

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ

EN INTEL·LIGÈNCIA ARTIFICIAL

Number 41

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

Max-SAT Formalisms with

Hard and Soft Constraints

Josep Argelich

Foreword by Felip Manyà

2009 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Felip Manyà
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Josep Argelich
Departament d’Informàtica i Enginyeria Industrial
Universitat de Lleida

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

c© 2009 by Josep Argelich
NIPO: 472-09-117-X
ISBN: 978-84-00-08849-1
Dip. Legal: B.33300-2009

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

A la famı́lia.

Contents

Foreword xvii

Abstract xix

Acknowledgments xxi

1 Introduction 1
1.1 Introduction . 1
1.2 SAT and Max-SAT problems . 2
1.3 Motivation . 3
1.4 Objectives . 4
1.5 Contributions . 5
1.6 Publications . 7
1.7 Overview . 8

2 SAT algorithms 11
2.1 Basic concepts in SAT . 11
2.2 Resolution . 12
2.3 The Davis-Putnam procedure . 13
2.4 The Davis-Logemann-Loveland procedure 15

2.4.1 Solving techniques for improving DLL 16
2.5 Local search for SAT . 24

2.5.1 GSAT algorithm . 24
2.5.2 WalkSAT algorithm . 25
2.5.3 Other local search algorithms 25

2.6 Summary . 26

3 Max-SAT algorithms 27
3.1 Basic concepts in Max-SAT and Max-CSP 27

3.1.1 Basic concepts in Max-SAT 27
3.1.2 Basic concepts in Max-CSP 32

3.2 Branch and bound algorithms . 33
3.2.1 Improving the lower bound with underestimations 35
3.2.2 Improving the lower bound with inference 37

vii

3.2.3 Variable selection heuristics 39
3.2.4 Data structures . 40

3.3 Complete inference in Max-SAT 40
3.4 Approximation algorithms . 41
3.5 Partial Max-SAT and soft constraints 42
3.6 Evaluations of Max-SAT solvers 43
3.7 Summary . 47

4 The Soft-SAT formalism 49
4.1 Soft CNF formulas . 51
4.2 Soft-SAT algorithms . 52

4.2.1 A basic Soft-SAT algorithm 52
4.2.2 Soft-SAT-S . 53
4.2.3 Soft-SAT-D . 58

4.3 Experimental investigation . 60
4.3.1 Solvers . 60
4.3.2 Benchmarks and encodings 61
4.3.3 Weighted Partial Max-SAT and Max-CSP encodings . . . 65
4.3.4 Experimental results . 66

4.4 Summary . 73

5 The Partial Max-SAT formalism 81
5.1 The Partial Max-SAT problem 81
5.2 Partial Max-SAT algorithms . 82

5.2.1 A basic Partial Max-SAT algorithm 83
5.2.2 Variable selection heuristic 84
5.2.3 Bounds computation . 85
5.2.4 Inference rules . 87
5.2.5 Hard learning . 92
5.2.6 Soft learning . 94
5.2.7 Other learning techniques 95

5.3 Preprocessing techniques . 95
5.3.1 Almost common clause rule 96
5.3.2 Variable saturation . 96
5.3.3 Learning and restarts . 98

5.4 Partial Max-SAT solvers . 99
5.4.1 PMS . 99
5.4.2 W-MaxSatz . 99

5.5 Experimental investigation . 100
5.5.1 Experiments with PMS 101
5.5.2 Experiments with W-MaxSatz 106
5.5.3 2007 Max-SAT Evaluation 110
5.5.4 Experiments with preprocessing 117

5.6 Summary . 124

6 Conclusions 127

viii

Index 131

Bibliography 133

ix

List of Figures

2.1 Search tree for DLL applied to Example 2.3. 16
2.2 Implication graph. 23

4.1 Graph coloring example with three vertices and two colors. . . . 52
4.2 Search tree of a soft CNF formula φ. 53
4.3 Data structures behaviour for static variable ordering. 57
4.4 Data structures behaviour for dynamic variable ordering. 75
4.5 Random Soft-2-SAT instances with 50 variables, with a number of

clauses ranging from 200 to 430, where 20 clauses are in the hard
block and the rest of clauses are randomly distributed among 100
soft blocks. Mean time (upper plot) and median time (lower plot)
in seconds. 76

4.6 Random Soft-2-SAT instances with a number of variables ranging
from 50 to 100 and with 300 clauses, where 50 clauses are in the
hard block and the rest of clauses are randomly distributed among
50 soft blocks. Mean time (upper plot) and median time (lower
plot) in seconds. 77

4.7 Random Soft-2-SAT instances with 60 variables and 300 clauses,
where the number of clauses in the hard block ranges from 10 to
50 and the rest of clauses are randomly distributed among 50 soft
blocks. Mean time (upper plot) and median time (lower plot) in
seconds. 78

4.8 Random Soft-2-SAT instances with 50 variables, with a number of
clauses ranging from 200 to 430, where 20 clauses are in the hard
block and the rest of clauses are randomly distributed among 100
soft blocks. Mean time (upper plot) and median time (lower plot)
in seconds. 79

4.9 Comparison of Soft-SAT-S with a version of Soft-SAT-S in which
the unit clause rule is not applied to unit clauses that appear in
the hard block. Mean time (upper plot) and median time (lower
plot) in seconds. 80

5.1 Max-Clique example with four vertices and four edges. 82
5.2 Rule 5.4 implication graph. 88
5.3 Rule 5.6 implication graph. 89

xi

5.4 Rule 5.7 implication graph. 90
5.5 Rule 5.8 implication graph. 91
5.6 Rule 5.10 implication graph. 92
5.7 Implication graph. 93
5.8 Resolution for Partial Max-SAT 94
5.9 Comparison of PMS, PMS-HL and PMS+SL with random Partial

Max-2-SAT instances. Mean CPU time in seconds (upper plot)
and mean number of nodes (lower plot). 102

5.10 Comparison of PMS, PMS-HL and PMS+SL with random Partial
Max-3-SAT instances. Mean CPU time in seconds (upper plot)
and mean number of nodes (lower plot). 103

5.11 Comparison of PMS, PMS-HL and PMS+SL with random 2-
SoftSAT instances. Mean CPU time in seconds (upper plot) and
mean number of nodes (lower plot). 105

5.12 Number of instances x that can be solved in y seconds. Instances
from the SAT-2002 Competition. 106

5.13 Number of instances x that can be solved in y seconds. Instances
from the 2007 Max-SAT Evaluation. 108

5.14 Scalability of W-MaxSatz with and without the new inference
rules, on random weighted Partial Max-2-SAT instances with 150
variables, 150 hard clauses and number of soft clauses ranging
from 850 to 4850. The total clause number ranges from 1000 to
5000. 111

5.15 Number x of instances that can be solved in y seconds. Partial
Max-SAT category. 112

5.16 Scalability of the three fastest solvers in Partial Max-SAT cate-
gory on random Partial Max-2-SAT instances with 150 variables,
150 hard clauses and number of soft clauses ranging from 850 to
4850. The total clause number ranges from 1000 to 5000. 114

5.17 Scalability of the three fastest solvers in Partial Max-SAT cate-
gory on random Partial Max-3-SAT instances with 100 variables,
100 hard clauses and number of soft clauses ranging from 200 to
700. The total clause number ranges from 300 to 800. 115

5.18 Number x of instances that can be solved in y seconds. Weighted
Partial Max-SAT category. 117

5.19 Scalability of the three fastest solvers in weighted Partial Max-
SAT category on random weighted Partial Max-2-SAT instances
with 150 variables, 150 hard clauses and number of soft clauses
ranging from 850 to 3850. The total clause number ranges from
1000 to 4000. 118

5.20 Scalability of the three fastest solvers in weighted Partial Max-
SAT category on random weighed Partial Max-3-SAT instances
with 100 variables, 100 hard clauses and number of soft clauses
ranging from 200 to 700. The total clause number ranges from
300 to 800. 119

xii

List of Tables

4.1 Comparison of Soft-SAT-S without underestimation and Soft-
SAT-S with underestimation on Max-CSP instances. Time in
seconds. 67

4.2 Comparison of Soft-SAT-S without underestimation and Soft-
SAT-S with underestimation on Max-CSP instances. The vari-
able selection heuristic used is csp. Mean and median number of
backtracks. 67

4.3 Comparison of Soft-SAT-S, PFC-MPRDAC, Toolbar-CSP and
WMax-SAT on Max-CSP instances. Time in seconds. 68

4.4 Comparison of Soft-SAT-D with heuristic MO-csp and Soft-SAT-
D with heuristic MO on Max-CSP instances. Time in seconds. . 69

4.5 Comparison of Soft-SAT-S, MiniMaxsat and W-MaxSatz on Max-
CSP instances. Time in seconds. 69

4.6 Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-
D with heuristic MO-csp, Toolbar-CSP and PFC-MPRDAC on
randomly generated graph coloring instances. Time in seconds. . 70

4.7 Comparison between Soft-SAT-S, Soft-SAT-D, Toolbar-CSP and
PFC-MPRDAC on individual graph coloring instances.Time in
seconds. 71

4.8 Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D
with heuristic MO-csp, MiniMaxsat and W-MaxSatz on randomly
generated graph coloring instances. Time in seconds. 71

4.9 Comparison between Soft-SAT-S, Soft-SAT-D, MiniMaxsat and
W-MaxSatz on individual graph coloring instances.Time in seconds. 72

4.10 Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D
with heuristic MO-csp, Toolbar and WMax-SAT on pigeon hole
instances. Time in seconds. 72

4.11 Comparison between Soft-SAT-D with heuristic MO-csp, Soft-
SAT-S with heuristic csp, Toolbar and WMax-SAT on QCP in-
stances. Time in seconds. 73

5.1 Benchmarks from the SAT-2002 Competition solving the Max-
One problem. Time in seconds. 104

5.2 Benchmarks from the SAT-2002 Competition solving the Max-
One problem. Number of nodes. 104

xiii

5.3 Benchmarks from the 2007 Max-SAT Evaluation. Time in seconds.107
5.4 Benchmarks from the 2007 Max-SAT Evaluation. Number of nodes.107
5.5 Results for Partial Max-SAT instances. Mean time in seconds. . 109
5.6 Results for weighted Partial Max-SAT instances. Mean time in

seconds. 110
5.7 Results in Partial Max-SAT category. Mean time in seconds. . . 113
5.8 Results in weighted Partial Max-SAT category. Mean time in

seconds. 116
5.9 Partial Max-SAT benchmarks with variable saturation as prepro-

cessing for W-MaxSatz. 119
5.10 Weighted Partial Max-SAT benchmarks with variable saturation

as preprocessing for W-MaxSatz. 120
5.11 Partial Max-SAT benchmarks with variable saturation as prepro-

cessing for MiniMaxsat. 120
5.12 Weighted Partial Max-SAT benchmarks with variable saturation

as preprocessing for MiniMaxsat. 120
5.13 Partial Max-SAT benchmarks with variable saturation as prepro-

cessing for SR(w). 121
5.14 Weighted Partial Max-SAT benchmarks with variable saturation

as preprocessing for SR(w). 121
5.15 Partial Max-SAT benchmarks with variable saturation as prepro-

cessing for Clone. 122
5.16 Weighted Partial Max-SAT benchmarks with variable saturation

as preprocessing for Clone. 122
5.17 Partial Max-SAT benchmarks with variable saturation as prepro-

cessing for ChaffBS. 122
5.18 Partial Max-SAT benchmarks with restarts and learning as pre-

processing for PMS. 123
5.19 Partial Max-SAT benchmarks with restarts and learning as pre-

processing for W-MaxSatz. 124

xiv

List of Algorithms

2.1 Resolution(φ) : Resolution based SAT algorithm 13
2.2 DavisPutnam(φ) : Davis-Putnam procedure for SAT 14
2.3 DavisLogemannLoveland(φ) : DLL procedure for SAT 17
2.4 LocalSearch(φ) : General local search procedure 25
3.1 Max-SAT(φ, UB) : Basic BnB algorithm for Max-SAT 34
4.1 Soft-SAT-Basic(φ, UB) : Basic Soft-SAT solver 54
5.1 Partial-Max-SAT-Basic(φ, UB) : Basic Partial Max-SAT solver . . . 84
5.2 Max-SAT(φ) : Resolution based Max-SAT algorithm 97

xv

Foreword

The study of Max-SAT formalisms, and the design and implementation of fast
Max-SAT solvers have become very active research topics in the last few years.
The scientific community working on Satisfiability has devised novel solving
techniques that allow to solve many instances that were beyond the reach of
the Max-SAT solvers developed just a few years ago, and has promoted the
study of formalism like Partial Max-SAT and Weighted Max-SAT that allow
to define Max-SAT encodings of practical combinatorial optimization problems
in a natural and compact way. Besides, the Max-SAT Evaluation, which is a
co-located event of the International Conference on Theory and Applications of
Satisfiability Testing since 2006, has provided new challenging benchmarks and
has actively encouraged the development of new solvers.

This monograph, which is based on the Ph.D. dissertation of Dr. Josep
Argelich, is concerned with the study of Max-SAT formalisms for solving opti-
mization problems with hard and soft constraints. Among all the contributions,
I would like to highlight the introduction of of a new MaxSAT formalism, called
Soft-SAT, and the novel solving techniques for Weighted Partial Max-SAT that
have been devised.

Soft-SAT deals with blocks of clauses, and because of that it produces com-
pact encodings that avoid the use of auxiliary variables, naturally represents
soft constraints, and applies inference techniques which are local to each block.
The conducted experimental investigation, with the Soft-SAT solvers that have
been developed during the Ph.D. Thesis, provides empirical evidence of the good
performance of Soft-SAT for solving combinatorial optimization problems.

On the other hand, the novel solving techniques for Weighted Partial Max-
SAT that have been devised during the Ph.D. Thesis include sound inference
rules, lower bound computation methods, clause learning and non-chronological
backtracking derived from the conflict analysis of both hard and soft constraints,
and preprocessing techniques based on variable saturation, randomization and
restarts. All these techniques led to the development of two new solvers for
Weighted Partial Max-SAT: PMS and W-MaxSatz. Currently, W-MaxSatz is
one of the best performing state-of-the-art Weighted Partial Max-SAT solvers,
and is widely used by the scientific community.

I hope that you enjoy reading this monograph, which is the fruit of the
enthusiasm and effort that the author put into this scientific adventure.

xvii

It was an honor and pleasure to serve as thesis advisor of Josep, and I am
willing to continue working with him in the future.

Bellaterra, October 2009

Felip Manyà
IIIA-CSIC

xviii

Abstract

In this thesis we investigate Max-SAT formalisms for solving combinatorial op-
timization problems with hard and soft constraints. Such formalisms incorpo-
rate the notion of partiality; i.e., they contain clauses which are mandatory and
clauses (or sets of clauses) which are relaxable. On the one hand, this notion
captures the constraints of real problems in a more natural way, and produces
more compact encodings. On the other hand, the distinction between manda-
tory and relaxable clauses has a significant impact on the solving techniques that
can be applied in branch and bound solvers.

Firstly, we define a new Max-SAT formalism, called Soft-SAT, that deals
with a block of hard clauses and several blocks of soft clauses. In this formalism,
solving an instance consists in finding a truth assignment that satisfies the hard
block of clauses and maximizes the number of satisfied soft blocks. Dealing with
blocks of clauses allows to define soft constraints without introducing auxiliary
variables, and has positive consequences in the solvers because we can define
solving techniques which are local to each block, and make an earlier application
of inference rules in which the premises are required to be short.

Secondly, we describe the Soft-SAT solvers we have designed and imple-
mented: Soft-SAT-S and Soft-SAT-D. They are original Soft-SAT branch and
bound solvers equipped with original lazy data structures, powerful inference
techniques, good quality lower bounds, and original variable selection heuristics.
The heuristics of Soft-SAT-S are static while the heuristics of Soft-SAT-D are dy-
namic. The experimental investigation performed on a representative sample of
instances provides empirical evidence that Soft-SAT is a very competitive generic
problem approach, compared with the state-of-the-art approaches developed in
the CSP and SAT communities.

Thirdly, we present novel solving techniques for Partial Max-SAT, which is
a suitable formalism for encoding and solving combinatorial optimization prob-
lems, and that has become a standard in the community. The solving techniques
we have developed include new sound inference rules, lower bound computation
methods based on unit propagation, clause learning and non-chronological back-
tracking derived from the analysis of both hard and soft conflicts, and prepro-
cessing techniques based on variable saturation, randomization and restarts.

Finally, we describe the Partial Max-SAT solvers we have designed and im-
plemented: PMS and W-MaxSatz. PMS was implemented from scratch, and

xix

its most important feature is the learning module for hard and soft conflicts.
W-MaxSatz was implemented on top of the state-of-the-art Max-SAT solver
MaxSatz, and its most important feature is the method for computing lower
bounds, which includes the computation of underestimations using unit propaga-
tion enhanced with failed literal detection, and the application of sound inference
rules. W-MaxSatz also incorporates a hard learning module. The experimental
comparison between PMS, W-MaxSatz, and the best performing state-of-the-art
Partial Max-SAT solvers, as well as the results of the 2007 Max-SAT Evaluation,
provide empirical evidence that both solvers are robust and very competitive.

xx

Acknowledgments

First of all, I would like to thank my supervisor Felip Manyà for his experience,
generosity and his infinite patience. He gave me the opportunity to grow as
researcher and I always will be grateful with him. Without him, this work
would not have been possible.

Many thanks to my office mates: Jordi, Carlos and Paula; the remainder
members of the Artificial Intelligence Research Group: Alba, Carles, Carlos,
César, Magda, Ramón, Tere,. . . ; the secretaries of the department: Àngels and
Dèlia; and the people that helped me in my stays in Amiens and Lisbon: Chu
Min, Gilles, Inês, Laure, Sidney, Sylvain, Vasco,. . . . Many thanks to all of them
with whom I shared very good moments.

Thanks to the Ministerio de Educación y Ciencia and the Universitat de
Lleida for the funding provided and their technical support. This research has
been partially supported by MEC research projects TIC2003-00950, TIN2004-
07933-C03-03, TIN2006-15662-C02-02, TIN2007-68005-C04-04, CONSOLIDER
CSD2007-0032, INGENIO 2010, and Acción Integrada HP2005-0147.

Finally, I would like to thank my family, friends and Àngels for their support,
frienship and understanding.

xxi

Chapter 1

Introduction

1.1 Introduction

Since the introduction of Computer Science in our society, computer scientists
have tried to model real-life problems and solve them using the power of the
computer systems. Nevertheless, many problems are known to be computation-
ally intractable, in the sense that, unless P=NP, the algorithms for solving them
require an exponential number of steps in the length of the input for some of
their instances. In this case, the challenge for computer scientists is to devise
algorithms that solve as many instances of intractable problems as possible in a
reasonable amount of time.

Among the intractable problems, the Boolean satisfiability problem (SAT)
has been considered a central problem in Artificial Intelligence, Electronic De-
sign Automation and Theoretical Computer Science, and nowadays it is com-
monly acknowledged that solving combinatorial decision problems via their re-
duction to SAT is one of the best performing problem solving approaches.
SAT has shown to be competitive in a variety of domains, including hard-
ware verification [eSSMS99, MMZ+01, VB01, BK02, KSHK07], bioinformat-
ics [LMS06b, LMS06a], planning [KS96, Kau06], and scheduling [BM00, ZLS04].

In this thesis we investigate different Max-SAT problems, which are optimiza-
tion versions of SAT that, despite not being so well-studied as SAT, have seen an
increasing activity in the community working on satisfiability problems [LM09].
Even an evaluation of Max-SAT solvers is organized since 2006 as a co-located
event of the International Conference on Theory and Applications of Satisfiabil-
ity Testing.

Our research program aims at converting Max-SAT formalisms into a com-
petitive generic problem solving approach for solving combinatorial optimization
problems, and in particular, converting them into competitive approaches for
solving over-constrained problems with soft and hard constraints. To this end,
in this thesis, we study Max-SAT formalisms that incorporate the notion of par-
tiality, and design and implement solving techniques for such formalisms. Our

1

2 Chapter 1. Introduction

empirical investigation provides evidence that the solvers that we have developed
exhibit a good performance profile on a wide collection of benchmarks.

The structure of this chapter is as follows. In Section 1.2, we present basic
definitions of SAT and Max-SAT. In Section 1.3, we explain the motivation of our
work. In Section 1.4, we describe the objectives of our research. In Section 1.5,
we describe the main contributions of the thesis. In Section 1.6, we enumerate
the publications we have made during the course of the thesis. In Section 1.7,
we present an overview of the remaining chapters.

1.2 SAT and Max-SAT problems

In propositional logic, a variable xi may take values 0 (for false) or 1 (for true).
A literal ℓi is a variable xi or its negation ¬xi. A clause is a disjunction of
literals, and a CNF formula is a conjunction of clauses. A weighted clause is a
pair (Ci, wi), where Ci is a disjunction of literals and wi, its weight, is a positive
number, and a weighted CNF formula is a conjunction of weighted clauses. A
(weighted) CNF formula is often represented as a set of clauses.

An assignment of truth values to the propositional variables satisfies a literal
xi if xi takes the value 1 and satisfies a literal ¬xi if xi takes the value 0, satisfies
a clause if it satisfies at least one literal of the clause, and satisfies a CNF formula
if it satisfies all the clauses of the formula. A CNF formula is satisfiable if there
exists an assignment that satisfies the formula; otherwise, it is unsatisfiable.

The SAT problem for a CNF formula φ is the problem of deciding whether
there exists a satisfying assignment for φ. The Max-SAT problem for a CNF
formula φ is the problem of finding an assignment of values to propositional
variables that maximizes the number of satisfied clauses. In this sequel we often
use the term Max-SAT meaning Min-UNSAT. This is because, with respect
to exact computations, finding an assignment that minimizes the number of
unsatisfied clauses is equivalent to finding an assignment that maximizes the
number of satisfied clauses.

Two SAT instances are equivalent if they are satisfied by the same set of
assignments. In Max-SAT, two instances φ1 and φ2 are equivalent if φ1 and φ2

have the same number of unsatisfied clauses for every complete assignment of
φ1 and φ2.

We will also consider three extensions of Max-SAT which are more well-
suited for representing and solving over-constrained problems: weighted Max-
SAT, Partial Max-SAT and weighted Partial Max-SAT.

The weighted Max-SAT problem for a weighted CNF formula φ is the problem
of finding an assignment of values to propositional variables that maximizes the
sum of weights of satisfied clauses (or equivalently, that minimizes the sum of
weights of unsatisfied clauses).

A Partial Max-SAT instance is a CNF formula in which some clauses are
relaxable or soft and the rest are non-relaxable or hard. The Partial Max-SAT
problem for a Partial Max-SAT instance φ is the problem of finding an assign-
ment that satisfies all the hard clauses and the maximum number of soft clauses.

1.3. Motivation 3

The weighted Partial Max-SAT problem is the combination of weighted Max-SAT
and Partial Max-SAT.

1.3 Motivation

We started our research on Max-SAT formalisms with hard and soft constraints
in 2003. At that time, SAT was —as it is nowadays— a central topic in Artificial
Intelligence, Electronic Design Automation and Theoretical Computer Science.
There were publicly available complete solvers such as Chaff [MMZ+01], GRASP
[MSS99], MiniSat [ES03], Posit [Fre95], Relsat [BS97], and Satz [LA97a, LA97b],
as well as local search solvers such as GSAT and WalkSAT [SK93, SKC94,
SLM92]. There was also enough empirical evidence about the merits of the
generic problem solving approach which consists in modeling NP-complete de-
cision problems as SAT instances, solving the resulting encodings with a state-
of-the-art SAT solver, and mapping the solution back into the original problem.

Despite the remarkable activity on SAT, there was a reduced number of
papers dealing with the design and implementation of exact Max-SAT solvers;
solving NP-hard problems by reducing them to Max-SAT was not considered
as a suitable alternative for solving optimization problems; and the activity
on Max-SAT was basically concentrated on theoretical results. This is in con-
trast with what happened in the Constraint Programming community, where the
Weighted Constraint Satisfaction Problem (Weighted CSP) was a problem at-
tracting the interest of that community, which published a considerable amount
of results about weighted CSP and consolidated a research line on soft con-
straints [MRS06].

The most remarkable implementations of exact Max-SAT solvers were the
branch and bound solvers developed by Wallace and Freuder [WF96], and Borchers
and Furman [BF99]. These solvers can be seen as an adaptation to Max-SAT of
the Davis-Logemann-Loveland (DLL) procedure [DLL62], and were the starting
point for developing some of the most successful modern Max-SAT solvers.

An approach for producing good performing Max-SAT solvers was based on
adapting to Max-SAT technology that was proven to be successful in DLL-style
SAT solvers such as optimized data structures, clever variable selection heuris-
tics, clause learning, and non-chronological backtracking. Another approach
was to improve the quality of the lower bounds in branch and bound Max-SAT
solvers by incorporating powerful inference rules that preserve the number of
unsatisfied clauses and that, in the best case, make explicit some contradictions;
and by incorporating new ways of computing underestimations of the number of
unsatisfied clauses that become unsatisfied if the partial assignment associated
to a node of the search space is extended to a complete assignment.

The experience on SAT-based problem solving has shown that both the solver
and the encoding are important for solving efficiently combinatorial problems. In
contrast with other parallel investigations whose main focus were the solvers, our
initial motivation was to investigate Max-SAT formalisms that produce natural
and compact encodings of combinatorial optimization problems, and equip them

4 Chapter 1. Introduction

with robust solvers that exploit structural properties of the encodings.

All our work is around the notion of partiality in Max-SAT. Partiality amounts
to have clauses which are mandatory and clauses (or sets of clauses) which are
relaxable. On the one hand, this notion captures the constraints of real problems
in a more natural way, and produces more compact encodings. On the other
hand, the distinction between mandatory and relaxable clauses has a signifi-
cant impact on the solving techniques that can be applied in branch and bound
solvers. In a sense, we could say that the notion of partiality allows to de-
fine formalisms between SAT and Max-SAT for effectively solving combinatorial
optimization problems.

Finally, we would like to point out that our research has benefited a lot
from the 2006 and 2007 editions of the Max-SAT Evaluation. They allowed to
compare our solvers with the most representative state-of-the-art solvers, and
make publicly available a good collection of benchmarks for testing our solvers.

1.4 Objectives

The general objective of our research is to study Max-SAT formalisms that in-
corporate the notion of partiality, and design and implement solving techniques
for such formalisms that exhibit a good performance profile on a wide collection
of benchmarks. The final goal is to show that Max-SAT formalisms can become a
competitive generic problem solving approach for solving over-constrained prob-
lems.

The concrete objectives to achieve in the thesis can be summarized as follows:

• Define a new formalism for solving over-constrained problems, with hard
and soft constraints, that deals with blocks of clauses rather than indi-
vidual clauses in order to produce more compact and natural encodings.
Equip such a formalism with exact solvers that incorporate good perform-
ing solving techniques, optimized data structures, and heuristics that ex-
ploit structural properties of the encodings.

• Define new inference rules and learning schemes for the Partial Max-SAT
formalism, and design and implement exact Partial Max-SAT solvers that
incorporate them. We plan to learn clauses from the conflicts produced
when a hard clause is violated during the exploration of the search space
(hard conflict), as well as when a soft clause is violated (soft conflict).

• Design and implement a preprocessor for Partial Max-SAT that applies
solving techniques which, despite being too costly for being applied to
each node of the search space, can produce gains if they are applied before
starting the search. To assess the impact of the preprocessor, we plan
to conduct an empirical evaluation using the most representative state-of-
the-art Partial Max-SAT solvers and the instances of the last Max-SAT
evaluation.

1.5. Contributions 5

• Conduct an empirical evaluation of the techniques incorporated into the
solvers we plan to develop in this thesis, and in particular of the techniques
that take into account the distinction between hard and soft clauses. Iden-
tifying their strengths and weaknesses should allow us to gain new insights
for developing more powerful solving techniques.

• Conduct an empirical comparison between the solvers of the thesis and
the best performing state-of-the-art Partial Max-SAT solvers. Knowing
the performance profile of other solvers can help improve the performance
of our solvers. Moreover, we plan to make the solvers publicly available
and actively participate in the Max-SAT evaluations.

1.5 Contributions

The main contributions of the thesis can be summarized as follows:

• We defined the Soft-SAT formalism, which allows to encode over-constrained
problems in a natural and compact way. Soft-SAT encodes constraints as
blocks of clauses without needing to introduce auxiliary variables for deal-
ing with soft constraints. This has positive consequences in the solvers
because we can define solving techniques which are local to each block,
and apply inference rules, in which the premises are short clauses, earlier
than in other formalisms that need to use auxiliary variables in order to
ensure that there is exactly one clause for each violated constraint (cf.
Example 4.5). Moreover, we developed Soft-SAT solvers with branching
heuristics and underestimation techniques that take into account the struc-
ture of the domains in the original problem by exploiting information which
is hidden in Boolean encodings.

• We extended, to Partial Max-SAT, existing solving techniques for SAT
and Max-SAT. Such techniques include variable selection heuristics that
take into account the size of the clause in which the variable appears,
lower bound computation methods based on unit propagation, failed literal
detection to improve the lower bound, and local search solvers to obtain a
good initial upper bound.

• We defined new inference rules for Partial Max-SAT. These rules are proven
to be sound, can be applied efficiently, and can be seen as unit resolution
refinements.

• We incorporated the 1-UIP learning schema [MMZ+01] to our solvers in
order to analyze the conflicts detected in hard clauses. We learn a clause
from each conflict and backtrack non-chronologically. To the best of our
knowledge, it was the first time that learning was incorporated into a
branch and bound Partial Max-SAT solver.

• We defined new soft learning techniques that are applied every time we
reach a soft conflict.

6 Chapter 1. Introduction

• We designed and implemented two Soft-SAT solvers:

– Soft-SAT-S: It was the first solver developed for the Soft-SAT for-
malism. It uses a static variable selection heuristic, extremely efficient
lazy data structures, and an underestimation based on inconsistency
counts.

– Soft-SAT-D: It was the second solver developed for the Soft-SAT
formalism. It uses a dynamic variable selection heuristic with n-ary
branching for Soft-SAT encoded CSP instances, lazy data structures
based on two-watched literals, and an underestimation based on in-
consistency counts.

• We designed and implemented two Partial Max-SAT solvers:

– PMS: It was the first branch and bound solver that we developed
for the Partial Max-SAT formalism. It is an implementation from
scratch, and the most important feature of this solver is the learn-
ing module for hard and soft constraints. PMS also incorporates
advanced techniques for bounds computation and simple inference
rules.

– W-MaxSatz: It was the second solver that we developed for the
Partial Max-SAT formalism. It is build on top of the Max-SAT
solver MaxSatz, and the most important feature of this solver is the
advanced techniques used for the lower bound computation, which
include the computation of underestimation with unit propagation
enhanced with failed literal detection and the application of sound
inference rules. W-MaxSatz also incorporates a hard learning mod-
ule.

• We designed and implemented several preprocessors for Partial Max-SAT
instances. The most important are:

– Variable saturation: This preprocessing saturates the formula w.r.t.
a limited number of variables. It helps reduce the search space by re-
moving variables from the initial formula.

– Learning and restarts: This preprocess adds to the initial formula
a set of redundant clauses from several search spaces.

• We conducted an empirical evaluation of the learning techniques and new
inference rules developed in this thesis. We observed that hard learning
is an important feature for Partial Max-SAT solvers, soft learning can
improve the results in some sets of instances, and in combination with our
inference rules, gives rise to the best performance profile.

• We conducted an empirical evaluation between our solvers and the best
performing state-of-the-art Partial Max-SAT solvers. We observed that our
Soft-SAT solvers are competitive against weighted CSP solvers and state-
of-the-art Partial Max-SAT solvers. PMS has a good general performance,

1.6. Publications 7

and W-MaxSatz is competitive on several types of instances, specially on
random instances.

• We conducted an empirical evaluation of the preprocessors developed in
this thesis using both our solvers and the most representative state-of-
the-art Partial Max-SAT solvers. We observed that our preprocessors can
reduce the CPU time needed to solve several types of instances.

1.6 Publications

Some of the results presented in this thesis have already been published in jour-
nals and conference proceedings. The articles are chronologically listed and
classified according to the main topics of the thesis, Soft-SAT and Partial Max-
SAT:

Soft-SAT

– Josep Argelich and Felip Manyà. Solving Over-Constrained Problems
with Max-SAT Algorithms. In Workshop on Modelling and Solving Prob-
lems with Constraints, 16th European Conference on Artificial Intelligence,
ECAI-2004, Valencia, Spain, pages 116–124, Workshop Proceedings, 2004.

– Josep Argelich and Felip Manyà. An Exact Max-SAT Solver for Over-
Constrained Problems. In 6th International Workshop on Preferences and
Soft Constraints, 10th International Conference on Principles and Prac-
tice of Constraint Programming, CP-2004, Toronto, Canada, pages 1–11,
Workshop Proceedings, 2004.

– Josep Argelich. Solving Over-Constrained Problems with SAT. In 11th
International Conference on Principles and Practice of Constraint Pro-
gramming, CP-2005, Sitges, Spain, page 838, Springer LNCS 3709, 2005.

– Josep Argelich and Felip Manyà. Solving Over-Constrained Problems with
SAT Technology. In 8th International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT-2005, St. Andrews, Scotland, pages
1–15, Springer LNCS 3569, 2005.

– Josep Argelich and Felip Manyà. Exact Max-SAT Solvers for Over-
Constrained Problems. Journal of Heuristics, 12(4-5):375-392, 2006.

Partial Max-SAT

– Josep Argelich and Felip Manyà. Learning Hard Constraints in Max-SAT.
In 11th Annual ERCIM Workshop on Constraint Solving and Constraint
Programming, CSCLP-2006, Caparica, Portugal, pages 5–12, Workshop
Proceedings, 2006.

8 Chapter 1. Introduction

– Josep Argelich and Felip Manyà. Partial Max-SAT Solvers with Clause
Learning. In 10th International Conference on Theory and Applications of
Satisfiability Testing, SAT-2007, Lisbon, Portugal, pages 28–40, Springer
LNCS 4501, 2007.

– Josep Argelich, Chu Min Li and Felip Manyà. An Improved Exact Solver
for Partial Max-SAT. In The International Conference on Nonconvex Pro-
gramming: Local and Global Approaches, NCP-2007, Rouen, France, pages
230–231, Conference Proceedings, 2007

Preprocessing techniques

– Josep Argelich, Chu Min Li and Felip Manyà. A Preprocessor for Max-
SAT Solvers. In 11th International Conference on Theory and Applications
of Satisfiability Testing, SAT-2008, Guangzhou, P. R. China, pages 15–20,
Springer LNCS 4996, 2008.

Encodings

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. Encoding
Max-CSP into Partial Max-SAT. In 38th International Symposium on
Multiple-Valued Logic, ISMVL-2008, Dallas, Texas, pages 106–111, IEEE
CS Press, 2008.

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. Modelling
Max-CSP as Partial Max-SAT. In 11th International Conference on Theory
and Applications of Satisfiability Testing, SAT-2008, Guangzhou, P. R.
China, pages 1–14, Springer LNCS 4996, 2008.

Miscellaneous

– Josep Argelich, Xavier Domingo, Felip Manyà and Jordi Planes. To-
wards Solving Many-Valued Max-SAT. In 36th International Symposium
on Multiple-Valued Logic, ISMVL-2006, Singapore, paper 26, IEEE CS
Press, 2006.

– Josep Argelich, Chu Min Li, Felip Manyà and Jordi Planes. The First
and Second Max-SAT Evaluations. Journal on Satisfiability, submitted
for second review, 2008.

1.7 Overview

This section provides an overview of the thesis. We briefly describe the contents
of each of the remaining chapters:

Chapter 2: SAT algorithms. We present an overview of the most relevant
methods for solving SAT. First, we define some basic concepts in SAT.
Second, we present the resolution method, which applies an inference rule
that provides a refutation complete inference system. Third, we describe

1.7. Overview 9

DP, the first effective method for producing resolution refutations. Fourth,
we present the DLL procedure, implemented in the majority of state-of-
the-art complete SAT algorithms, and review the main solving techniques
that have been incorporated into DLL in order to devise fast SAT solvers.
Finally, we give the basis of the current state-of-the-art local search algo-
rithms for SAT.

Chapter 3: Max-SAT algorithms. We introduce some background knowl-
edge about Max-SAT, and review the solving techniques that have proved
to be useful in terms of performance. First, we define some basic concepts
in Max-SAT and Max-CSP. Second, we present the branch and bound
schema, which is the most commonly used approach to exact Max-SAT
solving. Third, we define a complete resolution rule for Max-SAT. Fourth,
we review the main Max-SAT approximation algorithms. Fifth, we de-
scribe the solving techniques that have been defined for dealing with hard
and soft constraints under the formalism of Partial Max-SAT. Finally, we
present the 2006 and 2007 Max-SAT Evaluations.

Chapter 4: The Soft-SAT formalism. We present a new generic problem
solving approach for over-constrained problems based on Max-SAT. We
first define a Boolean clausal form formalism that deals with blocks of
clauses instead of individual clauses, and that allows one to declare a block
of hard clauses and several blocks of soft clauses. We call soft CNF formu-
las to this new kind of formulas. We then present two Max-SAT solvers
that find a truth assignment that satisfies the hard block of clauses and
maximizes the number of satisfied soft blocks. Our solvers are branch and
bound algorithms equipped with original lazy data structures, powerful
inference techniques, good quality lower bounds, and original variable se-
lection heuristics. Finally, we report an experimental investigation on a
representative sample of instances which provides experimental evidence
that our approach is competitive with the state-of-the-art approaches de-
veloped in the CSP and SAT communities.

Chapter 5: The Partial Max-SAT formalism. We focus on Partial Max-
SAT, which is a problem between SAT and Max-SAT which is well-suited
for representing and solving over-constrained problems, and has become a
standard in the recent years. First, we present an overview of the Partial
Max-SAT problem. Second, we define novel techniques for Partial Max-
SAT solving, and introduce the solving techniques that incorporate the
modern Partial Max-SAT solvers. Third, we present some efficient and
original preprocessing techniques for Partial Max-SAT. Next, we describe
the two Partial Max-SAT solvers we have designed and implemented. Fi-
nally, we report on an experimental investigation that we conducted in
order to assess the performance of our solvers and preprocessing tech-
niques. The experimental results indicate that our solvers are among the
best state-of-the-art Partial Max-SAT solvers.

10 Chapter 1. Introduction

Chapter 6: Conclusions. We briefly summarize the main contributions of the
thesis, and point out some open problems and future research directions
that we plan to tackle in the near future.

Chapter 2

SAT algorithms

In this chapter we present an overview of the most relevant methods for solving
SAT. Section 2.1 defines some basic concepts in SAT. Section 2.2 presents the
resolution method, which applies an inference rule that provides a refutation
complete inference system. Section 2.3 describes DP, the first effective method
for producing resolution refutations. Section 2.4 presents the DLL procedure,
implemented in the majority of state-of-the-art complete SAT algorithms, and
reviews the main solving techniques that have been incorporated into DLL in
order to devise fast SAT solvers. Finally, Section 2.5 gives the basis of the
current state-of-the-art local search algorithms for SAT.

2.1 Basic concepts in SAT

In propositional logic, a variable xi may take values 0 (for false) or 1 (for true).
A literal ℓi is a variable xi or its negation ¬xi. The complementary of a literal
ℓ, denoted by ℓ̄, is x if ℓ = ¬x and is ¬x if ℓ = x. A clause is a disjunction
of literals, and a CNF formula is a conjunction of clauses. A CNF formula is
often represented as a set of clauses. The length of a clause is the total number
of literal occurrences in the clause. A clause with one literal is called unit, with
two literals is called binary, and with three literals is called ternary. The size of
CNF formula φ, denoted by |φ|, is the sum of the lengths of all its clauses.

An assignment of truth values to the propositional variables satisfies a literal
xi if xi takes the value 1 and satisfies a literal ¬xi if xi takes the value 0, satisfies
a clause if it satisfies at least one literal of the clause, and satisfies a CNF formula
if it satisfies all the clauses of the formula. A CNF formula is satisfiable if there
exists an assignment that satisfies the formula; otherwise, it is unsatisfiable. An
empty clause, denoted by �, contains no literals and cannot be satisfied. A
tautology is a CNF formula that is satisfied by any truth assignment. Two SAT
instances are equivalent if they are satisfied by the same set of assignments.

An assignment for a CNF formula φ is complete if all the variables occurring
in φ have been assigned; otherwise, it is partial. A partial truth assignment also

11

12 Chapter 2. SAT algorithms

partitions the clauses of a CNF formula into three sets: satisfied clauses, the
clauses that contain at least one satisfied literal; unsatisfied clauses, the clauses
in which all its literals are unsatisfied, and unresolved clauses, the clauses that
the partial assignment makes them not to be decided. The unassigned literals
of a clause are referred to as its free literals. In a search context, an unresolved
clause is said to be unit if the number of its free literals is one. Similarly, an
unresolved clause with two free literals is said to be binary, and an unresolved
clause with three free literals is said to be ternary.

The SAT problem for a CNF formula φ is the problem of deciding whether
there exists a satisfying assignment for φ.

Example 2.1 Let us consider a CNF formula φ having three clauses c1, c2 and
c3:

c1 : (x1 ∨ x2)
c2 : (x2 ∨ ¬x3)
c3 : (x1 ∨ x2 ∨ x3)

Suppose that the current truth assignment is A : {x1 = false, x3 = false}. This
implies having clauses c1 and c3 unresolved and clause c2 satisfied. Observe that
clauses c1 and c3 are also unit because x2 is the only free literal. Hence, the
CNF formula is unresolved.

Suppose that this assignment is extended with x2 = false; i.e., A′ : {x1 =
false, x2 = false, x3 = false}. Then, clause c3 becomes unsatisfied. This means
that the search reached an empty clause; i.e., the CNF formula is unsatisfied by
A′, A′(φ) = false. Also, suppose that in the subsequent search we have the
assignment A′′ : {x1 = true, x3 = false}. Clearly, all the clauses get satisfied
and, therefore, the CNF formula is satisfiable, A′′(φ) = true.

2.2 Resolution

One of the techniques that allows to solve SAT automatically is resolution [Rob65].
Resolution is an inference rule that provides a complete inference system by refu-
tation. Given two clauses c1, c2, called parent clauses, then r is a resolvent of c1
and c2 if there is one literal ℓ ∈ c1 such that ℓ̄ ∈ c2, and r has the form

r = (c1 \ {ℓ}) ∪ (c2 \ {ℓ̄}).

The resolution step for a CNF formula φ, denoted by Res(φ), is defined as
follows:

Res(φ) = φ ∪ {r | r is a resolvent of two clauses in φ}

A resolution procedure consists in computing resolution steps to a formula φ
until Res(φ) = φ; i.e., no more resolvents can be derived. Then, the formula is
unsatisfiable if � ∈ φ; otherwise, φ is satisfiable. Algorithm 2.1 describes this
procedure [Sch89].

2.3. The Davis-Putnam procedure 13

Algorithm 2.1: Resolution(φ) : Resolution based SAT algorithm

Output: Satisfiability of φ
Function Resolution(φ : CNF formula) : Boolean

repeat
φ′ ← φ
φ← Res(φ)

until � ∈ φ ∨ φ = φ′

if � ∈ φ then return false

else return true

2.3 The Davis-Putnam procedure

The first effective method for producing resolution refutations was the Davis-
Putnam procedure (DP) [DP60]. DP is based on iteratively simplifying the
formula until the empty clause is generated or until the formula is empty. It
consists of three rules:

1. Unit Propagation (UP), also referred to as Boolean constraint propaga-
tion [ZM88], is the iterated application of the Unit Clause (UC) rule (also
referred to as the one-literal rule) until an empty clause is derived or there
are no unit clauses left. If a clause is unit, then its literal must be assigned
value true. If {ℓ} is a unit clause of a CNF formula φ, UC consists in
deleting all the clauses of φ with literal ℓ and removing all the occurrences
of literal ℓ̄.

2. Pure literal rule (also referred to as monotone literal rule). A literal is
pure if its complementary literal does not occur in the CNF formula. The
satisfiability of a CNF formula is unaffected by satisfying its pure literals.
Therefore, all clauses containing a pure literal can be removed.

3. Resolution is applied in order to iteratively eliminate each variable from
the CNF formula. In order to do so, DP applies a refinement (a restriction)
of the resolution method, known as variable elimination: Let Cℓ be the set
of clauses containing ℓ and Cℓ̄ the set of clauses containing ℓ̄, the method
consists in generating all the non-tautological resolvents using all clauses
in Cℓ and all clauses in Cℓ̄, and then removing all clauses in Cℓ ∪ Cℓ̄. After
this step, the CNF formula contains neither ℓ nor ℓ̄.

The pseudo-code of DP is given in Algorithm 2.2. The algorithm selects a
variable to be eliminated among the shortest clauses. Each time a variable is
eliminated, the number of clauses in the CNF formula may grow quadratically
in the worst case. Therefore, the worst case memory requirement for DP is ex-
ponential. In practice, DP can only handle SAT instances with tens of variables
because of this memory explosion problem [Urq87, CS00]. The procedure stops
applying resolution when the CNF formula is found to be either satisfiable or

14 Chapter 2. SAT algorithms

Algorithm 2.2: DavisPutnam(φ) : Davis-Putnam procedure for SAT

Output: Satisfiability of φ
Function DavisPutnam(φ : CNF formula) : Boolean

UnitPropagation(φ)
PureLiteralRule(φ)
if φ = ∅ then return true

if � ∈ φ then return false

ℓ← literal in c ∈ φ having c the minimum length
Rℓ ← all possible non-tautological resolvent clauses between all
clauses in Cℓ and all clauses in Cℓ̄
return DavisPutnam(φ ∪Rℓ \ (Cℓ ∪ Cℓ̄))

unsatisfiable. It is declared to be unsatisfiable whenever a conflict is reached,
detected while applying rule UC. If no conflict is reached, the CNF formula
becomes empty and is declared to be satisfiable.

Example 2.2 Given the following CNF formula, we demonstrate its satisfiabil-
ity using algorithm DP:

(x1), (x1 ∨ x2), (x2 ∨ x4), (¬x1 ∨ x3 ∨ ¬x4), (x3 ∨ x5), (¬x1 ∨ ¬x3 ∨ ¬x5)

We show the steps applied by algorithm DP using a table. In the first column
the input formula is displayed, where each line represents a different clause. The
rest of the columns represent the result of applying UC. The table below shows
the application of the rule to literal x1. Removed clauses are marked with a ’×’
and modified clauses are displayed in bold face.

φ x1

(x1) ×
(x1 ∨ x2) ×
(x2 ∨ x4) (x2 ∨ x4)
(¬x1 ∨ x3 ∨ ¬x4) (x3 ∨ ¬x4)
(x3 ∨ x5) (x3 ∨ x5)
(¬x1 ∨ ¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5)

In a second step, DP applies the pure literal rule. The table below shows the
application of the rule to literal x2 and then to literal ¬x4.

φ′ x2 ¬x4

(x2 ∨ x4) ×
(x3 ∨ ¬x4) (x3 ∨ ¬x4) ×
(x3 ∨ x5) (x3 ∨ x5) (x3 ∨ x5)
(¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5)

Finally, DP applies resolution. The table below shows the elimination of vari-
able x3 by resolution. Observe that a tautological clause appears, and is removed

2.4. The Davis-Logemann-Loveland procedure 15

by the method.

φ′′ x3

(x3 ∨ x5) ×
(¬x3 ∨ ¬x5) (x5 ∨ ¬x5) ×

At the end, the CNF formula becomes empty. Thus, the original CNF formula
is satisfiable.

2.4 The Davis-Logemann-Loveland procedure

The vast majority of state-of-the-art complete SAT algorithms are built upon the
backtrack search algorithm of Davis, Logemann and Loveland (DLL) [DLL62].
DLL replaces the application of resolution in DP by the splitting of the CNF
formula into two subproblems. Given a literal ℓ occurring in φ, the first sub-
problem (φℓ̄) is the application of UC over φ with ℓ̄, and the second subproblem
(φℓ) is the application of UC over φ with ℓ. Then, φ is unsatisfiable if and only
if φℓ and φℓ̄ are unsatisfiable. This method is shown in Algorithm 2.3.

Procedure DLL essentially constructs a binary search tree in a depth-first
manner (e.g., Figure 2.1). The leaf nodes of the search tree represent com-
plete assignments (i.e., all variables are assigned) while internal nodes represent
partial assignments (i.e., some variables are assigned, the rest are free). The
DLL procedure explores the search tree and determines whether there exists an
assignment that satisfies the input formula.

DLL incorporates Unit Propagation and Pure Literal Rule in order to
avoid the explicit exponential enumeration of all the leaves of the search tree.
Using a variable selection heuristic, the branching variables are selected to reach
a dead-end as early as possible.

Example 2.3 The search tree for the CNF formula below is displayed in Fig-
ure 2.1.

(x1 ∨ x5) ∧ (x1 ∨ ¬x6) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ x2 ∨ ¬x4)∧
(¬x2 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ x6)

Solid lines are for splitting assignments, and dashed lines for unit propagation
and monotone literal assignments. Black nodes mark reached conflicts.

The authors in [DLL62] identified three advantages of DLL over DP:

1. DP increases the number and length of the clauses rather quickly. DLL
never increases the length of clauses.

2. Many redundant clauses may appear after resolution in DP, and seldom
after splitting in DLL.

3. DLL often can yield new unit clauses, while DP not often will.

16 Chapter 2. SAT algorithms

Γ0 = φ

Γ10 = Γ0(¬x1)

¬x1

Γ20 = Γ10(x5)

x5

Γ30 = Γ20(¬x6)

¬x6

Γ40 = Γ30(¬x2)

¬x2

Γ50 = Γ40(x3)

x3

x4

Γ41 = Γ30(x2)

x2

x4

Γ11 = Γ0(x1)

x1

Γ21 = Γ11(¬x2)

¬x2

Γ31 = Γ21(x4)

x4

x3

√

Figure 2.1: Search tree for DLL applied to Example 2.3.

2.4.1 Solving techniques for improving DLL

In this section we focus on important solving techniques that should be taken into
account when developing SAT solvers that implement the DLL procedure: the
variable selection heuristic, the data structures, clause learning, application of
restarts, and reasoning on special structures. Our description of clause learning
follows closely the presentation of [Zha03].

Among the most relevant complete algorithms developed in the last years
based on the DLL procedure, we highlight the following ones:

BerkMin [GN01] by Evgueni Goldberg and Yakov Novikov.

eqsatz [Li03] by Chu Min Li.

2.4. The Davis-Logemann-Loveland procedure 17

Algorithm 2.3: DavisLogemannLoveland(φ) : DLL procedure for SAT

Output: Satisfiability of φ
Function DavisLogemannLoveland(φ : CNF formula) : Boolean

UnitPropagation(φ)
PureLiteralRule(φ)
if φ = ∅ then return true

if � ∈ φ then return false

ℓ← literal in c ∈ φ having c the minimum length
return (DavisLogemannLoveland(φℓ) ∨
DavisLogemannLoveland(φℓ̄))

GRASP [MSS99] by João Marques-Silva and Karem Sakallah.

MiniSat [ES03] by Niklas Eén and Niklas Sörensson.

POSIT [Fre95] by Jon William Freeman.

Relsat [BS97] by Roberto Bayardo and Robert Schrag.

SATO [ZS96] by Hantao Zhang and Mark Stickel.

Satz [LA97b] by Chu Min Li and Anbulagan.

siege [Rya04] by Lawrence Ryan.

zChaff [MMZ+01] by Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao
Zhang and Sharad Malik.

Variable selection heuristics

The variable selection heuristic is decisive for finding as quick as possible a
solution with the DLL procedure [MS99]. A bad heuristic can lead to explore
the whole search tree, whereas a good heuristic allows to cut several branches,
and even not to traverse more than a single branch in the best case.

The original variable selection heuristic in DLL selects a variable occurring
in clauses of minimum size. The variable is selected after applying unit propa-
gation and the pure literal rule, and is used to split the CNF formula into two
subproblems.

Example 2.4 Let φ be the following CNF formula:

(¬x1∨x2), (¬x2∨x4∨¬x3), (x1∨¬x5), (x2∨x4∨x6), (¬x2∨x4∨x6), (x2∨¬x3∨x4)

The shortest clauses in φ are (¬x1 ∨ x2) and (x1 ∨ ¬x5), hence the heuristic of
DLL chooses any of the following variables: x1, x2 or x5.

18 Chapter 2. SAT algorithms

The MOMS (Maximum Occurrences in clauses of Minimum Size)[DABC93,
Pre93] heuristic is an improvement of the previous heuristic. It selects a variable
having the maximum number of occurrences in clauses of minimum size. Intu-
itively, these variables allow to well exploit the power of unit propagation and
to augment the chances to reach an empty clause [Fre95].

Example 2.5 Let φ be the CNF formula of Example 2.4. The shortest clauses
in φ are (¬x1 ∨ x2) and (x1 ∨ ¬x5), hence MOMS heuristic chooses variable x1

because it occurs twice.

The two-sided Jeroslow-Wang (JW) heuristic [JW90, HV95] is based on the
same principle as MOMS. It gives priority to the variables that appear in the
shortest clauses. In contrast to MOMS, the number of occurrences in the rest
of clauses is also taken into account. The chances that a variable is selected by
JW is inversely proportional to the size of the clauses in which it appears. JW
uses a function J that takes as input a literal ℓ and returns a weight for such a
literal.

J(ℓ) =
∑

{c∈φ|ℓ∈c}

2−|c|,

where |c| is the number of literals in clause c. JW chooses a variable x that
maximizes J(x) + J(¬x).

Example 2.6 Let φ be the CNF formula of Example 2.4. With function J , one
can get: J(x1) = 0.25, J(¬x1) = 0.25, J(x2) = 0.5, J(¬x2) = 0.25, J(x3) = 0,
J(¬x3) = 0.25, J(x4) = 0.5, J(¬x4) = 0, J(x5) = 0, J(¬x5) = 0.25, J(x6) =
0.25, J(¬x6) = 0. The variable x2 with J(x2) + J(¬x2) = 0.75 is chosen by
heuristic JW.

Several heuristics based on unit propagation have been proved useful and
allow to exploit yet more the power of unit propagation; e.g., the heuristics of
POSIT [Fre95], Tableau [CA96] and Satz [LA97a]. A unit propagation heuristic
works as follows: Given a variable x, it examines x by respectively adding the
unit clause x and ¬x to a CNF formula, and independently computes two unit
propagations. The real effect of the unit propagations is then used to weight x
and detect failed literals. A failed literal is a literal whose addition to a CNF
formula brings the empty clause after unit propagation.

Given a CNF formula φ, this heuristic requires propagating a literal x to
count the clauses reduced in the subproblem obtained, and to follow the same
process with the complementary literal ¬x. Let w(x) and w(¬x) be the number
of clauses reduced respectively by x and ¬x, this heuristic consist in choosing
the variable which maximizes at the same time w(x) and w(¬x), maximizing
the following function: F (x) = w(x) ∗ w(¬x) ∗ 1024 + w(x) + w(¬x). If literal
x (¬x) is a failed literal, then ¬x (x) is fixed. This approach makes possible to
better prevent the consequences that the choice of the literal will produce.

Example 2.7 Let φ be the CNF formula of Example 2.4. The application of
function w to each literal produces the following values: w(x1) = 3, w(¬x1) = 1,

2.4. The Davis-Logemann-Loveland procedure 19

w(x2) = 2, w(¬x2) = 4, w(x3) = 2, w(¬x3) = 0, w(x4) = 0, w(¬x4) = 4,
w(x5) = 4, w(¬x5) = 0, w(x6) = 0, w(¬x6) = 2. The variable x2 with w(x2) =
2, w(¬x2) = 4 is chosen by a unit propagation based heuristic.

However, since examining a variable by two unit propagations is time con-
suming, two major problems remain open: should one examine all the free vari-
able by unit propagation at every node of a search tree? Otherwise, what are
the variables to be examined at a search tree node? In [LA97a], the authors
try to experimentally address these two questions in order to obtain an opti-
mal exploitation. They define a predicate PROPz at a search tree node whose
meaning is the set of variables that will be examined at the node; i.e., variable
x is examined if PROPz(x) is true.

PROPz is defined as follows: if there are more than T (parameter empirically
set to 10) variables occurring both negatively and positively in binary clauses and
having at least 4 binary occurrences, then only all these variables are examined;
otherwise, if there are more than T variables occurring both negatively and
positively in binary clauses and having at least 3 binary occurrences, then only
all these variables are examined; otherwise all the free variables are examined.

Another approach consists in selecting a variable that is likely to be a back-
bone variable [DD01, KSTW05]. A variable is a backbone variable if the variable
has assigned the same value in all the solutions. Given a CNF formula φ, this
heuristics tries first on variables that belong (or are expected to belong) to the
backbone of φ. If backbone variables are selected first, the algorithm searches
through fewer branches, speeding up the solver. The heuristic of Satz and the
heuristics based on the notion of backbone are quite effective on computationally
difficult random SAT instances.

The previous heuristics were created without the addition of learning tech-
niques into SAT solvers. The two following heuristics are thought for this kind
of solvers, focusing on a kind of locality rather than focusing on formula sim-
plification [Mit05]. For the solver zChaff [MMZ+01, ZM02, Zha03], the authors
proposed a branching heuristic called Variable State Independent Decaying Sum
(VSIDS). This heuristic keeps a score for each literal. Initially, the scores are
the number of occurrences of the literal in the initial problem. Because of the
learning mechanism, clauses are added to the formula as the search progresses.
VSIDS increases the score of a literal by a constant whenever an added clause
contains the literal. More than to develop an accurate heuristic, the motivation
was to design a fast and dynamically adapting heuristic.

The SAT solvers BerkMin [GN01] and siege [Rya04] have improved the
VSIDS heuristic. BerkMin also measures the age of the clauses and the ac-
tivity for deciding the next branching variable, whereas siege gives priority to
assigning variables on recently recorded clauses.

Efficient data structures

The performance of the DLL procedure critically depends upon the care taken
in the implementation. Solvers implementing DLL spent much of their time

20 Chapter 2. SAT algorithms

applying unit propagation [Zha97, LMS02], and this has motivated the definition
of several proposals to reduce the cost of applying unit propagation.

The simplest and intuitive implementation of unit propagation is to keep
counters for each clause. This schema is attributed to Crawford and Auton [CA93]
by [ZS96]. Similar schemas were since then employed in many solvers such as
GRASP [MSS99], Relsat [BS97] and Satz [LA97a]. For example, in GRASP
each clause keeps two counters, one for the satisfied literals in the clause and
another for the unsatisfied literals in the clause. Each variable has two lists that
contain all the clauses in which that variable appears with positive and negative
polarity. When a variable is assigned a value, the counters of the clauses that
contain this variable are updated. If a counter of unsatisfied literals becomes
equal to the total number of literals in the clause, then the clause is conflicting.
If a counter of unsatisfied literals is one less than the total number of literals in
the clause and the counter of satisfied literals is null, then the clause is a unit
clause. A counter-based unit propagation procedure is easy to understand and
implement, but this schema may be improved.

As it is pointed out in [ZM02], Zhang and Stickel [ZS96], in order to speed up
the application of unit propagation, created a new data structure in the solver
SATO: head/tail lists. In this data structure, each clause has two pointers
associated with it, called the head and the tail pointer. A clause stores all
its literals in an array. Initially, the head pointer points to the first literal of
the clause and the tail pointer points to the last literal of the clause. Each
variable keeps four linked lists that contain pointers to clauses. Each of these
lists contains the pointers to the clauses that have their head/tail literal in
positive/negative polarity for a given variable. Whenever a variable is assigned,
only two of the four lists are examined. The head/tail list schema is faster than
the counter-based schema because when the variable is assigned the value true
(false), the clauses that contain the variable with positive (negative) polarity are
not visited. For both the counter-based algorithm and the head/tail list-based
algorithm, undoing a variable assignment during backtrack has about the same
computational complexity as assigning the variable.

The solver zChaff implements a unit propagation algorithm based on the
so-called 2-literal watching schema. Similar to the head/tail list schema, 2-
literal watching also has two special literals, called watched literals, for each
clause. Each variable has two lists containing pointers to all the watched literals
containing this variable in either polarity. In contrast to the head/tail list schema
of SATO, there is no imposed order on the two pointers within a clause, and each
of the pointers can move in either direction. In addition, no references have to be
kept to the just assigned literals, since pointers do not move when backtracking
is applied. This data structure was also used in the solvers BerkMin [GN01] and
MiniSat [ES03].

The main problem of pointer-based data structures is that they cannot keep
precise information about clauses with more than two free literals. The inclusion
of additional literal references as a solution has been referred in [Gel02], and
techniques to rearrange the list of literals have been investigated in [LMS05,

2.4. The Davis-Logemann-Loveland procedure 21

Nad02].

Clause learning and non-chronological backtracking

When a conflicting clause is found, a SAT solver finds out the reason of the
conflict and tries to solve it by applying a conflict analysis procedure. This pro-
cedure tells the SAT solver that there exists no solution in the search space with
the current partial assignment, and indicates a new search space to continue the
search for a solution. The assigned variables are categorized as decision vari-
ables (i.e., picked using a variable selection heuristic) or propagation variables
(i.e., assigned using unit propagation). The decision level of variable x is the
number of decision variables in an assignment that were assigned before x. We
call conflict level at the decision level at which a conflict occurs.

The simplest conflict analysis procedure is known as chronological backtrack-
ing, and is applied in the original DLL procedure. When a conflict is detected,
the search backtracks to the most recent decision level with a variable that has
not been flipped. Chronological backtracking has good performance on random
instances and is used in SAT solvers like Satz [LA97a].

Modern SAT solvers apply a more sophisticated conflict analysis procedure,
called non-chronological backtracking or conflict direct backjumping, that can
get more information about the conflict. This procedure detects the reason
of the conflict and often backtracks to a smaller decision level which produces
the conflict. Example 2.8 shows the difference between chronological and non-
chronological backtracking.

Example 2.8 Let us consider a CNF formula φ with the following clauses
among others:

c1 : (x4 ∨ x8 ∨ x9)
c2 : (x4 ∨ x8 ∨ ¬x9)
c3 : (x4 ∨ ¬x8 ∨ x9)
c4 : (x4 ∨ ¬x8 ∨ ¬x9)
... :

...
cm : . . .

and lexicographical order as variable selection heuristic. Suppose we assign all
the variables to false until decision level 7 without finding conflicts. When we
reach the decision level 8, we detect a contradiction when the variable x8 is set to
false between clauses c1 and c2, and between clauses c3 and c4 if we set variable
x8 to true. A chronological backtracking solver would backtrack to decision level 7
because it is the previous decision level with a variable that has not been flipped.
However, flipping variables at a decision level greater than 4 does not resolve
the conflict. A non-chronological backtracking solver can analyze this particular
problem, determine the variable that produces the conflict, and backtrack to its
level. In this example, the conflict analysis procedure would resolve to backtrack
to level 4 and flip variable x4 to true.

22 Chapter 2. SAT algorithms

During the conflict analysis process, the information about the current con-
flict can be stored by means of redundancy [BS94, BGS99]. These redun-
dant clauses do not change the satisfiability of the original formula, and they
help prune parts of the search space with conflicts that involve variables of
the learned conflict. This technique is called clause learning or conflict driven
clause learning, and is used in solvers like BerkMin [GN01], Chaff [MMZ+01],
GRASP [MSS99], MiniSat [ES03] and siege [Rya04].

The implication relationships of variable assignments during the SAT solving
process can be represented in an implication graph. An implication graph is a
directed acyclic graph (DAG) in which each node represents a variable assign-
ment, and the incident edges of a vertex are the reasons that imply the variable
assignment. Figure 2.2 shows a typical implication graph. The incident edges
to node x5 are from x1 and ¬x4, which means that if x1 is true and x4 is false,
then x5 must be true. A decision vertex has no incident edge. In an implication
graph, a variable and its negation only appear when a conflict occurs. Such a
variable is called conflicting variable. The conflicting variable in Figure 2.2 is
x6.

In SAT solvers, clause learning can be applied by analyzing the implication
graph. For example, in Figure 2.2, by examining the incident vertex of the nodes
of the conflict variable, it is easy to see that the assignment of x2 and x4 to false,
and x3 and x5 to true leads to the conflict between nodes x6 and ¬x6:

¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ⇒ conflict

If we want to avoid the conflict we could add the following clause:

¬(¬x2 ∧ x3 ∧ ¬x4 ∧ x5)⇔ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5

As a result we get the conflict clause that is represented by the cut labeled as
conflict in the implication graph.

The example shows that we can generate a conflict clause doing a bipartition
of the implication graph. In the bipartition, we have decision variables on one
side (the reason side), and conflicting variables on the other side (the conflict
side). Each variable on the reason side with an edge to the conflict side belongs to
the learned clause. This bipartition is called a cut, and different cuts correspond
to different learning schemas.

Many learning schemas have been studied in the literature and L. Zhang
compares some of them in his Ph.D. Thesis [Zha03]. One of the learning schemas
with better performance, and used in modern SAT solvers, is 1-UIP (first Unique
Implication Point) [MSS99]. A UIP is a vertex that dominates both vertices
corresponding to the conflicting variable. The UIP is not unique, and we can
find more than one in an implication graph. The 1-UIP learning schema picks the
UIP closer to the conflict and cuts just after it. In Figure 2.2, there is only one
UIP, represented by vertex ¬x4, and the 1-UIP learning schema is represented
by the cut labeled 1-UIP. The learned clause of this cut is ¬x1 ∨ x2 ∨ ¬x3 ∨ x4.

The number of learned clauses can increase drastically the size of the database
of clauses. Several clause deletion strategies have been proposed [GN01, BS97]
but it is still an open topic.

2.4. The Davis-Logemann-Loveland procedure 23

x1 ¬x2

x5

x6

¬x4

¬x6

x3

1-UIP conflict

Figure 2.2: Implication graph.

Reasoning on special structures in SAT problems.

Given that many problems like pigeonhole or graph coloring involve a great
deal of symmetry in their arguments, there has been suggested to add so-called
symmetry-breaking clauses to the original formula [CGLR96, ASM06]; these are
clauses that break the existing symmetry without affecting the overall satisfiabil-
ity of the formula. Rather than modifying the set of clauses in the problem, it is
also possible to modify the notion of inference, so that once a particular conflict
has been derived, symmetric equivalents can be derived in a single step [Kri85].

Another explored deduction mechanism for special structured instances is
equivalence reasoning. Solver eqsatz [Li03] incorporated equivalence reasoning
into the Satz solver and found that it is effective on some particular classes
of benchmarks. In that work, the equivalence reasoning is accomplished by a
pattern-matching schema for equivalence clauses. In particular, finding equiva-
lences of the type x1 ↔ x2 can reduce the number of variables and clauses of the
formula, since variables x1 and x2 can be collapsed into one variable. A related
deduction mechanism was proposed in [LMS01]. There, the authors propose to
include more patterns in the matching process for simplification purposes in de-
duction. A more complex equivalence reasoning, with several steps, is performed
in [WvM98, HDvMvZ04] as a preprocessing.

24 Chapter 2. SAT algorithms

2.5 Local search for SAT

One of the drawbacks of complete methods (e.g., DP and DLL) is their inability
to solve hard random 3-SAT instances with more than 700 propositional vari-
ables within a reasonable amount of time [DD01]. This drawback can be over-
comed using incomplete1 local search methods like GSAT [SLM92] and Walk-
SAT [SKC94]. These procedures are able to solve hard instances with more than
100,000 variables, though completeness is lost.

Local search (LS) algorithms start typically with some randomly generated
complete assignment and try to find a satisfying assignment by iteratively chang-
ing the assignment of one propositional variable. Each change of the assignment
of a variable is called a variable flip, and variables are selected heuristically. Such
changes are repeated until either a satisfying assignment is found or a pre-set
maximum number of changes is needed. This process is repeated as needed, up
to a pre-set number of times. Usually, LS algorithms do not explore the entire
search space, and a given assignment may be considered more than once.

The main difference among the different local search algorithms for SAT lies
in the strategy used to select the variable to be flipped next. Furthermore, local
search algorithms can get trapped in local minima and plateau regions of the
search space, leading to premature stagnation of the search. One of the simplest
mechanisms for avoiding premature stagnation of the search is random restart,
which reinitializes the search if no solution has been found after a fixed number
of steps. Random restarts are used in almost every local search algorithm for
SAT.

A general outline of a local search algorithm for SAT is given in Algorithm 2.4.
The generic procedure initializes the search at some complete truth assignment,
and then iteratively selects a variable according to the input CNF formula and
the current assignment, and flips the selected variable. If after a maximum of
maxSteps flips no solution is found, the algorithm restarts from a new randomly
generated initial assignment. If after a given number maxTries of such tries still
no solution is found, the algorithm terminates unsuccessfully.

We now focus on the GSAT and the WalkSAT algorithms, which have pro-
vided a major driving force in the development of local search algorithms for
SAT [SHR01, HS04].

2.5.1 GSAT algorithm

The GSAT algorithm was introduced in 1992 [SLM92]. It is based on a rather
simple idea: GSAT tries to maximize the number of satisfied clauses by a greedy
ascent in the space of truth assignments. The variable selection in GSAT and
most of its variants is based on the score of a variable x under the current
assignment A, which is defined as the difference between the number of clauses

1An incomplete method in SAT can find a satisfying assignment, but cannot prove the
unsatisfiability of a CNF formula. If a solution is found, the formula is declared satisfiable
and the algorithm terminates successfully; but if the algorithm fails to find a solution, no
conclusion can be drawn.

2.5. Local search for SAT 25

Algorithm 2.4: LocalSearch(φ) : General local search procedure

Output: Satisfying assignment of φ or ’no solution found’

for 1 to maxTries do

A← initAssign(φ)
for 1 to maxSteps do

if A satisfies φ then return A

else
x← chooseVariable(φ,A)
A← A with truth value of x flipped

return ’no solution found’

falsified by the assignment obtained by flipping x in A and the number of clauses
falsified by A.

The basic GSAT algorithm uses the following instantiation of the procedure
chooseVariable(φ, A): In each local search step, one of the variables with maximal
score is flipped. If there are several variables with maximal score, one of them
is randomly selected according to a uniform distribution.

2.5.2 WalkSAT algorithm

The WalkSAT algorithm was described by Selman, Kautz, and Cohen in 1994
[SKC94]. It is based on a 2-stage variable selection process focused on the
variables occurring in currently unsatisfied clauses. For each local search step,
in a first stage a currently unsatisfied clause c′ is randomly selected. In a second
step, one of the variables appearing in c′ is then flipped to obtain the new
assignment.

Thus, while the GSAT algorithm is characterized by a static neighborhood
relation between assignments with Hamming distance one, the variable to be
flipped in WalkSAT is no longer picked among all the variables but from a
randomly selected unsatisfied clause [SHR01].

2.5.3 Other local search algorithms

Following the steps of GSAT and WalkSAT, the most relevant local search al-
gorithms developed in the last years are the following ones:

HSAT [GW93] by Ian Gent and Toby Walsh. An improvement of GSAT, which
takes the variable that was flipped longest ago for breaking ties.

TSAT [MSG97] by Bertrand Mazure, Lakhdar Säıs and Eric Grégoire. GSAT
algorithm with tabu search.

novelty [MSK97] by McAllester, Selman, Kautz. This strategy selects the vari-
able that minimizes the number of clauses which are currently satisfied but

26 Chapter 2. SAT algorithms

would become violated if the variable is flipped, breaking ties in favor of
the least recently flipped variable.

novelty+ [Hoo99] by Holger Hoos. Novelty with random walk and a user fixed
noise in the choice of flip. Another variant of the same author is adapt
novelty+, with self-fixed (adaptative) noise in the choice of flip.

SAPS [HTH02] by Holger Hoos et al. A weight is given to each clause, incre-
menting the weight to unsatisfied clauses. The variable occurring in more
clauses of maximum weight is chosen.

g2wsat [LH05b] by Chu Min Li et al. It exploits promising decreasing paths
using a gradient-based approach. When promising decreasing paths exist,
the variable to be flipped is no longer selected from a randomly chosen
unsatisfied clause but in a deterministic way to ensure that the number of
unsatisfied clauses drecreases.

VW by Steve Prestwitch, in SAT 2005 Competition. A weight is given to each
variable, which is increased in variables that are often flipped. The variable
with minimum weight is chosen.

Most of these techniques can be checked in solver UBCSAT [TH05], from the
University of British Columbia (UBC).

2.6 Summary

In this chapter we have presented an overview of the solving techniques most
commonly used in SAT. Firstly, basic concepts in satisfiability solving have been
introduced. Secondly, complete algorithms for SAT solving such as the DP pro-
cedure and the DLL procedure, as well as recent efficient techniques in complete
SAT solving, are presented. Finally, the most representative local search algo-
rithms have been described.

Chapter 3

Max-SAT algorithms

This chapter introduces some background knowledge about Max-SAT and re-
views the solving techniques that have proved to be useful in terms of perfor-
mance. In Section 3.1, we define some basic concepts in Max-SAT and Max-CSP.
In Section 3.2, we describe how the branch and bound schema can be applied
to exact Max-SAT solving. In Section 3.3, we define a complete resolution rule
for Max-SAT. In Section 3.4, we review the main Max-SAT approximation al-
gorithms. In Section 3.5, we describe the solving techniques that have been
defined for dealing with hard and soft constraints under the formalism of Par-
tial Max-SAT. Finally, in Section 3.6, we present the 2006 and 2007 Max-SAT
Evaluations. In this chapter we follow closely the presentation of [LM09].

3.1 Basic concepts in Max-SAT and Max-CSP

3.1.1 Basic concepts in Max-SAT

In propositional logic a variable xi may take values 0 (for false) or 1 (for true).
A literal ℓi is a variable xi or its negation ¬xi. The complementary of a literal
ℓ, denoted by ℓ̄, is x if ℓ = ¬x and is ¬x if ℓ = x. A clause is a disjunction of
literals, and a CNF formula is a multiset of clauses. We define CNF formulas as
multisets of clauses because repeated clauses cannot be collapsed into a unique
clause in Max-SAT. For instance, the multiset {x1,¬x1,¬x1, x1∨x2,¬x2}, where
a clause is repeated, has a minimum of two unsatisfied clauses. A weighted clause
is a pair (Ci, wi), where Ci is a disjunction of literals and wi, its weight, is a
positive number, and a weighted CNF formula is a multiset of weighted clauses.
A weighted CNF formula φ containing the clauses (C,w1), . . . , (C,wk), can be
replaced by (φ − {(C,w1), . . . , (C,wk)} ∪ (C,w1 + · · · + wk)). The length of a
(weighted) clause is the total number of literal occurrences in the clause. A
(weighted) clause with one literal is called unit, with two literals is called binary,
and with three literals is called ternary. The size of a (weighted) CNF formula
φ, denoted by |φ|, is the sum of the lengths of all its clauses.

27

28 Chapter 3. Max-SAT algorithms

An assignment of truth values to the propositional variables satisfies a literal
xi if xi takes the value 1 and satisfies a literal ¬xi if xi takes the value 0, satisfies
a clause if it satisfies at least one literal of the clause, and satisfies a CNF formula
if it satisfies all the clauses of the formula. A CNF formula is satisfiable if there
exists an assignment that satisfies the formula; otherwise, it is unsatisfiable. An
empty clause, denoted by �, contains no literals and cannot be satisfied. A
tautology is a CNF formula that is satisfied by any truth assignment.

An assignment of truth values to the propositional variables satisfies a weighted
clause (Ci, wi) if it satisfies Ci, and satisfies a weighted CNF formula {(C1, w1), . . . ,
(Cm, wm)} if it satisfies C1, . . . , Cm.

An assignment for a CNF formula φ is complete if all the variables occurring
in φ have been assigned; otherwise, it is partial. A partial truth assignment also
partitions the clauses of a CNF formula into three sets: satisfied clauses, the
clauses that contain at least one satisfied literal; unsatisfied clauses, the clauses
in which all its literals are unsatisfied, and unresolved clauses, the clauses that
the partial assignment makes them not to be decided. The unassigned literals
of a clause are referred to as its free literals. In a search context, an unresolved
clause is said to be unit if the number of its free literals is one. Similarly, an
unresolved clause with two free literals is said to be binary, and an unresolved
clause with three free literals is said to be ternary.

The Max-SAT problem for a CNF formula φ is the problem of finding an
assignment of values to propositional variables that maximizes the number of
satisfied clauses. In the sequel, we often use the term Max-SAT meaning Min-
UNSAT. This is because, with respect to exact computations, finding an assign-
ment that minimizes the number of unsatisfied clauses is equivalent to finding
an assignment that maximizes the number of satisfied clauses. Notice that an
upper (lower) bound in Min-UNSAT is greater (smaller) than or equal to the
minimum number of clauses that are falsified by an interpretation.

Example 3.1 Let φ be a Max-SAT instance with the following clauses:

c1 : x1

c2 : ¬x1 ∨ x2

c3 : x1 ∨ ¬x2 ∨ x3

c4 : ¬x1 ∨ ¬x2

c5 : x1 ∨ x2 ∨ ¬x3

c6 : ¬x1 ∨ x3

c7 : ¬x1 ∨ ¬x2 ∨ ¬x3

An assignment that satisfies (falsifies) the maximum (minimum) number of
clauses is: x1 = false, x2 = true and x3 = true. The CNF formula φ has
a maximum (minimum) number of satisfied (falsified) clauses of 6 (1). The
falsified clause with this assignment is c1.

Max-SAT is called Max-k-SAT when all the clauses have at most k literals
per clause.

3.1. Basic concepts in Max-SAT and Max-CSP 29

In Max-SAT, two instances φ1 and φ2 are equivalent if φ1 and φ2 have the
same number of unsatisfied clauses for every complete assignment of φ1 and φ2.

We will also consider three extensions of Max-SAT which are more well-
suited for representing and solving over-constrained problems: weighted Max-
SAT, Partial Max-SAT and weighted Partial Max-SAT.

The weighted Max-SAT problem for a weighted CNF formula φ is the problem
of finding an assignment of values to propositional variables that maximizes the
sum of weights of satisfied clauses (or equivalently, that minimizes the sum of
weights of unsatisfied clauses).

Example 3.2 Let φ be a weighted Max-SAT instance with the following clauses:

c1 : (x1; 5)
c2 : (¬x1 ∨ x2; 4)
c3 : (x1 ∨ ¬x2 ∨ x3; 3)
c4 : (¬x1 ∨ ¬x2; 2)
c5 : (x1 ∨ x2 ∨ ¬x3; 4)
c6 : (¬x1 ∨ x3; 1)
c7 : (¬x1 ∨ ¬x2 ∨ ¬x3; 2)

An assignment that maximizes (minimizes) the sum of weights of satisfied (fal-
sified) clauses is: x1 = true, x2 = true and x3 = false. The weighted Max-SAT
instance φ has a maximum (minimum) sum of weights of satisfied (falsified)
clauses of 18 (3). The falsified clauses with this assignment are c4 with weight
2, and c6 with weight 1.

A Partial Max-SAT instance is a CNF formula in which some clauses are
relaxable or soft, and the rest are non-relaxable or hard. The Partial Max-
SAT problem for a Partial Max-SAT instance φ is the problem of finding an
assignment that satisfies all the hard clauses and the maximum number of soft
clauses. Hard clauses are represented between square brackets, and soft clauses
are represented between round brackets.

Example 3.3 Let φ be a Partial Max-SAT instance with the following clauses:

c1 : [x1 ∨ x2]
c2 : [¬x1 ∨ ¬x2]
c3 : (x1 ∨ ¬x2 ∨ x3)
c4 : (¬x1 ∨ x2 ∨ x3)
c5 : (x2 ∨ ¬x3)
c6 : (¬x2 ∨ ¬x3)
c7 : (x3)

An assignment that satisfies all the hard clauses and maximizes (minimizes) the
number of satisfied (falsified) soft clauses is: x1 = false, x2 = true and x3 =
true. The Partial Max-SAT instance φ has a maximum (minimum) number of
satisfied (falsified) soft clauses of 4 (1). The falsified clause with this assignment
is c6.

30 Chapter 3. Max-SAT algorithms

The weighted Partial Max-SAT problem is the combination of weighted Max-
SAT and Partial Max-SAT.

Example 3.4 Let φ be a weighted Partial Max-SAT instance with the following
clauses:

c1 : [x1 ∨ x2]
c2 : [¬x1 ∨ ¬x2]
c3 : (x1 ∨ ¬x2 ∨ x3; 1)
c4 : (¬x1 ∨ x2 ∨ x3; 2)
c5 : (x2 ∨ ¬x3; 5)
c6 : (¬x2 ∨ ¬x3; 6)
c7 : (x3; 3)

An assignment that satisfies all the hard clauses and maximizes (minimizes) the
sum of weights of satisfied (falsified) soft clauses is: x1 = false, x2 = true
and x3 = false. The weighted Partial Max-SAT instance φ has a maximum
(minimum) sum of weights of satisfied (falsified) soft clauses of 13 (4). The
falsified clauses with this assignment are c3 with weight 1, and c7 with weight 3.

Max-SAT can also be defined as weighted Max-SAT restricted to formulas
whose clauses have weight 1, and as Partial Max-SAT in the case that all the
clauses are declared to be soft.

Finally, we introduce the integer linear programming (ILP) formulation of
weighted Max-SAT, which is used to compute lower and upper bounds. Let φ =
(C1, w1)∧· · ·∧(Cm, wm) be a weighted Max-SAT instance over the propositional
variables x1, . . . , xn. With each propositional variable xi, we associate a variable
yi ∈ {0, 1} such that yi = 1 if variable xi is true and yi = 0, otherwise. With
each clause Cj , we associate a variable zj ∈ {0, 1} such that zj = 1 if clause
Cj is satisfied and zj = 0, otherwise. Let I+

j be the set of indices of unnegated

variables in clause Cj , and let I−j be the set of indices of negated variables in
clause Cj . The ILP formulation of the weighted Max-SAT instance φ is defined
as follows:

maxF (y, z) =

m
∑

j=1

wjzj

subject to
∑

i∈I
+
j

yi +
∑

i∈I
−

j

(1− yi) ≥ zj j = 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

If we consider the minimization version of weighted Max-SAT (i.e.; weighted
Min-UNSAT), we assume that with each clause Cj , we associate a variable zj ∈
{0, 1} such that zj = 1 if clause Cj is falsified and zj = 0, otherwise. Then, the
ILP formulation of the instance φ is defined as follows:

minF (y, z) =

m
∑

j=1

wjzj

3.1. Basic concepts in Max-SAT and Max-CSP 31

subject to
∑

i∈I
+
j

yi +
∑

i∈I
−

j

(1− yi) + zj ≥ 1 j = 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

Example 3.5 The minimization version of the ILP formulation for the weighted
Max-SAT instance φ of Example 3.2 is as follows:

minF (y, z) = 5z1 + 4z2 + 3z3 + 2z4 + 4z5 + 1z6 + 2z7

subject to

y1 + z1 ≥ 1
(1− y1) + y2 + z2 ≥ 1
y1 + (1− y2) + y3 + z3 ≥ 1
(1− y1) + (1− y2) + z4 ≥ 1
y1 + y2 + (1− y3) + z5 ≥ 1
(1− y1) + y3 + z6 ≥ 1
(1− y1) + (1− y2) + (1− y3) + z7 ≥ 1

yi ∈ {0, 1} i = 1, 2, 3

zj ∈ {0, 1} j = 1, 2, 3, 4, 5, 6, 7

An assignment that minimizes F (y, z) is: y1 = 1, y2 = 1 and y3 = 0. The
variables zi that must be assigned to 1 are z4 and z6.

The ILP formulation of the weighted Partial Max-SAT instance

φ = [C1] ∧ · · · ∧ [Ck] ∧ (Ck+1, wk+1) ∧ · · · ∧ (Cm, wm)

is defined as follows:

maxF (y, z) =

m
∑

j=k+1

wjzj

subject to
∑

i∈I
+
j

yi +
∑

i∈I
−

j

(1− yi) ≥ 1 j = 1, . . . , k

∑

i∈I
+
j

yi +
∑

i∈I
−

j

(1− yi) ≥ zj j = k + 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = k + 1, . . . ,m

32 Chapter 3. Max-SAT algorithms

If we consider the minimization version of weighted Partial Max-SAT (i.e.;
weighted Partial Min-UNSAT), then the ILP formulation of the instance φ is
defined as follows:

minF (y, z) =

m
∑

j=k+1

wjzj

subject to
∑

i∈I
+
j

yi +
∑

i∈I
−

j

(1− yi) ≥ 1 j = 1, . . . , k

∑

i∈I
+
j

yi +
∑

i∈I
−

j

(1− yi) + zj ≥ 1 j = k + 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = k + 1, . . . ,m

Example 3.6 The minimization version of the ILP formulation for the weighted
Partial Max-SAT instance φ of Example 3.4 is as follows:

minF (y, z) = 1z1 + 2z2 + 5z3 + 6z4 + 3z5

subject to
y1 + y2 ≥ 1
(1− y1) + (1− y2) ≥ 1
y1 + (1− y2) + y3 + z1 ≥ 1
(1− y1) + y2 + y3 + z2 ≥ 1
y2 + (1− y3) + z3 ≥ 1
(1− y2) + (1− y3) + z4 ≥ 1
y3 + z5 ≥ 1

yi ∈ {0, 1} i = 1, 2, 3

zj ∈ {0, 1} j = 1, 2, 3, 4, 5

An assignment that minimizes F (y, z) is: y1 = 0, y2 = 1 and y3 = 0. The
variables zi that must be assigned to 1 are z1 and z5.

The linear programming (LP) relaxation of the previous formulations is ob-
tained by allowing the integer variables to take real values in [0, 1].

3.1.2 Basic concepts in Max-CSP

A Constraint Satisfaction Problem (CSP) instance is defined by a triple 〈X,D,C〉,
where X = {x1, . . . , xn} is a set of variables, D = {d(x1), . . . , d(xn)} is a
set of finite domains containing the values that the variables may take, and
C = {c1, . . . , cm} is a set of constraints. Each constraint ci = 〈Si, Ri〉 is defined
as a relation Ri over a subset of variables Si = {xi1 , . . . , xik

}, called the con-
straint scope. The relation Ri may be represented extensionally as a subset of
the Cartesian product d(xi1)× · · · × d(xik

).

3.2. Branch and bound algorithms 33

An assignment v for a CSP instance 〈X,D,C〉 is a mapping that assigns to
every variable xi ∈ X an element v(xi) ∈ d(xi). An assignment v satisfies a
constraint 〈{xi1 , . . . , xik

}, Ri〉 ∈ C iff 〈v(xi1), . . . , v(xik
)〉 ∈ Ri. An assignment

satisfies a CSP if it satisfies all its constraints.
The Constraint Satisfaction Problem (CSP) for a CSP instance P consists

in deciding whether there exists an assignment that satisfies P .
In the rest of the thesis we assume that all CSPs are unary and binary; i.e.,

the scope of all the constraints has at most cardinality two.

Example 3.7 Let P be the CSP instance defined by 〈X,D,C〉, where X =
{x1, x2, x3, x4} is the set of variables, d(x1) = d(x2) = d(x3) = d(x4) = {1, 2, 3},
and C = {〈{x1, x2}, x1 6= x2〉, 〈{x1, x3}, x1 < x3〉, 〈{x2, x4}, x2 = x4〉, 〈{x3, x4}, x3 >
x4〉} is the set of constraints. An assignment that satisfies P is x1 = 1, x2 = 2,
x3 = 3 and x4 = 2; i.e., the CSP instance P has a solution.

The Max-CSP problem for a CSP instance 〈X,D,C〉 is the problem of finding
an assignment that minimizes (maximizes) the number of violated (satisfied)
constraints.

Example 3.8 Let P be the CSP instance defined by 〈X,D,C〉, where X =
{x1, x2, x3} is the set of variables, d(x1) = d(x2) = d(x3) = {1, 2, 3}, and
C = {〈{x1, x2}, x1 < x2〉, 〈{x2, x3}, x2 < x3〉, 〈{x1, x3}, x1 6= x3〉} is the set
of constraints. An assignment that minimizes the number of violated constraints
of P is x1 = 1, x2 = 2 and x3 = 3. The number of violated (satisfied) constraints
with this assignment is 1 (2).

3.2 Branch and bound algorithms

Competitive exact Max-SAT solvers —as the ones developed by [AMP03, AMP04,
AMP05, AMP08, DDDL07, HL06, HLO07, LHdG08, LMP05, LMP06, LS07,
PD07, RG07, SZ04, XZ04, XZ05, ZSM03]— implement variants of the following
branch and bound (BnB) schema for solving the minimization version of Max-
SAT: Given a CNF formula φ, BnB explores the search tree that represents the
space of all possible assignments for φ in a depth-first manner. At every node,
BnB compares the upper bound (UB), which is the best solution found so far
for a complete assignment, with the lower bound (LB), which is the sum of the
number of clauses unsatisfied by the current partial assignment plus an under-
estimation of the number of clauses that will become unsatisfied if the current
partial assignment is completed. If LB ≥ UB, the algorithm prunes the subtree
below the current node and backtracks chronologically to a higher level in the
search tree. If LB < UB, the algorithm tries to find a better solution by ex-
tending the current partial assignment by instantiating one more variable. The
solution to Max-SAT is the value that UB takes after exploring the entire search
tree.

Figure 3.1 shows the pseudo-code of a basic solver for Max-SAT. We use the
following notation:

34 Chapter 3. Max-SAT algorithms

Algorithm 3.1: Max-SAT(φ, UB) : Basic BnB algorithm for Max-SAT

Output: The minimal number of unsatisfied clauses in φ
Function Max-SAT (φ : CNF formula, UB : upper bound) : Natural

φ← SimplifyFormula(φ)
if φ = ∅ or φ only contains empty clauses then

return EmptyClauses(φ)

LB ← EmptyClauses(φ) + Underestimation(φ)
if LB ≥ UB then

return UB

x← SelectVariable(φ)
UB ← Min(UB, Max-SAT(φ¬x, UB))
return Min(UB, Max-SAT(φx, UB))

• SimplifyFormula(φ) is a procedure that transforms φ into an equivalent
and simpler instance by applying inference rules.

• EmptyClauses(φ) is a function that returns the number of empty clauses
in φ.

• Underestimation(φ,UB) is a function that returns an underestimation of
the minimum number of non-empty clauses in φ that will become unsatis-
fied if the current partial assignment is extended to a complete assignment.

• LB is a lower bound. We assume that its initial value is 0.

• UB is an upper bound of the number of unsatisfied clauses in an optimal
solution. An elementary initial value for UB is the total number of clauses
in the input formula, or the number of clauses unsatisfied by an arbitrary
interpretation. Another alternative is to solve the LP relaxation of the ILP
formulation of the input instance and take as upper bound the number of
unsatisfied clauses in the interpretation obtained by rounding variable yi,
for 1 ≤ i ≤ n, to an integer solution in a randomized way by interpreting
the values of yi ∈ [0, 1] as probabilities (set propositional variable xi to
true with probability yi, and set propositional variable xi to false with
probability 1− yi). Nevertheless, most of the solvers take as initial upper
bound the minimum number of unsatisfied clauses that are detected by
executing the input formula in a local search solver during a short period
of time.

• SelectVariable(φ) is a function that returns a variable of φ following an
heuristic.

• φx (φ¬x) is the formula obtained by applying the unit clause rule to φ
using the literal x (¬x).

3.2. Branch and bound algorithms 35

State-of-the-art Max-SAT solvers implement the basic algorithm augmented
with powerful inference techniques, good quality lower bounds, clever variable
selection heuristics, learning of hard clauses, non-chronological backtracking,
and efficient data structures.

3.2.1 Improving the lower bound with underestimations

The simplest method to compute a lower bound, when solving the minimization
version of Max-SAT, consists of just counting the number of clauses unsatisfied
by the current partial assignment [BF99]. One step forward is to incorporate
an underestimation of the number of clauses that will become unsatisfied if the
current partial assignment is extended to a complete assignment. The most basic
method was defined by Wallace and Freuder [WF96]:

LB(φ) = #emptyClauses(φ) +
∑

x occurs in φ

min(ic(x), ic(¬x)),

where φ is the CNF formula associated with the current partial assignment, and
ic(x) (ic(¬x)) —inconsistency count of x (¬x)— is the number of unit clauses
of φ that contain ¬x (x). In other words, that underestimation is the number
of disjoint inconsistent subformulas in φ formed by a unit clause with a literal ℓ
and a unit clause with the complementary of ℓ.

Example 3.9 Given the Max-SAT instance φ represented by the following mul-
tiset of clauses φ = { �, ¬x1, x1, x1, ¬x2, x2∨x3, x2∨¬x3, ¬x4,¬x5, x6, x4∨
x5 ∨ ¬x6, ¬x7, x7 }, the lower bound computed by the simplest method is 1
(number of empty clauses). With the method defined by Wallace and Freuder we
have that:

LB(φ) = 1 +
∑

x occurs in φ

min(ic(x), ic(¬x)) = 3

Lower bounds dealing with longer clauses include the star rule and UP. In the
star rule [SZ04, AMP04], the underestimation of the lower bound is the number
of disjoint inconsistent subformulas of the form {l1, . . . , lk, l̄1 ∨ · · · ∨ l̄k}. The
star rule, when k = 1, is equivalent to the inconsistency counts of Wallace and
Freuder.

Example 3.10 Given the Max-SAT instance of Example 3.9, we can detect an
additional inconsistent subformula by applying the star rule among the clauses
{¬x4,¬x5, x6, x4 ∨ x5 ∨ ¬x6} and increase the lower bound by 1.

In UP [LMP05], the underestimation of the lower bound is the number of
disjoint inconsistent subformulas that can be detected with unit propagation.
UP works as follows: it applies unit propagation until a contradiction is derived.
Then, UP identifies, by inspecting the implication graph, a subset of clauses from
which a refutation can be constructed, and tries to identify new contradictions
from the remaining clauses. The order in which unit clauses are propagated has a

36 Chapter 3. Max-SAT algorithms

clear impact on the quality of the lower bound [LMP06]. Shen and Zhang [SZ04]
defined a lower bound computation method, called LB4, which is similar to UP
but restricted to Max-2-SAT instances and using a static variable ordering.

Example 3.11 Given the Max-SAT instance of Example 3.9, we can propagate
¬x2 and detect, with unit propagation, the inconsistent subformula {¬x2, x2 ∨
x3, x2 ∨ ¬x3}, and increase the lower bound by 1.

UP can be enhanced with failed literals as follows: Given a Max-SAT in-
stance φ and a variable x occurring positively and negatively in φ, we apply UP
to φ∧{x} and φ∧{¬x}. If UP derives a contradiction from φ∧{x} and φ∧{¬x},
then the union of the two inconsistent subsets identified by UP is an inconsistent
subset of φ. UP enhanced with failed literals does not need the occurrence of
unit clauses in the input formula for deriving a contradiction. While UP only
identifies unit refutations, UP enhanced with failed literals identifies non-unit
refutations too. Since applying detection of failed literals for every variable is
time consuming, it is applied to a reduced number of variables in practice.

Example 3.12 Given the Max-SAT instance φ represented by the following
multiset of clauses φ = { x1∨x2, x1∨¬x2,¬x1∨x2,¬x1∨¬x2, ¬x3, x4∨x3, x5},
we can detect an inconsistent subformula using failed literals as follows: we de-
rive a contradiction when we apply UP to φ∨{x1}, and also when we apply UP to
φ∨{¬x1}. The union of the two detected inconsistent subsets is an inconsistens
subset of φ formed by the clauses {x1 ∨ x2, x1 ∨ ¬x2,¬x1 ∨ x2,¬x1 ∨ ¬x2}.

Modern Max-SAT solvers like LB-SAT, MaxSatz and MiniMaxsat apply
either UP or UP enhanced with failed literal detection. Recently, Darras et
al. [DDDL07] have developed a version of UP in which the computation of the
lower bound is made more incremental by saving some of the small size disjoint
inconsistent subformulas detected by UP. They avoid to redetect the saved in-
consistencies if they remain in subsequent nodes of the proof tree, and are able
to solve some types of instances faster.

Marques-Silva and Planes [MSP08] developed a solver, called msu4, which
solves Max-SAT using a SAT solver equipped with unsatisfiability cores detection
and cardinality constraints. In ms4, the number of detected disjoint unsatisfiable
cores is taken as a lower bound.

Another approach for computing underestimation is based on first reducing
the Max-SAT instance we want to solve to an instance of another problem, and
then solve a relaxation of the obtained instance. For example, two solvers of the
2007 Max-SAT Evaluation, Clone [PD07] and SR(w) [RG07], reduce Max-SAT
to the minimum cardinality problem. Since the minimum cardinality problem is
NP-hard for a CNF formula φ and can be solved in time linear in the size of a
deterministic decomposable negation normal form (d-DNNF) compilation of φ,
Clone and SR(w) solve the minimum cardinality problem of a d-DNNF compila-
tion of a relaxation of φ. The worst-case complexity of a d-DNNF compilation of
φ is exponential in the treewidth of its constraint graph, and Clone and SR(w)

3.2. Branch and bound algorithms 37

obtain a relaxation of φ with bounded treewidth by renaming different occur-
rences of some variables.

Xing and Zhang [XZ05] reduce the Max-SAT instance to the ILP formulation
of the minimization version of Max-SAT (c.f. Section 1.2), and then solve the LP
relaxation. An optimal solution of the LP relaxation provides an underestima-
tion of the lower bound because the LP relaxation is less restricted than the ILP
formulation. In practice, they apply that lower bound computation method only
to nodes containing unit clauses. If each clause in the Max-SAT instance has
more than one literal, then yi = 1

2 for all 1 ≤ i ≤ n and zj = 0 for all 1 ≤ j ≤ m
is an optimal solution of the LP relaxation. In this case, the underestimation is
0. Nevertheless, LP relaxations do not seem to be so competitive as the rest of
approaches.

3.2.2 Improving the lower bound with inference

Another approach to improve the quality of the lower bound consists in applying
inference rules that transform a Max-SAT instance φ into an equivalent but
simpler Max-SAT instance φ′. In the best case, inference rules produce new
empty clauses in φ′ that allow to increment the lower bound. In contrast with
the empty clauses derived when computing underestimations, the empty clauses
derived with inference rules do not have to be recomputed at every node of the
current subtree so that the lower bound computation is more incremental.

A Max-SAT inference rule is sound if it transforms an instance φ into an
equivalent instance φ′. It is not sufficient to preserve satisfiability as in SAT, φ
and φ′ must have the same number of unsatisfied clauses for every possible as-
signment. Unfortunately, unit propagation, which is the most powerful inference
technique applied in DPLL-style SAT solvers, is unsound for Max-SAT as the
next example shows: The set of clauses {x1,¬x1∨x2,¬x1∨¬x2,¬x1∨x3,¬x1∨
¬x3} has a minimum of one unsatisfied clause (setting x1 to false), but perform-
ing unit propagation with x1 leads to a non-optimal assignment falsifying two
clauses.

Max-SAT inference rules are also called transformation rules in the literature
because the premises of the rule are replaced with the conclusion when a rule
is applied. If the conclusion is added to the premises as in SAT, the number of
clauses unsatisfied by an assignment might increase.

The amount of inference performed by existing BnB Max-SAT solvers at
each node of the proof tree is poor compared with the inference performed in
DPLL-style SAT solvers. The simplest inference enforced, when branching on
literal ℓ, is the following: the clauses containing ℓ are removed from the instance
and the occurrences of ℓ̄ are removed from the clauses in which ℓ̄ appears, but
the new unit clauses derived as a consequence of removing the occurrences of ℓ̄
are not propagated as in unit propagation. That inference is typically enhanced
with Max-SAT inference rules as the ones described in the rest of this section.

We now present simple inference rules that have proved to be useful in
a number of solvers [AMP03, AMP05, BF99, SZ04, XZ05], and then some
more sophisticated inferences rules which are implemented in solvers like Max-

38 Chapter 3. Max-SAT algorithms

DPLL [LHdG08], MaxSatz [LMP07], and MiniMaxsat [HLO07]. Some simple
inference rules are:

• The pure literal rule [BF99]: If a literal only appears with either positive
or negative polarity in a MaxSAT instance, all the clauses containing that
literal are removed.

• The dominating unit clause rule [NR00]: If the number of clauses (of any
length) in which a literal l appears is not greater than the number of
unit clauses in which l̄ appears, all the clauses containing l and all the
occurrences of l̄ are removed.

• The complementary unit clause rule [NR00]: If a Max-SAT instance con-
tains a unit clause with the literal l and a unit clause with the literal l̄,
these two clauses are replaced with one empty clause.

• The almost common clause rule [BR99]: If a Max-SAT instance contains a
clause x∨D and a clause ¬x∨D, where D is a disjunction of literals, then
both clauses are replaced with D. In practice, this rule is applied when D
contains at most one literal.

The resolution rule applied in SAT (i.e., derive D ∨ D′ from x ∨ D and
¬x ∨ D′) preserves satisfiability but not equivalence, and therefore cannot be
applied to Max-SAT instances, except for some particular cases like the almost
common clause rule. We refer the reader to Section 3.3 for a complete resolution
calculus for Max-SAT, and devote the rest of this section to present some sound
Max-SAT resolution rules that can be applied in polynomial time.

We next present the star rule: If φ1={l1, l̄1∨l̄2, l2}∪φ′, then φ2={�, l1∨l2}∪
φ′ is equivalent to φ1. This rule, which can be seen as the inference counterpart
of the underestimation of the same name, can also be presented as follows:







l1
l̄1 ∨ l̄2
l2







=⇒
{

l1 ∨ l2

}

Notice that the rule detects a contradiction from l1, l̄1 ∨ l̄2, l2 and, therefore,
replaces these clauses with an empty clause. In addition, the rule adds the
clause l1 ∨ l2 to ensure the equivalence between φ1 and φ2. For any assignment
containing either l1 = 0, l2 = 1, or l1 = 1, l2 = 0, or l1 = 1, l2 = 1, the number
of unsatisfied clauses in {l1, l̄1 ∨ l̄2, l2} is 1, but for any assignment containing
l1 = 0, l2 = 0, the number of unsatisfied clauses is 2. Notice that even when any
assignment containing l1 = 0, l2 = 0 is not the best assignment for the subset
{l1, l̄1 ∨ l̄2, l2}, it can be the best for the whole formula. By adding l1 ∨ l2, the
rule ensures that the number of unsatisfied clauses in φ1 and φ2 is also the same
when l1 = l2 = 0.

MaxSatz implements the almost common clause rule, the star rule, and ad-
ditional inference rules presented in Section 5.2.4.

3.2. Branch and bound algorithms 39

Independently and in parallel to the definition of the rules of MaxSatz,
similar inference rules were defined for weighted Max-SAT by Heras and Lar-
rosa [LH05b, HL06], and were implemented in Max-DPLL [LHdG08]. These
rules were inspired by the soft local consistency properties defined in the Con-
straint Programming community [dGHZL05, CdGS07]. The rules implemented
in Max-DPLL are the almost common clause rule, chain resolution and cycle
resolution. Chain resolution, which allows one to derive a new empty clause, is
defined as follows:







(l1, w1),
(l̄i ∨ li+1, wi+1)1≤i<k,
(l̄k, wk+1)







=⇒























(li,mi −mi+1)1≤i≤k,
(l̄i ∨ li+1, wi+1 −mi+1)1≤i<k,
(li ∨ l̄i+1,mi+1)1≤i<k,
(l̄k, wk+1 −mk+1),
(�,mk+1)























where wi, 1 ≤ i ≤ k + 1, is the weight of the corresponding clause, and mi =
min(w1, w2, . . . , wi).

Cycle resolution, which allows one to derive a new unit clause and whose
application is restricted to k = 3 in Max-DPLL, is defined as follows:

{

(l̄i ∨ li+1, wi)1≤i<k,
(l̄1 ∨ l̄k, wk)

}

=⇒































(l̄1 ∨ li,mi−1 −mi)2≤i≤k,
(l̄i ∨ li+1, wi −mi)2≤i<k,
(l̄1 ∨ li ∨ l̄i+1,mi)2≤i<k,
(l1 ∨ l̄i ∨ li+1,mi)2≤i<k,
(l̄1 ∨ l̄k, wk −mk),
(l̄1,mk)































A more general inference schema is implemented in MiniMaxsat [HLO07].
It detects a contradiction with unit propagation and identifies an unsatisfiable
subset. Then, it creates a refutation for that unsatisfiable subset, and applies the
Max-SAT resolution rule defined in Section 3.3 if the size of the largest resolvent
in the refutation is less than 4.

3.2.3 Variable selection heuristics

Most of the exact Max-SAT solvers incorporate variable selection heuristics that
take into account the number of literal occurrences in such a way that each
occurrence has an associated weight that depends on the length of the clause
that contains the literal. Max-SAT heuristics give priority to literals occurring
in binary clauses instead of literals occurring in unit clauses as SAT heuristics
do. The goal is to generate as many unit clauses as possible.

Let us see as an example the variable selection heuristic of MaxSatz [LMP07]:
Let neg1(x) (pos1(x)) be the number of unit clauses in which x is negative (pos-
itive), neg2(x) (pos2(x)) be the number of binary clauses in which x is negative
(positive), and let neg3(x) (pos3(x)) be the number of clauses containing three
or more literals in which x is negative (positive). MaxSatz selects the variable x

40 Chapter 3. Max-SAT algorithms

such that (neg1(x)+4∗neg2(x)+neg3(x))*(pos1(x)+4∗pos2(x)+pos3(x)) is the
largest. Once a variable x is selected, MaxSatz applies the following value selec-
tion heuristic: If neg1(x)+4∗neg2(x)+neg3(x) < pos1(x)+4∗pos2(x)+pos3(x),
set x to true; otherwise, set x to false.

Other Max-SAT solvers (AMP [AMP03], Lazy [AMP08], MaxSolver [XZ05],
Max-DPLL [LHdG08], MiniMaxsat [HLO07], . . .) incorporate variants of the
two-sided Jeroslow-Wang rule that give priority to variables occurring often in
binary clauses. MaxSolver changes the weights as the search proceeds.

MiniMaxsat incorporates VSIDS [MMZ+01] and the two-sided Jeroslow-
Wang rule. It automatically changes to the two-sided Jeroslow-Wang heuristic
if the problem does not contain any literal ℓ such that ℓ and ℓ̄ appear in some
hard clauses.

3.2.4 Data structures

Data structures for SAT have been naturally extended to Max-SAT. We can
divide the solvers into two classes: solvers like BF and MaxSatz representing
formulas with adjacency lists, and solvers like Lazy and MiniMaxsat which use
data structures with watched literals. Lazy data structures are particularly good
when there is a big number of clauses; for example, in Partial Max-SAT solvers
with clause learning.

It is also worth to point out that the lower bound computation methods based
on unit propagation represent the different derivations of unit clauses in a graph,
called the implication graph [LMP07]. Looking at that graph, solvers identify the
clauses which are involved in the derivation of a contradiction. Furthermore, in
some solvers the implication graph is used to decide whether the clauses involved
in a contradiction match with the premises of some inference rule.

3.3 Complete inference in Max-SAT

A natural extension to Max-SAT of the resolution rule applied in SAT was
defined by Larrosa and Heras [LH05b]:

x ∨A
¬x ∨B
A ∨B

x ∨A ∨ ¬B
¬x ∨ ¬A ∨B

However, two of the conclusions of this rule are not in clausal form, and the
application of distributivity results into an unsound rule. Independently and in
parallel, Bonet et al. [BLM06, BLM07], and Heras and Larrosa [HL06] defined
a sound version of the rule with the conclusions in clausal form:

3.4. Approximation algorithms 41

x ∨ a1 ∨ · · · ∨ as

x ∨ b1 ∨ · · · ∨ bt
a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt
x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
x ∨ b1 ∨ · · · ∨ bt ∨ a1

x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule concludes, apart from the conclusion where a variable has
been cut, some additional clauses that contain one of the premises as subclause.
We say that the rule cuts the variable x. The tautologies concluded by the rule
are removed, and the repeated literals in a clause are collapsed into one.

Notice that an instance of Max-SAT resolution not only depends on the two
premises and the cut variable (like in resolution), but also on the order of the
literals in the premises. Notice also that, like in resolution, this rule concludes a
new clause not containing the variable x, except when this clause is a tautology.

Moreover, Bonet et al. [BLM06, BLM07] proved the completeness of Max-
SAT resolution: By saturating successively w.r.t. all the variables, one derives
as many empty clauses as the minimum number of unsatisfied clauses in the
the Max-SAT input instance. Saturating w.r.t. a variable amounts to apply the
Max-SAT resolution rule to clauses containing that variable until every possible
application of the inference rule only introduces clauses containing that variable
(since tautologies are eliminated). Once a Max-SAT instance is saturated w.r.t.
a variable, all the clauses containing that variable are not considered to saturate
w.r.t. another variable. We refer to [BLM07] for further technical details and for
the weighted version of the rule.

3.4 Approximation algorithms

Heuristic local search algorithms are often quite effective at finding near-optimal
solutions. Actually, most of the exact Max-SAT solvers use a local search algo-
rithm to compute an initial upper bound. However, these algorithms, in contrast
with approximation algorithms, do not come with rigorous guarantees concerning
the quality of the final solution or the required maximum runtime. Informally,
an algorithm approximately solves an optimization problem if it always returns
a feasible solution whose measure is close to optimal, for example, within a fac-
tor bounded by a constant or by a slowly growing function of the input size.
Given a constant α, an algorithm is an α-approximation algorithm for a maxi-
mization (minimization) problem if it provides a feasible solution in polynomial
time which is at least (most) α times the optimum, considering all the possible
instances of the problem.

42 Chapter 3. Max-SAT algorithms

The first Max-SAT approximation algorithm, with a performance guaran-
tee of 1

2 , is a greedy algorithm that was devised by Johnson in 1974 [Joh74].
This result was improved in 1994 by Yannakakis [Yan94], and Goemans and
Williamson [GW94a], who described 3/4–approximation algorithms for Max-
SAT. Then, Goemans and Williamson [GW94a] proposed a .878-approximation
algorithm for Max2SAT (which gives a .7584-approximation for Max-SAT [GW95])
based on semidefinite programming [GW94b]. Since then other improvements
have been achieved, but there is a limit on approximability: Hastad [H̊as97]
proved that, unless P = NP , no approximation algorithm for Max-SAT (even for
Max3SAT) can achieve a performance guarantee better than 7/8. Interestingly,
Karloff and Zwick [KZ97] gave a 7/8 approximation algorithm for Max3SAT,
showing that the constant 7/8 is tight. The most promising approaches from
a theoretical and practical point of view [GvHL06] are based on semidefinite
programming. We refer the reader to the survey of Anjos [Anj05] to learn more
about how approximate Max-SAT with semidefinite programming.

3.5 Partial Max-SAT and soft constraints

Partial Max-SAT allows to encode combinatorial problems with hard and soft
constraints in a more natural and compact way than Max-SAT. Moreover, Partial
Max-SAT is particularly interesting from an algorithmic point of view because
the solvers exploit the distinction between hard and soft constraints. Such a
structural property has a great impact on performance, and is crucial for deciding
the solving techniques that can be applied at each node of the search space.

Inference in Partial Max-SAT tends to be more powerful than in Max-SAT.
Since any optimal solution has to satisfy all the hard clauses, it can be applied
the satisfiability preserving inference of SAT solver to hard clauses, and the
equivalence preserving inference of Max-SAT solvers to soft clauses. This implies,
for example, that the unit clause rule can be enforced when a unit hard clause
is derived, allowing to eliminate one variable not just without introducing any
additional clause, but reducing the size of the current instance. Another example
of exploiting the fact of knowing which clauses are hard consists of pruning a
subtree as soon as a hard clause is violated.

Computing underestimations of the lower bound based on unit propagation
also benefits from the distinction between hard ans soft constraints. The hard
clauses used to detect an inconsistent subset can be used again to detect further
inconsistent subsets. It is specially advantageous to be able to reuse unit hard
clauses to get lower bounds of better quality.

Learning of hard clauses, first introduced in [AM06b], is another feature
of modern Partial Max-SAT solvers that lacks in (weighted) Max-SAT solvers.
This kind of learning consists of recording a clause every time a hard clause is
violated, and there is experimental evidence that it is particularly useful when
solving structured instances [AM07, HLO07].

Fu and Malik [FM06] implemented two Partial Max-SAT solvers, ChaffBS
and ChaffLS, on top of the SAT solver zChaff. In order to translate a Max-SAT

3.6. Evaluations of Max-SAT solvers 43

instance into a SAT one, they append a distinct slack variable to every Max-SAT
clause. A true slack variable essentially means that the corresponding Max-SAT
clause can be left unsatisfied. It then constructs a hierarchical tree adder using
three-at-a-time adders (i.e., full adders). The hierarchical tree adder sums up
the number of true slack variables and presents the summation in binary format
to a logic comparator, which returns true if and only if the binary number is less
than or equal to any given number k. At this point, the Max-SAT instance can
be translated into a SAT instance, which consists of the Max-SAT clauses with
slack variables and the SAT clauses correspond to the hierarchical tree adder
and the logic comparator for a given k value. Obviously, k is greater than or
equal to 0 and smaller than or equal to the total number of slack variables. In
order to find the minimum k, i.e. the minimum number of true slack variables,
we can either do Binary Search (ChaffBS) or Linear Search (ChaffLS) within
the possible range of k. For ChaffLS, it starts with k = 0 and increase k by one
until it finds the translated SAT instance satisfiable.

A similar SAT-based approach for solving Partial Max-SAT was developed
by Daniel Le Berre in SAT4Jmaxsat [Ber]. In this case, cardinality constraints
are used instead of a circuit as in ChaffBS and ChaffLS.

Partial Max-SAT solving dealing with blocks of soft clauses was considered
in [AM06a]. In this case, satisfiability preserving inference rules can also be
applied locally to each soft block.

In addition to the previous solvers, the state-of-the-art solvers dealing with
Partial Max-SAT instances are:

Clone [PD07] by Knot Pipatsrisawat and Adnan Darwiche.

LB-PSAT [LS07] by Han Li and Kaile Su.

MiniMaxsat [HLO07] by Federico Heras, Javier Larrosa, Albert Oliveras and
Simon de Givry.

msuncore [MSP08] by João P. Marques-Silva and Jordi Planes.

SR(w) [RG07] by Miquel Ramı́rez and Hector Geffner.

Toolbar [LHdG08] by Simon de Givry, Federico Heras, Javier Larrosa and
Thomas Schiex.

3.6 Evaluations of Max-SAT solvers

The First and Second Max-SAT Evaluations were organized as affiliated events
of the 2006 and 2007 editions of the International Conference on Theory and
Applications of Satisfiability Testing (SAT-2006 and SAT-2007) with the aim of
assessing the advancements in the field of Max-SAT solvers through a comparison
of their performances, identifying successful solving techniques and encouraging
researchers to develop new ones, and creating a publicly available collection of
challenging Max-SAT benchmarks. In the 2006 Max-SAT Evaluation 6 solvers

44 Chapter 3. Max-SAT algorithms

participated and there were two categories (Max-SAT and weighted Max-SAT),
while in the 2007 Max-SAT Evaluation 12 solvers participated and there were
two additional categories (Partial Max-SAT and weighted Partial Max-SAT).

The solvers participating in the evaluation can be classified into three classes:
(i) solvers like ChaffBS, ChaffLS and SAT4Jmaxsat that solve Max-SAT using
a state-of-the-art SAT solver; (ii) solvers like LB-SAT, MaxSatz, MaxSatz14,
MiniMaxsat and PMS that implement a branch and bound schema and ap-
ply inference rules and compute unit propagation-based underestimations of the
lower bound at each node of the proof tree; and (iii) solvers like Clone and SR(w)
that implement a branch and bound schema and compute an underestimation by
solving a relaxation of a d-DNNF compiled translation of the Max-SAT instance
into a minimum cardinality instance. Most of the solvers solving Partial Max-
SAT, independently of the class to which they belong, incorporate learning of
hard clauses. Solvers of the second class were the ones with better performance
profile in both evaluations. Next, we describe all the solvers that have partici-
pated in the evaluations. The descriptions below correspond to the descriptions
provided by the authors of the solvers that participated in the evaluations.

– ChaffBS & ChaffLS (Zhaohui Fu and Sharad Malik): Both ChaffBS
and ChaffLS are implemented on top of the SAT solver zChaff. In order
to translate a Max-SAT instance into a SAT one, they append a distinct
slack variable to every Max-SAT clause. A true slack variable essentially
means the corresponding Max-SAT clause can be left unsatisfied. They
then construct a hierarchical tree adder using three-at-a-time adders (i.e.,
full adders). The hierarchical tree adder sums up the number of true
slack variables and presents the summation in binary format to a logic
comparator, which returns true if and only if the binary number is less than
or equal to any given number k. At this point, the Max-SAT instance can
be translated into a SAT instance, which consists of the Max-SAT clauses
with slack variables and the SAT clauses correspond to the hierarchical
tree adder and the logic comparator for a given k value. Obviously, k
is greater than or equal to 0 and less than or equal to the total number
of slack variables. In order to find the minimum k, i.e., the minimum
number of true slack variables, one can either do Binary Search (ChaffBS)
or Linear Search (ChaffLS) within the possible range of k. For ChaffLS, it
starts with k = 0 and increase k by one until it finds the translated SAT
instance satisfiable. As a side effect, ChaffLS is not able to produce any
sub-optimal solution as the first solution it finds is the optimal solution.
For further details see [FM06].

– Clone (Knot Pipatsrisawat, Mark Chavira, Arthur Choi and Ad-
nan Darwiche): Clone is an exact Max-SAT solver that uses branch and
bound search to find optimal solutions. The method for computing bounds
used by Clone is rather different from those of contemporary Max-SAT
solvers. Clone relaxes some constraints in the original CNF and turns
it into an approximate formula, which is then compiled into a d-DNNF

3.6. Evaluations of Max-SAT solvers 45

(Deterministic Decomposable Negation Normal Form). The Max-SAT so-
lution of the approximate formula, which can be computed very efficiently,
can be used as a bound on the solution of the original problem. Once every
variable involved in the relaxation is assigned a value, the solution of the
conditioned approximate formula is no longer a bound, it becomes exact.
Thus, Clone only needs to perform branch and bound search on the search
space of those variables involved in the relaxation of constraints, resulting
in a smaller search space. For further details see [PD07].

– Lazy (Teresa Alsinet, Felip Manyà and Jordi Planes): It is a branch
and bound solver for both Max-SAT and Weighted Max-SAT that uses very
simple lazy data structures and a static variable selection heuristic. As pre-
processing it applies a refinement of binary resolution (replaces x∨D1 and
¬x∨D2 with D1 ∨D2). The initial upper bound is computed with a local
search algorithm. At each node of the proof tree it applies the complemen-
tary unit clause rule, and applies unit propagation whenever the difference
between the lower bound and the upper bound is one. Lazy implements
the star rule as lower bound computation method (it increments the lower
bound by one for every detected disjoint subset of the form x, y,¬x∨¬y).
For further details see [AMP08].

– LB-SAT (Han Lin and Kaile Su): LB-SAT is a two-stage solver for
MAX-SAT. At the first stage, it invokes a local search procedure to cal-
culate an approximate optimal solution. At the second stage, taking the
approximate value as an initial upper bound, a branch and bound routine
is called to find the exact solution. At each search node, like UP and
Maxsatz, LB-SAT exploits unit propagation to compute a lower bound.
The lower bound is computed in an incremental style; i.e., at each node,
instead of computing the lower bound from scratch, LB-SAT reuses the
information from the previous search nodes to boost the computation and
improve the lower bound. Other techniques incorporated into LB-SAT can
be found in [LS07].

– Maxsatz (Chu Min Li, Felip Manyà and Jordi Planes): It is a
branch and bound solver for Max-SAT that incorporates into a Max-SAT
solver some of the technology developed for Satz. At each node of the proof
tree it transforms the formula into an equivalent formula that preserves
the number of unsatisfied clauses by applying some efficient refinements
of unit resolution that the authors have defined for Max-SAT (e.g., it
replaces x, y,¬x ∨ ¬y with �, x ∨ y, it replaces x,¬x ∨ y,¬x ∨ z,¬y ∨ ¬z
with �,¬x ∨ y ∨ z, x ∨ ¬y ∨ ¬z). MaxSatz implements a lower bound
computation method that consists in incrementing the lower bound by
one for every disjoint inconsistent subset that can be detected by unit
propagation. Moreover, the lower bound computation method is enhanced
with failed literal detection. The variable selection heuristics takes into
account the number of positive and negative occurrences in binary and
ternary clauses. For further details see [LMP06, LMP07].

46 Chapter 3. Max-SAT algorithms

– MaxSatz14 (Sylvain Darras, Gilles Dequen, Laure Devendeville
and Chu Min Li): This solver is based on the last release of Maxsatz
solver, built and improved by Chu Min Li, Felip Manyà and Jordi Planes.
The main contribution has been to speed up the two look-ahead functions
by selecting and storing useful conflictual subformulas in order to avoid
their recomputation at each node of the search tree. For further details
see [DDDL07].

– MiniMaxsat (Federico Heras, Javier Larrosa and Albert Oliv-
eras): MiniMaxsat incorporates the best current SAT and Max-SAT tech-
niques. It can handle hard clauses (clauses of mandatory satisfaction as
in SAT), soft clauses (clauses whose falsification is penalized by a cost
as in Max-SAT) as well as pseudo-Boolean objective functions and con-
straints. Its main features are: learning and backjumping on hard clauses;
resolution-based and subtraction-based lower bounding; and lazy propaga-
tion with the two-watched literals schema. For further details see [HLO07].

– SAT4Jmaxsat (Daniel Le Berre): SAT4Jmaxsat translates a Max-
SAT instance S = {C1, C2, . . . , Cm} with n variables into the following
optimization problem: For each clause Ci in the original problem, a new
variable Vi is created and added. Some people call those variables selector
variables because satisfying such a variable disables a clause. So solving
Max-SAT on the original problem is equivalent to solve the optimization
problem: Minimize the number of Vi’s satisfied in S′ = {C1 ∨ V1, C2 ∨
V2, . . . , Cn ∨ Vn}. Since SAT4Jmaxsat supports cardinality constraints, it
simply asks a SAT solver to solve S′, and each time a model M is found, it
tries to find a better one, by adding a cardinality constraints SUM(Vi) <
number of Vi satisfied in M . Once S′ and all the cardinality constraints
are inconsistent, the latest model is the optimal solution. For further
details see [Ber].

– PMS (Josep Argelich and Felip Manyà): PMS is the version of our
Partial Max-SAT solver described in Section 5.5.1.

– SR(w) (Miquel Ramı́rez and Héctor Geffner): SR(w) is a Min-
CostSAT solver which uses explicit structural relaxation to derive lower
bounding functions that allow a Branch & Bound DLL-style search proce-
dure to potentially prune vast tracts of the search space. SR(w) is built on
top of two off-the-shelf tools: the d-SDNNF compiler by Darwiche [Dar]
and the state-of-the-art SAT solver MiniSAT 2.0 [ES]. For further details
see [RG07].

– ToolBar (Simon de Givry, Federico Heras, Javier Larrosa and
Thomas Schiex): A DPLL-like algorithm is used to find a better solu-
tions or proving optimality. After each assignment the current subproblem
is transformed to an equivalent (and simpler) one. The transformations
are based on the resolution rule for Max-SAT [LH05a]. Note that these

3.7. Summary 47

transformations can be explained as different levels of local consistency
for WCSP. It is easy to see that a Max-SAT instance can be represented
as a WCSP problem where all variables have two values (Boolean vari-
ables) and forbidden tuples represent weighted clauses. Examples of such
transformations are (and its related WCSP local consistencies): (i) clauses
(x ∨ y, 2), (¬x ∨ y, 1) are replaced by (x ∨ y, 1), (y, 1) (This is detected by
AC* in WCSP). (ii) clauses (x, 1), (¬x ∨ y, 2), (¬y ∨ z, 1), (¬z, 1) are re-
placed by (�, 1), (¬x∨ y, 1), (x∨¬y, 1), (y ∨¬z, 1) where (�, 1) represents
an increment of the lower bound (this is detected by EDAC* in WCSP).

– W-MaxSatz (Josep Argelich, Chu Min Li and Felip Manà): W-
MaxSatz is the version of our solver described in Section 5.5.2.

These are the solving techniques that were identified as powerful and promis-
ing:

• Resolution-style inference rules that transform Max-SAT instances into
equivalent Max-SAT instances have a dramatic impact on the the perfor-
mance profile of solvers. Solvers implementing powerful inference rules
include MaxSatz, MaxSatz14, MiniMaxsat, Toolbar and W-MaxSatz.

• Despite the dramatic improvements achieved by applying inference rules,
the computation of good quality underestimations of the lower bound is
decisive to speed up solvers. The two more powerful techniques that
have been identified are the detection of disjoint inconsistent subsets
of clauses via unit propagation and failed literal detection (LB-SAT,
MaxSatz, MaxSatz14, MiniMaxsat, PMS, W-MaxSatz), and transforming
the Max-SAT instance into a minimum cardinality instance and solving a
relaxation of this new instance after compiling it with a d-DNNF compiler
(Clone, SR(w)).

• Learning of hard clauses produces significant performance improvements
on several types of Partial Max-SAT instances.

• The selection of suitable data structures is decisive for producing fast im-
plementations. Solvers incorporating lazy data structures include ChaffBS,
ChaffLS, Lazy, MiniMaxsat and SAT4Jmaxsat.

• The formalism used to encode problems has a remarkable impact on per-
formance. When there are hard and soft constraints, the Partial Max-SAT
formalism allows to exploit structural information.

3.7 Summary

We have presented an overview about Max-SAT and reviewed the solving tech-
niques that have proved to be useful in terms of performance. This is the basis
for all discussions in the rest of the thesis, with special attention to the advances

48 Chapter 3. Max-SAT algorithms

on combining techniques for SAT and Max-SAT for problems with hard and soft
constraints, new learning schemas for soft clauses, preprocessing techniques, and
efficient implementations of Partial Max-SAT solvers.

Chapter 4

The Soft-SAT formalism

The SAT-based problem solving approach presents some limitations when solv-
ing many real-life problems due to the fact that it only provides a solution when
the formula that models the problem we are trying to solve is shown to be satis-
fiable. Nevertheless, in many combinatorial problems, some potential solutions
could be acceptable even when they violate some constraints. If these violated
constraints are ignored, solutions of bad quality are found, and if they are treated
as mandatory, problems become unsolvable. This is our motivation to extend
the SAT formalism to solve over-constrained problems. In such problems, the
goal is to find the solution that best respects the constraints of the problem.

In this thesis we will consider that all the constraints are crisp (i.e., they are
either completely satisfied or completely violated), but we distinguish between
hard constraints (i.e., they must be satisfied by any solution) and soft constraints
(i.e., they can be violated by some solutions). A solution best respects the con-
straints of the problem if it satisfies all the hard constraints and the maximum
number of soft constraints. In the literature of over-constrained problems, fuzzy
constraints (i.e., intermediate degrees of satisfaction are allowed), as well as other
ways of defining that a solution best respects the constraints of the problem, are
considered. We invite the reader to consult [MBB+03, MRS06] for surveys about
constraint programming approaches for solving over-constrained problems.

Given a combinatorial problem which can be naturally defined by a set of
constraints over finite-domain variables, we have that each constraint is often
encoded as a set (block) of Boolean clauses in such a way that a truth assignment
satisfies a constraint if it satisfies all those clauses, and violates a constraint if
it falsifies at least one of those clauses. Thus, in contrast to the usual approach,
the concept of satisfaction for SAT-encoded over-constrained problems that we
propose in this chapter refers to blocks of clauses instead of individual clauses.
This leads in turn to design Max-SAT-like solvers that deal with blocks of clauses
instead of individual clauses, and exploit the new structure of the encodings.

In this chapter we present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a Boolean clausal form
formalism that deals with blocks of clauses instead of individual clauses, and

49

50 Chapter 4. The Soft-SAT formalism

that allows one to declare a block of hard clauses (i.e., it must be satisfied by
any solution) and several blocks of soft clauses (i.e., they can be violated by some
solutions). We call soft CNF formulas to this new kind of formulas. We then
present two Max-SAT solvers that find a truth assignment that satisfies the hard
block of clauses and maximizes the number of satisfied soft blocks. Our solvers
are branch and bound algorithms equipped with original lazy data structures,
powerful inference techniques, good quality lower bounds, and original variable
selection heuristics. Finally, we report an experimental investigation on a rep-
resentative sample of instances (random Soft-2-SAT, Max-CSP, graph coloring,
pigeon hole, and quasigroup completion) which provides experimental evidence
that our approach is competitive compared with the state-of-the-art approaches
developed in the CSP and SAT communities.

Solving over-constrained problems with Max-SAT local search algorithms was
investigated in [JKS95, CIKM97]. In that case, the authors distinguish between
hard and soft constraints at the clause level, but they do not incorporate the
notion of blocks of hard and soft clauses. The notion of blocks of clauses provides
a more natural way of encoding soft constraints. Besides, to our best knowledge,
the treatment of soft constraints with exact Max-SAT solvers was not considered
before the introduction of Soft-SAT.

It is important to point out that our work on the Soft-SAT formalism was
done before the Max-SAT community was interested in developing exact Partial
Max-SAT solvers, which also capture in a natural way the distinction between
hard and soft constraints, and exploit this distinction. Nevertheless, we would
like to highlight some advantages of Soft-SAT over Partial Max-SAT:

1. It allows to represent over-constrained problems in a more natural and
compact way.

2. It provides to the user information about constraint violations in a more
intuitive way.

3. It allows us to get more propagation at certain nodes (this point is discussed
in Section 4.2).

4. It allows to define variable selection heuristics that exploit the fact that a
variable occurs in a hard or in a soft block.

5. It allows to identify clauses of violated blocks that are not relevant for
further checks. Once a clause in a block is violated, the remaining clauses
of the block are ignored.

6. It avoids to use auxiliary variables. The idea of blocks is usually captured
in Partial Max-SAT with the introduction of auxiliary variables. Since
most inference rules in Partial Max-SAT deal with short clauses, the intro-
duction of auxiliary variables delays the application of inference techniques
and slows the identification of optimal solutions.

4.1. Soft CNF formulas 51

The chapter is structured as follows. In Section 4.1 we introduce the for-
malism of soft CNF formulas. In Section 4.2 we describe solvers for soft CNF
formulas with both static and dynamic variable selection heuristics. In Sec-
tion 4.3 we report the experimental investigation we performed to assess the
performance of our formalism and solvers.

4.1 Soft CNF formulas

We define the syntax and semantics of soft CNF formulas, which are an extension
of Boolean clausal forms that we use to encode problems with hard and soft
constraints.

Definition 1 A soft CNF formula is formed by a set of pairs (clause, label),
where clause is a Boolean clause and label is either h or si for some i ∈ N. The
hard block of a soft CNF formula is formed by all the pairs (clause, label) with
label h, and a soft block is formed by all the pairs (clause, label) with the same
label si.

All the clauses with the same label si model the same soft constraint.

Definition 2 A truth assignment satisfies the hard block of a soft CNF formula
if it satisfies all the clauses of the block. A truth assignment satisfies a soft CNF
formula φ if it satisfies the hard block of φ. We say then that φ is satisfiable. A
soft CNF formula φ is unsatisfiable if there is no truth assignment that satisfies
the hard block of φ. A truth assignment satisfies a soft block if it satisfies all the
clauses of the block. A truth assignment is a solution to a soft CNF formula φ
if it satisfies the hard block of φ and the maximum number of soft blocks.

Definition 3 The Soft-SAT problem is the problem of finding a solution to a
soft CNF formula.

Example 4.1 We want to solve the problem of coloring a graph with two colors
in such a way that the minimum number of adjacent vertices are colored with
the same color. If we consider the graph with vertices {v1, v2, v3} and with edges
{(v1, v2), (v1, v3), (v2, v3)} (see Figure 4.1), that problem is encoded as a Soft-
SAT instance as follows:

(i) The set of propositional variables is {x1
1, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3}; the intended

meaning of variable xj
i is that vertex vi is colored with color j.

(ii) The hard block is formed by the following at-least-one and at-most-one
clauses:

(x1
1∨x2

1, h), (¬x1
1∨¬x2

1, h), (x
1
2∨x2

2, h), (¬x1
2∨¬x2

2, h), (x
1
3∨x2

3, h), (¬x1
3∨¬x2

3, h).

52 Chapter 4. The Soft-SAT formalism

(iii) There is a soft block for every edge:

(¬x1
1 ∨ ¬x1

2, s1), (¬x2
1 ∨ ¬x2

2, s1),
(¬x1

1 ∨ ¬x1
3, s2), (¬x2

1 ∨ ¬x2
3, s2),

(¬x1
2 ∨ ¬x1

3, s3), (¬x2
2 ∨ ¬x2

3, s3).

v1

v2 v3

Figure 4.1: Graph coloring example with three vertices and two colors.

4.2 Soft-SAT algorithms

We start by describing how a basic Soft-SAT solver works. Based on that de-
scription, we then introduce the two solvers we have designed and implemented:
Soft-SAT-S and Soft-SAT-D. Soft-SAT-S uses static variable selection heuristics
while Soft-SAT-D uses dynamic variable selection heuristics.

4.2.1 A basic Soft-SAT algorithm

The space of all possible assignments for a soft CNF formula φ can be represented
as a search tree, where internal nodes represent partial assignments and leaf
nodes represent complete assignments. Figure 4.2 shows this tree representation.

A basic Soft-SAT solver explores that search tree following a depth-first
branch and bound schema. At each node, the algorithm backtracks if the current
partial assignment violates some clause of the hard block, and applies the unit
clause rule to the literals that occur in unit clauses of hard block; i.e., given a
literal ¬x (x), it deletes all the clauses containing the literal ¬x (x) and removes
all the occurrences of the literal x (¬x). If the current partial assignment does
not violate any clause of the hard block, the algorithm compares the number of
soft blocks falsified by the best complete assignment found so far, called upper
bound (UB), with the number of soft blocks falsified by the current partial as-
signment, called lower bound (LB). Obviously, if UB ≤ LB, a better assignment
cannot be found from this point in search. In that case, the algorithm prunes
the subtree below the current node and backtracks to a higher level in the search

4.2. Soft-SAT algorithms 53

φ

φ ∧ ¬x0

¬x0

φ ∧ ¬x0 ∧ ¬x1

¬x1

φ ∧ ¬x0 ∧ x1

x1

φ ∧ x0

x0

φ ∧ x0 ∧ ¬x1

¬x1

φ ∧ x0 ∧ x1

x1

Figure 4.2: Search tree of a soft CNF formula φ.

tree. If UB > LB, it extends the current partial assignment by instantiating
one more variable, say x, which leads to the creation of two branches from the
current branch: the left branch corresponds to instantiating x to false, and the
right branch corresponds to instantiating x to true. In that case, the formula
associated with the left (right) branch is obtained from the formula of the cur-
rent node by applying the unit clause rule using the literal ¬x (x). The value
that UB takes after exploring the entire search tree is the minimum number of
soft blocks that are falsified by a complete assignment. The algorithm 4.1 shows
the pseudocode of a basic Soft-SAT solver.

4.2.2 Soft-SAT-S

Soft-SAT-S implements the basic Soft-SAT solver augmented with a number of
improvements that we describe below.

Upper bound and lower bound computation

In Soft-SAT-S, as in modern Max-SAT solvers, the initial upper bound is ob-
tained with a GSAT-like [SLM92] local search algorithm. The search begins with
a randomly generated complete truth assignment and, at each step, the value
of one variable is flipped taking into account its score. The score of a variable
is the sum of weights that we associate with unsatisfied clauses; we associate
a weight one to an unsatisfied clause of a soft block and a weight equal to the
number of clauses to an unsatisfied clause of the hard block. Local minima are
avoided by occasionally performing a random walk.

54 Chapter 4. The Soft-SAT formalism

Algorithm 4.1: Soft-SAT-Basic(φ, UB) : Basic Soft-SAT solver

Output: The minimum number of blocks of the soft CNF formula φ that
are falsified by an assignment

Function Soft-SAT-Basic (φ : soft CNF formula, UB : upper bound) :
Natural

if not hard block is satisfied then
return ∞

φ← HardUnitPropagation(φ)
if UB = LowerBound(φ)+1 then

φ← SoftUnitPropagation(φ)

if hard block is satisfied and UB>LowerBound(φ) then
if φ = ∅ or φ only contains empty blocks then

return EmptyBlocks(φ)

x← SelectVariable(φ)
UB ← Min(UB, Soft-SAT-Basic(φ¬x, UB))
return Min(UB, Soft-SAT-Basic(φx, UB))

else
return ∞

In branch and bound Max-SAT solvers incorporating the lower bound com-
putation method based on inconsistency counts [WF96], the lower bound is the
sum of the number of clauses unsatisfied by the current partial assignment plus
an underestimation of the number of clauses that will become unsatisfied if we
extend the current partial assignment into a complete assignment. Such an un-
derestimation is calculated taking into account the inconsistency counts of the
variables not yet instantiated; i.e., the underestimation is the number of disjoint
inconsistent subformulas formed by a unit clause with a literal ℓ and a unit
clause with the complementary literal of ℓ.

For instances with CSP variables with domain size greater than two, we
defined an original lower bound for soft CNF formulas that incorporates an
underestimation of the number of soft blocks that will become unsatisfied if we
extend the current partial assignment into a complete assignment. Each CSP
variable with a domain of size k is represented by a set of k Boolean variables
x1, . . . , xk in a SAT encoding. The inconsistency count associated with a Boolean
variable xi (1 ≤ i ≤ k) is the number of soft blocks violated when xi is set to true.
The inconsistency count associated with a CSP variable X, which is encoded by
the Boolean variables x1, . . . , xk, is the minimum of the inconsistency counts of
xi (1 ≤ i ≤ k). As underestimation for the lower bound, we consider exactly one
CSP variable for each soft block and take the sum of the inconsistency counts of
such variables. If we consider more than one CSP variable for each soft block,
the inconsistency of a soft block can be computed more than once, and lead to
a wrong lower bound.

4.2. Soft-SAT algorithms 55

Example 4.2 Let φ be the following soft CNF formula:

(x1
1 ∨ x2

1 ∨ x3
1, h), (¬x1

1 ∨ ¬x2
1, h), (¬x1

1 ∨ ¬x3
1, h), (¬x2

1 ∨ ¬x3
1, h),

(x1
2 ∨ x2

2 ∨ x3
2, h), (¬x1

2 ∨ ¬x2
2, h), (¬x1

2 ∨ ¬x3
2, h), (¬x2

2 ∨ ¬x3
2, h),

(x1
3 ∨ x2

3 ∨ x3
3, h), (¬x1

3 ∨ ¬x2
3, h), (¬x1

3 ∨ ¬x3
3, h), (¬x2

3 ∨ ¬x3
3, h),

(¬x1
1, s1), (¬x1

2, s1), (¬x2
3, s1), (¬x1

1 ∨ ¬x2
2, s1), (x

2
3 ∨ x3

1, s1),
(¬x3

1, s2), (¬x2
2, s2), (¬x3

3, s2), (¬x3
1, s2), (x

1
2 ∨ ¬x1

3, s2),
(¬x2

1, s3), (¬x1
2, s3), (¬x3

3, s3), (x
1
1 ∨ x3

2, s3).

Each CSP variable xi (1 ≤ i ≤ 3) with domain of size 3 is represented by the
set of Boolean variables x1

i , x
2
i and x3

i . The inconsistency counts associated with
each variable are the following:

CSP variables Boolean variables ic(xi)
x1 x1

1 = 1 x2
1 = 1 x3

1 = 1 1
x2 x1

2 = 2 x2
2 = 1 x3

2 = 0 0
x3 x1

3 = 0 x2
3 = 1 x3

3 = 2 0

The sum of the inconsistency counts of each CSP variable is 1; i.e., we can
increase the lower bound by 1.

Inference

When branching is done, algorithms for Max-SAT like MaxSatz [LMP07], Max-
Solver [XZ05] and MiniMaxsat [HLO07], apply the unit clause rule (simplifying
with the branching literal) instead of applying unit propagation as in the Davis-
Putnam-style [DLL62] solvers for SAT. If unit propagation is applied at each
node, the algorithm can return a non-optimal solution. For example, if we apply
unit propagation to {x,¬y,¬x ∨ y,¬x} using the unit clause ¬x, we derive one
empty clause while if we use the unit clause x, we derive two empty clauses.

However, when the difference between the lower bound and the upper bound
is one, unit propagation can be safely applied, because otherwise by fixing to
false any literal of any unit clause we reach the upper bound [BF99]. Soft-SAT-S
performs unit propagation in that case too.

Moreover, as pointed out in the description of the basic Soft-SAT solver, Soft-
SAT-S applies the unit clause rule when a clause of the hard block becomes unit.
This propagation, which leads to substantial performance improvements, cannot
be safely applied in Max-SAT solvers, and is a key feature of our approach, as
well as of Partial Max-SAT solvers.

Data structures

Since Soft-SAT-S uses static variable selection heuristics, we were able to imple-
ment extremely simple and efficient data structures for representing and manip-
ulating soft CNF formulas. Our data structures take into account the following
fact: we are only interested in knowing when a clause has become either unit
or empty. Thus, if we have a clause with four variables, we do not perform any

56 Chapter 4. The Soft-SAT formalism

operation in that clause until three of the variables appearing in the clause have
been instantiated; i.e., we delay the evaluation of a clause with k variables until
k−1 variables have been instantiated. In our case, as we instantiate the variables
using a static order, we do not have to evaluate a clause until the penultimate
variable of the clause in the static order has been instantiated.

The data structures are defined as follows: For each clause we have a pointer
to the penultimate variable of the clause in the static order, and the clauses of
a soft CNF formula are ordered by that pointer. We have also a pointer to the
last variable of the clause. When a variable x is fixed to true (false), only the
clauses whose penultimate variable in the static order is ¬x (x) are evaluated.
This approach has two advantages: the cost of backtracking is constant because
we do not have to undo pointers like in adjacency lists and, at each step, we
evaluate a minimum number of clauses.

Example 4.3 Given the clause ¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ x5 and the static order
x5 = false, x4 = true, x3 = false, x2 = false, x1 = true, the solver performs
the following steps:

1. Initially, all the literals are free.

2. It does nothing when the solver instantiates the variables x5 = false,
x4 = true and x3 = false because these variables neither are referenced as
penultimate nor are the last variable of the clause.

3. When it instantiates x2 = false, it follows the pointer to the penultimate
literal x2. Then, it checks all the instantiated literals of the clause. Since
all the instantiated literals are falsified, the clause becomes unit and is
added to the stack of unit clauses.

4. Finally, when it instantiates x1 = true, it follows the pointer to the last
literal ¬x1 of the clause. Since the clause is unit, the clause becomes un-
satisfied.

Figure 4.3 shows the described steps.

In contrast to the lazy data structures used in Chaff [MMZ+01], where a
dynamic variable selection heuristic is used, we do not have to deal with two
watched literals. It is enough to have a pointer to the penultimate variable, and
a clause is not visited until that variable is instantiated.

Variable selection heuristics

Our current version of Soft-SAT-S incorporates three static variable selection
heuristics:

• MO: It instantiates first the variables that appear Most Often (MO). Ties
are broken using the lexicographical order.

4.2. Soft-SAT algorithms 57

(1) ¬x1 x2 x3 ¬x4 x5

PL

(2) ¬x1 x2 x3 ¬x4 x5

PL

(3) ¬x1 x2 x3 ¬x4 x5

PL

(4) ¬x1 x2 x3 ¬x4 x5

PL

Free literal

Falsified literal

P
Penultimate literal

L
Last literal

Figure 4.3: Data structures behaviour for static variable ordering.

• MOH: It instantiates first the variables that appear most often, but it
takes into account if the variable occurs in the hard block or in a soft
block. The score assigned to each variable is the number of occurrences
in soft blocks plus five times the number of occurrences in the hard block.
Ties are broken using the lexicographical order.

It gives a bigger score to variables in the hard block because Soft-SAT-S
applies the unit clause rule to the unit clauses of the hard block.

• csp: In SAT encodings that model CSP variables, each CSP variable with
a domain of size k is represented by a set of k Boolean variables x1, . . . , xk.
This heuristic associates a weight to each one of these sets: the sum of the
total number of occurrences of each variable of the set. It orders the sets
according to such a weight. Heuristic csp instantiates, first and in lexico-

58 Chapter 4. The Soft-SAT formalism

graphical order, the Boolean variables of the set with the highest weight.
Then, it instantiates, in lexicographical order, the Boolean variables of the
set with the second highest weight, and so on. This heuristic is used, in the
experimental investigation, to solve problems with finite-domain variables
(e.g., Max-CSP, graph coloring, pigeon hole and quasigroup completion).
The idea behind this heuristic is to instantiate first the CSP variables that
occur most often. This way, we emulate an n-ary CSP branching by means
of a binary branching (i.e., we consider all the possible values of the CSP
variable under consideration before instantiating another CSP variable).
As we will see in the experiments, we get some performance improvements
for the fact of dealing with an n-ary branching.

4.2.3 Soft-SAT-D

The second solver we have designed and implemented is Soft-SAT-D, which is like
Soft-SAT-S except for the fact that its variable selection heuristics are dynamic.

Data structures

The fact of having dynamic variable selection heuristic did not allow us to im-
plement the data structures we have described in the previous section. The data
structures implemented in Soft-SAT-D are the two-watched literal data struc-
tures of zChaff [MMZ+01] described in Section 4.2.2. They are also lazy data
structures, but are not so efficient because here we need to maintain the two
watched literals.

We are only interested in knowing when a clause has become unit or empty.
With a static order, we know which variables of a clause will be the penultimate
and the last to be instantiated, but we do not have this information with a
dynamic order. The two-watched literals data structure has two pointers to
literals per clause, but they are not fixed as in Soft-SAT-S. We denote by p1 and
p2 the two pointers to literals lp1

and lp2
, respectively. When we instantiate the

literal referenced by one of this pointers, say lp1
, we can observe three cases:

1. lp2
is a true literal: The clause is satisfied; we do nothing.

2. lp2
is a false literal: We check if all the literals of the clause are falsified.

If they are, the clause is unsatisfied and we update the lower bound, but
we do nothing with the two-watched literals data structures.

3. lp2
is a free literal: In this case not all the literals of the clause are instan-

tiated. We will search another free literal to know whether the clause is
unit. If lp2

is the only free literal and the clause has no true literals, it
becomes unit. Otherwise, if we found another free literal, we move p1 on
it.

Example 4.4 Given the clause ¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ x5, the dynamic order
x2 = false, x4 = true, x1 = true, x5 = false, x3 = false, and the pointers p1

on ¬x1 and p2 on x3, the solver performs the following steps:

4.2. Soft-SAT algorithms 59

1. Initially, all the literals are free.

2. It does nothing for the instantiation of x2 = false and x4 = true because
they are not watched literals.

3. When it instantiates x1 = true, it has to move the reference of ¬x1 to
another free litereal, if it exists. There is the literal x5 that is not referenced
by any pointer. Then, it moves the pointer of ¬x1 to x5.

4. The next variable to instantiate is x5 = false. It has to move the reference
to x5 but only one free literal remains and is referenced by the other pointer.
As all the literals of the clause but one are falsified, the clause becomes unit.

5. Finally, it instantiates x3 = false. The pointer to x5 references a falsified
literal. It checks that all the literals of the clause are falsified and deduces
that the clause is empty.

This process is shown graphically in Figure 4.4.

The main advantage of two-watched literals with respect to other pointer
based data structures (e.g., the data structures of SATO [ZS96]) is that the time
complexity of backtracking is constant. We do not need to restore the watched
literals to previous positions when backtracking because the watched literals are
the last literals to be instantiated.

Variable selection heuristics

Our current version of Soft-SAT-D incorporates two dynamic variable selection
heuristics:

• MO: It instantiates first the variables that appear Most Often (MO). Ties
are broken using the lexicographical order. Observe that it does not use
the variable that appears most often in minimum size clauses (MOMS
heuristic) because it is difficult to know the current size of a clause with
two-watched literals data structures. However, most of the instances which
were solved in the experimental investigation contain a significant number
of binary clauses.

• MO-csp: This is the dynamic version of heuristic csp of Soft-SAT-S. It
associates a weight to each set of free Boolean variables that encode a same
CSP variable: the sum of the total number of occurrences of each variable
of the set that has not been yet instantiated. It selects the set with the
highest weight and instantiates its variables in lexicographical order. We
emulate an n-ary branching as in heuristic csp.

60 Chapter 4. The Soft-SAT formalism

4.3 Experimental investigation

We now report the experimental investigation we conducted to evaluate the
performance of our problem solving approach. We used a representative sample
of instances (random Soft-2-SAT, Max-CSP, graph coloring, pigeon hole and
quasigroup completion), and compared our solvers with the best performing
state-of-the-art solvers for over-constrained problems developed in the CSP and
SAT communities.

All the experiments of this section were performed on a cluster with the
following specification:

• Number of hosts: 4

• Operating System: Rocks Cluster 4.0.0 (Linux 2.6.9)

• Processor: Intel(R) Pentium(R) 4 CPU, 2 GHz

• Memory: 1 GB

• Cache: 512 KB

4.3.1 Solvers

The solvers used are the following ones:

• Soft-SAT-S with heuristics MO, MOH and csp.

• Soft-SAT-D with heuristics MO and MO-csp.

• WMax-SAT: It is a weighted Max-SAT solver that we have implemented.
WMax-SAT uses the code of Soft-SAT but does not take into account the
notion of hard and soft block. Conceptually, WMax-SAT is like Soft-SAT
but every clause is treated as a different soft block. The lower bound of
WMax-SAT is different from the lower bound of Soft-SAT; the underes-
timation is calculated taking into account the inconsistency counts of the
variables not yet instantiated. WMax-SAT incorporates the following vari-
able selection heuristic: It instantiates the variables taking into account the
number of occurrences in decreasing order (MO). We use this solver in the
experimental investigation to check if the performance of Soft-SAT solvers
is due either to the formalism and its techniques or to the engineering of
the solver.

• PFC-MPRDAC [LM99]: This is a highly optimized solver from the Con-
straint Programming community for solving binary Max-CSP problems.
It is the successor of PFC-RDAC and PFC-MRDAC [LMS99] augmented
by adding to the lower bound global contributions of disjoint subsets of
unassigned variables, which requires a partition of the set of unassigned
variables.

4.3. Experimental investigation 61

Toolbar [LHdG08]: It is a DPLL-like algorithm used to find optimal so-
lutions. The branching Heuristic is similar to two-sided Jeroslow-Wang
heuristic. After each assignment, the current subproblem is transformed
into an equivalent (and simpler) one. The transformations applied by
Toolbar are chain resolution and cycle resolution, that are based on the
resolution rule for Max-SAT. We used version 3.0.

• Toolbar-CSP [LHdG08]: This is the Toolbar 3.0 version that works as a
weighted Max-CSP solver. Toolbar includes several algorithms maintain-
ing some form of local consistency for solving weighted CSP: node, arc,
directional arc and full directional arc consistencies, as well as algorithms
such as tree decomposition, bucket elimination, dominance testing and sin-
gleton arc consistency which are part of this platform. We refer to this
option as Toolbar-CSP, while when we say Toolbar we refer to the option
in which the solver works as a weighted Max-SAT solver.

For this experimental investigation, we also considered two of the best per-
forming weighted Partial Max-SAT solvers in the last Max-SAT Evaluation
(Max-SAT 2007):

• MiniMaxsat [HLO07]: It is a branch and bound solver that can han-
dle hard clauses (clauses of mandatory satisfaction as in SAT), and soft
clauses (clauses whose falsification is penalized by a cost as in Max-SAT)
as well as pseudo-Boolean objective functions and constraints. Its main
features are: learning and backjumping on hard clauses; resolution-based
and subtraction-based lower bounding; and lazy propagation with the two-
watched literals schema. MiniMaxsat was the best performing solvers on
structured benchmarks in Max-SAT 2007 in the categories of weighted and
unweighted Partial Max-SAT.

• W-MaxSatz: W-MaxSatz is an extension of MaxSatz [LMP07] to solve
weighted Partial Max-SAT. It is a branch and bound weighted Max-SAT
solver that incorporates all the features of MaxSatz adapted to deal with
weights. This implies the modification of the data structures to dynami-
cally add and remove clauses without a significant overhead in CPU time.
W-MaxSatz implements a dynamic variable selection heuristic, advanced
inference rules and a lower bound based on unit propagation and failed
literal detection. W-MaxSatz was the best performing solver on random
benchmarks in Max-SAT 2007 in the categories of weighted and unweighted
Partial Max-SAT.

4.3.2 Benchmarks and encodings

The benchmarks and the encodings used in the experimental investigation are
described in detail below.

62 Chapter 4. The Soft-SAT formalism

Random Soft-2-SAT instances

We generated random 2-SAT instances to which we then assigned, randomly
and uniformly, a label corresponding to the hard block or to a soft block. The
generator has as parameter the number of blocks: one block is declared to be
hard and the rest of blocks are declared to be soft. Hard and soft blocks are
intended to have the same number of clauses.

Max-CSP instances

We used SAT-encoded random binary CSPs and solved the Max-CSP problem.
Max-CSP instances have a natural representation using the formalism of soft
CNF formulas.

The instances were generated with a generator of uniform random binary
CSPs1 —designed and implemented by Frost, Bessière, Dechter and Regin—
that implements the so-called model B [SD96]: in the class 〈n, d, p1, p2〉 with n
variables of domain size d, we choose a random subset of exactly p1n(n − 1)/2
constraints (rounded to the nearest integer), each with exactly p2d

2 conflicts
(rounded to the nearest integer); p1 may be thought of as the density of the
problem and p2 as the tightness of constraints.

The instances were encoded using the support encoding [Kas90, Gen02]. The
idea behind the encoding is to encode into clauses the support for a value instead
of encoding conflicts. The support for a value j of a CSP variable Xi across a
constraint is the set of values of the other variable in the constraint which allow
Xi = j. If v1, v2, . . . , vk are the supporting values of variable Xl for Xi = j, we
add the clause ¬xij ∨xlv1

∨xlv2
∨ · · · ∨xlvk

(called support clause). There is one
support clause for each pair of variables Xi,Xl involved in a constraint, and for
each value in the domain of Xi. We need a similar clause in each direction, one
for the pair Xi,Xl and one for Xl,Xi. Besides, we need to add the at-least-one
and at-most-one clauses for each CSP variable to ensure that each CSP variable
takes exactly one value of its domain. All the at-least-one and at-most-one
clauses were encoded as the hard block, and each set of clauses that encodes a
CSP constraint was encoded as a different soft block.

Example 4.5 Let P be a CSP instance defined by 〈X,D,C〉, where X = {x1, x2, x3}
is the set of variables, d(x1) = d(x2) = d(x3) = {1, 2, 3} is the domain for all
the variables and C = {〈{x1, x2}, x1 6= x2〉, 〈{x1, x3}, x1 < x3〉} is the set of
constraints. P is encoded as a Soft-SAT instance as follows:

(i) The set of propositional variables is {x1
1, x

2
1, x

3
1, x

1
2, x

2
2, x

3
2, x

1
3, x

2
3, x

3
3}; the in-

tended meaning of variable xj
i is that variable i has assigned value j.

(ii) The hard block is formed by the following at-least-one and at-most-one clauses:

(x1
1 ∨ x2

1 ∨ x3
1, h), (¬x1

1 ∨ ¬x2
1, h), (¬x1

1 ∨ ¬x3
1, h), (¬x2

1 ∨ ¬x3
1, h),

(x1
2 ∨ x2

2 ∨ x3
2, h), (¬x1

2 ∨ ¬x2
2, h), (¬x1

2 ∨ ¬x3
2, h), (¬x2

2 ∨ ¬x3
2, h),

(x1
3 ∨ x2

3 ∨ x3
3, h), (¬x1

3 ∨ ¬x2
3, h), (¬x1

3 ∨ ¬x3
3, h), (¬x2

3 ∨ ¬x3
3, h),

1http://www.lirmm.fr/˜bessiere/generator.html

4.3. Experimental investigation 63

(iii) There is a soft block for every constraint:

(¬x1
1 ∨ x2

2 ∨ x3
2, s1), (¬x2

1 ∨ x1
2 ∨ x3

2, s1), (¬x3
1 ∨ x1

2 ∨ x2
2, s1),

(¬x1
2 ∨ x2

1 ∨ x3
1, s1), (¬x2

2 ∨ x1
1 ∨ x3

1, s1), (¬x3
2 ∨ x1

1 ∨ x2
1, s1),

(¬x1
1 ∨ x2

3 ∨ x3
3, s2), (¬x2

1 ∨ x3
3, s2), (¬x3

1, s2),
(¬x1

3, s2), (¬x2
3 ∨ x1

1, s2), (¬x3
3 ∨ x1

1 ∨ x2
1, s2).

Notice that, if we would like to encode this instance into Partial Max-SAT, we
should introduce auxiliary variables because there are two violated clauses for
every violated constraint. The Partial Max-SAT encoding would be as follows:

[

x1
1 ∨ x2

1 ∨ x3
1

]

,
[

¬x1
1 ∨ ¬x2

1

]

,
[

¬x1
1 ∨ ¬x3

1

]

,
[

¬x2
1 ∨ ¬x3

1

]

,
[

x1
2 ∨ x2

2 ∨ x3
2

]

,
[

¬x1
2 ∨ ¬x2

2

]

,
[

¬x1
2 ∨ ¬x3

2

]

,
[

¬x2
2 ∨ ¬x3

2

]

,
[

x1
3 ∨ x2

3 ∨ x3
3

]

,
[

¬x1
3 ∨ ¬x2

3

]

,
[

¬x1
3 ∨ ¬x3

3

]

,
[

¬x2
3 ∨ ¬x3

3

]

,
(¬x1

1 ∨ x2
2 ∨ x3

2 ∨ s1), (¬x2
1 ∨ x1

2 ∨ x3
2 ∨ s1), (¬x3

1 ∨ x1
2 ∨ x2

2 ∨ s1),
(¬x1

2 ∨ x2
1 ∨ x3

1 ∨ ¬s1), (¬x2
2 ∨ x1

1 ∨ x3
1 ∨ ¬s1), (¬x3

2 ∨ x1
1 ∨ x2

1 ∨ ¬s1),
(¬x1

1 ∨ x2
3 ∨ x3

3 ∨ s2), (¬x2
1 ∨ x3

3 ∨ s2), (¬x3
1 ∨ s2),

(¬x1
3 ∨ ¬s2), (¬x2

3 ∨ x1
1 ∨ ¬s2), (¬x3

3 ∨ x1
1 ∨ x2

1 ∨ ¬s2).

We add an auxiliary variable for each soft constraint, which is positive in one
direction of its support clauses and negative in the other direction. This is so
because there is one violated clause in each direction of each violated constraint.

Graph coloring instances

We used unsatisfiable graph coloring instances and the problem we solved was
to find a coloring that minimizes the number of adjacent vertices with the same
color. We used individual instances from the Graph Coloring Symposium cel-
ebrated at CP-20022, and randomly generated instances using the generator of
Culberson [Cul]. We used the generator with option IID (independent random
edge assignment). The parameters of the generator are: number of vertices (n),
optimum number of colors to get a valid coloring (k), and number of colors we
use to color the graph (c).

The set of clauses that encode that each vertex is colored with exactly one
color forms the hard block of the Soft-SAT instance. For every two adjacent
vertices, the set of clauses that encode that those vertices have different colors
forms a soft block. We can see an example of a Soft-SAT encoded graph in
Section 4.1.

Pigeon hole instances

Given m+ 1 pigeons and m holes, the problem we solved was to determine the
minimum number of holes with more than one pigeon taking into account that
there is at least one pigeon in each hole. The set of clauses that encode that
each pigeon is assigned exactly to one hole, together with the set of clauses that
encode that there is at least one pigeon in each hole, form the hard block of the

2http://mat.gsia.cmu.edu/COLORING02/

64 Chapter 4. The Soft-SAT formalism

Soft-SAT instance. There is a soft block for each set of clauses that encode that
two different pigeons cannot be in the same hole.

Example 4.6 A pigeon hole instance with 3 pigeons and 2 holes is encoded as
a Soft-SAT instance as follows:

(i) The set of propositional variables is {x1
1, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3}; the intended mean-

ing of variable xj
i is that pigeon i is in hole j.

(ii) The hard block is formed by the following clauses:

(x1
1 ∨ x2

1, h), (¬x1
1 ∨ ¬x2

1, h),
(x1

2 ∨ x2
2, h), (¬x1

2 ∨ ¬x2
2, h),

(x1
3 ∨ x2

3, h), (¬x1
3 ∨ ¬x2

3, h),
(x1

1 ∨ x1
2 ∨ x1

3, h), (x
2
1 ∨ x2

2 ∨ x2
3, h).

(iii) There is a soft block for every hole:

(¬x1
1 ∨ ¬x1

2, s1), (¬x1
1 ∨ ¬x1

3, s1), (¬x1
2 ∨ ¬x1

3, s1),
(¬x2

1 ∨ ¬x2
2, s2), (¬x2

1 ∨ ¬x2
3, s2), (¬x2

2 ∨ ¬x2
3, s2).

Quasigroup completion instances

We considered unsatisfiable instances of the quasigroup (or Latin square) com-
pletion problem (QCP) that were generated as indicated in [GS97]. Given n
colors, a quasigroup, or Latin square, is defined by an n × n table, where each
entry has a color and where there are no repeated colors in any row or any col-
umn; n is called the order of the quasigroup. The problem of whether a partially
colored quasigroup can be completed into a full quasigroup by assigning colors
to the open entries of the table is called the QCP. The problem we solved was to
minimize the number of violated row and column constraints in QCP instances.
By a row (column) constraint we mean that no color is repeated in the same row
(column).

The set of clauses that encode that each entry is colored with exactly one
color plus the set of clauses that encode the preassigned colors form the hard
block of the Soft-SAT instances. For each row (column), the clauses that encode
the row (column) constraints form a soft block. Therefore, the total number of
soft blocks is 2n.

Example 4.7 A QCP instance of order 2 with color 1 in position {1, 1} and
holes in positions {1, 2}, {2, 1} and {2, 2} is encoded as a Soft-SAT instance as
follows:

(i) The set of propositional variables is {x1
1,1, x

2
1,1, x

1
1,2, x

2
1,2, x

1
2,1, x

2
2,1, x

1
2,2, x

2
2,2};

the intended meaning of variable xc
i,j is that position i,j of the table has color c.

4.3. Experimental investigation 65

(ii) The hard block is formed by the following clauses:

(x1
1,1, h),

(x1
1,1 ∨ x2

1,1, h), (¬x1
1,1 ∨ ¬x2

1,1, h),
(x1

1,2 ∨ x2
1,2, h), (¬x1

1,2 ∨ ¬x2
1,2, h),

(x1
2,1 ∨ x2

2,1, h), (¬x1
2,1 ∨ ¬x2

2,1, h),
(x1

2,2 ∨ x2
2,2, h), (¬x1

2,2 ∨ ¬x2
2,2, h).

(iii) There is a soft block for every row and column of the table:

(¬x1
1,1 ∨ ¬x1

1,2, s1), (¬x2
1,1 ∨ ¬x2

1,2, s1),
(¬x1

2,1 ∨ ¬x1
2,2, s2), (¬x2

2,1 ∨ ¬x2
2,2, s2),

(¬x1
1,1 ∨ ¬x1

2,1, s3), (¬x2
1,1 ∨ ¬x2

2,1, s3),
(¬x1

1,2 ∨ ¬x1
2,2, s4), (¬x2

1,2 ∨ ¬x2
2,2, s4).

The formula can be simplified using the assigned positions of the table. In this
example, the unit clause rule can be applied using the clause (x1

1,1, h).

4.3.3 Weighted Partial Max-SAT and Max-CSP encodings

All the benchmarks encoded as soft CNF formulas were also encoded as Boolean
weighted Partial Max-SAT instances in order to compare our solvers with Boolean
weighted Partial Max-SAT solvers. The encoding used is defined as follows: A
soft block si formed by a set of clauses {C1, . . . , Cm} is replaced with the set
of clauses {(si; 1), (C1 ∨ ¬si; 2), . . . , (Cm ∨ ¬si; 2)}, where si is a new Boolean
variable and 1 and 2 are weights associated with the clauses. The hard block
of the soft CNF formula is encoded as the hard block in the weighted Partial
Max-SAT instance. A solution of a soft CNF formula corresponds to a feasible
solution of its weighted Partial Max-SAT encoding with the minimum sum of
weights of unsatisfied clauses. Actually, with our encoding, the minimum sum of
weights of unsatisfied clauses is identical to the minimum number of soft blocks
that can be falsified by a truth assignment that satisfies the hard block.

Example 4.8 Given the following soft CNF formula of Example 4.1:

(x1
1 ∨ x2

1, h), (¬x1
1 ∨ ¬x2

1, h),
(x1

2 ∨ x2
2, h), (¬x1

2 ∨ ¬x2
2, h),

(x1
3 ∨ x2

3, h), (¬x1
3 ∨ ¬x2

3, h),
(¬x1

1 ∨ ¬x1
2, s1), (¬x2

1 ∨ ¬x2
2, s1),

(¬x1
1 ∨ ¬x1

3, s2), (¬x2
1 ∨ ¬x2

3, s2),
(¬x1

2 ∨ ¬x1
3, s3), (¬x2

2 ∨ ¬x2
3, s3).

We derive the following weighted Partial Max-SAT instance:

[x1
1 ∨ x2

1], [¬x1
1 ∨ ¬x2

1],
[x1

2 ∨ x2
2], [¬x1

2 ∨ ¬x2
2],

[x1
3 ∨ x2

3], [¬x1
3 ∨ ¬x2

3],
(s1; 1), (¬x1

1 ∨ ¬x1
2 ∨ ¬s1; 2), (¬x2

1 ∨ ¬x2
2 ∨ ¬s1; 2),

(s2; 1), (¬x1
1 ∨ ¬x1

3 ∨ ¬s2; 2), (¬x2
1 ∨ ¬x2

3 ∨ ¬s2; 2),
(s3; 1), (¬x1

2 ∨ ¬x1
3 ∨ ¬s3; 2), (¬x2

2 ∨ ¬x2
3 ∨ ¬s3; 2).

66 Chapter 4. The Soft-SAT formalism

The Max-CSP instances and the graph coloring instances were also encoded
as binary CSPs using the format used by PFC-MPRDAC and Toolbar-CSP,
which consists of defining a constraint network by means of a list of nogoods.
We believe that it is important to compare our approach with the problem
solving approach for over-constrained problems developed in the Constraint
Programming community because they have worked more intensively on this
topic [MRS06].

4.3.4 Experimental results

Experiments with random Soft-2-SAT instances

We compared Soft-SAT-S with heuristic MO, Soft-SAT-S with heuristic MOH,
Soft-SAT-D with heuristic MO, Toolbar and WMax-SAT on random Soft-2-SAT
instances.

Figure 4.5 shows the results for instances with 50 variables, with a number
of clauses ranging from 200 to 430, where 20 clauses are in the hard block and
the rest of clauses are randomly distributed among 100 soft blocks; Figure 4.6
shows the results for instances with a number of variables ranging from 50 to
100 and with 300 clauses, where 50 clauses are in the hard block and the rest
of clauses are randomly distributed among 50 soft blocks; and Figure 4.7 shows
the results for instances with 60 variables and 300 clauses, where the number
of clauses in the hard block ranges from 10 to 50 and the rest of clauses are
randomly distributed among 50 soft blocks. In Figure 4.7 we do not display the
results for WMax-SAT because they were not competitive. In all the figures we
give mean and median time, and each data point corresponds to the mean and
median time needed to solve a set of 100 instances.

In Figure 4.5 and Figure 4.7, we observe that the best performing solver is
Soft-SAT-S with heuristic MOH, while in Figure 4.6 is Soft-SAT-D with heuristic
MO. It is worth mentioning the good behaviour of heuristic MOH that takes into
account the distinction between variables appearing in the hard block and in soft
blocks.

Figure 4.8 compares our best performing solver of Figure 4.5, Soft-SAT-S
(MOH), with Toolbar and the state-of-the-art weighted Partial Max-SAT solvers
W-MaxSatz and MiniMaxsat. We observe that the best performing solver is
MiniMaxsat and that Soft-SAT-S and W-MaxSatz have a similar behaviour.

Experiments with Max-CSP instances

In this section we describe a number of experiments we performed on random
binary CSP. In Table 4.1 we compare Soft-SAT-S without underestimation in
the lower bound with Soft-SAT-S with underestimation for sets of 100 instances
of a representative sample of Max-CSP instances. The first column shows the
parameters given to the generator of random binary CSPs, and the remaining
columns show the experimental results obtained. For each set we give the mean
and median time needed to solve an instance of the set. The variable selection

4.3. Experimental investigation 67

heuristic used is csp. Table 4.2 shows the number of backtracks instead of the
CPU time for the same instances. In both cases we observe that the fact of adding
a lower bound of better quality leads to dramatic performance improvements.
In the rest of the experimental investigation, all the results reported are with
underestimation.

Soft-SAT-S Soft-SAT-S
(with underestimation) (without underestimation)

〈n, d, p1, p2〉 mean median mean median
〈10, 15, 45/45, 190/225〉 12.25 10.31 605.03 547.52
〈12, 13, 60/66, 130/169〉 17.94 16.21 2256.91 2010.26
〈13, 8, 78/78, 50/64〉 12.51 11.28 1028.91 973.41
〈15, 10, 50/105, 75/100〉 1.63 1.39 77.54 57.97
〈17, 5, 110/136, 18/25〉 3.35 2.83 394.82 343.61
〈18, 5, 80/153, 18/25〉 0.86 0.76 53.64 46.52
〈20, 5, 90/190, 18/25〉 3.06 2.42 406.53 378.00
〈22, 6, 70/231, 28/36〉 7.10 4.13 910.97 493.15
〈23, 4, 150/253, 12/16〉 16.25 13.59 4615.67 3797.04
〈25, 3, 160/300, 7/9〉 2.66 2.09 142.80 112.51

Table 4.1: Comparison of Soft-SAT-S without underestimation and Soft-SAT-S
with underestimation on Max-CSP instances. Time in seconds.

Soft-SAT-S Soft-SAT-S
(with underestimation) (without underestimation)

〈n, d, p1, p2〉 mean median mean median

〈10, 15, 45/45, 190/225〉 2.619.160 2.257.644 807.841.884 735.579.551

〈12, 13, 60/66, 130/169〉 3.432.624 3.005.897 >2.000.000.000 >2.000.000.000

〈13, 8, 78/78, 50/64〉 2.450.851 2.129.608 1.093.257.769 1.168.573.259

〈15, 10, 50/105, 75/100〉 339.848 267.922 141.343.132 96.429.278

〈17, 5, 110/136, 18/25〉 611.488 521.378 564.618.781 520.298.372

〈18, 5, 80/153, 18/25〉 175.118 145.393 114.017.436 92.915.266

〈20, 5, 90/190, 18/25〉 681.346 516.087 601.459.493 631.196.627

〈22, 6, 70/231, 28/36〉 1.750.568 934.992 416.141.039 513.696.823

〈23, 4, 150/253, 12/16〉 2.513.565 2.075.907 >2.000.000.000 >2.000.000.000

〈25, 3, 160/300, 7/9〉 424.359 318.227 337.120.904 262.771.567

Table 4.2: Comparison of Soft-SAT-S without underestimation and Soft-SAT-S
with underestimation on Max-CSP instances. The variable selection heuristic
used is csp. Mean and median number of backtracks.

In the second experiment we compared Soft-SAT-S with heuristic csp with
a version of Soft-SAT-S with heuristic csp in which we do not apply the unit
clause rule to unit clauses that appear in the hard block. We generated sets

68 Chapter 4. The Soft-SAT formalism

of 100 instances of random binary CSPs with 14 variables, domain size 8, 91
constraints and a number of nogoods ranging from 10 to 63. Figure 4.9 shows
the experimental results obtained; we give mean time (upper plot) and median
time (lower plot). We see that applying this inference technique that exploits the
fact of knowing whether a variable belongs to the hard block leads to significant
performance improvements. The same behavior was observed for the rest of
Soft-SAT heuristics and solvers that we have developed.

In the third experiment we compared Soft-SAT-S with heuristic csp (it is
the best performing Soft-SAT solver on Max-CSP instances), PFC-MPRDAC,
Toolbar-CSP and WMax-SAT on Max-CSP instances. The results obtained are
shown in Table 4.3. We observe that solvers Toolbar-CSP and PFC-MPRDAC,
which are specialized on solving Max-CSP instances, are faster than Soft-SAT-S,
but the weighted Partial Max-SAT approach is much worse. We do not display
results with Toolbar because they are worse than the results of WMax-SAT. Even
when our solver is not the best, the differences with weighted Partial Max-SAT
are substantial.

Soft-SAT-S PFC-MPRDAC Toolbar-CSP WMax-SAT
〈n, d, p1, p2〉 mean median mean median mean median mean median

〈10, 8, 45/45, 48/64〉 0.33 0.32 0.19 0.19 0.05 0.05 11.95 11.41
〈12, 6, 66/66, 27/36〉 0.48 0.47 0.23 0.23 0.06 0.06 45.50 45.48
〈14, 5, 91/91, 18/25〉 0.82 0.77 0.35 0.35 0.12 0.11 189 193

〈16, 4, 120/120, 12/16〉 0.37 0.32 0.22 0.22 0.10 0.9 275 276
〈18, 3, 153/153, 6/9〉 1.00 0.93 0.31 0.31 0.04 0.04 68.04 62.71
〈15, 6, 60/105, 27/36〉 0.25 0.24 0.20 0.20 0.03 0.03 778 539
〈18, 5, 80/153, 18/25〉 0.67 0.58 0.33 0.30 0.05 0.04 5383 3364
〈20, 5, 70/190, 18/25〉 0.54 0.44 0.33 0.31 0.03 0.03 4701 2715
〈14, 8, 91/91, 50/64〉 44.27 43.95 8.37 7.68 3.02 2.91 >7200 >7200

〈23, 4, 200/253, 12/16〉 102 79.61 8.91 7.80 1.71 1.54 >7200 >7200

Table 4.3: Comparison of Soft-SAT-S, PFC-MPRDAC, Toolbar-CSP and
WMax-SAT on Max-CSP instances. Time in seconds.

In the fourth experiment, whose results are shown in Table 4.4, we solved the
same instances of the previous experiment with Soft-SAT-D with heuristic MO-
csp and with Soft-SAT-D with heuristic MO in order to compare the n-ary
branching with the binary branching. We see that the fact of using an n-ary
branching allows us to solve the instances up to 3 times faster. Also observe that
Soft-SAT-S (which also uses an n-ary branching) is about 2 times faster than
Soft-SAT-D with heuristic MO-csp, and up to 6 times faster than Soft-SAT-D
with heuristic MO.

In the last experiment with Max-CSP instances we compared our best Soft-
SAT solver for this benchmark, Soft-SAT-S, with the weighted Partial Max-
SAT solvers MiniMaxsat and W-MaxSatz. We solved the same instances of the
previous experiments. The results are shown in Table 4.5, where we observe
that the best performing solver is Soft-SAT-S in all the sets of tested instances.
This shows that the Soft-SAT formalism is a good approach for this benchmark

4.3. Experimental investigation 69

Soft-SAT-D Soft-SAT-D
(MO-csp) (MO)

〈n, d, p1, p2〉 mean median mean median
〈10, 8, 45/45, 48/64〉 0.69 0.68 1.83 1.76
〈12, 6, 66/66, 27/36〉 1.20 1.11 2.92 2.66
〈14, 5, 91/91, 18/25〉 2.55 2.33 6.82 6.27
〈16, 4, 120/120, 12/16〉 2.69 2.54 5.44 5.11
〈18, 3, 153/153, 6/9〉 0.69 0.65 1.40 1.28
〈15, 6, 60/105, 27/36〉 1.16 1.01 2.21 1.92
〈18, 5, 80/153, 18/25〉 2.97 2.48 5.98 4.38
〈20, 5, 70/190, 18/25〉 1.85 1.52 3.80 2.82

Table 4.4: Comparison of Soft-SAT-D with heuristic MO-csp and Soft-SAT-D
with heuristic MO on Max-CSP instances. Time in seconds.

compared with the best performing weighted Partial Max-SAT solvers. We
believe that the introduction of auxiliary variables limits the application of the
lower bounding techniques incorporated into W-MaxSatz and MiniMaxsat.

Soft-SAT-S MiniMaxsat W-MaxSatz
〈n, d, p1, p2〉 mean median mean median mean median

〈10, 8, 45/45, 48/64〉 0.33 0.32 2.05 1.96 79.78 81.62
〈12, 6, 66/66, 27/36〉 0.48 0.47 3.97 3.89 234 232
〈14, 5, 91/91, 18/25〉 0.82 0.77 8.83 8.61 785 782
〈16, 4, 120/120, 12/16〉 0.37 0.32 7.92 7.22 765 750
〈18, 3, 153/153, 6/9〉 1.00 0.93 1.64 1.50 153 143
〈15, 6, 60/105, 27/36〉 0.25 0.24 1.36 1.23 1653 1618
〈18, 5, 80/153, 18/25〉 0.67 0.58 2.63 2.16 >7200 >7200
〈20, 5, 70/190, 18/25〉 0.54 0.44 1.29 1.21 >7200 >7200
〈14, 8, 91/91, 50/64〉 44.27 43.95 571 546 >7200 >7200
〈23, 4, 200/253, 12/16〉 102 79.61 378 335 >7200 >7200

Table 4.5: Comparison of Soft-SAT-S, MiniMaxsat and W-MaxSatz on Max-
CSP instances. Time in seconds.

Experiments with graph coloring instances

Another benchmark of our empirical investigation was graph coloring. In this
case, when solving the weighted Partial Max-SAT instances, we can either use
the encoding provided by the reduction of Soft-SAT to weighted Partial Max-
SAT that we have defined or we can use a simpler encoding that does not use
additional variables. In that encoding, the hard block is encoded in the same
way, and, in the soft blocks, the weight associated with each clause is one, and

70 Chapter 4. The Soft-SAT formalism

Soft-SAT-S Soft-SAT-D Toolbar-CSP PFC-MPRDAC

〈n, k, c〉 mean median mean median mean median mean median

〈15, 15, 8〉 104 10.47 319 26.73 180 36.77 133 21.29

〈15, 15, 10〉 103 0.05 262 0.06 268 0.08 140 0.15

〈16, 14, 6〉 197 49.00 987 225 141 40.13 234 78.63

〈16, 14, 8〉 165 19.38 392 29.45 267 43.44 208 26.26

〈16, 16, 6〉 208 130 950 545 142 81.60 250 181

〈16, 16, 8〉 91.87 23.33 225 37.11 199 51.74 147 37.01

Table 4.6: Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with
heuristic MO-csp, Toolbar-CSP and PFC-MPRDAC on randomly generated
graph coloring instances. Time in seconds.

the unit clauses containing the additional variable, as well as the occurrences of
that variable in the remaining clauses, are not included. The correctness of that
encoding follows from the fact that there is at most one violated clause in each
soft block. We used this encoding because leads to better performance profiles.

In the first experiment we considered 6 sets of randomly generated instances,
where each set had 100 instances. We solved the instances with Soft-SAT-S
with heuristic csp, Soft-SAT-D with heuristic MO-csp, Toolbar-CSP and PFC-
MPRDAC.3 The results obtained are shown in Table 4.6: the first column dis-
plays the parameters given to the generator, and the rest of columns display the
mean and median time needed to solve an instance of the set with each one of
the used solvers.

We repeated the previous experiments but using a representative sample
of individual instances from the graph coloring symposium celebrated as a co-
located event of CP-2002. The results obtained are shown in Table 4.7: the first
column displays the name of the instance, the optimum number of colors to get
a valid coloring (k), and the number of colors we used to color the graph (c);
the second column displays the number of violated constraints; and the rest of
columns display the time needed to solve the instance with each one of the used
solvers. We observe in both experiments that Soft-SAT is very competitive with
respect to Toolbar-CSP and superior to PFC-MPRDAC.

To conclude the experimentation with the graph coloring benchmark, we
compared our Soft-SAT solvers with MiniMaxsat and W-MaxSatz. As we can
observe in Table 4.8, the weighted Partial Max-SAT solvers do not improve
the results of Soft-SAT-S with these instances. Table 4.9 shows the results for
the individual instances of graph coloring; we can observe that Soft-SAT-D is
competitive compared with MiniMaxsat and W-MaxSatz.

3We do not give results with some weighted Max-SAT solvers because they are not com-
petitive with the solvers used.

4.3. Experimental investigation 71

〈Instance, k, c〉 vc Soft-SAT-S Soft-SAT-D Toolbar-CSP PFC-MPRDAC

〈myciel5.col, 6, 3〉 16 11.04 46.39 0.66 12.11
〈myciel5.col, 6, 4〉 4 78.50 226.59 6.28 96.41
〈myciel5.col, 6, 5〉 1 3178 31.87 26.02 44.34
〈GEOM30a.col, 6, 3〉 11 9.31 27.22 0.87 14.33
〈GEOM30a.col, 6, 4〉 4 4.48 2.35 2.42 22.89
〈GEOM30a.col, 6, 5〉 1 0.49 0.15 0.17 0.18
〈GEOM40.col, 6, 2〉 22 3.89 20.58 0.08 4.42
〈GEOM40.col, 6, 3〉 7 10.83 30.63 25.20 770
〈GEOM40.col, 6, 4〉 3 95.18 14.67 1981 >7200
〈GEOM40.col, 6, 5〉 1 1.58 0.51 1186 1574
〈queen5 5.col, 5, 3〉 29 57.60 168 9.22 27.27
〈queen5 5.col, 5, 4〉 12 37.50 124 13.18 73.67

Table 4.7: Comparison between Soft-SAT-S, Soft-SAT-D, Toolbar-CSP and
PFC-MPRDAC on individual graph coloring instances.Time in seconds.

Soft-SAT-S Soft-SAT-D MiniMaxsat W-MaxSatz
〈n, k, c〉 mean median mean median mean median mean median
〈15, 15, 8〉 104 10.47 319 26.73 290 36.14 2615 547
〈15, 15, 10〉 103 0.05 262 0.06 417 0.08 4428 0.07
〈16, 14, 6〉 197 49.00 987 225 860 147 3596 1042
〈16, 14, 8〉 165 19.38 392 29.45 390 40.88 5077 1016
〈16, 16, 6〉 208 130 950 545 833 362 3754 2284
〈16, 16, 8〉 91.87 23.33 225 37.11 275 55.35 3664 1877

Table 4.8: Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with
heuristic MO-csp, MiniMaxsat and W-MaxSatz on randomly generated graph
coloring instances. Time in seconds.

72 Chapter 4. The Soft-SAT formalism

〈Instance, k, c〉 vc Soft-SAT-S Soft-SAT-D MiniMaxsat W-MaxSatz

〈myciel5.col, 6, 3〉 16 11.04 46.39 2.24 2.16
〈myciel5.col, 6, 4〉 4 78.50 226.59 13.79 4143.96
〈myciel5.col, 6, 5〉 1 3178 31.87 >7200 439.98
〈GEOM30a.col, 6, 3〉 11 9.31 27.22 2.03 1.53
〈GEOM30a.col, 6, 4〉 4 4.48 2.35 0.84 1011.28
〈GEOM30a.col, 6, 5〉 1 0.49 0.15 >7200 4128.63
〈GEOM40.col, 6, 2〉 22 3.89 20.58 0.17 0.15
〈GEOM40.col, 6, 3〉 7 10.83 30.63 3.73 37.27
〈GEOM40.col, 6, 4〉 3 95.18 14.67 14.14 >7200
〈GEOM40.col, 6, 5〉 1 1.58 0.51 >7200 >7200
〈queen5 5.col, 5, 3〉 29 57.60 168 34.36 24.51
〈queen5 5.col, 5, 4〉 12 37.50 124 21.80 292.64

Table 4.9: Comparison between Soft-SAT-S, Soft-SAT-D, MiniMaxsat and
W-MaxSatz on individual graph coloring instances.Time in seconds.

Experiments with pigeon hole instances

We solved pigeon hole instances with a number of holes ranging from 7 to 12
in order to study the scaling behaviour on Soft-SAT solvers (Soft-SAT-S with
heuristic csp and Soft-SAT-D with heuristic MO-csp), weighted Max-SAT solvers
(Toolbar and WMax-SAT) and weighted Partial Max-SAT solvers (MiniMaxSAT
and W-MaxSatz). The results obtained are shown in Table 4.10. We observe
that the solver with best scaling behaviour is Soft-SAT-D and then Soft-SAT-S.
The weighted Max-SAT solvers scale worse than the Soft-SAT solvers. Also, we
can see that the newest solving techniques incorporated into weighted Partial
Max-SAT solvers do not help improve the results in this benchmarks.

N Soft-SAT-S Soft-SAT-D Toolbar WMax-SAT MiniMaxsat W-MaxSatz

7 0.07 0.10 0.43 0.08 0.25 0.08
8 0.19 0.28 4.05 0.54 0.75 0.83
9 1.13 1.55 43 5.32 5.53 8.77
10 11 12 521 75 60 102
11 133 103 6741 705 765 1317
12 1784 990 >7200 >7200 >7200 >7200

Table 4.10: Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D
with heuristic MO-csp, Toolbar and WMax-SAT on pigeon hole instances. Time
in seconds.

4.4. Summary 73

Experiments with QCP instances

QCP instances were the last benchmark considered. We solved sets of 100 un-
satisfiable instances ranging from quasigroups of order 6 to quasigroups of order
10, and with 40% of preassigned entries. The results obtained are shown in
Table 4.11. We observe that the best performing solver is Soft-SAT-D and then
Soft-SAT-S when the order increases. The weighted Max-SAT solvers scale worse
than the Soft-SAT solvers, and this also holds for the best performing weighted
Partial Max-SAT solvers of the 2007 Max-SAT Evaluation.

order holes Soft-SAT-D Soft-SAT-S Toolbar WMax-SAT MiniMaxsat W-MaxSatz

6 21 0.35 0.33 34 1.26 0.46 66
7 29 0.97 1.11 17474 90 0.75 >20000
8 38 5.12 20 >20000 4806 4.72 >20000
9 48 137 2963 >20000 >20000 162 >20000
10 60 8050 >20000 >20000 >20000 >20000 >20000

Table 4.11: Comparison between Soft-SAT-D with heuristic MO-csp, Soft-SAT-S
with heuristic csp, Toolbar and WMax-SAT on QCP instances. Time in seconds.

4.4 Summary

We have presented a new generic problem solving approach for over-constrained
problems based on a formalism that deals with hard and soft blocks of clauses.
The distinction between hard and soft blocks allows us to model problems in a
more natural and compact way, and to design Max-SAT-like solvers that traverse
efficiently the search space of all possible truth assignments. In particular, we
have provided experimental evidence that exploiting the fact of knowing whether
variables and clauses appear in the hard block or in a soft blocks is relevant for
devising good performing variable selection heuristics and inference methods:

• Variable selection heuristics: we can define heuristics like MOH that take
into account whether a variable occurrence belongs to the hard block or
to a soft block.

• Inference methods: we get an extra level of propagation by applying the
unit clause rule to unit clauses that appear in the hard block. Moreover,
the inference applied in SAT can be locally applied inside each soft block.

We have also exploited the structure which is hidden in the encoding to define
a lower bound of better quality and an n-ary branching, and defined extremely
efficient lazy data structures for the Soft-SAT-S solver.

Moreover, we have shown that our approach exhibits a better performance
profiles than reducing over-constrained problems to weighted Partial Max-SAT
for some classes of problems. We believe that the introduction of auxiliary

74 Chapter 4. The Soft-SAT formalism

variables limits the application of the lower bounding techniques incorporated
into modern weighted Partial Max-SAT solvers.

The empirical investigation provides evidence that our approach is very com-
petitive compared with solving over-constrained problems by reducing them to
Max-CSP problems. Taking into account the amount of efforts devoted in the
Constraint Programming community on investigating methods for solving over-
constrained problems, we believe that Soft-SAT is a suitable alternative to solve
over-constrained problems.

We would also like to comment the good results we obtained with Soft-SAT-S
on some instances of the empirical investigation. The extremely efficient data
structures that we have implemented are a key factor of its success. We believe
that the incorporation of more sophisticated variable selection heuristics into
Soft-SAT-D will provide us with faster Soft-SAT-D solvers.

It is worth mentioning that, when we started our research on Soft-SAT, we
did not found in the SAT literature any approach of solving problems with hard
and soft constraints using exact Max-SAT algorithms. All the papers we found
refered to local search algorithms, and did not incorporate the notion of block
of clauses. Currently, Soft-SAT solvers can be improved by adapting some tech-
niques implemented in the last Partial Max-SAT solvers like hard and soft learn-
ing, lower bound computation using unit propagation, transforming the formula
to a simpler one using inference rules, or incorporating failed literal detection.
For example, the computation of the lower bound using unit propagation could
be implemented taking into account that, in Soft-SAT, we have to detect disjoint
inconsistent subsets of blocks instead of detecting disjoint inconsistent subsets
of clauses.

4.4. Summary 75

(1) ¬x1 x2 x3 ¬x4 x5

p2p1

(2) ¬x1 x2 x3 ¬x4 x5

p2p1

(3) ¬x1 x2 x3 ¬x4 x5

p2 p1

(4) ¬x1 x2 x3 ¬x4 x5

p2 p1

(5) ¬x1 x2 x3 ¬x4 x5

p2 p1

Free literal

Falsified literal

pi

Watched literal i

Figure 4.4: Data structures behaviour for dynamic variable ordering.

76 Chapter 4. The Soft-SAT formalism

 0

 50

 100

 150

 200

 200 250 300 350 400

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

Number of clauses

Random Soft-2-SAT instances

WMax-SAT (MO)
Toolbar

Soft-SAT-D (MO)
Soft-SAT-S (MO)

Soft-SAT-S (MOH)

 0

 50

 100

 150

 200

 200 250 300 350 400

M
ed

ia
n

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

Random Soft-2-SAT instances

WMax-SAT (MO)
Toolbar

Soft-SAT-D (MO)
Soft-SAT-S (MO)

Soft-SAT-S (MOH)

Figure 4.5: Random Soft-2-SAT instances with 50 variables, with a number of
clauses ranging from 200 to 430, where 20 clauses are in the hard block and
the rest of clauses are randomly distributed among 100 soft blocks. Mean time
(upper plot) and median time (lower plot) in seconds.

4.4. Summary 77

 0

 50

 100

 150

 200

 250

 50 60 70 80 90 100

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

Number of variables

Random Soft-2-SAT instances

WMax-SAT (MO)
Soft-SAT-S (MO)

Soft-SAT-S (MOH)
Toolbar

Soft-SAT-D (MO)

 0

 20

 40

 60

 80

 100

 50 60 70 80 90 100

M
ed

ia
n

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of variables

Random Soft-2-SAT instances

WMax-SAT (MO)
Soft-SAT-S (MO)

Soft-SAT-S (MOH)
Toolbar

Soft-SAT-D (MO)

Figure 4.6: Random Soft-2-SAT instances with a number of variables ranging
from 50 to 100 and with 300 clauses, where 50 clauses are in the hard block and
the rest of clauses are randomly distributed among 50 soft blocks. Mean time
(upper plot) and median time (lower plot) in seconds.

78 Chapter 4. The Soft-SAT formalism

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

Number of hard clauses

Random Soft-2-SAT instances

Soft-SAT-S (MO)
Toolbar

Soft-SAT-D (MO)
Soft-SAT-S (MOH)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50

M
ed

ia
n

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of hard clauses

Random Soft-2-SAT instances

Soft-SAT-S (MO)
Toolbar

Soft-SAT-D (MO)
Soft-SAT-S (MOH)

Figure 4.7: Random Soft-2-SAT instances with 60 variables and 300 clauses,
where the number of clauses in the hard block ranges from 10 to 50 and the rest
of clauses are randomly distributed among 50 soft blocks. Mean time (upper
plot) and median time (lower plot) in seconds.

4.4. Summary 79

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 250 300 350 400 450 500

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

Number of clauses

Random Soft-2-SAT instances

Toolbar
Soft-SAT-S (MOH)

W-MaxSatz
MiniMaxSat

 0

 20

 40

 60

 80

 100

 120

 140

 200 250 300 350 400 450 500

M
ed

ia
n

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

Random Soft-2-SAT instances

Toolbar
Soft-SAT-S (MOH)

W-MaxSatz
MiniMaxSat

Figure 4.8: Random Soft-2-SAT instances with 50 variables, with a number of
clauses ranging from 200 to 430, where 20 clauses are in the hard block and
the rest of clauses are randomly distributed among 100 soft blocks. Mean time
(upper plot) and median time (lower plot) in seconds.

80 Chapter 4. The Soft-SAT formalism

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

Number of NoGoods

Random Max-CSP instances

Soft-SAT-S (csp) with hard propagation
Soft-SAT-S (csp) without hard propagation

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60

M
ed

ia
n

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of NoGoods

Random Max-CSP instances

Soft-SAT-S (csp) with hard propagation
Soft-SAT-S (csp) without hard propagation

Figure 4.9: Comparison of Soft-SAT-S with a version of Soft-SAT-S in which
the unit clause rule is not applied to unit clauses that appear in the hard block.
Mean time (upper plot) and median time (lower plot) in seconds.

Chapter 5

The Partial Max-SAT

formalism

In this chapter we focus on Partial Max-SAT, which is a problem between SAT
and Max-SAT. Partial Max-SAT is well-suited for representing and solving over-
constrained problems, and has become a standard in recent years. As a proof of
the growing interest in Partial Max-SAT we would like to emphasize the two new
categories added to the 2007 Max-SAT Evaluation: weighted Partial Max-SAT
and unweighted Partial Max-SAT, as well as the number of Partial Max-SAT
solvers that have been recently developed (ChaffBS, ChaffLS, Clone, LB-SAT,
MiniMaxsat, SAT4Jmaxsat, SR(w), Toolbar,. . .).

The chapter is structured as follows. In Section 5.1 we present an overview
of the Partial Max-SAT problem. In Section 5.2 we define novel techniques for
Partial Max-SAT solving, and introduce the solving techniques that incorporate
the modern Partial Max-SAT solvers. In Section 5.3 we present some efficient
and original preprocessing techniques for Partial Max-SAT. In Section 5.4 we de-
scribe the two Partial Max-SAT solvers that we have designed and implemented:
PMS and W-MaxSatz. Finally, in Section 5.5 we report an experimental inves-
tigation that we conducted in order to assess the performance of our solvers and
preprocessing techniques.

5.1 The Partial Max-SAT problem

Partial Max-SAT was first defined in 1996 by Miyazaki et al. [MIK96] in the
context of optimization of database queries. A Partial Max-SAT instance is
a CNF formula in which some clauses are relaxable or soft and the rest are
non-relaxable or hard. Solving a Partial Max-SAT instance amounts to find an
assignment that satisfies all the hard clauses and the maximum number of soft
clauses.

Let us illustrate the expressive power of Partial Max-SAT by showing how
to encode a Max-Clique instance into Partial Max-SAT.

81

82 Chapter 5. The Partial Max-SAT formalism

Example 5.1 Given a graph, the Max-Clique problem consists in finding a
clique1 of maximum size. If we consider the graph with set of vertices V =
{v1, v2, v3, v4} and set of edges E = {(v1, v2), (v2, v3), (v3, v4), (v2, v4)}, the Max-
Clique problem for this graph can be encoded as a Partial Max-SAT instance as
follows:

v1 v2

v3 v4

Figure 5.1: Max-Clique example with four vertices and four edges.

1. The set of propositional variables is {x1, x2, x3, x4}. The variable xi is true
if vertex vi belongs to the clique.

2. The following hard clauses encode that any two vertices not connected by
an edge cannot belong to the same clique:

[¬x1 ∨ ¬x3], [¬x1 ∨ ¬x4];

3. The following soft clauses encode the function to maximize; i.e., the num-
ber of variables assigned to true which belong to the maximum clique. Since
all the variables set to true belong to the clique, the aim is to maximize the
number of satisfied positive literals. Therefore, the soft clauses are:

x1, x2, x3, x4.

The optimal solutions for this example is x1 = false, and x2 = x3 = x4 = true.

Note that we write hard clauses between square brackets in order to distin-
guish hard clauses from soft clauses.

5.2 Partial Max-SAT algorithms

We first define a basic branch and bound Partial Max-SAT solver and then
explain the main features we added to the basic solver in order to obtain the

1A clique in a graph is a set of pairwise adjacent vertices, or in other words, an induced
subgraph which is a complete graph.

5.2. Partial Max-SAT algorithms 83

different versions of our Partial Max-SAT solvers. In Section 5.4, we will enu-
merate the techniques described in this section which are incorporated into our
Partial Max-SAT solvers (PMS and W-MaxSatz).

5.2.1 A basic Partial Max-SAT algorithm

The space of all possible assignments for a Partial Max-SAT instance φ can be
represented as a search tree, where internal nodes represent partial assignments
and leaf nodes represent complete assignments. A branch and bound (BnB)
algorithm explores that search tree in a depth-first manner. At each node,
the algorithm backtracks if the current partial assignment violates some hard
clause, and applies the unit clause rule to the literals that occur in unit hard
clauses; i.e., given a literal ¬x (x), it deletes all the clauses containing the literal
¬x (x) and removes all the occurrences of the literal x (¬x). If the current
partial assignment does not violate any hard clause, the algorithm compares
the number of soft clauses falsified by the best complete assignment found so
far, called upper bound (UB), with the number of soft clauses falsified by the
current partial assignment, called lower bound (LB). Obviously, if UB ≤ LB, a
better assignment cannot be found from this point in search. In that case, the
algorithm prunes the subtree below the current node and backtracks to a higher
level in the search tree. If UB > LB, it extends the current partial assignment
by instantiating one more variable, say x. The instantiation of x leads to the
creation of two branches from the current branch: the left branch corresponds to
instantiating x to false, and the right branch corresponds to instantiating x to
true. In that case, the formula associated with the left (right) branch is obtained
from the formula of the current node by applying the unit clause rule using the
literal ¬x (x). The value that UB takes after exploring the entire search tree is
the minimum number of soft clauses that are falsified by a complete assignment
that satisfies all the hard clauses.

As in Soft-SAT solvers, Partial Max-SAT solvers enforce unit propagation on
unit hard clauses, and prune a branch of the search tree as soon as a hard clause
is violated. Algorithm 5.1 shows the pseudocode of a basic Partial Max-SAT
solver.

As we can see, the basic Partial Max-SAT algorithm is quite similar to the
basic Soft-SAT algorithm of Section 4.2.1. The main difference between them
is that in Partial Max-SAT we deal with soft clauses instead of soft blocks of
clauses. Most of the improvements of the following sections are not applied in
Soft-SAT because the notion of block does not allow their application, or the
adaptation to blocks reduces drastically the performance of the technique and
becomes inefficient.

In the following sections we describe the solving techniques that have shown
to be effective for Partial Max-SAT, and present new techniques and improve-
ments that we have incorporated into our solvers. Our contributions can be
summarized as follows:

• Variable selection heuristic: We have adapted to Partial Max-SAT

84 Chapter 5. The Partial Max-SAT formalism

Algorithm 5.1: Partial-Max-SAT-Basic(φ, UB) : Basic Partial Max-SAT

solver

Output: The minimum number of soft clauses of Partial Max-SAT
instance φ that are falsified by an assignment

Function Partial-Max-SAT-Basic (φ : Partial Max-SAT instance, UB
: upper bound) : Natural

if hard clause is unsatisfied then
return ∞

φ← HardUnitPropagation(φ)
if UB = LowerBound(φ)+1 then

φ← SoftUnitPropagation(φ)

if hard clauses are satisfied and UB>LowerBound(φ) then
if φ = ∅ or φ only contains empty clauses then

return EmptyClauses(φ)

x← SelectVariable(φ)
UB ← Min(UB, Partial-Max-SAT-Basic(φ¬x, UB))
return Min(UB, Partial-Max-SAT-Basic(φx, UB))

else
return ∞

two of the best performing variable selection heuristics for Max-SAT: CS
heuristic and the MaxSatz heuristic.

• Bounds computation: We have implemented a GSAT-like algorithm for
Partial Max-SAT in order to obtain a good initial upper bound. Regarding
lower bounds, we have defined new sound inference rules that have been
incorporated into our solvers with the aim of deriving as early as possible
empty clauses, and have adapted UP (c.f. Section 3.2.1) to Partial Max-
SAT for both computing underestiamtions and guiding the application of
the inference rules.

• Hard learning: We have incorporated into our Partial Max-SAT solvers a
learning module that performs a conflict analysis, and learns a hard clause,
when a hard clause is violated by the current assignment of a branch and
bound solver.

• Soft learning: We have incorporated a module that analyzes the conflicts
detected when at least one of the conflict clauses is soft.

5.2.2 Variable selection heuristic

We have adapted two of the best dynamic variable selection heuristics for Max-
SAT to Partial Max-SAT to take advantage of having hard and soft clauses.

– CS heuristic: Clause Size (CS) heuristic assigns a score to each variable.
Such a score is computed taking into account the lenght of the clause in

5.2. Partial Max-SAT algorithms 85

which the variable appears and whether the clause is hard or soft. For
soft clauses, it gives a score of 16 to variables appearing in binary clauses,
a score of 4 to variables appearing in ternary clauses and a score of 1 to
variables appearing in the remaining clauses. For hard clauses, it adds the
same score as for soft clauses multiplied by the number of soft clauses. CS
selects a variable with maximum score.

– MaxSatz heuristic: It is a variable/value selection heuristic introduced
in [LMP06]. We have extended the heuristic of MaxSatz to solve Partial
Max-SAT problems. It associates a weight equal to one to soft clauses and
a weight w to hard clauses, where w is the total number of soft clauses. Let
B(ℓ) and C(ℓ) be the sum of weights associated to binary clauses containing
the literal ℓ, and the sum of weights associated with the remaining clauses
containing the literal ℓ, respectively. The heuristics are defined as follows:

– Variable selection heuristic: It selects the variable x such that (4B(¬x)+
C(¬x)) ∗ (4B(x) + C(x)) is the largest.

– Value selection heuristic: Let x be the selected branching variable. If
4B(¬x) + C(¬x) < 4B(x) + C(x), set x to true. Otherwise, set x to
false.

5.2.3 Bounds computation

Upper bound

The initial upper bound is computed with a local search solver. We have tried
several available implementations of local search algorithms, and we have also
implemented a Partial Max-SAT version of GSAT [SLM92].

The local search solvers that we have incorporated into our Partial Max-SAT
solvers are:

– P-GSAT: It is a variant of GSAT that we have adapted to solve Partial
Max-SAT. The search begins with a randomly generated complete truth
assignment and, at each step, the value of one variable is flipped taking
into account its score. The score of a variable is the sum of weights that
we associate with unsatisfied clauses; we associate a weight one to an
unsatisfied soft clause and a weight equal to the total number of clauses
to an unsatisfied hard clause. Local minima are avoided by occasionally
performing a random walk.

– UBCSAT: UBCSAT [TH05] is a repository of local search algorithms
for SAT and Max-SAT. It is provided with some tools designed to solve
weighted Max-SAT problems. Among all the algorithms available in the
repository, we use IROTS (Iterated Robust Tabu Search) [SHS03] for the
computation of the upper bound. This is the algorithm with better general
performance in our tests with Partial Max-SAT instances. To solve Partial

86 Chapter 5. The Partial Max-SAT formalism

Max-SAT instances with this solver, we use the tools for weighted Max-
SAT instances associating a weight one to soft clauses and a weight equal
to the total number of clauses to hard clauses.

Lower bound

We adapted lower bound UP [LMP05, LMP06] to Partial Max-SAT. In lower
bound UP for Max-SAT, the lower bound is the current number of unsatisfied
clauses plus an underestimation of the minimum number of clauses that will
become unsatisfied if the current partial assignment is extended to a complete
assignment. Such an underestimation is the number of disjoint unsatisfiable
subsets that can be detected using unit propagation.

In lower bound UP for Partial Max-SAT, the underestimation is the number
of unsatisfiable subsets that can be derived by applying unit propagation in
such a way that soft clauses appear only in one subset. In UP for Max-SAT, the
clauses in unsatisfiable subsets can appear just in one subset. In Partial Max-
SAT, hard clauses can appear in more than one subset. This is a crucial point
for obtaining a better performance profile than in Max-SAT for some instances.

There are several ways to implement UP :

– Single queue (UPSQ): Older unit clauses are preferred to more recent unit
clauses.

– Stack (UPSt): It stores the unit clauses in a stack. The last inserted unit
clause is used first.

– Double queue (UPDQ): It maintains two queues: Q1 and Q2. When UPDQ

starts to search for an inconsistent subformula, Q1 contains all the unit
clauses of the formula under consideration (more recently derived unit
clauses are at the end of Q1), and Q2 is empty. The unit clauses de-
rived during the application of unit propagation are stored in Q2, and unit
propagation does not use any unit clause from Q1 until Q2 is empty.

Generally speaking, UPSQ creates the implication graph in a breadth-first
manner, UPSt in a depth-first manner, and UPDQ in a kind of locality and
breadth-first manner.

We can incorporate into lower bound UP an additional level of forward look-
ahead based on the detection of failed literals [LMP06]. Let φ be a Partial
MAX-SAT instance, and let φ′ be the formula resulting from φ after replacing
every inconsistent subformula detected by UP with an empty clause. Obviously,
unit propagation in φ′ cannot derive any additional empty clause. However, if
unit propagation is applied to φ′∪{x} and φ′∪{¬x}, for any variable x occurring
in φ′, and produces an empty clause in each formula (i.e., x and ¬x are failed
literals in φ′), then (ϕ1∪ϕ2)\{x,¬x} is an inconsistent subformula of φ′, where
ϕ1 is the inconsistent subformula detected by UP in φ′ ∪ {x}, and ϕ2 is the
inconsistent subformula detected by UP in φ′ ∪ {¬x}.

5.2. Partial Max-SAT algorithms 87

As introducing an additional level of look-ahead is time consuming, only a
subset of the variables occurring in the formula are used to detect failed lit-
erals. The propositional variables used to detect failed literals do not have to
appear in unit clauses, and they must have at least two positive occurrences
and two negatives occurrences in binary clauses. For further details about the
implementation of UP enhanced with failed literals see [LMP06].

5.2.4 Inference rules

The inference rules that one can apply in Max-SAT have to transform the current
instance φ into another instance φ′ in such a way that φ and φ′ have the same
number of unsatisfied clauses for every possible assignment; in other words, the
inference rules have to be sound.

To transform φ into φ′, we replace a set of clauses S with a set of clauses S′

in such a way that the number of unsatisfied clauses in S and S′ is the same for
every assignment.

The applicability of most of the inference rules described in this chapter can
be decided when we apply lower bound UP . Once we reach a conflict using UP ,
we can follow the implication graph and check if it matches with the premises
of an inference rule. If so, we apply the inferencer rule. This helps to speed up
considerably the run time of the solver.

Example 5.2 Given the following formula φ = {x1 ∨ x2, x2,¬x2 ∨ x3,¬x3, x4 ∨
¬x5}, if we apply lower bound UP to φ, we get the following implication graph:

x2 x3 �

Analyzing the implication graph, we derive the unsatisfiable subset {x2,¬x2 ∨
x3,¬x3}. This subset matches with the premises of the star rule, and we can
replace this subset by an empty clause � and a binary clause x2 ∨ ¬x3. After
the application of the inferencer rule, the resulting formula is:

φ = {�, x1 ∨ x2, x2 ∨ ¬x3, x4 ∨ ¬x5}

To simplify the description of the inference rules, we describe the inference
rules only for Max-SAT. In Max-SAT, the set of clauses in the premises of the
rule is replaced by the set of clauses in the conclusions of the rule. For Partial
Max-SAT, if we have hard clauses in the premises, they will remain after adding
the conclusions of the rule.

Example 5.3 Given the formula φ = {x1 ∨ x2, [x2],¬x2 ∨ x3,¬x3, x4 ∨ ¬x5}
of Example 5.2 with one hard clause, if we apply lower bound UP to φ, we get
the unsatisfiable subset {[x2],¬x2 ∨ x3,¬x3}. This subset can be replaced by
{�, x2 ∨¬x3}∪ {[x2]}. Note that the hard clause [x2] can be used again to apply
lower bound UP .

88 Chapter 5. The Partial Max-SAT formalism

The existing inference rules for Max-SAT that we have implemented for Par-
tial Max-SAT are the following:

Rule 5.1 (ACC) [BR99] If φ1={l1 ∨ l2 ∨ · · · ∨ lk, l̄1 ∨ l2 ∨ · · · ∨ lk} ∪ φ′ and
φ2={l2 ∨ · · · ∨ lk} ∪ φ′, then φ1 and φ2 are equivalent.

We pay special attention to the case k = 2, where the resolvent is a unit
clause, and to the case k = 1, where the resolvent is the empty clause. The case
k = 1 is described in the following rule.

Rule 5.2 (CUC) [NR00] If φ1={l, l̄} ∪ φ′ and φ2={�} ∪ φ′, then φ1 and φ2

are equivalent.

Rule 5.2 is used to replace two complementary unit clauses with an empty
clause. The new empty clause contributes to the lower bounds of the search
space below the current node by incrementing the number of unsatisfied clauses,
but not by incrementing the underestimation. Therefore, this contradiction has
not to be detected again. In practice, that simple rule gives rise to considerable
gains.

Rule 5.3 If φ1={l1, l̄1 ∨ l̄2, l2} ∪ φ′ and φ2={�, l1 ∨ l2} ∪ φ′, then φ1 and φ2

are equivalent.

Rule 5.3 replaces three clauses with an empty clause, and adds a new binary
clause to keep the equivalence between φ1 and φ2.

Rule 5.4 If φ1={l1, l̄1 ∨ l2, l̄2 ∨ l3, · · · , l̄k ∨ lk+1, l̄k+1} ∪ φ′, φ2={�, l1 ∨
l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1} ∪ φ′, then φ1 and φ2 are equivalent.

l1 l2 l3 . . . lk lk+1 �

Figure 5.2: Rule 5.4 implication graph.

Rule 5.4 generalizes Rule 5.2 and Rule 5.3. It captures linear unit resolution
refutations in which clauses and resolvents are used exactly once. The rule
simply eliminates the unit and binary clauses used in the refutation, and adds
an empty clause and k new binary clauses that are obtained by negating the
literals of the eliminated binary clauses. So, all the operations involved can be
performed efficiently. Figure 5.2 shows the implication graph for Rule 5.4.

Rule 5.5 If φ1={l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3} ∪ φ′ and φ2={�, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨
l2 ∨ l3} ∪ φ′, then φ1 and φ2 are equivalent.

Rule 5.5 captures unit resolution refutations in which there is a linear deriva-
tion but the unit clause is used twice in the derivation of the empty clause.

5.2. Partial Max-SAT algorithms 89

Rule 5.6 If φ1={l1, l̄1∨l2, l̄2∨l3, · · · , l̄k∨lk+1, l̄k+1∨lk+2, l̄k+1∨lk+3, l̄k+2∨
l̄k+3} ∪ φ′ and φ2={�, l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1, lk+1 ∨ l̄k+2 ∨ l̄k+3, l̄k+1 ∨
lk+2 ∨ lk+3} ∪ φ′, then φ1 and φ2 are equivalent.

l1 l2 l3 . . . lk lk+1

lk+2

lk+3

�

Figure 5.3: Rule 5.6 implication graph.

Rule 5.6 is a combination of a linear derivation and Rule 5.5. Figure 5.3
shows the implication graph for Rule 5.6.

We now define four original inference rules and prove their soundness. These
rules have been incorporated into a Partial Max-SAT solver and tested empiri-
cally. The experiments provide evidence that they produce substantial speedups
on some classes of instances.

Rule 5.7 If φ1={l1, l̄1∨ l2, l̄2∨ l3, · · · , l̄k∨ lk+1, l̄k+1∨ lk+2, l̄k+2∨ lk+3, l̄k+1∨
lk+4, l̄k+3 ∨ l̄k+4} ∪ φ′ and φ2={�, l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1, lk+1 ∨ l̄k+2 ∨
lk+3, l̄k+1 ∨ lk+2 ∨ l̄k+3, lk+1 ∨ l̄k+3 ∨ l̄k+4, l̄k+1 ∨ lk+3 ∨ lk+4} ∪φ′, then φ1 and
φ2 are equivalent.

Proof We prove the soundness of the rule by induction on k. Applying Max-
SAT resolution, using as premises the clauses in bold face, when k = 1,

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄3 ∨ l4, l̄2 ∨ l5, l̄4 ∨ l̄5} ∪ φ′
= {l2, l1 ∨ l̄2, l̄2 ∨ l3, l̄3 ∨ l4, l̄2 ∨ l5, l̄4 ∨ l̄5} ∪ φ′
= {l2, l1 ∨ l̄2, l̄2 ∨ l3, l̄3 ∨ l4, l̄2 ∨ l̄4, l̄2 ∨ l4 ∨ l5, l2 ∨ l̄4 ∨ l̄5} ∪ φ′
= {l2, l1 ∨ l̄2, l̄2 ∨ l3, l̄2 ∨ l̄3, l̄2 ∨ l3 ∨ l̄4, l2 ∨ l̄3 ∨ l4, l̄2 ∨ l4 ∨ l5, l2 ∨ l̄4 ∨ l̄5} ∪ φ′
= {l2, l1 ∨ l̄2, l̄2, l̄2 ∨ l3 ∨ l̄4, l2 ∨ l̄3 ∨ l4, l̄2 ∨ l4 ∨ l5, l2 ∨ l̄4 ∨ l̄5} ∪ φ′
= {�, l1 ∨ l̄2, l̄2 ∨ l3 ∨ l̄4, l2 ∨ l̄3 ∨ l4, l̄2 ∨ l4 ∨ l5, l2 ∨ l̄4 ∨ l̄5} ∪ φ′
= φ2

Assume that Rule 5.7 is sound for k = n. Let us prove that it is sound for
k = n+ 1. In that case:

φ1 = {l1, l̄1∨l2, l̄2∨l3, · · · , l̄n+1∨ln+2, l̄n+2∨ln+3, l̄n+3∨ln+4, l̄n+2∨ln+5, l̄n+4∨l̄n+5}∪φ′

By applying Max-SAT resolution between l1 and l̄1 ∨ l2, we get:

φ1 = {l1∨l̄2, l2, l̄2∨l3, · · · , l̄n+1∨ln+2, l̄n+2∨ln+3, l̄n+3∨ln+4, l̄n+2∨ln+5, l̄n+4∨l̄n+5}∪φ′

By applying the induction hypothesis, we get:

φ1 = {l1 ∨ l̄2, �, l2 ∨ l̄3, · · · , ln+1 ∨ l̄n+2, l̄n+2 ∨ ln+3 ∨ l̄n+4, ln+2 ∨ l̄n+3 ∨ ln+4,

90 Chapter 5. The Partial Max-SAT formalism

, l̄n+2 ∨ ln+4 ∨ ln+5, ln+2 ∨ l̄n+4 ∨ l̄n+5} ∪ φ′

which is φ2 when k = n+ 1. Therefore, φ1 and φ2 are equivalent and the rule is
sound.

l1 l2 l3 . . . lk lk+1

lk+2 lk+3

lk+4

�

Figure 5.4: Rule 5.7 implication graph.

Rule 5.7 is an extension of Rule 5.6 with one implication more in one of the
final implication lines. Figure 5.4 shows the implication graph for Rule 5.7.

Rule 5.8 If φ1={l1, l̄1∨ l2, l̄2∨ l3, · · · , l̄k∨ lk+1, l̄k+1∨ lk+2, l̄k+2∨ lk+3, l̄k+1∨
lk+4, l̄k+4∨lk+5, l̄k+3∨ l̄k+5}∪φ′ and φ2={�, l1∨ l̄2, l2∨ l̄3, · · · , lk∨ l̄k+1, lk+1∨
l̄k+2∨ lk+3, l̄k+1∨ lk+2∨ l̄k+3, lk+1∨ l̄k+3∨ l̄k+5, l̄k+1∨ lk+3∨ lk+5, lk+1∨ l̄k+4∨
lk+5, l̄k+1 ∨ lk+4 ∨ l̄k+5} ∪ φ′, then φ1 and φ2 are equivalent.

Proof We prove the soundness of the rule by induction on k. Applying Max-
SAT resolution, using as premises the clauses in bold face, when k = 1,

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄3 ∨ l4, l̄2 ∨ l5, l̄5 ∨ l6, l̄4 ∨ l̄6} ∪ φ′
= {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄3 ∨ l4, l̄4 ∨ l̄6, l̄2 ∨ l6, l̄2 ∨ l5 ∨ l̄6, l2 ∨ l̄5 ∨ l6} ∪ φ′
= {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄3 ∨ l4, l̄2 ∨ l̄4, l2 ∨ l̄4 ∨ l̄6, l̄2 ∨ l4 ∨ l6, l̄2 ∨ l5 ∨ l̄6,

, l2 ∨ l̄5 ∨ l6} ∪ φ′
= {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄2 ∨ l̄3, l̄2 ∨ l3 ∨ l̄4, l2 ∨ l̄3 ∨ l4, l2 ∨ l̄4 ∨ l̄6, l̄2 ∨ l4 ∨ l6,

, l̄2 ∨ l5 ∨ l̄6, l2 ∨ l̄5 ∨ l6} ∪ φ′
= {l1, l̄1 ∨ l2, l̄2, l̄2 ∨ l3 ∨ l̄4, l2 ∨ l̄3 ∨ l4, l2 ∨ l̄4 ∨ l̄6, l̄2 ∨ l4 ∨ l6, l̄2 ∨ l5 ∨ l̄6,

, l2 ∨ l̄5 ∨ l6} ∪ φ′

= {l1, l̄1, l1 ∨ l̄2, l̄2 ∨ l3 ∨ l̄4, l2 ∨ l̄3 ∨ l4, l2 ∨ l̄4 ∨ l̄6, l̄2 ∨ l4 ∨ l6, l̄2 ∨ l5 ∨ l̄6,
, l2 ∨ l̄5 ∨ l6} ∪ φ′

= {�, l1 ∨ l̄2, l̄2 ∨ l3 ∨ l̄4, l2 ∨ l̄3 ∨ l4, l2 ∨ l̄4 ∨ l̄6, l̄2 ∨ l4 ∨ l6, l̄2 ∨ l5 ∨ l̄6,
, l2 ∨ l̄5 ∨ l6} ∪ φ′

= φ2

Assume that Rule 5.8 is sound for k = n. Let us prove that it is sound for
k = n+ 1. In that case:

φ1 = {l1, l̄1∨l2, l̄2∨l3, · · · , l̄n+1∨ln+2, l̄n+2∨ln+3, l̄n+3∨ln+4, l̄n+2∨ln+5, l̄n+5∨ln+6,

, l̄n+4 ∨ l̄n+6} ∪ φ′

5.2. Partial Max-SAT algorithms 91

By applying Max-SAT resolution between l1 and l̄1 ∨ l2, we get:

φ1 = {l1∨l̄2, l2, l̄2∨l3, · · · , l̄n+1∨ln+2, l̄n+2∨ln+3, l̄n+3∨ln+4, l̄n+2∨ln+5, l̄n+5∨ln+6,

, l̄n+4 ∨ l̄n+6} ∪ φ′

By applying the induction hypothesis, we get:

φ1 = {l1 ∨ l̄2, �, l2 ∨ l̄3, · · · , ln+1 ∨ l̄n+2, ln+2 ∨ l̄n+3 ∨ ln+4, l̄n+2 ∨ ln+3 ∨ l̄n+4,

, ln+2∨ l̄n+4∨ l̄n+6, l̄n+2∨ ln+4∨ ln+6, ln+2∨ l̄n+5∨ ln+6, l̄n+2∨ ln+5∨ l̄n+6}∪φ′

which is φ2 when k = n+ 1. Therefore, φ1 and φ2 are equivalent and the rule is
sound.

l1 l2 l3 . . . lk lk+1

lk+2 lk+3

lk+4 lk+5

�

Figure 5.5: Rule 5.8 implication graph.

Rule 5.8 is an extension of Rule 5.6 with one implications more for each final
implication line. Figure 5.5 shows the implication graph for Rule 5.8.

Rule 5.9 If φ1={l1, l2, l3, l̄1 ∨ l̄2 ∨ l̄3} ∪ φ′ and φ2={�, l1 ∨ l2, l1 ∨ l3, l̄1 ∨
l2 ∨ l3} ∪ φ′, then φ1 and φ2 are equivalent.

Proof Applying Max-SAT resolution using as premises the clauses in bold face,

φ1 = {l1, l2, l3, l̄1 ∨ l̄2 ∨ l̄3} ∪ φ′
φ1 = {l1, l3, l̄1 ∨ l̄3, l1 ∨ l2, l̄1 ∨ l2 ∨ l3} ∪ φ′
φ1 = {l3, l̄3, l1 ∨ l3, l1 ∨ l2, l̄1 ∨ l2 ∨ l3} ∪ φ′
φ1 = {�, l1 ∨ l3, l1 ∨ l2, l̄1 ∨ l2 ∨ l3} ∪ φ′

= φ2

Rule 5.9 replaces three unit clauses and a ternary clause with an empty
clause, two binary clauses and a ternary clause. Note that this rule is the first
that has ternary clauses to be replaced.

Rule 5.10 If φ1={l1, l̄1 ∨ l2, l̄2 ∨ l3, · · · , l̄i−1 ∨ li, li+1, l̄i+1 ∨ li+2, l̄i+2 ∨
li+3, · · · , l̄j−1∨ lj , lj+1, l̄j+1∨ lj+2, l̄j+2∨ lj+3, · · · , l̄k−1∨ lk, l̄i∨ l̄j ∨ l̄k}∪φ′
and φ2={�, l1 ∨ l̄2, l2 ∨ l̄3, · · · , li−1 ∨ l̄i, li+1 ∨ l̄i+2, li+2 ∨ l̄i+3, · · · , lj−1 ∨
l̄j , lj+1 ∨ l̄j+2, lj+2 ∨ l̄j+3, · · · , lk−1 ∨ l̄k, li ∨ lj , li ∨ lk, l̄i ∨ lj ∨ lk} ∪ φ′, then
φ1 and φ2 are equivalent.

92 Chapter 5. The Partial Max-SAT formalism

Proof The soundness of this rule follows from the soundness of Rule 5.4 for
the linear derivations, and follows from the soundness of Rule 5.9 for the conflict
with the ternary clause (l̄i ∨ l̄j ∨ l̄k) and the unit clauses derived by applying
Rule 5.4 to the linear derivations.

l1 l2 l3 . . . li−1 li

li+1 li+2 li+3 . . . lj−1 lj

lj+1 lj+2 lj+3 . . . lk−1 lk

�

Figure 5.6: Rule 5.10 implication graph.

Rule 5.10 is a combination of linear derivation and Rule 5.9. Figure 5.6 shows
the implication graph for Rule 5.10.

5.2.5 Hard learning

Our solvers incorporate a learning module that analyzes the conflicts detected
with hard clauses. When a conflict is detected using unit propagation over
hard clauses, it analyzes the conflicting clause detected using the 1-UIP learning
schema [MMZ+01] implemented in zChaff [ZMMM01], and learns a hard clause.
The mission of the learned conflict clauses is to avoid visiting regions of the
search space that cannot lead to an optimal solution, due to some violated hard
clause.

Since any optimal solution of a Partial Max-SAT instance must satisfy all
the hard clauses, the fact of adding redundant hard clauses does not affect the
number of unsatisfied soft clauses. So, we can guarantee that the number of
unsatisfied clauses is preserved by our clause learning module.

The new learned clause is added to the current list of unsatisfied hard clauses.
Then, the conflict analysis module uses the information of the recently added
unsatisfied hard clauses to backtrack to a previous decision level that solves the
conflict, allowing the solver to perform non-chronological backtracking.

As stated in [MSLM08], existing results indicate that the 1-UIP clause
learning procedure, and the associated non-chronological backtracking proce-
dure, may end up doing more backtracking than the original clause learning
of GRASP [ZMMM01]. However, zChaff creates significantly fewer clauses and
is significantly more effective at backtracking. Figure 5.7 shows an example
of the 1-UIP learning schema. The learned clause taking the 1-UIP cut is
¬x1 ∨ x2 ∨ ¬x3 ∨ x4.

5.2. Partial Max-SAT algorithms 93

x1 ¬x2

x5

x6

¬x4

¬x6

x3

1-UIP conflict

Figure 5.7: Implication graph.

There are several issues to take into account when we incorporate a hard
learning module into a branch and bound Partial Max-SAT solver, like the con-
struction of the implication graph. We apply unit propagation on hard clauses
at each node of the search tree. When a hard conflict is reached, and only in
this case, we build the implication graph from the conflict. We do not build
the implication graph in each run of the unit propagation to save CPU time;
e.g., in some Partial Max-SAT instances, the hard clauses are only at-least-one
and at-most-one clauses (graph coloring, Max-CSP instances encoded as Partial
Max-SAT instances,. . .), and the unit propagation process hardly ever reaches
a conflict.

Another issue to take into account in the implementation of a branch and
bound Partial Max-SAT solver with clause learning is the fast search of unit hard
clauses. Unit hard clauses are required at each node to perform unit propagation.
Having a separated list for hard clauses and unit hard clauses can help improve
the performance of unit propagation. One list for all the unit clauses can slow
down the process when we have a big ratio of soft clauses per hard clauses in
the Partial Max-SAT instance.

As we will see in the experimental investigation, this learning schema pro-
duces significant performance improvements. We introduced first this learning
schema in [AM06b]. It was, to the best of our knowledge, the first time that
learning was incorporated into a branch and bound Partial Max-SAT solver.

94 Chapter 5. The Partial Max-SAT formalism

5.2.6 Soft learning

The soft learning module analyzes the conflicts detected when at least one of the
conflict clauses is soft. For the time being, our soft learning consist in applying
Max-SAT resolution to two conflict clauses. These clauses are selected as follows:
between all the conflict clauses, we choose the pairs of clauses x∨A and ¬x∨B
that have the minimum number of literals and, finally, we choose the pair that
has the minimum number of different literals among A and B. We give priority
to resolve a hard clause and a soft clause.

In the case of Partial Max-SAT, Max-SAT resolution can be simplified when
at least one of the premises is hard by applying the next rule, which is called
absorption rule in [LH05a]:

[D]
D ∨D′

[D]

where D and D′ are disjunctions of literals.
The calculus formed by the Max-SAT resolution rule and the absorption

rule is complete for Partial Max-SAT. This follows from the fact that Max-SAT
resolution is complete for Max-SAT and the absorption rule is sound. Another
alternative is expressing this calculus by means of Rule 1, Rule 2, and Rule 3
in Figure 5.8. We follow this approach because it is easy to understand in our
context.

Rule 1
x ∨ a1 ∨ · · · ∨ as

x ∨ b1 ∨ · · · ∨ bt
a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt
x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
x ∨ b1 ∨ · · · ∨ bt ∨ a1

x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

Rule 2
x ∨ a1 ∨ · · · ∨ as

[x ∨ b1 ∨ · · · ∨ bt]
[x ∨ b1 ∨ · · · ∨ bt]
a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt
x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

Rule 3
[x ∨ a1 ∨ · · · ∨ as]
[x ∨ b1 ∨ · · · ∨ bt]
[x ∨ a1 ∨ · · · ∨ as]
[x ∨ b1 ∨ · · · ∨ bt]
[a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt]

Figure 5.8: Resolution for Partial Max-SAT

Actually, our soft learning mechanism applies Rule 1 when both conflict

5.3. Preprocessing techniques 95

clauses are soft, and Rule 2 when one conflict clause is hard and the other
is soft. When both conflict clauses are hard, it applies the 1-UIP learning
schema [MMZ+01].

Example 5.4 Let us consider a conflict between clauses x1 ∨ x2 and ¬x1 ∨ x3

in a Partial Max-SAT formula φ. Both clauses are soft and, if we apply Rule 1,
we get:

φ− {x1 ∨ x2,¬x1 ∨ x3} ∪ {x2 ∨ x3, x1 ∨ x2 ∨ ¬x3,¬x1 ∨ x3 ∨ ¬x2}

Now, let us consider an initial case in which one of the clauses is hard and we
have a conflict between [x1 ∨ x2] and ¬x1 ∨ x3. With a hard clause and a soft
clause we apply Rule 2 and get:

φ− {¬x1 ∨ x3} ∪ {x2 ∨ x3,¬x1 ∨ x3 ∨ ¬x2}

In this example we can observe that, when there is a hard clause in the conflict,
the process is simpler than when there are two soft clauses; and the length of the
resulting formula applying Rule 2 is smaller than applying Rule 1.

5.2.7 Other learning techniques

When LB ≥ UB, the solver cannot improve the best solution found so far and
can prune the subtree below the current node. In this process, no hard clause is
falsified and we cannot apply any hard learning schema. However, we can learn
a hard clause taking the reason of all the soft conflicts that make LB ≥ UB.

This learning schema consists in learning a clause c for every soft conflict
detected in every failed branch, where c is a reason of the conflict. When the
LB ≥ UB, we learn one clause for every conflict. Then, we add as a hard
clause the disjunction of all the clauses learned in the branch. A similar learning
schema for soft conflicts was proposed in solver Clone [PD07]. In any case, the
resulting clause is a violated hard clause, which can be used by the standard
conflict analysis algorithm to perform non-chronological backtraking.

The main drawback of this approach is that the learned clauses are too big
when the minimum number of unsatisfied clauses is not small.

5.3 Preprocessing techniques

There are some techniques which are not efficient if we apply them at each node
of the search space. This can be due to the complexity of the technique, to the
difficulty to maintain the data structures during the search process, or simply
because it is not worth to apply the technique more than once. However, it can
make sense to apply these techniques as a preprocessing.

We have designed and implemented a preprocessor that incorporates the
following solving techniques:

96 Chapter 5. The Partial Max-SAT formalism

• Almost common clause rule: It applies ACC rule to clauses of arbitrary
length. Solvers like MaxSatz apply ACC at each node only to binary
clauses.

• Variable saturation: It applies Max-SAT Resolution to saturate vari-
ables and simplify the search space.

• Learning and restarts: It adds to the initial formula learned clauses in
several seach spaces.

These techniques consume too much CPU time to be computed at each node.

5.3.1 Almost common clause rule

The ACC rule is defined as follows:

ACC rule: If φ1={l1∨l2∨· · ·∨lk, l̄1∨l2∨· · ·∨lk}∪φ′ and φ2={l2∨· · ·∨lk}∪φ′,
then φ1 and φ2 are equivalent.

The preprocess starts with the application of this rule to the whole formula.
If it produces any change, we apply the rule again. Otherwise, we reach a state
of stagnation and we stop the preprocess for this technique.

Example 5.5 Let us consider a Partial Max-SAT instance φ with clauses [x1 ∨
x2 ∨¬x3 ∨ x4], ¬x1 ∨ x2 ∨¬x3 ∨ x4 and ¬x2 ∨¬x3 ∨ x4. We start the ACC rule
preprocess by applying the rule to [x1 ∨ x2 ∨ ¬x3 ∨ x4] and ¬x1 ∨ x2 ∨ ¬x3 ∨ x4:

φ1 = φ− {¬x1 ∨ x2 ∨ ¬x3 ∨ x4} ∪ {x2 ∨ ¬x3 ∨ x4}

In a second step, we apply the ACC rule between x2∨¬x3∨x4 and ¬x2∨¬x3∨x4:

φ2 = φ1 − {x2 ∨ ¬x3 ∨ x4,¬x2 ∨ ¬x3 ∨ x4} ∪ {¬x3 ∨ x4}

Finally, we cannot apply the ACC rule and finish the preprocess. Note that, in
the first step, the hard clause [x1∨x2∨¬x3∨x4] is not removed from the formula.

5.3.2 Variable saturation

The Max-SAT problem can be solved using the algorithm presented in [BLM06].
It is based on Max-SAT Resolution and variable saturation. The pseudocode is
shown in Algorithm 5.2.

Given an initial Max-SAT instance φ, this algorithm obtains the minimum
number of unsatisfied clauses in φ. The function Saturation(φ,x) computes
a saturation of φ w.r.t. x using the Rule 1 of Figure 5.8. This inference rule is
applied to multisets of clauses, and replaces the premises of the rule by its con-
clusions. We say that the rule cuts the variable x, and the tautologies concluded
by the rule are removed from the resulting multiset. In Partial Max-SAT, the
hard clauses remain and the clauses subsumed by the hard clause are removed.

5.3. Preprocessing techniques 97

Algorithm 5.2: Max-SAT(φ) : Resolution based Max-SAT algorithm

Output: The minimum number of clauses in the Max-SAT instance φ
that are falsified by an assignment

Function Max-SAT (φ : Max-SAT formula) : Natural
φ0 ← φ
for i← 1 to n do

φ← Saturation(φi−1,xi)

〈φi, ψi〉 ← Partition(φ,xi)

return | φn |

Definition 4 A multiset of clauses φ is said to be saturated w.r.t. x if for every
pair of clauses C1 = x ∨ A and C2 = ¬x ∨ B of φ, there is a literal ℓ such that
ℓ is in A and ℓ̄ is in B. A multiset of clauses φ′ is a saturation of φ w.r.t. x
if φ′ is saturated w.r.t. x and φ ⊢x φ

′; i.e., φ′ can be obtained from φ applying
Max-SAT resolution cutting x finitely many times.

Trivially, by the previous definition, a multiset of clauses φ is saturated
w.r.t. x if, and only if, every possible application of Max-SAT resolution cutting
x only introduces clauses containing x (since tautologies get eliminated).

Lemma 5.1 [BLM07] For every multiset of clauses φ and variable x, there
exists a multiset φ′ such that φ′ is a saturation of φ w.r.t. x. Moreover, this
multiset φ′ can be computed by applying Max-SAT resolution to any pair of
clauses x ∨ A and ¬x ∨ B with the restriction that A ∨ B is not a tautology,
using any ordering of the literals, until we cannot apply Max-SAT resolution
any longer.

Function Partition(φ,x) of Algorithm 5.2 computes a partition of φ into
the subset of clauses containing x (ψi) and the subset of clauses not containing
x (φi). The order on the saturation of the variables can be freely chosen; i.e.,
the sequence xi, . . . , xn can be any enumeration of the variables.

The main drawback of this algorithm is the computational cost of applying
variable saturation. When we compute a saturation of the formula w.r.t x, we
apply Max-SAT Resolution to clauses containing literals x and ¬x until the
subset of clauses φ′ that contains variable x is saturated. Next, the subset of
clauses φ′ is removed from the formula, but new clauses not containing x have
been generated during the saturation process. This makes the variable saturation
process harder for the next step, because in general, bigger is the set of clauses
containing the variable x and the number of literals per clause, larger is the
process of computing the saturated subset of clauses φ′ that contain x.

Nevertheless, we thought that it would make sense to saturate w.r.t. a limited
number of variables as a preprocessing in order to simplify the formula. We
select iteratively the variables to be saturated, depending on a parameter k, as
follows: We build a graph whose nodes are the Boolean variables occurring in

98 Chapter 5. The Partial Max-SAT formalism

the instance, and add an edge between two vertices if the variables of the vertices
occur in the same clause. We select a variable whose vertex has minimal degree2

if its degree is smaller than k. This process is repeated until no more variables
can be selected.

Example 5.6 Let us consider a Partial Max-SAT instance φ with the following
clauses containing variable x1:

{¬x1, x1 ∨ x2, x1 ∨ x3}

To saturate φ w.r.t. x1 we apply Max-SAT Resolution between clauses containing
x1.

φ = φ′ ∪ {¬x1,x1 ∨ x2, x1 ∨ x3}
= φ′ ∪ {x2,¬x1 ∨ ¬x2,x1 ∨ x3}
= φ′ ∪ {x2,¬x2 ∨ x3,¬x1 ∨ ¬x2 ∨ ¬x3, x1 ∨ x2 ∨ x3}

Now, we have a saturated multiset of clauses w.r.t. x1. We can remove ¬x1 ∨
¬x2 ∨ ¬x3 and x1 ∨ x2 ∨ x3 from the original formula and variable x1 is also
removed. The final formula after the saturation of φ w.r.t. x1 is:

φ = φ′ ∪ {x2,¬x2 ∨ x3}

As we will see in the experimentation, the application of variable saturation
as a preprocessing can speed up the search considerably in some sets of instances.

5.3.3 Learning and restarts

This preprocessing technique is based on learning clauses during a limited period
of time, for several runs of a solver, on different branches of the search tree.
We start the preprocessing solving the instance with a Partial Max-SAT solver
equipped with clause learning. When the given timeout for this run is reached,
we restart the solver on a different branch by picking, as first branching variable,
the best branching variable that has not been picked in previous runs. Once the
preprocessing is finished after a given number of restarts, all the learned clauses
are added to the original formula.

Starting the search on different branches in each run leads to explore branches
of the search tree that could not be visited by the solver in a single regular run.
The information of the conflicts reached in these branches is recorded, and used
to avoid visiting branches that could lead to a conflict.

This preprocessing technique does not have a big impact in the performance
of the solvers, but as we will see in the experimental investigation, it allows to
solve more instances in some sets.

2For an undirected graph, the degree of a vertex is the number of edges adjacent to the
vertex.

5.4. Partial Max-SAT solvers 99

5.4 Partial Max-SAT solvers

In this section we describe two exact branch and bound Partial Max-SAT solvers,
PMS and W-MaxSatz, that we have designed and implemented during our re-
search on Partial Max-SAT solving. Since the techniques that they use are
explained in Section 5.2, here we only present a short description.

5.4.1 PMS

We introduced PMS in SAT-2007 [AM07]. It is an implementation from scratch
of our original idea of applying hard clause learning in Partial Max-SAT [AM06b].
PMS is an unweighted Partial Max-SAT solver and participated in the 2007
Max-SAT Evaluation in the categories of unweighted Max-SAT and unweighted
Partial Max-SAT. This solver has been implemented in C++ and has the fol-
lowing features:

– Variable selection heuristic: It implements CS variable selection heuritic.

– Upper bound: It computes the initial upper bound using the P-GSAT
algorithm.

– Lower bound: It computes the lower bound using UP with double queue
(UPDQ) without failed literal detection.

– Inference rules: It applies CUC at each node, and ACC as preprocessing.

– Hard learning: It implements hard clause learning using the 1-UIP schema.

– Soft learning: It has a module that allows the activation of soft clause
learning.

PMS uses specific lists for every type of clauses. It maintains separated lists
for hard clauses and soft clauses, and two additional lists for unit hard clauses
and unit soft clauses. These lists help perform operations when we are only
interested either in hard clauses or in soft clauses. PMS allows the activation of
each technique, independently, using flags.

5.4.2 W-MaxSatz

W-MaxSatz has been build on top of the Max-SAT solver MaxSatz [LMP06,
LMP07]. It is an adaptation of MaxSatz to solve weighted and Partial Max-
SAT problems. W-MaxSatz has several modifications on the data structures
to implement efficiently the weighted and Partial Max-SAT versions of all the
techniques used in MaxSatz. Moreover, we have improved the solver by adding
more techniques used only on Partial Max-SAT solvers. The first version of this
solver was introduced in the 2007 Max-SAT Evaluation; it participated in all
the categories. This solver has been implemented in C and has the following
features:

100 Chapter 5. The Partial Max-SAT formalism

– Variable selection heuristic: It uses the MaxSatz dynamic variable selection
heuristic.

– Upper bound: It computes the initial upper bound using the repository of
local search algorithms UBCSAT.

– Lower bound: It computes the lower bound using UP with double queue
(UPDQ), and with failed literal detection.

– Inference rules: It implements Rule 5.4 (generalization of Rule 5.2 and
Rule 5.3), Rule 5.6 (generalization of Rule 5.5), Rule 5.7, Rule 5.8, and
Rule 5.10 (generalization of Rule 5.9).

– Hard learning: It implements hard clause learning using the 1-UIP schema.

W-MaxSatz converts soft clauses into hard clauses when the weight of a soft
clause is greater than or equal to the upper bound. This technique is similar to
the one used in MiniMaxsat [HLO07]. MiniMaxsat has a special weight, called
top, that is associated to hard clauses. When a soft clause has a weight greater
than or equal to the top, it is treated as a hard clause.

The data structures used in MaxSatz are not suitable for adding permanent
clauses in the database. Due to the static design of the MaxSatz data structures,
the easy way to allow the addition of permanent clauses without loosing the effi-
ciency of its data structures is to reserve more memory statically. This memory
can be easily tuned and adapted to the size of the input instances. In further
version of W-MaxSatz we plan to solve this problem with a dynamic memory
allocation to adapt the size of the instance to the memory used by the solver.

5.5 Experimental investigation

We now report the experimental investigation we conducted to evaluate the tech-
niques and the performance of our problem solving approach. First, we compare
the different learning techniques of the PMS solver and the last improvements
added to W-MaxSatz. We then compare our solvers with the best performing
state-of-the-art Partial Max-SAT solvers (ChaffBS, ChaffLS, Clone, LB-SAT,
MiniMaxsat, SAT4Jmaxsat, SR(w) and Toolbar). Finally, we report the results
obtained by applying our preprocessor to several Partial Max-SAT solvers.

All the experiments of this section were performed on a cluster with the
following specifications:

– Number of hosts: 80 bi-processor

– Operating System: Rocks Cluster 4.0.0 (Linux 2.6.9)

– Processor: AMD Opteron(tm) Processor 248, 2.2 GHz

– Memory: 1 GB

– Cache: 1 MB

5.5. Experimental investigation 101

5.5.1 Experiments with PMS

We next report the experimental investigation we conducted to compare the
different techniques of our solver PMS. The versions of PMS used for the exper-
imentation are the following:

– PMS: It is the version described in Section 5.4.1 without soft learning.

– PMS+SL: It is PMS with soft learning.

– PMS-HL: It is PMS without hard learning.

We used four sets of benchmarks:

– Random Partial Max-2-SAT instances with 100 variables and a number of
clauses ranging from 1000 to 3000, and Partial Max-3-SAT instances with
100 variables and a number of clauses ranging from 200 to 700. These
are typical random 2-SAT/3-SAT instances, generated using the generator
mwff developed by Bart Selman, in which 100 clauses are declared, at
random, as hard and the rest are declared as soft.

– Random 2-SoftSAT instances generated with the algorithm described
in [HSvdW06]. These instances are harder than random Partial Max-
2-SAT instances. We solved instances with 150 variables and 150 hard
clauses varying the density from 5 to 15. By density we mean the ratio of
number of clauses to number of variables.

– Benchmarks from the SAT-2002 Competition 3. We used benchmarks from
the SAT-2002 Competition because they are not so hard as the benchmarks
from subsequent competitions. These are satisfiable instances to which
we solved the Max-One problem (i.e., compute the maximum number of
variables that can be assigned to true by a satisfying assignment).

– Random and structured Partial Max-SAT instances from the 2007 Max-
SAT Evaluation. There are 722 instances which are divided into 15 sets.

Experiments with random Partial Max-2-SAT and Max-3-SAT in-
stances

The results of solving random Partial Max-2-SAT and random Partial Max-3-
SAT instances are shown in Figure 5.9 and Figure 5.10, respectively. We solved
100 instances for each data point. The upper plots display the mean time needed
to solve an instance with PMS, PMS-HL and PMS+SL. The lower plots display
the mean number of nodes traversed by our solvers. We observe that the best
performing solver for Partial Max-2-SAT is PMS+SL while the best performing
solvers for Partial Max-3-SAT are PMS and PMS-HL. In this example, it is
particularly interesting to observe the performance improvements achieved on
Partial Max-2-SAT by incorporating our learning schema of soft clauses.

3http://www.satlib.org/Benchmarks/SAT/New/Competition-02/sat-2002-beta.tgz

102 Chapter 5. The Partial Max-SAT formalism

 1

 10

 100

 1000 1500 2000 2500 3000

C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

Number of clauses

Random Partial Max-2-SAT with 100 variables

PMS-HL
PMS

PMS+SL

 1000

 10000

 100000

 1000 1500 2000 2500 3000

N
um

be
r

of
 n

od
es

 (
lo

gs
ca

le
)

Number of clauses

Random Partial Max-2-SAT with 100 variables

PMS-HL
PMS

PMS+SL

Figure 5.9: Comparison of PMS, PMS-HL and PMS+SL with random Partial
Max-2-SAT instances. Mean CPU time in seconds (upper plot) and mean num-
ber of nodes (lower plot).

5.5. Experimental investigation 103

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600 700

C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

Number of clauses

Random Partial Max-3-SAT with 100 variables

PMS+SL
PMS-HL

PMS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 200 300 400 500 600 700

N
um

be
r

of
 n

od
es

 (
lo

gs
ca

le
)

Number of clauses

Random Partial Max-3-SAT with 100 variables

PMS+SL
PMS-HL

PMS

Figure 5.10: Comparison of PMS, PMS-HL and PMS+SL with random Par-
tial Max-3-SAT instances. Mean CPU time in seconds (upper plot) and mean
number of nodes (lower plot).

104 Chapter 5. The Partial Max-SAT formalism

Experiments with random 2-SoftSAT

The results of solving random 2-SoftSAT instances are shown in Figure 5.11.
We solved 100 instances for each data point. The upper plot displays the mean
CPU time needed to solve an instance with PMS, PMS-HL and PMS+SL. The
lower plot displays the mean number of nodes traversed by our solvers. We
observe that the best performing solver is PMS+SL, and that when we apply
soft learning we get important gains both in time and in number of nodes. The
gains in number of nodes are superior to the gains in time due to the overhead
of applying learning.

Experiments with SAT-2002 Competition benchmarks

The results of solving the benchmarks from the SAT-2002 Competition, using a
timeout of 3600 seconds, are shown in Table 5.1 and Table 5.2. The first column
of Table 5.1 shows the name of the set of instances, the second column shows
the number of instances in the set, the rest of columns show the median time
(among the instances solved within the timeout) needed to solve an instance,
and the number of instances solved (in brackets). Table 5.2 is like Table 5.1 but
shows number of nodes instead of time for PMS, PMS-HL and PMS+SL. We
observe that the best performing solver is PMS and then PMS+SL.

Instance set # PMS-HL PMS PMS+SL
3-coloring 30 818.62(19) 241.74(30) 53.54(20)
AIM 12 91.98(10) 0.41(12) 0.37(12)
CNT 6 86.05(1) 155.26(2) 137.96(2)
DP 11 594.71(3) 598.21(4) 638.60(4)
EZFACT 10 2739.14(1) 214.10(10) 69.26(8)
MED 4 4.25(1) 4.10(1) 6.72(1)

Table 5.1: Benchmarks from the SAT-2002 Competition solving the Max-One
problem. Time in seconds.

Instance set # PMS-HL PMS PMS+SL
3-coloring 30 2714206(19) 425872(30) 93769(20)
AIM 12 3414797(10) 1842(12) 1929(12)
CNT 6 650615(1) 137756(2) 119154(2)
DP 11 99533(3) 140412(4) 178220(4)
EZFACT 10 5774450(1) 395677(10) 119923(8)
MED 4 32278(1) 28881(1) 16236(1)

Table 5.2: Benchmarks from the SAT-2002 Competition solving the Max-One
problem. Number of nodes.

5.5. Experimental investigation 105

 1

 10

 100

 1000

 6 8 10 12 14

C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

Density

Random Partial 2-SoftSAT with 150 variables

PMS-HL
PMS

PMS+SL

 1000

 10000

 100000

 1e+06

 6 8 10 12 14

N
um

be
r

of
 n

od
es

 (
lo

gs
ca

le
)

Density

Random Partial 2-SoftSAT with 150 variables

PMS-HL
PMS

PMS+SL

Figure 5.11: Comparison of PMS, PMS-HL and PMS+SL with random 2-
SoftSAT instances. Mean CPU time in seconds (upper plot) and mean number
of nodes (lower plot).

106 Chapter 5. The Partial Max-SAT formalism

Figure 5.12 displays the number of instances x from the SAT-2002 Compe-
tition that can be solved in y seconds. We observe that the best solver is PMS
followed by PMS+SL.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds (SAT-2002 Competition)

PMS
PMS+SL
PMS-HL

Figure 5.12: Number of instances x that can be solved in y seconds. Instances
from the SAT-2002 Competition.

Experiments with 2007 Max-SAT Evaluation benchmarks

The results of solving the benchmarks from the 2007 Max-SAT Evaluation, using
a timeout of 3600 seconds, are shown in Table 5.3 and Table 5.4. The best
performing solvers is PMS. With these benchmarks, we observe the importance
of clause learning. Solvers with learning, PMS and PMS+SL, are able to solve
more instances in the following sets: Partial Max-2-SAT (random), Max-One
(structured), Pseudo (primes dimacs) and Pseudo (routing). The solver without
learning, PMS-HL, has not a good performance with these benchmark.

Figure 5.13 displays the number of instances x from the 2007 Max-SAT
Evaluation that can be solved in y seconds. In this case, we observe that the
best solvers are PMS followed by PMS+SL.

5.5.2 Experiments with W-MaxSatz

We now report the experimental investigation we conducted to compare the first
version of W-MaxSatz with the improvements incorporated into the final version.

5.5. Experimental investigation 107

Instance set # PMS-HL PMS PMS+SL
Partial Max-2-SAT (random) 90 224.27(45) 220.26(44) 360.50(49)
Partial Max-3-SAT (random) 60 90.04(59) 80.82(59) 88.53(43)
Max-Clique (random) 96 69.36(96) 68.18(96) 166.86(52)
Max-Clique (structured) 62 160.83(27) 171.13(27) 135.45(11)
Max-One (3-SAT) 80 2.33(80) 4.23(80) 97.11(41)
Max-One (structured) 60 77.47(13) 176.70(37) 178.33(33)
Pseudo (garden) 7 0.54(5) 0.55(5) 50.73(5)
Pseudo (logic synthesis) 17 2.54(1) 2.54(1) 2.50(1)
Pseudo (primes dimacs) 148 190.37(80) 124.09(88) 2.19(74)
Pseudo (routing) 15 0.00(0) 25.97(5) 38.87(5)
Weighted CSP (dense loose) 20 2.01(20) 2.02(20) 1.15(20)
Weighted CSP (dense tight) 20 2.25(20) 2.24(20) 1.79(20)
Weighted CSP (sparse loose) 20 1.40(20) 1.41(20) 1.02(20)
Weighted CSP (sparse tight) 20 2.19(20) 2.19(20) 1.79(20)
Weighted CSP (w-queens) 7 15.07(7) 12.94(7) 2.25(6)

Table 5.3: Benchmarks from the 2007 Max-SAT Evaluation. Time in seconds.

Instance set # PMS-HL PMS PMS+SL
Partial Max-2-SAT (random) 90 325541(45) 323845(44) 98163(49)
Partial Max-3-SAT (random) 60 745911(59) 667329(59) 404503(43)
Max-Clique (random) 96 1691970(96) 1691970(96) 130786(52)
Max-Clique (structured) 62 2461683(27) 2461683(27) 12114(11)
Max-One (3-SAT) 80 34006(80) 38422(80) 106593(41)
Max-One (structured) 60 484758(13) 257574(37) 134716(33)
Pseudo (garden) 7 7096(5) 7096(5) 546033(5)
Pseudo (logic synthesis) 17 170(1) 170(1) 170(1)
Pseudo (primes dimacs) 148 1571426(80) 253132(88) 7160(74)
Pseudo (routing) 15 0(0) 84513(5) 190193(5)
Weighted CSP (dense loose) 20 33834(20) 33834(20) 17588(20)
Weighted CSP (dense tight) 20 22380(20) 22380(20) 17385(20)
Weighted CSP (sparse loose) 20 19984(20) 19984(20) 13613(20)
Weighted CSP (sparse tight) 20 26052(20) 26052(20) 20254(20)
Weighted CSP (w-queens) 7 211489(7) 163525(7) 40218(6)

Table 5.4: Benchmarks from the 2007 Max-SAT Evaluation. Number of nodes.

The two versions of the solver used for the experimentation are the following:

– W-MaxSatz: It is the version described in Section 5.4.2.

– W-MaxSatz0: It is the first working version of the solver. W-MaxSatz
uses the same techniques as MaxSatz adapted to deal with weights. Al-

108 Chapter 5. The Partial Max-SAT formalism

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

PMS-HL
PMS

PMS+SL

Figure 5.13: Number of instances x that can be solved in y seconds. Instances
from the 2007 Max-SAT Evaluation.

though it can deal with Partial Max-SAT instances, it has not the notion of
hard and soft clauses. This version of the solver does not use UBCSAT to
compute the initial upper bound; it does not propagate hard unit clauses;
it does not implement Rule 5.7, Rule 5.8 and Rule 5.10; and it does not
incorporate the hard learning module. W-MaxSatz0 was introduced in
the 2007 Max-SAT Evaluation and it got very good results, especially on
solving random instances in all the categories.

The benchmarks used in the experimentation for W-MaxSatz are random
instances to compare the performance of the new inference rules, and the bench-
marks used in the categories of weighted and unweighted Partial Max-SAT in
the 2007 Max-SAT Evaluation:

– Random and structured Partial Max-SAT instances from the 2007 Max-
SAT Evaluation. There are 722 instances which are divided into 15 sets.

– Random and structured weighted Partial Max-SAT instances from the
2007 Max-SAT Evaluation. There are 746 instances which are divided
into 11 sets.

– Random weighted Partial Max-2-SAT instances with 150 variables and a
number of clauses ranging from 1000 to 5000, These are typical random

5.5. Experimental investigation 109

2-SAT/3-SAT instances in which 150 clauses are declared, at random, as
hard and the rest are declared as soft.

Experiments with Partial Max-SAT instances

The results for Partial Max-SAT instances are shown in Table 5.5. We display
the number of instances in each set and, for each solver and each set of instances,
we display the mean time in seconds needed to solve an instance and the number
of solved instances (in brackets). We set a timeout of 30 minutes. We can see
that the best performing solver is W-MaxSatz in almost all the tested instances.

Instance set # W-MaxSatz0 W-MaxSatz
Partial Max-2-SAT (random) 90 40.41(90) 13.28(90)
Partial Max-3-SAT (random) 60 59.00(60) 34.65(60)
Max-Clique (random) 96 49.34(80) 43.57(80)
Max-Clique (structured) 62 153.30(22) 187.08(23)
Max-One (3-SAT) 80 199.15(77) 166.13(80)
Max-One (structured) 60 385.89(54) 178.38(58)
Pseudo (garden) 7 2.16(4) 1.74(4)
Pseudo (logic synthesis) 17 0.00(0) 0.00(0)
Pseudo (primes dimacs) 148 129.96(85) 78.29(94)
Pseudo (routing) 15 143.94(5) 106.79(5)
Weighted CSP (dense loose) 20 7.18(20) 5.50(20)
Weighted CSP (dense tight) 20 10.52(20) 9.73(20)
Weighted CSP (sparse loose) 20 25.55(20) 16.35(20)
Weighted CSP (sparse tight) 20 26.03(20) 24.00(20)
Weighted CSP (w-queens) 7 85.09(6) 72.28(6)

Table 5.5: Results for Partial Max-SAT instances. Mean time in seconds.

Experiments with weighted Partial Max-SAT instances

The results for weighted Partial Max-SAT instances are shown in Table 5.6. We
display the number of instances in each set and, for each solver and each set
of instances, we display the mean time in seconds to solve an instance and the
number of solved instances (in brackets). We set a timeout of 30 minutes. As
in the Partial Max-SAT benchmarks, the best performing solver is W-MaxSatz
in almost all the tested instances. These results provide empirical evidence that
the new solving techniques that we have incorporated into W-MaxSatz produce
substantial improvements on a representative sample of instances.

Experiments with random weighted Partial Max-2-SAT instances

In this section we use a special version of W-MaxSatz with the difference that
it does not have the new inference rules. We used this version of W-MaxSatz in

110 Chapter 5. The Partial Max-SAT formalism

Instance set # W-MaxSatz0 W-MaxSatz
Weighted Partial Max-2-SAT (random) 90 196.30(88) 56.63(89)
Weighted Partial Max-3-SAT (random) 60 91.80(60) 46.18(60)
Auctions (paths) 88 243.97(70) 233.77(71)
Auctions (regions) 84 6.69(84) 5.25(84)
Auctions (scheduling) 84 103.84(82) 89.76(84)
Pseudo (factor) 186 0.43(186) 11.03(186)
Pseudo (miplib) 16 1.49(4) 1.95(4)
Quasigroup Completion 25 37.53(11) 199.68(15)
Weighted CSP (planning) 71 101.49(59) 13.83(71)
Weighted CSP (spot5 dir) 21 17.35(2) 14.88(2)
Weighted CSP (spot5 log) 21 640.86(4) 18.98(2)

Table 5.6: Results for weighted Partial Max-SAT instances. Mean time in sec-
onds.

order to asses the performance of the new inference rules we have introduced in
this chapter.

Figure 5.14 show the scalability of W-MaxSatz with and without the new
inference rules, on random weighted Partial Max-2-SAT instances with 150 vari-
ables, 150 hard clauses and soft clauses ranging from 850 to 4850. One hundred
instances are solved at a point to compute the displayed CPU mean time. A
weighted Partial Max-SAT instance is generated as a weighted instance with
hard clauses having weight equal to the addition of its soft clause weights (ran-
domly generated between 1 and 10). The number of hard clauses in an instance
corresponds to its number of variables.

We observe that W-MaxSatz with the new inference rules scales better than
W-MaxSatz without the new inference rules.

5.5.3 2007 Max-SAT Evaluation

The solvers used in the experimental investigation, and described in Section 3.6,
are the following ones:

– ChaffBS & ChaffLS (Zhaohui Fu and Sharad Malik)

– Clone (Knot Pipatsrisawat, Mark Chavira, Arthur Choi and Adnan Dar-
wiche)

– LB-SAT (Han Lin and Kaile Su)

– MiniMaxsat (Federico Heras, Javier Larrosa and Albert Oliveras)

– SAT4Jmaxsat (Daniel Le Berre)

– PMS (Josep Argelich and Felip Manyà)

5.5. Experimental investigation 111

 0

 100

 200

 300

 400

 500

 600

 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

Random weighted Partial Max-2-SAT with 150 variables

W-MaxSatz without new IR
W-MaxSatz with new IR

Figure 5.14: Scalability of W-MaxSatz with and without the new inference rules,
on random weighted Partial Max-2-SAT instances with 150 variables, 150 hard
clauses and number of soft clauses ranging from 850 to 4850. The total clause
number ranges from 1000 to 5000.

– SR(w) (Miquel Ramı́rez and Héctor Geffner)

– ToolBar (Simon de Givry, Federico Heras, Javier Larrosa and Thomas
Schiex)

– W-MaxSatz (Josep Argelich, Chu Min Li and Felip Manyà)

Most of the benchmarks used in the evaluation were contributed by F. Heras,
J. Larrosa, S. de Givry and T. Schiex [HLdGS07]. All the benchmarks are
available online at the 2007 Max-SAT Evaluation web site4. Next, we report
the results of the 2007 Max-SAT Evaluation in the categories of unweighted and
weighted Partial Max-SAT.

Partial Max-SAT category

Table 5.7 show the experimental results of the Partial Max-SAT category of
the Max-SAT 2007 Evaluation. The instances are divided into 15 sets. We
display the number of instances in each set (#Ins.), then for each solver and for

4http://www.maxsat.udl.es/07/

112 Chapter 5. The Partial Max-SAT formalism

each set of instances, we display the mean time (in seconds) needed to solve an
instance of the set within a time limit of 30 minutes and the number of solved
instances (in brackets). We can see that MiniMaxsat is the best performing
solver on Max-Clique, Max-One and Weighted CSP, and W-MaxSatz is the best
on random Partial Max-2-SAT and Partial Max-3-SAT. PMS has a good general
performance.

Figure 5.15 globally compares the performance of the solvers in the Partial
Max-SAT category of the 2007 Max-SAT Evaluation instances in Table 5.7. Each
point (x, y) in a curve shows the number x of instances that the corresponding
solver is able to solve within y seconds. In other words, each of the x instances
is solved within y seconds (the total run time for these x instances may be larger
than y seconds), y being limited to 30 minutes to solve an instance. The solver
that solves more instances is MiniMaxsat followed by W-MaxSatz and PMS.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

SAT4Jmaxsat
ChaffLS

SR(w)
Clone

ChaffBS
LB-PSAT

Toolbar
PMS

W-MaxSatz
MiniMaxsat

Figure 5.15: Number x of instances that can be solved in y seconds. Partial
Max-SAT category.

Figure 5.16 and Figure 5.17 show the scalability of the three fastest solvers5 in
the Partial Max-SAT category of the 2007 Max-SAT Evaluation on random Par-
tial Max-2-SAT instances with 150 variables, 150 hard clauses and soft clauses
ranging from 850 to 4850, and on random Partial Max-3-SAT instances with
100 variables, 100 hard clauses and soft clauses ranging from 200 to 700. One
hundred instances are solved at each point to compute the displayed CPU mean

5We pick the first and second best solvers for Partial Max-2-SAT and Partial Max-3-SAT.

5.5. Experimental investigation 113

In
s
t
a
n
c
e

s
e
t

#
In

s
.

C
h
a
ff
B
S

C
h
a
ff
L
S

C
lo

n
e

L
B
-P

S
A
T

M
in

iM
a
x
s
a
t

P
M

S
S
A
T

4
J
m

a
x
s
a
t

S
R

(
w

)
T
o
o
lb

a
r

W
-M

a
x
S
a
t
z

P
a
r
t
ia

l
M

a
x
-2

-S
A
T

9
0

0
.0

0
(
0
)

0
.0

0
(
0
)

8
.1

9
(
1
)

3
0
5
.9

2
(
5
9
)

2
2
1
.5

6
(
8
3
)

2
2
0
.2

6
(
4
4
)

0
.0

0
(
0
)

0
.0

0
(
0
)

1
4
9
.8

6
(
8
9
)

1
3
.2

8
(
9
0
)

P
a
r
t
ia

l
M

a
x
-3

-S
A
T

6
0

4
0
.2

4
(
2
4
)

2
2
.4

4
(
2
2
)

2
5
1
.6

2
(
1
9
)

5
2
.4

2
(
5
9
)

1
5
6
.4

6
(
5
8
)

8
0
.8

2
(
5
9
)

4
.5

7
(
2
0
)

3
2
7
.6

1
(
1
6
)

1
7
2
.3

1
(
4
7
)

3
4
.6

5
(
6
0
)

M
a
x
-C

li
q
u
e

(
r
a
n
d
o
m

)
9
6

1
4
6
.2

4
(
5
4
)

0
.0

0
(
0
)

1
8
9
.6

5
(
7
9
)

9
.8

9
(
9
6
)

2
.3

8
(
9
6
)

6
8
.1

8
(
9
6
)

0
.0

0
(
0
)

2
2
5
.3

7
(
5
5
)

1
1
.3

8
(
9
6
)

4
3
.5

7
(
8
0
)

M
a
x
-C

li
q
u
e

(
s
t
r
u
c
t
u
r
e
d
)

6
2

2
8
2
.8

2
(
1
9
)

5
4
.4

4
(
9
)

3
0
8
.7

2
(
1
6
)

1
2
8
.3

3
(
3
2
)

8
5
.2

6
(
3
6
)

1
7
1
.1

3
(
2
7
)

1
3
.1

6
(
1
)

1
9
.3

5
(
9
)

2
0
2
.6

7
(
3
3
)

1
8
7
.0

8
(
2
3
)

M
a
x
-O

n
e

(
3
-S

A
T

)
8
0

4
0
2
.1

4
(
2
3
)

1
1
.6

7
(
4
1
)

4
2
0
.6

6
(
5
4
)

6
2
.1

7
(
7
6
)

1
.2

9
(
8
0
)

4
.2

3
(
8
0
)

1
0
1
3
.9

3
(
5
)

2
7
3
.8

7
(
7
0
)

1
0
2
.3

4
(
8
0
)

1
6
6
.1

3
(
8
0
)

M
a
x
-O

n
e

(
s
t
r
u
c
t
u
r
e
d
)

6
0

5
2
.9

7
(
5
7
)

8
1
.2

1
(
2
)

2
5
8
.1

9
(
3
2
)

2
.2

9
(
2
)

3
1
.0

3
(
6
0
)

1
7
6
.7

0
(
3
7
)

4
1
2
.6

6
(
3
)

4
4
3
.5

9
(
2
2
)

2
2
1
.3

0
(
4
4
)

1
7
8
.3

8
(
5
8
)

P
s
e
u
d
o

(
g
a
r
d
e
n
)

7
1
.3

3
(
5
)

0
.7

8
(
5
)

2
.5

9
(
5
)

0
.4

6
(
5
)

7
.1

3
(
5
)

0
.5

5
(
5
)

1
.4

2
(
3
)

2
.5

4
(
5
)

1
.8

1
(
4
)

1
.7

4
(
4
)

P
s
e
u
d
o

(
lo

g
ic

s
y
n
t
h
e
s
is

)
1
7

3
9
.4

1
(
2
)

3
2
.1

6
(
4
)

0
.0

0
(
0
)

8
6
5
.7

3
(
3
)

2
1
6
.2

8
(
2
)

2
.5

4
(
1
)

0
.0

0
(
0
)

0
.0

0
(
0
)

0
.0

0
(
0
)

0
.0

0
(
0
)

P
s
e
u
d
o

(
p
r
im

e
s

d
im

a
c
s
)

1
4
8

7
2
.9

2
(
9
9
)

4
1
.2

4
(
4
6
)

8
9
.7

1
(
9
9
)

8
2
.6

7
(
3
5
)

8
8
.1

4
(
1
0
7
)

1
2
4
.0

9
(
8
8
)

8
2
.1

0
(
4
5
)

6
7
.0

3
(
7
7
)

6
8
.7

0
(
6
0
)

7
8
.2

9
(
9
4
)

P
s
e
u
d
o

(
r
o
u
t
in

g
)

1
5

1
8
0
.3

2
(
1
5
)

0
.2

1
(
1
4
)

1
9
.0

8
(
5
)

0
.0

0
(
0
)

9
3
.8

8
(
1
4
)

2
5
.9

7
(
5
)

0
.0

0
(
0
)

0
.0

0
(
0
)

0
.0

0
(
0
)

1
0
6
.7

9
(
5
)

W
e
ig

h
t
e
d

C
S
P

(
d
e
n
s
e

lo
o
s
e
)

2
0

3
2
4
.9

3
(
1
4
)

1
4
3
.8

6
(
6
)

8
3
1
.0

9
(
1
)

1
.1

5
(
2
0
)

0
.6

5
(
2
0
)

2
.0

2
(
2
0
)

0
.0

0
(
0
)

5
8
8
.3

6
(
1
)

3
3
6
.7

0
(
1
5
)

5
.5

0
(
2
0
)

W
e
ig

h
t
e
d

C
S
P

(
d
e
n
s
e

t
ig

h
t
)

2
0

6
5
.8

2
(
2
0
)

1
0
6
.8

0
(
1
8
)

2
5
.8

9
(
2
0
)

2
.8

7
(
2
0
)

0
.6

8
(
2
0
)

2
.2

4
(
2
0
)

0
.0

0
(
0
)

1
9
9
.9

3
(
1
8
)

4
6
1
.8

3
(
2
0
)

9
.7

3
(
2
0
)

W
e
ig

h
t
e
d

C
S
P

(
s
p
a
r
s
e

lo
o
s
e
)

2
0

1
9
.1

6
(
2
0
)

4
1
.7

9
(
1
9
)

1
2
2
.2

7
(
1
3
)

1
.8

6
(
2
0
)

0
.3

5
(
2
0
)

1
.4

1
(
2
0
)

2
2
2
.8

6
(
1
0
)

2
6
4
.0

8
(
1
6
)

4
.1

8
(
1
0
)

1
6
.3

5
(
2
0
)

W
e
ig

h
t
e
d

C
S
P

(
s
p
a
r
s
e

t
ig

h
t
)

2
0

2
8
.8

6
(
2
0
)

1
6
.2

3
(
1
9
)

2
9
.5

7
(
2
0
)

7
.1

4
(
2
0
)

0
.8

4
(
2
0
)

2
.1

9
(
2
0
)

0
.0

0
(
0
)

2
1
9
.9

8
(
1
9
)

2
0
.3

6
(
1
0
)

2
4
.0

0
(
2
0
)

W
e
ig

h
t
e
d

C
S
P

(
w

q
u
e
e
n
s
)

7
1
3
.9

4
(
7
)

1
8
.9

3
(
5
)

8
0
.4

8
(
4
)

5
.2

5
(
7
)

0
.4

9
(
6
)

1
2
.9

4
(
7
)

1
1
.1

6
(
2
)

4
5
.1

7
(
6
)

1
2
.7

3
(
5
)

7
2
.2

8
(
6
)

T
ab

le
5.

7:
R

es
u
lt

s
in

P
ar

ti
al

M
ax

-S
A

T
ca

te
go

ry
.

M
ea

n
ti

m
e

in
se

co
n
d
s.

114 Chapter 5. The Partial Max-SAT formalism

time. A Partial Max-SAT instance is generated as a weighted instance with
hard clauses having weight equal to the number of its soft clauses. The number
of hard clauses in an instance corresponds to its number of variables. The soft
clauses have weight 1.

In Figure 5.16 we observe that W-MaxSatz is up to one order of magnitude
faster than Toolbar, and in Figure 5.17 we observe that W-MaxSatz is almost 3
times faster than LB-PSAT in the hardest region of the plot.

 0

 100

 200

 300

 400

 500

 600

 700

 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (150 hard clauses)

Random Partial Max-2-SAT (150 variables)

LB-PSAT
Toolbar

W-MaxSatz

Figure 5.16: Scalability of the three fastest solvers in Partial Max-SAT category
on random Partial Max-2-SAT instances with 150 variables, 150 hard clauses
and number of soft clauses ranging from 850 to 4850. The total clause number
ranges from 1000 to 5000.

Weighted Partial Max-SAT category

The solvers used in this experimentation are the ones that can handle weighted
Partial Max-SAT instances. The difference with Partial Max-SAT instances is
that we have a weight associated to each soft clauses. The solvers that can
solve these instances are Clone, MiniMaxsat, SAT4Jmaxsat, SR(w), Toolbar
and W-MaxSatz.

Table 5.8 show the experimental results of the weighted Partial Max-SAT
category of the Max-SAT 2007 Evaluation. The instances are divided into 11
sets. We display the number of instances in each set (#Ins.), then for each solver
and for each set of instances, we display the mean time in seconds to solve an

5.5. Experimental investigation 115

 0

 100

 200

 300

 400

 500

 300 400 500 600 700 800

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (100 hard clauses)

Random Partial Max-3-SAT (100 variables)

LB-PSAT
Toolbar

W-MaxSatz

Figure 5.17: Scalability of the three fastest solvers in Partial Max-SAT category
on random Partial Max-3-SAT instances with 100 variables, 100 hard clauses
and number of soft clauses ranging from 200 to 700. The total clause number
ranges from 300 to 800.

instance of the set within a time limit of 30 minutes and the number of solved
instances (in brackets). We can see that W-MaxSatz is the best performing
solver on random weighted Partial Max-2-SAT and Max-3-SAT instances; SR(w)
is the best for Pseudo (miplib), WCSP (spot5 dir) and WCSP (spot5 log), and
MiniMaxsat is the best for the remaining instances.

Figure 5.18 globally compares the performance of the solvers in the weighted
Partial Max-SAT category of the 2007 Max-SAT Evaluation instances in Ta-
ble 5.8. Each point (x, y) in a curve shows the number x of instances that the
corresponding solver is able to solve within y seconds. The solver that solves
more instances is MiniMaxsat closely followed by W-MaxSatz.

Figure 5.19 and Figure 5.20 show the scalability of the three fastest solvers6

in the weighted Partial Max-SAT category of the 2007 Max-SAT Evaluation
on random weighted Partial Max-2-SAT instances with 150 variables, 150 hard
clauses and soft clauses ranging from 850 to 3850, and on random weighted Par-
tial Max-3-SAT instances with 100 variables, 100 hard clauses and soft clauses
ranging from 200 to 700. One hundred instances are solved at each point to

6We pick the first and second best solvers for weighted Partial Max-2-SAT and weighted
Partial Max-3-SAT.

116 Chapter 5. The Partial Max-SAT formalism

In
stan

ce
set

#
C

lon
e

M
in

im
ax

sat
S
A

T
4J

m
ax

sat
S
R

(w
)

T
o
olb

ar
W

-M
ax

S
atz

W
eigh

ted
P
artial

M
ax

-2-S
A

T
90

0.00(0)
246.27(81)

0.00(0)
0.00(0)

213.23(88)
5
6
.6

3
(8

9
)

W
eigh

ted
P
artial

M
ax

-3-S
A

T
60

136.27(21)
186.63(58)

6.41(20)
275.44(17)

188.74(47)
4
6
.1

8
(6

0
)

A
u
ction

s
(p

ath
s)

88
50.78(88)

3
1
.5

5
(8

8
)

0.00(0)
163.45(77)

48.68(88)
233.77(71)

A
u
ction

s
(region

s)
84

30.50(84)
1
.6

0
(8

4
)

0.00(0)
130.19(82)

6.44(84)
5.25(84)

A
u
ction

s
(sch

ed
u
lin

g)
84

228.15(74)
4
6
.2

1
(8

4
)

0.00(0)
231.83(55)

74.10(82)
89.76(84)

P
seu

d
o

(factor)
186

9.84(186)
1
.1

7
(1

8
6
)

598.29(55)
0.00(0)

246.39(12)
11.03(186)

P
seu

d
o

(m
ip

lib
)

16
132.41(5)

41.66(5)
6.74(3)

2
4
4
.8

4
(6

)
2.92(4)

1.95(4)
Q

u
asigrou

p
C

om
p
letion

25
0.00(0)

2
5
.0

0
(2

0
)

377.01(14)
652.49(5)

191.07(12)
199.68(15)

W
eigh

ted
C

S
P

(p
lan

n
in

g)
71

261.14(62)
9
.9

7
(7

1
)

73.22(16)
365.47(52)

22.81(52)
13.83(71)

W
eigh

ted
C

S
P

(sp
ot5

d
ir)

21
9.31(6)

3.83(3)
0.56(1)

2
.9

1
(6

)
128.04(5)

14.88(2)
W

eigh
ted

C
S
P

(sp
ot5

log)
21

7.27(5)
9.18(4)

0.54(1)
1
4
.9

0
(6

)
111.41(4)

18.98(2)

T
ab

le
5.8:

R
esu

lts
in

w
eigh

ted
P
artial

M
ax

-S
A

T
category.

M
ean

tim
e

in
secon

d
s.

5.5. Experimental investigation 117

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

SAT4Jmaxsat
SR(w)

Toolbar
Clone

W-MaxSatz
MiniMaxsat

Figure 5.18: Number x of instances that can be solved in y seconds. Weighted
Partial Max-SAT category.

compute the displayed CPU mean time. A weighted Partial Max-SAT instance
is generated as a weighted instance with hard clauses having weight equal to the
addition of its soft clause weights (randomly generated between 1 and 10). The
number of hard clauses in an instance corresponds to its number of variables.

In Figure 5.19 we observe that W-MaxSatz is 3 times faster than Toolbar,
and in Figure 5.20 W-MaxSatz is about 6 times faster than MiniMaxsat in the
hardest region of the plot.

5.5.4 Experiments with preprocessing

Preprocessing with variable saturation

To assess the impact of the preprocessor with variable saturation on the perfor-
mance of branch and bound Partial Max-SAT solvers, we solved instances7 of the
2007 Max-SAT Evaluation (with a timeout of 30 minutes as in the evaluation)
on five of the most successful and representative state-of-the-art solvers: Min-
iMaxsat, W-MaxSatz, SR(w), Clone and ChaffBS. The versions of the solvers
are the same as in Section 5.5.3.

7We solved only the instances in which the preprocessor detected variables that could be
saturated with a value of k = 6.

118 Chapter 5. The Partial Max-SAT formalism

 0

 100

 200

 300

 400

 500

 600

 1000 1500 2000 2500 3000 3500 4000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (150 hard clauses)

Random Weighted Partial Max-2-SAT (150 variables)

MiniMaxsat
Toolbar

W-MaxSatz

Figure 5.19: Scalability of the three fastest solvers in weighted Partial Max-SAT
category on random weighted Partial Max-2-SAT instances with 150 variables,
150 hard clauses and number of soft clauses ranging from 850 to 3850. The total
clause number ranges from 1000 to 4000.

We select iteratively the variables to be saturated, depending on a parameter
k, as follows: We build a graph whose nodes are the Boolean variables occurring
in the instance, and add an edge between two vertices if the variables of the
vertices occur in the same clause. We select a variable whose vertex has minimal
degree if its degree is smaller than k. We executed the preprocessor with k =
6, 10, 14.

Tables 5.9 and 5.10 show the experimental results for W-MaxSatz. The in-
stances are divided into sets. The first column is the name of the set, the second
column shows the number of instances in each set, the third column shows the
results for the solver without preprocessing, and the rest of columns show the re-
sults with preprocessing for k = 6, 10, 14. We display the mean time (in seconds)
of the solved instances, as well as the number of solved instances (in brackets).
We observe that W-MaxSatz with preprocessing solves more instances in 5 sets,
and reduces considerably the CPU time in most of the other sets. The best
improvements are achieved for Max-Clique (random), where the preprocessing
allows to solve 8 additional instances, and for Auctions (paths), where the pre-
processing allows to solve 9 additional instances.

Tables 5.11 and 5.12 show the results for MiniMaxsat. In this case, the gains
are not so significant as for W-MaxSatz, although the preprocessing allows to

5.5. Experimental investigation 119

 0

 200

 400

 600

 800

 1000

 1200

 1400

 300 400 500 600 700 800

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (100 hard clauses)

Random Weighted Partial Max-3-SAT (100 variables)

MiniMaxsat
Toolbar

W-MaxSatz

Figure 5.20: Scalability of the three fastest solvers in weighted Partial Max-SAT
category on random weighed Partial Max-3-SAT instances with 100 variables,
100 hard clauses and number of soft clauses ranging from 200 to 700. The total
clause number ranges from 300 to 800.

Instance set # W-MaxSatz k = 6 k = 10 k = 14
Max-Clique (random) 96 43.57(80) 69.30(83) 61.04(85) 53.85(88)
Max-Clique (struc.) 62 187.08(23) 183.30(24) 178.03(24) 171.13(25)
Max-One (3-SAT) 50 261.95(50) 122.08(50) 62.06(50) 328.07(48)
Max-One (structured) 60 178.38(58) 234.56(56) 223.76(42) 6.57(1)
W-CSP (dense loose) 20 5.50(20) 5.26(20) 3.39(20) 8.31(20)
W-CSP (dense tight) 20 9.73(20) 9.76(20) 7.83(20) 12.95(20)
W-CSP (sparse loose) 20 16.35(20) 9.18(20) 4.77(20) 36.51(19)
W-CSP (sparse tight) 20 24.00(20) 21.70(20) 18.07(20) 84.81(20)
W-CSP (wqueens) 7 72.28(6) 72.19(6) 72.17(6) 72.18(6)

Table 5.9: Partial Max-SAT benchmarks with variable saturation as preprocess-
ing for W-MaxSatz.

solve 1 additional instance for Max-Clique (structured) and for Weighted CSP
(spot5 dir).

Tables 5.13 and 5.14 show the experimental results for SR(w). In this case, we
solve an additional instance for 3 sets (Weighted CSP (dense loose), Weighted

120 Chapter 5. The Partial Max-SAT formalism

Instance set # W-MaxSatz k = 6 k = 10 k = 14
Auctions (paths) 88 233.77(71) 178.50(80) 127.72(77) 266.47(63)
Auctions (regions) 84 5.25(84) 5.30(84) 5.52(84) 5.62(84)
Auctions (schedu.) 84 89.76(84) 89.62(84) 89.66(84) 89.61(84)
Pseudo (factor) 186 11.03(186) 11.64(186) 226.88(186) 924.37(2)
Pseudo (miplib) 16 1.95(4) 0.96(4) 190.93(4) 2.34(1)
Quasigroup Com. 25 199.68(15) 199.36(15) 199.46(15) 199.52(15)
W-CSP (planning) 71 13.83(71) 21.97(71) 63.65(70) 233.29(42)
W-CSP (spot5 dir) 21 14.88(2) 6.59(5) 57.96(6) 13.27(5)
W-CSP (spot5 log) 21 18.98(2) 91.03(3) 2.55(4) 1.46(4)

Table 5.10: Weighted Partial Max-SAT benchmarks with variable saturation as
preprocessing for W-MaxSatz.

Instance set # MiniMaxsat k = 6 k = 10 k = 14
Max-Clique (random) 96 2.41(96) 2.44(96) 2.67(96) 4.38(96)
Max-Clique (struc.) 62 85.22(36) 82.15(37) 67.94(37) 66.43(36)
Max-One (3-SAT) 50 0.37(50) 0.40(50) 0.43(50) 8.87(50)
Max-One (structured) 60 31.35(60) 20.57(54) 65.88(42) 0.78(1)
W-CSP (dense loose) 20 0.65(20) 0.71(20) 0.87(20) 5.11(20)
W-CSP (dense tight) 20 0.69(20) 0.70(20) 0.70(20) 2.87(20)
W-CSP (sparse loose) 20 0.35(20) 0.36(20) 0.57(20) 21.20(20)
W-CSP (sparse tight) 20 0.85(20) 0.87(20) 0.94(20) 27.05(20)
W-CSP (wqueens) 7 55.47(7) 55.28(7) 54.56(7) 179.13(7)

Table 5.11: Partial Max-SAT benchmarks with variable saturation as prepro-
cessing for MiniMaxsat.

Instance set # MiniMaxsat k = 6 k = 10 k = 14
Auctions (paths) 88 29.82(88) 19.44(88) 13.52(84) 78.21(75)
Auctions (regions) 84 1.63(84) 1.55(84) 1.55(84) 1.56(84)
Auctions (schedu.) 84 46.14(84) 46.24(84) 46.28(84) 46.16(84)
Pseudo (factor) 186 1.16(186) 1.79(186) 5.53(186) 905.51(183)
Pseudo (miplib) 16 41.35(5) 84.90(5) 398.55(5) 1.43(1)
Quasigroup Com. 25 25.00(20) 26.71(20) 25.28(20) 24.65(20)
W-CSP (planning) 71 9.97(71) 10.11(71) 22.12(71) 235.45(47)
W-CSP (spot5 dir) 21 2.63(3) 11.82(3) 8.18(4) 6.99(4)
W-CSP (spot5 log) 21 9.07(4) 5.69(2) 152.16(3) 323.82(4)

Table 5.12: Weighted Partial Max-SAT benchmarks with variable saturation as
preprocessing for MiniMaxsat.

5.5. Experimental investigation 121

CSP (w-queens) and Auctions (scheduling)), and 185 additional instances for
Pseudo (factor). The latter is the best improvement achieved with our prepro-
cessor.

Instance set # SR(w) k = 6 k = 10 k = 14
Max-Clique (ran.) 96 244.85(55) 219.40(55) 224.65(55) 218.38(55)
Max-Clique (struc.) 62 21.18(9) 17.56(9) 22.67(8) 20.17(8)
Max-One (3-SAT) 50 386.23(41) 338.69(41) 718.76(22) 758.61(1)
Max-One (struc.) 60 471.72(22) 449.33(19) 618.92(18) 1078.54(1)
W-CSP (den. loose) 20 697.74(1) 633.31(1) 1162.49(2) 0.00(0)
W-CSP (den. tight) 20 209.22(18) 199.18(18) 202.71(18) 350.83(15)
W-CSP (spa. loose) 20 296.48(16) 272.89(16) 408.06(15) 853.86(7)
W-CSP (spa. tight) 20 235.98(19) 216.19(19) 230.31(19) 563.63(12)
W-CSP (wqueens) 7 54.00(6) 230.25(7) 228.06(7) 258.10(7)

Table 5.13: Partial Max-SAT benchmarks with variable saturation as prepro-
cessing for SR(w).

Instance set # SR(w) k = 6 k = 10 k = 14
Auctions (paths) 88 173.42(77) 161.15(76) 169.32(72) 353.90(66)
Auctions (regions) 84 146.54(82) 136.45(82) 126.93(82) 119.52(82)
Auctions (schedu.) 84 276.91(56) 240.61(56) 270.71(57) 239.26(56)
Pseudo (factor) 186 0.00(0) 2.86(37) 520.50(185) 1091.88(1)
Pseudo (miplib) 16 2.62(5) 3.04(4) 216.89(4) 4.12(1)
Quasigroup Com. 25 715.58(5) 572.40(5) 675.34(5) 674.26(5)
W-CSP (planning) 71 379.57(57) 371.42(53) 286.88(46) 285.58(25)
W-CSP (spot dir) 21 2.95(6) 1.90(6) 9.27(4) 61.92(3)
W-CSP (spot log) 21 14.56(6) 11.53(6) 25.30(5) 10.83(4)

Table 5.14: Weighted Partial Max-SAT benchmarks with variable saturation as
preprocessing for SR(w).

Tables 5.15 and 5.16 show the experimental results for Clone. In this case, we
solve an additional instance for 2 sets (Max-Clique (structured) and Max-One
(3-SAT)), 3 additional instances in Max-One (structured), 9 additional instances
in Weighted CSP (dense loose), 4 additional instances in Weighted CSP (sparse
loose), and 2 additional instances in Weighted CSP (planning). As we can see,
using the preprocessor with this solver, we are able to solve more instances in 5
of 9 sets for Partial Max-SAT benchmarks.

Table 5.17 shows the experimental results for ChaffBS. In this case, we
solve an additional instance in Max-One (3-SAT), and 2 additional instances
in Weighted CSP (dense loose).

We can observe that for high values of k, and in some sets, the performance

122 Chapter 5. The Partial Max-SAT formalism

Instance set # Clone k = 6 k = 10 k = 14
Max-Clique (ran.) 96 185.77(78) 141.85(75) 143.05(75) 165.74(76)
Max-Clique (struc.) 62 295.56(16) 395.55(17) 382.63(17) 426.71(17)
Max-One (3-SAT) 50 794.98(22) 860.28(23) 820.86(16) 892.24(2)
Max-One (struc.) 60 170.54(31) 278.67(34) 516.66(20) 873.49(1)
W-CSP (den. loose) 20 817.39(1) 1515.55(1) 407.70(10) 957.94(2)
W-CSP (den. tight) 20 24.19(20) 27.05(20) 33.96(20) 144.94(20)
W-CSP (spa. loose) 20 103.00(13) 155.97(13) 172.92(17) 391.15(10)
W-CSP (spa. tight) 20 29.76(20) 27.99(20) 35.96(20) 552.75(15)
W-CSP (wqueens) 7 68.76(4) 104.99(4) 52.93(4) 39.27(4)

Table 5.15: Partial Max-SAT benchmarks with variable saturation as prepro-
cessing for Clone.

Instance set # Clone k = 6 k = 10 k = 14
Auctions (paths) 88 53.15(88) 56.00(88) 101.75(84) 287.21(71)
Auctions (regions) 84 32.37(84) 31.21(84) 31.38(84) 33.07(84)
Auctions (schedu.) 84 231.75(74) 227.56(74) 229.95(74) 229.21(74)
Pseudo (factor) 186 9.27(186) 9.91(186) 65.11(186) 0.00(0)
Pseudo (miplib) 16 127.69(5) 126.97(5) 190.09(4) 22.85(1)
Quasigroup Com. 25 0.00(0) 0.00(0) 0.00(0) 0.00(0)
W-CSP (planning) 71 327.37(64) 293.55(63) 357.51(66) 314.27(33)
W-CSP (spot dir) 21 9.37(6) 5.06(6) 115.84(6) 270.39(5)
W-CSP (spot log) 21 28.80(6) 75.53(6) 207.84(6) 261.96(5)

Table 5.16: Weighted Partial Max-SAT benchmarks with variable saturation as
preprocessing for Clone.

Instance set # ChaffBS k = 6 k = 10 k = 14
Max-Clique (ran.) 96 151.91(54) 147.72(54) 149.39(54) 146.96(54)
Max-Clique (struc.) 62 214.21(18) 253.15(18) 296.48(17) 299.66(16)
Max-One (3-SAT) 50 550.42(5) 688.97(6) 481.18(3) 578.34(1)
Max-One (struc.) 60 54.40(57) 27.29(56) 28.40(40) 0.00(0)
W-CSP (den. loose) 20 336.87(14) 605.54(16) 597.94(11) 437.78(8)
W-CSP (den. tight) 20 64.99(20) 62.96(20) 63.95(20) 222.22(20)
W-CSP (spa. loose) 20 18.30(20) 26.73(20) 31.61(20) 276.64(18)
W-CSP (spa. tight) 20 27.38(20) 28.46(20) 32.77(20) 346.08(16)
W-CSP (wqueens) 7 13.57(7) 14.11(7) 13.43(7) 14.48(7)

Table 5.17: Partial Max-SAT benchmarks with variable saturation as prepro-
cessing for ChaffBS.

5.5. Experimental investigation 123

of this preprocessing technique is not so good. This can be due to that the size
of the clauses of the resulting formula are too big or to the CPU time needed
for preprocessing. With low values of k, the loose of performance is not so big.

Preprocessing with restarts and learning

To assess the impact of the preprocessor with restarts and learning on the per-
formance of branch and bound Partial Max-SAT solvers, we solved instances of
the 2007 Max-SAT Evaluation (with a timeout of 30 minutes as in the evalua-
tion) on our solvers: PMS and W-MaxSatz. The versions of the solvers are the
same as in Section 5.5.3. We executed the preprocessor with 1 run of 1 second
(r = 1, t = 1), 10 runs of 1 second (r = 10, t = 1) and 5 runs of 2 seconds
(r = 5, t = 2).

Tables 5.18 and 5.19 show the experimental results for PMS and W-MaxSatz,
respectively. The instances are divided into sets. The first column is the name
of the set, the second column shows the number of instances in each set, the
third column shows the results for the solver without preprocessing, and the rest
of columns show the results with preprocessing for r = 1 and t = 1, r = 10 and
t = 1, and r = 5 and t = 2. We display the mean time (in seconds) of the solved
instances, as well as the number of solved instances (in brackets). We observe
that PMS with this preprocessing solves 2 additional instance in random Partial
Max-2-SAT and one more instance in Pseudo (primes cnf), and W-MaxSatz with
preprocessing is able to solve one more instance in Pseudo (primes cnf), and it
is almost two times faster solving Pseudo (routing) instances.

Instance set # PMS r = 1, t = 1 r = 10, t = 1 r = 5, t = 2

Partial Max-2-SAT 90 220.26(44) 214.63(45) 238.48(46) 224.29(45)
Partial Max-3-SAT 60 80.82(59) 81.44(59) 86.98(59) 86.63(59)
Max-Clique (ran.) 96 68.18(96) 69.09(96) 77.96(96) 76.85(96)
Max-Clique (struc.) 62 171.13(27) 170.76(27) 176.61(27) 175.62(27)
Max-One (3-SAT) 80 4.23(80) 6.45(80) 21.39(80) 19.39(80)
Max-One (struc.) 60 176.70(37) 120.51(36) 152.67(37) 152.43(37)
Pseudo (garden) 7 0.55(5) 0.77(5) 3.31(4) 3.24(4)
Pseudo (logic syn.) 17 2.54(1) 3.59(1) 12.85(1) 12.74(1)
Pseudo (primes cnf) 148 124.09(88) 106.94(87) 111.84(87) 120.31(89)
Pseudo (routing) 15 25.97(5) 24.94(5) 29.46(5) 23.43(5)
W-CSP (den. loose) 20 2.02(20) 2.73(20) 10.13(20) 8.12(20)
W-CSP (den. tight) 20 2.24(20) 3.20(20) 12.12(20) 10.68(20)
W-CSP (spa. loose) 20 1.41(20) 1.95(20) 6.42(20) 5.43(20)
W-CSP (spa. tight) 20 2.19(20) 3.15(20) 11.71(20) 9.86(20)
W-CSP (wqueens) 7 12.94(7) 61.45(7) 93.60(7) 173.76(7)

Table 5.18: Partial Max-SAT benchmarks with restarts and learning as prepro-
cessing for PMS.

124 Chapter 5. The Partial Max-SAT formalism

Instance set # W-MaxSatz r = 1, t = 1 r = 10, t = 1 r = 5, t = 2

Partial Max-2-SAT 90 13.28(90) 14.25(90) 23.12(90) 23.08(90)
Partial Max-3-SAT 60 34.65(60) 32.40(60) 38.53(60) 37.45(60)
Max-Clique (ran.) 96 43.57(80) 44.60(80) 53.57(80) 51.89(80)
Max-Clique (struc.) 62 187.08(23) 177.22(23) 191.38(23) 192.71(23)
Max-One (3-SAT) 80 166.13(80) 170.76(80) 195.80(80) 185.81(80)
Max-One (struc.) 60 178.38(58) 134.79(57) 165.62(57) 175.68(57)
Pseudo (garden) 7 1.74(4) 1.76(4) 2.48(3) 2.39(3)
Pseudo (logic syn.) 17 0.00(0) 0.00(0) 0.00(0) 0.00(0)
Pseudo (primes cnf) 148 78.29(94) 76.84(95) 80.03(94) 83.23(95)
Pseudo (routing) 15 106.79(5) 70.17(5) 55.22(5) 54.97(5)
W-CSP (den. loose) 20 5.50(20) 6.26(20) 13.59(20) 11.51(20)
W-CSP (den. tight) 20 9.73(20) 10.71(20) 19.61(20) 17.89(20)
W-CSP (spa. loose) 20 16.35(20) 15.05(20) 19.51(20) 18.58(20)
W-CSP (spa. tight) 20 24.00(20) 24.97(20) 33.53(20) 31.48(20)
W-CSP (wqueens) 7 72.28(6) 93.48(6) 26.97(5) 22.48(5)

Table 5.19: Partial Max-SAT benchmarks with restarts and learning as prepro-
cessing for W-MaxSatz.

5.6 Summary

We have presented the two Partial Max-SAT solvers we have designed and im-
plemented, and provided empirical evidence that they are competitive. These
solvers exploit the fact of knowing which clauses are declared to be hard and
which clauses are declared to be soft, and incorporate conflict clause learning.

We have also show the advantages of using Partial Max-SAT solvers over
weighted Max-SAT solvers when solving problems with hard and soft constraints.
On the one hand, we can exploit the learning of modern SAT solvers in the Max-
SAT context. As we have seen in the experimental investigation, learning hard
clauses produces significant performance improvements on a variety of instances.
On the other hand, hard clauses allow to apply a more efficient inference, as well
as to compute lower bounds of better quality: (i) the Max-SAT resolution rule
is simpler when at least one of the premises is hard; (ii) unit propagation can be
enforced on unit hard clauses (while unit propagation on soft clauses is unsound);
(iii) a branch of the proof tree can be pruned as soon as a hard clause is violated;
and (iv) further inconsistencies can be detected in lower bound UP due to the
fact that hard clauses used to derive one contradiction can be used again to
derive additional contradictions.

We have introduced new inference rules that improve the performance of
Partial Max-SAT solvers. The rules transform the formula into an equivalent
formula with a larger number of empty clauses.

We have defined, to the best of our knowledge, the first hard learning schema
for branch and bound Partial Max-SAT solvers. The experimental investigation

5.6. Summary 125

we conducted shows that the best performing solvers of the 2007 Max-SAT
Evaluation incorporate this learning technique.

Another contribution is that we have defined, to the best of our knowledge,
the first learning schema for soft clauses, and shown that it accelerates the search
for an optimal solution on some instances. As we can see in the experiments, it
has been particularly useful when solving Partial Max-2-SAT instances. When
we look at number of nodes instead of time, we observe that learning soft clauses
is superior to learning just hard clauses in a number of instances. We believe
that it is worth to design and implement more efficient procedures for learning
soft clauses.

It is worth to notice that we have also discussed how Max-SAT resolution can
be simplified in the context of Partial Max-SAT, obtaining a complete resolution-
style calculus for Partial Max-SAT which is simpler than the calculus for Max-
SAT.

Chapter 6

Conclusions

In this disseration, we have focused on two Max-SAT formalisms, Soft-SAT and
Partial Max-SAT, for solving over-constrained problems in which some clauses
are hard and some clauses are soft. We have argued that Soft-SAT and Partial
Max-SAT formalisms are well suited for representing hard and soft constraints,
and we have adapted and introduced new techniques to accelerate the search of
Soft-SAT and Partial Max-SAT solvers.

The main contributions of this research on those aspects can be summarized
as follows:

• We have defined the Soft-SAT formalism, which allows to encode over-
constrained problems in a natural and compact way. Soft-SAT encodes
constraints as blocks of clauses without needing to introduce auxiliary
variables, and declares each block either as hard or soft. Soft-SAT solvers
use the notion of blocks to get more propagation at certain nodes and
identify clauses of violated blocks that are not relevant for further checks.

• We have introduced new techniques for solving Soft-SAT problems that
take into account the structure behind the Boolean encoding, such as
branching techniques and underestimation techniques. These techniques
have been incorporated into the Soft-SAT solvers we have designed and im-
plemented, and we have provided empirical evidence that, on some types
of instances, these techniques have better performance than the techniques
that do not take into account the structure of the encoding.

• We have conducted an empirical comparison of our Soft-SAT solvers with
other solvers for over-constrainted problems. We can conclude that our ap-
proach is much better than reducing over-constrained problems to weighted
Partial Max-SAT for some classes of problems, and that the Soft-SAT
solvers we have designed and implemented are competitive compared with
the current state-of-the-art solvers developed in the Constraint Program-
ming community.

127

128 Chapter 6. Conclusions

• We have extended, to Partial Max-SAT, existing solving techniques for
SAT and Max-SAT. The most important SAT technique incorporated into
our Partial Max-SAT solvers is clause learning derived from the analy-
sis of conflicts detected with hard clauses, which is incorporated in the
best Partial Max-SAT solvers of the 2007 Max-SAT Evaluation. The most
important Max-SAT techniques incorporated into our solvers are the com-
putation methods of good quality lower bounds, which include the com-
putation of underestimations using unit propagation enhanced with failed
literal detection, and the application of sound inference rules. Such tech-
niques allow to use hard clauses more than once to increase the lower
bound. We have also defined new inference rules for Partial Max-SAT.

• We have developed new techniques for Partial Max-SAT such as variable
selection heuristics that take into account the size of the clause in which
the variable appears and if the clause is hard or soft, learning from soft
conflicts using Max-SAT resolution, and preprocessing techniques. The
first preprocessing technique is based on variable saturation, and it helps
to reduce the search space by removing variables from the initial formula.
The second preprocessing technique is based on restarts and learning, and
adds to the initial formula a set of learned clauses.

• We have provided empirical evidence that the techniques described in this
thesis help improve the performance of the solvers we have designed and
implemented for Partial Max-SAT. The results obtained also show that our
solvers are competitive with the current state-of-the-art Partial Max-SAT
solvers, specially W-MaxSatz with random benchmarks.

• We have conducted an empirical evaluational of the new preprocessing
techniques we have described. Preprocessing with variable saturation and
preprocessing with learning and restarts can improve the performance of
the solvers in some sets of instances.

There are many extensions to the current work, but we consider that the
feasible points to be exploited in the near future are:

• We plan to extend the language of soft CNF formulas to capture fuzzy
constraints, to define alternative notions of “the solution that best respects
the constraints of the problem”, to incorporate more advanced variable
selection heuristics, and to investigate how the techniques developed for
dealing with soft constraints in the Constraint Programming community
could be adapted to our framework.

• New techniques developed for Partial Max-SAT in the recent years can
be adapted to the Soft-SAT formalism. We believe that the performance
of our Soft-SAT solvers can be improved by incorporating hard and soft
learning, and lower bound computation methods based on unit propagation
and failed literal detection, and by applying inference rules.

129

• We plan to incorporate into PMS additional Max-SAT inference rules used
in W-MaxSatz, as well as to define new learning schemas for soft clauses.

• Preprocessing with variable saturation can be improved by incorporating
failed literal detection after the preprocessing. The detection of failed
literals can help eliminate more variables from the initial formula.

• Study the impact that different encodings of a same problem have in Par-
tial Max-SAT solvers, and identify properties of encodings that can help
improve the performance of solvers. A first step in this direction is our
recent work at SAT-2008 [ACLM08].

Index

Approximation algorithm
Max-SAT, 41

assignment, 11, 28

Boolean constraint propagation, 13

clause, 11, 27
empty clause, 11, 28
length, 11, 27

CNF formula, 11
satisfiable, 11, 28
size, 11, 27
tautology, 11, 28
unsatisfiable, 11, 28

complementary literal, 11, 27
conflict clause, 22
conflict driven clause learning, 22
conflict level, 21
conflicting variable, 22
Constraint Satisfaction Problem, 33
crisp constraints, 49

decision level, 21

failed literal, 18
fuzzy constraints, 49

hard constraints, 49

implication graph, 22

literal, 11, 27
lower bound

Max-SAT, 34
underestimation, 35

Max-SAT, 28
equivalent instance, 29

Evaluations, 43
inference rule, 37
Max-k-SAT, 28
Partial Max-SAT, 29
weighted Max-SAT, 29
weighted Partial Max-SAT, 30

monotone literal rule, 13

one-literal rule, 13

Pure literal rule, 13

resolution
completeness, 40
Max-SAT, 40

SAT, 12
chronological backtracking, 21
clause learning, 22
conflict analysis, 21
conflict direct backjumping, 21
equivalent, 11
non-chronological backtracking,

21
Resolution, 13
variable elimination, 13

search
branch and bound, 33

soft CNF formulas, 50
soft constraints, 49

Unit Clause rule, 13
Unit Propagation, 13
upper bound

Max-SAT, 34

weighted clause, 27
weighted CNF formula, 27

131

Bibliography

[ACLM08] Josep Argelich, Alba Cabiscol, Inês Lynce, and Felip Manyà. Mod-
elling max-csp as partial max-sat. In Proceedings of the 11th Inter-
national Conference on Theory and Applications of Satisfiability
Testing, SAT-2008, Guangzhou, P. R. China, pages 1–15. Springer
LNCS 4996, 2008.

[AM06a] Josep Argelich and Felip Manyà. Exact Max-SAT solvers for
over-constrained problems. Journal of Heuristics, 12(4–5):375–
392, 2006.

[AM06b] Josep Argelich and Felip Manyà. Learning hard constraints in
Max-SAT. In Proceedings of the Workshop on Constraint Solving
and Constraint Logic Porgramming, CSCLP-2006, Lisbon, Portu-
gal, pages 1–12, 2006.

[AM07] Josep Argelich and Felip Manyà. Partial max-sat solvers with
clause learning. In Proceedings of 10th International Conference
on Theory and Applications of Satisfiability Testing, SAT-2007,
Lisbon, Portugal, pages 28–40. Springer LNCS 4501, 2007.

[AMP03] Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved branch
and bound algorithms for Max-SAT. In Proceedings of the 6th
International Conference on the Theory and Applications of Sat-
isfiability Testing, 2003.

[AMP04] Teresa Alsinet, Felip Manyà, and Jordi Planes. A Max-SAT solver
with lazy data structures. In Proceedings of the 9th Ibero-American
Conference on Artificial Intelligence, IBERAMIA 2004, Puebla,
México, pages 334–342. Springer LNCS 3315, 2004.

[AMP05] Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved ex-
act solver for weighted Max-SAT. In Proceedings of the 8th In-
ternational Conference on Theory and Applications of Satisfia-
bility Testing, SAT-2005, St. Andrews, Scotland, pages 371–377.
Springer LNCS 3569, 2005.

133

134 Bibliography

[AMP08] Teresa Alsinet, Felip Manyà, and Jordi Planes. An efficient solver
for Weighted Max-SAT. Journal of Global Optimization, 41:61–73,
2008.

[Anj05] Miguel F. Anjos. Semidefinite optimization approaches for satis-
fiability and maximu-satisfiability problems. Journal on Satisfia-
bility, Boolean Modeling and Computation, 1:1–47, 2005.

[ASM06] Fadi Aloul, Karem Sakallah, and Igor Markov. Efficient symmetry
breaking for boolean satisfiability. IEEE Transactions on Comput-
ers, 55(2):549–558, 2006.

[Ber] Daniel Le Berre. Sat4j, a satisfiability library for java.
http://www.sat4j.org.

[BF99] Brian Borchers and Judith Furman. A two-phase exact algorithm
for MAX-SAT and weighted MAX-SAT problems. Journal of
Combinatorial Optimization, 2:299–306, 1999.

[BGS99] Laure Brisoux, Eric Gregoire, and Lakhdar Sais. Improving back-
track search for sat by means of redundancy. In Foundations of
Intelligent Systems, 11th International Symposium, (ISMIS-99),
pages 301–309, 1999.

[BK02] Armin Biere and Wolfgang Kunz. Sat and atpg: Boolean en-
gines for formal hardware verification. In Proceedings of the 2002
IEEE/ACM International Conference on Computer-aided Design,
ICCAD-2002, San Jose, California, USA, pages 782–785. ACM,
2002.

[BLM06] Maŕıa Bonet, Jordi Levy, and Felip Manyà. A complete calculus
for Max-SAT. In Proceedings of the 9th International Conference
on Theory and Applications of Satisfiability Testing, SAT-2006,
Seattle, USA, pages 240–251. Springer LNCS 4121, 2006.

[BLM07] Maŕıa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-
SAT. Artificial Intelligence, 171(8-9):606–618, 2007.

[BM00] Ramón Béjar and Felip Manyà. Solving the round robin problem
using propositional logic. In Proceedings of the 17th National Con-
ference on Artificial Intelligence, AAAI-2000, Austin/TX, USA,
pages 262–266, 2000.

[BR99] Nikhil Bansal and Venkatesh Raman. Upper bounds for MaxSat:
Further improved. In Proceedings of the 10th International Sympo-
sium on Algorithms and Computation, ISAAC’99, Chennai, India,
pages 247–260. Springer LNCS 1741, 1999.

Bibliography 135

[BS94] Belaid Benhamou and Lakhdar Sais. Tractability through symme-
tries in propositional calculus. Journal of Automatic Reasoning,
12(1):89–102, 1994.

[BS97] Roberto J. Bayardo and Robert C. Schrag. Using CSP look-back
techniques to solve real-world SAT instances. In Proceedings of
the 14th National Conference on Artificial Intelligence, AAAI’97,
Providence/RI, USA, pages 203–208. AAAI Press, 1997.

[CA93] James M. Crawford and Larry D. Auton. Experimental results
on the crossover point in satisfiability problems. In Proceedings of
the 11th National Conference on Artificial Intelligence, AAAI’93,
Washington, D.C., USA, pages 21–27. AAAI Press, 1993.

[CA96] James M. Crawford and Larry D. Auton. Experimental results
on the crossover point in random 3-SAT. Artificial Intelligence,
81:31–57, 1996.

[CdGS07] Martin C. Cooper, Simon de Givry, and Thomas Schiex. Op-
timal soft arc consistency. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, In-
dia, 2007, pages 68–73, 2007.

[CGLR96] James M. Crawford, Matthew L. Ginsberg, Eugene Luck, and
Amitabha Roy. Symmetry-breaking predicates for search prob-
lems. In Proceedings ot the 5th International Conference on Prin-
ciples of Knowledge Representation and Reasoning, pages 148–159.
Morgan Kaufmann, 1996.

[CIKM97] Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and Shuichi
Miyazaki. Local search algorithms for partial MAXSAT. In Pro-
ceedings of the 14th National Conference on Artificial Intelligence,
AAAI’97, Providence/RI, USA, pages 263–268. AAAI Press, 1997.

[CS00] Philippe Chatalic and Laurent Simon. Zres: The old davis-putnam
procedure meets zbdd. In David McAllester, editor, 17th Interna-
tional Conference on Automated Deduction (CADE’17), number
1831 in LNCS, pages 449–454, 2000.

[Cul] Joseph Culberson. Graph coloring page: The flat graph generator.
http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/flat.html.

[DABC93] Olivier Dubois, Pascal André, Yacine Boufkhad, and Jaques Car-
lier. Can a very simple algorithm be efficient for solving sat prob-
lem? In Proc. of the DIMACS Challenge II Workshop, 1993.

[Dar] Adnan Darwiche. c2d compiler.
http://reasoning.cs.ucla.edu/c2d/.

136 Bibliography

[DD01] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for
efficient solving of hard 3-SAT formulae. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, IJCAI’01,
Seattle/WA, USA, pages 248–253, 2001.

[DDDL07] Sylvain Darras, Gilles Dequen, Laure Devendeville, and Chu Min
Li. On inconsistent clause-subsets for Max-SAT solving. In
Proceedings of 13th International Conference on Principles and
Practice of Constraint Programming, CP-2007, Providence, USA,
pages 225–240. Springer LNCS 4741, 2007.

[dGHZL05] Simon de Givry, Federico Heras, Matthias Zytnicki, and Javier
Larrosa. Existential arc consistency: Getting closer to full arc
consistency in weighted csps. In Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI-2005, Edin-
burgh, Scotland, pages 84–89. Morgan Kaufmann, 2005.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem-proving. Communications of the ACM,
5:394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, 7(3):201–215, 1960.

[ES] Niklas Eén and Niklas Sörensson. Minisat.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/.

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In
Proceedings of the 6th International Conference on Theory and
Applications of Satisfiability Testing, SAT-2003, Santa Margherita
Ligure, Italy, pages 502–518. Springer LNCS 2919, 2003.

[eSSMS99] Lúıs Guerra e Silva, Luis Miguel Silveira, and João P. Marques-
Silva. Algorithms for solving boolean satisfiability in combina-
tional circuits. In Proceedings of Design, Automation and Test in
Europe, DATE’99, Munich, Germany, pages 526–530, 1999.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT
problem. In Proceedings of the 9th International Conference on
Theory and Applications of Satisfiability Testing, SAT-2006, Seat-
tle, USA, pages 252–265. Springer LNCS 4121, 2006.

[Fre95] Jon William Freeman. Improvements to Propositional Satisfiability
Search Algorithms. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, 1995.

[Gel02] A. Van Gelder. Generalizations of watched literals for backtracking
search. In Proceedings of the 7th International Symposium on
Artificial Intelligence and Mathematics, Ft. Lauderdale, FL, 2002.

Bibliography 137

[Gen02] Ian P. Gent. Arc consistency in SAT. In Proceedings of the
15th European Conference on Artificial Intelligence (ECAI), Lyon,
France, pages 121–125, 2002.

[GN01] Evgueni Goldberg and Yakov Novikov. BerkMin: A fast and ro-
bust SAT solver. In Proceedings of Design, Automation and Test
in Europe, DATE-2002, Paris, France, pages 142–149. IEEE Com-
puter Society, 2001.

[GS97] Carla P. Gomes and Bart Selman. Problem structure in the pres-
ence of perturbations. In Proceedings of the 14th National Con-
ference on Artificial Intelligence, AAAI’97, Providence/RI, USA,
pages 221–226. AAAI Press, 1997.

[GvHL06] Carla P. Gomes, Willem Jan van Hoeve, and Lucian Leahu. The
power of semidefinite programming relaxations for max-sat. In
Proceedings of the Conference on Integration of Artificial Intel-
ligence and Operation Research, CPAIOR-2006, Cork, Ireland,
pages 104–118. Springer LNCS 3990, 2006.

[GW93] Ian Gent and Toby Walsh. Towards an understanding of hill-
climbing procedures for sat. In Proceedings of National Conference
on Artificial Intelligence (AAAI-93), pages 28–33, 1993.

[GW94a] Michel X. Goemans and David P. Williamson. .879-approximation
algorithms for max cut and max 2sat. In Proceedings of the 26th
ACM Symposium on the Theory of Computing, pages 422–431,
1994.

[GW94b] Michel X. Goemans and David P. Williamson. New 3/4-
approximation algorithms for the maximum satisfiability problem.
SIAM Journal of Discrete Mathematics, 7(4):656–666, 1994.

[GW95] Michel X. Goemans and David P. Williamson. Improved approx-
imation algorithms for maximum cut and satisfiability problems
using semidefinite programming. Journal of the ACM, 42(6):1115–
1145, 1995.

[H̊as97] Johan H̊astad. Some optimal inapproximability results. In Pro-
ceedings of the 28th ACM Symposium on the Theory of Computing,
pages 1–10, 1997.

[HDvMvZ04] Marijn Heule, Mark Dufour, Hans van Maaren, and Joris van Zwi-
eten. March eq: Implementing efficiency and additional reason-
ing into a lookahead sat-solver. Journal on Satisfiability, Boolean
Modeling and Computation, pages 25–30, 2004.

[HL06] Federico Heras and Javier Larrosa. New inference rules for efficient
Max-SAT solving. In Proceedings of the National Conference on

138 Bibliography

Artificial Intelligence, AAAI-2006, Boston/MA, USA, pages 68–
73, 2006.

[HLdGS07] Federico Heras, Javier Larrosa, Simon de Givry, and Thomas
Schiex. 2006 and 2007 max-sat evaluations: Contributed in-
stances. submitted to JSAT, Special issue on SAT 2007 compe-
titions and evaluations, 2007.

[HLO07] Federico Heras, Javier Larrosa, and Albert Oliveras. Minimaxsat:
A new weighted Max-SAT solver. In Proceedings of the 10th Inter-
national Conference on Theory and Applications of Satisfiability
Testing, SAT-2007, Lisbon, Portugal, pages 41–55. Springer LNCS
4501, 2007.

[Hoo99] Holger H. Hoos. On the run-time behaviour of stochastic local
search algorithms for SAT. In Proceedings of the 16th National
Conference on Artificial Intelligence, AAAI’99, pages 661–666.
AAAI Press, 1999.

[HS04] Holger H. Hoos and Thomas Stützle. Stochastic Local Search.
Foundations and Applications. Morgan Kaufmann, 2004.

[HSvdW06] V.E.P. Heinink, M.J. Seckington, and F.S.D. van der Werf. Exper-
iments on random 2-SoftSAT. Technical report, Delft University
of Technology, 2006.

[HTH02] Frank Hutter, Dave Tompkins, and Holger Hoos. Scaling and
probabilistic smoothing: Efficient dynamic local search for sat.
In Proceedings of CP-02, volume 2470 of LNCS, pages 233–248.
Springer, 2002.

[HV95] J. N. Hooker and V. Vinay. Branching rules for satisfiability. Jour-
nal of Automated Reasoning, 15:359–383, 1995.

[JKS95] Yuejun Jiang, Henry Kautz, and Bart Selman. Solving problems
with hard and soft constraints using a stochastic algorithm for
MAX-SAT. In Proceedings of the 1st International Workshop on
Artificial Intelligence and Operations Research, 1995.

[Joh74] David S. Johnson. Approximation algorithms for combinatorial
problems. Journal of Comput. and Sys. Sci., 9:256–278, 1974.

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional
satisfiability problems. Annals of Mathematics and Artificial In-
telligence, 1:167–187, 1990.

[Kas90] Simon Kasif. On the parallel complexity of discrete relaxation in
constraint satisfaction networks. Artificial Intelligence, 45(3):275–
286, 1990.

Bibliography 139

[Kau06] Henry A. Kautz. Deconstructing planning as satisfiability. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence,
AAAI-2006, Boston/MA, USA, 2006.

[Kri85] Balakrishnan Krishnamurthy. Short proofs for tricky formulas.
Acta Informatica, 22(3):253–275, 1985.

[KS96] Henry A. Kautz and Bart Selman. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. In Proceedings of
the 14th National Conference on Artificial Intelligence, AAAI’96,
Portland/OR, USA, pages 1194–1201, 1996.

[KSHK07] Daher Kaiss, Marcelo Skaba, Ziyad Hanna, and Zurab Khasi-
dashvili. Industrial strength sat-based alignability algorithm for
hardware equivalence verification. In Proceedings of the 7th Inter-
national Conference on Formal Methods in Computer-Aided De-
sign, FMCAD-2007, Austin/TX, USA, pages 20–26. IEEE Com-
puter Society, 2007.

[KSTW05] Philip Kilby, John K. Slaney, Sylvie Thibaux, and Toby Walsh.
Backbones and backdoors in satisfiability. In Proceedings of the
Twentieth National Conference in Artificial Intelligence (AAAI-
05), pages 1368–1373. AAAI Press, 2005.

[KZ97] Howard J. Karloff and Uri Zwick. A 7/8-approximation algorithm
for max 3sat? In Proceedings of the 38th Annual IEEE Symposium
on Fundations of Computer Science, FOCS’97, pages 406–415,
1997.

[LA97a] Chu Min Li and Anbulagan. Heuristics based on unit propaga-
tion for satisfiability problems. In Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI’97, Nagoya,
Japan, pages 366–371, 1997.

[LA97b] Chu Min Li and Anbulagan. Look-ahead versus look-back for sat-
isfiability problems. In Proceedings of the 3rd International Con-
ference on Principles of Constraint Programming, CP’97, Linz,
Austria, pages 341–355. Springer LNCS 1330, 1997.

[LH05a] Javier Larrosa and Federico Heras. Resolution in Max-SAT and
its relation to local consistency in weighted CSPs. In Proceedings
of the International Joint Conference on Artificial Intelligence,
IJCAI-2005, Edinburgh, Scotland, pages 193–198. Morgan Kauf-
mann, 2005.

[LH05b] Chu Min Li and Wen Qi Huang. Diversification and determin-
ism in local search for satisfiability. In Proceedings of the 8th
International Conference on Theory and Applications of Satisfia-
bility Testing, SAT-2005, St. Andrews, Scotland, pages 158–172.
Springer LNCS 3569, 2005.

140 Bibliography

[LHdG08] Javier Larrosa, Federico Heras, and Simon de Givry. A logical ap-
proach to efficient max-sat solving. Artificial Intelligence, 172(2–
3):204–233, 2008.

[Li03] Chu Min Li. Equivalent literal propagation in the DLL procedure.
Discrete Applied Mathematics, 130:251–276, 2003.

[LM99] Javier Larrosa and Pedro Meseguer. Partition-based lower bound
for Max-CSP. In 5th International Conference on Principles and
Practice of Constraint Programming, CP’99, Alexandria, USA,
pages 303–315. Springer LNCS 1713, 1999.

[LM09] Chu Min Li and F. Manyà. Max-sat, hard and soft constraints. In
Armin Biere, Hans van Maaren, and Toby Walsh, editors, Hand-
book of Satisfiability, pages 613–631. IOS Press, 2009.

[LMP05] Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit prop-
agation to compute lower bounds in branch and bound Max-SAT
solvers. In Proceedings of the 11th International Conference on
Principles and Practice of Constraint Programming, CP-2005, Sit-
ges, Spain, pages 403–414. Springer LNCS 3709, 2005.

[LMP06] Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint
inconsistent subformulas for computing lower bounds for max-sat.
In Proceedings of the 21st National Conference on Artificial Intel-
ligence, AAAI-2006, Boston/MA, USA, pages 86–91, 2006.

[LMP07] Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules
for max-sat. Journal of Artificial Intelligence Research, 30:321–
359, 2007.

[LMS99] Javier Larrosa, Pedro Meseguer, and Thomas Schiex. Maintaining
reversible dac for max-csp. Artificial Intelligence, 107(1):149–163,
1999.

[LMS01] Inês Lynce and Joao P. Marques-Silva. Integrating simplification
techniques in sat algorithms. In IEEE Symposium on Logic in
Computer Science, 2001. Short paper session.

[LMS02] Inês Lynce and Joao P. Marques-Silva. Efficient data structures
for backtrack search SAT solvers. In Fifth International Sym-
posium on the Theory and Applications of Satisfiability Testing,
SAT-2002, Cincinnati, USA, pages 308–315, 2002.

[LMS05] Inês Lynce and João P. Marques-Silva. Efficient data structures for
backtrack search sat solvers. Annals of Mathematics and Artificial
Intelligence, 43(1):137–152, 2005.

Bibliography 141

[LMS06a] Inês Lynce and João Marques-Silva. Efficient haplotype inference
with boolean satisfiability. In Proceedings of the 21st National
Conference on Artificial Intelligence, AAAI-2006, Boston/MA,
USA, 2006.

[LMS06b] Inês Lynce and João Marques-Silva. Sat in bioinformatics: Mak-
ing the case with haplotype inference. In Proceedings of the 9th
International Conference on Theory and Applications of Satisfia-
bility Testing, SAT-2006, Seattle, USA, pages 136–141. Springer
LNCS 4121, 2006.

[LS07] Han Lin and Kaile Su. Exploiting inference rules to compute
lower bounds for max-sat solving. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, IJCAI-2007,
Hyderabad, India, pages 2334–2339, 2007.

[MBB+03] Pedro Meseguer, Noureddine Bouhmala, Taoufik Bouzoubaa,
Morten Irgens, and Mart́ı Sánchez. Current approaches for solving
over-constrained problems. Constraints, 8(1):9–39, 2003.

[MIK96] Shuichi Miyazaki, Kazuo Iwama, and Yahiko Kambayashi.
Database queries as combinatorial optimization problems. In CO-
DAS, pages 477–483, 1996.

[Mit05] David Mitchell. A sat solver primer. European Association
for Theoretical Computer Science (EATCS) Bulletin, 85:112–133,
2005.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient sat
solver. In Proceedings of the 39th Design Automation Conference,
DAC’01, pages 530–535, 2001.

[MRS06] Pedro Meseguer, Francesca Rossi, and Thomas Schiex. Soft con-
straints. In Francesca Rossi, Peter Van Beek, and Toby Walsh,
editors, Handbook of Constraint Programming, Foundations of Ar-
tificial Intelligence, chapter 9. Elsevier, 2006.

[MS99] Joao P. Marques-Silva. The impact of branching heuristics in
propositional satisfiability algorithms. In Pedro Barahona and
José Júlio Alferes, editors, Proceedings of the 9th Portuguese Con-
ference on Artificial Intelligence: Progress in Artificial Intelligence
(EPIA-99), volume 1695 of LNCS, pages 62–74, 1999.

[MSG97] Bertrand Mazure, Lakhdar Säıs, and Éric Grégoire. Tabu search
for SAT. In Proceedings of the 14th National Conference on Arti-
ficial Intelligence, AAAI’97, Providence/RI, USA, pages 281–285.
AAAI Press, 1997.

142 Bibliography

[MSK97] David McAllester, Bart Selman, and Henry Kautz. Evidence for
invariants in local search. In Proceedings of the 14th National
Conference on Artificial Intelligence, AAAI’97, Providence/RI,
USA, pages 321–326. AAAI Press, 1997.

[MSLM08] João P. Marques-Silva, Inês Lynce, and Sharad Malik. Cdcl
solvers. In Armin Biere, Hans van Maaren, and Toby Walsh, edi-
tors, Handbook of Satisfiability. IOS Press, 2008.

[MSP08] João P. Marques-Silva and Jordi Planes. Algorithms for maximum
satisfiability using unsatisfiable cores. In Proceedings of Design,
Automation and Test in Europe, DATE-2008, 2008.

[MSS99] João P. Marques-Silva and Karem A. Sakallah. Graps: A search
algorithm for propositional satisfiability. IEEE Transactions on
Computers, 48(5):506–521, 1999.

[Nad02] A. Nadel. Backtrack Search Algorithms for Propositional Logic
Satisfiability: Review and innovations. PhD thesis, Hebrew Uni-
versity of Jerusalem, 2002.

[NR00] Rolf Niedermeier and Peter Rossmanith. New upper bounds for
maximum satisfiability. Journal of Algorithms, 36:63–88, 2000.

[PD07] Knot Pipatsrisawat and Adnan Darwiche. Clone: Solving
weighted max-sat in a reduced search space. In Proceedings of
the 20th Australian Conference on Artificial Intelligence, AI-2007,
Gold Coast, Australia, pages 223–233. Springer LNCS 4830, 2007.

[Pre93] Daniele Pretolani. Efficiency and stability of hypergraph SAT al-
gorithms. In Proceedings of the DIMACS Challenge II Workshop,
1993.

[RG07] Miquel Ramı́rez and Hector Geffner. Structural relaxations by
variable renaming and their compilation for solving mincostsat.
In Proceedings of 13th International Conference on Principles and
Practice of Constraint Programming, CP-2007, Providence, USA,
pages 605–619. Springer LNCS 4741, 2007.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the Association for Computing Machinery,
12(1):23–41, 1965.

[Rya04] Lawrence Ryan. Efficient algorithms for clause learning SAT
solvers. Master’s thesis, Simon Fraser University, 2004.

[Sch89] Uwe Schöning. Logic for Computer Scientists, volume 8 of Progress
in Computer Science and Applied Logic. Birkhäuser, 1989.

Bibliography 143

[SD96] Barbara M. Smith and Martin E. Dyer. Locating the phase tran-
sition in binary constraint satisfaction problems. Artificial Intel-
ligence, 81(1-2):155–181, 1996.

[SHR01] Thomas Stützle, Holger Hoos, and Andrea Roli. A review of the
literature on local search algorithms for MAX-SAT. Technical re-
port, AIDA-01-02, FG Intellektik, FB Informatik, TU Darmstadt,
Germany, 2001.

[SHS03] Kevin Smyth, Holger H. Hoos, and Thomas Stützle. Iterated ro-
bust tabu search for max-sat. In Proceedings of the 16th Confer-
ence of the Canadian Society for Computational Studies of Intelli-
gence, AI-2003, Halifax, Canada, pages 129–144. Springer LNCS
2671, 2003.

[SK93] Bart Selman and Henry A. Kautz. Domain-independent exten-
sions of GSAT: Solving large structured satisfiability problems.
In Proceedings of the International Joint Conference on Artificial
Intelligence, IJCAI’93, Chambery, France, pages 290–295, 1993.

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies
for improving local search. In Proceedings of the 12th National
Conference on Artificial Intelligence, AAAI’94, Seattle/WA, USA,
pages 337–343. AAAI Press, 1994.

[SLM92] Bart Selman, Hector Levesque, and David Mitchell. A new method
for solving hard satisfiability problems. In Proceedings of the
10th National Conference on Artificial Intelligence, AAAI’92, San
Jose/CA, USA, pages 440–446. AAAI Press, 1992.

[SZ04] Haiou Shen and Hantao Zhang. Study of lower bound functions
for max-2-sat. In Proceedings of the 19th National Conference on
Artificial Intelligence, 16th Conference on Innovative Applications
of Artificial Intelligence, San Jose, California, USA, pages 185–
190. AAAI Press / The MIT Press, 2004.

[TH05] Dave A. D. Tompkins and Holger H. Hoos. Ubcsat: An imple-
mentation and experimentation environment for sls algorithms for
sat and max-sat. In 7th International Conference on Theory and
Applications of Satisfiability Testing, SAT-2004, Vancouver, BC,
Canada, pages 306–320. Springer LNCS 3542, 2005.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the
ACM, 34(1):209–219, 1987.

[VB01] Miroslav N. Velev and Randal E. Bryant. Effective use of boolean
satisfiability procedures in the formal verification of superscalar
and vliw microprocessors. In Proceedings of the 38th Design
Automation Conference, DAC-2001, Las Vegas/NV, USA, pages
226–231, 2001.

144 Bibliography

[WF96] Richard J. Wallace and Eugene Freuder. Comparative studies
of constraint satisfaction and Davis-Putnam algorithms for maxi-
mum satisfiability problems. In D. Johnson and M. Trick, editors,
Cliques, Coloring and Satisfiability, volume 26, pages 587–615.
American Mathematical Society, 1996.

[WvM98] Joost P. Warners and Hans van Maaren. A two-phase algorithm for
solving a class of hard satisfiability problems. Operations Research
Letters, 23:81–88, 1998.

[XZ04] Zhao Xing and Weixiong Zhang. Efficient strategies for (weighted)
maximum satisfiability. In Proceedings of the 10th International
Conference on Principles and Practice of Constraint Program-
ming, CP-2004, Toronto, Canada, pages 690–705. Springer LNCS
3258, 2004.

[XZ05] Zhao Xing and Weixiong Zhang. An efficient exact algorithm
for (weighted) maximum satisfiability. Artificial Intelligence,
164(2):47–80, 2005.

[Yan94] Mihalis Yannakakis. On the approximation of maximum satisfia-
bility. Journal of Algorithms, 17:475–502, 1994.

[Zha97] Hantao Zhang. SATO: An efficient propositional prover. In
Conference on Automated Deduction (CADE-97), pages 272–275,
1997.

[Zha03] Lintao Zhang. Searching for truth: techniques for satisfiability of
boolean formulas. PhD thesis, Department of Electrical Engineer-
ing. Princeton University., June 2003.

[ZLS04] Hantao Zhang, Dapeng Li, and Haiou Shen. A sat based sched-
uler for tournament schedules. In 7th International Conference
on Theory and Applications of Satisfiability Testing, SAT-2004,
Vancouver, BC, Canada. Springer LNCS 3542, 2004.

[ZM88] R. Zabih and D. A. McAllester. A rearrangement search strategy
for determining propositional satisfiability. In In Proceedings of the
National Conference on Artificial Intelligence (AAAI-88), pages
155–160, 1988.

[ZM02] L. Zhang and S. Malik. The quest for efficient Boolean satisfiabil-
ity solvers. In 18th International Conference on Automated Deduc-
tion, CADE-18, Copenhagen, Denmark, pages 295–313. Springer,
LNCS 2392, 2002.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and
Sharad Malik. Efficient conflict driven learning in a Boolean sat-
isfiability solver. In International Conference on Computer Aided
Design, ICCAD-2001, San Jose/CA, USA, pages 279–285, 2001.

Bibliography 145

[ZS96] Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit
propagation. In Proceedings of the Fourth International Sympo-
sium on Artificial Intelligence and Mathematics, AI-MATH’96,
Fort Lauderdale (Florida USA), 1996.

[ZSM03] Hantao Zhang, Haiou Shen, and Felip Manya. Exact algorithms
for MAX-SAT. Electronic Notes in Theoretical Computer Science,
86(1), 2003.

Monografies de l’Institut d’Investigació en

Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Sys-
tems, (1995).

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions, (1995).

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems, (1995).

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology, (1995).

Num. 5 E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving, (1998).

Num. 6 J. Ll. Arcos, The Noos Representation Language, (1998).
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Con-

straint Satisfaction , (1998).
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket

Metaphor, (1999).
Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional

Logics, (1999).
Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special

Relations, (1999).
Num. 11 M. López-Sánchez, Approaches to Map Generation by means of

Collaborative Autonomous Robots, (2000).
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs,

(2000).
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents, (2003).
Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-

mediated Electronic Institutions, (2003).
Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Im-

precise Constants: Possibilistic Semantics and Automated De-
duction, (2003).

Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory A Posibilistic Approach, (2003).

Num. 17 A. Valls, ClusDM: A multiple criteria decision method for het-
erogeneous data sets, (2003).

Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics, (2003).

Num. 19 M. Esteva, Electronic Institutions: from specification to devel-
opment, (2003).

Num. 20 J. Sabater, Trust and reputation for agent societies, (2003).

Num. 21 J. Cerquides, Improving Algorithms for Learning Bayesian Net-
work Classifiers, (2005).

Num. 22 M. Villaret, On Some Variants of Second-Order Unification,
(2005).

Num. 23 M. Gómez, Open, Reusable and Configurable Multi-Agent Sys-
tems: A Knowledge Modelling Approach, (2005).

Num. 24 S. Ramchurn, Multi-Agent Negotiation Using Trust and Persua-
sion, (2005).

Num. 25 S. Ontañón, Ensemble Case-Based Learning for Multi-Agent
Systems, (2006).

Num. 26 M. Sánchez, Contributions to Search and Inference Algorithms
for CSP and Weighted CSP, (2006).

Num. 27 C. Noguera, Algebraic Study of Axiomatic Extensions of Trian-
gular Norm Based Fuzzy Logics, (2007).

Num. 28 E. Marchioni, Functional Definability Issues in Logics Based on
Triangular Norms, (2007).

Num. 29 M. Grachten, Expressivity-Aware Tempo Transformations of
Music Performances Using Case Based Reasoning, (2007).

Num. 30 I. Brito, Distributed Constraint Satisfaction, (2007).
Num. 31 E. Altamirano, On Non-clausal Horn-like Satisfiability Prob-

lems, (2007).
Num. 32 A. Giovannucci, Computationally Manageable Combinatorial

Auctions for Supply Chain Automation, (2008).
Num. 33 R. Ros, Action Selection in Cooperative Robot Soccer using Case-

Based Reasoning, (2008).
Num. 34 A. Garćıa Cerdaña, On some Implication-free Fragments of Sub-

structural and Fuzzy Logics, (2008).
Num. 35 A. Garćıa Camino, Normative Regulation of Open Multi-agent

Systems, (2008).
Num. 36 A. Robles, Enabling Intelligent Organizations: An Electronic

Institutions Approach for Building Agent Oriented Information
Systems, (2008).

Num. 37 I. Drummond, Imprecise Classification Based on Fuzzy Logic and
Possibility Theory, (2008).

Num. 38 J. Planes, Design and Implementation of Exact MAX-SAT
Solvers, (2008).

Num. 39 A. Bogdanovych, Virtual Institutions, (2008).
Num. 40 J. Nin, Contributions to Record Linkage for Disclosure Risk As-

sessment, (2009).
Num. 41 J. Argelich, Max-SAT Formalisms with Hard and Soft Con-

straints, (2009).

