

MONOGRAFIES DE L’I[\ISTITUT D'INVESTIGACIO
EN INTEL-LIGENCIA ARTIFICIAL
Number 43

/J llIA
" Instifut 'Invstigaci en
Intel-ligéncia Artificial

#CSIC

CONEEID SLUPERICR DE INVESTIGACIONES CIENTIFICAS

Decentralised Enforcement

in Multiagent Networks

Adridan Perreau de Pinninck Bas

Foreword by Carles Sierra and Marco Schorlemmer

2010 Consell Superior d’Investigacions Cientifiques
Institut d’Investigacié en Intel-ligéncia Artificial
Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigacié en Intel-ligencia Artificial
Consell Superior d’'Investigacions Cientifiques

Foreword by

Carles Sierra and Marco Schorlemmer

Institut d’Investigacié en Intel-ligencia Artificial
Consell Superior d'Investigacions Cientifiques

Volume Author

Adridn Perreau de Pinninck Bas

Institut d’Investigacié en Intel-ligéncia Artificial
Consell Superior d’'Investigacions Cientifiques

1A
o Institut d'Investigacio en

Intel-ligencia Artificial

(© 2010 by Adrian Perreau de Pinninck Bas
NIPO: 472-10-246-8

ISBN: 978-84-00-09247-4

Dip. Legal: B.47018-2010

CSIC

13 SIFPERIGH DE WVESTIGACIOMNES CIENTIFKZAS

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IITA, Institut d’Investigaci6 en Intel-ligencia Artificial, Campus de la Universitat
Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Al meu Avi,
de qui he heretat el plaer pel coneixement i el descobriment.

Contents

Foreword
Abstract
Acknowledgements

1 Introduction

1.1 Motivation
1.2 Contribution
1.3 Thesis Structure

2 State of the Art

2.1 Distributed Systems oL Lo
2.2 Social Networks
2.3 Norms e
2.4 Enforcement.

2.4.1 Control-based Enforcement (CBE)

2.4.2 Incentive-based Enforcement (IBE)
2.5 Violation Detection oL,
2.6 Game Theoretic Research
2.7 Reputation Systems Lo oo
2.8 Currency Systems

3 Experimental Methodology
3.1 Variables
3.2 Measurements
3.3 Experiment design and results .

4 Ostracism

4.1 Introduction.
4.2 The Model
4.3 Behavioural Model
4.3.1 Functional Model
4.3.2 Constructing a path . .

4.3.3 Executing a joint action

vii

xiii

XV

xvii

25
26
27
28

4.3.4 Disclosing joint actions 40

4.3.5 Behavioural properties 41
4.4 The Scenario Lo 46
441 Agents. 47
4.42 Variables Lo 48
4.4.3 Feasible path search algorithm 50
4.5 Simulations Lo 52
4.6 Applications 55
4.6.1 Information sharing forum 55
4.6.2 Self-repair systemo oL 56
4.7 Discussion e 57
Ostracism under Uncertainty 61
5.1 The Model 64
5.1.1 Ilocution Content 65
5.2 Imteraction Protocol o0, 70
5.3 Behavioural Modelo oo 73
5.3.1 Behavioural Properties L. 74
54 Avoiding Fraud oL oo oo 76
5.4.1 DataFraud o L 7
5.4.2 Badmouthing 80
5.4.3 Ballot-Stuffing 80
5.4.4 Dynamic Personality 80
5.4.5 Whitewashing oo 81
5.4.6 Collusion 81
5.4.7 Sybil Attacks 81
5.5 Existing Reputation Mechanisms 83
5.5.1 Bin Yu and Munindar Singh 83
5.5.2 Aberer and Despotovic. 84
5.5.3 Eigentrust 85
5.5.4 Reciprocative decision 86
5.5.5 Peertrusto o 88
556 Repage o 89
5.6 Proposed Reputation Mechanisms 90
5.6.1 Route Enhanced Peertrust (REPT) 90
5.6.2 Sybilproof Routing Mechanism (SRM) 93
5.7 Analytical Comparison of mechanisms 94
5.8 Agent decisionso 95
5.9 Experiments. L 100
5.9.1 Comparing mechanisms 103
5.9.2 Analysing REPT and SRM 106
5.10 Applications 108
5.10.1 LiquidPub. 109
5.10.2 P2P Messaging 110
5.11 Discussion e 111

6 Conclusions
6.1 Future work

ix

List of Figures

4.1
4.2

5.1
5.2
5.3

5.4

Global outcomes of interactions 32
Ostracising a violator 34
Interaction protocol oL 70
Example MAN. 71
Comparison of the different reputation mechanisms for simple at-

tacks. ... L 104
Comparison of the different reputation mechanisms for subversive

attacks. L L 105

xi

Foreword

At our research institute, the IITA-CSIC, it is common that graduates commenc-
ing doctoral studies do so shortly after obtaining their bachelor’s or master’s
degree. However, this has not been the case for the author of this book, who de-
cided to go back to university and to enrol in a PhD program after gaining very
valuable experience as a software engineer. This has shaped the research he is
presenting in this book, which has been driven by concrete practical engineering
problems from the very start.

You will notice that the question Adrian Perreau de Pinninck addresses in
this book is of great importance in today’s applications of ICT. More and more,
communications and interactions are carried out mediated by software platforms.
One just needs to look at the revolution brought forward by peer-to-peer net-
works for sharing media content, or at the success of social networks such as
Facebook. A key issue in the design of such distributed systems is to know how
to set up these networks of peers such as to discourage individuals to behave
selfishly, and instead to encourage cooperative behaviour that ends up being sat-
isfactory and positive for the entire group of peers in the network. One common
way to achieve this is by designing centralized enforcement mechanisms into the
network, but this endows too much power to one single peer or a selected few of
them, with the brittleness and dangers this may yield.

For this reason, Adrian Perreau de Pininck’s guiding principle for his re-
search was to keep enforcement of adequate peer behaviour as decentralized as
possible, thus avoiding to give control to any particular peer, or group of peers,
by devising techniques that would allow peers to enforce the right behaviour on
their fellow peers without any previously established hierarchy of authority. For
this, Adrian Perreau de Pinninck has taken inspiration in an old enforcement
technique originally practiced by the ancient Greeks: ostracism.

In this book you shall not find the description of work motivated by purely
academic research alone. Adrian Perreau de Pinninck, being an engineer at
heart, always had potential practical applications in mind when carrying out
his research. This makes this book suitable to be read by theoreticians and
application developers alike. We hope that you will enjoy reading this book as
much as we have been supervising the research presented in it.

Bellaterra, June 2010

Carles Sierra and Marco Schorlemmer
Artificial Intelligence Research Institute, IITA-CSIC

xiii

Abstract

Software systems are achieving a high level of complexity, thus becoming in-
creasingly hard to manage through a centralised architecture. This is why de-
centralised software architectures are blooming, e.g., multiagent systems, peer-
to-peer networks, or sensor networks. Managing decentralised systems is com-
plicated. Therefore, many decentralised systems maintain certain functions cen-
tralised, such as security. A dictionary definition of security is the degree of
protection against danger, loss, and criminals. We take an alternative defini-
tion: the degree of satisfaction in interactions with others. Achieving security in
a decentralised manner requires a different set of techniques than those used in
centralised approaches. In this thesis we study enforcement techniques to be ap-
plied in a fully decentralised manner. In some cases, decentralised techniques are
just generalisations of centralised techniques. Nonetheless, some decentralised
techniques are unique to the mechanism used for the interaction process.

By modelling the software systems as multiagent networks, where each agent
is connected to those agents it knows, and by defining simple interaction proto-
cols, we have developed new enforcement techniques that can be applied by any
agent in the system. The aim of these peer enforcement techniques is to reduce
the sanctioned agent’s ability to interact, bringing it one step closer to total os-
tracism. We have also developed sophisticated reputation modelling techniques
that are robust against most widespread malicious attacks in order to help en-
forcing agents decide when to apply the enforcement techniques.

These peer enforcement techniques and reputation mechanisms have been
evaluated analytically and experimentally in scenarios ranging from those that
are closed and with a shared description of appropriate behaviour, to those that
are open and with a subjective description of appropriate behaviour. The ana-
lytical results provide information about the limits of these techniques. Whereas
the experimental results verify that applying the enforcement techniques has a
positive effect in the average satisfaction experienced by the agents in the multi-
agent network. Furthermore, the experimental results have evaluated the extent
of that positive effect and the types of scenarios for which they work best.

XV

Acknowledgements

First of all I thank my parents. for without their support I would have never
been able to pursue my dreams.

Furthermore, I thank Maria Salam¢ for getting me to do research, first by
being my master thesis supervisor and later by forwarding me to the IITA, where
I did my PhD under the supervision of Carles Sierra, who always had his door
open to hear my doubts out, and Marco Schorlemmer, who painstakingly taught
me the art of mathematical modelling.

I also thank Gal Kaminka, Gery Gutnik, Stephen Cranefield, and Sharmila
and Tony Savarimuthu for being such great hosts in my stays abroad. Not only
did T get to do great research with them, but they also allowed me to take a
glimpse into their culture.

Last but not least I am very grateful for having met Mariusz Nowostaski
and Dorian Gaertner, with whom I have shared much more than I ever thought
possible, and Manu Atencia, which I have enjoyed annoying and being annoyed
by during these more than four wonderful years.

xvii

Chapter 1

Introduction

If you took the most ardent revolutionary,
vested him in absolute power, within a year
he would be worse than the Czar himself.

Mikhail Bakunin

The field of Distributed Artificial Intelligence (DAI) studies how different
processes can work together in order to solve specific goals. Multiagent Sytems
(MAS) are a subset of DAI systems in which the different processes (a.k.a.
agents) have been developed by different entities. Therefore, each agent may
have its own goals which it wants to satisfy by interacting with other agents in
the MAS.

An agent chooses to interact with other agents because it is not able to
achieve its goals on its own. Nonetheless, interaction with other agents does not
guarantee that it will achieve its goals. The agent must find those agents that can
help it achieve its goals and interact with them. In an interaction each agent has
some expectations as to how the other agents will behave. These expectations
can be exchanged and agreed to before the interaction takes place (e.g., as in
signing a contract), they can be fixed as part of the environment in which the
interaction takes place (i.e., by having the system designer specify the norms
that will govern interactions), or none of the above, thus having agents interact
blindly with one another allowing expected behaviours to be learned through
time. Having agents in an interaction know one anothers expectations does not
guarantee that they will be satisfied with the interaction results. Agents need
mechanisms to enforce the behaviours they expect from others.

Humans have had to deal with these same issues, thus it is an interesting
exercise to see what solutions have been proposed for humans. According to
Taylor [Taylor, 1982], enforcement of expected behaviours has been achieved in
primitive human societies through techniques that can be categorised through
one or more of the following:

2 Chapter 1. Introduction

e Persuasion - where an agent modifies the beliefs of other agents through
reasoning, so that they will believe that following the expected behaviour
is preferable (e.g., John persuades Peter to drive on the right hand side of
the road by explaining why doing so avoids collisions).

e Authority - where an agent can modify the beliefs of other agents through
its endorsement of the expected behaviour without giving reasons about
why the behaviour is best (e.g., Peter drives on the right hand side of the
road because John, which is a government official, told him it is best).

e Power - where an agent can execute actions that change the probabilities
of other agents achieving their goals (e.g., Peter drives on the right hand
side of the road to avoid being fined by John, which is a police officer).

e Physical Constraint - where an agent can bring about actions that impede
other agents from continuing to interact (e.g., Peter drives on the right
hand side of the highway because it is impossible for him to drive on the
left hand side, since John, the engineer in charge of building the highway,
placed a barrier dividing the two sides).

Techniques that classify under persuasion involve a high degree of cognitive
capabilities. Those classifying as authoritative either expect agents to have ca-
pabilities through which they can model each others degree of authority, or they
must be hardcoded into their instincts. On the other hand, techniques based on
power and physical constraint involve dependencies amongst agents which can
be used as rewards or sanctions.

When human societies are looked upon for examples of enforcement tech-
niques based on physical constraint, one starts by identifying those physical
characteristics common to humans that can be used to sanction and reward
them. These common characteristics are the fact that humans feel emotions,
such as pain, pleasure, shame, and loneliness. All these emotions can be used
in order to get a human to act in a certain way. For example, the threat of
inflicting pain has been a common enforcement technique in many human soci-
eties. Nonetheless, as of now, most of these emotions are not present in artificial
agents. One could make an exception by stretching the meaning of loneliness by
matching it to a sense of gregariousness. In a way, artificial agents want to be in
“company” of other agents, since they need them in order to achieve their goals.
Nonetheless, the enforcement technique that uses the need to interact with other
agents can also be classified under the power category.

In order to identify power-based enforcement techniques, one has to identify
the resources that the agents need in order to achieve their goals. Using human
societies again as an example, we observe that their basic needs to achieve goals
are: energy, time, physical resources, and information. These can all be trans-
ferred in some way or other from one human to another. A human’s energy and
time can be used to help another human achieve its goal, e.g., Tom can use his
strength and time to build Anne’s new cupboard. Physical resources are limited
and access to them can be granted to other humans, e.g., Britney can lend her

1.1. MOTIVATION 3

car to Alan so that he can get to work. Finally, information can be spread to
others, e.g., Cecile can advise Diego on which are the best weather conditions
and routes to reach the Aconcagua summit. The threat of resource access denial
is a power-based enforcement technique.

In order to find techniques that work for artificial software agents, one must
start by identifying the resources they need to achieve goals. Surprisingly, these
are the same as those seen for humans: energy, time, physical resources, and
information. An agent needs energy as a power source in order to run in a com-
puter. It also needs time for its computations, and information as an input for
them. Finally, it also needs physical resources: CPU, memory, and bandwidth.
Out of these physical resources it is only bandwidth that can be transferred.
Unless we are dealing with mobile agents, which we are not in this thesis.

The work in this thesis describes power-based enforcement techniques where
bandwidth is the physical resource used as the incentive to achieve expected
behaviour. By blocking access to the resources needed in order to interact, an
agent can enforce behaviours on others. This thesis shows how blockage from
bandwidth usage through a network of agents impacts the ability to interact of
agents that do not exhibit the expected behaviours. Models for MAS structured
as networks are described where these blocking techniques can be applied, and
the impact of such enforcement techniques are shown analytically and experi-
mentally. Structuring a MAS as a network is a natural phenomenon since the
advent of the internet, which is a network of networks through which humans
communicate. It is becoming a widespread occurrence ever since the appear-
ance of social networks. Although these are virtual networks in a centralised
application scenario.

1.1 Motivation

Many distributed systems have appeared since the internet became a well-known
technology. Through these systems many users around the globe come together
to interact with each other and achieve certain goals. At first these systems
where closed in many ways. Access was limited, and so were the actions available
to users. Under these conditions is was fairly easy to get users to exhibit the
expected behaviour. This was achieved in a centralised manner by the system
designers which enforced the behaviours they wanted.

As the users grew in numbers and the technology evolved to allow more per-
sonalisation, it became harder for the system designers to enforce the behaviours
that would suit all users. In order to satisfy users better, distributed system de-
signers would have to give the users enforcement capabilities of their own and
allow expected behaviour to emerge with time other than engineer it beforehand.

In today’s systems, the only way users can enforce their expected behaviours
is by deciding not to interact with those that they believe will not satisfy their
expectations. Either because they have not done so in the past, or because
they have come to know about previous interactions and realised that they have
incompatible expectations.

4 Chapter 1. Introduction

Another technique for enforcement is to get others not to interact with a spe-
cific agent. This is done indirectly in current systems by publishing interaction
feedback so that others with similar expectations choose not to interact with
the given agent. Current online systems have incorporated technologies that
aid in this gossip gathering process in order to assess the probability that an
agent will satisfy specific expectations. These technologies are known as Trust
Managements Frameworks (TMF). Nonetheless, TMFs do not empower agents
with new enforcement methods per se. They just give agents better information
tools so that they can decide when to interact with other agents.

The motivation in this thesis is to find new methods through which the
probability of having a satisfactory interaction is increased. This is achieved
by enforcing the expected behaviours. Particularly, we are interested in those
enforcement techniques that are totally distributed, since centralised techniques
would not be as robust and may suffer bottleneck problems. By distributed
techniques we mean those that can be aplied by all agents in the system while
still allowing agents to have personal expectations and to have their own policies
as to how strictly they want to enforce. Furthermore, these policies must take
into account that other agents will try to avoid the sanctions being applied.
Therefore, it is very important that the techniques provided are robust to these
evasion techniques.

A system in which these distributed enforcement techniques are available
should allow different communities to emerge in an efficient manner. Each of
these communities would be formed by a set of agents whose expectations on
the behaviours of others are compatible. Something like this is already hap-
pening in the Internet, where communities with different interests have formed.
The difference being that, when enforcement techniques are provided through
technology, they are either not efficient or only available to a selected few.

1.2 Contribution

The main idea underlying all our contributions is to structure a multiagent sys-
tem through a social network. In small human communities, such as indigenous
tribes or villages, all members know each other personally and know what to
expect from each other from the outcome of many previous interactions. As
communities grow in size, it is hard for those that conform them to know each
other as is the case of cities or groups of villages scattered through an area. In
such cases the lack of information about others can be overcome through third
parties. By depending on these third parties for the information, they are being
given power which can be used as an enforcement technique.

Let us illustrate this through an example. Albert, which has lived in the
small town of Aberdale all his life working at his uncle Bill’s farm, wants to
move to the neighbouring town of Springfield where he plans to work at another
farm. Albert knows no one at Springfield, and none of the farmers at Springfield
have any knowledge about Albert’s capabilities at farm work. Notwithstanding,
Albert has a recommendation letter from his uncle Bill, which is well known by

1.3. THESIS STRUCTURE)

Charlie (a Springfield farmer) from previous deals at different farmer markets.
Since Bill vouches for Albert, Charlie is willing to employ Albert at his farm.
The interaction in this example took place because of Bill’s vouching through
the recommendation letter. Had Albert done something in the past that did not
satisfy Bill, he would have been able to deny Albert a recommendation letter,
thus lowering Albert’s possibilities of working at Springfield.

Our contribution consists of two protocols for interaction bootstrap that force
agents to depend on their contacts in the social network, thus giving agents a
degree of power over their contacts which can be used through different enforce-
ment techniques we have proposed. We also provide a mathematical model for
multiagent systems structured as social networks, and we give some analytical
results showing that a decrease in unsatisfactory interactions can be achieved
under certain conditions. Nonetheless, the model provided allows agents many
degrees of freedom in their behaviour. In the analytical exploration, we narrowed
this freedom through strict assumptions on their behaviour and their expecta-
tions. In order to make up for this, we have also realised experiments in more
complex scenarios.

Through the experiments, we have tested to what extent the proposed en-
forcement techniques can increase the ratio of satisfactory interactions. Fur-
thermore we also tested how well specific approaches fared against different en-
forcement evasion techniques that are known to be used by malicious agents in
current systems.

1.3 Thesis Structure

Chapter 2 surveys the current state of the art. In that chapter the relationship
to other research fields is studied, and so are recent developments in the field
of multiagent systems, specifically those that deal with trust and reputation
management and those that deal with group formation. Furthermore, other
distributed systems where the proposed enforcement techniques can be used are
also reviewed.

Then Chapter 3 defines the experimental methodology that has been fol-
lowed throughout the experiments. The methodology has guided the experi-
ment design, the data gathering, and the subsequent statistical analysis of the
experimental data results from which we have validated the original hypothesis.
A chapter has been dedicated to explaining the methodology since it has been
used for the experiments in Chapters 4 and 5.

Chapters 4 and 5 are the core part of the thesis. These chapters provide the
interaction bootstrap protocols through which agents can enforce the expected
behaviours on others. Chapter 4 describes a protocol for interaction bootstrap
in which an agent searches for an interaction partner which is not known before
the protocol starts. This chapter provides the first set of enforcement techniques
which can be embedded into the interaction bootstrap protocols. The definition
of a satisfactory interaction in this chapter is engineered through norms and
shared by all. Therefore, all agents have the same definition of a satisfactory

6 Chapter 1. Introduction

interaction which is objectively verifiable by all. Furthermore, analytical results
are provided which give an upper bound to the number of unsatisfactory (i.e.,
norm violating) interactions when specific conditions are met in the multiagent
network. Finally, the results of experiments are provided which show the out-
comes in less restrictive scenarios.

In Chapter 5 a second interaction bootstrap protocol is provided. In this
case the partner with which the agent wants to interact is known from the be-
ginning of the protocol. This difference allows for a new enforcement technique
which can be added to those provided in Chapter 4. Nonetheless, the defini-
tion of a satisfactory interaction in this chapter is made subjective, i.e., each
agent has its own definition and these definitions are not necessarily known by
other agents. Therefore, the analytical results in Chapter 4 no longer hold and
a new analysis has been realised. Finally, the updated set of enforcement tech-
niques are tested against other enforcement mechanisms through experiments.
These experiments test the reduction of unsatisfactory interactions, and also test
whether the enforcement techniques are robust against adversarial behaviours
by malicious agents.

Finally, Chapter 6 wraps up the thesis by providing the limitations of the
approach, and how they may be tackled. It also provides some examples as to
how the enforcement techniques can be applied to currently functioning systems.

Chapter 2

State of the Art

This chapter provides the reader with insight into how this work relates to other
works. Each section deals with a research area to which this thesis is related,
either because the work in this thesis is part of the research area or because the
works in that research area aim to solve the same problems as the ones in this
thesis. Section 2.1 describes the different distributed application paradigms. In
Section 2.2 the new wave of internet applications that use social network data is
presented. Section 2.3 explains the different uses of norms to regiment a MAS,
which is closely related to the work in Chapter 4. Section 2.4 gives an overview
of the research into enforcement techniques in electronic scenarios. Section 77?7
deals with research into how the system can detect undesired behaviour. Section
2.6 shows research in game theory that looks for ways in which to make expected
behaviour rational. Section 2.7 describes the main approaches to manage trust
and reputation, and Section 2.8 describes the main approaches to managing
electronic currencies. Both currencies and reputation can be used as a virtual
resource to be used in power-based enforcement.

2.1 Distributed Systems

User satisfaction is a complex issue addressed by distributed systems. Dis-
tributed computing has been booming in different ways. The approaches taken
and the metaphores vary depending on the intended use of the system. The
main distributed computing approaches are: Multiagent Systems (MAS), Peer-
to-Peer (P2P) networks, Mobile Ad-hoc Networks (MANET), Grid Computing,
Service Oriented Architectures (SOA), and Sensor Networks.

MAS [Wooldridge, 2002] is a subfield of distributed artificial intelligence in
which autonomous software agents interact with one another in order to achieve
personal and global goals. These agents will interact with other agents with the
expectation that the interaction will get them closer to achieving their personal
goals. Sometimes this might mean that an agent will act in a way that the
interaction is satisfactory to it, while at the same time it is unsatisfactory to the

7

8 CHAPTER 2. STATE OF THE ART

other party. Depending on the MAS infrastructure interaction among agents in
a MAS may or may not be mediated by other agents. Enforcement mechanisms
can be used to reduce the amount of times this sort of activity happens. The
goal of such mechanisms is to reduce the number of interactions where any of
the parties was not satisfied with the outcome.

Peer-to-Peer (P2P) computer networks are a way to organize a group of com-
puters so that certain resources may be shared. P2P networks have made it into
the mainstream through the different file sharing applications that have been de-
veloped with this technology (e.g., Naptser, BitTorrent, Gnutella). Nonetheless,
there are many other applications developed using this technology, such as voice
communications (e.g., Skype), conversation technologies (e.g., Jabber), anony-
mous content storage (e.g., Freenet, Free Haven, Publius) and anti-censorship
news accessing (e.g., Red Rover). P2P networks are meant to be large scale. This
makes it impossible for any single agent to have all the information regarding the
rest of the network. Therefore, P2P networks provide mechanisms to search for
this information, normally by routing requests through the network. The main
design issues for P2P networks are robustness, and efficiency in finding network
information. Unfortunately it is hard to achieve both. P2P systems deal with
different aspects of robustness. Firstly, it is robustness against turnover, mean-
ing that computers may join and leave whenever they want and this should not
disturb the way the system works. Secondly, they look into robustness against
free riding, where users that use resources do not share theirs in return. When
free riders are too many, not enough resources may be shared to act as an incen-
tive for sharing peers to stay in the network. Finally, since P2P systems tend
to be open to all, some users may act maliciously. Such malicious activity tends
to be non-satisfactory to other users. In all these cases enforcement mechanisms
can be used to increase robustness.

Mobile Ad-hoc Networks (MANET) are a specific type of network devised to
share bandwidth in order for different mobile nodes with wireless connectivity
to communicate with one another. If two nodes are out of reach of one another
through their wireless antenas, then they can use other nodes in reach as re-
lays/routers so that communication channels can be established between them.
The fact that nodes are mobile adds another challenge to the whole routing pro-
cess. Furthermore, since mobile hardware has a limited power source the nodes
in a MANET may be tempted to free ride by not routing other nodes’ commu-
nications. It is important in this context to have an enforcement mechanism
through which free riding is minimized. Otherwise, since most communications
are mediated by other nodes, free-riding may break the connections.

Grid Computing tries to solve a different problem. A Grid is in effect a
cluster of computers. The difference with standard cluster computer technology
is that a Grid is heterogeneous, loosely coupled, and geographycally dispersed.
The structure of a grid should allow different computers accross different parts of
the world to share their computational power to solve certain problems. These
problems or tasks are decomposed and sent to other computers in the grid. When
each subtask is finished the original computer collects the data and finishes the

2.2. SOCIAL NETWORKS 9

needed computations. A computer owner joins a Grid in order to share its idle
CPU cycles. The user also expects to use the idle CPU cycles of other users
when it needs to solve a specially hard problem. Here again free riding can also
be an issue, since a user may use more CPU cycles than it shares, or not share
its cycles at all. Here too, the sharing of resources must be enforced so that all
users may be satisfied.

Service Oriented Architectures are a new paradigm in software development.
The main motivation for this approach is loose coupling of the differnt modules
in the software system. These modules are defined as services and they can be
accessed remotely. The access to a service is done through a series of standard-
ized technologies, so that services can be easily used directly or grouped into
more complex services in a simple way. The services can be developed by differ-
ent people in different organizations. Furthermore, more than one service with
the same purpose may exist and compete with one another for the attention
of users. This is specially true when there exists an economic exchange for the
services rendered. A user in a SOA will want to use the services with the highest
quality it can get. In other words, those that will satisfy it the most. Therefore,
an enforcement method would help improve the average satisfaction of users.

Finally, a Sensor Network is formed by a group of hardware sensors that
have certain computing capabilities. In order to aggregate the data from these
sensors they are equiped with a wireless communication device. Sensor networks
may be spread through large areas and if their signal range is not long enough
to reach the data gathering facility a sort of MANET is used to get the farthest
nodes to send their gathered data to the central repository. The problem here
is actually the opposite than in a MANET. Since all hardware is owned by the
same user, it would be counterproductive to free ride. Nonetheless, the limited
power source is an issue and those nodes with lower battery life should not be
overused. Furthermore, those nodes that are acting defectively should be spotted
so that they can be replaced. In this case enforcement is needed to make sure
all nodes satisfy the needs of the gathering device.

The techniques described in this thesis are meant to be applied to distributed
systems. Although the application to MAS and P2P is straightforward, these
techniques could also be applied to Grid computing systems, and SOA with
some modifications. On the other hand, its applicability to sensor networks and
MANET is more complex, since the type of network links needed for the tech-
niques to work ought to be long lasting, whereas MANETSs and sensor networks
with moving links are designed to have short lived network links.

2.2 Social Networks

Social networking applications have also boomed recently. These are part of the
so called Web 2.0 wave of online sites. They are characterized by allowing users
to share information with those they want to. Into this broad category one can
include blogs, recommender systems, fora, and the like. These applications help
in the community building process. Online communities are formed in order to

10 CHAPTER 2. STATE OF THE ART

share specific types of content, such as videos, audio files, news, or even personal
information. Some of these networks give users the ability to form relationships
with other users to which they share specific information. This is an effective
way of establishing community links.

In recommender systems, the users are allowed to give feedback on the differ-
ent items available. The application uses this feedback in order to recommend
content to the users. Some applications make recommendations for content that
the user has not yet given feedback on. This is the common approach for movies
and books. Other applications do not make this restriction, and content is rec-
ommended independently of whether the user has rated it in the past or not.
This is more common in music sites or personalized radio stations.

Contact networks are a specific type of social networks in which the main
purpose is to share personal information. The personal information given de-
pends on the purpose of the site: making friends and keeping in touch with them,
finding a partner, or business networking are some examples. Through contact
networks you can find old friends, or business partners with specific expertise.
Normally, these types of networks do not have a specific functionality that helps
in assessing whether the new partner or friend can live up to the expectations.
If they do, it is in the form of statistical averages over previous interactions.

A common problem with all of the social networking applications is spam.
These applications have been often used by advertisers to send out information
that the users do not desire be sent to them. In other cases these contact
networks are used to gather information about users so that it can be used by
advertisers. In the case of recommender systems, some users may try to cheat
the system in order to get specific products recommended more often than they
should given their real merits.

Some of these applications sought ways to lower the amount of spam, and
to filter out invalid feedback when recommending items. These can be seen as
enforcement techniques, since they are used to reduce the amount of undesired
behaviour. Among these techniques the following ones are the most common:
to allow users to block access to their content to other users; a process through
which contacts are managed and classified; the ability to give feedback about
the recommended items or the users with which they have interacted; and mech-
anisms that filter out feedback from users which try to cheat the system.

Most applications for social networking are web applications, and as such they
are centralized. Nonetheless, there are examples of distributed applications that
either use social networks or provide social networking capabilities. Especifically,
it is P2P systems that have started to embrace social networking. There is
research on using social links among peers in a distributed hash table (DHT) in
order to improve the routing efficiency [Marti et al., 2004, Upadrashta, 2005].

Some file sharing applications have gone further into using social networks
in their underlying structure. These P2P networks are also called Friend-to-
Friend (F2F) networks, not to be confused in this context with Face-to-Face
applications. Some examples are: WASTE, TurtleF2F, GNUnet, Freenet, and
Darknets. Peers in a F2F network will only interact with those they have se-

2.3. NORMS 11

lected as friends, thus, the probability of being cheated is lower but the scope for
interaction is also limited. In [Loukos and Karatza, 2009], the scope for inter-
action is expanded by using an ad-hoc reputation technique through which new
friends can be acquired. The technique assesses the reputation of the friends of
friends and compares it to a local threshold. If the reputation is greater, the peer
is added to the friends list (see Section 2.7 for more on reputation techniques).

The type of system for which the enforcement techniques have been designed
in this thesis is an expanded F2F. The difference with an F2F being that a user
can interact with any other user even if it is not its direct contact. The only
restriction being that there must be a path in the contact network uniting the
two in which all the intermediate contacts in the path allow the interaction to
happen (i.e., friend of a friend of a friend of a friend ...).

2.3 Norms

In systems with many users that interact with one another, the cost of estab-
lishing what makes an interaction satisfactory to the participating agents can
be very high. Specially if this is done prior to each interaction. This process
is as complex as the interaction and it needs planning of its own, which can be
even more complex. Norms can be established that regulate what actions are to
be executed so that the expectations of the agents may be satisfied while at the
same time reducing the planning process.

Norms have been studied as a means of co-ordinating actions and granting
access to limited resources for a long time in human societies through the study
of law, philosophy and the social sciences [Fon and Parisi, 2005, Taylor, 1982].
Research in norms to co-ordinate artificial systems has been greatly influenced
from those areas of knowledge [Castelfranchi, 2000]. There is a lot of research
about norms, especially in the Multiagent Systems field. This research is divided
into different areas: Norm representation, normative agent architectures, norma-
tive organisation architecture, properties of norms, norm spread and adoption,
and norm enforcement.

There are many approaches to norm representation. Nonetheless they can
be classified into the following four categories: logics, state machines, and rule-
based languages. Logic-based languages where the first to be researched. These
used modal logics to represent the notions of obligation and permission. The
first attempt to formalise these notions was made by the Austrian philoso-
pher Ernst Mally, but the axiomatization was not too satisfactory. It was
Georg Henrik von Wright [von Wright, 1951] that satisfactorily defined the de-
ontic logic. Deontic logic has been modified and extended to solve some of its
paradoxes [Chisholm, 1963, Ryu and Lee, 1995, Tan and van der Torre, 1996,
Meyer, 1988], and it has been used as the basis for some norm representation
languages [Broersen et al., 2004, Sergot, 2001].

State machines define the interaction states that are normative and the ac-
tions through which the interaction state can change. An action is a norm
violation when there is no matching edge leaving the current normative state

12 CHAPTER 2. STATE OF THE ART

or when the state to which the action takes is not a normative state. State
machine representation is preferred for simple normative systems because the
graphic visualization is easy to understand. Nonetheless, if the norms are
many or very complex, the visual representation becomes too crowded to be
visually intuitive. Networking protocols usually use state machine represen-
tations, as do specific types of normative multiagent systems such as Elec-
tronic Institutions [Esteva et al., 2002]. In the latter case, the visual repre-
sentation has a formalization in Ambient Calculus to allow for a hierarchi-
cal structuring of normative spaces. Other representations of finite state ma-
chines are possible in 7w-calculus [Padget and Bradford, 1999], event calculus
[Marin and Sartor, 1999, Yolum and Singh, 2002], and the lightweight coordi-
nation calculus [Robertson, 2005].

Rule-based languages for representing norms have the advantage of being
simple to learn to use, and they are easily broken up into modules. A normative
rule defines the context and conditions under which it applies, the action
which fires the rule, and the obligations, permissions, and prohibitions which
are created for the rule. Many different rule-based languages have been
defined which have different syntax and properties [Garcia-Camino et al., 2005,
Garcia-Camino et al., 2006, Garcia-Camino et al., 2007, Cranefield, 2005,
Craven and Sergot, 2008, Governatori, 2005]

Another aspect of normative research deals with the architecture of norm-
aware agents, and with the architecture of normative organisations as a
whole. The norm-aware agent architectures must have modules that allow
agents to interpret norms, to reason about them, and to take norms into
account in their planning process. Most approaches to normative architec-
tures take a BDI architecture as the starting point [Rao and Georgeff, 1995].
[Castelfranchi et al., 1999] includes norms as meta goals (equivalent to desires).
In [Boella and Lesmo, 2001] the agents are given the ability to choose whether
the norm or obligation should be honoured. Some approaches have gone a bit
further by adding new modal contexts to the original architecture. In B-DOING
[Dignum et al., 2002] contexts that manage obligations, norms, and goals are
added. In BOID [Broersen et al., 2001] they manage to do with just one more
context that handles obligations. Finally, BDI+C [Gaertner et al., 2006] uses
bridge rules to link modal contexts in a multi-context system and adds a con-
text for commitments. Other architectures have dealt with other issues related
with norms, such as conflicts that arise between them and with the agent’s
desires [Kollingbaum and Norman, 2003a, Gaertner et al., 2009].

Norms can be studied as an object in itself. As an object it has properties that
define how it influences the MAS. There is a lot of research for classifying norms
according to their properties. Early research described properties such as useful-
ness [Shoham and Tennenholtz, 1995] (i.e., the norm allows all agents to achieve
their goals), minimality [Fitoussi and Tennenholtz, 2000] (i.e., the constraints
the norm imposes on the allowed actions are the least for any useful norm),
simplicity [Fitoussi and Tennenholtz, 2000] (i.e., a norm which can be easily fol-
lowed by agents with low computational and sensorial capabilities). Other prop-

2.3. NORMS 13

erties of norms that have been studied are flexibility [Briggs and Cook, 1995],
non-determinism [Coen, 2000], stability [Tennenholtz, 1998], and enforceability
[Boella and van der Torre, 2005]

When designing a MAS with adaptability in mind, one must design mech-
anisms through which new norms can emerge and through which norms can
cease to exist. Emergence is a complex process [Castelfranchi et al., 2003]
that consists of many parts. The ones that have been most researched are
norm adoption by a single agent, and norm spread through an agent society
[Walker and Wooldridge, 1995].

There are three parts to the adoption of a norm: firstly, the existence
of a norm needs to be recognised; secondly, its applicability needs to be
realised; and finally, the norm needs to be accepted. This norm adoption
process equally applies to sets of norms. Agents need to be able to reason
about joining, staying in and leaving a social group, taking into account
the norms that regulate the group and the agents’ goals. One such agent
model is described in [Lépez y Lépez and Luck, 2004]. When considering norm
adoption, the agent must be able to cope with inconsistencies. The new norm
may oblige for actions that are contrary to the agents goals and beliefs. These
conflicts have been addressed through modules in the agent’s architecture
[Kollingbaum and Norman, 2003b], either through meta-ordering of norms
[Garcifa-Camino et al., 2006, Sartor, 1991, Sartor, 1992], through relaxation
of the axioms of standard deontic logic (SDL) [Cholvy and Cuppens, 1995],
through variable instantiation graphs [Kollingbaum and Norman, 2004,
Vasconcelos et al., 2007, Gaertner et al., 2007], or through the maximisation of
the coherence of norm subsets [Joseph et al., cess].

Adoption is to a single agent, what spread is to the multiagent system. The
two main approaches to researching the spreading of norms in Al are evolutive
or learning. In the evolutive approach agents with low success leave the sys-
tem (i.e., die) and agents with high success are copied (i.e., reproduce) and
some mutation is possible [Axelrod, 1986]. In the learning approach agents
that are less successful copy the strategy of the agents that are more successful
[Savarimuthu et al., 2007]. Both approaches look for the conditions which guar-
antee that the strategies that survive are those that follow the norms. Some
of this research deals with structured MAS. In [Kittock, 1994] the influence of
simple structures such as regular graphs, trees, and hierarchies on the spread of
norms was studied. Later work studied the influence of complex structures pos-
sessing free-scale or small-world properties that can be found in many natural
systems [Delgado, 2002]. Finally, in [Pujol et al., 2005] the relationship between
norm emergence and other graph parameters such as its clustering factor and
diameter is studied.

The norms that regulate the interactions in such systems may be defined by
the system designer, or they can emerge through interaction between the users.
In the first case, it is the system designer that is interested in having these norms
abided with, and she will provide the mechanisms through which the norms will
be enforced. On the other hand, when the norms emerge because they are useful

14 CHAPTER 2. STATE OF THE ART

to the users, the system ought to have mechanisms through which these norms
may be enforced by the users themselves.

This thesis deals with enforcement techniques. One of the scenarios in which
these techniques are applied is a normative system were the expected behaviour
is predefined and shared by all the participants in the system. The effect of the
enforcement techniques to the mentioned scenario is studied in Chapter 4.

2.4 Enforcement

Norm enforcement in multiagent systems is done under one of two premises: a)
the designer can control the actions agents realise in the system and can stop
non-normative actions before they take place, or b) no one except the agent can
control its actions, and enforcement must be executed after actions have taken
place through the use of sanctions or rewards. Systems such as S-MOISE™
[Hiibner et al., 2006] or Ameli [Esteva et al., 2004] are designed with the first
premise in mind. All interactions between agents are mediated by some trusted
component implemented by the system designer, which verifies that actions are
normative. Other systems use model checking techniques to verify that the agent
code will fulfil all of the system’s norms [Agotnes et al., 2007, Minsky, 1991b).
For those systems where non-normative actions cannot be prevented, actions
from one agent will be responded to with actions from other agents so as to
make normative behaviour better. These actions are called incentives.
According to the previous two premises, enforcement techniques can be clas-
sified into two main categories: control-based and incentive-based enforcement
techniques. The main goal of control-based techniques is to bring about the con-
ditions in which deviant behaviour has no effect on the rest of the society. When
using incentives you allow agents to break the norms, but sanctions or rewards
are given to make deviant behaviour less attractive than conforming behaviour.

2.4.1 Control-based Enforcement (CBE)

As said earlier, CBE, tries to bring about the conditions so that deviation from
the norm has no effect on the rest of the society. Early work on Law Governed
Systems (LGS) by Minsky in [Minsky, 1991c] proposed a system with two modes
of enforcement; by interception and by compilation. In enforcement by compila-
tion the enforcer analyzes the source code of all the new components trying to
join the system. The enforcer studies the component’s code to evaluate whether
the messages that can be sent by it conform to the system’s laws. If they do
not conform, they are not allowed to join. Enforcement by interception requires
having a component at run-time intercepting all the messages sent by the rest
of the components, and dismisses those that do not conform to the laws. All
software components are linked to this centralized law enforcer. In order for two
regular components to interact with each other, their messages have to be sent
to the law enforcing component, which parses them and verifies their confor-
mance to the law. The law enforcer then routes the conforming messages to the

2.4. ENFORCEMENT 15

appropriate component, and dismisses the deviant messages. This way, all the
interactions taking place in the system forcefully abide by its norms.

LGS are easy to implement and deploy, but have some drawbacks. Firstly,
enforcement by compilation can only detect violations that can be caused by
messages sent by agents that do not conform to the specified laws. It cannot
detect if agents violate their obligations by not sending messages when these
are required. This problem is solved in the interception enforcement mode,
which deals with obligations by having the law enforcer remember each agent’s
obligations and what is termed the control state. In case an agent does not
send a message it is obliged to send, the law enforcer will send it for him (this
implies that the protocols that can be specified are rather limited). However, the
interception mode also has its drawbacks, mainly the fact that law enforcement
is centralized. This means that it is not scalable, there is a limit to the amount of
interactions a law enforcer component can verify. Furthermore, if the overhead of
computing the conformance to the laws is large enough, the monitoring capacity
will be small and the law enforcement may become the bottleneck.

In [Minsky, 1991a] Minsky proposes a distributed enforcement technique for
an open system. The new approach consists of decentralizing the enforcement
task to many enforcer components. Each component joining the system is pro-
vided with a law enforcer that is placed between the component and the network,
routing all its messages. Minsky calls these components controllers. Whenever
an agent wants to send a message to another agent, its controller will intercept
the message and verify if it complies with the norms. If the message is norm-
compliant, the controller sends the message across the network to the receiving
agent’s controller, which will also verify that the message is norm-compliant be-
fore delivering it to the receiving agent. Under this framework, each controller
must keep a copy of its controlled agent’s state, in order to verify that the norms
are being followed. Furthermore, the controller agents know what obligations
must be fulfilled by the agents they control. If the controller realizes that an
obligation is not being fulfilled by the controlled agent, it will send the appropri-
ate message itself. Certainly, this can only be done when the controller knows
all the parameters needed to create the message. This fact, reduces the amount
of unfulfilled obligations that the controller can handle.

In [Minsky and Rozenshtein, 1988] Minsky and Rozenshtein implemented
Darwin, a software development environment for law-governed systems based
on the previous enforcement modes. Later, in [Esteva et al., 2001] a more pow-
erful formalization allowed a multi-agent system to enforce more complex proto-
cols; they were termed Electronic Institutions. In a way Electronic Institutions
are an extension to Minsky’s enforcement by interception model. Each agent
joining the institution will have what is called a governor as a proxy to all its
communications, it is the conceptual equivalent to a controller. Furthermore, in
Electronic Institutions, protocols can be specified by linked sub-protocols. Each
agent can move from one subprotocol to the next by joining and leaving scenes,
hence the need for another type of agent that manages the scene’s state, the
scene manager. In Electronic Institutions, though, governors cannot deal with

16 CHAPTER 2. STATE OF THE ART

unfulfilled obligations, therefore norms must specify what must be done in such
cases. Grizard in [Grizard et al., 2007] adds reputation to the control process by
having controllers calculate the reputation of the agents they control, and send-
ing this information to other controllers and agents as part of the interaction
process.

2.4.2 Incentive-based Enforcement (IBE)

In some cases intercepting all the communications trying to spot norm violations
may imply too much overhead (as in the case of real-time scenarios), or it may
even be impossible (as in peer-to-peer systems). Furthermore, it is complex to
enforce obligations using CBE. For these situations, incentive-based enforcement
can be used. The main problem with IBE is that it cannot ensure that all actions
will be lawful. Its aim is to minimize deviant behaviour. Incentives can be
divided into two types; positive (when the norm is followed), or negative (when
it is violated). Negative incentives are also known as sanctions, and positive
incentives as rewards [Oliver, 1980].

Incentives can be established using different types of goods. In the case of
electronic agents, three types of goods have been used as incentives: utility,
reputation, and access to resources (e.g., CPU, network...). IBE can be self-
enforced or enforced by a third party. In the case of self-enforcement, an agent
A interacting with another agent B will use incentives so that B abides by
the norms. In the case of third party enforcement, a third-party agent X is
added to the interaction, and depending on A and B’s actions, X will apply the
appropriate incentives. Furthermore, [Yarbrough and Yarbrough, 1999] argues
that self-enforcement can only be brought about if there exist some kind of
linkages between agents. Linkages are of three types: Intertemporal, inter-issue,
and inter-actor. In which case lowering deviant behaviour equates to maintaining
the boundaries between those agents that are in the respectable group (insiders)
and the rest (outsiders).

In most literature the enforcement problem is dealt with from a game the-
oretic perspective (see section 2.6) in which the agents interacting play a game
that has different utility outcomes depending on their choice of action. A norm
establishes which outcomes are valid, although an agent can choose whatever
action it likes. Following the game-theoretic approach and using utility as the
only possible incentive, third-party enforcement can be modeled as a three di-
mensional matrix, and self-enforcement will necessarily take place in an iterated
game, since an agent can only wait for the next interaction to apply its incen-
tive. For example, if two agents interact to exchange some goods, and one of
them does not fulfill its part of the deal, the aggravated agent can only sanc-
tion the violating agent in a subsequent interaction, which is called reciprocity
[Axelrod, 1985]. In the case of third-party enforcement (the enforcer being the
bank), the norm-violating agent could have some utility removed by the third-
party enforcer. Of course this is only possible if the third-party enforcer agent is
given access to the utility of the interacting agent, which could be accomplished
as a prerequisite to joining the system.

2.4. ENFORCEMENT 17

When using reputation or access to resources as the incentive, there are ac-
tually two games being played in parallel. First of all there is a utility game
in the game-theoretic sense, as discussed in the previous paragraph. But on
the other hand, there is an incentive game where the reputation and resource
incentives are applied. The utility game influences how the incentive game is
played, but also the incentive game has an effect on whether the agent will
be able to play the utility game. For example, in the case of using reputa-
tion as an incentive, an agent A interacting with a norm violator B may gos-
sip about the interaction’s outcome to other agents, which in turn will lower
B’s reputation. This affects B’s capacity of interacting in the utility game,
because agents try to avoid interactions with agents who have a low repu-
tation [Castelfranchi et al., 1998, Hales, 2002, Younger, 2005, Younger, 2004].
The reputation could be calculated through a distributed mechanism, such as
in [Sabater and Sierra, 2001, Ramchurn et al., 2004], in which case it would be
self-enfocement. A third party enforcement setting, implies a centralized ser-
vice run by an agent that gathers all the gossip, calculates each agent’s repu-
tation, and replies to queries by agents about other agent’s reputation. When
using access to resources as an incentive, an agent may lower the amount of
network access to an agent deviating from the norms, or even forbid it. In
which case, the violating agent may not be able to achieve its utility goals
[Perreau de Pinninck et al., 2008b].

Another technique is sometimes used before the other two are applied: per-
suasion. In this stage the agents communicate with each other in order to deter
deviations from the norm. This can be achieved through one of the following
two methods:

e Argumentation — by which an agent argues with the other agent in order
to convince it not to deviate from the norms.

e Threats or Offers — in which the agent lets the other agent know what
actions will be brought about in the incentive section. In the case of a
threat, one agent lets the other one know what sanction will be applied
in the case that the other agent deviates from the norm. On the other
hand, an offer is when one agent tells the other what reward it will give if
the agent abides by the norm. These two may not be mutually exclusive
[Taylor, 1982].

Most articles dealing with IBE are based on simulations. The scenar-
ios used to simulate normative societies with enforcement capabilities are
the same as those used for simulating the emergence of norms. Stochas-
tic games such as Axelrod’s Iterated Prisoner’s Dilemma (IPD) and resource
gathering scenarios such as Conte and Castelfranchi’s food gathering game
[Conte and Castelfranchi, 1995].

The enforcement techniques described in this thesis fall under the IBE cat-
egory. Interactions are prevented from happening not because it is known that
they will not be satisfactory or they will incur norm violations, but because the

18 CHAPTER 2. STATE OF THE ART

prevention is a sanction to one of the interested agents for a previous interac-
tion that was not satisfactory or was a norm violation. The mechanism through
which these sanctions are applied is based on getting agents to need others in
order to interact. Therefore, sanctions consist on not co-operating with an agent
that needs the co-operation in order to interact.

2.5 Violation Detection

section:detection

In order to enforce norms, the system or the agents doing this enforcement
must have the ability to detect norm violations. In order for norm violations to
be detectable, the actions of agents must be observable either by other agents
or by the system. In normative multiagent execution frameworks, such as S-
MOISE or Ameli, actions by agents are observed by the system agents because
external agents are assigned a system agent that will route and verify all their
messages. This is the mechanism used for CBE techniques in which a mechanism
is provided so that the content of interaction among agents can be scrutinised by
organisational agents in order to detect when the interaction reaches illegal states
[Aldewereld et al., 2006, Vazquez-Salceda et al., 2004]. When not all actions can
be observed, the system or other agents have to detect violations through the
subset of actions they have observed.

Actions can be observed by one of the following methods. The first method
is by observing the changes in the environment. This mechanism assumes that
the MAS platform provides an environment that can be changed by the agents,
and that agents can know which changes have been done by whom. One way
to achieve this is by overhearing the messages sent by agents, even though the
messages are not sent to the overhearing agent. The second method is by ob-
serving the actions affecting the detecting agent as part of an interaction. The
last method is through gossip, where an agent informs other agents that a norm
has been violated. The problem with gossip is that the source must be trusted
to be saying the truth.

Overhearing is quickly gaining attention as a general method for mon-
itoring open distributed MAS. Overhearing is a technique through which
agents listen on conversations on which they are not taking an active
part in order to provide different kind of services. Among these services,
we find enhanced situational awareness for pilots [Novick and Ward, 1993],
organizational knowledge of roles performed by agents [Legras, 2002,
Rossi and Busetta, 2004, Rossi and Busetta, 2005], recommendation for in-
teresting roles to be played [Cabri et al., 2006], monitoring progress in
task execution, plan recognition [Kaminka et al., 2002], inconsistency detec-
tion and performance analysis for task execution [Rossi and Busetta, 2004,
Rossi and Busetta, 2005], issuing alerts and notifications [Cranefield, 2007,
Rossi and Busetta, 2004, Rossi and Busetta, 2005], and reducing the communi-
cation costs by filtering messages that do not conform to the protocol norms
[Perreau de Pinninck et al., 2008a]. Furthermore, MANETSs that use trust-

2.6. GAME THEORETIC RESEARCH 19

based routing schemes to avoid free-riders have used overhearing of commu-
nications to insure that messages are re-routed. Nonetheless, they do not use
the overhearing techniques mentioned above.

This thesis does not cover the mechanism through which an agent detects
norm violations or how it decides if an interaction is satisfactory. It is assumed
that agents have this capability. The core of the work in the thesis is based on a
system in which it is only the interaction participants that receive the contents
of an interaction. Therefore, overhearing cannot be used as a violation detection
tool. Nonetheless, the data from interaction bootstrap is used in Chapter 5 to
certify that interactions have indeed taken place, thus validating the legitimacy
of complaints.

2.6 Game Theoretic Research

The first research on enforcement via agent simulations [Axelrod, 1985] sought
ways to ensure co-operation in situations where agents had high incentives to
avoid co-operation. A utilitarian approach was taken in that research by mod-
elling interactions amongst agents through an iterated prisoner’s dilemma (IPD).
In that approach interactions could not be avoided and self-enforcement was
achieved through reciprocation. Therefore, an agent that did not co-operate did
not receive reciprocated co-operation in the future. This was termed the shadow
of the future. The problem with limiting the interaction in an IPD, where in-
teractions cannot be avoided, is that an agent is forced to stop co-operating in
order to sanction a noncooperator. This can end up in a spiral of noncoopera-
tion. If the norm is to co-operate, the norm must be broken in order to sanction.
Later research solved this problem by modifying the original game of prisoner’s
dilemma and adding an enforcement stage where agents could decide to sanction
those that did not co-operate [Axelrod, 1986]. The utilitarian point of view to
enforcement showed that when norm-violators are punished violating the norm
was not the utility maximising strategy [Castelfranchi et al., 1998]. Nonetheless,
if applying sanctions has a cost of its own, then agents may not want to sanc-
tion others, which brings about a free-riding problem [Carpenter et al., 2004].
In such cases, adding a norm saying that agents ought to enforce norms does
not solve the problem. It is just shifted up a level since agents may not enforce
the enforcement norm, bringing about an infinite regression.

Mechanism design also studies how to get agents to act in the way that the
designer of the system wants them to. Through mechanism design the rules of
the games are designed so that a specific outcome can be achieved. Incentives are
provided, from a game-theoretic point of view, for utility-maximising agents to
present specific properties when interacting with others. Mechanism design could
be categorized loosely under the CBE class of enforcement techniques. Some of
the properties sought through mechanism design are very interesting from an
enforcement perspective, such as the truthfulness property through which it is
ensured that it is in the best interest of the participating agents in the protocol
to be truthful in their evaluations. Another interesting property that can be

20 CHAPTER 2. STATE OF THE ART

achieved through mechanism design is the maximization of certain values, such
as social welfare, or budget balance. In order to really understand mechanism
design one has to get technical. The interested reader is referred to the excel-
lent introductions in [Jackson, 2003, Parkes, 2001, Maskin and Sjostrom, 2002],
and the most recent survey on mechanism design for computer scientists in
[Nisan, 2007].

The issue with mechanism design, being a game-theoretic approach at heart,
is that agents are assumed to be able to give a value to each of the outcomes
of the interaction with other agents through the protocol. The main difference
with the approach presented in this thesis is that through mechanism design an
interaction protocol is engineered in a way that it enforces that agents will act
in the way that the engineer desires because of the properties of the protocol.
Whereas in our approach the interacting agents are given enforcement capabili-
ties so that they can decide for themselves which are the proper outcomes of an
interaction and enforce them.

2.7 Reputation Systems

When CBE techniques are not possible, an agent has to be careful when choosing
its interaction partners. In order to choose, agents must model the behaviour
of others so as to know if they would be satisfactory interaction partners. Mod-
elling of this sort has been studied in what is termed trust management systems
(TMS). There is a lot of research into designing TMS that can predict the sat-
isfaction in interactions with other agents. These systems have two types of
inputs: the history of past interactions of the agent making the assessment, and
feedback or gossip about interactions of other agents. Gossiping is a type of
third-party enforcement technique. By spreading knowledge about unsatisfac-
tory interactions, the unsatisfied agent can convince other agents not to interact
with a specific agent.

TMS can be implemented by centralising the algorithms that calculate rep-
utations (e.g., eBay). Centralisation poses two problems: firstly, the system
where the calculations are centralised becomes the bottleneck in large envi-
ronments; and secondly, the centralized system must be trustworthy otherwise
it could take advantage of everyone else. These problems are tackled by the
implementation of a decentralized approach, which has problems of its own.
Decentralized approaches [Aberer and Despotovic, 2001, Damiani et al., 2002,
Kamvar et al., 2003, Sabater and Sierra, 2001, Xiong et al., 2004] must imple-
ment distributed information gathering systems that are efficient and robust,
neither of which is straightforward. The more robust to information loss a dis-
tributed system is made, the less likely it is that it will remain efficient, and
vice-versa.

Where feedback or gossip is involved, the TMS must be able to filter mali-
cious feedback, otherwise agents can use the feedback mechanism to artificially
change their own or other agents’ reputation. Known malicious uses of feed-
back are: badmouthing, ballot stuffing, and colluding. Badmouthing consists

2.7. REPUTATION SYSTEMS 21

of an agent giving negative feedback about another agent even though it was
satisfied with the interaction. An agent may be moved to badmouth another
if they are competitors for a specific service. Through badmouthing the agent
may indirectly get more clients, since some client agents will be deterred from
interacting with the badmouthed agent and may end up interacting with the
badmouther. Ballot stuffing consists of giving more feedback than actually ex-
ists, this can be done by making up fake interactions and reporting feedback on
them. Ballot stuffing of this sort can be easily avoided via cryptograpy. Finally,
agents can collude by faking interactions and giving good feedback on those fake
interactions so as to increase their overall reputation.

There are different approaches in the literature that tackle malicious feed-
back in different ways. Eigenvectors are used in [Kamvar et al., 2003] to filter
out badmouthing and ballot stuffing. Nonetheless, the proposed solution re-
lies on a set of pre-trusted peers in order to avoid collusion attacks. Another
approach is to take into account the credibility of the feedback origin by cal-
culating the difference in average ratings between the feedback originator and
the agent assessing the trust [Aberer and Despotovic, 2001, Xiong et al., 2004].
This approach does not need to rely on pre-trusted peers to prevent collusion
attacks.

Some of the trust and reputation management systems in the literature use
a distributed hashtable (DHT) to store the feedback given by other agents
[Kamvar et al., 2003, Aberer and Despotovic, 2001, Xiong et al., 2004]. The
DHT in such cases is formed by the whole set of interacting agents. Each
agent takes care of a subpart of the DHT and manages a subset of the feed-
back stored on it. Therefore, malicious agents may try to subvert such a system
by deleting the feedbacks it manages in order to suit its needs. Each peer in
a DHT should handle a subset of the key-value pairs. The key-value pairs as-
signed to a peer depend on the hash value associated to the peer’s identifier,
thus distributing the keys through the different participants in the DHT. If a
user were to create enough fake peer identities, it could easily control those key-
value pairs that interest it. One way in which this variant of the Sybil attack
[Douceur, 2002] is tackled is by replicating the key-value pairs in different agent-
nodes [Xiong et al., 2004]. When the value for a key is retrieved from the DHT,
it has to be returned by all the agent-nodes that manage the given key. If one
of the agents repeatedly fails to return the correct feedback, it is known to be
trying to subvert the system.

Some applications may require agents to have many different expertise,
since there will be many different types of interaction. Therefore, the TMS
must also take into account the context of the interactions when assess-
ing the trust or reputation on another agent. In [Sabater and Sierra, 2001,
Sierra and Debenham, 2005] special care has been taken in developing a model
through which reputation in different contexts can be managed. The problem
of multiple contexts is that the higher the number of contexts, the smaller the
quantity of feedback for each one. Therefore, multi-context TMS must establish
similarity between contexts, which is a complex topic in itself.

22 CHAPTER 2. STATE OF THE ART

Agents can also try to subvert the TMS by displaying a dynamic personal-
ity through which they first gain reputation by acting satisfactorily and then
milking the gained reputation by acting unsatisfactorily. Some TMS handle
dynamic personality attacks by either measuring the entropy in the feedback
[Sierra and Debenham, 2005] or by reducing the time window of the feedback
taken into account when the agent’s reputation decreases [Xiong et al., 2004].

Another way to subvert the TMS is via whitewashing. In this case an agent
with low reputation will change its identity in order to shed its former reputa-
tion. This is useful when the reputation of an unknown agent is higher than the
current one. Whitewashing attacks are only viable when users can change their
online identities easily. Some TMS researchers avoid the issue by assuming that
identities cannot be changed. When such an assumption is not reasonable, a po-
tential solution is to add a cost to all newcomers alike. In [Feldman et al., 2004b)
an analytical game theoretical study shows that if the cost associated to getting
a new identity is higher than the utility gained by cheating, such mechanisms
effectively tackle whitewashing attacks. Nonetheless, in that work they show
that such costs degrade the systems efficiency when turnover is high, because
they assume that it is impossible to differentiate a real newcomer from a white-
washer. In [Sun et al., 2005], a mechanism with similar ideas is used to tackle
whitewashing attacks. This is an adaptive mechanism that assesses the trust on
a newcomer based on the rate of newcomers that cheat in a time interval. In
order to restrict the range of the effect of whitewashers on newcomers they add
a grouping mechanism.

Reputation mechanisms are necessary companions to the enforcement mech-
anisms for scenarios with uncertainty. When satisfaction is not a black and
white issue, the use of a reputation mechanism to model the behaviour of others
helps the agent decide whether or not to sanction, and when it is subjective.
Chapter 5 deals with scenarios where uncertainty is the norm, and reputation
mechanisms are big players in those scenarios.

2.8 Currency Systems

Human societies have been using currency as a common way to measure utility.
This currency in turn is used as a means to create incentives, either as sanctions
or rewards. The currency systems used by humans are usually managed by
the States, and thus are somewhat centralized. There are computer applications
that are used for trading services and goods (e.g., eBay, iTunes, or Amazon) and
that use these currencies. Nonetheless, there have been efforts to establish online
currencies for micro-payments. These online currencies are used by electronic
agents to pay for the services of other agents. Agents can offer their services in
exchange for the currency, which they can later on exchange for other services.
Micro-payment systems have been devised mainly to stop free-riding, but they
could also be used as an enforcement mechanism to achieve any desired conduct.

Micro-payment approaches share similar issues with TMS. They can also be
implemented in a centralized fashion, in which it is one agent that handles all the

2.8. CURRENCY SYSTEMS 23

transactions and keeps the accounting [Vishnumurthy et al., 2003]. Here again
we have the bottleneck and trust issues with the accounting agent. In this case,
implementing a decentralized currency management system is also tricky. The
idea is that any agent can create currency, which can then be transferred to
other agents as a payment [Garcia and Hoepman, 2005]. Distributed currency
management systems must also take fraud into account, such as double spending
or fake coins. In order to avoid agents from creating fake coins, it must be a
computationally costly task to create a valid coin, but verifying whether a coin
is fake or duplicated should be inexpensive. In [Garcia and Hoepman, 2005] this
is achieved by having a coin represent a hash function match.

The main problem with micro-payment systems is that the services being
paid for are so inexpensive that the overhead from the micro-payment is too
high. Especially when specific techniques have to be used to avoid fraud. Ripple
[Fugger, 2009] is a simple currency scheme based on an underlying social net-
work through which credit is given to trusted contacts, which could be used as
inspiration for simpler currency systems so that the overhead is not too great
for the price of the services being paid for.

Distributed currency systems could also be a companion to the enforcement
mechanisms proposed in this thesis. Although some research has been done to
check how well currency systems would work with the enforcement mechanisms
by the author, it has not been included into this thesis. The use of currency
systems could be used to tackle free-riding, which has been shown to be a problem
in many P2P and MANET systems.

This chapter has described the state of the art in the research areas related
to this thesis. The work in this thesis provides new enforcement techniques for
distributed systems. These enforcement techniques are power-based and use in-
formation from an underlying social network. On one hand, the work in Chapter
4 is closely related to norm research since its scenario is a normative multiagent
system. The research that ultimately led to the work in that chapter was based
on game theory and the iterated prisoner’s dilemma. On the other hand, the
work in Chapter 5 deals with subjective satisfaction measures, thus, reputa-
tion mechanisms are used to model the probability of satisfaction. However,
a currency-based mechanism could have been used for the same purpose. In
both of these chapters, there is no need for complicated violation detection tech-
niques, since there is no relation between different joint actions. Nonetheless, if
such relations existed, violation detection techniques would be essential. Before
going into the main contributions in Chapters 4 and 5, Chapter 3 presents the
methodology that has been used for the experimental results.

Chapter 3

Experimental Methodology

In this chapter we present the methodology that has been used to test differ-
ent hypotheses by means of experiments throughout the thesis. By dedicating
a chapter to the methodology, the chapters where experiments are actually de-
scribed are leaner, which makes them more readable. This chapter is meant as
reference to the reader in case she needs to remember how the experiments in
the core chapters have been executed.

The experiments consist of computer simulations of the models defined in
Chapters 4 and 5. The models have many variables, with many possible values
each. Nonetheless, each experiment deals with different ranges of values of the
variables depending on the nature of the hypothesis to be tested (the types of
variables and a list of all of them is given in Table 3.1). Simulations are executed
with the purpose of extracting data, which comes in the form of measurements
taken throughout the simulation or at the end of it. This data is then analysed
to support or discard the hypothesis.

Since the models have many variables, the best way to test the hypotheses
is through factorial experiments. These experiments are especially well suited
when there are two or more factors (important variables). Each of these factors
having a discrete set of input values, these values can be a selected subset of
all the values available. The idea is to run the simulations with all possible
combinations of these selected values accross all the factors. Factorial experiment
designs can also be called fully-crossed designs, but the former name will be used
throughout the thesis. Factorial experiment designs allow the experimenter to
test the effects of specific factors on the output measurements, as well as the
effects of interactions between factors, while making sure that the other factors
did not have a role in those effects.

We have implemented a simulation environment in Java. This environment
allows the researcher to parameterize the variables of the model. The simulation
tool can also take specific measurements at different intervals. Also, simulation
batches can be executed for factorial experiments. The simulation tool has
some random effects, which are not accounted for in order to reduce the number
of factors, such as the order of interaction, the randomization of some agent

25

26 CHAPTER 3. EXPERIMENTAL METHODOLOGY

strategy parameters, or the network graph. In such cases, several simulations
with the same set of input variable values in a factorial design are run in order
to make up for the random effect.

Once the simulations are all run and the data has been gathered, then the sta-
tistical analysis begins. We use an analysis of variance (ANOVA) to test whether
there is an effect from specific input variables to specific output measurements.
An ANOVA works best when the input data has the following characteristics: in-
dependence, normality, and homoscedasticity. Independence means that values
of one variable make neither more nor less probable values of another variable.
Normality means that the measured values for any input variable value combi-
nation have a normal distribution. Finally, a sequence or a vector of random
variables is homoscedastic if all random variables in the sequence or vector have
the same finite variance.

ANOVA tends to be robust with measured data that is not completely normal
or doesn’t have equal variances. Nonetheless, we run a quantile-quantile plot
(QQ plot) through which we test the experimental data for normality. After
passing the QQ plot test, we run a Levene’s test, which verifies homoscedascisity
of the data. Both of these tests are not completely necessary, since ANOVA is
robust to non-normality and non-homoscedascisity to a certain degree. On the
other hand, ANOVA is not robust to dependent variables, and we make sure
there are none through a correct experiment design.

Once we have checked for normality and homoscedascisity satisfactorily, we
run the ANOVA to test the effect of specific input variables or groups of input
variables on the output measurements. The ANOVA analysis returns the signif-
icance of a variable or group or variables as a measurement of the probability
with which they had an effect on the output measurement. The convention is
that, if the significance is over 95%, then an effect exists.

For those experiments where we want to know the specific effect the input
variable had on a specific measurement, we run a Tukey test for the significant
factors. The Tukey test is a single-step multiple comparison procedure to find
which means are significantly different from one another. By comparing the
means for the different input values of the given factor one checks which input
values have significantly smaller or larger output measures.

All the statistical analysis tests (QQ plot, Levene, ANOVA, and Tukey)
have been run using the R statistical package [R-Project, 2009]. This is a free
software replacement for the well-known S statistical package. The language
used for programming is the same for both systems.

3.1 Variables

All the simulations and experiments follow the models presented in Sections
4.2 and 5.1. These models can be parameterised in many ways. All of these
parameters are in fact the input variables (or factors) taken into account for the
statistical analysis. In this section we describe some of the main variables set in
most simulations and how they are used in the simulations.

3.2. MEASUREMENTS 27

’ Name \ Type
Number of Agents 2, 00
Number of Rounds 1, o
Network Topology Small-world, Scale-free,
Tree, Ring, Random
Interaction ordering seed 1, o
Random seed 1, ©

Table 3.1: Simulation Variables

Table 3.1 describes the variables in the simulations for a specific model. In
this case the number of agents is a natural number that must be at least 2.
In order to test different values for this variable we get numbers from a power
distribution: 2%, 2°, 26,27, 2% and so on. The number of rounds is also a natural
number, which defines the total number of time steps for which the simulation
will be executed.

The network topology establishes the general makeup of the contact network.
Different topologies have been used in the simulations, some of these topologies
are significant because they have characteristics which are found in real world
contact networks, such as scale free and small world topologies. Other topologies,
such as trees and random networks have also been used in some experiments.

In each time step each agent is given the chance to start an interaction,
which may end up in a joint action with another agent. The order in which
the agents are given the chance depends on a random variable which is given by
the interaction ordering seed. The random seed is used to generate the pseudo
random values that are used to generate the network graph of the specified
topology, the cheating probability values, and other inputs that require a random
value.

3.2 Measurements

The simulation tool takes measurements at specific time intervals, by default
this interval is set to 10 rounds. Depending on the experiment at hand, differ-
ent measurements will be taken. All measurements are taken together at each
interval. These measurements can be taken for all agents as a whole or just for
those agents of a specific type. In this section we present the different measures
that have been taken.

Table 3.2 describes the different output measurements of the simulations
for an experiment. The number of messages is the measure of how many low
level messages have been sent by all agents. These messages include request
messages, acknowledgement messages, complaint messages, and feedback query
and answering messages. Messages from low level protocols and routing table
maintenance messages are not taken into account.

The number of joint actions is the total number of joint actions that have

28 CHAPTER 3. EXPERIMENTAL METHODOLOGY

’ Name \ Type ‘
Round

Number of Messages

Number of Joint Actions

Number of Satisfactory Joint Actions
Number of Complaints

Number of Attempted Joint Actions

Z| 2| Z| 2| 2| Z

Table 3.2: Simulation Measurements

taken place. The number of complaints is the total number of complaints filed
by agents. A satisfactory joint action is a joint action for which none of the par-
ticipants have complained. None of the previous three values can be calculated
from the other two because a non satisfactory joint action could involve one or
two complaints. Therefore, the three have to be measured at runtime if they
are needed for the experiment outcome. The number of attempted joint actions
is the total number of interaction protocols started, independently of whether
they ended up in a joint action.

Other derived metrics may be useful for the experimental result analysis,
such as the percentage of successful joint action attempts, or the percentage of
satisfactory joint actions. This can be easily calculated given the previously men-
tioned measurements. For example, the percentage of satisfactory joint actions
is calculated through the following formula,

#SatisfactoryJoint Actions
#Joint Actions

The derived metrics used for the specific experiments will be explained at the
experiment sections of the main chapters.

3.3 Experiment design and results

In the chapters where experiments are presented, a table is given to represent
the experiment design. This table consists of three parts: the first one contains
the input variables of the simulations, the second one lists the measurements
taken throughout the experiments, and the third part describes the integrity
constraints for the input variable values. The first part of the table contains
one row for each tested variable, or factor. When listing the variables that
depend the agent strategies they will be grouped by agent type. The table has
two columns, the first column contains variable names, the second contains the
actual values used in the simulations. As for the second part, there is one row
for each measured value. The first column names the measured variable, and
the second gives the measurement type. Finally the third part of the table
contains one integrity constraint per row. Each row has two columns, one for
the constraint name and one for the constraint definition.

3.3. EXPERIMENT DESIGN AND RESULTS 29

Input Variables Values

Agents 32, 64, 128, 256
Rounds 10, 20, ..., 200
Topology Small world, Scale Free
Cheater 0.1,0.2,0.3,0.4,0.5

- Cheating probability 0.8, 1.0

- Colluding True, False
Collaborator 0.5,0.6,0.7,0.8,0.9

- Blocking True, False

- Informing True, False
Measurements Type
Messages N
Satisfaction R
Integrity constraints Formula

Full Partitioning Cheater + Collaborator = 1.0

Table 3.3: Example of an experiment description table.

’Inputs \ Outputs \ « \Relationship

Agents Messages 0.98 | Higher number of agents have higher
number of messages

% Cheaters Satisfaction 0.95 | Higher percentage of cheater agents
make for lower satisfaction.

Blocking Satisfaction 0.99 | When blocking is used by collaborators,
(Collaborators) the satisfaction of collaborators is
increased.

Table 3.4: Example of an experiment description table.

Table 3.3 gives an example of an experiment design table. The first part
shows that there will be two types of agents: cheaters and collaborators. The
percentage of the population that is a cheater goes from 10 to 50, and the
percentage of collaborators is dependent on the number of cheaters. Therefore,
it cannot be used as an input variable for the ANOVA. Each agent type has
different strategy settings, which are shown below the agent type name.

The experiment results are also given in a table. Each row in the table
represents a potential cause-effect relationship. The first column in the table
gives the variable, or group of variables, that can have a potential effect. The
second column shows the measured variable over which there might be an effect
(the contents in parenthesis define over which agent types the measurements
hold). The third column gives the significance value. If the value is over 0.95,
then a correlation exists. The last column explains the relationship between the
input and output, if any.

Table 3.4 gives an example of what a results table would look like. There
are three results showing three relations between groups of input variables and

30 CHAPTER 3. EXPERIMENTAL METHODOLOGY

groups of output measures. All the variables and measures are those present
at Table 3.3. The first row shows that the relation between the number of
agents and the number of messages is highly significant, and that the form of
the relationship is given in the last column.

Chapter 4

Ostracism

In a multiagent system where norms are used to regulate the actions agents
ought to execute, some agents may decide not to abide by the norms if this can
benefit them. Norm enforcement mechanisms are designed to counteract these
benefits and thus the motives for not abiding by the norms. In this chapter
we propose distributed mechanisms through which agents that do not abide by
the norms can be ostracised by their peers. An ostracised agent cannot interact
anymore and looses all benefits from future interactions. We describe a model for
multiagent systems structured as networks of agents, and a behavioural model
for the agents in such systems. Furthermore, we provide analytical results which
show that there exists an upper bound to the number of potential norm violations
when all the agents exhibit certain behaviours. We also provide experimental
results showing that both stricter enforcement behaviours and larger percentage
of agents exhibiting these behaviours reduce the number of norm violations,
and that the network topology influences the number of norm violations. These
experiments have been executed under varying scenarios with different values for
the number of agents, percentage of enforcers, percentage of violators, network
topology, and agent behaviours. Finally, we give examples of applications where
the enforcement techniques we provide could be used.

4.1 Introduction

Multiagent systems (MAS) consist of groups of agents that interact with one
another with the purpose of achieving their individual goals. In order for mul-
tiagent systems to be viable, the agents involved should have a better chance of
achieving their goals by interacting with others in the MAS than by trying to
achieve them on their own. When interacting with other autonomous entities,
which are potentially selfish, planning can be a complex task. For situations
where planning is cumbersome, norms may be established that restrict the set
of valid actions, thus simplifying the planning process. However, an autonomous
agent can choose whether to follow the norms or not.

31

32 CHAPTER 4. OSTRACISM

AGENTA

Abide Violate

Abide

AGENT B

Violate

Figure 4.1: Global outcomes of interactions

It is mainly in the interest of the designer of norms in multiagent systems that
agents abide by them. In Figure 4.1 we can see a table showing the qualitative
gain achieved by the designer (or by the community as a whole) by interactions
among pairs of agents of the system, which are defined as joint actions. Agents
have two main choices: to abide by the norm or to violate it. The most desired
interactions are those in which both agents abide, this brings about a positive
outcome. On the other hand, interactions where any agent violates the norm are
not desirable, being those interactions where both agents violate the norm the
most undesirable of all (see Figure 4.1). Nonetheless, some individual agents may
get more satisfaction out of executing illegal actions themselves, otherwise there
would be no need for enforcement. The situation where norms are beneficial
when all agents abide, but where agents also have an incentive to break the
norm is the one where the normative behaviour is hardest to achieve.

The purpose of this chapter is to find behavioural properties of the agents that
are better suited to achieve norm compliance at the global level. We examine
those behavioural properties that can serve as distributed norm enforcement
techniques in the MAS we study. We do not aim to study the internals of agents
in order to determine what might motivate them. We treat agents as black
boxes whose internals we do not have access to and we study the outcome in
norm abidance when different agents with different behaviours interact.

Ostracism is the exclusion by general consent from common privilege or social
acceptance.! Ostracism is a peer norm enforcement technique, i.e., a technique
applied among equals to enforce norms. In the approach described in this chapter
there is no co-ordinated action by the community to ostracise, it is a gradual
process by which a violator agent is removed through the actions of its peers.

LOstracism was first practised by the ancient Greeks as a method of temporary banishment
by popular vote without trial or special accusation. The way ostracism was decided in Athens
was by casting a vote in pieces of broken pottery called ostraka. If enough votes were cast,
the person with the highest number of votes was forced into exile for ten years, after which he
was allowed to return without loss of status. If he tried to return before that he would face a
death sentence.

4.1. INTRODUCTION 33

Furthermore, there is no explicit expiration time for ostracism, it is individual
agents who choose whether to readmit the violator or not. The inspiration
for our approach comes from the network security area, where firewalls are the
most commonly used tool to avoid undesirable interactions. Such firewalls are
managed by technicians which set up the rules under which they operate. These
rules define which communications they allow and which they block.

In our approach a MAS is structured as a network of agents where the links
between agents define a neighbourhood relationship. Agents in this network can
execute joint actions with each other. We take a strong stance on speech act
theory, by which all agent actions are illocutions which can be encapsulated as
messages. In order to execute a joint action an agent a will search for a path
through the network leading to a partner b where all the path’s intermediate
agents have granted a access to the next step in the path. Once the path is
found, agents a and b can execute a joint action. In our approach the set of
all actions agents can execute must be defined, and the normative behaviour
defines which actions are permitted depending on the environment. Having to
search for a path through the network in order to execute a joint action makes
agents depend on other agents. Such dependence allows agents to block access
to the network to those agents which violate the norms by executing actions
which are forbidden. A violator agent is effectively ostracised from the network
when enough agents have blocked it.

The peer norm enforcement techniques introduced in this chapter could be
used in applications where the norms are well known to all the participants
and whose compliance can be objectively tested. For instance, in a file sharing
network where the file size cannot exceed 100MB, or in a news sharing application
where certain linguistic expressions are forbidden. In order to join the file or
news sharing systems, an agent would have to create at least one link to one of
the agents already in the system thereby creating a social network of information
sharing agents. Given that the file sharing or information sharing networks have
a set of norms about the information that can be sent, sending information
which does not fulfil these norms would be forbidden. By using the enforcement
techniques proposed in the current chapter, those agents which violate the norm
repeatedly would eventually be ostracised and could not continue harming the
rest of the agents.

We have designed a totally distributed system that allows norm enforcement.
Therefore, there are only two ways in which an agent can find out whether
another agent is a norm violator: by being the partner in a joint action where
the other agent executed a forbidden action, or by having the contents of a
joint action, where a forbidden action was executed, being disclosed to it. In
the MAS model we propose, we use encryption techniques that guarantee that
the disclosure of the joint action contents can only be verified as truthful by the
agents in the joint action path. This restriction removes any incentive to disclose
non-existing joint actions, or to disclose to agents not in the joint action path.

The process through which an agent is ostracised is shown in Figure 4.2.
At first a norm violator (dark grey node) is believed to be an abiding member

34 CHAPTER 4. OSTRACISM

(a) Unrestricted violator (b) Semi-restricted violator (c) Ostracized violator

Figure 4.2: Ostracising a violator

of the MAS, therefore the other agents will execute joint actions with it (the
light grey nodes can execute joint actions with the violator). At some point
the norm violator will execute a forbidden action and the partner of this joint
action will realise this. Furthermore, the intermediate agents in the path between
them will also know if the partner discloses the joint action contents. If agents
knowing about this forbidden behaviour block the norm violator (black nodes are
blocking the violator), its access to other agents in the network will be restricted
(i.e., white nodes cannot execute joint actions with the violator). When all its
neighbours find out about its forbidden behaviour and block it, the norm violator
is effectively ostracised.

When designing the multiagent system, our main concern was how ef-
fectively norm violators could be stopped, and what behavioural proper-
ties agents had to exhibit in order to speed up the ostracism process.
Initial versions of this work, published in [Perreau de Pinninck et al., 2007,
Perreau de Pinninck et al., 2008b], presented a model that has been improved in
this chapter and from which we have extracted some analytical results. Further-
more, on our initial approaches we did some exploratory analysis that guided us
towards formulating certain properties of the system that would account for a
reduction on the number of norm violations. In this chapter we have generalised
the model used in the above mentioned initial approaches by allowing more in-
teractions than just those that can be modelled through game theory, thus, we
have been able to concentrate on studying how the behavioural properties of
the agents affect the abidance to the norms at the global level without dealing
with the agent motivations. We have proven analytically that when all agents in
the network exhibit certain behavioural properties, there exists an upper bound
to the total number of illegal actions that can be executed. Nonetheless, since
agents are autonomous, we cannot ensure that they will all exhibit such be-
havioural properties. In those cases where there is a subset of agents that apply
the norms, we have shown that the number of norm violations executed against
them also has an upper bound under certain conditions. Notwithstanding, there

4.2. THE MODEL 35

are still cases in which either these condition do not hold or we want to continue
to quantify norm violations to all agents. For these cases, we have run several
experiments to support our claim that when agents exhibit such behavioural
properties, the number of illegal actions that are executed is reduced. Fur-
thermore, one of the analytical proofs supports our intuition that the network
topology has an impact on the ostracism efficiency. The proof shows that the
network size, i.e., the total number of links in the graph, is the upper bound
of illegal actions under certain conditions. We have also run experiments whose
results support this hypothesis.

The remaining of the chapter is structured as follows. Section 4.2 describes
the multiagent system model and Section 4.3 defines the agent behaviour model,
some properties it can exhibit, and shows analytically how they influence norm
enforcement. Section 4.4 presents a detailed description of the scenario employed
in the experiments. Section 4.5 gives an account of the simulations, and anal-
yses the resulting data. Section 4.6 provides some examples of how the model
and techniques could be applied in real world applications. Finally, Section 4.7
presents a discussion on the chapter’s results and future work that follows from
this research.

4.2 The Model

The model described in this section defines a special kind of multiagent system
(MAS) which is structured as a network with fixed links. We will refer to these
special MAS as multiagent networks (MAN). Agents in a MAN may execute
joint actions with others, in these joint actions only a finite set of actions can
be executed by each agent (see Definition 4.2.4). We take a strong stance on
speech act theory, by which all agent actions are illocutions.

Throughout the formalisation below the following types of symbols will be
used: Latin capital letters refer to sets (e.g., A). Lower case Latin letters refer to
elements of sets (e.g., a € A). Lower case Greek letters refer to functions (e.g.,
7). Finally teletype words are used to refer to concrete values (e.g., void), and
bold words for predicates (e.g., violator). Furthermore, in all mathematical
formula the variables are universally quantified unless specified otherwise.

The multiagent networks we define form a graph where the vertices are agents
and the edges are direct communication channels between them. Two agents are
neighbours if there is an edge between them. Furthermore, the model defines the
set of actions that agents can execute, containing a special action (i.e., void)
that means that the agent refuses to interact.

Definition 4.2.1. A multiagent network is a tuple N' = (4, n, C') where:
e A is a finite set of agents.

e n: A — 2% is a neighbourhood function returning an agent’s neighbours
such that it is:

— irreflexive, i.e., Ya € A (a ¢ n(a))

36 CHAPTER 4. OSTRACISM

— undirected, i.e., Va,a’ € A (¢’ € n(a) < a € n(a’))

e (is a finite set of actions that agents can potentially execute, with a
distinguished element void.

In this model, to be neighbours means to be linked through a direct commu-
nication channel. Nonetheless, if two agents in the network are not neighbours,
they may still interact through a path in the network.

Definition 4.2.2. Given a multiagent network A" = (A4, n,C), a path is a finite
sequence of agents p = (a1, as, ..., a,) where a; € A, such that:

1. its length is greater than one, i.e., n > 1;

2. any pair of consecutive agents are neighbours, i.e., a;y1 € n(a;) for i =
1,...n—1;

3. it contains no cycles, i.e., i # j iff a; #a; fori,j =1,...,n.

Agent a; is referred to as the initiator and a, the partner. The other agents in
the path are referred to as mediators. Let P be the set of all paths in network
N. Let i : P — 24 be the mediator function. Given a path p € P, u(p) is the
set of mediators in a path, i.e., u({a1,az,...,an)) = {a; | 1 <i <n}.

A multiagent network defines how joint actions are executed and how agents
observe them. During the execution of a MAN, two processes may occur: The
joint action execution and the execution disclosure. The joint action execution
process may be driven by the need of agents to act together. The disclosure
process may be driven by the agents willing to make the contents of a joint action
known in order to make norm violators identity known to others. This can either
be motivated by revenge to the norm violator, or by altruism towards others that
may encounter the same norm violating agent in the future. Nonetheless, we do
not aim to study the motivations of agents.

The joint action execution process is made up of the following stages:

1. A path is constructed that links an initiator and a partner.

2. The initiator and partner agents execute a joint action through the con-
structed path.

Agents may be able to execute many joint actions in parallel, but we assume
that all events they perceive can be ordered. The events an agent can perceive
are either the proposal of neighbours as potential partners, the execution of
actions by a partner in a joint action, or the disclosure of the contents of a joint
action.

Definition 4.2.3. Given a multiagent network N' = (A, n, C) a partner proposal
is a tuple (a,a’, A’) such that:

e a € A is the agent seeking for a partner agent that queries for neighbours.

4.2. THE MODEL 37

e a/ € A is the agent that proposes a set of its neighbours as potential
partners.

o A’ C n(a’) is the set of potential partners proposed by ¢’ which must be a
subset of its neighbours

Let F be the set of all partner proposals in N.

Definition 4.2.4. Given a multiagent network A" = (A, 7, C) a joint action is
a tuple (p,c,d, J) such that:

e p={ay,as,..,ay,) is a path in P.
e ¢ € C is the initiator’s action (i.e., a;’s action).
e d € C is the partner’s action (i.e., a,’s action).

e J is the set of previously executed joint actions either by the initiator or
partner, and that have been observed by both (see discussion below Defini-
tion 5.1.3 about the actions observed by the agents from the environment).
Therefore, (p,c,d,J) ¢ J

Let G be the set of all joint actions in N. Consequently, J C G. A joint action
(p,c,d, J) is of mutual consent when ¢ # void and d # void.

Definition 4.2.5. Given a multiagent network N’ = (A, n, C), a disclosure is a
tuple (a, ({a1,as,...,an),c,d,J)) such that:

e a € A is the agent disclosing the joint action.
e ((ay,a9,....,an),c,d,J) € G is the joint action being disclosed.

The disclosing agent must be either the initiator or partner of the joint action,
i.e., @ = ay or a = a,. Let D be the set of all disclosures in N.

A MAN has an associated environment containing the history of all events
(i.e., partner proposals, joint actions, and disclosures). The history is the only
part of the environment that we model.? Agents have different perceptions of
the environment, since they can only observe those events in which they are
involved: being a seeker or a proposer in a partner proposal, being the initiator
or partner of a joint action, or being a mediator of a disclosed joint action.

Definition 4.2.6. Given a multiagent network N' = (A, n, C), an environment
is a tuple e = (F',G’, D') such that:

e [’ C Fis a set of partner proposals.
e ' C G is a set of joint actions.

e D' C D is a set of disclosures.

2An environment, in general, could contain other pieces of information (e.g., sensor read-
ings) that we do not consider.

38 CHAPTER 4. OSTRACISM

Let E be the set of all environments for NV.

A global environment would contain all events that occurred during the sys-
tem execution. Although the global environment might not be stored in any
place it is a useful mathematical construct. On the other hand, there is a local
environment that each agent can observe. These local environments are partial
views of the global environment, thus, the global environment is the union of all
the agents’ local environments. Furthermore, an agent is said to have observed
a joint action if it is part of its local environment.

Definition 4.2.7. Given a multiagent network N' = (A,n,C), a global envi-
ronment e = (F',G’, D'), and an agent a, the local environment of agent a is
ele = (F",G",D"), such that:

o I"={{d,d" AYe F' |la=d Va=d"Vaec A}
o " ={{{ay,az,...,an),¢,d,]y €EG |a=a1Va=a,}
e D" ={{d,(p,c,d,J)) € D" | a € p(p)}

Let § : E x A — 29 be the observed joint action function, where 0(e,a) is
the set of all joint actions observed by agent a from the global environment
e = (F',G', D", i.e., given e|, = (F",G",D") as defined above, 6(e,a) =
G'"U{ge GV, g) e D"}

At the beginning of a MAN execution, the environment is always empty (i.e.,
eo = (0,0,0)), thus, no agent has observed any joint actions (i.e., 6(eqg,a) = 0).
Whenever a joint action is executed in an environment e € FE, the set J of
previously executed joint actions is the intersection of the joint actions observed
from the environment by the interacting agents up to the moment of execution,
i.e., V{{a1, a2,an),c,d, J) € G' (J =0(e,a1) NO(e,ay)).

The multiagent networks described in this chapter are normative. This means
that an agent may be forbidden to execute some actions against another agent
depending on the environment. In a MAN, the system designer defines a nor-
mative behaviour function that describes which actions an agent is permitted
to execute in a joint action with another agent given the set of commonly ob-
served joint actions. These commonly observed joint actions form part of the
joint action so that any mediator can verify the partner agent’s abidance to the
normative behaviour if the joint action is disclosed.

Definition 4.2.8. A normative behaviour is defined as a function v : 2¢ x A x
A — 29, Given the agents a,a’ € A, with the commonly observed joint actions
J C G, v(J,a,d’) is the set of actions that a is permitted to execute in a joint
action with a’. A joint action g = ((a1,as,...,a,),¢,d, J) is a norm violation
when either ¢ ¢ v(J,a1,a,) or d ¢ v(J,an,a1). Our model allows agents to
refuse to interact with norm violating agents. Therefore, it is always permitted
to execute the void action against an agent that has executed a norm violation,
i.e., void € v(J,a,a’) if there exists ((a},ah,...,al),c,d',J') € J such that

cey Ay

either ¢ ¢ v(J',ad},a,)Na' =a) ord ¢ v(J',al,a}) ANa =al hold.

4.3. BEHAVIOURAL MODEL 39

4.3 Behavioural Model

The previous section has introduced our model of a multiagent network. In
this section we propose a behavioural model for the system, and we define some
behavioural properties.

Executing joint actions and disclosure follow a specific algorithm in the cur-
rent model which consists of three parts:

1. A path is constructed that links an initiator and a partner.

2. The initiator and partner agents execute a joint action through the con-
structed path.

3. Either the initiator or partner agent discloses the previously executed joint
action.

4.3.1 Functional Model

In the presented behavioural model we define functions describing the behaviour
among agents. We assume deterministic agents, thus, we may define functions
that describe the system’s behaviour. We cannot learn these functions from
observations, since the only way to define these functions is to have access to the
internals of all agents in the system. Nonetheless, we may have approximations
of these behaviours that allow us to see whether they satisfy specific properties
(see Section 4.3.5).

Definition 4.3.1. Given a multiagent network N' = (A, n, C), its behaviour is
a tuple («, 7, d), where:

o T: Ax Ax E — FU{Ll} is a potential partners function that models the
agents’ mediation behaviour. Given an initiator agent a € A, a mediator
agent a’ € A, and an environment e € E, w(a,a’,e) is either a partner
proposal from a’ to a or the empty event.

e a: AXxAxE — GU{L} is an action execution function that models
the agents’ action execution behaviour. Given an initiator agent a € A, a
partner agent a’ € A, and an environment e € E, a(a,d’,e) is either the
joint action executed by a and a’ in the environment e or the empty event.

e J: AXAXxE— DU{L} is a disclosure function that models the agents’
disclosure behaviour. Given an initiator agent a € A, a partner agent
a’ € A, and an environment e € E, d(a,a’,e) is either the disclosure
uttered by any of the two participants (see Section 4.3.4) or the empty
event. We assume that agents do not disclose joint actions more than
once, i.e., é(ay,an, (F',G',D")) ¢ D'.

Let B be the set of all system behaviours. The modelling of the system behaviour
with functions is needed to prove the analytical results in Section 4.3.5. As a
notation abuse, we define an agent behaviour as the system behaviour when one
of the agent input variables is fixed to a specific agent.

40 CHAPTER 4. OSTRACISM

4.3.2 Constructing a path

In the first stage of the joint action execution process an initiator selects a path
that leads to a partner with which to interact. Not all paths in the network fulfil
the properties needed in order to be part of a joint action because they depend
on the the network environment and the system behaviour.

Definition 4.3.2. Given a multiagent network N' = (A4, n, C), an environment
e € E, and a behaviour {«,m,d) € B, a path p = {(a1,as,...,a,) is said to be
socially feasible when each agent a;41 in the path is proposed as a potential
partner to the initiator by the previous agent in the path (i.e., a;) ,i.e., V1 <
i <n (n(a1,a;,e) = (a1,a;, A'Y Naj41 € A').

During the path search process, the initiator agent will query agents for
potential partners which are returned through partner proposal illocutions. The
proposed partners must be a subset of the neighbours of the agent being queried.
In order to construct the path, any graph search method may be used (see Section
4.4.2 for examples of search methods).

4.3.3 Executing a joint action

The second stage in the joint action execution process is to create the joint
action. The joint action contains the feasible path that was constructed in the
previous stage, the actions executed by the initiator and partner agents, and
the set of joint actions observed by both of them from the environment. A
joint action is executed because the initiator constructed a socially feasible path
towards the partner. Nonetheless, both agents have the ability of executing the
void action, which makes the joint action not of mutual consent.

By taking a strong stance on speech act theory, all actions are be executed
through message passing. The messages containing the joint action are sent from
one agent to another through the joint action path. In order for the selected
actions to be private to the interacting agents the messages that contain the joint
action are encrypted. This can be done by having a public key infrastructure
(PKI) in which the public key of an agent is its identifier. Nonetheless, the use
of a PKI involves some centralisation. This is why we choose to use a web-of-
trust (WOT) approach implemented via OpenPGP through which we achieve
the same results as using a PKI but without any centralisation. When executing
a joint action, the message containing it would be encrypted using the recipient’s
public key. The encrypted messages would be passed along the joint action path,
but none of the mediators should be able to decipher their content, thus keeping
them private.

4.3.4 Disclosing joint actions

Disclosure is the process through which either the initiator or partner agents
make the contents of a joint action observable to the mediator agents. In the

4.3. BEHAVIOURAL MODEL 41

previous section we have seen that the mediator agents have access to the en-
crypted message containing the joint action. This message has been encrypted
using the public key of the destination agent, which is known to all. There-
fore, if either the initiator or partner agent decide to disclose the contents of
the executed joint action, they only need to send the decrypted contents to
the mediators. The mediators can easily test whether the disclosed joint ac-
tion contents are truthful by encrypting it using the public key of the recipient
agent and verifying that the encrypted message matches the previous one that
was sent through them. Since the original encrypted joint action is only known
to the path mediators, only they can test its validity. Therefore, disclosure of
joint actions is limited to the path’s mediators. Furthermore, the mediators can
test whether any of the actions was a norm violation by using the normative
behaviour function v.

The environment is updated as joint actions are executed and disclosed. In
our MAN model the initiator and partner agents can disclose joint actions that
have been previously executed by them only once. The environment is updated
to include these illocutions whenever they are uttered.

4.3.5 Behavioural properties

In this section the properties of the proposed behavioural model are shown. They
establish why a set of agents exhibiting certain behavioural properties enforce
the norm by discouraging norm violations.

Definition 4.3.3. Given a multiagent network A" = (A, n, C) with a normative
behaviour function v, and given an environment e € E, an agent a is a norm
violator with respect to an agent a’, noted as violator(a,a’,e), if a executed a
forbidden action in any of the joint actions observed by a’.

violator(a,d’, e) < (a1, a2, ...,an), c,d, J) € (e, a’)
((ar=aNnc¢v(Ja,an))V (an=aAd ¢ v(J] ana1)))

There are potentially many types of agent behaviours. We will discuss the
properties of some of them: avoiding, blocking, protecting, and informing.

Definition 4.3.4. Given a multiagent network AN/ = (A,n,C), and a norma-
tive behaviour function v, an action execution function « is said to be wviolator
avoiding for an agent a € A when a executes the void action against norm
violators, i.e., violator(a',a,e) A ((a(a,d’,e) = (p,void,d,J)) V (a(d,a,e) =
(p',c,void, J'))). Let the predicate avoiding(«,a) hold when the action ex-
ecution function « is violator avoiding for agent a. A behaviour is said to be
violator avoiding for agent a if its action execution function is.

For the following proofs we define the function 7 : 2¢ x A x A — 2¢. Given a
set of joint actions G’ C G and two agents a,a’ € A, 7(G’', a,a’) is the set of the
given joint actions that were executed by the given agents, i.e., 7(G’, a;,a;) =
{({a1,a2,...,an),c,d, J) € G’ | (a1 = a; Nan, = a;) V (a1 = a; ANa, = a;)}. We

42 CHAPTER 4. OSTRACISM

also define the function p : 2¢ — 2%. Given a set of joint actions G’ C G, and
a normative behaviour function v, p(G’) is the subset of the given joint actions
which are norm violations and of mutual consent (see Definition 4.2.4), i.e.,
p(G,) = {<<a17 a2, ..y an>a ¢,d, J> € G/‘(C ¢ V(Jv ai, an) vd ¢ V(J’ an’al)) Ne 7£
void A d # void}.

Lemma 4.3.5. Given a multiagent network (A,n,C), and a normative be-
haviour function v, with an environment e € E, let (o, m,5) € B be the system’s
behaviour. If the action execution function is violator avoiding for agents a;
and aj, then the number of norm violations in mutually consented joint actions
by agents a; and a; is at most 1, i.e., avoiding(«,a;) A avoiding(a,a;) —
|T(p(6(e, ai)),ai, a)] < 1.

Proof. We proceed by reductio ad absurdum. Let us assume that
avoiding(«,a;) A avoiding(a,a;) A [(T(p(6(e,a;)),a,a;)] > 1. Let g =
({(a1,az2,...,an),c,d,J) be the joint action in 7(p(f(e,a;)), a;,a;) executed the
latest. This is known because by construction g contains all other joint actions
in 7(p(0(e, a;)), ai,a;) (see the discussion after Definition 5.1.3).

From the assumption we deduce that 7(p(6(e,a;)),a:,a;) \ {g} cannot be
empty. Since the action execution function is violator avoiding for agents a; and
aj;, and 7(p((e, a;)), a;,a;) \ g € J, thus containing at least one norm violation
by agent a; or a;, then the joint action a(a;,a;,e’), where €’ is the environment
at the moment of execution, should contain at least one void action. Therefore,
g cannot be a joint action of mutual consent, i.e., g ¢ p(0(e, a;)), which is a con-
tradiction. Hence avoiding(c, a;)Aavoiding(c, a;) — |7(p(6(e, a;)), a:, ;)] < 1
as we wanted to prove. O

Theorem 4.3.6. If the behaviour {a,m,8) of a multiagent network N =
(A, n,C), with a normative behaviour function v, contains an action execution
function that is violator avoiding for all agents (i.e., Va; € A (avoiding(«, a;))),
then there exists an upper bound to the total number of potential norm violations

i mutually consented joint actions that can be executed. This upper bound is
[AI(JA] = 1)/2.

Proof. The total number of norm violations in a multiagent network is equal to
the sum of the norm violations happening between each pair of agents. There-
fore, one can calculate the total number of norm violations by adding the po-
tential norm violations between each pair of agents.

Zai,aj EAiF#] T(p(6(67 ai))7 ag, aj)
2

Given that all agents in the system have a violator avoiding behaviour, Lemma
4.3.5 applies to all pairs of agents. Therefore,

D anayeniz; T(P(O(e, ai)), ai, a;) _ 14104 - 1)
2 - 2

which proves the theorem. O

4.3. BEHAVIOURAL MODEL 43

The following result may be proved in much the same way as Lemma 4.3.5
and Theorem 4.3.6:

Corollary 4.3.7. Given a multiagent network (A,n,C) with a normative be-
haviour function v, and a behaviour («, 7, d8) that is violator avoiding for a group
of agents A’ C A (i.e., Va; € A’ (avoiding(«, a;))), then there exists an upper
bound to the total number of potential norm wviolations in mutually consented
joint actions that can be executed by an agent when the other agent in the joint
action is part of A’. This upper bound is |A’'|(|A] —1)/2.

When the avoiding behavioural property is combined with other behavioural
properties, the enforcement capabilities grow by reducing the number of poten-
tial norm violations.

Definition 4.3.8. Given a multiagent network (A,n,C) with a normative be-
haviour function v, a potential partners function 7 is said to be blocking for agent
a € A when the partner proposals it returns contain the empty set if the querier
is a norm violator, i.e., violator(a;,a,e)) A w(a;,a,e) = (a;,a,A") — A" = 0.
Let the predicate blocking(m, a) hold when the function = is blocking for agent
a. A behaviour is said to be blocking for agent « if its potential partners function
is.

It can be easily shown that when the system’s behaviour is avoiding and
blocking for all agents, a smart norm violator would execute forbidden actions
against agents in the network whose neighbours are accessible through some
other path. Therefore, the upper bound to the number of potential norm vi-
olations would remain the same as if all agents had an avoiding behavioural
property alone. Consequently, in order to lower the upper bound we explore
other behavioural properties.

Definition 4.3.9. Given a multiagent network (A,n, C) with a normative be-
haviour function v, a potential partners function 7 is said to be protecting for
agent a € A when the partner proposals it returns never contain norm violators,
i.e., Ya; € n(a)(violator(a;, a,e)) Am(ag,a,e) = (ag,a,A’) — a;j ¢ A’). Let the
predicate protecting(mw, a) hold when the function 7 is protecting for agent a.
A behaviour is said to be protecting for agent a if its potential partners function
is.

It is also straightforward to prove that when the system’s behaviour is avoid-
ing and protecting for all agents, a smart norm violator would execute forbidden
actions against non-neighbouring agents first (e.g., by using a depth first search
algorithm). Therefore, the number of potential norm violations shall remain the
same as if all agents have an avoiding behavioural property alone. Even when
all agents use a behaviour with avoiding, blocking, and protecting properties a
depth first search for joint action partners to violate would maintain the upper
bound. Therefore, other behavioural properties are needed to lower this upper
bound.

44 CHAPTER 4. OSTRACISM

Definition 4.3.10. Given a multiagent network (A, n, C') with a normative be-
haviour function v, a disclosure function § is said to be informing for agent
a € A when it returns disclosures of norm violating joint actions executed
against it, i.e., 0(a,d’, (F',G',D’)) = (a,9) — (¢ = {{(a,a2,...,d"),¢,d,J) Nd ¢
v(J,d',a)) vV (g = ((d,a2,...,a),¢,d, J) N e & v(J,a',a)). Let the predicate
informing(d) hold when the function ¢ is informing. A behaviour is said to
be informing for agent « if its disclosure function is.

Finally, it is obvious that if all agents in the system have a norm violation with
avoiding and informing properties, a smart norm violator would only execute
forbidden actions against agents in a breadth first manner (i.e., first through
paths where it is a violator to all the mediators). In this way, the upper bound
to the number potential norm violations remains the same as for a plain avoiding

property.

Definition 4.3.11. A behaviour is full blocking for a given agent when it
combines avoiding, blocking, protecting, and informing behavioural properties.
Let the predicate fullBlocking({a, 7, d),a) hold when the behaviour {«,,d)
is full blocking for agent a, i.e., fullBlocking({a, 7, d),a) = avoiding(«,a) A
blocking(7, a) A protecting (7, a) A informing(d, a).

For the following proofs we define the function 7 : 2¢ x A x A — 2¢. Given
two agents a;,a; € A and a set of joint actions G’ C G, 7(G’, a;, a;) is the set of
joint actions executed by the first agent through a path where the second agent
appears beside it, i.e., 7(G',a;,a;) = {{{a1, a2, ..., an—1,a,),¢,d,J) € G'|(a1 =
a;Nag = a;j)V(an = a; Nan—1 = a;)}. We also define the function p : 26 x A —
2¢. Given an agent a € A, a set of joint actions G’ C G, and a normative
behaviour function v, p(G’,a) is the subset of the given joint actions in which
the given agent selected the norm violating action in mutually consented joint
actions, i.e., p(G',a) = {{{a1,az2,...,an),c,d, J) € G'|((c ¢ v(J,a1,a,) Nay =
a)V (d ¢ v(J,an,a1) Na, = a)) Ac#void Ad # void}. Note that p(6(e,a’),a)
not being empty implies violator(a, a’, e) but the opposite implication does not
hold, since the violator predicate takes into account all joint actions with norm
violations whereas p only takes into account those joint actions that are of mutual
consent.

Lemma 4.3.12. Let N = (A, n,C) be a multiagent network with a normative
behaviour function v, a behaviour b = {(«, w,0), and an environment e € E, where
a; and ai are two neighbouring agents, i.e., a; € n(ag). If the behaviour is full
blocking for each agent a; € A, i.e., Ya; € A (fullBlocking(b,a;)), then the
number of mutually consented joint actions evecuted by a; in which it evecuted
a norm violation through a path where ayp appears beside it, is at most 1, i.e.,
fullBlocking(b, a;) — |7(p(0(e, a;),a;),a;j,ax)| < 1.

Proof. We proceed by reductio ad absurdum. Let us assume that
Va; € A(fullBlocking(b,a;)) A |(T(p(0(e,a;),a5),a5,a;)] > 1). Let g =
({(a1,a9, ..., an—1,an),c,d, J) be the joint action in 7(p(6(e, a;),a;),a;,a;) exe-
cuted de latest. This is known because by construction g contains all other joint

4.3. BEHAVIOURAL MODEL 45

actions in 7(p(0(e, a;)), a;,a;) (see the discussion after Definition 5.1.3). From
Definition 4.3.2, the paths of all executed joint actions must be feasible given
the environment at the time of execution.

If n = 2 then we follow a similar reasoning as that of Lemma 4.3.5. Given
that 7(p(6(e, a;),a;),a;5,a;) \ {g} is not empty and « is avoiding for agent a;,
a;’s action would have been void and the executed joint action not of mutual
consent, which brings about a contradiction.

Otherwise, when n > 2 there are two options to consider: i) paths of the
form (a;,ai,...,a,) or ii) paths of the form (a1,...,a;,a;). In both cases from
the assumption it follows that 7(p(6(e,a;),a;),a;,a;) \ {g} # 0. Furthermore,
since the disclosure function is informing for all agent in the network, then
all agents in the path of a norm violation have observed the joint action, i.e.,
V((a1,az,....an),c,d, J) € p(0(e,a;),a;),Vk € 1,....,n ({{a1,a2,...,a,),c,d, J) €
O(e,ar)). Therefore, 7(p(0(€’,ax),a;),a;,a;) # 0, where €’ is the environment
right before the execution of g.

Since the observed potential partners function is blocking and protecting for
all agents, the path in the former option would not be feasible because m(a;, a;, €)
would contain an empty partner set, since a; is a violator with respect to a;’s
observed joint actions and 7 is blocking for agent a;. In the latter option the
path would not be feasible because m(a1, a;, ') would not contain a; since it is a
violator with respect to a;’s observed joint actions and 7 is protecting for agent
a;.

All of the possible cases bring about a contradiction. Hence, Va; €
A(fullBlocking(b,a;) — |7(p(6(e,a;),a;),a,ar)] < 1 as we wanted to
prove. O

Theorem 4.3.13. In a multiagent network N = (A,n,C) with a normative
behaviour function v, and a behaviour b = («, 7, 0) which is full blocking for all
agents (i.e., Va; € A (fullBlocking(b,a;))), there exists an upper bound to the
total number of potential norm violations in mutually consented joint actions that
can be executed. This upper bound is twice the number of links of the network,

i€y X aealn(ai)l-

Proof. From Lemma 4.3.12 follows that if all agents have a full blocking be-
haviour, one single agent a is able to violate the norm at most once for each
neighbour it has (i.e., |n(a)|). Therefore, the total norm violations will be less
than the sum of all agent neighbours (i.e., > . 4 [n(a)|) which is twice the num-
ber of links in the network. O

In multiagent networks where the average neighbours per agent is less than
half the population, it pays for agents to exhibit a full blocking behaviour, as
opposed to a simpler avoiding behaviour, since less norm violations are possible.
On the other hand, for densely connected networks an avoiding behaviour is
sufficient. For such networks disclosing and storing all the norm violations is
useless.

Interestingly, Theorem 4.3.13 implies that the structure of the multiagent
network has an impact on norm enforcement. More densely connected networks

46 CHAPTER 4. OSTRACISM

are more prone to norm violations. On a single agent scale, agents with more
neighbours can get away with more norm violations. Furthermore, with more
neighbours comes a higher risk of becoming a victim of norm violations.

Nonetheless, as mentioned earlier in an open system it is highly probable
that not all agents will exhibit the same behavioural properties. The following
corollary generalises the results of full blocking behaviours when just a subset
of agents exhibit them.

Corollary 4.3.14. Given a multiagent network N' = (A,n, C) with a normative
behaviour function v, a behaviour b = {a,m,6), a subset of agents A’ C A that
form a connected component, and a function ¢ : A x 24 — 28 where ¢(a, A') is
the subset of elements in A’ reachable from a through a path of agents not in A’.
If the behaviour is full blocking for all agents in this connected component (i.e.,
Va;, € A (fullBlocking(b,a;))), then there exists an upper bound to the total
number of potential norm violations in mutually consented joint actions that can
be executed by one of the agents in the joint action when the other agent is part

of A’. This upper bound is 3, 4, |(n(a) N A") U (a, A')| + 3 ,¢ar |9(a, A)].

Proof. Tt is easily seen that agents in the enforcing component A’ will only be
able to execute norm violations against the other agents in A’ once through each
neighbour in A’, and if it has neighbours outside A’ it will be able to execute
norm violations against other agents in A’ as many times as agents in A’ it can
reach through a path of agents outside A’. Whereas, those agents outside A’
will only be able to execute a norm violation against agents in A’ as many times
as agents in A’ it can reach through a path of agents outside A’. O

4.4 The Scenario

Section 4.3 showed analytical results for multiagent networks where all agents
exhibit the same type of enforcement behaviour. In a system where agents
are assumed to be autonomous, one cannot expect that all agents will exhibit
the same behaviour. Even though some of the analytical results have been
generalised for subsets of the network that did exhibit the same enforcement
behaviour (see Corollaries 4.3.7 and 4.3.14), we would like to verify how different
types of behaviours would work in plural societies. Another issue with the
analytical model is that it assumes that each executed joint action is atomic,
meaning that no change in the environment can occur through the process of
finding a socially feasible path. This may not be a valid assumption in real
scenarios where the path may be found to be feasible, but stops being so before
the joint action is eventually executed through the path. This may happen when
an agent receives disclosed contents of a joint action that is a norm violation
after the creation of a path leading to it or coming from it, but before the joint
action is executed. For the reasons above, we have run experiments that test
the following hypotheses in a simulated environment without the restrictions of
uniform societies and atomic execution:

4.4. THE SCENARIO 47

Hypothesis 1. Stricter enforcement behaviours reduce the number of norm vi-
olations.

Hypothesis 2. A larger ratio of agents with enforcing behaviours reduces the
number of norm violations.

Hypothesis 3. The network topology influences the number of norm violations.

The scenario that has been used in the experiments follows the model de-
scribed in the previous sections. The simulated environment consists of a multi-
agent network where agents take turns to start an interaction by first searching
for a feasible path, then executing a joint action through it, and finally going
through a disclosure stage in which they may or may not send the joint action
contents to the path mediators.

4.4.1 Agents

As seen in Section 4.2, the system has a behaviour which is modelled via
three functions. There is a potentially infinite number of possible behaviours.
Nonetheless, we do not aim to cover all the different behaviours, only a reduced
set of coarse grained behaviours to test how the enforcement techniques work
against norm violators.

The agents in our experiments can be classified under one of the three fol-
lowing types: meek, violator, and enforcer. Each type having a behaviour with
different properties. Some of these properties were already defined in Section
4.3.5, such as violator avoiding, blocking, protecting, and informing. The rest
are defined below:

Definition 4.4.1. Given a multi-agent network N' = (A, n, C) with a norma-
tive behaviour function v, and a behaviour (o, 7,d), we define the following
behavioural properties for an agent a € A:

e Disclosing: Will always report all its neighbours as potential partners, i.e.,
W(ai, a, 8) = <ai7a7A/> — A= 77(@)

e Friendly: Always consents to act jointly, i.e., (a(a,a;,e) =
({a,ag, ...;a;),c,d, J) — ¢ # void) A (a(as, a, €) = {{a;, a2, ...,a),¢,d, J) —
d # void).

o Abiding: Always abides by the norm, ie., (a(a,a;,e) =
({a,ag, ...,a;),c,d, J) — ¢ € v(J,a,a;)) N (afa;,a,e) =
{a;, a2, ...;a),¢c,d, Jy — d € v(J, a,a;)).

e Hiding: Will avoid joint actions with those that disclose norm
violations, i.e., (a(a,a;, (F',G'\D")) = {{a,a2,...,a;),¢,d, J) A
Hai, ((ay,...;a,...,al),d,d,JY) € D' ((a) =a;Nd ¢ v(JT,al,a)))V(al, =
a; N ¢ v(J'al,al)) — ¢ = wvoid) V (a(as,aq,(F',G', D)) =
((aj,a2,...;a),c,d, J) A Faz, (),a,....,a,),c,d,J)) € D ((a}
a; Nd ¢ v(J,al,a))V(a, =a; N ¢v(T al,al))) — d=void)

s Yn

48 CHAPTER 4. OSTRACISM

e Discreet: Never discloses the joint action contents to mediators, i.e.,
6(0” Qs 6) = (<a’lag> \ J‘) A 5(aia a, 8) = (<alvg> \ L)

The agent type depends on which of the previous behavioural properties hold.
As mentioned earlier the three main categories of agents we consider are: meeks,
violators, and enforcers. A behaviour («,m,d) is of type meek for a given agent
if it is disclosing, friendly, abiding, and discreet. On the other hand a behaviour
is of type enforcer for a given agent if it is avoiding and abiding. Furthermore,
an enforcer behaviour may also be informing, blocking, or protecting (all of
which are enforcement properties). An enforcement behaviour b, is stricter than
another b, if b, satisfies all the enforcement properties that b, does and more.
Finally, a behaviour is of type wiolator if it is disclosing, friendly, violating, and
discreet. Violator agents in our simulations try to maximise the number of times
they violate the norm. Furthermore, violator agents may also exhibit a hiding
behaviour and will avoid selecting an enforcer agent as partner.

One can envision other more fine-grained behavioural functions for the differ-
ent types of agents, such as enforcers that forgive violators by removing blockages
after a certain number of rounds following the norm violation. The number of
rounds after which forgiveness is granted could be made dependant on the num-
ber of known norm violations, making for an even more fine-grained enforcement
behaviour. One could also think of more sophisticated violator behaviours, such
as violators that block enforcers or violators that do not violate against agents
that have exhibited blocking or protecting behaviours. Finally, all these be-
haviours could be probabilistic (e.g., if implemented to depend on the reputa-
tion of the other agent). Nonetheless, we have chosen not to study of these
variations, as our aim is to show that certain enforcement techniques reduce the
number of norm violations for some applications and set a limit to the amount
of norm violations possible in certain scenarios, rather than to find the optimal
enforcement behaviour for any application.

4.4.2 Variables

In order to execute the simulations we had to give values to the different vari-
ables that define our experimental scenario. Table 4.1 shows the list of variables
considered, the range of values they may take, and the values we have used
for the experiments. Some of these variables are specifically mentioned in the
hypotheses. Hypothesis 2 makes a reference to the ratio of enforcing agents.
The higher the value of this variable, the smaller the number of norm viola-
tions. Hypothesis 1 has an implicit reference to the three variables on the type
of enforcement being used. Simulations where one of these variables is set to
true have fewer norm violations than simulations where they were set to false.
Finally, Hypothesis 3 references the network topology explicitly by expecting
some topologies to allow different numbers of norm violations.

It is quite straightforward to see that the number of rounds and the ratio
of violating agents will also have an impact in the number of norm violations.
Not so obvious is the relation between the type of violator behaviour (both

4.4. THE SCENARIO 49

’ Name \ Type

Agents 2,00

Rounds 1,00

Topology Small world, Scale Free,
Tree, Ring, Random,...

Violator [0,1]

- Enforcer avoiding 1, T

- Partner Search Random, BFS, DFS,...

Enforcer [0,1]

- Blocking 1, T

- Protecting 1, T

- Informing 1, T

Table 4.1: Simulation variables

by choosing whether or not to avoid enforcers, and in the way they search for
feasible paths), or the agent order which dictates their position in the network
and the order in which they attempt to interact. Furthermore, one can presume
that the total number of agents will not have an impact in the number of norm
violations. Nonetheless, the experiments have not been designed to test any of
these latter hypotheses.

For the variables taking natural numbers as values we have selected four
points from a pseudo-logarithmic scale. For the variables representing ratios we
have selected three points in a linear scale. In our simulations, agents cannot
both enforce and violate the norm. Therefore, the enforcing agent ratio creates a
constraint for the violating agent ratio and vice-versa (e.g., a MAN with 80% of
enforcers can have at most 20% of violators). In order to bypass this constraint,
the selected values are always below 50%. Furthermore, 0% has not been selected
as a value, since societies without enforcers or violators are not relevant to test
our hypotheses. For variables that do not have a numerical range we have
selected those values that we deem interesting: the network topologies that have
been chosen are sufficiently different among each other, and most can be found
in real societies, and partner search strategies that have been chosen are those
that had been considered in Section 4.3.5, and which can maximise the number
of norm violations done by agents (Breadth First Search and Depth First Search)
plus a fully random search (norm abiding agents will always follow a random
search strategy). Finally, the agent order has been chosen at random, although
having a finite set of permutations of agents as possible orders.

The topologies we have selected are defined below. A tree is a connected
undirected graph without cycles. Trees tend to have a large diameter and an
average clustering coefficient® of 0. Trees are abstractions of highly hierarchi-
cal structures. A random graph is one that has been generated through some
random process. Random graphs have a small diameter and a low average clus-

3A graph’s average clustering coefficient is the probability that any two neighbours of a
given agent are also neighbours.

50 CHAPTER 4. OSTRACISM

tering coefficient. A small-world graph is one which has a small diameter but an
average clustering coefficient orders of magnitude higher than those of a random
graph with the same order and size. Finally, a scale-free graph is one where the
number of neighbours follows a power-law distribution. These types of graphs
have small diameter and low average clustering coefficient. They are neither as
structured as trees nor as unstructured as random graphs. Networks presenting
the small-world property or the free-scale property can be found in many social
systems.

4.4.3 Feasible path search algorithm

Algorithm 1 is executed by the initiator agent in order to find a socially feasible
path leading to a partner. First, if the current mediator is different than the
initiator and it is selected as partner, then the algorithm returns the path to-
gether with the visited agent set passed as parameters to the function (line 5).
Otherwise the initiator queries the current mediator for the set of potential part-
ners (line 1) and the function iterates through the set of non-visited potential
partners until either a feasible path is found or the set is exhausted. If the set
is exhausted but no feasible path has been found, then the algorithm returns an
empty path together with an updated set of visited agents (line 17). Otherwise
it returns the path from the recursive call (line 19).

Algorithm 1 defines an abstraction of the search for socially feasible paths.
Nonetheless, agents can implement different search strategies, as explained pre-
viously (random, breadth-first, or depth-first). These strategies are imple-
mented through particular definitions of the functions get_element_from and
select_as_partner. The implementation of these functions for the breadth-
first and depth-first searches is straightforward and will not be discussed. The
random search implements the get_element_from function by returning an agent
in a purely random fashion, and it implements the select_as_partner by re-
turning true with a certain probability. In our experiments this probability has
been set to 0.3, which constructs paths with length following a geometric distri-
bution with mean 10/3. This is enough to guarantee that all agents can interact
with one another.

Many different methods exist to generate the previously mentioned graphs.
We have chosen the following: The generated tree structures are k-ary trees
(k = 9), i.e., a tree with up to k children per node. Random graphs have
been generated following the Erdds-Rényi model [Erdés and Rényi, 1960], in
which the probability that an edge between two vertices exists is 0.1. Fi-
nally, the small world graphs have been generated following the Watts-Strogatz
model [Watts and Strogatz, 1998] starting with a ring lattice of degree 10, and
a rewiring probability of 0.02. Finally, scale-free graphs have been generated
using the Barabasi-Albert model [Barabasi and Albert, 1999] with a size and
order similar to that of the small-world and random graphs®.

4All networks are generated randomly using one of the previous methods, and the agents
are placed randomly in a graph position.

4.4. THE SCENARIO o1

Algorithm 1: Feasible path search - path(aq,a;, V,p)

Input: a; € A - initiator agent
Input: a; € A - current mediator
Input: V € 24 - visited agents
Input: p € P - feasible path
Output: feasible path

Output: set of visited agents

1 request a; the potential partners for aq;
2 (a1,a;, A") — (a1, a;,e);

3 N— A\V;

4 if a; # a1\ select_as_partner(a;, N) then
5 return (p,V);

6 else

7 while N # 0 A —stop do

8 a; < get_element _from(N);

o NeN\{oh

10 V —VU{ag;};

11 (p',V) « path(ai,a;,V,p- a;);
12 if p’ # () then
13 stop «— T,
14 end
15 end
16 if N =(A —stop then

17 return ((),V);
18 else
19 return (p',V);
20 end

21 end

52 CHAPTER 4. OSTRACISM

The experiment consists of exhaustive simulations with all the possible com-
binations of variable values. The metric we have used to test the hypothesis is
the norm violation rate, i.e., the ratio of forbidden actions executed per violator
agent and round. This metric is a normalisation of the total forbidden actions
so that we can compare simulations with different number of agents and rounds.

4.5 Simulations

This section shows the results of the experiments that have been executed follow-
ing the scenario specified in Section 4.4. For each of the hypotheses presented
we explain the statistical analysis that has been realised on the experimental
data and the results of such analysis.

In order to test the three hypotheses we have executed a factorial experiment.
The experiment consists of running a number of simulations (20 in total) for each
of the parameter combinations in Table 4.2.° Before executing the statistical
significance test we verified that the resulting data had a normal distribution
through a Quantile-Quantile test, which is a precondition for certain statistical
tests.

| Name \ Values
Agents 10, 20, 100, 200
Rounds 10, 20, 100, 200
Topology Small world, Scale Free,

Tree, Random

Violator 0.1,0.3,0.5
- Enforcer avoiding 1, T
- Partner Search Random, BFS, DFS,...
Enforcer 0.1,0.3,0.5
- Blocking 1, T
- Protecting 1, T
- Informing 1, T
Name Type
Joint Actions N
Norm Violations N
Integrity Constraints Formula
Partitioning Violator + Enforcer <= 1.0

Table 4.2: Simulation variables

In order to test if there was a significant relationship between the independent
variables, i.e., the parameters in the simulation, and the dependent variable, i.e.,
percentage of the total potential interactions per violator agent that resulted in a
norm violation (from now on we will refer to this as the norm violation rate), we

5There are 27, 648 total combinations. In total 552,960 simulations were executed.

4.5. SIMULATIONS 93

ran an analysis of variance (ANOVA) with the experimental data. The results of
the ANOVA test demonstrate that all the independent variables were statistically
significant with a p-value under 0.001. This information alone serves to support
Hypothesis 3, since the topology variable proved to be significant. Data showing
which variable values brought about lower norm violation rates is needed in order
to support the other two hypotheses.

In order to verify which variable values did better for each of the variables
that interested us with respect to the hypotheses, we ran post-hoc comparisons
using Tukey’s test (see the results in Table 4.3). One test indicated that higher
percentages of enforcers implied a smaller mean of norm violation rates, thus
supporting Hypothesis 2. Furthermore, another Tukey test indicated that the
best network topology in reducing the norm violation rate was the random topol-
ogy. Close behind were the small world and scale free topologies, and, lagging
behind, the tree topology was the one to do worst. Finally, Tukey tests on the
enforcement behaviours showed that the three tested behaviours helped to re-
duce the norm violation rate. This information supports Hypothesis 1, since
stricter enforcement behaviours reduced the norm violation rate. Out of the
three behavioural properties, the property that produced the best results was
the protecting property which lowered the norm violation rate by an average of
7.37%. Next came the blocking property which lowered the norm violation rate
by an average of 3.05%, and last was the informing property that barely lowered
the norm violation rate, a meagre 0.26%.

’ Variable \ Values \ Difference \ Lower bound \ Upper bound ‘
Enforcers | 10% - 30% 8.83% 8.71% 8.95%
Enforcers 30% - 50% 8.96% 8.84% 9.08
Enforcers | 10% - 50% 17.79% 17.67% 17.91%
Topology TR - RM 13.37% 13.22% 13.52%
Topology TR - SW 13.01% 12.86% 13.16%
Topology TR - SF 12.73% 12.58% 12.88%
Topology SF - RM 0.64% 0.49% 0.79%
Topology SW - RM 0.36% 0.21% 0.51%
Topology SF - SW 0.28% 0.13% 0.43%
Protecting | false - true 7.37% 7.29% 7.45%
Blocking | false - true 3.05% 2.97% 3.13%
Informing | false - true 0.26% 0.18% 0.34%

Table 4.3: Tukey test results

The Tukey test results on different topologies were a surprise
to us as they countered our intuitions. Experiments on initial
approaches[Perreau de Pinninck et al., 2007, Perreau de Pinninck et al., 2008b)]
had showed that tree networks were more efficient in reducing norm violation
rates than other topologies. This, together with the analytical results obtained
in Theorem 4.3.13, made us think that the tree network would still be the one

54 CHAPTER 4. OSTRACISM

to achieve the best enforcement performance. Nonetheless, the results from the
experiments showed that it is random networks that have the best enforcement
performance and tree networks have the worst. Such results are brought about
by the fact that trees have the highest betweenness centrality. Agents in a high
betweenness centrality position will collect more joint action contents through
disclosure. In our initial approaches, only enforcer agents benefited from their
high betweenness centrality, which made tree networks more efficient for enforce-
ment. In the current scenario, violator agents also collect information to find out
who the enforcers are in order to avoid them. Therefore, they also benefit from
high betweenness centrality positions, which makes trees worse for enforcement.
Furthermore, our simulations restricted the maximum percentage of enforcers
to 50%, making it easy for violators to find non-enforcers with which to execute
norm violating actions.

Another result from the Tukey test that surprised us was the low reduc-
tion brought about by the informing behavioural property. At first glance, we
thought that disclosing contents of norm violations would be a good enforcement
behaviour. Nonetheless, the slight improvement brought about by the inform-
ing behavioural property made us look into this in more detail. Further tests
showed that in simulations were the number of rounds is larger than the number
of agents, the informing behavioural property actually increases the mean norm
violation rate by 0.40% on average. Furthermore, when the number of rounds
is equal to the number of agents there is no significant difference between re-
sults with and without the informing behavioural property. Finally, when the
number of rounds is smaller than the number of agents the norm violation rate
is decreased by 1.15%. Table 4.4 shows the results of the Tukey tests with the
data subsets mentioned before. This is due to the fact that violators, in our sim-
ulations, avoid enforcers and these are detected when they disclose joint action
contents. It is during bootstraping (when the number of rounds is small and
agents had no time to interact with one another) that disclosure allows enforcers
to quickly discover all violators. As the simulation continues, it is the violators
who end up discovering all enforcers through their informing behavioural prop-
erty, and can thus easily avoid them. This tendency could be changed if those
enforcers disclosing the joint action contents could select a subset of the media-
tor agents to which the contents is sent. This way enforcers would avoid being
discovered by violators and the enforcement benefits of disclosure be improved.

’ Data set \ Value pair \ Diff. \ Lower b. \ Upper b. ‘
Rounds > Agents 1-T —0.40% | —0.54% —0.26%
Rounds = Agents 1L-T —0.09% | —0.26% 0.08%
Rounds < Agents 1-7T 1.15% 1.04% 1.26%

Table 4.4: Informing variable Tukey test results for subsets of the simulation
data.

4.6. APPLICATIONS 95

4.6 Applications

This section presents two applications that could make use of our model and en-
forcement techniques. In order to apply these techniques, the applications need
to have an objective norm function which is shared by all, the norm violating
behaviours should not be too sophisticated, and norm violations should only
affect those agents involved in the joint action.

The first application is a distributed forum for information sharing in which
a group of agents forms a network of contacts through which they exchange
information. In this forum there are norms specifying the valid information
contents that can be shared. These norms must be verifiable objectively by any
agent. Furthermore, agents violating these norms would either do it continuously
in the same way as spammer agents in fora, or it would violate occasionally by
mistake or because the recipient does not care for the specific norm violation.
Both types of violators fit the specification of Section 4.4

The second application is for a network of hardware nodes (such as a sensor
network) which co-operate by executing a specific protocol in order to manipulate
information. The norm in this case would define the protocol to be followed.
Such protocol ought to be objectively verifiable. Furthermore, all nodes are
assumed to work well unless there is a hardware malfunction, in which case they
will start breaking the protocol indefinitely.

In the following subsections we will show how our model and enforcement
techniques are applied to the applications, and the results that can be achieved
from these enforcement techniques.

4.6.1 Information sharing forum

In order to model the distributed information sharing forum application, we must
start by defining the MAN N = (4, n, C) with a normative behaviour function
v. Having A be the set of participating agents in the forum (let us assume it is
100 in total), n be the function that describes the connections among the agents
(let it be a network with 500 links and the average degree is 10), C is the set of
all content that can be shared, and v is the function that specifies which contents
are valid.

A joint action in this application means that one agent sends some infor-
mation through a path of agents in the network to another agent. The action
executed by the receiving agent indicates what it did with the information.
When it executes the void action, it is telling the initiator that the information
transfer has been immediately aborted. It is as if it had never been received.
A norm in this application might specify that the maximum size of exchanged
information is 10MB, and that specific file types such as mp3 or text documents
containing words from a previously established list of insults are not allowed.
This norm predicate is objectively verifiable and is not influenced by the envi-
ronment. Therefore, we will not mention the environment in the rest of this
application. Furthermore, the void action is always permitted.

96 CHAPTER 4. OSTRACISM

Let us assume that there are ten agents that are norm violators. Five of
which are full spammers which will always send content that is not allowed by
the norms. The other five will send invalid content rarely when they think they
can get away with it. The results from Section 4.3.5 tell us that: if all agents in
the application follow an avoidance behavioural property, the maximum number
of norm violating contents that can be sent is 9900; if all agents exhibit a full
blocking behaviour, this number is reduced to 1000. Nonetheless, since there
are only 10 violator agents, when all agents exhibit an avoidance behavioural
property the upper bound is reduced to 990 (see Lemma 4.3.5) and when they
all exhibit a full blocking behaviour it is reduced to 100 (see Lemma 4.3.12).

In case that the norm violators do not exhibit enforcement behaviours, the
premises from the theorems would not hold but those of the corollaries would and
we would apply their conclusions. Assuming that all norm abiding agents apply
an avoidance behavioural property, then the maximum number of norm violating
contents shared with norm abiding agents would be 900, and approximately 90
in case they all exhibited full blocking behaviours. This has been calculated
assuming that all agents (including norm violators) have ten neighbours and
probabilistically 9 of these neighbours will be norm abiding agents, and that all
norm abiding agents form a connected component in the network.

When the agent’s behaviours are not organised in any of the previous ways,
the results from the simulations can still tell us how the system would behave.
The application designer would then be interested in providing a free and acces-
sible implementation of the information sharing agent that would embed a full
blocking behaviour and leave other implementations to the users, thus, creating
a cost for the implementation of other behaviours. Furthermore, when possible,
the designer would be interested in organising the network randomly, since it
was the random network that got the best enforcement performance.

4.6.2 Self-repair system

The self repairing network application is defined through the model as N =
(A,n, C), where A is the set of all nodes (let us assume a total of 100), n describes
the connections among nodes, C defines the set of interaction data that can
be sent, and a normative behaviour function v that specifies the protocol for
interaction.

In this application a joint action means that the initiator agent sends some
data to the partner agents as part of a broader protocol. The protocol defined by
the function v is a simple query answer protocol where the void action can only
be executed by the partner agent as long as there has been a protocol violation
in the past. When the partner agent executes the void action it is letting the
initiator know that it is not listening to its message. In this application the
environment consists of the previous joint actions executed by the agents in the
joint action.

In this application the system designer has complete control over the agents’
behaviours and the network topology. The only reason for a violator to exist
is due to hardware malfunction. Therefore, once an agent violates a norm,

4.7. DISCUSSION 57

chances are that it will continue to misbehave until its hardware is repaired.
Furthermore, the malfunctioning node has no capabilities to evade enforcement
through sophisticated norm violation behaviours.

From the description of the application we deduce that it is in the best inter-
est of the application designer to make all nodes have a full-blocking behaviour.
Since agents that have failed will not have a hiding behavioural property to
evade enforcement, a tree network might seem the most appropriate topology.
Nonetheless, since a node that has failed will probably stop reporting its neigh-
bours correctly (which is the same as if the agent would block everyone in the
network), then a tree network is dangerous as it would easily compromise a
whole sub-tree. Therefore, the best topology would be a random network with
an average degree ensuring that the network forms a connected component.

When the self repairing application is designed as explained above, the upper
bound in the number of failed protocols would be the number of links in the
network. This number is equal to the number of agents times the tolerance
to errors per agent. When the probability that edges exist in a random graph
is 2In where n is the number of vertices, the probability that the network
is connected tends to 1 [Erdos and Rényi, 1960]. Therefore, to ensure that a
random network is connected, the number of links would be Inn(n — 1). Since
our application comprises 100 agents, then the number of links would be at least
456. In order to make sure that errors in hardware do not split the network, the
system designer should allow for more links (e.g., 500). Finally, in the previous
setup the maximum number of protocol failures (i.e., norm violations) allowed
would be 500, or an average of 5 per agent.

4.7 Discussion

We have provided a model for a multiagent system structured as a network where
agents interact under a defined normative behaviour. Under this model, a set
of enforcement techniques have been proposed to reduce the number of norm
violations, namely: avoidance, blocking, protecting, and informing. Via analyt-
ical means we have shown that, when all agents (or a subset of them) exhibit
behaviours with enforcement properties, the number of executed norm violations
has an upper bound. Nonetheless, agents are autonomous and may decide to
save up resources by not applying sanctions. In order to apply sanctions, agents
must remember which other agents have executed a norm violating action in
the past and take this information into account when helping to build socially
feasible paths. If there are agents in the system exhibiting this free-riding be-
haviour, the analytical results in Section 4.3 do not always hold. However, the
results of the experiments in Sections 4.4 and 4.5 show us how such a system
could be expected to behave. Firstly, the higher the number of agents using en-
forcement techniques the smaller the number of times violator agents would be
able to execute norm violating actions. Secondly, using more of the enforcement
techniques implies less norm violations. Nonetheless, we encountered results
that challenged our intuitions. The experiments showed that disclosure of joint

98 CHAPTER 4. OSTRACISM

action contents does not always reduce norm violations, since overuse of dis-
closure can put violators under notice and help them avoid future enforcement.
Therefore, disclosure should be restricted to trusted agents or be used only at
bootstrap. Finally, the network structure is an important factor in reducing
norm violations. Notwithstanding, we had expected tree networks to continue
to be the best at reducing norm violations, as in the initial approaches, and this
did not happen. When violators use disclosure information to spot enforcers
they also benefit from the high centrality positions possible in tree networks,
making tree networks the worst topology for enforcement for sophisticated vio-
lators that manage to “climb the ladder”. The dependence network formalism
could be a good lead to study the power agents have to enforce norms.

Builders of an application, in which the enforcement techniques in this chap-
ter could be used, should try to get as many agents in the system to enforce
the norm through the four techniques provided: avoiding, blocking, protecting,
and informing. We have not aimed to study what could motivate a selfish agent
to act in specific ways. We have provided information about which behaviours
benefit the society by reducing the number of norm violations. It would be inter-
esting to study how to create incentives so that agents exhibit the enforcement
behaviours in order to diminish the potential incentives for executing norm vi-
olations. Furthermore, if builders have total control over the network topology,
they should create a tree in which all the non-leaves would be under his con-
trol and would use all the full blocking behaviour. Otherwise, the tree network
should be avoided. The impact of other network parameters (e.g., clustering
factor, diameter, number of links per agent, number of paths between agents,
and position of agents) on norm enforcement should be studied, in order to help
individual agents decide how to influence the network topology for its benefit.
The study of the position of agents may prove specifically interesting for this
purpose. For instance, if an agent is a cut vertex in the graph and it uses the
protecting behavioural property against its neighbours it can break the graph in
two, not allowing abiding agents to interact. Furthermore, a violator that is in
such a position may threaten to split the graph in order to avoid enforcement.
These problems can be circumvented with new links.

This chapter does not treat network dynamics by which the network topology
changes by adding and removing links, or by adding new agents to the system.
Even so, agents should be extremely weary when adding new links in order not
to allow agents to execute more norm violations through them. In Chapter
5 we have taken network dynamics into account, in which case agents can be
sanctioned when they are too promiscuous in adding new links through which
unsatisfactory interactions take place.

The enforcement techniques in this chapter are meant for scenarios in which
the agents do not know a priori with which agent to share information. Notwith-
standing, they could also be applied to scenarios in which the partner agent is
known and a feasible path in the network is to be found. In such a case rout-
ing mechanisms used in networking could be used in order to send the requests
through the social networks. Since the partner agent would be known from the

4.7. DISCUSSION 59

start of the process, the protecting behaviour would have to be modified but
others could also be added.

Some applications that would benefit from the techniques in this chapter
have been provided in Section 5.10. These applications have to fulfil the restric-
tions imposed by the model, such as the objectivity of the norm and bareness of
the agent behaviours available. Nonetheless, other applications that do not fulfil
these restrictions could also benefit from the concepts defined here. In order
to tackle these, Chapter 5 studies the impact of subjective norms, where each
agent decides what is satisfactory for it, and how more sophisticated enforce-
ment behaviours could achieve better enforcement performance against more
sophisticated violating behaviours.

Chapter 5

Ostracism under
Uncertainty

Ostracism has been shown to be a useful tool in enforcing behaviour. Chapter
4 presented some enforcement techniques through which agents that did not
behave as expected could be ostracised. Nonetheless, the work in that chapter
was developed under assumptions that significantly restricted their applicability.
Those assumptions are:

e The network topology is static.

e There is no defined mechanism through which new agents can enter.

Contact relationships are undirected.

Expected behaviour is global and known to all agents.

Adversarial behaviour is simple.

The mechanisms described in Chapter 4 cannot be implemented in most
widespread large-scale distributed systems (e.g., filesharing applications, VoIP
and messaging applications, and GRID), since the previous assumptions do not
hold. This chapter defines a new model for a multiagent network (MAN) that
can be applied to those distributed systems in which the previous assumptions
do not hold.

The main differing characteristics of the model in this chapter are: i) Contact
relationships are directional. The new model defines the contact relationship as
an explicit trust relationship. Therefore, the relationship is directed and not
necessarily reciprocal, e.g., the fact Albert trusts Brenda does not imply that
Brenda trusts Albert back. ii) A mechanism is provided through which contact
relationships can be added and removed. Through this mechanism new agents
can join the system and its network topology is allowed to change through time.
iii) Each agent has a subjective definition of what a satisfactory behaviour is.

61

62 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

This definition is not necessarily shared or known to others, but it can be mod-
elled via the feedback given by the interacting agents about an interaction that
has taken place. Therefore, having Claude complain about Dorian does not im-
ply that Edward will complain about Dorian too. Nonetheless, by modelling the
complaining behaviour, Frank can estimate the probability with which Dorian
will be complained about by Edward (i.e., reputation mechanisms are applica-
ble). iv) Agents, specially those trying to cheat the system, exhibit complex
behaviours. Therefore, simple enforcement mechanisms may not always work,
since the agents for which they are intended may exhibit behaviours that can
subvert these mechanisms (e.g., collusion, badmouthing, ballot-stuffing, and oth-
ers). The algorithms used to model the behaviours of other agents ought to be
robust to these attacks. Furthermore, even agents that are not trying to cheat
the system may be complained about. Therefore, the enforcement mechanism
must allow for forgiveness.

A well-known paradigm for distributed applications for which these new as-
sumptions hold, is peer-to-peer (P2P) networks. P2P networks are composed of
many participants that share their resources with others in the network without
the need of a centralised co-ordination mechanism. A computer user joins a P2P
network in order to interact with other computer users through the use of client
software that connects to other client software in the same overlay network. The
assumptions in the model defined in this chapter fit nicely to P2P applications:
the network topology changes, peers can enter and leave the network, there is
no pre-defined expected behaviour, the definition of a satisfactory interaction is
subjective, and adversaries exhibit complex behaviours (e.g., virus spread, Sybil
attacks). The only new addition that is not normally present in P2P networks is
that of directed links. Notwithstanding, undirected links can be simulated with
directed links. Given the suitability of P2P as a potential application for the
model to be described in this chapter, in what follows the terms agent and peer
will be used indistinctly, and peer refers to both the computer user and the P2P
client software.

The aim of the work in this chapter is to provide enforcement techniques that
allow agents to maximise their subjective satisfaction. This subjective measure
is not publicly known, only what can be observed is known. Therefore, to be
more precise, the chapter studies how the enforcement techniques increase the
amount of positive feedback for the interactions between agents. The blocking
technique shown in Chapter 4 is coupled with different reputation mechanisms
in order to see how they fare against malicious peers that try to subvert the
system through different types of attacks: badmouthing, i.e., sending mislead-
ing feedback about prior interactions; ballot-stuffing, i.e., sending feedback of
non-existing interactions; milking or dynamic personality, i.e., getting good as-
sessments by satisfying other peers in order to cheat later on; collusion, i.e.,
forming a collective with other peers to try to subvert the assessment system;
Sybil, i.e., creating many false identities that collude; and finally, whitewashing,
i.e., changing the peer’s identification in order to avoid negative assessments
from previous feedback.

63

Scalability is an important issue addressed in P2P applications (not so much
in MAS). Therefore, the tests take into account the amount of messages sent
by each reputation mechanism. Efficacy is important when enforcing behaviour,
but it may come at the cost of efficiency. When the number of agents is low, it
may not be a problem. But for large-scale systems efficiency is key, otherwise
the original purpose of the system can be hampered.

The interaction protocol in this chapter is different to that presented in Chap-
ter 4. The main difference being that the interaction partner is chosen before a
path is found between the two (see Section 5.2 for a more detailed definition of
the interaction protocol).

We use a Friend-to-Friend (F2F) network structure in which each peer is
connected to a set of peers which it “knows”, i.e., its contacts. Each peer
creates its own certificate and signs the certificates of its contacts, thus making
a web of trust (WOT). By running a WOT, authentication and privacy can be
guaranteed without the need for a centralised Public Key Infrastructure (PKI).
Furthermore, the interaction requests would be routed through a path of contacts
towards the target peer. In a P2P application any peer can connect through the
internet to any other peer. This differs from the work in Chapter 4 in which
agents could only connect to their neighbours. Nonetheless, having a WOT
gives agents the choice to discard requests that have not been routed through
a contact. This allows agents to force others to route their request through
the MAN, thus becoming an enforcement technique. When this technique is
applied, in order to interact a peer needs to be the contact of at least one other
peer already in the network.

Feedback about interactions can also be sent to any peer in the network.
Nonetheless, peers can choose to discard feedback of interactions for which they
did not route the request. This feedback gathering strategy brings about the
following outcomes: smaller message overhead, smaller impact of ballot-stuffing
attacks, and less feedback available to each peer. In order to address the last
issue, the blocking enforcement technique is integrated into the routing mecha-
nism. Since the neighbours of a peer are bound to have more feedback regarding
it, they can perform the best assessments. Peers decide whether to block re-
quests given the probability that the initiator and target will be unsatisfied with
the interaction.

Blocking and avoiding enforcement techniques are used in conjunction with
a trust assessment algorithm. In this work the most significant algorithms
have been made available to the peers. Ome of these algorithms (Peertrust
[Xiong et al., 2004]) has been modified in order to harness the information avail-
able in the request routes. Furthermore, new scalable algorithms have been
defined in order to be robust against the different adversarial attacks by har-
nessing the request route information of previous interactions. In order to test
the enforcement techniques in conjunction with the different trust assessment
algorithms, we have run experiments that compare them. These experiments
have shown that the modification to Peertrust and the new algorithm have a
message overhead orders of magnitude lower.

64 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

The rest of the chapter is organised as follows: Section 5.1 defines the mul-
tiagent network and the contents of the different messages that are sent as part
of the interaction protocol. Section 5.2 gives an in depth description of the
interaction protocol by using an example. Section 5.3 provides the definition
of the behavioural model of the agents, and gives analytical properties of some
agent behaviours. Section 5.4 provides a description of the different types of
fraud and how encryption, signature, and reputation techniques can be used to
avoid them. Section 5.8 describes the decisions made by the agents during the
interaction process. Section 5.5 compares the different existing trust assessment
mechanisms that have been used for the experiments described in Section 5.9,
and Section 7?7 describes the new trust assessment mechanisms that we have de-
veloped. Section 5.10 gives two examples of real applications to which the model
and enforcement techniques in this chapter can be applied. Finally, Section 5.11
discusses the results of the model and the experiments.

5.1 The Model

This section describes the mathematical model for our multiagent system. This
was already done in Chapter 4. Nonetheless, we will modify it here to take
into account the differences studied in this chapter. These differences stem from
the changes in the assumptions. Firstly, there is no global norm defined by
an external authority. Secondly, the neighbourhood relation is now directed.
Thirdly, there is no partner search since the intended partner is known at the
beginning of the interaction protocol. Therefore, the protocol changes and so do
the events and their contents. Fourthly, the interaction is not mediated, only
the interaction bootstrap. Finally, there is no static network as the agents and
their neighbourhood links can change at any time.

In the work presented here, there is a protocol for the interaction between
agents. We call this the interaction protocol because its purpose is getting agents
to interact. The first part of the protocol is the interaction bootstrap. An agent
sends an interaction request, which gets routed through the network towards
its intended target. If the request reaches the target, the target can accept
to interact by acknowledging the request. This ends the bootstrap part of the
protocol. After the acknowledgement reaches the protocol initiator, the joint
action between the initiator and target begins through a private channel. After
the joint action is executed the last phase of the protocol starts, the feedback
stage. In this stage, each of the partners can send information about the joint
action to the agents in the network.

Agents may be able to interact in parallel, but we assume that all events they
perceive can be ordered. Given that we take a strong stance on speech act theory,
these events can be encapsulated in illocutions. All illocutions have the same
structure: they are composed of the sender identifier, the receiver identifier, and
the content. The content is either an identity certification, a certification cancel-
lation, an interaction request, or an interaction feedback. From now on we refer
to an illocution containing a specific content, as a specific content illocution, e.g.,

5.1. THE MODEL 65

an illocution containing an interaction request is an interaction request illocu-
tion. We assume that agents discard those illocutions whose recipient identifier
does not match their own.

Definition 5.1.1. Let A be the set of all agent identifiers. An illocution is a
tuple (a,a’,ct) where a € A is the identifier of the illocution sender, a’ € A is
the identifier of the illocution receiver, and ct is the illocution contents, whose
structure depends on the contents being sent. Let I be the set of all illocutions.

As in the previous chapter, a MAN has an associated environment containing
the history of all illocutions. The environment could contain other information,
but the history of illocutions is the only part of the environment that we model.
In this chapter the illocution contents are different than in the previous chap-
ter. Therefore, the structure of an environment also changes to incorporate the
events in this model. Agents have subjective and partial perceptions of the en-
vironment, since they can only observe those illocutions that where either sent
or received by them.

Definition 5.1.2. Given the set of illocutions I, an environment is any subset
of illocutions e C I. Let E = 2! be the set of all environments.

The environment contains all illocutions that have been uttered during the
execution of the system. Such environment does not need to be stored in any
place, but it is a useful mathematical construct. On the other hand, an agent
could easily store a local view of the environment, containing those illocutions
that where either sent or received by it.

Definition 5.1.3. Given a set of agent identifiers A, an environment e, and
an agent with identifier a € A, the local environment of agent a in e is e|, =
{{as,ar,ct) €elas =aVa, =a}

The initial environment of a MAN is always empty (i.e., eg = (). Further-
more, upon entering the MAN, the local environment of an agent will also be
empty. This carries an underlying assumption: two agents can never possess
the same agent identifier, either simultaneously or at different times. In real
systems this assumption may not always hold but using an appropriate iden-
tification scheme (as the one described in Section 5.4) we can guarantee this
assumption.

5.1.1 Illocution Content

The content of illocutions can be of different types, depending on the part of
the interaction protocol that is taking place. In this section we define the differ-
ent content types: identity certification, certification cancellation, request, and
feedback.

The identity certification serves to acknowledge the identity of an agent by
another agent. The sender agent utters an identity certification illocution when
it trusts the certified agent to be who it says it is. This mechanism follows a web

66 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

of trust (WOT) approach, which is the mechanism we use for authentication.
On the other hand, the certification cancellation states that an agent cancels
its previous endorsement of another identity. An agent identifier becomes active
when another agent certifies it, and stops being so when all the agents that
had previously certified it cancel their certifications. The interaction protocol
is defined so that only agents with an active identifier can interact with others.
Making this the first of our enforcement mechanisms.

Definition 5.1.4. Given a set of content identifiers I, and a set of agent identi-
fiers A, an identity certification is a tuple (i, a,a’) where i € I is the request iden-
tifier, a € A is the identifier of the certifying agent, and a’ € A is the identifier of
the agent being certified. Let C be the set of all identity certifications. We define
the function ¢ : E — 2¢ to represent the set of agent certifications in a given
environment, i.e., given an environment e € E, {(e) = {c € C | I(a,,as,c) € e}.

A certification cancellation is a tuple (i,a,a’) where i € I is the content
identifier, a € A is the identifier of the agent removing its certification, and a’ €
A is the identifier of the agent whose identity certification is being cancelled. Let
D be the set of all certification cancellations. We define the function y : E — 2P
to represent the set of certification cancellations in a given environment, i.e.,
given an environment e € E, x(e) = {d € D | I{a,,as,d) € e}.

Given an environment e € E, A. C A is the set of active agent identifiers,
i.e., Ac = {a’ € A|3(i,a,d’) € ((e) A—3(i,a,a’) € x(e)}.

An agent with an active identifier (from now on we will use “agent” to refer
to “agent with an active identifier”) that wants to interact with another agent
must get an interaction request delivered to the agent with which it wants to
interact. Since enforcing agents will only listen to interaction requests in illo-
cutions uttered by agents whose identity they have certified, most requests will
have to be delivered through a path of agents that is made explicit in the request.

Definition 5.1.5. Given a set of agent identifiers A, and a set of content iden-
tifiers I, an interaction request is a tuple (j, a;, as, p) such that:

e j € I is the content identifier.

e a; € A is the identifier of the initiator agent, i.e., the agent that created
the original interaction request.

e a; € A is the identifier of the target agent, i.e., the agent for which the
interaction request is intended.

e p is the route followed so far by the interaction request (see Definition
5.1.6).

Let R be the set of all interaction requests. An interaction request (j, a;, at, p) is
said to entail another (j’,al,a;,p’) when they share the same content identifier
j = 7', initiator identifier a; = a}, target identifier a; = aj, and the route p
entails the route p’ (see Definition 5.1.6). Let the predicate entails C R x R
define the entailing relationship between two requests, where the first request

5.1. THE MODEL 67

entails the second. Let the function p : E — 2% represent the set of interaction
requests in a given environment, i.e., given an environment e € E, p(e) = {r €

R| Ha,,as,r) € e}.

An interaction request contains information about the route the request has
travelled in order to help the recipient of the request illocution decide what
to do with the request. When the target agent is also the last agent in the
request route recipient list, we say that the request has reached its target, in
which case the target agent must decide whether or not it wants to interact
with the initiator agent. Otherwise, when the recipient agent is not the target,
it will decide whether it forwards, blocks, re-routes, or discards the request. A
request is discarded if the recipient agent does not send an entailing request
illocution. A request is forwarded by sending an entailing request illocution to
an agent not already in the request route. A request is re-routed or blocked
by sending an entailing request illocution to the agent that sent the request
illocution. When blocking, the request route informs that the agent has blocked
the request. Whereas, by re-routing the agent sending the entailing request
says that it wants to forward the request but cannot because it has no agent to
forward it to.

The request route contains information about the decisions taken by all the
agents in the path that the interaction request has travelled.

Definition 5.1.6. Given a set of agent identifiers A, a request route is a tuple
(r,b,rry where r € A* is a sequence of agent identifiers, and b, 7 C A are sets of
agent identifiers. The sequence r contains all recipient agents, i.e., those agents
that have received a request entailed by the original. The set b contains all
blocking agents. Finally, the set rr contains all re-routing agents. Therefore, all
agents in 7 that are not in either b or rr are those that have effectively forwarded
the request to the target. The order in the recipient sequence describes the
order in which the agents formed part of the request delivery. Request routes
({a1, a2, ..., an), b, rr) must satisfy the following rules:

e All identifiers in the blocking and re-routing sequence must appear in the
recipient sequence, i.e., Va € b (A (1 <I<nAa=a))AVaerr (3 (1<
I<nAa=aq).

e No duplicates allowed in the recipient sequence, i.e., Vj, k (1 < j < k <
n— a; # ax).

e An identifier in the re-routing sequence cannot appear in the blocking
sequence and viceversa, i.e., bNrr =)

Let P be the set of all request routes. A request route ({ai,as,...,an),b,rr)
is said to entail another ((a},a5,...,al,),b’,rr’), when its recipient sequence is
the beginning of the recipient sequence in the request route it entails, and the
blocking and re-routing sets are includes in the sets of the request route it entails,
e, n<n AVj (1§j§n—>aj:a;)/\bgb’/\rrgrr’.

68 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

Those interaction request illocutions that are sent to the appropriate agent,
and with a properly constructed request route (see Definition 5.1.7) are said to be
correct for the agent receiving them. Those interaction request illocutions that
are not correct are discarded by the receiving agent. For example, an agent a
receiving a request illocution where the sender identity has not been certified by
it will discard the request. Making this another of our enforcement mechanisms.

Definition 5.1.7. Given an agent with identifier a € A, and an environment
e € E, an interaction request r = (j, a;, a, ({(a1, ag, ..., an), b, rr)) as content of
the illocution (as, a,,r) is correct for agent « if the following properties hold:

e The recipient is a, i.e., a, = a.

e Either the identity of as is certified by a or the identity of a is certified
by as, 7 is being blocked or re-routed by ag, and r is entailed by a request
that a sent in an illocution to as, i.e., as € Ae, V (a € A, NI €
plelq) (entails(r’ 1) A (as € bU rr)).

e Either a is the last element of the recipient list (i.e., a = a,) or all agents
in the recipient sequence after a have blocked or re-routed the request and
there exists an interaction request illocution in a’s environment with a as
the sender that entails r, i.e., Ik (1 <k <nAax=aAVl(k<l<n—
a; € bUrr)) AIal,al, 1"y €el, (r' € ple|a) Aentails(r’,r) Aal, = a).

Let the predicate correct C I x A x F hold when the given interaction request
illocution is correct for the given agent identifier in the given environment.

When an agent receives a correct interaction request for which it is the tar-
get, it decides whether or not it wants to interact with the initiator agent. If it
does, it will send an interaction request illocution where the contained interaction
request is the one it received. We call these special interaction requests acknowl-
edgements. Upon receiving an acknowledgement illocution an agent knows that
the target of a interaction request accepts to interact with its initiator. Nonethe-
less, an agent can only verify that an acknowledgement is justified if it previously
sent an entailing interaction request illocution.

Definition 5.1.8. Given a set of agent identifiers A, and a set of content
identifiers I, an acknowledgement illocution is an interaction request illocution
(as, ar, (J, @i, as, {({a1, a2, ...,an), b, rr))) where the illocution sender is the request
target and the request has reached its target, i.e., as = a; = a,. Let K be the
set of all acknowledgement illocutions.

Given an agent with identifier a € A, and an environment e € F, an ac-
knowledgement (as, a, (4, a;, at, ({a1, as, ...,an),b,rr))) is said to be justified for
the receiving agent a if the following properties hold:

e The agent receiving the illocution is its recipient, i.e., a = a,..

e There exists a correct request sent by agent a that entails the acknowl-
edged request, i.e., I(a,a.,r’) € el, (1’ € p(e|s) Acorrect({a,a..,r’),a,e)A

entails(r’, (4, a;, as, (a1, a9, ..., an),b,r7))).

5.1. THE MODEL 69

Let the predicate justified C Ix Ax E hold when the given illocution is a justified
acknowledgement for the given agent identifier, with the given environment. We
define the function o : E — 2% to represent the set of acknowledgements in a
given environment, i.e., given an environment e € E, a(e) = eN K.

When the interaction request initiator receives a justified acknowledgement
associated to a request it sent, a direct communication channel between the ini-
tiator and target is created and they execute a joint action through this channel.
When an interaction follows the process described throughout this section (i.e.,
first a request is sent by the initiator; this initial request entails other correct
requests, one of which eventually reaches the target; then the target sends a
justified acknowledgement to the initiator; finally, an interaction between both
occurs), then the joint action is said to be consensual.

Definition 5.1.9. Given a set of agent identifiers A, and a set of request iden-
tifiers I, an interaction is a tuple (j, a;, a;) where j € T is the identifier of the
request that triggered the interaction, a; € A is the identifier of the request’s
initiator, and a; € A is the identifier of the request’s target. Let Z be the set of
all interactions.

Given an environment e € F, an interaction is said to be consensual when
there exists an acknowledgement in «(e) that is justified for the interacting
initiator, with an acknowledged request where the interacting agents are the
initiator and partner. Let the predicate consensual C 7 x FE hold when the given
interaction is consensual. Mathematically speaking: consensual((j,a,a’),e) <
Has, ar, {J, ai, at, p)) € a(e) (justified({as, ar, (j, a;,a,p)),a,e) ANa; =aNad =
at).

The contents of consensual interactions are completely private, as opposed
to the joint actions modelled in Chapter 4, where the joint action contents trav-
elled encrypted through a path of mediators. Since there are no global norms
governing the interaction contents between agents, the mediator agents cannot
verify the compliance of the interaction even if they can access its contents.
Notwithstanding, there is some subjective measure of the interactions that are
appropriate, i.e., all agents are able to assess whether an interaction they par-
ticipated in is satisfactory to them. Agents send feedback to express the degree
of satisfaction achieved from an interaction. An agent can send any number of
feedback messages as long as they conform to a specific structure. Nonetheless,
feedback is legitimate only when it refers to a consensual interaction. An agent
can verify that a feedback is legitimate even if its local environment does not
contain the acknowledgement, since the request is the same in the acknowledge-
ment as in the feedback, the agent can check that the request in the feedback is
entailed by a request it sent.

Definition 5.1.10. Given a set of agent identifiers A, and a set of content
identifiers I, a feedback is a tuple ((j, a;, at,p), ay,v) where (j,a;,a¢,p) € R is
an interaction request that has reached its target, ay € A is the identifier of
the agent giving the feedback, and v € [0,1] is a real number that gives a value

70 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

Inftiator Target her

Create Request
i et Al »| Receive Request

1
i
. .
Send Request ----+--»| Receive Request |«-- ' yes @

no
@
: yes

Send
Acknowledgment

—--=1

Mark as
blocking
no
Y
Mark as
rerouting
Add new
recipient /

y
________ Send Modified
Request

can
route?,

yes

Figure 5.1: Interaction protocol

to the satisfaction. The agent giving the feedback must be either the request’s
initiator or target, i.e., a; = ay V a; = ay. Let I be the set of all feedback.

Given an agent with identifier a € A, and an environment e € F, a feedback
(ryar,v) € F is said to be legitimate when there exists an interaction request illo-
cution in the environment sent by a that is correct for a and entails the feedback
request, i.e., Ia,al.,r’) € e|, (r' € R A correct({a,al.,r’),a,e) A entails(r’,r)).
Let the predicate legitimate C I x A x F hold when the given illocution contains
a legitimate feedback for the given agent in the given environment.

We define the function ¢ : E — 2 to represent the feedback in a given
environment, i.e., given an environment e € E, ¢(e) = {f € F | {as,a,, f) € e}.

5.2 Interaction Protocol

The previous section showed the different contents in the illocutions that agents
can utter during the interaction protocol. In this section we focus on the pro-
tocol so that the reader may have a deeper comprehension of how the events
described in Section 5.1 are ordered. Figure 5.1 gives an overview of the inter-
action protocol.

5.2. INTERACTION PROTOCOL 71

Figure 5.2: Example MAN.

In this section we detail the interaction protocol through an example. Figure
5.2 represents a multiagent network that has been formed by agents certifying
each other’s identity. Each vertex in the graph represents an agent, and the
number is its identifier (we will use a; to refer to the agent with identifier i). An
edge in the graph represents an identity certification that has not been cancelled.
The edge is directed, and the starting point is the agent which uttered the
identity certification, whereas the end point is the identity being certified. For
example, the single edge between agents a4 and a; means that there exists an
identity certification illocution (a4, az, (32, a4, az)) with request identifier 32 in
the global environment and no associated certificate cancellation. Notice that
some agent pairs have two bidirectional edges. This will be the common case in
which both agents have certified each other’s identity.

In the example interaction protocol, agent a; interacts with agent as. The
interaction protocol starts when the initiator agent (i.e., a;) sends an interaction
request illocution with as as its target. Agent a; cannot send a request directly
to as because the request would not be correct, since as has not certified ay’s
identity. An attempt to do so would get the request discarded. Therefore, aq
may send a correct request to either a4 or ag (not to as since it hasn’t certified
ap’s identity either. If agent a; chooses a4, the request illocution being sent
would be: (a1, a4, (225, a1, a5, ((as),0,0))), assuming that a; has never used 225
as a request identifier before.

Upon reception of the illocution, agent a4 verifies that it is correct for it.
Nonetheless, since a; is the only agent that has certified its identity, it cannot
create an entailing request that is correct by forwarding. Therefore, it creates an
entailing request that is a re-route of the one it received, and sends the request
back to a;. This request would be: (a4, a1, (225,a1, as, ((a4),0, {as}))).

Agent a; receives the request illocution and verifies that it is correct. Now
agent a1 can only forward the request to agent ag. It creates an entailing re-

72 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

quest illocution and sends it to agent ag: (a1, ag, (225, a1, as, {{a4,a6), D, {as}))).
Agent ag receives the request illocution and verifies that it is correct, and it can
forward to agents a; and ag. When ag chooses to forward to ag it sends the
following request: (ag, as, (225, a1, as, ((as, ap, as), 0, {as}))).

Let us assume that when ag receives the request, even though it is correct
for it, it chooses not to forward the request towards the target but to block it
(this is an essential part of enforcement). In this case, ag creates an entailing
request which it sends back to ag: (as, as, (225, a1, as, ({as, as,as), {as}, {as}))).

Upon reception of the illocution, ag verifies that it is correct
and creates an entailing request that is forwarded to a7, the only
agent it can still forward the request to. The request illocution is:
(ag, az, (225, a1, as, ({aq, ag, as, a7y, {as},{as}))). Agent a; verifies that the re-
ceived request is correct for it and, since its identifier has been certified by
the target agent as, chooses to forward an entailing request to the target:
<(17, as, <225a ai, as, <<a47 ag, as, ar, a5>a {(lg}, {a4}>>>

When as receives the request illocution for which it is the target, it also
verifies that the request is correct for it. After doing so, it chooses to interact
with the initiator agent and informs all the agents in the request route about
this by sending an acknowledgement illocution to each containing the request
information in the request illocution that it received. Below we list all the
acknowledgement illocutions that as sends:

e (a5, a7, (225 a1, a5, (a4, a6, as,az,as), {as}, {as})))
o (a5, ag, (225, a1, a5, ((aq, a6, as, a7, a5),{as}, {as}))).
o (as,ayq,(225,a1,as, (a4, as,as,ar,as), {as}, {as}))).
o (as,a1,(225,a1,as, (a4, as,as,ar,as), {as}, {as}))).

Notice that the target agent has not sent an acknowledgement illocution to the
blocking agent ag. Therefore, ag does not know whether a consensual interaction
can take place.

After ay (i.e., the initiator) checks that the acknowledgement illocution is
justified (see Definintion 5.1.8), both the initiator and target start a joint action
through a private communication channel: (225,a1,a5) € Z. The model defines
no structure for the contents of the joint action, since it only focuses on what
goes one prior to the joint action and after it, when agents can send feedback
about the joint action. This feedback is sent as the contents of an illocution. In
our example we assume agent a; complains about the joint action by sending
the following feedback illocutions:

o (a1,a7,{(225,a1,as, ((a4, a6, as,ar,as), {as}, {as})), a1,0))
o (a1,as, ((225,a1,as, ((a4, as,as, az,as),{as}, {as})), a1, 0)).
o (ay,ae,((225,a1,as, ((a4, as, as,az,as), {as}, {as})), as,0)).
o (a1,aq,{(225,a1,as, ((as, a6, as,ar,as), {as}, {as})),a1,0))

5.3. BEHAVIOURAL MODEL 73

We point the reader to the fact that agent ag received a feedback illocution even
though it never received an acknowledgement illocution. This poses no problem,
since the definition of a legitimate feedback does not depend on having received
the acknowledgement. Upon receiving the feedback illocution, ag has access to
the request that reached its target.

We also point out to the reader that no feedback has been sent to the target
agent by the complaining initiator (the value 0 indicates the lowest satisfaction
possible). It may be the case that the complaining agent does not want the other
partner to know that it is complaining. Nonetheless, any of the recipients of the
complaint could decide to forward the complaint to the other partner via a feed-
back illocution, e.g., {(ar,as, ({225, a1, as, ({a4, ag, as, ar, as), {as}, {as})), a1,0)),
thus letting the partner know about the feedback.

The last step of the interaction process comes after receiving the feedback
illocution. The agent will verify whether it is legitimate (see Definition 5.1.10)
so that no illegitimate complaints are taken into account when making decisions
about future actions.

5.3 Behavioural Model

In Section 5.1 we have introduced our previous model adapted to the modified as-
sumptions addressed in this chapter. These differences also bring about changes
to the behavioural model, which we detail below. The obvious change is the
reduction in the number of functions that model the behaviour of agents, since
we have encapsulated all events into illocutions. Furthermore, another change
is that the joint action among agents is not modelled. The reason being that we
are not interested in what happens in the joint actions because the model does
not define whether they are satisfactory. This is an effect of there not being any
global norm, but a subjective satisfaction defined by each agent.

In the presented behavioural model we define a function describing the ob-
servable behaviour among agents.

Definition 5.3.1. Given a set of agent identifiers A, and a set of content iden-
tifiers I, a behaviour is a function ¢ : A x A x E — TU{L} that models the
agents’ illocution sending behaviour. Given the agent identifiers a,a’ € A and
an environment e € E| 1(a,d’, e) is the illocution that is sent from a to a’ when
the environment is e. If t(a,a’,e) = L, no illocution is sent. Let B be the set of
all agent behaviours.

The system behaviour describes how the environment (see Definition 5.1.2)
evolves. The environment is a dynamic element that changes as agents interact
with one another by sending illocutions. A behaviour defines which illocution is
sent between a pair of agents given an environment. Therefore, since the system
starts with an empty environment (an empty set of illocutions), the behaviour
function describes the steps through which new illocutions are uttered and thus
added to the environment. Mathematically speaking €’ = eUlJ, . ca{t(a,d’,€)},
where e is the original environment that is being updated into ¢’.

74 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

5.3.1 Behavioural Properties

As in Chapter 4 we can extract some analytical properties from the model. The
current model can be seen as an extension of the one in Chapter 4, thus, some
of the properties for the previous model are also valid for the current one, but
some of them are not any more.

In Chapter 4, a global norm was given that described the actions that were
valid under a specific environment. This norm was the same for all agents, and
since all agents had access to the norm definition they all knew whether the
actions they executed were normative. In this chapter, there is no such global
definition of what is normative. Instead each agent has a subjective valuation
of what is satisfactory for it. Therefore, what is satisfactory for one agent does
not need to be satisfactory for another.

The properties in Chapter 4 defined different upper bounds on the num-
ber of norm violations depending on the behavioural properties of the agents
in the MAN. Given that the current model does not have norm violations, we
adapt some of the properties to define an upper bound on the number of feed-
back illocutions where the valuation denotes an unsatisfactory interaction. For
the remainder of the section we will restrict the values of feedback to either 0,
which denotes an unsatisfactory interaction, and 1, which denotes a satisfactory
interaction. The model, however, allows for intermediate values.

Definition 5.3.2. A feedback ((j,a;,as,p),ar,v) is a complaint if v = 0. Let
the predicate complaint C F' hold when a feedback is a complaint.

The current MAN is formed as an overlay network, i.e., a virtual contact
network on top of a communication network. Therefore, any peer can send illo-
cutions to any other peer. Nonetheless, the recipient peer can choose to discard
those illocutions with content that do not follow the restrictions defined in Sec-
tion 5.1. By discarding those illocutions, the agent is exhibiting an enforcing
behaviour.

Definition 5.3.3. Given an environment e € E, an agent with identifier a € A
is said to be networked if it discards from its local environment those interac-
tions containing: requests that are not correct, acknowledgements that are not
justified, and feedback that is not legitimate. We assume that all agents in a
MAN, as defined in this chapter, are networked.

Now we give a definition for incompatible agents. An incompatible behaviour
occurs when after a consensual interaction, either of the interacting partners
sends a feedback message which denotes an unsatisfactory interaction (i.e., a
complaint). Two agents are incompatible when one of them has sent a complaint
about the other.

Definition 5.3.4. Given an environment e € FE, two agents with identifiers
a,a’ € A are said to be incompatible to an agent with identifier a” € A, if a
complaint that is legitimate to a’ has been sent about an interaction between
a and d', i.e., Ias,ar, f) € e (f = ({J,ai,as,p), ar,v) A legitimate(f,a”,e) A

5.3. BEHAVIOURAL MODEL 75

((a; =aNar =a)V(a; =a Nay = a)) A complaint(f)). Let the predicate
incompatible C A x A x E hold when the two given agents are incompatible
for the given local environment of the third agent.

We will now adapt the avoiding behaviour. In the current model an avoiding
behaviour occurs when an agent that has legitimately complained about another
will never acknowledge requests coming from it. Again, this is an enforcement
mechanism that can be applied by any agent.

Definition 5.3.5. Given an environment e € F, a behaviour function ¢ is said
to be incompatible avoiding for an agent with identifier a € A when a never
sends requests with it as initiator and an incompatible agent as target, and
never acknowledges requests coming from agents that are incompatible with it,
i.e., incompatible(a,a’,e) — (c(a,a”,e) # (a,a”,{j',a’,a,p"))) A (a,a” e) #
(a,a”,{j',a,a’,p’))). Let the predicate avoiding C B x A hold when a behaviour
function is incompatible avoiding for a given agent.

For the following proofs we define the function ¥ : A x A x E. Given two
agent identifiers a,a’ € A, and an environment e € E, ¥(a,d’,e) is the set
of legitimate complaints by a about o', i.e., ¥(a,d’,e) = {{{j,a;,as,p),a,v) €
F ‘ Complaint(«jv i, at7p>a a, U>) A legitimate(<<jv ai, at7p>7 a, U>7 a, 6) N ((az =
ahag=ad)V(ag=aNha; =d))}

Lemma 5.3.6. If the behaviour function v is incompatible avoiding for agent
a, the environment will contain at most one complaint originated at a about
another agent a', i.e., avoiding(t,a) — |(a,a’,e)| < 1.

Proof. Let us assume that avoiding(c, a) Al (a,a’,e’)| = 1, that is, there exists a
legitimate complaint in environment ¢’ issued by a about a’, where ¢’ represents
the environment at a moment prior to e, thus, €/ C e. According to definition
5.3.5, a will never send a request as initiator with a’ as target, and it will never
acknowledge a request with a’ as initiator. Therefore, no complaint sent by
a about a' is legitimate (see Definition 5.1.10). Which proves that v (a,d’,e)
can never contain more than one legitimate complaint by a about any other
agent. O

Theorem 5.3.7. If the behaviour ¢ of a multiagent network is incompatible
avoiding for all agents, then there exists an upper bound to the total number of
legitimate complaints in the environment e € E. This upper bound is twice the
number of certified agent identity pairs, i.e., |Ac|(JAc| — 1).

Proof. The total number of complaints in a multiagent network is equal to the
sum of complaints issued by each agent. Furthermore, an agent can only issue
legitimate complaints when the initiator’s identity has been certified by some-
one, otherwise its requests would be discarded as they would not be correct (see
Definition 5.1.7). Therefore, one can calculate the total upper bound of legit-
imate complaints by adding the upper bounds for each agent with a certified

identifier.
Z w(a, a/? e)

a,a’ €A,

76 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

Given that the behaviour is incompatible avoiding for all agents in the system,
Lemma 5.3.6 applies to all agents. Therefore,

Z w(a,a',e) < [Ae[(JAel = 1)

a,a’ €A,
which proves the theorem. O

The following result may be proved in much the same way as Lemma 5.3.6
and Theorem 5.3.7:

Corollary 5.3.8. Given a behaviour v € B that is violator avoiding for a group
of agents A" C A (i.e., Va € A’ (avoiding(t,a))), then there exists an upper
bound to the total number of legitimate complaints by an agent in A’ that can
exist in the environment. This upper bound is |A.|(]A'] — 1).

These results are very similar to those in Chapter 4. Nonetheless, there is
an issue in applicability. Since the multiagent network in this chapter is open
(i.e., new identities can join and leave), an upper bound based on the number
of certified identifiers is not meaningful. An agent can create any number of
identifiers and certify them. This agent would only need one other agent in the
network to certify one of its identifiers in order to use all of the ones it has created.
This type of behaviour is called a Sybil attack in the literature [Douceur, 2002].
Since such an attack is possible under the model in this chapter, the upper bound
on the number of legitimate complaints is not meaningful. In Section 5.4.7, we
show that it is possible to modify a reputation mechanism to work on top of
this network so that it is Sybilproof. Furthermore, we show that by using the
SybilLimit techniques [Yu et al., 2008] we find a meaningful upper bound on the
number of legitimate complaints.

5.4 Avoiding Fraud

Peers in the network can attempt fraud in many different ways. For one, an
agent can potentially send any illocution content it wants. In Section 5.1 we
have seen some checks that agents can do in order to avoid some types of il-
locution content fraud, such as checking for correctness in interaction requests,
checking for justification in acknowledgements, and checking for legitimacy in
feedback. Nonetheless, an agent could easily fake a correct interaction request so
that the subsequent acknowledgement and feedback are justified and legitimate,
respectively. Furthermore, since a reputation mechanism is coupled with the en-
forcement mechanism, an agent or group of agents can also attempt to correctly
follow the protocol with the purpose of subverting the reputation mechanism in
order to get chosen to interact more often than they ought to. This can be done
by either raising one’s reputation or by lowering that of peers that have a higher
reputation rank. The following is a non-exhaustive list of attacks: badmouthing,
i.e., sending misleading feedback about prior interactions; ballot-stuffing, i.e.,
sending feedback of non-existing interactions; milking or dynamic personality,

5.4. AVOIDING FRAUD 7

i.e., getting good assessments by satisfying other peers in order to cheat later
on; collusion, i.e., forming a collective with other peers to try to subvert the
assessment system; whitewashing, i.e., changing the peer’s identifier in order
to avoid negative assessments from previous feedback; and finally, Sybil, i.e.,
creating many false identities controlled by an agent that collude to subvert the
reputation system.

In the following sections we go into more detail for each of the fraud strategies
described above. For each of these fraud strategies we detail the way in which
they would be attempted by malicious agents in our system. Furthermore, we
describe techniques that can be used to lessen the effectiveness of the attack in
subverting the system

5.4.1 Data Fraud

This section tackles the case in which an agent sends false illocution contents
(i.e., illocution contents that do not follow the interaction protocol guidelines)
in order to corrupt the local environments of other agents with information that
benefits it.

To show how this could be done, let us take the example in Section
5.2. Imagine agent ag (the one that blocked the request in the example)
wants to spread bad feedback about agent aj, i.e., badmouthing. Agent
ag could send a fake interaction request illocution with a; as the initiator
and a non-existent agent agy as the target (as, a7, (123, a1, ass, ({(as, az),0,0))).
Since the target agent does mnot exist, no route would ever be
found and then a re-routing request would eventually reach asg (e.g.,
(a7, as, (123, a1, a3z, {{ag, ar,...,a4),0,{az,...,as})))). Now the agent ag can send
legitimate feedback illocutions to all the agents in the request route that got re-
routed (e.g., ((123, a1, asz, {({as, az, ..., a4, azs, age), 0, {ar, ...,as})), as2,0)). That
is, ag makes it appear as if the request eventually reaches asgs via another non-
existing agent ass.

Another possible fraud is to tamper with interaction requests. Possible tam-
pering is: adding or removing agents from a recipient list, adding or removing
agents from the blocking set, adding or removing agents from the re-route set,
and changing the initiator or target agents. The first three tampering examples
could be done to add or remove blame for helping or hindering request rout-
ing. The last example could be useful for man in the middle attacks, which is
a form of active eavesdropping in which the malicious agent makes independent
connections with the victims and relays messages between them, making them
believe that they are interacting directly with each other over a private connec-
tion, when in fact the entire conversation is controlled by the attacker. Finally, a
typical fraud would be that of identity fraud, by which an agent sends illocutions
making believe it is another agent.

We tackle these types of fraud through typical encryption and signature tech-
niques. Each agent creates its own encryption key pair (a;,p;). The first key
is public, being this the agent’s public identifier. The second key is private.
Note that we do not use a Public Key Infrastructure (PKI), as it is a centralised

78 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

component which could suffer from denial of service attacks, and it is a bottle-
neck. Instead we use Pretty Good Privacy (PGP), in which each agent creates
its own identity and it is other agents that certify it. The chance of two agents
generating the same key pair is infinitesimal with large enough keys.

In order to tackle identity fraud, the illocutions are encrypted with the private
key of the sender and re-encrypted with the public key of the receiver. Upon
reception of an illocution, the receiver decrypts the message with its private key
and then decrypts it with the sender’s public key. This ensures that the illocution
sender has access to the private key associated to the sender’s identity, and that
only an agent that has access to the recipient’s private key can read the illocution
contents. If agents are careful not to allow others to know their private keys, the
previous encryption technique ensures authentication, integrity, and privacy.

Tackling interaction request fraud is in change solved via digital signatures,
as opposed to encryption. Encryption is not useful since we want any agent to be
able to read the contents of the interaction request. By using digital signatures,
we can authenticate the illocution’s origin and test its integrity. Since the request
route of a request is constructed during the route process, the signature scheme
is more complex. KEach interaction request is sent with n associated digital
signatures, where n is the number of entailing interaction requests for the current
request. The content being signed by each signature is the entailing interaction
request that was sent by the agent signing it. To show how it would work, we
will use the example in Section 5.2. For this example, let S be the set of all
digital signatures, and o : R x A — S be the signature function. Given a request
r € R and an agent identifier a € A (which is also the agent’s public key), o(r, a)
is a’s digital signature of r.

The following list shows each requests sent during the routing process, and
the signatures that where associated to each request:

e = <2257a’17a57 <<a4>5@7®>>7 0'(7’1,0,1)
® Ty = <2257CL17CL57 <<a4>7@7 {a4}>>7 0'(7’1,(11), and 0'(7’2,614)
o 73 = (225,a1,as, ((a1, ag), 0, {as})); o(r1,a1), o(r2, as), and o(r3,a1)

® Ty = <2257a17a57 <<a4aa63a8>7®7{a4}>>; 0'(7'1,(11), 0(7’2,a4), 0(7”‘3,0,1), and
o(ry,ag)

o r5 = (225,a1,as, ((a4, a6, as), {as}, {as})); o(ri,ar), o(re,as), o(rs,ar),
o(ry,ag), and o(rs, ag)

® Tg = <2257a17a57<<a4,a6,ag,a7>,{a8}7{a4}>>; O—(rlaal)a U(T23a4)7
o(rs,a1), o(ry, ag), o(rs,as), and o(rg, ap)

o 17 = (225,a1,as,((as,a6,as,a7,a5), {as},{as})); o(ri,a1), o(rz,aq),
o(rs,a1), 0(rs,as), o(rs,as), o(rs, as), and o(r7, ay)

Given an interaction request, it is easy to calculate all the entailing requests
and what agent identifier should have signed each. Therefore, given a request

5.4. AVOIDING FRAUD 79

and a set of signatures, any agent can verify whether there has been any tamper-
ing. Sending one digital signature for each entailing request is an overhead that
should be taken into account. The FIPS 186-3 standard for encryption using the
DSA digital signature algorithm, recommends using public keys that are 2816
bits which generate signatures 4096 bits long. When using the recommended val-
ues for the previous example, the request r7 would be 25408 bits long (assuming
64 bit request identifiers) and its associated signatures would be 28672 bits long.
Therefore, the signature scheme more than doubles the length of the messages.
Nonetheless, this overhead brings about two benefits. Firstly, it allows authen-
tication and integrity. More importantly, it makes storage of sent and received
interaction request illocutions unnecessary, since all the entailing illocutions can
be calculated given an illocution, and the associated signature provides authen-
tication. The entailing interaction request illocutions are needed in order to test
for correctness of interaction requests, justification of acknowledgements, and
legitimacy of feedback.

The same type of fraud avoiding technique is applied to acknowledgements
and feedback, since both contain an interaction request. In case of an acknowl-
edgement a new signature is added by the target agent, which authenticates that
the target has received the interaction request. Continuing with the example,
the acknowledgement k1 = (as, a1, (225, a1, as, ({a4, as, as, a7, as), {as}, {as})))
would have the associated signatures o(ri,a1), o(re,a4), o(rs,a1), o(rs,ag),
o(rs,as), o(rg,as), o(r7,a7), and o(r7,as). The last one being the signature by
the target agent which certifies that the interaction request has reached it and
it accepts to interact via the acknowledgement.

Feedback also needs to be authenticated and tested for integrity. This is
done by adding a signature by the agent giving the feedback to the set of
signatures in the acknowledgement. Continuing with the example above, the
feedback fl = <<2257 ai,as, <<(l4, ag, as, ar, a5>a {a’8}7 {a4}>>a at, 0> sent by agent
a1 to agent ag in the illocution (a1, as, f1) will have the associated signatures
U(Th al)a 0'(7"2, a4)7 0'(7"37 al); O'(’I"4, a6)7 U(T57 a8)7 U(T6a a/6)7 0(T77 a7)a 0'(7”7, a5)7
and o(f1,a1). The last one is the signature by the agent giving the feedback
which certifies the authenticity and integrity of the feedback.

At each step of the interaction process the illocution being sent contains all
the signatures of the previous steps. This is a large overhead that allows authen-
tication and integrity testing. Furthermore, sending all the signatures reduces
the need for memory storage by the agents, since the previous steps of an interac-
tion process can be calculated from the current one (e.g., the acknowledgement
request can be extracted from the feedback, and all the entailing interaction
requests can also be calculated). Therefore, an agent can check whether an
acknowledgement is justified without having to store the previous interaction
request illocutions it sent. The same holds for agents checking whether a feed-
back illocution is legitimate.

80 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

5.4.2 Badmouthing

A badmouthing attack occurs when an agent sends negative feedback about in-
teractions for which it has no cause to complain. Through this attack, an agent
tries to lower its competitors’ reputation in order to gain relative reputation
itself. This attack is a big issue when the trust assessment mechanism is said
to be symmetric, i.e., when the trust on an agent is the same independently of
the agent assessing it. If the trust metric is asymmetric, i.e., trust measures are
subjective, badmouthing can be tackled. Furthermore, if the assessment mech-
anism only uses feedback about those interactions for which it was a partner,
badmouthing will only affect his own future assessments. Nonetheless, limiting
the feedback to be used in calculating trust to that of the assessing peer can
cause bad assessments due to the lack of data. Some assessment algorithms use
feedback from third parties to make up for the lack of data, which opens the
door to badmouthing attacks. Some of these algorithms incorporate mechanisms
that make them robust to badmouthing. What these mechanisms do is to give
more weight to feedback coming from agents that give feedback similar to oneself
or to those agents that have a good reputation themselves. Notwithstanding,
the latter case assumes that peers with good reputation will always give good
feedback which need not necessarily hold.

5.4.3 Ballot-Stuffing

Ballot-stuffing is an attack by which an agent sends more feedback than inter-
actions it has been partner in. The interaction protocol in Section 5.2 together
with the encryption techniques discussed in Section 5.4.1 are enough to ensure
that a single agent cannot realise a ballot-stuffing attack. Nonetheless, a group
of agents can realise a ballot-stuffing attack by executing the interaction protocol
many times. In order to spread feedback as much as possible, they have to get as
many agents in the interaction request route as possible, and this is out of their
control. Since the routing algorithm is a variation of the shortest path search,
(see Section 5.8) the agents attempting ballot-stuffing attacks would have to be
far apart in the network, which is unlikely. Notwithstanding, assuming that the
malicious collective can manage to be far apart, and spread their ballot-stuffed
feedback, there are techniques that can make a trust assessment algorithm robust
to ballot-stuffing. The main counterattacks used in the literature are: filtering
feedback that comes from peers suspect to be ballot-stuffing as in Section 5.4.2,
and using feedback per interaction rates instead of accumulation of feedback
[Kamvar et al., 2003, Tian et al., 2008, Xiong et al., 2004].

5.4.4 Dynamic Personality

An agent that achieves a high reputation will be able to interact more often. In
which case it can attempt to deceive other agents taking advantage of its high
reputation. This is called milking the reputation, or having a dynamic person-
ality. If the assessment algorithm takes long to adapt to changing strategies, it

5.4. AVOIDING FRAUD 81

can suffer from dynamic personality attacks. This is specially so with assessment
mechanisms that take into account all the past history of an agent in order to
calculate its reputation.

A commonly used technique to make the reputation mechanism robust to
dynamic personality attacks is to have a memory window so that not all the
past history is taken into account. An even more robust mechanism is to have
a dynamic memory window which is shortened when the reputation is lowered
[Xiong et al., 2004]. This reduces the amount of reputation milking that can be
achieved.

5.4.5 Whitewashing

Whitewashing occurs when an agent changes its identifier in order to escape
previous bad feedback. Simple whitewashing, in which an agent changes its
identity without the collaboration of others is not an issue for the system we have
described independently of the reputation mechanism being used as long as peers
are networked (see Definition 5.3.3). This is so because an agent which changes
its identifier also looses the certifications from its former contacts, which no
longer recognise it. Therefore, the cost of getting new contacts or of convincing
the old contact to certify its new identity ought to be enough to discourage
whitewashing attacks. Nonetheless, a group of malicious agents could collude
to allow whitewashing by certifying new identities. This is no different than a
Sybil attack (see Section 5.4.7).

5.4.6 Collusion

Collusion occurs when a group of agents co-operate with one another in order
to take advantage of the system and other agents. In our case it means that
agents in the colluding group will always give each other good ratings. As with
badmouthing, filtering out feedback from colluding peers seems to be the most
used way to make a reputation mechanisms robust against collusion attacks. The
techniques used for robustness against badmouthing can also be used in this case:
filtering feedback coming from peers whose feedback is not similar to one’s own.
Furthermore, the MAN model in this chapter allows collusion to be detected
by the routing mechanism. The paths between colluding peers will always share
most of the routing agents. Therefore, the feedback from collusion attacks will be
concentrated in the part of the network through which the colluders are linked!,
thus it is not easy for the colluders to corrupt large parts of the network.

5.4.7 Sybil Attacks

Sybil attacks are a sort of security threat that can be launched when identifiers
are cheap. The attack consists in creating enough identities so that a single

11t is likely that colluders will have contact links to one another. Nonetheless, they could
still route through other links in order to try to influence a larger part of the network when
realising this attack.

82 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

agent can subvert the normal functioning of the system. Some examples of a
Sybil attack are taking control of specific portions of a distributed hash table
(DHT), or improving one’s reputation through false feedback from many Sybil
identities.

The main ways in which such attacks are countered are either by adding a
cost to creating identifiers or by having a central authority that grants identities.
The problem with the first approach is that non Sybil identities also incur this
cost which may degrade the usage of the platform. The latter approach goes
against the distributed nature of P2P and MAS.

There are other approaches that reduce the amount of Sybil identities that
can be used. SybilGuard [Yu et al., 2006] and SybilLimit [Yu et al., 2008] both
use a contact network with specific algorithms for checking identities that guar-
antee that no more than Q(y/nlogn), and Q(logn) Sybil identities are accepted
by any node, respectively (where n is the total number of honest identities).
Furthermore, [Cheng and Friedman, 2005] give a description of the types of dis-
tributed reputation algorithms that are SybilProof, that is, that no agent can
increase its reputation (in absolute or relative terms) by launching a Sybil attack.
Sybilproof mechanisms are built through transitive trust in a contact network.

The network we propose in this thesis is a contact network, and as such it
shares the same base commonality with the three previous mechanisms, namely
SysbilGuard, SybilLimit, and SybilProof. Specifically SybilGuard and its im-
provement SybilLimit can be implemented directly into our architecture to re-
duce the number of Sybil nodes that are accepted. Nonetheless, since the en-
forcement mechanisms are coupled with reputation assessment mechanisms, we
are also interested in countering reputation attacks. In the current section we
show how reputation mechanisms built on top of the proposed network can be
made Sybilproof. A reputation mechanism is Sybilproof if the function it uses
to calculate the reputation of an agent, taking as input the values of the edges
in the contact graph, satisfies the conditions in the following theorem extracted
from [Cheng and Friedman, 2005]:

Theorem 5.4.1. A reputation calculating function is of the form f(s,t) =
mazxpep, ,g(P), where g is a function that goes from paths to real numbers.
The function calculates the reputation of an identity t from the point of view of
s. Such function is Sybilproof if:

1. (Diminishing returns) For all paths p, if p' is an extension of p, then
9(0') < g(p).

2. (Monotonicity) g is nondecreasing with respect to the edge values.

3. (No splitting) Given a single path p from s to t, if we split p into two paths
p1 and ps each from s to t, then max(g(p1),9(p2)) < g(p) (the theorem
assumes that an edge in the graph with an associated value v can be split
into two edges with associated values vi and vo Tespectively, as long as
v =11 +v9).

5.5. EXISTING REPUTATION MECHANISMS 83

5.5 Existing Reputation Mechanisms

This section describes the most influential reputation assessment algorithms in
the literature. For each of these algorithms we analyse their robustness against
the malicious attacks in Section 5.4, and the complexity measured in messages
that they send.

5.5.1 Bin Yu and Munindar Singh

Yu and Singh’s work [Yu and Singh, 2000] is one of the first in the area of dis-
tributed reputation systems. They use a network of trust relations in order to
propagate the reputation measures. Agents rate other agents after direct inter-
actions (becoming witnesses of one another), forming an interaction trust graph.
In order to assess the reputation of an agent with whom one has not interacted
directly, the paths in the trust graph are used to calculate the reputation. Yu
and Singh propose a simple algorithm to aggregate these trust measures into a
reputation measure. This mechanism takes into account the reputation of the
agents rating the agent being assessed. This follows from the assumption that
peers that act positively will give positive feedback. This assumption opens the
door to reputation attacks, such as collusion, badmouthing, and Sybil attacks.

Their approach does not tackle many of the known attack schemes since
it was not in their scope to tackle these issues. They even admit that their
approach does not incentive co-operation among agents, since a bad initial repu-
tation is confirmed through negative actions. Badmouthing, ballot-stuffing, and
collusion attacks are not dealt with. Nonetheless, they do tackle the dynamic
personality issue by giving a larger weight to negative interactions than to pos-
itive interactions. Thus making an agent gain reputation slowly but loose it
quickly.

Furthermore, they do not mention how agents are identified, but they do
describe their system as a totally distributed one. We assume that no certifica-
tion authority is present, thus making whitewashing and Sybil attacks possible.
Their approach is definitely not robust against these attacks. Firstly because
negative reputations are possible and a new agent has an initial reputation of
0, which makes whitewashing attacks fruitful for malicious entities. Secondly, if
identifiers are cheap, a Sybil attack is possible. The system presented cannot
be shown to be Sybilproof since it does not satisfy the no splitting property in
Theorem 5.4.1 of Sybilproof systems.

Finally, their approach seems to be very costly, since the reputation values
are spread through the network through a flooding policy. Furthermore, the
turnover issue is not mentioned in their work. Nonetheless, an analysis of their
work shows that the reputation values would not degrade much from agent
turnover since the maximum valued paths to the witnesses are used.

84 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

5.5.2 Aberer and Despotovic

Aberer and Despotovic propose a decentralized trust management system in
[Aberer and Despotovic, 2001] where all feedback from interactions is stored in
a P-Grid DHT [Aberer et al., 2003]. In order to avoid feedback loss from the
probability of having a malicious peer manage the keys for the feedback about
it, feedback is replicated accross multiple peers. The basis for their approach to
detect malicious peers is that they will be complained about by many peers.

Their approach is robust to badmouthing attacks since filing complaints is
detrimental to the peer’s own reputation if other peers have been complaining
about the peer. Although in their experiments, malicious peers do not execute
badmouthing attacks, they just return random data when queried as witnesses.

Their approach can have problems with ballot-stuffing attacks, since every
agent p can file a complaint about ¢ at any time. By not providing a mechanism
that checks that a complaint is legitimate, ballot-stuffing attacks can be executed
easily.

Turnover is tackled by normalising the number of complaints depending on
the frequency that the witnesses are found on the network. This normalisa-
tion makes the reputation calculating algorithm robust against peer turnover.
Nonetheless, such normalisation does nothing to prevent ballot-stuffing attacks.

In [Aberer and Despotovic, 2001] no mention is done to whitewashing. From
the analysis of their approach one can see that a peer would easily escape a
bad reputation by changing its own identity. Furthermore, no mention is made
about a collective of peers trying to subvert the system through collusion or
a Sybil attack. A close look at their decision algorithm shows that the trust
of the witnesses is assessed and the trust on a peer depends on the trust on
the witnesses of interactions with that peer. This heuristic is based on the
assumption that a reputed peer does not act maliciously when giving feedback.
Since this assumption does not hold for collusion or Sybil attacks, we believe the
approach described is not robust against these attacks.

The work in [Aberer and Despotovic, 2001] presents an attack by malicious
peers that do not always cheat, just a percentage of the time given a cheating
probability. The results from those experiments show that such malicious activ-
ity hinders the correct functioning of their algorithm. Such findings lead us to
believe that their algorithm is not robust against dynamic personality attacks.

The main issue the approach by Aberer and Despotovic tackles is cost. Their
algorithm uses a DHT based on P-Grid in order to store and retrieve the feedback
from the peer whose trust is being assessed. In the complex algorithm the DHT
is queried w + 1 times, where w is the number of witnesses (i.e., partners) of
interactions with the peer being assessed. Therefore, an interaction has a cost
of O((w + 1)logn) where n is the total number of peers. This approach has a
cost that is larger than that of our approach by a small factor, since the number
of witnesses is small compared to the number of agents in a system.

5.5. EXISTING REPUTATION MECHANISMS 85

5.5.3 Eigentrust

Eigentrust [Kamvar et al., 2003] is a distributed algorithm to calculate the global
transitive trust on each agent of the network. The transitive trust is calculated
through the left principal eigenvector, which can be approximated via a random
walk to reduce the complexity of the distributed algorithm. The algorithm is
further modified to add a probability to crawl through the pre-trusted peers.
Kamvar et al. assume that there will always exist a set of peers that are trustable
and known to all. In order to further secure the algorithm, each reputation
measure is stored in a replicated DHT, where each reputation value is stored
by m peers. This way malicious peers cannot easily modify the results of the
algorithm.

Eigentrust is robust to ballot-stuffing since they normalise the local trust
values of agents. This normalisation spreads an agent’s trust through all the
other agents in the network so that all trusts add up to 1. Ballot-stuffing is
impossible in this scenario.

Eigentrust does not tackle the whitewashing attack in a satisfactory way. All
new peers have an initial trust value of 0. The article mentions two mechanisms
to choose a partner peer: deterministic and probabilistic. In the deterministic
approach, the peer with the highest reputation is chosen. This approach is
robust against whitewashing attacks, but new peers are never allowed to gain
reputation and the load balancing of the network is severely compromised. The
probabilistic mechanism chooses a peer with a probability that is proportional to
its reputation, with a 10% probability a peer with trust equal to 0 is chosen. This
approach allows new agents to gain reputation and maintains the load balancing
property while opening a small (i.e., 10%) door to whitewashing attacks.

Turnover is not tackled by the Eigentrust article. Their experiments are run
with a low number of peers that do not leave the network. The authors of the
algorithm do mention that the DHT in which the reputation values are to be
stored ought to have a mechanism so that these values are not lost when a peer
leaves the system.

Collusion by a group of agents with badmouthing techniques is tackled
through the use of a pre-trusted set of peers. In order to do so, the authors
of Eigentrust assume that

“... there are some peers in the network that are known to be trust-
worthy. For example, the first few peers to join a network [...], since
the designers and early users of a P2P network are likely to have less
motivation to destoy the network they built.”

Later on they acknowledge that it is important that no pre-trusted peer be a
member of a malicious collective, as this would compromise the algorithm. The
effectiveness of the trust algorithm should not rest on the existence of pre-trusted
peers.

The Eigentrust algorithm does not tackle dynamic personality attacks. Kam-
var et al. do mention the posibilty of a peer returning a percentage of valid files
in order to fool the reputation system, and their approach is robust against

86 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

this type of attack. Nonetheless, since they use the whole history of feedback
to calculate reputation, their algorithm is very likely to suffer from dynamic
personality attacks.

The issue of Sybil attacks is bypassed by mentioning that a cost could be
added to generating a new identifier, such as CAPTCHAs[von Ahn et al., 2003]
of identifying the text in an image. Nonetheless, attackers have been known to
bypass such measures by reposting them in fake sites so that humans trying to
gain access can solve them. Furthermore, their algorithm is symmetric, which
has been shown to not be Sybilproof.

As for the complexity of their approach, each time a peer searches for a file
it must assess the reputation of all the peers that respond to its query. Since
the reputation value is stored by m peers each reputation assessment consists
of 2mlogn messages, where n is the total number of peers in the network.?
Furthermore, each time feedback is given, another m logn messages have to be
sent. Finally at the end of each round the reputation must be recalculated, at
which point rn log n messages are sent to update the reputation values, where r is
the number of rounds needed for the algorithm to converge (each round all peers
send each other the current reputation values). Therefore, we can conclude that
the complexity of Eigentrust is O(nlogn) which is higher than our approaches
(see Sections 5.6.1 and 5.6.2).

5.5.4 Reciprocative decision

In [Feldman et al., 2004a] the authors describe various mechanisms for assessing
the reputation of other agents based on what they call “reciprocative decision
functions”. The reputation mechanism is aimed to work in file-sharing P2P
networks in which an agent cannot know whether the server from which they
are requesting a file has defected when it ignores the request. An interaction in
their context consists of an agent requesting to download a file, and the server
deciding whether to share it or not. The interaction outcomes have been mod-
elled according to a generalised prisoner’s dilemma (GPD) that is asymmetric
but maintains the social dilemma.

A reciprocative decision function calculates the normalised generosity of the
agent being assessed and compares it to its own generosity. The generosity
is calculated as the ratio of the number of provided services to the number
of consumed services by an agent. In order to tackle the different problems
associated to reputation mechanism, they propose some modifications to the
basic reciprocative decision function.

The first problem is the difficulty of getting enough feedback about other
agents due to the large number of agents and the inherent turnover. To solve
this Feldman et al. propose a server selection mechanism in which agents store
the list of agents they have served in order to select them in the future and
allow for reciprocation to happen. The other solution they propose is having

2The number of messages needed to store and retrieve a value from a DHT is assumed to
be logn, as in CAN, Chord, or P-Grid.

5.5. EXISTING REPUTATION MECHANISMS 87

a shared history implemented through a DHT. In our approach the feedback is
spread through the paths used to deliver interaction requests, after which we
use a private history approach in which each agent has access to its own data.
By spreading feedback in this way we also tackle the same problem without the
inconvenient of deploying a shared history. These are the overhead in memory
access and the possibility of shared history attacks.

The second problem they tackle is collusion via ballot-stuffing. As they men-
tion in their article, a shared history is vulnerable to these types of attacks.
They propose to use a subjective measure of reputation based on maxflow (i.e.,
finding the path with the maximum reputation “flow”), thus making their al-
gorithm robust to simple ballot-stuffing attacks. Nonetheless, the mechanism is
not robust against more complex attacks such as the “mole” attack (i.e., one
agent provides correct service while ballot-stuffing about its colluding partners).
By studying the maxflow algorithm, one can see that it is not Sybilproof as it
adds the values of different paths instead of returning the maximum value. Our
approach, which is a modification to maxflow that is Sybilproof, does not suffer
as much from shared history attacks because it uses a private history approach
and a fraud detection mechanism. Furthermore, we use the personal similarity
measure to verify the validity of feedback, which prevents mole attacks. For a
mole to be effective in our system, it would have to give feedback about other
agents that is similar to ours and positive feedback about its colluding partners,
which is very costly.

Another issue they tackle is badmouthing. In their system a badmouthing
attack is detected by the difference in feedback from the interacting agents.
This is easy in the system they study because there are only two outcomes: file
provided, or file not provided. When such inconsistencies are found the feedback
given by the agent closer to the assessing agent is believed. In our case, we tackle
badmouthing through the similarity measure.

Feldman et al. also provide a mechanism for countering whitewashing attacks
— the “Stranger Adaptive” policy. This policy decides whether to interact with
a stranger (i.e., an agent for which no feedback is found) based on previous
interactions with strangers. The issue with this approach is that new agents
joining contemporary to many whitewashing attacks will not receive cooperation.
Our approach is more targeted, and only new agents in the same area as other
whitewashers would suffer the consequences of such attacks.

Finally, they tackle dynamic personality attacks by maintaining a short-term
history. This mechanism is also implemented in our approach with the extension
of dynamic history windows as seen in [Xiong et al., 2004].

The work on the reciprocative decision function does tackle the complexity
issue lightly. They mention that the maxflow algorithm is O(V?3), where V is
the set of vertices in the graph, but they provide a heuristic algorithm that has
a constant time. They do not mention the associated cost to operating a DHT.
Assuming that the heuristic algorithm provides a quick answer, it would have
to access the DHT as many times as nodes in the network it would check. No
estimate is given for the number of times the DHT would be accessed in their

88 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

work. Since the maxflow algorithm searches through all the paths, we could
assume that the data associated to each node in the graph would be accessed.
Assuming that the DHT has some sort of mechanism for duplicating data in
order to counter the attacks of colluding agents, the cost in DHT messages per
assessment would be O(r - nlogn), where r is the replication factor. In their
system the only agent assessing the reputation is the server. Therefore the
cost per interaction would be O(r - nlogn), which is larger than the one of our
approach, which is O(Inn).

5.5.5 Peertrust

Peertrust [Xiong et al., 2004] is a comprehensive approach to a decentralised rep-
utation algorithm. Xiong and Liu propose different techniques to calculate the
reputation and compare them through experiments. Their personal similarity
measure (PSM) is based on the assumption that the credibility of a peer’s feed-
back is proportional to the similarity to one’s own feedback. Instead of assuming
that the credibility depends on the reputation as a partner. Therefore, their al-
gorithms that use PSM are robust against badmouthing attacks and collusion
among different peers.

Their algorithms are also robust against ballot-stuffing because they calculate
the average satisfaction and not the accumulated satisfaction. Therefore, more
quantity of feedback will not necessarily improve the reputation, it is the quality
of feedback that counts. The algorithm uses a dynamic window in order to
tackle dynamic personality attacks. The reputation is calculated for a short and
a longer window of time. If the short window value goes below the long window
vale, the short value is used. Therefore, reputation becomes hard to build up
but easy to destroy.

Nonetheless, their approach cannot fight against whitewashing or Sybil at-
tacks satisfactorily. Xiong and Liu assume that a certification authority (CA)
exists, which introduces a centralised component that breaks the P2P scheme.
Even if they used an identification scheme without the centralised component,
they do not mention what the reputation algorithm returns for a peer without
any feedback. If the value returned is the minimum possible reputation, the
whitewashing issue would be tackled but new peers would never be able to gain
any reputation since nobody would ever interact with them. In Section 5.6.1
we present a modification of this algorithm that is made robust to whitewash-
ing attacks. As for Sybil attacks, Peertrust PSM algorithms may have a good
chance since they do pretty well with up to 70% of colluding peers. Nonethe-
less, a successfull Sybil attack could reach a higher percentage of the network,
for which no information is given. Furthermore, the colluding peers always give
false feedback (i.e., good feedback to malicious peers, and bad feedback to hon-
est peers) making them easily detectable by a PSM algorithm. In a Sybil attack,
some peers could act as moles by giving correct feedback for everyone in order
to have a high credibility but giving false feedback about some malicious peers,
in which case the PSM metric may not be successful.

Peertrust tackles turnover by having all feedback stored in a replicated DHT.

5.5. EXISTING REPUTATION MECHANISMS 89

Feedback is stored in 7 different peers in the DHT. When the feedback is retrieved
all r peers return it. This replication serves two purposes: to stop malicious peers
from falsifying the information in the DHT, and to be robust in high turnover
environments.

Peers in Peertrust form a DHT where feedback is stored and retrieved from,
thus there is a cost in trust assessments. The cost for a query or a storage
operation in a regular DHT is O(logyn). In order to prevent malicious peers
from removing feedback from the DHT, the data is replicated in different nodes.
Therefore, the actual cost per DHT operation becomes O(r-log, n), where r is the
replication factor. If the designer wanted to make feedback removal impossible,
he would have to set » = n. In this case there would be no need for peers to query
the DHT for feedback, since all peers would have a copy of all feedback, but a
storage operation would have a cost of O(n). Furthermore, setting such a high
value of replication would become a burden to peers, which would store too much
data. Finally, each trust assessment requires p + 1 feedback requests, where p is
the number of partners of the peer being assessed, thus the cost per assessment is
O((p+1)-r-logyn) when r < n and O(1) when r = n. Summing up, the cost per
interaction includes: the number of assessments of potential targets ¢; the request
and acknowledgement messages; and the feedback storage operations (two in the
worst case). When r < n, this cost is O((t+1) - (p+1)-r-logyn+2-r-logy n+2)
which becomes O(r-n?-log, n) when the potential partners and previous partners
are the whole set of peers. When r = n the cost in messages is O(n).

5.5.6 Repage

Repage [Sabater-Mir et al., 2006] is a sophisticated mechanism that uses cogni-
tive science to model other agents. The main difference with other approaches
is that it uses a meta-reasoning model in which image and reputation are sep-
arated. According to cognitive science, image is what an agent truly believes
about another, based on its own experiences and the experiences of others, and
reputation is a meta-model based on what the society as a whole thinks about a
specific agent. The other models described so far in this section do not make this
distinction, thus not allowing for a contradiction between image and reputation.
Another difference is that the reputation of an agent is presented as a fuzzy set,
as opposed to a single value as in other approaches. This allows the agent to
have richer models of others, e.g., 2/3 of the time it is a neutral partner and 1/3
of the times it is a good partner. Nonetheless, the author’s effort in providing
a sophisticated cognitive science model based on what humans do has the in-
convenient of not taking into account the threats that are endemic to electronic
societies, such as whitewashing and Sybil attacks, which are made possible when
identifiers are free, something that does not happen in human societies.

Badmouthing is tackled satisfactorily because Repage makes separate assess-
ment on agents as interacting partners and as informants. An assessment of
a partner that uses information from informants, weights this information ac-
cording to the assessment of the reliability of these informants. This makes
badmouthing attacks fruitless.

90 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

The Repage architecture does not provide a mechanism to avoid ballot-
stuffing attacks. Agents are allowed to share whatever information they like.
An agent’s image as an informant can be degraded by issuing information that
is not reliable. Therefore, ballot-stuffing could only be used to further improve
the reputation and image of an agent with an already good reputation or image.
This could be used to launch a dynamic personality attack. Nonetheless, repage
tackles dynamic personality attacks by using a fuzzy set model of the peers. If
the peer does many different actions this is reflected in the fuzzy set description.

Repage does not deal with the turnover problem since it has been designed
for a multi-agent system in which all agents are assumed to be present all the
time. Nonetheless, Repage can base its decisions solely on the information it has
gathered in the past. Therefore, if some agents are no longer present, no new
information can be gathered from them but the agent is still able to make its
assessments. Furthermore, whitewashing and Sybil attacks are not dealt with,
since the algorithm assumes that there exists a mechanism to prevent identity
changes and false identity creation.

The work mentions that Repage is able to assess the reputation on a group
of agents. This functionality assumes that the group being assessed is known
beforehand. In the case of collusion, the colluding group will not advertise
themselves. Therefore, it is hard for an agent to assess the reputation of a
colluding group if it does not know which agents are part of it. The complexity
of their algorithm is high in two ways. Firstly, the computational complexity
of the algorithm that calculates the values for image and reputation is high
since they use a fuzzy set approach with many values. Furthermore, Repage is
integrated into the agent architecture as a model that gives complex information
to the planner in order to help in the decision making. Secondly, the algorithm
queries the agents in the system every time it wants to assess trust.

5.6 Proposed Reputation Mechanisms

This section presents two new reputation mechanisms that have been developed
as part of this thesis to take the most advantage of the underlying contact
network in our model. Specifically, they take into account the information given
in the request routes as input to the reputation algorithm.

5.6.1 Route Enhanced Peertrust (REPT)

The reputation mechanisms defined in Section 5.5 are not robust against white-
washing attacks unless they use some sort of centralised identification scheme.
Nonetheless, robustness against whitewashing can be achieved in a totally dis-
tributed manner by taking advantage of request route information. In this
section we show how the Personal Similarity Measure (PSM) in Peertrust
[Xiong et al., 2004] (see Section 5.5.5) can be made robust to whitewashing by
using that information.

5.6. PROPOSED REPUTATION MECHANISMS 91

In our approach we modify the personalised similarity metric (PSM) of
Peertrust so that it takes into account information about the request route to
tackle whitewashing attacks.®> We have used this metric because it has been
shown to work well under badmouthing, ballot-stuffing, collusion, and dynamic
personality attacks [Xiong et al., 2004]. Furthermore, Peertrust does not base
its robustness on assumptions that need not hold (see Section 5.5.5).

Given an environment e, let P(a,e) = {a’ € A, | Ias,ar,{j,ai,at,p)) €
ale) ((a; =aNar =d')V(a; =a ANay = a))} be the set of partners of a i.e.,
the agents that have sent an acknowledgement to a or received one from a (A,
is the set of agent identifiers present in the environment e, «(e) is the set of
acknowledgements in e, a; is the initiator and a; is the target), CP(a,d’,e) =
P(a,e) N P(a’,e) denote the common set of partners of a and o', and S(a,d’,e)
be the ratio between the sum of feedback values in feedback from a about a’ and
the number of acknowledgements where a and a’ are partners.*

The PSM metric adapted to our scenario, without taking whitewashing into
account, is shown below. The first parameter denotes the peer assessing the
trust, the second parameter denotes the peer whose trust is being assessed, and
the third is the environment over which the assessment is taken. When the
denominator is 0, Tpgys cannot be calculated.

Z S(ap,a’,e) x Sim(a, ap, €)

ap€P(a’e)

Z Sim(a, ap, €)

ap,€P(a’ e)

TPSM(a7 alv 6) =

Sim is defined as the root-mean-square similarity between the complaint rate
vectors of the two peers:

3 (S(a,ap, e) — S(d', ap, e))2

ap,€CP(a,a’ e)

. /
Sim(a,a’,e) =1 CPlaa o)

The original Peertrust PSM is further modified to handle whitewashing by
using feedback from interactions whose requests had been forwarded by any
of the forwarding routers of the current request. This approximates the trust
in the initiator by using information of previous interactions routed by those
routers that trust the initiator. This variant is used when Tpgy; cannot be
calculated. Given an environment, let RP(a,e) denote the set of routed partners
in interactions where the request was forwarded by a; let RS(a,e) denote the
routed satisfaction, i.e., the ratio of the sum of feedback values in feedback where
the request was forwarded by a to the number of acknowledgements where the
request was forwarded by a; let CP(a, A’,) denote the common partners, i.e.,
intersection between the set of partners of a and the set of partners of any peer in

3These modifications could be applied to other trust algorithms too.
41f there are no acknowledgements, S(a,a’,e) = 1.

92 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

A’; and let S’(A’, a, e) denote the ratio of the sum of feedback values in feedback
where any peer in A’ was a partner of a to the number of acknowledgements
where any peer in A’ was a partner of a.?

The following equation describes the trust assessment metric adapted to han-
dle whitewashing. The first parameter denotes the peer assessing the trust, and
the second parameter is the set of routers that have trusted the assessed peer.
If the denominator is 0, Ty w returns 1.

Z RS(a,,e) x Sim/(a, RP(a,,e),€)
arEA,

Tww(a, Ar,e) =
Z Sim'(a, RP(ay,€),e)

ar€A,

Sim’ is defined as the root-mean-square similarity between the complaint
rates vector of the first peer and the accumulated complaint rates vectors of the
peers in the second set:

3 <S(a,ap,e) - s'(Acap,e)>2

apECP(a,A’ e)

. / !/ — .
Sim'(a, A’ e) =1 |CP(a, A, ¢)|

Algorithm 2 shows how the router assesses whether to block a request or not.
Notice that the whitewash-handling modification is only calculated when there
is insufficient data to calculate the original metric. Furthermore, the metric
is calculated in both directions: from the point of view of the request target
assessing the initiator and from the point of view of the initiator assessing the
target. Both assessments are combined to assess the satisfaction probability of
the request for both agents.

In this approach, the agents only use their local environment to make as-
sessments. Therefore, the only cost is that associated to the interaction pro-
tocol illocutions. The cost for routing requests through a network depends
on both the routing mechanism and the network topology. Nonetheless, in
the worst case scenario the cost of sending the request is O(n) where n is
the number of peers in the network. According to the behavioural proper-
ties in Section 5.3.1, since acknowledgements and complaints are only sent to
the recipients in the request route, the complexity remains O(n). Nonethe-
less, scale-free graphs have been shown to have a diameter d = Inlnn
[Bollobds and Riordan, 2004], and small-world graphs a diameter d = Inn
[Nguyen and Martel, 2005, Martel and Nguyen, 2004]. Given that social net-
works are believed to possess both small-world and scale-free properties, we can
assume that, given a good routing algorithm, the complexity of our model will
be O(lnn).

51f there are no acknowledgements, RS(r) = 1 and S'(W,p) = 1.

5.6. PROPOSED REPUTATION MECHANISMS 93

Algorithm 2: The trust assessment algorithm for routers

Inplﬂ; <]7 Qg At <<111, az, ..., a’n>7 Abv AT‘>>
Input: ec E
Output: assessed satisfaction probability
if Tpsnr(ag,a;,e) can be calculated then
ti — Tpsm(at, ai,e);
else
A —{ai]ll <i<n}
Ap = Ap\ (AU A,);
ti «— Tww(a¢, Af, e);
end
if Tpsar(ar,at) can be calculated then
ty — Tpsn(ai, ar,e);
else
ty TWW(aia {an}v 6)7
end
return t; - ty;

© 00 N O A W N

e e e
w N = O

5.6.2 Sybilproof Routing Mechanism (SRM)

In order to develop a Sybilproof routing mechanism we have chosen to satisfy
all the requirements in Theorem 5.4.1. This section shows an algorithm that
does this. In this algorithm the definition of an edge value must satisfy the
restriction on edge splitting by which the values of the new edges must add up
to the original edge.

In our model, the value that best matches this restriction for an edge going
from agent a to agent a’ when assessed by agent a, is the following: let F’ be
the set of feedback illocutions sent by the a, where a appears in the request
route, the edge value is the ratio of the sum of feedback values in those feedback
illocutions in F” where a forwarded the request to a’ to the sum of feedback
values in the feedback illocutions in F”. Let the function v: AX Ax AXE — R
represent the value of the edge going from the first agent to the second agent,
when assessed by the third agent in a given environment, defined mathematically

as
>

v'ev’

E U//

eV’

v(d',a" aq,e) =

where V' = {v | 3({j, a;, as, D), aq,v) € €|o (o’ had forwarded the request to a”’)}
and V" = {v | 3({j, a;s, at, p), aq,v) € €| (@’ had forwarded the request)}. This
edge value allows edge splitting. It is Sybilproof since it satisfies the restriction
that all resulting edge values add up to the original edge value. By splitting an
edge, the request (and thus the feedback) will travel through only one of the
created edges.

94 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

The reputation mechanisms described as Sybilproof in Theorem 5.4.1 calcu-
late the reputation from a set of paths from the calculating agent to the agent
whose reputation is being calculated. In the interaction protocol proposed in
Section 5.2 there is no such aggregation of paths, since the interaction request
only needs to find one path p from the initiator to the target. In order for our
mechanism to be Sybilproof as defined in Theorem 5.4.1, the path of forwarders
that the request travels towards the target must be the one with the maximum
g value. The router selection, when forwarding, must guarantee this. In order to
guarantee this the router being selected must maximise the g value of the path
out of the available ones. If there is a tie the one closest to the target will be
chosen.b

There are many functions g that satisfy the requirements to become part of
a Sybilproof reputation mechanism. We have chosen min because it is shown
to be robust to simple collusion (or ballot-stuffing) in [Feldman et al., 2004a] as
part of the maxflow algorithm. In that work they also provide a modification of
the maxflow algorithm that is robust to badmouthing (i.e., giving bad feedback)
in which closer entities are believed more than farther entities. They can do this
in their system because badmouthing can be detected as a conflict in feedback,
whereas in our case feedback is totally subjective and cannot be verified.” Fur-
thermore, we cannot use a g function that gives higher weights to edges that are
closer to the target, since we would not be able to guarantee that the routing
algorithm would find the maximum path, since the routing agent does not know
how far away from the target it is.

As in REPT (see Section 5.6.1) agents using the SRM algorithm only take as
input the local environment of the agent. Therefore, the cost asociated to SRM
is that of the illocutions sent due to the interaction protocol. This allows us to
prove that the cost is O(lnn).

5.7 Analytical Comparison of mechanisms

The previous sections have shown how some of the most influential work in the
reputation research area tackles the different security issues that can hinder the
precision of a reputation algorithm. In this section we summarise the results from
the comparison. Table 5.1 presents whether each algorithm described tackles
each of the issues, where BM stands for badmouthing, BS for ballot-stuffing,
Col for collusion, DP for dynamic personality, WW for whitewashing, Syb for
Sybil, TO for turnover, Ml for mole and Cost for itself. The last column (Sec)
provides the number of the section where the mechanism has been described.
In the case of the cells for the different adversarial attacks, Y means that
the algorithm is robust to the attack, and N means that it is not. Some cells
have special markers beside the Y which we now explain. Y* means that the

SThe shortest path heuristic reduces the number of illocutions being sent when compared
to a random choice. Nonetheless, one could use other heuristics.

7although there could be a conflict in the feedback illocutions sent by the same agent to
different recipients, we do not take this possibility into account for our work.

5.8. AGENT DECISIONS 95

robustness is based on the assumption that an agent with good reputation as a
partner will return correct feedback, which need not always hold. Yt bases its
robustness on the assumption that there are a set of peers that can always be
trusted to give correct feedback, be them the oldest peers in the network or the
ones with the highest reputation. This assumption also need not hold. Y1 bases
its robustness to whitewashing in giving new agents the lowest possible reputa-
tion, in which case no one will ever interact with them incurring in a bootstrap
problem. At most they allow a certain random probability of interacting with an
agent with the worst possible reputation, which makes the algorithm not robust
to whitewashing. Ne means that it is not robust since the algorithm assumes
that there exists a mechanism to guarantee identification of agents, thus not
allowing identity change or creation of multiple identities. Finally, N/A means
that the algorithm could not be analysed for that specific property.

Table 5.1: Summary of the attributes for the different reputation algorithms

’ \BM\BS\CO]\DP\WW\Syb\TO\ Ml \ Cost \ Sec ‘
YS N N N Y N N Y N N/A 5.5.1
AD Y* | N | N N N Y N O(wlogn) | 5.5.2
ET | YT | Y | YT | N | YT | N | Y| Y | O(nlogn)| 553
RD Y | Y| N|Y Y N Y N | O(rnlogn) | 5.5.4
PT Y Y Y Y N N Y | N/A | O(rnlogn) | 5.5.5
RPG | Y | N | N | Y | Ne | Ne | N | N/A N/A 5.5.6

REPT | Y Y Y Y Y N Y Y O(lnn) 5.6.1
SRM | Y | Y| Y |Y Y Y Y Y O(Inn) 5.6.2

5.8 Agent decisions

Agents make decisions during the interaction protocol. The decisions they make
are the following: choosing a target for a request, choosing a certifying peer
to which to forward a request, deciding whether to forward, block, discard or
re-route a request, acknowledging a request, giving feedback for an interaction
or not, and the feedback value for an interaction.

The model only observes the actions of agents, although it is reasonable to
assume that agents decide according to the past history of events. In which case
agents would be better off using a reputation mechanism which is robust against
the different attacks defined in Section 5.4. What we do in this section is to
define the properties that the agent decision making machinery must satisfy so
that there is no change in the robustness of the reputation mechanism provided.
Furthermore, we describe the consequences of the different decisions of an agent
in our framework.

96 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

Choosing the target. The first decision that is made in an interaction proto-
col is choosing the target agent. The initiator selects a target agent from the set
of certified agents. Although we make no assumption about how this decision
is made, we do know that the agent cannot use the REPT and SRM reputation
mechanisms, since at that point the agent does have route information. The ini-
tiator agent could use the PSM metric alone, but it would not be robust against
Sybil attacks.

Routing the request. When dealing with the routing decision, if SRM is
being used by the agents, there is a property to be satisfied: the maximum value
path selection. As shown in Section 5.4.7 the path of forwarders in the request
route that reached its target must be the one with the maximum value in order
for the reputation mechanism to be Sybilproof.

Definition 5.8.1. Given a set of agent identifiers A, a set of content iden-
tifiers I, an environment e, an agent with identifier a € A, and a function
for calculating the value of a path g, a behaviour ¢ is said to be route maz-
imising for agent a, if all the interaction requests it forwards are forwarded
to an available agent that maximises the route value. i.e., (t(a,a’,e) =
(a,d, (j, ai, ar, (a1, a2,;an),b,71))) Na, ¢ bUrr) — (Va, € A. (a €
Ae‘ap Ag({{ar,az,...;an),b,r7)), ar,) > g({{a1, az, ..., ap), b, 77)), as, e))).

An agent can have a route maximising behaviour by always forwarding to the
neighbour agent through which the target agent has gained most satisfaction.
But this can be very inefficient from a routing point of view, since routing
the request through an edge which does not have the highest value does not
reduce the value of the path if a previous edge has an even lower value. By
adding information of the edge values in the request route, an agent would have
more options when choosing the agent to which to forward, which would allow
an increase in routing efficiency. This information could be easily added to a
request route. Tampering would be avoided by the same encryption techniques
described in Section 5.4.1. This information has not been added to the request
routes in the experiments.

If an agent’s behaviour is not route maximising, then the reputation mech-
anism is not proven to be Sybilproof. Nonetheless, the mechanism can still be
value Sybilproof [Cheng and Friedman, 2005]. This means that a Sybil strategy
would not be able to increase a Sybil node’s reputation, but it would be able to
decrease another agent’s reputation. A malicious agent may have an incentive
to do this if it was competing against the request initiator to interact with the
request target. Imagine that Andrew wants to sell a car to Beatrix and Claude
is also a car salesman. If Andrew manages to send a request to Beatrix and
she acknowledges it, chances are that Claude will not be able to sell the car
to Beatrix. If the request happens to be routed through Claude, he can use a
non-route maximising behaviour so that Andrew’s reputation is reduced, thus
hoping that the request will not be acknowledged.

There is a side-effect to this behaviour that is not route-maximising, which
is detrimental to Claude. If Claude manages to get Andrew’s request discarded

5.8. AGENT DECISIONS 97

by Beatrix, and upon sending his own request it also gets discarded, then there
is no satisfaction added to any of the edges coming out from Claude. Therefore,
Claude’s reputation remains lower than it would have, had Andrew’s request
been acknowledged and had the subsequent interaction satisfied Beatrix. It
only pays for Claude to use a non route maximising behaviour if its current
reputation is higher than Andrew’s reduced one. Nonetheless, such information
is not available to Claude, which removes the incentive for a behaviour that is
not route maximising.

The next agent decision is what to do with a request: forward, block, re-
route, or discard. We describe some properties associated to this decision: fraud
avoiding, free-riding, and coercive.

Fraud avoiding. A behaviour associated to an agent avoids fraud if it dis-
cards requests that are not correct. Furthermore, it does not take into account
acknowledgements that are not justified, feedback that is not legitimate, and
any illocution that has been tampered with or not signed correctly. In other
words, upon receiving any of the fraudulent illocutions above, the agent aborts
the interaction protocol.

Agents executing non-fraud-avoiding behaviour only harm themselves, since
they will be the only ones taking into account fraudulent illocutions. If an
agent routes an interaction request that is not correct, the next agent can verify
that the request is not correct, and it will discard the request if its behaviour
is fraud-avoiding. A possible incentive for an agent to execute a fraud-avoiding
behaviour is to collude with other agents in order to spread fraudulent illocutions.
Nonetheless, the only agents they would manage to fool are those not presenting
a fraud-avoiding behaviour.

Free-riding. Another behavioural property for an agent is free-riding. In gen-
eral, an agent is said to free-ride when it consumes more than its fair share of a
public resource, or shoulders less than a fair share of the costs of its production.
In our scenario the public resource is the illocution request routing system. We
do not tackle the issue of free-riding by sending too many requests, but we do
tackle the issue of not forwarding the requests of other agents. For the first case
we direct the reader to currency-based routing systems that tackle this issue
[Pirzada et al., 2004]. Our model tackles the case in which an agent discards
requests that are correct, have not been tampered with, and have been signed
correctly, and it also tackles when it re-routes interaction requests which it could
have forwarded. Notice that a behaviour that blocks a request does not make it
free-riding. Blocking is part of the coercive process, as is giving feedback, and
will be treated below.

As mentioned earlier, the main motivation for free-riding is to avoid the cost
of routing interaction requests. When free-riding by re-routing, the agent is
saving up bandwidth in case the request is hard to route, i.e., the attempts to
forward the request are not fruitful, thus increasing the number of interaction
request illocutions to be sent. When free-riding via discarding, the savings are

98 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

greater since not even the re-routed request is sent. Nonetheless, both cases of
free-riding behaviour have negative consequences to the agent exhibiting it.

Let us assume that the reputation metric described in Section 5.6.2 is being
used by the target of the request received by the router agent. In such case,
an agent’s reputation according to the target depends not only on the feedback
about it, but also on the feedback of the target agent on interactions for which
it had routed the request. Therefore, by free-riding, the router agent is reducing
the opportunities through which it can improve its own reputation.

Coercive. The last property we define in the context of routing decisions is
the coercive property. An agent’s behaviour is coercive when it blocks some
interaction requests.

We do not consider blocking to be a free-riding behaviour, since it is the
essential part of the coercive process through which agents can punish others.
By blocking a request, the blocking agent is making explicit its distrust of an
agent in the request route, or the request route as a whole. Blocking was al-
ready mentioned in Chapter 4 as an enforcement mechanism for norms. In this
chapter there are no global norms, so blocking becomes a coercive mechanism
against other agents. Blocking can change the reputation of the agent. Since
the routing mechanism chooses the highest valued path so far, blocking a re-
quest immediately makes the path value 0 and another path has to be found,
which will probably have a lower reputation value than the current one could
have. Furthermore, as in Chapter 4, if enough agents block a request it will not
be able to get delivered. If such blocking behaviour persists an agent that is
unpopular will be ostracised.

A blocking behaviour also has side-effects for the agent exhibiting it. Blocking
a request has the same side-effects as re-routing it from the reputation point of
view. By blocking a request the agent is reducing its chances of increasing its
own reputation. The difference with a free-riding behaviour through re-routing
is the explicit expression of distrust.

Giving feedback. Finally, we describe the behavioural properties that deal
with how agents send feedback. An agent that always sends feedback of its
interactions to all agents in the request route has an informing behaviour. On
the opposite end, an agent that never sends feedback about its interactions has
a quiet behaviour.

Definition 5.8.2. Given an environment e, and an agent with identifier a,
a behaviour ¢ is said to be informing for agent a, if there exist any legit-
imate feedback from a about another agent. i.e., 3{a/,a”,f) € e (f =
({4, @i, as, ({a1, a2, ..., an), byrr)), a,v) A legitimate(f)).

Definition 5.8.3. Given an environment e, and an agent with identifier a, a
behaviour ¢ is said to be quiet for agent a, if no legitimate feedback from a
about another agent are present in the environment. i.e., V(a’,a”, f) € e (f =
((4, @i, as, ({a1, a2, ..., an), b,r7)), ar,v) A legitimate(f) A (a = a; Va = a;) —

a#ay).

5.8. AGENT DECISIONS 99

Assuming that the reputation mechanism described in Section 5.6.2 is being
used by the agents in the system, agents have an incentive to give feedback about
their interactions. By giving feedback an agent is raising the reputation not only
of the agent that interacted with it, but also the reputation of all the agents that
will be routed through any of the forwarding agents of the interaction request
for which it is giving feedback. Since the reputation mechanism is subjective
(meaning that the reputation of an agent depends on the feedback previously
given by the assessing agent), the mechanism will be more precise the more
feedback has been previously sent by the assessing agent. Furthermore, if an
agent does not send feedback to the agents forwarding the interaction request,
they cannot guarantee that future requests will be routed through a reputation
maximising route.

On the other hand, by sending feedback the agent can also “annoy” the
partner agent. Even if the feedback is not sent directly to the partner agent,
the feedback can be forwarded to it. Given the fraud detection mechanisms
explained in Section 5.4, the partner agent can be sure that the feedback is
legitimate and not fraudulent. Therefore, a negative feedback can trigger re-
taliation by the agent that the feedback is mentioning. Such retaliation can
come either by discarding, re-routing, or blocking future requests coming to or
from the annoying agent, and by badmouthing the annoying agent in the future.
Discarding and re-routing would fall into the free-riding problem, which has its
own consequences, some of which have been discussed in this section. Blocking
would be a legitimate coercive measure, since the trust of the agent giving the
feedback has been reduced in the eyes of the agent the feedback is mentioning.
Finally, badmouthing would only be possible if future interactions between these
two agents took place again. Such interaction is unlikely to happen given that
both agents would have to agree to interact, specially if either of the agents has
an incompatible avoiding behaviour (see Definition 5.3.5).

Having a quiet behaviour also has side effects. An agent benefits from the
feedback of others, but since the agent already knows his subjective valuation of
an interaction, sending out feedback would incur an extra cost to the agent. This
type of problem has been termed “the tragedy of the commons” [Hardin, 1968,
Hardin, 1998] and it could also be classified as free-riding. In this case, feedback
would be the common good, which has to be maintained by all. If no one gives
feedback, the reputation mechanism has no information on which to base its
assessment. Luckily, the reputation mechanism in Section 5.6.2 establishes an
incentive for agents to give feedback. If the agent does not send feedback to
others, the route being chosen for future interaction requests may not be the
one maximising the reputation. Therefore, the reputation mechanism is not
Sybilproof for the agent having a quiet behaviour. This only affects the agent
which has the quiet behaviour, thus the incentive can prevent the tragedy of the
commons from happening, i.e., not having enough feedback to make accurate
reputation assessments.

100 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

5.9 Experiments

In this section we present the experiments that have been executed on the new
MAN model. The experiments consist on many different simulations where the
different enforcement mechanisms have been tested against the attacks defined
in Section 5.4. The attacks can be combined, and there are simulations in which
all the possible attack combinations have been tested.

In a simulation round each agent is given a chance to start an interaction
protocol by being the initiator (in the case of a ballot-stuffing attack, the cheater
is allowed to start five interaction protocols per round). The target selection is a
stochastic decision based on the assessed trust for each peer, selecting with higher
probability those peers with higher assessed trust. If the peer with the highest
assessed trust is always selected, it is hard for newcomers to build up trust since
they will hardly ever be selected as partners. Most reputation mechanisms tested
do not use routing information. In those cases the requests are sent directly to
the target, as if the network topology was complete. For the REPT and SRM
mechanisms, peers make a stochastic decision on whether to block the request
based on the assessed trust. A higher assessed trust makes for lower chances of
being blocked. Finally, once the request reaches its target, the target peer makes
another stochastic decision on whether to accept it or not based on its assessed
trust in the initiator and request route.

In order to easily calculate peer satisfaction, we have defined an interaction
as a game in which peers can either collaborate or cheat. Non-malicious peers will
always collaborate, whereas malicious peers cheat some of the times. The amount
of cheating done by malicious agents depends on the base cheating strategy
they have chosen. Non-malicious peers want their partners to collaborate and
are satisfied when that happens. When they are not satisfied they complain.
Malicious peers do not always complain when they are cheated on. In some
sophisticated attack schemes they collude with other malicious agents in order to
boost each others reputation (see Section 5.4 for the description of the adversarial
attacks).

Table 5.2 shows the variables in the simulation scenario. The Base Cheating
variables define the way a malicious agent selects its action in a joint action
when there is no other type of fraud mechanism in place, e.g., badmouthing,
ballot-stuffing, whitewashing, or colluding. The variables referring to the fraud
mechanisms indicate whether the cheating agents will be using the attack to
subvert the reputation mechanism in place. The other variables are common to
the experiments in Chapter 4 and will not be discussed again.

Table 5.3 shows the measurements taken at each experiment. These mea-
surements are taken at intervals of 10 rounds. All of these measurements have
been described in Section 3.2 except for the false positives, which has been added
to the simulation measurements in this scenario. A false positive is a term used
in medical diagnosis to refer to the case in which a patient that does not have
the disease is diagnosed as having the disease. In our scenario a false positive
occurs when the interaction attempt does not end in an interaction (i.e., the rep-
utation mechanism diagnoses that the interaction request will not bring about a

5.9. EXPERIMENTS

’ Name Type
Agents 2,00
Rounds 1,00
Topology Small World, Scale Free,
Tree, Ring, Random,...
Cheater [0,1]
- Badmouthing 1, T
- Ballot-Stuffing 1, T

- Base Cheating

Always Cheat, Cheat Randomly,
Dynamic Personality:...

- Whitewashing 1, T

- Colluding 1, T

Collaborator [0, 1]

- Reputation Mechanism YS, ET, PT, cPT®
REPT, SRM.,...

Table 5.2: Simulation Variables

’ Name

Round

101

Number of Messages (msg)

Number of Joint Actions (ja)

Number of Complaints (c¢mp)

Number of Attempted Joint Actions (att)

Number of False Positives (fp)

=
z| 2| z| 2| 2| 2|3
)

Table 5.3: Simulation Measurements

102 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

satisfactory joint action). Nonetheless, had the joint action taken place it would
have been satisfactory (e.g., the diagnosis was flawed). In order to measure the
false positives, the simulation tool runs the joint action for all requests that are
either blocked or not acknowledged and if it is satisfactory it counts it as a false
positive. The agents in the joint action choose their action but the joint action
is not added to their memory, thus it is not used to update reputation values.

These measurements are used to calculate three metrics through which the
reputation mechanisms are compared: A number of messages, A false negative
rate, and A false positive rate, where A refers to the incremental nature of the
metrics, i.e., the metric only takes into account the events that happened since
the previous measurement. As an example, the value for Amessages at round 50
would be the measurement of the number of messages taken at round 50 minus
the measurement taken at round 40. A false negative is another medical term
that refers to the case in which a patient is not diagnosed with a disease when it
is present. In the current scenario it equates to a complaint, i.e., the reputation
mechanism did not block the request and a joint action took place and was not
satisfactory. The false negative rate (FNR), described in Equation 5.1 below, is
used to measure how sensitive the treatment is (sensitivity is 1 - FNR). A high
FNR implies a high probability that a non-satisfactory joint action attempt will
be allowed to end up in a joint action. The false positive rate (FPR), described in
Equation 5.2 below, is used to measure how specific the treatment is (specificity
is 1 - FPR). A high FPR implies a high probability that satisfactory joint action
attempts will not be allowed to end up in a joint action. Therefore, an optimal
enforcement mechanism ought to have low FPR and FNR. In order to quantify
an overall efficiency of the enforcement mechanism, the error rate (ER) has been
calculated. Equation 5.3 below shows how the error rate is calculated. Both
false positives and false negatives are considered errors, since they represent an
undesirable outcome. Therefore, the error rate is the ratio of the total amount
of errors over the total amount of instances, i.e., interaction attempts.

FNR — fa.ls.e nejgatives _ cmp . (5.1)
positive instances cmp + att — ja — fp
FPR— fals.e p(?sitives _ fp (5.2)
negative instances fp+ja—cmp
ER— false positives + false negatives _ fp+cmp (5.3)

instances att

The first set of experiments in this chapter are meant to test the reputation
mechanism performance based on the different metrics previously described. The
reputation mechanisms being tested are the ones described in Section 5.5 except
for the following: Aberer and Despotovic, Reciprocative Decision, and Repage.
The reason for not testing the first two is that the time they took to evaluate
each agent in the simulations was far too high even when the simulations were
run with very few agents. Finally, Repage does not fit our scheme, since it uses
gossip of reputation information and our model only allows direct interaction
feedback to be shared.

5.9. EXPERIMENTS 103

The second set of experiments test how the other variables in the simulations
affect the new mechanisms proposed in this dissertation, i.e., REPT and SRM.
The variables are the number of agents in the system, the number of rounds, the
percentage of violator agents, and the different adversarial attacks.

5.9.1 Comparing mechanisms

This section presents the scenarios under which the different reputation algo-
rithms have been tested, and the results form the experiments. Two scenarios
have been used for the experiments: simple attack, and subversive attack. A
simple attack is one where the malicious agents do not try to subvert the repu-
tation algorithm in any way. That is, they do not perform badmouthing, ballot-
stuffing, dynamic personality, whitewashing, collusion, or Sybil attacks. Table
5.4 shows the simple attack experiment design. On the other hand, a subversive
attack is one in which the malicious agents try to subvert the reputation mech-
anism through any attack combination. Table 5.5 shows the subversive attack
experiment design.

Name Values

Agents 16, 32, 64, 128
Rounds 10, 20, ..., 100
Topology Small World, Scale Free
Cheater 0.125, 0.25

- Badmouthing 1L

- Ballot-Stuffing 1

- Base Cheating Always, Randomly

- Whitewashing il

- Colluding il

Collaborator 0.75, 0.875

- Reputation Mechanism | YS, ET, PT, cPT, REPT, SRM
Name Type

Messages N

Interactions N

Complaints N

Interactions blocked N

False Negatives N

Integrity Constraints Formula

Full Partitioning Cheater + Collaborator = 1.0

Table 5.4: Simple attack experiment design table

The ANOVA tests showed that the choice of reputation mechanism was sta-
tistically significant for all the outcome metrics (FNR, FPR, ER, and messages),
for both experiments.

Figure 5.3 presents a graph with the different rates for each of the reputation
mechanisms returned in the simulations under the simple attack scenario. The

104 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

Name Values

Agents 16, 32, 64, 128
Rounds 10, 20, ..., 100
Topology Small World, Scale Free
Cheater 0.125, 0.25, 0.5, 0.75, 0.875
- Badmouthing 1,7

- Ballot-Stuffing 1,7

- Base Cheating Always, Randomly, Dynamic
- Whitewashing 1, T

- Colluding 1, T
Collaborator 0.125, 0.25, 0.5, 0.75, 0.875
- Reputation Mechanism | YS, ET, PT, cPT, REPT, SRM
Name Type

Messages N

Interactions N

Complaints N

Interactions blocked N

False Negatives N

Integrity Constraints Formula

Full Partitioning Cheater + Collaborator = 1.0

Table 5.5: Subversive attack experiment design table

1.0
FFPR
B FMR
B ER
0.8
0.6
0.4
0
Y5 ET PT cPT REPT SREM
Reputation Algorithm

Figure 5.3: Comparison of the different reputation mechanisms for simple at-
tacks.

5.9. EXPERIMENTS 105

1.0
' FF'R
B FNR
ER
0.8 .
0.6
0.4
0
Reputation Algorithm

Figure 5.4: Comparison of the different reputation mechanisms for subversive
attacks.

Peertrust algorithms are not significantly different to one another in the FNR,
FPR, and ER results, according to the Tukey tests. These algorithms have the
lowest average ER, although they do not have the lowest FPR or FNR. REPT
has the largest FNR, and the lowest FPR, with the second lowest average ER.
The rest of the algorithms have a low FNR (Eigentrust having the lowest) but
a rather high FPR, and ER. This is due to the fact that on average, there are
more interaction protocols that would end in satisfactory joint actions than end
in complaints. Therefore, false positives are a larger part of all the errors and
influence the ER more heavily.

Figure 5.4 shows the rates for the subversive attack scenario. In this sce-
nario it is also the case that the Peertrust algorithms perform the best for the
error rates. Furthermore, REPT still has the lowest FPR and the largest FNR,
which makes its ER larger than that of the Peertrust algorithms. The other
algorithms seem to be in a similar ordering to the one for the simple attack
scenario. Nonetheless, it is worth noting that the FPR and ER went down for
YS, ET, and SRM when compared to the simple attack scenario. This could
be due to the fact that colluding peers do not complain about one another, and
there are less chances for false positives. Finally, the FNR went up for all mech-
anisms, showing that the subversive attacks were successful to some degree in
all reputation mechanisms..

The number of messages generated through each of the mechanisms had great
disparities. Table 5.6 shows the average messages sent. YS, REPT, and SRM
had the lowest number of messages, followed by ET, ¢cPT, and finally PT, which

106 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

had the largest number of messages. The Tukey tests for both scenarios showed
that the number of messages for YS, REPT, and SRM was not significantly
different. Furthermore, the Tukey test for the subversive attack scenario showed
a significant difference among all the other reputation mechanism. On the other
hand the Tukey test for the simple attack scenario only showed a significant
difference for the regular Peertrust algorithm.

Mechanism | Simple | Subversive
YS 6.3 x 103 [1.4 x 107
ET 1.0 x 10 | 2.0 x 10°
PT 42x107 | 5.3x107
cPT 5.1 x 10° 3.6 x 106
REPT 2.8x10% | 1.0 x 10*
SRM 7.3 x 103 1.4 x 10*

Table 5.6: Average number of messages by reputation mechanisms

5.9.2 Analysing REPT and SRM

This section shows how the different variable settings affect the performance of
the reputation mechanisms proposed in this thesis: REPT and SRM. In order to
do this, two full-factorial experiments have been run in a subversive scenario for
each of the reputation mechanisms. Tables 5.7 and 5.8 present the experiment
design for the REPT and SRM analysis, respectively. The analysis consists on
seeing how each of the input variables in the scenario affects the performance
metrics (FPR, FNR, ER, and number of messages).

The statistical analysis for the REPT experiment showed that the input vari-
ables were statistically significant in all cases, except for ballot-stuffing, which
was not significant for the FNR outcome. As the number of agents increased
over 32 so did the FNR and the ER, and the FPR went down. Between 16 and 32
agents the trend was inverted. Simulations with small-sorld networks had larger
FNR, ER, and number of messages, but lower FPR than those simulations with
scale-free networks. Furthermore, as the percentage of violators increased so did
the FNR, FPR, ER, and the number of messages. Nonetheless, the FNR and
ER peaked at some point between 50% and 75% of violators. Finally, as the
number of rounds increased, the FNR and ER became smaller up until round 50
and 30, respectively, where the values stabilised. On the other hand, the FPR
increased up until round 30 and then stabilised, and the number of messages
was not affected by the number of rounds.

Table 5.9 shows how the different subversive attacks influenced the perfor-
mance of the reputation mechanism as quantified by the mean difference in the
false negative, false positive, and error rates. Even though the mechanism was
design to counteract whitewashing attacks, it was this type of attack that modi-
fied its performance the most. Although its performance was not always lowered.
REPT had an interesting performance against badmouthing attacks: the FNR

5.9. EXPERIMENTS

Name Values

Agents 16, 32, 64, 128
Rounds 10, 20, ..., 100
Topology Small World, Scale Free
Cheater 0.125, 0.25, 0.5, 0.75, 0.875
- Badmouthing 1, T

- Ballot-Stuffing 1,7

- Base Cheating Always, Randomly, Dynamic
- Whitewashing 1, T

- Colluding 1, T
Collaborator 0.125, 0.25, 0.5, 0.75, 0.875
- Reputation Mechanism REPT

Name Type

Messages N
Interactions N

Complaints N
Interactions blocked N

False Negatives N

Integrity Constraints Formula

Full Partitioning

Cheater + Collaborator = 1.0

Table 5.7: REPT analysis experiment design table

Name Values

Agents 16, 32, 64, 128
Rounds 10, 20, ..., 100
Topology Small World, Scale Free
Cheater 0.125, 0.25, 0.5, 0.75, 0.875
- Badmouthing 1,7

- Ballot-Stuffing 1,7

- Base Cheating Always, Randomly, Dynamic
- Whitewashing 1, T

- Colluding 1,7
Collaborator 0.125, 0.25, 0.5, 0.75, 0.875
- Reputation Mechanism SRM

Name Type

Messages N
Interactions N

Complaints N
Interactions blocked N

False Negatives N

Integrity Constraints Formula

Full Partitioning

Cheater + Collaborator = 1.0

Table 5.8: SRM analysis experiment design table

107

108 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

and FPR were decreased and yet the overall ER was increased. Ballot-stuffing
did not influence the FNR, but it did increase the FPR and ER. Dynamic per-
sonality attacks were effective at raising the FPR and FNR, yet the overall ER
was lowered. Finally, REPT worked better under collusion attacks, for which all
the metrics were decreased.

Attack FNR | FPR | ER
Badmouthing -104 -1.3 10.9
Ballot-stuffing ~ 14 8.9

Dynamic Personality 8.9 2.7 -2.0
Whitewashing 34.1 -8.4 15.2
Collusion -0.4 -6.4 | -28.0

Table 5.9: Results on attacks to REPT. Mean difference in percentage between
simulations with and without the attack.

The statistical analysis for the experiments on the SRM mechanism, showed
that all input variables were statistically significant for all the measured metrics.
The number of agents influenced the FNR by reducing it up to 32 agents and
increasing it after 64. It influenced the FPR by increasing it up to 64 agent and
reducing it afterwards. It influenced the ER by increasing it up to 64 agents,
after which it stayed the same. Finally, the number of messages was always
increased.

The network topology was also shown to modify the values of the outcome
metrics. The small-world networks had lover FNR and ER, whereas they had
higher FPR and number of messages. Higher percentage of violator agents
brought about higher FNR and number of messages, and lower FPR and ER.

The number of rounds also affected the metrics by decreasing the FNR,
which got stabilised after round 70, increasing the FPR, which got stabilised
after round 60, increasing the ER, which got stabilised after round 40, and
increasing the number of messages up to round 20, after which it was lowered,
but not significantly.

Table 5.10 presents the influence of the different subversive attacks on the per-
formance of SRM. This influence is quantified by the mean of the difference be-
tween the simulations in which malicious agents did not attempt the attack and
their respective counterparts where they did. SRM’s performance was not mod-
ified much by dynamic personality and badmouthing attacks. Its performance
improved under collusion and ballot-stuffing attacks. Whereas whitewashing at-
tacks triggered much higher FNR, much lower FPR, and slightly higher overall
error rates (ER).

5.10 Applications

The model and techniques in this chapter are general enough to be applicable to
most distributed applications (e.g., P2P, MAS, GRID) with some modifications.
The main modification is to create an underlying social network through which

5.10. APPLICATIONS 109

Attack FNR | FPR | ER
Badmouthing 0.43 | -0.39 | 4.2
Ballot-stuffing -10.1 -1.7 -6.1
Dynamic Personality | -0.69 | -5.3 | 0.71
Whitewashing 33.1 | -21.7 | 3.3
Collusion -9.7 | -16.1 | -13.7

Table 5.10: Results on attacks to SRM. Mean difference in percentage between
simulations with and without the attack.

all interactions will happen. This sections presents two applications to which
the enforcement techniques in this chapter can be applied.

The first application is LiquidPub: a distributed scientific publishing applica-
tion that aims to change the way scientific knowledge is produced, disseminated,
evaluated, and consumed [Giunchiglia et al., 2009]. In LiquidPub there are three
main entities: the scientific knowledge object (SKO) where the scientific infor-
mation is stored, the researchers which create, modify, and maintain the SKOs,
and finally an ontology of research fields. The ontology is structured as a tree,
but the SKOs and the researchers are structured as networks (For a detailed
description of the LiquidPub framework go to http://liquidpub.org). The users
in LiquidPub adopting the role of researchers can realise many actions such as
creating, modifying, or deleting an SKO. Nonetheless, it is the joint actions be-
tween researchers that interest us, since it is through these that the enforcement
techniques in this chapter can be applied. Researchers have a subjective defi-
nition on which joint actions are satisfactory (e.g., an author may disapprove
of a reviewer’s comments on its paper). Furthermore, researchers can use com-
plex adversarial techniques to subvert the reputation algorithms used to evaluate
their SKOs. These characteristics make LiquidPub an ideal candidate for the
enforcement techniques in this chapter.

The second application is a P2P messaging system. There are many imple-
mentations for this type of application in the market. The functionality provided
by most of them allows users to chat with one another, independently of their
network situation and configuration. These messaging systems also provide tools
to manage contact lists, which makes for an almost seamless integration with
the model defined in this chapter.

5.10.1 LiquidPub

This section presents how the enforcement techniques in this chapter can be
embedded into the LiquidPub system. The fist thing to be addressed is to find
appropriate matches between the entities in LiquidPub and the entities in the
model described in Section 5.1.

Each researcher in the LiquidPub system is assigned an agent identifier, thus
becoming the counterpart of an agent in the model. SKOs and the ontology
do not have counterparts in the model. The identity certifications do not have

110 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

a direct counterpart in LiquidPub, since it does not address free identifiers in
its framework. Researchers in LiquidPub are assumed to have been given an
identifier by an authority which guarantees that the researcher exists. In order
to remove this restriction we can add identity certifications either explicitly by
having researchers certify each other’s identity, or implicitly through one of its
joint actions. The easiest way to do this is to implicitly certify any researchers
identity with which one has co-authored a paper. Certification cancellations, on
the other hand, would have to be explicit, since there is no action in LiquidPub
through which it could be implied satisfactorily.

The co-authoring joint action is not the only joint action that can be executed
by researchers in LiquidPub. Researchers can also execute the following joint
actions: submit a paper to a conference, review or comment a paper, select
programme committee members for a conference, and sending call for papers for
a conference. In order to execute any of the previous joint actions, one of the
involved researchers would have to act as the initiator of the interaction protocol
and the other researcher would be the target. For example, if a conference charter
wants to select a researcher as part of its programme committee, the researcher
in charge of the charter would send a request for interaction to the researcher,
if the requests reaches its target and the researcher acknowledges it, then the
joint action can take place. By acknowledging the request the researcher does
not necessarily accept to be in the programme committee. The negotiation for
that would take place in the joint action, where one of the possible outcomes
is that the researcher becomes part of the conference’s programme committee.
After the joint action takes place, both the initiator and the target may give
feedback about the joint action. If the programme committee member takes too
long to fulfil its responsibilities, the initiator would give negative feedback about
the joint action. On the other hand, if the programme committee member feels
he had a low work load it would give positive feedback about the joint action.

The modelling of researcher reputation is a very important part of Liquid-
Pub, specially for credit attribution. The reputation algorithms designed for
LiquidPub are used mainly to evaluate the quality of a scientific knowledge ob-
ject. Nonetheless, there are also mechanisms designed to evaluate the reputation
of researchers, although it is mainly as the creator of quality SKOs. Therefore,
the reputation mechanisms present in LiquidPub, or others presented in this
chapter, can be used in the interaction protocol as part of the enforcement mech-
anism. By using the enforcement techniques in this chapter the satisfaction rate
in joint interactions would increase, even if the researchers used the adversarial
techniques presented in Section 5.4 to subvert the reputation mechanisms.

5.10.2 P2P Messaging

There are a number of applications that use P2P technology in order to get
users to communicate through the internet. Some of the best known are Skype
and MSN Messenger. These P2P networks allow users to chat with one another
either by using text messages, voice conversation, or video conference. This
section shows how the enforcement mechanisms in this chapter can be used in

5.11. DISCUSSION 111

these applications.

In P2P messaging applications, most of the times conversations are held by
users that are direct contacts of one another. Nonetheless, it is possible to
start a conversation with a user that is not on one’s contact list. Conference
calls in which not all users are contacts of one another are perfect examples of
this. Furthermore, a request for becoming a contact can be sent to any user
in the system. P2P messaging applications have more functionality than this.
Nonetheless, for the sake of the example at hand, only the conversation and
contact request functionality will be taken into account. Both of these events
are mapped to joint actions in the model. When the joint action is a contact
request which is executed correctly, an identity certification is added for each
of the users. This functionality, already present in these applications, forms the
contact network as specified in the model.

The software in these applications allows a user to specify whether or not she
wants to allow other users not on her contact list to start a conversation with
her. This measure in itself is a type of distributed enforcement. The enforcement
mechanisms presented in this chapter can also be used in such types of networks,
by having the joint actions (conversations and contact requests) embedded in
the interaction protocol described in this chapter. This would mean that the
user’s software would have to send a request through the user’s contacts for
every conversation and contact request. Furthermore, the user would be allowed
to complain about joint actions which she did not consider satisfactory. The
enforcement mechanisms presented in this chapter could be applied by the users
in order to reduce the amount of undesired behaviour (e.g., spam) to which they
are exposed.

5.11 Discussion

This chapter defines a model for peer enforcement that can be used in situa-
tions where there is too much uncertainty for the model in Chapter 4 to be
applicable. These situations include scenarios in which the network topology is
dynamic, when there is open access for new agents with free identifiers, where
the modelling of a relationship between agents is a directed one, where the def-
inition of a satisfactory interaction is subjective and potentially different for
each agent, or where the malicious agents exhibit complex behaviours in order
to evade punishment. Therefore, the model and techniques presented in this
chapter are suitable to many more real-life applications. Two of the potential
applications have been described in Section 5.10.

The description of the model in this chapter is more detailed, since it is
intended to be applicable for networked applications. Therefore, special consid-
eration has been taken in describing the means by which encryption techniques
can be used to prevent data fraud. As in Chapter 4, there is an analysis of the
amount of complaints that can be achieved. Nonetheless, there is a problem
with the results in that they give upper bounds on the number of legitimate
complaints based on the number of certified agents. This made perfect sense

112 CHAPTER 5. OSTRACISM UNDER UNCERTAINTY

in the previous chapter, where the agents were not allowed to change identities,
nor where new agents allowed into the system. Since that is no longer the case,
the results from Section 5.3 are not very insightful.

Given that the applications for which the model is intended are full of un-
certainty, the mechanisms used to model the behaviour of other agents need to
take this into account. Some of the most influential reputation algorithms have
been analysed and implemented in order to compare them to two reputation
mechanisms that have been designed to take advantage of the MAN model in
this chapter. Out of the reputation algorithms those that were shown to be
most suitable have been implemented and compared in experiments with the
two new ones (REPT and SRM). For the experiments, a simulation tool has
been implemented that allows the researcher to run simulations with different
input parameters. The experiments presented here test the performance of the
reputation algorithms under all input variable combinations. Including most of
the well-known adversarial attacks that malicious agents can attempt in order
to subvert the reputation mechanism: badmouthing, ballot-stuffing, dynamic
personality, whitewashing, and collusion.

The main concern in this research is to find enforcement mechanisms that are
both robust and scalable. A mechanism is robust when the adversarial attacks
do not reduce its performance. And it is scalable when its cost becomes too great
when the number of agents increases. Both REPT and SRM have been shown
to be more scalable than most of the other mechanisms. Only one of the other
mechanisms had an equivalent scalability. On the other hand the performance
when measures through the different error rates (false positive rate, false negative
rate, and overall error rate) was not the best of all of them. This we expected
because the information available to the most scalable mechanisms is less than
that available to the least scalable ones.

A scalability issue that we have not dealt with in this chapter is the router
selection algorithm. Since the identifier space is flat, existing routing algorithms
may not scale well. Maintaining a routing table becomes cumbersome in large
environments. In order to minimise the impact of routing tables, compact rout-
ing schemes [Thorup and Zwick, 2001] can be used. This is possible because
social networks have scale-free and small-world properties. Current approaches
to compact routing assume that a full view of the network is available to all.
Although this can easily be achieved by setting up a DHT where each peer’s
contacts are stored, it could be possible to rely on local knowledge from past
routed interactions in order to improve routing efficiency. Nonetheless, such
compact schemes introduce a small increase in path length. But this is not a
problem, since the main concern in our approach is not the efficiency of routing
but the increase in satisfaction. In this case longer paths may be beneficial since
interaction feedback is spread to more peers.

The robustness of the algorithms varies depending on the attack scenario and
the metric used to measure the robustness. The REPT mechanism was shown
to have the lowest FPR, but its FNR was the highest. In situations where it is
inadmissible to block interactions that are valid (such as with spam control in the

5.11. DISCUSSION 113

P2P messaging application) using REPT would be the best choice. On the other
hand, if the application user deems it best to make sure that its interactions
are satisfactory even at the expense of blocking some potentially satisfactory
interactions, then the best choice would not be REPT but Eigentrust, although
one would need to take into account that Eigentrust is not as scalable, and
that its overall error rate is high. The SRM mechanism has been shown to be
mediocre at best. Its performance as measured in error rates is low. On the
bright side the effect from adversarial attacks is not as high. Probably due to
the fact that the performance is bad to start with.

The enforcement mechanisms available from the model in this chapter have
the following benefits: they are totally distributed, relatively easy to implement,
they allow self-policing (peers can have different definitions of satisfactory inter-
actions, and different thresholds for punishing those that deviate), and they are
scalable when compared to other approaches.

The robustness against malicious activities of the reputation mechanisms
proposed in this chapter ought to be improved. Furthermore, more enforcement
mechanism are possible under this model which have not been studied. Such as
sanctioning routers for not doing a good job at enforcing behaviour, or modifying
the agent’s contact links as a way to position it in an area of the network with
a common understanding of what a satisfactory interaction is. Furthermore,
the fact that a router agent has blocked a request could be used as feedback to
be taken into account by the reputation mechanisms. Finally, another interest-
ing area of research is to use MANET trust based routing techniques to tackle
the free-riding problem present in many distributed applications where there is
resource sharing.

Chapter 6

Conclusions

Enforcement is the act or process of compelling observance of a kind of be-
haviour. The work developed in this thesis has addressed the issue of enforce-
ment in distributed artificial environments. These artificial environments have
been modelled in a way that is understandable to humans, thus, the electronic
agents in these systems can be expected to possess some traits that are common
to humans in human societies. Gregariousness is one of the traits that is reflected
in artificial environments. We have developed enforcement mechanisms that are
based on the assumption that artificial agents are gregarious. Even though there
is no physical space in electronic environments, there is a virtual space in which
electronic agents come together to interact with others in order to achieve their
personal goals.

Electronic agents in multiagent systems often need to interact with others.
An interacting agent expects the outcome of an interaction to be satisfactory
for it. Otherwise it would not interact with others, because co-ordination has
associated costs. Sometimes, in order for an interaction to be satisfactory for
an agent, the outcome of the interaction may not be satisfactory to the other
agents involved in the interaction. Agents will try to avoid these situations
through what we describe as enforcement techniques. Enforcement techniques
are applied by agents in order to increase the probability of being satisfied with
the outcome of interactions they participate in. The work in this thesis has
studied different enforcement mechanisms that agents can apply in order to
increase the satisfaction probability.

The techniques provided attempt to thwart the ability to interact of those
agents for which enforcement is intended. In order for agents to have power over
the capability of others to interact, there must be dependencies between agents
that have to be satisfied during the interaction process. In this thesis, social
relationships have been exploited for this purpose by including them in the in-
teraction protocol. First, the multiagent system has been structured by setting
up a social network. Secondly, interaction protocols have been defined that allow
agents execute joint actions with one another. The use of the social relation-
ships between agents is a key design characteristic in these interaction protocols.

115

116 CHAPTER 6. CONCLUSIONS

Therefore, dependencies among agents have been forced into the interaction pro-
cess, thus, allowing enforcement techniques based on these dependencies to be
embedded into the interaction protocols.

The enforcement techniques have been studied under two scenarios. The first
scenario is a normative multiagent system in which the definition of a satisfactory
interaction is given beforehand and shared by all the agents in the system. This
is a closed system in which the social network is fixed, i.e., no new agents are
allowed, and the social structure of the system is static. The restrictions in this
scenario limit the types of applications for which the enforcement mechanisms
are suitable. Large-scale electronic systems have been designed in order to be
dynamic, both allowing new agents to join, and existing agents to modify their
network relationships. Furthermore, these systems do not impose global norms
that dictate the appropriate behaviour. Each agent has a subjective definition
of what a satisfactory interaction is, and this definition is not shared with others
explicitly. The second scenario where the enforcement techniques have been
studied is suited to those types of applications in which the restrictions in the
first scenario do not hold. Studying how the enforcement techniques behave in
these two scenarios, which are so different, one gets a broad understanding of
the applicability in different types of distributed applications.

The thesis has described some of the applications that can benefit from the
enforcement techniques in both scenarios. Distributed information sharing fora
where the rules about information sharing are known to all those in the group,
and self-repairing sensor networks designed for a single application both fit into
the the restrictive scenario of Chapter 4. Therefore, the designer of such applica-
tions would be able to define upper bounds on the number of norm violations or
sensor failures. On the other hand, P2P messaging applications, and LiquidPub
(distributed application for scientific publishing) do not fit into the restrictive
scenario because there is a degree of subjectivity as to what is a satisfactory
behaviour, and because the social structure is highly dynamic. The designers
of these types of applications would benefit from the work in Chapter 5, by
embedding into their applications the enforcement mechanisms and reputation
mechanisms that are robust, scalable, and efficient as their needs be.

In environments where enforcement techniques are used, intelligent cheating
agents (i.e., those agents that get satisfaction from exhibiting behaviours that
are not satisfactory to others) will try to avoid enforcement. Adversarial be-
haviours meant to avoid the enforcement mechanisms can vary in the degree of
complexity. But their main goal is to change the perception of others so that
the model that others make of the society is changed in order to benefit them.
These types of attacks are mainly focused on subverting the reputation mech-
anism, which is how the agents model the probability of satisfaction, and on
which they base the decision of sanctioning other agents through the enforce-
ment mechanisms. In the static scenario only simple adversarial behaviours have
been taken into account. Those which can be expected from the agents in the
types of applications to which the scenario is applicable. In the uncertain sce-
nario the adversarial behaviours can be very complex, including attacks such as

117

badmouthing, ballot-stuffing, whitewashing, dynamic personality, and collusion.
In each of the scenarios being studied, the enforcement mechanisms have been
observed under the relevant adversarial attacks.

In order to study the behaviour of the multiagent networks (MAN) analyti-
cally, we have defined a mathematical model for each of the scenarios. Through
these models we have calculated analytical results which gave us upper bounds
on the number of unsatisfactory joint actions that could be executed against
either any agent of the system, or a subset of agents with certain behavioural
properties. In the static scenario the upper bounds have been shown to depend
on the number of agents and the enforcement techniques used. The enforcement
techniques that have been studied in this scenario are:

e Avoiding — Not interacting with violator agents.
e Blocking — Not disclosing contacts to violator agents.
e Protecting — Not disclosing the contacts that are violators.

e Informing — Making public the joint actions where the partner violated
the norm.

When an agent exhibits the avoiding enforcement behaviour, it will receive at
most as many norm violations as agents in the system. Therefore, if a group
of agents of size m all exhibit the avoiding behaviour, the upper bound on the
number of norm violations they can receive is m(n — 1) where n is the total
number of agents in the system. On the other hand if a connected group of
agents A’ exhibit the four enforcement behaviours it will at most a number
of norm violations that is lower that the previous one (see Section 4.3.5 for
an in depth discussion of the formulas defining the maximum number of norm
violations). These results are important because they do not require that all
the agents exhibit certain behaviours. Thus allowing a subset of the agents in
a system to achieve a degree of enforcement which grants them a maximum
number of violations to be received by them.

In the dynamic scenario some similar properties have been calculated ana-
lytically based on the enforcement techniques used. In this case the techniques
are:

e Networked — Discarding those illocutions containing requests that are
not correct, acknowledgements that are not justified, or feedback that is
not legitimate.

e Avoiding — Not interacting with incompatible agents.

e Blocking — Not forwarding or re-routing requests with incompatible
agents as partners.

e Informing — Giving feedback about joint actions.

118 CHAPTER 6. CONCLUSIONS

When an agent exhibits the networked and avoiding enforcement behaviours, it
will execute at most as many non-satisfactory joint actions as certified identities
in the system. In a similar fashion one could demonstrate the upper bounds
when all agents exhibited the four enforcement behaviours. However, there are
two issues with these upper bounds. Firstly, they are based on the definition
of incompatible agents. This definition is not straightforward in an uncertain
environment where each agent has a subjective definition of what is a satisfactory
joint action. Secondly, they are based on the number of certified identities.
Making the upper bounds meaningless, since any agent can change its identity
or create as many false identities as it pleases.

The analytical results were insufficient in the dynamic scenario. The static
scenario did give some analytical results that were relevant. Notwithstanding,
we were not able to prove many other insights we had about the workings of the
enforcement mechanisms in both scenarios. In order to test these insights about
how the new enforcement techniques would work when applied to real systems
in both scenarios, an empirical perspective was used. Those insights could then
be tested through experiments. For this purpose, we developed a simulation tool
for each of the models defined in this thesis. These tools allow the researcher to
simulate a society of agents where the models are in place and to set the values
for the different model parameters. Factorial experiments were easily conducted
as multiple instances of the simulation tool with different values.

Some of those insights we had were supported by the experiments. Firstly,
the data from the simulations supported the hypotheses that stricter norm en-
forcement behaviours, larger ratios of agents exhibiting enforcement behaviours,
and specific types of network typology all reduced the number of norm viola-
tions. Secondly, the simulation data also supported the hypothesis that using
the request data from the proposed MAN interaction protocol to gather infor-
mation about other peers allowed reputation mechanisms to reduce the number
of messages. Finally, the simulation data supported the hypothesis that the in-
formation gathered from the request data could help in reducing some types of
subversive attacks on the reputation mechanisms. These are all major contri-
butions because they showed that the enforcement mechanisms devised in this
thesis are useful, and that they could be applied in ways that are scalable and
robust.

By exploring the large amounts of data generated throughout the simulations,
new and surprising insights arouse about the behaviour of the system as a whole.
Sometimes even debunking the original insights that we had about the system.
For example, tree networks turned out to be worse at lowering norm violations
and random networks did best. This was specially surprising to us because
in previous models without any type of adversarial behaviour the tree network
had performed best. Another example of these surprising new insights is that
the informing enforcement behaviour does not bring about a large increment in
satisfaction to agents. This could mean that it is not that important for agents
to exhibit an informing behaviour in order to achieve norm enforcement. This
is specially interesting since getting users to give feedback is a difficult issue for

119

most applications were there is a reputation algorithm in place.

Although we have made an effort to describe a model in which the enforce-
ment techniques can be applied that is comprehensive, there are still some re-
quirements that the model builds on that have to be satisfied by other technolo-
gies that have not been discussed. Electronic applications that seek to apply the
enforcement techniques from this thesis must implement the following technolo-
gies: public key cryptography, a scalable flat-space-identifier routing protocol,
and a protocol that manages illocution transportation across different network
configurations.

These technologies have issues that will have to be tackled by the applica-
tion developers. Firstly, although public key cryptography is commonly used in
many distributed applications such as email certification, however, to the best
of our knowledge, there is no large-scale system that makes use of this type of
cryptography to the same extent as needed in order to avoid data fraud in our
model. Therefore, there might be a scalability issue from having to sign multi-
ple times each illocution if the cryptographic package is not fast at encrypting
and decrypting. Secondly, There are many P2P large-scale applications that
have solved the information transportation across networks almost seamlessly
by using proxies and other technologies, nevertheless, open source solutions to
these problems are packaged as part of other software and they may be hard to
re-use. Finally, existing technologies for flat-space-identifier routing protocols
are either not scalable or are based on the hypothesis that all routing agents
have complete knowledge of the network topology. This pre-requisite is hard
to implement in large-scale systems while maintaining scalability. Specially if
the network topology is highly dynamic. In order to reap the benefits in scala-
bility of the interaction protocol defined in Chapter 5 incremental solutions for
flat-space-identifier routing will have to be developed.

Throughout the thesis the underlying motivation has been to give tools to
developers of distributed applications that would allow the users of their appli-
cations to take an active part in building a community in which they could have
satisfactory interactions. This is achieved by giving users some power over other
users that would allow them to enforce socially acceptable behaviours. The rea-
sons that led us to concentrate on distributed mechanisms without any trace
of centralisation are two-fold. On one hand, it is an issue of scalability, since
centralised components tend to be the bottle-necks as soon as the number of
users grow. On the other hand, it is an issue of robustness. When you grant
anyone, and everyone, the power to enforce through sanctions, there is always
the fear that these powers may be corrupted. It is important to make it hard
for this to happen. The enforcement techniques that have been studied avoid
giving any subset of agents enough power that allows them to ruin another agent
for their own profit. This has been tested through experiments as has the effi-
ciency of the enforcement techniques. Another driving point in these techniques
that differs from other enforcement research is to avoid retaliation by harming
others. With the exception of informing others through gossip, all the actions
that agents execute in order to enforce norms are based on non-cooperation as

120 CHAPTER 6. CONCLUSIONS

opposed to actions that directly harm those for which they are intended. The
work described in this thesis is a glimpse into what can be achieved by using
this type of techniques. However, much more can be accomplished with this
mindset.

6.1 Future work

Being an engineer at heart I believe that after the research advanced in this
thesis, the next step ought to be in the direction of technology transfer by im-
plementing a framework for the development of applications that takes advantage
of the enforcement techniques described in this thesis. The framework should
be built mixing concepts from P2P, MAS, and Web Services, in order to allow
framework users to develop using both an agent-oriented development style or
the more common process interface metaphor. The framework would use P2P
communication techniques that have proven to work for large-scale systems and
allow users behind all sorts of network configurations to join the application. Fur-
thermore, the framework would provide the tools for contact management and
identity management, for encryption and decryption techniques to avoid data
fraud, for interaction protocol management, and it would sanction management
tools either through the implementation of some reputation mechanisms or by
allowing the user to decide the sanctions directly. By developing this framework
we would allow other researchers to pursue the research lines that have been
opened in this thesis.

Were the framework to be used by many types of applications, it would be a
waste of time having to maintain different social networks for each application.
In order to allow different applications to work on the same framework and
social network simultaneously, the interaction protocol should be modified in
order to allow information about the purpose of the joint action to be included
into the requests. This opens a new line of research where many new aspects
of enforcement can be studied. Some of these aspects are: rich models of users
which take into account the different applications the framework is being used
for; cross-domain enforcement techniques where actions in one application can
trigger sanctions in another application (e.g., not fulfilling an obligation from an
auction application might not only get your requests for that application blocked
in the future, but also the requests to create new joint events in a calendar
application); finally, ontology alignment can be studied by having the content in
the new fields in the request and feedback illocutions be defined through terms
of an ontology.

Another interesting functionality to implement in the framework is to allow
multi-user joint actions. Examples of applications where this would be needed
are chats, forums, and auctions. Having multi-user joint actions opens another
research line, which consists on developing community enforcement techniques
designed specifically for multi-user scenarios. In such cases, the interaction re-
quest would be sent to a community or group of agents which would have previ-
ously defined the process through which to decide whether to acknowledge the

6.1. FUTURE WORK 121

request once it got there. The coupling of enforcement techniques with coalition
theory and social choice theory is a long-term research line. As an example of
where this research line might start, let us imagine that in a specific commu-
nity it is the user that starts the auction that defines the rules that govern the
process through which new users join the auction. One possibility is to have
the new user send a request to the auction creator which would be in charge
of granting access to the new user. Another possibility is to have the new user
send requests to each of the current members of the group and access would be
granted to the group either by majority vote or by unanimity. In the last case,
if any of the requests does not make it to one of the group members, the users
would not be able to join. Through this scenario we can study new enforcement
techniques that are tailored to the different procedures for joining a community
and interacting as part of it.

One of the limitations of the approaches proposed in this thesis is that peers
are assumed to co-operate in the interaction protocol by forwarding interaction
requests and replying to contact queries. Therefore, an application using these
protocols could be hampered because of free-riding. It is not clear whether the
system could function under different levels of free-riding by agents that do not
want to share the cost of maintaining the interaction protocol. Furthermore, a
new user of the system, which would be connected by just a few or no contacts,
may have bootstrap problems because of free-riding and turnover (users may
not always be connected). This problem brings about a short-term research line
through which techniques such as currency management and public access hubs
can be studied. Through this research line we would study what effect the use
of techniques to counteract free-riding would have on the different enforcement
mechanisms provided in this thesis. Furthermore, we could also study the new
types of attacks and the robustness and scalability of the interaction protocol
when such techniques are used. A public access hub is a node that will become
a contact of anyone that asks, which improves scalability and robustness of the
interaction protocol, but reduces the effectiveness of enforcement techniques.
Whereas a micro-payment scheme is a technique through which a currency is
created in order to be used to pay for request routing. This solution has problems
of its own, such as fraud and currency management. Furthermore, the changes
that would have to be made to the protocol in order to use one of these schemes
could have an impact on the robustness of the system, since new attacks could
be possible.

Finally, another line of research has been opened in this thesis, namely the
study of new enforcement mechanisms that cater to the dynamic model in Chap-
ter 5. We mention below some of these enforcement mechanisms, which have not
been studied as part of this thesis due to the difficulty of defining experiments
in which to test them out under the current simulation testbed. Having a real
world application that used this technology would help define such experiments,
since it would provide a much richer testbed for the simulations. Firstly, a user
could cancel contact relationships. This would have the same effect as perma-
nently blocking all requests coming from a contact. The intended effect is to

122 CHAPTER 6. CONCLUSIONS

break ties with a complete portion of the network. Secondly, blocking requests
from routers which do not block correctly. Through this enforcement technique
the user is sanctioning bad routing behaviour and thus tries to avoid collusion.
Thirdly, not forwarding requests through the sanctioned agents. This is a tech-
nique whose purpose is twofold. On one hand, it would lower the reputation
of the sanctioned user in the eyes of those using a reputation mechanism sim-
ilar to SRM. On the other hand, if a micro-payment scheme is being used to
prevent free-riding, this enforcement technique would lower the ability of the
sanctioned user to get its requests delivered. Finally, adding router feedback to
the interaction request route in order to increase the information available to
the reputation algorithms would also force each router to define its trust on the
request, which would make detection collusion easier.

The development of the techniques and improvements described in this sec-
tion via future work, will help mature the field of distributed enforcement to a
point were it is accessible to application developers. Furthermore, a framework
as the one proposed would bring together two of the main fields in distributed
systems that have the most to gain from one another: Peer-to-Peer and Multi-
Agent Systems.

Bibliography

[Aberer et al., 2003] Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z.,
Hauswirth, M., Punceva, M., and Schmidt, R. (2003). P-grid: a self-organizing
structured p2p system. SIGMOD Record, 32(3):29-33.

[Aberer and Despotovic, 2001] Aberer, K. and Despotovic, Z. (2001). Managing
trust in a peer-2-peer information system. In CIKM ’01: Proceedings of the
tenth international conference on Information and knowledge management,
pages 310-317, New York, NY, USA. ACM Press.

[Agotnes et al., 2007] Agotnes, T., der Hoek, W. V., Rodriguez-Aguilar, J. A.,
Sierra, C., and Wooldridge, M. (2007). On the logic of normative systems.
In Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 07), pages 1175-1180. AAAT Press.

[Aldewereld et al., 2006] Aldewereld, H., Dignum, F., Garcfa-Camino, A., Nor-
iega, P., Rodriguez-Aguilar, J. A., and Sierra, C. (2006). Operationalisation
of norms for usage in electronic institutions. In AAMAS ’06: Proceedings of
the fifth international joint conference on Autonomous agents and multiagent

systems, pages 223—-225, New York, NY, USA. ACM.
[Axelrod, 1985] Axelrod, R. (1985). The Evolution of Cooperation. Basic Books.

[Axelrod, 1986] Axelrod, R. (1986). An evolutionary approach to norms. The
American Political Science Review, 80:1095-1111.

[Barabasi and Albert, 1999] Barabasi, A. L. and Albert, R. (1999). Emergence
of scaling in random networks. Science, 286(5439):509-512.

[Boella and Lesmo, 2001] Boella, G. and Lesmo, L. (2001). Deliberate norma-
tive agents. In Conte, R. and Dellarocas, C., editors, Social order in MAS.
Kluwer Academic Publishers.

[Boella and van der Torre, 2005] Boella, G. and van der Torre, L. W. N. (2005).
Enforceable social laws. In AAMAS, pages 682—689.

[Bollobés and Riordan, 2004] Bollobds, B. and Riordan, O. (2004). The diame-
ter of a scale-free random graph. Combinatorica, 24(1):5-34.

123

124 Bibliography

[Briggs and Cook, 1995] Briggs, W. and Cook, D. (1995). Flexible social laws.
In Mellish, C., editor, Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, pages 688-693, San Francisco. Morgan Kauf-
manm.

[Broersen et al., 2001] Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., and
van der Torre, L. (2001). The BOID architecture: conflicts between beliefs,
obligations, intentions and desires. In AGENTS ’01: Proceedings of the fifth
international conference on Autonomous agents, pages 9-16, New York, NY,
USA. ACM Press.

[Broersen et al., 2004] Broersen, J., Dignum, F., Dignum, V., and Meyer, J.-
J. C. (2004). Designing a deontic logic of deadlines. In 7th Int. Workshop of
Deontic Logic in Computer Science (DEON’04), pages 43-56, Portugal.

[Cabri et al., 2006] Cabri, G., Ferrari, L., Leonardi, L., and Quitadamo, R.
(2006). Collaboration-driven role suggestion for agents. In Proceedings of
IEEE-06 Workshop on Distributed Intelligent Systems.

[Carpenter et al., 2004] Carpenter, J., Matthews, P., and Ong’ong’a, O. (2004).
Why punish: Social reciprocity and the enforcement of prosocial norms. Jour-
nal of Evolutionary Economics, 14(4):407-429.

[Castelfranchi, 2000] Castelfranchi, C. (2000). Engineering social order. In
ESAW ’00: Proceedings of the First International Workshop on Engineering
Societies in the Agent World, volume 1972, pages 1-18. Springer-Verlag.

[Castelfranchi et al., 1998] Castelfranchi, C., Conte, R., and Paoluccci, M.
(1998). Normative reputation and the costs of compliance. Journal of Ar-
tificial Societies and Social Simulation, 1(3).

[Castelfranchi et al., 1999] Castelfranchi, C., Dignum, F., Jonker, C. M., and
Treur, J. (1999). Deliberative normative agents: Principles and architecture.
In Agent Theories, Architectures, and Languages, pages 364—378.

[Castelfranchi et al., 2003] Castelfranchi, C., Giardini, F., Lorini, E., and Tum-
molini, L. (2003). The prescriptive destiny of predictive attitudes: From ex-
pectations to norms via conventions. In Alterman, R. and Kirsh, D., editors,
XV Annual Conference of the Cognitive Science Society.

[Cheng and Friedman, 2005] Cheng, A. and Friedman, E. (2005). Sybilproof
reputation mechanisms. In P2PECON ’05: Proceedings of the 2005 ACM
SIGCOMM workshop on Economics of peer-to-peer systems, pages 128-132,
New York, NY, USA. ACM.

[Chisholm, 1963] Chisholm, R. M. (1963). Contrary-to-duty imperatives and
deontic logic. Analysis, 24(2):33-36.

Bibliography 125

[Cholvy and Cuppens, 1995] Cholvy, L. and Cuppens, F. (1995). Solving norma-
tive conflicts by merging roles. In Fifth International Conference on Artificial
Intelligence and Law, Washington, USA.

[Coen, 2000] Coen, M. H. (2000). Non-deterministic social laws. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth

Conference on Innovative Applications of Artificial Intelligence, pages 15-21.
AAAT Press / The MIT Press.

[Conte and Castelfranchi, 1995] Conte, R. and Castelfranchi, C. (1995). Un-
derstanding the functions of norms in social groups through simulation. In
Gilbert, N. and Conte, R., editors, Artificial Societies: The Computer Simu-
lation of Social Life, chapter 13, pages 213-226. UCL Press.

[Cranefield, 2005] Cranefield, S. (2005). A Rule Language for Modelling and
Monitoring Social Expectations in Multi-Agent Systems. Technical Report
2005/01, University of Otago.

[Cranefield, 2007] Cranefield, S. (2007). Modelling and monitoring social expec-
tations in multi-agent systems. In Coordination, Organizations, Institutions,
and Norms in Multi-Agent Systems II. Springer-Verlag.

[Craven and Sergot, 2008] Craven, R. and Sergot, M. (2008). Agent strands in
the action language nc+. Journal of Applied Logic, 6(2):172-191.

[Damiani et al., 2002] Damiani, E., di Vimercati, D. C., Paraboschi, S., Sama-
rati, P., and Violante, F. (2002). A reputation-based approach for choosing
reliable resources in peer-to-peer networks. In CCS ’02: Proceedings of the 9th

ACM conference on Computer and communications security, pages 207-216,
New York, NY, USA. ACM.

[Delgado, 2002] Delgado, J. (2002). Emergence of social conventions in complex
networks. Artificial Intelligence, 141(1):171-185.

[Dignum et al., 2002] Dignum, F., Kinny, D., and Sonenberg, L. (2002). Moti-
vational attitudes of agents: On desires, obligations, and norms. In CEEMAS
’01: Revised Papers from the Second International Workshop of Central and
Eastern Europe on Multi-Agent Systems, pages 83-92, London, UK. Springer-
Verlag.

[Douceur, 2002] Douceur, J. R. (2002). The sybil attack. In IPTPS ’01: Revised
Papers from the First International Workshop on Peer-to-Peer Systems, pages
251-260, London, UK. Springer-Verlag.

[Erdds and Rényi, 1960] Erdss, P. and Rényi, A. (1960). On the evolution of
random graphs, volume 5, pages 17-61. Publ. Math. Inst. Hung. Acad. Science.

[Esteva et al., 2002] Esteva, M., Padget, J., and Sierra, C. (2002). Formalizing
a Language for Institutions and Norms. In ATAL ’01: Revised Papers from
the 8th International Workshop on Intelligent Agents VIII, volume 2333 of
Lecture Notes in Artificial Intelligence, pages 348-366. Springer-Verlag.

126 Bibliography

[Esteva et al., 2001] Esteva, M., Rodriguez-Aguilar, J.-A., Sierra, C., Garcia,
P., and Arcos, J.-L. (2001). On the Formal Specification of Electronic Insti-
tutions. In Agent-mediated Electronic Commerce (The European AgentLink
Perspective), volume 1991 of LNAI Springer-Verlag.

[Esteva et al., 2004] Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., and Arcos,
J. L. (2004). AMELIL an agent-based middleware for electronic institutions.
In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’04), pages 236—-243. IEEE Computer
Society.

[Feldman et al., 2004a] Feldman, M., Lai, K., Stoica, I., and Chuang, J. (2004a).
Robust incentive techniques for peer-to-peer networks. In EC ’04: Proceedings
of the 5th ACM conference on Electronic commerce, pages 102-111, New York,
NY, USA. ACM.

[Feldman et al., 2004b] Feldman, M., Papadimitriou, C., Chuang, J., and Sto-
ica, I. (2004b). Free-riding and whitewashing in peer-to-peer systems. In
Proceedings of SIGCOMM’04 Workshop. ACM.

[Fitoussi and Tennenholtz, 2000] Fitoussi, D. and Tennenholtz, M. (2000).
Choosing social laws for multi-agent systems: minimality and simplicity. Ar-
tificial Intelligence, 119(1-2):61-101.

[Fon and Parisi, 2005] Fon, V. and Parisi, F. (2005). The behavioral foundations
of retaliatory justice. Journal of Bioeconomics, 7(1):45-72.

[Fugger, 2009] Fugger, R. (2009). Ripple.

[Gaertner et al., 2007] Gaertner, D., Garcia-Camino, A., Noriega, P.,
Rodriguez-Aguilar, J. A., and Vasconcelos, W. (2007). Distributed norm
management in regulated multiagent systems. In Proceedings of the 6th in-
ternational joint conference on Autonomous agents and multiagent systems,
New York, NY, USA. ACM.

[Gaertner et al., 2006] Gaertner, D., Noriega, P., and Sierra, C. (2006). Ex-
tending the BDI architecture with commitments. In Proceedings of the Ninth
International Conference of the Catalan Association for Artificial Intelligence
(CCIA’ 2006).

[Gaertner et al., 2009] Gaertner, D., Rodriguez-Aguilar, J. A., and Toni, F.
(2009). Agreeing on institutional goals for multi-agent societies. In Coor-
dination, Organizations, Institutions and Norms in Agent Systems IV: COIN
2008 International Workshops, COINQAAMAS 2008, pages 1-16, Berlin, Hei-
delberg. Springer-Verlag.

[Garcia and Hoepman, 2005] Garcia, F. D. and Hoepman, J.-H. (2005). Off-
line karma: a decentralized currency for peer-to-peer and grid applications.
Lecture Notes in Computer Science, 3531:364-377.

Bibliography 127

[Garcia-Camino et al., 2005] Garcia-Camino, A., Noriega, P., and Rodriguez-
Aguilar, J. A. (2005). Implementing norms in electronic institutions. In AA-
MAS ’05: Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, pages 667673, New York, NY,
USA. ACM Press.

[Garcfa-Camino et al., 2006] Garcifa-Camino, A., Noriega, P., and Rodriguez-
Aguilar, J-A. (2006). An Algorithm for Conflict Resolution in Regulated
Compound Activities. In Seventh Annual International Workshop Engineering
Societies in the Agents World (ESAW’06).

[Garcifa-Camino et al., 2007] Garcia-Camino, A., Rodriguez-Aguilar, J.-A.,
Sierra, C., and Vasconcelos, W. (2007). Norm-Oriented Programming of Elec-
tronic Institutions: A Rule-based Approach. In Coordination, Organizations,
Institutions, and Norms in Agent Systems II, volume 4386 of Lecture Notes
in Computer Science, pages 177-193.

[Garcia-Camino et al., 2006] Garcia-Camino, A., Rodriguez-Aguilar, J. A.,
Sierra, C., and Vasconcelos, W. W. (2006). A rule-based approach to norm-
oriented programming of electronic institutions. Sigecom FExchanges, 505:33—
40.

[Giunchiglia et al., 2009] Giunchiglia, F., Chenu-Abente, R., Osman, N. Z.,
Sabater, J., Sierra, C., Xu, H., Babenko, D., and Schneider, L. (2009). Design
of the sko structural model and evolution. Project Deliverable D1.2v1, Liquid
Publications.

[Governatori, 2005] Governatori, G. (2005). Representing business contracts in
RuleM L. International Journal of Cooperative Information Systems, 14(2-
3):181-216.

[Grizard et al., 2007] Grizard, A., Vercouter, L., Stratulat, T., and Muller, G.
(2007). A peer-to-peer normative system to achieve social order. In Coordi-
nation, Organizations, Institutions, and Norms in Agent Systems II, volume
4386, pages 274-289. Springer-Verlag.

[Hales, 2002] Hales, D. (2002). Group reputation supports beneficent norms.
Journal of Artificial Societies and Social Simulation, 5(4).

[Hardin, 1968] Hardin, G. (1968). The tragedy of the commons. Science,
162(3859):1243-1248.

[Hardin, 1998] Hardin, G. (1998). Extensions of “the tragety of the commons”.
Science, 280(5364):682-683.

[Hiibner et al., 2006] Hiibner, J. F., Sichman, J. S., and Boissier, O. (2006).
S-MOISE*: A middleware for developing organized multi-agent systems.
In Coordination, Organizations, Institutions, and Norms in Multi-Agent Sys-
tems, volume 3913 of Lecture Notes in Computer Science, pages 64—78.
Springer-Verlag.

128 Bibliography

[Jackson, 2003] Jackson, M. O. (2003). Mechanism theory. In Devigs, U., edi-
tor, Optimization and Operations Research, The Encyclopedia of Life Support
Science. EOLSS Publishers, Oxford, UK.

Joseph et al., cess| Joseph, S., Sierra, C., Schorlemmer, M., and Dellunde, P.
[Josep ph, , G, ,
(Advanced Access). Deductive coherence and norm adoption. Logic Journal
of the IGPL.

[Kaminka et al., 2002] Kaminka, G. A., Pynadath, D. V., and Tambe, M.
(2002). Monitoring teams by overhearing: A multi-agent plan-recognition
approach. JAIR, 17(83-135).

[Kamvar et al., 2003] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H.
(2003). The eigentrust algorithm for reputation management in p2p networks.
In WWW °08: Proceedings of the 12th international conference on World Wide
Web, pages 640-651, New York, NY, USA. ACM Press.

[Kittock, 1994] Kittock, J. E. (1994). The impact of locality and authority on
emergent conventions: initial observations. In AAAI ’94: Proceedings of the
Twelfth National Conference on Artificial Intelligence, volume 1, pages 420—
425, Menlo Park, CA, USA. American Association for Artificial Intelligence.

[Kollingbaum and Norman, 2004] Kollingbaum, M. and Norman, T. (2004).
Strategies for resolving norm conflict in practical reasoning. In ECAI Work-
shop Coordination in Emergent Agent Societies 2004.

ollingbaum and Norman, a] Kollingbaum, M. J. an orman, T. J.
Kollingb dN 2003a] Kollingb M. J d N T. J
(2003a). NoA - a normative agent architecture. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence 2003, pages 1465—1466.

[Kollingbaum and Norman, 2003b] Kollingbaum, M. J. and Norman, T. J.
(2003b). Norm adoption in the NoA agent architecture. In AAMAS ’03: Pro-
ceedings of the second international joint conference on Autonomous agents
and multiagent systems, pages 1038-1039, New York, NY, USA. ACM Press.

[Legras, 2002] Legras, F. (2002). Using overhearing for local group formation.
In Proceedings of AAMAS-02.

[Lépez y Lépez and Luck, 2004] Lépez y Lépez, F. and Luck, M. (2004). Nor-
mative agent reasoning in dynamic societies. In Proceedings of The Third
International Joint Conference on Autonomous Agents and Multi Agent Sys-
tems AAMAS’04.

[Loukos and Karatza, 2009] Loukos, F. and Karatza, H. D. (2009). Reputation
based friend-to-friend networks. Peer-to-Peer Networking and Applications,
2(1):12-23.

[Marin and Sartor, 1999] Marin, R. H. and Sartor, G. (1999). Time and norms:
a formalisation in the event-calculus. In ICAIL °99: Proceedings of the 7Tth
international conference on Artificial intelligence and law, pages 90-99, New
York, NY, USA. ACM Press.

Bibliography 129

[Martel and Nguyen, 2004] Martel, C. and Nguyen, V. (2004). Analyzing klein-
berg’s (and other) small-world models. In PODC ’04: Proceedings of the

twenty-third annual ACM symposium on Principles of distributed computing,
pages 179-188, New York, NY, USA. ACM.

[Marti et al., 2004] Marti, S., Ganesan, P., and Garcia-Molina, H. (2004).
Sprout: P2p routing with social networks. Lecture Notes in Computer Science,
Current Trends in Database Technology - EDBT 2004 Workshops:425-435.

[Maskin and Sjostrom, 2002] Maskin, E. S. and Sjostrom, T. (2002). Imple-
mentation theory. In Arrow, K. J., Sen, A. K., and Suzumura, K., editors,
Handbook of Social Choice Theory and Welfare. North-Holland, Amsterdam.

[Meyer, 1988] Meyer, J.-J. C. (1988). A different approach to deontic logic:
deontic logic viewed as a variant of dynamic logic. Notre Dame journal of
formal logic, 29(1):109-136.

[Minsky, 1991a] Minsky, N. H. (1991a). The imposition of protocols over open
distributed systems. IEEE Transactions on Software Engineering, 17(2):183—
195.

[Minsky, 1991b] Minsky, N. H. (1991b). Law-governed systems. Softw. Eng. J.,
6(5):285-302.

[Minsky, 1991c] Minsky, N. H. (1991c). Law-governed systems. Softw. Eng. J.,
6(5):285-302.

[Minsky and Rozenshtein, 1988] Minsky, N. H. and Rozenshtein, D. (1988). A
software development environment for law-governed systems. In SDE 3: Pro-
ceedings of the third ACM SIGSOFT/SIGPLAN software engineering sym-

posium on Practical software development environments, pages 65-75, New
York, NY, USA. ACM Press.

[Nguyen and Martel, 2005] Nguyen, V. and Martel, C. (2005). Analyzing and
characterizing small-world graphs. In SODA ’05: Proceedings of the siz-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 311-320,
Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

[Nisan, 2007] Nisan, N. (2007). Introduction to mechanism design (for computer
scientists). In Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V.,
editors, Algorithmic Game Theory. Cambridge University Press, Cambridge,
UK.

[Novick and Ward, 1993] Novick, D. and Ward, K. (1993). Mutual beliefs of
multiple conversants: A computational model of collaboration in air traffic
control. In Proceedings of AAAI-93.

[Oliver, 1980] Oliver, P. (1980). Rewards and punishments as selective incen-
tives for collective action: Theoretical investigations. American Journal of
Sociology, 85(6):1356-75.

130 Bibliography

[Padget and Bradford, 1999] Padget, J. A. and Bradford, R. J. (1999). A pi-
calculus model of a spanish fish market - preliminary report. In AMET ’98:
Selected Papers from the First International Workshop on Agent Mediated
Electronic Trading on Agent Mediated Electronic Commerce, pages 166—-188,
London, UK. Springer-Verlag.

[Parkes, 2001] Parkes, D. (2001). Iterative Combinatorial Auctions: Achieving
Economic and Computational Efficiency. PhD thesis, University of Pennsyl-
vania, Department of Computer and Information Science.

[Perreau de Pinninck et al., 2008a] Perreau de Pinninck, A., Gutnik, G., and
Kaminka, G. A. (2008a). Reducing communication cost via overhearing. In
Proceedings of the Sixth European Workshop on Multi-Agent Systems.

[Perreau de Pinninck et al., 2007] Perreau de Pinninck, A., Sierra, C., and
Schorlemmer, M. (2007). Friends no more: Norm enforcement in multi-agent
systems. In Proceedings of the sixth international joint conference on Au-
tonomous Agents and Multi-Agent Systems, pages 1-3. ACM.

[Perreau de Pinninck et al., 2008b] Perreau de Pinninck, A., Sierra, C., and
Schorlemmer, M. (2008b). Distributed norm enforcement: Ostracism in multi-
agent systems. In Computable Models of the Law, volume 4884 of Lecture Notes
in Artificial Intelligence, pages 275-290. Springer-Verlag.

[Pirzada et al., 2004] Pirzada, A. A.; Datta, A., and MacDonald, C. (2004).
Trust-based routing for ad-hoc wireless networks. In Proceedings of the 12th
IEEE Interantional Conference on Newtorks, volume 1, pages 326-330.

[Pujol et al., 2005] Pujol, J. M., Delgado, J., Sangiiesa, R., and Flache, A.
(2005). The role of clustering on the emergence of efficient social conventions.
In IJCAI ’05: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, pages 965-970.

[R-Project, 2009] R-Project (2009). R-project.

[Ramchurn et al., 2004] Ramchurn, S. D., Jennings, N. R., Sierra, C., and Godo,
L. (2004). Devising a trust model for multi-agent interactions using confidence
and reputation. Applied Artificial Intelligence, 18(9-10):833-852.

[Rao and Georgeff, 1995] Rao, A. S. and Georgeff, M. P. (1995). BDI agents:
From theory to practice. In Proceedings of the First International Conference
on Multiagent Systems (ICMAS), pages 312-319, San Francisco, California,
USA.

[Robertson, 2005] Robertson, D. (2005). A lightweight coordination calculus for
agent systems. In Declarative Agent Languages and Technologies II, volume
3476, pages 183—-197. Springer-Verlag.

Bibliography 131

[Rossi and Busetta, 2004] Rossi, S. and Busetta, P. (2004). Towards monitoring
of group interactions and social roles via overhearing. In Proceedings of CIA-

04.

[Rossi and Busetta, 2005] Rossi, S. and Busetta, P. (2005). With a little help
from a friend: Applying overhearing to teamwork. In Proceedings of IJCAI-05
Workshop on Modelling Others from Observations (MOO).

[Ryu and Lee, 1995] Ryu, Y. U. and Lee, R. M. (1995). Defeasible deontic rea-
soning and its applications to normative systems. Decission Support Systems,
14(1):59-73.

[Sabater and Sierra, 2001] Sabater, J. and Sierra, C. (2001). Regret: reputation
in gregarious societies. In AGENTS ’01: Proceedings of the fifth international
conference on Autonomous agents, pages 194-195, New York, NY, USA. ACM.

[Sabater-Mir et al., 2006] Sabater-Mir, J., Paolucci, M., and Conte, R. (2006).
Repage: Reputation and image among limited autonomous partners. Journal
of Artificial Societies and Social Simulation, 9(2):3.

[Sartor, 1991] Sartor, G. (1991). Legal reasoning and normative conflicts. In
Legal Knowledge Based Systems : Model-based legal reasoning (JURIX 1991).

[Sartor, 1992] Sartor, G. (1992). Normative conflicts in legal reasoning. Artificial
Intelligence and Law, 1(2-3):209-235.

[Savarimuthu et al., 2007] Savarimuthu, B. T., Purvis, M., Cranefield, S., and
Purvis, M. (2007). Role model based mechanism for norm emergence in arti-
ficial agent societies. In Proceedings of the International Workshop on Coor-

dination, Organization, Institutions, and Norms (COIN), Honolulu, Hawai’i,
USA.

[Sergot, 2001] Sergot, M. (2001). A computational theory of normative posi-
tions. ACM Transactions on Computational Logic, 2(4):581-622.

[Shoham and Tennenholtz, 1995] Shoham, Y. and Tennenholtz, M. (1995). On
Social Laws for Artificial Agent Societies: Off-line Design. Artificial Intelli-
gence, 73(1-2):231-252.

[Sierra and Debenham, 2005] Sierra, C. and Debenham, J. (2005). An
information-based model for trust. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems,

pages 497-504, New York, NY, USA. ACM.

[Sun et al., 2005] Sun, L., Jiao, L., Wang, Y., Cheng, S., and Wang, W. (2005).
An adaptive group-based reputation system in peer-to-peer networks. In Pro-
ceedings of the 1st Workshop on Internet and Network Economics, volume
3828, pages 651-659. Springer Berlin.

132 Bibliography

[Tan and van der Torre, 1996] Tan, Y.-H. and van der Torre, L. W. (1996). How
to combine ordering and minimizing in a deontic logic based on preferences. In
Deontic Logic, Agency and Normative Systems, Proceedings of the Deltaeon’96
Workshops in Computing, pages 216-232. Springer Verlag.

[Taylor, 1982] Taylor, M. (1982). Community, Anarchy & Liberty. Cambridge
University Press.

[Tennenholtz, 1998] Tennenholtz, M. (1998). On stable social laws and qualita-
tive equilibria. Artificial Intelligence, 102(1):1-20.

[Thorup and Zwick, 2001] Thorup, M. and Zwick, U. (2001). Compact routing
schemes. In SPAA ’01: Proceedings of the thirteenth annual ACM symposium
on Parallel algorithms and architectures, pages 1-10, New York, NY, USA.
ACM.

[Tian et al., 2008] Tian, Y., Wu, D., and Ng, K.-W. (2008). On distributed
rating systems for peer-to-peer networks. Computer Journal, 51(2):162—180.

[Upadrashta, 2005] Upadrashta, Y. (2005). Social Routing. PhD thesis, Univer-
sity of Saskatchewan.

[Vasconcelos et al., 2007] Vasconcelos, W., Kollingbaum, M. J., and Norman,
T. J. (2007). Resolving conflict and inconsistency in norm-regulated virtual
organizations. In Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems.

[Vazquez-Salceda et al., 2004] Vazquez-Salceda, J., Aldewereld, H., and
Dignum, F. (2004). Implementing norms in multiagent systems. In Lin-
demann, G., Denzinger, J., Timm, I., and Unland, R., editors, Multiagent
System Technologies, LNAT 3187, pages 313—-327. Springer-Verlag.

[Vishnumurthy et al., 2003] Vishnumurthy, V., Chandrakumar, S., and Sirer,
E. G. (2003). Karma: A secure economic framework for peer-to-peer resource
sharing. In Workshop of the Economics of Peer-to-Peer Systems.

[von Ahn et al., 2003] von Ahn, L., Blum, M., Hopper, N. J., and Langford,
J. (2003). CAPTCHA: Using hard AI problems for security. In Advances
in Cryptology — EUROCRYPT 2003, volume 2656/2003 of Lecture Notes in
Computer Science, page 646. Springer Berlin.

[von Wright, 1951] von Wright, G. H. (1951). Deontic logic. Mind, 60:1-15.

[Walker and Wooldridge, 1995] Walker, A. and Wooldridge, M. (1995). Under-
standing the emergence of conventions in multi-agent systems. In Proceedings
of the First International Conference on Multi—-Agent Systems, pages 384-389,
San Francisco, CA. MIT Press.

[Watts and Strogatz, 1998] Watts, D. J. and Strogatz, S. H. (1998). Collective
dynamics of small-world networks. Nature, 393(6684):440-442.

Bibliography 133

[Wooldridge, 2002] Wooldridge, M. (2002). Introduction to MultiAgent Systems.
John Wiley & Sons.

[Xiong et al., 2004] Xiong, L., Liu, L., and Society, I. C. (2004). Peertrust: sup-
porting reputation-based trust for peer-to-peer electronic communities. IEEFE
Transactions on Knowledge and Data Engineering, 16:843-857.

[Yarbrough and Yarbrough, 1999] Yarbrough, B. V. and Yarbrough, R. M.
(1999). Governance structures, insider status, and boundary maintenance.
Journal of Bioeconomics, 1:289-310.

[Yolum and Singh, 2002] Yolum, P. and Singh, M. (2002). Flexible protocol
specification and execution: Applying event calculus planning using commit-
ments. In AAMAS ’02: Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, pages 527-534. ACM Press.

[Younger, 2004] Younger, S. (2004). Reciprocity, normative reputation, and the
development of mutual obligation in gift-giving societies. Journal of Artificial
Societies and Social Simulation, 7(1).

[Younger, 2005] Younger, S. (2005). Reciprocity, sanctions, and the development
of mutual obligation in egalitarian societies. Journal of Artificial Societies and
Social Simulation, 8(2).

[Yu and Singh, 2000] Yu, B. and Singh, M. P. (2000). A social mechanism of
reputation management in electronic communities. In CIA ’00: Proceedings of
the 4th International Workshop on Cooperative Information Agents IV, The
Future of Information Agents in Cyberspace, pages 154-165, London, UK.
Springer-Verlag.

[Yu et al., 2008] Yu, H., Gibbons, P. B., Kaminsky, M., and Xiao, F. (2008).
Sybillimit: A near-optimal social network defense against sybil attacks. In
SP ’08: Proceedings of the 2008 IEEE Symposium on Security and Privacy,
pages 3-17, Washington, DC, USA. IEEE Computer Society.

[Yu et al., 2006] Yu, H., Kaminsky, M., Gibbons, P. B., and Flaxman, A. (2006).
Sybilguard: defending against sybil attacks via social networks. In SIGCOMM
"06: Proceedings of the 2006 conference on Applications, technologies, archi-

tectures, and protocols for computer communications, pages 267278, New
York, NY, USA. ACM.

Monografies de 'Institut d’Investigacié en

Num.

Num.

Num.

Num.

Num.

Num.
Num.

Num.

Num.

Num.

Num.

Num.
Num.

Num.

Num.

Num.

Num.

Num.

Num.

Num.

10

11

12
13

14

15

16

17

18

19

20

Intel-ligencia Artificial

J. Puyol, MILORD II: A Language for Knowledge—Based Sys-
tems.

J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions.

Ll Vila, On Temporal Representation and Reasoning in
Knowledge—Based Systems.

M. Domingo, An Expert System Architecture for Identification
in Biology.

E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving.

J. Ll. Arcos, The Noos Representation Language.

J. Larrosa, Algorithms and Heuristics for Total and Partial Con-
straint Satisfaction.

P. Noriega, Agent Mediated Auctions: The Fishmarket
Metaphor.

F. Manya, Proof Procedures for Multiple- Valued Propositional
Logics.

W. M. Schorlemmer, On Specifying and Reasoning with Special
Relations.

M. Lépez-Sanchez, Approaches to Map Generation by means of
Collaborative Autonomous Robots.

D. Robertson, Pragmatics in the Synthesis of Logic Programs.
P. Faratin, Automated Service Negotiation between Autonomous
Computational Agents.

J. A. Rodriguez, On the Design and Construction of Agent-
mediated Electronis Institutions .

T. Alsinet, Logic Programming with Fuzzy Unification and Im-
precise Constants: Possibilistic Semantics and Automated De-
duction.

A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory - A Possibilistic Approach.

A. Valls, ClusDM: A multiple criteria decision method for het-
erogeneous data sets.

D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics.

M. Esteva, Flectronic Institutions: from specification to devel-
opment.

J. Sabater, Trust and Reputation for Agent Societies.

Num.

Num.
Num.

Num.

Num.

Num.

Num.

Num.

Num.

Num.
Num.

Num.

Num.

Num.

Num.

Num.

Num.

Num.

Num.
Num.

Num.

Num.

Num.

21

22
23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39
40

41

42

43

J. Cerquides, Improving Algorithms for Learning Bayesian Net-
work Classifiers.

M. Villaret, On Some Variants of Second-Order Unification.
M. Gémez, Open, Reusable and Configurable Multi-Agent Sys-
tems: A Knowledge Modelling Approach.

S. Ramchurn, Multi-Agent Negotiation Using Trust and Persua-
Ston.

S. Ontanén, Ensemble Case-Based Learning for Multi-Agent
Systems.

M. Sanchez, Contributions to Search and Inference Algorithms
for CSP and Weighted CSP.

C. Noguera, Algebraic Study of Aziomatic Extensions of Trian-
gular Norm Based Fuzzy Logics.

E. Marchioni, Functional Definability Issues in Logics Based on
Triangular Norms.

M. Grachten, FEzpressivity-Aware Tempo Transformations of
Music Performances Using Case Based Reasoning.

1. Brito, Distributed Constraint Satisfaction.

E. Altamirano, On Non-clausal Horn-like Satisfiability Prob-
lems.

A. Giovannucci, Computationally Manageable Combinatorial
Auctions for Supply Chain Automation.

R. Ros, Action Selection in Cooperative Robot Soccer using Case-
Based Reasoning.

A. Garcia-Cerdana, On some Implication-free Fragments of Sub-
structural and Fuzzy Logics.

A. Garcia-Camino, Normative Regulation of Open Multi-agent
Systems.

A. Ramisa Ayats, Localization and Object Recognition for Mobile
Robots.

C.G. Baccigalupo, Poolcasting: an intelligent technique to cus-
tomise music programmes for their audience.

J. Planes, Design and Implementation of Exact MAX-SAT
Solvers.

A. Bogdanovych, Virtual Institutions.

J. Nin, Contributions to Record Linkage for Disclosure Risk As-
sessment.

J. Argelich Roma, Max-SAT Formalisms with Hard and Soft
Constraints.

A. Casali, On Intentional and Social Agents with Graded Atti-
tudes.

A. Perreau de Pinnick Bas, Decentralised Enforcement in Mul-
tiagent Networks.

