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Foreword

The research work presented in this monograph inaugurates a research line of
high future potential: applying Artificial Intelligence techniques, and singularly
Case-based Reasoning, to data in the World Wide Web embodying information
about common activities generated by large number of people. Claudio
Baccigalupo has developed Poolcasting, a system that exemplifies these approach
in the music domain.

Analysing the activity generated by large number of people in the musical
domain, Claudio Baccigalupo shows that innovative, intelligent services can be
provided for the users in that same domain. Specifically, the Poolcasting system
an audience-customized music programming service in real time. Interestingly,
Poolcasting can be seen as a system that generalises the principles of Case-based
Reasoning, in which Poolcasting follows the core idea of CBR, namely reasoning
and learning from experience, while “experiences” are not directly expressed as
“cases.” This contribution was acknowledged by the Best Application Paper
Award of the 2007 International Conference on Case-based Reasoning.

Finally, the ideas developed in the course of Claudio Baccigalupo’s Ph.D.
have had the effect of showing how CBR can be applied in new ways to the
data generated by the activity of large number of people in the World Wide
Web. Two workshops have been organised along this line, with the title “Web
CBR: Reasoning from Experiences in the Web.” This monograph will allow the
readers to dive into these new ideas with the specific application to music giving
a clear and rich context in which to understand how the interplay of ideas and
concrete developments is the core of Artificial Intelligence as a research program.
Bellaterra, December 2010

Enric Plaza
Research Professor, IIIA-CSIC
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Abstract

Poolcasting is an intelligent technique to customise musical sequences for groups
of listeners. Poolcasting acts like a disc jockey, determining and delivering songs
that satisfy its audience. Satisfying an entire audience is not an easy task,
especially when members of the group have heterogeneous preferences and can
join and leave the group at different times. The approach of poolcasting consists
in selecting songs iteratively, in real time, favouring those members who are less
satisfied by the previous songs played.

Poolcasting additionally ensures that the played sequence does not repeat
the same songs or artists closely and that pairs of consecutive songs ‘flow’
well one after the other, in a musical sense. Good disc jockeys know from
expertise which songs sound well in sequence; poolcasting obtains this knowledge
from the analysis of playlists shared on the Web. The more two songs occur
closely in playlists, the more poolcasting considers two songs as associated, in
accordance with the human experiences expressed through playlists. Combining
this knowledge and the music profiles of the listeners, poolcasting autonomously
generates sequences that are varied, musically smooth and fairly adapted for a
particular audience.

A natural application for poolcasting is automating radio programmes. Many
online radios broadcast on each channel a random sequence of songs that is
not affected by who is listening. Applying poolcasting can improve radio
programmes, playing on each channel a varied, smooth and group-customised
musical sequence. The integration of poolcasting into a Web radio has resulted
in an innovative system called Poolcasting Web radio. Tens of people have
connected to this online radio during one year providing first-hand evaluation
of its social features. A set of experiments have been executed to evaluate how
much the size of the group and its musical homogeneity affect the performance
of the poolcasting technique.
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Chapter 1

Introduction

I ask in all honesty, what would life be?
Without a song or a dance what are we?

ABBA, 1983

1.1 Reusing past experience

Internet is a rich and outspread medium which allows anyone to easily contribute
to its content. People share their pictures, videos, songs, texts and, very often,
their personal experiences, reporting which songs they have played, which friends
they have met, which places they have visited, and so on. Sharing personal
experience online has become a common activity, which explains the success of
Web communities such as Facebook and Twitter offering this kind of service.

Experience data from the Web grants a valuable overview of the social impact
of a given content. Browsing the opinions of previous travellers in online forums,
for instance, is often more beneficial to decide which hotel to book than the
information provided by a guide book. The same occurs with books, videos,
music, technical problems, recipes, advices: collecting experiences of others from
the Web can offer the knowledge required to perform several tasks.

This dissertation presents poolcasting, an Artificial Intelligence technique
that takes advantage of the vast amount of experiential data shared on the
Internet to automatically solve a specific task. The task addressed is to customise
a sequence of songs for the preferences of a given audience.

There are several situations where people listen to music in groups (discos,
radio channels, home-parties) and a professional disc jockey (DJ) is appointed to
select the best songs to play for the current audience. Poolcasting is designed to
act ‘like a good DJ’, selecting automatically which songs to play from a repository
of available music.

While a DJ combines personal expertise and human senses to ‘feel’ which
music is adapt for a given audience, the innovation of poolcasting is to obtain this
knowledge from the World Wide Web. Internet makes available a wide repository

1



2 Chapter 1. Introduction

of human experiences related to the domain of music: which songs people have
played in the past, in which order, how they were rated, commented, forwarded,
shared. Poolcasting collects and interprets this kind of human experiences to
obtain the knowledge required to deliver smooth and group-customised musical
sequences.

The core idea of poolcasting is to solve a task reusing past experiences. This
idea characterises a whole family of Artificial Intelligence approaches known as
Case-Based Reasoning (CBR). CBR systems typically store past experiences
as cases, then reuse previous cases to propose solutions for new tasks. A
CBR system, for instance, would determine the best cure for a patient by first
retrieving similar past problems (patients with the same profiles and symptoms)
from a case base, then adapting their solutions (applied cures and effects) to the
current case.

Poolcasting represents a reinterpretation of the classical Case-Based Reason-
ing approach. To solve a task, previous knowledge is reused, but not structured
as (problem → solution) pairs. The task to be solved is not to find one solution
for a given problem, but to iteratively build a good sequence of songs that
satisfies certain properties in the long run. Poolcasting demonstrates how CBR
can make use of the experience of multiple users to solve a task that is social in
nature: to customise content for a group of people.

1.2 A Web of musical data

A focus of this work is on the area of Web data mining, describing a technique
to collect, analyse, filter and interpret experiential data from the Web to extract
valuable knowledge to solve a specific task.

Internet is expanding towards a social medium as more user-generated
content is becoming available offering valuable insights about human experiences.
This is particularly true in the domain of music.

Music has, on one side, a mathematical nature that has been investigated for
centuries and, on the other side, a social nature that has comparatively received
less attention. Yet, people commonly influence one another with respect to the
music they like and often spend time looking for the ‘right’ group of people whom
to listen music with. On the Web, music lovers can gather in forums to talk
about their favourite artists, form virtual fan clubs to show their support, write
entries in their blogs and comments in MySpace pages to explain their interests,
discover songs that other friends recently played, forward their preferred music
to listeners around the world. Music is a universal language, and people of any
age, provenience or preference can report their musical experiences of the Web.

One particular type of musical experience data that is widely available on
the Internet is playlists. Playlists are sequences of music titles compiled to be
played in a specific order. Playlists are useful since they allow people with large
music libraries to organise songs in small ordered sequences.

Each playlist can reflect a particular mood or emotion or be shaped by a
specific purpose: working, running, cooking, going to sleep. Even ignoring the
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motivation that drove someone to put songs in a certain sequence, a playlist
indicates that certain songs have been experienced together.

Many music-related Web communities invite their members to share personal
playlists online, making others aware of songs that are, in their experience, meant
to be played together. Millions of playlists are therefore publicly available on the
Internet. Poolcasting collects and analyses a large set of these playlists to reveal
songs and artists that are correlated according to the people. If two songs or
artists co-occur often and closely in multiple playlists, poolcasting understands
that those songs and artists share some affinity and it makes sense to play them
together. In this way, poolcasting is able to generate sequences of songs that go
well together one after the other.

The innovation of this approach is that poolcasting can identify songs that
are associated according to the people. Other features could be analysed to
uncover songs that are similar (e.g., similar lyrics, similar chords, similar acoustic
features), but a content-based analysis would not bring a comprehensive overview
of songs that people tend to associate. The experiences concealed in playlists,
on the other hand, have the power to reveal songs that people associate either
for acoustic, social or cultural reasons.

1.3 Listening to music in a group

Another focus of this thesis is related to the research in the area of social
choice. The purpose of poolcasting is to customise music for a group of listeners
(an audience), and this activity implies looking for an acceptable compromise
among the musical preferences of the entire audience.

The most appreciated disc jockeys are those that can build ‘good’ musical
sequences for every type of audience, making all the participants move to the
dance floor during an event, and not just a few people. Similarly, the goal of
poolcasting is to deliver music that can possibly satisfy the entire group.

If a group were made of people with identical musical tastes, it would be
easy to find songs that everyone likes. This scenario, though, is quite rare:
most groups show different individual preferences for different songs, and what
someone likes, someone else dislikes.

Under these conditions, the approach of poolcasting is to build a musical
sequence that fairly satisfies all the listeners in the long run. At times, people
may be exposed to songs they do not particularly like but, after a certain while,
everyone will be satisfied by the overall music played.

The way in which poolcasting tackles this social issue is by introducing a
new preference aggregation method that assigns different importance to different
members according to how much satisfied they are towards the music played so
far. This satisfaction-weighted aggregation method is designed to select, at each
moment, songs that are most liked by the least satisfied listeners so that, in the
long term, a balance can be reached in the entire audience.
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1.4 A social radio experience

While the first part of the thesis describes the poolcasting technique, the
second part introduces an application developed on top of this technique. The
application, called Poolcasting Web radio, provides an innovative online radio
service that streams music channels on the Internet, where songs are selected in
real time according to the preferences of the connected listeners.

In the real world, people are used to listen to music in groups. In bars, cars,
elevators, open offices, people share musical experiences and implicitly accept a
social contract by which their musical interests only partially influence the music
played, which is intended to satisfy the group as a whole. This kind of social
experience does not occur on the Internet.

When listening to music on the Web, people typically choose between online
radios or digital music services. Online radios are equivalent to terrestrial radios;
they just stream over the net rather than over the air and have a much larger
number of channels. They are not social, since connecting to a channel does
not bring any information about who else is listening, nor allows like-minded
listeners to know each other. Moreover, online radios are not personalised: they
broadcast either random or pre-programmed musical sequences that are not
influenced by the listeners.

The alternative to online radios is provided by digital music services such
as Last.fm and Pandora which stream personalised music channels. These
services compile a music profile of each member and select songs according to
the preferences of each individual. Again, they lack of a social component since
streams can only be listened by one person at the time and cannot be shared.

The fact that the Web is becoming more and more a social medium and that
online radios and digital music services are only targeted to individuals is the
motivation that led to the development of Poolcasting Web radio, which offers
an online social radio experience.

Poolcasting Web radio is not meant to help people share music files, but
to share musical experiences, allowing displaced persons to listen to the same
music at the same time, to exchange their interests, to contribute together to
the sequence of music played and to be able to discover new music that others
like.

1.5 Structure of the thesis

Each chapter of the thesis touches a particular research field; for this reason the
state of the art related to each area is reported separately at the beginning of
each chapter.

Chapter 2 is dedicated to the experience Web and explains how Internet can
be mined for data related to musical experiences in the form of playlists, and how
playlists can be analysed to learn which songs and artists are more associated
according to the ‘wisdom of the crowd’. Previous work about co-occurrence
analysis and musical associations is also presented.
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Chapter 3 explains how to generate individual music profiles from listening
behaviour data. Most digital music players store data about individual listening
history (which songs a person has played and rated) and many users agree to
share these data on the Web to make others aware of their musical experience.
This chapter first introduces previous work about user modelling and then
describes a technique to analyse listening behaviour data to infer a model of
the musical preferences of each listener.

Chapter 4 illustrates the core of the dissertation: the poolcasting technique.
Given a group of listeners and a repository of songs, poolcasting employs the
techniques of Chap. 2 and 3 to collect the knowledge required to determine a
sequence of songs adapted to a given audience. Poolcasting is characterised
by an iterated CBR process that first retrieves good candidate songs to be
added to the sequence, next reuses the acquired knowledge to identify the
best candidate, then revises the knowledge to customise the solution for the
current problem. The chapter reviews state of the art about Case-Based
Reasoning and group-adaptive systems and also introduces the satisfaction-
weighted aggregation method employed by poolcasting to achieve fairness in
the long run.

Chapter 5 first reviews previous work about group-adaptive music systems
and Internet radios and then describes Poolcasting Web Radio, the innovative
application developed to provide an online social radio service. Each channel of
the radio is driven by a process that selects in real time which songs to broadcast
according to the preferences of the listeners in the same channel at each moment.
The radio offers the chance to share music and listening experiences to listeners
located around the world.

Chapter 6 reports the evaluation of the presented work, showing the degree
in which musical sequences can be customised for a given audience while
maintaining a certain musical continuity from song to song. Different scenarios
are compared, measuring the performance of poolcasting with groups of different
size and degree of homogeneity in terms of musical interests.

Chapter 7 summarises the contributions of this research work and suggests
ways to extend poolcasting to domains other than music, in order to deliver
customised sequences of movies, news items or TV shows to groups of people.





Chapter 2

Musical associations from a
Web of experiences

DJ, don’t you dare to leave
I tried to figure out what others did

Dover, 1999

2.1 The experience Web

The World Wide Web keeps one billion persons connected [comScore, Inc., 2009]
and has just turned eighteen [Berners-Lee, 1991]. In its come of age, the Web
has grown not just in quantity, but most importantly in quality. Old-fashioned
media have spent years questioning the reputation of Internet as a trustworthy
source [Johnson and Kaye, 2004] and have been outwit. Internet offers worldwide
information with a swiftness and a level of granularity that cannot be found in
books, newspapers, radios or televisions while preserving the same accuracy
[Giles, 2005].

The power for the Internet to evolve from a limited and disregarded to a rich
and outspread medium comes from enabling anyone to easily contribute to its
content. While Web publishing in the 1990s was cumbersome and expensive,
nowadays a few clicks are enough to share content on the Web, with publishing
services such as YouTube (video), MySpace (music) and Flickr (images) having
become of public domain.

The most remarkable effect of enabling people to easily share content has been
to have more people create new content. Most blogs’ writers, for instance, never
had a personal diary on paper, while millions of pictures, videos, animations,
stories are created on purpose to be broadcast online. Internet provides content
that would simply be unavailable or inexistent otherwise.

7
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2.1.1 A repository of personal experiences

A particular type of content that has recently gained ground in the Web is
experience data. This refers to data describing what people have been doing:
where they have been, which songs they have played, which friends they have
met, and so on. Most people enjoy sharing this personal information, which
explains the success of Web services such as Facebook and Twitter, where no
original content is actually created. What is shared are personal experiences, in
such a quantity that cannot be found in any other place.

Experience data from the Web grants a valuable overview of the social impact
of a given content. An example is provided by Panic! At The Disco, a Rock band
that gained online fame thanks to the ‘buzz’ generated in the music communities
MySpace and PureVolume. While unsigned bands typically have a reduced group
of listeners in these Web sites, Panic! At The Disco singularly broke this rule,
with more people playing their songs week after week and eventually reaching
number one in MySpace’s indie chart, which brought them to sign a contract
and sell almost four million copies with their first album.

The lesson learnt is that knowing what many people are doing online with
music is very valuable. Music labels are now aware of the importance of online
experience data and more unsigned artists are reported to have been offered
contracts because they had many online listeners or many ‘friends’ (MySpace
jargon for ‘supporters’) shared with other famous musicians. The strategical
importance of collecting musical experience data from the Web is also confirmed
by MySpace and Last.fm — two of the main music-driven online communities —
being recently acquired by media corporations News Corp. and CBS Interactive
for 580 million dollars and 280 million dollars respectively [News Corporation,
2005; CBS Corporation, 2007].

2.1.2 Collecting music-related experiences

Extracting music-related experience data from the Web is not easy task. People
have a hand of choices to narrate their ‘musical experiences’ online: writing a
post about a new song in a blog, reporting part of the lyrics in a forum, watching
the video in YouTube, playing the audio in Last.fm, becoming friend of the band
in MySpace: all these behaviours denote an interest for a song, yet they are all
stored in different sites and cannot be easily aggregated.

This is particularly true for experiences described in a textual format. Blog
posts, for instance, can report both positive and negative music experiences
(an awesome concert, a disappointing album); to really understand what is said
about music, one would have to read the whole text, filter out typo errors,
identify where the music is referred to and categorise the experience.

A human could perform this process only on a small number of blog posts,
certainly not on all the posts that bloggers generate daily. On the other hand, an
automatic system would have it hard to understand what a blog post is about,
given the infinite quantity of languages, styles and locutions that can describe
musical experiences.
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Luckily, there are musical experiences that are shared on the Web in non-
textual formats and that, as such, do not require an interpretation since they
clearly imply which music a person has experienced and how. The main format
to describe songs that have been played and enjoyed is that of playlists.

2.1.3 The value of playlists

Playlists are ordered sequences of music titles. Many persons use playlists in
their digital players to specify which songs they would like to hear for a given
occasion, for instance reading, programming, driving, working, waking up, going
to sleep [Vignoli, 2004]. People also create playlists that reflect a particular mood
or emotion, that tell a story or are meant to be shared with friends [Cunningham
et al., 2004]. Playlists can be thought of as a “collective memory” [van Dijck,
2006] of the way in which people organise their music.

Playlists are very valuable to automatically extract experience data about
music from the Web because they are are less prone to interpretation errors.
Each playlist has a clear structure: a sequence of songs that a person compiled
to be played together. Even ignoring the motivation that drove someone to put
songs in a certain sequence, the same effort of compiling and publishing a playlist
indicates a preference for those songs.

The singularity of playlists, compared to other experience data (blog posts,
album reviews, concert reports), is that playlists intrinsically bind multiple songs
and artists together. Someone compiling and sharing a playlist is not expressing
an interest for a single song, but for a particular sequence of songs meant to be
played in a specific order. For this reason, playlists not only offer an overview of
which songs or artists are more or less played, but also of which songs or artists
people tend to associate, to play together.

2.1.4 From playlists to musical associations

When people compile playlists, they include songs that are meant to be played
together for some purpose. If two songs or artists appear in many playlists by
many different authors, then it makes sense to assess that those songs or artists
are associated.

The purpose of this chapter is to define a measure of musical association to
estimate how much two songs or artists ‘go well together’ based on their playlist
co-occurrences. The approach consists in retrieving playlists from Internet and
analysing the co-occurrences of songs and artists in such playlists to determine
how much they go well together.

The hypothesis is that if any association (cultural, social, or acoustic) exists
between two songs or artists, this can be automatically revealed observing how
a multitude of people have organised their music in playlists shared on the
Web. Playlists hide valuable personal experiences; this chapter shows how these
experiences can be extracted and musical associations uncovered.
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2.2 Previous work

The approach described in this chapter explains how to reuse experience data
included in playlists to assess a measure of musical association between songs
and artists. This section reviews previous work addressed to estimate musical
associations among musical objects, with a particular emphasis on methods that
exploit data retrieved from the Web.

2.2.1 Co-occurrence analysis

Some researchers assume that playlists contain “similar music” [Logan et al.,
2003] and that, if two songs are contiguously one after the other in a playlist,
it somehow makes sense to play them in this order [Andric and Haus, 2006].
Although this assumption may not hold for one playlist, applying this hypothesis
to a large data set of playlists implies that associated songs can be discovered
when they co-occur in many playlists.

Identifying relevant co-occurrences of items in a series of events is a common
issue in unsupervised learning [Hofmann and Puzicha, 1998]. Co-occurrence
analysis has been applied not only to identify associated songs from a set of
playlists, but also to find maximal frequent sequences in text [Ahonen-Myka,
1999], to discover interesting episodes in the alarm flow of telecommunications
networks [Mannila et al., 1997], to gather knowledge about DNA sequences
[Wang, 1997] or to learn Web navigation models [Nakagawa and Mobasher, 2003].

The main benefit of co-occurrence analysis is that it allows to state whether
two resources are associated or not, not because of some intrinsic content, but
because of they way objects are organised. In the case of music, assessing that
two songs are associated because they co-occur in many playlists is a way to
reveal the “wisdom of the crowd” [Surowiecki, 2004], the way in which songs are
most associated by people in their activities.

The basic idea of co-occurrence analysis is that the higher the number of
playlists where two songs co-occur, the higher their association. As Andric and
Haus, 2006 [Andric and Haus, 2006] first noticed, the order in which songs appear
in playlists is another important property that should be tracked to determine
their association. Ragno et al., 2005 [Ragno et al., 2005] suggested that the
distance at which songs co-occur in a playlist is also relevant: songs appearing
contiguously in a playlist are more enlaced that songs divided by a certain time
gap. Pachet et al., 2001 [Pachet et al., 2001] indicated how the popularity of each
song is also fundamental in the co-occurrence analysis since popular songs tend
to occur in playlists with many other songs, independently of any real musical
association.

Co-occurrence analysis can be performed at different level of granularity,
focusing either on the co-occurrences of songs, of albums, or of artists. Hauver
and French, 2001 [Hauver and French, 2001] suggested that, since songs
performed by the same artist are often similar, working at the level of artists
can be useful, especially when the data set is small or sparse.
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2.2.2 Playlists

To analyse co-occurrences of songs in a large set of playlists, first many playlists
compiled by different persons need be retrieved from the Web. Playlists can
be found in millions throughout Web pages of different countries and cultures.
Many authors publish their personal playlists online, either directly from
their music players (e.g., Apple iTunes, Spotify) or inside online communities,
the most popular being Imeem, Playlist.com, FIQL, Last.fm, MusicStrands,
SonicSwap, Art Of The Mix, Plurn and UpTo11.

Although there is no unique way to distribute playlists online, the most
common representation is the XML Shareable Playlist Format (XSPF) [Gonze
et al., 2006] that specifies, for each song in the playlist, its title, artist name,
album name, song length and location.

Sometimes a song can appear in different databases with different titles,
and this can make it difficult to compare playlists shared among different
communities. For instance the song ‘The Bitter End’ (Placebo) is represented as
‘The Bitter End’ (Placebo) in Last.fm, as ‘Bitter End, The’ (Placebo (Pop)) in
MusicStrands, and as ‘Placebo-Bitter End’ () in Plurn. The main reason for this
misalignment is that, although the music industry has defined an ISO standard
music title reference — the ISRC code [ISRC Agency, 2003] — this is usually not
used in existing information database, as pointed out by Pachet et al., 2001
[Pachet et al., 2001].

Possible solutions to univocally identify music titles are to either use
audio fingerprinting [Cano et al., 2005], music ontology matching [Raimond
and Sandler, 2007] or to query large online public music databases such as
Musicbrainz.

2.2.3 Other Web-based musical experience

Playlists are not the only type of online data that can be analysed to assess
associations between songs and artists.

Cohen and Fan, 2000 [Cohen and Fan, 2000] first suggested that co-
occurrences of musical artists in Web search results reflect the way in which
people associate artists in the music domain. On the same line, Whitman
and Lawrence, 2002 [Whitman and Lawrence, 2002] described a method which
first queries search engines for pages related to an artist, next extracts natural
language features from these pages to produce a summary description of the
artist, and finally uses this description to compute similarity between artists.
Zadel and Fujinaga, 2004 [Zadel and Fujinaga, 2004] proposed to combine Web
services from Amazon and Google to generate pools of potentially related artists
and use Web search result counts to assess their actual relatedness. Schedl et al.,
2006 [Schedl et al., 2006] also employed Web services to search for combinations
of artists names with keywords like ‘music’, ‘genre’, ‘style’.

The main limitation of these methods, as observed by Levy and Sandler,
2007 [Levy and Sandler, 2007], is that they are inherently noisy. Firstly, the
pages retrieved from a search engine are not guaranteed to be relevant (e.g.,
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the word ‘Prince’ appears in many pages not related to the artist known as
Prince). Secondly, the simple fact of appearing together in a Web page does
not guarantee that two musical objects are positively associated (e.g., online
shops can present their entire music catalogue on the same page). Thirdly, noise
further multiplies if search engines are used to find songs rather than artists. In
general, the textual nature of this approach makes it difficult to guarantee that
the results are indeed representative of any association.

An alternative to Web search analysis is to crawl Internet for entire music
collections. Brown et al., 2001 [Brown et al., 2001] designed a system by which
users upload their entire music collections to a centralised server, where co-
occurrences of songs and artists are calculated. Logan et al., 2003 [Logan
et al., 2003] proposed to exploit OpenNap, a popular music sharing service, to
obtain personal music collections and infer association between artists under the
assumption that artists co-occurring in someone’s collection have a better-than-
average chance of being similar. These methods are not based on text analysis,
thus remove the noise problems related to Web search. The main drawback is
that only a limited number of users share their whole music collections on the
Internet.

2.2.4 Other ways to assess musical associations

Other approaches not based on experience data can be used to assess whether
two songs go well together or not. One option is to analyse intrinsic content and
deduce that two songs go well together when they have either similar symbolic
representations, similar lyrics or similar acoustic features. These hypotheses,
however, are quite strong, since people often relate two songs for cultural and
social motivations that cannot be revealed by a content-based analysis. A
different option is to ask for experts’ opinion.

Symbolic analysis

Chen and Chen, 2001 [Chen and Chen, 2001] first proposed to identify associated
songs by comparing their symbolic information in the form of six different
features: mean and standard deviation of the pitch values, pitch density, pitch
entropy, tempo degree and loudness. Kuo and Shan, 2002 [Kuo and Shan, 2002]
proposed to identify associated songs comparing their chords.

The main limitation of these approaches is the requirement of a MIDI
[MIDI Manufacturers Association, 1996] representation for each song which
is often unavailable and, in the case of polyphonic songs, hardly conveys
information about representative tracks. Symbolic information might also be
obtained from the score of a theme but, as Logan et al., 2003 [Logan et al.,
2003] observed, only a small subset of music has good-quality machine-readable
score descriptions available and automatic transcription becomes difficult and
error-prone for anything other than monophonic music.
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Textual analysis

A different content-based representation for song is by terms of textual context.
Kaji et al., 2005 [Kaji et al., 2005] and Mahedero et al., 2005 [Mahedero et al.,
2005] first proposed to represent songs as vectors of keywords extracted from
the lyrics and to measure their association comparing their weighted cosine
coefficients.

Other lyrics-based approaches were proposed in the works by Kleedorfer
et al., 2008 [Kleedorfer et al., 2008] and Mayer et al., 2008 [Mayer et al., 2008]:
the former uses text mining techniques to identify topic clusters and considers
songs falling under the same topic (loss, family, love, etc.) as associated; the
latter identifies associated songs based on their rhyme type, part-of-speech and
statistic features (e.g., number of ‘AABB’ rhymes, exclamation marks, articles).

The limitation of these approaches is that they only work for music containing
lyrics. Moreover, lyrics have to be available, since automatic lyrics extraction
from audio is not yet a reality [Berenzweig and Ellis, 2001].

Acoustic analysis

The most common content-based representation for music is through a series of
acoustic features extracted from the audio signal. Aucouturier and Pachet, 2002
[Aucouturier and Pachet, 2002] suggested that associated songs can be identified
based on their global timbral quality. A common technique to compute timbral
quality is by representing a song in terms of clusters of Mel Frequency Cepstrum
Coefficients (MFCCs) [Aucouturier and Pachet, 2004], a measure of spectral
shape historically used as a feature for speech recognition: songs are cut into
short overlapping frames, a feature vector made of several MFCCs is computed
for each frame, a statistical model of the MFCCs’ distribution is calculated and
finally models are compared to identify songs that sound similar according to
their timbre. Approaches based on beat and tempo analysis [Tzanetakis and
Cook, 2002] and singing voice segmentation [Berenzweig et al., 2002] have also
been investigated to identify songs that sound similar.

Although these unsupervised approaches can interestingly spot out associ-
ated songs with different cultural background, or from different genres, they all
present a main drawback: scalability. The actual songs (audio content) have
to be available to perform the analysis, which limits the results to the music
available to each researcher.

Expert analysis

The task to identify associated songs is faced by any disc jockey required to
play a sequence of songs that flow smoothly one after the other, for instance in
a discotheque, a radio, or a recorded music compilation. Analysing the way in
which professional DJs select and order songs in their sets can convey valuable
knowledge about associated songs.

Weiss, 2000 [Weiss, 2000] presented a comprehensive analysis on how
professional DJs select in real time which songs to play, underlying how the
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overall flow and movement between different kinds of music is an important part
of the experience. Gates et al., 2006 [Gates et al., 2006] also interviewed several
DJs about the way in which musical sequences are prepared.

The expertise of DJs was employed by Ragno et al., 2005 [Ragno et al.,
2005] to identify smooth musical transitions. The authors retrieved expertly
authored streams from Nielsen Broadcasting Data (a service monitoring the
music broadcast in more than 1,600 radio stations, satellite radio and cable
music channels), translated them to undirected graphs connecting adjacent songs
in each stream, and then used this knowledge to to generate smooth musical
playlists.

The main limitation of expert-based analysis is that musical sequences
compiled by professionals are scarcely available or are subject to a fee, as for the
Nielsen data set.

2.3 Co-occurrence analysis of social data

The purpose of this section is to define a musical association degree that measures
how much any two songs or artists go well together in sequence.

A social-based approach is employed: first a large set of playlists compiled
by thousands of users is retrieved from the Internet, then these playlists are
analysed and the most frequently co-occurrent songs and artists identified.

Let C be the set of songs appearing in the retrieved playlists; the goal of this
section is to define a musical association degree s : C2 → [0, 1] that measures
how much any two songs go well in sequence. The higher the value s(X, Y ), the
more two songs X, Y ∈ C go well together in a musical sequence.

2.3.1 Conditional probability

Let c(X) ∈ N and c(Y ) ∈ N be the occurrence counts of song X and Y , that
is, the number of playlists where each song occurs; let d(X, Y, 1) ∈ N be the
number of contiguous sequential patterns, that is, the number of times Y
occurs in a playlist immediately after X; let

N =
X

X,Y ∈C
d(X, Y, 1)

be the total number of contiguous sequential patterns. The value

d(X, Y, 1)
c(X)

(2.1)

is the conditional probability to find Y as the following element in a playlist
containing X. The conditional probability (2.1) looks like a good indicator of
the association from X to Y : if people tend to play song Y right after song
X, then the value of (2.1) is high, otherwise the value is low. The problem is
that this measure is biased by the popularity of Y : it may return a high value
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because song Y occurs in many playlists, rather than because X and Y are
indeed associated.

For example, let X, Y and Z be three songs with respective occurrence
counts c(X) = 100, c(Y ) = 60, and c(Z) = 5, and such that d(X, Y, 1) = 6 and
d(X, Z, 1) = 4. The conditional probabilities to find either Y or Z in a playlist
after song X are:

d(X, Y, 1)
c(X)

= 0.06 >
d(X, Z, 1)

c(X)
= 0.04

which show that Y occurs more frequently (6 times) than Z (4 times) as the
next song of a sequence after X. Yet, Y is very popular and occurs after X only
in 6 out of 60 sequences where it appears (10%), while Z is less popular and
still occurs after X in 4 out of 5 sequences where Z appears (80%).

To counter-effect the bias given by the over-popularity of a song (Y in the
previous example), the conditional probability (2.1) is multiplied by a weight
inversely related to the popularity of the song, as follows:

d(X, Y, 1)
c(X)

µ
1 − c(Y )

N

∂β

(2.2)

where β ∈ [0, 1] is a parameter tuned to punish more or less the bias given by
the individual occurrence count. Note that when β = 0, the function is identical
to (2.1).

The measure (2.2) yields positive values for every pair of songs X and Y
that appear in playlists exactly one after the other. There are other pairs of
songs that can be considered associated, albeit to a smaller degree. Firstly, two
songs X and Y that co-occur in many playlists separated by other songs (e.g., X
followed by a song, followed by Y ) can be seen as associated, since people tend
to play them together often, although not exactly one after the other. Secondly,
two songs X and Y that co-occur in playlists in the inverse order (X after Y
rather than X before Y ) can also be seen as associated. Hereafter these cases
are integrated in the measure (2.2).

2.3.2 Distant co-occurrences

Let d(X, Y, D) ∈ N be the number of playlists where X and Y co-occur at a
distance D ∈ N+; for example d(X, Y, 1) counts the playlists where Y occurs
immediately after X, d(X, Y, 2) counts the playlists where Y occurs after X
separated by one song, and so on.

If two songs X and Y occur in playlists not only contiguously but also
separated by other songs, this is a further evidence that X and Y are associated.
While (2.2) considered only co-occurrences of X and Y at distance 1, the
following formula estimates the association considering co-occurrences at a
generic distance J :

tJ(X, Y ) =
d(X, Y, J)

c(X)

µ
1 − c(Y )

N

∂β

. (2.3)
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Co-occurrences between X and Y at different distances are aggregated by means
of a linear combination that assigns more importance to closer co-occurrences,
as follows:

δX

J=1

αJ tJ(X, Y ) (2.4)

where δ ∈ N+ is the maximum distance considered and α1, α2, . . . , αδ ∈ [0, 1] are
the degrees in which distance influences the strength of the association. These
values are decreasingly ordered (α1 > α2 > α3 > · · · ) to assign more importance
to closer co-occurrences, and are such that

Pδ
J=1 αJ = 1. Note that when δ = 1

the function is identical to (2.2).

2.3.3 Inverse co-occurrences

If two songs X and Y not only occur in many playlists in this order (X before
Y ), but also in the opposite order (X after Y ), this is a further evidence that
X and Y are associated. The following measure t : C2 → [0, 1] aggregates direct
and inverse co-occurrences by means of a linear combination:

t(X, Y ) =
δX

J=1

αJ [(1 − ∞) · tJ(X, Y ) + ∞ · tJ(Y, X)] (2.5)

where ∞ ∈ [0, 0.5] is a parameter to take more or less into account the order of
occurrence: when ∞ = 0 the function is identical to (2.4).

2.3.4 Co-occurrences of songs with artists

So far, only co-occurrences among songs have been examined. Co-occurrences
between artists are also relevant to determine whether two songs go well in
sequence or not. If a song X not only co-occurs often with a song Y but also
with other songs by the same artist of Y , this is a further evidence that X and
Y are associated.

For example, let X and Y be the songs ‘True Colors’ (Cyndi Lauper) and
‘Holiday’ (Madonna). If the data set of playlists is sparse, the number of playlists
where X and Y occur together can be small and not disclose the association
between the two songs. Observing the co-occurrences between ‘True Colors’ and
other songs by Madonna, though, can reveal that the two artists are indeed
related.

Formally, let a(Y ) be the artist performing song Y , and let UX,Y = {U | U 6=
Y ∧ a(U) = a(Y ) ∧ s(X, U) > 0} be the set of songs from the same artist of
Y that co-occur with X. The following measure u : C2 → [0, 1] calculates the
average degree in which X co-occurs with other songs by the artist of Y :

u(X, Y ) =
X

U∈UX,Y

t(X, U)
#(UX,Y )

(2.6)
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where the symbol # denotes the cardinality of a set. The higher the value of
u(X, Y ), the more X is associated with the artist a(Y ), the higher the evidence
that X and Y go well together.

2.3.5 Co-occurrences among artists

Even when two songs X and Y do not occur together in playlists, they can be
considered associated at a certain level if other songs by their respective artists
frequently occur together.

For example, let X and Y be the songs ‘Heading For The Moon’ (Cyndi
Lauper) and ‘Supernatural’ (Madonna). These two songs might never occur
together in a set of playlists, since they are B-sides of rare singles; still other
songs by the two pop singers can often co-occur closely, indicating a certain
association between X and Y . In general, if many songs by the artist of X occur
with many songs by the artist of Y , this is a further evidence that songs X and
Y are associated.

Let VX,Y = {V | V 6= X∧a(V ) = a(X)∧s(V, Y ) > 0} be the set of songs from
the same artist of X that co-occur with Y . The following measure v : C2 → [0, 1]
calculates the average degree in which songs by the artist a(X) other than X
co-occur with songs by the artist a(Y ) other than Y :

v(X, Y ) =
X

V ∈V
U∈U

t(V, U)
#(VX,Y ) · #(UX,Y )

. (2.7)

The higher the value of v(X, Y ), the more the artist a(X) is associated with the
artist a(Y ), the higher the evidence that X and Y go well together.

2.3.6 The musical association degree

So far three functions have been defined that estimate some kind of association
between songs based on co-occurrences in playlists. The function t(X, Y )
estimates the association degree between two songs considering song-to-song co-
occurrences (2.5), the function u(X, Y ) considers song-to-artist co-occurrences
(2.6), and the function v(X, Y ) considers artist-to-artist co-occurrences (2.7).

The musical association degree s : C2 → [0, 1] between any two songs
X, Y ∈ C is finally defined combining these three functions by means of a
linear combination that assigns more importance to song-to-song co-occurrences,
followed by song-to-artist and artist-to-artist co-occurrences, as follows:

s(X, Y ) = φ1t(X, Y ) + φ2u(X, Y ) + φ3v(X, Y ) (2.8)

where the parameters φ1, φ2, φ3 ∈ [0, 1] are decreasingly ordered (φ1 > φ2 > φ3)
and are such that φ1 + φ2 + φ3 = 1.

The function s(X, Y ) measures the degree at which two songs sound well
together. The fact that s(X, Y ) > s(X, Z) implies that song X is better followed
in a sequence by song Y than by song Z.
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Example 1. Let X, Y and Z be the songs ‘True Colors’ (Cyndi Lauper),
‘Holiday’ (Madonna) and ‘The Final Countdown’ (Europe). To discover whether
Y or Z goes better after ‘True Colors’, a set of playlists is analysed. First, song-
to-song associations are considered, comparing the playlists where ‘True Colors’
and ‘Holiday’ appear together with the playlists where ‘True Colors’ and ‘The
Final Countdown’ appear together, and obtaining values for t(X, Y ) and t(X, Z).
Then, song-to-artist associations are considered, comparing the playlists where
‘True Colors’ appears with other songs by Madonna and the playlists where ‘True
Colors’ appears with other songs by Europe, and obtaining values for u(X, Y )
and u(X, Z). Next, artist-to-artist associations are considered, comparing the
playlists where any other song by Cyndi Lauper and Madonna occur together
with the playlists where any other song by Cyndi Lauper and Europe occur
together, and obtaining values for v(X, Y ) and v(X, Z). Finally, the values are
aggregated, obtaining the association degrees s(X, Y ) and s(X, Z). ‘Holiday’
results to have a higher degree than ‘The Final Countdown’ and is therefore
identified as the song that goes better after ‘True Colors’.

2.4 Working on a real data set

To actually estimate which songs go well in sequence, a repository of playlists
is required where to apply the presented co-occurrence analysis. For this
purpose, a set of 993,825 playlists has been retrieved from the Web. 85% of
the playlists come from the iMix section of the Apple iTunes Store, 10% from
the Web community Art of the Mix, and 5% from other Web pages including
MusicStrands, Fiql, Go Fish and Webjay. The playlists were retrieved with
HTTP calls, incrementally over time, at a rate of about 1,000 per day. Each
playlist contains a sequence of IDs to univocally identify songs and artists and
does not include information related to the author, title or date of creation of
the playlist.

The authors of the playlists are mainly young people from Western countries
since this is the typical audience of the harvested communities; for this reason a
prevalence of young-targeted, Western music is to be expected. Moreover, some
music is not present at all; for instance the playlists retrieved from iTunes Store
do not contain songs from The Beatles, since their catalogue is not on sale there.

The assortment of music genres in the playlists is represented in Fig. 2.1.
Each point represents a song in the set of playlists, its colour indicates the
genre and its position in the plane is calculated with a dimensionality reduction
algorithm called Distributed Recursive (Graph) Layout [Martin, 2008] that
minimises the distance between the most co-occurrent songs.

The colour distribution highlights the fact that Rock songs are prevalent as
they can be found in playlists together with almost any other genre. Other
genres, such as Hip Hop/Rap, Jazz and Classical, form compact clusters which
indicate that these songs tend to occur in playlists mostly with other songs by
the same genres.
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Figure 2.1: Musical associations in the data set of playlists.

2.4.1 Initial data set

The initial data set is made of 993,825 playlists. Playlists where any song or
artist is repeated often (more than 4 times) are removed for their co-occurrence
analysis would lead to the obvious outcome that a song is associated with itself
or with other songs by the same artist.

In the set of remaining playlists, 5,433,413 pairs of songs appear contiguously
and are not performed by the same artist. The most common contiguous pairs of
songs are: ‘Dirty Little Secret’ (The All-American Rejects) and ‘Dance, Dance’
(Fall Out Boy); ‘Grillz’ (Nelly) and ‘Laffy Taffy’ (D4L); ‘Boulevard Of Broken
Dreams’ (Green Day) and ‘Mr Brightside’ (The Killers); ‘My Humps’ (Black
Eyed Peas) and ‘Run It!’ (Chris Brown); ‘Caring Is Creepy’ (The Shins) and ‘In
The Waiting Line’ (Zero 7); ‘Don’t Cha’ (Pussycat Dolls) and ‘Pon De Replay’
(Rihanna).

One problem with this data set is that it contains both ‘good’ and ‘bad’
playlists. People are free to publish on the Web any type of playlists and there is
no implicit guarantee that the collected ones are made of songs with an affinity,
as listeners can as well create and share random sets of tracks without any
meaningful order. To obtain valid musical associations, bad playlists should be
removed from the data set before proceeding with the co-occurrence analysis.
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2.4.2 Noise filtering process

Two hypotheses are made for filtering out bad playlists. The first is that any
playlist containing alphabetically ordered songs or artists were probably not
compiled with a specific listening purpose (e.g., relaxing, jogging, partying) but
as mere groups of consecutive tracks. The second hypothesis is that neither
very short nor very long playlists were created with a purpose that is coherent
with the proposed interpretation of playlists. If these playlists were discarded,
then the data set would be reduced to less playlists with a high quality, that is,
playlists which actually contain consecutive associated songs.

The noise filtering process consists in removing from the initial data set any
playlist that has less than five songs, more than twenty songs, or has more
than five alphabetically ordered songs or artists. These specific values were
determined after having observed the distribution of alphabetically ordered songs
and artists and the distribution of playlist lengths in the initial data set, as
illustrated in Fig. 2.2.
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Figure 2.2: Number of playlists with alphabetically ordered songs/artists (left)
and with specific lengths (right).

The noise filtering process reduces the data set from 993,825 to 465,438
playlists. The number of contiguous pairs of songs also decreases from 5,433,413
to 1,256,681.

2.5 Tuning parameters

The next step before applying the co-occurrence analysis process to the filtered
set of playlists is to decide the values of different parameters introduced in
Sect. 2.3. The parameters are δ, αJ and ∞, which occur in the functions (2.5)
and (2.8). These parameters determine how much the distance and the order of
songs in playlists influence their association.
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2.5.1 Tuning the distance parameters

The maximum distance parameter is set to δ = 3, which stands as a compromise
between contiguous and distant co-occurrences. This means that two songs that
appear in the same playlist separated by less than three songs are considered as
associated, otherwise the association does not subsist.

The distance parameters α1, α2, α3 ∈ [0, 1] determine the degree in which
closer co-occurrences are more relevant than distant ones. These parameters are
set to α1 = 0.6, α2 = 0.3, α3 = 0.1 to gradually assign higher importance to
closer co-occurrences.

2.5.2 Tuning the order parameter

The parameter ∞ ∈ [0, 0.5] determines the degree in which inverse co-occurrences
(X after Y ) also contribute to determine their associations. In this case, this
parameter is set to ∞ = 0.2: direct co-occurrences (where X occurs before Y )
are identified as more relevant to determine the association between X and Y
than inverse co-occurrences.

Setting the parameter to ∞ = 0.2 expresses the fact that the order in which
two songs occur in playlists has an effect on the measure of their association. This
value was decided observing that many playlists in the data set are asymmetric
by nature: songs sound well together in one direction but not necessarily in the
other one. This can be explained by the fact that several authors, especially disc
jockeys, compile playlists where the end of each song mixes with the beginning of
the next one. In these cases, the order should be accounted for when measuring
associations.

2.6 The resulting associations

Having filtered noise from the initial data set of 993,825 playlists and having
applied the co-occurrence analysis technique with the parameters set to:

• maximum distance between songs: δ = 3,

• degrees in which distance influences the strength of the association: α1 =
0.6, α2 = 0.3, α3 = 0.1,

• degree in which popularity bias is punished: β = 0.8,

• degree in which order influences the association: ∞ = 0.2,

• degrees in which different types of co-occurrences influence the strength of
the association: φ1 = 0.6, φ2 = 0.3, φ3 = 0.1,

the association degrees s(X, Y ) defined in Sect. 2.3 are finally calculated.
Associations between songs by the same artist are excluded for their

obviousness, as well as songs by ‘virtual’ artists (such as ‘Various Artists’ or
‘Soundtrack’) and songs appearing in less than 5 playlists, for their minimal
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statistical significance. This threshold was fixed observing how the popularity
of songs distributes in the data set of playlists (Fig. 2.3).
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Eventually, a musical association degree s(X, Y ) was estimated for as many
as 46,217,300 distinct pairs of 415,498 songs by 47,148 distinct artists.

2.6.1 Evaluating song associations

Given a song X in the data set, the songs Y with the highest association degree
s(X, Y ) are the songs that go best in a sequence after X according to the human
experience recorded in playlists. The following is an example of list of top
associated tracks.

Example 2. The song ‘New York, New York’ (Frank Sinatra) occurs in 219
playlists. The analysis finds that 173 distinct songs appear in playlists with
‘New York, New York’, that 6,458 songs appear in playlists with other songs
by Frank Sinatra, and that 26,402 songs are from artists appearing in playlists
with songs by Frank Sinatra. The co-occurrence analysis allows to rank all
these songs according to how much they are associated with ‘New York, New
York’, uncovering the following songs as the top associated ones: ‘The Waters Of
March’ (Susannah McCorkle), ‘Stardust’ (Glenn Miller), ‘New York’s My Home’
(Sammy Davis Jr.), ‘Manhattan Avenue’ (Nellie McKay), ‘Mississippi Goddam’
(Nina Simone), ‘Something Beautiful’ (Robbie Williams).

The example highlights some common properties of the lists of top associated
songs. The first characteristic is that the top songs are not particularly famous,
yet share a strong affinity with the seed track. ‘The Waters Of March’ (Susannah
McCorkle), for instance, is strongly connected with ‘New York, New York’ (Frank
Sinatra) since they were both composed in the Seventies and performed as
musical standards by various singers. The reason why uncommon songs appear
higher in the list is the high value of the popularity bias parameter β = 0.8
which punishes songs that occur very often in the set of playlists.

Another positive characteristic of the list is diversity: all the songs are
performed by different artists and belong to multiple genres and periods;
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‘Something Beautiful’ (Robbie Williams), for instance, was published in 2003.

2.6.2 Evaluating artist association

As well as lists of top associated tracks, the co-occurrence analysis can produce
lists of top associated artists. Given an artist a(X) in the data set, the artists
whose songs have in average the highest association degree with the songs of
a(X) are the top associated artists with a(X).

Working at the level of artists is not as specific as working at the level of
songs: two songs can go well together for acoustic reasons (same timbre, rhythm,
lyrics) while a correlation between two artists is more abstract, implying some
sort of social or cultural relationships (e.g., two artists are contemporary, play
the same instrument, have collaborated, belong to the same genre). An example
of list of top associated artists is reported hereafter.

Example 3. Themes written by the soundtrack composer John Williams appear
in 2,367 playlists. The analysis finds out that songs by 866 distinct artists appear
in playlists with any track by John Williams. These artists are ranked according
to how much they are musically associated with John Williams; the following
artists are uncovered as the most associated: Itzhak Perlman, Christopher
Young, Arthur Fiedler, London Symphony Orchestra, John Debney, Danny
Elfman, John Carpenter, John Barry.

Similarly to Example 2, an interesting property of this list is that uncommon
but strongly associated items appear first, followed by more popular ones. Itzhak
Perlman, for instance, is not a soundtrack composer but a violinist who played
first violin in ‘Schindler’s List’ soundtrack, composed by John Williams. Arthur
Fiedler also shares a strong affinity with John Williams, who took his place as
the conductor of the Boston Pops orchestra in 1979 after Fiedler’s death. John
Debney, Danny Elfman and John Barry are award-winning movie composers
contemporary to John Williams.

2.6.3 Comparisons with other music similarity measures

For the purpose of evaluation, some lists of top associated songs and artists
are hereafter contrasted with equivalent lists calculated with distinct sources of
musical knowledge obtained from different Web sites. The Web sources used for
the comparison are: Yahoo! Music, Last.fm and Audiobaba for associated songs
and All Music Guide, Yahoo! Music, Last.fm, MusicStrands and MusicSeer for
associated artists. The technique presented in this chapter does not exactly look
for ‘similar’ songs, but for songs that go well together in sequence. Nevertheless,
comparing its assessments with those offered by other techniques can reveal
interesting peculiarities.

Yahoo! Music makes available for each song and artist in its catalogue a list
of similar tracks and artists “generated from end user feedback” [Baumann and
Halloran, 2004]. Last.fm offers for each song a Web page listing what people who
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listened to that song also listened to. Audiobaba uses a content-based approach:
for each song, a list of tracks that are acoustically similar is returned.

For associations among artists, All Music Guide includes handcrafted contri-
butions written by expert editors and is considered as the ‘bible’ of music reviews,
the ground truth for music classification research [Pachet and Cazaly, 2000;
Hu and Downie, 2007; Magno and Sable, 2008; Sordo et al., 2008]. MusicStrands
derives associations from the same data set of playlists employed in this
dissertation, but applying a different technique based on “bags of associations”
[Shur and Hangartner, 2006]. MusicSeer follows two different approaches: one
is based on a survey to collect subjective judgements about artist similarity, the
other one on playlist co-occurrences. The MusicSeer survey includes associations
for about 413 artists [Logan et al., 2003], while the playlist-based approach
reports associations between 60,931 artists from the analysis of 29,164 playlists
retrieved from Art Of The Mix [Ellis, 2003].

Tables 2.1, 2.2 and 2.3 report the most associated tracks for the songs ‘New
York, New York’ (Frank Sinatra), ‘Whenever, Wherever’ (Shakira) and ‘Smoke
On The Water’ (Deep Purple). Tables 2.4, 2.5, 2.6 and 2.7 compare the top
artists delivered for John Williams, Frank Sinatra, Abba and Destiny’s Child.

Table 2.1: Top associated songs for ‘New York, New York’ (Frank Sinatra).

Poolcasting

‘The Waters Of March’ (Susannah McCorkle), ‘Stardust’ (Glenn Miller),
‘New York’s My Home’ (Sammy Davis Jr.), ‘Manhattan Avenue’ (Nellie
McKay), ‘Mississippi Goddam’ (Nina Simone), ‘Something Beautiful’
(Robbie Williams)

Yahoo!

‘Piano Man’ (Billy Joel), ‘That’s Amore’ (Dean Martin), ‘At Last’ (Etta
James), ‘Mrs. Robinson’ (Simon & Garfunkel), ‘The Boxer’ (Simon &
Garfunkel), ‘Bridge Over Troubled Water’ (Simon & Garfunkel)

Last.fm

‘Strangers In The Night’ (Frank Sinatra), ‘Fly Me To The Moon’ (Frank
Sinatra), ‘What A Wonderful World’ (Louis Armstrong), ‘Walkin’ My Baby
Back Home’ (Nat King Cole), ‘Try To Remember’ (Bobby Darin), ‘Beyond
The Sea’ (Bobby Darin)

Audiobaba

‘Woman, Woman’ (Gary Puckett), ‘Spirit In The Night’ (Bruce Spring-
steen), ‘You Make Me Feel So Young’ (Frank Sinatra), ‘Mud On The Tires’
(Brad Paisley), ‘Lucky To Be Here’ (Montgomery Gentry), ‘6 AM’ (Random
Access)

The analysis of these lists of top associated songs does not reveal a great
diversity among different musical sources, although some peculiarities can be
observed. As noted previously, co-occurrence analysis of playlists can identify
songs that are associated but not overly popular, something that does not happen
with every other technique. Yahoo! Music, for instance, returns the famous
hit ‘Baby One More Time’ (Britney Spears) as the top associated song for
‘Whenever, Wherever’ (Shakira). For this song, ‘You Spin Me Round’ (Thaĺıa)
is possibly a better match since both songs were released in 2001 and performed
by Latin American singers (see Table 2.2). Another observation is that Last.fm
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Table 2.2: Top associated songs for ‘Whenever, Wherever’ (Shakira).

Poolcasting

‘You Spin Me Round’ (Thaĺıa), ‘Crazy In Love’ (Beyoncé & Jay-Z),
‘Grazing In the Grass’ (Raven-Symoné), ‘Si Ya Se Acabó’ (Jennifer Lopez),
‘Freakout’ (B*Witched), ‘Perros’ (Paulina Rubio)

Yahoo!

‘Baby One More Time’ (Britney Spears), ‘Irresistible’ (Jessica Simpson),
‘If You Had My Love’ (Jennifer Lopez), ‘Candy’ (Mandy Moore), ‘Bye Bye
Bye’ (’N Sync), ‘Genie In A Bottle’ (Christina Aguilera)

Last.fm

‘Underneath Your Clothes’ (Shakira), ‘Objection (Tango)’ (Shakira),
‘Radar’ (Britney Spears), ‘Keeps Gettin’ Better’ (Christina Aguilera),
‘Beautiful Liar’ (Beyoncé feat. Shakira), ‘Waiting for Tonight’ (Jennifer
Lopez)

Audiobaba

‘Too Bad’ (Bad Company), ‘Sunday Girl’ (Erasure), ‘Life In The Fast Lane’
(Eagles), ‘These Dreams Of You Are So Much Sweeter Than The Truth’
(The Sharp Things), ‘Powerful Thing’ (Trisha Yearwood), ‘Migration’
(Jimmy Buffett)

Table 2.3: Top associated songs for ‘Smoke On The Water’ (Deep Purple).

Poolcasting

‘Silver Machine’ (Hawkwind), ‘The Joker’ (Steve Miller Tribute Band),
‘Dream Evil’ (Dio), ‘Rock N’ Roll Hoochie Koo’ (Johnny Winter), ‘South
Saturn Delta’ (Jimi Hendrix), ‘Nottingham Lace’ (Buckethead)

Yahoo!

‘Melissa’ (The Allman Brothers Band), ‘Surrender’ (Cheap Trick), ‘Sweet
Talkin’ Woman’ (Electric Light Orchestra), ‘Somebody To Love’ (Jefferson
Airplane), ‘White Rabbit’ (Jefferson Airplane), ‘Maggie May’ (Maggie May)

Last.fm

‘Highway Star’ (Deep Purple), ‘Child in Time’ (Deep Purple), ‘Stairway to
Heaven’ (Led Zeppelin), ‘Paranoid’ (Black Sabbath), ‘Whole Lotta Love’
(Led Zeppelin), ‘Black Dog’ (Led Zeppelin)

Audiobaba

‘Double E’ (Neil Young), ‘This Can’t Be Love’ (Freeborn), ‘The Lady’
(TheHookUp), ‘Elegant People’ (Jaco Pastorius Big Band), ‘Last Chance’
(Ear Candy), ‘Diggers Of Ditches Everywhere’ (These Arms Are Snakes)

Table 2.4: Top associated artists for John Williams.

Poolcasting
Itzhak Perlman, Christopher Young, Arthur Fiedler, London Symphony
Orchestra, John Debney, Danny Elfman, John Carpenter, John Barry

MusicStrands
Danny Elfman, Vangelis, Hollywood Studio Orchestra, Erich Kunzel, Green
Day, Gorillaz, Weird Al Yankovic, John Barry, Queen, Eminem

AllMusic John Barry, Jerry Goldsmith, Elmer Bernstein, Howard Shore, Erich
Korngold

Yahoo!
Franz Joseph Haydn, James Newton Howard, Michael Kamen, National
Philarmonic Orchestra, Alan Silvestri, Jerry Goldsmith, John Barry

Last.fm
Jerry Goldsmith, James Horner, Patrick Doyle, Alan Silvestri, James
Newton Howard, Howard Shore, Hans Zimmer, Nicholas Hooper, Danny
Elfman
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Table 2.5: Top associated artists for Frank Sinatra.

Poolcasting
Dean Martin, Sammy Davis Jr., Judy Garland, Bing Crosby, The California
Raisins, Tony Bennett, Louis Prima, Rosemary Clooney, Nat King Cole

MusicStrands
Dean Martin, Billie Holiday, Nat King Cole, Perry Como, Ella Fitzgerald,
Andy Williams, Tony Bennett, Etta James, Bing Crosby, Diana Krall

AllMusic
Dean Martin, Vic Damone, Dick Haymes, Sarah Vaughan, Nat King Cole,
Dinah Washington, Mel Tormé, Ella Fitzgerald, Tony Bennett, Jo Stafford

Yahoo!
Dean Martin, Tony Bennett, Nat King Cole, Ray Charles, The Beach Boys,
Simon & Garfunkel, Elvis Presley, The Beatles, Norah Jones, Norah Jones

Last.fm
Dean Martin, Sammy Davis, Jr., Frank Sinatra & Tommy Dorsey, Tony
Bennett, Nat King Cole, Bobby Darin, Ella Fitzgerald, Mel Tormé

MS Survey
Eric Clapton, Billy Joel, Elton John, Elvis Costello, Elvis Presley, Van
Morrison, John Lennon, Bob Dylan, Nine Days, Ozzy Osbourne

MS Playlists
Elvis Presley, Elton John, John Denver, Abba, Whiskeytown, Beatles, Billy
Joel, Bob Marley, Eric Clapton, Everly Brothers

Table 2.6: Top associated artists for Abba.

Poolcasting
Agnetha Fältskog, A-Teens, Chic, Gloria Gaynor, The 5th Dimension, Andy
Gibb, Olivia Newton-John, Rose Royce, KC & The Sunshine Band, Bee
Gees

MusicStrands
Donna Summer, Madonna, Gloria Gaynor, Cyndi Lauper, Blondie, Kool &
The Gang, Elton John, The B-52s, Michael Jackson, Diana Ross

AllMusic
Ambsoris, Olivia Newton-John, The Carpenters, Captain & Tennille, Bucks
Fizz, Fletwood Mac, Andy Gibb, Lindsey Buckingham, The Cowsills

Yahoo!
Bee Gees, The Carpenters, Elvis Presley, The Beatles, Foreigner, Whitney
Houston, Bon Jovi, Madonna, Barry Manilow, Michael Jackson

Last.fm
Agnetha Fältskog, Frida, Boney M., Bee Gees, Olivia Newton-John,
Baccara, Cher, Bucks Fizz, Donna Summer, Army of Lovers, Alcazar

MS Survey
Ace of Base, Bee Gees, Blondie, Spice Girls, Olivia Newton-John, Beach
Boys, Roxette, Cyndi Lauper, Backstreet Boys, Donna Summer

MS Playlists
Bee Gees, Blondie, Cyndi Lauper, Queen, Cat Stevens, Cher, Beach Boys,
Donna Summer, Olivia Newton-John, Phil Collins
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Table 2.7: Top associated artists for Destiny’s Child.

Poolcasting
Kelly Rowland, City High, Ciara, Fantasia, Christina Milian, Beyoncé,
Ashanti, Girls Aloud, 3LW, Dru Hill

MusicStrands
Ciara, Pussycat Dolls, Usher, Beyoncé, Nelly, 50 Cent, Mariah Carey, Chris
Brown, Gwen Stefani, Eminem

AllMusic
Toni Braxton, Mariah Carey, Jennifer Lopez, Aaliyah, Xscape, Ginuwine,
Deborah Cox, Kelly Price, Faith Evans, Brandy, Usher, Mya

Yahoo!
Faith Evans, Cruel Story Of Youth, Nich Lachey, Jamie Foxx, Jessica
Simpson, Ciara, Jagged Edge, Lil’ Kim, Ryan Cabrera, Janet Jackson

Last.fm
Beyoncé, Kelly Rowland, Michelle Williams, LeToya, Solange, Ashanti,
Ciara, Brandy, Mariah Carey, Monica, Aaliyah, TLC, Mya

and Yahoo! Music have limited diversity in the results: Last.fm returns two
tracks by Frank Sinatra as the top associated for ‘New York, New York’ (see
Table 2.1) while Yahoo! Music repeats songs by the same artists (Simon &
Garfunkel in Table 2.1 and Jefferson Airplane in Table 2.3).

The analysis of top associated artists also reveals particular behaviours for the
different methods. First, almost every source of knowledge yields Dean Martin
as the top associated artist with Frank Sinatra (see Table 2.5), marking a clear
affinity between the two. Next, the playlist-based approach introduced in this
chapter returns first artists that are not very popular but strongly associated.

An example is provided by Table 2.6 where Agnetha Fältskog shows up as
the top associated artist for Abba according to the co-occurrence analysis of
playlists. Agnetha Fältskog is not a very famous solo artist but she is indeed
popularly known as the lead singer of Abba. Similarly, Table 2.7 shows Kelly
Rowland (one of the members of Destiny’s Child) as one of the top associated
artist with Destiny’s Child.

This behaviour is possibly the most distinct advantage of the playlist-based
method: to be able to spot out items that share a strong social affinity. This
result is obtained from the automatic analysis of playlists, without human
intervention. All Music Guide, on the other hand, requires man-hours of
dedicated expert work to obtain results that are almost equivalent in terms
of affinity and sometimes worse in terms of diversity.

2.7 Summary

This chapter has presented a technique to measure the associations that exist
between any two songs and artists. Associations are estimated observing how
millions of persons organise music for their daily activities.

The technique consists in collecting a large amount of playlists from the Web
and analysing the co-occurrences of songs, under the idea that the more two
songs occur together and closely, the stronger their association.
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Playlists are expressions of human experiences and include factual knowledge
about how people listen to music. Playlists are ordered sequences of songs
associated for acoustic, cultural or social reasons that cannot be completely
uncovered by experts or content-based methods.

The proposed method analyses, for each pair of songs (X, Y ), the number
of playlists where they both appear, their order, distance, popularity and the
co-occurrences of their artists and obtains a measure s(X, Y ) ∈ [0, 1] of their
musical association.

This method has been applied to a real data set of about a million playlists
retrieved from multiple Web-based music communities. The result has been the
estimation of musical associations for 415,498 distinct songs from 47,148 artists.
For each song and artist, a list of top associated items can be compiled. These
lists tend to show first items that are not very popular but strongly associated
with the seed item, followed by more popular ones.

Some of these lists have been compared with equivalent ones gathered
from music-related Web services such as All Music Guide and Last.fm. The
comparison has shown results that are quite equivalent independently of the
source of knowledge used. The main advantages of the automatic technique
introduced in this chapter are its scalability and the ability to spot out artists
with a strong social affinity (Agnetha Fältskog for Abba, Kelly Rowland for
Destiny’s Child), a property not found in the expert-based knowledge of All
Music Guide.

The musical associations estimated in this chapter will be employed in the
poolcasting technique introduced in Chap. 4 to determine which songs to play
in a musical sequence to guarantee a sense of continuity from one song to the
next.



Chapter 3

Individual listening
behaviours

I know just what you need
I might just have the thing

Soul Asylum, 1995

3.1 Music libraries and listening habits

Different persons are characterised by different listening behaviours: some are
used to play all kinds of music in a shuffled order, others to listen only to a
particular genre; some are eager to discover the latest trends of contemporary
music, others are obsessed with playing the same album again and again.

The previous chapter focused on music organised in playlists. Some persons
do not use playlists at all but decide in real time which songs to play in their
music devices. The simple fact of a person picking a particular song to play is
already a musical experience that is worth be analysed.

The wide proliferation of digital music players has made it easy to track
the history of a listener. Most digital players (Apple iTunes, iPod, Winamp,
Windows Media Player, etc.) store data about each played song; Apple iTunes,
for instance, records the play count (number of times the song was played), the
play recency (last time the song was played), the skip count (number of times
the song was skipped before its end) and the user rating for each song in the
music library (see Fig. 3.1).

Listening behaviour data is very descriptive of personal preferences: having
played certain songs and not other ones outlines the musical taste of an individual
better than a verbal description, with its inaccuracies and misinterpretations,
would.

As many persons share their listening behaviour data on the Internet to make
their friends aware of their musical habits, the Web has become the best place
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Figure 3.1: Personal music library managed with iTunes.

where to find data about which songs a person has played, when, how they were
rated, et cetera.

The purpose of this chapter is to introduce a measure of musical preference
that automatically estimates how much a person likes a given song based on
personal listening habits data collected from the Web.

3.2 Previous work

The issue faced in this chapter consists in identifying a set of individual musical
preferences without having to explicitly ask for them. The process of acquiring
user preferences is known as user modelling [Rich, 1979; Kass and Finin, 1988;
Kobsa, 2001] and can either be explicit or implicit.

3.2.1 Explicit user modelling

Explicit acquisition of preferences is obtained when individuals actively provide
specific facts about loved items. Most online stores, for instance, ask their
users to provide feedback about purchased items: Amazon collects ratings about
books, Trip Advisor about travel destinations, eBay about sellers’ reputation.

Explicit feedback is the most direct way for users to express their taste,
although Claypool et al., 2001 [Claypool et al., 2001] noticed how having to
stop to enter explicit ratings can alter normal patterns of information usage,
and Zhang et al., 2002 [Zhang et al., 2002] proved how users can rapidly stop
providing explicit ratings unless they perceive a benefit. Amazon and eBay, for
instance, gratify frequent raters highlighting their profiles as ‘experts’ within the
community of users.
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Potter, 2008 [Potter, 2008] also pointed out how explicit statements require
users to ‘translate’ their inner preferences into a score, which is not an immediate
and unequivocal process: deciding how many ‘stars’ to assign to a good item is
a matter of personal interpretation. Banerjee, 1992 [Banerjee, 1992] also noticed
that users asked to rate an item are easily influenced by the scorings assigned
by previous users.

3.2.2 Implicit user modelling

Implicit user modelling takes place by observing user actions and inferring
preferences from the observed behaviours. For instance, someone always buying
clothes in the same store implicitly expresses a preference for that fashion style.
Similarly, forwarding an online video to ten friends implicitly demonstrates an
interest for that video.

In different publications, Nichols, 1997 [Nichols, 1997], Oard and Kim, 2001
[Oard and Kim, 2001] and Kelly and Teevan, 2003 [Kelly and Teevan, 2003] have
categorised several types of actions as possible sources for implicit user modelling.
Figure 3.2 reports the list of actions according to the underlying purpose of
the observed action (Behaviour Category), and to the smallest possible scope
of the item being acted upon (Minimum Scope). In the domain of music, for
instance, having either purchased, saved, rated or listened a specific song can be
interpreted as an implicit preference for that song.
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Type, Edit Author
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View, Listen, Scroll, 
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Print
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Reference
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Create

Figure 3.2: Classification of behaviours used to infer implicit feedback.

3.2.3 Building user profiles

Collecting implicit or explicit preferences is only the first step to compile a
comprehensive model of user preferences. As pointed out by Hofmann, 2004
[Hofmann, 2004], different users associate different meanings with ratings; for
instance, ‘4 out of 5 stars’ may have a different meaning for different people. For
this reason, individual preferences need be normalised in order to be compared.
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Goldberg et al., 2001 [Goldberg et al., 2001] proposed to normalise each rating
by subtracting its mean rating over all users, and then dividing by its standard
deviation.

Another relevant aspect of user modelling is how to build a comprehensive
model when only a few individual preferences are available. Dieterich et al., 1993
[Dieterich et al., 1993] suggested to either start with an empty model, to classify
the user into one stereotypical category, or to build an initial individual model
based on a preliminary question-answering session. A stereotypical approach,
for instance, is used by Last.fm which uses geographical position obtained from
the IP address of unregistered users to recommend musical events taking place
in the area where users are located.

Interests may change along time, so a system that learns a model of the user’s
interests should be based on algorithms that can quickly adjust to changing
interests. The notion of changing target concepts is known as “concept drift”
[Billsus and Pazzani, 2007], or “persistence of interest” [Lieberman, 1995].
Dieterich et al., 1993 [Dieterich et al., 1993] distinguished between “short-
term” data — user preferences that are valid only for the current context or
session — and “long-term” data — which should be kept beyond the current
session and saved in a permanent storage medium. In the domain of music, for
instance, Last.fm online radio differentiates between ‘skipping’ a song (short-
term negative preference) and ‘banning’ a song (long-term negative preference)
from a personalised music channel.

3.3 Gathering listening habits

To determine individual music preferences from the analysis of personal listening
habits, these have to be collected first, which can occur in two ways.

The first method is to extract this information directly from personal music
libraries. Apple iTunes, for instance, stores in the hard disk a file called ‘iTunes
Library.xml’ which describes the list of played songs, play counts, play recency,
skip counts, user ratings. Parsing this XML file provides first-hand knowledge
about the music played on that particular machine.

The second method is to gather this knowledge from the Internet. Different
tools track personal listening habits and make these data available on the
Web. Last.fm, for instance, provides each member with a Web page showing
the last songs played, the device where they were played and the assigned
rating, as detected by the music tracking software Audioscrobbler (see Fig. 3.3).
MusicStrands offers a similar service with a tool called MyStrands (see Fig. 3.4).

Gathering listening habits from the Web has four main advantages. Firstly,
data can be collected from thousands of users without having to access their
hard disks. Secondly, Web services provide Web Application Programming
Interfaces (API) [Booth et al., 2004] to rapidly retrieve large amount of data in a
standard XML format. Thirdly, Web services can automatically fix mistakes in
song titles (e.g., ‘Obladi Oblada’ rather than ‘Ob-la-di Ob-la-da’) thus correctly
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Figure 3.3: Last.fm tracking tool Audioscrobbler and profile Web page.

Figure 3.4: MusicStrands tracking tool MyStrands and profile Web page.
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identifying played songs. Fourthly, Web services can automatically aggregate
the listening habits from multiple devices; for instance Last.fm ‘scrobbles’ both
songs played in portable devices (iPod, iPhone, Android) and digital libraries
(iTunes, Windows Media Player, Winamp).

3.4 Estimating individual preferences

Once listening habits data have been collected, a choice has to be made about
which part of these data can be considered as illustrative of music preferences.

One relevant property is clearly the user rating assigned to each song.
Almost every digital player enables listener to vote for favourite songs; Apple
iTunes uses ‘stars’ (from 1 to 5), while Audioscrobbler gives the option to mark
a song as either ‘Loved’ or ‘Banned’.

A second relevant property is the play count: how many times a song was
played. Intuitively, the interest of a person for a song is directly related to its
play count, especially if the song has been played often recently.

Other relevant properties, such as the skip count and the play recency, will
not be utilised since they are more subject to interpretation. Skipping a song,
for instance, might be interpreted as a negative preference, but listeners also
skip songs they like when these do not fit in the current context.

The rest of this section explains how, given the ratings assigned by a person
to a set of songs and their play counts, a measure of individual preference
for each song can be defined.

3.4.1 Usage behaviour normalisation

Let U be a group of people and let U ∈ U be a person for which listening habits
data are available with respect to a set of songs C. Let r : U × C → [%min, %max]
be the rating assigned by U to each song, where %min and %max are the minimum
and maximum rating scores (e.g., %min = 1 and %max = 5 ‘stars’ in Apple iTunes),
and let n : U × C → N be the play count, that is, the number of times that U
played each song.

The goal is to combine for each song X ∈ C the two values r(U, X) and
n(U, X) in order to measure the individual preference degree i : U×C → [0, 1],
that is, how much U shows to like song X.

High ratings and high play counts identify songs a listener likes. The
‘absolute’ values of rating and play count, though, offer small information to
estimate a preference degree. Having listened to a song 3 times or having
assigned a rating of ‘3 out of 5’ stars, for instance, do not clearly indicate whether
a listener likes a song or not. If that listener normally rates songs with only 1 or
2 stars, then giving 3 stars expresses a positive preference. If the average rating
is instead 4 or 5 stars, then 3 stars is probably not a good signal. Similarly,
a play count of 3 is significant or not whether the listener is a sporadic or a
frequent music listener.



3.4. Estimating individual preferences 35

User ratings and play counts are values that are relevant only with respect
to the average listening behaviour. Only songs showing a play count or a rating
above the average can significantly be considered as favourite songs. For this
reason, user ratings r(U, X) and play counts n(U, X) are hereafter normalised
to yield values in the range [−1, 1], so that only songs ‘above the average’ are
assigned positive values.

3.4.2 Normalising user rating

To define a normalised user rating means to find a function br : U × C → [−1, 1]
which returns positive (resp., negative, null) values for songs rated higher than
(resp., lower than, equal to) the average. Let RU ⊆ C be the songs that a person
U ∈ U has ever rated and let

r(U) =
P

X∈RU
r(U, X)

#(RU )

be the average user rating of U . The normalised user rating br(U, X) is a function
that satisfies these conditions:






r(U, X) < r(U) =⇒ −1 < br(U, X) < 0

r(U, X) = r(U) =⇒ br(U, X) = 0

r(U) < r(U, X) =⇒ 0 < br(U, X) < 1

(3.1)

and such that any song with the lowest (resp., highest) possible rating obtains
the minimum (resp., maximum) possible normalised value:






r(U, X) = %min =⇒ br(U, X) = −1

r(U, X) = %max =⇒ br(U, X) = 1
(3.2)

under the condition that %min < r(U) < %max.
One function that fulfils (3.1) and (3.2) and is furthermore continuous,

monotonic, derivable, with the first derivative monotonic in the interval (−1, 1)
is the function that solves the following linear equation system:






a log(b + %min) + c = −1

a log(b + r(U)) + c = 0

a log(b + %max) + c = 1
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and that yields 0 when r(U, X) = r(U). The solution of this system is defined
by cases:

br(U, X) =






0 if r(U, X) = r(U)

2(r(U, X) − %med
2)

%max − %min
if r(U) = %med

log
2r(U, X)(%med − r(U)) + r(U)

2
− %max%min

(%max − r(U))(r(U) − %min)
log(%max − r(U)) − log(r(U) − %min)

otherwise,

where %med = 1
2 (%min + %max).

The three cases defining br(U, X) are separately illustrated in Fig. 3.5 and
depend on the average rating r(U) of each person U :

• when U assigns the same rating to every song, then r(U, X) = r(U) for
every song and br(U, X) falls back to the constant 0 (solid line in Fig. 3.5);

• when U has an average rating of %med, then br(U, X) falls back to a linear
function (dashed line in Fig. 3.5);

• otherwise br(U, X) is a logarithmic function, concave or convex whether the
average rating r(U) is higher or lower than %med (dotted lines in Fig. 3.5).

-1
0

1

Fig 3.5

!min !max!med

r(U,X) = r(U)

!min < r(U) < !med

!med < r(U) < !max

r(U) = !med

Figure 3.5: Normalised user ratings corresponding to different values of r(U).

Working with normalised values, every rating is interpreted with respect to each
user, and the same absolute rating (e.g., 4 stars) can assume different normalised
values br(U, X) for different people.

Example 4. Figure 3.6 represents the situation where two friends U and V have
both listened to ten songs C = {X1, X2, . . . , X10} and have rated them with
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different criteria. Even though U and V both assigned four stars to song X5, the
normalised user rating for this song differs: br(U, X5) = 0.67 is positive, while
br(V, X5) = 0 is not. The reason is that U assigns in average two stars to each
song, so the observed value r(U, X5) = 4, higher than the average, corresponds
to a positive normalised user rating, while V assigns in average four stars to
every song, so the observed value r(V, X5) = 4 is not equally significant.
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Figure 3.6: Effect of the normalisation process on user ratings.

3.4.3 Combining user ratings and play counts

Following the same approach described to normalise user ratings, play counts
n(U, X) can be normalised as well, resulting in a normalised play count function
bn : U × C → [−1, 1] that yields positive (resp., negative, null) values for songs
played more than (resp., less than, as much as) the average play count.

Normalising user ratings and play counts helps identify songs for which
a person has a particular interest: every song X for which br(U, X) > 0 or
bn(U, X) > 0 has obtained by U a rating or play count higher than the average
and, as such, can be assessed as one of the songs preferred by U .

Formally, the individual preference degree i : U ×C → [0, 1] that measures
how much U likes each song X ∈ C is defined as a linear combination of these
normalised properties:

i(U, X) = π · max(0, br(U, X)) + (1 − π) · max(0, bn(U, X)) (3.3)

where π ∈ [0, 1] denotes the importance assigned to ratings with respect to play
counts.

The reason why both normalised rating and play count are limited to a
minimum value of zero is that implicit preferences are assessed only for songs
for which either the rating or the play count is above the average. No ‘negative’
assumption is made about songs rated or played less than average. The reason
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is that a person may have not rated or played a specific song for several reasons
(lack of time, of a digital player, of the right occasion) and this should not be
always interpreted as a lack of interest. On the other hand, having taken the
effort to rate or play often a song should be positively interpreted as an implicit
measure of interest.

This technique allows to estimate individual music preferences without any
explicit action by the listener, exploiting only knowledge implicit in the listening
habits data of a person.

Example 5. The music library shown in Fig. 3.1 contains 8 rated songs, with
an average rating of 3.5 stars; five songs were rated above this value. Similarly,
15 songs have been played, the average play count is 4 and four songs have a play
count above this value. The implicit preference of the author for these songs can
be calculated with the function (3.3) assigning the same importance to ratings
and play counts (π = 0.5). The results are reported in Table 3.1: ‘Interstate
Love Song’ (Stone Temple Pilots) stands out as the author’s favourite song,
followed by ‘Across The Universe’ (Verdena) and ‘My Little Empire’ (Manic
Street Preachers). A song such as ‘Last Kiss’ (Pearl Jam) is not in the list
because both its rating (3 stars) and its play count (3) fall below the average.

Table 3.1: Individual preferences assessed for songs in Fig. 3.1.
song rating play count preference
X r(U, X) br(U, X) n(U, X) bn(U, X) i(U, X)

3 Interstate 4 0.28 20 1 0.64
Love Song

13 Across The 5 1 3 0 0.50
Universe

14 My Little 5 1 2 0 0.50
Empire

8 Heart 4 0.28 9 0.5 0.39
Of Gold

1 Space 4 0.28 5 0.12 0.20
Oddity

2 Two — — 5 0.12 0.12
Of Us

3.4.4 Integrating additional properties

The individual preference degree (3.3) combines only two observable properties:
user ratings and play counts. Other observable properties can be easily
integrated in the function if they are found to be significantly related to musical
preferences. The skip count (number of times a song was skipped before its end),
for instance, can be considered as an indicator of ‘negative’ preferences. This
property can be included into (3.3) by first normalising its values to the range
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[−1, 1], then adding this value to the linear combination (3.3) that defines the
value of i(U, X). The only precaution is to invert negative preferences: songs
skipped less than the average would yield a positive normalised value and vice
versa.

3.4.5 Extending to artists

Whatever the number of properties considered, songs that have never been
‘experienced’ (played, rated, skipped) are always assigned a value of i(U, X) = 0,
which means that no implicit preference can be assessed.

This is an intrinsic limitation of the proposed technique: preferences can only
be inferred for songs in the individual listening history. This behaviour can be
improved considering that, in general terms, a person has similar preferences for
songs by the same artist. For instance, if U has assigned 5 stars to ten songs by
Björk, then U will probably like future released by Björk as well, since U shows
to enjoy her music. In other words, a positive implicit preference for U can be
assessed for any song by Björk, even those that U has not yet heard.

Formally, let X be a song that a person U has not yet experienced, and let
YU (X) be other songs by the same artist of X that U has experienced:

YU (X) = {Y | a(X) = a(Y ) ∧ i(U, X) = 0} . (3.4)

Then, the individual preference of U for song X can be estimated as the average
preference for known songs by the same artist:

i(U, X) =
X

Y ∈YU (X)

i(U, Y )
#(YU (X))

.

This extension enables the definition of a degree of implicit preferences also for
songs outside of a personal music library.

3.5 Summary

This chapter has presented a technique to build individual music profiles from
the analysis of personal listening habits. Listening habits describe which songs
a person has been listening to and can either be extracted from personal music
libraries or collected from Web communities (Last.fm, MusicStrands).

Of all the songs that a person has been playing, the preferred ones are those
that have been played more often and have been best rated. This chapter
has presented a technique to automatically measure how much a person likes
each listened song. The proposed method analyses the play counts and ratings
assigned by any person U to any song X and delivers a measure i(U, X) ∈ [−1, 1]
of musical preference.

The technique presented in this chapter will be employed in the poolcasting
approach introduced in Chap. 4 to identify which songs satisfy most of the
preferences of a given audience.





Chapter 4

The poolcasting technique

With this method that I have found
I’m redressing all I know

Mansun, 1998

4.1 Adapting music for a group of listeners

The first part of the thesis has explained how to use experience data from the
Web to perform two specific tasks: estimate musical association between songs
(Chap. 2) and estimate individual music preferences (Chap. 3).

Musical associations (which songs or artists sound well together in sequence)
and individual preferences (what the public would like to hear) serve as the
basis for the technique described in this chapter, which represents the main
contribution of this dissertation. This technique helps identify, in a large
repository of music, a subset of songs adapt for a group of listeners.

While disc jockeys (DJs) can use their senses to perceive the taste of the
audience (watching their reaction, listening to their requests) and know from
experience which songs mix well one after the other, here the methods introduced
in the first part of the thesis are used to deliver group-customised music sequences
(see Fig. 4.1).

4.1.1 Problem Definition

There are several situations where groups gather to listen to music, such as home
parties, discos and, in a virtual sense, radio stations. In these contexts, someone
is entitled to decide which songs to play; this can either be a professional DJ or
someone from the audience.

In discos and AM/FM radios, expert DJs are appointed to select the best
music for the audience. In home-parties, bars and online radios, this task is
instead typically left in the hands of an automated system, for instance a portable
music device (Apple iPod) with the ‘shuffle’ option turned on.

41
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Figure 4.1: Collecting music experiences from the Web to deliver sequences of
songs customised for groups of listeners.

The problem with automated music selection is that the preferences and
reactions of the audience are not considered, so the result can be unsatisfactory
for the actual listeners. Moreover, an automated selection does not ensure that
each played song ‘sounds well’ after the previous one.

The problem addressed in this chapter is whether an intelligent technique can
‘act as a good DJ’, autonomously adapting the music to the listening audience.
Precisely, the goal is to automatically select and deliver a musical sequence that
matches four requirements:

Goal 1. Variety: no song or artist should be repeated within a short period
of time;

Goal 2. Smoothness: songs should follow a sequence perceived as musically
smooth;

Goal 3. Customisation: songs should match the musical interests of the
current audience; and

Goal 4. Fairness: in the long run, every listener should have a similar degree
of satisfaction with respect to the music played.

The first two properties are meant to build a good sequence of songs, avoiding
repetitions (Goal 1) and ensuring a certain musical continuity (Goal 2). The
last two properties are meant to customise the music for the group: selecting
songs according to the musical taste of the audience (Goal 3) and embracing the
preferences of every listener in the long run (Goal 4).

4.1.2 The poolcasting approach

This chapter presents poolcasting, an intelligent technique that addresses
the music selection problem described above. Poolcasting generates musical
sequences in real time, selecting at each moment which songs to play next based
on the current audience and on the set of available songs.

The way in which the four goals of of variety, smoothness, customisation and
fairness are addressed is by means of a Case-Based Reasoning (CBR) process
that identifies which song to play at each moment.
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CBR systems, given a new problem to solve, first retrieve similar past
problems, then reuse their solutions to generate a good solution for the new
problem, finally revise the proposed solution. Similarly poolcasting, to select at
a given moment which song to play on a channel:

1. (Retrieve Process) first retrieves a subset of available songs (the retrieved
set) that have not been played recently (Goal 1) and form a smooth musical
transition with the last song played (Goal 2);

2. (Reuse Process) then ranks the retrieved set according to the preferences
of the current audience (Goal 3) giving more importance to those listeners
less satisfied with the music recently played (Goal 4); and

3. (Revise Process) finally considers the listeners’ feedback to adjust indivi-
dual preferences over time.

In order to know which songs form smooth musical transitions, poolcasting
integrates the co-occurrence analysis process introduced in Chap. 2. In order to
know the preferences of the current audience, poolcasting integrates the implicit
user modelling approach described in Chap. 3.

The rest of the chapter is organised as follows. Section 4.2 reviews previous
work related to Case-Based Reasoning, group-adaptive systems and social choice
problems. The CBR process that combines experience knowledge from the
Web to customise music for an audience is presented in Sect. 4.3. Section 4.4
explains how poolcasting can fairly satisfy the entire audience when listeners
have different musical tastes.

4.2 Previous work

The approach described in this chapter reinterprets an artificial intelligence
technique called Case-Based Reasoning (CBR) which is reviewed hereafter.
Previous works on user-adaptive systems are then reported, with special focus
on systems that adapt content to groups and have addressed the problem of
customising music for an audience.

4.2.1 Case-Based Reasoning

Case-Based Reasoning [Kolodner, 1993; Aamodt and Plaza, 1994; López
De Mántaras et al., 2005] is the process of problem solving based on the
exploitation of past experiences, called cases, to propose solutions for present
problems. Inspired by cognitive sciences, Case-Based Reasoning is based on the
assumption that similar problems have similar solutions.

In CBR systems, knowledge is typically represented as a library of cases, also
called case base. Each case holds knowledge related to a specific situation and
is usually made of a (problem → solution) pair: the problem describes a task
solved in the past and the solution explains how the task was carried out. New
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tasks can be solved adapting past solutions, following a cycle that comprises four
processes:

1. Retrieve: extract from the case base a subset of cases that present problems
similar to the current one;

2. Reuse: adapt the solutions of the retrieved cases to the context of the
current problem in order to generate a new solution;

3. Revise: evaluate and improve the outcome of applying the proposed
solution to the current problem; and

4. Retain: store the newly generated (problem → solution) pair in the case
base as a new case.

CBR has been applied in distinct domains where similar problems have
similar solutions. In jurisprudence, for instance, the outcome of a lawsuit
strongly depends on past court decisions; a valuable CBR system has been
developed with a large case base of historical sentences that are retrieved and
reused to help lawyers predict the verdict of new lawsuits [Weber-Lee et al.,
1997].

Another area where CBR has proven helpful is medical diagnosis; CBR
systems have been used to diagnose cancer [Dı́az et al., 2006] and Alzheimer’s
disease [Marling and Whitehouse, 2001] comparing data and symptoms of each
new patient (current problem) with data and symptoms of previous patients
(past problems) who received specific cures (past solutions).

The minimal components of a Case-Based Reasoning system are the retrieve
and the reuse steps, which generate a solution for a given problem. The
main challenge in these steps is how to measure similarity between cases. The
similarity measure depends on the problem description, ranging from a simple
metric that corresponds to the distance between two features to more complex
measures that depend on the application domain.

CBR techniques have also been employed in user-adaptive systems, delivering
customised content to different targets based on previous interactions with the
system.

4.2.2 User-adaptive techniques

User-adaptive techniques analyse the behaviour of their users, infer a model
of their preferences and goals, and deliver content tailored upon their interests.
These techniques have been applied to offer the right level of medical information
according to the needs of individual patients [Hirst et al., 1997], to adjust
educational presentations according to the expertise of the learners [Hohl et al.,
1996], to give the right support to software users according to their usage [Horvitz
et al., 1998], to tune the toughness of tracks in a car racing game according to
the player’s skill [Togelius et al., 2006].
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User-adaptive systems have also appeared in literature labelled as adaptive
interfaces, personalisation systems, adaptive hypermedia systems, user model-
ling systems, software agents or intelligent agents, and grow on the idea that it
is worthwhile to learn something about each individual and adapt the response
in some nontrivial way [Brusilovsky, 2001; Montaner et al., 2003].

Task: recommendation or delivery

User-adaptive systems can be distinguished according to their task being
recommendation or delivery. A recommender system suggests some content of
interest, while a delivery system delivers the actual customised content.

Select candidate 
items for the 
given users

Collect knowledge 
about content 
and/or users

Deliver content 
(one item at the time)

Recommend content 
(one or many items)

Observe user 
response to 

actual content

Observe user 
response to 

recommendation

Recommending

Delivering

Figure 4.2: Recommender and delivery systems compared.

Recommender systems have gained wide attention in relation to the expan-
sion of the World Wide Web, where they have proven helpful for people looking
for new movies to watch [Hill et al., 1995], songs to listen to [Shardanand, 1994],
news to read [Resnick et al., 1994], pages to visit [Lieberman, 1995], restaurants
to check [McCarthy, 2002], people to know [Terveen and McDonald, 2005].

Delivery is appropriate when items are small, cheap, easily available and
storable (e.g., digital audio, digital video, news stories) while items that are
large, expensive or not easily available are only recommended (e.g., travel
destinations, restaurants, social partners). Recommender systems can also work
on multiple domains at the same time, like InterestMap [Liu and Maes, 2005]
which simultaneously recommends books, songs, foods, films, television shows
and sports based on cross-domain user taste profiles.

Recommender systems often offer unrequested recommendations; for example
Amazon constantly presents lists of ‘recommended books’ that customers can
completely (and often do) ignore. By contrast, delivery systems need be
prompted by the users for customised content.

Since recommender systems do not provide the actual content, an immense
collection of items can be recommended without the need for any physical
storage. For example, MovieLens [Cosley et al., 2003] recommends movies from
a catalogue of 5,600 titles; since movies are recommended — not delivered —
the system only has to store and transmit the names of the movies, not the
real movies. On the contrary, delivery systems usually require storage and
transportation capacity which can limit the range of offer.
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Output: items, sets or sequences

The outcome of an adaptive system can either be one item, a set of items, or an
ordered sequence of items. One item is typical returned when items are expensive
(e.g., travels, houses), and the audience can only afford to experience one. An
example is CATS [McCarthy et al., 2006], which recommends one skiing travel
destination for a group of friends.

A set of items is commonly returned when items require some time to be
experienced (e.g., movies, books). For example, MovieLens recommends a set
of movies to watch and Amazon recommends a set of books to read, leaving the
users to choose which items to buy and in which order.

Finally, a sequence of items is returned when items require a short time
to be experienced (e.g., songs, news stories), and the order in which they are
experienced is significant. For example, Pandora delivers user-adapted Web
radio channels with a specific ‘musical continuity’, in the sense that every song
is acoustically correlated with the previous song played on the same channel.

4.2.3 Recommender techniques

Adaptive systems provide users with content of interest from a potentially
overwhelming set of choices. Adaptation processes are characterised by different
kinds of knowledge representation. A common family of techniques for
adaptation is collaborative filtering, which consists in presenting a user with
content liked by people with a similar profile. Another family of techniques is
called content-based filtering and takes place by presenting a user with content
similar to items previously liked by the same user. A third family of techniques,
called knowledge-based, uses domain knowledge about items’ association.

Collaborative filtering

Collaborative filtering techniques select items based on the correlation between
people with similar preferences. The name “collaborative filtering” was proposed
by the developers of Tapestry [Goldberg et al., 1992] and has been used ever
since. The way in which similarity between users is computed depends on the
application domain: Amazon interprets similar users as customers who bought
the same books in the past, MovieLens as users who rated the some movies
likewise. Once a similarity measure has been defined, the technique works by
selecting for each user a set of items liked by people similar to that user. An
interesting comparison of several music-related collaborative filtering systems
(Last.fm, Pandora, GhanniMusic, Jango, MeeMix) is presented by Fox, 2007
[Fox, 2007].

Collaborative filtering is content-agnostic in the sense that the technique is
suitable independently of the application domain (e.g., books, music, video).
Herlocker et al., 2004 [Herlocker et al., 2004] discussed different problems of this
approach related to the fact that items cannot be recommended unless users
have expressed a preference for them. Cold start refers to the situation where
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new items appear and the technique cannot immediately recommend them, since
no user rating is available to work on. Similarly, when new users join in, the
technique needs to learn their preferences before any recommendation can be
given. Scarcity refers to situations where the number of available items is
so much larger than the number of users that the coverage of ratings is very
sparse and only a few objects are recommendable. Another typical problem is
for users with boundary taste to be provided with poor recommendations since
their profiles do not match many other user profiles. Lack of diversity refers to
situations where a collaborative filtering technique suggests a set of items that
are intrinsically similar (e.g., five books by the same author, five travels with
the same destination) reducing the range of recommendations to a very specific
target.

Content-based filtering

Content-based filtering techniques analyse the intrinsic content of every available
item and recommend items which are similar to items the user likes. The way
in which similarity between items is computed depends on the nature of items.
InformationFinder assessed similarity between Web documents comparing the
presence of significant phrases [Krulwich and Burkey, 1996], while NewsWeeder
measured similarity between news stories comparing the frequency of the
occurring words [Lang, 1995].

Examples of music content-based recommender systems are Mufin, which
calculates the similarity between songs comparing properties like tempo,
instruments, sound density or harmony [Mufin, 2008], The Echo Nest, which
combines text analysis, audio analysis and user activity [The Echo Nest, 2009],
and Tangerine, which works by analysing the BPM and the beat intensity of
songs [Tangerine, 2009].

Content-based filtering is tightly related to the nature of the items to adapt
and can obtain good results only in domains where content analysis, parsing and
classification have advanced (e.g., text, music), while for complex domains where
automatic analysis and categorisation is not yet feasible (e.g., video, interaction
data), this is not a suitable approach, since similarities from item to item cannot
be drawn as easily.

Knowledge-based techniques

Knowledge-based techniques reason about domain knowledge to find items that
best match the user needs. These techniques do not rely on a base of user ratings
and are independent of individual tastes. Instead they have knowledge about
how a particular item meets a particular user need, and can therefore reason
about the relationship between a need and a possible recommendation [Burke,
2000].

As Chun and Hong, 2001 [Chun and Hong, 2001] pointed out, knowledge-
based techniques are appropriate for products like cars, houses, computers, that
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a person would buy because of knowledge about how an item matches personal
requirements rather than because other persons bought that same item.

A music-related knowledge-based system is the Music Genome Projects
[Pandora Media, Inc., 2006]. As a group of trained music analysts listen
every day to hundreds of songs and describe their musical qualities “using
up to 400 distinct musical characteristics”, a large knowledge base is built
up of relationships between popular themes that serves as the basis for the
recommendations provided through Pandora Web radio.

A sub-category of knowledge-based techniques is composed by systems
that apply Case-Based Reasoning to the task of recommendation. In these
systems, solutions to past problems constitute the knowledge required to provide
recommendations for new users. Smyth, 2007 [Smyth, 2007] summarised
advantages of case-based recommender systems, which can converse with
the users to better focus on their requirements, evaluate critiques, enhance
the diversity of the outcome and explain the reason behind the provided
recommendations. Examples of Case-Based Reasoning recommender systems
are Entree [Burke et al., 1997], the Wasabi Personal Shopper [Burke, 1999],
Expertclerk [Shimazu, 2001], WEBSELL [Cunningham et al., 2001], Smart
Radio [Hayes and Cunningham, 2001] and the CATS group recommender
[McCarthy et al., 2006].

4.2.4 Group-adaptive systems

Adaptive systems can either be targeted to individuals or to groups. Extending
adaptation processes to groups is a challenging problem, since each member has
particular characteristics that should be accounted for. Messick and Brewer,
1983 [Messick and Brewer, 1983] pointed out how a group-adaptive system
faces the “social dilemma” of looking for a compromise between individual and
collective interests. The system has to find the behaviour that is adequate for
the group while taking into account individual preferences of each member.

Group-adaptive systems have appeared in domains other than music, for
instance McCarthy, 2002 [McCarthy, 2002] described a system that advices a
group of friends with a restaurant to attend, O’Connor et al., 2001 [O’Connor
et al., 2001] a movie to watch, McCarthy et al., 2006 [McCarthy et al., 2006] a
tourist attraction to visit.

The way in which adaptation for the group takes place depends on the
characteristic of the group. Hill et al., 1995 [Hill et al., 1995] distinguished
between co-located and displaced groups. In the last case, the term “virtual
community” is more appropriate: people can influence each other as though they
interacted but they do not interact, and the system has to maintain displaced
members aware of the actions and decisions taken by the group.

Haseman et al., 2002 [Haseman et al., 2002] distinguished between changing
and stable groups, meaning that members are allowed or not to join and leave
the group. If the composition of a group changes with time, a group-adaptive
system might need to inform new members about how previous decisions were
made.
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Saklofske and Yackulic, 1989 [Saklofske and Yackulic, 1989] and Raghunathan
and Corfman, 2008 [Raghunathan and Corfman, 2008] remarked how people
in a group feel a sense of affiliation with the others and this can positively
influence enjoyment from sharing a hedonic activity. While intentional groups
take place when people explicitly long for a social experience to share with other
people, accidental groups are made of people who gather with no explicit reason.
McCarthy and Anagnost, 1998 [McCarthy and Anagnost, 1998] presented an
example of how hard it is to satisfy an accidental group.

People in accidental groups are competitive, trying to push their individual
goals in front of everyone else’s, as in political elections. In intentional groups,
people are instead more collaborative, trying to reach a certain degree of group
satisfaction. Intentional groups are generally small groups for which sociologists
have found that members may give up part of their individual goals to reach for
some group effects, such as conformity, cohesiveness and “consensuality” [Hogg,
1996].

Chae and Flores, 1998 [Chae and Flores, 1998] used the term “narrowcasting”
to describe the situation where media content is delivered to a small group.
In a narrowcasting scenario, people are able to select from a long list of
customised channels rather than passively experience a generic broadcast
content. Narrowcasting enables the audience to precisely match the experience
with their own views, although Chaffee and Metzger, 2001 [Chaffee and Metzger,
2001] pointed out how this confines people to live in a “cocoon of self-reinforcing
media”.

4.2.5 Preference aggregation

The main challenge for a group-adaptive system is how to combine preferences
of multiple persons when they differ. There are distinct models to aggregate
multiple individual preferences in order to assess the “suitability” [Jameson and
Smyth, 2007] of a particular item for a group as a whole.

Preference aggregation is a multi-person decision making problem that
has been broadly covered by social choice theorists [Arrow, 1970], social
psychologists, economists and information scientists [Tindale et al., 2003;
List and Pettit, 2002].

Different approaches proposed to aggregate group preferences include:
introducing social functions that employ some pre-defined aggregation strategy
[Masthoff, 2004]; asking users to provide information to determine how the
combination can be accomplished [Jameson, 2004]; asking domain experts
to guide the combination process [Ardissono et al., 2003]; promoting social
interaction with an interface that allows people to watch, critique, suggest,
and discuss recommended items [McCarthy et al., 2006]; deputing to agent
negotiation, with automated agents acting on behalf of humans to generate and
form group recommendations [Bekkerman et al., 2006]; modelling information
markets through which group members bet on their judgement about future
events [Sunstein, 2005]; developing genetic algorithms [Holland, 1975] to identify
the item that best combines individual and group ratings [Chen et al., 2008].
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The election of an aggregation function to merge individual preferences is
conditioned by the required level of fairness. Depending on the application,
various rationality principles may apply to select alternatives.

When aggregating multiple individual preferences into a unique group choice,
a number of goals are desirable but not always compatible among them, such
as matching the preference of the majority, preventing people from leaving the
group, maximising average satisfaction, ensuring some degree of fairness, treating
group members differently when appropriate, discouraging manipulation of the
recommendation mechanism, ensuring comprehensibility and “acceptability”
[Jameson and Smyth, 2007] and minimising misery. Misery refers to the situation
where at least one member of the group is strongly unsatisfied by the aggregation
made.

Chevaleyre et al., 2007 [Chevaleyre et al., 2007] illustrated different ap-
proaches to achieve a degree of fairness in the group, such as egalitarianism
and utilitarianism. An egalitarian allocation is driven by the individual utility
of the poorest agent in the system; aiming at maximising this value is an example
for a basic fairness requirement. An utilitarian allocation is driven by the sum
of the individual utilities; asking for maximal utilitarian social welfare is a very
strong efficiency requirement.

The weakest possible requirement for preference aggregation is Pareto
efficiency [Grabisch et al., 1998]: if at least one individual prefers an item X to
an item Y and no one likes Y better than X, then the aggregated preference of
the group should be higher for X than for Y .

Criteria of fairness change when the group-adaptive system does not select
one item, but rather delivers a whole sequence of items, customised for the
group. Behavioural decision theory [Novemsky and Dhar, 2005] suggests that
the mere fact that an outcome is embedded in a sequence might create a frame of
reference that can influence subsequent preferences. In these cases, the history
of past aggregations should be taken into account to promote fairness.

4.3 The Case-Based Reasoning selection process

Poolcasting is a technique to adapt musical content for a group, and is focused
around the idea of channel. A channel represents the virtual space where a
group of people gather to listen to music together: a radio channel, a party
location, a discotheque.

The persons listening to a particular channel are called the audience of the
channel and are indicated with U . People are free to join and abandon a channel
at different moments: the audience of a channel changes with time.

The notation UT ⊆ U refers to the set of persons in the channel at a given
time T ∈ N+ where time is measured counting the songs played so far on the
channel: U1 denotes the audience of the channel while the first song is playing,
U2 while the second song is playing, and so on.

The set of songs available to be played form the content of the channel and
are indicated with C. Similarly to the audience, content can change with time;
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for instance newcomers can bring more CDs to a party or a radio can buy new
records. The songs available at a particular time T ∈ N+ are indicated with
CT ⊆ C.

The problem addressed by poolcasting is to play a sequence of songs
that matches the four goals of variety, smoothness, customisation and fairness
introduced in Sect. 4.1. Since both the audience and the content change over
time, the musical sequence cannot be entirely scheduled at time T = 0 but has
to built in real time considering at each moment the available songs and current
participants.

Poolcasting follows an iterated decision approach: while the first song is
playing on the channel, poolcasting decides which will be the second song to
play; as soon as the first song ends, the second song starts playing on the channel
and poolcasting decides which song will play next, and so on. The way in which
poolcasting determines which song to play at any given moment T is by means
of a CBR process that is represented in Fig. 4.3 and whose components (case
bases, retrieve, reuse, revise process) are explained hereafter.
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Figure 4.3: The iterative CBR selection process.

4.3.1 The case bases

In classical CBR, cases consist of (problem → solution) pairs; each new problem
is solved independently by retrieving similar past cases and reusing their
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solutions.

In poolcasting, the ‘problem’ consists in determining which song to play at
each time T and cannot be solved independently from previous and successive
problems. In fact the objective is not to find a single song that satisfies the
audience, but to build a good sequence of songs that fulfils variety, smoothness,
customisation and fairness.

For this reason, poolcasting does not store in the case base a series of ‘past
problems’, but instead valuable knowledge to solve the sequential problem of
deciding which song to play at any moment T .

Cases in poolcasting are defined as tuples ¡X, a(X), p(U, X, T )¿, where
X ∈ CT is any available song, a(X) its performing artist, and p(U, X, T ) is
the individual preference of any listener U ∈ UT for the song X, that is, how
much U would like song X to be played on the channel at time T .

Poolcasting is able to estimate the individual preferences of the different
participants following the method presented in Chap. 3. Every participant
supposedly has a personal music library stored in some digital device (e.g., iPod,
iTunes) and personal music libraries contain listening habits data indicating
which songs a person has most played and voted. Poolcasting extracts the
listening habits data of the audience either from their music players (e.g., from
Apple iTunes, see Fig. 3.1) or from the Web (e.g., from Last.fm profiles, see
Fig. 3.3) and infers the implicit preference i(U, X) of each participant for each
song, according to the function i : U × C → [0, 1] defined in (3.3). These values
are then stored in the case base as individual preferences.

If a participant V , for instance, has ‘Karma Police’ (Radiohead) as the top
played/top rated track in the Last.fm profile page, then poolcasting stores in the
case base the tuple ¡‘Karma Police’, Radiohead, 1¿ as a knowledge of the fact
that V would like that song to be played. If a different participant Z has instead
a slightly negative preference for ‘Karma Police’ (Radiohead), then poolcasting
creates a second tuple ¡‘Karma Police’, Radiohead, −0.5¿ in the case base as a
knowledge of the fact that Z would not like that song to be played.

If two different participants have different preferences for the same song (as
in the previous example), poolcasting stores both facts since they can both help
decide which music to play. To distinguish between cases related to different
participants, poolcasting stores the cases of each participant in a separate case
base. In other words, poolcasting holds a collection of case bases, one for
each participant.

Each participant is treated independently and contributes with a piece of
knowledge to the system. Since participants can join and leave the channel
at different moments, the collection of case bases is dynamic: when new
participants join the channel and share listening behaviour data, new case bases
become available; when listeners abandon the channel, their case bases leave the
collection. The collection of case bases is determined at each moment by the
songs of the current participants in the channel.
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4.3.2 The retrieve process

The retrieve process is meant to identify at time T which available songs are
good candidates to be played next on the channel. The retrieve process
addresses the goals of variety (Goal 1) and smoothness (Goal 2) with two
subsequent steps: first each song is rated with a relevance value k : C × N+ →
[0, 1] that expresses how much the song satisfies the requirements of variety and
smoothness; then the ∑ best rated songs are retrieved.

Every song X ∈ CT that does not fit the channel constraints is assigned
the lowest possible value k(X, T ) = 0 to prevent that song from being played.
For instance, if a channel is defined as ‘Rock’ then every non-Rock song gets a
relevance value of 0; if a channel is defined as ‘Italian’ then non-Italian tracks
are assigned a value of k(X, T ) = 0.

Every song recently played on the channel, or by a recently played artist,
is also assigned a relevance value of 0. This is intended to guarantee the
requirement of variety. Formally, let HJ be the J-th song played in the
channel, and let [H1, H2, . . . , HT −1] be the list of songs played so far. Then
k(X, T ) = 0 ∀X ∈ [HT −η, HT −η+1, . . . , HT −1] (recently played songs) and
k(X, T ) = 0 ∀X | a(X) ∈ [a(HT −≥), a(HT −≥+1), . . . , a(HT −1)] (recently played
artists). The parameters η ∈ N+ and ≥ ∈ N+ determine the number of songs
that have to pass before the same song or artist can be played again in the same
channel. The values of these parameters are defined according to the channel;
≥ is small when the same artist is allowed to repeat (e.g., a ‘Frank Sinatra’
channel), while a high η characterises channels that strongly avoid repeating the
same tracks (e.g. a ‘Dance’ channel).

Next, the retrieve process assigns a relevance value to the remaining songs
according to how well they would go in a sequence after the last song played
HT −1. This is intended to guarantee the requirement of smoothness and is
accomplished is by exploiting the co-occurrences analysis of playlists explained
in Chap. 2. The idea is that the more people have played two songs together in
their daily activities, the more two songs appear closely in playlists, the more
they ‘go well’ together in sequence and the more it makes sense to reproduce
them one after the other in a channel to guarantee smoothness. Formally, each
remaining song X in the collection of case bases is assigned a relevance value
of k(X, T ) = s(HT −1, X) that indicates how much X would sound well in a
sequence after the last song played HT −1, where the function s : C2 → [0, 1] was
defined in (2.8).

Having determined a relevance value k(X, T ) for each song X ∈ CT , the ∑
songs with the highest value are identified as the best candidate songs to become
HT (the next song to play). The cases that contain these songs are retrieved
and constitute the retrieved set.

4.3.3 The reuse process

The reuse process is meant to adapt the retrieved set to the preferences of the
current audience. In this process, the songs in the retrieved set are ranked
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according to how much the current listeners like each song: the top ranked song
is identified as the candidate preferred by the group of listeners ‘as a whole’.

To know how much the group likes each candidate song, poolcasting reuses
the individual preferences p(U, X, T ) stored in the retrieved cases. Every case
contains knowledge about one participant. Poolcasting aggregates cases by
candidate song to measure how much the whole group likes each candidate.

Several strategies exist to aggregate preferences in a group. A common
strategy is plurality voting, which consists in ranking first the items preferred
by the majority. With this approach, the preferences of the minorities never
affect the determination of the best ranked item; in other words plurality voting
does not endeavour to equally satisfy all the participants.

Poolcasting uses a different strategy which combines instead the preferences
of all the members of the audience, assigning more importance to those
participants that were less satisfied by the last songs played.

This strategy — called satisfaction-weighted aggregation and explained in
Sect. 4.4 — returns for each candidate song X a group preference degree g(X, T )
that measures how much the group as a whole would like song X to be played
at time T on the channel.

Given this group preference function, the reuse process ranks each song X
in the retrieved set according to g(X, T ). The best ranked song is identified as
the best candidate to become HT , the song that will play next on the channel.

4.3.4 The revise process

So far, the CBR process has required no interaction from the participants. The
retrieve process has automatically picked a subset of good candidate songs that
have been ranked in the reuse process according to the preferences stored in the
case bases.

At this point, poolcasting asks the members of the audience to express
feedback about the proposed ranking. While some participants might agree
with the top ranked candidate, others might prefer a different candidate song to
be played. By reviewing their preferences for the candidates, participants can
alter the ranking and make a different song play next.

The revise process consists in collecting explicit feedback from the current
participants about the available songs. Explicit feedback is indicated with the
function e : U × C × N+ → [−1, 1], where e(U, X, T ) denotes the last preference
expressed by a participant U for a song X before time T .

The exact value of e(U, X, T ) depends on the type of feedback provided:
e(U, X, T ) = 1 denotes a participant U who stated ‘unconditional love’ for a
song X; e(U, X, T ) = 0 represents indifference; e(U, X, T ) = −1 indicates that
U does not want at all X to be played. Other values between −1 and 1 mean
milder negative and positive preferences.

Explicit feedback serves to update the individual preferences p(U, X, T )
stored in the case bases. By default these preferences are inferred from personal
listening habits, but if a participant explicitly states a feedback about a song,
then the implicit preferences are replaced with explicit ones. Formally, the value
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of the individual preference degree p : U × C × N+ → [−1, 1] is determined as
follows:

p(U, X, T ) =

(
e(U, X, T ) if e(U, X, T ) is defined
i(U, X) otherwise.

(4.1)

As listeners state their preferences for the candidate songs, the ranking
calculated by the reuse process is bound to change. For instance, if many
listeners vote positively for a given candidate song, that song might become the
new top ranked candidate. A similar outcome can occur if many participants
vote negatively for the original top ranked song.

The revise process lasts for a finished period of time; when the time is over,
the best ranked song is finally confirmed as the song HT that will play next on
the channel. This concludes the CBR process to select the T -th song to play,
while the process to select the T + 1-th song starts right after.

4.4 The iterated social choice problem

The goal of poolcasting is to generate a musical sequence customised for a given
audience. Poolcasting determines which songs to play iterating the CBR process:
first, song H1 is selected, then song H2, and so on.

Each song belongs to a retrieved set of candidates that were not recently
played and that go well after the last song played; this addresses the goals of
variety (Goal 1) and smoothness (Goal 2). Moreover each played song is the top
ranked according to the combined preferences of the audience; this addresses the
goal of customisation (Goal 3).

The way in which multiple preferences are combined determines the degree in
which fairness is addressed (Goal 4). The objective is to have every participant
satisfied in the long run; therefore if some participants are not satisfied by the
music played at a given moment, poolcasting should reward them by playing
songs they like. In this way, everyone might listen to some of their favourite
songs after a certain time.

Since the decision about which song is played is determined by the ranking
of the candidate set, and since this ranking depends on the preferences of the
audience, a way to reward unsatisfied participants is to aggregate preferences
using a weighted average that assigns higher weights to less satisfied participants.

4.4.1 Group preference degree

The strategy to aggregate multiple individual preferences is called satisfaction-
weighted average, and consists in averaging individual preferences with a
weight that is inversely related to a participant’s satisfaction.

Formally, let q(U, T ) indicate the individual satisfaction of a participant U
at time T ; the aggregated group preference is defined as:

X

U∈UT

(1 − q(U, T − 1)) ·
p(U, X, T )

#(UT )
. (4.2)
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This weighted average combines for each song X the individual preferences
p(U, X, T ) of all the members of the audience UT , where the weight (1−q(U, T −
1)) is inversely related to the satisfaction of each person. The function q(U, T )
that measures individual satisfaction is formalised hereafter.

4.4.2 Individual satisfaction degree

The individual satisfaction q : U × N+ → {0, 1} is defined as a combination
of individual preferences for the songs played so far in the channel. In
this combination, recent songs are assigned a higher importance since human
satisfaction is an emotion that decays with time: people tend to forget remote
experiences and be mostly affected by recent ones [Masthoff and Gatt, 2006].
The measure

T −1X

J=0

χJp(U, HT −J , T − J) (4.3)

formalises this decay model: the individual preferences [p(U, H1, 1), p(U, H2, 2),
. . .] of a listener U for the songs played on the channel are averaged with a
weight χJ directly related to their recency, where χ ∈ [0, 1] is a parameter that
determines the degree in which the recency of an experience influences its impact
on satisfaction. Note that when χ = 0 only the last song played has an impact1

while when χ = 1 every song has equal impact.
There are three issues to consider about (4.3). The first is that the formula

combines the preferences of a participant towards all the songs played on the
channel, from H1 to HT −1. Nevertheless, every participant is free to join and
leave the channel at different moments, and only the preferences for the songs
played while U was listening should determine the satisfaction of U . For this
reason, a channel membership function m : U × N+ → {0, 1} is introduced to
identify current listeners at time T :

m(U, T ) =

(
1 if U is a member of the channel audience at time T

0 otherwise

and is integrated into (4.3) to yield the formula:
T −1X

J=0

χJp(U, HT −J , T − J)m(U, T − J) (4.4)

that aggregates only the preferences of U for the songs played on the channel
while U was listening.

The second issue is that (4.4) yields values in the interval [−(1 − χ)−1, (1 −
χ)−1], while the desired satisfaction degree q(U, T ) yields values in [0, 1]. For
this purpose, first a normalised version h : U × N+ → [0, 1] of the individual
preference for the played songs is defined:

h(U, T ) =
1
2

(p(U, HT , T ) + 1) m(U, T )

1When χ = 0, the first term of the sum contains 00, which is defined as 1 in this context.
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where the more U liked song HT , the closer to 1 the value of h(U, T ), while
h(U, T ) = 0 if U was not listening to the channel while HT was playing. Next
(4.4) is rewritten integrating this notation, as follows:

T −1X

J=0

χJh(U, T − J)

and finally this measure is divided by the sum of its weights in order to yield
values in [0, 1]: PT −1

J=0 χJh(U, T − J)
PT −1

J=0 χJm(U, T − J)
. (4.5)

The third issue is that (4.5) is undefined for any participant that has not yet
listened to any song, since the denominator equals zero. To solve this problem,
a default initial satisfaction degree ∂ ∈ [0, 1] is introduced that models how
satisfied a participant possibly is before listening to any song. This value is
integrated into (4.5) and the formula rewritten as:

PT −1
J=0 χJh(U, T − J) + χT ∂

PT −1
J=0 χJm(U, T − J) + χT

.

This notation can be further reduced introducing the conventions that
m(U, 0) = 0 and h(U, 0) = ∂. Replacing in the numerator χT ∂ with χT h(U, 0)
and, in the denominator, χT with χT m(U, 0) eventually leads to define the
individual satisfaction degree q : U × N+ → {0, 1} as:

q(U, T ) =
PT

J=0 χJh(U, T − J)
PT

J=0 χJm(U, T − J)
. (4.6)

Individual satisfaction increases whenever a song that a participant likes is
played, while decreases after listening to a disliked song. The impact of the last
song played over satisfaction is not totally clear in (4.6) but can be unfolded
rewriting the function in a recursive form that defines q(U, T ) only from the
previous satisfaction degree q(U, T − 1) and from the preference h(U, T ) for the
last song played:

q(U, T ) = q(U, T − 1) +
h(U, T ) − q(U, T − 1)m(U, T )

PT
J=0 χJm(U, T − J)

. (4.7)

This notation shows how every new song contributes with a ‘delta’ to the
satisfaction of a participant. The impact of this delta (the second addend of
the formula) is mostly determined by the decay parameter χ ∈ [0, 1]. If χ is
small, the impact is strong, which means that satisfaction can change rapidly
over time. At the extreme, if χ = 0, then q(U, T ) = h(U, T ), which means the
satisfaction of a participant is solely determined by the last song played. On
the other hand, if χ is large, then the impact is weak and satisfaction can only
change slowly over time.
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Figure 4.4 illustrates this behaviour with an example: the solid line plots
the preferences h(U, T ) of a person U for 25 songs played on the channel, the
dotted line plots the satisfaction degree of U modelled using a small decay value
(χ = 0.2); the dashed line plots the same satisfaction function modelled using
a large decay value (χ = 0.8). The dotted line is sharper and responds almost
immediately to the changes of h(U, T ), corresponding to a model of ‘immediate
satisfaction’. The dashed line is instead softer and more influenced by the whole
history of h(U, T ), corresponding to a model of ‘long-term satisfaction’.
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Figure 4.4: Influence of the decay parameter χ on individual satisfaction.

4.4.3 Satisfaction-weighted aggregation without misery

As defined in (4.2), the individual satisfaction degree (4.6) serves to weigh the
influence of different participants when deciding which song to play next on
the channel. This satisfaction-weighted strategy is intended to provide everyone
(even participants with boundary musical tastes) with the chance to listen to
some favourite songs.

One drawback of this strategy is that even songs that some participants
‘detest’ are bound to be selected. In other words, the fact that a participant
has the lowest possible preference p(U, X, T ) = −1 for a given song X does not
prevent that song from being played if other participants with higher weights
like it. As a result, misery can occur, which means that some persons are faced
with items they do not wish to experience (songs they would not like to hear).

This situation can be avoided introducing a misery threshold µ ∈ [−1, 0]
that specifies the minimum individual preference that any member is willing to
accept for a song. If any member of the audience has a preference for a song
below this threshold, then that song is not played, independently of how much
the remaining audience likes that song.

Integrating this threshold into (4.2) brings to complete the definition of the
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group preference degree g : C × N+ → [−1, 1] as:

g(X, T ) =






−1 if ∃U ∈ UT :
p(U, X, T ) < µ

P
U∈UT

(1 − q(U, T − 1)) ·
p(U, X, T )

#(UT )
otherwise.

To conclude, the strategy of poolcasting to address customisation (Goal 3) is
to rank the retrieved set according to the group preference and to play the top
ranked song. In order to achieve fairness (Goal 4), group preference is calculated
with a weighted average that favours members that were less satisfied by the
recent channel experience. Moreover, songs with very low individual preferences
are avoided to prevent misery.

This preference aggregation strategy is iteratively used in the CBR selection
process to generate a musical sequence made of songs that, over time, can satisfy
the entire audience.

4.5 Summary

This chapter has described poolcasting, an automatic technique to adapt a
sequence of songs to a specific audience. Most automated music selection
techniques are not influenced by the actual listeners, while poolcasting delivers
a sequences of songs customised for the audience. This is achieved by means of
a CBR process, where the retrieve and reuse processes have been reinterpreted
to generate a sequence of solutions adequate for a group of users.

The retrieve process does not look for similar cases but searches for good
candidates for the sequence, employing the musical associations calculated in
Chap. 2. The reuse process does not adapt one retrieved case but customises
the retrieved set for the audience aggregating their music profiles assessed as
described in Chap. 3.

Multiple individual preferences are combined with a satisfaction-weighted
aggregation strategy that assigns different weights to different participants based
on their satisfaction degree. The novelty of this aggregation strategy is that
memory of past elections is accounted for in order to achieve fairness in the long
run. The selection of each song depends on the previous songs selected and on
their impact on listeners. The outcome is that individuals might occasionally be
confronted with songs they do not like to keep the rest of a group happy, but
are soon rewarded with some of their favourite songs.

The next chapter presents a real-world scenario where the poolcasting
technique has been applied.





Chapter 5

Group-customised Web
radio

It’s that same sing song on the radio
It makes me sad

R.E.M., 1991

5.1 Adapting online radio channels to their
audience

The previous chapter presented poolcasting, an intelligent music selection
technique that automatically decides which music to play in contexts where
people listen to music in group (discos, parties, radios, bars, offices).

This chapter focuses on the domain of online radios, presenting a novel Web
radio framework that employs the poolcasting technique to customise radio music
channels for their audience.

Most online radios cannot afford expert DJs to programme their channels and
are scheduled with random sequences of songs of a given type (e.g., ‘Rock’ songs
in a ‘Rock’ music channel). Employing an intelligent technique like poolcasting
can significantly improve the quality of the music in terms of variety, smoothness,
customisation and fairness.

Poolcasting Web radio autonomously schedules music channels with good
successions of songs and enables listeners to interact among them and with the
system in ways that are inconceivable in other Web radios. To name a few,
listeners can:

• contribute with new songs to the music broadcast by the radio;

• define new radio channels that match their musical tastes; and

• evaluate the available songs to influence the music played.

61
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The breakthrough of Poolcasting Web radio is the creation of a social radio
experience. Listening to radio is normally an individual activity: people ignore
who else is listening, cannot interact with each other or control music but for the
volume knob. Most radio stations, both terrestrial and online, are not affected
by who is actually connected and listeners are forced to waste time in quest of
an ‘ideal’ channel.

Poolcasting Web radio takes instead inspiration from digital music services
which broadcast music streams that are personalised for the audience. These
services (e.g., Last.fm, Pandora) offer private music channels targeted to indi-
viduals, while Poolcasting Web radio provides public radio channels customised
for multiple simultaneous listeners, enabling friends to enjoy music together.
Poolcasting Web radio merges the distributed nature of online radios with the
personalised nature of music recommenders.

5.2 Previous work

Poolcasting Web radio is a user-adaptive system that delivers customised
music to a group. Previous music-related group-adaptive systems are reviewed
hereafter, and a characterisation of Internet radios is provided.

5.2.1 Group-adaptive systems in music

A list of previous systems and prototypes designed to adapt music experience to
a group of listeners is reviewed hereafter.

MusicFX [McCarthy and Anagnost, 1998] was a system that automatically
selected which radio station to play in a gym according to the taste of the
current attendants. The domain knowledge was made of a set of 91 radio stations
categorised by musical style (‘Album Rock’, ‘Beach Party’, ‘Flamenco’, etc.);
user profiles were built by hand, with each member specifying preference for each
musical genre; the aggregation was computed using a weighted random selection
policy, prohibiting the system from playing any station for which anyone present
had a low rating and limiting the period of time that any one genre could play,
in order to increase diversity. The main lesson learnt from MusicFX was that
people had limited desire in compromising their musical preferences with those
of some stranger with whom they just happened to work out with.

Smart Radio [Hayes and Cunningham, 2001] was a Web-based client-server
application to share compilations of music. Smart Radio combined automated
collaborative filtering and Case-Based Reasoning techniques. User ratings were
gathered combining explicit and implicit feedback. Participants could explicitly
choose to rate individual tracks or programmes, while the system implicitly
gave a positive rating to songs that had been saved to a user’s profile and to
programmes built from scratch by a user.
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Flytrap [Crossen et al., 2002] was an active environment that gathered users’
musical tastes and automatically constructed a soundtrack to please everyone in
the same room. The system combined domain knowledge about how genres of
music interrelate and social knowledge about what kinds of transitions between
songs people tend to make and broadcast music that satisfied user preferences
while fitting its own notion of smoothness.

The Common Sense Disc Jockey [Ouko et al., 2002] was an application to
automatically play music in a dance club environment. User profiles were built
by a disc jockey observing the audience and completing a form with their age
range, ethnic group, geographical provenience, political profile, while a camera
tracker estimated the percentage of dancing people. Preference aggregation
was computed following a “common sense” rule set; for instance if the crowd
appeared to be young Asians, but the exact provenience and profession of the
audience were unknown, the system concluded that cross-cultural music from
international Pop singers like Britney Spears was best played.

Jukola [O’Hara et al., 2004] was an interactive MP3 juke-box that allowed
active and collective participation in the choice of music in a public space. Jukola
allowed people to nominate and vote for songs to get played by means of handheld
devices wirelessly connected to a centralised juke-box. While a song was playing,
each device presented four candidate songs to be played next drawn from the list
of nominated songs, together with random choices. Each participant could cast
a vote for a candidate and the best ranked song would be played next, according
to a plurality voting strategy. Participants could also upload new songs from
their devices to the juke-box to make more music available to the audience.

PublicDJ [Leitich and Toth, 2007] was a multiplayer game to propose and
rate music to listen together with friends. At each round, users were requested
to submit to a server songs they would have liked to hear. After analysing the
received submissions, the server determined the best matching song with respect
to the audience and the last song played. Associations between songs were
discovered with an acoustic-based approach, combining low-level data (rhythm
patterns, statistical spectrum descriptors, rhythm histogram) and high-level data
extracted from the files. The system had no user models and did not keep
memory of individual satisfactions.

PartyVote [Sprague et al., 2008] provided groups with a simple democratic
mechanism for selecting and playing music at social events. Aggregated
preferences were calculated with a plurality voting approach: songs frequently
voted for and popular ones where more likely to be played, whereas boundary
voters could listen to at least one song of their choicewithin two hours from their
vote.
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PartyStrands [Strands, Inc., 2006] was an interactive system developed by
MusicStrands to have bar attendants decide which music would be playing
through the night by means of text messages. Participants communicated their
favourite artists with their mobile phones, and tracks by these artists were
played from the venue’s loudspeakers (see Fig. 5.1). The main problem for
PartyStrands was a lack of context: every kind of music could be requested,
resulting in Heavy Metal tracks immediately followed by Hip Hop tunes or Jazz
themes. Moreover, requests came at the cost of a text message, which favoured
participants willing to spend more money. User requests were simply declined
if they could not be satisfied (e.g., when receiving many text messages at the
same time) and preferences were aggregated favouring the majority, which often
resulted in heavily mainstream musical sequences.

Figure 5.1: PartyStrands in action.

5.2.2 Internet radios

Music is the driving force of the recent transformation of Internet into a social
medium. People turn to the Web not just to consume music, but to publish,
discuss, share and discover music with friends [McGuire and Slater, 2005].
Indeed social context in music adaptive systems is “much more important
than previously thought” [McEnnis and Cunningham, 2007]. This preamble
explains the success of digital music services such as MySpace, Last.fm
and MusicStrands that provide hundreds of millions of users with virtual
communities where to interact with other music lovers.

Given this social demand, it is surprising to observe how online radios offer
a service that is very close to old-fashioned AM/FM radios. Internet radios first
appeared in 1994 [WXYC, 2004] with the intention to broadcast music over the
net rather than over the air. Millions of online radio stations are available, but
the listening experience for the audience is still very limited: listeners ignore who
else is connected to each station, cannot interact with each other nor request
songs or influence the music played.

This has not stopped online radios from growing, with a weekly radio
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audience estimated in 33 million listeners in the United States [Rose and Lenski,
2008] and a tendency to rise: while listening to AM/FM radio declined four
percent, listening to online radio increased 18 percent and free streaming of
online music increased 37 percent [NPD Group, 2005].

The main competitors for online radios are Web-based music communities
that broadcast personalised music streams to their members. Last.fm — the
largest of these communities with 37.3 millions monthly unique visitors [Miller,
2009] — offers unlimited personalised channels for a monthly subscription of 3
euros.

The difference between online radios and digital music services such as
Last.fm is that online radios broadcast a fixed amount of music stations that
everyone can browse and join at any moment, while in Last.fm channels are
private: each members gets a personalised and unique music stream that cannot
be shared with other listeners.

5.3 The Web interface

The basic service provided by Poolcasting Web radio is online music streaming.
Similarly to other Internet radios, visitors navigate with their Web browsers to
the radio home-page (see Fig.5.2), select one channel from the list and start
listening to a continuous sequence of songs.

Listening to music is very simple: users just have to click on the ‘Listen now’
button and an appropriate streaming media player (e.g., iTunes, VLC, Winamp)
opens up playing the music broadcast from that radio channel. Another option
is to navigate to the Web page of a particular channel (e.g., the ‘Love the ’90s’
channel in Fig. 5.3) and start the integrated Adobe Flash player to listen to
music directly in the browser.

Tuning into a channel is a concise and intuitive process, so people who just
want to passively listen to music can do so. However, users who want to actively
participate in the selection of the music played can do so swiftly as well with the
different functions offered by Poolcasting Web radio.

5.3.1 Sharing personal music libraries

Internet radios typically have a large repository of songs stored on a server that
some administrators continuously maintain and update to include new releases.

Poolcasting Web radio abandons this centralised storage model in favour
of a distributed model where the collection of music is provided by the same
listeners. The radio introduces the ability for listeners to share their personal
music libraries, that is, to contribute with songs they own to the collection of
music the radio can broadcast.

To share their music libraries and become active participants, users click on
the ‘Share your library’ link and indicate the path to the local folder where their
personal library is stored (see Fig. 5.4). This folder has to be accessible from the
network via HTTP and the music library managed with Apple iTunes. After a
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Figure 5.2: Channels list in Poolcasting Web radio home-page.
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Figure 5.3: Web interface of a poolcasting radio channel.
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Figure 5.4: Sharing personal music libraries in Poolcasting Web radio.
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listener has clicked on ‘Share library’, the system connects to the specified folder
and uploads the ‘iTunes Library.xml’ file which contains the list of included songs
and listening behaviour data.

Each song in the list is matched against two music recognition Web services.
The first service is OpenStrands, a Web API provided by MusicStrands that
returns a unique ID for more than six million songs, fixing wrongly spelled
song titles or artist names (e.g., ‘Obladi Oblada’ instead of ‘Ob-la-di Ob-la-da’
or ‘Mum’ instead of ‘Múm’). Additionally, each song is matched against the
Last.fm database through the Last.fm Web API. This double check ensures a
high identification rate and is also useful to retrieve further information such as
the album cover, genre, year and tags of each song.

The ‘iTunes Library.xml’ file also contains the listening habits of each
participant; as explained in Sect. 3.4 play counts and user ratings are used to
automatically infer the preference i(U, X) of each listener for each song.

Each shared library, together with the estimated preferences, is considered
by the radio as a new case base. As described in Sect. 4.3, poolcasting holds a
collection of case bases, one for each participant; each case refers to a song, its
performing artist and its preference. Figure 5.5 illustrates with an example how
two personal libraries are represented as case bases: songs are matched against
OpenStrands Web service, their song and artist IDs are used to univocally
identify each song X and artist a(X) while the individual preferences i(U, X)
are assessed from the analysis of play counts and user ratings.

87230

…

13556

……

-0.513556

0.6587230

Case Base #1
X a(X)

U1

………

8834869 0.9115050

0.18737211391276

Case Base #2
X a(X)

U2

p(U1, X, T )

p(U2, X, T )

Figure 5.5: From personal libraries to case bases.

The last piece of information that is collected from the iTunes index file
is the location of each song on the hard disk of the library owner. With this
information, the radio can access any shared song as long as the corresponding
library owner is connected to the network.

The collection of songs shared by all the listeners is called the music pool.
There are several advantages of having a music pool distributed among multiple
listeners rather than a centralised radio repository on a server. Firstly, a
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distributed collection is more dynamic: when participants share their music
libraries, the songs in their hard disks virtually enter the music pool; when
one participant leaves, a portion of songs are removed; in general the music
pool continuously varies over time. Next, a distributed collection is more up-
to-date: while an administrator would usually update the radio library once a
week or a month, individuals add new songs to their libraries every day and
these instantly enter the music pool. A distributed collection also contains more
of the longed for ‘audio not available elsewhere’: in fact personal libraries often
include songs not publicly distributed (e.g., personal audio material, uncommon
records, alternative versions of known themes). Finally, a distributed collection
contains a finer selection of songs: while a centralised library is normally a
massive heterogeneous collection of albums, not filtered by any quality criteria,
personal libraries usually contain themes the owner has manually selected and
implicitly appreciates.

The fact that the system retrieves and broadcasts music from personal
libraries raises questions about copyright issues and licensing policies. While
sharing and streaming music is not an illegal activity per se, most songs are
currently published under restrictive licenses that prohibit free public diffusion.
In order to avoid incurring in legal issues, the radio has two options. The first
consists in limiting the service to songs published under non-restrictive licenses
such as Creative Commons [Creative Commons, 2004] that do not forbid sharing
or broadcasting. The second option is to pay the appropriate fee to the national
collecting societies in charge of handing out the money to the corresponding
music right holders. In Spain this monthly fee ranges between 56.26 and 450.11
euros depending on the nature of the service (commercial or not) and on the
number of listeners [Sociedad General de Autores y Editores, 2006].

5.3.2 Creating radio channels

Online Web radios typically provide a large but fixed set of channels. Live365,
for instance, offers about 6,000 radio stations, ranging from Christmas music to
80’s Metal. Some of these may have no listeners at all; still the administrators
will have spent time in their creation and money in songs acquisition, storage
space and bandwidth. Large as the number of channels can be, some listeners
may still be unsatisfied for they will not find the channel that best fits their
taste.

Poolcasting Web radio abandons this authoritarian model and introduces the
ability for listeners to create their own channels. Participants can browse the
list of active channels and, if they do not find the one they like, create a new
one by clicking on ‘Create a channel’ (see Fig. 5.6) and indicating its name,
description and channel pool, that is, the subset of songs allowed to play. The
channel pool is defined in terms of genres, tags and years, for instance “Jazz from
1967” or “Italian Electronic Dance”. Every newly created channel automatically
appears in the home-page and is programmed with music that fulfils the specified
restrictions.
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Figure 5.6: Creating radio channels in Poolcasting Web radio.
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5.3.3 Expressing musical preferences

Poolcasting Web radio is similar to common radios in that songs cannot be
skipped: they are played from the beginning to the end, one after the other in a
continuous stream. The distinguishing feature is that listeners can express their
preferences for every song in the radio and their preferences influence the music
scheduled next on each channel.

Listeners can express their musical preferences in two ways. The first
method is implicit: by sharing one’s personal music library. Shared libraries
are viewed by the system as case bases and the individual listening habits
data contained (play counts and ratings) are automatically analysed to assess
individual preferences i(U, X).

The second method is explicit: providing feedback through the ‘Good’ and
‘Bad’ buttons that appear close to each song (see Fig. 5.3). The explicit feedback
provided by a participant for a song is indicated by the function e : U ×C×N+ →
[−1, 1]. The actual value of e(U, X, T ) depends on the most recent preference
stated through the Web interface at time T , as follows:

• e(U, X, T ) = 0.5 if U has clicked once on ‘Good’ for song X;

• e(U, X, T ) = 1 if U has clicked twice or more on ‘Good’ for song X;

• e(U, X, T ) = −0.5 if U has clicked once on ‘Bad’ for song X;

• e(U, X, T ) = −1 if U has clicked twice or more on ‘Bad’ for song X;

• e(U, X, T ) = 0 if U has first clicked on one button and then on the other
one for song X.

As defined in (4.1), the individual preference p : U × C × N+ → [−1, 1] of
a person for a song corresponds to the last feedback e(U, X, T ) provided, falling
back to the preference i(U, X) assessed by the listening habits if no feedback was
ever provided.

5.3.4 Additional features

Another feature that characterises Poolcasting Web radio is the presence of a
live chat integrated in every channel, which makes the members of the audience
aware of who else is listening to the same channel (see Fig. 5.7).

Poolcasting Web radio also includes an administrative interface that enables a
super user to control the various aspects of the radio, from starting and stopping
channels to checking the available domain knowledge (musical associations and
preferences), from listing the active participants to removing unused channels
(see Fig. 5.8).

A feature that is common to AM/FM radios but is not present in Poolcasting
Web radio is the chance for the audience to directly request specific songs. The
reason is that Poolcasting Web radio longs to deliver a musical sequence with
a certain musical continuity from song to song (Goal 2). Accepting direct
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Figure 5.7: Discussing with other poolcasting listeners.
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Figure 5.8: Administration panel of Poolcasting Web radio.
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requests would force the radio to play any kind of music on each channel
without guaranteeing smooth transitions from each song to the next. Direct
music requests would also raise issues of fairness in case the system were faced
with multiple simultaneous requests and would only be able to please one.
Additionally, online radios that accept requests are regulated by more expensive
licensing fees.

5.4 Automated music programming

The music that is played on each channel of the radio is automatically determined
by an independent poolcasting CBR process. The whole radio is initially idle
until the first participant joins the system and creates a new channel. At this
point, the system spawns a poolcasting process that will determine in real time
which songs will be played on that channel.

The songs available to be played are the songs shared by the current
participants (music pool), although only a subset (channel pool) is allowed to
play on each channel (e.g., only ‘Rock’ songs in a channel defined as ‘genre =
Rock’). From the channel pool, the system selects at random the first two songs
H1 and H2. The radio connects via HTTP to the personal music libraries where
these songs are stored, uploads them to the server and starts broadcasting the
first song H1 over the Internet. Then, the process selects which song H3 to play
next; this is accomplished by means of the CBR process introduced in Sect. 4.3.

First (retrieve process) the system identifies in the case bases a set of ∑ = 15
songs that have not been recently played and that form a smooth musical
transition after H2, the previous song in the queue. These constitute the
retrieved set of songs that are good candidates to become H3.

Next (reuse process) the system ranks the candidate set combining the
preferences of the listeners with the satisfaction-weighted without misery
strategy detailed in Sect. 4.4. The result is a ranked set where the top ranked
candidate is the song that best addresses the goals of customisation and fairness
according to the individual preferences stored in the case bases.

The top ranked song is shown in the channel Web page and, if participants do
not review their preferences, is played on the channel right after H2. However
at this point (revise process) listeners have the chance to browse the list of
candidates and express feedback for each of these songs.

Figure 5.9 illustrates the situation of a channel where the first song H1 is
playing (‘Sideshow’ by Calexico), the second song H2 is on the server ready to
be played (‘Another Invented Disease’ by Manic Street Preachers) and ‘Infidelity
(Only You)’ (Skunk Anansie) is the best candidate to become H3. By clicking
on ‘Other candidates’, listeners can revise the whole retrieved set and update
their preferences for every candidate. If a candidate receives a large positive
feedback, its group preference degree can surpass that of ‘Infidelity (Only You)’
making that song become the new top ranked candidate.

The revise process continues until the currently playing song H1 terminates.
At that moment, the song H2 starts being streamed, the current top ranked
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Figure 5.9: Retrieved set for a Poolcasting Web radio channel.

candidate is determined as H3 and uploaded to the server to be played next,
and the CBR process starts again to select the song H4.

As illustrated in Fig. 5.10, the music played on each channel is therefore
automatically selected ‘one song in advance’. While the first song H1 is playing,
the second song H2 is uploaded to the server and poolcasting determines a set
of good candidates to become H3. The implicit preferences of the audience
determine the best ranked song while participants can use the ‘Good’ and ‘Bad’
buttons in the Web interface to revise in real time these preferences. When H1

ends, song H2 starts, the best candidate to become H3 is uploaded to the server
and the process starts again to select H4.
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Figure 5.10: A song is playing, the next one uploaded and the next one selected.
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The reason why poolcasting runs one song in advance is to guarantee an
uninterrupted stream of music on each channel. Whenever a song is playing,
the next song has to be already on the server to avoid gaps in the broadcast.
Uploading a song from a personal library and encoding its audio into a proper
streaming format require a certain amount of time. Running the process one
song in advance provides the duration of an entire song (typically 3 to 4 minutes)
to complete these tasks and also grants enough time to ‘fall back’ to another
candidate is the top ranked one suddenly becomes unreachable (e.g., the library
where it is contained disconnects from the network).

Music is broadcast from a centralised server rather than from personal
libraries in order to guarantee a stable audio quality over time. If songs were
streamed directly from personal libraries (e.g. with a distributed peer-to-peer
architecture), the bandwidth of the broadcaster would represent a bottleneck
for the audio quality of the stream. Moreover, if the broadcaster suddenly
disconnected from the system, the stream would suffer an undesired break, which
is avoided by streaming music from a centralised server after having uploading
songs into a temporary buffer.

5.5 Implementation

The development of Poolcasting Web radio took about one year and its final
architecture is illustrated in Fig. 5.11.

Personal library Listener

co-occurrences

Playlists
share  library

ratings and
play counts

songs

MUSIC POOL

PREFERENCES

MUSICAL ASSOCIATIONS CURRENT LISTENERS

CHANNELS

Database

send  feedback create  channels

CBR Process

required
knowledge

Streaming Server

Web Interface
upload  song

Listener

list of
listeners

broadcast  music

I N T E R N E T

available
songs

Figure 5.11: Architecture of Poolcasting Web radio.

The radio is idle until a participant creates a channel through the Web
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interface. When this occurs, the streaming server opens a new Internet stream
for the channel and a CBR process is started to fill the stream with music.
The CBR process continuously checks in the database which songs are available
(music pool), which ones fit the current channel (channel pool), how well each
song would go after the last song played (musical associations) and how each
of the current listeners like each song (individual preferences). Having gathered
this required knowledge, the process returns the ranked set of candidates that
participants can revise by sending ‘Good’/‘Bad’ feedback through the Web
interface.

When the best candidate is determined, the radio connects via HTTP to
the library where the song is contained, uploads the audio file to the server and
passes its content to the streaming server as an uncompressed audio signal. The
streaming server encodes the audio into a proper streaming format (either MP3
or OggVorbis) that is later broadcast to the connected listeners.

The streaming server also maintains a list of the IP addresses of the listeners
of each channel; channels that have not had any listener are automatically
disabled after some time, in order to save bandwidth.

The entire framework has been running on a Mac Pro server equipped with
two Dual-Core Intel Xeon CPUs at 2.66 GHz and 6 GB of memory. All the
components of the radio have been developed with open source software: Ruby on
Rails for the Web interface, Apache for the Web server, MySQL for the database,
Ruby for the CBR process, liquidsoap [Baelde and Mimram, 2008] to manage the
music queue and the stream generator, icecast for the streaming server.

5.6 Summary

This chapter has described a new Web radio framework that delivers group-
customised music channels, offering an innovative social radio experience.

Poolcasting Web radio combines bottom-up and top-down approaches: users
can express their musical preferences while the actual choice of music played is
taken by a CBR process that iteratively checks which songs are available and
who is listening and selects the songs that most satisfy the current audience.

The advantage of the radio architecture is that user interaction allows the
system to model the musical preferences of each listener and exploit them
to customise the content of the channels. Feedback expressed in terms of
‘Good’/‘Bad’ preferences offers a direct overview of the listeners’ preferences;
in addition, the radio can work without any user interaction by exploiting
the implicit knowledge contained in the personal music libraries shared by the
participants.

Poolcasting Web radio merges the distributed nature of online radios with
the personalised nature of music recommenders, thus offering a groundbreaking
Internet service that can satisfy the needs of several Web music listeners.



Chapter 6

Experiments and evaluation

Everybody makes mistakes,
But I feel alright when I come undone

LCD Soundsystem, 2005

6.1 Working with a real Web radio

This chapter is divided in two parts. The first two sections describe the
experience of ten actual users with Poolcasting Web radio: which channels they
created, which songs they shared, which impressions they perceived. The rest
of the chapter reports of experiments to evaluate how poolcasting can deliver
radio channels that address the goals of customisation and fairness. A particular
attention is dedicated to measure how the size and the musical homogeneity of
the audience can affect the group satisfaction.

6.1.1 The active audience

An implementation of Poolcasting Web radio has been running for one year
on a Web server located in the internal network of the Institut d’Investigació
en Intel·ligència Artificial (IIIA-CSIC). The radio has been showcased in differ-
ent research institutes, music-related companies and international conferences
[Baccigalupo and Plaza, 2007b; Baccigalupo and Plaza, 2007c; Baccigalupo and
Plaza, 2007d]; at each presentation the audience was asked to join and evaluate
the system. A total of 29 persons accepted, ten of which have connected to the
radio more than once. These ‘active’ users are male and 30 years old in average;
five are Italian, four are Spanish and one is English.

6.1.2 The music pool

Eight of the ten participants agreed to share on the radio the songs contained
in their personal music libraries. The total number of shared songs was

79
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60,202. Matching these titles against OpenStrands and Last.fm Web services
and discarding duplicates reduced the size of the music pool to 24,763 songs.

Five of the eight shared libraries were online 24 hours a day since they were
stored on computers that were never switched off; the remaining three libraries
were instead only available when the computers where they reside were connected
to the Web.

The most common genres for the songs in the music pool were: Rock (3,499
songs), Soundtrack (2,670), Pop (1,609), Alternative & Punk (1,156), Electronic
(614), Alternative Rock (560) and Indie (504). Most songs were published in
2005 (1,642 songs), while the average year of publication was 1999. Matching the
music pool against Last.fm Web service revealed the following tags as the most
common: rock & pop (9,138 songs), alternative (1,402), international (1,178),
hard rock (529), r&b (520).

6.1.3 Listening habits

The listening habits data stored in the shared libraries revealed that most
participants had never played or rated the songs contained in their libraries.

Only 4,564 of the 24,263 songs (18.4%) had ever been played by their owners
in iTunes, while only 358 songs (1.4%) had been rated. The average play count
for the 4,828 songs that had ever been played or rated was 1.8 times while the
average rating was 3.3 stars.

These data interestingly point out how people may hold large music libraries
in their hard disks and still play and rate only a small amount of songs, leaving
most of their music collection untouched.

6.1.4 Observations

Although the radio was presented to about 100 persons, only ten became active
participants. Informal interviews to those who did not join the radio revealed
two main reasons. Some people were unfamiliar with online radios and were
not interested in trying a new one. Others appreciated the idea of a social Web
radio but did not have a music library managed with Apple iTunes, so could not
actively participate.

The ten active users showed a noticeable interest for Poolcasting Web radio,
to which they connected day after day. The number of shared songs was quite
large compared to the number of listeners (in average 2,476 tracks per user),
which enabled people to frequently discover unknown music.

A negative characteristic related to the active users was the low rate of
played and rated songs in their personal libraries, which allowed poolcasting
to build only partial models of their music profiles, restricted to a few songs and
artists. The feedback provided through the ‘Good’ and ‘Bad’ buttons on the
Web interface resulted very important to refine these music profiles over time.
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6.2 Variety and smoothness

Fifteen distinct channels were created by the ten active users of the radio.
Most channels were defined as single-genre (e.g., ‘Rock’ channel); others using
periods (e.g. ‘Music from the Eighties’); others combining genres and tags (e.g.,
a ‘Soundtracks’ channel playing tracks tagged as ‘Soundtrack’, ‘Sound track’,
‘Banda Sonora’ or ‘BSO’1). Although participants could alter the definition of
a channel after its creation, this function was barely used.

6.2.1 Variety

The variety of the music played on each channel (Goal 1) was achieved by setting
the repetition parameters to η = 50 and ≥ = 5 (see Sect. 4.3): every song could
be repeated on the same channel only after 50 other songs, while songs by the
same artist had to be separated by at least 5 songs. These values were meant to
avoid short-term repetition of the same music.

A problem reported by some listeners was that channels would sometimes
repeat the same sequence of songs in consecutive days. For instance, whenever
‘Romeo Had Juliette’ (Lou Reed) played in the ‘Rock’ channel, it was always
followed by ‘The Wait’ (The Pretenders).

The reason for this behaviour is that ‘The Wait’ is the top associated song
with ‘Romeo Had Juliette’ in the music pool according to the knowledge in the
data set of playlists. This means that, in the retrieve process, ‘The Wait’ always
ranks as the best candidate to follow ‘Romeo Had Juliette’ and, in the reuse
process, is the song selected to play next, unless the audience explicitly states a
negative feedback.

To avoid this unpleasant behaviour, the requirement for variety was
strengthened, forbidding that any pair of consecutive songs could be repeated
two times in a row in the same channel. The song ‘Romeo Had Juliette’, for
instance, would be followed by ‘The Wait’ (the top associated song) on its first
appearance in the ‘Rock’ channel, while it would be followed by ‘The Same
Situation’ (Joni Mitchell) — the second top associated track — on its second
occurrence, and so on. This enabled the radio to achieve both short-term and
long-term variety.

6.2.2 Smoothness

Poolcasting Web radio reuses the musical associations extracted from the
analysis of playlists (see Chap. 2) to address the requirement of smoothness
(Goal 2).

An example of smooth musical sequence delivered on the ‘Rock’ channel
was: ‘Pretty Noose’ (Soundgarden), ‘Bullet with Butterfly Wings’ (Smashing
Pumpkins), ‘Kool Thing’ (Sonic Youth), ‘MFC’ (Pearl Jam), ‘Medication’
(Queens of the Stone Age). This sequence shows a certain continuity since

1‘BSO’ stands for ‘Banda Sonora Original’, ‘Original Soundtrack’ in Spanish.
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all these songs revolve around the U.S. Indie Rock sound of the Nineties and go
well together both for acoustic and cultural reasons.

Imposing smooth transitions from song to song comes at a price: the influence
of the listeners is narrowed to decide only among a few candidates. As a result,
a channel can take a long time to adapt content to the audience.

An example was reported by an active user of the ‘Rock’ channel who had to
wait for the duration of four songs (about fifteen minutes) before listening to an
Electronic Rock track, akin to his musical profile. The reason was that, because
of the smoothness requirement, poolcasting could not ‘jump’ directly from one
style to another but had to pass through a series of intermediate tracks before
reaching an Electronic Rock track.

To avoid this behaviour, the smoothness requirement in Poolcasting Web
radio was relaxed to include randomly chosen tracks in the retrieved set as well
as songs that were musically related to the previous one. Specifically, the retrieve
process was modified to retrieve the top 10 candidates from the list of associated
tracks and the last 5 candidates at random from the channel pool. If the listeners
ranked any of these songs better than the rest, that song would be played next,
even without being the most associated with the last one. The Electronic Rock
lover of the previous example, for instance, could in this way browse the retrieved
set and pick the random candidate which was most akin to his musical taste,
rapidly bending the music towards a more Electronic style.

With this approach, faster transitions could occur from a sub-genre to
another when persons with different musical taste were present in a channel.

6.2.3 Observations

Other characteristics that the audience particularly appreciated or objected were
revealed in a series of interviews to the radio listeners.

One participant found among the greatest qualities of Poolcasting Web radio
“the idea of taking music out of personal libraries to new listeners”. This
was seen as a great way to get to know new composers and songs. Another
quality was the “direct participation of the listener, which makes it a social
radio”. The main drawbacks observed were that “a channel can rapidly become
overcrowded, negatively affecting individual satisfaction” and also the fact that
musical preferences assessed from iTunes libraries can be wrong when the users
are not “careful with their content, which can badly affect the quality of the
transmission”.

A different participant replied that the best aspects of the radio were “the
interface, the streaming audio quality and the social aspect of the radio, even
though I did not have the chance to fully delve into this”. The worst aspect
found was “having to wait for songs I did not like to finish”. The participant
also commented that “this kind of radio would work best in a shared office,
where people are not just interacting online as they listen to the music”.

A third participant rated positively the “comfortable interface”, while was
worried about the long time that had to pass before the radio could learn
individual musical preferences. In his opinion, Poolcasting Web radio can make
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listeners “quite satisfied” but not “totally satisfied”, something that is positively
“compensated by getting to discover new music that you are probably going to
like”.

A fourth participant appreciated the fact of being able to “rediscover songs
from the bottom of my music library, that I did not remember having”. Voida
et al., 2006 [Voida et al., 2006] already investigated the satisfaction given by
this “rediscovery” experience which is correlated to the increasingly large music
libraries that characterise several iTunes users.

The main lesson learnt is that the listeners of Poolcasting Web radio
implicitly accept a social compromise. When they join a channel, they are
aware they will not possibly like every song played, yet they will have the chance
to easily discover new music preferred by other listeners, with whom they can
interact and discuss. This social component would not exist if they were to play
music directly from their personal digital players or from other Internet radios.

6.3 Group customisation and fairness

The previous section reported on experiences of real users of Poolcasting Web
radio and on the way in which radio channels achieve a level of variety (Goal
1) and smoothness (Goal 2) that is appropriate for the audience. The rest of
the chapter evaluates whether the poolcasting technique can achieve the goals
of customisation (Goal 3) and fairness (Goal 4) on groups of different sizes and
musical homogeneity.

To obtain objective results, independent of the particular music profiles of
the ten active users, the evaluation is run in a simulated environment with a set
of artificially created profiles.

6.3.1 Random music profiles

The first experiment evaluates the performance of poolcasting in a radio channel
with five participants. Each person is simulated by an artificial music profile
that describes which songs a participant likes and dislikes. Precisely, five music
profiles are generated randomly, that is, assigning a random number in [−1, 1] to
the individual preference i(U, X) of each participant U ∈ U for each song X ∈ C.

This is intended to emulate a sort of worst case scenario where five members
of a channel do not share any particular musical affinity: one may like some Pop
and Rock songs and detest Heavy Metal tracks, another may like Jazz and Rock
and dislike Pop, and so on.

The five participants all join the same radio channel, defined with no filter: all
the available music is allowed to play, from any genre, year or tag. The channel
is started, and the first song is played at random from the available ones. All
the successive songs are selected by the poolcasting CBR technique described in
Sect. 4.3, with the parameters initially set to ∑ = 15 (size of the retrieved set),
∂ = 0.4 (initial satisfaction), χ = 0.8 (satisfaction decay) and µ = −0.75 (misery
threshold).
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Whenever a new song is played, the values of two functions are registered for
every participant U :

• h(U, T ), that is, how much U likes the song played; and

• q(U, T ), that is, how satisfied U is for the songs played so far.

After 25 songs, the channel is stopped and the registered values are analysed.
In order to obtain significant results, the whole process (creating a channel,
playing 25 songs, collecting results) is replicated 20 times with different initial
random songs and music profiles and the analysis is performed on the average
values of h(U, T ) and q(U, T ) through all the iterations.

This experiment is meant to evaluate whether poolcasting can fairly satisfy
a group of five listeners characterised by random music profiles. This can be
considered as a sort of worst case scenario since in the real world listeners of the
same radio channel typically share some musical affinity.

6.3.2 Results

Figure 6.1 shows the result of this evaluation. Each line in the graph corresponds
to one of the five participants. The plot on the left shows the individual
preferences h(U, T ) of each participant for each of the 25 songs played; the plot
on the right indicates their satisfaction degrees q(U, T ) after each song.
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Figure 6.1: Individual preferences and satisfaction degrees of five participants
listening to the same channel for the duration of 25 songs.

With regard to customisation, the results look positive. The whole audience
likes every song, with an average individual preference of h(U, T ) = 0.72. Lower
spikes in Fig. 6.1 (left) indicate songs that a participant did not particularly like;
even in these occasions the preference h(U, T ) never falls below a value of 0.5.
Moreover, lower spikes are immediately followed by high values, demonstrating
the power of poolcasting in rewarding participants who did not like some of the
recently played songs.

The impact of this balanced strategy over individual satisfactions is il-
lustrated in Fig. 6.1 (right). All the lines are quite close and stable over
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time, indicating that poolcasting achieves fairness by keeping every participant
similarly satisfied in the long run.

The difference between the most and the least satisfied listener is small:
q(U, T ) has an average standard deviation of 0.04 which means that a reasonable
degree of fairness is achieved. The satisfaction of the group as a whole is quite
high for this kind of worst case scenario, in fact the average satisfaction degree
over the 25 songs played equals q(U, T ) = 0.68.

6.4 Discordant listeners

The previous section has evaluated poolcasting on a group of listeners with
random individual preferences. In that case, poolcasting was able to deliver a
group-customised sequence of songs to satisfy the entire audience.

This section considers a different situation in which five participants are split
into two purely antagonist groups: the music that three users prefer, the other
two dislike, and vice versa. No song exists that the entire audience likes.

The rationale of this experiment is to prove whether poolcasting can achieve
fairness with discordant listeners, determining a sequence of songs that, in the
long run, can match the preferences of all the participants. Again, this is a sort
of worst case scenario: in the real world, listeners of the same radio channels
typically share musical affinities for some songs.

For the sake of this experiment, five artificial profiles are created to simulate
five participants split into two discordant groups. Three users are assigned with
random positive preferences i(U, X) for half of the available songs and with
random negative preferences for the remaining half; the opposite occurs for the
other two users.

Figure 6.2 (left) illustrates this distribution on a sample set of ten songs: the
users labelled as 1, 2 and 3 only like the last five songs, while the users labelled as
4 and 5 only like the first five songs. By comparison, Fig. 6.2 (right) represents
the scenario previously evaluated in Sect. 6.3 where individual preferences were
independently assigned among listeners.
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Figure 6.2: Sample individual preferences of five participants whose profiles
belong to two discordant groups (left) or are independent (right).
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The evaluation is run as in Sect. 6.3, having the channel playing 25 songs,
repeating the process 20 times with different initial songs, and observing the
values of h(U, T ) and q(U, T ) at each iteration.

6.4.1 Results

The results of the evaluation are shown in Fig. 6.3: the plot on the left marks
the individual preferences h(U, T ) for the songs played; the plot on the right
indicates the satisfaction degrees q(U, T ) of the five participants.
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Figure 6.3: Individual preferences and satisfaction degrees of five participants
split in two groups with discordant music profiles.

The first observation is that the two groups can be clearly identified in
the graphs: most played songs are preferred by three participants who, as a
consequence, have a higher satisfaction degree.

Still, the difference between the two groups is not very large and whenever
a song preferred by the majority is played, a song preferred by the minority is
played soon after. The songs played at position 8, 18, 21 and 24, for instance,
are preferred by the minority more than by the majority. Moreover, every song
played, although preferred by one of the two antagonist groups, has been selected
to be reasonably acceptable by the members of the other group, albeit to a lesser
degree.

The motivation for this balanced outcome is the satisfaction-weighted
aggregation strategy presented in Sect. 4.4 that combines individual preferences
rewarding less satisfied listeners. In this case, two participants are generally less
satisfied than the other three so once in a while poolcasting delivers one of their
favourite songs, to achieve fairness.

Thanks to this approach, the distance between the satisfaction degrees of the
groups does not increase over time, as shown in Fig. 6.3 (right). This result is
notably positive considering that actual radio channels do not typically have an
audience split into two purely antagonist groups.
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6.4.2 The importance of memory

In the previous experiment, a certain degree of fairness was achieved thanks to
the satisfaction-weighted aggregation strategy that holds memory of previous
outcomes to determine which items to deliver next.

To prove that this strategy is the responsible for the positive results obtained,
an equivalent experiment is run under the same conditions but using a different
aggregation strategy, with no memory of past decisions.

The experiment is run with the same audience of two discordant groups but
preferences are here combined with a simpler approach, selecting at each step the
song that has in average the highest preference, independently of the previous
songs played. No memory of past satisfaction is kept.

The results of this experiment are shown in Fig. 6.4 which illustrates the
average individual preferences (left) and satisfaction degrees (right) of the five
participants for the songs played.
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Figure 6.4: Individual preferences and satisfaction degrees of five discordant
participants when songs are selected without memory.

As can be observed in Fig. 6.4 (left), in this case the radio channel plays only
songs that three participants (the majority) prefer more than the remaining two
(the minority). As a consequence, three members of the audience are more and
more satisfied as time goes by, while the remaining two members are less and
less satisfied, as shown in Fig. 6.4 (right).

The lesson learnt is that, without memory of past elections, fairness can only
be achieved punctually, satisfying at each moment only the current majority.
The satisfaction-weighted aggregation strategy that characterises poolcasting,
on the other hand, can fairly satisfy the entire audience over time, playing songs
that both the majority and the minority like to a certain extent.

6.5 Concordant listeners

The next experiment is meant to evaluate the performance of poolcasting in the
case members of the audience share some affinity with respect to their music
profiles. While the previous sections focused on worst-case scenarios made
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of random or antagonist participants, this section considers a more common
situation in which different listeners of the same radio channel like the same
kind of music.

In this case, profiles are not generated independently one from the other, but
with a certain concordance. Precisely, for every song X ∈ C in the music pool,
the preferences i(U, X) of the five participant are generated as random numbers
limited to a particular sub-range of [−1, 1] of diameter ϑ ∈ [0, 2], that is:

max
U∈U

i(U, X) − min
U∈U

i(U, X) 6 ϑ ∀X ∈ C .

The smaller the value of ϑ, the closer the preferences of different participants
for the same song, the stronger the affinity between music profiles. This
distribution of music profiles is illustrated in Fig. 6.5 on a sample set of ten
songs.
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Figure 6.5: Sample individual preferences of five participants whose profiles share
an affinity of ϑ = 0.5 (left) or ϑ = 1 (right).

Figure 6.5 (left) represents the situation where ϑ = 0.5; in this case all the
individual preferences i(U, X) for the first song are restricted to negative values
in [−0.9, −0.4], all the preferences for the second song are positive with values
in [0.4, 0.9], all the preferences for the third song are medium with values in
[−0.2, 0.3], and so on. Figure 6.5 (right) illustrates the situation with a larger
diameter ϑ = 1; in this case the affinity is less evident. Note that when ϑ = 2,
the situation is identical to Fig. 6.2 (right).

The evaluation of the experiment is run as in Sect. 6.3, with five participants
listening to 25 songs played on a channel, repeating the process 20 times with
different initial songs, and observing the values of h(U, T ) and q(U, T ) at each
iteration.

6.5.1 Results

Figure 6.6 (left) shows the results when ϑ = 0.5, that is, when participants have
a quite strong affinity in musical taste. Compared to Fig. 6.1 (right) (audience
with no musical homogeneity), the results improve with respect to both the
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average individual preference (increased to h(U, T ) = 0.86) and the variance
among different users (the standard deviation decreases to 0.02).
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Figure 6.6: Individual preferences for songs played when ϑ = 0.5 (left) and
correlation between affinity degree and average preferences (right).

The relationship between group homogeneity and satisfaction is illustrated
in Fig. 6.6 (right), which shows how poolcasting is better able to deliver songs
the audience strongly likes when the value of ϑ is small. In the real world, a
group of people listening to the same radio channel is expected to present some
homogeneity in their musical taste, in which case the performance of poolcasting
improves noticeably.

6.6 Scalability

The next experiment evaluates the impact of the size of the audience over the
group satisfaction. The previous sections have only considered channels with
five listeners; this section investigates whether adapting content for less or more
people can affect the performance of poolcasting.

The evaluation is run using two new sets of artificial listeners: the first
contains only two user profiles while the second simulates a group of twenty
people. As in Sect.6.3, profiles are generated assigning random values in [−1, 1]
to the individual preference i(U, X) of each person for each song. A channel is run
for the duration of 25 songs, the process repeated 20 times and the satisfaction
degrees q(U, T ) are analysed.

6.6.1 Results

Figure 6.7 shows the satisfaction degrees of the participants in a group of size 2
(left) and size 20 (right).

Compared to the group of size 5 represented in Fig. 6.1 (right), the
satisfaction degrees are higher in Fig. 6.7 (left) and lower in Fig. 6.7 (right).
In other words, poolcasting has it easier to adapt content for smaller groups
than for larger groups. This makes sense since the more the listeners, the more
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the music preferences to fulfil, and the harder to satisfy the entire audience.
Specifically, the average satisfaction degree decreases from q(U, T ) = 0.84 with
size 2, to q(U, T ) = 0.72 with size 5, to q(U, T ) = 0.61 with size 20.
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Figure 6.7: Satisfaction degrees for a channel with 2 participants (left) or 20
listeners (right).

More interesting, though, is that the variance between participants remains
small even when the size of the group grows. The lines plotted in Fig. 6.7 (right)
are all very close and stable over time, meaning that poolcasting is able to keep
a good balance of the satisfactions of all the listeners in the long run.

Although one might conclude from this experiment that poolcasting can only
be applied to radio channels with a small audience, this conclusion is not correct
for a series of reasons.

Firstly, this section has focused only on a worst case scenario where all the
listeners have random music preferences. In the real world, members of the
same channel typically share some musical affinity, which makes it easier to find
songs that satisfy multiple listeners at the same time. As a consequence, group
satisfaction is not always as badly affected by the group size as illustrated in
Fig. 6.7 (right).

Secondly, the experiment has been run on a channel with no filters, playing
songs from every genre, tag or period. However most online radio stations restrict
the music played to a specific set of songs (e.g. a ‘Rock’ channel) to attract a
public with a certain homogeneity in musical taste. As observed in Sect. 6.5,
the stronger the affinity in the music profiles of the participants, the higher the
satisfaction degree that poolcasting can provide, even for large groups.

Lastly, populated channels can benefit the listeners in terms of music
discovery. A listener U connected to a channel with a large audience is
more exposed to unknown music, played because of the preferences of other
participants. Even though unknown songs will not match the music profiles of
U , causing a decrease in the satisfaction degree q(U, T ), the chance of discovering
new music is seen as a positive trade off by many listeners.

The advantage of poolcasting is that, even when the audience is very large,
fairness is achieved keeping the satisfaction of all the listeners balanced in the
long run.



6.7. Other parameters 91

6.7 Other parameters

The experiments in this section evaluate the impact of three other parameters
of the poolcasting process over customisation and fairness.

The first parameter is the retrieval size ∑, which determines how many songs
are selected in the retrieve process as ‘good candidates’ to be played next.

The second parameter is the misery threshold µ, which determines the
minimum individual preference that any listener is willing to accept for any
played song.

The third parameter is the initial satisfaction ∂, which determines the default
value of q(U, T ) for a participant who has not yet listened to any song in the
channel.

All the experiments are performed under the conditions described in Sect. 6.3,
with five artificial listeners with random music profiles.

6.7.1 Retrieval size

The retrieval size ∑, introduced in Sect. 4.3, indicates how many songs are
selected in the retrieve step of the CBR process. The larger the retrieval size ∑,
the more the candidate songs that are pre-selected to be played next, the higher
the probability to find a candidate song the audience will like.

Figure 6.1 (left) illustrated the outcome on individual preferences of running
poolcasting with a default retrieval size of ∑ = 15. Figure 6.8 (left) evaluates
the same process but with the parameter set to ∑ = 30.
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Figure 6.8: Individual preferences for songs played when ∑ = 30 (left) and
correlation between retrieval size and average preferences (right).

Having doubled the retrieval size, the average group preference increases but
not noticeably, from h(U, T ) = 0.72 (with ∑ = 15) to h(U, T ) = 0.76 (with
∑ = 30). Figure 6.8 (right) confirms this observation, showing the relationship
between the retrieval size ∑ and the average group preference h(U, T ). A clear
improvement occurs in the lower range of intervals, but for values of ∑ larger
than 15 the average group preference remains quite stable.
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For this reason, ∑ = 15 can be considered as a good retrieval size. A smaller
value would worsen the quality of the candidate set and, as a consequence, the
quality of the played songs. A larger value, on the other hand, would not improve
much the quality and could decrease the performance of poolcasting, required
to rank more candidate songs in real time.

Another good reason not to have a large retrieved set is that Poolcasting
Web radio offers a Web page where listeners can send feedback for the candidate
songs (see Fig. 5.9). If the list were too long, the audience would probably
just ignore it, rather than stating a feedback which is very valuable to refine
individual music profiles.

6.7.2 Misery

Another parameter that affects the music selection process is the misery
threshold µ ∈ [−1, 1], introduced in Sect. 4.4.3. This value specifies the minimum
preference degree that the audience is disposed to accept for a played song. For
instance, if µ = 0 then no song that any listener dislikes is allowed to play on the
channel. At the extreme, when µ = −1 every song can be played; when µ = 1
only songs that the whole public unconditionally loves can be played.

If the misery threshold is low, then every song can be played, even songs one
participant detests (low minimum individual preference) and everybody else
loves (high group preference). If the misery threshold is high, then only songs
that no one detests (high minimum individual preference) can be played, even
if they have a low group preference.

These two cases are illustrated in Fig. 6.9, which represents the preference
degrees of listeners for the songs played when the misery threshold is low (µ =
−1) or when the value is higher (µ = 0). The higher the threshold, the lower the
average preference degree: h(U, T ) = 0.73 with µ = −1 (left), h(U, T ) = 0.59
with µ = 0 (right), while h(U, T ) = 0.72 with µ = −0.75, as shown in Fig. 6.1
(left).
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Figure 6.9: Individual preferences for songs played when misery threshold µ =
−1 (left) or when µ = 0 (right).

The lesson learnt is that the misery threshold is better kept small, since large
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values force poolcasting to select songs that will not bother anyone but that no
one will really love either.

The threshold could as well be set to µ = −1, to completely ignore the
issue of misery. In fact, poolcasting listeners that do not like the songs played
are already rewarded by the satisfaction-weighted aggregation. By ignoring the
issue of misery, poolcasting would make it impossible for malevolent participants
to take control over the music played by strategically casting negative feedback
for every song except those they would like to hear.

6.7.3 Initial satisfaction

The last parameter that can affect the outcome of poolcasting is the initial
satisfaction ∂ ∈ [0, 1], introduced in Sect. 4.4.2. This value defines the satisfaction
degree of any person who has not yet listened to any song.

Figure 6.10 shows the effect of different values of ∂ on the satisfaction degrees
of the participants: ∂ = 0 (left) and ∂ = 1 (right). By comparison, Fig. 6.1 (right)
represented the default case where ∂ = 0.4.
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Figure 6.10: Satisfaction degrees for songs played when participants have initial
satisfaction ∂ = 0 (left) or ∂ = 1 (right).

The graph shows that the value of ∂ only affects individual satisfaction for
the duration of the first songs. After a while, the value is absorbed by the
satisfaction decay and becomes irrelevant. After 25 songs, the satisfaction of the
listeners is almost the same, independently of the value fixed for ∂.

The conclusion is that the value of ∂ does not affect satisfaction in the long
run. Using a default value of ∂ = 0.4, slightly below the average, can help ‘boost’
the importance of newcomer participants, so they can immediately listen to some
songs they like when entering a channel. This effect decays rapidly and, after
a while, all the participants are treated equally independently of their initial
satisfaction.
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6.8 Summary

This chapter has presented a series of evaluations of the poolcasting technique,
both with real users and artificially created scenarios.

Experiments with real users have shown that radio channels can achieve
variety and smoothness but some precautions have to be taken to prevent
frustrating situations, like having the same sequence of songs repeated over
time, or forcing listeners to wait too long for some preferred songs. Interviewed
subjects judged positively the compromise offered by the social experience in
which participants do not listen only to favourite songs, but also to songs they
ignore and will probably like since other like-minded listeners like them.

A series of evaluation tests has revealed how poolcasting behaves under
different sets of constraints. An initial experiment was run on a set of
participants with random, independent music profiles, to which poolcasting
could correctly provide a customised and fair musical sequence. Although
unrealistic, this experiment has shown that performance can be maintained at
certain levels even in a worst-case scenario.

In a different experiment, the group was split between two discordant groups,
and poolcasting could as well ensure fairness, playing songs that all the listeners
liked in the long run. On the contrary, a simple average voting strategy would
only satisfy the majority, leaving the minority disappointed by the music played.

In the scenario where members of the audience share musical affinity,
poolcasting works even better, finding more songs the audience appreciates. The
size of the audience also affects the group satisfaction, which decreases as the
size decreases, although the same balance is kept among different participants
even when the group is large. Satisfaction is maintained high if members of the
audience tend to like the same kind of music.

Additional parameters that can affect the outcome were also evaluated
(retrieval size, misery threshold, initial satisfaction) to find the most appropriate
values for a good balance between performance and results.



Chapter 7

Conclusions

Not all good things come to an end
now it is only a chosen few

Elvis Costello, 1982

7.1 Summary

This dissertation has presented poolcasting, an intelligent technique that
automatically programmes songs for a music channel customised for the actual
audience. The goal of poolcasting is to satisfy at once a whole group of listeners,
delivering a musical sequence that matches their preferences and is at the same
time varied and musically smooth.

7.1.1 The goals of poolcasting

The novelty of poolcasting is the ability to autonomously perform a task
commonly delegated to disc jockeys: to select in real time which songs to play
according to the preferences of a group whose composition changes over time.
Specifically, poolcasting compiles music programmes that fulfil four properties:

1. Variety : no song or artist is repeated within a short period of time;

2. Smoothness: songs follow a sequence perceived as musically smooth;

3. Customisation: songs match the musical interests of the current audience;
and

4. Fairness: in the long run, every listener has a similar degree of satisfaction
with respect to the music experienced.

95
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7.1.2 The CBR process

The approach of poolcasting to build a group-customised musical sequence is by
means of an iterated Case-Based Reasoning process that adds in real time new
songs to the sequence, based on the last songs played and on the preferences of
the current listeners.

Case bases

The songs available to be played at any time and the preferences of the listeners
for these songs constitute the case bases. Each case is defined as a tuple ¡song,
performing artist, individual preference¿.

Individual preferences are obtained from listening habits data, analysing
which songs and artists each person most played and rated in the past. All
the cases related to a listener form a case base and describe which songs an
individual would (or would not) like to hear. The case bases of all the listeners
at a given moment form the collection of case bases.

Retrieve process

When a new song has to be added to the musical sequence, poolcasting retrieves
from the case bases a set of good candidate songs to be played next. Songs
and artists recently played are not good candidates since they do not match the
requirement of variety (Goal 1).

The remaining songs are ranked according to how well they go in sequence
after the last song played. The knowledge to fulfil this task comes from the
analysis of playlists collected from the Web which describe actual musical
experiences of thousands of people. From their analysis, the retrieve process
determines a set of songs that are more indicate to be played after the last one
and that, as such, match the requirement of smoothness (Goal 2).

Reuse process

The set of retrieved candidates is then ranked according to the musical tastes of
the current listeners, in order to achieve customisation (Goal 3). This process
addresses the social choice problem of delivering content that is liked by the
entire audience while preserving fairness in the long run.

In the reuse process, a set of individual preferences is extracted for each
candidate song from the case bases. These preferences are then aggregated to
determine the candidate song preferred by the group as a whole. The aggregation
takes place by means of a satisfaction-weighted average: songs are ranked higher
if they are most liked by less satisfied listeners. Keeping memory of past
satisfactions enables the reuse process to achieve fairness (Goal 4).
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Revise process

The ranked set of candidates is presented to the listeners who can adjust their
preferences for each song. The expressed feedback can alter the ranking of the
reuse process, making a different candidate become the one with the highest
group preference.

Finally, the best ranked candidate is selected and delivered to the audience.
The CBR process cycle starts again to determine the next song to add to the
musical sequence.

7.1.3 The Web radio application

To evaluate the properties of poolcasting in a real scenario, the technique
has been integrated into a Web radio application to provide music channels
customised for their audiences.

The result is Poolcasting Web Radio, an online radio framework that offers
a social radio experience, where the channels adapt their content for the taste
of the actual audience.

The workflow of each channel follows the CBR process that characterises
poolcasting. Each channel identifies a virtual space where people find a
particular subset of music (e.g., a ‘Rock’ channel), programmed in real time
according to the audience.

In this application, listeners can contribute with new songs to the repository
of music by sharing their personal digital music libraries. From each shared
library, the radio parses the list of songs and the listening habits data, that is,
how many times each song was played and its rating. Analysing these data, the
radio is able to assess music profiles for each channel listener.

When a new song has to be scheduled on a channel, the system first discards
songs that do not fit the channel definition (e.g., non-Rock tracks) or that have
been played recently. Next, a set of good candidate songs that go well after
the last song played is retrieved and ranked according to a satisfaction-weighted
average of the listeners’ preferences.

Using the Web interface of the radio, the audience can browse the list of
ranked candidates and revise their preferences, stating explicitly positive or
negative feedback for each song. After the revision process, the best ranked
candidate is finally determined as the next song to play.

7.1.4 Evaluation

A prototype of Poolcasting Web radio has been running in the local network of
the IIIA and has served as the basis for a set of evaluations.

Ten persons have actively used the radio during one year; most of the opinions
collected were positive with regard to the social radio experience. Listeners
enjoyed the fact of listening to music with friends located elsewhere and of
listening to a combination of songs they already knew with songs that were
unknown to them but were preferred by like-minded listeners.
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Being able to discover new music was seen as a good compromise that justified
the fact of being exposed, once in a while, to music outside of their interests.
Moreover, users who shared their personal libraries were able to ‘re-discover’
songs they did not remember to have in their large collections.

A set of experiments was additionally run to evaluate the performance of
poolcasting with groups made of artificial profiles with different size and musical
interests. For groups that are small or whose members have a strong musical
affinity, poolcasting performs particularly well, playing musical sequences that
satisfy the entire audience.

The average performance tends to decrease if the group becomes larger or
musically heterogeneous since poolcasting may not always find songs that rank
high in everyone’s individual preferences. In these cases, poolcasting is still able
to determine a musical sequence adapted for the audience, although with smaller
average individual preferences.

Under every condition, poolcasting is able to fulfil the goal of fairness,
selecting songs that, in the long run, satisfy the entire public. Even when the
audience is split in two discording groups (e.g., three members love the music
that two members dislike and vice versa), poolcasting is able to maintain a good
balance among all the participants, playing over time songs that both sub-groups
like.

These positive results are due to the satisfaction-weighted aggregation
method introduced in Sect. 4.4 to combine multiple individual preferences into
an iterated collective choice. This method boosts the influence of less satisfied
listeners, so that their favourite songs are played within a certain amount of time
even if their interests belong to a minority.

7.1.5 Possible applications

The evaluation makes clear that poolcasting can act as a good disc jockey under
certain conditions, playing music that satisfies the audience and is varied and
smooth. The technique can be used to customise online radio channels (as in
Poolcasting Web radio), but may also be applied to other contexts.

One possible application is to automate the selection of music in a house-
party. In the past, party guests would sometimes bring their own vinyl or
compact discs to contribute to the music played. Nowadays, most people
store their music in digital devices such as iPods. The idea of a ‘poolcasting
party’ is to set up a party where friends bring their own iPods and connect
them to a personal computer, from where music will be played. The computer
runs a poolcasting system which reads the songs available on each player and
autonomously generates a customised musical sequence of these songs, combining
individual preferences and musical continuity. Similarly to a radio channel, the
audience could restrict the music played to a specific subset (e.g., Dance music
from the Nineties). As people join or leave the venue, the available music would
change, and poolcasting would dynamically adapt the songs played to the current
audience.
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A different application for poolcasting would be to help music labels promote
new releases. Music promotion on AM/FM radio is a common marketing
strategy: labels pay radio stations to broadcast their latest songs, where the
larger the audience of a station the higher the amount paid. The problem with
this strategy is that it only works for mainstream music and is not profitable
for small niches of public. With a Poolcasting Web radio, the definition of
each channel would be left in the hands of the audience, according to their
favourite genres, periods, tags. In this scenario, music labels would have it
easier to identify very specific niches of audience that might be interested in their
upcoming releases. A promotion strategy for this “long tail” [Anderson, 2004]
of listeners would be cheaper and more effective than one run on a mainstream
station.

7.2 Contributions

The research reported in this dissertation offers relevant contributions to
different areas: Web data mining, Case-Based Reasoning, social choice and
Internet radios.

7.2.1 Experiential data from the Web

The first contribution of this thesis is the demonstration of how experiential data
collected from the Internet can be reused to perform a specific task.

Poolcasting is designed to generate ‘good’ musical sequences and this requires
domain knowledge about songs and artists that go well together in sequence.
Other researchers have proposed to extract this knowledge from the content
of musical objects, analysing their acoustic features, chords or lyrics. These
approaches are not quite scalable since they require either the audio content,
the lyrics or a symbolic representation of each song. Moreover, these techniques
can only identify songs that ‘sound similar’, which do not necessarily correspond
to songs that go well in sequence for a particular context or group.

One goal of this research was to show how the same task is better solved
observing the way in which people have experienced music in the past, to
determine which songs may play well together in new sequences. For this
purpose, about a million playlists were collected from the Web, records of the
way in which people organise music for their daily activities.

The analysis of co-occurrences in these playlists has resulted in the definition
of a musical association degree that allows to determine which songs and artists
are more ‘socially’ associated.

The comparison of this association measure with other measures of similarity
offered by popular music-related Web pages (Yahoo! Music, MusicStrands,
All Music, Last.fm) has demonstrated that this approach is not only able to
obtain equivalent results, but also to uncover relationships motivated by social
or cultural reasons, rather than by acoustic ones.
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Employing Web data mining to address problems that are typically solved by
content-based techniques looks like a practical and effective approach, motivated
by the fact that human experiences in multiple domains are becoming more and
more available on the Internet.

7.2.2 Reinterpretation of CBR

The second contribution of this dissertation is the reinterpretation of the Case-
Based Reasoning process and its application to a dynamic group-based scenario.

The CBR process that runs poolcasting has different innovative features.
CBR has been classically understood in a single-agent framework, with individual
past experiences stored as cases to solve new tasks. In poolcasting, past
experience is obtained from multiple people by means of playlists and listening
habits. Moreover, cases are not structured as (problem → solution) pairs, but
contain the appropriate knowledge to solve the current task, that is, to determine
which song to play next.

Rather than a single case base, poolcasting exploits a collection of case bases
that is updated at every iteration to consider only the listeners connected at
each moment. The retrieve process has been reinterpreted to determine the most
indicated candidates to be played at a given time, according to the experiential
knowledge extracted from playlists. The reuse process attacks the social choice
problem of identifying the songs preferred by the group as a whole. The revise
process updates the preferences of the audience and enables listeners to influence
in real time the ranking of the retrieved set, determining which song will be
played next.

One advantage of the CBR approach is that the four properties of variety,
smoothness, customisation and fairness can be targeted in successive steps.
First, poolcasting looks for candidates that address sequence-related properties
appropriate for every type of audience (avoiding repetitions and jolting musical
transitions). Then, poolcasting adapts the retrieved set to a particular audience.
In this way, the influence of the listeners is limited to a specific range of ‘good’
songs that are indicate to be played in sequence.

A consequence of this approach is that, in the revise process, participants
are requested to send feedback only for a small set of songs (the retrieved set),
and not for the entire repository of music. This encourages people to revise
their preferences; showing too many options would probably obtain the opposite
effect.

Another advantage of CBR is that poolcasting can both work with ‘passive’
listeners, who never express feedback for the proposed songs, and with ‘active’
listeners. In the former case, models of musical preferences generated from the
analysis of listening behaviour data are used to assess the preferences of the
audience. In the latter case, the adjustments made by the listeners to their
music profiles enable poolcasting to learn more precisely the interests of the
audience and to improve customisation over time.

Having a collection of case bases, one for each participant, is also an
advantage. Whenever people listen to music in groups, members of the audience
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can join or leave at different moments. At each moment, the music should
be customised only for the current members. In poolcasting, every time the
CBR process is iterated, only the case bases of the current participants are
considered, so that the right group-customisation is achieved. When the CBR
process restarts to select the following song and the composition of the audience
has changed, the collection of case bases is updated accordingly.

The characteristic of Case-Based Reasoning is to reuse past experiences to
solve new tasks. Poolcasting opens a path to apply this idea to scenarios larger
than a single agent, where experience is provided by a multitude of persons (as
happens on the Web) and solutions are automatically adapted to the actual
preferences or needs of specific users.

7.2.3 Iterated social choice

The third contribution of this thesis is the development of a strategy to iteratively
aggregate multiple individual preferences in order to satisfy a group as a whole.

Poolcasting is faced with a series of consecutive decisions about which song
to play at each moment. These decisions cannot be taken independently since
the objective is to form a globally good sequence. The preferences of all the
participants should be considered but, at the same time, those who have not
recently listened to any favourite song should be promoted, to guarantee a
balance among the entire audience.

For this purpose, a novel preference aggregation method has been introduced
that determines which song to select at each moment, keeping memory of
previous decisions.

The satisfaction-weighted preference aggregation consists of calculating the
average of all the individual preferences, weighted according to the measure
in which each person has enjoyed the experience so far. People who have not
recently listened to any of their preferred songs obtain a larger weight and vice
versa. Every time a new song is played, the weights are updated, which ensures,
after a certain number of iterations, a fair and balanced satisfaction.

The rationale of this technique is that whenever people are exposed to content
they do not particularly appreciate, they are soon after rewarded by some of
their favourite music. This strategy is a trade-off between an egalitarian and an
utilitarian system. The technique also includes a misery threshold which ensures
that participants are never presented with songs they intensely dislike.

The satisfaction-weighted strategy is applicable to every domain where a
sequence of inter-dependent decisions has to be taken for a group of people.
Groups who meet on a regular basis to perform an activity together (watching
movies, visiting places, attending restaurants, etc.) may use an adapted version
of the strategy presented here for iterated social choice.

7.2.4 A social radio experience

The fourth contribution of this thesis is the development of an online application
to provide group-customised music channels.
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Online radios stream millions of music channels that are not affected by who
is actually listening. Poolcasting Web radio takes instead advantage of the social
nature of the Internet to stream music channels customised for their audience.

Customised music streams are typical of digital music services such as Last.fm
and Pandora which provide private music channels, personalised for individuals.
The innovation of Poolcasting Web radio is to offer public radio channels that
anyone can join at any moment, where the content is adapted to a group of
listeners in real time.

Poolcasting Web radio also offers innovative features to increase the social
nature of the experience: listeners can vote for the proposed songs, can create
new channels and, most importantly, can share their personal music libraries,
contributing with music to the collection of songs broadcast on the radio.
According to a recent study [McGuire and Slater, 2005], nearly one-fourth of
frequent online music users say the ability to share music with others in some
fashion is an important criterion when selecting an online music service.

Poolcasting Web radio combines bottom-up and top-down approaches: users
can express their musical preferences while the actual choice of music played is
taken by a CBR process that iteratively checks which songs are available and
who is listening and selects the song most likely to satisfy the current audience.

With Poolcasting Web radio, the social component that characterises many
real-world situations is integrated for the first time into a Web application.
Listeners can influence the music played, chat with each other within a channel,
define new channels and share personal libraries and listening habits.

Friends located around the world can meet in a virtual space created ad hoc
for their musical interests and share a listening experience that is not offered by
other Web services and which allows to easily get to share and discover music.

7.3 Future work

Although this dissertation has focused on customising musical content for a
group of listeners, the techniques presented can be extended to content of
different nature. The idea of ‘poolcasting’ comes from the words:

pool (noun) — a combination of resources, funds, etc., for common
advantage; and

cast (verb) — to send forth, to deliver;

and can be defined as follows:

poolcast (verb) — to collect knowledge about resources and people,
and use such knowledge to deliver the right sequence of resources for
the common advantage of a group of people.

Poolcasting identifies a process that does not require human intervention
and works sequentially, selecting which items to deliver to the audience based
on the previous items and on the preference and satisfaction of the audience.
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Figure 7.1: A poolcasting system scenario.

Poolcasting can be considered, similarly to collaborative filtering, as a family of
techniques applicable to user-adaptive systems.

This dissertation has shown that reusing experiences collected from the Web
to provide group-customised channels is a practical and productive research path.
Future work will be dedicated to investigate domains other than music where
this approach can result effective.

7.3.1 Generalising poolcasting

To extend poolcasting to other domains, it is important to summarise the
fundamental features and requirements of the presented technique.

The first characteristic of poolcasting is its iterative nature. The goal of
the technique is to generate a good sequence of items — not just one — and for
this reason a selection process is iterated multiple times. At each iteration,
poolcasting holds memory of the previous selections to ensure that the whole
sequence fulfils the desired requirements.

The second property of poolcasting is its social nature. The technique adapts
content to a group — not an individual. When members of a group have different
preferences, poolcasting pursues fairness with a sequence that can possibly
satisfy everyone at the same degree. Poolcasting is designed for intentional
groups, who accept to collaborate rather than to compete, for whatever reason
that keeps the group alive. The composition of the group can change over time
and members can either be co-located or displaced.

The third characteristic is that domain knowledge comes from reusing past
experiences. The principle is that the best way to customise content for a group
is to learn from the way in which others have experienced that content in the
past. In particular, the focus is on the Web which offers the largest data source
for human experiences.

The last relevant property is that poolcasting does not just recommend
but actually delivers adapted content (e.g., broadcasting music on the Web),
enabling the audience to share an actual experience and express immediate
feedback which is valuable to improve customisation over time.
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Poolcasting in the domain of movies

One scenario where poolcasting could be useful is that of a family or a group of
friends who meet weekly to watch movies together. Each individual might have
different ‘watching habits’ and enjoy more or less different genres but still long
for a social experience that reunites them week after week.

In this kind of situation, people implicitly accept the social compromise that
they will probably not watch only movies they know and like, but will have the
chance to discover titles enjoyed by their friends.

This scenario resembles that of Poolcasting Web radio, but the extension to
the domain of movies requires some adjustments. While songs in a radio are
played one right after the other, movies are watched in separate days, therefore
their order and continuity is not as relevant as in the case of music.

The satisfaction decay also changes: listening to three consecutive ‘less
preferred’ songs in a radio channel may be acceptable for an individual, since
they would only count for 10 minutes of an entire music programme; watching
three ‘less preferred’ movies in a row, on the other hand, would be less acceptable,
since they would correspond to three weeks of negative satisfaction for a specific
individual.

Another difference resides in the data collected from the Web to identify
associations. Working with movies requires to gather ‘watch-lists’, sequences of
titles watched by a person within a certain period. Similarly to music, Web
communities exist that make these data available for millions of users.

The co-occurrence analysis of these data is also different. In the case of music,
the simple fact of observing two songs occurring together in playlists suggests an
association between them. In the case of movies, an association can be derived
only when many people watched the same two movies and rated them identically.

A complete development of a movie-related poolcasting system remains
future work, but preliminary studies suggest that the analysis of Web-mined
data can produce good lists of top associated movies, as reported in Appendix A.

Poolcasting news items

Another promising scenario for poolcasting is delivering news items to a group
of displaced friends. Nowadays there is a clear discrepancy in the way in which
news are produced and consumed. Newspapers, newscasts and magazines force
users to experience news in a fixed order, determined by the editorial board to
satisfy an imaginary ‘average’ consumer (e.g., first politics, then economics, then
weather, then sport). However every person has a particular way of experiencing
news; for instance one might flip through the first pages of a newspapers and
skip directly to sport and weather.

Applying the poolcasting strategy to news items would mean to let people
organise themselves in groups (news channels) where they would specify their
interests either explicitly (by means of genres, periods, tags) or implicitly
(inferred from their previous experiences).

Within a channel, people would share news items with others and, in return,
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discover news that interest other like-minded persons. News producers would
benefit from this model since they would be able to deliver the right content to
the right target.

Poolcasting news items would also blunt geographical constraints. People
would be able to access their own ‘local news’ channels, independently from
their actual location. An Indian citizen living abroad, for instance, would still
be able to receive daily updates about his hometown and become aware of news
items prompted by his friends in India.

Poolcasting TV programmes

A different domain where to apply poolcasting is that of a group of people, sitting
together in front of a TV set, who have to decide which programmes to watch.
Thanks to PVRs (Personal Video Recorders), viewers can nowadays personalise
the order in which they wish to experience TV shows, but these systems only
work for one person at the time and do not allow a group to find a sequence of
programmes that can satisfy everyone.

A common situation is that of a family where the father likes sport and
action/comedy movies, the mother likes comedy movies and quiz shows, the
grandmother likes documentaries and talk shows, the kid likes animated series
and comedies: what programmes should they watch together? Is there a social
alternative to splitting the family into four separate screens?

The idea of a ‘poolcasting TV’ consists in a system that autonomously
configures prime-time TV group sessions day after day. This system would first
build user profiles of each spectator, based on explicit feedback and observed
behaviours (e.g., which shows each person tends to watch, at which time, for
how long, when is the person at home). During each session, the system would
then aggregate multiple preferences, trying to satisfy the whole family in the
long run. For instance, one night the system might first broadcast an episode
of an animated series, so the kid can happily go to sleep; then a documentary
about sport legends, to generate an enriching discussion between father and
grandmother; then a comedy movie, which would fairly satisfy all the adults.
Memory of past choices would help achieve balance and fairness among all the
family members along time.

7.3.2 Improving poolcasting

A different direction for future work deals with ways to improve the experience
of members of poolcasting channels.

Self-adaptive channels

A possible improvement to poolcasting is to introduce self-adaptive channels.
These channels would diagnose decreases in performance and react accordingly,
suggesting a solution to the participants.
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An example is given by the situation where a Poolcasting Web radio channel
is listened by two discordant groups of listeners and the system has to struggle
to adapt the music for the entire audience. In this case, a self-adaptive channel
would detect the situation and suggest the two sub-groups to split into two
separate channels, in order to maintain a higher degree of group satisfaction.

Introducing self-adaptive channels would be of great advantage to the
participants. Self-adaptive channels can be seen as form of goal-driven learning
[Leake and Ram, 1993] as they would recognise situations where some type of
failure occurs, access a library of possible correcting actions and then apply the
best suited one to fix the problem.

Fuzzy affinity degrees

A different direction to improve poolcasting experience is to enrich music
ontology from simple Boolean categories to fuzzy affinity degrees.

Poolcasting can currently categorise songs and artists in the music pool only
in Boolean terms. Madonna, for instance, belongs to the genre Pop and not to
the genres R&B or Jazz. Likewise, Madonna has been tagged as ‘female pop’
and not as ‘Spanish pop’.

The limitation of this representation becomes clear when poolcasting has to
schedule music for multi-genre channels, for instance for a radio channel defined
as ‘genre in (Pop, R&B)’. Ideally, a good musical selection for this channel would
be to first play a song from the core of a genre (e.g., a Pop song), then a series
of songs in between two genres (e.g., Pop/R&B tracks) to finally reach a song in
the core of the second genre and gradually move back to the first genre. In order
to achieve this behaviour, the music ontology employed by poolcasting has to
be enriched to include fuzzy membership degrees, to measure the degree in which
each song or artist belongs to each genre or tag.

A method to describe songs and artists in terms of fuzzy membership degrees
was introduced by the author in [Baccigalupo et al., 2008]. Thanks to this
method, artists can be characterised as vectors of fuzzy membership values rather
than simply as Boolean categories. The music of Madonna, for instance, can be
described as belonging to different genres at different fuzzy degrees: Pop (0.4),
R&B (0.8), Jazz (0.3), and so on.

Future work will be dedicated to embody the concept of “genre affinity
degree” into poolcasting. Users would benefit from this approach as they would
be able to specify whether a channel should only play core artists of a given
genre (who show a high membership degree) or whether cross-genre artists are
allowed as well.

Poolcasting could also be able to better programme multi-genre radio
channels, playing music that smoothly shifts from the core of a genre, to cross-
genre songs, to songs belonging to a different genre and so on. This improvement
would make poolcasting behave more similarly to professional disc jockeys, who
are able to swiftly transport music from a style/genre/tempo to a different one
without disrupting transitions.
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7.4 Related publications

The following papers were published as part of this research.

[Baccigalupo and Plaza, 2006] C. Baccigalupo and E. Plaza. Case-
based sequential ordering of songs for playlist recommendation. In
T. Roth-Berghofer, M.H. Göker, and H.A. Güvenir, editors, Advances in
Case-Based Reasoning, Proceedings of the 8th European Conference on
Case-Based Reasoning (ECCBR 2006), volume 4106 of Lecture Notes in
Computer Science, pages 286–300. Springer, 2006.

[Baccigalupo and Plaza, 2007a] C. Baccigalupo and E. Plaza. A case-
based song scheduler for group customised radio. In R. Weber and
M.M. Richter, editors, Case-Based Reasoning Research and Development,
Proceedings of the 7th International Conference on Case-Based Reasoning
(ICCBR 2007), volume 4626 of Lecture Notes in Computer Science, pages
433–448. Springer, 2007.

[Baccigalupo and Plaza, 2007b] C. Baccigalupo and E. Plaza. Mining
music social networks for automating social music services. In Workshop
Notes of the ECML/PKDD 2007 Workshop on Web Mining 2.0, pages
123–134, 2007.

[Baccigalupo and Plaza, 2007c] C. Baccigalupo and E. Plaza. Poolcasting:
A social Web radio architecture for group customisation. In Proceedings
of the Third International Conference on Automated Production of Cross
Media Content for Multi-Channel Distribution (AXMEDIS ’07), pages
115–122. IEEE Computer Society, 2007.

[Baccigalupo and Plaza, 2007d] C. Baccigalupo and E. Plaza. Sharing
and combining listening experience: a social approach to Web radio.
In Proceedings of the 2007 International Computer Music Conference
(ICMC), pages 228–231, 2007.

[Baccigalupo et al., 2008] C. Baccigalupo, E. Plaza, and J. Donaldson.
Uncovering affinity of artists to multiple genres from social behaviour data.
In ISMIR [ISMIR, 2008], pages 275–280.

[Plaza and Baccigalupo, 2009] E. Plaza and C. Baccigalupo. Principle
and praxis in the experience Web: a case study in social music. In S.J.
Delany, editor, Proceedings of the ICCBR 2009 Workshops, pages 55–63.
University of Washington Tacoma, 2009.
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Berghofer, T., Göker, M., and Güvenir, H., editors, Advances in Case-
Based Reasoning, Proceedings of the 8th European Conference on Case-
Based Reasoning (ECCBR 2006), volume 4106 of Lecture Notes in Computer
Science, pages 286–300. Springer.

[Baccigalupo and Plaza, 2007a] Baccigalupo, C. and Plaza, E. (2007a). A case-
based song scheduler for group customised radio. In Weber, R. and Richter,

109



110 Bibliography

M., editors, Case-Based Reasoning Research and Development, Proceedings
of the 7th International Conference on Case-Based Reasoning (ICCBR 2007),
volume 4626 of Lecture Notes in Computer Science, pages 433–448. Springer.

[Baccigalupo and Plaza, 2007b] Baccigalupo, C. and Plaza, E. (2007b). Mining
music social networks for automating social music services. In Workshop Notes
of the ECML/PKDD 2007 Workshop on Web Mining 2.0, pages 123–134.

[Baccigalupo and Plaza, 2007c] Baccigalupo, C. and Plaza, E. (2007c). Pool-
casting: a social Web radio architecture for group customisation. In
Proceedings of the Third International Conference on Automated Production of
Cross Media Content for Multi-Channel Distribution (AXMEDIS ’07), pages
115–122. IEEE Computer Society.

[Baccigalupo and Plaza, 2007d] Baccigalupo, C. and Plaza, E. (2007d). Sharing
and combining listening experience: a social approach to Web radio. In
Proceedings of the 2007 International Computer Music Conference (ICMC),
pages 228–231.

[Baccigalupo et al., 2008] Baccigalupo, C., Plaza, E., and Donaldson, J. (2008).
Uncovering affinity of artists to multiple genres from social behaviour data.
In [ISMIR, 2008], pages 275–280.

[Baelde and Mimram, 2008] Baelde, D. and Mimram, S. (2008). De la webradio
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Traphöner, R., Breen, S., and Smyth, B. (2001). Websell: Intelligent sales
assistants for the World Wide Web. Künstliche Intelligenz (KI), 15(1):28–32.



Bibliography 113

[Cunningham et al., 2004] Cunningham, S., Bainbridge, D., and Falconer, A.
(2004). ‘More of an art than a science’: supporting the creation of playlists
and mixes. In [ISMIR, 2004].

[Dı́az et al., 2006] Dı́az, F., Fdez-Riverola, F., and Corchado, J. (2006). gene-
CBR: a Case-Based Reasoning tool for cancer diagnosis using microarray data
sets. Computational Intelligence, 22(3-4):254–268.

[Dieterich et al., 1993] Dieterich, H., Malinowski, U., Kuehme, T., and
Schneider-Hufschmidt, M. (1993). State of the art in adaptive user interfaces.
Human factors in Information Technology, 10:13–13.

[Ellis, 2003] Ellis, D. (2003). Art of the mix playlist data statistics. World Wide
Web electronic publication. http://labrosa.ee.columbia.edu/projects/
musicsim/aotm.html.

[Fox, 2007] Fox, A. (2007). Battle of the music recommender systems: User-
centered evaluation of collaborative filtering, content-based analysis and
hybrid systems. Master’s thesis, School of Information and Library Science.

[Gates et al., 2006] Gates, C., Subramanian, S., and Gutwin, C. (2006). DJs’
perspectives on interaction and awareness in nightclubs. In Proceedings of
the 6th conference on Designing Interactive Systems, pages 70–79. ACM New
York, NY, USA.

[Giles, 2005] Giles, J. (2005). Internet encyclopaedias go head to head. Nature,
438:900–901.

[Goldberg et al., 1992] Goldberg, D., Nichols, D., Oki, B., and Terry, D.
(1992). Using collaborative filtering to weave an information tapestry.
Communications of the ACM, 35(12):61–70.

[Goldberg et al., 2001] Goldberg, K., Roeder, T., Gupta, D., and Perkins,
C. (2001). Eigentaste: a constant time collaborative filtering algorithm.
Information Retrieval, 4(2):133–151.

[Gonze et al., 2006] Gonze, L., Friedrich, M., and Kaye, R. (2006). XSPF
version 1. World Wide Web electronic publication. http://xspf.org/
xspf-v1.html.

[Grabisch et al., 1998] Grabisch, M., Orlovski, S., and Yager, R. (1998). Fuzzy
aggregation of numerical preferences. Fuzzy Sets in Decision Analysis,
Operations Research and Statistics.

[Haseman et al., 2002] Haseman, W., Nuipolatoglu, V., and Ramamurthy, K.
(2002). An empirical investigation of the influences of the degree of
interactivity on user-outcomes in a multimedia environment. Information
Resources Management Journal, 15(2):31–48.



114 Bibliography

[Hauver and French, 2001] Hauver, D. and French, J. (2001). Flycasting: Using
collaborative filtering to generate a playlist for online radio. In Proceedings
of the International Conference on Web Delivery of Music (WEDELMUSIC),
pages 123–130, Florence, Italy. IEEE Computer Society Press.

[Hayes and Cunningham, 2001] Hayes, C. and Cunningham, P. (2001). Smart
Radio — Community based music radio. Knowledge-Based Systems, 14(3-
4):197–201.

[Herlocker et al., 2004] Herlocker, J., Konstan, J., Terveen, L., and Riedl, J.
(2004). Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems, 22(1):5–53.

[Hill et al., 1995] Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995).
Recommending and evaluating choices in a virtual community of use. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 194–201. ACM Press/Addison-Wesley Publishing Co. New
York, NY, USA.

[Hirst et al., 1997] Hirst, G., DiMarco, C., Hovy, E., and Parsons, K. (1997).
Authoring and generating health-education documents that are tailored to the
needs of the individual patient. Courses and lectures — International Centre
from Mechanical Sciences, pages 107–118.

[Hofmann, 2004] Hofmann, T. (2004). Latent semantic models for collaborative
filtering. ACM Transactions on Information Systems, 22(1):89–115.

[Hofmann and Puzicha, 1998] Hofmann, T. and Puzicha, J. (1998). Statistical
models for co-occurrence data.

[Hogg, 1996] Hogg, M. (1996). Social identity, self-categorization, and the small
group. Understanding group behavior, 2:227–253.
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Appendix A

Top-associated movies

Preliminary experiments have shown that the analysis of watch-lists from the
Web can return valuable lists of top associated movies, applying the same co-
occurrence analysis process reported in Sect. 2.3 to uncover associated songs.
The idea is that the more users have rented the same two movies within a short
period and have liked them both, the more those movies are associated and can
be recommended to people who have only watched one of the two.

Experiments were run on a set of watch-lists obtained from the rental service
company Netflix, which included 18,000 titles watched by over 480,000 users
[Bennett and Lanning, 2007]. The watch-lists were analysed to identify pairs of
movies watched by the same persons within a range of five days and both rated
5 out of 5 stars. Neither the order nor the distance between the movies were
considered as relevant, corresponding to the parameters set to δ = 5 (maximum
distance in days), αJ = 0.2 (distance not influent), ∞ = 0.5 (order not influent).
The popularity bias parameter was set to β = 0.9 to strongly punish over-popular
movies in the watch-lists.

The result of the analysis was the compilation of lists of ‘top associated
titles’ according to Netflix users. Each list reports titles loved by people who
also rented and loved the ‘seed’ movie within a short period. Two sample lists
of these ‘top associated titles’ are reported hereafter.

Sense and sensibility (1995). This movie was watched by 31,389 Netflix
users. Within a period of five days, the same users also watched and equally rated
8,966 other movies. The top associated movies uncovered were: ‘Shakespeare
in Love’ (1998), ‘A Fish Called Wanda’ (1988), ‘Amadeus’ (1984), ‘The Full
Monty’ (1997) ‘Four Weddings and a Funeral’ (1994), ‘Elizabeth’ (1998), ‘Field
of Dreams’ (1989), ‘Much Ado About Nothing’ (1993), ‘The Princess Bride’
(1987), ‘Dead Poets Society’ (1989).

Jumanji (1995). This movie was watched by 15,078 Netflix users. Within the
same five days, these users also watched and assigned the same rating assigned
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to ‘Jumanji’ to 7,406 other movies. The top associated movies turned out to be:
‘Hook’ (1991), ‘Kindergarten Cop’ (1990), ‘Twister’ (1996), ‘Flubber’ (1997),
‘Beetlejuice’ (1988), ‘Liar Liar’ (1997), ‘Men in Black’ (1997), ‘City Slickers’
(1991), ‘A League of Their Own’ (1992), ‘Father of the Bride’ (1991).
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