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EN INTEL·LIGÈNCIA ARTIFICIAL

Number 42

Institut d’Investigació
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Foreword

This monograph is based on the work reported in Ana Casali’s PhD, containing a number
of very significant contributions to knowledge representation and reasoning. In particular,
this is the first comprehensive model of graded modalities for BDI systems. Previous work
was on the study of the different modalities in isolation: graded beliefs or desires, but not
in a holistic perspective and with a unifying underlying logical framework. The document is
very well organised to facilitate the reading to the non-expert on the different technologies
being developed with appropriate and well written introductory chapters and sections. Ana
has made an important effort in contributing at the software engineering level by providing
a methodology and tools to support the development of autonomous agents based on the
formal model. She has also proposed operational semantics based on a newly defined process
algebra. The work is in this sense very complete from a computer science perspective and
becomes a document interesting for readers coming from different specialities.

This PhD has been a complex journey for Ana. She has worked in the distance, from
Rosario in Argentina, using email and Skype as the basic tools, with a few short mutual
visits. At the same time, she had academic responsibilities at the University and was raising
a large family. Altogether the prospects were that the journey might prove difficult but
Ana’s solid mathematical and computer science backgrounds and her strong commitment
made it possible and very succesful.

Working with Ana has been a pleasure, she had a clear idea of the bits and pieces that
were needed, was ambitious to cover theoretical and practical aspects, was always willing to
do more work, prove more theorems, perform more experiments, ...

We wish you a pleasant reading of this seminal work on graded BDI systems.

Bellaterra, September 2009.

Llúıs Godo and Carles Sierra
Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cient́ıfiques
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On Intentional and Social Agents with Graded Attitudes.

Abstract

The central contribution of this dissertation is the proposal of a graded BDI agent model
(g-BDI), specifying an architecture capable of representing and reasoning with graded men-
tal attitudes. We consider that making the BDI architecture more flexible will allow us to
design and develop agents capable of improved performance in uncertain and dynamic envi-
ronments, serving other agents (human or not) that may have a set of graded motivations.

In the g-BDI model, the agent graded attitudes have an explicit and suitable repre-
sentation. Belief degrees represent the extent to which the agent believes a formula to be
true. Degrees of positive or negative desires allow the agent to set different levels of pref-
erence or rejection respectively. Intention degrees also give a preference measure but, in
this case, modelling the cost/benefit trade off of achieving an agent’s goal. Then, agents
having different kinds of behaviour can be modelled on the basis of the representation and
interaction of their graded attitudes. The formalization of the g-BDI agent model is based
on Multi-context systems and in order to represent and reason about the beliefs, desires
and intentions, we followed a many-valued modal approach. Also, a sound and complete
axiomatics for representing each graded attitude is proposed. Besides, in order to cope with
the operational semantics aspects of the g-BDI agent model, we first defined a Multi-context
calculus for Multi-context systems execution and then, using this calculus we give this agent
model computational meaning.

Furthermore, a software engineering process to develop graded BDI agents in a multiagent
scenario is presented. The aim of the proposed methodology is to guide the design of
a multiagent system starting from a real world problem. Through the development of a
Tourism recommender system, where one of its principal agents is modelled as a g-BDI
agent, we show that the model is useful to design and implement concrete agents.

Finally, using the case study we have made some experiments concerning the flexibility
and performance of the g-BDI agent model, demonstrating that this agent model is useful to
develop agents showing varied and rich behaviours. We also show that the results obtained
by these particular recommender agents using graded attitudes improve those achieved by
agents using non-graded attitudes.
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Resumen

La principal contribución de esta Tesis es la propuesta de un modelo de agente BDI
graduado (g-BDI) que permita especificar una arquitetura de agente capaz de representar
y razonar con actitudes mentales graduadas. Consideramos que una arquitectura BDI más
flexible permitirá desarrollar agentes que alcancen mejor performance en entornos inciertos
y dinámicos, al servicio de otros agentes (humanos o no) que puedan tener un conjunto de
motivaciones graduadas.

En el modelo g-BDI, las actitudes graduadas del agente tienen una representación expĺıcita
y adecuada. Los grados en las creencias representan la medida en que el agente cree que una
fórmula es verdadera, en los deseos positivos o negativos permiten al agente establecer re-
spectivamente, diferentes niveles de preferencias o de rechazo. Las graduaciones en las inten-
ciones también dan una medida de preferencia pero en este caso, modelan el costo/beneficio
que le trae al agente alcanzar una meta. Luego, a partir de la representación e inter-
acción de estas actitudes graduadas, pueden ser modelados agentes que muestren diferentes
tipos de comportamiento. La formalización del modelo g-BDI está basada en los sistemas
multi-contextos. Diferentes lógicas modales multivaluadas se han propuesto para repre-
sentar y razonar sobre las creencias, deseos e intenciones, presentando en cada caso una
axiomática completa y consistente. Para tratar con la semántica operacional del modelo de
agente, primero se definió un calculus para la ejecución de sistemas multi-contextos, denom-
inado Multi-context calculus. Luego, mediante este calculus se le ha dado al modelo g-BDI
semántica computacional.

Por otra parte, se ha presentado una metodoloǵıa para la ingenieŕıa de agentes g-BDI
en un escenario multiagente. El objeto de esta propuesta es guiar el diseño de sistemas
multiagentes, a partir de un problema del mundo real. Por medio del desarrollo de un
sistema recomendador en turismo como caso de estudio, donde el agente recomendador
tiene una arquitectura g-BDI, se ha mostrado que este modelo es valioso para diseñar e
implementar agentes concretos. Finalmente, usando este caso de estudio se ha realizado
una experimentación sobre la flexibilidad y performance del modelo de agente g-BDI, de-
mostrando que es útil para desarrollar agentes que manifiesten conductas diversas. También
se ha mostrado que los resultados obtenidos con estos agentes recomendadores modelizados
con actitudes graduadas, son mejores que aquellos alcanzados por los agentes con actitudes
no-graduadas.

xix
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Part I

Introductory Concepts





The beginning is the most important

part of the work.

Plato

Chapter 1

Introduction

Computer applications play an increasingly important role in everyday life. They are be-
coming more tightly connected with each other, forming large networks and interacting
with humans through user-interfaces. Much of these systems are too complex to be com-
pletely characterized and precisely described; hence, these applications are hard to solve
using centralized computing technology. Moreover, several of these systems are inherently
distributed in the sense that the data and information to be processed is both geographically
and temporarily distributed, or are structured into clusters whose access and use requires
sophisticated capabilities [153].

We are confronted then with a new view of computing: computation as interaction,
as an activity that is inherently social, and leading to new ways of conceiving, designing
and developing computational systems. Agent based systems stand as a promising way to
understand, manage and use these distributed, large-scale, dynamic, open and heterogeneous
computing, information and social systems [85, 102]. Besides, multiagent systems offer
a natural way of understanding and characterizing intelligent systems. Intelligence and
interaction are deeply coupled and these systems enable us to model this insight. Several
researchers argue that intelligent behaviour is not disembodied, but is a product of the
interaction an agent maintains with its environment. Under this conception multiagent
systems stand as a new approach to Artificial Intelligence [133].

With the spread of multiagent systems the number of projects and researchers involved
in related fields has risen. Notably, there are some important coordination actions for
agent based computing, as for instance AgentLink 1, an European network of researchers
and developers with a common interest in agent technology. There are several websites
providing information resources on intelligent agents, examples of these are Agentcities 2

1http://www.agentlink.org
2http://grusma2.etse.urv.es/AgCitES/

3
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and Agentland.3

The agent research community holds that there are some application domains where
agent technologies will play a crucial role in the near future, including: ambient intelligence,
grid computing, electronic business, the semantic web, bioinformatics, monitoring and con-
trol, resource management, space, military missions and manufacturing. The impact of agent
technologies in application domains such as these will occur firstly as a design metaphor of
complex distributed computational systems; secondly, as a source of technologies for such
computing systems, and thirdly, as models of complex real-world systems [86, 102].

Considering agents as a design metaphor, they provide software designers and developers
with a way of structuring an application around autonomous, communicating components,
and lead to the construction of software tools and infrastructure to support this design. In
order to support this view of systems development, particular tools and techniques need to
be introduced. For example, methodologies that guide the analysis and design processes are
required, agent architectures are needed for the design of individual software components,
tools and abstractions are required to enable developers to deal with the complexity of
implemented systems, and supporting infrastructure must be integrated.

In order to achieve the full potential of agent approaches and technologies there are
a number of broad technological challenges for the near future. In the Agent Technology
Roadmaps of the AgentLink network [86, 102], Luck et al. recommend that research and
development resources should be focused along several key directions. Some of them are the
following:

1. Creating tools, techniques and methodologies to support agent systems developers.

2. Automating the specification, development and management of agent systems.

3. Integrating components and features. Many different theories, architectures, technolo-
gies and infrastructures are required to specify, design, implement and manage agent
based systems.

4. Establishing appropriate linkage with other branches of computer science and with
other disciplines.

The work reported in this Thesis can be placed within these mentioned directions.

1.1 Motivations

This Thesis work undertakes an extension of the BDI (i.e. Belief, Desire and Intention) agent
architecture in order to incorporate the representation of uncertainty in beliefs, desires —

3http://www.agentland.com
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thus allowing the expression of graded positive and negative desires, and graded intentions.
Some years ago, I worked in research projects related to knowledge-based systems, studying
how different approaches to approximate reasoning could be applied to them, and turning
these systems more flexible and useful for real applications [103, 100]. Now, in the framework
of multiagents systems, i.e. in a distributed and complex platform of autonomous, proactive,
reactive and social agents; I asked myself how the ideas underlying approximate reasoning
could be extended and applied to these distributed systems.

Following this motivation, we found an interesting paper by Parsons and Giorgini [116]
where a first approach to a graded BDI model was presented. It included only the represen-
tation of uncertainty in the beliefs, and left the general graded model as an open research
problem. This “open door” to future work encouraged us to take this research direction.
There are other contributions which treat agents that reason under uncertainty in dynamic
and complex environments, but most of them deal with partial aspects of graded attitudes
in intentional agents [97, 124, 142].

In this Thesis a graded BDI agent model is proposed, this model allows us to define
concrete agents capable of dealing with uncertain environments (i.e. graded Beliefs) and
with graded mental proactive attitudes (i.e. Desires and Intentions). Besides proposing an
agent model, we consider it important to define its operational semantics to describe how
a valid agent model is interpreted as sequences of computational steps. Notably, process
calculi have been used to cope with formal aspects of multi-agent systems [130, 148] and
we wondered if the same approach could be used to give this agent model computational
meaning.

On the other hand, software engineering methodologies for developing agent based sys-
tems have become an important necessity. Even though there are valuable approaches in
this field (e.g. [118, 158]), few of them emphasize the internal design of agents and consider
a particular architecture. Furthermore, the actual engineering of graded BDI agents in a
multiagent scenario was another relevant motivation for our work.

In the following Section, we pinpoint the contributions of this Thesis to these different
fields.

1.2 Contributions

We consider that making the BDI architecture more flexible will allow us to design and
develop agents capable of improved performance in uncertain and dynamic environments,
serving other agents (human or not) that may have a set of graded motivations. In this
research line, the central contribution of this work is the proposal of a graded BDI agent
model (g-BDI), specifying an architecture capable of representing and reasoning with graded
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mental attitudes.

We consider this work to be an important contribution to the agent architectures field,
because of the relevance of the BDI architecture and because some of our ideas may be
adapted to other agent architectures. Moreover, we dealt with the operational semantics of
the agent model as a first step towards a g-BDI agent interpreter and we also developed a
methodology to engineer multiagent systems composed by g-BDI agents. In summary, the
Thesis contributions are situated on the following diverse fields:

1. Agent architectures: a general graded BDI agent model is proposed.

In this model, the agent graded attitudes have an explicit and suitable representation.
Belief degrees represent the extent to which the agent believes a formula to be true.
Degrees of positive or negative desire allow the agent to set different levels of preference
or rejection respectively. Intention degrees also give a preference measure but, in this
case, modelling the cost/benefit trade off of achieving an agent’s goal. Then, agents
having different kinds of behaviour can be modelled on the basis of the representation
and interaction of their graded beliefs, desires and intentions.

The specification of the g-BDI agent model is based on Multi-context systems (MCS).
These systems were introduced by Giunchiglia et al. [68] to allow different formal
(logic) components to be defined and interrelated, and Parsons et al. in [115] firstly
used them to formalize BDI agents. The MCS specification of agents has several
advantages pointed out by Sabater et al. in [136] both from a software engineering
and a logical point of view.

In order to represent and reason about graded notions of belief, desire and intention,
in the g-BDI model we followed the approach developed by Godo et al. [72] where
uncertainty reasoning is dealt with by defining suitable modal theories over suitable
many-valued logics. This formalization permits us to deal with the different mental
attitudes within the same well-founded logical framework.

An illustration of the development of the g-BDI agent model and its related works is
shown in Figure 1.1. The evolution of the g-BDI agent model, can be seen in [29],[30]
and [31].

2. Knowledge representation and reasoning: a logical framework with a sound and
complete axiomatics for representing beliefs, desires and intentions is presented.

Looking for suitable logical systems for representing and reasoning about beliefs, de-
sires and intentions in the g-BDI agent model is a knowledge representation problem.
The question of how to deal with uncertain beliefs has been widely studied in the
AI community and several approaches to approximate reasoning have been proposed
(as for instance see [79]). The problem of preference representation (i.e. desires and
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Figure 1.1: Related work to the g-BDI agent model development

intentions) has been also approached in some works (e.g. [96], [11]). Considering the
desire representation in our agent model, we based our work on the bipolar model due
to Benferhat et al. [12] and we extend the state of the art by giving a sound and com-
plete axiomatics and defining different logical schemas to represent some additional
constraints over preferences. In addition, we present a logical system for intentions
and we show that the framework is expressive enough to describe how desires (either
positive or negative), together with other information, can lead agents to intentions.
Recent work in this direction was presented in [37].

3. Process calculi: a Multi-context calculus (MCC) to define operational semantics for
multi-context systems is developed and we use it for giving semantics to the g-BDI
agent model.

In order to cope with the operational semantics aspects of the g-BDI agent model,
we first defined a Multi-context calculus (MCC) for Multi-context systems (MCS)
execution. The calculus proposed is based on Ambient calculus [28] and includes
some elements of the Lightweight Coordination Calculus (LCC) [148]. We expect that
MCC will be able to specify different kinds of MCSs. Particularly, we have shown
how graded BDI agents can be mapped into this calculus. Through MCC we give
this agent model computational meaning and in this way, we move one step closer to
the development of an interpreter of the g-BDI agents. Figure 1.2 illustrates the path
leading to the operational semantics of the agent model. Although process calculi have
been used in the past to model multiagent systems [130, 148], we have considered that
the modular structure that MCS provides to the architecture of an agent would permit
a similar treatment of single agents as well. Preliminary results on the language for
the execution of g-BDI agents can be seen in [36].
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Figure 1.2: Giving Operational Semantics to the g-BDI agent model

4. Agent based software engineering: a methodology for engineering agent based
systems composed by agents designed as g-BDI agents, is presented.

We propose a software engineering process to develop graded BDI agents in a mul-
tiagent scenario. The aim of the proposed methodology is to guide the design of a
multiagent system starting from a real world problem. This process is illustrated in
Figure 1.3. The methodology presented has been built by adapting and extending
previous approaches [88, 118, 160] in order to engineer agents with a more complex
internal architecture. Furthermore, our work was inspired in some sense by the design
process used in [141] where the social aspects of design are considered, and the system
design phase is clearly separated from the agent design phase. Preliminary results on
the methodology proposed can be seen in [34]. The design and implementation of a
case study in the tourism domain is developed to show how the proposed methodology
works.

Figure 1.3: Software Engineering for the g-BDI agents

Through the design and implementation of a Tourism recommender system, where one
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of its principal agents is modelled as a g-BDI agent, we show in the first place that the agent
model is useful to design and implement concrete agents in real world applications. The
Tourism recommender design and implementation was presented in [32, 35].

Finally, using the case study we have made some experiments concerning the flexibility
and performance of the g-BDI agent model. The experiments demostrate that this agent
model is useful to develop concrete agents showing varied and rich behaviours. We also
show that the results obtained by these particular recommender agents using graded at-
titudes improve those achieved by agents using non-graded attitudes. The validation and
experimentation of the g-BDI Model using the case study are exposed in [38].

1.3 Structure

This Thesis is structured in four main Parts. Part I, is about Introductory Concepts and
apart from the current Introduction in Chapter 2, we present related work to our research,
such as: agent theories and architectures, with special attention to the BDI model; the
multi-context systems and their approach to agent specification and engineering; and some
logics of preference. Then, in Chapter 3 we review some of the logical background which
is fundamental for our work, i.e. dynamic logic to reason about the agent actions and the
transformation they produce, and some many-valued logic as Godel logic, Rational Pavelka
logic and Rational Lukasiewicz logic, to reason about fuzzy modal formulae in the different
contexts.

In Part II, the Graded BDI agent model is presented and then, in the consecutive Chap-
ters 4 to 7 the general framework, its fundamental components as the different Contexts
(mental and functional) and the Bridge Rules are formalized. Later on, in order to give
an idea of how this model works, we show an example of a travel assistant agent. Then,
the extension of the basic model that includes social and dynamic aspects is considered in
Chapter 8. In Chapter 9 the operational semantics of this agent model are given.

Next, in Part III the software engineering aspects are addressed. In Chapter 10 we
present the characteristics of the Tourism domain where our case study is situated. Then,
in Chapter 11 a methodology to engineer g-BDI agents in a multiagent system is developed
and a case study is designed using the proposed methodology. At the end of this Part, in
Chapter 12, a prototype implementation of the recommender tourism system is described.

Part IV is dedicated to present our experimental work in Chapter 13 and finally, in
Chapter 14 the most relevant contributions related to our Thesis work are discussed and we
present some lines of future work.





Is there anyone so wise as to learn by

the experience of others?

Voltaire

Chapter 2

Related Work

2.1 Introduction

In this Chapter we introduce different lines of work relevant to the agent model proposed
in this Thesis. Some fundamental theories that constitute the building blocks of our agent
architecture, are presented. Firstly, the principal agent architectures and the theories sup-
ported them are revised, particularly we focus on the family of BDI agents, where our
proposal is situated. In second place, the backgrounds of multi-context systems and their
use on agent specification, are shown. Then, we revise some logics of preferences to repre-
sent and reason about the agent positive and negative desires. Finally, some approaches to
graded attitudes in intentional agent architectures are discussed.

Besides, two important lines of related work are presented in next Chapters 9 and 11.
These fields are not fundamental for the agent model definition, but are vital to give the
agent model semantics and to state a methodology for its engineering. Then, in Chapter 9
we present some Process Calculus used for giving operational semantics to different systems,
and particularly to formalize coordination characteristics in multiagent systems. Later on,
in Chapter 11 some approaches to Agent based Software Engineering are presented to cope
with the methodological aspects of agent based systems and particularly, of those composed
by BDI agents.

2.2 Agent Theories and Architectures

In order to give multiagent systems a formal support, several researchers have proposed
diverse theories and architectures for agents. Agent theories are essentially specifications of
agents behaviour expressed as properties that agents should satisfy. A formal representation

11
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of the properties helps the designer to reason about the expected behaviour of the system.

Agent architectures can be thought of as software engineering models of agents and rep-
resent a middle point between specification and implementation. They identify the main
functions that ultimately determine the agent’s behaviour and define the interdependencies
that exist among them. A relevant review of the work done on agent theories and architec-
tures is due to Wooldridge and Jennings in [155].

Agent theories based on an intentional stance are among the most common ones. These
are based on a folk psychology by which human behaviour is predicted and explained through
the attribution of attitudes. For example, when explaining human activity, it is often useful
and common to make statements such as the following:

Jorge took his coat because he believed it was going to be cold.

Peter worked hard because he wanted to save money.

In these examples, Jorge’s and Peter’s behaviours can be explained in terms of their
attitudes, such as believing and wanting. The philosopher Dennet has coined the term
Intentional system to describe entities “whose behaviour can be predicted by the method
of attributing certain mentalistic attitudes such as belief, desires and rational acumen” [48].
Dennet also identifies different grades of intentional systems: a first-order intentional system
has beliefs and desires (etc.) but no beliefs and desires about beliefs and desires. A second-
order intentional system is more sophisticated; it has beliefs and desires (and possibly other
intentional states) about beliefs and desires (and other intentional states), both those of
others and its own.

When the underlying system process is well known and understood, there is no reason
to take an intentional stance, but this is not the case in many applications. The intentional
notions are abstraction tools, which provide with a convenient and familiar way of describing,
explaining, and predicting the behaviour of complex systems. Considering that an agent is
a system that is conveniently described by the intentional stance, it is worth to weigh up
which attitudes are appropriate for representing agents. The two most important categories
are information attitudes —knowledge and belief— and pro-attitudes —desire, intention,
obligation, commitment, choice, among others.

Information attitudes are related to the knowledge that the agent has about the world,
whereas pro-attitudes are those that in some way guide the agent actions. The attitudes
of both categories are closely related and much of the work in agent theory is concerned
with clearing up the relationships between them. Although there is no total agreement on
which combination of attitudes is the most appropriate to characterize an agent, it seems
reasonable that an agent must be represented in terms of at least one information attitude
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and one pro-attitude.

There are various formalisms that focused on just one aspect of agency (i.e., beliefs,
desires, intentions, etc.) but it is expected that a realistic agent theory will be represented
in a logical framework that defines how the attributes of agency are related; how an agent
cognitive state changes over time; how the environment affects the agent beliefs; and how
the agent information and pro-attitudes lead it to perform actions [155].

Considering now the area of agent architectures, this field represents the move from
specification to implementation. We need to address such questions as: How are we to
construct computer systems that satisfy the properties specified by a particularly agent
theory? How the agent can be decomposed into the construction of a set of component
modules and how these modules should interact? What software/hardware structures are
appropriate?

Maes defines an agent architecture as

“A particular methodology for building agents. It specifies how...the agent can
be decomposed into the construction of a set of component modules and how
these modules should interact. The total set of modules and their interactions
has to provide an answer to the question of how the sensor data and the current
mental state of the agent determine the actions...and the future mental state of
the agent.” (Maes [101], p115).

Making specific commitments about the internal structure and operation of agents, we
have a distinct class of agents. There exists different proposal for the classification of agent
architectures. Following the classification defined by Wooldridge in [153, 159], we consider
four classes of architectures for intelligent agents:

1. Logic based architectures(deductive agents)

2. Reactive architectures (reactive agents)

3. Layered architectures (hybrid agents)

4. Practical reasoning architectures (BDI agents)

In the rest of this Section we outline the main characteristics of each kind of architecture
and in the following Section 2.2.5 we present the BDI model in more detail.
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2.2.1 Logic-Based Architectures - Deductive agents

A classical approach to build agents follows the traditional way for building artificial in-
telligent systems. This paradigm suggests that the intelligent behaviour can be generated
in a system by giving it a symbolic representation of its environment and its desires, and
allowing it to syntactically manipulate this representation.

A deductive or deliberative agent is one that contains an explicitly represented, symbolic
model of the world, in which the decisions are made through logical reasoning, based on
pattern matching and symbolic manipulation. In most cases, these symbolic representations
are logical formulae and the syntactic manipulation corresponds to logical deduction or the-
orem proving. The idea of deliberative agents as theorem provers is attractive and a number
of more-or-less “pure” logical approaches to agent programming have been developed. How-
ever, there are still several problems associated with this approach to agency to be solved
(many of them come from the symbolic approach to AI):

The transduction problem: how to translate the real world into an accurate, adequate
symbolic description, in time for that description to be useful.

The representation/reasoning problem: how to symbolically represent knowledge about
complex and dynamic real-world entities and processes, and how to get agents reason
with this knowledge in time.

Calculative rationality: the assumption that the world will not change in any significant
way while the agent is making decisions. This is not acceptable in dynamic environ-
ments that change faster.

Computational complexity: the complexity of theorem proving makes it questionable
whether agents using this deduction mechanism can operate effectively in time-constrained
environments.

2.2.2 Reactive architectures - Reactive agents

The problems with symbolic or logical approaches to build agents led some researchers
to proclaim that a whole new proposal was required. They began to investigate different
alternatives to the symbolic AI paradigm. Although it is difficult to characterize these
different approaches, they agree in a number of points:

• the rejection of symbolic AI (as a representation-reasoning mechanism).

• intelligence and rational behaviour are not disembodied (they are a product of the
interaction the agent maintains with its environment).
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• intelligent behaviour emerges from the interaction of various simpler behaviours.

Alternative approaches to agency are sometimes referred to as behavioral —since these
agents develop and combine individual behaviors, situated —since they are actually situated
in some environment, rather than being disembodied from it, and finally reactive, the name
used to represent this class of agents, because these systems are often perceived as simply
reacting to the environment, without reasoning about it.

One of the best-known alternative architecture is the subsumption architecture, developed
by Brooks [23], one of the most influential critics of the symbolic approach to agency in the
last years. This architecture is also called behavior-based architecture and some authors, as
Wooldridge in [153, 159], classified it as a reactive one. There are two defining characteristics
of the subsumption architecture. The first one is, that an agent’s decision making is realized
through a set of task accomplishing behaviours. Each behaviour may be thought as an
individual action function, it takes perceptual input and maps it to an action, neither does it
include any complex symbolic representation nor reasoning. Each of these behaviour modules
is intended to achieve some particular task. In Brooks’ implementation these modules are
finite state machines. The second important characteristic is that many behaviours can fire
simultaneously. Hence, there must be a control mechanism to choose among the different
actions selected. Brooks proposed to organize the modules into a subsumption hierarchy,
with the behaviours arranged into layers —the lower the layer is, the higher is its priority.
Another characteristic of the subsumption systems implementation is that there is assumed
to be a quite tight coupling between perception and action, and there is no attempt to
transform the input data to symbolic representations.

One of the principal advantages of the reactive approaches over the logic-based ones is
that the complexity is tractable. Other advantages of these approaches such as Brooks’
subsumption architecture are: simplicity, economy and robustness against failure. However,
there are some fundamental unsolved problems related to the reactive architectures that are
remarked in [159]:

• If reactive agents do not employ models of their environment, then they must have
sufficient information available to determine an acceptable action

• How reactive agents would take into account global information as these agents make
decision based just on local information.

• How to incorporate learning from experience is not addressed.

• It is difficult to engineer this kind of agents to fulfill specific tasks and there is no
principled methodology for building reactive agents. In purely reactive systems the
overall behaviour emerges from the interaction of component behaviours when the
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agent is placed in its environment. Sometimes the relationships between individual
behaviours, environment and the overall behaviour is not understood.

• It is hard to build agents that contains many layers. Effective agents can be generated
with small —less than ten— numbers of behaviours.

2.2.3 Layered Architectures - Hybrid agents

Many researches have argued that neither a complete reactive nor deliberative approach is
suitable for building agents. Given the requirement that an agent must be capable of reactive
and proactive behaviour, an interesting approach involves creating separate subsystems to
deal with these different kinds of behaviours. A class of architectures in which the defined
subsystems are arranged into hierarchy and interacting layers, implements this idea.

In this approach, an agent will be defined in terms of two or more layers, to deal with
the reactive and pro-active behaviours, respectively. The agent control subsystems are
arranged into a hierarchy, with higher layers dealing with information at increasing levels
of abstraction. An important problem in such architectures is to determine what kind of
control framework is needed, in order to manage the interactions between the various layers.
Two basic types of control flow can be identified within layered architectures, as it is shown
in Figure 2.1 and are described in [159]:

• Horizontal layering: each layer is directly connected to the sensory input and action
output, acting like an agent and producing action proposals (Figure 2.1 (a)).

• Vertical layering. Sensory input and action output are each dealt with by at most one
layer. In this case there are two approaches:

– one-pass architecture: control flows sequentially through each layer, until the final
layer (Figure 2.1 (b)).

– two-pass architecture: control flows up the architecture (the first pass) and then,
control flows back down (Figure 2.1 (c)).

The great advantage of the horizontally layered architecture is its conceptual simplicity.
One layer can be implemented for each behaviour the agent needs to exhibit. The different
layers may generate competitive actions suggestions, sometimes inconsistent. In order to
ensure the system consistence, it generally includes a mediator function. This function
decides which layer has control on the agent at any time, the design of this function is
difficult. This problem is in part solved in the vertically layered architecture where the
complexity of interactions between layers is reduced. However, the vertical layering has a
disadvantage: in this architecture the control must pass between each different layer and a
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Figure 2.1: Information and control flows in layered agents architecture (Source: [111],
p263).

failure in any one layer will affect the whole agent performance. Examples of the layered
architectures are Ferguson’s TouringMachines —horizontally layered architecture— [59], and
Muller’s InteRRaP —two-pass vertically layered— [112].

2.2.4 Practical Reasoning Architectures - BDI agents

Practical reasoning is a particular model of decision making. This model is inspired in the
process that seems to take place when we decide what to do next —the process of deciding
which action to perform in order to reach our goals. The philosopher Michael Bratman
defines this process as:

“Practical reasoning is a matter of weighing conflicting considerations for and
against competing options, where the relevant considerations are provided by
what the agent desires/values/care about and what the agent believes.” (Brat-
man, [22], pp.17)

Practical reasoning involves two important processes: deliberation —deciding what goals
or desires we want to achieve, and means-ends reasoning —how we are going to achieve
them. After generating these set of alternative goals, the agent must choose among them,
and commit to some. These goals committed to achieve are the agent’s intentions. In
practical reasoning process, intentions play a crucial role to lead to actions.
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Specifically, Bratman argues that rational agents will tend to focus their practical rea-
soning on the intentions they have already adopted, and will tend to avoid the consideration
of options that conflict with them. Some of the most relevant points of his work are known
as Bratman’s claim, and we can summarize their characteristics as follows [159]:

• Intentions drive means-ends reasoning: If an agent has an intention, then it will at-
tempt to achieve it, which involves deciding how to achieve it. If one way fails to
achieve an intention, then it will attempt others.

• Intentions persist: The agent will not give up on its intention without a good reason
—it believes it cannot achieve them or that the reason for the intention is no longer
present.

• Intentions constrain future deliberation: The agent will not consider options that are
inconsistent with its current intentions, and

• Intentions influence beliefs upon which future practical reasoning is based: The agent
can plan for the future on the assumption that she will achieve her current intentions.

Bratman’s theory of intention [20, 22] is an important contribution and his work points
out that intentions play an fundamental role in practical reasoning. In turn, the agent in-
tentions interact with and sometimes depends on, the agent beliefs and desires. However,
in the design of practical reasoning agents satisfactorily capturing these interactions and
achieving a good balance among the different items presented above, turn out to be consid-
erably difficult.

Some of the philosophical aspects of a rational agency were well formalized by Cohen
and Levesque [41, 42]. They developed a Logic of Rational Agency where they provided one
of the first logical formalization of intentions and the notion of commitment using just two
basic attitudes: beliefs and goals (i.e., desires). Other attitudes, as intentions, were defined
in terms of these. This theory of intention and commitment was applied as for example, to
the formalization of communicative actions among agents [42].

In particular, intentions are modeled as a kind of commitment (i.e., persistent goal) and
are defined in terms of temporal sequences of an agent beliefs and goals. The mechanism an
agent uses to determine when and how to drop intentions is known as commitment strategy.
Based on different kinds of commitments specific agents are proposed [123]:

• Blindly commited agent is a fanatically committed agent that will continue to mantain
an intention until she believe the intention has actually been achieved.

• Single-minded commited agent will continue to maintain an intention until either it is
believed to be achieve or it is believed to be unachievable.
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• Open-minded commited agent is an agent with a relativized commitment to her inten-
tions is similar to the other but, may also drop her intentions when some specified
conditions are believed to hold.

A key problem in the design of practical reasoning agents implementing this kind of
commitments (in particular the single-minded and open-minded ones) is that they must
revise their intentions. Specially it seems clear that the agent should at times drop some
intentions (because the reasons mentioned above) It follows that, from time to time it is
worth an agent stopping to reconsider its intention. But reconsideration has a cost (i.e. in
time and resources). This problem is known in the literature as intention reconsideration
(e.g. see [142, 143]) and treat the problem of balancing the agent pro-active (goal-directed)
and reactive (event driven) behaviour, in relation to the environment dynamism.

While the Cohen and Levesque’s formalization treats intentions as being reducible to
beliefs and desires, Bratman [20] argues that intentions play a significant and distinct role
in practical reasoning. He also shows how the agent current beliefs, desires and intentions,
constitute a background for future deliberations. Systems and formalisms that give primary
importance to intentions represent an important class of the BDI architectures.

The Belief-Desire-Intention (BDI) architecture was originated in the work of the Rational
Agency Project at Stanford Research Institute in the mid-1980s. This agent model is based
on the theory of human practical reasoning [20, 22] mentioned above. Within the “Agent
Theory, Architectures and Languages” (ATAL) community [66], the BDI model has come
to be possibly the best known and studied model of practical reasoning agents. There are
several reasons for its success, but perhaps the most compelling are that the BDI model
combines a respectable philosophical model [20, 22], a number of implementations (e.g. [20],
[61] and [18]), several successful applications [61], and finally, and a well-founded logical
semantics [126, 139].

In the Agent Community, the term BDI model is used in different ways, including a family
of agent models and architectures. In a wide sense, they are models of practical reasoning
that employ the folk-psychology concepts of belief, desire and intention, perhaps among
other attitudes. In a narrow sense, there are particular BDI models that embody Bratman’s
claim, as for example, the IRMA specific architecture (for the “Intelligent Resource-Bounded
Machine Architecture” described in [20]). Also, there are particular BDI models that suitable
specified Procedural Reasoning System (PRS), as for instance [61, 62]. In this Thesis we
adopt the broader position, calling BDI models, to those models of practical reasoning that
explicitly represent the agent mental attitudes (i.e. belief, desire and intentions).
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The basic components of a BDI architecture are data structures representing the beliefs,
desires and intentions of the agent, and functions that represent its deliberation —deciding
what intentions to have, and means ends reasoning —deciding how to do them. We present
a general formalization of this agent model, describing its components and their relations,
following Wooldridge in [159].

Let Bel be the set of all possible beliefs, Des be the set of all possible desires, Int be
the set of all possible intentions, P is the current percept and the set A of the actions the
agent can execute. The state of a BDI agent at any given point of time is a triple (B,D, I),
where B ⊆ Bel, D ⊆ Des and I ⊆ Int. The process of practical reasoning in a BDI agent
may be summarized in the schema shown in Figure 2.2. This Figure illustrates the main
components in a BDI agent that are described as follows:

Figure 2.2: Schematic diagram of a generic belief-desire-intention architecture (Source: [153],
p58).

• a set of current beliefs (B), representing the information the agent has about its envi-
ronment,

• a belief revision function (brf), which takes a perceptual input and the agent current
beliefs, and determines a new set of beliefs:
brf : ℘(Bel)× P → ℘(Bel),
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• an option generation function (options), which determines the options available to the
agent (its desires D), on the basis of the current beliefs and its current intentions:
options : ℘(Bel)× ℘(Int)→ ℘(Des),

• a set of current options (D), representing possible course of actions available to the
agent,

• a filter function (filter), which represents the agent deliberation process in which the
agent determines its intentions, based on its currents beliefs, desires and intentions:
filter : ℘(Bel)× ℘(Des)× ℘(Int)→ ℘(Int)

• a set of current intentions (I), representing those states of affairs that it has committed
to try to bring about.

• an action selection function (execute), which determines an action to perform on the
basis of current intentions.
execute : ℘(Int)→ A

The resulting process is the agent decision function action : P → A. This function maps
the input perception into an action that the agent will try to execute and is defined in terms
of the data structures and functions previously presented. A simple version of this function
is defined by the following pseudocode:

function ACTION (p:P):A

B:= brf(B,p)

D:= options(B,I)

I:= filter(B,D,I)

return execute(I)

end function ACTION

A more complete version of this practical reasoning loop, including intention reconsider-
ation, could be seen in ([159], p76).

Procedural Reasoning Systems

The procedural Reasoning Systems (PRS), originally developed by Georgeff and Lansky [61]
was one of the first agent architecture that explicitly embodies the BDI model.

The PRS is a BDI architecture because it contains explicitly represented data structures
loosely corresponding to these mental attitudes. An illustration of the PRS architecture
is given in Figure 2.3 PRS is a goal-directed and reactive planning system. The goal-
directed behaviour allows to reason about and to perform complex tasks, while reactiveness
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Figure 2.3: The procedural Reasoning System

allows handling real-time behaviour in dynamic environment In the PRS an agent does no
planning instead, it is equipped with a library of precomputed plans which are used to to
perform means-ends reasoning. The process of selecting between different possible plans is
a deliberation process and includes the use of meta-level plans which are able to modify an
agent’s intention structure at runtime, in order to change the focus of the agent’s practical
reasoning. Beliefs in the PRS are represented as PROLOG-like facts (i.e. atoms of a first
order logic).

Since the first PRS system [61], it has been re-implemented several times afterwards, as
for example the dMARS system [46], implementations in C++ are UM-PRS and Open-PRS
and a Java version is called Jam system [81], Besides, two relevant implementations currently
very used are Jack [65] and Jason [18]. Furthermore, it has been applied in several of the
most significant multiagent applications so far built including an air-traffic control system
called OASIS, a simulation system for the Royal Australian air force called SWARMM, the
now-famous fault diagnosis system for the space shuttle, as well as factory process control
systems and business process management called SPOC, overviews of these systems are de-
scribed in [62]).

The BDI model is also interesting because a great deal of effort has been dedicated to
formalize it. In particular, Anand Rao and Michael Georgeff have developed a range of BDI
logics, which they use to axiomatized properties of BDI agents. In the following Subsection,
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we outline the more important features of its logical framework.

2.2.5 Rao and Georgeff’s BDI model

One of the well-known intentional system formal approach that follows Bratman’s claim,
was proposed by Rao and Georgeff [123, 125]. This BDI model is built upon the theory of
Intentional systems.

This model is based on the explicit representation of the agent beliefs (B), desires (D)
and intentions (I), using a logical framework based on the possible world semantics. Firstly,
Rao and Georgeff in [123] present the logic formalism in terms of the agent belief, goals and
intentions. Then, they revised the concept of the agent goal and it was replaced in [125] by
the concept of desire, as it is still used nowadays. In this section we used [123] as reference
of the BDI logic and then, the term of goal is used instead of desire.

In the design of rational agents the role played by attitudes such as beliefs (B), desires (D)
and intentions (I) has been well recognized and analyzed by philosophical and AI researchers.
The beliefs are needed to represent the state of the world, the desires, to set the state of
affairs the agent wants to achieve and the intentions, the worlds the agent has chosen and
is committed to achieve. In this formalism intentions are represented as a fundamental
attitude like beliefs and desires.

Rao and Georgeff used to model the world as a temporal structure with a branching
time future and a single past, called a time tree. The branches in a time tree can be viewed
as representing the choices available to an agent at each moment of time. A particular
time point in a particular world is called situation. Events transform the state at one time
point into another state at a subsequent time point. Primitive events (actions) are those
events that the agent can execute directly, and uniquely determine the next time point in a
time tree. Non-primitive events (plans) map to non-adjacent time points. The agent may
attempt to execute some event, but may fail to do so (i.e., successful execution of events
or their failure). They use a formalism similar to Computation Tree Logic, CTL [53] to
describe these structures. A distinction is made between state formulae —evaluated at a
specified time point in a time tree, and path formulae —over a specified path in a time tree.

The modal operators optional and inevitable are used to operate on path formulae. A
path formula ψ is said to be optional if, at a particular time point in a time tree, ψ is
true in at least one path emanating from that point; it is inevitable if ψ is true in all paths
emanating from that point. They also used the standard temporal operators O (next), ♦

(eventually), � (always) and U (until), in order to operate over state and path formulae.

These modalities can be combined in various ways to describe the options available to
the agent. For example, the structure illustrated in Figure 2.4 could be used to represent
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Figure 2.4: Belief-accessible world (Source: [123]).

the following statements [123]:

- it is optional that John will eventually visit London (denoted by p);

- it is optional that Mary will always live in Australia (r);

- it is inevitable that the world will eventually come to an end (q) and

- it is inevitable that one plus one will always be two (s).

Belief is modelled in the conventional way, in each situation they associate a set of belief-
accessible worlds and each belief-accessible world is a time tree. Multiple belief-accessible
worlds result from the agent lack of knowledge about the state of the world. This approach
take into account the uncertainty in the agent beliefs allowing a set of possibles world, but
in this approach they do not use a belief measure (e.g., a probability measure, possibility
measure, etc) to establish an order over the set of worlds (i.e., expressing which of these
are the most believable ones). Within each of these worlds, the branching future represents
the choice (options) still available to the agent in selecting which actions to perform. In a
similar way, for each situation they associate a set of goal-accessible worlds to represent the
goals of the agent. They use goals as a set of chosen consistent desires.

There are three well-established sets of attitudes relationships for the BDI agents that
have been identified in [123]. These three types of agents incorporate different kinds of
relations between the attitudes (i.e. belief, desire and intention -accessible worlds) called
realisms, and they are defined as follows:

• Strong realism: the set of intentions is a subset of desires which in turn is a subset of
the beliefs. That is, if an agent does not belief something is possible to become true,
it will neither desire nor intend it.
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Figure 2.5: Compatibility between Belief and Goal-accessible world (Source: [123]).

• Realism: the set of beliefs is a subset of desires which in turn is a subset of the set
of intentions. That is, if an agent beliefs something is possible, it both desires and
intends it.

• Weak realism: agents do not desires properties if the negation of those properties are
believed, do not intend properties if the negation of those properties are desired, and
do not intend properties if the negation of those properties are believed.

The formalization of these realisms in a multi-context specification of BDI agents can be
seen in next Subsection 2.3.2).

In this review, we adopt the notion of strong realism. This sets up a relation between
the belief- and goal-accessible worlds: it is required that the agent believes she can option-
ally achieve her goals. This kind of belief-goal compatibility is illustrated in Figure 2.5.
Intentions are similarly represented by a set of intention-accessible worlds. These worlds are
ones that the agent has committed to attempt to realize. The intention-accessible worlds of
the agent must be compatible with her goal-accessible worlds. In the case of a strong realism
agent, she can only intend some course of action if it is one of her goals.

It thus remains to formalize this semantics presented informally at the introduction to
the BDI logical model.

BDI logic

BDI logic is a branching-time temporal logic (CTL) extended in two ways. First, they
consider a first-order variant of the logic, and second, it is extended to a possible world
framework by introducing modalities for the believes, desires and intentions.

Then, its language includes the temporal operators U , �, ♦, O, optional and inevitable,
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also modalitiesBEL, GOAL and INTEND to represent the mental attitudes beliefs, desires
and intentions, respectively. We present this formalization as in [123].

There are two types of formulae in the logic: state formulae and path formulae. A state
formula is defined as follows:

• any first-order formula is a state formula,

• if ϕ and ψ are state formulae and x is variable, then ¬ϕ, ϕ∨ψ, and (∃x)ψ(x) are state
formulae,

• if e is an event type then succeeds(e), fails(e), does(e), succeeded(e), failed(e), and
done(e) are state formulae,

• if ψ is state formula then BEL(ψ), GOAL(ψ) and INTEND(ψ) are state formulae
and

• if ψ is a path formula, then optional(ψ) is a state formula.

A path formula can be defined as follows:

• any state formula is also a path formula and

• if Φ and Ψ are path formulae, then ¬Φ, Φ∨Ψ, Φ U Ψ, ♦Ψ and OΨ are path formulae.

There are some abbreviations used in the language for representing some formulae, namely:

• �(ψ) for ¬♦(¬ψ).

• inevitable(φ) for ¬optional(¬φ)

• done(e) for succeeded(e) ∨ failed(e)

• succeeds(e) for inevitableO(succeeded(e))

• fails(e) for inevitableO(failed(e))

• does(e) for inevitableO(done(e))

As for example, optionally♦p, optionally�r, inevitably♦q and inevitably�s are state for-
mulae that are true at the root state (time t0) of the world shown in Figure 2.4.

BDI Semantics



2.2. Agent Theories and Architectures 27

The formalization of this semantics is presented by Rao and Georgeff in [123]. First,
they provide the semantics of the different formulae, secondly of the events and finally, the
possible world semantics of beliefs, goals, and intentions. In the following we briefly outline
this schema:

An interpretation M is defined as M = (W,E, T,≺, U,B,G, I,Φ), where:

• W is a set of possible worlds,

• E is a set of primitive event types,

• T is a set of time points,

• ≺ a binary relation on time points,

• U is the universe of discourse,

• Φ is a mapping of first-order entities to elements in U for any given world and time
point, and

• B,G, I ⊆ W × T ×W are accessible relations for BEL, GOAL and INTEND, respec-
tively.

Notation: R refers to any one of these relations (B,G,I) and Rw,t to denote the set of
worlds R-accessible from world w at time t:

Rw,t = {w′ : R(w, t, w′)} for R = B,G, I

As for example, we show in Figure 2.6 the relation Bw,t2 including the worlds w′ and
w′′.

Each world w ∈W , called a time tree, is a tuple (Tw, Aw, Sw, Fw), where:

• Tw ⊆ T is a set of time points in the world w,

• Aw is the restriction of ≺ to Tw,

• Sw : Tw × Tw → E map adjacent time points to (successful) events in E and

• Fw : Tw × Tw → E map adjacent time points to (failing) events in E.

The domains of Sw and Fw are disjoint.
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Figure 2.6: Belief-accessible world relation

A fullpath in world w is an infinite sequence of time points (t0, t1, . . .) such that (ti, ti+1) ∈
Aw y fullpath (t0, t1, . . .) in world w is denoted as: (wt0 , wt1 , . . .).

Considering an interpretation M and a variable assignment v, the semantics of the state
formulae are defined as following:

• M,v,wt |= q(y1, ..., yn) ⇔ (v(y1), ..., v(yn)) ∈ Φ[q, w, t] where q(y1, ..., yn) is a predi-
cate formula.

• M,v,wt |= ¬φ⇔M,v,wt 6|= φ

• M,v,wt |= φ ∨ ψ ⇔M,v,wt |= φ or M, v,wt |= ψ

• M,v,wt |= (∃x)φ⇔M, v [d/x] , wt |= φ for some d ∈ U

• M,v,wt |= optional(φ)⇔ exists a full path (wt0 , wt1 , ...) such that
M, v, (wt0 , wt1 , ...) |= φ

Semantics of state formulae pertaining to events:

• M, v,wt1 |= succeeded(e)⇔ exists t0 s.t. Sw(t0, t1) = e

• M, v,wt1 |= failed(e)⇔ exists t0 s.t. Fw(t0, t1) = e

Semantics of Belief, Goals and Intentions:
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The possible world semantics of beliefs, considers each world to be a collection of propo-
sitions and models belief by a belief-accessibility relation B linking these worlds. In this BDI
model, each possible world is a time tree and denotes the optional courses of events that an
agent can choose in a particular world. The belief relation maps a possible world at a time
point to other possible worlds. An agent has a belief φ, denoted BEL(φ), at time point t if
and only if φ is true in all the belief-accessible worlds of the agent at time t. The semantics
of the modal operator GOAL is given in terms of a goal-accessible relation G which is similar
to that of the B relation. The goal-accessibility relation specifies situations that the agent
desires to be in. Intentions can be seen as future paths that the agent chooses to follow.
The intention-accessibility relation will be used to map the agent’s current situation to all
its intention-accessible worlds. Formally, this semantics is defined as follows:

• M,v,wt |= BEL(φ)⇔ ∀w′ ∈ Bwt , M,v,w′t |= φ

• M,v,wt |= GOAL(φ)⇔ ∀w′ ∈ Gwt , M, v,w′t |= φ

• M,v,wt |= INTEND(φ)⇔ ∀w′ ∈ Iwt , M, v,w′t |= φ

The semantics of path formulae:

• M,v, (wt0 , wt1 , ...) |= φ⇔M, v,wt0 |= φ (φ state formula)

• M,v, (wt0 , wt1 , ...) |= Oφ⇔M, v, (wt1 , wt2 , ...) |= φ

• M,v, (wt0 , wt1 , ...) |= ♦φ⇔M,v, (wtk , ...) |= φ for some k ≥ 0

• M,v, (wt0 , wt1 , ...) |= φ U ψ ⇔
- exists k ≥ 0 s.t. M, v, (wtk , ...) |= ψ and ∀0 ≤ j ≤ k
M, v, (wtj , ...) |= φ, or
- ∀j ≥ 0, M,v, (wtj , ...) |= φ

Axiomatization

The basic axiomatization for beliefs is the classic weak-S5 modal system or KD45. For
goals and intentions the K and D axioms are adopted to make them closed under implication
and satisfy the consistence condition. The rule of necessitation is also needed for beliefs,
goals and intentions (i.e., the agent believes, has as goal, and intends all the valid formulae).
As happens in most possible world formalisms, this logic suffers from the logical omniscience
problem i.e., the agent believes, desires and intends all the logical consequences of its beliefs,
desires and intentions. Then, the axiom schema is the following:

• BEL(φ→ ψ)→ (BELφ→ BELψ) (axiom K)
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• BELφ→ ¬BEL(¬φ) (consistency - axiom D)

• BELφ→ BEL(BELφ) (positive introspection - axiom 4)

• ¬BELφ→ BEL(¬BELφ) (negative introspection - axiom 5)

• GOAL(φ→ ψ)→ (GOALφ→ GOALψ)

• GOALφ→ ¬GOAL(¬φ)

• INTEND(φ→ ψ)→ (INTENDφ→ INTENDψ)

• INTENDφ→ ¬INTEND(¬φ)

• Necessitation rule for beliefs, goals and intentions (from φ derive BELφ, GOALφ and
INTENDφ)

In addition, Rao and Georgeff in [123] presented a set of axioms (A11 and A12) in order
to set the interrelations among an agent’s beliefs, goals and intentions. They also added an
axiom that from leads intentions to actions (A13), and two axioms (A14-A15) to establish
that the agent believes what it is intending its goals. This group of axioms is:

• (A11) GOAL(α)→ BEL(α) (belief-goal compatibility)

• (A12) INTEND(α)→ GOAL(α) (goal-intention compatibility)

• (A13) INTEND(does(e))→ does(e) (intention leading to action)

• (A14) INTEND(φ)→ BEL(INTEND(φ))

• (A15) GOAL(φ)→ BEL(GOAL(φ))

• (A16) INTEND(φ)→ GOAL(INTEND(φ))

• (A17) done(e)→ BEL(done(e)) (awareness of primitive events)

• (A18) INTEND(φ)→ inevitable♦(¬INTEND(φ))

(no infinite deferral)

This set of eight axioms A11-A18 together with the standard axioms for BDI logics
(KD45 for BEL and K-D for GOAL and INTEND) constitute the basic I-system. Further-
more, Rao and Georgeff analyzed in [123] the relation between current and future intentions
—commitment strategy— in a process of intention maintenance and revision. They de-
scribed three different commitment strategies: blind, single minded and open minded. A
blindly committed agent is one who maintains its intentions until the agent actually believes
that they have been achieved. A single-minded committed, is an agent which maintains its
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intentions as long as its believes that they are still options. Finally, an open-minded agent
is one who maintains its intentions as long as these intentions are still its goals. In order
to obtain one of these different behaviours in an agent, the corresponding axioms must be
added to the basic I-system:

• for a Blind agent:
INTEND(inevitable♦φ)→
inevitable(INTEND(inevitable♦φ) U BEL(φ)).

• for a single-minded agent:
INTEND(inevitable♦φ)→
inevitable(INTEND(inevitable♦φ))U (BEL(φ) ∨ ¬BEL(optional♦φ)).

• for an open-minded agent:
INTEND(inevitable♦φ)→
inevitable(INTEND(inevitable♦φ))U(BEL(φ) ∨ ¬GOAL(optional♦φ)).

2.2.6 Advantages of BDI models

Several factors have contributed to the importance of the BDI model. This architecture is one
of the best models of practical reasoning that is based on well understood logical foundations.
The BDI model has proved to have the essential components to cope with complex, real world
applications. These real systems are usually placed in a dynamic and uncertain environment,
having a local view of the world and are resource bounded. These constrains have certain
fundamental implications for the design of the underlying computational architecture, and
the Belief, Desire and Intention components seem to be an essential part of such systems.

The BDI model is also interesting because a great deal of effort has been done in its
formalization. In particular, Rao and Georgeff have developed a range of BDI logics. They
set out different axiomatics over the basic logic, called I-system, to define BDI agents having
different properties (e.g., diverse commitment strategies).

But the importance of the BDI models is not limited to the theoretical field. In the last
years there have been different developments of particulars BDI architectures. One of the
specific BDI agent architectures is IRMA [21], this architecture has been evaluated in an
experimental scenario known as the Tileword. However, the best-known implementation of
the BDI model is the Procedural Reasoning System (PRS) system developed by Georgeff
and Lansky [61] and re-implemented several times afterwards (e.g. [81, 65, 18]. This agent
architecture has proved to be the most durable agent architecture developed to date. It has
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been applied in several of the most significant multiagent applications built up to now, some
of them are described in [62]. In addition, PRS-like systems has been used in a number of
large-scale applications, as for example, a system for space shuttle diagnosis and a system for
telecommunications network management [84]. The BDI architecture has evolved over time
and diverse factors, including the above mentioned ones, have contributed to the importance
of this model.

Because of the recognized relevance of the BDI model we decided to use this agent
architecture as the basis for this PhD research work. In the following subsection we introduce
one interesting approach to specify complex systems and particularly, agent architectures.

2.3 Multi-context Systems

The notion of context has been studied in many research areas an in particularly in Artificial
Intelligence. Contexts are view as an important approach to represent certain kinds of
reasoning. On the one hand, contexts are a tool to formalize the locality of reasoning. While
on the other hand, contexts are introduced as a means of solving the problem of generality.
Coherently with these two points of view, Giunchiglia et al. in [70, 71] introduced the notion
of multi-context system (MCS for short). These systems have also been called multi-language
systems in [71], in order to emphasized that they may include multiple languages.

There are two main intuitions underlying the use of contexts, called principles in [68]:

• Locality principle: reasoning uses only part of what is potentially available (e.g.,what
is known, the available inference procedures). The part being used while reasoning, is
what we call context (of reasoning);

• Compatibility principle: there is a compatibility among the kinds of reasoning per-
formed in the different contexts.

These two principles are formalized by the semantics called Local Model Semantics, which
is described in [68]. In this paper the authors also showed how this novel semantics is
captured by the MCS. They also validate this semantics by formalizing two important forms
of contextual reasoning: reasoning with viewpoints and reasoning about belief.

One of the advantages of MCS in order to help in the design of complex logical systems
is that this framework allows for the independent definition of formal components, and their
interrelations.

MCS have been used in diverse applications as for example in the integration of hetero-
geneous knowledge and data bases, in the formalization of reasoning about beliefs (more
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generally, propositional attitudes) [68]. Particularly, have been used to model different as-
pects of agents and multiagent systems [40, 68] and as an approach to engineering multiagent
systems [119, 136].

2.3.1 Formalization of multi-context systems

We present an introduction to the formal aspects of MCS systems, where contexts are
formalized proof-theoretically. A more complete description is given in [71]. The MCS
specification contains three basic components: units or contexts, logics, and bridge rules,
which channel the propagation of consequences among theories. Following this, a MCS is
defined as a group of interconnected units:〈
{Ci}i∈N ,∆br

〉
, where N is a finite set and:

• for each i ∈ N , Ci = 〈Li, Ai,∆i〉 is an axiomatic formal system where Li, Ai and ∆i

are the language, axioms, and inference rules respectively. They define the logic for
the context Ci and its basic behaviour is constrained by the axioms.

• ∆br is a set of bridge rules, they are rules of inference which relate formulae in different
units. Each bridge rule can be understood as a rule of inference with premises and
conclusions in different contexts, for instance:

C1 : ψ,C2 : ϕ
C3 : θ

means that if formula ψ is deduced in context C1 and formula ϕ is deduced in context
C2 then formula θ is added to context C3.

When a theory Ti ⊆ Li is associated with each unit, the specification of a particular
multi-context system is complete.

These components were first identified in the context of theorem provers for modal logic
in [71], and in [114] full details of these components can be found.

A MCS system is essentially a set of logical theories, plus a set of inference rules which
allow for the propagation of consequences among theories.

The deduction machinery ∆ in these systems is then based on two kinds of inference
rules, internal rules ∆i inside each unit, and bridge rules ∆br outside, i.e.,

∆ =
⋃
i∈I

∆i ∪∆br

Internal rules allow to draw consequences within a theory, while bridge rules allow to
embed results from a theory into another. The set of formulae that a given context may
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contain depends on its initial theory, axioms, inference rules that allow inner deductions;
and bridge rules. The formulae introduced by a bridge rule depend on the formulae contexts
appearing in the premise of the bridge rule.

A MCS formalizes the principle of locality in the sense that each context has it suitable
language Li, the proper set of axioms Ai which provides the foundations of reasoning, the
theory Ti ⊂ Li gives the true formulae for each context, and finally, the inference engine ∆i,
captures different deduction capabilities for each unit. Through bridge rules the principle of
compatibility is represented as these rules allow contexts to mutually influence themselves.
Bridge rules change the theory of one context by the derivation of formulae in other contexts.

In the following subsection we show how this kind of systems, that have been used in
diverse applications, can be used in agent specification.

2.3.2 Multi-context agents

Multiagent systems are complex systems than can be well modeled by MCSs, as they permit
to represent the locality of its architectural components and to neatly describe the interaction
among them. This approach has been used by Parsons et al. [119] and Sabater et al. [136]
to specify several agent architectures and particularly to model some classes of BDI agents
[115]. Using the multi-context approach, an agent architecture consist of the four basic types
of components of MCS (i.e., contexts, logics, theories and bridge rules).

Contexts represent the various components of the architecture. They contain the agent’s
problem solving knowledge, and this knowledge is encoded in the specific theory that the
unit encapsulates. In general, the nature of the contexts will vary between architectures.

For example, a BDI agent may have units which represent intentional notions —theories
of beliefs, desires and intentions— (as in [115]), whereas an architecture based on a func-
tional separation of concerns may have units which encode theories of cooperation, situation
assessment and plan execution (as in [138]). In either case, each context has a suitable logic
associated with it.

In any architecture represented, bridge rules set the components interaction. These rules
provide the mechanism by which information is transferred among units. The bridge rules
continuously examine the theories of the contexts that appear in their premises looking
for new sets of formulae that match them. This means that all the components of the
architecture are always ready to react to any change (external or internal) and that there
are no central elements of control.

The multi-context approach was used to specified negotiating agents in an example of
two Home Improvement Agents, described in [115]. An extended model of multi-context



2.3. Multi-context Systems 35

agent was presented in [138] to engineer the ReGreT system.

Multi-context BDI agents.

The BDI architecture was described in Subsection 2.2.5. This agent model involves the
explicit representation of the agent beliefs, desires and intentions. In a logical framework
this means to include different modalities for the different attitudes and the chosen axiomatic
according to the behaviour of each attitude. Modeling different intentional notions by means
of several modalities (e.g., B, D and I) can be very complex if an unified logical framework
is used (e.g., the BDI logic see Subsection 2.2.5) or if one must manage the interchange of
formulae among different logics.

Using multi-context systems to build BDI agents allows us to represent the different men-
tal attitudes by different contexts. This is advantageous with respect to other approaches
as pointed out in [136] and exemplified in [115]. The MCS approach enables to use different
logics in a way that keeps the logics neatly separated. This either makes it possible to in-
crease the representational power of BDI agents —compared with those which use a single
logic, or to simplify agents conceptually —compared with those which use several logics in
one global framework.

Thus, in a MCS approach, we need at least different contexts to represent the three basic
attitudes i.e., one for beliefs (B), for desires (D) and intentions (I). The belief context of a
BDI agent may have a logic of belief associated with it, the desire context may have a logic
of preferences associated to it, and similarly for the intention unit. The logic related with
each unit provides the language in which the information in that context is encoded.

We have presented in Subsection 2.2.5 three well-established sets of attitudes relation-
ships for the BDI agents, called realisms. A multi-context version of these types of agent (i.e
strong realistic, realistic and weak realistic) are formalized in [115] and the main components
of a strong realistic one are illustrated in Figure 2.7.

As to show how this approach may be implemented next, we present some insights of a
strong realistic BDI agent definition.

Contexts: There are four contexts within a multi-context BDI agent. The units for the
beliefs (B), desires (D) and for the intentions (I); and a communication unit (C).

Logics: For each of these four contexts a proper logic is defined:
- B, D and I context: each one uses first-order logic with a special predicates B, D and
I, which are used to denote respectively the beliefs, desires and intentions of the agent.
The chosen axioms are the classics for predicate logics. To capture the behaviour of the
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Figure 2.7: The relations between modalities corresponding to a strong realistic agent.
(Source [115], p272).

modalities, in the B context the KD45 axioms are included, and in the logics for D and I,
the axioms K and D are used.
- Communication context: Uses classical first-order logic with the usual axioms.

The rules of inference for each unit are the usual ones (MP, MT, generalization and
particularization)

Theories: For each context, these logical formulae represent the domain information that
each unit posses, and depend on the specific agent we are defining (in a generic BDI agent
there are no specific theories included).

Bridge rules: The bridge rules are exactly those illustrated in Figure 2.7, formally:

I : I(α) ⇒ D : D(dαe)
D : ¬D(α) ⇒ I : ¬I(dαe)
D : D(α) ⇒ B : B(dαe)
B : ¬B(α) ⇒ D : ¬D(dαe)
C : done(e) ⇒ B : B(ddone(e)e)

I : I(ddoes(e)e) ⇒ C : does(e)

The first four rules are directly derived from the model proposed by Rao and Georgeff
and ensure compatibility between what the agent believes, desires and intends. The last
two bridge rules specify the interactions that the communication context has with the other
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units.

Concrete agents may be specified as extensions of this generic specification of a BDI
agent. The complete specification of two home improvement BDI agents is presented in
[115].

For BDI agents, the multi-context approach makes it possible to model each agent atti-
tude in an appropriate local way, and the corresponding interactions between attitudes are
neatly represented through the bridge rules. It also allows for the incorporation of other
attitudes to the agent model by just adding the corresponding contexts and the necessary
bridge rules relating the new attitude with the rest.

2.3.3 Advantages of the multi-context specification of agents

Multi-context approaches to engineering multiagent systems have several advantages, some
of them are pointed out by Sabater et al. in [136]. From a software engineering perspective,
firstly, MCSs support the development of modular architectures. Each architectural com-
ponent, be it a functional component or a data structure component, can be represented as
a separate context. The interrelations between the components can then be made explicit
by writing bridge rules to link the contexts. This ability to directly support component
decomposition and interaction offers a path from the high level specification of the archi-
tecture to its detailed design. Secondly, MCSs are ideally suited to support reuse —both
of designs and implementations— since these systems encapsulate architectural components
and provide specifications for the interrelationships.

From the logical modeling perspective, there are several advantages of adopting a multi-
context approach. In first place, separating the logical description of an agent into a set
of contexts, each which its proper logic, we effectively get a form of many-sorted logic (all
the formulae in one context are a single sort). This brings to the system the advantages of
scalability and efficiency. The second advantage comes from the same issue. This approach
makes it possible to build agents which use several different logics in a way that keeps the
logics neatly separated (all the formulae in one logic are gathered in one context).

The remaining two advantages from the logical perspective apply to those logical agents
which reason about their mental attitudes and those of other agents. The first is that multi-
context systems make it possible to build agents which reason in a way which conforms
to the use of modal logics like KD45 (the standard modal logic for handling belief) while
working within the computationally simpler framework of standard predicate logic [71]. The
final advantage is related to this. Agents which reason about beliefs are often confronted
with the problem of modeling the beliefs of other agents and multi-context systems provide
a neat solution to this problem [40, 68].
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Combining the software engineering and the logical modeling perspectives, it can be seen
that the multi-context approach offers a clear path from specification to implementation.
Indeed one advantage of the MCS logical approach to agency modeling is that allows for
rather affordable computational implementation. For instance, a portion of the framework
described in [115] has been implemented using a prolog multi-threaded architecture [69].

2.4 Logics of preference

Preferences guide human decision making from early childhood (e.g. “which ice cream
flavour do you prefer?”) to complex professional and organizational decisions (e.g.“which
investment funds to choose”). Preferences are essential for making intelligent choices in com-
plex situations, for mastering large sets of alternatives, and for coordinating a multitude of
decisions. Explicit preference models allow an agent to reason about its own and the other
agent’s behaviour and to analyze and revise this behaviour. For these reasons, preference
models have been necessary in many fields of Artificial Intelligence such as multiagent sys-
tems, combinatorial auctions, diagnosis, design, configuration, planning, among others. In
addition to this, preference modelling and aggregation is central to decision theory, social
choice and game theory. AI tasks often need new forms of preference handling beyond classic
utility-based models. Recent work on preference handling in AI has consequently elaborated
many new preference representation formalisms, as for example logical preference represen-
tations and generalized forms of utility functions. AI has also innovated reasoning about
preferences and problem-solving algorithms based on preferences. This is an important is-
sue when we have to represent the user’s desires in information systems (e.g. recommender
systems), or to reason about desires and solve eventually inconsistent goals as e.g., in multi-
agent systems. Logical frameworks contribute to this problem, allowing for systematic study
and classification of desires by making underlying assumptions explicit. Recently, several
logics for desires and goals have been proposed as can be seen in [9, 19, 49, 95, 96, 146].

Notably, Lang et al. in [96] propose a logic of desires with a utilitarian semantics and
they study non-monotonic reasoning about desires and preferences. Their work is about
representation and reasoning on conditional desires D(a | b) and is based on the idea that
desires can be understood in terms of so-called utility losses and gains (i.e. loss of utility
resulting from its violation ¬a∧b and/or a gain of utility from its fulfillment a∧b). According
to these utility components (losses and gains) they distinguish three types of desires (gain,
loss and mixed) then, to sum up these utilities additive functions are used. Furthermore, they
propose different procedures to induce, from a set of initial desires, the preference relation
of the agent on a set of worlds. Namely, in this approach a set of desires induces a set of
utility functions by adding up the utility losses and gains of the individual desires, and these
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distinguished utility functions induce a (qualitative) partial preference ordering on worlds.
They also consider how to introduce domain knowledge expressing which worlds are feasible
in this ordering process. In contrast with Boutiller [19] they also differentiate between factual
background knowledge, telling us which worlds are physically impossible, and contingent
knowledge, expressing which of the physical possible worlds can be the actual state of affairs.
Then, the agent should attempt to the best feasible world by performing a suitable action.
This work is not focussed on action theories but they use an action model inspired in [19]
to represent feasible worlds. Despite this is a valuable contribution to desire representation,
we found in this approach some limitations in relation to the desire representation we want
for our agent model. First, it does not include an explicit logical representation of the agent
rejections (negative preferences). Second, from qualitative expressions about desires, they
give as result a (qualitative) preference order over worlds. Then, this proposal does not
treat with different numerical levels of desires, useful for deciding, besides other factors, the
agent intentions. Finally, the authors recognize that the role of expressing desirability is
only a partial account of the use of desires in the agent decision process toward intentions
and present a more complex schema (involving beliefs and actions), as future work.

Later on, the authors extend in [97] their qualitative logical approach to desire represen-
tation, introducing the notion of hidden uncertainty of desires. The semantics of this logic
is defined by means of two ordering relations representing preference and normality as in
Boutilier’s logic QDT [19]. Desires are formalized to support a realistic interaction between
the concepts of preference and plausibility (or normality), both represented by a pre-order
relation over the sets of possible worlds. Their idea is to express desires with a suitable order
modality <nd where A <nd B means that, taking into account normality (expressed by an-
other order relation ≥N ), A is less desirable than B. This work considers that an ordinal-like
uncertainty is present in the notion of plausibility, whose corresponding pre-order may be
defined by the proximity of the current world to the set of most plausible (or normal) worlds.

Besides these approaches to preference representation, we observe that real-life problems
present positive and negative preferences. Relevant works on bipolar preference represen-
tation focuss on the fact that preferences over solutions or choices are often expressed in
two forms: positive and negative aspirations. On the one hand, an agent may express what
he considers unacceptable (to some degree) and on the other hand, it may express what it
considers desirable or satisfactory (to some level). The first kind of preferences are called
negative preferences and correspond to constraints that should be respected, while the sec-
ond type are called positive preferences and correspond to desirable states of the world for
the agent.

For instance, assume that we want to take a week of holidays and we are looking for
a tourist destination in the country. We may provide the tourism agent with two kinds
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of preferences. First, we specify the satisfactory slots, with different desire levels (e.g. we
strongly prefer mountains, moderately prefer small cities and we weakly like to make rafting),
these are positive preferences. Second, we describe unacceptable conditions, that are refused
in different degrees (e.g. we do not want to travel more than 1000 km), these are negative
preferences or rejections. Then, the agent is expected to find the best desirable solutions
(e.g. tourist destinations) among the feasible ones (i.e. not satisfying any negative desire).

This bipolar representation is supported by recent studies in cognitive psychology show-
ing that the distinction between positive and negative preferences makes sense. They are
processed separately in the brain, and are felt as different dimensions by people [26, 27]. Note
that in general there is no symmetry between positive and negative preference in the sense
that positive desires do not mirror what is not rejected. The idea of bipolar representation
of preferences has been considered in different works as the ones oriented towards qualitative
decision making based on ordinal rankings [51, 146]. Besides, Bistarelli et al. in [16] propose
a generalization of the soft constraint formalism, which is able to model problems with one
kind of preferences (constraints) allowing to handle positive preferences as well. Also, the
use of bipolar information (prioritized desires and rejections) in an argument based decision
framework can be seen in [122]. Particularly, Benferhat et al. [10, 11, 12] present a valuable
approach, a bipolar possibilistic logic framework for modeling preferences. As this approach
inspired or work on agent desire representation, we describe some of its fundamental aspects
on the following Subsection.

2.4.1 Bipolar representation of preferences

This bipolar approach to preferences is supported by the work by Benferhat et al. [10]
on modelling positive and negative information. They presented a framework based on
possibility theory where this distinction can be made in a graded way. In logical terms,
the two types of information —positive and negative— can be encoded by two types of
constraints expressed by necessity measures and other possibility functions. Particularly,
they applied this model to the representation and fusion of preferences, and also they show
how this bipolar information can be used to take optimal solutions. The description of the
bipolar representation of preferences in the possibilistic logic framework can be seen in detail
in [11, 12], we briefly outline the relevant features of their approach.

The syntactic specification of this bipolar representation of preferences is done introduc-
ing two different sets of constraints. These sets correspond to what the agent rejects and
what are its goals or desires, respectively:

- R = {R(φi) ≥ αi, i = 1, ..., n}, where φi is a propositional formula, αi ∈ [0, 1]
and reflects the agent rejection strength of φi. The higher αi is, the less acceptable are
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the solutions satisfying φi. R(φi) = 1 means that the agent strongly rejects φi, and no
solution where φi is true is tolerated by the agent. This rejections can be also encoded as
R = {(¬φi, αi), i = 1, ..., n} where (¬φi, αi) represent the constraint R(φi) ≥ αi and stands
for “if a solution w satisfies φi then it is tolerated at most to a degree 1− αi”.

It turns out that the set of rejections can be handled using the classical possibility and
necessity measures.

- G = {G(ψj) ≥ βj , j = 1, ...,m}, where ψj is a propositional formula, βj ∈ [0, 1] and
expresses the minimum level of satisfaction guaranteed to the agent, if ψj is true. Thus ψj
is supposed to encode a desire or a wish, βj expresses the minimal level of satisfaction which
is guaranteed for a solution where ψj is true. The larger βj is, the more satisfied is the agent
if ψj is true. G(ψj) = 1 means that the agent is fully satisfied if ψj is true. G may be also
denoted as G = {[ψj , βj ] : j = 1, ...,m}. Thus, [ψj , βj ] encodes the information G(ψj) ≥ βj .

This kind of positive desires (goals) cannot be directly handled by the classical possi-
bilistic logic machinery, as it is explained below.

Representing rejections in possibilistic logic.

Rejections can be represented, at semantical level, by a total pre-order on the set of
possible outcomes (interpretations). This pre-order can be encoded in possibility theory
using a possibility distribution over the set of worlds πR : W → [0, 1]. This possibility
function πR associated with a set of rejections R= {R(φi) ≥ αi, i = 1, ..., n}, is defined as:

πR(w) = 1−max{αi : w |= φi, R(φi) ≥ αi ∈ R}, with max{∅} = 0

Clearly, this definition can be viewed in terms of a necessity measure replacing φi by ¬φi
(if R(φi) = αi then N(¬φi) ≥ αi )

Representing positive desires

The positive desires can also be described in terms of a possibility distribution: πG :
W → [0, 1], where πG(w) ≥ πG(w′) means that w is more satisfactory for the agent than
w′. The meaning of πG(w) is different from πR(w), the first evaluates to what degree w is
satisfactory for the agent, while πR(w) evaluates to what extend w is acceptable.

The possibility degree πG associated with a set of positive goals G = {[ψj , βj ], j =
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1, ...,m} is:

πG(w) = max{βj : w |= ψj , [ψj , βj ] ∈ G}, with max{∅} = 0

The addition of positive goals in G can only lead to the increase of the satisfaction level
of w and this is dual to the behaviour of πR which monotonically decreases with respect to
the number of constraints in R.

The set of positive desires cannot be directly handled by standard possibilistic measures.
Constraints like G(ψj) ≥ βi are then represented using a function called guaranteed possi-
bilistic function, denoted by ∆, first presented by Dubois and Prade in [50] and afterwards,
used in [10] to represent bipolar information. The expression ∆(ψ) = b means that any
interpretation where ψ is true, has a satisfaction degree at least equal to b, then:

∆(ψ) = minw|=ψπG(w)

Hence, for the disjunction and conjunction ∆ behaves as follows :

• ∆(φ∨ψ) = min(∆(φ),∆(ψ)), so ∆ decreases with respect to disjunction. The semantic
for disjunctions goes here in an opposite way than in classical logic. This means
that φ ∨ ψ is guaranteed to be possible —∆(φ ∨ ψ) > 0— (i.e., because they are
observed, feasible, satisfactory, according to the problem) if and only if both φ and ψ

are guaranteed to be possible ∆(φ),∆(ψ) > 0.

• ∆(φ ∧ ψ) ≥ max(∆(φ),∆(ψ)) since the minimum πG over the worlds satisfying φ ∧ ψ
may be greater than the minima over the worlds satisfying φ and ψ. Applying the
maximal specifity principle on ∆, this inequality leads to the equality: ∆(φ ∧ ψ) =
max(∆(φ),∆(ψ))

Coherence relation between positive and negative preferences

Even if independently specified, negative and positive preferences must nevertheless be
in agreement with each other. The authors in [11, 12] proposed the following restriction
between them “a solution cannot be at the same time unacceptable and desired by the
same agent”. Let (R,G) be the positive and negative preferences of an agent. Intuitively
if R= {R(φi) ≥ 1, i = 1, ..., n} and G = {[ψj , 1], j = 1, ...,m} (with maximal rejection or
satisfaction degrees), then R and G are coherent if

∨
j=1,...,m

ψj `
∧

i=1,...,n

¬φi
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Namely, any solution satisfying at least one goal of G should not satisfy any formulae in
R. More generally any solution that is satisfactory to a degree α should be at least feasible
(tolerant) to a degree α.

From a semantic point of view, if πG and πR are the two possibility distributions repre-
senting respectively the agent positive and negative preferences. Then, πR and πR are said
to be coherent iff:

πG(w) ≤ πR(w), for all world w

Merging multiple agents preferences in a bipolar representation

Benferhat et al. in [11, 12] also treat the problem of merging multiagents preferences
from a semantic and a syntactic point of view. The result of the merging process will also
be a pair (R⊕R

, G⊕G
) where R⊕R

is the result of merging negative preferences expressed by
several agents, and G⊕G

is the result of merging the agents positive preferences. These two
merging steps are processed separately and generally use different operators (i.e. ⊕R and
⊕G).

Merging agents’ preferences can lead to conflicts. They discuss how to revise the set of
positive desires when it is not coherent with the negative ones (as the negative preferences
are considered strong constraints).

Finding the best solution according to bipolar preferences

The problem of computing the best solutions after merging negative and positive pref-
erences separately can be viewed as an optimization problem involving the sets R, G and
a set of integrity constraints F (representing domain knowledge). Different strategies are
presented to compute the solutions that do not violate integrity constraints, avoid all the
the negative preferences R and satisfy as many as possible agent’s positive preferences G.
Among the presented strategies we find tolerant solutions (satisfying R and F ), tolerant so-
lutions satisfying at least one important positive preference (e.g. positive preference having
the highest degree in G) and cardinality-based selection mode (maximizing the number of
respected rejections and maximizing the number of satisfied positive preferences).

In summary, the work by Benferhat et al. on bipolar representation of preferences
propose a separate treatment of positive and negative information under the form of two
sets of weighted logical formulae having different semantics. Both kinds of preferences are
encoded in the framework of possibility theory. The bipolar representation of preferences
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allows to easily define different selection modes to find the best solutions, according to the
agent preferences and domain knowledge (coded as integrity constraints).

This approach has indeed inspired us to model, in our g-BDI architecture, the agent
desires in a bipolar way (i.e. positive and negative) as it is shown in Chapter 6.

2.5 Graded Attitudes in Intentional Agent Architec-

tures

If we want that agent technologies increase their role in complex and real applications, the
complexity of the real-world environments where the agents interact, has to be considered.
Most of the environments are not completely accessible, non-deterministic and dynamic.
Moreover, the preferences or goals of agents (humans or not) interacting in the environment
may be expressed with different levels of intensity. This means that there is uncertainty
involved not only in the agent’s model of the world, but even there are different degrees
related to its pro-attitudes. In order to improve the agents performance, we consider essential
to take into account this uncertainty and graded attitudes in the agent’s theory, architecture
and implementation.

Focussing on intentional agents and specifically on BDI model of agents, the agent ar-
chitectures proposed so far mostly deal with two-valued information. We think that taking
into consideration graded information (related to the different attitudes) could improve the
agent’s performance. Even in AI a lot of work have been done related to uncertain beliefs
(e.g. see [79]) and to preference representation (see Section 2.4), in the context of intentional
agent architectures, we found there are a few works that partially address this issue and em-
phasize the importance of graded models. There are some approaches considering graded
information related to a particular attitude (i.e. belief, desire or intention), the relevant
features of some of them are presented bellow.

In the BDI model developed by Rao and Georgeff, they explicitly acknowledge that an
agent’s model of the world is incomplete by using a branching-time possible world logic to
model the beliefs, goals (desires) and intentions. For each situation they associate a set of
belief-, goal- and intention-accessible worlds; intuitively, those worlds that the agent believes
to be possible, desires to bring about, and commits to achieve, respectively. Multiple possible
world result from the agent lack of knowledge about the state of the world. Within each of
these possible worlds, the branching future represents the choice of actions available to the
agent. In a first proposal of the BDI model [123], they also considered the incompleteness
of the agent’s model of the world. However, they make no use of quantified information to
assess how much a particular world is possible. Neither they allow for desires and intentions
to be quantified.
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Afterwards, in [124] the authors extend the expressive power of BDI logic, by intro-
ducing subjective probabilities and subjective payoffs to model the process of deliberation.
Intuitively, an agent at each situation has a probability distribution on its belief-accessible
worlds. The agent then chooses sub-worlds of these belief-accessible worlds that it considers
are worth pursuing, and associates a payoff value to each path. Using a probability distribu-
tion on its belief-accessible worlds and the payoff value with each path in its goal-accessible
worlds, the agent determines the best plan(s) of action for different scenarios. This process
is called Possible World (PW) deliberation and is inspired by decision tree theory. The
result of this process is a set of the most desirable sub-worlds of the goal-accessible worlds.
These sub-worlds are the intention-accessible worlds that the agent commits to achieve. In
this work the similarity between the PW-deliberation on the one hand, and the decision tree
formalism on the other hand, is shown. We consider that this is an interesting approach,
although it has some shortcomings. The first one is that they introduce the concepts of
probability and payoff in the unified BDI logic framework thus, increasing its complexity.
Second, the semantics of the payoff function over the path formulae is not clear. We think
the payoff implicitly combines a kind of benefit of achieving some world with the cost of
the path. But, as its meaning is not clear, we consider that it may be difficult to determine
the function values, and sometimes may be unnatural. Besides, they don’t use any measure
degrees to represent the intentions in order to obtain an explicitly ordered set of possible
intentions as the results of the deliberation process. And finally, the functions they use in
the deliberation process are not neatly related to the BDI model.

Notably, Parsons and Giorgini [116] consider belief quantification by using Evidence
Theory. In their proposal, an agent is allowed to express its opinion on the reliability of
the agents it interacts with, and to revise its beliefs when they become inconsistent. The
paper combines previous authors’ works on the use of argumentation in BDI agents with
other approaches to belief revision and update. The model presented is an extension of
the multi-context specification of BDI agents developed in [115] to include degrees of belief.
In order to introduce the degrees of belief they translate every proposition in the belief
unit (which may contain nested modalities) into an argument with an empty set of grounds
and with an associated degree of belief expressed as a mass assignment in Dempster-Shafer
theory (i.e. B(Φ) becomes the argument: (B(Φ) : {} : α) where α is the belief degree).
Any propositions deduced from the belief base set will then accumulate grounds. The belief
revision process they used consists of redefining the degrees of credibility of propositions in
the light of incoming information. Finally, the authors set out the importance of quantifying
degrees in desires and intentions in a BDI agent model, but this is not covered by their work.

In the previous Section 2.4 we have revised different approaches to preference represen-
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tation and reasoning that may be applied to desire representation in a BDI architecture. In
the utilitarian logic of preference by Lang et al. [96] it is presented how a preference order
over worlds can result from qualitative agent desires.

They present a general scheme of how this preference order in addition to agent knowl-
edge (about feasible worlds, plans, etc.) can be used to decide the agent intentions. But
this global agent decision procedure, related to action theory is left as future work. We
remarked the importance of the bipolar representation of preferences due to Benferhat et
al. [11]. In this bipolar approach the representation of weighted positive and negative pref-
erences is formalized and we found this approach suitable to model the agent desires (both
positive and negative). The authors also propose some alternative ways to find the best
preferred solutions considering integrity constraints based on domain knowledge (feasible
worlds). But before applying some of the ideas exposed in the different approaches to pref-
erence representation in an intentional agent model, there are many problems to be solved.
For example, how to use uncertain domain knowledge and planning theory to find feasible
worlds? How to take into account, beside the agent preferences, the cost of plans and also
the possibility of plan failure, in deciding the agent intention? More importantly, how the
agent can use intentions to derive the best action to follow?

After deciding the agent intention, a problem related to how long an agent must main-
tain her commitment to it is known as intention reconsideration. There has been a certain
amount of work on the intention reconsideration problem, as for instance in [123] (see Sub-
section 2.2.4), where different commitment strategies were defined and in [157], where a
formal perspective is presented. More recently, Parsons et al. in [117] addressed the inten-
tion reconsideration in environments which are both complex and dynamic. Other works
deal with reasoning about intentions in uncertain domains, as the proposal of Schut et al
[142]. They present an efficient intention reconsideration for BDI agents that interact in
an uncertain environment in terms of dynamics, observability, and non-determinism. In
this approach they consider that the internal state of an agent consist of beliefs and in-
tentions: s = 〈Bel, Int〉. The agent beliefs are represented by a probability distribution
Bel : E → [0, 1] where E is the set of environment states. The agent set of intentions Int
is a set of environment variables. They assume that it is possible to assign values V (i) and
cost C(i) to the outcomes of intentions and they define the net value, Vnet, representing the
net value of the outcome of an intention i: Vnet = V (i) − C(i), i ∈ Int. They also express
how good a state is by defining a worth function: W : S → R, the value for each state
s is based on the net value of the intentions of the state. From this state representation,
they model the intention reconsideration by using the theory of Markov decision processes
for planning in partially observable stochastic domains (POMDP). They used a POMDP
approach because the optimality of the policy in this framework is based on the same three
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environment characteristics considered for the intention reconsideration strategy, namely:
dynamism, determinism and observability.

Notice that all the above mentioned proposals related to graded beliefs, weighted pref-
erences and intention reconsideration, model partial aspects of the uncertainty related to
mental notions involved in an intentional agent architecture.

On the other hand, argumentation is a promising approach for reasoning with incon-
sistent information, based on the construction and the comparison of arguments [52, 56].
These approaches make possible to assess the reasons (i.e. arguments) why a fact holds, and
to combine and compare these arguments in order to reach a conclusion. Various argument-
based frameworks have been developed in defeasible reasoning [52, 56] for generating and
evaluating arguments. Classically, argumentation has been mainly concerned with theoreti-
cal reasoning: reasoning about information attitudes such as knowledge and belief. Recently,
a number of attempts have been made to use argumentation to capture practical reasoning:
reasoning about what to do. This requires capturing arguments about pro-active attitudes,
such as desires and intentions. In the following Subsection we discuss some of these relevant
approaches.

2.5.1 Argumentation-based approaches to BDI agents

Some argument-based frameworks for practical reasoning are instantiations of Dung’s ab-
stract framework [52] (e.g. [3, 4]). Others are operational and grounded in logic program-
ming (e.g. [134, 131, 132]).

Notably, a complete framework for practical reasoning is presented by Rahwan and Am-
goud in [122]. This work is built on previous argumentation framework proposals for gener-
ating desires and plans [3, 4, 82, 91]. They provide a rich argumentation-based framework
for (i) generating consistent desires, and (ii) generating consistent plans for achieving these
desires. This is done through three distinct argumentation frameworks: one for arguing
about beliefs, one for arguing about what desires the agent should adopt, and one for ar-
guing about what plans to intend in order to achieve the agent’s desires. More specifically,
they refine and extend existing approaches by providing means for comparing arguments
based on decision-theoretic notions (i.e. utility). Thus, the worth of desires and the cost of
resources are integrated into the argumentation frameworks and taken into account when
comparing arguments.

Recently, Amgoud and Prade in [6] has proposed an argumentation-based approach to
formalize practical reasoning under uncertainty as a three steps process: 1) Deliberation
which amounts to generate desires to be achieved, 2) Means-end reasoning which consists
of generating compatible plans for achieving those desires and 3) Selecting the intentions to
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be pursued by the agent.

Another interesting argumentation approach to BDI agents is presented in [132]. In this
work, they introduce a framework where defeasible argumentation is used for warranting
agent’s beliefs, filtering desires, and selecting proper intentions according to a given policy.
In this framework, different types of agents can be defined and this decision will affect the
way in which desires are filtered. The contribution of their approach is to introduce a BDI
architecture that uses a concrete framework based on a working defeasible argumentation
system: Defeasible Logic Programming (DeLP) [60]. In DeLP, knowledge is represented
using facts, strict rules, and defeasible rules. A Defeasible Logic Program (de.l.p.) is a set
of facts, strict rules and defeasible rules. When required, P is denoted (Π,∆) distinguishing
the subset Π of facts and strict rules, and the subset ∆ of defeasible rules.

In this framework [132] the main input is the perception from the environment, which is
part of the set of the agent beliefs. Following [131], agent beliefs correspond to the semantics
of a defeasible logic program PB = (ΠB ,∆B). In ΠB two disjoint subsets will be distin-
guished: Φ of perceived beliefs that will be updated dynamically, and Σ of strict rules and
facts that will represent static knowledge, ΠB = Φ∪Σ. Then, besides the perceived beliefs,
the agent may use strict and defeasible rules from PB to obtain through an argumentation
process the set B of warranted beliefs.

For selecting from the set D of possible desires, those that are suitable to be brought
about, the agent uses its beliefs (representing the current situation) and a defeasible logic
program (ΠF ,∆F ) composed of filtering rules. The filtering rules represent reasons for and
against adopting desires. In other words, filtering rules eliminate those desires that cannot
be effected in the situation at hand. Different agent types can be obtained depending on
the chosen filtering criteria. Once the set of achievable desires is obtained (Dc), the agent
can adopt one of them as an intention.

The final stage of this agent behaviour loop involves the usage of a set of intention rules
to select the final set of intentions. The set of all applicable intention rules contains rules
whose heads represent applicable intentions achievable in the current situation. Depending
on the actual domain, there are many possible policies to be used. Then, using a suitable
intention policy the agent will determine the preferred rule. The current desire in the head of
this rule will be the selected intention. The existence of plans in order to satisfy a desire are
related to intention rules and also, to the notion of achievable desire, but are not explicitly
formalized.

This is a valuable argumentation-based proposal to BDI agents, with different argu-
mentation frameworks for beliefs, desires and intentions. It has as limitation that it has
been developed using bi-valued propositional formulae for representing belief, desires and
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intentions. A kind of uncertainty is represented by defeasible rules. As the Defeasible
Logic Programming (DeLP) has recently been extended to an argumentation framework
that includes the treatment of possibilistic uncertainty, named Possibilistic Defeasible Logic
Programming (PDeLP) [2], we think that by using PDeLP this approach can be extended
to a graded argumentation-based approach to BDI agents.

Finally, in the following Subsection we describe in some detail the most relevant char-
acteristics of the proposal due to Rahwan and Amgoud [122] because we found that this is
the argumentation-based proposal that is closest to our work.

Rahwan and Amgoud’s approach

We start by presenting the logical language used in this work, as well as the different data-
bases representing the agent mental states and some special rules used in them.

From a propositional language L the agent can distinguish the three following sets of
formulae: the set K which represents the agent knowledge, the set D which gathers all pos-
sible agent desires and the set RES which contains all the available resources in a system.
From these sets, two kinds of rules can be defined: desire-generation rules and planning rules.

- Desire-Generation Rule or a desire rule, is an expression of the form

ϕ1 ∧ ... ∧ ϕn ∧ ψ1 ∧ ...ψm ⇒ ψ where ϕi ∈ K and ψj , ψ ∈ D

The meaning of the rule is “if the agent believes ϕ1, ..., ϕn and desires ψ1, ..., ψm, then
the agent will desire ψ as well” and let

head(ϕ1 ∧ ... ∧ ϕn ∧ ψ1 ∧ ...ψm ⇒ ψ) = ψ

- Planning Rule is the basic building block for specifying plans and is an expression of
the form

ϕ1 ∧ ... ∧ ϕn ∧ r1 ∧ ...rm 7→ ϕ where ϕi, ϕ ∈ D and ∀rj ∈ RES

A planning rule expresses that “if ϕ1 ∧ ... ∧ ϕn are achieved and the resources r1 ∧ ...rm
are used, then ϕ is achieved.”

Let DGR and PR be the set of all possible desire generation rules and planning rules,
respectively.

For the different argumentation processes the agent is equipped with four data-bases:
〈Bb, Bd, Bp, R〉,1 where Bb base contains the agent beliefs, Bd its desire-generation rules, Bp

1B∗i and R∗ will denote the corresponding data-bases without degrees.
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its planning rules and R gathers all the agent resources.

• Bb = {(βi, bi), i = 1, ..., n} where βi ∈ K and bi ∈ [0, 1]. A pair (βi, bi) means that
the belief on βi is at least bi.

• Bd = {(dgri, wi), dgri ∈ DGR and wi ∈ R, i = 1, ...,m} where symbol wi denotes the
worth of the desire head(dgr).

• Bp = {pri, pri ∈ PR, i = 1, ..., l}

• R = {(ri, ci), i = 1, ..., n} where ri ∈ RES and ci ∈ R is the cost of consuming ri.

Arguing over beliefs is different from arguing over desires or intentions. A proposition
is believed because it is true and relevant. Desires, on the other hand, are adopted because
they are justified and achievable. A desire is justified because the world is in a particular
state that warrants its adoption. On the other hand, a desire is achievable if the agent
has a plan that achieves that desire. As a consequence of the different nature of beliefs
and desires, they are supported by two different types of arguments. For example, a belief
argument can be attacked by arguing that it is not consistent with observation, or because
there is a reason to believe the contrary. Arguments for desires, on the other hand, could
be attacked by demonstrating that the justification of that desire does not hold, or that the
plan intended for achieving it is itself not achievable.

To deal with the different nature of the arguments involved, the authors present three
distinct argumentation frameworks: one for reasoning about beliefs, another for arguing
about what desires are justified and should be pursued, and a third for arguing about the
best plan to intend in order to achieve these desires. The first framework for arguing about
beliefs is based on existing works on belief argumentation [52] and can be seen in [122], next
we describe the other argumentation schemas.

Arguing over desires

This proposal extends and refine the work by Amgoud and Kaci [4] considering more general
desire-generation rules in the sense that a desire may not only be generated from beliefs,
but it can also be generated from other desires.

In what follows, the functions BELIEFS(A), DESIRES(A) and CONC(A) return respec-
tively, for a given argument A, the beliefs used in A, the desires supported by A and the
conclusion of the argument A.

Let Bb and Bd the agent belief and desire bases, an Explanatory Argument is defined as
follows:
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• If ∃(⇒ ψ) ∈ B∗d then (⇒ ψ) is an explanatory argument (A) with:

BELIEFS(A)= ∅

DESIRES(A)= {ψ}

CONC(A) = ψ

• If B1, ..., Bn are belief arguments, and E1, ..., Em are explanatory arguments, and exists

CONC(B1) ∧ ... ∧ CONC(Bn) ∧ CONC(E1) ∧ ... ∧ CONC(Em)⇒ ψ ∈ B∗d

then B1, ..., Bn, E1, ..., Em ⇒ ψ is an explanatory argument (A) with:

BELIEFS(A)= SUPP (B1) ∪ ... ∪ SUPP (Bn) ∪BELIEFS(E1) ∪ ... ∪BELIEFS(Em)

DESIRES(A)= DESIRES(E1) ∪ ... ∪DESIRES(Em) ∪ {ψ}

CONC(A) = ψ

Where the support of a belief argument A = 〈H,h〉 denoted by SUPP (A), is a minimal
consistent set of belief formulae H that infers h.

TOP (A) = B1, ..., Bn, E1, ..., Em ⇒ ψ is the top rule of the argument.

Let Ad denote the set of all explanatory arguments that can be generated from 〈Bb, Bd〉
and A = Ad∪Ab. As with belief arguments, explanatory arguments may have different forces.
However, since explanatory arguments involve two kinds of information: beliefs and desires,
their strengths depend on both the quality of beliefs (using the notion of certainty level, i.e.
the minimum certainty level of the support formulae) and the importance (weight) of the
supported desire. Then, the pair (Level(A),Weight(A)) is used to define an order relation
over explanatory arguments. Since beliefs verify the validity and the feasibility of desires,
it is important that beliefs take precedence over desires. This is translated by the fact that
the certainty level of the argument is more important than the weight of the desire.

The notion of attack is then defined, an explanatory argument for some desire can be
defeated either by a belief argument (which undermines the truth of the underlying belief
justification), or by another explanatory argument (which undermines one of the existing
desires the new desire is based on).

The definition of acceptable explanatory arguments Acc(Ad) is based on the notion of
defense. An explanatory argument can be defended by either a belief argument or an
explanatory argument. Desires supported by acceptable explanatory arguments are justified
and hence the agent will pursue them (if they are achievable).

Arguing over plans

We have presented a framework for arguing about desires and producing a set of justified
desires. Among this set, the agent must decide which ones will be pursued and with which
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plan. The basic building block of a plan is the notion of partial plan, which corresponds to
a planning rule.

A complete plan (instrumental argument) is 〈G, d〉 such that d ∈ D and G is a finite tree
such that: the root of the tree is a partial plan for d; and a node has as many children as
the premise of the partial plan has. For each desire ϕi there is a child node representing a
partial plan toward this desire, and for each resource rj there is an empty partial plan. The
leaves of the tree are elementary partial plans (with null preconditions).

An instrumental argument may achieve one or several desires of different worth with a
certain cost. So the strength of that argument is “the benefit” or “utility” defined in this
approach as the difference between the worth of the desires and the cost of the plan. In
a previous work [4] the authors defined the strength of an instrumental argument only on
the basis of the weight of the corresponding desire and they did not account for the cost of
executing the plan.

Let A = 〈G, g〉 be an instrumental argument, the utility of A is defined as:

Utility(A) =
∑

di∈Des(G)

Worth(di)−
∑

ri∈Res(G)

Cost(ri)

The notion of conflict-free sets of instrumental arguments is defined requiring consistency
between each consistent set of agent beliefs and all the nodes in the instrumental argument
tree. Then, acceptable sets of instrumental arguments are defined as maximal conflict-free
sets. Finally, a desire g is achievable iff exists an acceptable set of instrumental arguments
S′ such that 〈G, g〉 ∈ S′

For an acceptable set of instrumental arguments S they define a global utility extending
the difference to the sum of worth of the desires and the sum of costs to all the plans in
S. This utility is used to construct a complete pre-ordering on the set of acceptable sets
of instrumental arguments. The basic idea is to prefer the set of consistent plans with a
maximal total utility.

This is more flexible than the frameworks presented in [3], where sets with maximal
number of desires are privileged, with no regard to their priority or the cost of different plans.
In order to be pursued, a desire should be both justified (i.e supported by an acceptable
explanatory argument) and also achievable. Such desires will form the intentions of the
agent.

Let I ⊆ D, I is an intention set iff:

1. ∀di ∈ I, di is justified.

2. ∃Sk acceptable set of instrumental arguments such that ∀di ∈ I, exists 〈Gi, di〉 ∈ Sk.
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3. ∀Sj 6= Sk satisfying condition 2, then Sk is preferred to Sj .

4. I is maximal for set inclusion among the subsets of D satisfying the above conditions.

The second condition ensures that the desires are achievable together. If there is more than
one intention set, a single one must be selected (e.g. at random) to become the agent’s
intention. This is a very complete argumentation-based approach to practical reasoning and
we will show in Chapter 14 that it is complementary to our work in different aspects.

2.6 Conclusions

We conclude with some observations that will help us to outline our Thesis work. Without
any doubt, the importance given to the use of multiagent technologies has increased in the
design and implementation of complex real systems. In order to achieve the full potential
of multiagent approaches there are some important challenges pointed in [102] for the next
future. Some of them are (1) working on many different theories, architectures, technologies
and infraestructures to specify, design, implement and manage agent based systems; (2)
creating tools, techniques and methodologies to support agent systems developers and (3)
establishing appropriate linkage with other branches of computes science and with other
disciplines, like the uncertainty community in AI. In these general directions we place our
research.

After a bibliographic review, we have noticed that there are interesting works dealing
with partial aspects of graded attitudes in intentional systems (e.g., uncertainty in beliefs,
graded or ordered desires, intention reconsideration in uncertain domains, etc), but we did
not find many works proposing a general model. This has encouraged us to work on the
extension of an agent intentional architecture to include graded attitudes.

Recently, Rahwan and Amgoud in [122] has presented an argumented-based approach
to practical reasoning including three argumentation frameworks for beliefs, desires and
plans. This is a valuable approach allowing to represent uncertain belief and worth related
to desires. In this work, however, the authors do not present strictly speaking a formal
system (in the sense of a logical system which is sound and complete with respect to an
intended semantics) to represent and reason with these graded attitudes according to a
suitable uncertainty model. We propose a complementary approach to practical reasoning,
based on a multi-context framework that includes different logics to deal with these formal
aspects and to include others, like some estimation on plan failure and more flexible rules
to derive intentions.

Because its aforementioned relevance, we have chosen to deal with the BDI architecture.
In particular, we have opted for a multi-context specification of the BDI model because
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this approach shortens the gap between specification and implementation, among other
advantages. Besides, to represent and reason about the agent positive and negative desires
in the g-BDI model we inspired our work in the bipolar model of preferences proposed by
Benferhat et al. in [12].



Logic is the anatomy of thought.

J. Locke

Chapter 3

Logical Background

In this Chapter, we include the review of some logic backgrounds necessary for our agent
model. First we revised the propositional Dynamic logic that allow us to represent and reason
about the agent actions. Then, some many-valued logic as the Gödel logic expanded with a
finite set of truth constants (G∆(C)) and the Rational Pavelka logic (RPL) are presented.
These logics will be used as the many-valued logic to reason about graded degrees in the
different attitudes. Finally the Rational Lukasiewicz logic (RLL) is revised, this logic will
be used in the agent intention formalization.

3.1 Propositional Dynamic logic

To define the PDL language, LDL, the propositional language L is thus extended by adding
to it action modalities of the form [α] where α is an action. More concretely, given a set Π0

of symbols representing elementary actions and the set L of basic formulae the set Π(L,Π0)
of plans (composite actions) is the following:

• Π0 ⊂ Π (elementary actions are plans)

• if α, β ∈ Π then α;β ∈ Π, (the concatenation of plans is also a plan)

• if α, β ∈ Π then α ∪ β ∈ Π (non-deterministic disjunction)

• if α ∈ Π then α∗ ∈ Π (iteration)

• If A ∈ L, then A? ∈ Π (test)

then formulae LDL is defined as follows:

55
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• if p ∈ V ar, then p ∈ LDL

• if ϕ ∈ LDL then ¬ϕ ∈ LDL

• if ϕ,ψ ∈ LDL then ϕ→ ψ ∈ LDL

• if α ∈ Π and ϕ ∈ LDL then [α]ϕ ∈ LDL.

The interpretation of [α]A is “after the execution of α, A is true”. We denote by `DL
the notion in proof in DL.

The semantics for the language LDL is defined, as usual in modal logics, using a Kripke
structure.

A standard Kripke model is a structure 〈W, {Rα : α ∈ Π} , e〉 where

• W is a non-empty set of possible worlds.

• Rα ⊆ W ×W , for each α ∈ Π. This relation represents transition over worlds by the
execution of action α.

• e : V × W → {0, 1} provides for each world a Boolean (two-valued) evaluation of
the propositional variables, that is, e(p, w) ∈ {0, 1} for each propositional variable
p ∈ V and each world w ∈W and the evaluation is extended to arbitrary formulae in
LDL using classical connectives and to formulae with action modalities —as [α]A, by
defining:

e([α]A,w) = min {e(A,w′) | (w,w′) ∈ Rα}

Notice that e([α]A,w) = 1 iff the evaluation of A is 1 in all the worlds w′ that may
be reached through the action α from w.

Then, a regular Kripke model is a standard Kripke model where the R relation also
verify:

• Rα;β = Rα ◦Rβ ,

• Rα∪β = Rα ∪Rβ ,

• Rα∗ = (Rα)∗ (ancestral relation) and

• Rϕ? = {(w,w) | e(ϕ,w) = 1}, ϕ ∈ L.
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The simple propositional dynamic logic PDL introduced above can be finitely axioma-
tized by the following system [104]:

• any axiomatization of propositional logic.

• [α] (φ→ ϕ)→ ([α]φ→ [α]ϕ)

• [ϕ?]φ↔ ϕ→ φ

• [α;β]φ↔ [α] [β]φ

• [α ∪ β]φ↔ [α]φ ∧ [β]φ

• [α∗]φ→ φ

• [α∗]φ→ [α] [α∗]φ

• [α∗] (φ→ [α]φ)→ (φ→ [α∗]φ)

• [α]φ↔ ¬ [α∗]¬φ

Rules: modus ponens (MP) and the Necessitation rule: from ϕ derive [α]ϕ.

3.2 G∆(C) and RPL Fuzzy Logics

Most of the many-valued systems related to fuzzy logic are those corresponding to t-norm
based fuzzy logics. They use the real interval [0, 1] as set of truth-values and their calculi
is defined by a conjunction & and an implication ⇒ interpreted respectively by a t-norm
∗ and its residuum ⇒ 1, and where negation is defined as ¬ϕ = ϕ → 0̄, with 0̄ being the
truth-constant for falsity. In the framework of these logics, called t-norm based fuzzy logics,
each (left continuous) t-norm ∗ uniquely determines a semantical (propositional) calculus
PC(*) over formulae defined in the usual way from a countable set of propositional variables,
connectives ∧, & and → and truth-constant 0̄. Evaluations of propositional variables are
mappings e assigning each propositional variable p a truth-value e(p) ∈ [0, 1], which extend
univocally to compound formulae as follows:

e(0̄) = 0

e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))

e(ϕ&ψ) = e(ϕ) ∗ e(ψ)

1Defined as x⇒ y = max {z ∈ [0, 1] | x ∗ z ≤ y}
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Note that, by definition of residuum, e(ϕ→ ψ) = 1 iff e(ϕ) ≤ e(ψ), in other words, the
implication → captures the ordering. Further connectives are defined as follows:

¬ϕ = ϕ→ 0̄

ϕ ∨ ψ = ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)

ϕ ≡ ψ = (ϕ→ ψ)&(ψ → ϕ)

From the above definitions: e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)) , ¬ϕ = e(ϕ) ⇒ 0 and e(ϕ ≡
ψ) = e(ϕ→ ψ) ∗ e(ψ → ϕ).

A formula ϕ is a said to be a 1-tautology of PC(*) if e(ϕ) = 1 for each evaluation e, and
will be denoted as |=∗ ϕ. The associated consequence relation is defined as usual: if T is
a theory (set of formulas), then T |=∗ ϕ whenever e(ϕ) = 1 for all evaluations e such that
e(ψ) = 1 for all ψ ∈ T . Two relevant examples of continuous T-norm fuzzy logic are Gödel
and Lukasiewicz logics defined by the following operations:

Gödel logic calculus:

x ∗G y = min(x, y)

x⇒G y =

{
1, if x ≤ y
y, otherwise

Lukasiewicz logic calculus:

x ∗L y = max(0, x+ y − 1)

x⇒L y =

{
1, if x ≤ y
1− x+ y, otherwise

Notice that in these two calculi the min operation and hence the connective ∧, is also
definable from ∗ and → as:

min(x, y) = x ∗ (x⇒ y)

If we denote by `L and `G the provability relations in Lukasiewicz and Gödel logic
respectively, the standard completeness hold, namely:

`L ϕ iff |=L ϕ

`G ϕ iff |=G ϕ

Both logics have been shown to be axiomatic extensions of Hájek’s Basic Fuzzy logic BL
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[78]. The following formulae are axioms of BL:

(A1) (ϕ→ ψ)→ ((ϕ→ χ)→ (ψ → χ))

(A2) (ϕ&ψ)→ ϕ

(A3) (ϕ&ψ)→ (ψ&ϕ)

(A4) (ϕ&(ϕ→ ψ)→ (ψ&(ψ → ϕ))

(A5a) (ϕ→ (ψ → χ)→ (ϕ&ψ)→ χ)

(A5b) (ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))

(A6) (ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(A7) (0̄→ ϕ)

The deduction rule of BL is modus ponens.

Particularly, Lukasiewicz logic is an extension of BL by the axiom:

(L) ¬¬ϕ→ ϕ (forcing the negation to be involutive)

and Gödel logic adds to BL axiomatic the following axiom:

(G) ϕ→ ϕ&ϕ (forcing the conjunction to be idempotent)

The above mentioned completeness for theorems extend to deductions from arbitrary the-
ories in case of Gödel logic and only to deductions from finite theories in case of Lukasiewicz
logic:

T `L ϕ iff T |=L ϕ, if T is finite

T `G ϕ iff T |=G ϕ

In some situations one might be also interested to explicitly represent and reason with
partial degrees of truth. One convenient way to allow for an explicit treatment of degrees
of truth is by introducing truth-constants into the language i.e. new constant symbols c̄
for suitable values c ∈ [0, 1] and stipulates that e(c̄) = c for all truth-evaluations e, then a
formula of the kind c̄→ ϕ becomes 1-true under any evaluation e whenever c ≤ e(ϕ).
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Rational Pavelka Logic (RPL) is the expansion of Lukasiewicz Logic by adding into the
language a truth-constant r̄ for each rational r ∈ [0, 1], together with a number of additional
axioms. The semantics is the same as Lukasiewicz logic, just expanding the evaluations e of
propositional variables in [0, 1] to truth-constants by requiring e(r̄) = r. Pavelka proved that
his logic is complete for arbitrary theories in a non-standard sense known as Pavelka-style
completeness. Namely, he defined the truth degree of a formula ϕ in a theory T as follows:

‖ϕ‖T = inf{e(ϕ) | e is a RPL model of T}

and defined a provability degree of ϕ over T as:

|ϕ|T = sup{r | T `RPL r →L ϕ}

and proved that ‖ϕ‖T = |ϕ|T

Hájek showed [78] that in order to set an axiomatic for this logic only was necessary to
add Lukasiewicz logic axioms these book-keeping axiom schemas:

r̄&s̄↔ r ∗L s

r̄ → s̄↔ r ⇒L s

On the other hand, Hájek also shows that Gödel logic can be expanded with a finite set
of truth constants together with a new unary connective ∆ (denoted G∆(C) logic) while
preserving the strong standard completeness. Namely, let C ⊆ [0, 1] a finite set containing
1 and 0, and introduce into the language a truth-constant r for each r ∈ C, together with
the so-called Baaz’s projection connective ∆. Truth-evaluations of Gödel logic are extended
in an analogous way to RPL as it regards to truth constants and adding the clause

e(∆(ϕ)) =

{
1, if e(ϕ) = 1
0, otherwise

The axioms and rules for the G∆(C) logic are those of Gödel logic plus the above book-
keeping axioms for constants in C and the following axioms and rules for ∆:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ
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(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

and the Necessitation rule for ∆: from ϕ derive ∆ϕ. Then, the following strong com-
pleteness result holds: for any theory T and formula ϕ,

T `G∆(C) ϕ iff T |=G∆(C) ϕ

3.2.1 Rational Lukasiewicz Logic

Rational  Lukasiewicz logic, RLL for short, introduced by Gerla in [67] to represent and ax-
iomatize the semantics of degrees of the intentions. This logic is an expansion of  Lukasiewicz
logic with a countable set of unary connectives {δn}n∈N, whose intended semantics is that
the truth-value of δnϕ is just the truth-value of ϕ divided by n. So in RLL one can express
divisions by natural numbers

The RLL language is an extension of Lukasiewicz Logic by adding into the language a
truth-constant r̄ for each rational r ∈ [0, 1]) and the unary connectives δn for division, i.e.
the language also includes the formulae δnΦ if Φ ∈ LL.

The following axioms defining the behavior of δn connectives, are added to the RPL
axiomatics:

(δn1) δnΦ⊕ n. . . ⊕δnΦ ≡L Φ

(δn2) δnΦ⊗ (δnΦ⊕ n−1. . . ⊕δnΦ)→L 0

As in  Lukasiewicz logic the standard completeness holds and also Pavelka-style complete-
ness holds for arbitrary theories [67].





Part II

The Graded BDI Agent Model





Chapter 4

The General Framework

4.1 Introduction

Several previous works have proposed theories and architectures to provide multiagent sys-
tems with a formal support. Among them, one of the most widely used is the BDI agent
architecture presented by Rao and Georgeff. We consider that an extension of this architec-
ture in order to incorporate degrees in the different attitudes, will not only make the model
semantics richer, but it will also help the agent to take better decisions. With that aim
we looked first at the “individual” aspect of agency, and decided to extend the BDI agent
architecture to represent and reason under uncertain beliefs and graded motivations. In this
Chapter we introduce a general model for graded BDI agents (g-BDI). This model is based
on a multi-context specification of agents and is able to represent graded mental attitudes.
In this sense, belief degrees will represent to what extent the agent believes a formula is true.
Degrees of positive or negative desire shall allow the agent to set different levels of prefer-
ence or rejection respectively. Intention degrees shall give also a preference measure but,
in this case, modeling the cost/benefit trade off of reaching an agent’s goal. Then, Agents
having different kinds of behavior shall be modelled on the basis of the representation and
interaction of these basic three attitudes.

In order to represent and reason about graded notions of beliefs, desires and intentions in
our graded BDI agent model, we decided to use the many-valued modal approach proposed
by Hájek et al. in [78]. Following this approach to reason about uncertainty in the different
mental contexts, respecting a particular uncertainty model (e.g. probabilities, necessities),
can be done in a very elegant way within a uniform and flexible logical framework.

In this Chapter we present the general aspects of this agent model as its multi-context
specification and its logical framework. Then, to complete the definition of this agent model
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the specification of the different components in the architecture (i.e., the different contexts
and bridge rules) are needed and will be presented in next Chapters 5, 6 and 7. The
architecture we present will serve as a blueprint to design different kinds of particular agents.

4.2 Multi-context specification

The architecture presented in this Chapter is an extension of the work of Parsons et.al. [115]
about multi-context BDI agents. Multi-context systems were introduced by Giunchiglia
et.al. [71] to allow different formal (logic) components to be defined and interrelated. These
systems and their applications to multiagent formalization were presented in Chapter 2.3.

The MCS specification of an agent contains three basic components: units or contexts,
logics, and bridge rules, which channel the propagation of consequences among theories.
Thus, an agent is defined as a group of interconnected units:

〈
{Ci}i∈N ,∆br

〉
, where each

context Ci ∈ {Ci}i∈N is the tuple Ci = 〈Li, Ai,∆i〉 where Li, Ai and ∆i are the language,
axioms, and inference rules respectively. They define the logic for the context and its basic
behaviour as constrained by the axioms. When a theory Ti ⊂ Li is associated with each
unit, the implementation of a particular agent is complete. ∆br can be understood as rules
of inference with premises and conclusions in different contexts, for instance:

C1 : ψ,C2 : ϕ
C3 : θ

means that if formula ψ is deduced in context C1 and formula ϕ is deduced in context C2

then formula θ is added to context C3.

The deduction mechanism of these systems is based on two kinds of inference rules,
internal rules ∆i inside each unit, and bridge rules ∆br outside. Internal rules allow to draw
consequences within a theory, while bridge rules allow to embed results from a theory into
another [68]. A multi-context system needs some kind of control strategy to synchronize
and coordinate both kinds of inferences (i..e. by internal rules and by bridge rules) and
also needs to avoid that a bridge rule executes more than once under the same premise
conditions.

We have mental contexts to represent beliefs (BC), desires (DC) and intentions (IC).
We also consider two functional contexts: for Planning (PC) and Communication (CC).
The Planner is in charge of finding plans to change the current world into another world,
where some desire is satisfied, and of computing the cost associated to the plans. The
Communication context is the agent door to the external world, receiving and sending
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Figure 4.1: Multi-context model of a graded BDI agent

messages. In summary, the BDI agent model is defined as:

Ag = ({BC,DC, IC, PC,CC},∆br)

The different context will be described in some detail in the following chapters.

In Figure 4.1 we present an schema of the graded BDI agent that illustrate our architec-
ture with a set of mental contexts (BC, DC and DC) and functional ones (PC and CC) and
some bridge rules ((1) to (6)) relating them.

4.3 Logical Framework: Many-valued modal approach

In the last two decades, the Artificial Intelligence community has undertaken the problem
of knowledge representation and reasoning under uncertain, incomplete and vague knowl-
edge. This was an important and necessary issue, in order to develop systems able to deal
with these kinds of information in real-domains. There are different approaches to model
and manage approximate reasoning. Among the most relevant ones, are the works based
on probabilistic models, Dempster-Shafer theory of evidence and possibility theory [100].
Considering uncertainty reasoning an important state of the art can be seen in [79].

Recently, Hájek et al. in e.g. [78] and Gottwald in [75] have developed an approach where
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uncertainty reasoning is dealt by defining suitable modal theories over suitable many-valued
logics. This proposal allows to use well-founded logical frameworks (as many-valued logics)
to represent different uncertainty models by adding the adequate axiomatics for each case.

Fuzzy logics and uncertainty theories play different roles that must be clarified. Fuzzy
logic is a logic of vague, imprecise notions and propositions, and is then, a logic of partial
degrees of truth. On the contrary, an uncertainty measure deals with crisp notions and
propositions (i.e. true or false), and is evaluated with the degree of belief on the truth of
the proposition. Fuzzy logics behave as a many-valued logic, whereas uncertainty or belief
theories can be related to some kinds of (two-valued) modal logics.

Next, we present the basic ideas proposed by Hájek et al. in [78]. We notice that these
ideas are expressed in terms of beliefs but they may be directly applied to other graded
mental attitudes (e.g. desires, intentions).

To consider the belief degree of a crisp proposition as the truth-degree of a fuzzy (modal)
proposition.

For instance, let us consider the case where belief degrees are modelled as probabilities.
Then, for each classical (two-valued) formula ϕ, we consider a modal formula Bϕ which is
interpreted as “ϕ is probable”. This modal formula Bϕ may be seen then as a fuzzy formula
which may be more or less true, depending on the probability of ϕ. In particular, we can
take as truth-value of Bϕ precisely the probability of ϕ. Moreover, using a many-valued
logic, we can express the governing axioms of probability theory as logical axioms involving
modal formulae of the kind Bϕ. But notice that such an approach has to clearly distinguish
between propositions like “(ψ is probable) and (ϕ is probable)” on the one hand and “(ψ∧ϕ)
is probable” on the other.

Another key concept pointed out in the works by Godo et. al [72, 73] related to reasoning
about belief functions using fuzzy logic is:

To represent belief measures as models of fuzzy theories.

Once we have defined the language of belief fuzzy propositions Bϕ (B being a modality
representing probable, necessary, desirable, etc.) where ϕ are crisp propositions, then we
can write theories about the Bϕ formulae over a particular fuzzy logic.

Then, the many-valued logic machinery can be used to reason about the modal formulae
Bϕ, which faithfully respect the uncertainty model chosen to represent the degrees of belief.
Therefore, in this kind of logical frameworks we shall have, besides the axioms of the many-
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valued logic, a set of axioms corresponding to the basic postulates of a particular uncertainty
theory.

The question derived from this approach is which kind of fuzzy logics can be used and
which aspects of uncertainty theories can be formalized. As for example, Hájek et al. in [77]
defined a propositional probability logic —Fuzzy Logic of Probability, as a theory over Ra-
tional Pavelka logic RPL (an extension of  Lukasiewicz’s infinitely-valued logic with rational
truth constants, described in Section 3.2). The very reason of selecting this logic was in first
place, the availability of well-founded results for this logic and secondly, the fact that the
main connectives of this logic are based on the arithmetic addition in [0,1], which is basically
what we need to deal with additive measures like probabilities. Besides,  Lukasiewicz logic
also allows to define the min and max connectives, so it was possible to define in [77] a
logic to reason about necessities and possibilities degrees. However, in order to get standard
completeness for a necessity-based logic, instead of Pavelka-style completeness, it may be
chosen the G∆(C) logic (see for details Section 3.2), because, the main connective is the min
conjunction which is vital to represent necessity measures, since necessity measures are min-
decomposable w.r.t. the conjunction ∧, and second, because G∆(C) enjoys completeness for
deductions from arbitrary theories.

On the other hand, considering the  Lukasiewicz logic as the underlying fuzzy logic con-
straints the uncertainty theories that can be defined over it. In particular, the lacking of
the product and division operations is an important obstacle to formalize many aspects of
uncertainty theories. Then, the same authors in [72] take advantage of a logic combining
 Lukasiewicz and Product logic connectives — LΠ Logic— to define a richer belief theory on
top of it, particularly they formalized the logic of conditional probability.

To give an insight of how these logical frameworks are built, we consider some features
of the Fuzzy Logic of Probability (FP) presented in [77]. They associate with each crisp
formula ψ a new fuzzy propositional variable P (ψ) meaning “ψ is probable” and which is
evaluated using its probability: e(Pψ) = P (ψ).

The syntax of FP-formulae are just RPL-formulae built from fuzzy propositional vari-
ables. Then the FP-logic language includes formulae of two types, namely:

1. non-modal: they are crisp formulae of L i.e., those built from propositional variables
p1, ..., pn using the classical binary connectives (¬, ∨).

2. modal: they are built from elementary modal formulae Pψ (also may be noted fψ),
were ψ are non-modal formulae, and the truth constants r̄ for each rational r ∈ [0, 1]
using the connectives of RPL (&,→L,↔L,∧,∨)

The axiomatic schema presented for the FP-logic is the following:
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• (RPL) Axioms of RPL. (Axioms of many-valued logic)
(can be seen in Section 3.2)

• (FP1) (Pφ, 1) for φ being an axiom of classical propositional logic.
Necessitation rule

• (FP2) (P (φ→ ψ)→L (Pφ→L Pψ), 1) for all φ, ψ
(K axiom for the P modality)

• (FP3) (P¬φ→L ¬L(Pφ), 1) for φ for all φ
(Axiom of probability)

• (FP4) (P (φ ∨ ψ)↔L ((Pφ→L P (φ ∧ ψ))→L Pψ), 1) for all φ, ψ
(Axiom of probability)

Axioms (FP1) and (FP2) guarantee the preservation of classical equivalence and the
monotonicity. (FP3) and (FP4) are direct translation of the well-known axiom of probabil-
ity, the first represents the relationship between the probability of one proposition and its
negation (i.e. P¬φ = 1− Pφ), and the second represents the finitely additive property (i.e.
P (φ ∨ ψ) = Pφ+ Pψ − P (φ ∧ ψ)).

In order to represent and reason about graded notions of beliefs, desires and intentions in
our graded BDI agent model, we decide to use the many-valued modal approach previously
presented. Following this approach to reason about uncertainty, respecting a particular
model (e.g. probabilities, necessities), can be done in a very elegant way within a uniform
and flexible logical framework.

The matter is to select the suitable many-valued logic that equip us with the necessary
connectives as to represent the selected uncertainty measure. In this way, the most suitable
many-valued logic with well-founded results, may be used as the logic basement for the
uncertainty theory we want to model. Furthermore, the logic machinery of this many-logic
can be used to reason about the uncertainty measure.

In our g-BDI model, for the probabilistic model of the belief context and for the desire
and intention contexts, we choose as the many-valued logic the infinite-valued  Lukasiewicz
logic.1 But another selection of many-valued logics may be done for each unit according
to the uncertainty measure modelled in each case. For instance, we use Gödel logic for the
necessity approach to the BC because the main connective is the min conjunction which

1The reason of using this many-valued logic is that its main connectives are based on the arithmetic
addition in the unit interval [0, 1], which is what is needed to deal with additive measures like probabilities.
Besides,  Lukasiewicz logic has also the min conjunction and max disjunction as definable connectives, so it
also allows to define a logic to reason about degrees of necessity and possibility.
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is fundamental to represent necessity measures, and also because G∆(C) logic presents
completeness for deductions from arbitrary theories.

Therefore, in this kind of logical frameworks we shall have, besides the axioms of many-
valued logic (e.g  Lukasiewicz or Gödel logics), a set of axioms corresponding to the basic
postulates of a particular uncertainty theory. Hence, in this approach, reasoning about un-
certainty (e.g. probabilities, necessities) can be done in a very elegant way within an uniform
and flexible logical framework.

This many-valued logical framework is used as the general logical framework to represent
and reason about the different mental graded attitudes in the g-BDI agent model, as will be
seen in Chapters 5 and 6.





So far as the laws of mathematics refer

to reality, they are not certain. And so

far as they are certain, they do not

refer to reality.

A. Einstein

Chapter 5

The Belief Context (BC)

5.1 Introduction

The purpose of this context is to model the agent’s beliefs about the environment, these
beliefs may be uncertain. In the last years, different models of approximate reasoning
have been proposed to represent and reason with this kind of knowledge [79]. Among the
main approaches to uncertainty we can mention the probabilistic, possibilistic and evidential
models.

In the BC we represent the agent uncertain knowledge about the world where she lives.
We need quantitative formulae to express, for instance, that the belief degree (e.g. prob-
ability, necessity) of a formula is greater or equal than a certain value. Also, qualitative
formulae are needed to represent comparative statements expressing that the belief in some
formula is greater than the belief in another one. To represent these beliefs in the Belief
context we use fuzzy modal formulae, following the logical framework presented in Section
4.3.

Since the agent needs to reason about her possible actions and the environment trans-
formations they cause, they must be part of any situated agent’s beliefs set. To represent
this knowledge related to action execution, we use Dynamic Propositional logic (PDL) as
the basic propositional logic (described in Section 3.1). PDL has been proposed to model
agent’s actions in [104] and [140].

We consider two particular approaches to uncertainty for the Belief Context: BCnec

corresponding to a necessity-valued logic and BCprob using a probability-valued logic. For
each logic, a modal language LBC is defined over a propositional dynamic language to reason
about the belief on dynamic propositions. Then, our logics BCnec and BCprob are built as
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suitable theories over suitable fuzzy modal logics with truth-constants. Particularly, the
necessity logic for the BC (BCnec) is defined as a theory over G∆(C) whereas the proba-
bilistic logic for BC (BCprob) is formalized as a theory in Rational Pavelka logic (RPL). The
description of both fuzzy logics, G∆(C) and RPL, can be seen in Chapter 3. Furthermore,
a sound and complete axiomatics for BCnec and BCprob is presented.

Other belief models might be used as well by selecting an appropriate fuzzy logic and
adding the corresponding axioms.

5.2 Belief context logics

To reason about the credibility of bi-valued (crisp) propositions, we define a language for
belief representation, following Godo et al.’s proposal [72, 73] based on a many-valued logic
(described in Section 4.3).

In order to define the basic crisp language, we start from a classical propositional language
L, defined upon a countable set of propositional variables V ar and connectives (¬,→), and
extend it to represent actions. We take advantage of PDL which is suitable to model agent’s
actions (described in Section 3.1). These actions and the transformations caused by their
execution must be part of any situated agent’s beliefs set.

The propositional language L is thus extended to LDL, by adding to it action modalities
of the form [α] where α is an action. The set of composite actions or plans Π are built from
the language L and a given set Π0 of symbols representing elementary actions. Then, LDL
includes formulae like [α]ϕ, where α ∈ Π and ϕ ∈ L. The definition of the plan set Π and
the propositional dynamic language LDL can be seen in Section 3.1.

This language LDL is the basic bi-valued (crisp) language to define a fuzzy modal lan-
guage capable to represent the uncertainty of the belief context. Once we build a belief
fuzzy proposition Bϕ (B being a modality standing for probable, necessary, believable, etc.)
per each crisp proposition ϕ, then one can try to write theories about formulae of the form
Bϕ over a particular fuzzy logic, including, as axioms, formulae corresponding to the basic
postulates of a particular uncertainty theory. In this way, models (in the sense of many-
valued logic) of the theories about formulae of the form Bϕ become uncertainty measures
of a particular type over the crisp formulae ϕs.

Formulae of BC are of two types:

• Crisp (non B-modal): they are the (crisp) formulae of LDL, built in the usual way,
thus, if ϕ ∈ LDL then ϕ ∈ LBC .

• B-Modal: they are built from elementary modal formulae Bϕ, where ϕ is crisp, and
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truth constants r, for each rational r ∈ [0, 1], using the connectives of the chosen fuzzy
logic.

Now, in order to represent and reason about the uncertainty of dynamic formulae we
need to introduce appropriate measures for this purpose. Necessity and probability measures
are two outstanding plausibility measures [79].

Given a Boolean algebra F of subsets of W, µ : F → [0, 1] is a plausibility measure if the
following holds:

• µ(∅) = 0

• µ(W ) = 1

• If X,Y ∈ F and X ⊆ Y , then µ(X) ≤ µ(Y )

A plausibility measure µ is a

1. necessity measure if in addition satisfies:

- µ(X ∩ Y ) = min(µ(X), µ(Y ))

2. (finitely additive) probability if it satisfies:

- µ(X ∪ Y ) = µ(X) + µ(Y ), when X ∩ Y = ∅, for all X,Y ⊆ F

We define next two approaches for the Belief Context: BCnec corresponding to a necessity-
valued logic and BCprob using a probability-valued approach. For each logic, a modal lan-
guage LBC is defined over the language LDL to reason about the belief on crisp dynamic
propositions. To do so, we extend the crisp language LDL with a fuzzy unary modal oper-
ator B. If ϕ is a proposition in LDL, the intended meaning of Bϕ is “ϕ is certain” in one
case and “ϕ is probable” in the other. Then, our logics BCnec and BCprob are built over
the set LDL of DL-formulae, as theories over suitable fuzzy logics with truth-constants.

Now, the question is which kind of fuzzy logics can we use and which (aspects of)
uncertainty theories can we formalize. The very reason of using Rational Pavelka logic
(RPL) for a probabilistic model as in [72] is, besides the availability of well-founded results
for such a logic, the fact that its main connectives are those of of  Lukasiewicz’s logic that
are based on the arithmetic addition in the unit interval [0, 1], which is obviously what we
basically need to deal with additive measures like probabilities. Also, we have the Pavelka
style completeness for this logic, that does not need finite theories, which fits our needs when
proving completeness for the BCprob logic.

For a necessity model of uncertainty, the  Lukasiewicz’s logic also has the min conjunction
and max disjunction as definable connectives, and it is not difficult to also define a logic to
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reason about necessity or possibility degrees. However, in order to get standard completeness
for our necessity-based logic, instead of Pavelka-style completeness, we chose the G∆(C)
logic, because, first the main connective is the min conjunction which is vital to represent
necessity measures, since necessity measures are min-decomposable w.r.t. the conjunction
∧ and second, because G∆(C) enjoys completeness for deductions from arbitrary theories
that we can extend to our logic BCnec.

Therefore, the necessity logic for the BC will be defined as a theory over G∆(C) and
will be denoted BCnec, whereas the probabilistic logic for BC will be defined as a theory in
Rational Pavelka logic RPL and will be denoted BCprob.

5.3 The BCnec Logic

We define a fuzzy modal language over the DL-formulae to reason about the necessity degree
of dynamic formulae. In this case, we chose as many-valued logic: G∆(C), i.e. Gödel logic
expanded with the ∆ operator and finitely many truth-constants from some finite C ⊂ [0, 1]
[78].

The language of BCnec, LBCn, is built over the Propositional Dynamic language LDL.
Then, formulae of LBCn are of two types:

a) PDL formulas: if ϕ ∈ LDL then Bϕ ∈ LBC .

b) Necessity modal formulas, or B-formulas: built from the atomic modal formulas Bϕ
with ϕ ∈ LDL using  Lukasiewicz logic connectives and truth-constants r, for each
rational r ∈ [0, 1], as follows:

– If ϕ ∈ LDL then Bϕ ∈ LBCn

– If r ∈ C then r ∈ LBCn

– If Φ ∈ LBCn then ∆(Φ) ∈ LBCn (where ∆ represents the unary Baaz projection
connective, described in Section 3.2).

– If Φ,Ψ ∈ LBCn then Φ ∧G Ψ ∈ LBCn and Φ→G Ψ ∈ LBCn (where ∧G and →G

correspond respectively to the conjunction and implication of G∆(C) logic).

Other G∆(C) logic connectives are definable from ∧G, →G, and 0:

ϕ∨Gψ is ((ϕ→G ψ)→G ψ)∧G((ψ →G ϕ)→G ϕ)), ϕ ≡G ψ is (ϕ→G ψ)∧G(ψ →G ϕ),
and ¬Gϕ is ϕ→G 0.

Since in Gödel logic a formula Φ →G Ψ is 1-true iff the truth value of Ψ is greater or
equal to that of Φ, modal formulae of the type r →G Bϕ (where ϕ ∈ LDL) express that
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the necessity of ϕ is at least r (quantitative formulae). By means of formulae of the form
Bψ →G Bϕ comparison of degrees may be represented (qualitative formulae).

In this context, the agent’s beliefs will be expressed by a theory TB (a set of B-formulae)
containing quantitative and qualitative expressions.

BCnec semantics

The semantics for the language LBCn is given by necessity Kripke-like structures of the form
Mn = 〈W, {Rα : α ∈ Π} , e, µ〉, where 〈W, {Rα : α ∈ Π} , e〉 is regular Kripke model of PDL
(for details the reader is refered to Section 3.1) and µ : F → [0, 1] is a necessity measure
on a Boolean algebra F ⊆ 2W such that for each ϕ ∈ LDL, the set {w | e(ϕ,w) = 1} is
µ-measurable [78].

The truth evaluation e(w,ϕ) of a DL-formula ϕ is defined (either 0 or 1) as described
in previous Section 3.1. Then e is extended to B-formulae by means of G∆(C) logic truth-
functions and the necessity interpretation of belief, as follows:

- e(Bϕ,w) = µ({w′ ∈W | e(ϕ,w′) = 1}), for each crisp ϕ

- e(r, w) = r, for all r ∈ C

- e(Φ ∧G Ψ, w) = min(e(Φ, w), e(Ψ, w))

- e(Φ→G Ψ, w) =

{
1, if e(Φ, w) ≤ e(Ψ, w)
e(Ψ, w), otherwise

- e(∆(ϕ), w) =

{
1, if e(ϕ,w) = 1
0, otherwise

The truth-degree of a B-formula Φ in a Necessity Kripke structure Mn is defined as:

‖Φ‖Mn
= inf
w∈W

e(Φ, w)

Particularly, for a Bϕ formula (with ϕ crisp) the following holds:

‖Bϕ‖Mn
= µ({w′ ∈W | e(ϕ,w′) = 1})

Models of BCnec are M structures such that ‖Φ‖M = 1 for each Φ ∈ BCnec. If
T ⊆ LBCn, we will write T |=BCnec

Φ when ‖Φ‖M = 1 for each M model of BCnec ∪ T .
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A BCnec structure M is a model of T if ‖Ψ‖M = 1 for each Ψ ∈ T . If T is a set of
B-formulae, T ⊆ LBCn one defines the truth-degree of a B-formulae Φ over T as the value

‖Φ‖T = inf{‖Φ‖M |M is a model of T }

BCnec Axioms and rules

The axioms and rules for BCnec are set in layers according to the nature of the language
LBCn and the particular uncertainty model chosen. Namely, we need axioms for the DL-
formulae, for the B-formulae and to model the behavior of B-formulae respecting the neces-
sity model. Then, they are defined in the following way:

- Axioms of Propositional Dynamic logic for DL-formulae (see Section 3.1).

- Axioms for G∆(C) logic for B-formulae (see Section 3.2).

- Necessity Axioms (where ϕ and ψ are DL-formulae)

(a) B(ϕ→ ψ)→G (Bϕ→G Bψ)

(b) B(ϕ ∧ ψ) ≡G Bϕ ∧G Bψ

(c) ¬GB⊥

Deduction rules for BCnec are: Modus Ponens (both for → of DL and for →G of RPL),
necessitation for PDL formulas (from ϕ derive [α]ϕ for each α ∈ Π) and necessitation for
the modality B (from ϕ derive Bϕ).

The notion of proof within BCnec is defined as usual from the above axioms and rules
and will be denoted as `BCnec .

BCnec Soundness and Completeness

We basically follow the proof schema presented in [47] for Graded Dynamic Deontic logics
which, in turn, is based on the proof of Theorem 8.4.9 in [78], with some adaptation. The
idea is that a B-modal theory T (consisting of B-formulae) can be represented as a theory
T ∗ over the propositional logic G∆(C).

For each modal formula Bϕ we introduce a propositional variable pϕ. Then, we define
a mapping ∗ as follows:

- (Bϕ)∗ = pϕ,

- (r)∗ = r, for each rational r ∈ [0, 1],
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- (Φ ∧G Ψ)∗ = Φ∗ ∧G Ψ∗

- (Φ→G Ψ)∗ = Φ∗ →G Ψ∗.

- (∆Φ)∗ = ∆Φ∗

If T is a set of B-formulae, let T ∗ be the following set of G∆(C) formulae: T ∗ = {Φ∗ | Φ ∈
T } ∪ {pϕ, for each ϕ : `DL ϕ} ∪ {ψ∗, for each Necessity Axiom ψ}.

Lemma 1 If T is a B-theory and Φ is a B-formula, then

T `BCnec
Φ iff T ∗ `G∆(C) Φ∗

Proof: Assume that T ∗ `G∆(C) Φ∗. Let α∗1, . . . , α
∗
n be a G∆(C)-proof of Φ∗ in T ∗. Then,

that sequence can be converted into a BCnec-proof of Φ in T by adding for each formula
of the form pψ that occurs in α∗1, . . . , α

∗
n, a proof of ψ in PDL and then applying the rule

of necessitation for B-formulae. Conversely, assume T `BCnec
Φ. Then, a G∆(C)-proof of

Φ∗ in T ∗ can be obtained by taking the translation of the formulae of one PDL-proof of Φ
in T , once the DL-formulae are deleted. Use the fact that every DL-formula provable in a
B-theory is a PDL-theorem (see [47]).

�

Lemma 2 (Soundness) For every B-theory T over BCnec and every B-formula Φ,

T `BCnec
Φ implies T |=BCnec

Φ

Proof: It follows from the fact that the Necessity Axioms are 1-true in every Necessity
Kripke structure. �

Theorem 3 (Completeness) For every B-theory T over BCnec and every B-formula Φ,

T |=BCnec
Φ implies T `BCnec

Φ

Proof: By Lemma 2 and the Completeness Theorem of the G∆(C) logic it is enough to
prove that

T |=BCnec
Φ implies T ∗ |=G∆(C) Φ∗

Assume T ∗ 6|=G∆(C) Φ∗ then, there is a model E of T ∗, with evaluation v such that v(φ∗) < 1.
We will show that there is a Mv model of T that is not a model of φ.

Let U = 〈W,ρ, e〉 be a Universal model of PDL. These models where introduced in [94]
and satisfy the following properties:
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- U is a regular Kripke model

- For every formula φ in PDL, φ is valid in U if and only if φ is a theorem of PDL.

- Every regular Kripke model of PDL, can be isomorphically embedded in U .

Let us denote by Xϕ the set {w ∈W | e(w,ϕ) = 1} and consider now the following Boolean
subalgebra F ⊆ 2W :

F = {Xϕ : ϕ is a DL-formula}

We define a function µ : F → [0, 1] as follows: µ(Xϕ) = v(pϕ), then it can be shown (see
[47]) the following items:

(i) µ is well defined and is a necessity measure on F .

To prove that µ is a well defined function is necessary to show that if Xϕ = Xψ

then v(pϕ) = v(pψ) and this is a consequence of the second property of the Universal
models of DL. On the other hand, to prove that µ is a necessity measure, the different
properties corresponding to those measures, i.e. µ(∅) = 0, µ(W ) = 1 and µ(Xϕ∩Yψ) =
min(µ(Xϕ), µ(Yψ)), are shown to be satisfied.

(ii) For the structure Mv = 〈W,ρ, e, µ〉 and for every B-formula Φ,

‖Φ‖Mv = v(Φ∗).

For this, it is enough to show that for every DL-formula ϕ, ‖Bϕ‖Mv = v(pϕ). It is
easy to check by induction on the complexity of the B-formula and by definition of µ.

The previous items have just proved that Mv is a necessity Kripke model of T and ‖Φ‖Mv
=

v(Φ∗) < 1. This concludes the proof. �

5.4 The BCprob Logic

Now, we define a fuzzy modal language over LDL to reason about the probability of dynamic
propositions in a similar way than we defined LBCn. The language of BCprob, LBCp, is built
from propositional variables of the form Bϕ for each ϕ ∈ LDL. If ϕ is a formula in LDL the
intended meaning of Bϕ is “ϕ is probable”.

Formulas of LBCp are therefore of two types:

a) PDL formulas, i.e. those of LDL
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b) Probabilistic modal formulas, or B-formulas: built from the atomic modal formulas
Bϕ with ϕ ∈ LDL using  Lukasiewicz logic connectives and truth-constants r, for each
rational r ∈ [0, 1], as follows:

– If ϕ ∈ LDL then Bϕ ∈ LBCp
– If r ∈ Q ∩ [0, 1] then r ∈ LBCp
– If Φ,Ψ ∈ LBCp then Φ →L Ψ ∈ LBCp and Φ&Ψ ∈ LBCp (where & and →L

correspond to the conjunction and implication of  Lukasiewicz logic)

Other  Lukasiewicz logic connectives for the modal formulae can be defined from &,
→L and 0: ¬LΦ is defined as Φ→L 0, Φ∧Ψ as Φ&(Φ→L Ψ), Φ∨Ψ as ¬L(¬LΦ∧¬LΨ)
and Φ ≡L Ψ as (Φ→L Ψ)&(Ψ→L Φ).

Since in this logic a formula Φ→L Ψ is 1-true iff the truth value of Ψ is greater or equal
to that of Φ, modal formulae of the type r →L Bϕ express that the probability of ϕ is at
least r. Formulae of the type r →L Ψ will be denoted as (Ψ, r). Similarly, a formula like
Bϕ →L Bψ expresses that the probability of ψ is greater or equal than the probability of
ϕ.

In this context, the agent’s beliefs will be expressed by a theory TB (a set of B-formulae)
containing quantitative and qualitative expressions.

BCprob Semantics

In a similar way as we did for BCnec semantics, we define a BC probabilistic Kripke-like
structure of the form Mp = 〈W, {Rα : α ∈ Π} , e, µ〉, where 〈W, {Rα : α ∈ Π} , e〉 is regular
Kripke model of PDL and µ : F → [0, 1] is a finitely additive probability measure on a
Boolean algebra F ⊆ 2W such that for each ϕ ∈ LDL, the set {w ∈W | e(ϕ,w) = 1} is
µ-measurable. The evaluation e is extended to B-modal formulas by means of  Lukasiewicz
logic truth-functions and the probabilistic interpretation of the atomic modal formulas:

- e(Bϕ,w) = µ({w′ ∈W | e(ϕ,w′) = 1})

- e(r, w) = r, for all r ∈ Q ∩ [0, 1]

- e(Φ&Ψ, w) = max(e(Φ, w) + e(Ψ, w)− 1, 0)

- e(Φ→L Ψ, w) = min(1− e(Φ, w) + e(Ψ, w), 1)

Finally, the truth-degree of a B-formula Φ in a probabilistic Kripke structure Mp is defined
as

‖Φ‖Mp
= inf{e(Φ, w) | w ∈W}
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Models of BCprob are M structures such that ‖Φ‖M = 1 for each Φ ∈ BCprob. If
T ⊆ LBCp, we will write T |=BCp Φ when ‖Φ‖M = 1 for each M model of BCprob ∪ T .

Now, let T ⊂ LBCp be a theory (a set of B-formulas). A BCprob structure M is a model
of T if ‖Ψ‖M = 1 for each Ψ ∈ T . Then, one defines the truth-degree of a B-formula Φ over
a theory T as the value

‖Φ‖T = inf{‖Φ‖M |M is a model of T }

BCprob Axioms and rules

In a similar way than in BCnec, the axioms and rules for BCprob are built in layers in
the following way:

- Axioms of propositional Dynamic logic for PDL-formulas (see Section 3.1).

- Axioms for Rational Pavelka logic RPL for B-formulas (see Section 3.2).

- Probabilistic Axioms:

(a) B(ϕ→ ψ)→L (Bϕ→L Bψ)

(b) B(ϕ ∨ ψ) ≡L Bϕ⊕ (Bψ 	B(ϕ ∧ ψ))

(c) ¬LB(⊥)

where ϕ⊕ ψ is a shorthand for ¬Lϕ→L ψ and ψ 	 ϕ is a shorthand for ¬L(ϕ→L ψ).1

Deduction rules for BCprop are: Modus Ponens (both for → of DL and for →L of RPL),
necessitation for PDL formulas (from ϕ derive [α]ϕ for each α ∈ Π) and necessitation for
the modality B (from ϕ derive Bϕ).

The notion of proof within BCprob is defined as usual from the above axioms and rules
and will be denoted as `BCprob

. Given a set of formulae T ∪Φ ⊂ LBCp, we define a provability
degree of φ over T as

|Φ|T = sup{r | T `BCprob
r →L Φ}

BCprob Soundness and Completeness

It is easy to check that the above defined BCprob is sound with respect to the class of
Probabilistic Kripke structures.

1Note that in  Lukasiewicz logic (x⇒L 0)⇒L y = min(1, x+ y) and (x⇒L y)⇒L 0 = max(0, x− y)
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Lemma 4 (Soundness) For every B-theory T over BCprob and every B-formula Φ,

T `BCprob
Φ implies T |=RPL Φ

Proof: It follows from the fact that the Probability Axioms are 1-true in every Probability
Kripke structure (cf. [78, Lemma 8.4.5]). �

Although we cannot apply the same technique used for BCnec to get a completeness
theorem like Theorem 3 since RPL is not strong complete for arbitrary theories, it can be
proved that the Pavelka-style completeness of RPL (see Section 3.2) extends to BCprob by
easily adapting the proof of Theorem 8.4.9 in [78] for the logic FP (RPL), a probability logic
over classical propositional logic, to our case of a probability logic over PDL, making use of
the of notion universal model for PDL. We therefore omit the proof.

Theorem 5 (Pavelka completeness of BCprob ) For every B-theory T over BCprob and
every B-formula φ, we have the following equality:

‖Φ‖T = |Φ|T .

Notice that the above completeness result implies in particular that T |=BCprob
Φ iff

sup{r | T `BCprob
r →L Φ} = 1.

5.5 Conclusions

We have presented two formalizations for the BC context following a schema based on a
fuzzy-modal approach. In this way, we have shown that different uncertainty models may
be represented using an appropriate many-valued logic and a set of axioms according to the
chosen uncertainty model. The fuzzy modal approach used for belief representation provides
us a solid logical background including soundness and completeness results. Preliminary
approaches to the belief context in the g-BDI agent model can be seen in [29, 30, 31].

Comparing our BC logics BCnec and BCprob to Rao and Georgeff’s BDI logic, two com-
ments are in order. First of all, our approach allows us to reason about (two different notions
of) graded beliefs, while the classical approach does not. A second comment, abstracting
from the gradedness of our logics, is about comparing the axioms for the chosen uncertainty
models, respectively necessity and probability axioms the axiomatics presented for BCnec
and BCprob with the one proposed by Rao and Georgeff for the beliefs in his BDI logic, i.e.,
KD45 axioms [123]. In both proposals for BC axioms we are also including K and D axioms,
but axioms related to introspection (i.e., axioms 4 and 5) are not considered because the
definition of BC language does not allow nested modalities. Even though formulae with the
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nested modalities e.g, B(Bϕ), are not allowed in our BC language because Bϕ is a fuzzy
formula and we only apply the B-modality over two-valued (crisp) ones, we could partially
overcome this shortcoming by using for instance the ∆ operator. This approach would be-
come indeed valuable in a multi-agent framework where an agent needs to represent the
beliefs she has about other agents and is described in Chapter 8.

In the next Chapter we describe the other two mental contexts of the g-BDI agent model
related to the agent preferences. The first one, the Desire context (DC) is in charge of
dealing with the ideal agent preferences, both positive and negative. The second one, the
intention context (IC) represents the agent intentions which are the desires the agent decides
to follow after analyzing the cost/benefit relation associated with a plan of actions to achieve
them.



All you have to decide is what to do

with the time that has been given to

you.

J.R.R. Tolkien

Chapter 6

Desire and Intention Contexts

6.1 Introduction

In this chapter we present the contexts of the g-BDI agent model in charge of dealing
with the agent’s preferences: the Desire and Intention contexts. As we have mentioned in
Section 2.4 preferences are essential for making intelligent choices in complex situations,
for mastering large sets of alternatives, and for coordinating a multitude of decisions. In
particular, preferences are the proactive attitudes in intentional agents. From these positive
preferences or desires the agent may choose which ones it will intend to achieve through
a suitable plan of action. Negative preferences are also considered in modelling different
AI problems and particularly in multiagent systems. For an intentional agent negative
preferences may represent restrictions or rejections over the possible worlds it can reach.

In next Section 6.2 the Desire context (DC) is introduced, to represent the agent’s desires.
Desires represent the ideal agent’s preferences regardless of the agent’s current perception
of the environment and regardless of the cost involved in actually achieving them. We deem
important to distinguish what is positively desired from what is not rejected. According
to the works on bipolarity representation of preferences by Benferhat et.al. [11], described
in Section 2.4, positive and negative information may be modeled in the framework of
possibilistic logic. Inspired by this work, we suggest to formalize also positive and negative
desires. Positive desires represent what the agent would like to be the case. Negative desires
correspond to what the agent rejects or does not want to occur. Furthermore, positive
and negative desires can be graded to represent different levels of preference or rejection,
respectively. When dealing with both kinds of preferences it is also natural to express
indifference, meaning that we have neither a positive nor a negative preference over an
object. To represent and reason about the agent bipolar preferences in the DC the definition

85
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of its logical components (i.e. the language, axioms and inference rules) is needed.

Firstly, we define a language to express positive and negative desires. Secondly, using
an appropriate axiomatic the behaviour of these preferences is modelled. In a similarly way
than in the BC context, a modal many-valued approach is used to deal with the desire
degrees and a layered structure of axioms is set. As for combining one kind of desires
(positive or negative) usually the conjunction of positive (resp. negative) preferences should
produce a higher positive (resp. negative) preference. The disjunction degree of positive
(resp. negative) preferences is computed as the minimum of the desire degrees, following the
intuition that if the disjunction is satisfied at least the minimum of satisfaction (rejection)
is guaranteed. Then, the axiomatic and the inference rules are defined to capture these
combination properties for positive and negative desires independently. The language and
this set of axioms constitute the basic logic framework for the Desire context (DC schema).

As desire are ideal preferences, we consider that it may be somewhat controversial and
domain dependent to set (normative) general restrictions about e.g. positive (negative)
desires both on some formula and its negation, and also between the positive and negative
desires on a same given formula. In this direction, we present the basic framework DC for
the bipolar desires representation without including additional restrictions. Then, besides
the basic framework some alternative constraints are analyzed in this work, resulting in
different logical schemas or theories. Some of the possible constraints are commented below.

Following the intuition (that seems valid in most domains) that a formula and its nega-
tion cannot be both desired (respectively rejected) at the same time, some restrictions over
the desires (positive and negative) respect a formula may be established. Since positive and
negative preferences are stated separately, it is worthwhile to consider whether any consis-
tency condition may be imposed between them. Benferhat et al. [12] present a coherence
condition restricting what is desirable to what is tolerated. Namely, any world satisfying
at least one positive desire should also satisfy all the constraints induced by the negative
preferences. We have proposed a more restrictive approach in [30] imposing the condition
that if a world is rejected to some extent, it cannot be desired at the same time, by an agent.
And conversely, if a solution is somewhat desired it cannot be rejected. This is a strong
restriction not allowing to represent that a world may be partially desired because of some
aspects and partially rejected because of others, it may be useful to represent preferences in
particular problems.

To formalize these alternative preference models, a Basic Schema for the Desire Con-
text (DC) is first presented and afterward, we refine it by adding the different preference
properties above mentioned. For each consistency schema, the corresponding semantics and
axioms are presented.
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Later on, in Section 6.3, the Intention context (IC) to represent the agent’s intentions,
is described. We follow the model introduced by Rao and Georgeff [123, 125], in which an
intention is considered a fundamental pro-attitude with an explicit representation. However,
as in the work of Cohen and Levesque [41], in our approach, intentions result from the agent’s
beliefs and desires and then, we do not consider them as a basic attitude. Intentions, as
well as desires, represent the agent preferences. However, we consider that intentions cannot
depend just on the benefit, or satisfaction, of reaching a desire ϕ —represented in D+ϕ, but
also on the world’s state w and the cost of transforming it into a world wi where the formula
ϕ is true. By allowing degrees in intentions we represent a measure of the cost/benefit
relation involved in the agent’s actions toward the desired goal. A similar semantics for
intentions is used in [142], where the net value of an intention is defined as the difference
between the value of the intention outcome and the cost of the intention. In [124], this
relation is resumed in the payoff function over the different paths. The formalization of the
intention semantics is difficult, because it does not depend only on the formula intended,
but also on the plan that the agent executes to achieve a state where the formula is valid.
Our work evolved in this aspect as can be seen in [29], [30] and [31].

In our model, the positive and negative desires are used as pro-active and restrictive tools
respectively in order to set intentions. Note that intentions depend on the agent’s knowledge
about the world, which may allow —or not— the agent to choose a plan to change the world
into a desired one.

We represent in this context two kinds of graded intentions, intention of a formula ϕ

considering the execution of a particularly plan α, noted Iαϕ, and the final intention to ϕ,
noted Iϕ, which takes into account the best path to reach ϕ. As in the other contexts, if
the degree of Iϕ is δ, it may be considered that the truth degree of the expression “ϕ is
intended” is δ. The intention to make ϕ true must be the consequence of finding a feasible
plan α, that permits to achieve a state of the world where ϕ holds.

6.2 Desire Context (DC)

6.2.1 DC Language

To represent positive and negative desires over formulae of a basic propositional language
L we introduce in such a language two modalities. Thus, the theory associated to the
Desire Context will consist of a set of modal formulae from the expanded language LDC
representing all the available information about the agent’s desires. It can be the case that
the context theory needs only a given subset of the modal language, for instance, when the
agent’s desires are only expressed over literals or conjunctions of them.
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The language LDC is defined over a classical propositional language L (built from a
countable set of propositional variables Var with connectives ∧, → and ¬) expanded with
two (fuzzy) modal operators D+ and D−. D+ϕ reads as “ϕ is positively desired” and its
truth degree represents the agent’s level of satisfaction would ϕ become true. D−ϕ reads
as “ϕ is negatively desired” (or “ϕ is rejected”) and its truth degree represents the agent’s
level of disgust on ϕ becoming true. As in the BC logic, we will use a modal many-valued
logic to formalize graded desires. We use again Rational Pavelka logic (see Section 3.2) as
the base logic.

More precisely, formulae of the expanded language LDC are defined as follows:

• If ϕ ∈ L then ϕ ∈ LDC

• If ϕ ∈ Sat(L)1 then D−ϕ,D+ϕ ∈ LDC

• If r ∈ Q ∩ [0, 1] then r ∈ LDC

• If Φ,Ψ ∈ LDC then Φ →L Ψ ∈ LDC and ¬LΦ ∈ LDC (other  Lukasiewicz logic
connectives, like ∧L,∨L,≡L are definable from ¬L and →L)

We will call a modal formula closed when every propositional variable is in the scope of a
D+ or a D− operator.

As in LBC , the notation (D+ψ, r), with r ∈ [0, 1]∩Q, will be used as a shortcut of r̄ →L D
+ψ,

and reads as: the level of positive desire of ψ is at least r. Analogously for (D−ψ, r) and
r̄ →L D

−ψ.

In this context, the agent’s preferences will be expressed by a theory TD (a set of
LDC-formulae) containing quantitative expressions about positive and negative preferences,
like (D+ϕ, α) or (D−ψ, β), as well as qualitative expressions like D+ψ →L D+ϕ (resp.
D−ψ →L D

−ϕ), expressing that ϕ is at least as preferred (resp. rejected) as ψ. In particu-
lar (D+φ, 1) ∈ T means that the agent has maximum preference in φ and is fully satisfied
if it is true. While (D+θ, α) 6∈ T for any α > 0 means that the agent is indifferent to θ and
the agent does not benefit from θ becoming true. Analogously, (D−χ, 1) ∈ TD means that
the agent absolutely rejects χ and thus the states where χ is true are totally unacceptable.
If (D−δ, β) 6∈ TD for any β > 0 it simply means that δ is not rejected.

6.2.2 Semantics for DC

Many people can argue that considering the desires as a proactive attitude, then, reasoning
about desires on disjunctions of formulae may have no sense. In most cases we may have

1Sat(L) represent the set of satisfiable formulae of L and thus, excluding to have positive and negative
desires on a contradiction (⊥ /∈ Sat(L)).
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plans for achieving ϕ or ψ individually, or for both (ϕ ∧ ψ) but not for achieving non-
deterministically ϕ ∨ ψ. But since we define the basic language as a propositional language
it is necessary to define the semantics in terms of preferences for disjunctive formulae, and
leave the selection of what formulae should been considered to reason about desires to the
definition of a particular theory.

According to the semantics presented in [11], the degree of positive desire for (or level of
satisfaction with) a disjunction of desires ϕ ∨ ψ is taken to be the minimum of the degrees
for ϕ and ψ. Intuitively, if an agent desires ϕ ∨ ψ then it is ready to accept the situation
where the less desired goal becomes true, and hence to accept the minimum satisfaction
level produced by one of the two desires. In contrast the satisfaction degree of reaching both
ϕ and φ can be strictly greater than reaching one of them separately. These are basically
the properties of the guaranteed possibility measures (see e.g. [10]). Analogously, we assume
the same model for the degrees of negative desire or rejection, that is, the rejection degree
of ϕ ∨ ψ is taken to be the minimum of the degrees of rejection for ϕ and for ψ separately,
while nothing prevents the rejection level of ϕ ∧ ψ be greater than both.

The intended DC models are Kripke structures M = 〈W, e, π+, π−〉 where W and e are
defined as in the BC semantics and π+ and π− are preference distributions over worlds,
which are used to give semantics to positive and negative desires:

• π+ : W → [0, 1] is a distribution of positive preferences over the possible worlds. In
this context π+(w) < π+(w′) means that w′ is more preferred than w.

• π− : W → [0, 1] is a distribution of negative preferences over the possible worlds:
π−(w) < π−(w′) means that w′ is more rejected than w.

The truth evaluation for non-modal formulae e : L ×W → {0, 1} is defined in the usual
(classical) way. It is extended to atomic modal formulae D−ϕ and D+ϕ by:

• e(D+ϕ,w) = inf{π+(w′) | e(ϕ,w′) = 1}

• e(D−ϕ,w) = inf{π−(w′) | e(ϕ,w′) = 1}

together with the assumption that inf ∅ = 1. This is extended to compound modal formulae
by means of the usual truth-functions for  Lukasiewicz connectives. Notice that the eval-
uation e(Φ, w) of a modal formula Φ only depends on the formula itself —represented in
the preference measure over the worlds where the formula is true— and not on the actual
world w ∈ W where the agent is situated. In such a case, we will also write eM (Φ) for
e(Φ, w). This is consistent with the intuition that desires represent ideal preferences of an
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agent, regardless of the actual world and regardless of the cost of moving to a world where
the desire is satisfied.

We will write M |= Φ when e(Φ, w) = 1 for all w ∈W . Moreover, let MDC be the class
of all Kripke structures M = 〈W, e, π+, π−〉. Then, for each subclass of models M⊆MDC ,
given a theory T and a formula Φ, we will write T |=M Φ if M |= Φ for each model M ∈M
such that M |= Ψ for all Ψ ∈ T .

6.2.3 DC Axioms and Rules

To axiomatize the logic with above intended preference-based semantics we need to combine
classical logic axioms for non-modal formulae with Rational Pavelka logic axioms for modal
formulae. Also, additional axioms characterizing the behaviour of the modal operators D+

and D− are needed. As already mentioned, a conjunctive combination of one kind of desires
(either positive or negative) may be attached a strictly higher preference value, while the
preference value of a disjunctive combination of either positive or negative desires is taken
as the minimum of the desire degrees, following the intuition that at least the minimum of
satisfaction (rejection) is guaranteed. The following axioms and inference rules aim at cap-
turing these combination properties, considering positive or negative desires independently.
We define the basic set of axioms and rules for the DC logic as follows:

Axioms:

(CPC) Axioms of classical logic for non-modal formulae

(RPL) Axioms of Rational Pavelka logic for modal formulae

(DC0+) D+(A ∨B) ≡L D+A ∧L D+B

(DC0−) D−(A ∨B) ≡L D−A ∧L D−B

And the Inference Rules as:

(MP1) modus ponens for →

(MP2) modus ponens for →L

Introduction of D+ and D− for implications:

(ID+) from ϕ→ ψ derive D+ψ →L D
+ϕ

(ID−) from ϕ→ ψ derive D−ψ →L D
−ϕ.

Notice that the two axioms (DC0+) and (DC0−) define the behaviour of D− and D+

with respect to disjunctions.
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The formalization we present for D− is somewhat different from the approach presented
by Benferhat et al. in [11], where they used a necessity function i.e., considering D−φ as
N(¬φ). But in their approach the axiomatic is equivalent to our, since the axiom (DC0−)
results from the necessity axiom i.e., N(ϕ ∧ ψ) ≡ N(ϕ) ∧L N(ψ).

Finally, the introduction rules for D+ and D− state that the degree of desire is mono-
tonically decreasing with respect to logical implication. Moreover, an easy consequence that
these rules allow is that equivalent desire degrees are preserved by Boolean equivalence.

The notion of proof, denoted `DC , is defined as usual from the above axioms and inference
rules.

Lemma 6 If ` denotes deduction in classical propositional calculus, then ` ϕ ≡ ψ implies
`DC D+ϕ ≡L D+ψ and `DC D−ϕ ≡L D−ψ.

The above axiomatization is correct with respect to the defined semantics.

Lemma 7 (soundness) Let T be a theory and Φ a formula. Then T |=MDC Φ if T `DC Φ.

Proof: It is a matter of routine to check that the axioms are valid in each DC-model and
that the inference rules preserve validity in each DC-model. �

Moreover, the basic DC logic is complete as well for finite theories of closed (modal)
formulae.

Theorem 8 (completeness) Let T be a finite theory of closed formulae and Φ a closed
formula. Then T |=MDC Φ iff T `DC Φ.

Proof: We basically follow the proof of Theorem 8.4.9 in [78], with some adaptations.

Assume p1, . . . , pn contain at least all the propositional variables involved in T and Φ,
and let Nor = {χi}i=1,22n the set of 22n

non logically equivalent Boolean formulae in DNF
built from the pi’s. For each non-modal ϕ built from the pi’s, let ϕNF ∈ Nor denote its
corresponding normal form. Then for each modal Φ let us denote by ΦNF the result of
replacing each atomic modal component of the form D+ϕ or D−ϕ by D+ϕNF or D−ϕNF
respectively. Finally, for each modal theory S let us denote by SNF the result of replacing
each Φ ∈ S by ΦNF .

The idea is that the modal theory T can be represented as a (finite) theory over the
propositional logic RPL. For each modal formula D+ϕ introduce a propositional variable
p+
φ , and for each D−ϕ another propositional variable p−ϕ . Then define a mapping ∗ as follows:
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- (D+ϕ)∗ = p+
ϕ ,

- (D−ϕ)∗ = p−ϕ ,

- (r)∗ = r, for each rational r ∈ [0, 1],

- (Φ&LΨ)∗ = Φ∗&LΨ∗

- (Φ→L Ψ)∗ = Φ∗ →L Ψ∗.

If S is a set of modal formulae, let S∗ = {Φ∗ | Φ ∈ S}.

Now, let DC = {Φ | Φ is an instance of modal axioms (DC0+) and (DC0−)}∪{D+ϕ→L

D+ψ,D−ϕ →L D
−ψ | ψ → ϕ theorem of CPC }. We next show that the following state-

ments are equivalent:

1) T |=DC Φ

2) T ∗ ∪ DC∗ |=RPL Φ∗

3) T ∗NF ∪ (DCNF )∗ |=RPL Φ∗NF

4) T ∗NF ∪ (DCNF )∗ `RPL Φ∗NF

5) T ∗ ∪ DC∗ `RPL Φ∗

6) T `DC Φ

1 ⇒ 2 : Let us assume T ∗ ∪DC∗ 6|=RPL Φ∗. This means there is an RPL-evaluation v model
of T ∗ ∪ DC∗ and v(Φ∗) < 1. We build then a model Mv = 〈W, e, π+, π−〉 as follows:

- W is the set of Boolean evaluations of the propositional variables q1, ..., qn;
- e(w, q) = w(q), for each propositional variable q, and e(w, ·) is extended to Boolean
formulae as usual;
- e(w, r) = r for each rational r ∈ [0, 1];
- e(w,D+ϕ) = v(p+

ϕ ) and e(w,D−ϕ) = v(p−ϕ ), and e(w, ·) is extended to compound
modal formulae using RPL connectives;
- π+(w) = v(p+

Aw
) and π−(w) = v(p−Aw

), where Aw is the elementary conjunction built
with literals from the propositional variables q1, . . . , qn such that e(w,Aw) = 1 and
e(w′, Aw) = 0 if w′ 6= w;

Since Mv |= ϕ ≡ ∨w∈WAw, it is easy to check that, e(w,D+ϕ) = inf{π+(w′) |
e(w′, ϕ) = 1} and e(w′, D−ϕ) = inf{π−(w′) | e(w′, ϕ) = 1}. Therefore Mv is DC
model, and since by construction e(w,Ψ) = v(Ψ∗) for all modal formula Ψ and worlds
w ∈ W , we also have in particular e(w,Ψ) = v(Ψ∗) = 1 for all Ψ ∈ T ∗ and e(w,Φ) =
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v(Φ∗) < 1 and hence T 6|=DC Φ.

2 ⇒ 3 : Assume e is a RPL-evaluation of the propositional variables pϕNF
which is a model

of T ∗NF ∪ (DCNF )∗ but e(Φ∗NF ) < 1. Then, extend e to propositional variables p+
ϕ and

p−ϕ by putting e′(p+
ϕ ) = e(p+

ϕNF
) and e′(p−ϕ ) = e(p−ϕNF

). It is easy to check that e′ is
such that e′(Φ∗) = e((ΦNF )∗) for any modal formula Φ, and hence e′ is a model of
T ∗ ∪ DC∗ and e′(Φ∗) = e(Φ∗NF ) < 1.

3 ⇒ 4 : Since T ∗NF ∪ (DCNF )∗ is a finite theory (recall that there are finitely-many formulae
in Nor), then 4) follows from 3) by the finite strong standard completeness of RPL.

4 ⇒ 5 : Using Lemma 6, if ` ϕ ≡ ψ (in classical propositional logic) then T ∗ ∪ DC∗ proves
in RPL both p+

ϕ ≡L p+
ψ and p−ϕ ≡L p−ψ , and hence T ∗ ∪ DC∗ `RPL Φ∗ ≡L (ΦNF )∗ for

each modal formula Φ.

5 ⇒ 6 : Let Ψ∗1, . . . ,Ψ
∗
n be a DC-proof of Φ∗ from T ∗∪DC∗. This is converted into a DC-proof

of Φ from T by adding for each Φ∗i which is of the form p+
ϕ →L p

+
ψ (resp. p−ϕ →L p

−
ψ )

with ϕ → ψ being a theorem of CPC, a proof of ϕ → ψ in CPC and then applying
the rule of introduction of D+ (resp. D−) for implications.

6 ⇒ 1 : This is soundness.

�

Example 1 Maŕıa, who lives in busy Buenos Aires, wants to relax for a few days in an
Argentinian beautiful destination. She activates a personal agent, based on our g-BDI agent
model, to get an adequate plan, i.e. a tourist package, that satisfies her preferences. She
would be very happy going to a mountain place (m), and rather happy practicing rafting (r).
In case of going to a mountain place she would like to go climbing (c). On top of this, she
wouldn’t like to go farther than 1000km from Buenos Aires (f). She is stressed and would
like to get to the destination with a short trip. The user interface that helps her express
these desires ends up generating a desire theory as follows:

TD =
{

(D+m, 0.8), (D+r, 0.6), D+m→L D
+c, (D−f, 0.7)

}

Once this initial desire theory is generated the tourist advisor personal agent deduces a num-
ber of new desires:

TD `DC (D+(m ∧ r), 0.8),

TD `DC (D+(m ∨ r), 0.6),



94 Chapter 6. Desire and Intention Contexts

TD `DC (D+c, 0.8)

As Maŕıa would indeed prefer much more to be in a mountain place doing rafting she also
expresses the combined desire with a particularly high value: (D+(m∧ r), 0.95). Notice that
the extended theory

T ′D = TD ∪ {(D+(m ∧ r), 0.95)}

remains consistent within DC.

The basic logical schema DC puts almost no constraint on the strengths for the posi-
tive and negative desires of a formula ϕ and its negation ¬ϕ. This is in accordance with
considering desires as ideal preferences and hence it may be possible for an agent to have
contradictory desires and for example, she may have a positive (respectively negative) desire
on both a formula and its negation, supported by different aspects.2

In the following section, different properties are added to the preferences as to represent
further constraints between the positive and negative desires of a formula and its negation.

6.2.4 Consistency Schemas

The basic schema for preference representation and reasoning provided by the DC logic may
be felt too general for some classes of problems and we may want to restrict the allowed
assignment of degrees of positive and negative desire for a formula ϕ and for its negation
¬ϕ. For instance, in the case of considering positive desires as proactive attitudes, it is not
an efficient approach to allow to assign non-zero degrees to D+ϕ and to D+¬ϕ, since the
agent will be looking for plans toward opposite directions, some plans leading to satisfy ϕ

and some others to satisfy ¬ϕ.

In the following subsections three different extensions or schemas are proposed to show
how different consistency constraints between positive and negative desires can be added to
the basic logic, both at the semantical and syntactical level. These different schemas allow
us to define different types of agents. Each agent type will accept (respectively restrict) a
desire formula in its theory depending on the constraints imposed by the chosen schema.

DC1 Schema

It may be natural in some domain applications to forbid to simultaneously have positive (in
the sense of > 0) desire degrees for D+ϕ and D+¬ϕ. This constraint and the corresponding

2The only indirect constraint DC imposes is the following one: if a theory T derives (D+ϕ, r) and
(D+¬ϕ, s) then, due to axiom (DC0+) and rule (ID+), T also derives both (D+ψ,min(r, s)) and
(D+¬ψ,min(r, s)) for any ψ.
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one for negative desires amounts to require that the following additional properties for the
truth-evaluations be satisfied in the intended models:

• min(e(D+ϕ,w), e(D+¬ϕ,w)) = 0, and

• min(e(D−ϕ,w), e(D−¬ϕ,w)) = 0.

At the level of Kripke structures, this corresponds to require some extra conditions over
π+ and π−, namely:

• infw∈W π+(w) = 0 and

• infw∈W π−(w) = 0

These conditions are a kind of anti-normalization conditions for π+ and π−, in the sense
that they require the existence of at least one world that is not desired and one world that
is not rejected. Let MDC1 denote the subclass of models satisfying these conditions.

For instance, following this schema an agent’s theory TD should not simultaneously con-
tain the formulae (D+m, 0.8) and (D+(¬m), 0.4), or the formulae (D−f, 0.7) and (D−(¬f), 0.5).

At the syntactic level these conditions are equivalent to add to the basic axiomatic for
DC the following two axioms:

(DC1+) D+ϕ ∧L D+(¬ϕ)→L 0̄ (or equivalently D+(>) ≡L 0̄)

(DC1−) D−ϕ ∧L D−(¬ϕ)→L 0̄ (or equivalently D−(>) ≡L 0̄)

We will denote by DC1 the extension of the DC system with the above two axioms
(DC1+) and (DC1+), and by `DC1 the corresponding notion of proof.

Theorem 9 (completeness) Let T be a finite modal theory of closed formulae and Φ a
closed formula. Then T |=MDC1 Φ iff T `DC1 Φ.

Proof: The proof runs like in Theorem 8 by adding to the DC theory the instances of axioms
(DC1+) and (DC1−) and with the obvious modifications. �

DC2 Schema

The above logical schema DC1 does not put any restriction on positive and negative desires
for the same goal (any classically satisfiable formula). According to Benferhat et al. in [12],
a coherence condition between positive and negative desires should be considered, namely,
an agent cannot desire to be in a world more than the level at which it is tolerated (not
rejected). This condition, translated to our framework, amounts to require in the Kripke
structures the following constraint between the preference distributions π+ and π−:
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• ∀w ∈W, π+(w) ≤ 1− π−(w)

To formulate the corresponding axiomatic counterpart that faithfully accounts for the
above condition, we considerMDC2 the subclass of DC-Kripke structuresM = (W, e, π+, π−)
satisfying the above constraint between π+and π−. Note that π+(w) ≤ 1 − π−(w) iff
π+(w)⊗ π−(w) = 0. 3

To capture at the syntactical level this class of structures, we consider the extension of
the DC system with the following axiom:

(DC2) (D+ϕ ⊗D−ϕ)→L 0̄

We will denote by DC2 the extension of DC with the axiom (DC2).4

Notice that this axiom is valid in every DC-structure M = (W, e, π+, π−) ∈ MDC2 .
Indeed, for any non modal ϕ, we have:

eM (D+ϕ⊗D−ϕ) =
inf{π+(w) | e(w,ϕ) = 1} ⊗ inf{π−(w) | e(w,ϕ) = 1} =
inf{π+(w)⊗ π−(w′) | e(w,ϕ) = e(w′, ϕ) = 1} ≤
inf{π+(w)⊗ π−(w) | e(w,ϕ) = 1} = 0.

that is, for any ϕ, the evaluations of D+ϕ and D−ϕ are such that eM (D+ϕ) ≤ 1−eM (D−ϕ).

Conversely, if the (DC2) axiom is valid in a DC-structure M = (W, e, π+, π−) then it
must necessarily satisfy the condition π+(w) ≤ 1− π−(w) for any w ∈W , i.e. M ∈MDC2 .

Proof: W.l.o.g., we can assume that W is such that e(w, ·) = e(w′, ·) iff w = w′. Then, for
each w ∈ W consider the formula ϕw = (

∧
pi∈l+ pi) ∧ (

∧
pi∈l− ¬pi), where l+ = {p ∈ V ar |

e(w, p) = 1} and l− = {p ∈ V ar | e(w, p) = 0}. It is clear that e(v, ϕw) = 1 iff v = w, and
hence e(w,D+ϕw) = π+(w) and e(w,D−ϕw) = π−(w). Therefore, eM (D+ϕw⊗D−ϕw) = 0
iff π+(w)⊗ π−(w) = 0. �

These properties, together with a suitable adaptation of the proof of Theorem 8, lead to
the following completeness result for DC2.

Theorem 10 (completeness) Let T be a finite theory of closed formulae and Φ a closed
formula. . Then T |=MDC2 Φ iff T `DC2 Φ.

3Here we use the same symbol as the  Lukasiewicz connective ⊗ to denote its corresponding truth-function
on [0, 1], i.e. x⊗ y = max(x+ y − 1, 0) for any x, y ∈ [0, 1].

4An equivalent presentation of axiom (DC2) is D+ϕ→L ¬LD−ϕ.
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DC3 Schema

A stronger consistency condition between positive and negative preferences was considered
in [30], requiring that if a world is rejected to some extent, it cannot be positively desired
at all. And conversely, if a goal (any satisfiable formula) is somewhat desired it cannot be
rejected. Indeed, at the semantical level, this amounts to require the intended DC-models
M = (W, e, π+, π−) to satisfy the following condition for any w ∈W :

• π−(w) > 0 implies π+(w) = 0
(or equivalently, min(π+(w), π−(w)) = 0)

This is a stronger condition than the one presented in the DC2 schema and may be
suitable to represent preferences for some particular domains. We will denote byMDC3 the
subclass of DC-Kripke structures satisfying this latter condition.

At the syntactic level, the axiom that faithfully represents this consistency condition is
the following one:

(DC3) (D+ϕ ∧L D−ϕ)→L 0̄

We will denote by DC3 the extension of the DC system by the above axiom (DC3), and by
`DC3 the corresponding notion of proof.

Theorem 11 (completeness) Let T be a finite theory of closed formulae and Φ a closed
formula. Then T |=MDC3 Φ iff T `DC3 Φ.

Proof: Again it is an easy adaptation of the proof of Theorem 8. �

Example 2 (Example 1 continued)

Maŕıa, a few days later, breaks her ankle. She activates the recommender agent to reject
the possibility of going climbing (c). If Maŕıa selects for the agent the schema DC1, the
agent simply adds the formula (D−c, 1) into the former desire theory T ′D, yielding the new
theory

T ′′D = {(D+m, 0.8), (D+r, 0.6), (D+(m ∧ r), 0.95), (D+c, 0.85), (D−f, 0.7), (D−c, 1)} ,

as the schema allows for opposite desires.5

5The fact of having both positive and negative desires may be handled in different ways depending on
the kind of agent behaviour. For instance, if the agent follows [11]’s approach, where negative desires are
used as strong constraints, the agent would then first discard those packages including mountain climbing
(that is, D+c would be ignored), and among the remaining ones it would then look for packages satisfying
at least some positive preferences.
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If Maŕıa selects DC2, the formulae D+c and D−c are not allowed to have degrees sum-
ming up more than 1, and hence the above theory T ′′D becomes inconsistent. Actually, T ′′D
becomes also inconsistent under DC3, DC3 is stronger than DC2 (it does not even allow
to have non-zero degrees for D+c and D−c). In these cases, the agent applies a revision
mechanism, for instance to cancel (D+c, 0.85) from the theory.

Example 3 (Example 2 continued)

Suppose Maŕıa’s ankle is okay but she wants to travel with a very young nephew. In
this situation she generates the desire of doing save activities (s) represented by the formula
(D+s, 0.8). Moreover, considering the desire relation D+s →L D+(¬r), expressing that if
a tourist prefers safe activities then he prefers not doing rafting is also in the agent theory,
the agent infers (D+(¬r), 0.8). Then, the extended theory is as follows:

T ′′′D = {(D+m, 0.8), (D+r, 0.6), (D+(m ∧ r), 0.95), (D+c, 0.85), (D−f, 0.7), (D+(¬r), 0.8)}

In the logic schema DC1 it is not possible to have (D+r, 0.6) and (D+(¬r), 0.8) in a
consistent theory. Then, to restore the consistency one of these formulae must be forced
to have desire degree equal 0. Instead, in schemas DC2 and DC3 there are no additional
restrictions about this kind of formulae, and the agent may have both formulae maintaining
consistency.

After analyzing in the previous subsections different schemas to model desires in an agent
architecture, in the following section we show how these positive and negative desires may
be used by the agent to generate intentions in the Intention Context (IC).

6.3 Intention Context

6.3.1 IC Language

We define in this context a suitable language to represent the agent’s intentions. The syntax
is defined in a similar way as we did with BC and DC, starting with a basic language L
and incorporating a family of modal operators. In this case, in order to have a greater
expressive power, we use the so-called Rational  Lukasiewicz logic, RLL (see section 3.2.1),
to represent and axiomatize the semantics of degrees of the intentions. RLL is an expansion
of  Lukasiewicz logic with a countable set of unary connectives {δn}n∈N, whose intended
semantics is that the truth-value of δnϕ is just the truth-value of ϕ divided by n. So in RLL
one can express divisions by natural numbers and these arithmetic operations are important
in order to define the intention degree as weighted averages between diverse factors.
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To define the IC Language we start from a basic propositional language L. We assume
the agent has a finite set of actions or plans Π0 at her disposal to achieve the desires.
Then, for each α ∈ Π0 we introduce a modal operator Iα. such that the truth-degree of a
formula Iαϕ will represent the strength the agent intends ϕ by means of the execution of
the particular action α.6 We also introduce another modal operator I with the idea that Iϕ
will represent that the agent intends ϕ by means of the best plan in Π0.

As in the other contexts, if the degree of Iαϕ is δ, it may be considered that the truth
degree of the expression “the desire ϕ is intended by means of plan α” is δ. If the degree
of Iϕ is γ, it may be considered that the truth degree of the expression “the desire ϕ is
intended” is γ.

Therefore, many-valued LIC formulae will be Rational  Lukasiewicz logic formulae built
from the set of propositional variables V arcost = {Cα}α∈Π0 , introduced to represent the cost
of the different plans α, and elementary modal formulae Iαϕ and Iϕ, where ϕ ∈ Sat(L),
and truth constants r for each rational r ∈ [0, 1]:

• If ϕ ∈ L then ϕ ∈ LIC

• If α ∈ Π0 then Cα ∈ LIC

• If ϕ ∈ Sat(L) and α ∈ Π then Iαϕ, Iϕ ∈ LIC

• If r ∈ Q ∩ [0, 1] then r ∈ LIC

• If Φ ∈ LIC then δnΦ ∈ LIC

• If Φ,Ψ ∈ LIC then Φ→L Ψ ∈ LIC and ¬LΦ ∈ LIC

As usual, other  Lukasiewicz logic connectives, like ∧L,∨L,≡L,⊕L,⊗L are definable from
¬L and →L.

We will call a (modal) formula closed when every propositional variable is in the scope
of a I or a Iα operator.

The agent intentions will be expressed by a theory TI (a set of closed formulae). Then,
if the agent IC theory TI contains the formula Iαϕ →L Iβϕ then the agent will prefer to
reach ϕ by executing plan β than executing plan α. On the other hand, if TI contains the
formula Iψ →L Iϕ then the agent will try to reach ϕ and not ψ and it may not try φ if
(Iφ, δ) is a formula in TI and δ < τ , where τ is an intention threshold.7 This situation may
mean, for instance, that the benefit of getting φ is too low or the cost is too high.

6In the IC context we are not concerned about the question of whether a given desire can be reached by
the execution of a particular action, this is left for the Planner Context, see Section 7.1.

7Set to discard the intentions with intention degree less than this value.
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6.3.2 Semantics and axiomatization for IC

The semantics defined in this context shows that the value of the intentions depends on
the formula intended to bring about and on the benefit the agent gets with it. It also
depends on the agent’s knowledge on possible plans that may change the world into one
where the desire is true, and their associated cost. This last factor will make the semantics
and axiomatization for IC somewhat different from the presented for positive desires in DC.

Models for IC are Kripke structures M = 〈W, e, {πα}α∈Π0〉 where W is a set of worlds
and πα : W ×W → [0, 1] is the utility distribution corresponding to action α: πα(w,w′)
is the utility obtained by applying α to transform world w into world w′.8 Further, e :
W × (V ar ∪ V arcost)→ [0, 1] evaluates in each world propositional variables in such a way
that variables from V ar are evaluated into {0, 1} while propositional variables from V arcost

into [0, 1] (so variables from V ar are Boolean while variables from V arcost and many-valued).
Then e is extended to Boolean formulae as usual and to atomic modal formulae by

• e(w, Iαϕ) = inf{πα(w,w′) | w′ ∈W, e(w′, ϕ) = 1}

• e(w, Iϕ) = max{e(w, Iαϕ) | α ∈ Π0}

and to compound modal formulae using the truth functions of Rational  Lukasiewicz logic.
Recall the interpretation of the δn connectives:
e(w, δnΦ) = e(w,Φ)/n.

As usual, we will write M |= Φ when e(Φ, w) = 1 for all w ∈W and will denote byMIC
the class of all Kripke structures M = 〈W, e, {πα}α∈Π0〉. Then, for each subclass of models
M ⊆ MIC , given a theory T and a formula Φ, we will write T |=M Φ if M |= Φ for each
model M ∈M such that M |= Ψ for all Ψ ∈ T .

The axiomatics for the IC logic is the following:

1. Axioms of classical logic for the non-modal formulae.

2. Axioms of Rational  Lukasiewicz logic for the modal formulae, i.e. axioms of  Lukasiewicz
logic plus:

δnΦ⊕ n. . . ⊕δnΦ ≡L Φ

δnΦ⊗ (δnΦ⊕ n−1. . . ⊕δnΦ)→L 0

3. (DC0) axiom for Iα modalities:

Iα(ϕ ∨ ψ) ≡L Iαϕ ∧L Iαψ
8Indeed, it can be seen as a kind of refinement of the Rα relations of the action dynamic logic semantics

considered in the BC context.
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4. Definitional Axiom for I:

Iϕ ≡L
∨
α∈Π0 Iαϕ

5. Inference Rules:

modus ponens for → and for →L

introduction of Iα for implications: from ϕ→ ψ derive Iαψ →L Iαϕ for each α ∈ Π.

The notion of proof for IC, denoted `IC , is defined as usual from the above axioms and
inference rules. The presented axiomatics is obviously sound and one can prove completeness
in an analogous way as for DC logic and we omit the proof.

Theorem 12 Let T be a modal theory and Φ a modal formula. Then T `IC Φ iff T |=MIC

Φ.

It is worth noticing that so defined the semantics of the Iα operators is very general
and probably it is not evident how to capture the idea that the truth-degree of a formula
Iαϕ should take into account not only how much ϕ is desired but also how costly is α. In
the next Section 7.2 we can see how these truth-degrees are obtained by the execution of a
suitable bridge rule (e.g. 7.3) in a multi-context approach.

Below we present an example of a concrete simple definition of the Iα operators in terms
of desires and costs as to show how the logic IC could be encoded in a unified framework.

Definition of concrete Iα operators

The multi-context system we use to specify a g-BDI agent is “consistent” from a logical
viewpoint. Namely, we can define a “flat” logic where all its components (i.e. contexts and
bridge rules) can be mapped to it. Then, in this framework, we can show that the above
mentioned bridge rule and others may be encoded as a set of formule in the unified logic,
and defining together with the set of all the axioms and rules of each context a satisfiable
(consistent) theory. Then, in this unified logical framework we have different formulae to
represent beliefs, desires and intentions, coming from the different contexts in the multi-
context system. We present an example of a concrete Iα definition developed in this flat
logical approach.

To take into account how much ϕ is desired and how costly is α, one can think of many
different ways. The possibly simplest one is to consider the value of Iαϕ as the arithmetic
mean between the value of D+ϕ and 1 minus the cost value of Cα.

Then, suppose we have syntactically and semantically extended the language LIC to
include D+ϕ formulae, this extended language may be called LDIC . Indeed, consider the
following expression:
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Iαϕ ≡L δ2Dϕ⊕ δ2¬LCα (Iα-Def)

Then, one can easily show that (Iα-Def) is consistent in this extended context DIC. In fact,
this formula is valid in all DIC-models M = (W, e, π+, {πα}α∈Π0) such that π+ is the same
preference distribution defined in DC and πα(w,w′) = (π+(w′) + 1− e(w,Cα))/2. Indeed,
it holds that, for any w ∈W ,

e(w, Iαϕ) = inf{πα(w,w′) | w′ ∈W, e(w′, ϕ) = 1}

= inf{(π+(w′) + 1− e(w,Cα))/2 | w′ ∈W, e(w′, ϕ) = 1}

= (inf{π+(w′) | w′ ∈W, e(w′, ϕ) = 1}+ 1− e(w,Cα))/2

= (e(w,Dϕ) + e(w,¬LCα))/2 =

= e(w, δ2Dϕ⊕ δ2¬LCα).

In other words, the above formula captures a notion of intention strength of reaching a desire
ϕ through a plan α which is defined as the arithmetic mean of the desire degree of ϕ and of
1 minus the cost degree of action α.

Therefore, this axiom (or similar ones leading to different definitions for the Iα operators)
can be included in a specialized theory over DIC to specify particular behaviors of Intentions.
Also, one can also specify some particular semantics for the plan cost variables Cα. For
instance, one can consider the following natural axioms

(C1) Cγ ≡L Cα ∨ Cβ , if γ, α, β ∈ Π0 and γ = α ∪ β

(C2) Cγ ≡L Cα ⊕ Cβ , if γ, α, β ∈ Π0 and γ = α;β

governing the costs of a nondeterministic union and of a concatenation of actions respectively.
Axiom (C1) represents a kind of conservative attitude since it assigns to the nondeterministic
plan α ∪ β the maximum of the costs of α and β. Axiom (C2) establishes the (bounded)
sum of costs of α and β as the cost of the plan α;β. If we denote by DIC2 the extension
of DIC logic with these two axioms, then one can easily prove some consequences for the
behaviour of the Iα’s operators in the theory defined by the (Iα-Def) formulae:

Lemma 13

(i) If α, β, α ∪ β ∈ Π0, then {(Iγ−Def)}γ∈Π0 `IC2 Iα∪βϕ ≡L Iαϕ ∧ Iβϕ

(ii) If α, β, α;β ∈ Π0, then {(Iγ−Def)}γ∈Π0 `IC2 Iα;βϕ→L Iαϕ ∧ Iβϕ

Proof: (i) comes from the fact that in RLL one can prove the following equivalences: ¬L(Φ∨
Ψ) ≡L ¬LΦ ∧ ¬LΨ, δn(Φ ∧ ψ) ≡L δnΦ ∧ δnΨ, and Γ ⊕ (Φ ∧ Ψ) ≡L (Γ ∧ Φ) ⊕ (Γ ∧ Ψ).
On the other hand (ii) is a consequence of the following implications provable in RLL:
(Φ→L Ψ)→L (δnΦ→L δnΨ) and (Φ→L Ψ)→L (Γ⊕ ¬LΨ→L Γ⊕ ¬LΦ). �
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6.4 Conclusions

We have presented a logical framework for the Desire and Intention contexts, both related
with the representation of the agent’s preferences. The DC represents the ideal preferences
of the agent and the IC represents the goals the agent decides to follow after weighing
the cost/benefit relation. In both cases we showed that the logical frameworks proposed are
flexible enough to support different kinds of behaviors of these mental attitudes. Particularly,
we notice that this kind of fuzzy-modal representation for desires and intentions allows
to express in an explicit way qualitative expressions as for example D+ϕ → D+ψ and
Iαϕ → Iβϕ meaning respectively that we desire ψ more that ϕ, and we intend ϕ through
the plan β with higher strength than through the plan α.

On the one hand, different proposals for modelling desires in DC have been presented
from a basic DC schema. The most suitable alternative may be chosen for defining particular
agents. The purpose of presenting different consistency schemas was to show that the
framework presented for the agent Desire context is capable to represent different kinds of
bipolar and graded preferences, as for example, the model proposed by Benferhat et al [12].

On the other hand, in the IC we have defined a general logical context and then, we
showed how a concrete definition of the Intention through a plan, involving different factors,
as for instance the desire degree and cost of the plan, may be defined in a consistent way.
Other similar definitions of the intention degree representing the way the agent takes the
decisions are possible.

In general, we have followed a “blind” conception of desires where the preference relations
(positive or negative) over formulae are translated into preferences over worlds considering
what happens in the different worlds only with respect to that formulae, independently of
what happens with the rest (i.e. the values that take the other formulae in the worlds),
for instance if we have D+A → D+B (that is 1-true whenever D+A ≤ D+B) semantically
means that the preference measure over the worlds where A is satisfied is greater than the
measure over the worlds where B is true, but nothing is said about the rest of the formulae
in the worlds w where A or B are satisfied. Another approach following the Ceteris Paribus
principle may be interesting to analyze, where the relations over formulae like D+A→ D+B

may be transfered to worlds where the only difference between them is about A and B and
the rest remaining the same. This approach is left as future work.

With respect to the proposed axiomatics to model desires and intentions in the BDI logic
(K and D axioms), the K axiom is covered by the current axiomatics presented respectively
for DC and IC. Considering the D axiom GOALφ → ¬GOAL(¬φ) for desires (goals), in
the DC logic we did not include any kind of restriction over the desires on a formula and
its negation, but we formalized this constraint in a many-valued framework, in the schema
DC1 by adding the axiom (D+ϕ ∧L D+(¬ϕ)→L 0)
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Preliminary work related to desire and intention contexts in the g-BDI agent model can
be seen in [29, 30, 31]. Recently, in [37] we have presented the logical framework to represent
and reason about graded preferences and intentions.

An important question related to preference modelling is how to use preferences in order
to get the best solutions. In the case of our agent architecture, this question turns to:
how can the agent use positive and negative desires to get the best intentions that in turn
lead him to plans. There are different ways of using (or combining) positive and negative
preferences in order to find the best solutions, for instance Benferhat et al. present different
approaches in [12]. In the g-BDI model of agent the positive and negative preferences are
pro-active attitudes that guides the search of which is the best intention the agent may
follow and suitable bridge rules are defined to combined in a flexible way this preference
information with other elements (e.g., the plan cost, the belief degree of achieving the goal
by plan execution) to decide the best intention the agent may follow through a selected plan.
In the next Chapter 7 we introduce this kind of bridge rules.



The whole is more than the sum of the

parts.

Aristotle

Chapter 7

Functional contexts and Bridge

rules

In this Chapter we present the remain necessary components of our multi-context agent
model: the Planner context (PC), the Communication context (CC) and the Bridge rules
(BR). Finally, a simple example to show how our agent model works is presented.

7.1 Planner and Communication Contexts

The nature of these contexts is functional. The Planner Context (PC) has to build plans
which allow the agent to move from its current world to another, where a given formula is
satisfied. This change will indeed have an associated cost according to the actions involved.
Within this context, we propose to use a first order language restricted to Horn clauses (PL),
where a theory of planning includes the following special predicates:

• action(α, P, A, cα) where α ∈ Π0 is an elementary action, P ⊂ PL is the set of
preconditions; A ⊂ PL are the postconditions and cα ∈ [0, 1] is the normalized cost of
the action.

• plan(ϕ, α, P, A, cα) where α ∈ Π is a composite action representing the plan to
achieve ϕ, P are the pre-conditions of α, A are the post-conditions, ϕ ∈ A and cα is
the normalized cost of α.

• bestplan(ϕ, α, P, A, cα) similar to the previous one, but only almost one instance
with the best plan is allowed.
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The Planner context is in charge of looking for a set of plans called feasible plans: f-
plan(ϕ, α, P, A, cα). In this PC approach, these plans are generated to fulfill positive desires
(ϕ if (D+ϕ, d) and d > 0), the current state of the world w must satisfy the preconditions (for
all φ ∈ P : w |= φ), the plan must make true the positive desire the plan is built for (ϕ ∈ A),
but avoiding negative desires (i.e. cannot have any negative desire as post-condition A 6|= ψ

if (D−ψ, n) and n > 0.

Furthermore, a filter may be used to select those plans that achieve the desire ϕ with
a belief degree greater than some threshold (τb): (B([α]ϕ), τb). In the representation of a
feasible plan the normalized cost of the plan, cα ∈ [0, 1], is also included.

The communication unit (CC) makes it possible to encapsulate the agent’s internal
structure by having a unique and well-defined interface with the environment. This unit
also has a first order language restricted to Horn clauses. The theory inside this context
will take care of the sending and receiving of messages to and from other agents in the
multiagent society where our graded BDI agents live. Also, through the communication
unit the agent perceives changes in the environment. Depending on the kind and the source
of the information, an uncertainty degree may be associate to the incoming data. This issue
is in close relation to the trust in the information source and some view of this problem is
analyzed in next Chapter 8. All the information that the CC receives will be introduce to
the Belief context BC by a suitable bridge rule (see (7.5) in next Section 7.2).

Also, the CC is in charge of communicating the action the agent choses to execute and
this is done by another bridge rule (see (7.4) in next Section 7.2).

Both functional contexts use resolution as a deduction method.

7.2 Bridge Rules

The deduction mechanism of multi-context systems is based on two kinds of inference rules,
internal rules, inside each unit; and bridge rules, outside. Internal rules allow to draw
consequences within a theory, while bridge rules allow to embed results from a theory into
another (see Section 2.3 for details). Then, Bridge rules can be understood as rules of
inference with premises and conclusions in different contexts. A multi-context system needs
some kind of control strategy as to prevent that a Bridge rule executes more than once under
the same premise conditions.

For our g-BDI agent model, we define a collection of basic Bridge rules to establish the
necessary interrelations between context theories. Some of these rules are illustrated in
figure 4.1. In this Section we comment some of the most relevant Bridge rule schemas:
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1. There are bridge rules from DC to PC that, from the positive and negative desires
(pro-active attitudes), generate predicate instances in the PC unit that are used by
the planner program to build the feasible plans:

DC : (D+ϕ, d)
PC : d(D+ϕ, d)e

and
DC : (D−ψ, n)
PC : d(D−ψ, n)e

(7.1)

2. The agent knowledge about the world state and about actions that change the world,
is introduced from the belief context into the Planner as first order formulae:

BC : Bϕ
PC : dBϕe

(7.2)

3. Regarding intentions, there is a bridge rule that infers the degree of Iαϕ for each
feasible plan α that allows to achieve ϕ. The intention degree is thought as a trade-off
among the benefit of reaching a desire, the cost of the plan and the belief degree in
the full achievement of ϕ after performing α. The following bridge rule computes this
value from the degree of D+ϕ (d), the degree of belief B[α]ϕ (r), the cost of the plan
α (c):

DC : (D+ϕ, d), BC : (B[α]ϕ, r), PC : fplan(ϕ, α, P,A, c)
IC : (Iαϕ, f(d, r, c))

(7.3)

Different functions f allow to model different agent behaviors. For instance, if we
consider an equilibrated agent, where all the factors involved are equally taken into
account, the function might be defined as the average among these factors. In other
cases, a weighted average may be used where the different weights wi are set according
to the agent expected behavior:

f(d, r, c) = (wdd+ wrr + wc (1− c)) / (wd + wr + wc)

For example, for a greedy agent, wc may be set greater than the other weights: wd and
wr.

4. The information supplied by the above bridge rule to the IC unit allows this unit to
derive, for each desire ϕ, a formula (Iϕ, i) where i is the maximum degree of all the
(Iαϕ, iα) formulae, where α is a feasible plan for ϕ. The plan αb that allows to get the
maximum intention degree imax considering all the agent desires, will be set by the
PC unit as the best plan (see the definitional axiom for I in Section 6.3). Finally, we
also need rules to establish the agent interaction with the environment, meaning that
if the agent intends ϕ at degree imax, the maximum degree of all the intentions, then
the agent will choose to execute the plan αb —bestplan— that will allow him to reach
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the most intended goal ϕ:

IC : (Iαb
ϕ, imax), PC : bestplan(ϕ, αb, P,A, c)

CC : C(does(αb))
(7.4)

5. Through the communication unit the agent perceives all the changes in the environ-
ment that are introduced by the following bridge rule in the belief context:

CC : β
BC : Bβ

(7.5)

Bridge rules to represent realism

In BDI agents, bridge rules have been also used to determine the relationship between
the mental attitudes and the actual behavior of the agent [115]. Well-established sets of
relations for BDI agents have been identified called realism models [41, 125].

• Strong Realism: the set of intentions is a subset of the set of desires, which in turn
is a subset of the beliefs. That is, if an agent does not believe that something may
became true, it will neither desire it nor intend it:

BC : ¬Bψ
DC : ¬Dψ

and
DC : ¬Dψ
IC : ¬Iψ

(7.6)

• Realism: The set of the agent beliefs is a subset of the agent desires which in turn
is a subset of the set of intentions. That is, if an agent believes something, she both
desires and intends it.

BC : Bψ
DC : Dψ

and
DC : Dψ
IC : Iψ

(7.7)

• Weak Realism: This is a middle point between strong realism and realism. An agent
do not desire a property if its negation is believed, does not intend something if its
negation is desired, and does not intend something if its negation is believed.

BC : Bψ
DC : ¬D¬ψ

,
DC : Dψ
IC : ¬I¬ψ

and
BC : Bψ
IC : ¬I¬ψ

(7.8)

Notice that in these rules we present a simplified version of these relations were the time
dimension is not taken into account as it is the case in [115]. Some work to overcome this lim-
itation was proposed in [136] introducing the notion of time in Bridge rules of a multi-context
agent, particularly to represent the time consumed in passing formulae and action execution.
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Bridge rules to generate desires in a dynamic way

In the desire context DC different schemas to represent and reason about desires were
presented but how desires are derived was not discussed. In a dynamic environment the
agent desires will change, depending on her beliefs and also on the set of current desires.

Notably, Rahwan and Amgoud in their argumentation-based approach to practical rea-
soning [122] provide an argumentation-based framework for generating consistent desires,
among other tasks (see Section 2.5 for details). The basic elements of this argumentation
framework are the desire-generation rules, as follows:

• Desire-Generation Rule or a desire rule, is an expression of the form:

ϕ1∧ ...∧ϕn∧ψ1∧ ...ψm ⇒ ψ where ϕi ∈ K and ψj , ψ ∈ D. The set K represents
the agent knowledge and the set D gathers all possible agent desires.

The meaning of the rule is “if the agent believes ϕ1, ..., ϕn and desires ψ1, ..., ψm, then
the agent will desire ψ as well”.

These rules are also similar to the filtering rules proposed in [132] to represent reasons
for and against adopting desires.

Thus, we can introduce in our g-BDI model a multi-context and many-valued version
of these rules. As the desire and belief formulae in the premise are coming from different
contexts, we define the following bridge rules for desire generation:

BC : (Bϕ1 ∧ ... ∧Bϕn, b), DC : (D+ψ1 ∧ ... ∧D+ψm, c)
DC : (D+ψ, d)

(7.9)

Namely, if the agent has the beliefs Bϕ1, ..., Bϕn in degree greater or equal then a thresh-
old b and positively desires D+ψ1, ..., D

+ψm in degree at least c, she also desires ψ in degree
at least d.

With the description of this set of bridge rules (BR) we have finished the presentation
of all components of the g-BDI agent model. Below we give some insights of how the agent
model works and present a simple example as to show how these components interact to
decide the agent action. Then, in next Chapter 12 we develop a case study extracted from
a real world domain.
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Figure 7.1: Agent architecture

7.3 How the g-BDI model works

Up to this point we have proposed an expressive logical framework to represent and reason
about an agent’s beliefs, desires and intentions.

In order to make all the described logical ingredients operational in a deliberative agent
architecture, they should be complemented with the proposed functional contexts (Commu-
nication Context and Planner contexts) and some bridge rules, which allow to pass formulae
among theories.

We describe next the working of the agent architecture with its main components, which
are shown in Figure 7.1 where circles represent the different contexts and their theories, boxes
represent tasks carried out by special bridge rule inferences, and where arrows illustrate the
information flow and context interaction by bridge rules.

1. CC: receives the environment input.

2. Information passes from CC to BC (see BR 7.5).

3. BC: represents the uncertain information the agent has about its environment.
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4. DC: represents the graded positive and negative agent desires.

5. A belief revision process, which takes new inputs (from CC) and the agent’s current
beliefs (from BC) and determines a new set of graded beliefs.1

6. A desire generation and revision process, which determines and/or revises the agent’s
graded positive and negative desires on the basis of her current beliefs and her previous
desires (see BR 7.9).

7. Desires are passed from DC to PC (see BR 7.1).

8. Beliefs about plans and domain knowledge are passed form BC to PC (see BR 7.1).

9. PC: looks for feasible plans,feasible plans are plans which fulfill (to some degree) pos-
itive desires, satisfy some preconditions and avoid undesired postconditions. Filtering
plans, to identify which ones are feasible, can be achieved in a logic style by the
following rule:2

(D+ϕ, r), (D−ψ, s), plan(α, P,A, c),
(B([α]ϕ), b0 ), (B(P ), 1), (B(A→ ¬ψ), 1)

fplan(ϕ, α, P,A, c)
(1)

which generates a predicate fplan(ϕ, α, P, A, cα), standing for α is plan that achieves
ϕ with precondition P , postcondition A and cost c, whenever: (1) it is believed (above
some threshold level b0) that plan α leads to satisfy a positively desired goal ϕ (encoded
as (D+ϕ, r) and (B([α]ϕ), b0)), (2) α’s precondition P is satisfied ((B(P ), 1)), and
(3) α’s postconditions A avoid negative desires ψ (encoded as (B(A → ¬ψ), 1) and
(D−ψ, s)).

10. PC: has a set of feasible plans (fplans) according to the agent’s beliefs and desires.

11. A process for deriving intentions, which for each feasible plan α that allows to achieve a
desire ϕ, an intention formula Iαϕ is derived with its corresponding degree. According
to the notion adopted the intention degree is taken as a trade-off between the benefit
of reaching the desire and the cost of the plan α. This can be made operational by
means of an inference rule like the one showed in previous Section (see BR 7.3) and
using as the function f a weighted average as it was proposed.

12. IC: represent the set of current graded Intentions, representing those desires that the
agent is committed to try to bring about by the execution of feasible plans (see BR
7.3).

1Even thought in this approach we haven’t included some revision processes for the different contexts,
we consider they are necessary for an agent that lives in a dynamic environment

2Notice that this is not a BR, is an internal rule in the PC that uses formulae that have been injected
by BRs (agent beliefs and desires).
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13. Intention - Action selection process, which determines which action to perform on the
basis of each selected intention. From the set of current intentions and feasible plans,
the agent selects for a given desire ϕ the plan α which leads to a maximum intention
degree for Iαϕ, represented by the degree of the formula Iϕ .

14. CC: communicates the action α the agent undertakes.

We illustrate how the g-BDI agent model works by the following example.

7.4 Example

(Continuation of Example 1, see Chapter 6) We have a Tourism Recommender Agent in
charge of looking for different tourism plans in order to satisfy a set of tourist preferences.
She will intend to reach the goal (i.e. satisfying the user) by the recommendation of the
tourism plan which can get her the highest intention degree. The recommender agent is
modelled using the g-BDI architecture and takes all desires expressed by Maŕıa, our stressed
tourist (also presented in Example 1), and following the steps explained in this section, finds
the best recommendation for Maŕıa:

(1-2-3) Update Belief Context: the agent updates her current beliefs about the tourism
plans offered, the tourism domain (structured using destinations ontologies) and the
beliefs about how these packages can satisfy the user’s preferences. All these beliefs
constitute the agent current belief theory TB .

(4-6) Update Desire Context: from Maŕıa preferences the agent generates her desires
exactly at they were generated in Example 1 and are represented as the desire theory:
T ′D =

{
(D+m, 0.8), (D+r, 0.6), (D+(m ∧ r), 0.95), (D−f, 0.7)

}
.

Once these theories are defined, the Agent is ready to reason in order to determine
which Intention to adopt and which plan is associated with that intention.

(7) The desires are passed from DC to PC.

(8) The beliefs about tourist packages and tourism are passed from BC to PC.

(9) PC - looking for feasible packages: from this set of positive and negative desires
(T ′D) and knowledge about the tourist packages the agent can offer and the benefits
they bring (TB), and using a Planner, the agent looks for feasible plans, that are be-
lieved to achieve positive desires (i.e in this case m, r or m∧ r) by their execution but
avoiding the negative desire (i.e. f) as post-condition (see rule (1)).
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The agent has in its knowledge base among other formulae, the following ones repre-
senting the description of the offered tourism plans. Each package is represented by
predicates defined as:

Package(Id, null, T rip, Cost), where Id is the identification of the plan, we consider
null preconditions, Trip is a detailed travel-stay sequence (postconditions) and Cost

is the package cost.

The Planner looks for the plans that do not satisfy f and that satisfies m or r, by a
cross-searching between the package and destination ontologies.

(10) Current feasible packages: the agent finds that the plans Mendoza (Me) and
SanRafael (Sr) are feasible plans for the combined desire m ∧ r, while Cumbrecita
(Cu) is feasible only for m. The Planner also computes the normalized cost (c ∈ [0, 1])
of these plans being respectively: cMe = 0.60 and cSr = 0.70 and cCu = 0.55.

The agent also has the following beliefs related to the achievement of the different
desires (m, r or m ∧ r) by the feasible plans (Me, Sr and Cu). These beliefs are
included in the BC theory.

T ′B = {(B[Me]m, 0.7), (B[Me]r, 0.6), (B[Me](m ∧ r), 0.6), (B[Sr]m, 0.5),
(B[Sr]r, 0.6), (B[Sr](m ∧ r), 0.5),

(B[Cu]m, 0.4)}

(11) Deriving the Intention formulae Iαϕ, for each feasible plan α towards a

desire ϕ. The intention degrees for satisfying each desire m, r and m ∧ r by the
different feasible plans are computed by a rule that trades off the cost and benefit
of satisfying a desire by following a plan. The Agent uses rule 7.3 (Section 7.2) and
considering the function f as the average of the desire degree (d), the belief degree r
of achieving the desire by a selected plan and the complement of the cost (c):

f(d, r, c) = (d+ r + (1− c))/3

computes the intentions degrees towards m∧r, m and r by executing the feasible plans
Mendoza (Me), SanRafael (Sr) and Cumbrecita (Cu).

(12) Current Intentions: as a result of the previous process, the set of intentions contains
the following formulas:

(IMe(m ∧ r), 0.675), (ISr(m ∧ r), 0.625),
(IMe(m), 0.60), (IMe(r), 0.50),
(ISr(m), 0.55), (ISr(r), 0.45),
(ICu(m), 0.625) .
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(13-14) Selecting Intention-plan: the agent decides the tourist recommendation. From this
set of current intentions, the Agent decides to recommend the plan Mendoza (Me)
since it brings the best cost/benefit relation (represented by the intention degree 0.675)
to achieve m ∧ r, satisfying also the tourist negative desire.

7.5 Comparison with Rahwan and Amgoud’s approach

In this Chapter we have completed the formalization of our g-BDI agent model by presenting
the functional contexts and the bridge rules. Also, we have described the working of the
proposed architecture. Then, we are able to compare this agent model with a relevant
related approach.

Previously, in Chapter 2.5, we have analyzed different approaches to graded attitudes
in intentional agents. Noticing that most proposals related to graded beliefs, weighted
preferences and intention reconsideration, model partial aspects of the uncertainty related to
mental notions involved in agent architectures. Notably, Rahwan and Amgoud have recently
presented in [122], a complete argumentation-based framework for practical reasoning. They
provide a rich argumentation-based framework for (i) generating consistent desires, and (ii)
generating consistent plans for achieving these desires. We belief that our agent model is
complementary to their approach in different aspects we next detail.

This argumentation-based approach allows the representation of uncertain beliefs and
worth related to desires. In this work, however, the authors do not present strictly speaking
a formal system (in the sense of a logical system which is sound and complete with respect
to an intended semantics) to represent and reason with these graded attitudes according to
a suitable uncertainty model. The relation between their proposal and some BDI axiomatics
is left as future work. In this direction, we have developed well founded logics to model the
different mental attitudes (i.e. beliefs, desires and intentions) in a multi-context framework.

Besides, Rahwan et al. in [122] do not use any estimation on plan failure and have no
estimation on the uncertainty of achieving the desire after the plan execution. They work
with certain plan rules. In this sense, our proposal includes a preliminary approximation to
the notion of plan failure by computing the belief degree in having the goal after executing
a determine plan (i.e. by using B[α]ϕ formulae).

In their model, they select intentions from a set of justified and feasible desires, con-
structing a complete pre-order relation, where the worth of the desires in the plan, and the
cost of its resources are involved. To decide intentions they present an interest combination
based on utility, as the difference between of total worth of desires and the total cost of the
resources involved in their achievement. For the g-BDI model we have proposed a process
to decide the agent current intention by looking for the desires that can be achieved by
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feasible plans (similar to their notion of feasible desires) and then, the best ranked intention
is selected (see Chapter 6). This ranking is built by using a function that combines among
others, the desire degree and cost of the plan. Instead of specifying a fixed combination, we
proposed that different functions may be defined to model different agent behaviours.

We remark they have presented an important approach to the deliberation process in
BDI agents towards desire generation. They include desire generation rules that from desires
and belief, generate new desires. We have incorporated these rules to our agent model to
generate desires in a dynamic domain, by defining suitable bridge rules (7.9 in Section
7.2). Furthermore, the argumentation frameworks they propose for belief, desires and plans,
permit to treat in an efficient way with the agent inconsistent information. In this way
their argumentation model maintains the different bases sound and it allows to look for a
conflicting free set of acceptable plans. We consider that the argumentation based approach
is a promising direction for future work related to the revision of the different attitudes in
our g-BDI model.





Trust is the lubrication that makes it

possible for organizations to work.

W. G. Veńıs

Chapter 8

The Socialization of the g-BDI

agents

8.1 Introduction

The agents developed using the g-BDI model may interact with the environment and other
agents, human or not, in the agent society where they are situated. Thus, it is necessary
to take into account the social aspects of agency. The agent interactions have many facets
and much work still must be done in different directions. In this chapter we consider some
preliminary steps towards the g-BDI agent socialization so as to show how the agent model
can be extended to include some of these aspects.

First, we show how the language defined for the mental contexts can be used to reason
about other agent attitudes. Second, a social context is added to the g-BDI agent model to
represent and handle different kinds of trust in other agents. Particularly we consider the
trust in informant agents and the trust in delegating plans to other agents.

8.2 Reasoning about other agent attitudes

The languages defined in previous chapters for the different mental contexts (BC, DC and
IC) in the g-BDI agent model include modal formulae over a base propositional language
L, i.e. formulae of the kind Mϕ, where ϕ ∈ L and M ∈ {B,D, I}. These languages
do not permit nested modalities, i.e. formulae of the kind BBϕ or BIψ are not allowed.
This is actually a language limitation for an agent that may need to reason about other
agents’ beliefs, desires or intentions, and would need to use formulae like BaBbϕ or BaIbψ,
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expressing that agent a believes that agent b believes ϕ or that agent a believes agent b
intends ψ. The problem with this more general formulae is, first of all, that they cannot
be given a suitable meaning by the different kinds of Kripke structures we have defined for
the different context logics. Namely, let us consider for instance the logic BCprob. In a
BCprob Kripke structure, a formula Bϕ is evaluated by a probability measure µ defined on
(classical) subsets of worlds. If we would like to evaluate a formula like B(Bϕ), then notice
that Bϕ is a many-valued formula (it takes a value from [0, 1] in each model) and hence the
outermost B operator should be evaluated over a fuzzy subset of worlds.

To overcome this problem, a partial solution would be to force that modal operators B,
D and I apply over Boolean modal formulae, in the sense that they either take degree 1 or
degree 0 in each world. This can be achieved by first expanding the fuzzy logics used in the
different contexts (e.g.  Lukasiewicz or Gödel logic) with the projection Baaz ∆ operator
(see Section 3.2), with the following interpretation:

e(∆ϕ) =

{
1, if e(ϕ) = 1
0, otherwise

From ∆ we can define other projection operators, for example the operator ∇ = ¬∆¬ [78],
evaluated as follows:

e(∇ϕ) =

{
1, if e(ϕ) > 0
0, otherwise

Notice that although ϕ may be a fuzzy formula, ∆ϕ and ∇ϕ are crisp (bi-valued). Therefore,
if we stipulate that every modal operator can only be applied to either a propositional
formula or to a modal expression beginning with ∆ or ∇, then we could safely use and
evaluate and agent’s beliefs about other agents’ attitudes provided that BCprob Kripke
structures M = (W,µ, e) are extended to structures of the kind M = (W,µa, µb, . . . , e), with
a probability measure for each agent. For instance, in such a case, we could represent and
evaluate expressions like:

• Ba(∇Ibϕ) representing that “the agent a believes that the agent b intends ϕ in some
positive degree”.

• 0.6 → Ba(∇Bbϕ) expressing that “ the agent a believes with a degree greater or
equal than 0.6, that the agent b believes ϕ with a positive degree”.

• 0.7→ Ba(∆(0.5→ Dbϕ)) meaning that “the agent a believes with a degree greater
or equal than 0.7, that the agent b desires ϕ with a degree greater or equal than 0.5”.

These restricted nested formulae work properly, in principle, to combine different modal-
ities from a semantic point of view. However, this approach does not improve the lan-
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guage expressive power. For example, consider the formula 0.7 → Ba(∆(0.5 → Bbϕ)).
Since the probability measures µa and µb do not depend on the particular world we are
but on the whole model, then 0.5 → Bbϕ either holds or not in any world of W , and
hence Ba(∆(0.5 → Bbϕ)) gets either value 1 or 0, and so, it is trivially true or false,
and the complex belief formula could actually be equivalently represented by the formula
∆(0.5→ Bbϕ), without using any nesting. Therefore, to get a better expressive power, the
semantics should also be extended by considering probabilistic Kripke structures of the kind
M = (W,µa, µb, . . . , e) where now µi : W × Fi → [0, 1], such that for each world w ∈ W ,
µi(w, ·) is a probability measure over some suitable Boolean subalgebra Fi ⊆ 2W .

The full development of these kinds of more expressive power is left for future work.

8.3 Trust in an agent society

To equip an agent with tools in a social context, it is important to model and support the
agent’s trust. In an agent community different kinds of trust are needed and should be
modelled, as it was pointed out in [1, 39]. They can be grouped in trust in the environment
and trust in other agents interacting in it (e.g., mediating agents, potential partners). Trust
is a mental state, a complex social attitude of an agent x toward another agent y about
the belief in the behavior/action relevant for a goal. Castelfranchi and Falcone in [39] have
developed a complete cognitive approach to social trust.

The use of previous direct interactions is probably the best way to calculate trust but,
unfortunately, this information is not always available. Reputation systems take advantage,
among other things, of social relations between agents to overcome this problem as is dis-
cussed in [137]. A valuable example of this kind of tools is the ReGret system [135] where
the reputation of the participating agents is modelled taking into account diverse social
relations in a trading context.

To deal with the social aspects of agency in our g-BDI agent model we introduce a
new context, the Social Context (SC), with the purpose of modelling the agent trust or
reputation in other agents. In the multi-context specification of the g-BDI agent model,
besides the mental contexts to represent beliefs (BC), desires (DC), intentions (IC), and
two functional contexts, for Planning (PC) and Communication (CC); a social context (SC)
is thus included:

Ag = ({BC,DC, IC, SC, PC,CC},∆br)

The interrelation of the SC with the other contexts in the architecture can be defined in a
neatly way, by suitable bridge rules.
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Among the different kinds of trust that may be used in an agent society, in this chapter
we consider two cases. On the one hand, the incoming information must be analyzed and
filtered depending on the trust that the agent has in its source. On the other hand, the
social trust must also be considered when the agent must decide about the delegation to
others of an action that is part of the plan toward the goal that it is trying to achieve.

8.3.1 A Social Context to Filter Information

In a first stage, we consider that the purpose of the social context (SC) in our agent model
is to filter all the information coming from other agents. We have inspired our work in the
Belief, Inform and Trust (BIT) logic presented by Liau [98] and then, extended by Dastani
[43]. One of the central ideas formalized in BIT logic is the following: “if agenti is informed
by agentj about ϕ, the agenti’s beliefs about ϕ depends on the trust the agenti has in
agentj with respect to ϕ”. In the framework of this logic all the formulae are crisp. We
extend this idea to a many valued approach, in a multi-context specification. Preliminary
results in this direction can be seen in [31].

Language

Assuming we have a multiagent system scenario with a finite set of agents: {agenti}i∈Ag
,

the language for this social context LSC is built over a basic propositional language L, ex-
tended by a family of modal operators Tij where i, j ∈ Ag. Then, the language LSC contains
non-modal L-formulae and modal formulae Tijϕ, where ϕ ∈ L. As in the definition of the
DC language (see Section 6.2), we call a modal formulae closed when every propositional
variable is in the scope of a modal operator Tij .

The formula Tijϕ represents the trust of agenti towards agentj , with respect to ϕ. We
consider that these formulae may be graded taking values in [0,1], to express different levels
of trust. A belief-based degree of trust has been discussed in [39].

In the same way than in the other mental contexts, we use a many-valued treatment for
the trust of an agent in others. Then, if the degree of Tijϕ is τ , we shall consider that the
truth degree of the sentence “agenti trusts in agentj about ϕ” is τ . We also choose the
 Lukasiewicz logic as the underlying many-valued logic.

In this context, the agent trust in other agents will be represented by a theory T (a set
of closed LSC formulae) containing quantitative expressions about the agent trust, as for
example (Tijϕ, τ) and (Tikψ, γ).

Semantics and axioms
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The models for SC are defined in a similar way as we did in the other contexts using a
Kripke structure. MS = 〈W, e, {τij}i,j∈A〉 where W and e are defined in the usual way, and
for each i, j ∈ A, τij : W → [0, 1] is a trust distribution over worlds where τij(w) ∈ [0, 1] is
the degree on which agenti trusts agentj about the possibility of w being the actual state
of the world.

The truth evaluation e : V ×W → {0, 1} is extended to the non-modal formulae in the
usual way. For the modal formulae, we follow the intuition that the trust on ϕ ∧ ψ may be
taken as the minimum of the trust on ϕ and on ψ, hence we interpret the trust operator Tij
as a necessity measure on non-modal formulae. We extend the truth-evaluation e to modal
formulae using  Lukasiewicz logic truth-functions and by defining:

e(Tijϕ,w′) = inf{1− τij(w) | w ∈W, e(w,ϕ) = 0}

that is, the necessity of ϕ with respect to the possibility distribution τij .

Then, the corresponding axiomatics is set in a similar way than in the basic schema for
DC, as follows:

1. Axioms of classical logic for the non-modal formulae,

2. Axioms of  Lukasiewicz logic for the modal formulae,

3. axiom for Tij modalities:

(SC1) Tij(ϕ ∧ ψ) ≡L Tijϕ ∧L Tijψ

(SC2) ¬LTij⊥

4. Inference Rules:

(MP) modus ponens for → and for →L

(EQ) from `CPC ϕ ≡ ψ derive ` Tijϕ ≡L Tijψ

necessitation rule for each Tij where i, j ∈ Ag: from ϕ derive Tijϕ.

After the trust between the agent and the other agents in the environment respect to
a subject is defined, the agent can use this notion of trust to asses the quality of the
information received from other agents. Following [43] we want to use this trust to derive
the agent beliefs about what is being informed.

In a multiagent system scenario, if agenti is informed by agentj that ϕ is true, this
statement may be represented by a first order predicate:

informed(agenti, agentj , ϕ) (two-valued formula represented by Nijϕ).
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Figure 8.1: A g-BDI agent model including a SC for filtering information.

The main axiom for trust in the BIT logic [98] where the agent filter behavior is set, is
defined as follows:

(C1) (BiNijϕ ∧ Tijϕ)→ Biϕ, where i, j ∈ Ag (filter)

We present a multi-context version of this axiom. As belief, information and trust
formulae are represented in different contexts, we use a special bridge rule to formalize it
and we extend this rule to a many-valued framework.

Through the Communication unit —CC (outlined in Chapter 7), the agent perceives all
the changes in the environment and, in particular, it receives the information from other
agents (e.g. Nijϕ formulae). Then, using the trust degree (τ) on agentj with respect to
ϕ, this information is introduced in the belief context, using a suitable order preserving
transformation h, by the following bridge rule:

CCi : Nijϕ, SCi : (Tijϕ, τ)
BCi : (Biϕ, h(τ))

(8.1)

Figure 8.1 shows the extension of the graded BDI agent model with the different contexts
(including the social context, SC) and some of the bridge rules relating them. Particularly,
the bridge rule 8.1, in charge of the agent information filtering process, is illustrated as rule
(1).

Example 4 Suppose a tourism agent (Agent1) is informed by another tourism agent (Agent2)
that “there is not enough snow in Mendoza for skiing”(¬s), represented by N12(¬s). As they
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are competitive travel agents, the trust of Agent1 in Agent2 with respect to tourism issues is
low, this may be represented in the SC1 of the Agent1 by the formula (T12(¬s), 0.4). Then,
the Agent1 by using the bridge rule (see rule 8.1) and defining h(τ) = τ , she derives in her
BC1 the formula (B1(¬s), 0.4) expressing that her belief degree on ¬s is also low (at least
0.4).1

8.3.2 Trust in Delegation

The aim at considering a Social Context in the g-BDI agent architecture is to model the
social aspects of agency, particularly the trust in other agents. Previously a Social Context
was introduced to filter the agent incoming information, taking into account the trust in the
informant agents. The social trust must also be considered when the agent decides about
the delegation to others of an action, part of the plan toward the goal. Thus, trust and
delegation are closely related. In this subsection, we use the Social Context in order to
represent the trust needed in order to evaluate the risk of delegating partial plans and thus
decide whether or not to delegate them. We need to extend the SC defined above to rep-
resent and reason about this kind of trust. Different modalities are used to distinguish the
diverse types. They are treated separately because agenti may trust agentj with respect to
the information she gives about ϕ, but may not trust her about delegating an action related
to ϕ.

Language

Assuming we have a multiagent system with a finite set of agents: {agenti}i∈Ag , we
extend the dynamic propositional language LD (see Section 3.1) used in BC to reason about
actions and plans, by a family of modal operators T dij ,

2 where i, j ∈ Ag.

Then, the language for the social context LSC is extended by the LD-formulae. The
modal formulae T dijψ are included to represent the trust agenti has on agentj related to
delegating an action in ψ, where ψ is a closed formula in LD (i.e. ψ = [α]ϕ, α ∈ Π0 and
ϕ ∈ L). The formulae T dijψ may be graded, taking values in [0,1], to express different levels
of trust. Like in the other contexts, we use a many-valued approach for trust modelling.
When who the agenti holding the trust is is clear from the context we remove its subindex,
that is, T dijϕ becomes T dj ϕ.

The theory for SC in a g-BDI agent, TS , will have closed formulae like (T dj [α]ϕ, τ)
expressing that the trust of the agent toward an agentj about a plan α directed to a goal ϕ,
has degree greater than τ . We propose to use a plan classification based on an action ontology

1In the case that the Agent1 has previous conflicting information about this subject, a belief revision
process is needed to decide her current beliefs.

2We use the superscript d to differentiate the kind of trust (on delegation) we are dealing with.
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to assign the different levels of trust to dynamic formulae related to plans, preserving the
following axioms:

T dj [α ∪ β]ϕ ≡L T dj [α;β]ϕ ≡L T dj [α]ϕ ∧L T dj [β]ϕ

Namely, the trust level in an agentj related to delegate her a plan that combines actions by
concatenation or non-deterministic disjunction, results in the minimum of the trust levels
with respect to delegate the elementary actions.

Actually, one in fact could assume that the trust only depends on the plan α and not in
the goal the agent is trying to achieve with its execution. In such a case, the language could
be simplified and instead of introducing the modal operators T dj one could introduce in the
language a set of fresh many-valued propositional variables tdjα indexed by agent identifiers
j ∈ Ag and by actions α from a given set of actions Π0 that we may assume to be closed
by nondeterministic union and concatenation. This approach would be similar to what was
done with cost propositional variables Cα in the intention context IC (see Section 6.3). In
that setting the above axioms should be replaced by analogous ones on the variables tdjα:

tdjα∪β ≡L td
j
α;β ≡L td

j
α ∧L td

j
β

Regarding intentions, we believe that in the case a g-BDI agent is evaluating an intention
towards a goal ϕ by a plan α, when the plan execution involves the delegation of the plan
(or subplan) to another agentj , it needs to use trust. In previous works, as in [76], it was
considered that the plan quality could be computed as a weighted sum of a standard rating
(combination of the benefit obtained by the plan execution and its cost) and a cooperative
rating (evaluated from the trust in the agents involved).

To compute the intention degrees in the g-BDI model, we have proposed a function that
combines different factors (i.e. desire degree, belief in satisfying the goal, cost of the plan),
that was formalized by defining an specific bridge rule (see 7.3 in Section 7.2). The intention
degree is thought as a trade-off between the benefit of reaching a goal and the cost of the
plan. Now, we propose to include the trust in the agent that will cooperate with the action
execution. The following bridge rule computes the intention degree of Iαϕ from the degree
d of D+ϕ, the degree r of belief B[α]ϕ, the cost c of the plan α and the trust level t in the
agentj that will cooperate in the execution of the plan α.3

DC : (D+ϕ, d), BC : (B[α]ϕ, r), PC : fplan(ϕ, α, P,A, c), SC : (Tj [α]ϕ, t)
IC : (Iαϕ, f(d, r, c, t))

(8.2)

3If the trust in the agentj only depends on the plan α and not in the goal ϕ trying to achieve then, the

premise (Tj [α]ϕ, t) may be replaced in the BR with (tdjα, t).
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Figure 8.2: A g-BDI agent model including a SC to deal with delegation.

Different functions f allow to model different agent behaviors. For instance, f may be
defined as a weighted average,

f(d, r, c, t) =
wd.d+ wr.r + wc. (1− c) + wt.t

wd + wr + wc + wt

where the different weights wi are set according to the diverse agent types. For instance,
for a greedy agent wc will be set greater than the other weights and for a suspicious agent
the more relevant will be wt.

In Figure 8.2 the extended g-BDI agent model is illustrated, in this case we focus on the
trust in delegation. The bridge rule 8.2 that computes the intention degrees taking trust
into account is shown as rule (2).

Example 5 The personal tourism agent ( T-Agent) recommends tourism packages provided
by two different tourism operators ( P1-Agent and P2-Agent). It is important for the T-
Agent to take into account the trust she has in the different Providers in the recommendation
she undertakes. In this case, we consider that the trust depends only on the kind of tourist
plan that the operator offers. For instance, we consider the region of the country as a
classification element, since there are tour-operators that are good for plans in a particular
region, but not in others.

Maŕıa, our tourist of Example 1 (see Section 6.2), activates the personal agent T-Agent,
to get an adequate plan, i.e. a tourist package, that satisfies her preferences (e.g. going
to a mountain place (m) and practicing rafting (r) in a beautiful Argentinian place). The
principal steps of the T-Agent towards to give a suitable recommendation are resumed next
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(for details see Section 7.4):

- The T-Agent finds that the plans Mendoza (Me) and SanRafael (Sr) are feasible plans
for the combined goal m ∧ r, while Cumbrecita (Cu) is feasible only for m. The Planner
also computes the normalized cost (c ∈ [0, 1]) of these plans being respectively: cMe = 0.60
and cSr = 0.70 and cCu = 0.55.

- In the belief context of the T-Agent the following beliefs of achieving the different
desires through the plans offered are computed as follows: (B[Me]m, 0.7), (B[Me]r, 0.6),
(B[Me](m ∧ r), 0.6), (B[Sr]m, 0.5), (B[Sr]r, 0.6), (B[Sr](m ∧ r), 0.5) and (B[Cu]m, 0.4).

- The packages Mendoza and Cumbrecita are provided by P1-Agent while SanRafael is
offered by P2-Agent. The trust T-Agent has on P1-Agent with respect to both packages Men-
doza and Cumbrecita, is medium and the trust in P2-Agent providing SanRafael is higher.
In T-Agent SC theory TS the trust in these provider agents are represented using a set of
many-valued propositional variables as the following formulae: (td1

[Me], 0.7), (td1
[Cu], 0.7) and

(td2
[Sr], 0.9).

- Using bridge rule 8.2 with the weighted function proposed, the T-Agent computes the
different intention degrees towards satisfying the user preferences by following feasible plans.
We consider that Maŕıa has selected the confidence priority criterion and thus, the T-Agent
adopts a suspicious behaviour by setting the following weights: wd = wr = wc = 0.5 and
wt = 1.

As a result of the previous process, the intention context contains the following formulae:

(IMe(m ∧ r), 0.685), (ISr(m ∧ r), 0.735),
(IMe(m), 0.64), (IMe(r), 0.58),
(ISr(m), 0.69), (ISr(r), 0.63),
(ICu(m), 0.655) .

Then, the T-Agent recommends Maŕıa the plan SanRafael (Sr) since it brings the best
cost/benefit relation (represented by the intention degree 0.735) respecting her priority se-
lection (i.e. confidence). If we compare this result with the one obtained in the Example of
Section 7.4 where the recommended package was Mendoza, we can notice that the trust in
the different package providers makes the difference in the recommendation.
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8.3.3 Conclusions

In this Chapter we have shown how the g-BDI agent model can be extended to include some
social aspects.

We have first proposed how the language and semantics defined for the mental contexts
could be extended to reason about the agent’s different attitudes or the attitudes of other
agents. In this way, we partially overcome the limitation of the previous languages that did
not allow for nested modal formulae. Second, we have shown that the g-BDI agent model
can be extended to deal with different kinds of trust, necessary for an agent who interacts in
an agent society. With this aim, a social context has been added to the g-BDI agent model
to represent different kinds of trust in other agents. Particularly, we have considered the
trust in informant agents and the trust to delegate to other agents the execution of a plan
(or partial plan). Preliminary results on the inclusion of a social context in the agent model
can be seen in [31, 32]. Further research in this direction is ongoing and we consider very
promising the recent work of Pinyol and Sabater-Mir in [120] focussing the integration of a
cognitive model of reputation within a BDI agent architecture.





Design is not just what it looks like and

feels like. Design is how it works.

S. Jobs

Chapter 9

Operational semantics for g-BDI

Agents

9.1 Introduction

As exposed in Chapter 4 the graded BDI model of agents is based on multi-context systems.
These systems are basically deductive machines. In this Chapter, we want to specify the
operational semantics of this agent model.

Operational semantics is a way to give meaning to computer programs in a mathemat-
ically rigorous way. The semantics for a g-BDI model of agent will describe how a valid
agent model is interpreted as sequences of computational steps. These sequences then are
the meaning of the model. Operational semantics may define an abstract machine and give
meaning to language expressions by describing the transitions they induce on a finite state
machine. Alternatively, via a pertinent process calculus, operational semantics can be de-
fined as syntactic transformations on sentences themselves. We decided to follow this second
approach.

The process calculus approach has already been used to cope with formal aspects of
multi-agent interactions defining different protocols [55]. Next, we outline some of these
calculus.

The π-calculus is a process calculus developed by Milner et al. [106] as a continuation
of the body of work on the process calculus CCS (Calculus of Communicating Systems)
[107]. The aim of the π-calculus is to be able to describe concurrent computations whose
configuration may change during the computation.

The Ambient Calculus due to Cardelli et al. [28] was developed as a way to describe

129
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the movement of processes (agents) and devices, including movement through boundaries
(administrative domains). It can also be considered as an extension of the π-calculus and it
is presented in more detail in next Section 9.2.

The Lightweight Coordination Calculus (LCC) [130] can also be considered as a variant of
the π-calculus with an asynchronous semantics to coordinate processes that may individually
be in different environments. LCC was designed specifically to formalize agent protocols for
coordination and it is suitable to express interactions within multi-agent systems without
any central control. LCC borrows the notion of role from agent systems but reinterpret this
in a process calculus. Social norms in LCC are expressed as the message passing behaviours
associated with roles. The most basic behaviours are the send or receive messages, where
sending message may be conditional on satisfying a constraint and receiving a message may
imply constraints on the agent accepting it. The constraints are expressed by structured
terms (i.e. Prolog syntax). More complex behaviours are specified using the connectives
then, or and par for sequence, choice and parallelism, respectively. A set of such behavioural
clauses specifies the message passing behaviour expected of a social norm. It is also possible
for LCC to verify the protocols using automated means, e.g. model checking [150]. Walton
in [148] presents a language based on CCS [107] to specify agent protocols in a flexible
manner during the interaction of agents. Then, he proposes a Multi-agent Protocol (MAP)
[149, 152] based in LCC and oriented to agent dialogues. These protocols allow to separate
agent dialogues from their specific agent reasoning technology.

Ambient LCC [90] is a language based on process algebra concepts that combines the
notions of LCC and ambient calculus. It was specially designed to support the execution of
electronic institutions, an organization model for Multi-Agent Systems.

In order to give semantics to a g-BDI agent, we take advantage of Ambient calculus.
Although process calculi have been mainly used to model multiagent systems, we have
considered that the modular structure that Multi-context system (MCS) provide to the ar-
chitecture of an agent would permit a similar treatment to single agents as well. Particularly
we find that the notion of ambient is also suitable to represent the MCS main components:
contexts and bridge rules.

As in Ambient LCC we combine Ambient calculus with some LCC elements but in
this case, for dealing with the internal structure of intentional agents. We focus on the
work about Ambient Calculus due to Cardelli et al. [28] to capture the notion of bounded
ambient and we take into account some elements of LCC syntax [130] to represent the state
components (e.g. terms, variables).

Since the g-BDI agent model is specified using multi-context systems (MCS), we first
introduce a specific ambient calculus which we call Multi-context Calculus (MCC) with its
corresponding semantics. The calculus presented is general enough to support the execution
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of different kinds of MCSs and particularly, we show how a graded BDI agent can be mapped
to the calculus proposed.

9.2 Mobile Ambient Calculus

Ambient calculus was developed as a way to express mobile computation [28]. It can also be
viewed as an extension of the basic operators of the π-calculus [106]. The inspiration behind
Ambient calculus is the observation that many aspects of mobility involve administrative
considerations. For example, the authorization to enter or exit a domain, and the permission
to execute code in a particular domain. These issues were principally motivated by the
needs of mobile devices. However, they are very similar to the issues faced by agents in
an open environment. The ambient calculus addresses this problem by defining an ambient
(informally) as a “bounded space where computation happens”. The existence of a boundary
determines what is inside and outside the ambient. Process mobility is represented as
crossing of boundaries and security is represented as the ability or inability to cross them. In
turn, interaction between processes happens in shared locations within a common boundary.
Ambients can also be nested, leading to a hierarchy. An ambient is also something that can
be moved. For example, to represent a computer or agent moving from one place to another.

More precisely, each ambient has a name, a collection of local processes that run directly
within the ambient, and a collection of sub-ambients. The syntactic categories are processes
and capabilities. A process is analogous to an individual agent. A process may be placed
inside an ambient, may be replicated, and may be composed in parallel with another pro-
cess, which means that the processes execute together. In Ambient calculus, n[P ] denotes
an ambient named n containing the process P. The formal syntax of Ambient calculus is
shown in Table 9.1.

In general, an ambient exhibits a tree structure induced by the nesting of ambient brack-
ets. Each node of this tree structure may contain a collection of (non-ambient) processes
running in parallel, in addition to subambients. We say that these processes are running
in the ambient, in contrast to the ones running in subambients. The general shape of an
ambient is, therefore:

n [P1 | · · · | Pk |m1 [...] | · · · |mj [...]]

To illustrate this structure we may display ambient brackets as boxes. Then the general
shape of an ambient is shown in Figure 9.1.

One of the relevant characteristics of the ambient calculus is the definition of capabil-
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P,Q,R ::= 0 Inactivity
(νn) .P Restriction
P |Q Parallel Composition
M [P ] Ambient
!P Replication
M.P Capability Action

M ::= n Name
in M can enter into M
out M can exit out of M
open M can open M
ε null
M.M ′ composite

Table 9.1: Syntax of Ambient calculus

Figure 9.1: General structure of an ambient

ities M for processes, which are described by actions. These capabilities permit things to
happen within ambients. Especially, this calculus presents some actions related to crossing
or opening ambient boundaries. Thus, different capabilities are defined as for example:

• Entering an ambient (in m capability): this action is used by a process to enter an
ambient, i.e. to cross its boundary. The result is that the process (and its enclosing
ambient) move from the current ambient to the ambient pointed in the action.

n [in m · P |Q] | m [R]→ m [n [P |Q] | R]

• Exiting an ambient (out m capability): this action is used by a process to exit an
ambient. The result is that the process (and its enclosing ambient) move outside the
current ambient to a parent ambient according to the ambient hierarchy.

m [n [out m · P |Q] | R]→ n [P |Q] | m [R]

For further information on the formal definition of Ambient calculus the reader is referred
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to [28]. Synthesizing, we can say that the emphasis of the Ambient calculus is on boundaries
and their effect on computation, having the following key features:

• Ambients are used to separate locations and allow a hierarchical structure (defining a
topology of boundaries).

• Process mobility is represented as crossing of boundaries, by the movement of processes
between ambients.

• Security is represented as the ability or inability of a process to cross boundaries.

• Interaction between processes is by shared location within a common boundary (i.e.
process can communicate only within the same ambient).

After these considerations, we find that the notion of ambient is also appropriate to
represent contexts in Multi-context systems. Contexts encapsulate the local aspects of
particular logical deductions in a global system and bridge rules enable to represent the
interaction or compatibility between them. Then, each unit can be mapped to an adequate
ambient having a state and a process running in it. Moreover, bridge rules may be also
represented by special ambients whose mobile processes may be in charge of the inter-context
deduction.

9.3 Multi-context Calculus

Multi-context systems (MCS) are specifications of deductive machines that modify the in-
ternal states of the different contexts through the context inner deductions and bridge rules
[68]. In order to translate these MCS specifications into computable languages, we propose
a Multi-context calculus (MCC) based on Ambient calculus. The notion of ambient allows
us to encapsulate the states and processes of the different contexts and bridge rules. The
possibility of structuring ambients hierarchically enables us to represent complex contexts
where different components may be represented by different ambients.

We also take advantage of the process mobility addressed in Ambient calculus to repre-
sent the process attached to a bridge rule. This process is meant to supervise a number of
context ambients to verify if particular formulae are satisfied and, if it is the case, to add
a formula in another context ambient. Thus, this process will be getting in and out of the
different ambients. Our definition of the actions for entering and exiting an ambient (i.e.
in C and out C) is slightly different from the one used in Ambient calculus. In Ambient
calculus a process gets into or out of an ambient C with the ambient enclosing it. In MCC
calculus we want the process to move alone, then we redefine these capabilities by the fol-
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lowing reduction rules that give semantics to in C and out C actions:

n [in m.P ‖ m [Q]] → n [m [P ‖ Q]]1

m [n [out n.P ‖ R]] → m [P ‖ n [R]]

Furthermore, for defining our calculus we use some elements of LCC [130] as the defi-
nition of structured terms (i.e. words in a suitable language) as the necessary elements to
represent the ambient state. In LCC terms are used to specify constraints that restrict the
interchange of messages and to represent some postconditions after the message sending.
In our calculus, the ambient state formulae determine the results of the execution of the
context ambient process (inner context deduction) and also can trigger some bridge rule
processes (inter-context deduction).

In a Multi-context calculus (MCC), a MCS is structured by a global ambient, having an
identifier and a Clause inside it. This clause may generate a set of clauses (ambients) for
representing contexts and bridge rules. A context ambient has an identifier, a state and the
context process being executed in it. Moreover, a context ambient may have other context
ambients inside it, thus composing a nested structure of ambients. Besides, a bridge rule
ambient has an internal state and a special process representing the inter-context deduction,
attached to it. Such an ambient structure is illustrated in Figure 9.2.

The definition of the MCC syntax is shown in Table 9.2. In the following we describe
the main syntax categories in the definition.

Multi-context System (MCS): is defined by an ambient structure where the global am-
bient identifier is IdMC and Clause will result in the ambients and processes inside it
(see (1) in Table 9.2). Clause leads us to a set of two type of clauses: Clausec and
Clausebr (2). Clausec generates a context ambient structure (possibly nested) with
a context process Pc running in each ambient C (3). Respectively, Clausebr becomes
a bridge rule ambient Br (4) where a Pbr process is being executed. In this way, we
define a global ambient where different processes (Pc and Pbr types) are running in
parallel. As the processes are being executed in different ambients there is no possible
interaction between them (i.e. interaction between processes happens only in a shared
ambient).

Context ambient: this ambient has a context process running in it. The context ambient
1In MCC we use ‖ to represent parallel composition instead of the symbol |, normally used in Ambient

Calculus, as to differentiate parallelism from the choice symbol in BNF grammars.
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Figure 9.2: The general ambient structure in MCC

C is defined as c(Idc, Sc) where Idc is its identifier and Sc its state (5). In turn, the
state Sc is a set of Terms of an adequate language Lc (e.g. Prolog formulae) that
represents valid formulae in the context (7). In many cases it may be useful to use
a nested structure of context ambients. For example, to represent a complex context
where its language or deduction system are built using different layers. In a nested
structure of ambients we can deal with this complexity defining different ambients for
each layer. In the MCC syntax it is possible to represent a context ambient structure:
from Clausec we can generate parallel context ambients (at the same level of hierar-
chy) or embedded context ambients, by using the rewriting rule (3).

Context process: consists of a deductive operator `c corresponding to the context logical
deduction. The Pc may be composed using the basic operators: sequential processing
(.); deterministic choice (or) meaning that if at all possible the process on the left
is to be executed, otherwise, the right one is chosen; and the classical conditional
if then else. Furthermore, rewriting Pc as Clausec the recursion of processes is al-
lowed. Then, different kinds of programs may be represented by Pc (12).

Bridge rule ambient: this ambient has a special process Pbr running in it (4). These am-
bients are defined as br(Idbr, Sbr), having an identifier Idbr and a state Sbr (6). The
state for a Br ambient is a kind of substitution memory L composed by the substitu-
tion lists returned by the Pbr process (8).
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MCS ::= IdMC [Clause] (1)
Clause ::= (Clausec ‖ Clause) | (Clausebr ‖ Clause) | ε (2)
Clausec ::= C [Pc ‖ Clausec] ‖ Clausec | ε (3)
Clausebr ::= Br [Pbr] (4)
C ::= c(Idc, Sc) (5)
Br ::= br(Idbr, Sbr) (6)
Sc ::= {Term} (7)
Sbr ::= L (8)
L ::= 〈U〉 (9)
U ::= 〈V → Term〉 (10)
V ::= variable (11)

Pc ::= Clausec | `c | Pc · Pc | Pc or Pc |
if Term then Pc else Pc | Action (12)

Action ::= in C | out C | get∗(Term,L) | getS(L1, ..., Ln, L) |
add∗(L, Term) | remove(C, Term) | ε (13)

Pbr ::= Clausebr | (spy(Br,C1, ϕ1, L1) ‖ spy(Br,C2, ϕ2, L2) ‖ . . .
‖ spy(Br,Cn, ϕn, Ln)) · put∗(Br,Ck, ϕk, L1, ..., Ln) (14)

spy(Br,C, Term,L) ::= out Br · inC · get∗(Term,L) · out C · in Br
(15)

put∗(Br,C, Term,L1, ..., Ln) ::= out Br · in C · getS(L1, ..., Ln, L) ·
add∗(L, Term) · revise(C) · out C · in Br (16)

Table 9.2: Syntax of Multi-context calculus (MCC)

Bridge rule process: this process is a key characteristic in the MCC and represents the
inter-context deduction process of a certain bridge rule (14). Each Pbr is composed by a
finite set of parallel spy(br, C, Term,L) processes followed by a put∗(Br,C, Term,L1, ..., Ln)
process. In the following items we describe in some detail these important components:

• spy(Br,C, Term,L) process (15) gets out of the Br ambient and gets into the
C ambient. In this ambient it retrieves in L all the substitution lists that result
of unifying Term with formulae in the context state. This task is done by the
process get∗(Term,L), which is the heart of the spy process. Then, it returns to
the Br ambient.

• put∗(Br,C, Term,L1, ..., Ln) process (16) is executed after all the lists of substi-
tutions L1,...,Ln have been extracted by the different processes

spy(Br,Ci, T ermi, Li), i = 1, ..., n. This process gets out of the Br ambient,
comes into the C ambient and using the getS(L1, ..., Ln, L) process, retrieves in
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L all the substitutions compatible with the lists of substitutions L1,...,Ln. Then,
using the add∗(L, Term) process, adds all the instances of Term applying the
resulting substitutions in L. In order to maintain the consistency in the am-
bient state, as the add∗(L, Term) process may introduce new formulae in it, a
revise(C) process is needed.

• revise(C) process is defined according to a suitable revision method chosen to
keep the ambient state consistent. If we want to revise using time considerations
as for example, allowing in the state to retain the more recent formulae respect
to the conflicting ones, the insertion time t of a formulae in an ambient state,
must be included in the calculus. In our case that means that each Term in the
context ambient state Sc needs a parameter t that will only be used by the revise
process. Since in some revision processes we may need to remove formulae from
the state, we include the remove(C, Term) as a possible action.

9.4 Operational Semantics

One of the purposes of defining the MCC is to provide the Multi-context computational
model with a clean and unambiguous semantics, allowing to be interpreted in a consistent
way. There are different methods for giving semantics to a process calculus as for exam-
ple, defining structural congruence between processes and reduction relations [28], or using
rewriting rules for the clause expansion [130]. We have chosen the natural semantics meth-
ods to provide operational semantics for the MCC. This formalism is so called because the
evaluation rules are in some way similar to natural deduction and it has been used to spec-
ified the semantics of Multi-Agent Protocols (MAP) [149, 152]. In natural deduction we
define relations between the initial and final states of program fragments. Thus, we found it
suitable for our case since each process may produce some changes in the ambient state. A
program fragment in our model is either a context process Pc or a bridge rule process Pbr.

We define the evaluation rules for the different processes. The general form of these
rules is: M,a � P ⇒ M ′, where M is the MCS at the start of the evaluation, a is the
ambient (C or Br type) where the procedure P is executed and M ′ is the final global system.

I- Evaluation rules for context processes: M,C � Pc ⇒ M,C ′

Since each context process Pc runs in a particular context C of M and its execution
only changes its state, in the following evaluation rules we can omit the reference to M . As
the context ambient C is defined as c(Idc, Sc), we represent as C ′ the modification of its
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ambient state i.e. C ′ = c(Idc, S′c).

C � (`c)⇒ C ′ (9.1)

C � Pc1 ⇒ C ′

C ′ � Pc2 ⇒ C ′′

C � Pc1 · Pc2 ⇒ C ′′
(9.2)

C � Pc1 ⇒ C ′

C � Pc1 or Pc2 ⇒ C ′
(9.3)

C � Pc1 ⇒ C

C � Pc2 ⇒ C ′′

C � Pc1 or Pc2 ⇒ C ′′
(9.4)

C ` Term
C � Pc1 ⇒ C ′

C � if Term then Pc1 else Pc2 ⇒ C ′
(9.5)

Notice that C ` Term represents that Term is a valid formula in the ambient state Sc,
i.e. Term ∈ Sc.

C ` Term
C � Pc2 ⇒ C ′′

C � if Term then Pc1 else Pc2 ⇒ C ′′
(9.6)

II- Evaluation rule for bridge rule process: M,Br � Pbr ⇒ M ′

As the fundamental processes for the Pbr definition are the processes

get∗(Term,L), getS(L1, ..., Ln, L) and add∗(L, Term), defining their semantics is enough
to have the complete Pbr semantics well defined. In some rules we use ∅ to denote that the
result of the process execution is independent of the ambient where it is running.

∀ Termi

{{
C ` Termi

∅ � unify(Term, Termi)⇒ Ui

}
↔ member(Ui, L′)

}
∅ � get∗(Term,L)⇒ L = L′

(9.7)
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Intuitively, get∗(Term,L) gathers in the list L all the substitutions Ui that result from
unifying Term with Termi, formulae in C ambient state.

∀ (U1 ∈ L1, . . . , Un ∈ Ln)
{(∅ � unify∗(U1, . . . , Un)⇒ L∗)↔ member(L∗, L′)}

∅ � getS(L1, . . . , Ln, L)⇒ L = L′
(9.8)

Where unify∗(U1, . . . , Un) is a variant of the classical unify function, where lists of
substitutions (U1, . . . , Un) instead of formulae are unified. If unify∗ succeeds, its result is a
list L∗ of the unified substitutions.

C = c(Idc, Sc)
∀Li { member(Li, L)↔ (Term [Li] ∈ TermSet)}
C � add∗(L, Term)⇒ c(Idc, Sc ∪ TermSet)

(9.9)

Intuitively, add∗(L, Term) adds to the ambient state Sc all the instances of the Term
formula by applying the substitutions in L.

9.5 Mapping a g-BDI Agent to the MCC

Given a g-BDI agent defined by its multi-context specification (see Chapter 4):

Ag = ({BC,DC, IC, PC,CC},∆br)

we want to map it into the MCC language. Thus, we need to define a mapping F : {Ag} 7→
MCC, which maps each g-BDI agent Ag with its multi-context components (contexts and
bridge rules) to the MCC language. The general insights of the mapping F between these
two formalisms are the following:

Global ambient: the multi-context agent Ag is mapped to a global ambient Ag in MCC:

F : Ag = ({BC,DC, IC, PC,CC},∆br) 7→ Ag [Clause]

Context ambient: each context Ci ∈ {BC,DC, IC, PC,CC} in the agent Ag, either men-
tal or functional, is mapped to a suitable ambient structure (possibly nested) in MCC.
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F : Ci = 〈Li, Ai,∆i, Ti〉 7→ c(Ci, SCi) [PCi ‖ Ci0 [PCi0 ‖ [Ci1 ‖ ...]] ]

• Language: before setting the ambient state for a context Ci, we have to define
the ambient language ALCi . Since the languages of different mental contexts in
the g-BDI agent model are built using different language layers, we create the
corresponding ambient hierarchical structure where the inner an ambient is, the
more basic language it has. The ambient state will be composed by formulae of
the top level language. This structure allows us to differentiate the language layers
(represented by ALCij ) in different ambient states and by using the mobility of
processes we can access the different formulae in them.

F : Li 7→
{
ALCi ,ALCi0 , ...,ALCik

}
• Context ambient state: the initial ambient state SCi

is composed by the
translation of the theory Ti formulae into the ambient language.

F : Ti 7→ SCi
⊂ ALCi

• Context ambient process: the process PCi attached to a context ambient is
derived from its logical deduction system. Thus, it is built from the context
theory, axioms and inference rules.

F : 〈Ai,∆i, Ti〉 7→ PCi

Essentially the PCi process is composed by the following sequential schema:
PCi ::= P ∗Ai

· P ∗∆i
, where the P ∗Ai

process represents the generation of finitely-
many instances of the different context axioms i.e. P ∗Ai

::= P ∗Ai1
· ... · P ∗Ain

,
where the Aij ’s are axioms in Ai. Respectively, P ∗∆i

is composed by processes in
charge of generating the instances of the different inference rules. i.e. P ∗∆i

::=
P ∗∆i1

· ... · P ∗∆ik
, where the ∆ij ’s are rules in ∆i. These processes are described in

more detail for DC context in next Subsection 9.5.1.

Bridge rule ambient: each bridge rule Bri is mapped to a suitable ambient Bri having
as internal state a list of possible substitutions Li and a special process PBri

. The
definition of both elements related to the Bri ambient (i.e. Li and PBri

) depends on
the premise and conclusion of the bridge rule that it represents:

F : Bri =
C1 : ϕ1, . . . , Cn : ϕn

Ck : ϕk
7→ br(Bri, Li) [PBri

]
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Figure 9.3: The ambient structure for a g-BDI agent

• Internal state: is the list Li of n substitution lists, i.e.:

Li = 〈Li1, . . . , Lin〉 where each sublist Lij will contain the resulting substitutions
of unifying the formulae ϕj with formulae in the context Cj .

• Bridge rule process: the special process PBr is created in MCC (see (12) in
Table 9.2) to represent the bridge rule inference. This process will add instances
of formula ϕk in ambient Ck when the preconditions are satisfied.

PBri
::= (spy(Br,C1, ϕ1, L1) ‖ . . . ‖ spy(Br,Cn, ϕ2, Ln)) ·

· put∗(Br,Ck, ϕk, L1, ..., Ln)

The ambient structure in MCC for representing a g-BDI agent Ag is thus illustrated in
Figure 9.3.

In summary, for each mental or functional context in the g-BDI agent specification, we
can define the corresponding ambient structure in MCC. Since the planning and commu-
nication contexts are based in first order logic, the mapping is straightforward and both
contexts can be easily mapped in an ambient. Namely, both ambient languages has only
one layer, the theories may be translated to the initial context states and the inference rule
resolution may be translated to the corresponding ambient processes.

In the case of the mental contexts, since the logical framework is more complex, some
details must be analyzed. As a matter of example, in the next subsection we describe the
mapping F for the Desire Context. In a similar way, the ambients for the other mental
contexts are defined.
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9.5.1 Mapping the Desire context into a Desire ambient

We want to define a mapping from the desire context DC to a suitable ambient structure in
MCC.

F : DC = 〈LDC , ADC ,∆DC , TDC〉 → c(DC,SDC) [PDC ‖ ...]

For this, we start with an abridged description of the components of the DC context: the
language LDC , the axioms ADC , the inference rules ∆DC and a theory TDC . A more
complete description can be found in Chapter 6.

Language (LDC): it is defined over a (classical) propositional language L (generated from
a finite set of propositional variables and connectives ¬ and →) by introducing two
(fuzzy) modal operators D+ and D−. As in other mental contexts, we use a (modal)
many-valued logic to formalize reasoning about graded desires by interpreting the
(positive and negative) degrees of desires over a (classical) proposition ϕ as the truth-
degrees of the modal formulas D+ϕ and D−ϕ respectively. We choose  Lukasiewicz
logic, extended with rational truth-constants, as the underlying many-valued logic
dealing with the many-valued modal formulas. The LDC language is built therefore
as follows:

• If ϕ ∈ L then D−ϕ,D+ϕ ∈ LDC
• If r ∈ Q ∩ [0, 1] then r ∈ LDC
• If Φ,Ψ ∈ LDC then Φ →L Ψ ∈ LDC and ¬LΦ ∈ LDC (where ¬L and →L

correspond to the negation and implication of  Lukasiewicz logic, other logic con-
nectives, like ∧L,∨L,≡L are definable from ¬L and →L)

Axioms and inference rules (ADC and ∆DC): to axiomatize the logical system DC we
need to combine different sets of axioms Axioms:

(CPC) Axioms of classical logic for non-modal formulas

(RPL) Axioms of Rational Pavelka logic for modal formulas

(BD0+) D+(A ∨B) ≡L D+A ∧L D+B

(BD0−) D−(A ∨B) ≡L D−A ∧L D−B

Inference Rules:

(MP1) modus ponens for →
(MP2) modus ponens for →L

Introduction of D+ and D− for implications:

(ID+) from ϕ→ ψ derive D+ψ →L D
+ϕ

(ID−) from ϕ→ ψ derive D−ψ →L D
−ϕ.
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Figure 9.4: The DC ambient structure

Theory (TDC): is a set of LDC formulae.

Now we are ready to define the corresponding Desire Ambient F(DC) by describing its
state language ALDC , its initial state SDC and its process PDC .

Desire ambient

1. State Language

Since the modal language LDC for the desire context is built in two layers (one base
propositional language L and the modal LDC), we define two ambients to represent
these language layers. We define the ambient DC0 (to represent language L) inside
the ambient DC (to represent language LDC), having the following ambient structure:
DC [PDC |DC0]. This structure and the languages involved are illustrated in Figure
9.4.

This nested ambient structure enable us to deal in a proper way with the different
fomulae in the two language layers. The language for the DC0 ambient is the basic
language used in the DC context for building the language LDC .

As it is convenient for the definition of the deductive process PDC , we consider that
the formulas of this language are in Disjunctive Normal Form (DNF). So we have for
DC0 the mapping F : L 7→ ALDNF defined by

• F(ψ) = ψDNF

The mapping from the language LDC to the language ALDC for the desire ambient,
F : LDC 7→ ALDC is then defined as follows:



144 Chapter 9. Operational semantics for g-BDI Agents

• F (D+ϕ) = d+(F(ϕ))

• F (D−ϕ) = d−(F(ϕ))

• F (r) = r

• F (¬LΦ) = neg(F(Φ))

• F (Ψ→L Φ) = imp(F(Ψ),F(Φ))

2. Initial state

The DC ambient state SDC is composed by the translated formulae of the context
theory:

SDC = {F(ϕ)| ϕ ∈ TDC}

3. DC Process PDC

We need to map the logical deduction of the desire context DC, composed by two
different layers of axioms and inference rules, into the PDC process. Actually, it can be
shown that reasoning in the DC axiomatic system can be reduced to reasoning in plain
 Lukasiewicz logic from a big, but finite, theory which gathers suitable translations of
instances of all the axioms and inference rules, and of the formulas of the context theory
TDC . We will consider deduction in  Lukasiewicz logic as an encapsulated process P L
without entering in its internals. This is possible to engineer by using one of the existing
theorem provers for this many-valued logic (e.g. [7]). We describe next how to build
such a theory in the context ambient which incorporates a finite set of instances of
the axioms and inference rules that model the behavior of D+ and D−. The idea is
that, since we have a language L built over a finite set of propositional variables, there
are only a finitely-many different DNF formulas, so there are finitely-many instances
of axioms and rules over these DNF formulas. Therefore the PDC process will consist
of two parts. The first one, involving four processes PV , PDNF , PAX , P∆, will add to
the initial ambient state SDC (context theory) the set of instances of the axioms and
inference rules, changing the initial state into S′DC :

c(DC,SDC) � (PV (V Set) · PDNF (V Set) · PAX · P∆)⇒ c(DC,S′DC)

Then, over the state S′DC , the deduction over  Lukasiewicz logic, represented by the
process P L can be applied. Thus, the PDC process is defined as the following schema
of sequential processes:

PDC ::= PV (V Set) · PDNF (V Set) · PAX · P∆ · P L

In the following items we describe the four first processes:
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• The PV (V Set) process extracts from SDC the finite set of propositional variables
appearing in the formulas of TDC and puts them in V Set.

• The PDNF (V Set) process enters in theDC0 ambient and through the add∗DNF (V Set)
process creates and adds to SDC0 the finite set of DNF formulae built upon the
variables in V set, i.e.:

PDNF (V Set) ::= in DC0 · add∗DNF (V Set) · out DC0

• The PAX process is composed by all the processes derived from each context
axiom. For this particular case of the DC ambient we have:

PAx ::= PAx1 · PAx2

These processes implement respectively the axioms Ax1 and Ax2 (see below), for
instance PAx1 is defined as:

PAx1 ::= in DC0 · get∗(dpair(x, y), L) · out DC0 ·

· add∗(F(D+(x) ∧D+(y) ≡ D+(x ∨ y)), L)

where the special component processes have the following meaning:

– get∗(dpair(x, y), L) stores in L all the pairs (x, y) satisfying the condition
dpair(x, y): x, y ∈ SDC0 and x 6= y;

– add∗(F(D+(x) ∧ D+(y) ≡ D+(x ∨ y)), L), using the pairs (x, y) ∈ L for
substitution, instantiates and adds to the ambient state SDC the formulae
F(D+(x) ∧D+(y) ≡ D+(x ∨ y)).

In a similar way the PAx2 process implements the corresponding axiom for D−.

• The P∆ process is composed of the processes representing the instances of the
different inference rules. For the DC ambient there are two processes representing
the rules ∆1 and ∆2, hence

P∆ ::= P∆1 · P∆2 , with

P∆1 ::= in DC0 · get∗(F(x→ y), L) · out DC0 · add∗(F(D+(y)→ D+(x)), L)

and similarly for P∆2 , where
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– get∗(F(x → y), L) gets the pairs (x, y) resulting from the unification of
F(x→ y) in DC0 ambient;

– add∗(F(D+(y)→ D+(x)), L) adds all the instances of the formula F(D+(y)→
D+(x)) with pairs (x, y) ∈ L.

• The final process P L applies  Lukasiewicz logic deduction ` L to the state S′DC
resulting from the previous processes, i.e. P L ::= ` L

9.6 Conclusions

In this Chapter we have defined a MCC calculus for Multi-context systems (MCS) execution.
The MCC proposed is based on Ambient calculus [28] and includes some elements of LCC
[148]. The operational semantics for this language was given using Natural Semantics. We
expect that MCC will be able to specify different kinds of MCSs. Particularly, we have
shown how graded BDI agents can be mapped to this calculus. Preliminary work on MCC
calculus and its uses to define the g-BDI agent semantics, can be seen in [36].

Through MCC we give to this agent model computational meaning and in this way,
we are getting closer to the development of an interpreter of the g-BDI agents. Although
process calculi have been mainly used in the past to model multiagent systems, we have
considered that the modular structure that MCS provide to the architecture of an agent
would permit a similar treatment to single agents as well (or to any system with a self-
similarity structure like Holons). We think that the implementation of agent architectures
using process calculi, in particular ambient calculus, would give a uniform framework for
agent architectures, multiagent systems and also electronic institutions.
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Chapter 10

Case Study Domain: Tourism

Recommender Systems

In this Chapter we explain the case study where we have applied our g-BDI model of agent:
a tourist recommender system.

10.1 Introduction

In the last years, the Artificial Intelligence (AI) community has carried out a great deal of
work on recommender systems [127, 108]. This kind of systems can help people to find out
what they want, especially on the Web. As a result, the idea of recommender systems has
been widely accepted among users.

Agent technology becomes invaluable to model different characteristics we expect from
these recommender systems. When this technology is applied we obtain a community of dis-
tributed, complex and autonomous recommender agents. These software agents can learn
the interests of users and make recommendations accordingly. The agents learn by tracking
the actions of the user or by seeking explicit feedback from him. The most common ap-
plications of recommender agents are Web content filtering systems and e-commerce shop
assistants (e.g., amazon.com). These agents are used to discover a person’s interests in the
hope of providing useful information or encouraging a sale.

From within the recommender systems we have select the tourism domain. The travel
and tourism industry is one of the most important and dynamic sectors in Business-to-
consumer (B2C) e-Commerce. In this context, recommender applications can be valuable
tools supporting, for example, information search, decision making, and package assembly.

149
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Another reason to choose tourism domain for this case study is its richness and different
characteristics where diverse user’s preferences and restrictions can be considered. Because
of this variety, the recommendation systems can be treated in different levels of complexity.
Besides this, its vocabulary and concepts are well known by people and then, a tourist
recommender system can be easily used and validated by general users.

10.2 Recommender Agents

Recommender systems are the technical response to the fact that we frequently rely on other
people’s experience and recommendations when confronted with a new field of expertise,
where we do not have a broad knowledge of all facts, or where such knowledge would exceed
the amount of information humans can cognitively deal with.

The main task of a recommender system is to locate items (movies, music, books, news,
web pages, etc.) related to the interest and preferences of a single person or a group of people.
This involves the construction of user models and the ability to anticipate and predict user
preferences. To do this the user’s profile is compared to some reference characteristics. These
characteristics may be from the information item (the content-based approach) or the user’s
social environment (the collaborative filtering approach). When building the user’s profile
a distinction is made between explicit and implicit forms of data collection.

By looking at definitions of the design space of recommender systems [127, 145], there
seems to be some basic items common to most of them [113], their relations are illustrated
in Figure 10.1:

Resources: The targets of the recommendation process.

Recommenders: Those entities that give out opinions about resources. In practice rec-
ommenders are actors and they could also be artificial agents.

Descriptions: Those information about resources that include opinions.

Preferences: Recommendation seeker’s position towards resources.

Techniques for Computing Recommendation: The system’s means for automatically
evaluating resources by using descriptions and preference information.

Recommendations: The concrete results of the evaluation process for the recommendation
seeker. The recommendations may be presented in different ways (e.g. by filtering out
resources, ordering resources).

Many different recommender systems were developed since the 1990s. A detailed tax-
onomy of recommender agents, classified by the application domain and by the different
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Figure 10.1: Principal items in a recommender schema

task-achievement techniques used, is presented in [108]. The diverse approaches may be
grouped in the following major system types [14, 145]:

• Collaborative Filtering (CF)- These algorithms (also referred to as social filtering)
focus on the behaviour of users on items, which are to be recommended, rather than
on the internal nature of the items themselves. These systems concern with techniques
for matching people based on their preferences and weighting the interests of people
with similar taste, to produce a recommendation for the information seeker. This
social approach, which most closely resembles the nature of real-life recommendations,
is related to both the concept of collaborating individuals and the process of finding
persons with similar interests.

• Content-based Filtering (CBF)- Focusses on the internal nature of items, or on
the content of description files. These systems use two main classes of algorithms:
information retrieval or attribute-based filtering algorithms. A content-based approach
favors the semantics of the content over social interactions or user behaviour. Usually,
CBF techniques use product descriptions (e.g. extracting a set of keywords), compute
the users preferences (e.g. keywords which are contained in products selected by the
user), and build the list of recommendations by searching for products that match the
users preferences.

• Knowledge-based Filtering - These systems rely on an explicit representation of
knowledge, usually as collections of statements, ontologies or other forms of rule sys-
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tems. While the high performance and flexibility make the knowledge-based approach
suitable for most tasks, applications with a strong focus on content or social seman-
tics can be realized efficiently using the respective specialized approach (CBF or CF).
If an application requires knowledge reasoning or inference, choosing the knowledge-
based approach allows the developers to benefit from the existing components (e.g.
knowledge representation and rule-based systems).

• Social data mining systems - Social data mining systems do not require users to
engage in any new activity; rather, they seek to exploit user preference information
implicit in records of existing social activity (e.g. Usenet messages, system usage
history, citations or hyperlinks). The interactions between individuals are analyzed
to understand innovation, collective decision making and problem solving, and how
the structure of organizations and social networks impact these processes. Analysis of
such inherently relational datasets is currently being applied in e-commerce to drive
recommendation systems.

• Hybrid Systems - Can merge any combination of the above methods and metrics.
Typically, hybrid recommender systems would compute ratings from a number of
internal algorithms, before combining these in a single metric. In some cases, the
preliminary results of the internal algorithms are stored component-wise in a vector,
before crafting a single-dimensional rating for ranking.

Collaborative filtering (CF) technique is the most widespread, used in the earliest recom-
mender systems [127]. In some application domains, the content of an item may be crucial.
In these cases, recommender systems should use a content-based approach rather than a
social approach (see e.g., [110, 105]). CF and CBF technologies exploit user preferences and
allow acceptable recommendation accuracy for frequently bought (or selected) products such
as music, video DVDs, books, Internet radio, etc. When accessing product descriptions, a
list of CF recommendations is available for users in the section “Customers who bought this
item also bought”, while the CBF suggestions can be accessed via “Look for related items
by keyword” and “Look for similar items by category” links.

There are other types of products which are less frequently bought and their purchase
is related to higher risks (e.g., financial services, cars, electronic goods, services in the
tourism domain). When recommending such products, recommender applications must
support a more detailed elicitation of user requirements. Deep domain knowledge has to
be exploited in order to be able to make more precise and more trusted recommendations.
Knowledge-based (KB) recommender technologies [24, 58] are based on a detailed domain
description in the form of structured product descriptions and constraints. The identification
and construction of user preferences usually takes place in the context of an explicit sales
dialog. The major advantage of this type of recommendation technology is the explicit
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representation of product, marketing and sales knowledge. Such a representation makes it
possible the development of explanations argumenting why a certain product fits the wishes
and needs of a given customer.

Agent technology becomes invaluable by appreciating the facts that we want the systems
to take personal preferences into account, and to infer and intelligently aggregate relation-
ships from heterogeneous and distributed sources and data. Furthermore, we want systems
to be scalable, open, privacy-protecting and we want to get the recommendations with the
least possible work on users’ behalf. Multi-agent systems permit the creation of subcommu-
nities of agents for recommending among certain actor groups or recommending on certain
resource types, at the same time allowing grand-scale interconnection. Distributed and open
architectures also allow users to design and implement their own recommending schemes and
algorithms, which can interoperate with other customized systems.

Relevant uses of software agent technology in achieving tasks related to recommendation
are analyzed in [113]. Namely, user modelling is needed for taking personal preferences into
account in recommending. Distribution, matchmaking, and reputation and trust manage-
ment can be achieved with multi-agent system technologies. Intelligent reasoning capabilities
are needed for social network modelling and analysis. In the community of agent systems,
there is relevant ongoing research for achieving these goals.

10.3 Recommender Systems in Travel and Tourism

The travel and tourism industry is one of the most important and dynamic sectors in
business-to-consumer (b2c) e-Commerce and online transactions are rapidly increasing. Ac-
cording to [154], this single sector represents nearly fifty percent of the global B2C turnover.
At least in developed countries, the Web is nowadays already the primary source of informa-
tion for people when searching or booking suitable travel destinations and that is the trend
as well in developing countries.

Products and services in the field of tourism are mainly not physical and typically exist
mostly as information. For this reason, they are very adequate for electronic sale. ICT allows
to easily present tourism offers with rich descriptions to enable travelers make informed
choices. Therefore, the complexity of product descriptions is growing. As tourists of today
are very demanding and have numerous desires and needs, tourism offers should be multi-
optional and of high quality. Thus, systems that help to take these decisions on the Web
become more and more significant nowadays, calling for modern means of decision-making
support and recommender systems.

Tourism is an information based business, at the moment of decision-making only the
description of the product is available. This characteristic of tourism products entails high
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Figure 10.2: Structural view of tourism market

information search costs and causes informational market imperfections. Consequently, the
industry has comparably long information and value chains. In Figure 10.2 (extracted from
[154]) the principal actors in the tourism chain are illustrated. The supply and demand sides
are separated from the respective intermediary layer. Nodes indicate the relevant types of
players. Links mark the relationships as well as the flow of information, showing only the
most important links.

On the supply side, primary supplier enterprises like hotels, restaurants, etc. (which are
mostly SMEs) and big companies like airlines, are placed. Tour operators can be seen as
product aggregators, travel agents act as information brokers, providing final consumers with
the relevant information and booking facilities. CRS/GDS (Central Reservation Systems /
Global Distribution Systems), stemming from the airline reservation systems, include also
other products (e.g. other means of transport). Whereas the intermediaries on the right
side can be seen as the commercial connection between supply and demand, the left side
is relevant for national (NTO) and regional organizations (RTO) in charge of destination
planning and promotion. Normally, these entities have to act on behalf of all suppliers
within a destination and are often governmental organizations. The downstream flow of
Figure 10.2 consists of product information, whereas the upstream flow reports on market
behaviour. Both information flows create a tourist information network relating most of the
market participants.

When looking at today’s e-Tourism web sites we can observe that only some of the
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existing systems provide services that go beyond a pure booking system’s functionality. An
exception are popular online travel agencies like Expedia

(www.expedia.com), that permit exploiting the potential of Web communities by letting
their customers rate individual hotels or destinations. Still, in these applications the average
ratings of other customers merely serve as another piece of information to chose a certain
hotel or destination but there is typically no recommendation service available.

There are several reasons why established recommendation techniques cannot be directly
applied to the tourism domain [57]. Collaborative filtering techniques work best when there
exists a broad user community and each user has already rated a significant number of items.
As individual travel planning activities are typically much less frequent and in addition, the
items themselves may have a far more complex structure, it is hard to establish reasonable
user profiles. Therefore, many approaches aim at eliciting the preferences and requirements
in a conversational dialog using, for example, knowledge-based approaches for generating
recommendations [24, 58].

Another important facet which makes recommendation in the tourism domain more com-
plex is the fact that a single trip arrangement may consist of several, independently config-
urable services. Typically, only pre-defined packages like ‘flight and hotel’ or ‘all-inclusive’
arrangements are available online. As the segment of individualized travel arrangements is
constantly growing, it will be increasingly important that future systems support such pack-
aging services. Nevertheless, only first attempts in that direction can be found in literature
today (e.g. see [129]).

Consequently, the domain has always been at the forefront of information technology and
still is a highly attractive research area as its potential is not yet fully exploited. The hybrid
recommender approaches seems to be the best candidates in this rich and heterogeneous
information domain.

10.4 Case Study: Recommender System on Argentinian

Tourism

As in other developed countries, e-commerce is changing the Argentinian tourism and travel
businesses. The Web is becoming an important source of information and each day an
increasing number of online booking services is being added. Nowadays, the Latin American
tourist behaviour has some differences with respect to other markets, e.g. the European one.
While the consumer behaviour of the last group is focussed on destinations and the tourist
usually plans their travels on their own, the role of travel agencies to recommend and sell
tourism services and packages is key in the Latin American community. Normally a tourist
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Figure 10.3: Case study in the tourism market

turns to a travel agency to consult and choose a predefined tourism package (an itinerary
including means of transport, accommodations, excursions, activities, etc). This commerce
strategy is supported by providing the tourist with lower travel costs.

Thus, the focus of our case study is the recommendation of tourist packages in Ar-
gentinian destinations. The packages used as resources are provided by different tourist
operators and were downloaded from the Internet.

In the previous section we have discussed the complex tourism market and its different
actors. Since the principal goal of our case study is to design and develop a recommender
system that allow us to experiment our g-BDI model of agent, some simplifications on
the general tourism recommender problem were made. We situate our case study in the
intermediate sector of the tourism market, involving travel agents and tourism operators, as
can be seen in Figure 10.3.

Some characteristics for the recommender system in the case study are pointed out in
the following items:

• Resources: The resources to recommend are Argentinian tourist packages provided
by different tourist operators. These packages are described by a detailed travel-
destination sequence including accommodation, activities, etc.

• Recommender techniques: The recommender system will be a hybrid system that
combines a knowledge base approach with a content based one. In this case the resource
contents are the package descriptions and are fundamental for the recommendation.
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Figure 10.4: Recommender System on Argentinian Packages

Also domain knowledge, represented by ontologies and system rules, is needed to
evaluate the expected satisfaction of the tourist preferences by a tourist package.

• User profile: Each recommendation request is considered independently, and the user
graded preferences and restrictions constitute the user’s profile. These tourist’s pref-
erences are stored but are not used for a user profile updating process.

• Social model: a basic social model of the actors is contemplated including the reputa-
tion a travel agent has with its tourist providers, this reputation is simulated and for
this case study we did not use a model of trust update.

• Descriptions: The tourist is requested to fill in a user satisfaction report about the
given recommendation, stored for off-line statistical analysis and system adjustments.

In the next Chapter we design and develop this case study: a Recommender System
on Argentinian Packages. This system has the purpose of select the best tourist packages
in Argentinian places according to the preferences and restrictions of a tourist, from the
packages offered by diverse tourist operators. This recommender system has a multiagent
architecture and one of its main agents, the Travel Assistant Agent (T-Agent), is modelled
as a graded BDI agent (an illustration can be seen in Figure 10.4).





The ideal engineer is a composite. He

is not a scientist, he is not a

mathematician, he is not a

sociologist... but he may use the

knowledge and techniques of any or all

of these disciplines in solving

engineering problems.

N. W. Dougherty

Chapter 11

Methodology to Engineer g-BDI

Agents and a Case Study

11.1 Introduction

Agent technology has received a great deal of attention in the last few years and, as a
result, many software applications are developed using this technology. In spite of the
different developed agent theories, languages, architectures and the successful agent-based
applications, further work is needed for specifying (and applying) techniques to develop
applications using agent technology. The role of agent-oriented methodologies is to assist in
all the phases of the life cycle of an agent-based application, including its management.

Many different Agent Oriented Software Engineering (AOSE) approaches have been pro-
posed, a survey of some of them can be seen in [13]. Each of the methodologies has differ-
ent strengths and weaknesses, and diverse specialized features to support different aspects
of their intended application domains. Most of the methodologies have shown that there
is a conceptual level for analyzing the agent-based systems, no matter the agent theory,
agent architecture or agent language they are supported by. This conceptual level should
describe fundamentally the external view point of agents by the Role Models (the char-
acteristics/tasks of each agent) and the Society Models (the relationships and interactions
between the agents). We consider that it is important for a methodology to also include the
agent detailed design, adopting the necessary tools to develop its architecture, as pointed in
[93, 118].

A relevant architecture that provide the agent-based systems with a formal support, is the
BDI architecture proposed by Rao and Georgeff [123]. The BDI paradigm provides a strong
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notion of agency: agents are viewed as having certain mental attitudes (Beliefs, Desires and
Intentions) which represent respectively their information, motivational and deliberation
states. These mental attitudes play a relevant role in the process of determining the agent
actions. With the purpose of making the BDI architecture more flexible, we have proposed
a general model for graded BDI Agents described in Chapters 4 to 6.

Since there is no standard agent architecture, the design of the agents needs to be
customized to each agent architecture. In this Chapter we present a methodology to engineer
graded BDI (g-BDI) agent based systems.

Software Engineering for BDI Agent Based Systems

There are few works on Software Engineering for BDI Agent Based Systems. Kinny et al. in
[93] proposed a methodology for agent-oriented analysis and design, focussing upon the BDI
model of agents. In specifying an agent system, they have found that it is highly desirable
to adopt a specialized set of models which operate at two distinct levels of abstraction.
First, from the external viewpoint, the system is decomposed into agents. Second, from
the internal point of view, the elements required by a particular agent architecture must be
modelled for each agent.

More recently, Jo et al. in [88, 89] proposed the BDI Agent Software Development Process
(BDI-ASDP) as a specialization of traditional and Object Oriented software engineering
methodologies, embracing several steps enumerated below. A similar approach of software
engineering process for multi-agent systems is presented by Zhang et al. in [160]. These
proposals share the same approach, they take advantage of different artifacts proved to be
useful in Object-Oriented Software Engineering, adapting them to their purpose. During
the software analysis and design phases they define which agents integrate the system.
Furthermore, some of the artifacts used in these phases support the design of the BDI
architecture for each agent. Following the natural style of human thinking “goal-plan-
data”, these proposals first extract the desires (goals) from the requirements and create the
proper plans towards them. Then, they find the beliefs. The BDI extraction process is done
during the task of agent recognition and after identifying the system goals and plans. More
specifically, these proposals for software modelling contain the following iterative stages:

1. They use some artifacts to specify system requirements (e.g., External Use Cases) and
to extract goals (desires) from them;

2. They use Dynamic Models (e.g., Internal Use Cases, Sequence Diagrams, and Activity
Diagrams) to provide a more precise description of each goal and its corresponding
plan (intentions).

3. A role analysis is performed from the list of goals and their corresponding plans. The
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relevant roles and their interactions (role composition) are taken into account to define
the set of agents in the system.

4. Finally, using Data Models (e.g., Data Flow Diagrams) they propose to obtain the
environment information (beliefs) that is necessary for the goals satisfaction.

5. After a complete BDI specification has been obtained, then it is assigned to an agent.

We can remark that in both works [89, 160] there is no clear separation in the agent
analysis and design between the external and the internal viewpoints. Also, the internal
BDI architecture of agents is only described considering what the contents of the different
attitudes (i.e., B,D,I) would be. In fact, their approaches neither present how to specify
them nor show how the agent can use them to decide the current action to follow.

Besides, Sierra et al. in [141] extended the Prometheus methodology [118] emphasizing
the social design of multi-agent systems. They particularly focus on a design methodol-
ogy for agent societies or organizations (i.e., Electronic Institutions) where norms and rules
must be abided by all the participating entities. This methodology contributes with some
elements related to the social aspects of the system design.

Based on these previous works, we present a methodological framework to engineer
graded BDI agents. We work up these approaches, adapting and extending them, to engineer
agents with a more complex internal architecture. In this sense, we make more emphasis in
the separation of the system design from the agent design phase. We also consider important
to include some social aspects in the system design phase and to add some steps to support
the agent detailed design.

Furthermore, in our approach we use a novel notion of intention, related to a pair de-
sire/plan, where the desire is the goal that the agent will try to satisfy by executing the plan.
The agent will consider desire/plan pairs with the best cost/benefit relation for reaching a
given goal by executing a feasible plan. As a result of this analysis the agent has to decide
which intention (a chosen goal) to follow by executing the best plan towards it. In an agent
design, this deliberation process and the elements involved must be both formalized.

In order to design a g-BDI agent, we propose a process that starting from the external
stages, where some roles and functionalities are assigned to it, moves forward the definition
of the elements that compose the multi-context architecture. Next, the different stages of
this process are described and a case study is used to illustrate them.
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11.2 The Development Process of g-BDI Agent-Based

Systems

For engineering agent-based systems, we follow the methodology presented in [93, 118] where
two different design levels were defined. In one level, from the external viewpoint, the system
is decomposed into agents, modelled by their roles, responsibilities and services they perform,
the information they require and maintain, and their external interactions. In a second level,
from the internal point of view, the elements required by a particular agent architecture must
be modelled for each agent. Then, in our approach we consider two important phases: the
System Specification and Design (i.e., external) and the Agent Design (i.e., internal).

The purpose of the System Specification and Design phase is to establish the social
structure of the system. This System phase starting from the problem statement and the
social structure related to it, results in the different agent types that integrate the multi-
agent system and the necessary interactions between them. This phase may be divided in
two important stages: the System Specification and Analysis, and the System Architecture
Design.

In the Agent Architecture Design stage the agent architecture for each agent type is set.
Then, for its specification we need to bridge the gap from the external functionalities assigned
to a particular agent, to the elements that compose the architecture, using the information
extracted in the previous stages. In our case, we focus on modelling agents with the g-BDI
architecture presented. Then, for its specification we need to set the logical structure and
contents of the different contexts (either mental or functional) and the interactions between
these units, represented by bridge rules. In the Detailed Design stage, its specification is
completed in order to define concrete agents.

The flow of the overall development process for BDI agent-based systems is depicted in
Figure 11.1. The principal steps, that make use of some tools, are represented in different
boxes. In the g-BDI Agent Design stage, the boxes in dot lines represent contexts that are
included in the g-BDI architecture respecting the logical model proposed and do not need
any specification in this stage. The arrows illustrate the dependences between the different
steps and intend to show a possible sequence between them.

In the following items we outline the principal steps of the methodology stages:

(I) System Specification and Analysis

This stage begins defining the system requirements through the Initial problem state-
ment. This process aims at determining the system social structure (i.e., roles and actors),
the system goals, and the necessary ontologic elements. The system goals are captured with
the support of Use Cases and may be of different types. We take a graded view of goals
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Figure 11.1: Development Process for BDI Agent-Based Systems
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(desire states), allowing to distinguish different degrees of preference between goals of the
same type.

(II) System Architecture Design

In this stage, from the elements and structures found in the previous stage the necessary
Agent types to structure the system are identified. From the system goals and use cases, a
task structure is developed representing a plan for the goals achievement. Besides, norms
and role constraints (rejected states) are extracted. We consider it important to incorporate
degrees on these constraints to differentiate the level of rejection of each state.

Starting from the social structure and considering the system goals and task structures,
a role composition process begins (i.e. a role has a social function and may have a list
of goals attached to it). Furthermore, in this stage the system Information Model is built
from the domain ontologies (representing the necessary information) and role interactions
(determining the information flow).

The agents in the multi-agent system will be defined through the integration of the rel-
evant role models. From an iterative role composition process, the initial list of roles may
be refined to determine the candidate agents.

(III) Agent Architecture Design

Following with the design process, the architecture of each agent type must be designed.
We propose to model agents using the g-BDI architecture. Considering the multi-context
specification for the basic g-BDI agent model, we have proposed three mental contexts
to represent the mental attitudes (i.e. Belief, Desires and Intentions) and two functional
contexts (i.e., Planner and Communications). In this stage, the engineer must take the
decision of whether to include another context (e.g., a social context) in the architecture
and if it is the case, which is the most suitable logical schema for this context.

The g-BDI model proposes a logical framework for the different contexts (see Chapters
5 to 7), from the information extracted in the previous stages we must capture the ele-
ments to complete the logical skeleton for each agent type. Particularly, the selection of
the uncertainty model for the Belief context must be done taking into account the system
information model. For the Planner context, the planning algorithm must be defined from
the task structure.

(IV) Agent Detailed Design

In this final design stage, the agent architecture is completed to define executable agents.
This means that the contents (i.e., theories) of the mental and functional contexts, and a
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suitable set of bridge rules must be defined. We use the information extracted in the previ-
ous stages to fill in this agent model, this process is explained in next Section 11.4.2 and is
illustrated in Figure 11.1.

Following the overall flow “goals, feasible-plans, beliefs and intention”, our approach to
the g-BDI Agent Design will first extract the agent desires from the requirements (i.e.,
system goals and norms). From the task structure it will analyze the possible plans towards
the agent goals. Then, from the information model the beliefs involved will be captured.
Finally, it will set how to derive the agent intentions by defining a suitable Bridge rule. Since
in practice the methodology is iterative, analysts or designers may freely move between steps
and phases and each successive iteration will produce additional details to finally provide a
complete, yet consistent system design.

In the following subsections we describe the most important stages and steps of the
software engineering process presented. To illustrate and clarify these different steps, we
describe the process using a Case Study in the tourism domain (see Chapter 10).

11.3 System Analysis and Design Phase

The purpose of the System Design phase is to establish the social structure of the system.
This phase is divided in two important stages: the System Specification and Analysis, and
the System Architecture Design.

11.3.1 Stage I: System Specification and Analysis

As usual in Software Engineering, the requirement analysis is the initial part of the software
development process. It will assist us to understand the purpose of the system, its social
structure and how to construct it. During the system analysis, the investigation on the
problem and its requirements is deepened. We focus on finding the system roles and goals.
The different steps in this stage will allow in turn to extract the necessary elements for the
system design that later will help in the g-BDI agent design.

Step 1: Initial Problem Statement

This is the previous and fundamental step for the System Analysis, where the problem
that the system is expected to solve is described. It is a high level conceptualization of the
system from the user’s point of view, and describes the services that the system will provide.
It is the input to capture the system goals and social structure (i.e., actors, roles, and their
interactions). The initial Problem Statement is an agreement document between the user
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and the software developers, on a high level of description.

Case Study:

We want to design a recommender system on Argentinian tourist plans. This system
will be in charge of looking for different holiday packages in Argentinian places, in order to
satisfy the tourist desires. The tourist plans are described by a traveling-staying sequence.
Where the different travels are described by their means of transport and kind of road, and
the stays are described by their destination, accommodation, activities, etc. These tourist
plans are provided by different tourist operators which in turn interact with the airlines,
transport companies, hotels, and tourism services.

The customer’s desires may be preferences about Argentinian zone, geographic condi-
tions, infrastructures, activities, means of transport and accommodation. They may also
have different rejections or restrictions, as for example a given maximum amount they can
spend. The tourist plan the system is expected to offer, must be the best choice among the
tourist packages supplied by a set of tourism operators. The system has to decide which
tourist package (plan) to recommend taking into account the user’s interests, the expected
satisfaction of the preferences by the plan, its cost and the trust in the plan supplier.

Step 2: Actors and Roles

A natural starting point of the system analysis is to identify the system roles and ac-
tors. To establish the social structure of the system, it is necessary to capture the roles
that will interact within the system, respecting the natural roles in the domain, and their
relationships.

The actors are persons or entities (including other systems) external to the system, that
interact with it. Some of them trigger the system behaviour to achieve a certain goal. The
outcome of this step is a list of roles and actors and, if it is needed, a brief description of
some of them may be included.

Case Study:

In our example we extracted two roles from the initial steps: The Provider role and
the Travel Assistant role. The Provider role interacts with the different services (i.e., hotel
owners, airlines, means of transports, tourism companies), builds the tourist plans (a de-
tailed travel and stay sequence, including its cost) and sends them to a repository of tourist
plans. Then, the Travel Assistant role considering the user’s preferences, finds from the plan
repository the best plans to recommend to the user. The actors could be: the Tourist (user),
the Airlines, the Hotel owners and other Tourist services.
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Step 3: Use Cases

We can apply the Use Cases technique, coming from UML [17], to capture the intended
behaviour of the system. A Use Case is a description of a sequence of actions, including
variants that a system performs, to yield a service to an actor. Use Cases treat the system
as a black box and show how the entities outside of the system interact with it. Besides
capturing the system goals, the Use Case technique also describes the interaction between the
system and its environment, and identifies external actors. In this step the system services
are identified. The Use Case technique captures who (actor) does what (interaction) with
the system, for what purpose (goal) and without dealing with the system internals. In some
works, like [88], this kind of use case, is called external use case.

The uses cases are specified in a number of ways, from informal structure text to pseu-
docode. There is no standard template for documenting use cases. Typical sections may
include: Use Case Name, Actors, Preconditions, Main Scenario (basic course of events),
Alternative paths and Postconditions. We propose to include in the use case description,
the constraints related to the behaviour that the use case describes. In an iterative process,
more detailed use cases may be given. A detailed Use Case refines an specific description of
a system action as for example, decomposing the global goal into sub-goals or including a
plan (task structure) for achieving each goal (subgoal).

Case Study

In order to discover all the functionalities that the Recommender system should provide,
we develop use cases. Next, we show one of them:

• Name: Give a suitable recommendation

• Actors: Tourist and Tourist services (e.g. hotel owners, airlines, transport companies)

• Scenario:

a) The Tourist requires a personal tourist recommendation from the System.

b) The System acquires a set of graded Tourist’s preferences and rejections (restrictions)

about the tourist plans.

c) The System updates the repository of tourist packages.

d) The System finds the best packages according to their preferences and constraints.

e) The System gives the Tourist a ranking of the best tourist packages.

• Preconditions: The Systems has some tourist plans to offer. The Tourist requires from the

System, a personal tourism recommendation.
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• Success/Postcondition: The System offers the Tourist a list of ranked tourist plans.

Step 4: Goals

From the previous steps (the initial problem statement and use cases) a set of goals
can be captured and structured considering possible inter-relationships between them. The
extraction of system goals goes hand in hand with the identification of use cases.

The system goals may be of different types, as defined in [141]. These goals may be
individual goals that are allocated to a role (and later to an agent type), joint goals that
are achieved by a group of roles (eventually agents) and social goals setting the desired
social properties of the system whose achievement the multi-agent system must ensure. In
successive iterations the system goals may be refined into a subgoal structure. Each goal
may be placed differently in the hierarchy (w.r.t. a global goal) and have different impor-
tance. To deal with this, we propose to use graded expressions (valued in [0, 1]) in order
to represent the different levels of importance of goals at the same level of the hierarchy.
Finally a diagram, called Goal Overview Diagram, should be used to represent the different
types of goals and subgoals, including their possible relationships.

Case Study:

In our case study, we capture the following goals:

- The social goal “is to give a reliable service (e.g., via reliable providers, using reliable
information)”.

- The overall system goal is “to give a Tourist a suitable recommendation based on
the tourist packages the system has”. To achieve this system goal we divide it in some sub-
goals (tasks) that are shown with the task structure in the Overview Diagram of Figure 11.2.

Step 5: Ontology

During the system specification and analysis there is an identification of the data used
and produced. From this analysis the ontologic model definition starts identifying the in-
formation needed in the domain.

Case Study:

For our case study, the needed ontologic elements are:

- tourism knowledge,
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- knowledge about Argentinian destinations and regions, and

- tourist plans

11.3.2 Stage II: System Architecture Design

During this design stage, emphasis is put on defining software agents and on how they col-
laborate to fulfill the global requirements.

Step 6: Detailed Use Cases and Task structure

The purpose of this step is to get a better understanding of the role interactions based
on the actions that each role (or group of roles) may execute towards the achievement of a
goal. At this point some new roles may be necessary to support different internal function-
alities. In this Step the different system goals are seen from an internal point of view using
detailed use cases. These use cases are concerned with interactions among agents inside the
system and how they use each other to get things done. The development of the detailed
use cases helps to better understand the interactions and collaborations between roles, and
consequently, between the candidate agents.

Case Study:

As a matter of example, we describe one detailed use case for the Give a suitable recom-
mendation functionality of the T-Agent. This case is a detailed version of the corresponding
external use case.

• Name: Give a suitable recommendation

• Actors: Tourist and Tourist services (e.g. hotel owners, airlines, transport companies)

• Scenario:

a) The Tourist requires a personal tourism recommendation from the System.

b) The Interface role acquires a set of graded user preferences and rejections (restrictions)

about the tourist plans.

c) The Travel-Assistant role asks the Provider role for tourist packages.

d) The Repository-Maintenance role updates the package repository with the plans the

Provider role sends.

e) The Travel-Assistant role finds the best packages satisfying some of the Tourist prefer-

ences and avoiding the rejections. Each feasible plan has an associated cost. The set of

feasible plans are ranked using a function that combines in a suitable way: the intensity
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Figure 11.2: Goal-Task Overview Diagram

of the desires, the Tourist expected satisfaction by a plan, the cost of the plan, and the

trust in the plan provider.

f) The Travel-Assistant role sends to the Interface role a ranking of the best plans.

g) The Interface role shows the recommendation and the plan description to the user.

From this detailed use case we can design a task structure towards the system goal of giving
a suitable recommendation. In this example, for achieving this overall system goal the first
task (subgoal) is to acquire the user’s preferences. Then, another subgoal is to update the
tourist plan repository with the plans provided by the tourism Provider role. Next, the
system must look for the best plan to satisfy the user preferences.

The global goal-task structure for this case study can be seen in Figure 11.2. This goal
and its subgoals are represented by ellipses and constitute the task structure. Besides, we
include in this illustration two social goals (represented by boxes) related to the system goal.

Step 7: Norms and Constraints

Norms are conditions that should be enforced, if possible, by the infrastructure of the
multi-agent system. In some kind of systems (e.g., Electronic Institution) it is fundamental
to control the interactions between the participants and ensure that they all adhere to agreed
rules or norms. The norms are usually defined towards the end of the social design process
when the structure is completely defined.

Constraints are also added at this stage and represent some restrictions that a role may
have in a particular scenario or in relation to a goal achievement.
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Case Study:

For our case study we do not extract any norm, but we consider some constraints the tourist
may have in relation to the tourist package he/she is looking for. We set for this example
that this restrictions may be about the days they are available to spend in their holidays,
the maximum amount to spend and the kilometers to travel. Also, these restrictions may
be strict or soft and may be thus treated in a different way.

Step 8: Ontology +

There is some initial ontological information specified during the System Specification
phase, as the engineer identifies the information needed within a particular scenario. This
initial ontology is brought into this Design step and provides the basis for more thorough
refinement and development.

Case Study:

In our example, the necessary knowledge that have been identified are tourism knowledge,
information about Argentinian tourist places and Argentinian tourist packages.

The tourist packages are structured following the information extracted from a set of
examples, as a suitable travel-stay sequence. The information on Argentinian places and
their characteristics are organized following a destination ontology structure. For each city
or town, this ontology contains information about geographic and infrastructure charac-
teristics, accommodations, activities offered, excursions and relevant issues related to the
place. The needed tourism knowledge includes similarity relations and rules for deriving
the belief in the preference satisfaction by the plan execution (see Chapter 12 for a detailed
description).

Step 9: Role Composition

Different agent-based software engineering methodologies take advantage of a role anal-
ysis for the agents definition, as for example in [92, 158, 160, 118]. In the analysis phase we
have detected some natural roles related to the social structure of the problem. This set of
roles may be expanded after the extraction of the system goals. From the structure of goals
and plans, a role analysis is held in order to define the agents and interactions that compose
the system. Functional roles, responsibilities and goals (or services) are just descriptions of
purposeful behaviours at different levels of abstraction. In our proposal, a role includes a set
of goals and a role (or a set of roles) will be mapped into an agent who will be responsible
for satisfying these goals.

This process of role composition and role assignment to agent types is a difficult task
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because is not just a distribution problem: the reasons for and against grouping particular
functionalities must be carefully analyzed. This is so because there is a need to compose
roles when agents carry out their responsibilities and interact/collaborate, there may be a
synergy between the different roles played by the agent. More generally, we seek to have
agents which have strong coherence and loose coupling. The activity of identifying roles
from use cases and the use of role patterns in agent software engineering are described in
[92]. The resulting combined roles are the candidate agents. The different roles, with their
assigned goals or tasks and collaborators, may be gathered in a table similar to the RGC
(Responsibility, Goal, Collaborator) card proposed in [160].

In agent-based modelling, interaction diagrams may be useful and some agent based
software engineering methodologies adopted them (e.g. in [118, 158]). For example, some
sequence diagrams are used for modelling temporal ordering of interactions, and collabora-
tion diagrams are used to emphasize the structural organization of the agents. From this
process of role identification and composition, a refined list of candidate agents is obtained.

Case Study:

Inspired in the different members of a tourism chain, in the analysis phase we have de-
tected the following roles: the Provider role (tourist package providers), the Travel Assistant
role and Services role (hotel owners, airlines, etc.). In this case study we don’t deal with the
Services role, we only mention it as a necessary collaborator of the Provider role.

From the task structure we capture two more roles: the Interface role, to manage the user
interface and the Repository-Maintenance role (R-Maintenance), to charge and discharge the
tourist packages that are sent by the Provider role. We map the goals and tasks, extracted
and structured in previous steps into the different roles. For our case study, the defined roles
with their assigned goals or tasks, and their collaborators (that is, other roles that interact
with it) are shown in Table 11.1.

Roles Goals - Tasks Collaborators-Interactions

Interface Acquire the Tourist’s preferences Tourist

Communicate best plans Travel Assistant

Provider Build tourist plans Services

Communicate plans R-Maintenance

R-Maintenance Charge-Discharge tourist plans Provider

Package Repository

Travel Assistant Find feasible plans Interface

Rank feasible plans Provider

Table 11.1: RGC card for roles

We also use an interaction model to schematize the roles interaction as can be shown in
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Figure 11.3: Role interaction model

Figure 11.3.

Step 10: Information Model

After defining the detailed roles and their interactions, we also need to specify what
information the agents filling the different roles, need. All the information that will be ref-
erenced within constraints or norms, needs also to be part of the information model. For
this design process the input and output data requirements for each subgoal in a plan must
be analyzed, in order to be sure that this information will be available in the needed stage.
With the support of internal use cases we can extract the information needed for each action
in a plan (Step 6). Besides, we may apply some artifacts (e.g. the Data Flow Diagram) to
show the data flow from external entities into the agent, and how the data flows from one
process to another, as well as its logical storage.

Case Study:

For our example, we extract the following necessary information:

- The different graded user preferences/rejections respect to the tourist package he/she
is looking for. This information is provided by the Tourist, is captured by the Interface role
and is used by the Travel Assistant role.

- The updated description of the different tourist packages. This information is provided
by the Provider role and we create a Tourist Packages Repository to gather this information.
This repository is updated by the R-Maintenance role and is used by the Travel Assistant
role.
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- General knowledge about tourism and information about Argentinian regions and des-
tinations. The general tourism knowledge is represented by special relations and rules. The
Argentinian information is structured in a suitable tourism ontology (organized by destina-
tions), and it is maintained and used by the Travel Assistant role.

The information storages interacting with the different system roles are illustrated in
Figure 11.3.

Final Step: Agent Types Definition

From the iterative process of role identification and composition, supported by some
interaction and information models, the list of the candidate agents is finally defined.

Case Study:

For this prototype Recommender System, we define only two agent types: the Provider
Agent and the Travel Assistant Agent. We assign the Interface role, the Repository Main-
tenance role and the Travel Assistant role to the Travel Assistant Agent (T-Agent). As
it is natural in the Tourism Chain, different Tourist Operators may collaborate in the
Provider role. To represent these different sources of tourist packages, we use different
agents (Provider Agents).

Then, the agents composing our multi-agent recommender system are: the T-Agent and
a finite set of Provider Agents (Provider-i, i=1,...,n). An agent interaction diagram for this
multi-agent system is illustrated in Figure 11.4.

11.4 Agent Design Phase

Once the different agent types in the system are defined, we have to deal with their internal
design. Namely, we must decide what kind of agent architecture is the most appropriate in
each case according to its characteristics and its role assignment. In this Section we focus on
the methodological process to develop agents using the g-BDI model. This design process is
done in two stages: the first stage is concerned with completing the logical skeleton of the
agent architecture, on the second one, called Detailed Design stage, the contents (theories)
of each context are defined. To illustrate how this methodology works, we show the detailed
design of the Travel Assistant Agent (T-Agent).
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Figure 11.4: The multi-agent Recommender System

11.4.1 Stage III: A graded BDI Agent Design

In this Stage we show the methodology used to develop agents following the g-BDI model.
Taking advantage of its multi-context approach, this amounts to specify the different con-
texts, either mental, functional and the Bridge rules.

In this stage we must go from functionalities assigned to an agent type to a multi-context
model, conforming an agent capable to reach each desired goal (goals). For the modelling
of the different contexts, we will use the information acquired in the system analysis and
design stages. Next, some aspects related to the different contexts are analyzed to complete
the multi-context schema for an agent type.

1- Social Context

It must be decided whether or not to include a social context in the agent architecture
to represent the social aspects of agency. A key issue related to the social aspects is the
modelling of the agent trust in other agents. In an agent community different kinds of trust
may be needed and should be modelled. The necessity of a social context in an agent model
depends on the roles and tasks assigned to the agent, and on the information model. An
overview of an appropriate logical framework to represent and reason about trust or repu-
tation in a social context, has been proposed in the socialization of the g-BDI model (see
Chapter 8).
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2- Desire Context

Besides a general logical framework to represent desires in the g-BDI agent model, dif-
ferent logic schemas have been proposed (see Chapter 6) to represent the agent positive and
negative desires. According to the agent type (roles and tasks assignment) we must decide
which constraints we want to set between positive and negative desires (i.e. preferences and
restrictions) respect to a formula and its negation. Thus, the most suitable logic schema
may be chosen.

3- Belief Context

This context represents the agent knowledge about the world. Depending on the agent
environment and on how the agent acquires information from it, the knowledge may be of
different kinds: uncertain, imprecise, incomplete, etc. In the case of having uncertain infor-
mation, we propose to use in the g-BDI model a fuzzy modal approach to deal with graded
information and to consider a suitable uncertainty model on top of this logical framework
(see Chapter 5). To complete the logical schema for this context, the selection of the un-
certainty model must be done. We must decide whether to use probability, possibility or
necessity measures, among other options. For this purpose, the system information model
is used and two factors that may be taken into account are:

- The source of the uncertainty information: if the uncertainty information comes from
data bases containing and important amount of data that may be statistically processed,
the use of probability measures is recommended. If we only have order relations expressing
which data is more certain than others, then a possibility measure is adequate.

- The different intuitions about the expected results on operators (e.g., conjunctions and
disjunctions) also helps in the uncertainty model selection. For example, if the conjunction is
expected to be the minimum of the individual values of uncertainty, we may use a necessity
function.

4- Planner Context

From the task structure related to the agent goals, it can be determined how the agent
will make some plans (feasible plans) to fulfill the positive desires and to avoid the negative
ones. Precomputed plans or a particular planning algorithm may be used to support the
Planner strategy to find feasible plans for the agent.

5- Bridge Rules

The interactions between the different contexts are represented by Bridge rules (BRs).



11.4. Agent Design Phase 177

As each unit uses a proper logic, these rules allow to embed results from a theory into
another [68]. Besides, diverse agent’s personalities may be modelled using a suitable set of
BRs to represent, for example, different realisms (see Section 7.2).

Case Study:

For the design of the T-Agent using the g-BDI model, we decided the following:

1. To incorporate a Social Context to represent the trust in the Provider Agents in
relation to the different tourist packages they offer.

2. To represent desires in the Desire Context, we chose the DC3 Schema that models a
strong consistency condition between desires and rejections. It represents the following
restriction: if a state of the world is rejected to some extend, it cannot be positively
desired at all and conversely, if a goal is somewhat desired it cannot be rejected. We
found this schema is suitable to our case study.

3. To represent uncertainty in the Belief Context by using the probabilistic model, as
there is quantifiable data in the tourism domain.

4. To make the Planner Context look for feasible plans in a Repository of Tourist Packages
(pre-computed plans).

5. To define for the T-Agent a set of BRs that are needed to export formulae from
one context to others. The T-Agent personality is represented by a particular BR,
where the intention degree is computed. Depending on the tourist preferences with
respect to his priority criterion in the package selection (i.e. minimum cost, preference
satisfaction or trust) the BR representing the Tourist personality, will use different
aggregation functions for the variables involved to compute the intention degree.

11.4.2 Stage IV: Agent Detailed Design

In this stage, we must complete the agent design process defining what the contents of each
unit will be. We extract information from previous steps in the overall design process to
fulfill this internal stage as it is shown in Figure 11.1. The flow of this detailed multi-context
design process is illustrated in Figure 11.5. Next, we depict this process by using the case
study.
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Figure 11.5: Detailed modelling process flow

Desire Context (DC):

The agent positive desires are extracted from the goals assigned to the agent. We take as
desires only the proactive goals, not those subgoals that can be derived from a planning pro-
cess. The positive desires are extracted from the goal and task structure (Step 4 and Step 6)
related to the different roles (Step 9), that are later on assigned to the different agent types.
We also consider important for the agent to include a set of negative desires, representing its
rejection states. The negative desires are expressed in the use cases as part of its description
and later are separated as constraints (Step 7). As we mentioned in the system analysis,
the set of desires (positive and negative) may have different levels of importance. Usually,
these levels may be captured in a numerical scale (or in an order relation) and then, may be
translated into degrees in [0, 1], using an order preserving function. To represent and reason
with these positive and negative graded desires, we can use the general logic framework or
one of the different schemas presented in Chapter 6.

Case Study:

The T-Agent goal is to satisfy the tourist preferences by recommending the most suitable
tourist package. As a personal agent, the T-Agent takes as subgoals to satisfy the different
tourist preferences. Thus, the contents of the Desire context will be obtained at runtime.

The tourist desires will be expressed by a theory in the DC containing quantitative
expressions about positive and negative preferences. These formulae express what the tourist
desires or rejects in different degrees for his holidays. From this set of desires the DC
generates all the possible conjunctions of the positive desires. For this case, we take as the
negative desire the conjunction of all the rejections. An example of how the T-Agent desires
are built from a tourist preferences can be seen in Chapter 6 (Example 1).
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Planner Context (PC):

Some authors as [89, 160] directly relate the plans towards the different goals to the notion of
intentions. We consider a more complex notion of the agent intention that involves the pair
feasible plan-desire. That is, the agent will intend to reach a desire by executing the feasible
plan that best satisfies a cost/benefit relation. Indeed, the existence of a plan constitutes a
necessary condition to determine the agent intention. The plans towards the different goals
are outlined in the initial use cases, are refined successively in more detailed use cases and
are represented in the Task Structure (Step 6). Using the Task Structure, we find the set of
actions that the agent may follow to reach a goal or set of goals (positive desires), satisfying
the norms and avoiding the rejections (negative desires). These plans are composed by the
elementary actions that the agent can perform. These actions are part of the agent beliefs.
Starting from these actions a planning process may be held, using a planning algorithm or
pre-computed plans (determined in the previous stage) to find the feasible plans. Namely,
the current state of the world must satisfy its preconditions, the plan must make true the
positive desire the plan is built for, and cannot have any negative desire as post-condition.
These feasible plans are computed within this unit taking into account beliefs and desires
injected from other units (i.e., BC and DC).

Case Study:

The Planner context in the T-Agent is in charge of looking for tourist packages that
are expected to satisfy the tourist preferences (feasible plans) in a repository of the tourist
packages offered by different Provider agents. After analyzing the information of various
tourist packages, we structure them including the Tourism Operator provider, the cost and
itinerary description, as follows:

package ::= (ID,Operator, Cost, [travel1, stay1, ..., traveln, stayn, traveln+1])

where travel is a description of the travel characteristics (e.g. type of transportation, travel
length, etc.) and stay includes destination, number of days, type of accommodation and
activities. Each travel and stay is considered as an atomic sub-plan amenable to satisfy
desires. Packages are modelled as composed plans, alternating travel and stay sub-plans.

Belief Context (BC):

Beliefs represent the (uncertain) knowledge about the agent state and the changing environ-
ment. This knowledge is used to derive conclusions about whether a plan may fulfill some
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agent goals (desires). The agent beliefs are the necessary information in relation to its goals
assignment, and are extracted from the Information Model (Step 10).

Case Study:

From the Information Model we extract the BC theory for the T-Agent, it contains at
least:

• General knowledge about tourism and Argentinian regions and destinations, including
the characteristic of each region and activities allowed in each place. The knowledge
about destinations is structured as follows:

Destination ::= (Name, Coordinates, Zone, [NaturalResource],

[ArtificialResource], [Activity])

Coordinates ::= (X, Y)

NaturalResource ::= Resource

ArtificialResource ::= Resource

Resource ::= (KindOfResource, Name)

• Information about the tourist packages that the different operators provide (their
structure was presented previously). This information is placed in a suitable repository
and is made accessible by a BR to the PC in order to find feasible plans.

• Beliefs about how possible desires D (e.g. going to a mountain place or making rafting)
are satisfied after executing different tourist plans. Following the model presented,
the truth-value of B([α]D) is the probability of having D after executing plan α.
If a package α is composed by a number of subplans αi, B([α]D) will result from
the probabilities ri of having D after the execution of the sub-plan αi, by using an
appropriate aggregation operator.

Besides, different kinds of knowledge are represented in this context. On the one hand,
we use bi-valued formulae to represent some tourist knowledge as, for example, the distance
between two destinations. On the other hand, many-valued modal formulae are used to
represent uncertain knowledge. For instance, the formula (B[Atuel7]rafting, 0.9) expresses
that the probability of satisfying the goal of making rafting, as a consequence of following
the tourist plan Atuel7, is greater than 0.9.
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Social Context (SC)

The aim of including a SC in an agent architecture is to model the social aspects of agency.
Once the trust model has been defined (to filtering incoming information or to evaluate the
risk on delegation of actions, etc), this context must be filled with formulae expressing the
initial trust in other agents.

Case Study:

We consider the trust in the tourist package suppliers that interact with the T-Agent, in
order to evaluate the risk in the recommended tourist plans.

The theory for the SC in the T-Agent has formulae like (Tj [α]ϕ, t) expressing that the
trust of the T-Agent towards a Providerj of the plan α directed to satisfy a goal ϕ, has
degree greater than t. For this application, we consider that the trust depends only on the
kind of tourist package that a Provider offers. Hence, we have proposed a plan classification
based on a tourism ontology. For instance, we consider the region of the country as a
classification element, since there are tour-operators that are good for plans in a particular
region, but not in others. We consider that is important for the T-Agent to evaluate the
trust in the different plan providers, to decide which package to recommend. Thus, we
introduce the trust degree as another variable that must be weighted in the computation of
the intention degree, next described.

Intention Context (IC)

To complete the agent design we need to specify how the agent intentions are decided. In the
g-BDI model the intention of an agent is a pair desire/plan (the desire she decides to follow
by executing the plan) that is determined following a deliberation process. We consider that
this attitude depends on different factors, we select the following relevant ones:

- the degree of the desire intended to be satisfied,

- the expected satisfaction degree of the desire through the plan execution,

- the cost of the plan,

- if some collaboration of other agents is involved in the plan execution, the trust in those
agents must also be considered.

Different kinds of agents may be defined according to the way these elements are com-
bined and weighted. How to do this in a suitable way is a difficult and domain dependent
problem.
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The intention degree is computed using a suitable bridge rule, as the formulae represent-
ing the different factors are coming from various contexts.

Case Study:

A theory for IC in the T-Agent represents those desires the user can intend to satisfy
by different feasible plans. This theory is initially empty and will receive from a suitable
bridge rule (see 11.1 in next subsection Bridge Rules) intention formulae like (Iαϕ, i) for
all the desires ϕ and for all the feasible packages α that the Planner finds to achieve them.
Using this set of graded intentions, the T-Agent derives the final intention and the most
recommended tourist plan.

Then, if the Intention with the maximum degree is obtained by the execution of the plan
αb, this package will be recommended to the user.

Communication Context (CC)

This context makes it possible to encapsulate the agent internal structure by having a unique
and well-defined interface with the environment. The necessary communication among the
agent and other interacting agents, may be extracted from the role interaction model and
the information model (Steps 9 and 10). As in the PC context we propose to use classical
first order logic (see Chapter 7). The theory of this context must be in charge of the agent
communication with the other agents and entities in the multi-agent society where the agent
lives.

Case Study:

The theory of this CC context takes care of the sending and receiving messages to and
from the Provider agents and manages the user’s interface (detailed in next Chapter 12.

Bridge Rules (BRs)

The design of the BRs is done simultaneously to the process of determining the agent inten-
tions. For example, the set of positive and negative desires must be passed from the DC to
the PC which is in charge of finding the feasible plans to satisfy these desires. Also, some
beliefs are also needed by the PC context to find these plans, like the elementary actions
that the agent can execute, or the beliefs in the satisfaction of the different desires after
executing a plan. Furthermore, there is a fundamental BR in charge of computing the in-
tention degrees. By defining this BR in different ways, diverse agent’s personalities may be
modelled. The necessary BRs for an agent specification will depend on the agent type and
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Figure 11.6: Multi-context model of the graded BDI T-Agent

its role assignment, a set of basic BRs was presented in Chapter 7.

Case Study:

For the T-Agent we have defined a set of bridge rules, modelling the inter-context infer-
ences. Particularly, there is a bridge rule that infers the intention degree of Iαϕ for each
feasible plan α that allows to achieve the goal ϕ.

This value is deduced by using a suitable function that combines different factors. From
the degree d of the desire on ϕ (D+ϕ) and the degree r of belief on satisfying ϕ by executing
α (B[α]ϕ), the T-Agent computes the expected satisfaction degree e after executing the plan
α towards D: E(D,α) (see for details next Chapter 12). This expected satisfaction degree,
together with the cost c of the plan α and the trust t in the tourist supplier o of the plan,1

derive the graded intentions by using the following rule:

PC : fplan(D,α, o, P,A, c), IC : (E(D,α), e), SC : (To[α]ϕ, t)
IC : (IαD, f(e, c, t))

(11.1)

Different functions f allow to model different agent behaviours. For instance, the func-
tion might be defined as a weighted average, where the different weights are set according
to the user’s priority interests (e.g. minimum cost, preference satisfaction or trust).

Specifying a graded BDI Agent

Collecting the specification of the different contexts and the bridge rules, the g-BDI
specification for the T-Agent is completed. Figure 11.6 illustrates this architecture for the
T-Agent.

1We have added an argument (o) to the predicate fplan used in the PC (respect to the defined in Chapter
7) to represent the plan provider.
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11.5 Conclusions

Agent-based computing has increased in the last years and thus the software engineering
methodologies to develop these systems has become an important need. Even though there
are valuable approaches in this field, few of them emphasize in the internal design of agents.
In this Chapter we have presented some contributions in this direction, proposing a software
engineering process to develop graded BDI agents in a multiagent scenario. The methodology
presented has been built adapting and extending previous approaches [88, 118, 160] in order
to engineer agents with a more complex internal architecture. Our work was also inspired
by the design process described in [141] where the social aspects of design are considered,
and the system design phase is clearly separated from the agent design phase.

The system design phase has the purpose of determining the agent types composing
the system and it follows a similar schema than other methodologies [87, 92, 118, 160]. In
the Agent Design phase we focus on modelling g-BDI agents. We extract the necessary
elements from the system design phase to design the different types of agents using the
proposed architecture. This process is done in two stages. The first one deals with the
logical skeleton of the multi-context specification of the g-BDI model. The second one,
following a flow “goals-feasible plans-beliefs-intentions” complete the agent design, filling
the contents (theories) of the different contexts. In this sense, we have modified the flow
“goals-plans(intentions)-beliefs” used in approaches like [88, 160] presenting a new process
to obtain the agents intentions.

Furthermore, the proposed process to develop g-BDI agents contributes to bridge the
gap from the external functionalities assigned to a particular agent, to the elements that
composed each architecture. Particularly, we have presented the methodology applied to
the design of graded BDI agents, extending the BDI model with the capabilities of dealing
with the environment uncertainty and with graded mental attitudes.
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Chapter 12

Recommender System

Implementation

In this Chapter the principal characteristics of the recommender system implementation are
described. The system design was presented in Chapter 11. Especially we focus on the
T-Agent implementation, as this agent is modelled using our g-BDI architecture. In the
following sections the most relevant implementational challenges are presented, going from
theory to practice.

12.1 Introduction

The implementation of a prototype of an Argentinian Recommender System is described in
this Chapter. The system goal is to recommend the best tourist packages on Argentinian
destination according to the user’s preferences and restrictions. The packages are provided
by different tourist operators. The recommender system has been designed previously (see
Chapter 11 for details) using a multi-agent architecture composed by a Travel Assistant
Agent (T-Agent) and two Provider Agents (P-Agents) In our implementation the Provider
agents simulate different tourism Operators that supply the T-Agent of tourist packages. As
usual in real world operators, these agents may manage the package information in different
ways and using diverse formats.

The purpose of this prototype implementation is to show that the g-BDI agent model
is useful to develop concrete agents on real domain. Thus, we focus on the most relevant
implementational aspects of the T-Agent designed as a g-BDI agent. The different com-
ponents in the multi-context architecture of the T-Agent (i.e., context and bridge rules)
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with their logical structure are then implemented. Particularly we show how the T-Agent,
takes advantage of the tourist’s preferences and the domain knowledge (about tourism and
Argentinian places) to give the user a good recommendation.

12.2 Multiagent development

In this simplified version of Recommender System, we define two agent’s types: the Provider
agent and the Travel Assistant Agent. We assign the interface role, the repository mainte-
nance role and the travel assistant role to the Travel Assistant Agent (T-Agent). As it is
natural in the Tourism Chain, different Tourist Operators may collaborate in the Provider
role. To represent these different sources of tourist packages, we use two different provider
agents (P-Agents). The internal architecture of the Provider agents is not considered in our
implementation and for our purposes they are considered only tourist packages suppliers.

The multi-agent architecture of the prototype version of the tourism recommender sys-
tem, composed by the T-Agent and two Provider Agents, together with the main source
of information they interact with (the destination ontology and the package repository) is
illustrated in Figure 11.4 of Chapter 11. This multiagent system is easily scalable to include
other providers.

The implementation of the Recommender system was developed using SWI-Prolog 1. We
decided to use prolog because is a suitable language to deal with logical deduction, which
is the nature of the inference processes in our agent model. Also, SWI-Prolog is a multi-
threaded version of prolog allowing an independent execution of the different contexts (i.e.
in different threads). Furthermore, this prolog version is open source, it is well documented
and includes a graphic interface tool in native language. A previous implementation of
multi-context agents using this software [69] was a starting point for our development.

In our multiagent recommender system the two Tour Operator agents (P-Agents) imple-
mented runs in a different thread, so in this way being independent from each other and from
the T-Agent. When the T-Agent requests for information, the P-Agents send to T-Agent
all the current packages they can offer. The communication between agents is by message
exchange.

In the real world, each tourist operator may structure the tourist packages in a different
way and using its own terminology. To experiment with heterogeneous providers, we use
different field names in the plan structure used in each P-Agent. Then, these structures are
translated into the format the T-Agent uses. Thus, a wrapper functionality is needed and it
is carried out by the Communication context of the T-Agent. In a more complete multiagent
recommender architecture a wrapper agent may be included.

1http://www.swi-prolog.org



12.3. T-Agent Implementation 187

Figure 12.1: Multithread system scheme

12.3 T-Agent Implementation

The main role of the T-Agent is to provide tourists with recommendations about Argentinian
packages. This agent may be suitable modelled as an intentional agent and particularly, by
a g-BDI agent model. This agent model is specified by a multi-context architecture having
mental and functional contexts (i.e, BC, DC, IC, PC and CC ) and a set of bridge rules
(BRs). Thus, the implementation of these interconnected components is needed. Even
though, in the T-Agent design we have included a social context (SC) with the aim of
modelling the trust or reputation in the different providers agents, in this prototype we have
left out the implementation of this context.

Each context has its own inference rules and theories, and they should not interfere.
Using a thread for each context allows the desired separation but could considerably slow
down the execution. The solution adopted for our implementation was to place only some of
these components in different threads. That is the case for the Communication context (CC),
the Desire context (DC) and some bridge rules. However, since the Belief (BC), Planner
(PC) and Intention (IC) contexts interchange quite a lot of information, for efficiency reasons
they run in the same thread. The multithread scheme for the T-Agent in the multiagent
system is illustrated in Figure 12.1, where the yellow boxes represent different threads and
the arrows their interactions.

For this multithreaded implementation, following [69], the policy adopted is to have
asynchronous threads and asynchronous communication. It means that the messages are
sent and received at any time, but they are processed only when the unit is inactive (i.e.
when it has finished the internal deductions). Each unit has a message queue that retains
the messages until they have been processed. A communication meta-interpreter is devoted
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to synchronize the ongoing inference process and the arrival of new incoming messages. In
our prototype, the exchange of most part of the messages is made during the initial phase.
In this phase the T-Agent asks the P-Agents for the current tourist packages. To answer
this request, the P-Agents send back a number of messages, each one containing an offered
package. The software tool successfully supports this intensive message exchange.

The Communication context (CC) in the T-Agent is in charge of receiving these mes-
sages, it translates them into a suitable format and it immediately sends them to the Belief
context (BC). In this way the agent’s knowledge is increased with the package information.
In the next sections we described how the main multi-context components of the T-Agent
are implemented in order to obtain the desired behavior. We begin with the Communi-
cation context that provides the agent with a unique and well-defined interface with the
environment.

12.3.1 Communication Context

The Communication context (CC) constitutes the T-Agent interface and makes it possible
to encapsulate the agent’s internal structure. This context takes care of the sending and
receiving of messages to and from other agents in the multiagent society where our graded
BDI agents lives. The CC in the T-Agent is in charge of interacting with the tourist operators
(P-Agents) and with the tourist user that is looking for a recommendation.

Interaction with the P-Agents

Before beginning its recommendation task, the T-Agent updates its information about cur-
rent packages (carrying out its repository maintenance role). This is achieved by the CC
through the following steps:

• Requiring the packages offered: The CC sends a message to each P-Agent asking
them for the current touristic packages they offer.

• Receiving packages and formatting them: As the information coming from each
P-Agent has different format the CC behaves as a wrapper, translating the incoming
packages into the T-Agent format. This functionality for one of the Provider agents
(agentTradingTour) is coded as follows:

run :-

repeat,

thread_get_message(X),

parse(X),

fail.

parse(tell(agentTradingTour, agentT,

paq(codigo(Id), precio(Costo), Recorrido)))
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:--

thread_send_message(brUnit, paq(id(Id),

empresa(agentTradingTour), costo(Costo), Recorrido)).

• Sending packages: Once the packages are put under the correct format, they are
sent to the Planner context. The recommendation will be based on the information
about packages and on domain knowledge.

User interface

The user interface is in charge of explicitly acquiring the tourist’s profile, providing him
with the resulting recommendation and receiving the user’s feedback. In a first approach
this interface was developed using the native language. Later on, to facilitate the access to
the recommender system it has been implemented as a Web service2. This interface process
goes through the following sequential steps:

• Acquiring user’s preferences: User’s preferences are explicitly acquired asking
him to fill in a form. The tourist can specify his preferences (positive desires) and
restrictions (negative desires), assigning them a natural number from 1 (minimum) to
10 (maximum) to represent the level of preference or rejection in the selected item.
Furthermore, he can choose different parameters: the flexibility of restrictions (by spec-
ifying them as flexible or hard), the expected frequency of the selected activity (high
or low) and the priority criterion to rank-order the recommended packages (preference
satisfaction or minimum cost). An example of a tourist’s preferences specification
using this interface is shown in

Once the user finishes his specification, the CC sends all the acquired information to
the Desire context (DC).

• Showing the resulting recommendation: As result of the T-Agent deliberation
process, the CC receives from the Intention context (IC) a ranking of feasible packages
that satisfies some of the tourist preferences. The ranking is ordered also taking into
account the priority criterion he has selected (e.g. preference satisfaction). The first
nine packages of this ranking are shown to the tourist and the user can visualize the
information about them by opening suitable files (e.g pdf files). In Figure 12.3 can be
seen the results for the query shown in Figure 12.2.

• Receiving user’s feedback: After analyzing the ranking of the recommended pack-
ages the user can express through the interface his opinion about the recommendation.
For this task, the options considered are the following:

2http://musje.iiia.csic/eric/
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Figure 12.2: User interface: tourist’s preferences.

- Correct: when the user is satisfied with the ranking obtained.

- Different order: when the recommended packages are fine for the user, but they are
ranked in a different order than the user’s own order. In such a case, the user is able
to introduce the three best packages in the right order.

- Incorrect: when the user is not satisfied with the given recommendation. Then, the
interface enables him to introduce a (textual) comment about his opinion.

All the information resulting from the previous steps (i.e., the tourist’s preferences, the
recommendation given and the user’s feedback) is stored to evaluate the system performance.

12.3.2 Desire Context

As the T-Agent is a kind of personal agent, its overall desire is to maximize the satisfaction
of tourist’s preferences. Then, in this context the different tourist’s graded preferences and
restrictions are respectively represented as positive and negative desires.

On the one hand, the negative desires are used as strong constraints, namely, the T-Agent
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Figure 12.3: User interface: package recommendation, a package description and user feed-
back.

will discard those packages not satisfying them. On the other hand, from the elementary
positive desires all their conjunctions are built as combined desires. The T-Agent will use all
these desires as pro-active elements, looking for different packages that will allow tourists to
satisfy any of them. Then, the theory in this context is constituted by positive and negative
desires (represented by desU formulae).

The user’s preferences are acquired in the CC by the user interface and are introduced
in a list to the DC. In the following items we describe how the positive desires are built
(negative desires are treated in a similar way):

1. Elementary desires: The DC takes each desire from the list received from the CC,
normalizes its degree (i.e. mapping it from {1, ..., 10} into (0, 1]) and adds it to the
context formulae. The structure of these formulae is:

desU(y(Desire, V alue), NormalizedDegree)
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The relation y(Desire, V alue) represents a positive desire where the first argument is
the class of desire (e.g. transport “transporte”) and the second is the value the tourist
has chosen (e.g. plane “avion”), followed by the normalized degree. For instance, the
formal expression in the DC of the elementary desires corresponding to the tourist’s
preferences specified in Figure 4 are:

desU(y(zona, patagonia), 0.9)

desU(y(transporte, avion), 0.7)

desU(y(comodidad, apart), 0.6)

2. Similar Desires: In the special case of some types of desires (e.g. those about
accommodation, transportation, natural resources), we consider that a tourist can
also be satisfied (to some lower degree) with a package that offers similar facilities to
the ones originally specified. Also, in the particular case of accommodation, we assume
tourists will be also satisfied if they receive a better accommodation than the selected
one.

Therefore, the Belief context contains instances of the domain dependent relations “to
be similar to” and “to be better than” which are used to expand the set of possible
values that would satisfy the user’s preferences.

Indeed, these instances are used to generate new desires into the DC by means of rules
like “If the T-Agent has a positive desire X at least to a degree d and he believes that
X is similar to Y at least to a degree s, then he also desires Y at least to a degree
d′ = d · s” and “If the T-Agent has a preference about an accommodation X at least
to the degree d and Z is an accommodation better than (“mejorQue”) X, then he also
desires Z at least to degree d”. These rules are formalized using suitable bridge rules.

desU(y(Deseo, X), d),

belU(similar(X, Y,s))

--: desU(y(Deseo, Y), d.s)

desU(y(comodidad, X), d),

belU(mejorQue (Z, X))

--: desU(y(Deseo, Z),d)

This rules are used for the expected satisfaction computation (see next subsection
12.6.1).

3. Combined Desires: After the elementary desires are added to the context, all pos-
sible conjunctions are built. The conjunctions are attached a degree greater or equal
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than the maximum of elementary degrees, and hence is computed in accordance with
the guaranteed possibility model (see [11]). Namely, if the DC contains formulae like
desU(y(D1), G1) and desU(y(D2), G2), a combined desire desU(yLst([D1, D2]), G) is
also added. In our prototype G is computed by the following function:

calcularGraduacion(G1, G2, G) :-

G is G1 + ((1 - G1) * G2)

As way of example, we show the code of one of the conjunctive combinations built
from the elementary desires given above:

desU(yLst([(zona, patagonia),

(transporte, avion)]), 0.97)

desU(yLst([(zona, patagonia),

(comodidad, apart)]), 0.96)

desU(yLst([(transporte, avion),

(comodidad, apart)]), 0.88)

desU(yLst([(zona, patagonia), (transporte, avion),

(comodidad, apart)]), 0.988)

Both, the positive and negative desires are passed by means of a bridge rule to the Planner
context where the feasible packages that satisfy the tourist’s preferences are selected.

12.4 Belief Context

In the Belief context the T-Agent represents all the necessary domain knowledge about
tourism and in particular about tourism in Argentina: tourist packages, information about
destinations and some special domain-dependent relations. Also, in this context the belief
degrees of achieving the different desires by executing alternative plans, are computed. We
describe next the representation of these kinds of information.

12.4.1 Tourist packages

One of the most significant data structures in our system is the package structure. After
analyzing nearly forty Argentinian packages selected from the Internet, a general structure
which is capable of representing the information available in most of them has been adopted.
Each package is represented as a list containing an identifier, a tour provider, the cost and
a travel-stay sequence as it can be seen in the following structure:
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Package ::= (Id, Provider, Cost, Trip)
Trip ::= [(Travel, Stay)]
Travel ::= (Transport, Road)
Stay ::= (Destination, Days, Accommodation, [Activity])
Activity ::= activity(Sport, Hours) | excursion(Resource, Hours, Name)

For example, the prolog representation of the package named holCalafatePatagonia is pre-
sented below:

paq(id(holCalafatePatagonia), costo(1900),

[(viaje(avion, aire), estadia(calafate, dias(3), comodidad(apart),

actividades([

[act(cityTour), horas(4)],

[exc(parqueNacional), horas(8), peritoMoreno]]))),

(viaje(avion, aire), estadia(ushuaia, dias(4), comodidad(hotel3),

actividades([

[act(cityTour), horas(1.5)],

[exc(museo), horas(1), finDelMundo],

[exc(historia), horas(1), carcelDeReincidentes],

[exc(parqueNacional), horas(2), tierraDelFuego],

[exc(lago), horas(1), escondido],

[exc(lago), horas(1), fagnano]]))),

(viaje(avion, aire), null)])

Notice that in the last element of the travel list, the stay is null representing the return
travel.

12.4.2 Destination ontology

The T-Agent needs to have information about the country and the different possibilities its
places bring about. Usually the packages have little information about the destinations and
the resources available in them. This domain knowledge is complementary to the package
information and very important to infer whether a trip including certain destinations can
satisfy some tourist preferences (e.g. natural resources). To structure the knowledge about
Argentinian tourism, we analyzed different tourism ontologies and most of them were fo-
cused on destinations (see e.g. [121]) including the resources they have, the activities they
offer, etc. Inspired in them, the following features were extracted for defining the destination
ontology in our prototype.
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Destination ::= (Name, Coordinates, Zone, [NaturalResource],
[ArtificialResource], [Activity])

Coordinates ::= (X, Y)
NaturalResource ::= Resource
ArtificialResource ::= Resource
Resource ::= (KindOfResource, Name)

The information of almost fifty Argentinian destinations (i.e. all the destinations related
to the packages used) has been introduced to fill in this ontology. This information has been
extracted from official web-sites.

We use as coordinates the geographic coordinates provided by the Instituto Geográfico
Militar de la República Argentina.3 The geographical zone assigned to each destination
corresponds to the partition of Argentinian provinces into zones proposed by the Secretaŕıa
de Turismo de la República Argentina.4

An example of the destination structure for the Ushuaia city is presented below:

localidad(nombre(ushuaia), provincia(tierraDelFuego),

gps(54.80, 68.31), zona(patagonia),

naturaleza([(parqueNacional,tierraDelFuego), (canal,beagle)

, (bahia,lapatala), (lago,roca), (lago,fagnano)

, (lago,elEscondido), (laguna,negra), (rio,grande)]),

infraestructura([(museo,finDelMundo), (museo,regional)

, (museo,acatushun), (historia,presidio)

, (ingenieria,trenFinDelMundo)],

actividades([avistajeFauna,esqui,navegacion,pesca,trekking]))

The ontology used in this prototype was directly code in a prolog file, but it is possible for
the T-Agent to receive an ontology built using an ontology editor (via XML code).

12.4.3 Special Relations in the domain

As already mentioned in Section 12.3.2, to increase the domain knowledge of the T-Agent,
some special relational predicates have been included in the BC language. This allows to
encode knowledge about related concepts that makes it possible for the T-Agent to expand
the search to other terms related to the ones expressed in the tourist’s preferences and are
used in the selection of the best packages for the tourist. In this implementation we have
considered important to include two kinds of relations:

3http://www.geoargentina.com.ar
4http://www.turismo.gov.ar
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1. “to be similar to” relation: The BC includes a set of instances of the similar
predicate on pairs of synonymous or similar concepts according to the tourism domain,
composing a so-called similarity dictionary. As the T-Agent belief context deals with
graded information, these instances may include a degree g ∈ [0, 1] expressing a sort
of semantical distance between terms. The formulae in this dictionary are structured
as:

belU(similar(term1, term2), g)

For instance, we show a fragment of this similarity dictionary:

% accomodation category

belU(similar(apart, hotel3), 0.75)

belU(similar(camping, campamento), 1.0)

% transport category

belU(similar(bus, colectivo), 1.0)

belU(similar(bus, trafic), 0.9)

% nature category

belU(similar(lago, embalse), 0.7)

belU(similar(montaa, serro), 0.8)

2. “Better than” relation: For the accommodation concepts a “better than” relation
has been added to express whether an accommodation is better than another one.
This transitive relation allows the T-Agent to expand the search of the packages that
satisfy the user’s preferences, to those that include accommodations better than the
selected one. Two formulae expressing these relations and the transitive rule in the
BD are the following:

belU(mejorQue(hotel5, hotel4)).

belU(mejorQue(hotel4, hotel3)).

belU(mejorQue(X, Y)):- belU(mejorQue(X, Z)),belU(mejorQue(Z, Y)).

12.4.4 Beliefs on desires fulfillment

The T-Agent needs to compute in which degree a particular desire is believed to be fulfilled
after a plan execution. This means to compute the degree r of the formula B([αP ]D), where
αP is a tourism package and D is a desire (elementary or combined). This belief degree r
is necessary for the agent to estimate the expected satisfaction E(D,α) of a desire D by a
plan αP , as we will see later in Section 12.6.1 where this expectation is estimated by the
value E = r · d, where r is the degree of B([αP ]D) and d the degree of desire D. Notice
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that, following the model presented in Chapter 5, the truth degree of B([αP ]D) may be
considered as the probability of making D true after following plan αP . In the following we
describe how such a probability is estimated from according to the different types of desire
types and plans.

Basically, a tourist plan may be considered as a temporal sequence of subplans and the
global satisfaction depends on how user’s preferences are expected to be satisfied through
each stage of the plan trip. As it was presented above, the packages are structured as:

Package ::= (Id, Provider, Cost, T rip)

where Trip is a travel-stay sequence [(Traveli, Stayi)], i = 1, . . . , n. In our approach each
pair (Traveli, Stayi) is considered as an atomic package stage (sub-plan), amenable to satisfy
some desires. Packages αP are therefore modelled as composed plans, αP = α1; . . . ;αn,
alternating travel and stay sub-plans.

Then, the expected satisfaction E(D,αP ) of a desire D = D1 ∧ ... ∧ Dn through the
execution of the plan αP is computed in our model (see Section 12.6.1) from the expected
satisfactions values Eij = E(Dj , αi) of the elementary desires Dj by the execution of the
elementary sub-plans αi. In turn, to compute each of the Eij ’s, the belief degree rij of
achieving the desire Dj through the subplan αi execution (corresponding to the degree of
the formula B([αi]Dj)) is needed. This is described next.

The case of elementary desires

For evaluating the belief degree r in which a package αP will fulfill an elementary desire D,
the agent focuses on either the travel stages or the stay stages in the αP depending on the
kind of desire D specifies. For example, if D is about transport then, only the travel stages
in αP are considered, while if D is related to a natural resource then only the stay stages
of αP are considered. In any case, the belief degree is computed using a set of rules that
depend on the kind of desire and on the user’s priority criterion.

For example, the BC has a rule setting that “if the desire D is about accommodation of
category c and stayi of package αP (i.e. the subplan αi) offers an accommodation better or
equal than c, then the belief degree of fulfilling the desire D by subplan αi is ri = 1”. In
other words, in case D and αi satisfy these conditions, such a rule would create the formula
(B([αi]D, 1) in the agent’s BC theory.

When the tourist’s desire D is related to a destination resource (e.g. natural resources,
activity) the belief degree of fulfilling it by a plan execution has another interesting charac-
teristic. We have noticed that packages have usually limited information about destinations
and their resources. Thus, for belief estimation purposes, besides the package information,
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the T-Agent may need further knowledge about destinations. In our prototype this infor-
mation is structured in a destination ontology. This amounts to extend the computation of
the degree ri of B([αi]D) to a package-destinations cross inference to assess the fulfillment
of the tourist’s selected preference in a certain destination, using not only the package sup-
plied information but also the available information about the destination. Therefore, the
strategy which is followed is, for each package stage αi, to evaluate the probability of αi
providing a certain resource D both from explicit information offered in the package (rPi)
and from information inferred from the destination ontology (rOi). Finally, the T-Agent
takes as degree ri the maximum of both estimations, i.e. ri = max {rPi, rOi}.

Combined desires

The DC theory includes conjunction of positive desires. To evaluate the probability of ful-
filling the conjunction of elementary desires (e.g. (D1 ∧D2)) by the execution of a package
α, we assumed that, as random variables, the elementary desires are stochastically indepen-
dent. Then, from the degrees r1 and r2 corresponding to the elementary desires D1 and D2

respectively, we can compute the belief degree in achieving their conjunction by executing
the plan α using the following rule:

(B[α]D1, r1), (B[α]D2, r2)
(B[α](D1 ∧D2), r1 · r2)

For example, consider the T-Agent has the following combined desire D specified in the DC:

desU(yLst([(zone, patagonia), (activity, rafting)]), 0.8)

and the agent has also in her belief context BC the belief degrees of obtaining the elementary
desires by a package α, which are respectively:

(B[α]patagonia, 1.0) and (B[α]rafting, 0.7)

Following the rule given above, the T-Agent computes that the belief degree for the com-
bined desire is:

(B[α](patagonia ∧ rafting), 0.7)

12.5 Planner Context

The Planner Context (PC) is fundamental for the T-Agent implementation. The PC unit is
assumed to contain a set of available plans, coded as instances of the predicate planner with
paq formulae (see below). The Planner context is responsible for looking among them for
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feasible packages. By feasible package we mean a package that fulfills, to some degree, one of
the positive desires (elementary or combined) and avoids, as post-condition, the satisfaction
of the agent’s negative desires above to a given threshold UmbralN . The set of feasible
plans is determined within this context using an appropriate searching method that takes
into account information injected by bridge rules from the BC and DC units, including
positive and negative desires, information about packages (including their cost), the agent’s
beliefs about package destinations and the estimation of the agent’s desires fulfillment by the
different plan executions. The following forward rule encodes this in the Planner context.

des(yLst(DeseosP), _), des(nLst(DeseosN), UmbralN),

planner(paq(IdPaq, Proveedor, Costo, _Recorrido)),

bel(contiene(IdPaq, DeseosP), R),

bel(not(contiene(IdPaq, DeseosN)), UmbralN),

bel(costoNormalizado(Costo, CN), 1)

--:

planner(paqSi(IdPaq, Proveedor, CN, DeseosP), R)

For each feasible package, with identifier IdPaq, this rule creates into the PC theory an
instance of the planner predicate with a paqSi formula with identifier IdPaq. Note that
in each instance of a feasible package, its normalized cost (CN ∈ [0, 1]) is used instead of
the actual cost. A rule computes this normalized cost as CN = (Costo/CostoMax) where
CostoMax is the maximum cost of all the costs of feasible packages.

After the PC has identified the set of feasible packages, they are passed to the Intention
context, which is in charge of ranking of these packages according to the user’s preferences.

12.6 Intention Context

In order to rank the feasible packages to be offered to the user, the Intention context IC
of the T-Agent is in charge of estimating the intention degree for each feasible package as
a trade off between the benefit (expected satisfaction) and the cost of reaching the user’s
desires through that package. Thus, first, this context estimates the expected satisfaction
E(D,α) of a tourist’s desire D assuming she selects a package α. Second, using a suitable
bridge rule, it computes the intention degree (the truth degree of the formula IαD) towards
the desire D by executing a tourist package α using a function that combines the expected
satisfaction E(D,α) and the normalized package cost CN . In the following Subsections we
give some insights of how this estimations are implemented in the T-Agent.
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12.6.1 Estimating the expected satisfaction of desires

For estimating the expected satisfaction of a tourist’s desire D assuming she selects a package
αP , the underlying idea is to consider that each plan α makes D a binary random variable,
with a probability distribution

Probα(D = true) = r, Probα(D = false) = 1− r

Now, if d is the user’s positive desire degree for making D true, and assuming the positive
desire of making D false is 0, then the user’s expected satisfaction degree by achieving D

through the plan α is clearly

E(D,α) = r · d+ (1− r) · 0 = r · d

Therefore, to estimate the value E(D,α) one needs to estimate both the probability r

of achieving D by α and the (positive) desire degree d for D. These values can be directly
obtained from the BC and DC contexts respectively for atomic package components and
elementary desires. Indeed, if the plan α consists of a sequence of travel-stay components
α = α1; . . . ;αk and the desire D is a conjunction of elementary desires D = D1 ∧ . . . Dn,
then the agent contains in her contexts:

BC: instances (B[αi]Dj , rij), for i = 1, k; j = 1, n and

DC: instances (D+Dj , dj), for j = 1, n, and (D+D, d) where

d = 1−Πj=1,n(1− dj) (see DC context in Section 12.3.2).

and hence, for each i, j we can estimate E(Dj , αi) with the values rij · dj . Then, in order to
come up with a estimated value for E(D,α), we follow the following steps:

(i) E(Dj , α) is computed for each elementary desire Dj , j = 1, n and then

(ii) E(D,α) is estimated for the combined desire D.

Next we give some insights of how the estimation is done first, for elementary and then, for
combined positive desires.

(i) Elementary desires

The expected satisfaction E(Dj , α) of an elementary desire Dj through the execution
of the plan α may be computed from the expected satisfactions Eij = E(Dj , αi) by the
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execution of its sub-plans αi, using an appropriate aggregation operator ⊕, i.e.:

E(Dj , α) = ⊕(E(Dj , α1), . . . , E(Dj , αk))

For computing each Eij , the agent uses the probabilities rij and desire degrees dj injected
from the BC and the DC respectively by a bridge rule. A set of rules play the aggregation
role to obtain the expected satisfaction. These rules depend on the kind of desire.

The underlying idea to compute the expected satisfaction of a user’s desire Dj (with
degree dj) is to consider the proportion (in terms of duration) of the package components
where Dj is expected to be satisfied with respect to the whole trip proposed by the package.
Furthermore, the estimation of how much a component of a package αP (a sub-plan αi)
satisfies a preference may be also graded and is computed depending on what the offer of
the sub-plan is, as it is explained next: In our approach we consider for this estimation the
relationship of the tourist’s desire Dj with the actually proposed in the package D′j :

• if D′j is exactly Dj or “better than” than Dj , the expected satisfaction of Dj by the
package component αi is taken as E(Dj , αi) = rij · dj , where rij is the belief degree
of B([αi]Dj).

• if D′j is similar to Dj to the degree s (see previous subsection 12.3.2), the expected
satisfaction of Dj by the package component αi is taken as E(Dj , αi) = r′ij · d · s,
where r′ij is the belief degree of B([αi]D′j).

Then, if the package α is composed by different stages, i.e. α = α1; . . . ;αn, the general
way of computing the expected satisfaction E(Dj , α) of the desire Dj by the package α, is
defined as

E(Dj , α) =
∑
iE(Dj , αi) · Timeαi

TotalT ime
,

where Timeαi
and TotalT ime are computed according to the kind of desire Dj .

For instance, if Dj is about accommodation, Timeαi
denotes the duration (in days) of

the stay αi and TotalT ime is the total duration of the trip. On the other hand, in the case
of D being an activity, if the user’s preferences specify to do the activity with high frequency
(see Section 12.2), Timeαi

is the duration (in hours) of the activity programmed by αi and
TotalT ime is an estimation of the total number of hours the activity could take during the
whole trip.

Example: Let us assume a tourist has an accommodation preference of Apart-Hotel repre-
sented by the desire D:

desU(y(comodidad, apart), 0.7).
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Using the similarity relation between this type of accommodation and a 3 star hotel repre-
sented by the instance

belU(similar(apart, hotel3), 0.75)

the T-Agent considers the tourist will also be satisfied to some degree if he is accommodated
in a 3-star Hotel, i.e. he is assumed to also have the desire D′ represented by:

desU(y(comodidad, hotel3∗), 0.7 · 0.75)

The T-Agent evaluates the expected satisfaction of accommodation through the package
holCalafatePatagonia. This package has two stay components: 3 days in Calafate with
Apart-Hotel accommodation and 4 days in Ushuaia with a 3-star Hotel accommodation (see
for details subsection 12.4.1). Considering that in the BC were computed r1 = 1 and r′2 = 1
then, the expected satisfaction of each one of these two package components are respectively
as follows:

- E1 = r1 · d = 1 · 0.7 = 0.7 and
- E2 = r′2 · d′ = 1 · 0.525 = 0.525

Finally, the expected satisfaction of the accommodation desire by the package hol-
CalafatePatagonia is computed as the average of the expected satisfactions E1 and E2,
considering the duration in days of each stay, i.e.:

E =
(E1 · 3) + (E2 · 4)

7
= 0.6

(ii) Combined desires

If the agent has a combined desire D = D1 ∧ ... ∧ Dn with degree d (i.e. the formula
(D+D, d) is in the DC) and she has selected a plan α, for each desire Dj the agent can
compute the expected satisfaction E(Dj , α) as it was shown in item (i). Then, the agent
can estimate the probabilities:

- Probα(Dj = true) = E(Dj , α)/dj , for each desire Dj and

- Probα(D = true) = Πi=1,nProbα(Dj).

Finally, she can estimate the expected satisfaction of the combined desire as follows:

- E(D,α) = Probα(D) · d.

The expected satisfaction is then coded in the intention context following the schema
proposed, and using the information introduced by suitable bridge rules from PC (feasible
packages), DC (set of desires), BC (priority selected). As we have detailed the estimation of
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the expected satisfaction depends on the kind of desire (TD) (i.e. preference category and
if it is elementary or combined), and is computed by using different aggregation functions
(fes(TD,GD,GR,FU,ES)) that combines the belief degree of having the desire after a
plan execution (GR), the desire degree (GD) and respect the activity frequency preference
selected by the user (FU). The rule that compute the espected satisfaction degree (ES) is
then coded as follows:

planner(paqSi(Id, Proveedor, CN, DeseosP), GR),

des(yLst(D), GD),

bel(frecuencia(FU), 1),

fes(TD, GD, GR, FU, ES)

--: int(es(D,Id), ES)

12.6.2 Computing the intention degrees

After the T-Agent has estimated the tourist’s expected satisfaction E(D,α) for each desire D
and feasible package α, as a suitable aggregation of the desire degrees d (GD) and the belief
degree in achieving the desire r (GR), the corresponding intention degrees are computed
in the IC. Namely, for each desire D and a feasible package α to achieve D, the following
bridge rule is used to infer a degree for the formula Iα(D):

PC : fplan(D,α, P,A, c), IC : (E(D,α), e)
IC : (IαD, f(e, c))

(12.1)

This degree is computed, by means of a suitable function f combining the expected satis-
faction of the desire through the plan execution (e, which in turn is function of r and d) and
the cost of the plan (c). Different functions can model different individual agent behaviors.
In the T-Agent this function is defined as a weighted average:

f(e, c) =
wes · e+ wcost · (1− c)

wes + wcost
(12.2)

where wes and wcost are weights which are set by the T-Agent according to the priority
criterion selected by the user (minimum cost, preference satisfaction). If the selected priority
option is minimum cost then, wc is set greater than wes and if it is preference satisfaction,
wes is given a greater value.

The following bridge rule code infers the intention formulae related to the package Id
with the corresponding intention degree (G):

planner(paqSi(Id, Proveedor, CN, DeseosP), GR),

int(es(D,Id), ES),

bel(prioridad(PU), 1),

f(ES, CN, PU, G)
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--: int(paqRecomendado(Id), G)

After the bridge rule has been applied to all the feasible plans, the IC has in its theory a
set of graded intention formulae. The intention degrees are used by the T-Agent to rank the
feasible packages that communicates to the CC. We opted to select the first nine packages
to recommend the tourist.

Finally, the selected packages are passed to the CC unit and then, through the user
interface the T-Agent outputs to the user the ranking as the system recommendation. For
instance, Figure 4 shows a tourist’s preference selection and the resulting recommended rank-
ing is shown in Figure 5. After analyzing the recommended packages, the user is prompted
by the system to provide his feedback.

12.7 Conclusions

A prototype of multiagent Tourism Recommender system has been implemented. A multia-
gent approach is suitable for this kind of systems dealing with heterogeneous and distributed
information. Particularly we used a g-BDI architecture for modelling the T-Agent, showing
in this way, that this model is useful to develop concrete agents in real domains.

We remark that the many-valued model of information representation and reasoning in
the g-BDI agent, has many advantages for this implementation. First, this model enables
an expressive representation of the domain knowledge (agent beliefs), the user’s preferences
(desires) and the resulting intentions. Secondly, the implemented approach allows the agent
to expand the retrieval of feasible packages using similarity relations and domain knowledge,
not explicitly included in the package information. Also, the treatment of many-valued
information makes it possible to compute in a graded way the expected satisfaction of the
different tourist’s preferences, by the execution of diverse packages. Finally, the intention
degree of a plan towards a desire satisfaction may be computed as a function of diverse
factors (e.g. satisfaction, cost, trust). As we can obtain diverse agent behaviors defining
different functions for intention computation, these become a crucial point in the agent
model.

The implementation of this recommender system and particular of the T-Agent, modelled
as a g-BDI agent enable as to make some experimentation to validate the system and also to
compare our graded BDI model of agent with a simulated crisp BDI version of the T-Agent.
This experimentation is presented in the following chapter.
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A theory is something nobody believes,

except the person who made it. An

experiment is something everybody

believes, except the person who made it.

A. Einstein

Chapter 13

Recommender System

Validation and Experimentation

13.1 Introduction

It has been shown in previous Chapters (11 and 12) that the g-BDI model is useful to
design and implement recommender systems. In this Chapter we present the validation of
the Tourism Recommender system where its main recommender agent, the Travel Assistant
Agent (T-Agent), was modelled using our graded BDI approach. The experimentation on
the case study aims at proving that this agent model is useful to implement different and
rich behaviors. Besides, we show that the results obtained by recommender agents using
graded attitudes improve those achieved by agents using non-graded attitudes.

The validation process checks whether the Tourism recommender system designed using
this agent model is useful and returns suitable recommendations. As the process of informa-
tion classification is generally a complex and personal task, we measure the average system
behavior over a given population.

We follow two experimental directions. First, we have performed sensitivity analysis to
show how the g-BDI agent model can be tuned to define concrete agents having different
behaviors, by modifying some of its component elements. For this purpose, in Experiment 1
we use a Travel agent, called T2-Agent which differs from the previously introduced T-Agent
in the desire context. Later on, in Experiment 2 we implement an agent, called T3-Agent
that differs from T-Agent in the bridge rule used to obtain the resulting intention degrees.

Second, we describe some experiments we have done in order to compare the perfor-
mance of recommender agents using the g-BDI model with agents without graded attitudes.

207
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Figure 13.1: The validation process for the Tourism Recommender System

Starting from the T-Agent and the T2-Agent we simulate two families of non-graded BDI
recommenders. The way of doing this was by introducing some thresholds for belief and
desire degrees. We experiment with the same cases collected in the validation process run-
ning them in these agent families. This experimentation compares the performance of the
T-Agent and T2-Agent, both implemented with the g-BDI agent model, with a family of
simulated non-graded BDI ones. Finally, we present some statistics and conclusions.

13.2 Validation

In the design and implementation stages of a Recommender System (see Chapter 12) we
showed that the g-BDI model of agent is useful to model this kind of systems. In this
section we try to answer the question of whether the resulting system is good as a tourist
recommender.

Since the T-Agent is a personal recommender agent, to analyze its behavior the user’s
opinion is key. This recommender system is accessible via Internet1 allowing an online and
a multiuser access. The user’s opinion is gathered after he receives a ranking of tourist
packages. We want to study whether the T-Agent is a personal agent satisfying, to some
degree, a set of different users. This validation process is illustrated in Figure 13.1 and is
explained below.

We use the implementation of the T-Agent modelled as a g-BDI agent as detailed in
Chapter 12. A set of 40 tourism packages are offered to the T-Agent by the provider agents.

1http://musje.iiia.csic.es/eric/
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We have collected near 70 queries from which we have selected a set of 52 complete queries
(including user’s feedback) made by at least 35 different users, most of them students of
a Computer Sciences Department.2 The preferences and restrictions of the users, together
with the system results and the users’ feedbacks, constitute our N-cases set. Thus, each
case in the dataset is composed by:

• User’s profile: a user ID and his graded preferences and restrictions.

• Agent result: the agent returns a ranking of at most k packages.3

• User’s feedback: after analyzing the information of the offered plans the user gives
a feedback that may be:

1. Correct order : if the tourist considers that the order of the first three packages
is correct (called Feedback1 in table of Figure 13.2).

2. Different order : if the tourist finds what he wants in the ranked list but considers
that the first three packages are not in the right order. In this latter case, the
user gives his most preferred order (called Feedback2).

3. Incorrect : the user does not agree with the recommendation (called Feedback3).

In this validation process we consider that when the user’s feedback is (1) or (2), this
corresponds to a satisfactory agent result, as he can find what he want among the
recommended options.

Actually, in the validation process, we have only taken into account those cases which
included user’s feedback. Examples of some records used and their most significant fields
are shown in the tables of the Figure 13.2.

Results:

From the selected 52 cases (N-cases) we have separated those having a satisfactory
feedback (i.e. Correct or Different order) from the unsatisfactory ones. The cases where the
user gives his own ranking (Different order), are indeed very valuable because it means that
the user took time to analyze the offers proposed by the system, while cases with Feedback
1 (Correct order) may sometimes correspond to a “quick answer”.

The N-cases are classified by their different feedback categories in Table 13.1. From these
results, the global behavior of the T-Agent may be considered useful in most cases (73% of
N-cases). These are preliminary results and the recommender systems may be improved to
obtain better performance if we want it to be more qualified.

2Departamento de Cs. de la Computacin, Facultad de Cs. Exactas, Ingeniera y Agrimensura, Universidad
Nacional de Rosario, Argentina.

3the number of ranked packages is a T-Agent parameter, experiments are reported for k=9.
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Figure 13.2: Example of records containing some user profiles (above) and a subset of the
T-Agent ranking together with the corresponding user’s feedback (below)

Consults Correct order Different order Incorrect Satisfactory
(N-cases) (S-cases)

100% 40.4% 32.7% 26.9% 73.1%

Table 13.1: Result of the N-cases in the validation process

In order to give a general measure of the T-Agent results over the satisfactory cases
(S-cases), we have evaluated how close is the T-agent ranking respect to the user’s own
ranking. For this, we choose the block (Manhathan) distance between the position of the
first three packages selected by the user and their position in the system ranking. This
distance was adopted because it is appropriate for capturing positional differences.

Namely, assume the user’s feedback is Ui = (Pi1, Pi2, Pi3) and the T-Agent ranking for
this query is Ri = (R1, R2, ..., R9). Then, if Pi1 = Rj , Pi2 = Rk, Pi3 = Rn, the distance
between the user’s and the system rankings is defined by:

Dist (Ui, Ri) = |1− j|+ |2− k|+ |3− n|

As for example consider the first case showed in Figure 13.2 where the T-Agent ranking
of packages is as follows:

Ri= (ayaMinaClavero, ayaLaCumbre, ayaLosCocos, ayaVillaGralBelgrano, ayaVillaCar-
losPaz, expMendoza, holMendozaVinos, holEsquel, holBariloche7Lagos)
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and the user’s own ranking is:

Ui=(expMendoza, ayaLaCumbre, ayaMinaClavero)

then, the distance for this case is:

Dist (Ui, Ri) = |1− 6|+ |2− 2|+ |3− 1| = 7

Notice that for the cases with Correct order feedback (Feedback 1) the distance is 0 and
in the worst case this distance takes the value of 18. The table in Figure 13.3 (left) shows the
block distances for all the cases with satisfactory user’s feedback (S-cases) and the distance
frequencies for S-cases can be seen in Figure 13.3 (right).

Case Distance Case Distance
Id1 4 Id29 0
Id3 4 Id30 7
Id4 6 Id31 0
Id5 0 Id32 0
Id6 6 Id34 0
Id7 2 Id35 0
Id9 2 Id36 11
Id10 0 Id38 1
Id11 0 Id39 0
Id13 0 Id40 0
Id14 0 Id41 0
Id15 3 Id42 0
Id18 11 Id44 0
Id19 3 Id45 0
Id20 0 Id47 3
Id21 7 Id48 14
Id22 17 Id49 0
Id27 0 Id50 0
Id28 0 Id52 11

Average Distance 2.95

Figure 13.3: Distances of the T-Agent over the S-

cases (left) and the corresponding frequencies (right).

We analyzed the incorrect cases and the comments attached (if any) about the user dis-
satisfaction with respect to the system recommendation and they were somewhat scattered.
Apart from that, in some of these incorrect cases we detected a system shortcoming related
to the tourism knowledge base, the destination ontology used for this experimentation was
incomplete with respect to the popular knowledge. We found another limitation due to the
system interface that was built for experimental use and need more detailed explanations
about the different items required to the users, to avoid misunderstandings.

Therefore, we believe the T-Agent behavior may be improved by completing these on-
tologies and refining the user interface.

Finally, the S-cases (see table in Figure 13.3) yield an average distance of 2.95 in the
scale [0, 18], and hence giving a good global measure result. Summarizing, we have obtained
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preliminary satisfactory results of the Recommender System in this validation process, that
allows us to claim that “the T-Agent recommended rankings over Tourism packages are in
most cases near to the user’s own rankings”. Even thought we recognize that future work
is needed to improved the system in the pointed directions, we consider that these first
results on the N-cases allow as to focus on the experimentation of our agent model using
this Recommender.

13.3 Experimentation

In this section we present the experimentation we have made in two directions. The first
one, a Sensitivity analysis, has the purpose of finding out how much the general g-BDI agent
architecture can model different behaviors by varying some of its components. The second
one, aims at checking whether the distinctive feature of the g-BDI agent model, which is the
gradual nature of mental attitudes, actually makes a difference (in terms of better results)
with simulated BDI non-graded models. In Figure 13.4 we present the experimentation
schema. The Sensitive analysis is based on Experiments 1 (Exp-1) and 2 (Exp-2). Experi-
ments 3 (Exp-3) and 4 (Exp-4) correspond to the comparison between graded agents (g-BDI
model) and non-graded ones (c-BDI model).

Figure 13.4: Experimentation scheme

13.3.1 Sensitive model analysis

We have performed two experiments to analyze how the overall recommender system be-
havior can be modified by tuning some of the T-agent components. First, in Experiment 1
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we change the theory of one of the mental contexts, the desire context DC, using a different
method to compute the desire degree of preference combinations. Then, in Experiment 2 we
modify a bridge rule definition by changing the function used to obtain the intention degree.

Experiment 1

(1) We use the tourism recommender agent T2-Agent : this agent was developed changing
the desire context of the T-Agent (see Section 12.3.2). The modification in this context
is related to the way the desire degrees are computed. The underlying idea was to
weight not only the preference degrees but also the number of preferences we are
considering in each combined desire, as to have a more dispersed distribution of desire
degrees, giving relevance to the desires that combine a higher number of preferences.
For this purpose, in the Desire Context of the T2-Agent we use as degree for desire D
the value

d′ = 1/2 ∗ (d+
CardD

CardPref
)

where d is the desire degree used in the T-Agent (described in Section 12.3.2), CardD
is the number of preferences considered in the desire D and CardPref is the total
number of preferences selected by the user.

For example, if a user’s graded preferences (elementary desires) are as follows:

desU(y(zona, patagonia), 0.9)

desU(y(transporte, avion), 0.7)

desU(y(comodidad, hotel3), 0.6)

In the T-Agent we compute the degrees for the combined desires as:

desU(yLst([(zona, patagonia), (transporte, avion)]), 0.97),

where d1 = 0.97

desU(yLst([(zona, patagonia), (transporte, avion),

(comodidad, hotel3) ]), 0.988), where d2 = 0.988

For the T2-Agent we proposed to use d′1 and d′2 instead:

d′1 = 1/2 ∗ (0.97 +
2
3

) = 0.818 and d′2 = 1/2 ∗ (0.988 + 1) = 0.994

We notice that the difference between these desire degrees in T2-Agent are greater
than the corresponding one in T-Agent (e.g. d′2 − d′1 = 0.176 and d2 − d1 = 0.018).

(2) We consider the S-cases, the set where the results were satisfactory (see Section 13.2).
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(3) The user’s preferences of the S-cases are run in the T2-Agent.

(4) We compare the T2-Agent results with the S-cases user’s feedbacks we have for the
T-Agent results and compute distances.

Results:

In this experiment we are comparing the ranking proposed by the T2-Agent with the first
three packages extracted from the T-Agent recommendation or the user feedback. Some of
these packages may not be found in the T2-Agent answer. Again, we use the Block distance
to have a global measure of the T2-Agent performance. For the missing packages, we take
an optimistic approach assuming that the distance is 10 (supposing that the missing package
would be the first one immediately after those appearing in the ranking). This approach
was decided because we consider this is a kind of “indirect measure” (we are comparing the
T2-Agent results with the feedbacks the users gave to the T-Agent results) and can give us
worst results than in a direct one.

Two global measures are computed in this experiment, the average of distances excluding
the cases having missing packages in the current ranking and the total average, that includes
all the cases. The distance frequencies corresponding to the T2-Agent results for all the S-
cases, including the distance average and the total average, are shown on the Table 13.2 and
illustrated in Figure 13.5.

The average of the distances between the T2-Agent rankings and those of the S-cases
is 2.85 and the total average is 4.23. Comparing the first global measure with the one
obtained for the T-Agent results, we notice that this measure is slightly better than the one
computed for the T-Agent. We believe that had we had a direct measure of the performance
of the T2-Agent (comparing the T2-Agent ranking with the corresponding user’s feedback)
we would have obtained better results. We can conclude that the recommenders T-Agent
and T2-Agent have similar behavior, but results of the second one are a little bit closer to
the user’s rankings.

Experiment 2

The same steps followed in Experiment 1 were taken but, in this experiment, for item (1) we
use a new tourism recommender agent called T3-Agent. This new agent was defined from
T-Agent by changing one of its bridge rules. Namely, we have modified the function that is
used by bridge rule 12.1 (described in Chapter 12.6) to compute the intention degree of a
package α in order to satisfy a set of user’s preferences ϕ (Iαϕ). We have used for T3-Agent
a function of the desire degree (d), of the belief degree of satisfying the goal by the plan
execution (r) and the cost of the plan (c): f(d, r, c). This function assigns an intention
degree according to two different priorities: Preference Satisfaction or Minimum Cost, by
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following two lexicographic orderings, namely:

• when the Preference Satisfaction criterion is selected, we consider to assign as the
degree of intention Iαϕ the 3-tuple (d′, r, 1− c), where d′ is the desire degree of ϕ, r is
the belief degree in satisfying the user’s preferences ϕ by the considered plan α, and c
is the cost of the plan α. Then, we use the lexicographic order over the product space
[0, 1]3 to rank the 3-tuples and hence, the intentions.

• when the Minimum Cost criterion is selected, we consider the degree of Iαϕ to be the
3-tuple (d′, 1− c, r) and then, intentions are again lexicographically ordered.

Results

The distance frequencies of the results of the T3-Agent for the S-cases are shown in
Table 13.2 and are illustrated in Figure 13.5 (and compared with the ones obtained by T-
Agent and T2-Agent). The average of the distances in this case was 4.97, worst than the
previous experiments, and the total average is 6.73. This means that the ranking obtained
by this T3-Agent is farther from the user’s ranking obtained in the validation process than
the results of the previous versions T-Agent and T2-Agent. This fact does not necessarily
mean that T3-Agent behavior is worst, perhaps it finds different options from these found
by the T-Agent.

In summary, we can state that the g-BDI model allows us to easily engineer recommender
agents showing different behaviors.

Distance Frequency
T-Agent T2-Agent T3-Agent

0 21 11 5
1 1 4 3
2 2 4 3
3 3 5 3
4 2 1 2
5 0 1 2
6 2 4 3
7 2 2 0
8 0 0 3
9 0 0 2
10 0 1 3
11 3 2 1
12 0 1 4
13 0 1 1
14 1 0 1
17 1 0 0
18 0 0 1
26 0 0 1
30 0 1 0

Average 2.95 2.85 4.97
Tot.Average 2.95 4.23 6.73

Table 13.2: Distance frequencies for T-Agent, T2-Agent and T3-Agent.
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Figure 13.5: Distance frequencies for T-Agent, T2-Agent and T3-Agent.

13.3.2 Graded vs. non-graded model comparison

In these experiments we compare the g-BDI agent model with non-graded (two-valued) BDI
architectures. We want to show that the results obtained by our recommender agents using
graded attitudes improve those achieved by agents using non-graded attitudes.

We use the T-Agent and T2-Agent prototypes as the g-BDI model implementations.
Since the development of a Tourism Recommender using a traditional BDI architecture
(e.g. dMARS, Jack, Jason or Open-PRS) would be a time-demanding task and since also
different factors would possibly interfere in the comparison of the results (e.g. how the
agent builds plans, which decision process she uses), we have decided to use simulated
non-graded versions of the g-BDI architecture of the tourism agent. Starting from the rec-
ommender agents T-Agent and T2-Agent we keep their multi-context architecture and their
logic schemes for contexts.4 Then, we use some thresholds to make the desire and belief
attitudes two-valued (i.e., their degrees will be allowed to only take values in {0, 1}). The
intention degrees have been left many-valued as to obtain a ranking of the selected packages.

Experiment 3

We have followed the same procedure as in previous experiments but, in this case, we define
a family of Tourism Recommender agents called C1j–Agents, derived from the T-Agent and
that simulate two-valued models of BDI agents.

4This is possible as the many-valued frameworks used for the mental contexts are extensions of classical
logic used in the two-valued models.



13.3. Experimentation 217

Each C1j–Agent has been developed by introducing thresholds in the context DC (τd)
and in the context BC (τb) of the T-Agent, to decide which formulae in these contexts are
considered to hold (i.e. those with degree 1) and which do not (i.e. those with degree 0).
Thus, the following internal processes are introduced in these contexts:

• DC: before introducing formulae like (D+φ, d) in the DC it is checked whether d ≥ τd;
if so, the formula (D+φ, 1) is added in the context, otherwise this desire is discarded
(assuming (D+φ, 0)).

• BC: the same happens when the belief context evaluates the degree r of formulae like
(B[α]ϕ, r), if r ≥ τb then the formula (B[α]ϕ, 1) is added to the BC, otherwise its
degree is considered to be 0.

As for the setting of the different thresholds, we analyzed the desire and belief degrees
distribution in the T-Agent previous executions. Some tourists used a scale [1,5] to give
their preferences but most of them used around five different values between [3,9]. This
means that most of the desire degrees concentrate in the interval [0.3, 1] (as the degree
of conjunctions is greater or equal than their components degrees). With respect to belief
degrees, the estimation of the satisfaction by a plan execution, usually took values in the
interval [0.5,1]. Given these observations, we experimented with different thresholds (i.e.
0.4, 0.5 and 0.6) that were a good representation of the variations in the agents’ results.
Thus, we have defined the following “two-valued” BDI agents:

• C14-Agent uses τd = τb = 0.4

• C15-Agent uses τd = τb = 0.5

• C16-Agent uses τd = τb = 0.6

Then, we run the S-cases in each agent of this two-valued family and compared the results
with the S-cases feedback by computing the Block distances. As in previous experiments
we have used the distance average and the total average as global measures. The results are
shown in Table 13.3.

Experiment 4

We repeat Experiment 3 but using a second family of non-graded Recommender agents,
called C2j-Agents. To create this family we start from the T2-Agent (see Experiment 1).
We use the same thresholds and procedure as in Experiment 3, to make the desire and the
belief degrees two-valued:
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• C24-Agent uses τd = τb = 0.4

• C25-Agent uses τd = τb = 0.5

• C26-Agent uses τd = τb = 0.6

Results

The distance frequencies of the results of these two families of crisp agents deriving from
T-Agent and T2-Agent are respectively shown on Figures 13.6 and 13.7 .

Figure 13.6: Distance frequencies for the T-Agent family.

Figure 13.7: Distance frequencies for the T2-Agent family.

On the one hand, analyzing the graphic corresponding to the T-Agent family (Figure
13.6), we can see that the performance of the T-Agent is the best, reaching the maximum
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of the distance frequencies at 0 and furthermore, almost all the relative maximums are near
0. The behavior of the non-graded agents (i.e. C14-Agent, C15-Agent and C16-Agent)
are in general very similar and most of the relative maximums are spread in the interval
[0,15]. The absolute maximum move to a distance value of 30, meaning that an important
number of queries had feedback packages not found in the corresponding rankings made
by the different C1j-Agents. In this sense, C14-Agent and C15-Agent behave better than
C16-Agent, as their results give lower frequency value at 30.

On the other hand, the distance frequencies graphic of the T2-Agent family (Figure 13.7),
also shows that the performance of the T2-Agent using the graded model is better than the
non-graded agents in this family. Besides, in this experiment we obtain similar good results
for C24-Agent and C25-Agent (better than the non-graded ones for the T-Agent family).
Also, the relative maximum of the frequencies for the C26-Agent are very near 0. But in
this case, the absolute maximum (reach at a distance frequency of 30) increased its value,
meaning that many packages selected by the users are out of this agent ranking.

In these experiments, the distance average and total average are computed as in previous
experiments and are gathered in the following table 13.3.

T-Agent family T2-Agent family
Average Tot. Average Average Tot. Average

g-BDI model 2.95 2.95 2.85 4.23
τd = τb = 0.4 6.43 14.96 4.04 8.36
τd = τb = 0.5 6.43 14.83 3.50 8.07
τd = τb = 0.6 4 17.41 3.55 14.43

Table 13.3: Distance average results for the T-Agent and T2-Agent families.

Comparing the averages obtained with the two-valued models of recommenders (deriving
from T-Agent and T2-Agent) we can see that those corresponding to the thresholds 0.4 and
0.5 are very similar. The average achieved with the threshold 0.6 is the best in the T-
Agent family and is almost the best in the T2-Agent one, but the total average is greater,
meaning that we have more packages of the S-cases feedback out of the system rankings.
The number of missing packages, reflected in the total average and in the frequencies of
the distance values over 18, is a good indicator of the similarity between the user’s ranking
and the agent results. In both families we can see that these indicators are better for the
recommenders using the graded model. Furthermore, we can see that the distance average
(excluding the missing packages) of the recommenders using graded models are better than
the simulated two-valued ones (using different thresholds).

These results give support to the claim that the recommender agents modelled using
graded BDI architectures provide better results than the ones obtained using two-valued
BDI models.
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13.4 Data analysis

The purpose of this analysis is to investigate which of the differences found in the different
experiments we carried out are statistically significant, meaning that the differences observed
among the distance averages are significant and hence, the agent behaviours are different.

First, we present some descriptive data resuming the results obtained with the different
agents used, namely: T-Agent, T2-Agent and T3-Agent (g-BDI models); C14-Agent, C15-
Agent and C16-Agent (T-Agent two-valued family); and C24-Agent, C25-Agent and C26-
Agent (T2-Agent two-valued family). Then, to compare the different results, we apply the
Analysis of Variance (ANOVA), we use as the analysis variable the Block distance between
the agent results and the S-cases feedbacks (described in Section 13.2).

In this analysis we consider all the different agents’ results over all the S-cases hence,
we also take into account the results having missing packages. Then, the number of queries
considered for each agent is S-cases cardinality (38 cases for this experimentation). For the
descriptive analysis we extracted the following information: the total distance average (Tot.
average), standard deviation and maximum distance. The minimum distance takes value 0
in all cases. The descriptive information for the different agents is gathered in the Table
13.4.

Agent Tot. Average Standard deviation Maximum
T-Agent 2,95 4,52 17
T2-Agent 4,23 5,74 30
T3-Agent 6,73 5,75 26
C14-Agent 14,97 11,39 30
C15-Agent 14,84 11,24 30
C16-Agent 16,76 12,23 30
C24-Agent 8,37 8,87 30
C25-Agent 8,08 8,95 30
C26-Agent 14,45 12,08 30

Table 13.4: Descriptive measures of the distances obtained over S-cases, using different
agents.

The total average for the graded agent models T-Agent,T2-Agent and T3-Agent are
better than the two-valued families, as it is shown in Figure 13.8.

Next, we apply the Analysis of Variance (ANOVA) for the distances of the different
agents’ results over the S-cases to analyze whether the differences between the total aver-
ages obtained by the different agent’s results, are significant. The classic ANOVA includes
information about: degrees of freedom (DF), Sums of Squares (SS), Mean Square (MS), Test
Statistic (F) and P-value, representing the probability that our hypothesis “ the distance
averages of the different agents’ results are equal”, is true. In this analysis we consider our
eight different agents whose behaviour we want to compare, and each case in S-cases set is
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Figure 13.8: Total averages for the different agents.

consider as a block thus, we have 38 different blocks. The ANOVA results for our case study
are presented in Table 13.5.

Source of DF SS MS F P-value
variation

Agent 8 8110.76 1016.07 19.46 0.000
Block 38 14074.63 370.38 7.09 0.000
Error 295 15401.40 52.21 19,46
Total 341 37586.79 52.21 19,46

Table 13.5: ANOVA for the distances between the different agents’ results and the S-cases

As the P-value are very small, we found that the total average differences among the
agent’s results over S-cases are significant. Thus, we decided to analyze, using some sta-
tistical tool, which of these differences were statistically significant. For this purpose, the
Tukey confidence intervals [15] were built for the distance differences between pair of agents’
results. For a particular interval, if it is the case that the value 0 is included in the interval,
the corresponding difference is not consider statistically significant.

Among all the possible comparisons we consider relevant for our experimentation:

1. the differences between the results of T-Agent with the other graded agents: T2-Agent
and T3-Agent, and with its corresponding two-valued family: C14-Agent, C15-Agent
and C16-Agent.

2. the differences between the T2-Agent with T3-Agent, and with its corresponding two-
valued family (C2j-Agent).

In the following we describe these comparisons supported by Tukey’s intervals:

1. The Figure 13.9 shows the simultaneous Tukey’s confidence intervals (95%), for the
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difference between the T-Agent average and the other agents’ averages (µagent −
µT−Agent) over S-cases. Where respectively Ll represents the lower limit of the con-
fidence interval, C the center (is the difference between the distance averages of the
corresponding agents’ results), and Lu its upper limit.

Agent Ll C Lu
T2-Agent -3,856 1,289 6,435
T3-Agent -1,356 3,789 8,935
C14-Agent 6,881 12,026 17,172
C15-Agent 6,749 11,895 17,040
C16-Agent 8,670 13,816 18,961

Figure 13.9: Tukey’s confidence intervals for the differences between T-Agent and other relevant

agents (µagent − µT−Agent).

In the cases where the interval does not contain the value 0, the difference between
the averages we are comparing are considered statistically significant. As can be seen
in Figure 13.9 the results of T-Agent does not present significant differences with
T2-Agent and T3-Agent results. Even so, we can notice that the last case is in a
limit situation (i.e. Ll is near 0). On the other hand, they clearly present significant
differences with C14-Agent, C15-Agent and C16-Agent results.

2. The Figure 13.10 shows the simultaneous Tukey’s confidence intervals (95%), for the
average differences between the T2-Agent with the T3-Agent, and with the correspond-
ing family of two-valued agents (C2j-Agent).

Agent Ll C Lu
T3-Agent -2,646 2,500 7,646
C24-Agent -1,209 3,976 9,161
C25-Agent -1,304 3,842 8,988
C26-Agent 5,065 10,211 15,356

Figure 13.10: Tukey’s confidence intervals for the differences between T2-Agent and other relevant

agents (µagent − µT2−Agent).

The Tukey’s intervals in Figure 13.10 show that the results of T2-Agent do not present
significant differences with the T3-Agent ones. On the other hand, they present sig-
nificant differences with C26-Agent. Besides, we found that the interval corresponding
to C24-Agent and C25-Agent differences are in a limit situation (the corresponding Ll
are slightly higher than 0). We believe that in the case of considering a greater number
of cases, or a lesser confidence percentage in the Tukey’s intervals, these results may
also present a significant difference.
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13.5 Conclusions

In this Chapter we have focussed on the validation and experimentation of g-BDI agents
using as a case study a Tourism recommender agent. First, the results of the validation
performed allows us to conclude that g-BDI agents are useful to build recommender systems
in real and rich domains such as tourism. Second, we have also performed a sensitivity anal-
ysis showing that a g-BDI agent architecture can engineer concrete agents having different
behaviors by suitably tuning some of its components. The results of a third experiment
support our claim that the distinctive feature of recommender systems modelled using g-
BDI agents, which is using graded mental attitudes, allows them to provide better results
than those obtained by non-graded BDI models. Finally, supported by the analysis of vari-
ance we found that even there are any difference among the results given by the different
agents modelled using the g-BDI architecture (i.e. T-Agent, T2-Agent and T3-Agent) they
are not statistically significant, but the differences between the graded agents T-Agent and
T2-Agent and the families of two-valued agents are significant.





Chapter 14

Discussion

In this final Chapter we present the different contributions of this Thesis. In the different
Chapters of this dissertation we have presented partial conclusions and now we gather the
most relevant ones. Besides, we present some future lines of work that has been opened
during this research work. Finally, we list the related publications to the evolution of this
Thesis.

14.1 Contributions of this Thesis

The focus of our research work has been to develop a graded intentional agent architecture.
In this direction we have proposed a formal well-grounded agent model capable of represent-
ing and reasoning with graded mental attitudes. Besides, our aim was to give this model
computational meaning and also to develop a methodology to engineer concrete agents based
on this architecture. Thus, we have made contributions to diverse areas related to the core of
our Thesis work as preference representation and reasoning, process calculi and agent-based
software engineering.

14.1.1 Contributions respect to BDI architectures

The main contribution of this Thesis is the proposal of a general graded BDI agent model.
In this model, the agent graded attitudes have an explicit and suitable representation. Belief
degrees represent the extent to which the agent believes a formula to be true. Degrees of
positive or negative desires allow the agent to set different levels of preference or rejection
respectively. Intention degrees also give a preference measure but, in this case, modelling
the cost/benefit trade off of achieving an agent’s goal. Then, agents having different kinds of
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behaviour can be modelled on the basis of the representation and interaction of their graded
beliefs, desires and intentions.

We consider our Thesis work is an important contribution in the agent architectures
field. Our g-BDI architecture is more flexible than classic BDI models and we have shown
that is capable to develop agents with improved performance.

Several factors have contributed to the importance of the BDI model in the Agent com-
munity. The BDI architecture is one of the best models of practical reasoning that is based
on well understood logical foundations. Besides, this model has proved to have the essential
components to cope with complex, real world applications.

As we mentioned in Chapter 2 there is a family of BDI architectures. In a wide sense,
they are models of practical reasoning that explicitly represent the agent mental attitudes
i.e. belief, desire and intentions, perhaps among other attitudes. In the following items we
point to the most relevant characteristics that distinguish our g-BDI model with respect to
the generalities of the BDI family:

• The g-BDI architecture includes an explicit representation of agent uncertain beliefs,
and graded desires and intentions. These graded attitudes are represented by well-
founded fuzzy modal logics. Then, diverse uncertainty models can be represented to
reason about the different attitudes, by defining suitable modal theories over suitable
many-valued logics.

• The g-BDI model is specified using multi-context systems. This specification enables
to use different logics in a way that keeps the logics neatly separated. This either
makes it possible to increase the representational power of BDI agents —selecting the
most suitable logic for each attitude, or to simplify agents conceptually —having the
different logics in separate contexts. Then, the MCS specification of g-BDI agents has
several advantages from both a software engineering and a logical point of views.

• To represent the agent beliefs, the belief language is built over a dynamic logic lan-
guage, as to explicitly represent and reason about actions and the changes their exe-
cutions produce.

• With respect to desires, besides representing graded positive desires our agent model
includes the formalization of graded negative desires, to represent respectively the
agent desired and rejected states.

• In our approach, an agent intention is considered a pro attitude that results from the
agent beliefs and desires, and thus, is not a basic attitude (as proposed in [125]). In-
tentions, as well as desires, represent another type of agent preferences. However, we
consider that intentions cannot depend just on the benefit, or satisfaction, of reaching
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a goal (represented by desire degrees), but also on the world state and the cost of
transforming it into a world where the goal is satisfied. Then, by allowing a graded
representation of the strength of intentions we are able to attach to intentions a mea-
sure of the cost/benefit relation involved in the agent actions towards the intended
goal.

• For the different mental attitudes we have presented a sound and complete basic logic.
In the case of beliefs, two logic frameworks have been formalized to represent different
uncertainty models. In the case of desires, different logic schemas were proposed to
represent alternative constraints between positive and negative desires, over a formula
and its negation.

• In the g-BDI architecture the interrelation among attitudes, as for example different
realisms, may be suitably represented by bridge rules (see Section 7.2).

• The g-BDI agent model takes advantage of the agent graded beliefs and desires (both
positive and negative) in the agent deliberation process to derive graded intentions.
Different agent behaviours can be modelled by combining in different ways these fac-
tors. This is tunned by a particular bridge rule.

The agent performance may be improved by using these graded attitudes as it was
shown in the experimentation of a case study (see Chapter 13).

14.1.2 Contributions on related fields

Besides the definition of this novel g-BDI architecture, we have made some additional con-
tributions that are situated on the following fields:

1. Knowledge representation and reasoning: a logical framework with a sound and
complete axiomatics for representing desires and intentions, was proposed.

Considering the desire representation in our agent model, we based our work on the
bipolar model due to Benferhat et al. [12]. We have extended the state of the art
by giving a sound and complete axiomatics and defining different logical schemas to
represent some additional constraints over preferences. In addition, we have presented
a logical system for intentions and we have shown that the framework is expressive
enough to describe how desires (either positive or negative), together with other in-
formation, can lead agents to intentions.

2. Process calculi: a Multicontext calculus (MCC) to define operational semantics for
multi-context systems was developed and we used it for giving semantics to the g-BDI
agent model.
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In order to cope with the operational semantics aspects of the g-BDI agent model, we
have first defined a Multi-context calculus (MCC) for Multi-context systems (MCS)
execution. The calculus proposed is based on Ambient calculus [28] and includes
some elements of the Lightweight Coordination Calculus (LCC) [148]. The operational
semantics for this language was given using Natural Semantics.

We expect that MCC will be able to specify different kinds of MCSs. Particularly, we
have shown how graded BDI agents can be mapped into this calculus. Through MCC
we have given this agent model computational meaning and in this way, we moved one
step closer to the development of an interpreter of the g-BDI agents. We think that
the implementation of agent architectures using process calculi, in particular ambient
calculus, would give a uniform framework for agent architectures, multiagent systems
and also electronic institutions.

3. Agent based software engineering: a methodology for engineering agent based
systems composed by agents designed as g-BDI agents, was presented.

We have proposed a software engineering process to develop graded BDI agents in a
multiagent scenario. The aim of the proposed methodology is to guide the design of
a multiagent system starting from a real world problem. The methodology presented
has been built by adapting and extending previous approaches [88, 118, 160] in order
to engineer agents with a more complex internal architecture. Our work was inspired
in some sense by the design process used in [141] where the social aspects of design are
considered, and the System Design phase is clearly separated from the Agent Design
phase. Then, the proposed methodology is composed by two fundamental phases: the
System Design phase, that has the purpose of determining the agent types composing
the system and the Agent Design phase that is focussed on modelling g-BDI agents.
We extract the necessary elements from the System Design phase to design the different
types of agents using the proposed architecture. This process is done in two stages.
The first one, deals with the logical skeleton of the multi-context specification of g-
BDI model. The second one, following a flow “goals-feasible plans-beliefs-intentions”
complete the agent design, filling the contents (theories) of the different contexts.

Furthermore, the proposed process to develop g-BDI agents contributes to bridge the
gap from the external functionalities assigned to a particular agent (in the System
design phase), to the elements that composed the architecture (in the Detailed design
stage). Besides, we have designed and implemented a case study in the tourism domain
so as to show how the proposed methodology works.

Through the design and implementation of a Tourism recommender system, where one
of its principal agents was modelled as a g-BDI agent (see Chapters 11 and 12), we have
come all the way from the formal g-BDI model to a concrete agent implementation.
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Then, the validation and experimentation of g-BDI agents was carried out by using as
a case study this recommender system (detailed in Chapter 13). First, the results of the
validation performed allowed us to conclude that g-BDI agents are useful to build concrete
agents in real world applications. Second, we have also performed a sensitivity analysis that
showed that a g-BDI agent architecture can engineer agents having different behaviors by
suitably tuning some of its components. The results of a third experiment gave support
to our claim that “the distinctive feature of recommender systems modelled using g-BDI
agents, which is using graded mental attitudes, allows them to provide better results than
those obtained by non-graded BDI models”.

14.2 Future work

This thesis has opened several possible new areas for further research. The main topics for
future work are described below.

• Social aspects:

We have presented in Chapter 8 preliminary work related to the socialization of the
g-BDI agent model. With this aim we have included a social context to represent
different kinds of trust and reputation in other agents. On the one hand, we have
modelled in the social context the filtering of the agent information interchange. On
the other hand, the social trust related to delegation was also considered.

In this direction, an important topic for further work is to consider how to evaluate
the trust in other agents, and how the agent updates this trust model along time, and
after different interactions with the agent society.

• Dynamic aspects:

To model agents that interacts in dynamic environments, it is important for the g-
BDI agent to represent in relation to her beliefs, desires and intention, the notion of
time. Then, we need to incorporate some elements of temporal logics to our logical
framework.

Another key problem related to the dynamic aspects of this agent model is to represent
some intention reconsideration policy. It is clear that the agent should at times drop
or reconsider some intentions. But reconsideration has a cost and is closely related to
the problem of balancing the agent pro-active and reactive behavior, in relation to the
environment dynamism.

• Revision in g-BDI Agents:
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As the agents interact in a dynamic and changing world, they may be capable to deal
with inconsistencies. As our model is specified by using multi-context systems we
consider important to set a general process for multi-context system revision an then,
specialize it for the g-BDI agent model.

In a Multi-context system, the theory of each context is composed of formulae coming
from different provenance. Firstly, it has initial formulae. Then, the derivations from
inner deductions will be added. Lastly, using bridge rules, other formulae may be
introduced as the bridge rule’s preconditions are satisfied. This set of formulae without
any check may be inconsistent. Then, in a dynamic framework, it is needed a process
to maintain the context consistency. We belief that an argumentation based revision
process for multi-context system is a promising direction of future work.

• Experiment the g-BDI model in other applications:

We have designed and implemented a tourism recommender system where its main
recommender agent, the Travel Assistant Agent, was modelled using our graded BDI
approach. The experimentation on the case study proved that this agent model is
useful to implement different and rich behaviours. Besides, we showed that the results
obtained by recommender agents using graded attitudes improved those achieved by
agents using non-graded ones.

Further work is necessary to experiment with the g-BDI architecture to model agents
in other domains. We have preliminary good results on the use of the g-BDI model
in the design of an educational recommender system, to give recommendations about
learning objects, taking into account the subject and the user’s cultural and preference
characteristics [8, 33, 44]. We belief that the model may be applied to other domains.

14.3 Related publications

The publications listed below are direct consequence of the evolution of this dissertation in
the last four years:

• Casali A., Godo L. and Sierra C., Modelos BDI Graduados para Arquitecturas de
Agentes. Proc. of ASAI 2004, 33JAIIO, 13 pg, Córdoba, Argentina, 2004. Also in
Revista Iberoamericana de Inteligencia Artificial, AEPIA, N 26, Vol 9, pp 67-75, 2005.

• Casali A., Godo L. and Sierra C., Graded BDI Models For Agent Architectures. Leite
J. and Torroni P. (Eds.) CLIMA V, Lecture Notes in Artificial Intelligence LNAI 3487,
126-143, Springer-Verlag, Berling Heidelberg, 2005. Also in Proceedings of European
Workshop of Multiagent Systems (EUMAS’04), Barcelona, Spain, 2004.
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• Casali A., Godo L. and Sierra C., Multi-Context Specification for Graded BDI Agents.
Proceedings of the Doctoral Consortium - Fifth International Conference on Modeling
and Using Context (CONTEXT-05), Research Report LIP 6, Paris, Francia, 2005.

• Casali A., Godo L. and Sierra C., Modeling Travel Assistant Agents: a graded BDI
Approach. In Max Bramer (Ed.), IFIP-AI, WCC. Artificial Intelligence in Theory
and Practice., 415-424. Springer Verlag, 2006.

• Casali A., Deco C., Bender C. and Motz R., A Multiagent Approach to Educational
Resources Retrieval. In Proceedings del Workshop Inteligencia Artificial en Educación
WAIFE, ASAI 2006, 35 JAIIO,35-41. Mendoza, Argentina, 2006.

• Casali A., Godo L. and Sierra C., A Methodology to Engineering Graded BDI Agents.
In Proceedings WASI-CACIC 2006, 12pag. Potrero de Funes, Argentina, 2006.

• Casali, A., Von Furth, A., Godo, L., Sierra, C., A Tourism Recommender Agent:
From theory to prectice. In Proceedings WASI-CACIC 2007 1548-1561. Corrientes,
Argentina, 2007. A revised and extended version in Revista Iberoamericana de In-
teligencia Artificial, AEPIA, Vol 12:40(2008), pp. 23:38, 2008.

• Casali A., Godo L. and Sierra C., A Language for the Execution of Graded BDI
Agents. In Proceedings of Formal Approaches to Multi-Agent Systems FAMAS’007,
65-82, Durham, UK, 2007.

• Casali A., Godo L. and Sierra C., A Logical Framework to Represent and Reason about
Graded Preferences and Intentions. . In Principles of Knowledge Representation and
Reasoning: Proceedings of the 11th Internacional Conference (KR 2008), G. Brewka
and J. Lang (Eds.), The AAAI Press, pp.27-37, 2008.

• Casali A., Godo L. and Sierra C., Validation and Experimentation of a Tourism Rec-
ommender Agent based on a Graded BDI Model. In: ArtificiaL Intelligence Research
and Developement, T. Alsinet et al (Eds.), Series: Frontiers in Artificial Inteligence
and Applications 184, IOS Press, pp. 41-50, 2008. Also in Proceedings of XXXIV Con-
ferencia Latinoamericana de Informtica (CLEI 2008), pp. 30-39, Santa Fe, Argentina,
2008.

• Deco C., Bender C., Casali A., Motz R. Design of a Recommender Educational System.
Design of a Recommender Educational System. Proceedings of 3ra. Conferencia
Latinoamericana de Objetos de Aprendizaje (LACLO 2008), pp. 63-70, Aguascalientes,
Mexico, to apear, 2008.
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para la Búsqueda de Recursos Educacionales considerando Aspectos Culturales. Revista
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[78] Hájek P., Metamatematics of Fuzzy Logic, Trends in Logic, 4, Kluwer Academic Pub-
lishers (1998).

[79] Halpern J. Y., Reasoning about Uncertainty. The MIT Press. Cambridge Massachusetts,
2003.

[80] Harel D., Dynamic logic, in Gabbay D. and Guenthner F. (Eds.), Handbook of Philo-
sophical Logic Vol II 497-604, 1984.

[81] Huber M. J., JAM: A BDI-theoretic Mobile Agent Architecture Proceedings of the
Third International Conference on Autonomous Agents (Agents’99), 236-243. Seattle,
WA, 1999.

[82] Hulstijn, J., and van der Torre, L. 2004. Combining goal generation and Planning in
and argumentation framework. In A. Hunter and J. Lang (Eds.), Proc. Workshop on
Argument, Dialogue and Decision, NMR, Whistler, Canada, 2004.

[83] Iglesias C., Garijo M., and Gonzalez J., A Survey of Agent-Oriented Methodologies.
In Intelligent Agents V - Proceedings of the Fifth International Workshop on Agent
Theories, Architectures, and Languages (ATAL-98), LNAI. Springer-Verlag, Heidelberg,
1999.

[84] Ingrand F. F., Georgeff M. P. and Rao A. S., An architecture for real time reasoning
and system control. IEEE Expert, 7(6), 1992.

[85] Jennings N.R., On Agent-Based Software Engineering. Artificial Intelligence 117(2),
277-296, 2000.



240 Bibliography

[86] Jennings N. R., Sycara K. and Wooldridge M., A roadmap of agent research and devel-
opment. Autonomous Agents and Multi-Agent Systems. 1(1), 7-38, 1998.

[87] Jo Ch. H., A Seamless Approach to the Agent Development, ACM Symposium on
Applied Computing SAC 2001, Las Vegas, 641-647, 2001.

[88] Jo Ch. H., Chen G. and Choi J., A New Approach to the BDI Agent-BAsed modelling.
ACM Symposium on Applied Computing SAC’04, ACM 1-58113-812-1/03/04, 1541-1545
Nicosia, Cyprus, 2004.

[89] Jo, Ch. H. and Einhorn, J. M., A BDI Agent-Based Software Process, in Journal of
Object Technology, vol. 4, no. 9, 2005.

[90] Joseph S., Perreau de Pinninck A., Robertson D., Sierra C., Walton C., Interaction
Model Language Definition. In Dignum V., Dignum F., Matson E. and Edmonds B.
(Eds.), IJCAI 2007 Workshop AOMS Agent Organizations Models and Simulations, 49-
61, 2007.

[91] Kakas A. and Moraitis P., Argumentation based decision making for autonomous agents.
In Proc. 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 883-890, Melbourne, Australia, 2003.

[92] Kendall E. A., Agent Software Engineering with Role modelling. In Ciancarini P. and
Wooldridge M. (Eds.), Proceedings of Agent Oriented Software Engineering (AOSE-
2000), 163-169. Springer-Verlag, Berlin, Germany, 2000.

[93] Kinny D., Georgeff M., and Rao A., A Methodology and modelling Techniques for
Systems of BDI agents. Proc. of the 7th European Workshop on modelling Autonomous
Agents in a Multi-Agent World, LNAI Vol. 1038: 56-71, Springer, 1996.

[94] Knijnenburg P. M. W. and van Leenwen J., On models for Propositional Dynamic
Logic, Theor. Comput. Sci., 91(2)181-203, 1991.

[95] Lang J., Conditional Desires and Utilities - an alternative logical approach to qualitative
decision theory. In Proceedings of 12th European Conference on Artificial Intelligence
(ECAI’96), 318-322, 1996.

[96] Lang J., van der Torre, L. and Weydert E., Utilitarian Desires, Autonomous Agents
and Multi Agent systems, vol. 5:3, 329-363, 2002.

[97] Lang J., van der Torre, L. and Weydert E., Hidden Uncertainty in the Logical Rep-
resentation of Desires International Joint Conference on Artificial Intelligence (IJCAI
03), Acapulco, Mexico, 2003.



Bibliography 241

[98] Liau C. J., Belief, Information Acquisition, and Trust in Multiagent Systems - a modal
formulation. Artificial Intelligence, 149, 31-60, 2003.

[99] Ljungberg M. and Lucas A., The OASIS Air-traffic Management System. In Proceedings
of the 2nd Pacific Rim International Conference on Artificial Intelligence(PRICAI92) ,
Scoul, Korea, 1992.
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[140] Sierra C., Godo L., López de Mántaras R. and Manzano, Descriptive Dynamic Logic
and its Application to Reflective Architectures. Future Generation Computer Systems,
12, 157-171, 1996.

[141] Sierra C., Thangarajah J., Padgham L. and Winikoff M., Designing Institutional
Multi-Agent Systems. AOSE 2006 : 84-103, 2006.

[142] Schut, M., Wooldridge, M. and Parsons S., Reasoning About Intentions in Uncer-
tain Domains Symbolic and Quantitative Approaches to Reasoning with Uncertainty.
Proceedings of the 6th ECSQARU 2001, 84-95, Toulouse, France, 2001.

[143] Schut M. and Wooldridge M., Principles of intention reconsideration. In Proc. of the
5th International Conference on Autonomous Agents,340-347, 2001.

[144] Tang Y. and Parsons S., Argumentation-based dialogues for deliberation. In F. Dignum
et al. (Eds.), Proc. AAMAS, Utrecht, The Netherlands, 552-559. ACM Press, New York
NY, USA, 2005.

[145] Terveen L. G. and Hill W., Beyond Recommender Systems: Helping People Help Each
Other. In Carroll, J. (Ed.), HCI in the New Millennium. Addison Wesley, 2001.

[146] van der Torre L. and Weydert E., Parameters for Utilitarian Desires in a Qualitative
Decision Theory. Applied Intelligence, 14:285-301, 2001.

[147] van Linder B., Modal Logics for Rational Agents, PhD. Thesis, Utrech University
1996.

[148] Walton C. and Robertson D., Flexible multi-agent protocols. Technical Report EDI-
INF-RR-0164, University of Edinburgh, 2002.

[149] Walton C., Multi-Agent Dialogue Protocols. In Proceedings of the Eighth Interna-
tional Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida,
January 2004.



Bibliography 245

[150] Walton C., Model Checking Multi-Agent Web Services. In Proceedings AAAI Spring
Symposium on Semantic Web Services, Stanford, California, 2004.

[151] Walton C., Protocols for Web Service Invocation, in Proceedings of the AAAI Fall
Symposium on Agents and the Semantic Web (ASW05),6 pag., Arlington, USA, Novem-
ber 2005.

[152] Walton C. Verifiable agent dialogues. Journal of Applied Logic 5, pp. 197-213, 2007.

[153] Weiss G., In Weiss G. (Ed.), Multiagent Systems. A Modern Approach to Distributed
Artificial Intelligence, The MIT Press, 1999.

[154] Werthner H., Intelligent Systems in Travel and Tourism, in Proceeding of the 18th
International Joint Conference on Artificial Intelligence, IJCAI-03, 1620-, Acapulco,
Mexico, 2003.

[155] Wooldridge M and Jennings N. R., Intelligent Agents: theory and practice. The Knowl-
edge Engineering Review, 10(2), 115-152, 1995.

[156] Wooldridge M. and Jennings N. R., Agent-based software engineering. IEEE Proceed-
ings in Software Engineering, 144(1), 26-37, 1997.

[157] Wooldridge, M. and Parsons S., Intention Reconsideration Reconsidered. In Proceed-
ings of Intelligent Agents V, 5th International Workshop Agent Theories, Architectures,
and Languages (ATAL ’98), Paris, France, 1998. Jrg P. Mller, Munindar P. Singh, Anand
S. Rao (Eds.), LNCS 1555, 63-79, Springer, 1999.

[158] Wooldridge M. J., Jennings N. R. and Kinny D., The Gaia Methodology for
Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems
(Agents’99), Vol. 3 (3) 285 - 312, Kluwer, 2000.

[159] Wooldridge, M., Introduction to Multiagent Systems, John Wiley and Sons,Ltd., 2001

[160] Zhang T., Kendall E. and Jiang H., A Software Engineering Process for BDI Agent-
Based Systems, in Proceedings of the IEEE/WIC International Conference on Intelligent
Agent Technology(IAT’03), 0-7695-1931-8/03IEEE, 2003.





Monografies de l’Institut d’Investigació en Intel·ligència
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