFor each atomic SCH,;, € T add a place;;y,.
(3) Pxor is the set oKOR placesFor each biddei add a placeX ©%.
(4) T’ is the set obid transitions For each bidBid;; € B add a transitiot,;.

(5) L, is the set oSCO transitionsFor each atomic SCE:‘tijk € T add a transi-
tion tijk-

(6) A, isthe set oSCO arcsltis built as follows:

At o
Asco - Asco U Asco

where

Al ={(pg:tijr) € Pa x Tp | g € Ty}
Al ={(tijk,pg) € T x Pc | g € Ouji}
are theinput SCO arcandoutput SCO arcsespectively.
(7) Apisthe set obid arcs It is built as follows
Ap = AL U A
where
Ap =A{(tij, cijr) € Tp X Beo }
A = {(ciji tiji) € Reo X Lo}

are theinput bid arcsandoutput bid arcgespectively.

SHenceforth, we indicate with the same label transitionshenWPTN and the corresponding supply chain
operations.
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(8) Axonr is the set oXOR arcs It is built as follows:
Axor = {(pXOF ti;) € Pxor x T}

(9) The arc expression function is built as follows:

E(pg,tijr) = Ziji(9) (pg» tiji) € Al (6.18)
E(tiji,pg) = Oijr(9) (tijk,Pg) € Areo (6.19)
E(ciji, tijr) =1 (Cijk, tiji) € AlB (6.20)
E(tij, ciji) = Dij(tije) (tij: cijk) € AB (6.21)
E(p O ty;) =1 (pXOR t,;) € Axon (6.22)

(10) The bid cost functiod’ : B — R is built as follows:

C(tijk) =0 tijr € 15

SCO

C(tij) = Dij tij S TB
(11) The initial marking is defined as

Uin(g9) pg € Pa
1 p € Pxor (6.23)
0 peER

sco

Mo(p) =

O

Informally, P represents the set of negotiated godtis,the set of atomic bids,
Pxor the set of biddersL; ., the set of atomic supply chain operations, dhd, the
set of places thatontrolsthe execution of SCOs.

Then, A ., connects the places representing the input goods and ayapuds of
each atomic SCO#;;, to the transition representing i;{;). The input goods are con-
nected by incoming arcs whereas the output goods by outgoitgy For instance,
transitiont;;; in figure[63 corresponds to the atomic S€Q = (Z;j1,0i1) =
(2'p1, 'p2+2'p3). Therefore, place;, representing the input goodtg,, is connected
to transitiont;;; by means of an incoming arc; and plagesandps, representing its
output goods, are connectedtig; by means of outgoing arcs.

Then,Ap is a set of arcs such that: (1) bid transitignis connected to SCO places
cijk; and (2) SCO places;;, are connected to atomic transitionsg; :

Axor is the set of arcs that connects all fhe“ " places to the bid transitiorts;
corresponding to bids coming from the same provider

The bid cost functior® : B — R is built in a way such that:

o the cost of a SCO is Qi(¢;;,) = 0; and
e the cost of a bid transitiorts; is the price of bidBid;; (c(ti;) = pij)-

Example 6.2. TheMixed Auction Neassociated to example in figurel6.4 is defined as
follows:
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e Po={p1,....po}.

o T = {t;.tu}.

e Pxor = {p;*°%}.

o T, = {tij1,tije, tija, tijri, tijra}

L4 PSCO = {cijlacijQ;cij3;cij’17cij’2}-

o Aco = {(p1,tij1), (tij1,p2), (tij1sps), - - -, (psstijrn)s (Lijras ps), (tijra, po) }-

o Ap = {(tij,cij1), (ciji, tij1), (tiz, ciga)s (Cigas tija)s s (tigrs Cijrn)s (Cigras tign) )
o Axor = {(FF tij), (0%, tij0)}.

e TheE function iﬂ:

E(ph 1]1) =2
E( ’le;pQ) 1
E( 131,193) =2
E(ﬁw,cwg) =3
e The cost function is:
—20 t=t;
Ct) = -10 t=ty (6.24)
0 otherwise
e The initial markingM, is:
1 p=pror
M = ' 6.25
o(p) {0 otherwise ( )

6.1.4 Expressing the MMUCA WDP as a CMWOSP

In this section we introduce a CMWOSP on tiexed Auction Netwhose solution can
be easily transformed into a solution to the correspondidyMCA WDP. In this way,
we can exploit several results valid for CMWOSPs, WPTNs anN<? In particular,
by means of this mapping, we can solve the MMUCA WDP by meatis®fvhenever
the associatetMixed Auction Nets acyclic (see sectidn4.7). Our aim in this section
is showing that, from the firing sequence associated to acpkt CMWOSP on the
Mixed Auction Netwe can derive an optimal solution sequence to the correipgn
MMUCA WDP.

4We only provide a sample of its definition. The whole defimitie represented in figuEE®.4.
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This mapping is based on the analogy between a valid solaégonence and a fir-
ing sequence solution to a CMWOSP. In fact, we can prove tisagaence of SCOs
solution to the MMUCA WDP and a sequence of transitions samuto a CMWOSP
are objects fulfilling similar constraints. In fact, we waatshow that there is a strong
analogy between the SCOs in a MMUCA and the SCO transitiotigiMixed Auction
Net, as well as between the bids in a MMUCA and the bids tramsitin the Mixed
Auction Net. In sectioi 6712 we provided some intuitionsatihis mapping. Obvi-
ously, theMixed Auction Newill play a fundamental role in this sense. The central
point is that, as mentioned in sectibn 611.2, we have to imgosne conditions on the
number of tokens each place contains at the end of the firipgesee (sectiorls6.1.2
and©I.P) in order to ensure that:

¢ the auctioneer fulfils its requirements; and
¢ the semantics of the bidding language is fulfilled.
In particular, we have to ensure that:

e (Auctionee) the good placeill contain at leasl the number of tokens corre-
sponding to the number of goods the auctioneer expects tagnith (specified
by Uput).

e (Bidding languagg

— the XOR placewill contain at leastzero tokens. This ensures that at most
one among the XOR bids is selediedve sayat leastsince it may be that
no bid is selected, thus leaving a token in the place.

— the SCO placeswill contain exactlyzero tokens. This will enforce that
SCOs of a same atomic bid are either all selected with thecomultiplic-
ity, or none of them is selectdd

With these constraints in mind when considering solutiors MMUCA WDP, we can
finally link the solutions to the MMUCA WDP with the solutions a CMWOSP over
aMixed Auction Neas follows.

Theorem 6.1. Given a MMUCA with a multiset of available gootfs,, a set of re-
quired goodd/,.,., and a set of bid€3 in the XOR Iangua&over the goods irG,

solving MMUCA WDP amounts to solving the CMWOSP defined oMtked Auc-
tion Net S* = (P*,T*, A*, E, My, C), with destination marking\, fulfilling the
following constrain®:

Md(p) > Z/{out(g) Pg € PG (626)
Md(p) =0 pe Psco (6-27)
Ma(p) 20 p € Pxor (6.28)

5Substituteat leastfor Exactlyin the case oho-free-disposabn the auctioneer’s side.

8Under the hypothesis that ttOR placecontains one token in the initial marking.

“Under the hypothesis that tiBCO placecontains zero tokens in the initial marking.

8Notice that in the case of OR language we could state exdwlgame if we make appropriate changes
to the WPTN. We should just represent all the bids as in figtlei®. omitting the XOR places.

%In case of no free disposal on the auctioneer’s side simpiigtitute= for > in equation [6.26).
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Proof. =) First, we begin proving that a solution to the CMWOSP carraedformed
into a solution to the MMUCA WDP. Recall that each atomic bashsists of a multiset
of SCOs and a priceBid;; = (D;;,pi;), WhereD;; € NN xNY) js a multiset of SCOs
andp;; € Ris the associated cost/price. The notation employed istledrdroduced
in sectiofG.TIP.

We recall that aolution sequends a mapping: from positions to SCOs:
Y:{1,2,...,0} ->T

wherel € N is the length of the sequence, afids the overall set of SCOs contained
in all bids. Then, in WPTN terms, we can regard isdution sequenck as a sequence
of SCO transition®n the mixed auction net.

Say that/* is the solution to the CMWOSP described in the theorem we e p
ing and that_* is the sequence obtained by restricted to the elements @f_, (or,
equivalently, without the elements 8%). Recall that/* contains bottbid transitions
andSCO transitions

¥ =T, (6.29)

and say thaB* is thesetof transitions removed froni* to obtain:* :
B* = {tij € J*|TB} (630)

Obviously,B* C Tg is a subset of thbid transitions

We aim at showing that* is the solution to the corresponding MMUCA WDP and
that B* is the set of selected bids. Recall that each transitiofl i represents an
SCO. Then:* can be seen as a sequence of SCOs as well:

{2, 0,80 = T, (6.31)

Notice thatl, ., =T
For this reason we have to check thatit is a valid solution sequencelhat is, it
must fulfil each of the constraints expressed in definfiiéh 5.

(1) x* either contains all or none of the SCOs belonging to the saomia bid, so
that the semantics of the BID-operator is fulfilled:

dk - tijk ey = Vk |E*_1(tijk)| = Dij (tz]k)

In sectiof &1 we gave the intuitions that this is the c&kmvever, to prove it
formally, we write the state equation (see equafion{2.263)generiSCO place
Cijk € Beo:

Maleirn) = Mo(ciji) + AT - x (6.32)

Notice from figurd 64 that that both transitiotis € T andt;;r € 1., can
add/remove tokens to/from;;,. Notice also that according to equati@n{%.23) no
tokens are present initially iy ;. Then, we can rewrite the equation as:

Md(cijk) =0 —+ x4 — $tij . Dij (ttjk) (633)

ijk



6.1. Mapping MMUCA to WPTN 125

wherez;,, andx,, , stands for the number of timeg andt;;; fire in the firing
sequencd* respectively.

Then, applying constrainf{6&7) over plagg, we obtain:

Mal(cijr) =0 Vijk (6.34)

Merging with equation[{6.33) we obtain:

0= Ltijre — Ltij * Dij (ttjk) Vijk (635)

Tt

From equation{6.36) we can derive the following chain of licgtions:

ﬂl{iitijk exy” :>3klfijk e J* iﬁij e J* :>tij e B = ... (637)

Then, taking the first premise and the last consequence, vee ha
dk - tijk ey = |E*71(t”k>| = Dij (t”k)Vk (639)
That is what we wanted to show.

(2) ¥* does not contain two SCOs belonging to different atomic biglshe same
bidder, and thus the semantics of the XOR operator is fufille

tijk, tijiw €X° = j=7'
In order to demonstrate this result, we write the state éguait each of the

pXOf € Pxor place and we proceed similarly to the previous demonstratio
We obtain:

Md(p;'XOR) =1- thij (640)
J
and then applying the constraint in equatibn{b.28), we have
1=y, >0 (6.41)
J
> om, <1 (6.42)
J

From equation{6.37) we know that:

tijk <IN fij eJ* (643)
tij’k’ ey = tij/ e J* (644)
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However, for the constraint in equatidn{d.42) we have that:
tij tijg €J =45=7 (6.45)
Then, joining the implications we have:
tijk,tijiw €55 =7 =4 (6.46)
As we wanted to demonstrate.
(3) Equations[{5.10) anf{5111) hold at each step of theisolsequenc&*.

M™(g) = M™H(g) + O (m) (9) — T+ (m) (9) (6.47)
M™7Hg) > Ty (my (9) (6.48)
This condition ensures that all SCOs have enough input gaeaitable at each
step of the SCO sequence.

We recall that the places iR represent the goods (. For the sake of clarity
we rewrite here both equations:

M™(p) = M™Hp) + Et,p) — E(p,t)  Vpe€ *tut®  (6.49)
M™H(p) > E(p, 1) p et (6.50)
We recall that these equations represent the change itvttfie ! marking after

the firing of a transitiort (equation [[6.49)), and the condition of activation of
transitiont in marking M (equation[[6.50)).

Next, we aim at writing equationE{2115) alld (2.14) at eaele®in Py and at
each step of the firing sequengé. Notice from figurd 6l that the only transi-
tions that add/remove tokens from/to the placeBdrare the transitions i®,, .
Then, instead of *, we can employ* of equation[[6.29):

Mm(pg) = Mm_l(pg) + OE*(m) (pg) - IE*(m) (pg)
M Hpg) > I () (D)

That is exactly what we required.

(6.51)

(4) The set of goods held by the auctioneer after implemgritia SCO sequence is
a superset of the goods the auctioneer is expected to endlhup wi

14
9+ Y (Os(m)(9) = Tev(m)(9)) > Uout(9)

Considering the constraints on the final marking of equaio?8) and the initial
marking of equatior{6.23), we obtain:

14
Uin(Pg) + D _(Os-(1)(g) — T+ (1) (Pg)) = Uout (py) (6.52)
=0
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Observe that since the only transitions that have assdcraia-null costs are the
bid transitionsin Tz, and according to equatiofi (6139), the cost associatectfirthg
sequence is:

Cr(J7) = Y Clty)= Y Clty)= Y py (6.53)

ti]‘EJ* tijEB* tijEB*

It is obvious from equatior{{6.B7) that having transitignin the solution sequence
means that bidid,; is in the winning set. Then, we have:

Yoopi= Y. py (6.54)

ti;€B* Bid;; €Winning Set

Then, the quantity maximised by the CMWOSP is equivalenh&auctioneer’s rev-
enue. Hencey* is a valid solution and maximises the auctioneer revenuen(ihis
the solution to the MMUCA WDP according to definitibn . 10.

<) We prove the converse as well. Given a solution to the MMUCRBRVit can be
transformed into a solution to the CMWOSP described in teertam we are proving.
Say? is the solution to the MMUCA WDP. Then, consider the follogiiconstructs.

e The sequence of SCO transition$ : N — T, such that:
Recall thatl' = T, .

e The set of bid transition8* C T’z such that:

tij € B* < Jk s.t. ﬁijk ey (656)

e The sequence of bid transitiod$, : N — Tz formed by arranging in a random
order the elements d8*. More formally, the sequence must be such that:

1 Vtij € B*

T3 (tig)| = {0 (6.57)

otherwise

o J*:TpUTy., — [1,|J5]|+|X*|] is a sequence of transitions obtained concate-
nating the sequences; and¥*. Observe that the sequences are concatenated in
such a way that the elements.ff are placed before the elementsiof.

3* corresponds to the sequence of SCOs solution to the MMUCA WDEreas the
sequence;; contains the bid transitions corresponding to the winniialg.bThat is, if
ti; € Ji, thenBid;; is in the winning set.

Then, we aim at showing that the sequeti¢eés a solution to the CMWOSP on the
mixed auction net with final constraints in equations {6, 46)21), and[[6.28). With
this purpose, we have to perform three steps.

(1) we have to make sure that the final marking constraintfuiked;
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(2) we have to make sure that all the transitiongirare enabled at the step they are
executed; and

(3) we have to make sure that the solution is optimal, i.et tiiere is not another
solution to the CMWOSP with higher associated cost.

In order to solve item (1), we make the hypothesis that alltthasitions inJ* are
enabled. This hypothesis will be confirmed later on. Undes llypothesis, we can
write equationd{2.14) anff{Z]15) at the— th step ofJ* in the following form:

M™Hp) > E(p, J*(m)) (6.58)
M™(p) = M™(p) + E(J*(m),p) — E(p, J*(m)) (6.59)

Embedding the recursion, we can obtain the marking atistags:
M™(p) = Mo+ Y _(E(J*(1),p) — Ep, J*(1))) (6.60)

Then, we write this equation in the final state for all the pa@ the mixed auction
net. Then, say that = |J*| is the length of the sequendé. Analogously, we note

lp = |J3| andly = |X*| We know from sectiof . 6713 that the auction net has three
types of placesKg, P,., andPxor).

e Pxor places. We know that equatidn{8.28) must hold. Then, we trawst that:
ME(pFORY >0 Vi (6.61)

K2

M takes the following form for alh;X°F € Pxor:

M (p;XOR) XOR + Z XOR) E(pz XOR J*( )))
that taking into account definitidn ®.1 becomes:
MZ XOR ZE ORJ* _1_Z|J*1 U _
=1 |5 ()]
J
The intuition behind this are provided by figlirel6.4. No titioss are incoming
into placepX©%, and the only outgoing transitions atg andt;;.. It is easy to

see that sinc& is a solution to the MMUCA WDP, condition (2) of definition
holds, and then we have that:

M (pFOR) 172|JE L(ti;)| >0 (6.62)

Then, equatiorf{6.28) is fulfilled.
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e P, places. We know that equatidn{6l27) must hold. Then, we tieatdor all
Cijk € Psoo:

L
M (cije) = Mo(eije) + Y (E(J*(m), ciji) — E(cijr, J* (m)))

m=1

that considering the mapping of sectfon 6l1.3 becomes:

¢
M i) =0+ Z (E(J*(m), ciji) — E(cijr, J*(m))) =

B Ix

= Z E(B*(m),ciji) — Z E(ciji, 2" (s)) (6.63)
m=1 s=1

= [B* 7 tij)| - D(tiji) — |2 (tign)| (6.64)

Equation [&.83) results from considering that only bid sitians have output
places inc;;x, and that only SCO transitions have input places; jp (see figure
[63). Equation[{6.84) follows from the fact thig} is the only input transition to
cijr and that;;, is the only output transition af;;,. Hence, from condition (1)
of definition[&2.9, we have the following final marking:

0 tijk € X°
D(tijk) — D(tijk> tijk cx*

M (eijr) = {

ThenM*(c;j1) = 0 forall ¢;j1, € Py

e P places. Equatior{6.26) must hold. Analogously to the pnevicases, we
write for allp, € Pg:

¢
Me(pg) = Mo(pg) + Z (E(J"(m),pg) — E(pg, J*(m))) =
55
=Uin(pg) + Y (B(E*(m),pg) — E(pg, £*(m))) = (6.65)
155
=Uin(pg) + Y (Os(m) (Pg) = T (m) (0g)) (6.66)

m=1

Equation[[6.656) follows from the fact that the only traresits that can add/remove
tokens to/from places iP; are the SCO transitions (see figlitel6.4). Equa-
tion (G.66) substitutes the SCO transitions input/outpatweeights for the in-
put/output multisets of the corresponding SCOs. Follovdagdition (4) of def-
inition &9, we have that:

155
Me(pg) = Uin(pg) + Z (OE(M) (pg) — Is(m) (pg)) > Uout(pg)  (6.67)

m=1
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Next, we show that all the transitions it are enabled.
e The transitions in/}; are trivially enabled, because:

(1) at most one of the transitions outgoing from»@R placecan fire (accord-
ing to equation[6.82)); and

(2) the only token required to fire such a transition is présetie initial mark-
ing (Mo (p;X9F) = 1 according to equatioi{6.23)).

e In order to have the transitions ¥ enabled as well, it must happen that:
M™ Y (p) > E(p, J*(m))  Vm € [1,€,Yp € P UP,, (6.68)

Recall that the XOR places are neither input nor output of38© transitions.
Then, the only places modified by transitionsligco are Pe and P,

(1) P,.. places. Observe that only bid transitions can add tokepsfiet SCO
places, and bid transitions are fired before the SCO trandii. We also
know that if a SCO transitioty, is in £*, then the corresponding bid tran-
sitionst;; is in B* (equation[[6&96)). Thert,;; has added;;(t;;) into
the ¢;;;, places before any of the transitionsiif has fired. As a conse-
guence, transitiot;;;, has available in place;;;, the tokens to be fired at
mostD;; (t;5x) times.

(2) Pg places. We write the enabling condition at the generic step m

Mm_l(pg) > E(pg, " (m)) Vm € [1,¢x],Vp, € Pg (6.69)

Analogously to what we have done in equatibn {5.66), we #ubstthe input
multiset of the SCO for the input arc weights of the corresiiog SCO transi-
tion:

M Hpg) = Ism) (pg) vm € [1,4s],¥p, € Pg (6.70)
That is fulfilled at each step because of condition (3) of diidimE.9.

Finally, we have to prove that there is no other solution veithigher associated
cost. Notice that, as shown in equati@n (6.54), the cost mised in the CMWOSP
is the auctioneer revenue. Then, say per absurd there @xisther solution/’ to
the CMWOSP with a cost’ higher than the revenue associated to the corresponding
MMUCA WDP. For the=) side of the demonstration, this would be a solution to the
corresponding MMUCA WDP as well, since it has a higher reefthis is impossible
for the optimality of the solution to the MMUCA WDP.

o

Summarising, each firing sequenkesolution to the CMWOSP can be transformed
into an optimal solution sequence of the MMUCA WDP. This cardone simply by
removing fromJ* the bid transitions(75). The obtained subsequence is a solution to
the MMUCA WDP.

10Recall thatJ* is a concatenation of 5 andX*.
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6.1.5 Solving the MMUCA WDP with IP

Thanks to theorefid.1 we can exploit all the results provedMBTN and the CM-
WOSP in sectioiLZ /1. In that section we showed that if a WS Bcyclic, any
CMWOSP on it can be efficiently solved by means of IP (see tndi]).

In this section we explicitly present the IP formulation ot MMUCA WDP when
the corresponding mixed auction net is acyclic.

The mathematical model is built according to the followinges:

(1) there aren good placesindexed withg € {1,2,...,n} (for each good € G)
(2) there aré XOR placesindexed withi € {1,2,...,1} (for each biddef)

(3) thebid transitionst;; are indexed with € {1,2,...,1},5 € {1,2,...,m;} (for
each bidj of each biddef)

(4) theSCO transitions;;;, are indexed with:

ie{1,2,...,1} (6.71)
je{1,2,...,m} (6.72)
ke{l,2,..., f,} (6.73)

(for each SCQk of each bid;j of each bidde¥).

(5) x5, € Nis an integer decision variable (for each SCO transitigr) taking on
valuew if SCO labelled byijk is presentv times in the optimal firing sequence.
Namely, the SCO is used times.

(6) x;; € {0,1} is a binary decision variable (for eabid transitiont;;), taking on
valuel if transitiont;; is in the optimal firing sequence.

With this in mind, the CMWOSP can be expressed by the follgwirteger program-
ming:

max Y x5 - C(ti;)
ij
Mo(pg) + %xijk (E(tijr,pg) — E(pg,tijr)) = Uout(pg) Vpg € Po
0+ x4 E(tij, ciji) — TijeE(Cijk, tiji) = 0 Veijk € Beo
1= Y E(p % ti;) > 0 VprOf € Pxor
J

The first equation maximises the cost associated to the apfirmg sequence, the
second, third and fourth inequalities correspond to eqnaf6.2b),[[6.27), and{68)
respectively.



132 Chapter 6. Solving the MMUCA Winner Determination Problem

Then, considering the mapping proposed in definffiah 6i%,I#hturns into:

max y  &ij - Dij
ij
Uin(g) + Zk%k (04jk(9) = Ziji(9)) > Uour(pg) Vg € G
ij
(6.74)
Tijk = xi; D(tijk) Vijk
1—-> 23>0 Vi
J

Finally, settinga;jxy = Oijx(9) — Ziji(g), uz?" = Uin(9g) andug“t = Uput(g), We
have:

max » Zij - Pij
i

; ¢
U+ > TijkQijrg > ugtt Vg

ik
(6.75)
Tijk = i D(tijk) Vijk
J

The interpretation of the model above is rather intuitiveeTirst equation maximises
the auctioneer revenue. The second one ensures that eadaasiny goods as required
by the auctioneer are produced at the end of the productimeeps. The third equa-
tion enforces that the semantics of atomic bids is selectdall the SCOs with the
corresponding multiplicity are selected or none of thene Tdurth one ensures that
the semantics of complex bids is fulfilled, i.e. that at most atomic bid per bidder is
selected.

In appendiAl we present this model encoded in the OPL laggsee section
12 and[(Van Hentenryck, 1999)).

Notice that the solution to the IP above is represented byé#hee assigned to
decision variables;;;, andz;;. Recall that in such a solution the information about the
order in which the SCOs must be performed is not included. élaw according to
corollary[4.1, this information can be easily extractedhsy $olution to the IP since the
Mixed Auction Net is acyclic.

Problem Size

Next, we assess the number of decision variables and coristraquired by the above
IP model:
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o for each bid transition;;, corresponding to bidid, ;, we create a binary decision
variablez;;, to total| B| binary decision variables; and

o for each transitiort;;;, € T (corresponding to a SCO), we create iateger
decision variable, for a total 07| integer decision variables.

Then, the total number of decision variablef#$+ |T'|. Finally, we assess the number
of required constraints:

o for each goody € G we create a constraint, for a total |6f| constraints;

o for each transition,;;;, € T', we create a constraint, for a total|@f| constraints;
and

o for each biddei € L we create a constraint.

The total number of constraints is thg#| + |T'| + |L|.

6.1.6 Advantages of the mapping to CMWOSP

Before going on, we aim at highlighting the advantages binbagout by the mapping
of the MMUCA WDP to WPTNSs. In particular such a mapping allolwsmport all
the PTNs tools and properties presented in the literatuesnédyse structural and be-
havioural properties of the emerging supply chain. Somengies of application are
listed in what follows.

(1) One can very efficiently solve the underlying IP when tingmdy chain is acyclic;
this is obtained exploiting an important PTN analysis ttiod, state equation.

(2) One may be interested in maintaining under a certairstiule the level of re-
sources present in each place (for instance, for inventapacity constraints).
This can be mapped to a well known behavioural property of REBNed bound-
edness (Murata, 1939).

(3) Thanks to the very appealing and intuitive WPTN graphiepresentation, we
can compactly encode and visualise the search space assacidthe MMUCA
WDP. This is obtained thanks to the the fact that the sem&nofitransitions on
PTN naturally accommodates for the representation of SCOs.

(4) Once obtained a solution sequence to the MMUCA WDP, ones/saualise it by
means of a token game showing the evolution of the supplyncitaany step of
the SCO sequence (as we did in tdbld 4.6).

(5) One can graphically visualise the MMUCA WDP problem. S piovides a very
helpful guidance in obtaining insights about such problEor.instance, by visu-
alising the MMUCA WDP by means of WPTN, one can incorporate higlding
language constructs with a minimum effort. For instancesater the following
example.
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Example 6.3. We explained that switching to th@R language instead of the
XORbidding language is as simple as removing ¥@Rplace from figuré6l4
(as done in figurE®l3). However, there is another widely eygal bidding lan-
guage that is very compact and human readable. Is is caled@R-of-OR
bidding language (refer to sectibn312.2). Such a languagadh that any XOR
combination of OR combinations of atomic bids can be seteckor instance,
the bid:

((a,1) OR(a,1) OR(a, 1) OR(a, 1) OR (a, 1)) XOR(b, 2) (6.76)

means that an auctioneer can select from 0 to 5 copies ofdh&@bid (a, 1) or
(exclusive) one copy of the atomic bfd, 2).

In figure[&5, we graphically show how to incorporate ¥@R-of-ORbidding
language. In figure we depict the following bid:

(BID(lltijl + 3/tij2 + 2/tij3, 720) OR (677)
BID(1't;jr1 + 1't;j2, —10)) XOR (6.78)
BID (145111, —2) (6.79)
XOR
>0
1 1
€ 72 cij/Q
tOR
Cijr1 tijr v

1 tijro
1
tij”l
Cij’1
Cij1
1
1 tijr1
tij1 tij3

Figure 6.5: XOR-of-OR of atomic bids
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The reader can check that this topology allows either fitipg or (exclusive)
any of thet;; andt,; if the final contraints represented by inequalities in ptace
in figure[& are fulfilled.

O

Notice that in this dissertation we only exploit directiwvadtages (1) and (3), and we
envisage a promising path for future developments the stddill the implications
connected with advantage (2),(4), and (5). We did not deegerconsiderations con-
nected with the study of behavioural and structural propeuf the resulting supply
chain. Nevertheless, by means of the mapping to WPTNSs, wadeall the theoreti-
cal and practical tools to deal with such a study.

6.2 Solving the WDP on Cyclic Mixed Auction Nets

So far, we have not been concerned about whether a Mixed gxubtet is cyclic or
not. Is it a reasonable hypothesis considering that a mixetian net does not contain
any cycle? The answer is that it depends. One could see a aarkebig production
cycle. However, when we consider local production procgssge could think that it is
possible to avoid considering cycles in the topology. Unifioately, this is not always
the case. Even locally, production cycles are often charaed by cycles. Moreover,
we will see that, in our semantics, cycles are required toesgmt shared resources or
resources that can be employed more than once. This is thgfoasistance, of a piece
of software or of a tool that is naonsumedbut used That is, at the end of the supply
chain operation the resource is still present, but the diperaannot take place without
it. With the purpose of clarifying this concept we slightlydify the example of figure
0.d.

Example 6.4. We recall that in examp[e8.2 five bidders participate in a MBRJ We
modify bid bid3 introducing the fact that a bidder needs a machifi€ to perform the
hydrolysis operation. Bidids, which stood for a bid on the hydrolysis process&,
namely:

bids = BID(1'(2'H,0,1'05 + 2'Hy), —8) (6.80)

turns now into:
bidi = BID(1'(2' H,O +1"MC, 1’0y + 2'Hy + 1'MC), —3) (6.81)

Notice that the bidder only requires the MC machine to rurhygrolysis process, and
it will release it afterwards. Obviously, we have to inclual®id that offers machine
MC as well. This is bithidg:

bids = BID(1'(0,1'MC), —5) (6.82)

The new configuration of the Mixed Auction Net substitutlrig; with bids is shown
in figure[681.

11 the figure we have omitted all thOR placesbid transitions andSCO placegor the sake of com-
prehension.
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bid; € —10 bidy | € —14

bidg 1

€23 | bidy €25 7| bids

Figure 6.6: Example of a MMUCA in form of WPTN.

We can think about other types of resources that have this ¢fgoehaviour, as
for instance an oven, a piece of software, a consultant, arahs Those type of re-
sources are not consumed, and eventually can be shared:tImvéacan see in figure
that transitiorbid} requires thel/ C' machine, and that after using it, the machine
is still available (and could eventually be employed by aeosupply chain operation).
Generalising, we can modelsource usagaamely the machinery that production pro-
cesses require.

Before explaining how to solve this new problem, we woule Itk show why the
IP introduced in sectiof 6.1.5 does not work in this case. Wankfrom theoreni 2]2
that it is not guaranteed to work since the Mixed Auction Nmttains a cycle. Then,
we write the IP in equation§{6175) as if the mixed auctionwas acyclic to detect
and show the problem. We can get rid of side constraints 2 andeg§uation [6.75)
since we consider that each bidder submits a bid over a sB@@. Then, we assign
the binary decision variable; to bid bid;. We also hypothesise that the auctioneer has
no preferences on the number of goods available at the e gfrbduction process
Upus = Uy, = D). Then, we have:

max —10xy — 1429 — 3x3 — 3w + 2324 + 2575

201 4+ 229 — 223 >0 p|aC€HQO
re —x3+x3 >0 pIaceMC’ (683)
r3 — x4 — x5 >0 placeO,

213 — 2x4 — 225 > 0 placeH-
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If we simplify the equations above we obtain:

max —10xy — 1429 — 3x3 — 3z + 2324 + 2575

2 219 — 223 > laceH.

r1 + 229 xz3 >0 p 20 (6.84)
zg >0 placeM C
T3 — x4 —x5 >0 p|aC€OQ

the optimal solution iscs = 23 = x; = 1 and the remaining; are0. However, this

solution is not valid! Let us apply the solution. At a firstst&CObid; is used, provid-

ing two units of H,O to the auctioneer. The following supply chain operationutio
bebid;. However, it cannot be used without onéC', which is currently unavailable
because we can only obtain it throulglds. Thus, it is unfeasible to uded; because
bidg is not part of the winning bid set.

o

Then, the solution to the 1B nota valid solution to the MMUCA WDP. This
happens because the circularity of the net causes the aliminof thez; variable
from the equation of placé/C. This is not the only problem. Say that one is lucky
and the IP solution matches the solution to the MMUCA WDP, tileshiould find the
ordered sequenaaf operations. In this case the netis not acyclic and theeefanique
order among transitions cannot be ensured (as stated itiacygd.]).

We end up this section with a remark that, though neitherldpeel nor formally
proved, can be useful in practice. Say that we compute th@d®Ris in sectiod 6.115
for a cyclic mixed auction net (likewise in exam|pIel6.4). Shagt we find a solution
represented byk* (the decision variables;;;, with assigned a value). Say also that
Sx+ Is the subnet obtained by the mixed auction net by removirthalransitions not
included in the solutiox™ (i.e. removing the;;;, such thate;;;, = 0). It is intuitive to
think that if Sx- is acyclic, then the solution is a valid solution sequende 3ketch of
the demonstration follows. Recall that a necessary cantlitir a state to be reachable
in a PTN is thatk* is a solution to the state equation (see se¢fionP.3.2). Memvsince
the hypothesis is that the mixed auction net is cyclic, wenochguarantee that the state
is reachable. Nevertheless, observe #iat a solution to the state equation associated
to the subnetSy- as well. Then, ifSx- is acyclic, the state is reachable in virtue of
corollarylZ]. Thenx* is a valid solution.

Although this observation may seem very powerful, in peectihe situation de-
scribed above is rather unusual. However, it should be takeraccount.

6.2.1 Modifying the representation

By means of exampled.4 we showed that on cyclic nets the IRatkfnh sectiofitl2
cannot be applied. In the example we have also shown thairtheéarity of the net may
cause an elimination of some decision variables. This alton acts so that a check
on the feasibility of a given solution is required. In orderavercome such problem,
we modify the IP presented in sectibnl6.2 in such a way thatpiissible to check at
each step of the SCO sequence whether enough resourcesigablavio perform the
selected SCO. In particular, we modify the way the SCOs gnesented.
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The new SCO encoding incorporates some information abeubttier in which
the SCOs must be performed. In order to obtain this new reptason, we build
directly upon the definition of WDP (definitidi’5110). Howeyvaotice that building
upon the mixed auction net or on the CMWOSP one can obtairasimwnclusions.
The improved IP model resulting from the new representasaralledDirect Integer
Programming(DIP) solver.

According to definitiod 5.0, a solution to the WDP is a magpihfrom the posi-
tions in the solution sequence to the atomic SCOs. Basedsymth define an IP model
with the following decision variables:??, € {0,1} is a binary decision variable that
takes on value 1 if SC@;, holds positionn in the solution sequence, and 0 otherwise.
These variables are the mathematical representation aéthamg similar toX. In fact,
we can associate to an elemept, a positionm in a sequence i}, = 1. However,
we can have somempty positionsThe problem is that prevents from having a solution
such that:7’;, = 0 Vijk. This would leave positiom empty. Then, we call a sequence
with empty positiongartial sequenceObtaining the corresponding sequence from a
partial sequence is as easy as removing the empty elementgte partial sequence.
Thus, in what follows we will consider that is a partial sequence, and if we want to
retrieve the corresponding sequence we simply remove ¥dhe empty positions.

¥ is obtained from the variableg’, in the following way:

S(m) = { ik ik =1 (6.85)
1 otherwise

Obviously we do not know a priori how long the solution seqeeewill be. Then, we
rely on the fact that i® SCOs are submitted overall by all bidders, the length of the
solution sequence will be at mos{(there can not be more SCOs in the sequence than
the ones overall offered).

Observe that employing the binary decision variables abaeecan state the fol-
lowing relationshi;E:

Osimy(9) = Y 27,0k (9) Vg (6.86)
ijk
Tmy(9) = > =Tk (9) Vg  (6.87)
ijk
M™(g) =M™ (g) + Osmy(9) — Zsim)(9) Ym, g (6.88)
M™(g) = M™Hg) + > @l (Ourl9) — Tiwlg))  Ym,g  (6.89)
ijk

Equation [6:89) can be expanded into the following equalipmaking explicit its

12\\e anticipate that the following constraints must be addeghsure thak is afunction

e <1

ijk
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recursive structure:

M™(g9) = w1 (Oirl9) — Tij(9)) ¥m,g  (6.90)

=1 ijk

6.2.2 The general IP formulation

We now show how to map the WDP in definitibnd.10 into integegoamming (IP).
Therefore, the issue is to decide for each SCO whether itiésteal for the solution
sequence, and if so, to choose its position in the solutignesece. Thus, we define a
set of binary decision variableg, € {0, 1}, wherez, takes on value 1 if the SCO
ti;k 1S selected at then-th position of the solution sequencg;f, = X(m)), and 0
otherwise. Here and in what follows:

e m always ranges from 1 t#, the maximum length of the solution sequence;

i ranges over all bidders;

for each biddet, j ranges from 1 to the number of atomic bids submitted;by

o for each atomic big of bidderi, k£ ranges from 1 to the number of SCO in that
atomic bid;

e granges over all goods.
We also introduce several sets of auxiliary binary decisanmables:

e z;;; € Nis an integer decision variables that takes on valu# transition ¢,
is present anywhere in the sequencmes (X! (t;;)| = w);

o z;; € {0,1} takes on value 1 iff any of the SCOs in tfithy atomic bid of biddei
are selected. Equivalently;; takes on value 1 iff bid3id;; is selected.

In what follows, we define the set of constraints that thetsmiusequence must fulfil:

(1) We enforce the constraints expressed by condition (Hedihition[5.9. Thus,
if bid Bid,; is selected, all the SCQs;,, in that bid must be selected exactly
D;;(tijx) times. In other words, if bidBid;; is selected, all the SCOs in it must
be selected with the required multiplicity. Formally,

ij - Dij(tije) = »_a, (Vijk) (6.91)

(2) We enforce that the atomic bids submitted by each bidaeezclusive (XOR).
This amounts to satisfying the following constraints (afndition (2) of Defini-
tion[5.9):

> wy <1 (Vi) (6.92)
J

Observe that in the case of tlR bidding language we simply have to remove
this constraint.
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(3) We also impose that at most one SCO is selected at eadiopadithe sequence:

> ap <1 (vm) (6.93)

ijk
This equation encodes the hypothesis of no simultaneonggieind enforces that
the X built with thez}, is a function, i.e. it does not have two images associated
the same element (cfr. equati®n (8.85))

(4) Next, we capture condition (3) of Definitionh.9: enougings must be available
at stepm to perform the next SCO (cf. equatidn{3.15)). We recall thetmaps
to the following condition:

M™Hg) > I™(g) Vg
which is translated, according to equatidns (5.87) and)j6iato:

m—1
Uo() + 303 st - [Ouilo) — Tun()] > Y4 - Tinle)  (6.94)
1=0 ijk ik
Vg,Ym

(5) And finally, after having performed all the selected SCtBe set of goods held
by the auctioneer must be a superset of the final gbads(cf. condition (4) of
Definition[29):

Mé(g) Z uout(g) VQ

that turns into

§
Uo(g) + Y Y al - [Oij(9) = Tijk(9)] > Uour(g) Vg (6.95)

m=0 ijk

Now solving the WDP for MMUCAs with XOR-bids amounts to salgithe fol-
lowing integer program:

max Z x;; - pij subjectto constraintE{691)E16195) (6.96)
ij

In table[6.1, we summarise the DIP formulation employingsheme notation as the IP
in equation[[675), with the exception of the symlig},, that stands foZ; ;4 (g).

Finally, a valid solution according to definiti@n 5110 is ainted from the solution of
the IP by making transitioty;, them-th element of the partial sequenceff =7, =1,
and then removing the empty positions. In appehd} A.2 wegarethis model encoded
in the OPL language (see sectlon2.1.2 and (Van Hentenr(&)L

Observe that our proposed implementation can easily be dadeso as to directly
encode the constraints imposed by language constructs thdoe the XOR-operator.
This would remove the need for translating into the XOR-lzaugg first and thereby
greatly improve efficiency.
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(a) Vijk Tijk = Z‘TZLk

(b) Vljk’ Tijk = T4y 'Dij (tijk) Vljk’

(C) Vi Zmij <1
J

@/ vm | ap <1

ijk

e | Vg ul + Z Z T - Qijhg > ud"

m  ijk

m—1
0 | Yo.vm | wl + >0 aliyaieg =D @l - Lijkg

1=0 ijk ijk

(g) max Z Tij * Dij
ij

Table 6.1: Resume of the IP formulation of solver DIP.

Problem Size

The number of decision variables in the above integer progsaf the order oD (|T'| -

d) (corresponding ta;”,). More in details, we create a binary decision variable

for each bidBid;; € B, for a total of| B| binary decision variables. Then, we create a
decision variabler}, for each SCQ;;, € T and for each positiom in the solution
sequence, for a total ¢1'| - £ binary decision variables. Assuming, in the general case,
that the maximum length of the solution sequencé is §, then we haveT| - 6 =

|T| - >_,; |Di;| decision variables. Then, we create a total of

|Bl+|T|(1+6) € O(T] - )

decision variables. With a similar process, we computedte humber of constraints,
that is:
IT|+ |L| + 6+ |G|d + |G| € O(|G]d) (6.97)
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Example 6.5. For the problem presented in figlirel6.4, we have the followlag:

L] =1 |B| =2
Gl =9 T =5
0=38

Then, in the case of the IP in sectibn 6l1.5 the number of weciariables created is
7, and the number of constraints is 9+5+1=15. In the caseeofRlpresented in this
section, we have 45 decision variables and 5+1+8+56+9=f&@ints.

6.3 Computational Complexity

In his master thesis (Oftens, 2007), Ottens provides a ldétairoof of the NP-
completeness of the decision problem underlying the MMUCBRM\Ve briefly recall
the employed argumentation in what follows.

The (decision problem underlying the) WDP for standard doetorial auctions is
known to be NP-complete, with respect to the number of g@atkopf et al., 1998).
NP-hardness can, for instance, be shown by reduction frerwél-known T PACK-
ING problem. As our mixed auction model generalises standaribowtorial auctions,
winner determination remains NP-hard also here. NP-meshije{and thereby NP-
completeness) of the problem of checking whether therésaisolution exceeding a
given revenue (for finite bids) follows from the fact that andaate solution provided
by an oracle can always be verified in polynomial time. Thatespite of the gen-
eralisations we have introduced, the computational coxitglef the WDP does not
increase, at least not with respect to the polynomial hidwar

6.4 Conclusions

In this chapter we dealt with the problem of solving the MMU®WDP, as defined in
chapteEb. With this aim, we provided a mapping of the MMUCA W/ a CMWOSP
on the Mixed Auction Net. Some benefits stemed from this mappiFirstly, since
the mixed auction net is a WPTN, it provides a very powerfeldtetical framework
for analysing the MMUCA WDP computational, structural arehbvioural proper-
ties. Secondly, consequence of the first benefit, we providsfacient mapping of the
MMUCA WDP to ILP for acyclic mixed auction nets. Thirdly, ©ia WPTNs have asso-
ciated a very appealing graphical representation, theyigea graphical framework to
compactly represent both the search space and the solaseasiated to the MMUCA
WDP. This is due to the perfect matching between the sensotitansitions and the
semantics of SCOs. We recall that we focus on the computdtamvantages provided
by the mapping to CMWOSP, and leave out for future developgtbe analysis of the
structural and behavioural properties of the solutionhieoNIMUCA WDP. However,
we remark that the mapping to CMWOSP provides the neededdtieal and practical
tools to perform such analysis.

Next, we show that the hypothesis that the mixed auctionsatyclic sometimes
may not hold. In such a case, the ILP based on the CMWOSP caenetployed.
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Hence, we provide a general IP solver, Dieect Integer ProgrammingDIP) solver,
that directly builds upon the definition of the MMUCA WDP. Bhsolver allows to
solve the MMUCA WDP on any supply chain network topology. Hwer, it has the
disadvantage to be computationally more costly. In facgquires more decision vari-
ables to be encoded.

Notice that the mixed auction net provides a framework piori assess the solver
to employ, either the CMWOSP-based, if no cycles are presethie mixed auction
net, or the DIP otherwise. With this tool at hand, one cancbadmputationally effi-
cient MMUCASs. For instance, one approach could be constrgithe participants to
an MMUCA to bid on sets of SCOs that do not form cycles. This lda@nsure the
absence of cycles in the correspondiiged Auction Netthus allowing the use of the
CMWOSP-based solver. However, as motivated by some exanpptvided in this
chapter, sometimes it is not possible to avoid cycles irMhed Auction Net

Recent contributions on computationally efficient WDP sodvfor different auc-
tion types (namely/(Lehmann et al., 2D06) for CAs end (Eegal., 2005) for multi-
attribute double auctions) agree on and defend that a dafefmal analysis of the
structure of WDPs can provide guidance for developing efficiwvinner determina-
tion solvers. Along the lines of these works, in the next ¢céapve propose an IP for
MMUCASs that dramatically improves the computational effiety of the DIP solver.






Chapter 7

Connected Component-based
Solver

In the previous chapter we presented DIP, an ILP that car $aMUCA WDPs on any
network topology. Then, in secti@n 6.P.2 we showed that BtHires O(I'|5) decision
variables to be represented. This means that the assosidech space is very large.
In this section we reduce the search space associated theQAWUDP.

Recent contributions on computationally efficient WDP sodfor different auction
types (namely, (Lehmann et al., 2006) for CAs, (Engel ePal06) for multi-attribute
double auctions, as well as our contribution in sediion MICRAtR) agree on and
defend that a careful, formal analysis of the structure ofRg[2an provide guidance
for developing efficient winner determination solvers. Adathe lines of these works,
in this chapter we present a technique to reduce the seaed®e gssociated to the
MMUCA WDP. This will result in an ILP formulation for MMUCA WIPs that dra-
matically improves the computational efficiency of the Dter presented in section
B22.

At this aim, we found our analysis on observing the structfrthe WDP that re-
sults after establishindependence relationshipsnong transformations. For instance,
in the example ofsrandma & co(depicted in figur€Il1l) thBakingSCO potentially
depends on thlake DouglSCO, since the output provided Make Doughmay be re-
quired to perfornBaking The analysis of the WDP based on dependency relationships
helps design an IP that priori establishesvhento useeach transformation. There-
fore, the search space reduction is achieved by enforcingJ&@® solutions to fulfil a
template. The template reduces the possible orderingsgimamsformations without
losing solutions.

This chapter is organised as follows. In secfion) 7.1 we éxpiee intuitions under-
lying the improvement we propose by means of examples, afeiremaining sections
we develop a rigorous description of those intuitions. lctise[Z2 we introduce the
solution template allowing a reduction in the search spémegavith some mathemat-
ical tools required in the chapter. In sectlonl 7.3 we pregenConnected Component
Integer ProgrammingCCIP) solver, an ILP formulation improving the DIP solver b
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exploiting the solution template. Then, in sectionl 7.4, wevp that the search space
reduction imposed by the solution templates does not caloss af solutions. Finally,
in sectior Zb we draw some conclusions.

7.1 Motivation and Example

In this chapter we introduce a technique to reduce the sesrabe associated to the
solution of MMUCA WDPs. Then, we apply this new represeniato encode a new
ILP solver for MMUCA, the CCIP. CCIP substantially reducles umber of variables
and constraints used by DIP.

The search space reduction is obtained by observing thatppdBuces several
equivalentsolutions. We regard two solutions aguivalentif they select the same
bids. As a consequence, equivalent solutions contain the sapply chain operations
(SCOs) (even if arranged in different order), and they hageeiated the same cost. In
what follows we provide the rationale to achieve such redaand to found CCIP.

Example 7.1. Recall from sectiof’5.41.2 thatin a MMUCA WDP the input is caapd
of: (1) the initially available goodd4;,, € N%); (2) the finally required goodg4,.,; €
N%); and (3) a set of bids in the XOR bidding languad®d,; = (D;;,pi;)). Hence,
let us consider an MMUCA WDP scenario characterised asvistio

e U;, = 0 andit,,; = 0: no goods are initially available and no goods are required
at the end of the auction.

e Eight bidders submit the eight bids showed in equafiodsolZ8.

Bidy; = (3'tg + 1't1, —3 USD) (7.1)
Bidy; = (2't2,9 USD) (7.2)
Bids; = (1't3, —2 USD) (7.3)
Bidy = (1't4,—1 USD) (7.4)
Bids; = (1't5, —8 USD) (7.5)
Bidgy = (2'te + 2't7, —3 USD) (7.6)
Bid7; = (1'ts, —12 USD) (7.7)
Bidg; = (1'tg + 2't10, —4 USD) (7.8)

We recall thatBid;; = («},th, pij) Means that bidderoffersa;, copies of SCO
tn (Di;(tn) = k) at pricep;; in his j-th bid. For instance, bidid,, offers in

a bundle (combinatorial bid) three units ©f and one unit of; at a price of3

usHl. More formally,Dy; = {3t + 1't1}.

Recall from sectiof 5412 tha? = W,;;D;; is the union of multisets submitted in
each bid. For the bids in equatidnsl7.11d 7.8, we have:

D={3tg+1t1 +2ta+ Utz + 1ty + 1t5+2'ts +2't7; + 1'tg + 1"t +2't19} (7.9)

1Recall that the negative sign means that a bidder is willinget paid.
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Recall also that the maximum lengttof the solution sequence will be at most equal to
the overall number of atomic SCOs submitted, namely

(=6=> |Diy| =17
j

Finally, recall thatT" is the set of all the received SCOs (disregarding their multi
plicity).
T = {to,t1,t2,t3,t4,t5,t6, t7,ts, to, t10} (7.10)

1ty
;
1 1

1t3 2ty 11
1 \1‘
/
1
1'ts 1 1

2't7

1'tg

Ho
l“/
[y
ONE

Figure 7.1: Graphical representation for the SCOs in bidsjumation§7]1 tb7.8

In figure[Z1 we graphically represent SC@s. .., t1o contained in the bids of
equation§7]1 t718. The formalism employed in the figurenslar to the one em-
ployed in chaptefl6. Figufe1.1 represents a Petri Net Stre¢PTNS) in which each
transitions represents a SCO and each place a good. Théoauuit arcs from/to SCOs
depict the input/output multisets of each SCO. We recatltti@aarc weights represent
the input and output multiplicity of each SCO (for instan@egording to figurEZ7l1, the
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input and output multisets of SC£ are respectivel{,. = {g5} andO,, = {g7, gs })
Notice that in our example every arc has weitht

Unlike the formalism employed in chapfdr 6, in the PTNS of fiifid.] the infor-
mation about complementarities among SCOs and the XORawedips is omitted.
Furthermore, we label each SCO with its multiplicity in edmtl. For instance3’t
means that three units &f have been submitted in a bid.

At this point consider that solver DIP solves the WDP with ithygut expressed by
equation§7]1 tb 718, and finds the solution sequence in[f@blerhe first row in table
[Z1 represents a position within the solution sequencerfthedex in variablesc7,
of sectionl6.P), whereas the second row shows the SCO addigriee each position
within the solution sequence. For instance, the fact th#tténsecond row and second
column we find SCQ@,; means that positio2 of the solution sequence is assignedsto
(in DIP this means that in the solutiarf, = 1).

Position 1(2|3|{4|5|6|7|8|9|10(11|12{13|14|15|16| 17| Revenue
Sequence 1 tg | te tr|to|t;|to]te tg +3 USD

Table 7.1: Example of solution found by solver DIP.

Thus, according to definition 3.9 of sectibn5l4.2, the sofubf table[Z1 corre-
sponds to the following solution sequence:

E: <t07t27t17t07t47t07t2;t3> (711)

Notice that the solution sequenZg according to what explained in sectibn612.1, is
obtained by removing thempty positiong Sequence f table[ 7.

Accordingly, the winning bids ar®id,1, Bids1, Bids, and Bid,y, and the rev-
enue associated to this solutionrH8 + 9 — 2 — 1 = 3. As the reader can check, this
solution is valid, since the semantics of the bidding lamguiz fulfilled, and at each
step of the solution sequence there are enough input go@dstaie to perform the
corresponding SCO. Now consider all the solutions in thGE These solutions are
all valid and optimal (they have associated the same reyeasienuch as the one in
table[Z1. They are simply a rearrangement of the very samémoalong different
positions of the solution sequence, without modifying taktive order among them
(i.e. they all represent the sarfeof equatiof Z.111).

Position 1(2(3(4|5|6|7|(8(9]10(11|12|13|14|15|16|17| Revenue
Sequence 4 tp |t2 | tr | to |ty [to|t2 | ls +3 USD
Sequence 3 to|te |t |to|ty|to]|te ts | +3USD
Sequence 4 to | to ti|to |ty |to]|te|ts| +3USD
Sequence § ¢y to ty to ty to to ts +3 USD
Sequence § to |t |ti|to|ty|to]|ta]|ts| +3USD

Table 7.2: Solutions equivalent to the solution in tdbléwith same relative order.

Now consider the solutions in talfleT7.3. They are still validutions equivalent to
Sequence in table[71, though not only the positions assigned to SGOslifferent,
but also the relative order among them has been altered.ouddth those solutions
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correspond to valid solution sequences different from the im equatiod 711, it is
easy to check that those solutions are still valid. Indee@aah step of the solution
sequence there are enough inputs to perform the corresgpB8iOs. Hence, all the
considered solutions are Pareto optimal, and equivaleahgrthem.

Position 1(2(3(4|5|6|7|(8(9]10(11|12|13|14|15|16|17| Revenue
Sequence 7 to t1 | to ta | to to |ty | t3 +3 USD
Sequence g to [to |to | t1 |te |te | t; | Ls +3 USD

Table 7.3: Solutions equivalent to the solutions in tbEewith different order.

o

At this point, the reader is ready to understand what we mgasghivalent solu-
tions Solutions of solver DIP that select the same bids (and theisame SCOs) have
associated the same cost. Thus, we hypothesise that th@ydisenguishable for an
auctioneer.

Notice that, as shown in examdlel’.1, the search space ofrsDN° contains a
huge amount of equivalent solutions. Hence, in order tocedoe complexity of our
problem, we aim at understanding why all those redundantisol are found. As
explained in sectiof@.2, the IP formulation of solver DIFoisnded on the hypothesis
that a SCO can hold any position within the solution sequérazall that we create
decision variables}, for each positionn and for each SC®;;;, € T), and we set the
length of the solution sequence equal to the overall numberoeived SCOs, namely
4. Thus, in principle, each SCO can take one ambagailable positions. This explains
why all those equivalent solutions are contained in the [@Hrch space: a large number
of equivalent rearrangements of SCOs within the solutigusace are allowed.

The fact that many equivalent solutions can be found img@liEsger search space
than needed, and thus an increased computational cost. cengbutational cost is
reflected in the number of decision variables employed foresdIP. In the case of
exampld_Z11, for instance, has the possibility to take on any of the positions of the
solution sequence. Hence, DIP requit@decision variables foty. Then, for all the
SCOs it requires|T'| = 11 x 17 = 187 decision variables. If we manage to reduce the
number of equivalent solutions contained in the searchespee cut down the number
of decisions, and consequently the search space.

Then, the strategy we follow to reduce the search space terisi limiting the
possible positions each SCO may take on in a solution sequémthis way the number
of feasible solutions is reduced. Obviously, if we limit fhesitions each SCO can take
on we lose solutions as well. The main point herdesing solutions that are equivalent
to solutions that in turn are found-or instance, an auctioneer is willing to lose all but
one of the solutions in tabl€sT[1.17.2, 7.3 . If at leastisfiound, we assume that
an auctioneer is not bothered by losing all the other egeintadolutions.

We assume that if two solutions are equivalent, from an anegr’s point of view
eliminating one of them from the space of feasible solutimss not constitute a prob-
lem. However, given a set of equivalent solutions, the aunetér needs that at least one
of them is included in the space of feasible solutions.
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We employ a terminology related to equivalence classes deraio explain this
concept. It is easy to verify that the relatimnequivalent tan the set of DIP solutions
is an equivalence relation (refer to section 4.4.1 for tremii underlying equivalence
relations). In these terms, our goal consists in finding at&ol template that:

e reduces the number of equivalent solutions contained isehech space, and
e ensures that at least one feasible solution for each eguigalclass is found.

That is, we must ensure that no solution class is complegghowed from the search
space. Hereafter, with an abuse of terminology, we say tledbge a solution class
when we lose a whole equivalence class of solutions.

In what follows we explain how to reduce the search space. M@y a function
that reduces the possible positions any SCOs can take oa sothtion sequence.

Example 7.2. Say that we constraify to hold only the first position in a solution
sequence. All the solutions in tab[esIT.T] 7.2, lant 7.3 drealid if we pusht; ahead
in front of the sequence. For instance, the solution seceseinctabld 713 produces the
equivalent solutions represented in tdblg 7.4.

Position 1(2(3|4|5|6|7|8|9]|10(11|12|13|14|15|16|17|Revenue
Sequence 9| t; to to to | to to |t | ts +3 USD
Sequence 1Q t; [ty | to |to [ te | ta |ty | L3 +3 USD

Table 7.4: Solutions equivalent to the solutions in tibBpushingt; ahead.

In general, every solution found by DIP to the consideredbjenm can be reordered
into a solution witht; in the first position. Then, we push in the first position of the
solution sequences in talfle]7.3, and we obtain the sequianiadse[ZD.

Position 112|3|4|5|6|7|8|9|10(11|12|13|14|15|16]|17|Revenue
Sequence 11 tg to to to | to t; [t | ts +3 USD
Sequence 12 ta [ty | to |to | t1 | te |ty | L3 +3 USD

Table 7.5: Solutions equivalent to the solutions in tibBpushing., ahead.

None of the sequences in tablg€l7.5 is a valid solution to s@Ve sincet, cannot
operate without input goodg4). In this case, placing, at the first position is natafe
since the SCOs that can provide it with input goods are ndopeed before it.

Then, all the solutions found by solver DIP can be reordemémlsolutions having
t; at the first position without losing solution classes. Ojifebg not all the solutions
found by DIP can be reordered into a solution havingt the first position. Therefore,
if we constraint, to take on the first position, we lose solution classes.

Why it is possible to push aheadand notts? The reason is tha maydependn
other SCOs to be performed. In fastmay need some inputs that in turn are produced
by other SCOst(, andt; in the case of,). Then, if we want provide a solution template
that limits the positions that each SCO can hold without iteys loss of solutions, then
we have to consider those dependencies among SCOs.
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A SCOt’ depend®nt if any of the output goods dfis an input good of’. In such
a caset’ may need the output @fto operate. Hypothesising thdtdepend®n ¢ andt
does not depend afnwe have that:

e if in a solutiont’ comes before, then the solution remains valid by moving
beforet’.

¢ if in a solutiont comes before’, then the solution may not be feasible anymore
by movingt’ beforet.

Along this line, given two SCOs, we can differentiate thraees:

e ¢t depend®nt’ andt’ does not depend an t’Q—’Ot

e t depends o’ andt’ depends on: t Q‘_’Q t

That is, they arenutually dependent
¢ otherwise (the case of no dependence at all}’ Q O t

By analysing the dependencies above we can limit the pasigach SCO can assume
without losing solutions.

Example 7.3. Consider once more examflel7.1, graphically depicted inrdifyiil.
Notice thatt; does not have any input good. Then, it does not depend on a@y SC
Then, we can constrain SCO to hold the first position within the solution sequence
(as in exampl€712): any solution with at a different position than the first one can
be reordered into a solution in whic¢h is at the first position. We can assign only one
position in a solution sequence since only one unit,aé offered. Positiorl is safeto

t1. Then, we assign position 1Ro,.

Next, things are different witl,. Recall that three units af, are offered by bid
Bidy1, and thug, might appear up to three times within a solution sequencenTive
cannot simply assigty to position2. Sincet, can be performed three times, it needs
at least three positions in a solution sequence. Then, vigrgsssitions2, 3 and4 of a
solution sequence iy, as represented in talfle]7.6.

Positions |1 |2 |3 |4 |5 |6 |7 |8 |9 |[10(11|12|13|14|15|16]|17
Solution
Template

tr[to|to]to

Table 7.6: Assigning positions t@ within a solution sequence.

At this point we wonder whether we can carry on witht¢s, andt, and so on.
Unfortunately, we cannot. This is becausets, andt, form a loop, i.e. they are
mutually dependenObserving carefully figule_4.1 we can say that:

e t9,t3, andt, depend ony andty;

2In terms of decision variables for DIP this means that we artegeneratingrg’f for all the positions
m € {1,...,17}, but we generate only one decision variabﬂq, sincet; is allowed to hold only position
1.
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e i9,t3, andty do not dependﬂmn ts,...,t10;
e to,t3, andty are mutually dependeﬂ:nand
e t5,...,t10 dependends ohy, t5, andt,.

Then, 9, t3, andt, must come befores, ..., 19 and aftert, and¢;. However, we
cannot establish an order among them since they are mutlgtigndent. Thus, we
must consider all their possible orderings. For instan@can assign té,, t3, andt,
positionsb, 6, 7, and8 (since two units ot, are available, we must assign two positions
to t5). TabldZY outlines g&emplateof a solution built in this way.

Positions | 1|2 |3 |4| 5| 6| 7| 8 (9(10|11|12(13|14|15|16|17
to| ta| ta| to
tr {to|to|to| 3| ta| t3| t3|ts | te | tio| tro
ta| ta| ta| ta

[#Variables] 1 [1[1]1[3[3[3[3J1J1J1]1]2]2[2]2]1]

Solution
Template

te | teg| te| ts

t,
tr | tr | tr | tr 8

Table 7.7: Positions within the solution sequence assigrgdori to SCOs.

Notice that we now need a decision variable for each of theefts in tablEZ]7 (as
expressed in the last row of the table). As4ots, andt,, the possible choices can be
encoded by the following variables:

5 6 7 8 5 6 7 8 5 6 7 8
{$t2 3 Lty s Ly Ty s Ly gy Loy Tigy Ty s Tiyy Ty $t4} (7.12)

wherez? = 1 means that, is performed at thé-th position.
to p p

Then, the total number of decision variables required taesgnt the problem
amounts to:

14+ 1414143 4414+14+14+142-44+1=29 (7.13)

In contrast, tablEZ718 illustrates the assignment of pmsitias required by DIP. DIP em-
ploys11 = 17 = 187 variables overall. Therefore, the difference when coirstrg
SCOs to limited number of positions is very significaft yersusl87 in the example).

To conclude, we have to detect the dependencies presemtstrtftture induced by
the SCOs and apply the process described above: we assigorimidimited number
of positions within the solution sequence to each SCO (ougad SCOs).

In what follows, we formally analyse how we can extend thaitians above to the
general case in order to yield a new IP, the so called CCIPelyyng on the notion of

dependence among transformations, and using it to constraipositions at which a
transformation can be used.

3No matter the ordering among, t3, andt4, we can always assign to them positions befgrer to
without losing solutions.

“Notice thatts, t3, andt4 lie on a cycle in the net. For this reason, each of them couldribute to
provide goods to the inputs of the other.
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Positons| 1 |2 | 3| 4|5 |6 |7 |8|9(10|11({12|13(14|15|16]| 17
to| to| to| to| to]| to| to| to| to| to| to| to| to| to| to]| to| to
til ti |t | tr |t |t |ttt |t |ttt |t 1| 1| 1
to| ta| ta| to| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| t2| t2
t3 t3 t3 t3 t3 t3 t3 t3 ts t3 tS tS tS tS tS tS tS
ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta]| ta
ts | ts | ts | ts | ts | ts | 5| 5| 5| t5| t5| t5| &5 | &5 | &5 | E5| t5
ts tﬁ tﬁ ts tﬁ ts ts tﬁ t6 t6 t6 t6 t6 t6 t6 t6 t6
tr |tz | tr| e | tr| o | tr| bz | tr | b7 | tr | b7 | tr | t7 | t7 | t7 | t7
tg ts ts tg ts tg tg ts ts ts tS t8 tS t8 tS tS t8
t9 tg tg t9 tg t9 t9 tg t9 t9 t9 t9 t9 t9 t9 t9 t9
tio| t1o| t1o| 10| t10| 10| t1o| 10| t10| 10| t10| t10| t10| 10| t10| t10| t10
[#Variabled 11[11[11]11[11[11]11[11]11]11[11[11]11[11[11]11] 11

Solution
Template

Table 7.8: Positions assigned a-priori without constgaint

7.2 SCO Dependencies and Solution Template

In this section we formally introduce a solution templatattlimits the possible posi-
tions each SCOs can take (like in tabldl 7.7) without losingsaution class. With this
purpose, firstly we formally introduce the concepteipendencgmong SCOs. Next,
we introduce a function that constrain the SCOs to hold adichhumber of positions
within a solution sequence, that isalution template

But before that we would like to clarify the conceptdgpendencyThe fact that an
SCOt depends on another SCGOdoes not enforce that must be forcedly executed
beforet. In fact this could happen. The fact thatlepends o’ only means that it
is always possible to change the relative ordet ahdt’ bringing¢’ in front without
losing solutions classes.

7.2.1 The SCO Dependency Graph (SDG)

In this section we formally capture the conceptdeipendencgmong SCOs. All the
background knowledge required to understand this sectiguinmarised in section
ZZ42.
An SCO dependency graph (SDG) is a graph that encodes thedkpges, in
terms of precedence relationships, between the B@og. The SDG is a directed
graph whose nodes stand for SCOs, and an edge from{&6G&CO¢’ reflects that
there exists a good that is both output @nd input tot’.

Example 7.4. The SDG associated to exampl€el 7.1 (see fifiule 7.1) is dejicfignire
[Z2(b). For the sake of comprehension, we include a copy ofdl@.1 in figuré 712(a).

Definition 7.1 (SCO Dependency Graphsiven a set of bids in the XOR bidding
language, such thdtis the overall set of SCOs, the associated SCO DependenphGra
(SDG) is a graplb DG = (V, E) such that:

5Recall that, given the input to a MMUCA WD, is the set of overall SCOs present in all bids. The
corresponding to the bid of examilE]7.1 is represented intenZID.
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e Each SCOisaverted/ =T,

e A directed arc connects two SC@®sand¢t’ iff there exists a good that is both
output oft and input tat’. More formally,

(t,t)eEiff O,NTy # 0

An SDG may or may not contain cycles. However, we have to asshat the graph
is cyclic in the general case. As explained in seclion P 4 .@yclic) graph defines a
preorder< overT. We denote this preorder as a péll, <). The semantics of the
preorder is that < ¢’ iff a path exists betweehandt’. As illustrated in section2.4.3,
a preorder allows the existence of pdirst’) such that < ¢ andt’ < t.

Example 7.5. In the order defined by the graph in figlirel7.2(b) we havethaf ¢
andt, < tg. However, considering that < t3 andts < ts, to andts cannot be

~ ~

ordered among them.

Figured{ZP (a) and (b) depict the PTN structure represgttien SCOs of example
[ along with the corresponding SDG. We recall from chaftérat, given a set’
equipped with a preordegt, we can define an equivalence relatioron T as follows:

t~tifft <t'andt’ <t (7.14)

Example 7.6. Regarding the example of figurelr.2(b), the equivalencesetaare:

[to] = {to} (7.15)
[t1] = {t1} (7.16)
[ta] = {t2,t3,t4} (7.17)
[ts] = {t5} (7.18)
[te] = {t6,t7} (7.19)
[ts] = {ts} (7.20)
[to] = {to} (7.21)
[t10] = {t10} (7.22)

(7.23)

Recall also that it is possible to define a strict partial omler the quotient set
(T'/~, <) such that:
[t] < [t']ifft < ¢ andt Lt (7.24)
Equivalently, we define a strict order on the $et7", <) such that:
t < t"iff [t] < [t]

Example 7.7. As to the example in figule—d.2(H}.] < [t5] (t2 < ts5) since there exists
a simple path from, to 5 ((t2, t5)J. Howeverft,] < [t4] does not hold since, although
a simple path exists froms to ¢4 ((t2, t4)), we have thaty ~ ¢4. In fact there are cycles
((ta, ta, t3,t2)).

6Recall that according to the notation employed in se€fidifa path in a graph is noted &g, . . . , vn),
where thev; are the nodes belonging to the path.
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(&) A PTNS representing SCOs (b) SDG

scc0 sccl

§cc23A

sceB7 sccs’/ \; scc9 @ @
T

(c) SCCs of the SDG (d) The strict order

Figure 7.2: A PTN structure, the corresponding SDG, SCC Qidr Relation.

Then, we are now ready to formally define the concepdeendenceWe recall
that two SCOg,t’ can be such that: (¥)depends on’ andt’ does not depend an
or (3)t andt’ are mutually dependent; or (4andt’ are not dependent on one another.
More formally, we can distinguish the following three cases

(1) t < t': t dependont’. A one-way directed path betweerandt’ exists in
the SDG. Then, all the SCOs along the path connecting’ can contribute to
increase the input goods of Then,t’ depend®n their execution. For instance,
in exampld_ZJ7, we have thai depends on,. Therefore, pushingahead of’
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in a solution sequence does not cause a loss of solutioreslass

(2) t' ~ t: t andt’ aremutually dependenfhere exist both a simple path franto
t' and another one from to t. Therefore, they lie on a simple cycle of the SDG.
For instance, in figule—d.2(b), we have that~ t,. Obviously, we cannot order
them since the circularity of the relationship implies ttiay depend on each
other. Then, we may risk to lose some solution class if we gadheir relative
order in a solution sequence.

(3) t £ ¢ andt’ £ t: no path exists betweenandt’. The relative positions of
andt’ within the solution sequence does not affect the feagihmlithe solution
in any case. Then, it does not matter the relative orderaofdt’ in the solution
sequence, and it can be changed arbitrarily.

In what follows we present three examples referring to theelitems in the list above.

Example 7.8(Dependence)in exampldZR we were able to motgin the first po-
sition of the solution sequence without losing solutionkgreas we could not do the
same fort,. This happens sinag does not depend on any SC& 6uch that < t'),
whereag, depends om; (t; < t2) andtqg (tg < t2). Then,t; andty must hold posi-
tions previous td,. This is why in the solution template in talfle]7t7 comes aftet;
andt.

Example 7.9(Mutual Dependence)in exampldZ13, we saw that in the case9fts,
andt, we could not assign to each of these SCOs only one place inothgom se-
quence. In fact, we have that ~ t3 ~ t4. Then, in order to consider all the possible
orderings among them, we assigned to them posifiohs7, ands in the solution tem-
plate of tablé7]7.

Example 7.10(Independence)in exampld ZR we were able to motein the first
position of the solution sequence without losing solutiohke reader can check that
equivalentlyty can be brought to the first position without affecting thadig} of the
solution. Thus, the solution template of tablel 7.7 can beifientdby switching the
positions ofty andt; as shown in tablg—4.9.

Positons| 1 (234|567 |8|9|10[11|12(13|14|15|16|17

. t t t t
Solution | . | | | t2 t2 t2 t2 e Lo 1y | to] to] te] te|,
Template 0 0 0 1 3 3 3 3 5 9 10 10 t7 t7 t7 t7 8
ta| ta| ta| ta

Table 7.9: Interchanging the positionstefandt.

Hence, while we can a-priori establish an order among SCs biag to different
equivalence classes, for SCOs within the same equivaldasge we cannot since they
are mutually dependent. As to the case of SCOs, we can chgsedaring.
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7.2.2 Computing the equivalence classes

As shown in sectiofir214, the definition of Strongly Conned@ainponent (SCC) in
graph theory coincides with the notion of equivalence clesslefined above. The very
good news is that there exists an algorithm that can find tHesS® a grapiV, £) in
polynomial time @(V + E)), as explained in (Cormen, 2001). The fact that we have
available this algorithm significantly simplifies the firdtaur subproblems, that is the
problem of finding an execution order among SCOs. In facte@itained the strongly
connected components, enforcing a suitable ordering artiemy amounts to building
a solution template.

Henceforth, we will refer indifferently to equivalence st&s or SCCs.

Example 7.11. The strongly connected components of the graph in figuidyL2¢:

scc0 = {to} = [to] 5cc67 = {t6, t7} = [to]

scel = {t1} = [t1] sce8 = {tg} = [tg]
scc234 = {ta, t3,ta} = [t2] sccd = {tg} = [to]

scch = {ts} = [t5] sccl0 = {tio} = [t10]

They are graphically depicted in figurel7.2(c). As mentiommesectiorlZH, it is also
possible to define a strict order among equivalence claS€&8g), graphically depicted
in figure[Z2(d).

7.2.3 Order Enforcing Function

We mentioned at the beginning of this section that our aino isuild atemplatethat
allows us to a-priori limit the set of positions that each S€&M hold within a solution
sequence in such a way that no solution class is lost. Agrifltes] by the template in
tabld 7Y, there is a link between the dependencies among Sxheir relative order.
Most precisely, a solution template must comply with thé&strder stemming from
dependencies. Next, we provide a formal definition of solutemplate, the so-called
D-bounded Order Enforcing Function

Definition 7.2 (D-bounded Order Enforcing Functionfiven a strict orde(T'/ ., <)
and a multi-seD € N7, aD-bounded Order Enforcing Functigh: {1,...,|D|} —
T/ is a sequence of equivalence classes satisfying the falipeonstraints:

Si)<S@)=i<j (7.25)
[STHE = Y D) V[t € T/~ (7.26)
t'et]

Where |S~1([t])| is the number of times the equivalence cl@sappears in the se-
guencesS. Henceforth,S will denote aD-bounded order enforcing function for
(T/~, =)

Equation’Z2b guarantees that all the position assignelet@quivalence classes
are in increasing order with respect(tf/ .., <). This means that ift] comes before
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[t'] according to(T'/ ., <), then[t] comes beforgt’] in S. Equatior_Z26 ensures that
enough positions iy are available to contain all the SCOsIinwith their multiplicity.
For instance, if three units af, are offered, it means that up to three copiespf
may be present in the solution sequence. Then, three pusithust be assigned to
to in S. Notice that there is no overlapping among the positiongaed to different
equivalence classes in virtue of equafiony.25.

Example 7.12. If D is the multi-set of the overall SCOs received in the MMUCA of
exampld—ZIl. We definea-bounded enforcing functiofi as follows:

S(1) = [tl;  S(2) = [to];

S(3) =[tol; S4)=[tol;

S(5) = [ta];  S(6) = [ta];

S(7) = [t2];  S(8) = [t2];

S(9) = [ts];  S(10) = [to};
S(11) = [tio];  S(12) = [t10);
S(13) = [te];  S(14) = [te);
S(15) = [te];  S(16) = [te];
S(17) = [ts]:

Departing from solution template in taHIe]7.7 we can reprefienction S as shown

in table[ZID. The solution template readily leads to the pivapin table[ZI0 by

substituting each set of elements for the equivalence @ldmsdongs to. For instance
{tQ, ts, t4} for [tQ] and{t(;, t7} for [t(;]

Positions 1|12 |(3|4|5|6]7]|8]...
Equiv. classeq [t:] | [to] | [to] | [to] | [t2] | [te] | [te] | [t2] | ...

9 10 | 11 12 | 13| 14| 15| 16 | 17
[ts] | [to] | [ti0] | [t10] | [ts] | [t6] | [t6] | [te] | [ts]

Table 7.10:D-bounded enforcing function for examjplel7. 1.

We employS~! to indicate the inverse of an enforcing functién S—*([¢]) indi-
cates the set of integers (positions) that map to the edarical class$t] via S. More
formally:

S7H[t) = {m e {1,...,|DI} | S(m) = [t]}

Example 7.13. Regarding example 712,
S7H([tel) = 7 ([t7]) = {13,14,15,16}

In what follows, we show that it is always possible to buildedst one solution
template. We prove this by construction. This result is améntal to our purposes
since theS function is employed to encode our problem.
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Lemma 7.1. Given a strict order(7'/ ..., <) and a multi-setD € N7 such thatvt €
T D(t) > 1, at least aD-bounded order enforcing functiofiexists.

Proof of lemmalZl Let (q1,qo,...,qx), Wherek = |T'/.|, be an ordering of the
elements off'/ . satisfying=<. Then, we buildS as follows:

S()=aq 5(2)=aq o S =a

S()\l—l—l)ZQQ S()\1+2)ZQQ S()\l—l—)\g)ZQQ

SEL Mt =g SEL N+ =a . S5 MM =a
where)\; = >, D(t) Notice thatS satisfies the constraints specified by equations
and’Z26. O

Notice that this proof also explains how to practically Hudl solution template
given the SCCs.

S is thus a function that assigns positions within a sequencet of SCOs. The
main property ofS is that every solution that DIP finds can be reordered intecariva-
lentandfeasiblesolution that fulfils the solution templafe In order to formally define
the concept ofulfilment we have to introduce some notation. In fact, we need to link a
solution to DIP to the solution template We begin by introducing partial sequences,
a generalisation of the concept of sequence that captwdemnmal representation of a
solution to solver DIP (see talle¥.1).

7.2.4 Partial Sequences
We begin by recalling the definition of sequence.

Definition 7.3 (Sequence) A Sequenc@ver a non-empty finite séf is a function
K :[1,n] — T,withn € N.

Notice thatin tablEZ]1 we represented a solution as a mgim positions within
a sequence to SCOs. In what follows we illustrate the cono&pgrtial sequence
which intuitively is a sequence with “holes”, meaning tha¢re could be some posi-
tions of the sequence that ampty This notion will be employed to formally capture
solution sequences like the ones in tables[Z], 7.2 ahd 7.3.

Definition 7.4 (Partial Sequence)A Partial Sequencever a non-empty finite séft is
apartial functionK : [1,n] — T, withn € N.

The fact the function igartial implies that some integers may have no image,
representing the holes in the sequence.
From now on, we will employ the following notation:

(1) |K| the length of the sequence. Henceforth, we will ass{ifie= n;

(2) K~' : T — 27 is a partial injective function such that ¢ K~'(t) iff
K (m) =t (inverse function);

(3) |[K~1(t)| is the number of timesappears in sequende;



160 Chapter 7. Connected Component-based Solver

(4) Givena multi-seD : T'— N, we will note asD(t) the multiplicity of¢ in D;
(5) Dom(K) is the subset ofl, n] that admits an image vi& (domain);
(6) Im(K)={teT| K(m)=tforsomen € [1,n]} (image)

Example 7.14. The partial sequence representing the solution sequenableiZ] is:

—_

[\
o

(S
N

—

EN|
o

S

S e S

oo
o

o

i~}

=~~~ =~~~
(=)

=~
NN NN S s N N

N

w

Obviously, a solution sequence can not contain more SCOghieeones submitted
in bids overall. Then, we further refine the representatiosotutions by limiting the
number of times each SCO can appear within a partial sequence

Definition 7.5 (D-bounded Partial Sequencepiven apartial sequencéd( over a set
T and a multi-seD € N7, we say that is D-bounded if:

|[K~1(t)] < D(t) vt € Im(K) (7.27)

Example 7.15.The partial function defined in example .14 is bounded byrbki-set
D in equatior ZP:

D = {to, to, to, t1,ta, ta, t3, ta, ts, te, te, tr, tr, ts, to, tio, tio}
this happens since:

(JK~*(to)| = 3andD(to) = 3) implies| K~ (to)| < D(to) (7.28)
...... (7.29)

and a similar equation applies to all the other elemenfsnifK).

O
Notice that the multi-seD = ,;D;; associated to an MMUCA bounds all of its
solutions, as state in the following observation.

Remark7.1 Every solution to an MMUCA is &-bounded partial sequence.

Now that we have all the formal tools to describe a solutios can define when a
solutionfulfils a solution templat& (order enforcing function). This is a central point
and leads us to the definition Stfulfilment:
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Definition 7.6 (S-fulfilment). Given aD-bounded partial sequenééand aD-bounded
order enforcing functior$, we say that#( fulfils S iff:

Vi € dom(K) K(i) € S(i) (7.30)

This means that a solutioi complies with a solution template if each SCOAn
takes on a positionllowedby S.

Example 7.16.COnsider tablEZ11

e the partial sequenck in does not fulfil the order enforcing function (solution
template)S, sinceK (1) = t2 andS(1) = [t1], butts & [t1];

e the partial sequenck’ fulfils S.

In table the highlighted SCOs do not hold the positions er@diby the solution tem-
plate.

O

Positons |12 |3|4| 5|6 | 7|8 |9|10|11|12|13|14|15]| 16|17
ta| to| t2| t2

(S) Solution te | te| te| to
ty | to|to|tol| t3| t3| t3| t3| 5| to|tio |10 ts

Template il tal il tr| tr | tr| tr
| K Jtofta] | [tfto[taftofte] [ [ [ [ts[ | [ |
L K Jtuft]telte[ta[talta[ts[ [ [ [ [ [ [ [ [ |

Table 7.11: Partial sequence fulfilling() and not fulfilling (K”) S in table[ZTD.

Then, now we can explain why the solution template represkoy S is of central
importance. We will formally prove in sectignT.4 that eachtjal sequence, solution
to the MMUCA WDP, can be reordered into aguivalentandfeasiblesolution that
fulfils S. Consequently, if we limit the search space so tdy the solutions fulfilling
S are included, we guarantee that no solution class is losrefbre, we achieve what
we intended, obtaining a space search reduction withoufisaty solution classes.

In the next section we show how to apply an ordering enforéimgtion to ILP.
We will present a new solver for the MMUCA WDP, that employsisiolerably less
decision variables than DIP by exploitisy

7.3 The improved IP formulation

The aim of this section is to introduce a new IP that improwases DIP. We call
the improved solver, described in the remaining of thisisacsolver CCIP. The idea
underlying the improvement of solver DIP is to consider assiiile solutions only
partial sequences fulfilling ®-bounded order enforcing functiagh and excluding all
other solutions. With this purpose, we employ the order enirfig function introduced
in definition[Z2.
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In sectio’ZZ311, we introduce a preliminary version of tRédrmulation of solver
CCIP. In sectiol 312 we introduce a further simplificattbat allows to eliminate
part of the constraints. In secti@n_713.3 we show that CCHRstinto a CMWOSP
solver when the Mixed Auction Net is acyclic. Finally, in §ea[Z3.3 we show that
CCIP turns into the DIP solver when the SDG is connected.

7.3.1 The Model

As usual, the input to the MMUCA WDP is a set of bi#3d,;, each one over a multi-
setD;; along with some price;;. D = (J,; D;; is the multi-set of all the submitted
SCOs. Then, the maximum length of the solution sequenge-$D].

According to remark7]1, a partial sequence representimgudian to the WDP is
always bounded b, since the partial sequence will at most contain all the stibch
SCOs. Then, we considera-bounded order enforcing functiofi. The associated
order relation(7’/ .., <) is the one defined by the SDG graph®Bn

In solver DIP we employed binary decision variablg, taking on value 1 iff SCO
tijk 1 selected at then-th position within the solution sequence. In the case of, DIP
m ranges in all the positions of the solution sequenge [1, ¢]). However, now we
can assign a limited number of positions to each SCOSvidf we want to allow as
feasible solutions only partial sequences fulfilliigwe only create decision variables
for the positions each SCO can hold. More precisely we crietesion variables;’,
for all m € S~!([t;;x]). By means of this operation we manage to drastically reduce
the search space.

Next, analogously to sectidn 6.2, we employ the followingibary decision vari-
ables. Firstlyz;;; is an integer variable that represents the number of paositibat
SCOt;;, holds in the solution sequence. Secondly, is a binary decision variables
taking on value one if bidBid;; is selected and O otherwise. Then, we impose the
following constraints.

(1) We obtain the number of positions that S&Q. holds in the solution sequence
(zi;1) by summing upc7, over all the positions. assigned tat ;5]
vgr= Y, ay Vijk (7.31)
meS~1([ti;k])
Example 7.17. Regarding examplel.1 we have:
Ty, = a7, +7p, + aczz + 2}, (7.32)

and
Ty, = 3, + ) + 2} (7.33)

and so on.

(2) We are interested in that at most one SCO can hold eactiqqosConsequently,
we impose that:
> a2 <1 Vm (7.34)

tijk GS(m)
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Notice that the sum is only over the SCOs of a single equica@tass. These
constraints enforce that the solution is a partial sequekidiehout such a con-
straint we could have more than one SCO assigned to the sasitopf the
sequence.

Example 7.18. Following exampld_7Z]1, at step (= 5) the following con-
straints hold:
xp, + acfd +ap, <1 (7.35)

(3) We need decision variables controlling if a given bid basn selected. As we
know, the semantics of a bid implies that selecting at least 8CO within a
bid implies selecting all the SCOs within the same bid wita tdorresponding
multiplicity. That is:

Example 7.19. For SCOt; in bid Bid;; of the MMUCA of exampld_Z]1 we
have:

Tty = T11 * 3 (737)
and so on.

(4) We impose that the XOR semantics of a bid is fulfilled, aemost one bid per
bidder can be selected:

Zmij <1 Vi (738)
J

(5) We need to encode the constraint enforcing that each ®@&0ted is enabled at
any step of the solution sequence.

m—1
Uo(g) + Z Z xéjk Ok (9) — Ziju(9)] = Z zij - Lijk(9)
=0 tijkes(l) tijk GS(m)

(7.39)
Vg € G,Vm € [1, 6]

(6) We express the constraint enforcing that the goodsabaito the auctioneer at
the end of the solution sequence is at |é4gs};:

14
U+ D Y 2 [Ourl9) = Tiji(9)] = Uour(g) Vg € G (7.40)

m=0t;;,€S(m)

In table[Z.IP we summarise the CCIP ILP formulation.
Finally, solving the MMUCA WDP is equivalent to optimise tbbjective function:

HlaXZ.iEij * Pij (741)
j

subject to constraints (a-f) in tadle 71 12.
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(a) Vijk Tijk = Z mZLk
meS~1([tix])

J

@d@| vm oo <1

tijkES(m)

4
@ Y9G |Uog)+ Y > - [0in(9) = Tij(9)] = Uour(9)

m=0 tijr€S(mMm)

Vge G |U(g)+ z_: > @i [04k(9) — Tin(9)] >

1=0 t;;,€S(1)

) | Vm e [1,0] >l Tiklg)

tijk ES(m)

(g) max Z Tij * Pij
ij

Table 7.12: Resume of the IP formulation of solver CCIP.

7.3.2 Eliminating some Equations

There is a further simplification that we can add. Not only \@a ceduce the number
of variables, but we are also able to eliminate some redurmarstraints. It follows
from some considerations on the IP structure that we canversome constraints
from solver CCIP because redundant. In what follows we gi®¥he corresponding
intuitions.

Equation[ZZ3P) ensures that enough goods are presenftompehe selected SCOs
at each step of the solution sequence. It must be appliedcchtstap of the solution
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sequence.

Uo(9)+i > @i Oun(9) —Tin(@)] = D alf - Tinle) (742)

=0 tijkGS(l) tijkGS(m)
Vg € G,Ym € [1,0]

Equation [7.4D) states that at the end of the sequence atdgagyoods are available
to the auctioneer.

4
U(g)+ D D ol [Our(9) = Tun(9)] > Uous(g) Vg€ G (7.43)

m=0t,;;,€S(m)

The application of the two constraints above plus the faat.$Himits the possible
position assignments makes some of those constraintsdadtirin particular, we can
get rid of constrainf=Z.42 at each stepif the group of SCO assigned to step via
S does not belong to any cycle of the graph. The following exerpll clarify the
statement.

Example 7.20. Consider the MMUCA WDP presented in examipld 7.1. In pardicul
we will focus on the equations regarding gog@djust before the firing of;. Then,
considering that the only SCOs that can add or remove tokeqpsdre {tz, t4, t5,t9},
equatioriZ-43 beconlks

Tty, — Tty — Tty — Tty Z 0 (746)

Notice that thex;, in in equatior_Z46 are integer, not binary variables. Now we
consider equationZ#2 at stépand for goodgs. According to tabld7]7, SC®; is
assigned to positiof. Then, equatioE 722 becorfles

Tty — Tty > Tty (749)

"Equatior Z2B can be rewritten as

£
0+ > @b [O(ga) — Te(ga)] > 0 (7.44)

1=0te{ta,ty,t5,tg}

that can be rewritten as
0+ > zt - [Oc(ga) — Te(ga)] > 0 (7.45)
te{ta,ty,ts,to}

sincer; = Zf:O z! (equatio&91). Expanding equatioiil.45, we odiaml 7.46.
8Equatior 4R can be rewritten as:

8
0+ > al - [0i(ga) — Ti(ga)] > - Tt;(94) (7.47)
l=0teT

Once again, since the only SCOs that can add or remove to&ensare{t2, t4, t5, to } and their assigned
positions in tabl€717 arg5, 6, 7, 8,9, 10}, equatio .47 becomes:
0o+ > > ah[0i(9a) = Ti(ga)] > 22, - Tus (94) (7.48)
1€{5,6,7,8} te{ta,ts}

The reader can check that expanding this expression wenadaiatiodZ2249.
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Notice that equatiof {7 }9) is automatically satisfied ii&tipn [Z.4b) is fulfilled. Then,
equatior.Z.49 is redundant, and we can get rid of it.

Example 720 above shows an important properties of our imotigs property
is not very intuitive because it depends on the equationsaantheir relationships.
Anyway, as we mentioned above, this property does not hotdefSCO lies on a
simple cycle or on a self-loop of the SDG. A counter exampleaharify this sentence.

Example 7.21. We consider again examdIeT .1, but in this case we focus oedhe-
tions for goody; . Notice that a a self-loop is present ©g. This self-loop prevents to
apply the same reasoning of examlple ¥.20. First, we writethévalent of equation
[Z28 and we obtain:

Ttq + Ttig — Lty Z 0= Ttg Z 0 (750)
Next, we consider equatifn 7142 at stigp We obtain:
Tty — Ttyg Z 0 (751)

It is easy too see that equation4.50 does not imply equiaiigh Then, we cannot get
rid of equatior.Z.31.

Intuitively, equatiorfZ.43 is global condition enforcing that at the end of the se-
guence the global input-output balance at each good of thia figure[Z1 is positive.

On the other hand, equatibn74dasal to each step, and enforces that enough input
goods are available at each step.

As showed by examp[eZP1, we have to check consfraint 7.¥2wdren the SCOs
assigned to positiom belong to a cycle. Notice that by definition each time an equiv
alence class contains > 1 SCOs, each SCO in the equivalence class belongs to a
simple cycle of length.

Example 7.22. (1) t1o in figure[Z2(a) has googh both as input and output. Then it
belongs to a self-loop({10, t10)). (2) t2 belongs to the simple cyclgs, t4, t5,t2). (3)
t; does not belong to any cycle.

To conclude, with respect to the encoding of solver CCIPgmrtex] in section 7.3.1,
we can get rid of a set of inequations. Thus, besides redileggumber of variables,
we decrements the number of constraints of solver DIP.

Employing the terminology introduced in sectibn 713.2, ve@ say that equation
must be added only if the SCOs assigned tosstdyy .S belong to a simple cycle.
Then, definingL  as:

Ly ={me{l,...£} | S(m) contains a simple cycle
We can rewrite equatiofi{7]39) as:
m—1
U(g)+ D Y ahu [Ourle) = Tin(9)] = Y affy - Tirlg) (7.52)
1=0 ti;,€S(1) tijk €S(m)
Vg € G,Ym € Lp

In appendiAB we present the CCIP model with reduced caimig encoded in
the OPL language (see sectlon211.2 and (Van HentenrycB) 199
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Problem Size

The number of decision variables in the above integer pragsaof the order of
O i |S~*(tix)|) (corresponding te}7, ). More in details, we create a binary deci-
sion variable for each bi#id,; € B, for a total of| B| binary decision variables. Then,
we create a decision variahlg;; for each SCQ;;, € T, for a total of|T’| decision
variables. Then, we create a decision variable for each §& 1" and for each posi-
tion it is allowed to take on within the solution sequencegtotal of) _, IS™(tin)]
binary decision variables. Then, we create a total of

1B+ > 157 (tije) € OO 187 (tijw)])
ik ik

decision variables.
With a similar process, we compute the total number of cairdss, that is:

21T+ |L|+ 6+ |GI(L + |LF|) (7.53)

7.3.3 The CMWOSP-based solver is a special case of CCIP

In this section, we show that the CMWOSP-based solver intred in sectiof 6.115 is
a special case of CCIP. Say that we know that no cycles areqresthe TDG. That
means that we will have exactly as many SCCs as the number@$§Sthen, we have
that equation (a) in tab[eZ1 5 turns into:

Considering this,

e equation (d) becomes redundant and we can eliminate it;

e equation (e) turns into

14
Uo(g)+ D D wije [Oui(9) = Tijn(9)] 2 Uourlg) Vg € G (7.55)

m=0t¢;;,€S(m)

that can be rewritten as:

Uo(9) + D ik - [Oigi(9) = Zig(9)] = Uout(g) Vg €G  (7.56)

ijk

Since the net has no cycles, it happens figt| = 0. Then, equation (f) can be
eliminated. Since:}, is not employed in any equation, we can eliminate equation
(Z53) as well.

Then, joining equations (b), (c), and (g) in tablef.15 wignation [Z.56), we obtain
exactly the same ILP model as the one in equatibnsl(7.55).
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7.3.4 CCIP amounts to DIP when the SDG is connected

Analogously, we show that when the SDG is connected CCIRiata DIP. If the SDG
is connected, then there is a big SCC encompassing all thes S€iappens that:

S(m)=T Vm € [1,0] (7.57)
Lp={1,...,6} (7.58)

Then, we create decision variablﬁgk Vti;e € S(m). Then, basically, we create
the same decision variables as in DIP. Next, the constraiatjuation[[Z.92) must be
applied at each step of the solution sequence. Then, wendhe&asame formulation as
DIP.

7.4 Equivalence between solvers DIP and CCIP

In this section we formally prove that no solution class ist limiting the possible
positions of SCOs vi&. This result is indirectly proved by showing that:

e each solution found by solver DIP can be reordered into aisolto CCIP; and
e each solution to solver CCIP is also a solution to DIP.

If this holds, then we are guaranteed that: (1) for each wluh DIP solution space
there is always an equivalent solution in CCIP solution spand (2) the CCIP solution
space is a subset of the DIP solution space. Then, CCIP dadssaosolutions nor
create new solutions not fulfilling DIP.

Such proofis rather complex. Then, before going on, we thtoe some definitions
and constructs that will be employed in the demonstratiorthi end, in sectiois 7.3.1
and[ZZP we provide formal tools to capture the notion ofderng of a solution.
Then, in sectio Z.414 we introduce some properties ofgagiquences of SCOs to be
employed for the proof. Finally, in secti@n 1.5, we pravttle formal proof.

7.4.1 Subsequences

In what follows we introduce the concept of subsequence odréigh sequence. A
subsequence of some partial sequence is asegencebtained from the former one
by removing some of the elements and all the empty positiatieowt disturbing the

relative positions of the remaining elements. An examplealdrify the sentence:

Example 7.23. Consider the partial sequence in tdble¥.13.

Position 112|3(4|(5|6|7(8]|9(10(11(12|{13(14|15|16|17|Revenue
Sequence 1 ¢y | t2 ty | to|t; | to]te i3 +3 USD

Table 7.13: Example of solution found by solver DIP.

Example of subsequences of the partial sequence of [[aliearelshowed in the
following. At the left hand side we have shown the subseqeentile on the right
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hand side the original partial sequence with highlightedl@élements selected to form
the subsequence. The elemeiridicates &olein the partial sequence.

(t1,t4,t2) (to,t2, €, 6,81, t0,ta, o, ta, €, €,€,€, t3,€,€,€) (7.59)
(t1, 10, to, ta) (to,ta,€,6,t1,t0, 1, t0,t2, €6, €, €, ¢, 3, €, €,€) (7.60)
(t1) (to,ta,€,6,81,t0, 8, t, ta, €,€,€, €, L3, €, €, €) (7.61)

(ta,ta) (to,ta, €€, t1,tp,ta, to, b2, €, €, €, €, 13, €€, €) (7.62)
(ta,t1,tq) (to,ta,€,6,t1,10,ta, 10, t2,€,€,€,€ t3,€,€,€) (7.63)
(to,ta,to,ts3) (to, t2, €, €, 11, t0,ta, o, ta,€,€,€, €6, t3, €, €, €) (7.64)

Notice that the order among the elements is maintained. i$hfair instance; comes
aftert, in the partial sequence of taljlel7.1, then the same must happeguatiol 7.64.

Definition 7.7 (Subsequence of a partial sequencday K : [1,n] — T is a partial
sequence. We say that' is a subsequence &f iff:

e K'’isasequencef elements off’. More formally, K’ : {1,...,m} — T where
m € Nandi m < n.

e There is a strictly increasing function (called charastérifunction of the se-
quence)f : {1,...,m} — [1,n] such that:

K'(6) = K(f(i))Yi € {1,...,m}

Example 7.24. The characteristic function of subsequelcel7.59 is:

f(1) =5 — the first element of{’corresponds to the fifth element &f
f(2) =7 — the second element df’corresponds to the seventh elementof
f(3) =9 — the third element ok’ corresponds to the nine-th elementfof

We call theinverse characteristic functioof a subsequenc&™” the function re-
trieving the position of an element of the subsequence withé original sequence.
We denote it ag . : [1,n] — {1,...,m}. Forinstancef;/(j) = k means that the
position within the original sequence of thie- th element of the subsequence was

Example 7.25. The inverse of the characteristic function of exaniplel7s24 i

1) =1
1 =2
179 =3

Given a partial sequendg : N — T and a sef” C T', we define the subsequence
of K restricted tdl"”, denote ad(|_,, as the subsequenceiifobtained removing from
K all the elements not belonging ¥d. More formally:

9Notice thatK’ is asequencenot apartial sequence
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Definition 7.8 (Sequence restricted to a subségjven a partial sequend€ : N — T’
and a sefl” C T, K7 (to be read ad( restricted tdl”) is a subsequence @& such
that:

K (O] = [K7H(1)] vieT (7.65)
K ()] =0 vt g T (7.66)

Example 7.26. Given the partial sequence of taBle 1. K3y, ¢, +,} = (t2, 14, t2,t3).

In the following section we introduce a formalism to deserfitow to order a partial
sequence in order to make it comply with a solution template.

7.4.2 Reordering Sequences

The main goal of this section is to introduce the theoreticals to check whether the
reordering of a partial sequence complies with a solutionplate. We recall that this
is useful since we have to prove that, for each solution tg Bifre always exists a
reordering of it that complies with the solution templatéem, in this section, as a first
step we provide a definition of reordering of a partial seqaehat fulfils the solution
templatesS.

Intuitively, an S-fulfilling reordering is a reordering o into a new partial se-
quenceK’ that fulfils S and that preserves the order definedAyamong the SCOs
within the same equivalence class. Before giving the fordedhils, we present an
example.

Example 7.27. Consider order enforcing functiofi and the partial sequendg in
table[ZTH. In tablEZ 4 we present als an S—fulfilling reordering of K, and K’

a partial sequence that is not &n-fulfilling reordering of K. Notice that inK’ the
elementg, and¢; have been reordered, whereas the elements of the equigalkss
[t2] maintain the same order asfit. Observe thak™ fulfils .S, but the elements of the
equivalence claslg,| are in a different relative order than i (¢2 comes aftet,).

Positons |12 |3|4| 5|6 | 7|8 |9|10|11|12|13|14|15]|16/|17
ta| to| t2| t2

'(l'se)msp(l)laligon ti [ to|to|to| ta| ta| t3| t3|ts | to | tio|tio ii ii ii ii ts
ta| ta| ta| ta
L K [tofta] [ [ti[to[taftofta] | [ | Jts] [ [ |
K’ ti|to|to|to| b2 |ba|ba|ts
K" tr{to|to|to|ta |tz |t2|ts
A4

Table 7.14: Examples of S-fulfilling/(’) and not S-fulfilling (<"’) reordering ofK.

Thus, we proceed to the formal definition®ffulfilling reordering.

Definition 7.9 (S-fulfilling reordering) Given aD-bounded partial sequenéé and a
D-bounded order enforcing functig#y K’ is an S-fulfilling reordering o iff:

(1) K’ fulfils S
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(2) K|, = K|, VgeT)/.

Point (1) implies thaf’ complies with the solution template. Point (2) of definition
[Z3 implies that the order among SCOs belonging to the samigadgnce class ik’
is the same as ik .

In sectiorZ¥ we will be interested in retrieving the oraiposition in of the ele-
ments of a reordered sequence. That is, gi@r6-fulfilling reordering of K, we are
interested in retrieving the original positiein K of the j-th element of’, as shown
in the following example.

Example 7.28. Consider the partial sequencEsand K’ employed in example_Z.P7.
Say that we are interested in retrieving the original posgiwithin K of the 7th el-
ement of K’. From tabld—Z T4 we know thdt”(7) = t». The natural way of doing
it would be to look for the position of SC@, in K. But this does not work since
appears more than once if. Indeed, we have thadt —!(¢2) = {5, 7}. Then, we have
to recur to the characteristic functions that are emplogduitld the subsequencéﬁ’q
and K, (point (2) of definitior ’ZD).

Remark7.2. SayK’ is an§ fulfilling reordering of K. Then, the original positiog in
K of them-th element ofK” is:

5= fic, (Fick (7)) (7.67)

Whereq = [K'(m)] is the equivalence class that contains theh element ofK’,
f;,l‘q is the characteristic function associated to the subsegugh,, andfx, is the
inverse characteristic function associated to the sulesempi’|, (see definition§717

andZB).

Now we are going to provide an existence result: no mattechvig the partial
sequence, there always exists &fulfilling reordering of it. Hence, in what follows
we provide both a theorem of existence and a way to build-&uifilling reordering.

Proposition 7.1. Given aD-bounded partial sequend€ and aD-bounded order en-
forcing functionS, an S-fulfilling reorderingk’’ always exists.

Proof of proposition[Z The demonstration is carried out by construction. For each
equivalence clasg] € T/.. we define two sequences. One contains all the integers
mapping to[t] via S (i.e. S~([t])) ordered in increasing value. The other one is the

sequence restricted to the sdt] (the subsequendg;)). Then,v[t] € T'/.:

bE(Sl, 2 TR Sa) S.t.s; < Sit1 and{si}le = S_l([t]) (768)
be(ﬁl,tg,...,tj,...,ﬁb):K‘[t] (7.69)

Then, we definék’ asK'(s;) =t; Vi € [1,...,b] andV[t] € T/ ..

Point (2) of definitiod ZP is trivially satisfied by consttion. Point (1) of definition
[73 is satisfied i (s;) € S(s;). But per construction we have that(s;) = t;,t; € [{]
andS(s;) = [t]. O

In the following section we add some complementary defingiabout sequences
and order relationships.
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7.4.3 Order Fulfilling Sequences

Our aim is to assess the positions to a-priori assign to S@8sdh a way that the order
established by the SDG is not violated. We explained in seEfiZ] that we have to
make sure that all the SCOs such thak ¢’ must be assigned positions such that
comes before’ in the sequence. Thus, the first step is knowing which onespgm
the possible solutions, do not violate the strict order isgzbby '/, <). With this
purpose, we give a definition to decide whether a partial secg fulfils a strict order
relationship.

Definition 7.10 (Order Fulfilling Sequence)We say that a partial sequenieoverT
fulfils an order relation{T'/ ., <) iff:

Vi, j € dom(K) [K())] < [K()] =i < j (7.70)

This definition formally states that a partial sequefctulfils the order relationship
=< only if the relative order among SCOs withkiti does not violate<.

Example 7.29.The partial functiork in tablelZI} does not fulfil the order relationship
defined by the SDG in figur€sT.2(b) and (&).violates the order relationship in various
points. For instance, we have thiatappears beforg althought; < ¢2 holds. Observe
that this does not mean that this solution is not valid, buy dimat it does not fulfil
the order relation. On the opposite, partial sequekicand K" in table[ZT# fulfil the
order relationshipx.

As mentioned aboves is a template that a partial sequence must adhere in order to
fulfil <. Hence, we must define the conditions for a partial sequensatisfy a given
solution template.

In what follows we formally show that a sequence fulfilliSgalso fulfils the order
relationship-<.

Lemma 7.2. If K fulfils S, thenK fulfils (T'/~, <).

Proof of lemmalZ2
From equation§Z.B0 ald 7125 it follows that(:)] < [K ()] = i < j. O

The order enforcing function is exactly the solution tentglae were looking for.
Any partial sequence (and thus any solution) fulfilling g@fulfils the order relation-
ship (T'/ ., <). This is a very important property, since it means that tree@dence
relationship among SCOs are fulfilled within such a pargagjience.

In what follows, we detail some definition and properties Eyed in the proof of

sectiol .Z45.

7.4.4 Properties of partial sequences of SCOs

In this section we demonstrate some properties of partiplesgces of SCOs that fulfil
an order relationshipi{/.., <). Those properties will be useful in sectibn714.5. In
particular we will deal with a special case: the case in wiweb SCOst andt’ are
such that < t' butt comes aftet’ in a partial sequence fulfillindf{/ .., <). We will
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call it the case oforward swapping Notice that this can happen onlytiind¢’ are in
the same equivalence class. Then, in what follows:

e T is a set of SCOs equipped with the preorder defined by its 8D&) (as in
sectiol’ZZ]1). Recall that a SGO= T is composed by a pair of multisets of
goods:t = (Z;, ©;), whereZ;, O; € N&,

e J : N — T is a partial sequence of SCOs that fulfils the order relakigns
T/~ =)

(a) g is output of.J(Z) and input ofJ ().

I
0

s+
SIS

(b) Positionm comes before positiofin the J partial sequence.

Figure 7.3:J(2) is forwardly swappedvith J(m) in g.

J has some important properties that we detail in the follogwiBut before that, we
give an important definition, the definition of SC@swardly swapped

We provide an example with some intuitions of the definitibfoowardly swapped
Forinstance, figule4.3 graphically depicts the case inwii¢) is forwardly swapped
with J(m). Intuitively, say thatn is a position of the partial sequendesuch that the
associated SCO(m) hasg as an input godd (Zs(m)(g) > 0). Say also that further
ahead in the sequence, at positior»> m, there is a SCO that hasas output good
(Oz)(g) > 0). In such a case we say that SO() is forwardly swapped withy (112).
In figure[ZB(a) we show that is both input ofJ(m) and output of/(z), whereas in
figure[ZB(b) we graphically represent thatomes aftern in the J solution sequence.

10The notation here is such théx; ;) meansO;;;, where the corresponding SCOtig;, = J(1)
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t1,1

m31»¢a t10,2
1 1

t3, 1 12,2 11
1~ 1
4
o« 14, 1
1 - 1 @
1
t531 1 1
1
OHIT
l/' 1
L ¥
t672 t772

1
GLERO

Figure 7.4: Part of the SDG of examilel7.1

Definition 7.11 (Forwardly Swapped)Given a partial sequenckthat fulfils an order
relationship(T'/ .., <), a goodg € G and two positionsn, Z € dom(J) such that:

(1) Zymy(g) >0
) m < 3
() Oyz(9) >0

then we say thaff(2) is forwardly swappedvith J(m) in g. If m = Z we say that
J(m) has aself-loop

In what follows we present a lemma that describes three itapbproperties of
partial sequences with swapped SCOs. The lemma is verytiugtui The intuition
behind this is explained by the following example.

Example 7.30. Consider the partial sequené€ in table[ZI} . By definition it fulfils
S. Saym = 6, then we have thak’(m) = t4. We also have thaf;, (g4) > 0 (See
figure[Z3). In figuré7]l4 we extend figurel7.1 by highlightinghick black the SCOs
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that are concerned in this example. Observe thatvhose output good ig,, is at
positionz = 7 of K’, aftert,. The reader can check that:

(1) t2 andt,4 belong to a simple cycle;
(2) t4 < t5,t4 < tg; and
(3) ta ~ ty4.
This means that i/ (2) is forwardly swapped with/ (1) in g, then it holds that:
(1) J(m) andJ(2) belong to the same equivalence class;

(2) any SCQ that hag as input good must be such that eithiérn) < t or J(m) ~
t;

(3) any SCOt that hasg as output good must be such that eithex J(m) or
t ~ J(m).

These properties are generalised in the following lemma.
Lemma 7.3. If J(Z2) is forwardly swapped witlf (m) in g, then:
(1) J(m) ~ J(2);
(2) for all t such thatZ,(g) > 0, eitherJ(m) ~ t or J(m) < t;
(3) for all ¢ such thatO,(g) > 0, eitherJ(m) ~ tort < J(m).

Proof of lemmalZ-3

(1) If z = m this is trivially true. Otherwise, we have thd(z) < J(m) since
g is output of J(Z) and input of J(m). If we had thatJ(m) ¢ J(Z), then
[J(2)] < [J(m)] would hold. Hence, from definitidn4.9:

[JE)] < [Jm)]=Z2=<m (7.71)
that is against the initial hypothesis. Then, we can corethdtJ (m) ~ J(Z).

(2) J(2) < tsincegis output ofJ(Z) and input oft. But we know from the previous
point thatJ(m) ~ J(Z). Then, it cannot be/ () £ t by transitivity. At this
point only two possibilities remain, eithdi(m) ~ ¢ or J(m) < t. If m = Z the
same discussion holds settidgmn) = J(Zz).

(3) ltis clear that < .J(m) sinceg is output oft and input ofJ(m). But we know
from the previous point thaf () ~ J(2). At this point only two possibilities
remain, eithert ~ J(m) ort < J(m). If m = Z the same discussion holds
settingJ(m) = J(2).

O

Notice that from lemm&713 follows that, under the hypotbesinsidered above,
there cannot be any SCO withas input or output good that is not in relation with
J(m) via <.

Corollary 7.1. If J(2) is forwardly swapped witV () in g, then for all¢ such that
O:(g) > 00rZ;(g) > 0: itcannot bet & J(m).
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7.4.5 Equivalence between solvers

In this section we prove that no solution class is lost bytiimgi the positions via an
ordering enforcing function. We prove this result inditgctnstead of relying on the
definition of MMUCA WDP, we build our proof departing from tleerresponding ILP
formulation, that is DIP (see sectibnb.2).

In fact, if we prove that (1) each solution to DIP can be receddnto a solution
to CCIP, and that (2) each solution to CCIP is also a solutiosalver DIP, then we
demonstrate that no solution class is lost. In fact, theeerisason for employing this
indirect proof. By doing this, we also prove that the opemagperformed in section
[£32 — the elimination of part of the constraints of solv&IB— is legal.

With this in mind we demonstrate the following two theorems:

Theorem 7.1. Given a partial sequencél, solution to solver DIP, any S-fulfilling
reorderingJ of H fulfils all the constraints of solver CCIP.

Theorem 7.2. Given a partial sequencé, solution to solver CCIP, it fulfils all the
constraints of DIP.

Theorem§ 711 anld4.2 will be proved in the remaining of theptdra Relying on
those theorems, we can prove that:

Corollary 7.2. Any solution found by solver DIP can be reordered into a sofuto
solver CCIP.

Proof of corollary Say H is a solution to solver DIP with objective valugy.
Assume that there exists an S-fulfilling reorderihgf H that is not a solution to solver
CCIR The cost associated to solution sequehéeequal to the costy associated to
solution H sinceJ is a reordering ofd. For theorenl 711/ fulfils all the constraints of
CCIR SinceJ is not an optimal solution to solver CCIR, there must existher solution
J’ to solver CCIP with objective value;r > c¢; = cy. However, from theorefn 4.2,
we have that each solution to solver CCIP fulfils all the caists imposed by DIP
. Then,J’ should be an optimal solution to DIP since it fulfils all itsnstraints and its
objective value is larger thaty;. This is against the hypothesis that the solutiof/is
It follows that.J is an optimal solution to CCIP. O

Corollary 7.3. Any solution found by solver CCIP is a solution to solver DIP.

Proof of corollary Say J is an optimal solution to solver CCIP with cosf.
Assume that it is not an optimal solution to solver DIP Frémedreni_ZPR we have that
J fulfils all the constraints of solver DIP. Then, there sholoédanother solutioi/ of

DIP with costcy > cs. In this case, in virtue of theoreln¥.1, it could be reordered
into a solution sequence fulfilling the constraints of sol@€IP. SinceH fulfils the
constraints of CCIP and has cast > c¢j, it should be an optimal solution to solver
CCIP. This is against the hypothesis that the solutios wsith objective valuez;. It
follows that.J is an optimal solution to DIP. O
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7.4.6 Proof of theorenTZ1L

As mentioned above, a solution to the IP model of the MMUCA Wi2fined in section
can be expressed by means of a partial sequEncgl, ..., |D|} — T such thdt]
H(m) = tiff zi* = 1. A solution to solver CCIP, too, can be expressed by means of a
partial sequencé : {1,...,|D|} — T suchthat/(m) = tiff «}* = 1.

The first step is thus proving that for each solution to DIR¢hexists a reordering
of it that fulfils the constraints of CCIP. The intuition batithis theorem is illustrated
by the following example:

Example 7.31. Consider again example—7127. The partial sequdiit table[Z.Th
is an S-fulfilling reordering of sequende in table[ZI# . Recall thak is a solution
to the MMUCA of exampl€_Z]1 found by solver DIR” is a still valid solution to the
MMUCA of exampleZ1L.

With theorenZ1l we aim at demonstrating the universalithefresult of example
[£3]: anyS-fulfilling reordering of a solution is still a valid solutioto the MMUCA
WDP. For the sake of simplicity we resume the IP CCIP in tRRI&7

Since the proof of theoreln 1.1 is complex and rather long, @ggrbby demonstrat-
ing several lemmas.

First, we show that/ fulfils equations (a),(b), and (c) in tadle 7115. Equation (a
sums intax; 5, the number of times SCQ);;, appears in a solution sequence. Equation
(b) enforces that either all or none of the SCOs within a bil selected. Equation
(c)enforces that at most one bid is selected for each bidder.

Lemma 7.4. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (a),(b), and (c) in tab[e—7]15.

Proof of lemmalZ3 z;;, of equatior{6.91 counts the number of timgs, appears

in the solutionH. Thus, we have that;;, = |H*(t;jx)|. On the other handy;;x

in equatior ZT5(a) counts the number of times SCappears inJ. Then, we have

zijk = |J 7 (tin)]. SinceJ is anS-fulfilling reordering ofH, from point (2) of defini-

tion[Z9 we can derive that? —* (¢;;x)| = |J~(tijx)| Vtijk. Then, the variables;

assume the same values in equafionl6.9Hars in equation (a) in tab[e7115 fdt
From this follows trivially that equations (b) and (c) in ta@”I% are fulfilled by/

if equationd6.91 and 6.b2 are fulfilled By. Furthermore, the objective values of the

two IPs DIP and CCIP assume the same optimal value, i.e. iegsBL.96 and (g) in

table[ZTb assume the same valuesHoand.J respectively. (]

Next we consider equation (d) in talffe4.15. Equation (dpeo&s that at most one
SCO can hold each position of the solution sequence.

Lemma 7.5. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraint (d) in tabl&Z15.

Proof of lemmal[Z3 Constraint (d) in tableZZ15 is fulfilled iff at most one SCO is
selected at each position of the solution sequence. Sinisea partial sequence, it

11n order to ease the notation we will henceforth empidgr indicating the generic SCQ,. Equiva-
lently, we will employt,, to indicatet; , ; 1, andt’ to indicatet s ;.
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(a) Vijk Tijk = Z mZLk
meS~1([tix])

J

@d| vm oo <1

tijkES(m)

4
@) VgeG |Ulg)+ D D =i [0ur(9) = Tiyn(9)] = Uourg)

m=0 tijr€S(mMm)

m—1
Vge G |U(g)+ Y D by [0irle) — Tije(g)] >
1=0 t;;,€S(1)

() |¥Ym € L >l Tiklg)
tijkES(m)

(g) max Z Tij * Pij
ij

Table 7.15: Resume of the IP formulation of solver CCIP.

cannot be the case that more than one SCOs is associatechtyleamisition. Then it
is always fulfilled. O

Next, we consider equation (e) of table1.15. Equation (&rems that the goods
available to the auctioneer at the end of the solution sexpismat leasts, ;.

Lemma 7.6. Given a partial sequencé, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (e) of tableZ15.

Proof of lemmal[Z® We can rewrite equation (e) of tafle 7115 considering that th
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solution isJ. Then we have:

Uo()+ D 105w 9) = Zsm)(9)] = Uour(9) (7.72)

medom(J)

Now we rewrite equatiof 6.95 of solver DIP considering thatsolution isH:

U(g)+ Y [Onm)(9) = Tum)(9)] = Uour(9) (7.73)

medom(H)

Notice thatvt € T |H~1(t)| = |J~1(t)| sinceJ is anS — fulfilling reordering of
H. Then, the Left Hand Side (LHS) of equatidns T.72 &ndl7.7@raeshe same value.
Then, trivially, equation (e) of table 715 is fulfilled byif equatior6.9b is fulfilled by
H. O

The most complex demonstration is ensuring that all thectsleSCOs are enabled
at each step. This means checking that equation (f) of [alig always fulfilled by
J given tha{&9¥ is fulfilled byHf. Then, we further divide the demonstration of this
lemma in some sub lemmas. But before that, we rewrite equalid®¥ and (f) of table
[Z13 considering that the solutions dfeand.J respecuvel@

m—1
)+ > 10uw(9) = Zruay(9)) = T (9) (7.74)
=0
Vg € G,¥Ym € [1, ...,/

for equatiol 6.94 and

m—1
)+ D [050(9) = Zsay(9)] = Zsgmy (9) (7.75)
=0
Vg € G,Ym € [1,...,4]

for equation (f) of tablEZ14.

In the demonstration, we will prove that equafion¥.75 ifilfatl by J for a general
goodg and at a steph that complies with different hypothesis. The different bihesis
will be treated in the different lemmas that follow.

The first non trivial case is obviously when the SCO assadittiestepm requires
input goods fromy. In this case, too, we have to distinguish two sub-casesaiteat
described in lemmds1.7 ahd]7.9. Lemimd 7.7 deals with theicaseich there is no
SCO that adds tokens intoholding a position aftefi, — 1 in partial solution sequence
J, whereas lemni{a_.9 considers the complementary case.

—1
121n order not to overcharge the notation, we wng instead of >
1=0 I<m:ledom( ])
13we should add constrailZ175 only for stepsassociated to SCOs belonging to cycles € Lr).
Instead, we add it for everyn. However, this case is more restrictive and then, if it issfiat in this case, it
will be also fulfilled if we remove the equations corresparyiom ¢ Lg.
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Lemma 7.7. Given a partial sequencé, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (f) of tablE 715 at a stefp and at a goody such
that:

® Zyay(g) >0

o VZ>mO0y:)(9) =0

Proof of lemmalZ] In this case we can write equationg. 76%s

) + Z 009 Z L (g (7.77)

since after stepn no SCO can add further contributions to gapdWe can also write
the following inequation:

7 ¢
ZI](Z ZI](Z (7.78)
=0 =0

since there could be SCOs with positions aftethat remove tokens from. Then,
equatior.ZA7 is fulfilled if the following equation is fuléd:

) + Z 009 Z L (g (7.79)

Considering that equatidn 7172 holds, equalfionl7.79 isfadi O

Now we deal with the most problematic sub-case, i.e. wheretheists a SCO that
can add tokens intg and holds a position aftef.. Notice that this case is someway
connected to the case of forwardly swapped SCOs (see defibfflll). In order to
cover this case, we have to demonstrate two lemmas. Thediiaivé:

Lemma 7.8. Given a partial sequencé/, solution to solver DIP, and an S-fulfilling
reordering of it.J, assume that at a step € dom(J) and for a goody € G it holds
that:

(1) Zsmy(g) > 0,i.e. g is aninput good to transition/ (1),
(2) 32 > m such thatO ;5 (g) > 0, i.e. J(Z) is forwardly swapped with/ (/) in g;

(3) ¢ = [J(m)], i.eqis the equivalence class d{m);

14EquatioZZF can be rewritten in an equivalent form if wadptio the right hand side of the equation all
the terms containing:

m—1 m
Uo(9) + D Osay(9) =D Tyay(9) (7.76)
=0 =0
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(4) 5= fu, (fJ_‘q1 (m)), i.e. 5 is the position inH corresponding to the positiofi
in JE.

Then, we have that:

5—1 m—1
> Oun(9) < Y Osplg) (7.80)
=0 =0

and
s—1 m—1
Y Tuw(9) = D L) (7.81)
=0 1=0

Proof of lemmalZ8 We begin by checking that equatibn4.80 holds. Recall timaesi
hypothesis (2) of lemn{azd.8 holds, from lemma 7.3 we haveah#ie SCOg with g
as output good®; (g) > 0) that exist are such that< J(m) ort ~ J(m). Then, only
those SCOs can contribute to increase the Right Hand Sid8)Ritl LHS of equation
[Z80.

With this in mind we show that equatidn_7180 is fulfilled. Thetenotingt =
J(m) = H(3), we have that:

(1) Allthe SCOst=J(p) such that < £ andO;(g) > 0 have added their contribution
to the RHS of equation Z.B0, but not necessarily to the LHSs iBrhbecause for
point (1) of definitioZP we have that:

[J(p)] < [J(m)] =p=<m (7.82)

Oppositely, not necessarily all the SCOs; ¢ have added their contribute to the
LHS of equatioiZ-80.

(2) Any SCOt ~ t that has added its contribute to the RHS of equdfionl 7.80 has
also given its contribute to the LHS either. This is becausehypothesis ob-
fulfilling reordering H( ()] = J|[s(m)), I-€. the order in which the SCO within
the same equivalence class are executed is the sanedod.J.

Similarly, we check that equatidn7181 is fulfilled. Recdlht since hypothesis
(2) of lemmd’ZB, from lemm@a_4.3 we have that all the SE@sth ¢ as input good
(Z:(g) > 0) that exist are such that(mn) < t ort ~ J(m). Then, only those SCOs can
contribute to increase the RHS and LHS of equdiion]7.80.

With this in mind we show that equatidd_7181 is fulfilled sinaenotingt =
J(m) = H(3), we have that:

15SinceH is a reordering off, there must exists a stéfto which-is associated the SCO corresponding to
them-th position ofJ. Steps, corresponding to the original position iifi of the m-th element of/, can be
computed as explained in propositlgn]7.2. Recall yf)@ﬁ‘,(ﬁl)] is the characteristic function of the sequence

H restricted to the sdt/(m)], whereast_HlJ( ) is the inverse characteristic function of the sequesice
restricted to the st/ (m)].
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(1) No SCOt such that > ¢, andl;(g) > 0 has given its contribute to the RHS of
equatiorZ.81. This is because, gay J(p), then for point (1) of definitio 719
we have that:

[J(m)] < [J(p)] = m < p (7.83)

Oppositely, some of the SCQs< t may have contributed to increase the LHS
of equatior.Z.g1

(2) Any SCOt such that ~ # that has not executed in the RHS of equaliionl7.80 has
not been executed in the LHS either. This is because per hgpist?| , .= =
Ji(s¢my» 1-€- the order in which the SCO within the same equivalerasscare
executed is the same féf and.J.

O

With the result of lemmBZ718 at hand we can proceed to dealthétimost problem-
atic sub-case:

Lemma 7.9. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (f) of tablEZZ15 at a step and at a good; such
that:

® Ziay(g) >0

e 32 > m such thatO ;) (g9) > 0

Proof of lemmal[Z® Notice that we are under the hypothesis (1) and (2) of lemma
[8. .As we mentioned in footndiell5, sinées a reordering off, there must exists a
positions of H corresponding to positior in J. Thatiss = fpu,, (f]‘(}(ﬁz)), asin
hypothesis (4) of lemmiaZ.8.

Now consider that equatién 7174 is fulfilled for a#l, sinceH is a solution to solver
DIP. In particular it will hold at positiors. Then, if we rewrite expressiofis 7174 and
[Z73 at those stepsandm

)+ Z Ouwy(9) —Tuw(9) > Zu)(9) (7.84)
1=0

,_.

)+ OJ(l) —Zy(9) = Zimy(g) (7.85)
=0

an we check that the LHS of equat[on4.84 is smaller than th® aHequatiofi .85,
we are sure that equatibn 7185 is fulfilled at stepsince it is fulfilled in equation Z.84
per hypothesis. Then, we check if the following equatiorul§ilfed:

m—1
> 0uw(9) = Zuay(9) < D Osn(9) — Ziw(9) (7.86)
=0
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With easy algebraic SCOs is is easy to check that equbfid ig.8atisfied if both
equation

5—1 m—1
> Oun(9) < Y Osplg) (7.87)
=0 =0

and equation
5—1 m—1
> Tuale) = > Tiw(g) (7.88)
1=0 1=0

are satisfied. In virtue of lemniaY.8 the equations aboveadisfisd. O

The last lemma deals with a trivial case. That is, when weidens goody and a
stepm of the partial sequencé for which g in not an input good to the selected SCO
J(m). Sinceg is not an input good, equati@n 7175 assume a trivial form.

Lemma 7.10. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (f) of tablE 715 at a stefp and at a goody such
thatZ;(,)(g9) = 0

Proof of lemmalZI0 The SCO enabled at step does not require input goods from
goody. It is a trivial case since if the equation was enabled at8tep1 it is enabled
at stepm. At stepl it is enabled sincéfy(g) > 0. O

In conclusion, we showed that equation .76 is fulfilled fegry m and for everyy
whenJ is the solution sequence. Then we can now give a further lemma

Lemma 7.11. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (f) of tablEZZ15.

Proof of lemmalZI1 all the possible cases are covered by lemimad [0, 7.7 8nd 7.
O

Finally, after proving all the parts of the theorem, we ristaand prove it.

Theorem 7.3. Given a partial sequencél, solution to solver DIP, any S-fulfilling
reorderingJ of H fulfils all the constraints of solver CCIP.

Proof of theorem[ZZ1 All the equations are covered by lemnhad 4 [Z.3,[7.6] 7.11

7.4.7 Proof of theorenTZ.P

At this point we have to check that the other way around is, tra® That is, given a
solution to solver CCIP, this fulfils all the constraints ofwer DIP.

Proof of theorem[Z2 First, notice that imposing that}, = 0 Vm ¢ S([t;;i]) for
DIP we obtain the same equations as for solver CCIP, exagptipression (f) of table
[Z183. The fact the we do apply the expression only when thiiposn is associated
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to a SCO belonging to a cyclex € Lr) creates an asymmetry between the two prob-
lems. However, in what follows we show that equation (f) diefZTH is automatically
fulfilled for J in solver CCIP whenn ¢ Lr. We rewrite equation (f) of table_ZIL5
considering that the solution i (as in equatiofi_ZT5) for a generic stépg L to
which a SCO¥ = J(1n) is associated:

—

Uo(g) + > 10s0)(9) — Zsay(9)] = Ly (9) (7.89)
l

3

Il
=)

Per absurd, say that for a solutidrof solver CCIP this does not hold:

—

Uo(g) + Os0(9) = Ziy(9)] < Ziimy(9) (7.90)
.

3

Il
=)

Notice that constraififZ.¥2 enforces that at the end of theesgce the units of googl
available must be at least O:

14
)+ D [0sm)(9) = Ly (9)] = Uour(g) > 0 (7.91)
m=0

Then, if equatiofi 7290 holds at stép there must exist some SGG= J (%), holding a
positionz > m in the solution sequence that adds tokens in(®;(g) > 0). we have
two cases:

(1) 2 = m: in this caseJ(m) has a self-loop, and thug(n) belongs to the cycle
(J(m), J (m

J(ih), J(7)).

(2) z > m: Inthis caseJ (%) is forwardly swapped witlf (/) in g. From this follows
that, in virtue of point (1) of lemm@&4.3/(z) ~ J(m). Then,J(m) belongs to a
cycle.

Both of the possibilities contradicts the initial hypottseg&: ¢ Lr. Then, we can
conclude that any solution to solver CCIP fulfils equalid@BAvhenmn does not belong
to a cycle. O

7.5 Conclusions

In this chapter we have proposed a representation of the MMW®DP that consid-

erably reduces the search space. This is obtained by reftlenspace of feasible
solutions. We have showed that the pruned solutions canvieysalreordered into
equivalent solutions belonging to the reduced solutiortsp&uch a reduction in the
solution space entails a reduction in the size of the seqates

Notice also that computing the order enforcing functiondasnputationally easy.

In fact, there is a very efficient algorithm to compute the SQE the SDG graph
(Cormen, 2001). This is an important point to consider. Thees managed to divide
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the MMUCA WDP problem into two subproblems, and one of thadepsoblems is
solvable in polynomial time.

Obviously, the number of decision variables and the sizh@éearch space depend
on the size of cycles in a mixed auction net. In fact, we shothed the number of
required decision variables for CCIP d3(3_, |S~1(ti;1)]). Thus, the bigger the
strongly connected components, the more the number ofideaiariables. In the next
section we provide a preliminary empirical test that conditimat the reduction in the
search space corresponds to a reduction in the solving ti@&CHP with respects to
DIP.

Finally, notice that when all the SCOs form a unique Stror@dynnected Compo-
nent (i.e. the SDG is connected), DIP and CCIP provide ex#iod same ILP model.
Whereas when the SCOs do not form any cycle, CCIP is equiveléehe CMWOSP-
based solver. Then. we can infer that CCIP perfectly exptbi¢ topology associated
to SCOs and generalises both solvers CCIP and DIP.






Chapter 8

Empirical Evaluation

The purpose of this chapter is to perform a preliminary eiogirevaluation of the
CMWOSP-based (presented in secfion ®.1.5), DIP, and CQWerso In fact, our goal
is to provide some useful hints on the applicability of MMUEA

The chapter is structured as follows. In secfiod 8.1, we vatdithe experiments
provided in this chapter. In secti@nB.2 we summarise théiciat data set generator
for MMUCAs presented in[ (Vinyals, 200[7b), and detail theresponding algorithm.
In sectio 8B, we analyse some early, empirical resulées:aft

¢ running and comparing DIP and CCIP solvers on arbitrary agtwopologies;
e running the CMWQOSP-based solver on acyclic network top‘eﬂg

Finally, we draw some conclusions in section 8.4.

8.1 Motivation

Despite its potential for application, and like CAs, litteknown about the practical
application of MMUCASs since no real-world data is availatietest WD algorithms.
Such results are unlikely to come up unless researchersavaed with algorithms
or test suites to generate artificial data representatithefiuction scenarios a WD
algorithm is likely to encounter.

In the very recent past, there have been some attempts torieatpi evalu-
ate the performances of MMUCA WDP algorithms. In particulinyals et. al.
(Vinyals et al., 20074; Vinyals et al., 2007b; Vinyals, Z8D¢arefully analyse the per-
formances of the DIP solver, after providing an algorithrgémerate artificial data sets
that are representative of the sort of scenarios a WD alguris likely to encounter.
In those works Vinyals et al. show that DIP scales up to smadlmedium scenarios
depending on the testing parameters.

1We recall that the CMWOSP-based solver, introduced inaal@ILb, can only deal with acyclic network
topologies.

187
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In this chapter, we employ Vinyals’ bid generator algorithon generate ar-
tificial data and subsequently compare the performancestefyér Programming
(IP) implementations of the DIP, CCIP, and CMWOSP-basegless! In appendix
Al we present those models encoded in the OPL language (stiendgcl.2 and
(Van Hentenryck, 1999)).

Firstly, we compare DIP and CCIP on arbitrary network togas. Recall that, as
proved in chaptdr7, CCIP provides a more concise IP fornadahan DIP in terms
of both number of decision variables and constraints. s thiapter we empirically
quantify the computational cost reduction deriving frora thduction of the number of
decision variables. Secondly, we run the CMWOSP-base@stivassess the perfor-
mances of CCIP on acyclic networks.

Notice that our empirical evaluation focuses on a prootarficept scenario. There-
fore, an accurate quantitative comparison would requireualmwider range of sce-
narios. However, this is left out for future work becausesibeyond the scope of this
thesis.

8.2 The Artificial Data Set Generator

In order to perform our evaluation, we employ a test set ggonedesigned and imple-
mented by Vinyals in her master’s thesis (Vinyals, 2007bj #gnoroughly explained in
other publications (Vinyals et al., 2007a; Vinyals et allDZh). Vinyals et. al present
an algorithm to generate artificial data that is represmetalf the sort of scenarios a
winner determination algorithm is likely to encounter amdyide a very detailed anal-
ysis of the computational performance of DIP. The empir@alluation contained in
this chapter has been developed in close collaborationVitityals.

In what follows, we summarise the details of the generatoppsed by Vinyals et.
al. Firstly, we specify the requirements the generator preeted to fulfil, and then we
present some implementation details.

Since the bid generator is not a contribution of this disgem, we only briefly
summarise some of the bid generator features. The reades tinéerested in the bid
generator details should refer to the above mentioned qativins.

8.2.1 Bid Generator Requirements

In order to test and compare MMUCA WD algorithms, researsheust be provided
with algorithms or test suites to generate artificial data ik representative of the
auction scenarios a WD algorithm is likely to encounter. ¢&WD algorithms can be
accurately tested, compared, and improved. Unfortunatelycannot benefit from any
previous results in the literature since they do not take atcount the notion of SCO
introduced in chaptefd 4 afitl 5. In this section, we make exfitie requirements for
a bid generation technique considering that in MMUCA ag#ératde SCOs instead of
goods.
A naive approach to artificial bid generation would be to tedads uniformly at

random. However, this approach would generate unreabgtie and therefore unre-
alistic scenarios. Let us consider a randomibig (1'(Z,0),p). If goods appearing
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in setsZ and© are selected uniformly at random, there is little chance tthey will
represent a realistic SCO. Also,jifis chosen uniformly at random, it will not be re-
lated with the actual values of the goods in the gegmd O and consequently the SCO
would be either too profitable or too expensive for the aunetér, unrealistically easing
the problem.

If individual bids uniformly at random generated may be wafigtic, bundles of
random bids also present similar drawbacks.

Then, testing WD algorithms on these scenarios is almofsseecause any ex-
tracted conclusion cannot be used in real settings. The dmémtor has to satisfy a
number of requirements to make the artificial bids close eoliiuls that are likely to
appear in a real-world auction.

In what follows, we introduce an example to illustrate thguieements the genera-
tor must fulfil.

Example 8.1. Consider the assembly of a car’'s engine, whose structureptd
in Figure[8. In the figure, we employ a graphical repregirtanalogous to Place
Transition Nets. Notice that each part in the diagram, in tig produced form further
components or raw materials. For instance, a cylinder rpagt(8) is produced by
transforming some amount of stainless steel with the aidnadigpropriate machine.
Therefore, there are several production levels involvatiénmaking of a car’s engine.
A MMUCA allows to run an auction where bidders can bid over dies of parts,
bundles of SCOs, or any combination of parts and SCOs. Nthigethe result of
an MMUCA WD algorithm would be an ordered sequence of bids ingakexplicit
how bidders coordinate to progressively transform godgsriducing engines as final
products. Therefore, an MMUCA would allow to assemble a supipain from bids.

O

Since MMUCAs generalise CAs, as discussed in chépter 5pii®ach is to depart
from artificial data sets generators for CAs, keeping theliregnents summarised in
(Ceyton-Brown and Shoham, 2006), namely:

(1) there is a finite set of goods;
(2) certain goods are more likely to appear together thaaersth

(3) the number of goods in a bundle is often related to whichdgocompose the
bundle;

(4) valuations are related to which goods appear in the legndl

(5) valuations can be configured to be sub-additive, adddivsuper-additive in the
number of goods requested; and

(6) sets of XOR’ed bids are constructed on a per-bidder basis

Notice though that the requirements above must be refotedjland eventually
extended, in terms of SCOs since a bidder in a MMUCA bids ouvauradle of SCOs,
whereas a bidder in a CA bids over a bundle of goods. Hencehat follows we
discuss the CA requirements listed above reformulated fdtNCA.
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Part # QTY DESCRIPTION

1 1 Crankcase

2 1 Crankshaft

3 1 Cylinder

4 1 Piston

ba 4 Screws

5b 6 2

6 2 Bearings

7 1 Cylinder line

8 1 Cylinder ring

] 1 Cylinder head
10 1 Piston Ring
11 1 Piston Line

Figure 8.1: Components of a car engine.

1. There is a finite set of SCOsA CA generator bundles goods from a given set of
goods to construct bids. What is the set of SCOs from which alMM generator
constructs bids? In order to provide a proper answer we ralstihspiration on real-
istic scenarios faced by buyers and providers. If so, withgiven market we expect
several producers to offer the very same or similar ser(8€s) at different prices,
as well as several consumers to require the very same oasigeilvices (SCOs) valued
at different prices. In other words, within a given market ees identify a collection
of common services that companies request and offer. Ftarios, in the example in
Figure[81, several providers may offer to assemble a ogtiticrough the very same
SCO:

t = (6'screwst 1’cylinderline + 1’cylinderrig + 1’cylinder-head 1'cylinder

Eventually, a provider may either offer to perform such S@Wesal times (e.g. as
many times as cylinders are required), or to bundle it witheotSCOs, or the two.
Hereafter, we shall consider the common goods and servicagiven market to be
represented as a collection of SCOs that we shall refer toaaket SCOsTherefore,
market SCOsire equivalent to thgoodsin a combinatorial auction, that is the object
providers and buyers can request and offer. Hence, bids fURAs shall be
composed as combinations of market SCOs. In this geneth&set of market SCOs
is always finite and includes at least two market SCOs foryegend inG, ensuring
that every good is individually available to buy and/or séls an example, Figule8.2
depicts a sample of market SCOs if intending to build the ogires in Figur¢811.
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Figure 8.2: Market SCOs for a car’s engine.

2. Certain SCOs are more likely to appear together than othes. In any market,
services and goods are related to each other. For examelprakuction process for
a good can also generate some by-products that can be sbldit witused in another
industrial process. Also, some services or products arallyduought together by the
final customer.

3. There could be multiple copies of similar SCOs in a bundle.Since bids are
composed as combinations of market SCOs, we must introtleasdtion ofSCO mul-
tiplicity as the counterpart of good multiplicity (the number of uwmita given good
within an offer or a request). Say that in a CA a bidder submitéd for the goods in
multi-set{2’'engine + 1'piston}. Itis clear that the multiplicity of goo@nginein this
bundle is two, whereas the multiplicity of gopiktonis one.

When SCOs are considered things change slightly. In faetethre two ways to
assign a multiplicity to SCOs, one is repeating the SCO sévtignes , and the other
one is to simultaneously increase the required input gondgeoduced output goods
while maintaining the same input/output ratio. For insenoonsider the following
supply chain operation

t= (3/0,, 2/b) = (It, Ot) (81)

Then, we could repeat three times it either offering threwet operation, namely:
D=3t=3(3a,3b) (8.2)
or triplicating both the input and output goods:

D=(3-7;,3-O) = (9a,6'b) (8.3)
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Notice that the semantics of the two types of multiplicite alifferent. On the one
hand, equatiorf{8 2) means that three copies of the same &€&@4fered and can be
separatelyused at three different steps of the solution sequence. ©ottrer hand,
equation[[81B) implies that the three copies must be emglay¢he very same step.
That is, while in the former case there can be three diffestayis in the solution se-
quence in which 3 copies of “a” are available, in the lattesecthe bidder needsne
copies if “a” available at a given step to perform the operatiThen, we will refer to
the multiplicity intended as in equatiofi{B.3) mpetition multiplicity whereas to the
one in equatior{812) asomponent-wise multiplicity

4. Valuations are related to which SCOs appear in the bundlefurthermore SCO
valuations keep consistency with respect to bidder valuatins for goods involved
in each SCO.A further issue has to do with the way bidders value SCOs andlbs
of SCOs. Notice that performing a SCO to assemble the engifégure[81L results
in a new product that has more market value than its parts.refdre, a car maker
values the SCO according to his expected benefits, nameljiffieeence between the
expected market value of the engine and the cost of its pEnexefore, if the parts cost
$850 and the expected market value of the enging1ig00, the car maker should be
willing to offer to pay less tha$150 for the SCO. On the other hand, any provider is
expected to request less th#ib0 in order to perform the SCO. In general, buyers and
providers in a MMUCA should value a SCO on the basis of theed#ffice between the
expected market value of its output goods and the cost afpitstigoods. Notice though
that we are not assuming here that such difference must slb@yositive. Likewise
bidders should value bundles of SCOs considering the valu8€0s included in it.

5. Appropriate valuations can be configured to be sub-additie, additive or
super-additive in the number of SCOs requestedThis requirement tries to capture
the multiplicity-based (volume- based) discounts pofidleat are applied in real world.
Significant discounts are applied in real markets when geodsservices are traded
at certain number of units. For example in figlitel 8.1, we oleséinat screws are
usually traded in higher quantities than full engines. Tt surprisingly the same
(percentage) discount may apply to an offer for 100 screwas tio an offer for 5
engines. Hence, an offer to produce more than 5 enginegy baine unlikely, should
reflect higher discounts.

6. Sets of XOR’ed bids are constructed on per-bidder basidaNe recall from chapter
that when a bidder submits different bids in XOR he decltrasthey are mutually
exclusive offers. For example, the following offer

BID1(1'(1'engine, ), 100) XOR (8.4)
BID2(1'(2'engine, 1), 190) (8.5)

stands for a bidder that offers to buy two engines or one enigit in any case three
engines. On the other hand when a bidder expresses compeitehe translates the
OR bids as XOR bids. For example if a bidder wants to buy onéeray one cylinder
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he submits the following XOR-bid:

BID1(1'(1'engine, ), 100) XOR (8.6)
BID2(1'(1'cylinder, (), 30) XOR (8.7)
BID3(1'(1'cylinder + 1'engine, 0)),120) (8.8)

As you can observe in both cases bids submitted in the sameb¥®de likely to have
similarities and, consequently, combining bids into XORsuniformly at random
does not capture this property.

7. Unrequested goods by the auctioneer may become involved the auction.
Finally, we add a last requirement that stems from the faatt tinlike auctioneers in
CAs, not all goods involved in a MMUCA must be requested byahetioneer. Back
to our example of a car maker in need of engines depicted iaréfig.1, it can run a
MMUCA only requesting engines. Thereafter, bidders magméfiready-assembled
engines, or other goods (e.g. parts like crankcases, draftksor screws) that jointly
with SCOs over such goods help produce the requested goods.

Requested Good Uout
Generation ¥
1
Q
°
&
E ——1+| Good Generation » Bid Generation | ?'ds
5
o
£
Market Transformation
Generation

Figure 8.3: Modules of the bid generator and their intecacti

8.2.2 An Algorithm for Artificial Data Set Generation

In what follows we describe a bid generation algorithm thabeates the generation
of artificial data sets for MMUCA while capturing the requitents above. The
algorithm’s purpose is to generate MMUCA WDP (each one casag®f a collection

of XOR bids and the set of goods available to and requestethdoyatictioneer) that
can be subsequently fed into an MMUCA WD algorithm. The atbon starts by

generating the set of goods involved in MMUCA. Next, it gextes the goods the
auctioneer requests. After that, it creates a subset ofiat8@Os, which are the
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market SCOs to employ for bid generation. Thereafter, itegates bids as linear
combinations of market SCOs, which are subsequently p@ocedrding to a pricing
policy. The resulting bids are further composed into XOR finally exclusive) bids
because the XOR language is fully expressive (as proveddtiosd5.3.6). Hence,
the bid generation algorittdirassumes that each bidder formulates a single XOR bid,
being the number of bidders equal to the number of XOR bidfiglre[8-3 we depict
the different modules of the generator and their interadf\dnyals, 2007a).

Good Generation. This process requires the number of different goods;s) in-
volved in an auction along with the maximum price any goodtekr on (nax Price).
Based on these values, it assesses for each go@h) its average market price:)
drawn from a uniform distributiod/[1, max Price] wheremax Price stands for the
maximum market price any good can take on; and (2) the digtob to assess its
multiplicity, or more precisely, the success probabilityecbmetric) Of a geometric
probability distribution from which the good multiplicityan be drawn.

Requested Goods Generation.This process assesses the number of units of each
good the auctioneer requests, namely the multisgt. Since the auctioneer must not
request all goods, this process selects a subset of the goadso be part ofif,,;.
Firstly, it determines whether a gogds requested by the auctioneer by comparing the
value drawn from a uniform distributioli [0, 1] With pgood requested, the probability of
adding a new good ttf,,;. Once a given good is included ini4,,;, the number of
units requested fay is drawn from a geometric distribution with the success phility
Jgeometric Obtained by the good generation process. Notice that bygtisjea subset

of the goods we fulfil the requirement 7 listed in seclionB1requested goods by
the auctioneer may be involved in the auction

Market SCOs Generation. This process generatesfinite set of SCOf be em-
ployed as the building blocks to subsequently compose lmdsansequently fulfilling
requirement 1 listed in secti@@ 8.P.1. For each good, tlisguture constructs two mar-
ket SCOs, one with only input goods$CO) and one with only output good&®¢SCQ.
Each SCO involves a single good with multiplicity one. Fostance({engine}, {})
and({}, {engine}) stand respectively for the |- SCO and O-SCO for geagline. Af-
ter that, the algorithm generates a limited number of meBk&#D (10-SCOs) with both
input and output goodsi(o_market.scos)- IN order to generate each market |I0-SCO,
this procedure chooses the goods to include in its input amplub set employing the
probabilities of adding some good to the input and outputesgtectively 6 good_in_input
andpgood_in_output). Whenever a good is included to either the input or outpytitse
multiplicity is calculated from a geometric distributioaametrised by cometric-
Finally, we attach to each market SCO a probability distidouto draw its
component-wise multiplicity It is assumed that the bid generation process, detailed
by algorithm[1, uses a geometric distribution to calculaAdomponent-wise multi-
plicity of each market SCO. Hence, the generation of market SCOssassthe success

2Here we only provide the bid generation algorithm. The eseed reader must refer {o (Vinyals, 2007b)
for a complete description of all algorithms required by #éinéficial data set generator.
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probability to be employed by such geometric distributiaremely the probability of
adding an extra unit of a SCO already included in a bundle Bidus, each SCQ@

is assigned a success probabitify,.,.+ric. HOwever, success probabilities cannot be
uniformly at random generated because SCOs are defined aNVeseats of goods, and
therefore consistency must be kept with respect to the saquebabilities assigned to
each good by the good generation process. Therefore, thessiprobability for each
SCO is set as follows. Given a SGG= (Z, ©O), for each goog involved in the SCO,
The success probability ofis set to:

— i oMz (9)—mo(9)]
tgeometric = gélg ggeometric (89)

wheremz(g) (respectivelymo(g)) stands for the number of occurrencesgoin 7
(respectivehyO).

Bid Generation. The bid generation algorithm (algorithh 1) generates Hids are
subsequently combined into XOR bids, each one encoding ftbe @r request of a
bidder. This process makes explicit:

(1) which SCOs and how many of them to offer/request in a keindl
(2) how to price the bundle; and
(3) which bids to combine in an XOR bid.

In what follows we detail each of this functions:

(1) Selecting the SCOs requested in a bundle and their muitipc Firstly, for
each XOR bid §ORBid ) the algorithm composes each bigli¢ ) by combining
the market SCOsMT'S ) returned by the market SCO generation process. The
number of market SCO%.{ransf Bid ) to compose each bid is obtained from a
normal distributionV (padd.new.sco, Caddnew-sco) (line 12).

Market SCOs are chosen from the set of market SCQ9'§ ) and their
component-wise multiplicityr the bundle bid is obtained from a geometric

distribution with success probabilitycometric (liNn€ 15-16). By assessing the
number of units to include in a bundle using a probabilistgtribution that de-
pends on each SCO we partially fulfil requirementtBere could be multiple
copies of similar SCOs in a bundldn fact, in this way SCOs repeated as in
equation[[BB) are likely to appear. In this way the authoowiple arepetition
multiplicity associated to SCOs as well.

We also consider that, given an existing bundle, not all S&@squally likely
to be requested becausertain SCOs (for which complementarities hold) will be
more likely to appear together than othees stated by requirement 2 in section
8.7.1. To ease these complementarities we assume thatobahjility of adding

a new market SCO to an existing bundle only depends on th8@Gtadded and
not on the whole bundle (Markov property).

Itis clear that different copies of the same SCOs may be dtezlun the solution.
That is, we may haveepetitionsof SCOs (as the one in equatidn{8.2)). Then,
requirement 3 is completely fulfilled.
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(2) Pricing the bundle. Next, the algorithm prices the SCO according to its
component-wise multiplicitylines 17-21). To fulfil valuations requirements
listed in sectiof.8.211, a pricing policy must provide theam&to price a good,

Algorithm 1 Bid GenerationldT'S, mxoOR.bidss H» Opricess Hadd.new. X0 R.clauses
Oadd-new.SCO;s Madd-new-SCO» Oadd-new_SCO» Oé)

1: for g = 1t0 ngoods dO

2. forb=

end for
end for

© o N>R ®

. Bids «— )

. for b = 1tonxor.bias dO

XORBid — EmptyXORBid()

nXORClauses «— N(Hadd_new_XOR_clausm Uadd-new.XOR_clause)

1t0nxoRrsbids dO

ppm’ces_bid[bv g] — lu[g] ) N(L Uprices)

10: for z = 1tonXORClauses do

11: Bid — EmptyCombinatorial Bid()
12: nTransfBid «— N (faddnew.SCO; Taddnew.SCO)
13: if £ == 1then
14: for t = 1tonTransfBid do
15: MT — Select a SCO using Markov model fradT'S with stateM T’
16: multiplicity «— Geometric(MT tgeometric) bid B.
17: T.inputs «— MT.inputs - multiplicity
18: T.outputs «— MT.outputs - multiplicity
19: T.price «— > Ppricesbid[b, 9] — > Ppricesbialb, g]
g€T.outputs g€T.inputs
20: Poffer < (T~tgeomet'ric)multipliCity
. 1—e! " Poffer
21: discount «— a=—5————
22: Bid.t +— BidtUT
23: Bid.price «— Bid.price + T.price - (1 — discount)
24: end for
25: else
26: model —Uniformly At Random generate a number between 1 and x-1
27: Bid «— XORBid(model)
28: if nTransfBid > length(X ORBid(model).t) then
29: Bid — removeRandomTransition(Bid)
30: Bid «— recalculate Prices(Bid)
31 end if
32: if nTransfBid < length(XORBid(model).t) then
33 Bid «— addRandomTransition(Bid)
34: Bid « recalculate Prices(Bid)
35: end if
36: end if
37: XORBid +— XORBid U {Bid}
38: end for

39:  Bids «— Bids U {XORBid}

40: end for

41: return Bids
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a SCO, multiple units of the very same SCO, and a bundle of SE€@sealistic
manner. As to pricing goods, in order to vary prices amondéigl, the algorithm
generates a price for biddérfor good g, represented ag,ices_bia[D, g], from

a normal distributionV'(u[g], oprices), Wherepu[g] stands for good’s average
price in the market andl,, ;.. for the variance among bidders’ prices (lines 2-4).
Thereafter, a SCO’s price for bidders assessed in terms of the difference from
his valuation of its output goods with respect to his valuawof its input goods
(line 19). Accordingly,SCO valuations keep consistency with respect to bidder
valuations for goods involved in each S@® stated by requirement 5 in section
B21. Each bid valuation is obtained by adding the pricéssd&COs (line 23).
Hencevaluations are related to which SCOs compose the buasiktated by re-
quirement 6 although varying among different bidders. fkenore we propose
to introduce super-additivity by applying multiplicityabed discounts to SCOs
addressing the requirement thvatluations can be configured to be sub-additive,
additive o super-additive in the number of SCOs requeskedther words, as

a general rule, the more unlikely for a SCO to be traded aairetinits (multi-
plicity), the higher the discount to apply to its overallqei In this way we try
to capture in a realistic manner the way multiplicity-bageslume-based) dis-
counts are applied in the real world. Therefore, given SC®e firstly assess
the probabilityp, ¢ . Of the SCO to be traded wittbomponent-wise multiplicity
m from a geometric distribution with success probabilify,e:ric as follows:
Doffer = tgeometric™ P (line 20). Secondly, we compute the discount

to apply (iscount) as follows: discount = al=<—"2/""" |ndeed, in this way
we manage to apply higher discounts to more unlikely offeithiw the range
[0, «]. Notice too that setting: to zero leads to no discounts, and thus to no

super-additivity.

(3) Which bids to combine in an XOR bidrinally, after creating each bid, the
algorithm adds it to the XOR bid under construction (line .37)he num-
ber of bids that compose an XOR bid is obtained from a normettidution
N (ftaddnew XO R clause; Taddnew X OR.clause) (IIN€ 9). We consider here require-
ment 7 listed in section 8.2.1 and since different bids in X@Rtionships stand
for different alternatives or options for the bidder we pyep to generate similar
bids for the same XORBId. The first bid of each XORBId is getegtainiformly
at random (lines 13-24) whereas the rest of bids are creaf@giag some mod-
ifications over one existing bid in the bundle (lines 25-3@)e number of modi-
fications depends on the difference between the number o6%G€igned to the
new bid and the existent one:

o ifitis less we remove randomly one SCO;
o if it is greater we add uniformly at random new SCOs; and
o if it is equal we apply once both operations.
In all cases we finally recalculate the prices following thepmsed price policy.

Hence the requirement theg¢ts of XOR’ed bids are constructed on a per-bidder
basisis fulfilled.
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Ngoods 20
NIO_market.SCOs n—SCOS/g
max.price 100

Oprices 0.05
Pgood.requested 0.3
HMadd-new.SCO 1.0
Oadd-new.SCO 0

Maddnew-XOR_clause 10

Oadd_new-XOR_clause 0

Pgood_in_input 0.2
Pgood_in_output 0.1
o 0.1
p_ISCOs 0.6
p_OSCOs 01
allow_cycles 1

Table 8.1: Artificial generator parameter values.

8.3 Empirical Evaluation

In this section, we firstly provide a preliminary comparisairDIP and CCIP on ar-
bitrary supply chain network topologies. Next, we run the WRISP-based solver on
acyclic network topologies.

8.3.1 DIP versus CCIP

In what follows, we provide a preliminary experiment to gtietively assess the size
of the supply chain formation scenarios that CCIP allowsteescompared to DIP.

According to [Hillier and Lieberman, 1986), the number otid®n variables is a
good index of the difficulty of an optimisation problem (altigh not the only one).
Since the number of decision variables of both DIP and CCigdé on the number of
SCOs within the submitted bids, in order to compare theirpatational performances
and to analyse their scalability, we have chosen to obséwie $olving times as the
number of SCOs increases. In order to compare the DIP and &BMBPICA WD
algorithms, we have employed randomly generated MMUCA Widtsg the artificial
data set generator presented in sediioh 8.2. We have se¢meeagor parameters for
this experiment as listed in TallleB.1.

We ran our experiments as follows. We generated MMUCA WDRamses with
SCOs within the rang, 300]. We sampled the interval to generate 50 WDP instances
every 20 SCOs. Both solvers DIP and CCIP were fed with the sarge WDP in-
stances. We solved each WDP instance using implementatiohsth solvers on
CPLEX 10.1 [ILOG, 2007), recording both the solutions antvisg times. More-
over, we set a maximum time limit to 4800 seconds for eactesadvfind a solution for
each WDP instance. Whenever any of the solvers exceedeithdimit, we marked
the WDP agdime exceedednd assigned. After that, we set its solving time to the time
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Figure 8.4: Comparison between DIP and CCIP.

limit to subsequently record it. Notice that we only consétkfeasible WDP instances
to calculate solving times since the time required by CPLEXrove unfeasibility is
(usually) significantly lower than the time required to find@ptimal solution. Finally,
we ran all tests on a Dell Precision 490 with double proceBa@i-Core Xeon 5060
running at 3.2 GHz with 2Gb RAM on a Linux 2.6.

Figure{8} and 85 summarise the results of this experirkégurd 8.} depicts the
median of the solving times obtained when varying the nunath&COs. Figur&8l5
shows for both DIP and CCIP the number of instances that haea bolved within
the time limit. Then, given a time limit, CCIP was able to solwoblems with more
than twice the number of SCOs than DIP did solve. Indeed, @dw120 represents
the empirical limit ¢50% of solved instances) on the number of SCOs for DIP, CCIP
starts reaching the time limit when solving WDP instanca#t@ioing more than 250
SCOs. Furthermore, for WDPs with close to 100 SCOs, DIP is édian about 70
times slower than CCIP. This ratio rapidly increases as thmber of SCOs gets close
to 120 in the presented scenario.

The observations stemming from this experiment are verynggiog. They in-
dicatethat we can obtain substantial reductions in theirggltime when employing
CCIP instead of DIPdepending on the features of the scenEni®search space reduc-
tion obtained with solver CCIP translates into a significdetrease in computational
solving time complexity.
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Figure 8.5: Number of instances solved within the time li@800 sec.).

8.3.2 Performances of the CMWOSP-based solver

In this section we aim at testing the performances of the CNBR@Igorithm (that can
be used only when thilixed Auction Nets acyclic). Recall that (sectidnZ.B.3) at the
theoretical level the CMWOSP-based and CCIP solvers argagqut when theMixed
Auction Netis acyclic. However, if we employ CCIP we should compute tinersyly
connected components beforehand. In this case, since werakpow that theMixed
Auction Nets acyclic, we directly employ the CMWOSP-based solver.

We have run this experiment as described in sedfionl8.311edforcing the bid
generator to build instances with no cycles. Fiduré 8.6 shive CPU time required to
solve problem instances on acyclic nets for the CMWOSP ¢hasker.

Notice that the axis time scale in figurel1s.6 is nearly fouressdof magnitude
smaller than in figurEZ8l4. Hence, cycles in the mixed auatietmmay lead to a signifi-
cant increase in computational cost.

8.4 Conclusions

In this chapter we presented a preliminary empirical comsparof the CMWOSP-
based, DIP and CCIP solvers. Firstly, we compared DIP and®G®@I any type of
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Figure 8.6: Experiments with acyclic network topologiesdficed time scale).

network topology. Next, we empirically assessed the peréorces of the CMWOSP-
based solver on acyclidixed Auction Nets

In chaptef, we proposed CCIP, a solver that dramaticalpraves the computa-
tional efficiency of DIP by taking advantage of the topol@jicharacteristics of WDPs.
At the theoretical level, we proved that CCIP brings a dcastduction in the number
of decision variables required to solve the WDP. In this ¢dgpve have empirically
observed that in the presented scenario CCIP:

(1) can deal with WDPs with more than twice SCOs than DIP;
(2) can significantly reduce the computation time (by a faletmer than 70).

Finally, we observed that in the considered parametengettie CMWOSP-based
solver is four orders of magnitude faster in solving acydatistances than DIP and
CCIP in solving instances produced by Vinyals’ generator.






Chapter 9

Conclusions and Future Work

In this chapter, we draw some conclusions about the workidped in this dissertation
and we show some open paths to future development.

9.1 Conclusions

Most of the currently studied and employed combinatoriatians deal with the nego-
tiation of goods, disregarding eventual production refehips holding among them.
The information about such relationships helps improveotiteome of a negotiation.
In order to fill this gap, we introduced two novel combina&bduction extensions that
help in determining the revenue-maximising strategy faitrpe selection in supply
chain network design and planning. The former, caN&dti Unit Combinatorial Re-
verse Auctions with Transformability Relationships am@upds (MUCRAtR)copes
with make-or-buydecisions. The latter, calledixed Multi-unit Combinatorial Auc-
tions (MMUCA) deals withmake-or-buy-or-collaboratdecisions. Below, we sepa-
rately summarise our two contributions.

9.1.1 Make-or-Buy Decisions

In chapteL, we thoroughly described the requirementsiiust be fulfilled in order to
solvemake-or-buydecision problems. Since we built upon combinatorial aunsj we
also explained the of CAs limitations that hinder their agtion to our problem. In
table[9.1 we recall both the requirements and the correspg@As limitations associ-
ated with themake-or-buydecision problem. We observed that all the CAs limitations
stem from the fact that they can neither express nor represeauctioneer’s internal
manufacturing operations.

The first requirement hindering the application of CAs to problem is that they
can neither represent internal manufacturing operationshe producer/consumer re-
lationships among them. In order to apply CAs to solvertadke-or-buydecision prob-
lem, we provided a formal framework to represent internahufacturing operations.
At this aim we decided to employ Place/Transition Nets (PReisig, 198p) because:

203
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Requirements CAs | MUCRALR
express a request on bundles of goods v
express an auctioneer’s initial stock
express producer/consumer relationships among intepeahtions
specify an auctioneer’s final requirements

express relationships among manufacturing operations,
auctioned goods, and received bids

formally and graphical represent the search space
associated to the auctioneer’s decision problem

7 | specify the auctioneer’s internal cost structure

8 | information about which in-house operations to perform
and in which order v

NNENENEN

QB W[INF-

AN

]

NEN

Table 9.1: Requirements of to th@ake-or-buyproblem.

(1) they naturally help us capture the notion of manufanotydperation;

(2) they have a well-defined semantics that can naturallgractodate the notion of
sequence of operations and consumer/producer relatfs)shi

(3) they have an integrated description of both states atiohacto characterise the
search space where operations occur;

(4) they have a large number of formal analysis methods tlat ¢he investigation
of structural and behavioural (dynamic) properties of tg and

(5) they have a graphical representation that is intuijivedry appealing to study
problems related to the topology of the supply chain.

Thus, we modelled the internal production structure of astianeer by means of a
PTN, that we referred to aB7T'N;. Not only does this formal representation allow us
to describe the quantity of resources either produced cswoed by a manufacturing
operation, the producer/consumer relationships amongatipaes, and the quantity of
goods available to an auctioneer after each operation tlaéo allow us to express
preconditions over a manufacturing operation by meansfivirg rule. By the appli-
cation of the firing rule, we impose that a manufacturing afien canonly be run if
its input goods are available. This property is criticalttoe correct representation of a
production process: the implementation order of a produagirocess is constrained by
the availability of resources at each step.

Then, aPT N; completely specifies an auctioneer’s internal manufacguoiper-
ations and the producer/consumer relationships among (resynirement (5) in table
B1). Moreover, aPT Ny allows an auctioneer to specify his requirements and com-
municate them to bidders (requirement (4) in tdbI& 9.1)sThobtained by specifying
a configuration (marking) to end up with. If an auctioneer cmmicates to a set of
bidders hisPT N; along with a description of the final state of such PTN desgugib
his requirements, then the bidders can infer all the passibhfigurations of offers
fulfilling such requirements.
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Next, in order to express the relationships among interaaufacturing operations,
auctioned goods, and received bids ( requirement (3) ieHl), we incorporated the
received bids intd®T'N;. At this aim, we exploited the fact that a bid that offers geod
can be regarded as a transitidnd transition) that injects tokens int@7 N;. Unlike
transitions corresponding to manufacturing operatioitstransitions do not consume
input resources and can be fired only once. Pi1&V; augmented with bid transitions
was calledPT Ng (whereE stands folExtendedl

By means of aPT Ng, an auctioneer can compactly express all the possible out-
comes of any of his possible decisions. By decision we mearséfhection of bids
together with a sequence of internal operations to perfdrhus, aPT Ng both for-
mally and graphically represents the search space assd¢@mthe auctioneer’s deci-
sion problem (requirement 6 in tafleP.1). We successfinlkeld bids, manufacturing
operations, and goods at auction, and we fully represeth@lpossible decisions an
auctioneer may take in a unified representation.

However, the goal of the auctioneer is not only to find a fdasilbntcome, but also
to find an outcome that minimises his costs. Thus, an auaiameeds to quantify the
cost associated to each decision. With this aim, he hasdeiass a cost to the selection
of a bid, and a cost to the performance of a manufacturingatioer. Unfortunately,
in their original definition, place transition nets do notamporate the notion of cost
associated to the firing of a transition. Then, we defined atypa of Place Transition
Net, the so-calledVeighted Place Transition Nef8VPTN), to express the notion of
cost associated to transition firings or to the firing of seqes of transitions.

Then, we transformed botAT' N; and PT' Ng into WPTNSs by associating to each
operation transitiorthe cost of the corresponding manufacturing operation amécth
bid transitionthe bid cost. The resulting WPTNs were callBdnsformability Network
Structure(TNS) andAuction Netrespectively: a TNS completely describes an auction-
eer’s internal manufacturing operations, whereas an Andtiet compactly represents
the set of possible auctioneer’s decisions along with threesponding cost. Then,
Transformability Network Structu@ndAuction Netallow the auctioneer to express his
internal cost structure and to incorporate it into his deciproblem (requirement (7)
in table[31).

The auctioneer needs to select the set of offers along wétlsé¢lquence of internal
manufacturing operations to perform that minimise his £astd allow him to obtain
his final requirements (point (8) in tadleP.1). With this pose, we defined the auc-
tioneer’s decision problem as an optimisation problem @ihction Net Thus, we
introduced a new type of reachability problem over WPTNg ealled this new op-
timisation problem th&Constrained Maximum Weight Occurrence Sequence Problem
(CMWOSP). Intuitively, this optimisation problem involsdinding an optimal cost
sequence of transitions on a WPTN that leads to a final staighvitilfils some con-
straints.

Additionally, we provided an important result on the CMWOS8® showed that
the CMWOSP can be solved by means of Integer Programming yoli@@VPTNs,
namely on WPTNs that do not contain any directed cycle.

The CMWOSP perfectly captures the semantics of the auaitmeecision prob-
lem in a MUCRAIR: to find the set dbid and operation transitionghat minimises
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an auctioneer’s revenue. Thus, we formalised the auctitneéecision problem in a
MUCRAtR as a CMWOSP on the Auction Net. Two major benefits, Hretefore
contributions, stemmed from the formalisation of the MUGRANDP by means of a
CMWOSP:

(1) the CMWOSP provides as a result both the set of bids tgperel the sequence
of operations to perform in order to obtain the auctionefinal requirements
(requirement (8) in tablgd.1);

(2) themake-or-buydecision problem can be solved by means of Integer Program-
ming for a large class of supply chain network topologieg¢ac).

Summarising, we provide to the auctioneer with a formalisnexpress his require-
ments and communicating them to bidders; and a rule for ehénténg the optimal allo-
cation, i.e. the set of winning bids and the sequence ofriateyperations to perform.
In this way we provide a solution to all the requirements meeeftbr extending combi-
natorial auctions for dealing with thmake-or-buydecision problem.

The solution to the WDP that we provide can be employed as @idacsupport
system in different settings:

e Combinatorial auctionsAs a winner determination solver in a MUCRAtR.

o Negotiation A buyer, after receiving a set of offers from his providea) com-
pute the best offers and eventually counter-offer.

o What-if supply chain analysi\ buyer, aware of the prices and capacities of his
providers, can test different configurations of his suplsio.

Summary of MUCRALR contributions
To summarise, the main contributions related torttake-or-buydecision problem are:

¢ MUCRAtR, an extension of combinatorial auctions that allows degaliith
make-or-buyecision problems in scenarios characterised by combiabpoef-
erences. This new auction type provides an auctioneer vigmaework to opti-
mise his outsourcing strategy.

e Weighted Place Transition Nets (WPTN) an extension of Place Transition
Nets. In WPTNSs it is possible to associate a weight (costhéofiring of each
transition. WPTN is a formal framework introduced to reprtthe MUCRALR
space of auctioneer’s decisions and associated revenues.

e Constrained Maximum Weighted Occurrence Sequence Problen{CM-
WOSP), a new reachability problem defined on WPTNSs. It formalisesyrob-
lem of selecting a cost-maximising sequence of actionsihgaflom an initial
state to a set of possible final states.

e ILP solution to the CMWOSP. We prove that the CMWQOSP can be solved by
means of ILP when the underlying WPTN is acyclic. We obtais tlontribution
by exploiting results imported from the literature on Placansition Nets.
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e Formalisation of the MUCRAtR WDP as a CMWOSP on an Auction Net
We show that CMWOSP perfectly captures the features of thdameer's de-
cision problem in a MUCRALR. This results provides three aripnt benefits:
(1) an ILP formulation for a wide class of MUCRAtR WDPs (adgll (2) a for-
malism (PTN) to analyse the decision problem; and (3) thalres the WDP
provides both the set of selected bids andsbguencef operations to perform.

9.1.2 Make-Or-Buy-Or-Collaborate

In the second part of this dissertation we dealt with tineke-or-buy-or-collaborate
decision problem. As thoroughly explained in secfionl.mast of the requirements
arising in themake-or-buy-or-collaboratdecision problem are currently not supported
by state-of-the-art methodologies and tools. In tABlE ®2ummarise the requirements
and the limitations of two state-of-the-art solutions, ehtombinatorial auctions and
task dependency networks.

MMUCA

In order to overcome such limitations, we introduced an resitsh to combinatorial
auctions, calledMixed Multi-unit Combinatorial Auction§MMUCA), that fulfils all
the requirements of this decision problem.

Requirements CAs | TDN
1 | express an offer/request on bundles of goods v v
2 | express an offer of a SCO with a single output product v
3 | express an offer of a SCO with multiple output products
4 | express arequest of a SCO
5 | express the offer/request of a bundle of SCOs
6 | express combinations of bids v
7 | express the min/max number of times SCOs are performed
8 | express resource sharing
9 | express an auctioneer’s initial stock
10 | express the auctioneer’s final requirements
11 | supportacyclicsupply chain networks v
12 | supportcyclic supply chain networks
13 | compute thescheduled sequenoé SCOs to perform
14 | ensure computational tractability while preserving ojatlity
15 | solve SCF decision problem v
16 | solve themake-or-buy-or-collaboratéecision problem
17 | formally represent the search space
18 | graphically represent the search space
19 | assess the computational tractability based on the proftieroture

Table 9.2: Requirements of tieake-or-buy-or-collaboratproblem.

MMUCASs support the trading of operations across the suplpéirc from the sup-

ply and demand of components to the supply and demand of mettihg operations
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or services. With the aim of making MMUCA operative:

(1) we provided a formal language allowing bidders to expEfers and requests
over supply chain operations; and

(2) we formalised the optimisation problem faced by an ameer aiming at select-
ing the subset of the offered supply chain operations makmgihis revenue.

As to the formal language, we introduced a general-purposeapt that can rep-
resent any operation or service negotiated across theysapain by any supply chain
stakeholder, the so-calleslipply chain operatiofSCO). The characterising features
of SCOs are the required and consumed input resources andtet resources pro-
duced by the service. According to requirements (1-8) itef8f, the different actors
involved in a MMUCA require a language to express the oféepirest of supply chain
operations. Then, we extended traditional bidding langsag the literature to deal
with SCOs

Bidding Language

We set SCOs as the atomic entities that can be negotiatessagupply chain. Build-
ing upon such building blocks, we defined a new bidding lagguhat allows bidders:

(1) associating a value to bundles of SCOs withiratomic bid and

(2) combiningatomic biddnto complex expressions encoding a wide variety of pref-
erences over SCOs.

The provided bidding language generalises state-of-thei@ding languages and
provides supports to express bids in the following auctypes:

e Multi-unit combinatorial auctions, where there may be several imgjatshable
copies of the same good available in the system.

e Double auctionavhere there are multiple buyers and multiple sellers. We-int
grate direct and reverse auctions, the auctioneer will be able to both sell and
buy goods within a single auction. Or considering the biddpoint of view, a
bidder can submit both offers and demands on sets of goods.

e Combinatorial exchange€ombinatorial case of double auctions. In this auction
type both buyers and seller submit combinatorial bids.

e Multi-unit Combinatorial Reverse Auctions with Transfatnility Relationships
among Good¢MUCRALtR). We integrate the notion of internal manufaatigyi
operation into MMUCASs.

e Combinatorial auctions for supply chain formationintroduced in
(Walsh et al., 2000).



9.1. Conclusions 209

The novelty of our bidding language with respect to the aboeationed auction types
is that we further extend the idea of manufacturing openatiry allowing agents to also
bid for supply chain operationsSince in our language a bidder is allowed to bid over
bundlesof supply chain operations, such language captures pateotnplementarities
among such operations. This extension offers a higher degfrexpressiveness and
allows to generalise bidding languages for the abovediatection types.

Summarising, the proposed bidding language can expressaséypes of complex
bids and allows for bids on bundles of SCOs. By means of thedated bidding
language we overcome requirements (1-8) in tBhle 9.2.

The Winner Determination Problem

As to the Winner Determination Problem, we cannot rely owviores definitions in the
literature. According to requirement (13) in tabl€]9.2, aimdilarly to MUCRAIR, a
new dimension comes into play: teederamong SCOs. For this reason, we provided
a new and general definition of winner determination probthat builds upon our
SCO-based bidding language. The WDP describes the rules to:

e select the winning bids that maximise an auctioneer’s reggand
e assess thexecution ordeof the SCOs contained in the winning bids.
Notice that the winning bids are those that:
o they fulfil the constraints specified by bidders via the biddianguage;
o they maximise the auctioneer revenue.
and the sequence of SCOs representing the execution olertighat:
e it contains all and only the SCOs included in the winning bids

e itis implementable, i.e. each SCO in the sequence must t&vequired inputs
available at the position where it is scheduled; and

e it produces at its end at least the set of goods required bgubgoneer.

Observe that therderin which agents consume and produce goods is of central impor
tance in our model and affects the definition of the winneedwaination problem.

The rule to assess the set of winners provides a solutiongaireaments 10, 13,
15, and 16 in tablE®9.2. By including the constraint that theds available after run-
ning all the selected supply chain operations are the orexsfigal by the auctioneer,
we provided a solution to requirement (9) in tablel 9.2. Sitheedefinition does not
depend on the particular topology of the supply chain ndtywee provided a solution
to requirement (11-12) in table .2.

The new WDP definition extends and generalises the definifiovinner determi-
nation for:

e Multi-unit combinatorial auctions
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e Double auctions

e Combinatorial exchanges

¢ MUCRAIR

e Combinatorial auctions for supply chain formation

Thus, we provided both a bidding language and a definitionioh@r determination
problem that extends and generalises all the above-memtianction types. The bid-
ding language along with the winning rule fully charactesislixed Multi-unit Combi-
natorial AuctiondfMMUCAS).

A mathematical framework for the MMUCA WDP

Analogously to the MUCRAtR WDP, we provided a mapping of thBIMICA winner
determination problem to @onstrained Maximum Weight Occurrence Sequence Prob-
lem on theMixed Auction Net Via this mapping, we obtained the same advantages as
in the case of MUCRALR: (1) the solution is expressed as@uencef SCOs; (2) we
provide a formal framework to analyse the properties of theision problem; and (3)
we obtain an ILP-based formulation of the MMUCA WDP for adggdflixed Auction
Nets.

The Mixed Auction Netprovides a formalism to reason about MMUCAS,
and therefore also about all the WDPs associated to auctsufisumed by
MMUCA (requirements (17-18) in tablE=®.2). In particularevehowed that the
Mixed Auction Netsubsumes the TNS and the Transformability Network Strectur
(Walsh and Wellman, 2003).

Solving the MMUCA WDP

In this dissertation we provided three different IP solMerscomputing the solutions
to the MMUCA WDP. The first one is based on the mapping to CMWO3#3 solver

deals with acyclic supply chain network topologies. Theoseloone (DIP) was directly
built upon the definition of MMUCA WDP and applies to arbityaretwork topologies.
The third one (CCIP) improves the performances of the sesohcr by exploiting

some domain knowledge.

The CMWOSP-based Solver By mapping to CMWOSP we obtain an ILP-based
formulation of the MMUCA WDP with integer programming for ade class of WPTN
topologies.

The DIP Solver. We showed that restricting the Mixed Auction Net to be aicyid
a significant limitation in some scenarios: it does not all@gresenting cyclic oper-
ations, resource sharing, and so on. We provided a new IPufation, calledDirect
Integer ProgrammingDIP) solver, that is directly built upon the definition of MMCA
WDP. DIP solves the WDP associated to any supply chain n&ttapology, thus
broadening the classes of solvable problems.
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The CCIP solver. The main drawback of DIP is that it generates a number osteci
variables and constraints that limit its applicability toall-size and medium-size sce-
narios. DIP guarantees optimality, but decrements the adatipnal tractability. We
proposed an ILP-based formulation for MMUCA WDP, namely@wnnected Compo-
nent Based Integer Programmii@plver (CCIP), that dramatically improves the com-
putational efficiency of DIP. A search space reduction ise@d by analysing and
exploiting the precedence relationships among SCOs.

We conclude by observing that our approach solves some gfrtitdems related
to centralised approaches to supply chain formation anedidmng (see sectidn 3.3.1).
Firstly, we can reduce the complexity associated to opérttie scheduling problem.
In fact, we have that

o the complexity of the scheduling problem is reduced due ¢cathsence of time
dimension, without losing the possibility to express poEaece relationships
among operations; and

e we provide a very efficient optimisation problem solver (BTl

Secondly, agents are not forced to reveal all their inforomatruthfully. The part of
information revealed by agents (the bidders) is regulatethé bidding language and
the market-based mechanism. In market-based mechaniemisa@an act strategically,
hide or lie on critical information, decide what to commuateand what not.

Empirical Evaluation

In the last part of this dissertation we provided a prelimynaroof of concept about
the performances of the CMWOSP-based, DIP and CCIP solwexsingle scenario.
On the one hand, we compared DIP and CCIP on arbitrary netiwptogies. On the
other hand, we empirically assessed the performances @M&OSP-based solver
on acyclicMixed Auction NetsWe observed that in the considered parameter setting:

e CCIP outperforms DIP

e acyclic instances are much easier to solve

Summary of MMUCA Contributions

To summarise, the contributions in this dissertation eslaib themake-or-buy-or-
collaboratedecision problem are listed in what follows.

e MMUCA is a new type of auction that allows to deal withake-or-buy-or-
collaborate decisions. This new auction type provides an auctionedn wit
framework to optimally select supply chain partners. MMUG@G@neralises and
extends several types of auctions (including MUCRALtR). Gantribution devel-
ops along two dimensions:

— MMUCA Bidding Language. We provide a novel bidding language that
allows agents to trade any type of operation across the gappin. Such
a language extends and generalises several previous tiddiguages.
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— MMUCA Winner Determination Problem . We provide a definition of
winner determination problem that selects, among the vedebids, the
revenue-maximisingrdered sequencef supply chain operations to per-
form. The definition of MMUCA WDP extends and generalisesdbéni-
tion of winner determination problem of several existingt&n types.

e Mixed Auction Net is a WPTN that compactly represents the space of possible
decisions an auctioneer may take, along with the revenweiassd to each de-
cision. Thus, it formally and graphically represents tharel space associated
to the MMUCA WDP, and therefore of thmake-or-buy-or-collaboratdecision
problem.

e Mapping the MMUCA WDP to the CMWOSP . We succeeded in mapping the
MMUCA WDP to a CMWOSP on théMixed Auction Net As in the case of
MUCRALR, three benefits stemmed from this mapping: (1) tlewijsled solution
is a sequence of SCOs; (2) a whole corpus of theoreticalteeBom the PTN
literature can be imported to analyse the decision prob#erd;(3) we obtain an
ILP formulation of the WDP for acyclidlixed Auction Nets

¢ MMUCA WDP Solvers.

— CMWOSP-Based Solver This ILP-based solver is based on the mapping
of MMUCA and MUCRAtR to a CMWOSP and applies only to acyclic
mixed auction nets.

— DIP solver. This ILP-based solver works on arbitrary supply chain roekw
topologies. It overcomes a set of limitations connecteth Wit use of the
CMWOSP-based solver.

— CCIP solver. This ILP-based solver dramatically improves the perfor-
mances of DIP solver because it allows a more concise rapegim of
the optimisation problem. This is obtained by exploiting fbrecedence
relations among supply chain operations.

Finally, consider that MUCRAtR and Combinatorial Auctidias supply chain
formation are a special case of MMUCA. Thus, the three selpegsented above
can be used to solve problems on any network topologies éon ths well. Thus,
besides broadening the applicability of MMUCAS, we have dsadened the
applicability of MUCRAtR and CAs for SCF. MUCRALR and CAs f8CF can
be extended to any network topology!

9.2 Future Work

We believe that this dissertation opens several paths toeftevelopments. The most
interesting extension we envisage to MMUCAs is the incoaion of time and uncer-
tainty in the MMUCA model.

On the one hand, we envisage the possibility to expressldmsetime and duration
of a supply chain operation. This information should be aistuded within the winner
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determination problem. In this way, an auctioneer wouldlide to fix deadlines to have
his production process completed. Moreover, the partitip# the supply chain would
synchronise their operations by fulfilling not only the pugér/consumer relationships,
but also eventual time constraints.

On the other hand, an auctioneer may be interested in asgignsuccess proba-
bility to each supply chain operation. In this way, he couldimise the incidence of
failures and shortcoming across the supply chain.

Next, in order to outperform CCIP we plan to explore the desifja local algo-
rithm. Although solutions may be sub-optimal with a locapegach, the number of
transformations that can be dealt with is expected to betaegmd hence the size of the
supply chain scenarios we could tackle.

Furthermore, a more realistic setting requires to incafologistic providers, be-
sides component suppliers, contract manufacturers, antidirstomers. We do be-
lieve that, by relying on the intuitions provided by the dnajal representation of
WPTNSs, we can easily incorporate constructs dealing with kind of problems.
Along the same line, we aim at assessing the value of our apprim actual sce-
narios with real-world data (for instance in the automotindustry). If this was
not possible, we plan to improve the artificial bid generammmarised in section
by incorporating actual-world supply chain topologitdlowing the strategy of
(Ceyton-Brown and Shoham, 2006). Furthermore, we needrfoipe extensive exper-
iments with different parameter settings in order to enapity assess the improvement
of CCIP over DIP under different market conditions.

As to bidding languages, we have seen that the XOR-langusaiydly expressive
(over finitely-peaked valuations) in sectibnl5.3. Futurekvshould address the ex-
pressive power of different fragments of the bidding largguand compare the suc-
cinctness of different fragments for certain classes aiatns: which languages can
express what valuations, and which languages can do so lesimgpace than others?
As to the case of direct single-unit combinatorial auctj@everal results are given by
Nisan [Nisan, 2006), and some of these results may be rellagasy to transfer to our
model.

Theoretically, as to mechanism design, we do believe thapregided to game
theorists a new interesting and difficult problem. An ingireg question to consider in
future work would be what exactly the auctioneer shaamthouncevhen opening an
MMUCA. In the case of direct auctions this is the set of goadsd sold. If bidding for
transformations is possible, however, it may be difficufiteesee what types of goods
will be relevant to a solution, as this depends on the transition capabilities of the
bidders in the market. Notice also that we have not provigsgdsaggestion on how to
run a MUCRALR. This is not within the scope of this dissedatsince it is a subject of
mechanism design. However, in order to illustrate how outrdloution can be used by
a given mechanism, we offer an example about how a MUCRAT Ridmeirun:

(1) the auctioneer sends to bidders a WPTN representingnteisnial cost structure
along with some constraints on the final state of the WPTN¢igsiirements)

(2) the bidders compose and send back to the auctioneer ngéaintiombinatorial
offers based on the received information



214 Chapter 9. Conclusions and Future Work

(3) the auctioneer builds aauction netand solves a CMWOSP on it

(4) from the CMWOSP solution the auctioneer can extract i@swinning bids
and the sequence of internal operations to subsequenttyrper

As to the mapping of the MMUCA WDP to CMWOSP, we have only expld
a small portion of its potentiality. We recall that we empgayit to provide an ILP
formulation for solving the WDP when the underlying topojdg acyclic. However,
we do believe that we can exploit further theoretical toasivied by our mapping
along several dimensions. Some examples of this idea fell&ivst, it is known from
the literature that it is possible to increase the classé%eti nets for which the state
equation represents the whole reachability set. As an eleaome may add linear side
constraints to the state equatibn (Esparza and Melzer))200érefore, we would like
to assess the applicability of these types of techniquesitgpmblem. Secondly, the
validity of the mapping from MMUCA WDP to WPTNS is not rested to bids in the
XOR language, but in fact it can easily cope with other lamgsa For instance, as
explained in sectiof 8.5, the extension to the OR-of-XORJinig language is trivial.
Third, and most importantly, our mapping allows to analytsecsural and behavioural
properties of the solutions to the MMUCA WDP. Thus, we aimxilering the Petri
net techniques that is possible to import in the context of (MBAs.

Finally, we do strongly believe that CMWOSP can be employedtudy other
optimisation problems. In fact, the extension of CMWOSP tw@ader class of opti-
misation problems that share similar features is a pathdisdrves much attention. In
particular, we talk about domains characterised by preitiongd and postconditions on
variables interacting at multiple levels. The most prongsif those domains is surely
deterministic planning.



Appendix A

OPL models of the MMUCA
WDP solvers

In this appendix, we present the ILP models of the solversgmed in this dissera-
tion expressed in the OPL modeling languége (Van Henten®@%9). We present the
CMWOSP-based (secti¢n 6.11.5), the DIP (sediion®.2.2) teCIP (sectioh7.3.1)
solvers.

A.1 The CMWOSP-based Solver

{string} CGoods=...;

int nBids=...;

int nTransfornmations=...;
int nGoods=...;

int nBidders=...;

range Bids = 1..nBids;
range Transfs = 1..nTransformations;
range Bi dders= 1..nBidders;

/ | DECLARATI ONS

/1l nput goods of each transformation

int T_in[Transfs][CGoods]=...;

/] Qut put goods of each transformation

int T out[Transfs][Goods]-=...;

/'l Associates to each SCOthe nultiplicity it appears
/1l within the bid

int multiplicity[Transfs]=...;

/1A set contains the transitions indexes correspondi ng
//to the same atomic bid
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{int} transf_same_bids[Bids]=...;

/] Associ ates to each SCOits bid
int transf_to_bids[Transfs]=...;

/1 Whi ch bids conpose which XORbid
{int} xor_bids[Bidders]=...;

//1nitial marking provided by the auctioneer for free
int U.in[Goods]=...;

/I RFQ goods required by the aucti oneer
int Uout[Goods]=...;

// The cost associated to each bid
float costs[Bids]=...;

/I Variables associated to eac SCOis fired at each step
dvar bool ean x_t[Transfs];

[/ Vari abl es associated to atomn ¢ bids
dvar bool ean x_b[ Bi ds];

/1 THE MODEL
mnimze

sumb in Bids) x_b[b]*costs[b];
subject to {

/1(1) Each SCO can be fired as nany times as its
/1 multiplicity if only if its bid is activated.
/1 This condidition also controls that selecting
/1 at least one SCOwithin a bid inplies selecting
/1 all the SCOs within the sane bid
forall (t in Transfs)
ct OnePosi ti onSel ect ed:
(x_t[t]) ==(x_b[transf _to bids[t]]*multiplicity[t]);

/1(2) W enforce that the atom c bids submitted
/1 by each bidder are exclusive (XOR)

forall (b in Bidders)

ct XORbi d:



A.2.

/1(3) After having performed all

The DIP solver

(sum ( j in xor_bids[b]) x_b[j]) <=1,

t he sel ected SCOs,

/1l the set of goods held by the auctioneer nmust be
/1 a superset of the final goods Uout
forall (g in Goods)

ct Fi nal Confi gurati on:

(Ulin[g] + sunm(j in Transfs) x_t[j]* ...

~+(T_out[j][gl-T_in[j][g]))>=U_out[g];

A.2 The DIP solver

{string} Goods=...;

i nt
i nt
i nt
i nt
i nt

nBi ds=. . .;
nTransformati ons=. . .;
nGoods=. . .;

nBi dders=. . .;

nSt eps=...;

range Bids = 1..nBids;

range Transfs = 1..nTransformations;
range Bi dders= 1..nBidders;

range Steps= 1..nSteps;

/'l nput goods of each transformation
int T_in[Transfs][Goods]=...;

/] Qut put goods of each transformation
int T out[Transfs][Goods]-=...;

|/ Associates to each transfornation the
[l appears within the bid

i nt

multiplicity[ Transfs]=...;

multiplicity it

/1A set contains the transitions indexes correspondi ng
// to the sane atonic bid
{int} transf_same_bids[Bids]=...;

/| Associ ates to each transformation its bid
int transf_to_bids[Transfs]=...;

/1 Whi ch bids conpose which XORbid
{int} xor_bids[Bidders]=...;
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[llnitial marking provided by the auctioneer for free
int U.in[Goods]=...;

/I RFQ goods required by the aucti oneer
int Uout[Goods]=...;

// The cost associated to each bid
float costs[Bids]=...;

[/ Vari abl es associated to which transformation is fired
/] at each step
dvar bool ean x_t[Steps][Transfs];

[/ Vari abl es associated to atom c bids
dvar bool ean x_b[ Bi ds];

nmnimze
sumb in Bids) x_b[b]*costs[b];
subject to {

/1(1) Each transformation can be fired as nany tines
/[las its nultiplicity if only if its bid is activated.
/1 This condidition also controls that selecting at
/11 east one transformation within a bid inplies selecting
/1 all the transformations within the sane bid
forall (t in Transfs)
ct OnePosi ti onSel ect ed:
(sum(p in Steps) x_ t[p][t])==...
...==(x_b[transf _to_bids[t]]+nultiplicity[t]);

/1(2) W inpose that at nost one transformation is
/'l selected at each position of the sequence
forall (p in Steps)

ct OneTr ansf or mat i onSel ect ed:

sum(t in Transfs) x_ t[p][t] <=1;

/1(3) W enforce that the atom c bids submitted
/'l by each bidder are exclusive (XOR)
forall (b in Bidders)
ct XORbi d:
(sum(j in xor_bids[b]) x_b[j]) <=1;
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/1(4) Check that each transition selected is enabled
/] at steps in the solution sequence where nore than
/'l one transition can be fired
forall (s in Steps,g in Goods)
ct Enoughl nput s:
(Ulin[g]l+sumk in 1..s-1,j in Transfs) x_t[K][j]=*...
cx( T_out[j][g] - T_in[jllg]l) )>= ...
..>= sum(l in Transfs) x_t[s][I]*T_in[I][d];

[1(5) After having perforned all the sel ected

/ltransformations, the set of goods held by the

/] auctioneer nust be a superset of the final goods

/1 Uout

forall (g in Goods)

ct Fi nal Confi gurati on:

(U.in[g]+sum(s in Steps,j in Transfs) x t[s][j]*...

~*(T_out[j][g]-T_in[j][g]))>=Uout[g];

A.3 The CCIP Solver

{string} Goods=...; //Good nanmes

int nBids=...; //Nunber of bids

int nTransformations=...; //Nunber of transformations
int nGoods=...; //Number of goods

int nBidders = ...; //Nunber of bidders or XORbids

/I Nunmber of sol utions positions
/1 = nunber of transformations * nmultiplicities
int nSteps=...;

range Bids = 1..nBids;

range Transfs = 1..nTransformations;
range Bi dders=1..nBi dders;

range Steps=1..nSteps;

/1l nput goods of each transformation
int T_in[Transfs][CGoods]=...;

/] Qut put goods of each transformation
int T out[Transfs][Goods]-=...;

/'l Associates to each transformation the multiplicity
/1 it appears within the bid
int multiplicity[Transfs]=...;
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/1A set contains the transitions indexes correspondi ng
// to the sane atonic bid
{int} transf_sanme_bids[Bids]=...

|/ Associ ates to each transformation its bid
int transf_to_bids[ Transfs]=...

/1A set contains the transitions indexes correspondi ng
/1 to bids of the sanme bidder
{int} xor_bids[Bidders]=...

//1nitial marking provided by the auctioneer for free
int U.in[Goods]=...;

/1 RFQ goods required by the auctioneer
int U out[Goods]=...

// The cost associated to each bid
float costs[Bids]=...

/1 This array associates to each position in the solution
/1l the set of transformations that can fire
int S[Steps][Transfs] = ...

/1 This array associates 1 when the set of transfornations
/1 that might be fired at this positionis >1 or is one
/1 transformation that contains a self-Ioop

int steps_to_check[Steps]=...

/I Variabl es associated to which transformation is fired
/] at each step
dvar bool ean x_t[ Steps][Transfs];

[/ Variabl es associated to atom c bids
dvar bool ean x_b[ Bi ds];

mnimze
sumb in Bids) x_b[b]*costs[b];
subject to {

/1(1) Each transformation can be should be fired as many
/] times as its multiplicity if only if its bid is activated.
/1 This condidition also controls that selecting at | east
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/1 one transformation within a bid inplies selecting all
/'l the transformations within the sane bid
forall (t in Transfs)
ct OnePosi ti onSel ect ed:
(sum(p in Steps) x_t[p][t])==(x_b[transf_to_bids[t]]=*...
.multiplicity[t]);

/[1(2) At npst one transformation can fire at each position
forall (p in Steps)
ct OneTransfornmati onSel ect ed:
sum(t in Transfs) x_t[p][t] <=1;

/[1(3) XOR semantics of a bidis fulfilled, at nost one bid
/'l per bidder can be sel ected
forall (b in Bidders)
ct XORbi d:
(sum(j in xor_bids[b]) x_b[j])<=1;

/1(4) Check that each transition selected is enabled at

/1 steps in the solution sequence where nore than one

/1 transition can be fired

forall (s in Steps:steps_to_check[s]==1,g in Goods)

ct Enoughl nput s:

(Uin[g]l+sumk in Steps:k<s,j in Transfs) x t[Kk][j]*...

H(T_out[j][g]l-T_in[jl[g]) )>= ...
.>= sum(l in Transfs) x_t[s][I]*T_in[l][d];

[1(5) After having perforned all the sel ected,
/1 transformations the set of goods held by the
/1 auctioneer nust be a supersetof the final goods Uout
forall (g in Goods)
ct Fi nal Confi gurati on:
(U.in[g]+sum(s in Steps, j in Transfs) x_t[s][j]*...
~*(T_out[j][g]l-T_in[j][g]))>=Uout[g];

[1(6) Transformations that can fired in each position

/1 of the solution sequence are restricted by function S
forall(p in Steps, j in Transfs)

ct Transformati onsPosition:

x_tipllil<=S[p][i];
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