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Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Jordi Sabater Mir
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Foreword

If you look at the literature on computational reputation systems you will notice
that, in spite of being a human inspired social control mechanism, very little
attention has been given to the work already existent coming from social sciences.
It seems like if researchers from computer science were ignoring the amount of
work that for many years social scientists have been accumulating regarding this
topic. Fortunately, the last few years this has been changing, albeit slowly. The
work you have in your hands is one of the best exponents of this new trend in
the computational trust and reputation community.

In the following chapters, and taking as foundation a solid cognitive the-
ory of reputation, you will go from the logic formalization of this theory and
its integration into a cognitive agent architecture to its use in the context of
argumentation dialogs.

To the contrary of what happens in other similar attempts where the original
theory is diluted an almost unrecognizable in the implemented system, here it
maintains its essence and identity from the beginning to the end. Dr. Isaac
Pinyol shows how, in an area that traditionally has been dominated by game
theory, the use of a cognitive approach opens a world of new possibilities.

I’m sure that the work you are about to read will become one of the references
in the area in a near future.

Bellaterra, June 2011

Jordi Sabater Mir
IIIA - CSIC
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Als meus pares, al meu germà Jordi,
a la meva dona Mao-Mei, al nostre fill Noah
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5.

Finalment vull agrair a totes les persones que de ben segur haurien d’estar
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Abstract

Computational trust and reputation models have been recognized as one of the
key technologies required to design and implement agent systems. These models
manage and aggregate the information needed by agents to efficiently perform
partner selection in uncertain situations. For simple applications, a game the-
oretical approach similar to that used in most models can suffice. However, if
we want to undertake problems found in socially complex virtual societies, we
need more sophisticated trust and reputation systems, that not only focus on
the construction and inference of social evaluations (epistemic decisions), but
on their role in the practical reasoning performed by the agents (pragmatic-
strategic decisions) and on communications and dialectical processes (memetic
decisions). Most of the current state-of-the-art models struggle with epistemic
decisions, on how agents evaluate other agents according to certain criteria. Cu-
riously, pragmatic-strategic and memetic decisions are traditionally left apart,
either because they are implicit in the model or because it is too dependent
on the domain. This work explores this gap, arguing that in complex scenar-
ios where more cognitive approaches are needed, both pragmatic-strategic and
memetic decisions are as important as epistemic ones.

Firstly, we construct an ontology of reputation and a reputation language
that captures the information that most of the current state-of-the-art compu-
tational trust and reputation models manage. This starting point serves, by
the one hand, to define a belief-desire-intention (BDI) agent architecture that
integrates reputation information. Then, desires and intentions interact with
beliefs that contain information coming from reputation models. The architec-
ture is flexible enough to model a wide number of agents’ families and precisely
determines the practical reasoning process that leads to the best reasonable ac-
tion. On the other hand, we exploit the reputation language and use it to define
an argumentation-based protocol that allows two parties to engage in dialog
processes and exchange reputation-related information. The protocol permits
agents justify their social evaluations, endowing them with the capability to in-
tendedly decide whether communicated social evaluations are reliable according
to their own knowledge.
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Chapter 1

Introduction

1.1 Motivation

The importance of reputation and trust is out of question in both human and
virtual societies. The sociologist Luhmann wrote [Luhmann, 1979]: ”Trust and
trustworthiness are necessary in our everyday life. It is part of the glue that holds
our society together”. Luhmann’s observation was also contrasted in virtual
societies. The proliferation of electronic commerce sites started the need for
mechanisms that ensure and enforce normative behaviors and at the same time,
increase electronic transactions by promoting potential users’ trust towards the
system and the business agencies (agents) that operate in the site.

Along with it, reputation arises as a key component of trust, be-
coming an implicit social control artifact [Conte and Paolucci, 2002]. Hu-
mans rely on reputation information to choose partners to cooperate with,
to trade, to form coalitions etc. and it has been studied from differ-
ent perspectives, such as psychology (Bromley [Bromley, 1993], Karlins et
al. [Karlins and Abelson, 1970]), sociology (Buskens [Buskens, 1998]), philos-
ophy (Plato [Plato, 1955], Hume [Hume, 1975]) and economy (Marimon et
al. [Marimon et al., 2000], Celentani et al. [Celentani et al., 1966]). Every so-
ciety has its own rules and norms that members should follow to achieve a well-
fare society. The social control that reputation generates emerges implicitly in
the society, since non-normative behaviors will tend to generate bad reputation
that agents will take into account when selecting their partners, and therefore it
can cause exclusion due to social rejection.

One of fields that most is using these concepts is the field of multi-agent
systems (MAS). These systems are traditionally composed of discrete unites
called agents that are autonomous and that need to interact to each other to
achieve their goals. The parallelism with human societies is obvious, and also
the problems, specially when we are talking about open MAS. The main fea-
ture that characterizes open multi-agent systems is that the intentions of the
agents are unknown. Hence, due to the uncertainty of their potential behavior
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we need mechanisms to control the interactions among the agents, and protect
good agents from fraudulent entities. Traditionally, three approaches have been
followed to solve such problems:

• Security Approach: At this level, basic structural properties are guaran-
teed, like authenticity and integrity of messages, privacy, agents’ identities,
etc. They can be secured by means of cryptography, digital signatures,
electronic certificates etc. However, this approach does not tell anything
about the quality of the information, although the established control is
more than valuable.

• Institutional Approach: This approach assumes a central authority
that observes, controls or enforces agents’ actions, and might punish them
in case of non-desirable behaviors. It is indisputable that this approach
ensures a high control in the interactions, but it requires a centralized hub.
Moreover, the control is bounded to structural aspects of the interactions:
allowed, forbidden, obliged actions can be checked and controlled. How-
ever, the quality of the interactions is left apart, in part, because a good
or bad interaction has a subjective connotation that can depend on the
current goals of each individual agent.

• Social Approach: Reputation and trust mechanisms are placed at this
level. In this approach agents themselves are capable of punishing non-
desirable behaviors, y for instance, not selecting certain partners. To
achieve such distributed control agents must model other agents’ behaviors,
and following the similitude with human societies, trust and reputation
mechanism arise as a good solution. This requires however the develop-
ment of computational models of trust and reputation, which must cover
not only the generation of social evaluations in all the dimensions, but
on dealing with how agents use reputation information to select partners,
how agents communicate and spread reputation, and how agents handle
communicated reputation information, etc. It is important to remark that
these approaches are complementary and that each one covers a different
typology of problems, all related to the control of interactions in open
MAS.

This work is framed in the field of computational reputation and trust models
for open MAS. In the recent years, the scientific research in this field has consid-
erably increased, and in fact, reputation and trust mechanisms have been already
considered a key elements in the design of MAS [Luck et al., 2005]. Nowadays,
most of the computational models use game theoretical approaches that suffice
for simple environments. However, if we want to undertake problems found in so-
cially complex virtual societies, more sophisticated trust and reputation systems
based on solid cognitive theories are needed.

Taking the cognitive theory of reputation developed by Conte and Paolucci
[Conte and Paolucci, 2002] as a base, we deal with problems that traditionally
have been left apart when facing such complex systems. On the one hand, we
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deal with pragmatic-strategic decisions by defining an agent architecture capable
of integrating reputation information into its deliberative process. On the other
hand, we face memetic decisions by specifying a family of argumentation-based
dialog protocols that allows the agents to analyze the internal elements used to
infer reputation-related concepts, and exchange them with other agents. In the
next section we detail the scientific contributions.

1.2 Main Contributions

This work contributes to the field of computational trust and reputation for
multiagent systems in three lines:

First - An Ontology of Reputation and the Lrep Language

We present an ontology of reputation and the language Lrep to capture the rep-
utation information that computational trust and reputation models manage in
terms of social evaluations (evaluations about the social performance of an entity
in a specific context). It serves to precisely determine the elements that compose
a social evaluation and at the same time, provides a clear conceptualization of
the involving terms. The main features are:

• The ontology considers computational aspects, such like the representa-
tion type used to evaluate other agents performances. For instance, some
models use a set of linguistics labels like Very Bad, Bad, Neutral, Good,
Very Good, while others use probabilistic distributions. We propose four
types of representations that capture most of the representations used in
the current state-of-the-art models, and define transformation functions to
move from one type to another.

• The ontology introduces a taxonomy of social evaluations extracted
mainly from the cognitive theory of reputation by Conte and Paolucci
[Conte and Paolucci, 2002]. Even when the specific terms may not have a
direct connection with the terminology used by other reputation models,
the information that most of the current models manage fits into the terms
of the ontology.

• The ontology serves as a base to define Lrep, a many-sorted first-order
language that we use to characterize the reputation information that agents
hold. We assume that agents use Lrep to write and reason about reputation
concepts and associate an inference relation �i that represents a particular
reputation model. With it, we can formalize the fact that even when
agents use the same language to express reputation concepts, agents can
infer them in multiple and different ways.
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Second - The BDI+Repage Model

We introduce the BDI+Repage [Pinyol and Sabater-Mir, 2009a] agent architec-
ture, a belief-desire-intention (BDI) architecture that integrates the information
that the computational reputation system Repage [Sabater-Mir et al., 2006] pro-
vides into the practical reasoning process of the agent. Differently from most of
the current state-of-the-art systems that focus on epistemic aspects (how eval-
uations are calculated), our model deals mainly with the pragmatic aspects of
reputation information. The main characteristics of the system are:

• It is modular. The model is defined as a multi-context system (MCS)
[Giunchiglia and Serafini, 1994], a framework that allows several distinct
theoretical components to be specified together, with a mechanism to re-
late these components. From a software engineering perspective, MCS
supports modular architectures and encapsulation. From a logical mod-
eling perspective, it allows the construction of agents with different and
well-defined logics, keeping all formulas of the same logic in their corre-
sponding context. This increases considerably the representation power of
logical agents, and at the same time, simplifies their conceptualization. In
our model, each main attitude (Belief, Desire and Intention) is specified
as an independent context. Also, the Repage system is introduced as a
context. Our model specifies then how such contexts are related to each
other, defining the practical reasoning path of the agent. This modular ar-
chitecture permits easy integrations of possible modules that could extend
the functionalities of the original one.

• It is based on solid logical frameworks. We use an existing complete logic
of preferences based on Lukasiewicz [Casali, 2008] to model desires and in-
tentions, and we introduce a new logic to deal with the beliefs of the agent.
The belief logic is a classical first-oder many-sorted logic, deals with prob-
abilities and is capable of representing and combine the information that
the reputation model Repage computes. Differently from other probabilis-
tic logics, it handles multiple probability distributions under some restric-
tive settings, and because it is specified as a first-order logic, it permits a
smooth implementation.

• It handles image and reputation. The Repage model is based on a cogni-
tive theory of reputation that states a main difference between image and
reputation. While both objects are social evaluations, image refers to a
simple evaluative belief that tells how agents are in a certain context, and
reputation is a metabelief, telling that a given social evaluation circulates
in the society. The belief logic that we develop captures both concepts
and combine them, defining a family of agents depending on how such
combination is performed.

• It can be seen as an instantiation of a cognitive trust model. Some cognitive
theories of trust suggest that trust is a mental state composed of a set
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of beliefs and goals that describe the decision to rely on someone, so,
it is the result of a practical reasoning process. Our model fits into this
description and becomes, as far as we know, the only cognitive trust model
that describes each step of the reasoning process.

• It is generic. The model is not attached to any specific domain ontology
nor network typology, and inherits the properties and characteristics of
the underling reputation model. We use Repage as a paradigmatic exam-
ple, but any model whose information can be captured by the reputation
language Lrep could be placed into the system.

Third - An Argumentation-Based Protocol for Reputation Exchange

We develop an argumentation-based dialog protocol for the exchange of
reputation-related information. Due to the subjectivity of reputation informa-
tion, a social evaluation totally reliable by an agent A may not be reliable for
B, because the bases under which A has inferred the social evaluation cannot be
accepted by B. This can happen because agents have different inference rules,
have had different experiences, have different goals, etc. When such information
is communicated this can become very problematic, specially if the reputation
model assigns a reliability measure to the communicated information, because
of the reasons above.

The argumentation-based protocol we develop offers a possible solution for
this, and can complement already existing methods. We suggest that, in com-
municated social evaluations, the reliability measure cannot be dependent on
the source agent, but must be fully evaluated by the recipient agent accord-
ingly to its own knowledge. Then, taking advantage of the internal structure of
reputation-related information, rather than allow only single communications,
we allow agents to justify their communications following the guidelines of the
argumentation-based protocol. Then, the agent can incrementally construct a
tree of arguments with their attack relations that can be used to decide on the
reliability (and thus acceptance) of a communicated social evaluation. The main
characteristics of the system are:

• Only the recipient agent decides about the reliability of a communicated
evaluation. This differs from other approaches in which the source agent
attaches a reliability measure to the communicated social evaluation. This
makes more difficult for dishonest agents to intentionally send fraudulent
information, because they must be aware of the knowledge of the recipient
and justify the lie accordingly.

• It uses argumentation frameworks to give semantics to the dialog. We ex-
ploit the Lrep language to completely define how arguments are constructed
and how arguments influence one another. We instantiate a weighted ab-
stract argument framework to define the acceptability semantics of a com-
municated social evaluation.
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• It handles quantitative and qualitative graded information. One of the
main characteristics of reputation information is that it is graded. Nowa-
days it is strange to find a model that provides crisp evaluations of the
agents. For instance, an agent A may be bad, very bad or very good etc.
as a car driver, and this has to be taken into account when arguing about
evaluations.

• It permits dialogs between parties that use different reputation models.
Even when we assume that agents use the same language to talk and reason
about reputation information (Lrep language), we suppose that they can
use different inference rules (different reputation models) without having
to exchange the exact rules that each agent uses for the inferences.

Next section provides a detailed explanation of the structure of the book.

1.3 Overview and Structure of the Work

The book is structured in seven chapters and two appendixes:
Chapter 2: We present the theoretical bases of our work and a survey

of the most relevant computational trust and reputation models that currently
exists in literature. On the one hand, in the first part of the chapter, we in-
troduce the cognitive theory of reputation presented by Conte and Paolucci
[Conte and Paolucci, 2002], relating their definition of image and reputation
with other definitions and with the notion of cognitive trust pointed out by some
authors. Furthermore we explain Repage [Sabater-Mir et al., 2006], a computa-
tional reputation model based on [Conte and Paolucci, 2002] and explore some
of its advantages by detailing empirical results that we obtained through simula-
tions. On the other hand, the second part of the chapter is devoted to a survey
of the current state-of-the-art reputation and trust models. We describe three
other surveys and examine the different dimensions of analysis that each one of
them proposes. At the end of the chapter, we also propose a complementary
classification.

Chapter 3: The objective of this chapter is to establish a taxonomy of
reputation-related concepts. First, we define an ontology of reputation to ex-
plicitly state the elements that according to us, are important in the field. Our
ontology has a clear computational perspective and serves as a taxonomy of the
concepts that our work uses. Second, we introduce the Lrep language, a first-
order language to express reputation-related concepts described in the ontology,
and that agents use to write statement and reason about reputation informa-
tion. We provide examples to show how the language captures a wide range of
state-of-the-art models, specially the Repage model, which currently is one of
the most expressive models.

Chapter 4: We introduce the BC-logic, a belief logic capable of integrating
reputation information coming from reputation models like Repage, with the
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normal beliefs that the agent holds about the domain. It is a sorted first-order
logic that manages probability predicates and that subsumes all possible incon-
sistencies in terms of probabilities. We prof that the proposed theory used by
the agents to reason is consistent and decidable, since it can be seen as a set of
universal horn clauses.

Chapter 5: The chapter proposes the BDI+Repage architecture. We spec-
ify the architecture using multicontext systems [Giunchiglia and Serafini, 1994]
and use the logic defined in chapter 4 to manage the belief base of the agent.
We specify one context for each main attitude of the agent (Belief, Desire In-
tention) and design the links (bridge rules) among those contexts, designing a
practical reasoning process. Even when we use the Repage reputation model in
the integration, it should be taken as a paradigmatic example, since the only
requirement is to manage reputation models whose information can be captured
by the language Lrep.

Chapter 6: While the previous chapter deals with pragmatic-strategic de-
cisions, on how agents use reputation information to decide what to do, this
chapter struggles with memetic decisions. We face a particular problem at-
tached to the fact that reputation information is subjective. We define a protocol
specifically designed for the exchange of reputation-related information between
two-parties that uses argumentation techniques. We exploit the Lrep language
and use it to build an argumentation system capable of providing a semantics
to decide whether a communicated social evaluation can be considered reliable
for the agents.

Chapter 7: We conclude our analysis and provide some future research
lines.

Appendix A: In this appendix we introduce the concept of conversion
uncertainty (CU), a measure of information loss produced when transforming
from one representation type to another. We define it as a conditional entropy.
We provide the detailed CU calculations for all possible transformations.

Appendix B: We present some implementation details of the BDI+Repage
model using the Jason platform [Bordini et al., 2007], and we present prelim-
inary results that empirically proof the differences in behavior of some of the
families of agents that we presented in chapter 5.

1.4 Related Publications

The following publications are a direct consequence of the development of this
work.
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Chapter 2

Reputation In Multiagent
Systems

2.1 Introduction

In this chapter we describe the theoretical framework under which all our
work holds: the cognitive theory of reputation developed by Conte & Paolucci
[Conte and Paolucci, 2002]. We put this theory in contrast with cognitive vi-
sions of trust, and show the Repage system, a computational model of reputa-
tion based on this theory. In the last part of this chapter we provide a survey
of the most representative computational trust and reputation models. We first
analyze other reviews showing the different characteristics or dimensions that
such models can be classified on, and then we provide our own classification to
part of our contribution.

2.2 A Cognitive Theory of Reputation

The vision we have about reputation is set in the cognitive theory developed in
[Conte and Paolucci, 2002]. From this theory, reputation cannot be seen as a
single-dimensional concept, but need to be understood as a multi-faced artifact
that not only focuses on the evaluative dimension but on the process and the
effect of transmission. For this, it is crucial the distinction between image and
reputation. While image is an evaluative belief that tells how a given target agent
behaves according to certain criteria, reputation is a belief on the circulation of
social evaluations in the society.

According to [Conte and Paolucci, 2002], reputation proceeds from the in-
dividual level to the propagation at a social level, and from the social level,
it comes back to the individual. This dynamism makes reputation suscep-
tible to changes, and thus, the accuracy of reputation information is more
than questionable. However, as described in some simulation experiments
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[Pinyol et al., 2007a, W. Quattrociocchi, 2008b] even with a high rate of cheat-
ing when transmitting reputation (around 60%) the society seems to perform
better when the distinction between image and reputation is taken into account
rather than when only image is taken into account. This is also analyzed at the
end of this chapter.

As we mentioned in the first chapter, we focus our efforts on the individual
and interaction level. Both levels are explicitly taken into account by the cog-
nitive theory when it describes the three levels of mental decisions that agents
can perform regarding social evaluations:

• Epistemic decisions cover the dynamics of beliefs regarding image and
reputation, or in other words, decisions about updating and generating
social evaluations, for instance, accepting the beliefs that form images or
acknowledging certain reputation. From our point of view, this level fits
within a theoretical reasoning, which embraces reasoning about what to
believe from the individual perspective1.

• Pragmatic-strategic decisions are decisions that use image to decide
how to behave/interact with potential partners. From our perspective this
kind of decisions are done through a process of practical reasoning, a kind
of reasoning to decide how to act, and very used in logical approaches.
Also, we recall here that when deciding to whom to interact with, agents
are deciding in fact to whom to rely on to achieve their goals. This brings
us to the notion of social trust [Castelfranchi and Falcone, 1998b]. Later
in this chapter we analyze the relation between image, reputation and trust
from a cognitive perspective.

• Memetic decisions refer to the decisions of how and when to spread so-
cial evaluations. These decisions are produced also by a process of practical
reasoning, but focusing on communication actions.

The cognitive theory holds on two important concepts: image and reputa-
tion. Although both are social evaluations, they are distinct objects and involve
different groups of agents. In the next subsections we summarize the main ideas
behind these two constructs extracted from [Conte and Paolucci, 2002].

2.2.1 Image

Image is an evaluative belief, a belief that describes an evaluation of a tar-
get, that can be a single agent or supra-agent (like groups or institutions), to-
wards a specific context. In fact, from both [Conte and Paolucci, 2002] and
[Miceli and Castelfranchi, 2000] an image requires the context to be a goal that
the agent wants to achieve. Hence, an agent A evaluates another agent B when A

1In philosophy, practical reasoning is the capacity to deliver (or reason) about how to act.
In contrast, theoretical reasoning is the capacity to reason about what to believe. There-
fore, epistemic decisions can be considered theoretical reasoning, while pragmatic-strategic
decisions, practical reasoning
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thinks that B is good or bad for achieving the goal. We will see how this constrain
is relaxed when considering Repage [Sabater-Mir et al., 2006], the computation
model inspired in this cognitive theory and the base for our work. For instance,
in the most simplified scenario, an agent can hold a very good image of John in
the context of obtaining 2 boxes of high-quality wine.

The theory describes three sets of agents that participate in a given social
evaluation as image:

• Evaluators: A nonempty set of agents that share the evaluation. Hence,
they must share the same goal.

• Targets: A nonempty set of agents or supra-agents that are evaluated by
the set of evaluators.

• Beneficiaries: A nonempty set of agents that use the evaluations, and
thus, share the same goal.

It is important to notice that the sets of evaluators and beneficiaries do not
necessary are the same. This is very clear in online reputation mechanism, like
eBay [eBay, 2002], where buyers evaluate sellers and these evaluations are used
by other buyers.

The cognitive theory [Conte and Paolucci, 2002] makes some predictions on
the quality of the evaluations when assuming overlapping of roles. For instance,
they argue that when there is a low overlapping between the targets and the
beneficiaries, an overestimation is produced in the evaluations. Instead, when
there is a high overlapping, evaluations are accurate. Moreover, when benefi-
ciaries and evaluators are lowly overlapped evaluations are mostly underrated,
while when they are highly overlapped, accuracy is the norm in the evaluations.
In [eRep, 2007] the authors show an empirical validation of such predictions,
checking different online user-oriented reputation systems found in electronic
auctions, recommender systems, discussion forums and social networks where
the overlapping of roles is known.

From the individual perspective, agents can be partially aware of such sets
and can in fact act in all the roles. We assume that our cognitive agent i is en-
dowed with goals and beliefs and therefore is able to generate evaluations about
other agents. Then, i acts as evaluator when performing epistemic decisions. As
well, i can act as beneficiary when receives evaluations from a set of agents S. In
this case, i knows that the agents in S act as evaluators. Also, when i decides to
send its own evaluations to a set of agents D, i is aware that agents in D may act
as beneficiaries, and that they will know that i is an evaluator. Curiously, i may
not be aware that she is actually being targeted by others, but must be aware of
such possibility and the consequences of achieving bad evaluations. Because of
that, cognitive agents have the motivation to act accordingly to well-established
social behaviors.
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2.2.2 Reputation

The theory considers reputation as a belief about others’s evaluations. From
a broad sense, it can be considered a meta-belief, although when focusing on
the individual level this is not necessary true. The theory analyses the roles of
agents participating in a given social evaluation as reputation:

• Evaluators: A nonempty set of agents that share the evaluation. Hence,
they must share the same goal.

• Targets: A nonempty set of agents or supra-agents that are evaluated by
the set of evaluators.

• Beneficiaries: A nonempty set of agents that use the evaluations, and
thus, also share the same goal.

• Third Parties: A nonempty set of agents that acknowledge that some
evaluators share the evaluation.

The first three roles are the same as for image. Here though, the theory
introduces a third party agents group. This group shares the belief that a group
of evaluators is endowed with the social evaluation. Third parties are the holders
of the reputation, and often they completely include the set of evaluators. Third
parties are those aware of the effects of reputation transmission and the ones
that transmit reputation (so called gossip).

At the individual level, when a third party transmit reputation information
about a given target to a set of agents, does not necessary believe the corre-
sponding image of the target. This is because reputation moves to a level above
of image, the belief about the circulation of an evaluation. Thus, when an in-
dividual agent accepts or acknowledges a given reputation it indicates that the
agent assumes that the nested evaluation circulates in the society, that most
of the members of the society, if asked, would acknowledge the existence of a
circulating voice about the target.

The cognitive theory suggests that reputation information circulates more in
the society than image information. The authors argue that the transmission
of image is in fact the transmission of a set of evaluative beliefs owned by the
source of the communication. Then, when i communicates her image, she is
communicating her beliefs, implicitly committing to the truth of the evaluation.
Instead, when transmitting reputation there is no such commitment. From this,
it can be deduced that agents will transmit image only when they are very secure
about the truth of the evaluation. Reporting on reputation implies a minor
responsibility. However, the counter-effects are obvious: falsifying reputation
information is not costly either.

2.2.3 Why Is Reputation a Meta-belief?

The introduction of the third parties set in the previous definition of reputation
must be reinterpreted when talking about the mental state of an individual
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agent that accepts a given reputation. In this sense it is important to remark
that reputation is the belief about the existence of a communicated evaluation.
Since the notion of evaluation implies a sort of beliefs, reputation is considered
a meta-belief. It should not be confused with the idea of shared image, which is
also a meta-belief but a particular case of image.

Cognitive agents can have in their minds beliefs about others’ evaluations,
so, beliefs about others’ images. When these images correspond to the same
target in the same context we say that the agent is aware of a shared image,
that is also a meta-belief. Probably this information is part of the own image of
the agent. The difference with reputation is twofold:

1. The agent can totally identify the owner of each image, while in reputation
this is lost in the generalization.

2. There is no reference to the transmission. As said before, reputation is
a belief about the existence of a voice about the target, that most of
the people in the society communicates such evaluation, but where the
evaluation does not have any concrete referent. From this point, it can be
deduced that without explicit communication, no reputation is possible.

In fact, the epistemic decision towards the acceptance of a reputation must go
through a generalization process. First, an agent can be aware that a determined
set of agents report the existence of a voice about a target, so, the agent is aware
of a shared voice. When the agent generalizes the shared voice and assumes that
instead of a concrete set of agents most agents would report the existence of the
voice, the agent is, in that moment, acknowledging a reputation.

2.3 Reputation and Social Trust

Reputation and social trust have a close relationship. In fact, we can argue that
social trust is built on the bases of reputation and image, and at the same time,
reputation is constructed on the social trust. But, what is trust2?

As almost always happens with concepts that have a strong common sense
component, there is not a global accepted definition of trust. May be the most
classical one was given by Gambetta [Gambetta, 1990]: ”Trust is a subjective
probability by which an individual A expects, that another individual B performs
a given action on which its welfare depends”. However, to exemplify better
the relationship between reputation and trust, we need to rely on the inter-
nal components of trust. For this, we base our argument on the definition of
trust provided by Castelfranchi and Falcone [Castelfranchi and Falcone, 1998b,
Castelfranchi and Falcone, 1998a], where trust is analyzed in terms of the cogni-
tive components that it is based on. According to the authors, trust is a mental

2We refer to social trust as the trust towards other entities, groups of entities or social
organizations, not about the trust on objects. From now on, we will use trust in the former
sense.
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state, a complex attitude composed of beliefs and goals that determine the ex-
pectations towards certain behaviors of the trustee agents. Furthermore, they
defend that trust is scalable, and that the degree of trust is based on the sub-
jective certainty of the composing beliefs and the utility (or importance) of the
goals. From this idea we can deduce that trust is in fact a practical reasoning
process.

In a more formal way, let i, j be two agents, the cognitive com-
ponents that make i trusts j regarding the goal g are the following
[Castelfranchi and Falcone, 1998b]3:

• Goal Seeking: i has the goal g.

• Competence Belief : i believes that j is capable of obtaining g from a
set of actions (summarized in the action α)

• Disposition Belief : i believes that j will actually perform α to obtain g.
This belief makes agents predictable.

• Dependence Belief : i believes that she needs/depends on j to perform
the task.

Competence and disposition beliefs, together with the goal are the core trust.
They model the ability and willingness of the agent j to achieve g. They are eval-
uative beliefs and are constituents of the image and reputation of j in the sense
described in subsections 2.2.1 and 2.2.2. This property was already mention in
[Miceli and Castelfranchi, 2000], where the authors exemplify which kinds of be-
liefs compose evaluations, and the capabilities that cognitive agents must achieve
in order to be evaluators.

We can conclude then that image and reputation are necessary conditions,
although not sufficient, to achieve trust on j. For this it is also necessary the
decision to rely on j, to not search for any other alternative resource to achieve
g, so, to achieve g through j. This is summarized in the dependence belief, and
it is the reason that justifies the consideration of trust as a practical reasoning,
and very related to pragmatic-strategic decisions.

2.3.1 Occurrent vs. Dispositional Trust

Other contributions [Herzig et al., 2008] refine this notion of social trust by dif-
ferentiating occurrent from dispositional trust. The former is understood as the
trust on other agents to act here and now, and coincide with the core trust
definition given by Castelfranchi and Falcone. In contrast, dispositional trust
denotes the disposition of the trustee to perform an action in order to obtain a
potential goal when some conditions hold [Herzig et al., 2008].

3The authors describe other beliefs and goals that are part of the trust mental state, like
fulfillment belief or wishes. However, for the sake of clarity we obviate them because they are
a direct cause of the beliefs shown in the list.

16



From a more technical perspective the authors define occurrent trust with
the predicate OccTrust(i, j, α, ϕ), indicating that i trusts j here and now to
perform action α to obtain goal ϕ. As in the definition of core trust from
Castelfranchi and Falcone [Castelfranchi and Falcone, 1998b], the components
embrace an occurrent goal, an occurrent capability belief, an occurrent power
belief and an occurrent intention belief. More formally:

OccTrust(i, j, α, ϕ) =def OccGoali(ϕ)∧
Beliefi(OccCap(j, α))∧
Beliefi(OccPower(j, α, ϕ))∧
Beliefi(OccIntends(j, α))

The beliefs on the occurrent capability and occurrent power correspond to the
competence beliefs, while occurrent intention to the disposition belief. Regarding
dispositional trust, the background components are the same but we move from
occurrent goals to potential goals, and from occurrent beliefs to potential beliefs.
Following [Herzig et al., 2008], dispositional trust is defined as follows:

DispTrust(i, j, α, ϕ) =def PotGoali(ϕ)∧
Beliefi(CondCap(j, α))∧
Beliefi(CondPower(j, α, ϕ))∧
Beliefi(CondIntends(j, α))

On the one hand, the potential goal refers to a goal that currently is not the
case, but that at some point it may be occurrent. Hence, from a logical sense,
occurrent trust implies dispositional trust but not the opposite. On the other
hand, the notions of conditional capability, power and intention are the condi-
tioned versions of the occurrent trust components. They describe under which
conditions agent i believes that j has the capability to execute α, the power to
achieve ϕ from α, and the intention to perform α. The work [Herzig et al., 2008]
also presents a formalization of these predicates using some of the existing log-
ics for autonomous agents and multiagent systems. We get into more technical
details in chapter 4.

Dispositional trust is important for our work due to the relation with repu-
tation. The authors argue that the notion of reputation described by Conte and
Paolucci in [Conte and Paolucci, 2002] is the equivalent dispositional trust but
at a group level. Their definition of reputation involves also four parameters,
Rep(G, j, α, ϕ), where G is a group of agents, and its components are:

Rep(G, j, α, ϕ) =def PotGoalG(ϕ)∧
GroupBelG(CondCap(j, α))∧
GroupBelG(CondPower(j, α, ϕ))∧
GroupBelG(CondIntends(j, α))

Group belief should not be confused with the standard notion of common
belief. In general, we say that when a group G has a common belief that ϕ,
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each member of the group believes ϕ and is aware that the other members also
believe ϕ 4. Instead, when the group G has a group belief that ϕ, it only implies
that each agent of the group believes that G has a group belief that ϕ, and there
is a mutual belief of this fact among the members of the group:

GroupBelGϕ

implies that for each i, j ∈ G,

Beli(GroupBelGϕ) ∧Beli(Belj(GroupBelGϕ))

A logical account for such operator can be found in [Gaudou et al., 2006]
(operator G) and as the same authors mention, it is closely related to the group
belief described in [Tuomela, 1992]. From this definition it is important to notice
that GroupBelGϕ does not imply Beliϕ even when i ∈ G. The authors argue
that this notion of reputation coincides with the reputation concept from Conte
and Paolucci [Conte and Paolucci, 2002], since accepting a group belief does not
mean to accept the individual belief.

From our point of view, the definition of reputation that we have given in
this work, based on [Conte and Paolucci, 2002], goes beyond group beliefs, since
one dimension of reputation is the transmission effects, and the acknowledge
of a voice that circulates in the society. In this sense, it is more closely re-
lated to the notion of grounded information established by a group of agents
[Gaudou et al., 2006]. In this work, GGϕ stands for it is publicly grounded for
the group G that ϕ holds. The interesting element here is the expression pub-
licly grounded, which implies some kind of transmission through the group. It
refers to an objective notion, to what it can be observed by the agents in terms
of social commitments [Walton and Krabbe, 1995] that are public and observed
by the members of the group. Nevertheless our notion of reputation requires a
generalization in terms of identifying the individual members of the group.

Some issues remain still unclear in this approach, being the bootstrapping
the most relevant. Although Conte and Paolucci’s theories have at some extend
the same problem, the definition of the computational model Repage helps in
this enterprise.

2.4 Towards the Reputing Agent: The Repage
System

The Repage system [Sabater-Mir et al., 2006] is a computational reputation
model that tackles epistemic decisions and that supports the computation of
image and reputation information.

It is important to remark that Repage does not determine the actual image
and reputation in terms of beliefs as described in the theory. It gives components
that, from the actual cognitive theory, should support or feed the creation of

4Formally, CommonBel{i,j}ϕ =def Beliϕ ∧Beljϕ ∧BeliBeljϕ ∧BeljBeliϕ ∧ . . .
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Figure 2.1: Image and reputation as a mental state of a cognitive agent. Parts
of the elements that form the social evaluations believed by the agent (image)
may come from reputation.

social evaluations as image and reputation. From the cognitive theory it can be
deduced that a cognitive agent is endowed with beliefs that describe the mental
state in which image and reputation are created. It is possible that part of the
beliefs that represent reputation in the mind of the agent are used to create
the image of the agent (what she thinks), or even the opposite (see figure 2.1).
For instance, John may belief that Ann is a good social worker because she
acknowledges a reputation of John as such. The cognitive theory does not make
any statement about the interplay between image and reputation, but certainty,
it is crucial in the design of cognitive agents. It may require more pragmatic
approaches that rely on concrete architectures.

Repage [Sabater-Mir et al., 2006] is a computational model that gives sup-
port to cognitive agent architectures that want to distinguish between image
and reputation. Figure 2.2 shows how Repage gives support to the beliefs that
in the mind of the agent are image and reputation. Notice that inside Repage,
supporting information for image never collides with supporting information for
reputation. Repage implements a way to compute social evaluations, not how
such information interferes. This is done at the belief level, because other in-
formation may pay a crucial role (see figure 2.2). In the following subsections,
we get in touch with the internal elements of Repage and show some simulation
results that illustrate the importance to keep the difference between image and
reputation.

2.4.1 The Repage Architecture

In the Repage architecture we find three main elements, a memory, a set of
detectors and the analyzer (see figure 2.3). The memory is composed of a set
of references to the predicates hold in the main memory of the agent. Only
those predicates that are relevant for the calculus of reputation and image are
considered.

In the memory, predicates are conceptually organized in different levels of
abstraction and inter-connected. Each predicate that belongs to one of the main
types (image, reputation, shared voice, shared evaluation5, valued communica-

5Repage’s authors use the term shared evaluation instead of shared image, even though
they refer to the same conceptualization
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Figure 2.2: The Repage Integrated in the Beliefs of the Agents.

tion and outcome) contains an evaluation that refers to a certain agent in a
specific role. For instance, an agent may have an image of agent A (target) as a
seller (role), and an image of the same agent A as informant.

The value (evaluation) associated to a predicate is a tuple of five numbers
summing to one, plus a strength value. Each number has an associated label in
the rating scale: very bad (VB), bad (B), neutral (N), good (G) and very good
(VG). We call this representation a weighted labeled tuple and it represents a
probability distribution. In the new Repage implementation, this is generalized
to t partitions and it is associated to the role being evaluated. For instance, the
role car sellers can have a binary evaluation (bad and good), and the role fruit
seller can have four (very bad, regular, good, very good).

The network of dependencies specifies which predicates contribute to the
values of others. Each predicate (except those at the bottom level) has a set
of antecedents and at the same time contributes to the calculation of other
predicates. The detectors, inference units specialized in each particular kind
of predicate, receive notifications from predicates that have changed or that
appear in the system, like new communications or new fulfillments, and use the
dependences to recalculate the new values and to populate the memory with new
predicates. Moreover, each predicate has associated a strength that is a function
of its antecedents and of the intrinsic properties of each kind of predicate. As a
general rule, predicates that resume or aggregate a bigger number of predicates
will hold a higher strength. In the next subsection we formally define how Repage
aggregates strengths and probability distributions.

At the first level of the Repage memory we find a set of predicates not
evaluated yet by the system.

• Contract: agreements of a future interaction between two agents. For
instance, in an e-Commerce environment, an agent expects to obtain a
certain quality of a product after paying for it a determined price.

• Fulfillment: the result of the interaction. In the same e-Commerce ex-
ample, the fulfillment would be the real quality of the product the agent
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Figure 2.3: The Repage Architecture (Source: [Sabater-Mir et al., 2006]).

got.

• Communications: Information that other agents may communicate about
others evaluations. These communications may be related to three different
aspects: the image that the informer has about a target, the image that
according to the informer a third party agent has, and the reputation that
the informer assigns to the target.

Contracts and fulfillments implement direct experiences. The contract repre-
sents the agreement or expectations that the initiator of the interactions expects
to obtain after the interactions. The fulfillment contains what it has been ob-
tained after the interactions.

In level two we have two kind of predicates:

• Valued communication: The subjective evaluation of the communication
received that takes into account, for instance the image the agent may
have of the informer as informant. Communications from agents whose
credibility in terms of image or may be reputation are low, will not be
considered as strongly as the ones coming from well reputed informers.

• Outcome: The agent’s subjective evaluation of the direct interaction. From
a fulfillment and a contract a detector builds up an outcome predicate that
evaluates the particular transaction.

In the third level we find two predicates that are only fed by valued commu-
nications. On the one hand, a shared voice will hold the information received
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about the same target and same role coming from communicated reputations.
On the other hand, shared evaluation is the equivalent for communicated images
and third party images.

Shared voice predicates generate candidate reputations, and shared evalua-
tions together with outcomes, candidate images. In this fourth level, candidate
reputation and candidate images are not strong enough to become a full reputa-
tion and image respectively. New communications and new direct interactions
will contribute at this level to enrich these predicates and therefore “jump” to
images and reputations.

The last level implements cognitive dissonances and certainties. From the
point of view of the agent, different pieces of relevant information may conclude
in contradictory information (cognitive dissonance) or the opposite, certain in-
formation. In the case of dissonance, the analyzer will propose actions to the
agent in order to solve the contradiction. We refer to ([Paolucci et al., 2005]) for
a more detailed explanation about how the analyzer works. Nevertheless, the
work proposed here suggests that such capabilities take place outside Repage,
at the belief level of the agent.

Aforesaid, the computation of evaluations and strength for each predicate is
done through aggregation functions. The network of dependencies determines
which evaluations and strength must be aggregated. In the next subsection we
detail such aggregation functions.

2.4.2 Aggregation Functions for Repage

We have two elements to aggregate: probability distributions and strengths.
Lets consider n evaluations to aggregate with their respective strength:

v1, s1, . . . , vn, sn

And let vij be the weight j of the evaluation i.

Aggregation of Evaluations

The current implementation of Repage system aggregates the previous evalua-
tions in a new evaluation r as

∀k : 1 ≤ k ≤ t : rk =

∏n
i=1(sivik + 1−si

t )∑t
j=1

∏n
i=1(sivij +

1−si
t )

(2.1)

As the authors claim in [Sabater-Mir et al., 2006] the previous aggregation
function is associative and distributive. Indeed, the evaluation eI (which all
the weights are 1/t, the maximum randomness) acts as the identity element of
the function. Thus, f(v, eI) = v for any arbitrary evaluation v. However, the
previous evaluation has some problems if weights or strengths are 0. In this case
a rectification function is applied to both factors (see [Sabater-Mir et al., 2006]
for the details). Also, in [Sabater-Mir and Paolucci, 2007] another aggregation
function is proposed, solving the problems of weights and strength of value 0.
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Aggregation of Strengths

In Repage, the strength models uncertainty in the evaluations, the reliability.
The current implementation of Repage considers that uncertainty reduces as the
number of evaluations being aggregated increases. Then, let sr be the resulting
strength, the aggregation function is quite simple and defined as

sr = 2arctan(
n∑

i=1

si)/π (2.2)

Notice that

lim
x→∞ 2 arctan(x)/π = 1 (2.3)

The function ”arctan” is used to normalize the value. Of course, this function
can be manipulated by adding an exponent to it. Then, with higher exponent,
the new strength value would need more aggregations to get closer to 1, which
should be considered the maximum certainty.

The previous calculation of strengths does not consider at all the weights.
In [Sabater-Mir and Paolucci, 2007] an alternative version of such aggregation is
given, by considering that aggregations of evaluations representing very different
values should in fact decrease the strength of the resulting aggregation, and the
other way around. Therefore the new proposed aggregation function takes into
account the differences among evaluations.

2.4.3 Experimental Results

Several simulations have been performed to show the importance of keep-
ing the distinction between image and reputation [Pinyol et al., 2007a,
W. Quattrociocchi, 2008b, W. Quattrociocchi, 2008a, di Salvatore et al., 2007]
using the Repage system. In this subsection we detail the exploratory
work done in [Pinyol et al., 2007a], and summarize the results found in
[W. Quattrociocchi, 2008b], since the latter are based on the underlying sim-
ulation model presented in the former.

To remark the difference between the effects of reputation and image, in
[Pinyol et al., 2007a] we explored through agent-based simulations the use of
both kind of social evaluations in two experimental conditions:

• L1, where there is only exchange of image between agents

• L2, where agents can exchange both image and reputation.

While L1 is comparable with a large body of similar literature (ex.
[Sen and Sajja, 2002a]), the introduction of reputation (L2) as a separate ob-
ject in a simulative experiment was presented in [Pinyol et al., 2007a] for the
first time.
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Description of the Simulation

The simulation experiment was designed as the simplest possible setting
where accurate information is a commodity, meaning that information is both
valuable and scarce. This simplified approach is largely used in the field
[Sen and Sajja, 2002a], both on the side of the market and agent design.

The experiment includes only two kind of agents, the buyers and the sellers.
All agents perform actions in discrete time units (turns from now on). In a turn,
a buyer performs one communication request and one purchase operation. In
addition, the buyer answers all the information requests that it receives.

Goods are characterized by an utility factor that we interpret as quality (but,
given the level of abstraction used, could as well represent other utility factors
as quantity, discount, timeliness) with values between 1 and 100.

Sellers are characterized by a constant quality and a fixed stock, that is
decreased at every purchase. They are essentially reactive, their functional role
in the simulation being limited to providing an abstract good of variable quality
to the buyers. Sellers leave the simulation when their stock is exhausted or when
for certain number of turns they do not sell anything, and are substituted by a
new seller with similar characteristics.

The disappearance of sellers makes information necessary. Reliable commu-
nication allows for faster discovering of the better sellers. This motivates the
agents to participate in the information exchange. In a setting with permanent
sellers (infinite stock), once all buyers have found a good seller, there is no rea-
son to change and the experiment freezes. With finite stock, even after having
found a good seller, buyers should be prepared to start a new search when the
good seller’s stock ends.

At the same time, limited stock makes good sellers a scarce resource, and
this constitutes a motivation for the agents not to distribute information. One
of the interests of the model is in the balance between these two factors. There
are four parameters that describe an experiment: the number of buyers NB, the
number of sellers NS, the stock for each seller S, and the distribution of quality
among sellers.

While sellers are totally reactive and sell products on demand, each buyer is
endowed with the Repage system to help them figure out image and reputation
predicates, and use them to decide (1) to whom to ask, (2) to whom to buy,
(3) how to answer inquires from other buyers. All three decisions determine
the performance of the whole system, which is calculated through the overall
quality obtained by the buyers at each turn. The definition of the decision mak-
ing procedure is key for the obtained results. Thus, we detail it in the next
section. Notice though that it has been designed ad-hoc, following the direc-
tion extracted from the cognitive theory of reputation by Conte and Paolucci
[Conte and Paolucci, 2002].
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1. Candidate Seller := Select randomly one image’s seller

2. If Candidate Seller is empty or decided to risk then Candidate Seller := select randomly
one seller without image

3. Buy from Candidate Seller

Figure 2.4: Buying action: Decision procedure for L1

1. Candidate Seller := Select randomly one good enough seller image.

2. If Candidate Seller is empty then Candidate Seller := select randomly one good enough
seller reputation

3. if Candidate Seller is empty or decided to risk then Candidate Seller := select randomly
one seller without image

4. Buy from Candidate Seller

Figure 2.5: Buying action - Decision procedure for L2

Buying action

For this action the question is: which seller should I choose? The Repage system
provides information about image and reputation of each one of the sellers. The
easiest option would be to pick the seller with better image, or (in L2) better
reputation if image is not available. We set a threshold for an evaluation to
be considered good enough to be used to make a choice. In addition, we keep a
limited chance to explore other sellers, controlled by the system parameter risk6.
Figures 2.4 and 2.5 describe the reasoning procedure that agents use to pick the
seller in the situations L1 and L2 respectively. Notice that image has always
priority over reputation, since image implies an acknowledge of the evaluation
itself while reputation only an acknowledge of what is said. We can find however
scenarios where this preference of image over reputation can be questioned.

Asking action

As in the previous action, the first decision is the choice of the agent to be
queried, and the decision making procedure is exactly the same as for choos-
ing a seller, but dealing with images and reputation of the agents as informers
(informer image) instead of as sellers.

Once decided who to ask, the kind of question must be chosen. We consider
only two possible queries: Q1 - Ask information about a buyer as informer
(basically, how honest is buyer X as informer?), and Q2 - Ask for some good or
bad seller (for instance, who is a good seller, or who is a bad seller?). Notice that
this second possible question does not refer to one specific individual, but to the
whole body of information that the queried agent may have. This is in order
to allow for managing large numbers of seller, when the probability to choose a

6Risk is implemented as a probability (typically between 5% and 15%) for the buyer to try
out unknown sellers
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target seller that the queried agent have some information about would be very
low. The agent will ask one of these two questions with a probability of 50%. If
Q1 is chosen, buyer X as informer would be the less known one, that is, the one
with less information to build up an image or reputation of it.

Answering action

Let agent S be the agent asking the question and R the agent being queried.
R can lie, either because she is a cheater or because she is retaliating. When
R is a cheater whatever information being answered is changed to its opposite
value. Instead, retaliation is accomplished by sending inaccurate information,
for instance, by sending ”Idontknow” when really R has information, or simply
giving the opposite value, like in the cheating case. In both cases, retaliation is
done when R has a bad image as informer of S. In this case, in L1 condition R
sends an ”Idontknow” message even when she has information. Instead, in L2
condition R sends inaccurate reputation information. R converts the possible
image to send to reputation, putting the opposite value. In this way, R avoids
possible retaliation from S.

Because of the fear of retaliation, sending an image takes place only when an
agent is very secure of the evaluation (reflected in the Repage strength param-
eter included in every evaluation). We include then the thStrength parameter,
a threshold that allows to implement fear of retaliation in the agents. When
thStrength is zero, there is no fear since whatever image formed will be a candi-
date to be sent, no matter its strength. As we increase thStrength, agents will
become more conservative, less image and more reputation will circulate in the
system.

Research Questions and Results

We have two experimental conditions, with image only (L1) and with both Image
and Reputation (L2). We will explore several values of the parameters in order to
show how and where there is an advantage in using reputation. The hypotheses
are:

H1 Initial advantage: L2 shows an initial advantage over L1, that is, L2 grows
faster. Intuitively, this would indicate that when reputation is present,
agents are able to discover faster good sellers. This is related to the boot-
strapping problem. Initially, agents have a maximum uncertainty, and
need to interact or exchange information to model the behavior of sellers.
The accomplish of this hypotheses indicates that when entering in a soci-
ety with unknown partners, the exchange of reputation information helps
agents reduce uncertainty in a faster way than without it.

H2 Performance: L2 performs better as a whole, that is, the average quality at
regime is higher than L1. Note that to obtain this result we are hardwiring
a limitation in image communication, based on the theory that foresees
large amounts of retaliation against mistaken image communications but
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not on the reputation side. Intuitively, the hypothesis suggests that with
reputation, agents adapt better to the unpredictable scenarios. We recall
here that sellers disappear when they are out of stock.

We run simulations to examine the relationship between L1 and L2 with
different levels in some parameters. The stock is fixed at 50, the number of
buyers at 25, and the number of sellers at 100. We included cheaters as well
with percentages of 0%, 25% and 50%.

We run the simulations for 100 steps, and explore the variation of good
and bad sellers, from the extreme case of 1% of good sellers and 99% of bad
sellers(A1), going trough 5% good sellers and 95% bad sellers(A2),and 10% good
sellers and 90% bad sellers(A3), and finally, to another extreme where we have
50% of good sellers and 50% of bad sellers(A4). For each one of these situations
and for every experimental condition (L1 and L2) we run 10 simulations. Figures
show the accumulated average per turn of a concrete settings in both L1 and L2
experimental conditions.

Experiments without cheaters In figure 2.6 we show results for the four
situations without cheaters. Both hypotheses H1 and H2 are verified. With the
increase of good sellers the difference between L1 and L2 gets smaller to the
point it disappears in situation A4. Because of the good sellers increase, they
can be reached by random search and the necessity of communicating social
evaluations decreases. In the extreme situation A4, statistically every buyer
would find a good seller at the second turn (there is a probability of 50% to
get one in one turn). In A3 the probability to reach one good seller per turn
is 0.1, then, in 10 turns approximately every one would reach a good one. In
L1 the amount of useful communications (different from ”Idontknow”) is much
lower than in L2, due to the fear of retaliation that governs this situation. In
conditions where communication is not important (A4), the difference between
the levels disappears.

Experiments with cheaters Figure 2.7 shows results for situations A1, A2,
A3 and A4 with 50% of cheaters. The increased amount of false information
produces a bigger impact in situations and conditions where communication is
more important. Quality reached in L1 shows almost no decrease with respect
to the experiment without cheaters, while L2 quality tends to drop to L1 levels.
This shows how the better performance of L2 over L1 is due to the larger amount
of information that circulates in L2.

Final Remarks

The results show that using reputation and image instead of only image im-
proves the average quality reached in the whole system. These results should be
considered as a proof of concept about the usefulness of the reputation model
Repage[Conte and Paolucci, 2002], under a set of assumptions that we discuss
with a perspective on future works:
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Figure 2.6: Accumulated average quality per turn without cheaters for situation
A1, A2, A3 and A4 respectively
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Figure 2.7: Accumulated average quality per turn with cheaters for situations
A1, A2, A3 and A4 respectively
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Retaliation: The presence of retaliation is crucial for the present results. We
claim that the fact of communicating a social evaluation that is an image implies
a commitment from the source agent. From the theory, image is a believed
evaluation and sharing it implies that the source agent is informing of what
he/she accepts as true. This differs from reputation, since accepting a reputation
do not imply to accept the nested belief. Because of that, sharing what an agent
acknowledges as a reputation does not imply a personal commitment. Here we
assume that the personal commitment associated to image transmission exposes
the agent to a possible retaliation if inaccurate information was sent.

Communication and reputation: There is no reputation without com-
munication. Therefore, scenarios with lack of communication or few exchange
of information cannot use reputation. However, in virtual societies with au-
tonomous agents that have the freedom to communicate, that need to cooperate
and have the right to choose partners, the separation between image and rep-
utation considerably increases the circulation of information and improves the
performance of their activities. In these experiments, even when there is no
punishment for direct interactions and considering at each turn only one pos-
sible question, the introduction of this difference already improves the average
quality per turn. In scenarios where quality is scarce and agents are completely
autonomous is where this social control mechanism makes the difference.

Decision making procedure: The decision making schema determines the
performance of the system. In fact, this is where the agent is taking advantage
of the distinction between image and reputation. However, notice that the use
of image and reputation from Repage has been determined ad-hoc, without any
well-defined formalism. In our work we focus in this gap and propose (1) a BDI
agent architecture fed by Repage to reason using social evaluations (dealing with
pragmatic-strategic decisions) and (2) an argumentation framework to argue
about social evaluations (facing memetic decisions).

As mentioned earlier, some other research has been conducted using the same
simulation environment. In the work described in [W. Quattrociocchi, 2008b,
W. Quattrociocchi, 2008a] the authors rely on studying the effect of cheating in
the previously mentioned environment. The results are summarized in figure
2.8. It can be observed that the performance of the society in the L2 situation
is better than in L1, even with high percentage of cheaters (around 60%). This
result is very interesting because it shows that the massive circulation of inac-
curate information7 still produces benefits in the society even with a high rate
of cheaters.

Notice that we are not talking about how from this elements agents are able
to actually trust somebody, so, to reason using such information (pragmatic-
strategic decisions). As mentioned in the first chapter, this is one of the contri-
butions of this book. Also, the model does not say anything about the memetic
decisions. The other contribution of this work covers this aspect.

7Notice that the agents send reputation when the reliability (or strength) of image predi-
cates is not higher than certain threshold.
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Figure 2.8: Average quality obtained by the buyers against the percentage of
cheaters. It can be observed that when such percentage is lower that 60% the
use of image and reputation achieves better accuracies than only using image.
Source:[Paolucci et al., 2009].

2.5 Review on Computational Trust and Repu-
tation Models

We have exposed so far the bases of our work: (1) The cognitive theory of
reputation proposed by Conte and Paolucci [Conte and Paolucci, 2002], and (2)
the computational reputation model Repage [Sabater-Mir et al., 2006]. Further-
more we have explored the bases of social trust in relation with reputation and
image. In this section we provide a non-exhaustive but representative vision of
the computational trust and reputation systems that according to us are rele-
vant in the current state-of-the-art. Instead of providing detailed descriptions
for each model, we summarize their main characteristics and background ideas,
showing different dimensions of analysis that current surveys on computational
reputation models have provided. Moreover, we provide four new classification
dimensions that have not been directly treated so far and that enhance part of
the contributions of this work.

Many surveys exist in literature and along with them, differ-
ent dimensions to classify and characterize reputation models. Some
of them are based on online trust and reputation related systems
[Jsang et al., 2007a, Grandison and Sloman, 2000, Artz and Gil, 2007,
Grabner-Kruter and Kaluscha, 2003], others on trust and repu-
tation in peer-to-peer systems [Koutrouli and Tsalgatidou, 2006,
Suryanarayana and Taylo, 2004]. Some reviews focus on concrete aspects
or functionalities like attack and defense techniques [Hoffman et al., 2007] or
reputation management [Ruohomaa et al., 2007]. Others are more general
[Sabater and Sierra, 2005, Herzig et al., 2008, eRep, 2007, Lu et al., 2007,
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Mui et al., 2002a].

2.5.1 Dimensions of Analysis: Current View

We examine the most representative classification dimensions proposed in lit-
erature that, from our perspective, clarify the general view of reputation and
trust models present in literature. All the models that appear in the following
classifications are briefly described in sections 2.5.3 and 2.5.4.

Sabater et al.’s Classification Dimensions

The first classification dimensions we introduce are those defined by Sabater et
al. [Sabater-Mir, 2003, Sabater and Sierra, 2005]. This is one of the most used
classification in the current literature, and has been used as a base in other re-
views. The proposed dimensions give a rather general view of the characteristics
that reputation and trust models achieve. Even though nowadays the classifi-
cation could be extended and refined, it is still a good starting point. These
dimensions are:

Paradigm Type: Following [Sabater and Sierra, 2001], models are clas-
sified as cognitive and numerical. The former refers to models in which the
notion of trust or reputation is built on beliefs and their degrees. Also, in
these models how trust and reputation values are calculated can be as rel-
evant as the final value. The model of social trust presented by Castel-
franchi and Falcone [Castelfranchi and Falcone, 1998b] and the Repage model
[Sabater-Mir et al., 2006] are good examples. On the opposite, the numerical
paradigm includes models that use game theoretical approaches.

Information Sources: Models can be also classified depending on the in-
formation sources they use to infer trust or reputation:

• Direct experiences are one of the most valuable sources of information for
the agents. The author differentiates between direct interactions (DI) and
direct observations (DO).

• Witness information (WI) is information gathered from other agents. Even
though this particular item could be extended with a full typology of wit-
ness information, like third-party observations, third-party interactions,
reputation communication etc., the work remains at this level.

• Sociological information (SI) is based on the analysis of social relations
among the agents, and can be computed through social network analysis
if relational data is available [Sabater and Sierra, 2002].

• Prejudice (P) is an information source that allows bootstrapping of trust
and reputation when no other information is available, and that coin-
cide with the human notion without account for the negative connotation.
Stereotyping is a very related notion that has been also used in this sense.
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Visibility: From this dimension, the trust/reputation information of an
agent can be considered a global property that all other agents can observe (G),
or can be considered a private and subjective property that each agent builds
(S). This dimension is one of the most popular and has been used also in multiple
surveys, in particular, in [eRep, 2007], which refine this dimension. We explain
it in detail in this section.

Online reputation models fit perfectly in the global category, while reputation
and trust models that are part of individual agent’s architectures are considered
subjective. Often this dimension is categorized as centralized and distributed
models.

Granularity: It refers to the context-dependence of trust/reputation infor-
mation. Some models consider that trust is associated to a concrete context. For
instance, it is not the same to trust somebody to drive a car than to play a good
soccer game. In general, single-context models can be considered as a particular
case of multi-context ones, because the context is implicit in the environment.
Online reputation models are a good example of single-context models.

Cheating Behavior: This dimension explores the models’ assumptions re-
garding the behaviour of communicating agents. Three levels are defined:

• Level 0: Cheaters are not considered. Hence, third-party information
comes from honest agents that, in the case they send false information
is because they are also mistaken.

• Level 1: Agents can hide or bias communicated information, but never lie.

• Level 2: Cheating is considered.

Type of Exchanged Information: Sabater in [Sabater and Sierra, 2005]
considers that models that assume exchange of information can be separated in
two groups. Those that send boolean information and those that use continuous
measures. Nowadays this dimension can be also analyzed in much more detail.

Table 2.2 shows the summary of the models reviewed in
[Sabater and Sierra, 2005] classified in the dimensions explained above.
The table also includes a column indicating whether the model uses reliability
measures for trust and reputation values, and the type of model that the authors
of the models claim to be (trust or reputation). Furthermore we include the
Repage model and the BDI+Repage model, which originally were not present.
We classify Repage as a numerical and cognitive model, since it uses elements
of both approaches. It uses both witness information and direct interaction.
It is a subjective contextual model that tolerates cheating. The exchanged
information can be communicated images and reputations. It offers reliability
measures and it is considered a reputation model. Instead, BDI+Repage model,
according to Sabater’s definition, should be considered a trust and reputation
model.

This classification establishes the bases for some of the most recent reviews,
and in particular, for the next one we present in this chapter.
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Par - Paradigm
N - Numerical
C - Cognitive

InS - Information Sources

DI - Direct Interaction
DO - Direct Observation
WI - Witness Information
SI - Sociological Information
P - Prejudice

Vis - Visibility
S - Subjective
G - Global

Gra - Granularity
CD - Context Dependent
NCD - Non Context Dependent

Che - Cheating Assumptions
L0 - No cheating
L1 - Bias information
L2 - Cheating

Rel - Reliability Measure �, −
Type - Model Type

T - Trust
R - Reputation

Table 2.1: Legend for the table 2.2. Source: [Sabater and Sierra, 2005]

Model Par InS Vis Gra Che BoE Rel Type
Marsh N DI S CD − − − T
eBay N WI G NCD 0 − − R
Sporas N WI G NCD 0 − � R
Histos N DI+WI S NCD 0 − − R
Schillo et al. N DI, DO WI S NCD 1 � − T
Rahman & Hailes N DI, WI S CD 2 4 val − T,R
Esfandiary et al. N DI, DO, WI, P S CD 0 − − T
Yu & Singh N DI, WI S NCD 0 − − T,R
Sen & Sajja N DI, DO, WI S NCD 2 � − R
AFRAS N DI+WI S NCD 2 − � R
Carter et al. N WI G NCD 0 − − R
Castelfranchi et al. C - S CD − − − T
Regret N DI+WI+SI+P S CD 2 − � T,R
Repage C/N DI+WI S CD 2 − � R
BDI+Repage C/N DI+WI S CD 2 − − T,R
ForTrust C − S CD − − − T,R
Rasmusson& Jason N WI G NCD 2 − − R
Regan & Cohen N DI +WI S NCD 2 − − T
Padovan et al. N DI +WI S NCD 0 − − R
Ripperger N − S NCD − − − T
LIAR N DI +DO S NCD 2 − � T,R
FIRE N DI +WI S CD 0 − � T,R
Mui et al. N DI,WI S CD 0 − − R
Dirichlet N WI G NCD 0 − − R
Sierra & Debenham N DI +WI + SI S NCD 0 − − T

Table 2.2: Summary of models’ characteristics defined by Sabater-Mir &
Sierra (2005)’s dimension. The models in italic were not present in the orig-
inal work. Legend on table 2.1
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Balke et al.’s Classification

The classification presented by Balke et al. in [Balke et al., 2009] focuses on the
five stages process that, from the authors’ perspective, exists in reputation and
trust models between transactions. According to them, when the transaction
i is produced, there is first a recording of cooperative behavior, followed by a
ranking and storage stage. The fourth stage refers to the recall for cooperative
behavior, concluding with an adaptation or learning of the strategy as the fifth
stage. After these five stages, transaction i+ 1 can proceed.

The authors define several possible behaviors for each stage, generating then
a taxonomy of models. In the following lines we briefly detail each one of the
stages.

Recording of Cooperative behavior: The first stage deals with the
recording of the transaction, and for this, models must be aware of the con-
textuality of the evaluations. Hence, the authors argue that in this stage models
can be considered multi-context or single-context, coinciding with the granular-
ity dimension defined by Sabater (see previous section).

Rating of Cooperative Behavior: After the transaction is recorded, it
must be rated and incorporated into the system. In this stage the authors
differentiate between pure game theoretical approaches where trust/reputation
is considered as a subjective probability (in the sense defined by Gambetta
[Gambetta, 1990]), and more cognitive approaches where a new rate affect the
mental state of the agent.

The former approach is usually based on aggregation functions that summa-
rize final values of trust/reputation, being them the important element. Instead,
even when cognitive approaches may use as well aggregation functions, the in-
formation is processed in intermediate steps that can be as important as the
final values and that affect a whole mental state of the agent. This classification
is related to the paradigm dimension defined by Sabater (see previous sections).
At the end of this chapter we get into more details about these differences.

Storage of cooperative behavior: The third stage refers to the storage
of the rated information. According to the authors, the information can be
stored by the same agent (distributed) of by a global third-party (centralized).
This is related to the visibility dimension defined by Sabater, but from our
point of view the present one indicates a more representative and descriptive
dimension. In this classification it is more clear that when agents store their own
rated information, trust/reputation values are considered subjective, while in the
centralized approach it must be a global property, because they are publicly seen
by all the members of the society.

Recall of Cooperative Behavior: This stage focuses on the information
used by the models to calculate/infer trust and reputation. In this stage, the
authors intend to define a layered categorization, where the first dimension is
whether the model considers somehow witness information or not. According
to the authors, the latter are usually considered trust models, while the others,
since they require the exchange of information, reputation models. While this
differentiation is very questionable and somehow contrary to our vision of trust
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Recording
SC - Single-context model
MC - Multi-context model

Rating
C - Cognitive base
MA - Mathematical

Storage
CS - Centralized
DS - Distributed

Recall
T - Trust Model
RE - Reputation Model

Cheating
L0 - No cheating
L2 - Cheating

Table 2.3: Legend for classification of table 2.4

and reputation, it is interesting to show the different conceptions existing in the
literature.

The authors also examine the kind of exchanged information, and the as-
sumptions regarding the behavior of source agents, as in Sabater’s assumptions
of level 0, 1 and 2.

Learning/Adaptation Strategy: The last stage relies on the final deci-
sion, on how to use all the previous information to actually adapt the agent’s
behavior for future interactions. From our view, this refer to the pragmatic-
strategic decisions stated by Conte and Paolucci in [Conte and Paolucci, 2002].
The authors argue that in fact, this stage cannot be classified because the sur-
veyed models do not offer clear strategies due to their high context-dependency.
We do not completely disagree with this idea. Some models offer evaluative cal-
culus, degrees of trust or reputation that do not necessary indicate how to use
them. Some models though have it implicit, while others, rely on the decision
making of the agents. We analyze this aspects in our classification described at
the end of this chapter.

Table 2.4 shows the summary of the surveyed models classified according to
these dimensions.

eRep Project’s Classification

The European project eRep: Social Knowledge for e-Governance [eRep, 2006b]
aimed at providing both theoretical and empirical guidelines for the design and
use of reputation technology. Their first deliverable [eRep, 2007] describes an
interesting survey of computational reputation and trust models, and classify
them in four different well-defined categories:

1. Agent-Oriented Solitary Approaches (AO Sol): In this approach, the agent
itself calculates the evaluations regarding other agents taking only into
account its own previous experiences. There is no exchange of informa-
tion. This category corresponds to (1) the definition of trust model of
the fourth stage of the Balke’s classification (see previous subsection), and
(2) the combination of the information source and visibility dimensions of
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Model Reco Rat Sto Reca Cheat
Marsh MC MA DS T -
Schillo et al. SC MA CS RE L2
Rasmusson & Jason SC MA CS RE L2
Abdul-Rahman & Hailes MC MA DS RE L0
Regan & Cohen MC MA CS/DS RE L2
Sporas SC MA CS RE L0
Histos SC MA DS RE L2
Yu & Singh SC MA DS RE L2
Padovan et al. SC MA CS/DS RE L0
Foner SC MA CS RE L0
Regret MC MA DS RE L2
Repage SC CO DS RE L2
eBay SC MA CS RE L0
BDI+Repage MC CO DS RE L2
Sen & Sajja MC MA DS RE L2
Esfandiary et al SC MA DS RE L0
AFRAS MC MA DS RE L2
Carter et al MC MA CS RE L0
Ripperger MC MA DS T −
ForTrust MC CO DS T −
FIRE MC MA DS RE L0
LIAR SC MA DS RE L2
Castelfranchi & Falcone MC CO DS T −
Mui et al. MC MA DS RE L0
Dirichlet SC MA CS RE L0
Sierra & Debenham MC MA DS T L0

Table 2.4: Classification of the models developed by Balke et al. (2009). The
models in italic were not present in the original work. Legend on table 2.3.

37



Sabater’s classification, taking DI (direct interaction) and S (subjective)
as values respectively.

2. Agent-Oriented Social Approaches (AO Soc): In this category, agents
themselves also calculate the evaluations but they may also rely on third-
party information. Hence, there must be exchange of information. Regard-
ing Sabater’s classification, this corresponds as well to the combination of
the information source and visibility dimension, where the latter is set to
S (subjective) and the former to WI (witness information) plus (may be)
other sources. Regarding Balke’s classification, the equivalence embraces
again the fourth stage with their definition of reputation model.

3. Objective External Evaluation Agencies (Obj EEA): In contrast to agent-
oriented approaches where agents recollect the information and evaluate
themselves other agents, external agencies can compute such evaluations
according to certain criteria. This category covers models that compute
the evaluations through objective facts, like well-defined quality standards
for instance. Not many models fit into this category.

4. Subjective External Evaluation Agencies (Sub EEA): In this case, overall
evaluations are performed as well in an external agency, but in this case
the result is the aggregation of the subjective agents evaluations collected
by the system. Online reputation systems perfectly fit in this category. For
instance, in eBay users rate their individual experiences with the sellers by
giving a positive, negative or neutral point. Then, the eBay system collects
the rates and issues an overall punctuation for each seller, in this case by
simply summing all the rating scores and presenting it with a system of
colored stars.

This classification mainly focuses on two big dimensions, agent-oriented and
external evaluation agencies. This division corresponds to the visibility dimen-
sion of Sabater, and the storage stage in Balke et al.’s classification. The work
done fits into the agent-oriented social approach category.

Summarizing, table 2.5 shows the classification of the models reviewed in
[eRep, 2006b]. Models that fit into two or more categories indicate that the
description of the models does not quite determine the approach, and that in
principle, they could be considered in all the marked categories.

2.5.2 Yet another Classification

We could not finish the chapter without including our own classification dimen-
sions that as far as we know, have not been considered yet in detail in the current
state-of-the-art surveys, and that frame very well this work. For the nature of
the work, this classification only faces distributed models, or in terms of the sur-
vey in [eRep, 2007], agent-oriented approaches. The dimensions we define here
are the following:
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Model AO Soc AO Sol Obj EEA Sub EEA
Abdul-Rahman & Hailes � − − −
Kuhlen − − � −
Marsh − � − −
Padovan et al. � � � �
Rasmusson & Jason � � � �
Rasmusson’s Reviewer Ag. − − � −
Regan & Cohen � − − −
Regret � − − −
Repage � − − −
Ripperger − � − −
Schillo et al. � − − −
Zacharia et al.(SPORAS, HISTOS) � − − �
eBay − − − �
LIAR � − − −
FIRE � − − −
Mui et al. � − − −
Yu & Singh � − − −
BDI+Repage � − − −
ForTrust − � − −
Castelfranchi & Falcone − � − −
Dirichlet − − − �
Carter et al. − − � �
AFRAS � − − −
Sen & Sajja � − − −
Sierra & Debenham � − − −

Table 2.5: Classification of the models according to the eRep project. The
models in italic were not present in the original work.
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Trust Dimension

We do not want to differentiate between models classified as trust and others
as reputation. We strongly believe that the distinction between both kinds of
models does not rely on a clear consensus in the community. For instance, the
type dimension that Sabater provides in his classification is not based on any
objective fact, but on what the authors of the models claim [Sabater-Mir, 2003].

On the contrary, when facing these concepts from a more cognitive per-
spective, the distinction becomes clearer, at least in some aspects. From the
concept of social trust [Castelfranchi and Falcone, 1998b], occurrent and dispo-
sitional trust [Herzig et al., 2008, ForTrust, 2009] and pragmatic-strategic deci-
sions pointed out by Conte and Paolucci in [Conte and Paolucci, 2002], we can
deduce that trust implies a decision. As mentioned before, trust can be seen as
a process of practical reasoning that leads to the decision to interact with some-
body. Regarding this aspect, some models provide evaluations, rates, scores etc.
for each agent to help the decision maker with a final decision. Instead, oth-
ers specify how the actual decision should be made. From our point of view,
only the latter cases can be considered trust models. We recall here that in
this case, the decisions are also pragmatic-strategic, in the sense described in
[Conte and Paolucci, 2002].

Table 2.6 summarizes the models that from our definition should be consid-
ered trust models. We mark them with ’�’. For instance, the model defined
by Marsh [Marsh, 1994] is a trust model because it indicates exactly to whom
to interact with. The final decision is made through a well-defined threshold.
Another example is the model defined by Sen & Sajja [Sen and Sajja, 2002b].
Even when this model is usually considered a reputation model, the fact is that
it defines a decision making process that identifies to whom to interact with,
and then, fits in our definition of trust.

Models marked with ’−’ are those that we do not consider trust models.
They calculate measures or evaluations to help a decision making process. For
instance, the AFRAS model [Carbo et al., 2002b, Carbo et al., 2002a] gives eval-
uations in terms of fuzzy sets, and the shape of these fuzzy numbers also deter-
mines a reliability measure. However, there is no mechanism that tells the agent
how to use such evaluations. This situation is similar as in the Repage model.
As explained before the model only gives support to the creation of image or
reputation predicates, social evaluations.

Finally, we use the mark∼ to indicate that the model does not give an explicit
decision mechanism, but that it is rather dependent on the current desires of the
agent. For instance, the Regret model [Sabater and Sierra, 2001] provides for
each agent and context a trust value, together with a reliability measure. The
trust value is calculated through aggregation of the information from several
sources. One of the sources is defined by an ontology, which already determines
which information is considered more important8. Hence, the goals of the agent
are somehow codified in this ontology, and the final trust value obtained is

8For instance, to calculate the trust of agents as sellers, the ontology can define that this
is evaluated through the price in an 80% and through the delivery time in a 20%
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an indicator of which possible target agent matches better with the desires of
the agent. However, since it offers a reliability measure the decision is not yet
possible. For instance, lets assume that agent a has a trust value of 0.6 with a
reliability of 1. On the other hand, another agent b has a trust value of 0.8 with
a reliability of 0.4. Which is the best option? It still requires a decision making
process. However, it is clear that with similar reliability measures, the agent
with highest trust value is the chosen one. FIRE model [Huynh et al., 2006a]
shows a similar situation.

Cognitive Dimension

Although this dimension has already appeared in other surveys, the provided def-
initions are quite vague. In this dimension we differentiate models that have clear
representations of trust, reputation, image etc. in terms of cognitive elements
such as beliefs, goals, desires, intentions, etc. From our perspective, models that
achieve such representation explicitly describe the epistemic and motivational
attitudes that are necessary for the agents to have trust or to hold social eval-
uations. From a human point of view, this allows for a better understanding
of the internal components of trust and reputation, and for a clear implication
to possible final decisions. From a software agents perspective, this endows the
agents with a clear capacity to explain their decisions and to reason about the
trust structure itself, making a metareasoning [Castelfranchi and Paglieri, 2007]
possible. In this sense, in models that achieve a cognitive representation, final
values of trust and reputation are as important as the structure that supports
them. These models are usually very clear at the conceptual level, but lack in
computational aspects.

Often, models that are not endowed with this property consider the model as
a black box that receives inputs and issues trust and reputation values. Because
of that, the internal calculation process cannot be considered by the agent, only
the final values. Moreover, the integration with the other elements of the agent
remains unclear because motivational attitudes are assumed or mix with the
calculus. However, their computational aspects are usually quite well defined.

In table 2.6 we show the summary of the reviewed models against this di-
mension. We marked with ’�’ the ones with such property, and ’−’ the lack
of it. We mark the Repage model with ’∼’ because the internal structure is
based on predicates that have associated cognitive notions, but it does not have
an explicit representation of them. In fact, Repage integrates into first-order
like predicates, mixing also epistemic and motivational attitudes. The model
presented in this book, the BDI+Repage model, makes explicit these missing
cognitive components.

Procedural dimension

Often, models offer a nice way to represent and deal with trust and reputation,
but there is no explanation on how they bootstrap. This is quite common in
cognitive models, which focus on the internal components of trust and reputa-
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tion, but not how such components are built. Also though, some non-cognitive
models do not give explicit details on the calculus of their evaluations. We must
recall here that we focus on the epistemic decisions, not on the creation and
combination of motivational attitudes (goal-based).

The model introduced by Castelfranchi and Falcone
[Castelfranchi and Falcone, 1998b] regarding social trust does not give details on
how the beliefs are created. ForTrust model [Herzig et al., 2008, ForTrust, 2009]
redefines the notion of social trust and introduces cognitive reputation
but still epistemic decisions remain unclear. On the contrary, mod-
els like AFRAS [Carbo et al., 2002b, Carbo et al., 2002a] and Regret
[Sabater and Sierra, 2002, Sabater-Mir, 2003] describe until the last detail
how evaluations are created and how they are aggregated.

We mark Marsh [Marsh, 1994] and Abdul-Rahman et al.
[Abdul-Rahman and Hailes, 2000] models with ’∼’ to indicate that in general
they provide all the calculations, but do not provide some ground calculations.
For instance, in the former, the model does not indicate how direct interactions
are evaluated. The author indicates that this is left open and dependent of
the context (and we totally agree with it). The same happens with the latter
model.

Generality dimension

The last dimension we want to analyze refers to the generality of the model.
In this dimension we want to classify the models that have a general purpose
’�’ versus the ones that focus on very particular scenarios ’−’. For instance,
the model by Abdul-Rahman et al. [Abdul-Rahman and Hailes, 2000] is a non-
general model that focuses on the trust on the information provided by witness
agents. The same happens with the model by Yu & Singh [Yu and Singh, 2003],
which is designed for agents participating in a very structured peer-to-peer net-
work, where evaluations are only done in terms of quality of services. Obviously,
the models that have such specification obtain good results and very acceptable
computational complexities.

On the contrary, models built for general purposes can be adapted to
multiple scenarios and are perfect then for general agent architectures. Re-
gret [Sabater and Sierra, 2001, Sabater-Mir, 2003] and BDI+Repage model
[Pinyol and Sabater-Mir, 2009a] are good examples of such models. Again, table
2.6 summarizes in the last column this property against the surveyed models.

2.5.3 Centralized Approaches

In this section we review the reputation and trust models that we classify as
centralized and that appear in the reviews above. We remark that in the de-
scription of the models, the terms trust and reputation correspond to the view
that the respective authors provide in their articles. Therefore, they may not
coincide with the notions we describe in our work.
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Model Trust Cognitive Procedural Generality
Abdul-Rahman et al. − − ∼ −
AFRAS − − � �
Castelfranchi et al. � � − �
Esfandiari et al. − − � �
FIRE ∼ − � �
ForTrust � � − �
Marsh � − ∼ �
Mui et al. � − ∼ �
LIAR � − � −
Regret ∼ − � �
Regan & Cohen � − � −
Repage − ∼ � �
Ripperger � − � −
Schillo et al. − − � �
Sen & Sajja � − � −
Yu & Singh � − � −
Sierra & Debenham � − � �
BDI+Repage � � � �

Table 2.6: Computational Models against our classification dimensions.

Online reputation models

These models are used in e-commerce sites such as eBay [eBay, 2002], Ama-
zon [Amazon, 2002] and OnSale [OnSale, 2002] among others. These sites work
as market places where buyer users buy products from seller users. After a
transaction is done, the buyer has the possibility to rate the seller, so, to give its
opinion about it. In eBay for instance, users have three possibilities, positive(1),
neutral(0) or negative(-1). The value of the sum of all the rates is the reputation
value, that is public to everybody. eBay presents these results with a system of
colored stars.

These systems have a very simple implementation and offer very intuitive
representations, making them ideal for human-based applications. However, they
lack in robustness; no reliability measures, no consideration of false information
or cheating, no temporal issues9, and in general, lack of the main characteristics
that make special each one of the following models.

Sporas and Histos

Sporas and Histos [Zacharia, 1999] are a natural evolution of the online mod-
els. The idea is very similar, but in this case, only the most recent feedbacks
are considered. Moreover, the aggregation function is not just the sum. It has

9For instance, feedbacks remain countable for ever. So, a seller with very high reputation
value could start acting as a bad seller without having an immediate effect on its reputation
value.
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been designed to produce small rating changes for users with very high repu-
tation, and bigger rating changes for users with lower reputation. They also
incorporate a measure of the reliability of the users’ reputation. Histos incorpo-
rates a data structured similar to the trust net used in the Schillo et al.’s model
[Schillo et al., 1999, Schillo et al., 2000]

Carter et al.

The underlying idea of the model introduced by Carter et al. [Carter et al., 2002]
states that the reputation of an agent is the degree of fulfillments of roles ascribed
to it by the society [Sabater and Sierra, 2005]. They state that each society
defines the set of roles that a participant can play, and that the reputation
of each participant is the result of a weighted aggregation of the fulfillments
achieved by the agent on each role. Because of that, for them it is not possible
to find a universal way to calculate reputation, since it needs to be in a context
of such a society. The value is calculated by a central authority who controls all
the transactions.

Kuhlen

The model presented by Kuhlen [Kuhlen, 1999]10 does not come from the area
of multiagent systems, but from economics, facing trust management issues to
make electronic commerce more reliable. The author’s idea considers a trusted
third-party agency that objectively evaluates certain quality standards that e-
Commerce sites should be endowed with, issuing a certified seal that could be
posted in the e-Commerce web place. The important point here is that there
exist an implemented version for issuing such certificate based on objective qual-
ity measures. It has not been applied to multi-agent systems yet, but the idea
should work as well.

Padovan et al.

The model introduced by Padovan et al. [Padovan et al., 2002] uses a com-
bination of agent oriented approaches and external approaches. The model is
designed over the platform Avalanche [Eymann, 2000], an agent-based coordina-
tion mechanism for electronic marketplaces. Again, the focus is the e-Commerce.
The approach suggests the use of domain-specific rating agents capable to pro-
vide reputation information to the buyers. These agents act as external agencies
that are able to evaluate transactions in an objective way. Single agents are
endowed with certain goals that when they match with the specific reputation
information, can be used in their strategies to select partners.

We include the model in this category because in fact, individual agents do
not compute reputation, but they query external special entities. Then repu-
tation is seen by the agents as a centralized property. They build their trust

10We extracted the explanation of this model from [eRep, 2007] and [trustProject, 2000]
because the original article is in German
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based on such information. In this sense then, the model could be considered
also agent-oriented.

Dirichlet Reputation Systems

This family of reputation systems [Jsang et al., 2007b] works very well in central-
ized environments where users’ ratings are based on a discrete and finite sorted
set, for instance, {very bad, bad, neutral, good, very good}. These models are
capable of giving a probability distribution on this sorted set, representing the
probability that the agent has to act as stated in each one of the categories. For
example, a seller that just starts selling has a reputation value totally unknown.
So, the probability distribution over the sorted set will be (.2, .2, .2, .2, .2). If she
is a good seller, users will rate her with good punctuation. So, after a while her
reputation value could be (0, 0, .1, .3, .6).

To do so, these models use Dirichlet probability distribution, a multinomial
Bayesian distribution. The idea is to approximate the set of evidences (users’
rates) to the appropriate Dirichlet distribution and then, extrapolate the value of
each category. If we had 2-valued evidences (for instance, {bad,good}) and con-
sidering evidences as Bernoulli experiments, we could approximate the situation
to a binomial distribution. If evidences are multi-valued, we need a multinomial
distribution, and Dirichlet distributions seem a good option.

2.5.4 Agent-Oriented Approaches

In this section we show a set of models that share the characteristic of considering
reputation or trust as subjective properties.

A-Rahman and Hailes

This model [Abdul-Rahman and Hailes, 2000] uses the term trust, and its main
characteristic relays on that evaluations are represented with a discrete set of four
elements. The model is fed by two sources: direct experiences and third party
communications of direct experiences. The representation of the evaluations
is done in terms of the discrete set {vt (very trustworthy), t (trustworthy), u
(untrustworthy), vu (very untrustworthy)}. Then, for each agent and context the
system keeps a tuple with the number of past own experiences or communicated
experiences in each category. For instance, agent A may have a tuple of agent
B as a seller like (0, 0, 2, 3), meaning that agent A has received or experienced 2
results as untrustworthiness and 3 as very untrustworthiness. Finally the trust
value is computed taking the maximum of the tuple values. In our example
for agent A, agent B as a seller would be very untrustworthy. In case of tie
between vt and t and between u and vu the system gives the values U+ (mostly
trustworthy) and U− (mostly untrustworthy) respectively. In any other tie case
the system returns U0 (neutral).

45



AFRAS

The model presented by Carbo et al. [Carbo et al., 2002b] uses fuzzy sets to
represent reputation values. The idea is that the latest interaction that an agent
has with a partner, that is also valued as a fuzzy set, updates the old fuzzy
set reputation value through a weighted aggregation. To calculate the weights,
they introduce the remembrance for memory, a factor that allows the agent to
give more weight to the latest interaction or to the old reputation value. The
novelty of this approach relies on the reliability of the reputation value, since it
is intrinsically represented in the fuzzy set. So, a wide fuzzy set for a reputation
value indicates a high level of uncertainty, meanwhile narrow ones, implies more
reliability.

The model also deals with the recommendations sent by other members of
the society. The recommendations are aggregated together with the direct in-
teractions. The level of reliability of this witness information will depend on the
good or bad reputation of the senders. In this case then, recommendations from
a very well reputed sender could have the same weight as direct interactions.

Castelfranchi & Falcone and ForTrust

Both models are explained in detail in section 2.3.

ReGreT

The ReGreT system presented by Sabater [Sabater and Sierra, 2001] is maybe
one of the most complete reputation and trust models, since it takes into account
several advantages of all the models presented so far.

ReGreT uses direct experiences, third party information and social structures
to calculate trust, reputation and levels of credibility. In this model, trust is a
function of direct trust, only calculated through direct experiences, and repu-
tation. The incorporated reputation model uses transmitted information, social
networks analysis, system reputation and prejudices (to infer reputation values
of unknown agents from their belonging group). It also incorporates a credibility
module to evaluate the truthfulness of witness information, that of course, takes
into account the reputation and trust of the information provider. It provides
reliability measures for trust, reputation and credibility values.

Finally, an important aspect of this model is the consideration for an on-
tological dimension. They defined the trust of agent a on b towards certain
context ϕ as Ta→bϕ. The situation ϕ is totally contextualized, and may depend
on other elements. To describe the relationships of contextualized environment,
it is assumed an ontology that describes this knowledge, that could be seen as
the current preferred desires or goals of the agent.

Esfandiari et al.

Esfandiari & Chandrasekharan defined a model
[Esfandiari and Chandrasekharan, 2001] where trust evaluation considers
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different sources, although no information is provided on how to combine them
for a final choice. A first trust is based on observations, and it is calculated
using Bayesian networks. A second trust is based on interactions. For the
latter, agents use an exploratory protocol to ask other agents about how to
evaluate the degree of trust, and a query protocol to ask for recommendations
from trusted agents. The model builds a trust net as a directed graph to deal
with the received witness information.

An interesting point of the model relies on the labeling of the edges. Instead
of using a single value to determine the trust degree of an agent, the model uses
intervals with the minimum an the maximum values received in all paths. By
considering colored labels the model can deal with trust on different properties
of the agents. Finally, the model also considers institutionalized trust (system
reputation in Regret). As mentioned before, no decision making mechanism is
specified.

FIRE

The FIRE model introduced by Huynh et al. [Huynh et al., 2006a] incorporates
similar elements than Regret. It computes as well a trust value for each agent and
a reliability measure. It uses direct trust computed though direct experiences
(extracted from Regret as the same authors claim), witness information (similar
to Regret) and certified reputation. The last one is a completely new component.
Certified reputations are ratings presented by the rated agent about itself which
have been obtained from its partners in past interactions[Huynh et al., 2006a].
The authors argue that this could be seen as the recommendation letters or
references when applying for a job position.

The model uses role-based trust to determine the elements that contribute
to the calculation of trust. This component is similar to the ontology dimension
of Regret. Therefore, they can be seen as the desires (or goals) of the agent.

Marsh

This model [Marsh, 1994], one of the first that appeared in the literature, talks
explicitly about trust, and only takes into account direct experiences. It defines
three kinds of trust.

• Basic Trust: T t
x represents the trust disposition of agent x at time t.

• General Trust: Tx(y)
t represents the general trust that agent x has on

y at time t without specifying any situation.

• Situational Trust: Tx(y, α)
t represents the trust of agent x on the target

agent y in the situation α. Marsh defines a basic formula to calculate it:

Tx(y, α)
t = Ux(α)

t· Ix(α)t·Tx(y)t (2.4)

where Ux(α)
t is the utility that agent x gains from situation α, Ix(α)

t is
the importance for agent x in the situation α, and Tx(y)t is the estimation
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of general trust after taking into account all information related to Tx(y)
t.

The author proposes three ways to calculate this estimation: the mean,
the maximum and the minimum of all past experiences.

Yu and Singh

In this model [Yu and Singh, 2001], the result of direct interactions is stored as
what the authors call quality of service (-QoS-). Agents only keep the most
recent interactions, and each agent defines a threshold for each partner over
which she is classified as a trustworthy agent.

Also, the model incorporates for each agent a TrustNet structure, in a similar
way as Schillo et al. [Schillo et al., 2000] and Histos [Zacharia, 1999]. The differ-
ence is that agents being queried can refer to other agents. The initial agent will
take into account the information only if the refereed agents are not too far in
the social tree. The model uses Dempster Shafer evidence theory to aggregate
the information from different source agents.

Mui et al.

Mui et al.’s model [Mui et al., 2001, Mui et al., 2002b] suggests a similar ap-
proach as the one proposed by Yu & Singh [Yu and Singh, 2003], where reputa-
tion is inferred from propagated ratings through a peer-to-peer network. To com-
bine the information coming from different agents, the model uses Bayesian-like
statistics. The model assumes that each interaction is an independent Bernoulli
experiment. Then, it defines a random variable as the sum of the Bernoulli dis-
tributions whose expectation is exactly the average. Finally, it estimates lower
and upper bounds using Chernoff bounds for the probability of success of the
next trial. In contrast, Yu & Singh use Dempster Shafer evidence theory for
this aggregation. The propagation mechanism for reputation is done in a very
similar way than Yu & Singh.

LIAR

The LIAR model presented by Muller & Vercouter [Muller and Vercouter, 2005]
focuses on the detection of fraud and reputation management in the communica-
tions. The authors use a normative language to formalize prohibited situations
in terms of the information sent by the agents and the commitments that they
set. Through this, the model defines a procedure capable to detect lies.

The model mainly uses two different kinds of reputation: Direct Experience-
Based Reputation and Observation-Based Reputation. With this information
agents can decide whether to trust or distrust the information sent by a given
source agent. The authors detail the decision making process for the trust de-
cision, and thus, from our perspective, it becomes a trust model. The model is
framed in peer-to-peer networks.
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Regan & Cohen

Regan & Cohen [Regan and Cohen, 2005] proposed a trust system for online
market places where the set of buyers and sellers is well-distinguished. The
authors argue that only sellers should be evaluated by the buyers, and not the
opposite, because sellers have more control over exchanges and transactions.
According to the model, buyers can evaluate sellers by computing what the
authors called direct reputation (similar to Image) and indirect reputation. The
former is calculated by dividing the pool of sellers into three groups: Those with
good direct reputation (or good image), those with bad image, and those that
are unknown. Then, buyers evaluate each transaction with sellers through a
satisfaction threshold.

The calculus of indirect reputation is done by the introduction of informer
agents (advisors in the authors’ words). These agents own direct information
about the target and can send under request such information to buyers. They
use peer-to-peer networks to model the exchange and request of such information.

Sierra & Debenham

Sierra and Debenham [Sierra and Debenham, 2005] presented an information-
based trust model for agents involved in negotiation processes. Their main con-
cern is to compute the probability for an agent α to accept a proposition δ from
an agent β. For this computation, the model uses three sources of information
that are properly weighted:

• The reputation that according to α has β about proposition δ. So, the
model accepts witness information.

• The power that β has in the social group. The model incorporates sociolog-
ical information, similar to the Regret model [Sabater and Sierra, 2002].

• The trust that α has on β that δ will be accomplished. The authors
calculate such measure only using the history of observations.

The trust measure is computed as the conditional entropy (from Shannon’s
information theory [Shannon, 1948]) of the distribution that tells the probabil-
ity of β to achieve δ, knowing the previous observations (signed contracts and
fulfillments). This measure is somehow related to the direct trust in the Regret
model.

Schillo et al.

The model presented by Schillo et al. [Schillo et al., 2000] was designed for
societies or environments where the evaluation of interactions between agents has
a boolean nature, for instance, good or bad. For this reason it works perfectly in
scenarios like the prisoners dilemma. The idea is that the result of an interaction
computes the honesty of the partner by checking what she claimed and what she
finally did. Taking into account all the results in the interactions, the model
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calculates the probability on the honesty in the next interaction, by simply
dividing the number of interactions where the agent was honest by the total
number of interactions. Then, let A, B be agents, where A has observed B
being honest h times on a total of n interactions, the probability for A that B
will be honest the next interaction is calculated by T (A,B) = h

n .

This naive idea is complemented with a very interesting source of information.
They incorporate a social network, a TrustNet data structure, for each agent.
The idea is that agents can query other agents that have met before. This
witness information will be a set of interaction results, not a summary of them,
that agents can incorporate to their probability calculus.

Ripperger

In the book by Ripperger [Ripperger, 1998]11 the author describes from a pure
economical perspective the creation of trust as a mechanism to stabilize un-
certain expectations when choosing actions. Thus, the author considers trust
as expectations, and use economic theories to calculate it, developing detailed
decision making processes for the selection.

Rasmusson & Janson

Rasmusson & Janson [Rasmusson and Janson, 1996] and
[Rasmusson and Janson, 1997] propose a mechanism similar to Padovan
et al. explained above, with the introduction of special agents as trusted
third party or reviewer agents. The authors’ main focus was as well online
marketplaces although their results can be applied to open multi-agent systems.
The model considers that agents should use gossiping in order to find out
faster their desired information. The interesting part of the model is that to
reduce the intentional spreading of false information, agents can pay agents to
remember them, not in the case though of asking for information. The idea is
to use incentives to ensure that paid agents tell the truth.

Sen and Sajja

In the model presented by Sen and Sajja [Sen and Sajja, 2002b] the authors
explicitly talk about reputation. The model considers two kinds of direct expe-
rience: direct interaction and direct observation. The idea is that only direct
interactions give an exact perception of the performance of the agents. The au-
thors suppose that observations are noisy, and that may differ from reality. Due
to this difference, the impact than direct interactions have on the updating rule
of reputation values is much higher than direct observations. They represent the
reputation values as real numbers in the interval [0, 1] where 0 represents the
worst reputation and 1 the best one, following a linear function.

11The brief description of this model was extracted from [eRep, 2007], because it only exists
a German edition of the book
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In addition, in their model agents can query other agents about the perfor-
mance of other partners, being the answer always a boolean, good or bad. From
this witness information, agents calculate the number of positive and negative
answers received about the same partner.

Repage and BDI+Repage

We have already explained in detail the Repage model [Sabater-Mir et al., 2006]
in this chapter. The BDI+Repage model [Pinyol and Sabater-Mir, 2009a,
Pinyol et al., 2008, Pinyol, 2008, Pinyol and Sabater-Mir, 2008] is one of the
contributions of this work and thus, it is explained in the following chapters.

2.6 Conclusions

In this chapter we have explored the theoretical bases of our work, the state-of-
the-art regarding computational trust and reputation models and the position
of our model in the current literature. The classification dimensions that we
provide enhance the contribution of the model, and are also summarized in the
introductory chapter. We would like to remark though several considerations:

1. Even when we are placing the BDI+Repage model as a trust model, we
want to clarify that the architecture is more general and that potentially,
it could serve as a global agent architecture. In the model we do not
explicitly define trust, but it emerges from a set of beliefs, desires and
intentions when a decision is made and such decision involves an action to
interact with another agent.

2. Also, when trust emerges from the reasoning, it can be completely defined
in terms of a mental state composed of beliefs, desires and intentions.
Hence, we classify it as a cognitive model.

3. As far as we know, the BDI+Repage model is the only trust model that has
a cognitive representation and at the same time, an analytical formulation
to update and calculate the cognitive components of trust.

4. Finally, the model has a general purpose. It is not attached to any un-
derlying network typology nor ontology, and thus, it could and should be
adapted to the peculiarities of the environments, although we believe that
this knowledge could be codified as beliefs.

The BDI+Repage model somehow proves that trust can not be considered
apart and independent of the goals of the agent, and that can become an emer-
gent property induced by a mental state of the agent, following Castelfranchi &
Falcones’ ideas [Castelfranchi and Falcone, 1998b].

We would like to remarkable the proliferation of cognitive models in the
last few years. Besides Castelfranchi and Falcone’s model, published in 1998,
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Repage, forTrust and BDI+Repage were published in 2006, 2008 and 2009 re-
spectively. This shows an increasing interest in considering the representation
of such complex concepts as mental states.
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Chapter 3

An Ontology of Reputation:
A Computational Account

3.1 Introduction

In this chapter we present the ontology of reputation mentioned in the intro-
duction, and the language Lrep, to capture the reputation information. It serves
to precisely determine the elements that compose a social evaluation and at the
same time, provides a clear conceptualization of the involving terms. In a more
pragmatic perspective, the purpose of this chapter is twofold: (1) to establish
the terminology that we use to describe reputation-related concepts, and (2) to
formally define a language that captures the information that reputation models
compute.

The terminology on reputation concepts is described as a taxonomy, which
can be seen as an ontology of reputation. We detail the elements that social
evaluations manage according to the current state-of-the-art models and the
cognitive theory of reputation explained in the previous chapter. We pay special
attention to the representations that computational models use to quantify how
good or bad targets result to be in a concrete context.

Also, we formally specify Lrep to capture the elements of the ontology from
an individual point of view. It serves both as a communication language and to
characterize the reputation information that agents manage.

3.2 The Ontology

In this section we provide a list of concepts and their relationship that play a
crucial role in the conceptualization of reputation-related information. The list
does not intend to be complete, but as exhaustive as possible. Moreover, the
computational description offers a pragmatic approach that we use to formalize
in a well-precise terminology the problems we deal with in this work. Figures
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Figure 3.1: The main components of an evaluation and voice. Elements with
cardinalities 0..1 indicate that are optional.

3.1, 3.2 and 3.3 show a graphical schema of such elements and relations.

3.2.1 Components of Social Evaluations

In a social evaluation (figure 3.1) we find three compulsory elements: a target, a
Context and a Value. Intuitively, the construct describes the common elements
that social evaluations include, without indicating the type of social evaluation,
which we detail later in this section. Also, it is possible to find the Source of
the evaluation (optional), indicating who is the creator of such evaluation.

Entity

An Entity is any element of the society susceptible of either being evalu-
ated or having an active part in the generation and diffusion of social evalu-
ations. From the point of view of the cognitive theory of Conte and Paolucci
[Conte and Paolucci, 2002] an Entity can participate in the reputation process
in four different ways:

1. Target: An Entity that is being evaluated.

2. Source: An Entity that generates the evaluation.

3. Gossiper: An Entity that spreads an Evaluation.
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Figure 3.2: The taxonomy of social evaluations

Figure 3.3: The components of a communicated social evaluation

55



4. Recipient: An Entity that receives an Evaluation

An Entity can be a single agent, a group of agents or an institution.

Context

Agents can evaluate the same Target from different perspectives. For instance,
we can have a bad image of Agent A as a chess player, but a very good image
of the same agent as a soccer player. This is what we call the context of the
evaluation. In the ontology, the context can describe a Norm, a Standard or a
Skill.

Value

The Value describes the quantification of the social evaluation. It describes in a
well-defined semantics how good or bad the target results to be in the specified
context. As an example, some models use linguistic labels for this enterprise, very
good, good etc., others, a value between 0 and 1, being 0 the worst evaluation,
and 1 the best one. In section 3.2.3 we propose four representation types that are
representative according to the current state-of-the-art models. We also define
how the conversion between different types can be performed in order to preserve
as much as possible the predefined semantics of the original representation.

Evaluation and Voice

Finally, an Evaluation encapsulates all the elements that participate in a social
evaluation. It includes two Entities playing the role of Source and Target, the
Context and the Value of the evaluation. The source is optional and represents
the entity that has generated the evaluation. The target, the context and the
value are sine qua non elements for the existence of a social evaluation.

Similarly, the notion of Voice, includes the necessary elements to represent
the spreading of an Evaluation. A Voice is defined as a “report on reputation”.
For instance, “It IS SAID that John is good at playing soccer” is an example of
a Voice. Besides the Evaluation itself, it has two Entities that identify the
Gossiper and the Recipient of the Voice.

3.2.2 A Taxonomy of Social Evaluations: Beliefs and
Meta-beliefs

As we mentioned in the previous chapter, image and reputation are so-
cial evaluations. However, some recent work [eRep, 2006b] based on
[Conte and Paolucci, 2002], state that concepts like shared voice and share eval-
uation among others can be also classified in these terms. In this subsection we
detail the specific elements that are involved in each type of social evaluation,
developing a taxonomy.

As shown in figure 3.2, we acknowledge that social evaluations are evaluative
beliefs. It means that they have a representation in terms of beliefs, and such
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representation involves an evaluation. Also, as described in the cognitive theory,
image is a belief while reputation is a meta-belief. In the following lines we
briefly define them:

Image

An agent holding it, believes in the Evaluation that contains the object. In
other words, an Image is the believed opinion of the agent about a given Target

with respect to a given Context. The important point here is that the agent
believes that the Evaluation is true.

Reputation

Reputation is a generalization and loss of reference of a Shared Voice. An
agent holding a Reputation believes that most of the entities would acknowledge
the existence of a Voice. It refers to what a target agent ”IS SAID to BE” by
most of the population or group. From the point of view of the holder agent,
it is understood as a belief of others’ beliefs in the sense that the holder agent
believes that most of the population believe certain evaluation. For instance,
taking again our example, to acknowledge that most of the people say that
“John is good at playing soccer”, can be understood as to believe that most
of the people believe that “John is good as a soccer player”, but this does not
imply to really believe that John is good at it. As explained earlier, we consider
Reputation as a meta-belief.

Shared Evaluation

In this case, an agent holding a Shared Evaluation believes that each mem-
ber of a perfectly identified set of Entities (Group) believes the Evaluation

included in the object. Clearly, this concept is considered also a meta-belief.

Shared Voice

An agent holding a Shared Voice has the certainty that a perfectly identified set
of Entities would acknowledge the existence of the Voice if asked. Following
the previous example, the fact that agents A,B,C and D inform agent X that
”It IS SAID that John is good at playing soccer” is understood as a Shared

Voice, since agents A,B,C,D share the same Voice about John. The object
only refers to what the agents have reported, it is not a representation of what
they believe. We consider that a Shared Voice is a meta-belief.

Direct Experience

It is an object that refers to the Evaluation that an entity creates from a sin-
gle interaction or experience with another Entity. After an interaction, the
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generated outcome (the objective result of the transaction) is subjectively eval-
uated by the agent. As shown in the figure 3.2, a direct experience contains an
Evaluation and a transaction id IdTrans.

Communicated Social Evaluations

Communications are an essential part for the creation of social evaluations. Fig-
ure 3.3 shows the components of a communication. We find three main elements:
the source and recipient of the communication, which are Entities, and the con-
tent of the communication, that is a Social Evaluation. The source refers to
the origin of the communication, and should not be confused with the source of
the evaluation, which refers to the creator of a social evaluation. The recipient
refers to the entity that receives the communication at a concrete instant of time,
and should not be confused with the recipient of a Voice. The latter refers to
the general conception that a voice or a rumor can be held by an Entity, and
may not be present (see the cardinality). Instead, the recipient of a communica-
tion is always present and refers to the dialectical view of the communication: at
instant time t, an Entity (recipient) has received a communication from another
Entity (the source).

Thus, agents are endowed with the capability to communicate images and
reputations, but also shared voices, shared evaluations, and even direct experi-
ences. Notice that we do not allow to communicate information about commu-
nications. This is a reasonable simplification since no existing reputation models
allow for that, although it would be easy to extend the representation to permit
it.

We consider that agents are capable to infer images, reputations and the
reminding social evaluations from a finite set of direct experiences and commu-
nications. The way agents do these inferences depends on the reputation model
they are using. For this reason, we define communications and direct experiences
as ground elements.

3.2.3 Value Representations and Transformations

The representation of evaluative values is one of the most important element that
characterize a reputation model. In the literature we find models that use simple
boolean values indicating how good or bad agents are, others use a numerical
ratio, and others, probability distributions. For instance, the eBay model uses a
system of colored stars to show the reputation of a seller that could be seen as a
simple integer number between 0 and 100.000, meanwhile the Repage model uses
a probability distribution over the discrete set Very Bad, Bad, Neutral, Good,
Very Good.

In this subsection we give four possible representation types that, although
not exhaustive, are representative of the current-state-of-the-art models. Those
are Boolean (BO), Rational (RE), Discrete Set (DS) and Probability Distribution
(PD). We provide a descriptive semantics for each type and conversion functions
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Figure 3.4: Graphical representation of the probability distribution
(0.3,0.5,0.2,0,0)

that allows to move from one type to another preserving the semantics as much
as possible.

Representation Types

• Boolean Representation (BO): In this case, evaluations take two pos-
sible values, good or bad. We define true as Good, and false as Bad.

• Bounded Rational Representation (RE): Here, the value is a number
included in the bounded interval [0, 1]∩ IQ where 0 is the worst evaluation,
1 the best evaluation and 0.5 the absolute neutral evaluation. The curve
we have chosen indicating the level of goodness/badness is linear, from 0
to 1. Alternatively, other curves could be defined.

• Discrete Sets Representation (DS): In this case, the value belongs
to the following sorted discrete set {Very Bad, Bad, Neutral, Good, Very
Good} ({VB,B,N,G,VG} from now on). Its semantics is intrinsic on the
definition of each element of the sorted set. Of course, other linguistic
labels could be chosen.

• Probabilistic Distribution Representation (PD): Finally, this last
representation applies a probability distribution (PD) over the sorted dis-
crete set seen in the DS representation.

Let L be the vector [V B,B,N,G, V G] where L1 = V B,L2 = B and so
on. If X is a probability distribution over L then we define Xi as the
probability of being evaluated as Li. Given a probability distribution x
we have that

∑
i=1..5 xi = 1. For instance, we could have the distribution

[0.3, 0.5, 0.2, 0, 0] meaning that with probability of 0.3 the target is Very
Bad, with 0.5 that is Bad and with 0.2 that is Neutral. Graphically it can
be represented as shown in figure 3.4.

We want to remark that the transformations presented here are not unique.
They could be presented in multiple ways. We provide though an illustrative set
of conversions that try to preserve as much as possible the semantics. Obviously,
since some representations are more expressive than others, some transforma-
tions imply a loose of information. Appendix A provides a measure to compute
such lost, based on the entropy from information theory.
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Transformations From PD : This is the most expressive type, being the
only one offering probabilities. Because of that, transforming to the other types
will imply always some information loss. Here we propose one for each type:

→ To Boolean (BO)

In the BO we only have two values. The idea is that a PD value will converge
to Good if the probability distribution tends to values {G, V G}, and Bad if it
tends to the values {V B,B}. In our context, the word tend implies that we need
an operation capable of transforming a probability distribution element to an
unidimensional number, where a threshold can tell us whether to transform the
PD value to true or false. This function calculates is the center of mass (CM)
of a PD element, CM : PD → [0, 1] ∩ IQ. It returns a bounded rational number
∈ [0, 1] ∩ IQ indicating in terms of average how good (converging to 1) or bad
(converging to 0) is the evaluation whose value is represented in a probabilistic
distribution. Of course 0.5 would be the absolute neutral. Then, it is easy to
think that values over 0.5 would indicate mostly good, and below mostly bad.
The value 0.5 will be our threshold. Let x ∈ PD, the function CM is defined as
follows:

CM(x) =
1

10

5∑
i=1

(2 · i− 1) · xi (3.1)

To transform a given PD value x to a boolean it is enough to evaluate the
following boolean expression1: CM(x) >= 0.5

→ To Rational (RE)

Let x ∈ PD the transformation to a RE is: CM(X)

→ To Discrete Set (DS)

Notice that due to the semantics of the bounded rational type (RE), the in-
terval [0, 1] could be mapped into the discrete set type (DS) {V B,B,N,G, V G}
in an easy way, keeping the semantics in the transformation. The func-
tion R : [0, 1] ∩ IQ → {V B,B,N,G, V B} does this mapping as follows: Let
x ∈ [0, 1] ∩ IQ, then

R(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V B if 0 ≤ x ≤ 0.2;
B if 0.2 < x ≤ 0.4 ;
N if 0.4 < x ≤ 0.6 ;
G if 0.6 < x ≤ 0.8 ;
V G if 0.8 < x ≤ 1 .

(3.2)

We have already seen how to transform an element from type PD to type RE.
We can apply the R function over the resulting element in type RE, obtaining an
element of type DS. Given that, the full transformation of an element x ∈ PD
is calculated by R(CM(x)).

1The decision of including 0.5 as a good evaluation is totally arbitrary, but consistent in all
the transformations. Alternatively, one could suppose a threshold that should be consistent
with the reminding transformations.
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Transformations From DS :
→ To Boolean (BO)
In this case, the semantics that has true in the boolean representation sug-

gests the mapping to G or V G in a discrete set representation, and the false to
V B or B. Following the same decision we made in the previous transformations,
the neutral value N should be considered true as well. Formally, we define the
function S : DS → [1, 5] ∩ IN that returns the index position of a given element
in the sorted set {V B,B,N,G, V G}.

Let x ∈ DS, then

S(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x = V B;
2 if x = B ;
3 if x = N ;
4 if x = G ;
5 if x = V G .

(3.3)

The transformation to BO is calculated as S(x) ≥ 3.
→ To Rational (RE)
For this transformation we recall here that function R (equation 3.2) divides

the interval [0, 1] into five parts, each of them assigned to one of the values
of the type DS. For instance, all the values between 0.2 and 0.4 are mapped
into the element B of DS. Thus, given an element of type DS, the rational
equivalent value should be included in the interval defined in function R. For
example, a V B value as rational would be in the interval (0.2, 0.4]. Although
whatever value in the interval would be fine, we pick the one just in the middle,
0.3, the average between the maximum and the minimum. To formalize the
transformation we use a function that gives this central point. C : [1, 5] ∩ IN →
{0.1, 0.3, 0.5, 0.7, 0.9}. Let y ∈ [1, 5] the function C is defined as C(y) = 2·x−1

10 .
We can now describe the transformation: Let x ∈ DS, the transformation to
RE is exactly C(S(x)).
→ To Probabilistic Distribution (PD)
This case is simple, since a DS can be seen as a particular case of a PD,

assigning the probability of 1 to the corresponding element of the set. We define
the function B : [1, 5] ∩ IN → PD, that creates a PD element assigning a
probability of 1 to the corresponding element and zero to the rest. Let x ∈
[1, 5] ∩ IN the function B is defined as:

B(x) = {y ∈ PD : ∀z �=xyz = 0 ∧ yx = 1} (3.4)

Then, let x ∈ DS, its transformation to PD is calculated with the expression
B(S(x)).

Transformations From RE :
→ To Boolean (BO)
Let x ∈ RE, the transformation between a RE type to a BO type is calcu-

lated evaluating the expression x ≥ 0.5.
→ To Discrete Set (DS)
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Figure 3.5: Semantic representation of the different types

Let x ∈ RE and the function R (eq 3.2), the transformation to a DS is
calculated using the expression R(x).
→ To Probabilistic Distribution (PD)
The idea for converting an element x ∈ RE to a PD type is to generate a PD

element whose center of mass is equal to x. There are though an infinite number
of possible combinations. We decide to choose the representation in which two
contiguous elements of the PD set have probabilities greater than 0 and assign
the corresponding probabilities in order to achieve the desirable center of mass.

Let i1 and i2 be the two index positions of the elements of PD that we choose
to create the PD value. To calculate them we use the function R′ : [0, 1] ∩ IQ→
[1, 5] ∩ IN defined as

R′(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ x ≤ 0.2;
2 if 0.2 < x ≤ 0.4 ;
3 if 0.4 < x ≤ 0.6 ;
4 if 0.6 < x ≤ 0.8 ;
5 if 0.8 < x ≤ 1 .

(3.5)

This equation indicates to which interval certain RE element belongs to2. We
calculate i1 as follows:

i1 = min{R′(x), R′(max{x− 0.1, 0})} (3.6)

The index i2 is the next following number, taking into account that the maximum
allowed number is 5

i2 = min{5, i1 + 1} (3.7)

2Notice that the equality R′(x) = S(R(x)) holds.
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Let x ∈ [0, 1]∩ IQ, we need to find two probabilities, z and y, such that z+ y = 1
and its center of mass (considering a PD element) is the original x. So, we need
to solve the following equation:

x = C(i1) · z + C(i2) · y (3.8)

Solving it, we have that z = 1−y and y = x−C(i1)
C(i2)−C(i1)

. Now, we are aware of the

probabilities that we need to assign and the two index positions of the elements
of PD. We only need a function that creates a PD element from an index position
and a probability. We use the function B′ : [1, 4]∩ IN × [0, 1]∩ IR→ PD defined
as

B′(i, p) = {y ∈ PD : ∀r �=i,i+1yr = 0 ∧ yi = p ∧ yi+1 = 1− p} (3.9)

For instance, B′(3, 0.3) returns as a PD element [0,0,0.3,0.7,0], B′(1, 0.8) returns
[0.8,0.2,0,0,0]. Finally, we have all the element to calculate the transformation
from a given x ∈ RE to a PD:

B′(i1, 1−
x− C(i1)

C(i2)− C(i1)
) (3.10)

Transformations From BO :
In this case we start from the most expressive type (PD) .
→ To Probabilistic Distribution (PD)
Again, several PD representations could represent a true or false value. For

this enterprise we define two constants, BF = [2/5, 2/5, 1/5, 0, 0] and BT =
[0, 0, 1/5, 2/5, 2/5] belonging to PD. The transformation function from a BO to
PD is then quite simple. Let x ∈ BO:

BT if x
BF if ¬x (3.11)

We have chosen such constants because they represent a stable agent that
behaves mostly bad and mostly good respectively. When other constants are
chosen, the other transformations should be adapted accordingly, as we will see
in the following lines.
→ To Discrete Set (DS)
Here we should decide which values of the considered bad evaluations or good

evaluations correspond to the false and true values respectively. However, once
fixed the constants BF and BT to represent false and true values in probabilistic
distribution, we have to take them as a base to decide the transformation. The
idea is that if BF represents a false, its center of mass (function CM) has to
indicate the position in the interval [0, 1] that the false value represents, and
having it, the function R would determine which element of the discrete set
represents the false value. The same reasoning can be made for the true value.
Then, let x ∈ BO, the transformation to DS is:

R(CM(BT )) if x
R(CM(BF )) if ¬x (3.12)
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BO RE DS PD

x : BO x
CM(BT ) if x
CM(BF ) if ¬x

R(CM(BT )) if x
R(CM(BF )) if ¬x

BT if x
BF if ¬x

x : RE x ≥ 0.5 x R(x)

i1 = min{R′(x)
R′(x− 0.1)}
i2 = min{5, i1 + 1}
B′(i1, 1− x−C(i1)

C(i2)−C(i1)
)

x : DS S(x) ≥ 3 C(S(x)) x B(S(x))
x : PD CM(x) ≥ 0.5 CM(x) R(CM(x)) x

Table 3.1: Conversion table between representation types. Table 3.2 summarizes
the defined functions

Actually, the false value goes to B, and true to G.
→ To Rational (RE)
If we have used the function CM in the previous transformation, it is clear

that to keep consistency, having x ∈ BO the transformation must be:

CM(BT ) if x
CM(BF ) if ¬x (3.13)

Table 3.1 summarizes the conversions, and table 3.2 the defined functions.

3.3 The Lrep Language

The work presented in the previous section serves as a descriptive analysis of the
elements involved in social evaluations. However, we want to specify a formal
language that captures the reputation-related information that individual agents
use to write statements (and reason) about reputation-related information. The
language is based on the ontology defined above and we use it to characterize the
reputation information that single agents manage. In this sense, we assume from
now on that agents talk about social evaluation in terms of the Lrep language.

3.3.1 Defining Lrep

As shown in the ontology, social evaluations incorporates three main elements:
the target, the context, and the value of the evaluation [Pinyol et al., 2007b].
For instance, an evaluation may say that an agent a (target), as a car driver
(context) is very good (value). The language we define in this section takes
these elements into account. Following [Grant et al., 2000] where languages are
built as a hierarchy of first-order languages, we define Lcontext, and Lrep. Both
are classical first-order languages with equality and contain the logical symbols
∧,¬ and→3. Lcontext is the language that the agents use to describe the context

3For the sake of clarity we reduce the first-order languages to facts, conjunctions of facts,
and rules
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Domain Definition

R′ : [0, 1] ∩ IQ→ [1, 5] ∩ IN R′(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ x ≤ 0.2;
2 if 0.2 < x ≤ 0.4;
3 if 0.4 < x ≤ 0.6;
4 if 0.6 < x ≤ 0.8;
5 if 0.8 < x ≤ 1.

S : {V B,B,N,G, V G} → [1, 5] ∩ IN S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = V B;
2 if x = B;
3 if x = N ;
4 if x = G;
5 if x = V G.

R : [0, 1] ∩ IQ→ {V B,B,N,G, V G} R(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V B if 0 ≤ x ≤ 0.2;
B if 0.2 < x ≤ 0.4;
N if 0.4 < x ≤ 0.6;
G if 0.6 < x ≤ 0.8;
V G if 0.8 < x ≤ 1.

CM : PD → [0, 1] ∩ IQ CM(x) = 1
10

∑5
i=1(2i− 1)xi

B′ : [1, 4] ∩ IN × [0, 1] ∩ IR→ PD B′(i, p) = {y ∈ PD : ∀r �=i,i+1yr = 0∧
yi = p ∧ yi+1 = 1− p}

C : [1, 5] ∩ IN → {0.1, 0.3, 0.5, 0.7, 0.9} C(x) = 2x−1
10

- BF = [2/5, 2/5, 1/5, 0, 0]
- BT = [0, 0, 1/5, 2/5, 2/5]

Table 3.2: Summary of functions for the transformation types
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of the evaluations, like norms, or skills, while Lrep is used to write statements
about social evaluations.

Definition (Lcontext - Domain Language) Lcontext is an unsorted first-order
language that includes predicates, constants and functions, necessary for writ-
ing statements about the domain. Even when we do not provide any specific
language for describing the context of the evaluations, we suggest that a first-
order language should be enough to express norms, standards or skills.

Definition (Lrep - Reputation Language) Lrep is a sorted first-order language
used to reason about social evaluations. It includes Lcontext and special first-
order predicates that are identified by their sorts. These special predicates de-
scribe the types of social evaluations, (Image, Reputation, Shared Voice, Shared
Evaluation, Direct Experience) and Communications (Img, Rep, ShV, ShE, DE
and Comm from now on). We call direct experiences and communications ground
elements, and are the basic elements from which social evaluations are inferred.

The sorts that the language uses are the following:

• SA: It includes a finite set of target identifiers {i1, . . . , in}, which embraces
single agents, group of agents and institutions. In fact, we assume that
each possible group has assigned an identifier.

• SF : It contains the set of constant formulas representing elements of
Lcontext and Lrep itself. The idea is that well-formed formulas from Lcontext

and Lrep are introduced in Lrep as constants for the language4. In this
way, they can be nested in a first-order predicate. Regarding embedded
Lrep formulas we only allow one nested level. We use it to capture the idea
of communicated social evaluations.

• SV : It represents the values of the evaluation. In the previous sections
we have described four representation types that could be mapped in this
sort (BO, RE, DS, PD). Later in this section we provide the characteristics
that, according to our needs, such representation values should have. We
require that the set of possible values is countable, and that a linear order
is defined between the values.

• ST : It incorporates discrete time instants. We use them to express that
direct experiences and communications take place in a discrete unit of
time. In a more pragmatic view, it also serves as a unique identifier for
the communication and direct interactions.

We pay special attention to the sort SV , which represents values of a totally
ordered set M = 〈G,≤〉. It includes the set of constants CV containing a label v
for each v ∈ G. Examples of M are 〈[0, 1]∩ IQ,≤〉 (RE), where ≤ is the standard
pre-order binary function for rational numbers, or 〈{V B,B,N,G, V G},≤s〉 (DS)

4It can be built recursively and simultaneously with SF . We add the constant �ϕ� for each
ϕ ∈ wff(Lcontext) and the constant �Ψ� for each formula Ψ ∈ wff(Lrep)

66



referring to the linguistic labels Very Bad, bad, Neutral, Good, Very Good, and
where V B ≤s B ≤s N ≤s G ≤s V G. With the probabilistic distribution
representation (PD), a possible pre-order could be defined by considering the
center of mass.

The set of well-formed formulas of Lrep (wff(Lrep)) is defined using the stan-
dard syntax of classical first-order logic, and it has special first-order predicates.
Those are Img, Rep, ShV , ShE, DE, Comm. As mentioned before, the last
two predicates (DE and Comm) are what we call ground elements.

• Img(SA, SF , SV ): Represents an image predicate, an evaluation that is
believed by an agent. For instance,

Img(j, �Provider(service(X))
, V G)

indicates that the agent holding the predicate has a V G image of agent
j as a provider of service X. In terms of the mental state of the agent, it
indicates that the holder of the predicate believes such evaluation. In this
case and in future examples, we take M as < V B,B,N,G, V G,≤s> where
the elements represent linguistic labels indicating very bad, bad, neutral,
good and very good.

• Rep(SA, SF , SV ): Represents a reputation predicate. A reputation refers
to an evaluation that is known to circulate in the society. For example

Rep(j, �Provider(service(X))
, V G)

indicates that “it is said” that agent j is V G as a provider of service X.
In this case, the agent holding the predicate believes that the evaluation
circulates in society, but this does not imply that the agent believes the
evaluation.

• ShV (SA, SF , SV , SA), ShI(SA, SF , SV , SA): Represents a shared voice and
a shared image respectively. A shared voice is also an evaluation that
circulates in society, like reputation. The difference is that in this case,
the members of society that say it, are identified (G). A shared image is
a belief about the beliefs of other agents. It indicates that the holder of
the predicate believes that a certain group of identified agents (G) believe
an evaluation. Both predicates include the group that shares the voice or
image respectively.

• DE(SA, SF , SV , ST ): Represents a direct experience. For instance,

DE(j, �Provider(service(X))
, V G, t2)

indicates that the agent had a V G direct experience with j as a Provider
of service X at the time t2.

• Comm(SA, SF , ST ): Represents a communication. For example,

Comm(j, �Img(j, k, Provider(service(X)), V G)
, t2)

indicates that the agent received a communication at time t2 from agent
j saying that its image about k as a Provider of service X is V G.
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Often we will write a subindex to explicitly state the agent holding the pred-
icate. For instance, DEi(j, �Provider(service(X))
, V G, t2) indicates that agent i has
had a direct experience with j as a provider of service X at the time t2 and it
was V G.

3.3.2 Reputation Theories

To characterize all the reputation information that an agent i holds we define
the concept of reputation theory. Intuitively, we consider that from a set of
direct experiences (DE) and communications (Comm) (what we call ground el-
ements) agents are able to infer the remaining information (image, reputation,
shared voice and shared evaluation) through a consequence relation �i, asso-
ciated with agent i. The consequence relation represents agent i’s reputation
model. Formally:

Definition (Reputation Theory) Let Δ ⊂ wff(Lrep), we say that Δ is a rep-
utation theory when ∀α ∈ Δ, α is a ground element (a direct experience or
communication). Then, letting d ∈ wff(Lrep), we write Δ � d to indicate that
from the reputation theory Δ, it can be deduced d via �.

The reputation-related information that agent i holds is characterized then
by the tuple 〈Δi,�i〉, where Δi is the set of ground elements gathered by i
through interactions and communications (i’s reputation theory), and �i the
consequence relation (i’s reputation model).

In the next section we show how Lrep, together with the representation types
we have defined can capture the reputation-related information provided by three
well-known reputation models.

3.4 Lrep on work: Examples

3.4.1 eBay Reputation Model

eBay site [eBay, 2002] is one of the most concurred (if not the most) online
marketplace in the world with more than 50 million registered users. eBay
reputation model considers reputation as a public and centralized value in which
the context is implicit. In this case, users rate sellers after each transaction, with
values of +1, 0 , -1. The reputation value of the sellers then is calculated as
the sum of all the ratings over the last six months, and presented to potential
buyers with a system of colored stars.

From this definition, we can conclude that in this model, the reputation the-
ory is composed of a set of communicated direct experiences, where the ratings
from the buyers are the direct experiences. We can consider that the context
is the constant C, and the value representation is the bounded rational type
([0, 1] ∩ IQ). We can easily normalize the values −1, 0, 1 to 0, 0.5, 1 respectively.
As a matter of example, let b1, b2, . . . be users, and s1, s2, . . . sellers, a reputation
theory for the eBay system could have the following elements:

68



Comm(b1, DE(s1, C, 0, t1))
Comm(b2, DE(s1, C, 0, t2))
Comm(b2, DE(s1, C, 0.5, t3))

Comm(b1, DE(s2, C, 1, t4))
Comm(b4, DE(s2, C, 1, t5))
Comm(b3, DE(s2, C, 1, t6))

Then, the model is able to compute the general reputation of each one of
the sellers. Since eBay punctuation goes from 0 to 100000, a simple normalized
transformation to the interval [0,1] seems to be enough. However, notice that
the colored stars representation does not follow a linear curve. From a semantic
point of view and in our value representation, 0 means very bad reputation, 0.5
neutral reputation, and 1 very good reputation, with a totally linear function.
In eBay, having more that 10 point is already considered a good reputation. The
next step in the scale is more than 100 points (with a different colored star), and
the next is more than 500. In conclusion there is no lineal relation between the
punctuation and the semantic representation of the stars. Then, it is necessary
a transformation from the ontology representation value to the eBay scale. A
possible transformation function is described in the following equation:

H : [0, 100000]→ [0, 1] (3.14)

H(X) =

⎧⎨
⎩

0 if X < 10;
1 if X > 100000;
log(X)−0.5

8 + 0.5 otherwise.
(3.15)

The idea is that from a set of communicated direct experiences reputation
predicates can be inferred. According to the previous reputation theory example,
the generated predicates would be

Rep(s1, C, 0)
Rep(s2, C, 0)

In the example, s2 gets a punctuation of 0 because its punctuation is still
lower than 10.

3.4.2 Abdul-Rahman and Hailes Model

The distributed model presented by Abdul-Rahman and Hailes
[Abdul-Rahman and Hailes, 2000] uses the term trust even though as shown in
the previous chapter, it cannot be considered a trust model. In this case, social
evaluations take into account the context. The model is fed by two sources:
direct experiences and third-party communications of direct experiences. The
representation of the evaluations is done in terms of the discrete set {vt
(very trustworthiness), t (trustworthiness), u (untrustworthiness), vu (very
untrustworthiness)}. Then, for each agent and context the system keeps a
tuple with the number of past own experiences or communicated experiences in
each category. For instance, agent A may have a tuple of agent B as a seller
like (0, 0, 2, 3), meaning that agent A has received or experienced 2 results as
untrustworthiness and 3 as very untrustworthiness. Finally the trust value is
computed taking the maximum of the tuple values. In our example for agent A,
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Figure 3.6: Abdul-Rahman and Hailes model values expressed in terms of a
probabilistic distribution(PD)

agent B as a seller would be very untrustworthy. In case of tie between vt and
t and between u and vu the system gives the values U+ (mostly trustworthy)
and U− (mostly untrustworthy) respectively. In any other tie case the system
returns U0 (neutral).

Each agent holds its own reputation theory. In this case, we could define
a specific representation type for the evaluation values of the model. Notice
that they are linguistic labels. However, to illustrate the use of the probabilistic
distribution type, we chose it and establish the relation shown in figure 3.6. An
example of a reputation theory for the agent i could be:

DEi(b1, seller, [1, 0, 0, 0, 0], t1)
DEi(b1, seller, [0, 1, 0, 0, 0], t2)
DEi(b2, seller, [0, 0, 0, 0, 1], t3)
DEi(b2, seller, [0, 0, 0, 0, 1], t4)
Commi(u1, DEu1

(b1, seller, [1, 0, 0, 0, 0], tx), t5)
Commi(u2, DEu1

(b1, seller, [0, 1, 0, 0, 0], ty), t6)

From this theory, agent i is able to infer image predicates. The trust measure
that the model provides, in terms of the ontology, coincide with the concept of
image, because agents accept the measure as true. Then, using the transforma-
tion shown in figure 3.6, the following image predicates can be inferred:

Imgi(b1, seller, [0.5, 0.5, 0, 0, 0])
Imgi(b2, seller, [0, 0, 0, 0, 1])

3.4.3 The Repage Model

In chapter 2 we have already explained the Repage model in detail. It can be ob-
served that the internal elements coincide quite well with the predicates defined
in Lrep. First, the ground elements in the model are communicated images, com-
municated reputations, communicated third-party images, and outcomes (direct
experiences in terms of Lrep). For instance, a set of communicated images and
communicated reputations gathered by agent i could be:

Commi(u1, Imgu1 (s1, seller, [0.2, 0.3, 0.5, 0, 0]), t1)
Commi(u2, Imgu2 (s2, seller, [0, 0, 0, 0.3, 0.7]), t2)
Commi(u1, Repu1

(s1, seller, [0.5, 0.3, 0.1, 0.1, 0]), t3)
Commi(u2, Repu2

(s2, seller, [0.5, 0, 0, 0, 0.5]), t4)
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Note that in the example, the source of the communication and the source of
the communicated predicate is the same agent in all the communications. This
is the difference with third-party communicated images. For instance:

commi(u1, Imgu5
(s1, seller, [0.2, 0.3, 0.5, 0, 0]), t1)

commi(u2, Imgu6
(s2, seller, [0, 0, 0, 0.3, 0.7]), t2)

In the first communication, agent u1 communicates to agent i the image that
u5 holds about s1 as a seller. The model does not consider third-party commu-
nicated reputations even when the language could capture it. Regarding direct
experiences, we consider that outcome predicates coincide with the definition of
a direct experience that we have given. Recalling that a direct experience is the
subjective evaluation of a direct interaction, outcome predicates from Repage
represents it by evaluating the difference between a given contract and the ful-
fillment. In any case, a reputation theory that captures the Repage grounding
information is represented by a set of communications as explained above, and
direct experience predicates that capture the outcomes that Repage generates.

From such information, Repage is able to infer predicates like shared evalu-
ation, shared voice, image and reputation. Notice that Repage considers other
intermediate predicates, like candidate images, candidate reputations etc. If
necessary, the language could be easily extended with them. We keep it as it is
now, and assume that from a reputation theory, the agent is able to infer, for
instance the following predicates:

Imgi(s1, seller, [0.3, 0.3, 0.3, 0.1, 0])
Imgi(s2, seller, [0, 0, 0.1, 0.2, 0.7])
Repi(s1, informer, [0, 0, 0, 0, 1])
Repi(s2, informer, [0, 0.5, 0.5, 0, 0])
ShEi(s1, seller, [0.3, 0.3, 0.3, 0.1, 0], {u1, u2})
ShVi(s1, seller, [0.3, 0.3, 0.3, 0.1, 0], {u1, u2})
. . .

In [Pinyol and Sabater-Mir, 2009b] we redefine Repage in terms of a finite set
of deductive rules that implements and characterizes the consequence relation
�i, associated to the language Lrep.

3.5 Related Work

The ontology presented in this chapter is based on the set of terms about reputa-
tion concepts defined in the European project eRep [eRep, 2006b, eRep, 2006a].
The aim of this effort was to define an ontology that all partners participating in
the project would use as a consensual starting point. This ontology describes in
detail all the elements participating in social evaluations, as well as the processes
of transmitting them. We took a subset of these elements and provide a more
computational view.

Nevertheless, this is not the only work referring to the definition of a repu-
tation ontology. Casare et al. [Casare and Sichman, 2005] propose a functional
ontology whose goal is to put together at a conceptual level all the knowledge
about reputation. It is based on the concepts defined in the Functional Ontol-
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ogy of Law [Valente, 1995]. The approach is interesting from a theoretical point
of view because it offers a structured definition of reputation and its related
concepts, including processes of transmission, but it does not detail the internal
elements. The main difference between the presented ontology and the ontolo-
gies in eRep [eRep, 2006b] and Casare et al. [Casare and Sichman, 2005] is the
computational focus which deals with representation types.

3.6 Conclusions

In this chapter we have described a taxonomy of social evaluations, including
the elements that in general reputation models manage. Summarizing, Image,
Reputation, Shared Evaluation, Shared Voice and Direct Experiences are social
evaluations. The common elements that social evaluations have are a target,
a context and a value. In the ontology, we group these elements in the object
Evaluation. Intuitively, the context describes the property being evaluated of
the target, which can be a single agent, a group of agents or even an institution.
The value quantifies the evaluation. Also, we have introduced four representative
representation types for evaluation values. In the appendix A we explain a direct
application of such ontology and the conversion among representation types that
we have presented in the chapter. The application deals with the interoperability
of agents using different reputation models.

Also, we introduce direct experiences and communications as ground ele-
ments. We suggests that from a set of direct experiences and third-party com-
munications agents infer social evaluations. Hence, agents can communicate
images, reputations or even their own direct experiences. As seen in chapter
2, most of the current state-of-the-art reputation models use communication of
social evaluations as a source for computing evaluations.

The chapter also serves to characterize, from an individualistic point of view,
the reputation information that agents manage. For this, based on the previ-
ously defined ontology, we introduce the Lrep language, a first-order language
that captures the elements of the ontology. We associate to this language a
consequence relation �i for each agent i. We state that agents can use the same
language to express social evaluations but use different rules to infer them.

We show how the language can successfully capture the reputation infor-
mation managed by three current reputation models. In concrete the Repage
model [Sabater-Mir et al., 2006], whose internal elements already coincide with
the elements in the ontology, the eBay system [eBay, 2002] and the model by
Abdul-Rahman and Hailes [Abdul-Rahman and Hailes, 2000].

We provide in the following chapters a BDI agent architecture that integrates
image and reputation information. Since the most expressive representation type
that we use is the probabilistic distribution used by the Repage model, we take it
as the paradigmatic example for the integration, although potentially we could
use it with models that use other representations, as shown in this chapter.
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Chapter 4

Image, Reputation and
Beliefs: A Logical Account

4.1 Introduction

In this chapter we define LBC , the belief language and logic that the
BDI+Repage model uses for the grounding of image and reputation informa-
tion, and for reasoning about acquired knowledge. Obviously, the focus of this
work is to represent and reason about the information computed from the Repage
system, although the logic is generic enough and allows extensions. The main
characteristics of LBC are:

• Reasoning with probabilities: Since Repage provides social evalua-
tions in terms of probability distributions, the logic must accept beliefs on
probabilities. This is substantially different than probability beliefs. The
later refers to beliefs whose evaluations are not crisp (true or false), but
rely on probability measures (see [Casali et al., 2004, Casali et al., 2008]
for instance). We refer to crisp beliefs that contain probability informa-
tion.

• Different representation for Image and Reputation: Image and
reputation are distinct objects, and thus their representation in terms of
beliefs can differ. In the language, information from Image is represented
with the special predicate E, while reputation with the predicate S. Then,
the axiomatic we present relate both predicates to the belief predicate B
which determines what the agent believes in a given instant of time.

• Completeness: The completeness of the logic was a must for us. For this,
we do not move away from first-order logic and define LBC as a distinguish-
able subset of many-sorted first-order logic. We show then the existence
of consistent theories. This approach has advantages and limitations that
we comment in the chapter.
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4.2 Defining the Belief Logic

In this section we describe the language LBC to express agents’ beliefs and to
reason about them. The language must be able to capture the semantics that
Repage predicates bring over formulas. Since a social evaluation in Repage
describes a behavior of a target agent in a role as a probability distribution,
LBC must capture probabilities over some underlying language of the agents’
ontology.

Agents also need to perform basic epistemic inferences. In general, agents
observe and interact with the environment, incorporating knowledge to their
respective bases. Obviously, we focus on the knowledge that comes from Repage
system, which provides evaluations in terms of probabilities and that can be
combined with other knowledge of the agent through logical inferences. This
allows the agents to combine such knowledge with their desires to finally generate
intentions and act in consequence to fulfill them. The idea is that LBC must
capture all the knowledge that agents believe at a given instant of time.

To define LBC we use the approach described in [Grant et al., 2000] where
languages are structured as a hierarchy. A different approach that also uses hi-
erarchies of languages is the one taken by [Giunchiglia and Serafini, 1994], that
could be alternatively used for our purposes. Both works suggest that first-order
logic is enough to define consistent theories of propositional attitudes for ratio-
nal agents. In these papers, formulas ϕ from a certain propositional language A
can be embedded into another language B as constants for the language, usually
written as �ϕ�. For instance, we can have a language that describes possible
weather events in cities: Rain(Barcelona), Sunny(Rome) ∧ Sunny(Berlin),
and another language can talk about these events in terms of date/time:
Forecast(10/11/2010, �Rain(Barcelona)�).

4.2.1 Preliminaries: An Intuitive Idea

We want to illustrate with an example the kind of reasoning we are expecting
from the logic of belief. First, we recall that the Repage system provides proba-
bility distributions over the different roles that an agent plays. For example, in
a scenario with buyers and sellers, a buyer can decide to evaluate sellers in two
roles: the quality of the products they sell and the delivery time of the products.

Role Possible Outcomes
Seller(Q) V eryGood Q Good Q Neutral Q Bad Q V eryBad Q
Seller(dTime) dTime ≤ 5 5 < dTime ≤ 10 10 < dTime

Note that the possible outcomes for each role cover all the possibilities. How
such information is finally codified as beliefs is one of the contributions of this
work and it is explained in detail later. For the example, it is enough to realize
that part of the information that the agent manages comes from an evaluation
process that the Repage provides, while other comes from the general knowledge
of the agent. This is what justifies such integration.
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In our model, the desires of our agent i lead the practical reasoning process.
The main idea is that for each desire, the belief logic should determine which
actions allow the agent to achieve the desire and with which probability. For
instance, agent i can desire the following with a strength of 0.9

(D+(V eryGood Q ∨Good Q) ∧ dT ime ≤ 5 ∧ payLess(500), 0.9)

indicating that i desires to obtain a very good or good quality product delivered
in less that 5 days and paying less than 500. Then, the logic of beliefs should
provide which actions are capable of producing it. In concrete we would like the
system to provide beliefs like

B(buy(Bob), (V eryGood Q ∨Good Q) ∧ dT ime ≤ 5 ∧ paidLess(500), 0.45) (1)
B(buy(Alice), (V eryGood Q ∨Good Q) ∧ dT ime ≤ 5 ∧ paidLess(500), 0.8) (2)
B(buy(Charlie), (V eryGood Q ∨Good Q) ∧ dT ime ≤ 5 ∧ paidLess(500), 0.4) (3)

For instance, (1) indicates that after executing the action buy(Bob), agent i
will obtain

(V eryGood Q ∨Good Q) ∧ dT ime ≤ 5 ∧ paidLess(500)

with a probability of 0.45. The belief logic should deduce such information from
more simple beliefs. For example, to deduce (1) agent i can hold the following
predicates:

B(buy(Bob), (V eryGood Q ∨Good Q), 0.9) (4)
B(buy(Bob), dT ime ≤ 5, 0.5) (5)
B(buy(Bob), paidLess(500), 1) (6)

Our approach suggests that formulas like (4) and (5) are generated from
Repage. Note that (4) comes from the evaluation that agent i has about Bob in
the role Seller(Q), while (5) from the evaluation of the same agent Bob in the
role Seller(dTime). The key idea is that Repage gives a probability distribution
for each agent and role, and such probabilities can be combined under the as-
sumption that distributions are stochastically independent. Then, the system
should be able to infer from (4) and (5) the following:

B(buy(Bob), (V eryGood Q ∨Good Q) ∧ dT ime ≤ 5, 0.45) (7)

where the probability of 0.45 = 0.9 · 0.5 is calculated following the standard
probability computation for independent events. Also, the system should know
that if a formula is always true (probability 1), like the case of (6) and it does
not belong to any particular distribution, it can be combined using conjunction,
to finally generate (1). Also, the formula (6) should be calculated from the
knowledge that i has about how much it cost to buy at Bob. In this sense, it is
feasible and reasonable to assume that i should deduce (6) from:
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B(ι, buy(Bob), paid(350), 1) (8)
B(ι, paid(350)→ paidLess(500), 1) (9)

where ι stands for an empty action. The beliefs are able then to codify knowledge
that always holds after an action is executed (like formula (8)) and knowledge
that always holds independently from the action (like formula (9)). If we want to
keep an uniform notation, both kinds of formulas can be codified with probability
1.

The previous example illustrates the kind of reasoning we are looking for and
the properties of the belief logic, which we enumerate in the following lines:

(i) Evaluations from Repage codify the knowledge about the probabilities.
This includes not only the assignment of probabilities for each agent and role,
but the correct construction of the probability spaces. For instance, regarding
Bob and role Seller(dT ime) the following beliefs could be generated:

B(buy(Bob), dT ime ≤ 5, 0.5)
B(buy(Bob), 5 < dTime ≤ 10, 0.3)
B(buy(Bob), 10 < dTime, 0.2)
B(buy(Bob), dT ime ≤ 10, 0.8)
B(buy(Bob), dT ime ≤ 5 ∨ 10 < dTime, 0.7)
B(buy(Bob), 5 < dTime, 0.5)
B(buy(Bob), dT ime ≤ 10 ∨ 10 < dTime, 1)

(ii) Repage provides evaluations for each agent and role in terms of image and
reputation, which define two probabilistic distributions over the same agent and
role that must be combined to finally generate beliefs. To avoid inconsistencies,
we introduce besides the belief predicate B two more predicates, E (image) and
S (reputation). Through the appropriate axioms we combine them to finally
generate beliefs that do not fall into inconsistencies.

(iii) When combining two formulas, in order to preserve a correct semantics
and accuracy of the probabilities, we only can ensure that the resulting prob-
ability is correct when such formulas refer to the same action (so, the same
agent) and talk about different roles, which we assume are stochastically inde-
pendent. For this we need to codify into the belief predicates also the roles that
are involved in the formula, and permit the combination of beliefs only when
the intersection of such set of roles is empty. For instance, following the above
example, the beliefs should be codified in the following way:

76



B(buy(Bob), dT ime ≤ 5, 0.5, {Seller(dT ime)})
B(buy(Bob), 5 < dTime ≤ 10, 0.3, {Seller(dT ime)})
B(buy(Bob), 10 < dTime, 0.2, {Seller(dT ime)})
B(buy(Bob), dT ime ≤ 10, 0.8, {Seller(dT ime)})
B(buy(Bob), dT ime ≤ 5 ∨ 10 < dTime, 0.7, {Seller(dT ime)})
B(buy(Bob), 5 < dTime, 0.5, {Seller(dT ime)})
B(buy(Bob), dT ime ≤ 10 ∨ 10 < dTime, 1, {Seller(dT ime)})

Then the belief

B(buy(Bob), dT ime ≤ 5, 0.5, {Seller(dT ime)})

can be combined with

B(buy(Bob), (V eryGood Q ∨Good Q), 0.9, {Seller(Q)})

because the intersection of the respective set of roles is empty and the action is
the same. The resulting conjunction could be:

B(buy(Bob), (V eryGood Q∨Good Q)∧dT ime ≤ 5, 0.45, {Seller(Q), Seller(dT ime)})

Note that we could also combine them with a disjunction:

B(buy(Bob), (V eryGood Q∨Good Q)∨dT ime ≤ 5, 0.95, {Seller(Q), Seller(dT ime)})

where 0.95 = 0.9+ 0.5− 0.45 is calculated following standard probabilistic com-
putations. In both cases the set of roles is the same, since it is an indication of
the roles that effect the formula. This mechanism prevents the logic to combine
formulas which are not independent, so that the intersection of their respective
set of roles is not empty.

The following subsection formalizes the syntax and semantics of the belief
logic LBC .

4.2.2 LBC Syntax and Semantics

Following [Grant et al., 2000] we define two languages. The first one, denoted
by Lbasic, is the object language. Lbasic is a classical propositional language
that contains the symbols needed by the agents for writing statements about
the application domain. The second language, denoted by LBC , is the language
the agents use to reason about beliefs, image and reputation. LBC is a first-
order many-sorted language that contains constant symbols for the formulas of
the language Lbasic.

For instance, in the example stated above, Lbasic could be composed of the
set of elementary propositions that we use to describe the possible outcomes of
each role: V eryGood Q, Good Q, . . ., dT ime ≤ 5, 5 < dTime ≤ 10, . . . and
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the propositions Paid(X) and PaidLess(X) for each rational number X. Then,
the language is constructed with the standard syntax of propositional logic that
includes the symbols ¬, ∧, ∨ and → necessary to express the base domain, as
shown in the example.

LBC is a first-order many-sorted language and contains four sorts:

• SA: the sort representing actions.

• SF : the sort representing formulas of the language Lbasic.

• SR: the sort representing the power set of roles.

• SP : the sort representing probability values.

We use different letters for variables of different sorts of LBC :

• a, a1, a2, . . . for variables of sort SA

• x, x1, x2, . . . for variables of sort SF

• r, r1, r2, . . . for variables of sort SR

• p, p1, p2, . . . for variables of sort SP

Constants and predicate symbols of LBC are identified by their sorts. The sort
SA includes a finite set of constant symbols CA to denote actions. It also contains
the constant ι to denote the special empty action. The sort SF includes a set of
constant symbols CF to denote all formulas of the language Lbasic. The set CF

contains constants of the form �σ�, where σ is a formula of Lbasic. The sort SP

includes a set of constant symbols CP to denote rational numbers in the unit
interval [0, 1]∩ IQ. For each p ∈ [0, 1]∩ IQ we introduce the constant p in the sort.
However, in general, for the sake of clarity, we omit the overline notation for
rational constants. Finally, the sort SR includes a finite set of constant symbols
CR to denote finite sets of roles.

Before we proceed with the introduction of the LBC syntax, it is important
to remark two questions with respect to our notation. On the one hand, note
that the symbols x, x1, x2, . . . are for variables of sort SF in general, while the
symbols �ϕ� are constants of sort SF that denote only formulas of the language
Lbasic. On the other hand, given a finite set of roles δ = {R1, . . . , R1}, we
have in CR a constant, say c, denoting this set of roles. When we introduce the
axiomatization of the logic, we use the notation E(c) to refer to the set δ denoted
by constant c. For the sake of clarity we use sometimes the set of roles instead
of the constant in some axioms. For instance, if the constant c denotes the set
of roles

{seller(quality), seller(dT ime)}
we will write the latter instead of c.

Now we specify the predicate symbols corresponding to various sorts. In
the notation introduced below, the predicate symbol B, for instance, is written
B(SA, SF , SP , SR). This means that B is a predicate symbol of arity 4, with
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first argument in SA, second argument in SF , third argument in SR and fourth
argument in SP . The language LBC contains the following predicate symbols:

• Belief Predicate: B(SA, SF , SP , SR).

• Image Predicate: E(SA, SF , SP , SR).

• Reputation Predicate: S(SA, SF , SP , SR).

LBC contains various function symbols, that allow us to deal with parts of
the agents’ formulas and to express the reasoning of the agents. The functions
applied to the sort SF are one unary function neg : SF → SF for the negation
of formulas, and the binary functions con : SF × SF → SF for conjunctions and
imp : SF × SF → SF for implications.

For instance, if �ϕ�, �φ� ∈ CF then imp(�ϕ�, �φ�) is interpreted as �ϕ→ φ�,
con(�ϕ�, �φ�) as �ϕ ∧ φ�, and neg(�φ�) as �¬φ�. The expression or(x, y) stands
for ¬(con(¬(x),¬(y))). At first sight, all these functions can be regarded as
purely syntactic transformations, but they are important in our construction
because they allow us to write sentences that talk about parts of the formulas
of Lbasic.

The semantics of LBC is the usual for a first-order many-sorted language. In
this section we have presented only a few definitions and notation. A detailed
introduction to the syntax and semantics of first-order many-sorted logics can
be found in [Enderton, 1972].

4.2.3 The Basic Axioms

In this section we define a theory Γ over LBC , i.e. the axioms that agents use
to reason. The theory contains the minimal formulas to describe the behavior
of the predicates introduced above. We assume that the function product, sum
and subtraction are defined for rational constants: ∗ : SP × SP → SP where
∗ ∈ {·,+,−}. Remark that we are not giving an axiomatization of the logic, but
only a set of axioms for a theory (a set of sentences in this first-order language
closed under the logical consequence relation). For that reason we do not need
to introduce inference rules. We assume that the deductive system is given (for
instance, as defined in [Enderton, 1972]).

RA: Conjunction

∀ax1x2p1p2r1r2(B(a, x1, p1, r1) ∧B(a, x2, p2, r2)→ B(a, con(x1, x2), p1 · p2, r3))

when E(r1) ∩ E(r2) = ∅ and r3 denotes the union of the two sets of roles
E(r1)∩ E(r2). Intuitively speaking, the axiom indicates that when two formulas
talk about independent distributions (so, disjoint set of roles) we can ensure that
the joint probability is the product.

MP: Modus ponens

∀ax1x2r(B(a, x1, 1, r) ∧Bi(a, imp(x1, x2), 1, r)→ Bi(a, x2, 1, r))
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Note that this axiom (formulated as in [Grant et al., 2000]) indicates that
agents use modus ponens when reasoning with formulas of the object language
Lbasic. It is an axiom of a theory, not of the logic. We assume an standard
axiomatization of many-sorted first-order logic (cf. [Enderton, 1972]) in which
the modus ponens rule holds for every formula of the language.

NE: Necessity axiom for actions

∀axr(B(ι, x, 1, r)→ B(a, x, 1, r))

The axiom ensures that when the agent believes that a formula is true with a
probability 1, after whichever action is performed, the formula will be also true.

CO: Completeness of probability

∀ax(B(a, x, p, r)→ B(a, neg(x), 1− p, r))

This ensures that when an agent knows the probability of a formula, also
knows its complementary. The axiom is interesting because it states that a
formula and its complementary cover all the probabilistic space.

Moreover, note that given e ∈ CA a constant denoting an action, �ϕ1�, �ϕ2� ∈
CF , d1, d2 ∈ CP denoting rational numbers and c1, c2 ∈ CR denoting sets of
roles, when B(e, �ϕ1�, d1, c1) and B(e, �ϕ2�, d2, c2) hold, E(c1) ∩ E(c2) = ∅, and
c3 ∈ CR is a constant denoting the union of sets of roles E(c1)∪E(c2), the previous
axiomatization accomplishes the additive property of probabilistic spaces1:

B(e, con(�ϕ1�, �ϕ2�), d1, c3)∧
B(e, con(�ϕ1�, neg(�ϕ2�), d2, c3))→ B(e, �ϕ1�, d1 + d2, c1)

Also, under the same condition the disjunction of independent formulas en-
sures the standard calculus of probabilities:

B(e, �ϕ1�, d1, c1)∧
B(e, �ϕ2�, d2, c2)∧
B(e, con(�ϕ1�, �ϕ2�), d3, c3)→ B(e, or(�ϕ1�, �ϕ2�), d1 + d2 − d3, c3)

GBEL: Ground Beliefs

B(e1, �ϕ1�, 1, c∅)

...

B(en, �ϕn�, 1, c∅)
Those are the beliefs that describe the general knowledge of the agent. Each
ak is an action (possibly also the empty action ι), and each �ϕk� denotes a
proposition, a conjunction of propositions or a rule of the form (ϕ1 ∧ ϕm) → ϕ
from Lbasic. The probabilistic distributions are given by the predicates E and

1The standard formulation in probability theory is Pr(A ∩B) + Pr(A ∩B) = Pr(A).
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S interpreted by the Repage system, which ensures that the distributions are
correct. To avoid inconsistencies we require that all the propositions are positive.
c∅ denotes the empty set of roles.

GI: Ground Images

Let ϕ1 . . . ϕn be formulas of Lbasic that completely define the space of a
distribution corresponding to role R. Let also e ∈ CA be a constant denoting an
action and d1, . . . , d4 ∈ CP . Then the following formulas are in the theory:

E(e, �ϕ1�, d1, {R})
E(e, �ϕ2�, d2, {R})

...
E(e, �ϕn�, dn, {R})

E(e, �ϕ1 ∨ ϕ2�, d1 + d2, {R})
E(e, �ϕ1 ∨ ϕ3�, d1 + d3, {R})

...
E(e, �ϕ2 ∨ ϕ3�, d2 + d3, {R})
E(e, �ϕ2 ∨ ϕ4�, d1 + d4, {R})

...
E(e, �ϕ1 ∨ ϕ2 ∨ ϕ3�, d1 + d2 + d3, {R})
E(e, �ϕ1 ∨ ϕ2 ∨ ϕ4�, d1 + d2 + d4, {R})

...
E(e, �ϕ1 ∨ ϕ2 ∨ . . . ϕn�, 1, {R})

They describe the full probabilistic space with the constraint that the dis-
junction of all the propositions belonging to the distribution corresponding to
role R covers the complete space. For the kind of reasoning we want to perform,
this is enough.

GR: Ground Reputations

Let ϕ1 . . . ϕn be formulas of Lbasic that completely define the space of a
distribution corresponding to role R. Let also e ∈ CA be a constant denoting an
action and d1, . . . , d4 ∈ CP . Then the following formulas are in the theory:
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S(e, �ϕ1�, d1, {R})
S(e, �ϕ2�, d2, {R})

...
S(e, �ϕn�, dn, {R})

S(e, �ϕ1 ∨ ϕ2�, d1 + d2, {R})
S(e, �ϕ1 ∨ ϕ3�, d1 + d3, {R})

...
S(e, �ϕ2 ∨ ϕ3�, d2 + d3, {R})
S(e, �ϕ2 ∨ ϕ4�, d1 + d4, {R})

...
S(e, �ϕ1 ∨ ϕ2 ∨ ϕ3�, d1 + d2 + d3, {R})
S(e, �ϕ1 ∨ ϕ2 ∨ ϕ4�, d1 + d2 + d4, {R})

...
S(e, �ϕ1 ∨ ϕ2 ∨ . . . ϕn�, 1, {R})

IRB: Image-Reputation-Belief
Finally, the following axiom scheme combines E and S predicates over the

same action, formula and distribution to generate beliefs. Depending of how we
define the axioms, we can model different kinds of agents. The most general case
is:

∀axp1p2r(E(a, x, p1, r) ∧ S(a, x, p2, r))→ B(a, x, h(p1, p2), r)

where h : [0, 1] ∩ IQ × [0, 1] ∩ IQ → [0, 1] ∩ IQ is a function that combines the
probabilities and preserves the probability distribution properties. An example
of such a function could be the average, or weighted average function in order to
give more importance to image or reputation information. Next section discusses
it in more detail.

Equality Predicate
For all formulas ϕ, φ of Lbasic the theory contains the following:

neg(�ϕ�) = �¬ϕ�

imp(�ϕ�, �φ�) = �ϕ→ φ�
con(�ϕ�, �φ�) = �ϕ ∧ φ�

We must include them to ensure the completeness with respect to our in-
tended semantics.

4.2.4 The Basic Semantics

In this subsection we show that the set of axioms presented above defines a first-
order theory (say Γ) that is consistent. We do it by showing that the theory
has, at least, a model that contains a set of positive atoms that exist in the
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model. Such model represents the reasoning process that the agent follows to
deduce belief predicates. Following a similar approach than [Grant et al., 2000],
we consider only models that contain ground terms of the language, so Herbrand
models.

Proposition The theory Γ has a minimal modelM for any underlying language
Lbasic.

Proof To prove it, we construct M by induction following a stratification con-
struction of the model. The main idea is to add the minimal number of atoms
that accomplish the axioms, starting from the atoms that must be present in
all the models, i.e. GBEL (ground beliefs), GI (ground images), GR (ground
reputation) and the equality predicates for terms and rational numbers, and
continuing by induction. Like in the construction of models used in logical pro-
gramming, the strata k (k ≥ 1) of the model includes all the generated atoms
that require the application of at least k axioms to be created. Thus, the ground
atoms generated from the axioms GBEL, GI, GR and equality predicates are in
the first strata, and belong to the model M (note that they are all positive),
becoming the starting point of the construction. In the induction step we assume
that M already contains the atoms until the strata k. The generation of the
strata k+1 is done by applying any relevant axiom to the atoms already inM.

The application of axioms in the induction step implies to add the minimal
number of atoms that satisfy each axiom. We do not show the details on how
each axiom creates and add new atoms. However, we illustrate it with the axiom
RA (conjunction). Let us assume that the following ground atoms are already
in the model.

B(buy(john), V eryGood Q, 0.9, {seller(quality)})
B(buy(john), dT ime ≤ 5, 0.5, {seller(dtime)})

Then, to preserve the consistency of the model, the axiom RA is applied, and
then, the following atom must be included into the model:

B(buy(john), V eryGood Q ∧ dT ime, 0.45, {seller(quality), seller(dT ime))}
Under the assumption that GI and GR are well-constructed, so, they define
correct probabilistic distributions, and that all GBEL axioms contain positive
propositions, the construction of the model can be done for any underlying Lbasic

without falling into inconsistencies. �
Given ground beliefs (GBEL), ground images (GI) and ground reputations

(GR), the construction of the model M gives us the belief formulas that the
agent holds. Note that one and only one model exists, because all the axioms
are universally quantified and do not contain disjunctions.

Also, note that under the assumption that GI and GR define correct prob-
abilistic distributions, the axiomatization models the behavior of probability
spaces for each role, and the combination of them when they are independent
(different roles are involved). This is what the axiom IRB (image-reputation-
belief) ensures.
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4.2.5 Related Work

Some current state-of-the-art logics inspired us for defining the logic. The
probabilistic and dynamic notions have been mostly treated in epistemic logic
([Kooi, 2003], [Fagin and Halpern, 1994]), and in a simpler way in belief logic
[Casali et al., 2004]. Propositional probabilistic variants of dynamic logic have
been studied with the goal of analyzing probabilistic programs (for instance
[Kozen, 1983]).

Furthermore, some formalizations of trust using belief logic have been done
[Liau, 2003], where trust is related to information acquisition in multi-agent
systems, but in a crisp way. Similar to this, in [Demolombe and Lorini, 2008],
modal logic is used to formalize trust in information sources, also with crisp
predicates. Here, actions and communicated formulas are also used.

Regarding fuzzy reasoning on trust issues, in [Flaminio et al., 2008] a trust
management system is defined in a many-valued logic framework where beliefs
are graded. Also, in [Demolombe and Liau, 2001] it is proposed a logic that in-
tegrates reasoning about graded trust (on information sources) and belief fusion
in multi-agent systems. Our logic does not use graded beliefs. Instead, we use
the notion of beliefs on probability sentences, since Repage social evaluations
describe probabilities on the outcomes of future direct experiences.

Finally, in [Pinyol et al., 2008] a probabilistic dynamic belief logic is defined
for dealing also with image and reputation notions. In this logic, beliefs and
actions are considered normal modalities while probability predicates are con-
sidered non-standard modalities. In [Pinyol et al., 2008] only the expressiveness
of the logic is explored.

Notice that we could have extended any of the previous logics (or other
formalisms such as Gabbay’s labelled deductive systems) to fulfill our original
necessities. However, we wanted a very flexible logical framework with a very
clear orientation towards possible implementations. Even when first-order logic
is semi-decidable and it is not possible to guarantee very low complexities, it
is indisputable that restricting the logic to Horn clauses together with other
minimal assumptions, would ensure an easy adaptation to logic programming
platforms.

4.3 Grounding Image and Reputation to LBC

In this section we show how LBC is capable of capturing image and reputation
predicates from Repage, and how such information is transformed into the beliefs
of the agent.

4.3.1 Image and Reputation Predicates

As stated, image and reputation predicates computed from Repage are captured
by the following expressions

• Img(j, r, [Vw1 , . . . , Vwm ])
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• Rep(j, r, [Vw1
, . . . , Vwm

])

corresponding to the Image and Reputation of agent j playing the role r, from
the point of view of the evaluator. We mention that the original implementation
of Repage considers a tuple of 5 elements to represent the value of the evaluations.
However, we generalize it, considering m (m ≥ 2) elements. When in Repage the
role and its labeled weights are defined, the role uniquely identifies an interaction
model with two participants, and each wk identifies a predicate, a formula from
Lbasic. To simplify, we can assume that the interaction model identified by a
role is summarized in a single action2. Thus, we presuppose the definition of
a mapping Rr,j between a given role r and agent j to an action. In a similar
way, we assume a mapping Tr,wk

between each role r and label wk to a formula
written in Lbasic.

We illustrate this with an example: In a typical market, the transaction of
buying a certain product involves two agents, one playing the role of buyer (the
evaluator) and the other playing the role of seller (j). From the point of view of
the buyer, if she wants to evaluate other agents that play the role of seller, she
knows that the associated action is buy at agent j. So, Rseller,j maps to buy(j).
In the same way, the agent must know the meaning of each label wk of Repage.
Then, we can define that Tseller,w1 is veryBadProduct, Tseller,w2 is okProduct,
etc.

In this mapping, the Repage predicate Img(j, seller, [0.2, 0.3, . . .]) indicates
that the buyer believes that there is a probability of 0.2 that after execut-
ing the action Rseller,j (corresponding to the action buy(j)), she will obtain a
Tseller,w1

(veryBadProduct); with 0.3 that she will obtain Tseller,w2
(OKproduct),

etc. With reputation predicates the structure is similar, but the concept is dif-
ferent. In this case it indicates that the buyer believes that the corresponding
evaluation is said by the agents in the group.

Following these indications, the representation of both predicates in LBC is
quite simple. Let j be an agent identifiers and r a role, then

Img(j, r, [Vw1
, Vw2

, . . .])
E(Rrj , Tr,w1

, Vw1
, {r})

E(Rrj , Tr,w2 , Vw2 , {r})
. . .

Rep(j, r, [Vw1 , Vw2 , . . .])
S(Rrj , Tr,w1

, Vw1
, {r})

S(Rrj , Tr,w2 , Vw2 , {r})
. . .

Repage ensures a correct probabilistic information in terms of a probabilistic
distribution, and from these assignments it is easy to calculate the remaining
disjunction probabilities necessary for the logical theory.

As a matter of example and following the scenario above, let j1, j2 be agents,
if Repage has generated the following predicates:

Img(j1, seller, [.1, .1, .1, .2, .5])
Rep(j2, seller, [.6, .1, .1, .1, .1])

2An interaction model can be seen as a set of actions to be performed by the agents.
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The logical theory should include regarding j1

E(buy(j1), V BadProduct, 0.1, {seller})
E(buy(j1), BadProduct, 0.1, , {seller})
E(buy(j1), OKProduct, 0.1, , {seller})
E(buy(j1), GoodProduct, 0.2, , {seller})
E(buy(j1), BadProduct, 0.5, , {seller})

And regarding j2:

S(buy(j2), V BadProduct, 0.6, {seller})
S(buy(j2), BadProduct, 0.1, {seller})
S(buy(j2), OKProduct, 0.1, {seller})
S(buy(j2), GoodProduct, 0.1, {seller})
S(buy(j2), BadProduct, 0.1, {seller})

4.3.2 Relationship between Image and Reputation

One of the key points of Repage and the cognitive theory of reputation that
underlies it [Conte and Paolucci, 2002] is the relationship between image and
reputation. The theory states that both are social evaluations but distinct ob-
jects. With the representation we give for image and reputation in the LBC and
the axiomatization (the theory Γ), the difference depends on the relationship
between the predicate E and the predicate S.

Regarding the key question: How does reputation influence image?, Conte
and Paolucci in [Conte and Paolucci, 2002] state that the relation is established
basically at the pragmatic-strategic level of the agent. At this level, agents
must decide which source of information to use. Typically, reputation informa-
tion is used only if image information is not present, but from this perspective,
reputation cannot influence the inner beliefs of the agent. However, from our
logical perspective, this relationship seems closer and is defined by the axiom
IRB (Image-Reputation-Belief):

∀axp1p2r(E(a, x, p1, r) ∧ S(a, x, p2, r))→ B(a, x, h(p1, p2), r)

Different functions h : [0, 1] ∩ IQ × [0, 1] ∩ IQ → [0, 1] ∩ IQ model dif-
ferent behaviors. We only require that h preserves the probability distri-
bution properties. Some elaborated aggregation functions can be found in
[Sabater-Mir and Paolucci, 2007], but basically, they are based on weighted av-
erages. Thus, a family of functions is determined by the expression:

h(pE , pS) =
δE · pE + δS · pS

δE + δS

where δE , δS ∈ IQ≥. Table 4.1 summarizes the behavior of a family of agents
depending on the values of δE and δS . Note that h can be defined globally,
as it is in the axiomatization, but we can have different functions for different
distributions (roles). For instance, following the example above,
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Class Condition Description
H1 δE �= 0, δS = 0 Only image - The agent does not trust in

reputation information.
H2 δE �= 0, δS = 0 Only reputation - The agent does not trust

in image information
H3 δE = δS �= 0 The agent considers that both sources

of information have the same importance.
H4 δE > δS Image is more important than reputation
H5 δE < δS Reputation is more important than image

Table 4.1: Different h function classes when it is based on a weighted average:
h(pE , pS) =

δE ·pE+δS ·pS

δE+δS

∀axp1p2 (E(a, x, p1, {Seller(Q)})∧
S(a, x, p2, {Seller(Q)}))→ B(a, x, hq(p1, p2), {Seller(Q)})

∀axp1p2 (E(a, x, p2, {Seller(dT ime)})∧
S(a, x, p2, {Seller(dT ime)}))→ B(a, x, ht(p1, p2), {Seller(dT ime)})

where hq ∈ H2 and ht ∈ H4 (see table 4.1 for a description of H2 and H4).
This indicates that the evaluator does not trust its own experiences regarding
the quality of the product and relies on reputation. Instead, regarding the
delivery time the agent gives more importance to its own direct experiences.
This configuration may look strange, but let us consider for instance an agent
that is aware of its limitations regarding certain skills, or a robot agent that is
aware that its sensors do not work well. In general, to establish this function
on design time is quite difficult, because it requires precise knowledge of the
society. Ideally, one can design metareasoning processes to establish the best
function when the system is running in a real scenario. In fact, simple q-learning
techniques suffice to some extend for this purpose (See the appendix B).

4.4 Conclusions

This chapter defines the language used in our BDI+Repage model to express and
reason about the domain knowledge of the agent, and in particular, the social
evaluations coming from Repage. We already exposed the related work that we
originally explored for this enterprise and the reasons why we decided to define
a new logic.

The logic allows the necessary probabilistic reasoning to capture the infor-
mation computed from Repage. It this sense, the Repage model computes social
evaluations (image and reputation) as probability distributions over the possi-
ble outcomes that each role may achieve. Under the assumption that the roles
are independent, their associated distributions are stochastically independent
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as well. Current state-of-the-art probabilistic logics do not take advantage of
such knowledge and use Lukasiewicz-like axiomatizations to model probabilistic
inference, which does not consider the knowledge of independent distributions.

Then, our LBC logic permits such inferences, and captures the ground mean-
ing of image and reputation from Repage to beliefs. In our settings, such re-
lationship is established by the axiom IRB of the LBC theory. Different IRB
axioms model different kinds of agents. In particular, we have defined five fam-
ilies of agents, all of them based on the combination of image and reputation
through weighted averages. In this chapter we do not intend to provide a com-
plete categorization of such families of agents, but show a representative set
of simple combinations that substantially alterate the reasoning process of the
agent. A prove of that can be found in the appendix, where we show how the
selection of the IRB axiom at run-time should be performed to allow certain
level of adaptation. In the next chapter, we put in context the logic within a
BDI agent architecture.
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Chapter 5

Reasoning Using Social
Evaluations

5.1 Introduction

In the previous sections we have defined the language LBC and a theory written
in that language that expresses the reasoning process of the agent. We have also
shown how the theory captures the semantics of image and reputation predicates
coming from Repage, and how such information is combined to finally generate
beliefs.

In this section, we propose a possible integration of Repage in a BDI agent1.
The underlying idea is to define a BDI agent, specified as a multi-context system,
that uses the logic presented in Section 4.2 to describe the belief base of the agent.
Then, such information would be combined with the desires of the agent and
other functional components to generate intentions, which in turn would end up
generating proper actions. In the first part of the section, we briefly introduce the
notion of multi-context system and some of the related work regarding existent
multi-context BDI specifications. The second part relies on the explanation of
each element that compounds our BDI+Repage architecture.

5.1.1 Multi-context Systems

Multi-context systems (MCS) provide a framework to allow several distinct the-
oretical components to be specified together, with a mechanism to relate these
components [Giunchiglia and Serafini, 1994]. These systems are composed of a
set of contexts (or units), and a set of bridge rules. Each context can be seen as a
logic and a set of formulas written in that logic. Bridge rules are the mechanisms
to infer information from one context to another.

1A preliminary version of the model described in this section was originally published at
[Pinyol and Sabater-Mir, 2009a].
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Giunchiglia and Serafini [Giunchiglia and Serafini, 1994] proposed the follow-
ing formalization of MCS: Let I be the set of context names, a MCS is formalized
as 〈{Ci}i∈I ,�br〉:

• Ci = 〈Li, Ai,�i〉, where Li is a formal language with its syntax and se-
mantics, Ai is a set of axioms and �i the set of inference rules. Thus, Li

and Ai define an axiomatic formal system, a logic for the context Ci. Be-
side axioms, it is possible to include a theory Ti as predefined knowledge.
All Ai, �i and Ti are written in the language Li.

• �br is a set of bridge rules.

Bridge rules can be seen as inference rules among contexts. Each one has a set of
antecedents (or preconditions) and a consequent (or postcondition). Then, when
each formula in the antecedent is true in its respective context, the consequent
becomes true as well (also in its context). A bridge rule is represented as follows:

Ci1 : ϕ1, . . . , Cin : ϕn

Cix : ϕx

where Cik : ϕk indicates that formula ϕk belongs to the context Cik , formulas
ϕ1 . . . ϕn are the antecedents and ϕx is the consequent. Each ϕi is a formula
that belongs to its respective context, and written in its own language. So, when
the formulas ϕ1, . . . ϕn hold in their contexts, the formula ϕx is generated in the
context Cix . However, we extend this approach by allowing in preconditions,
comparisons between rational numbers. For this, the antecedent may include
a set Q1, . . . , Qn (where n ≥ 0) of extra conditions that must be evaluated as
true to make the bridge rule applicable. Each Qi has the form r1 ≤ r2 where
r1, r2 ∈ IQ and ≤ corresponds to the standard boolean comparison on rational
numbers.

5.1.2 MCS and BDI Agents

The use of MCS offers several advantages when specifying and modeling agent
architectures [Sabater-Mir et al., 2002]. From a software engineering perspec-
tive, MCS supports modular architectures and encapsulation. From a logical
modeling perspective, it allows the construction of agents with different and
well-defined logics, keeping all formulas of the same logic in their corresponding
context. This increases considerably the representation power of logical agents,
and at the same time, simplifies their conceptualization.

Also, the use of MCS to specify BDI is not new. The BDI architecture de-
fined in [Parsons et al., 1998] uses one context for each attitude; there is the
belief context (B), the desire context (D) and the intention context (I). Each
of them is equipped with a logic that corresponds to the premises that Rao
and Georgeff [Rao and Georgeff, 1991] stated. Bridge rules among contexts de-
termine the relationship between the attitudes and the type of agent: strong
realism, realism and weak realism [Rao and Georgeff, 1991]. A communication
context (C) is also included.
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Figure 5.1: The Repage context embedded in a multi-context BDI agent. Circles
and arrows represent contexts and bridge rules respectively.

In [Gaertner et al., 2006], this specification is extended by means of a new
commitment context, equipped with a deontic logic, creating then a new attitude
of obligation. In [Casali et al., 2004] a multi-context BDI agent is specified and
its attitudes are graded. Therefore, beliefs, desires and intentions are multi-
valued with grades from 0 to 1. For our BDI model, we take the logic defined for
desires and intentions described in [Casali et al., 2004] and [Casali et al., 2008].

5.2 The Multi-context BDI Model

The specification of our BDI agent as a multi-context system is formalized with
the tuple Ag = 〈{BC, DC, IC, PC, CC, RC}, �br〉. These correspond to Belief,
Desire, Intention, Planner, Communication and Repage contexts respectively.
The set of bridge rules �br incorporates the rules 1, 2, 3, 4, P,Q and B (shown
in Figure 5.3) and the bridge rules AI and AR (shown in Figure 5.2). Figure 5.1
shows a graphical representation of this multi-context specification. In the next
sections we briefly explain each context and bridge rule.

5.2.1 Belief Context (BC)

This context contains the beliefs of the agent. Hence, we use the logic introduced
in Section 4.2, to integrate the knowledge coming from the reputation model
Repage and other knowledge gathered by the agent. Since LBC is a many-
sorted first-order logic, the inference rules in this context are those from first-
order logic. Thus, BC-context becomes an inference system that incorporate the
theory defined in section 4.2.
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5.2.2 Desire Context (DC)

This context deals with the desires of the agent. Like the BDI model described
by Rao and Georgeff in [Rao and Georgeff, 1991], they are attitudes that are
explicitly represented and that reflect the general objectives of the agent. We
consider that desires are graded, and for that, we use the multi-valued logic
(DC-logic) based on the Lukasiewicz logic and described in [Casali, 2008]. The
motivation for this decision arises when considering that reputation information
has already a graded nature, in our case, represented as probabilities. Like in
decision theory where agents manage expected utilities, we consider that from
one side we obtain the probabilities, and from the other the strength of the
desires. Combining them, we implement the idea of expected utility.

DC-language is built as an extension of a propositional language (in our case
we use Lbasic, the object language), by adding two fuzzy modal operators: D+

and D−. The intended meaning of D+ϕ is that the formula ϕ is desired by
the agent holding it, and its truth degree, from 0 (minimum) to 1 (maximum),
represents the level of satisfaction if ϕ holds. The intended meaning of D−ϕ is
that ϕ is negatively desired, and the truth degree represents the level of disgust
if ϕ holds. Also, DC-logic includes truth constants r where r ∈ [0, 1]

⋂
IQ, and

the connectives & and ⇒ corresponding to the Lukasiewicz conjunction and
implication respectively. In our architecture, agents’ preferences are expressed
by a set of desire expressions (both positive and negative) defining a theory.

We differentiate generic from concrete desires. Generic desires define the
general preferences of the agent, and are formulas like D∗φ, where ∗ stands from
+ or − and φ does not contain any action. Concrete desires are formulas like
D∗αφ and define the desire to satisfy φ by executing action α. The original DC-
logic from [Casali, 2008] does not consider subindex for the actions. However it
uses this notation for the intentions (see next subsection). With this we indicate
that a concrete desire takes into account the action to achieve the content. In
this case, the grade represents the expected satisfaction level (or disgust if it is
a negative desire) if the action is executed, implementing an equivalent expected
utility from decision theory. Also, it serves to indicate that in the framework,
actions do not behave as in dynamic logic. In our model, concrete desires are
generated from generic desires and beliefs through bridge rules 1 and 2 (see
section 5.2.7).

Because in Lukasiewicz logic the formula φ⇒ ϕ is 1-true iff the truth value
of ϕ is greater or equal to that of φ, and the truth value of r is exactly r,
formulas like r ⇒ D+ϕ in the theory of an agent i indicate that the level of sat-
isfaction of agent i is at least r if ϕ holds. The same with negative desires and
the level of disgust. From now on we will write these formulas as (D+ϕ, r) and
(D−ϕ, r). The semantics is given in terms of a positive and negative preference
distributions over the possible worlds. The axiomatization includes the classi-
cal logic axiom of propositional logic for non-modal formulas, plus the axioms
of Lukasiewicz [Hájek et al., 1995]. It is important to remark that the author
defines the semantic condition that a world that is negatively desired to some
extend cannot be positively desired. In terms of the axiomatization, this implies
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that the same formula cannot be both negatively and positively desired.

Note though that the inclusion of D−ϕ and D+¬ϕ is completely valid. D−ϕ
points out to the worlds that the agent does not want to reach, but this does
not mean that he will try actively to avoid it. Instead, when we include D+¬ϕ
in the theory the agent will try to reach worlds where ¬ϕ holds. We refer to
[Casali, 2008] for technical details and proof of completeness of the logic.

5.2.3 Intention Context (IC)

This context describes the intentions of the agent. Like in the Rao and Georgeff’s
BDI model [Rao and Georgeff, 1991], intentions are explicitly represented, but
in our case generated from beliefs and desires. Also, we consider that intentions
are graded, and for this we use the IC-logic defined in [Casali et al., 2004].

Similar to DC-logic, IC-logic is built on the top of a propositional language
(in our case, the Lbasic) defining a fuzzy modal operator to express formulas
like Iαϕ. It indicates that the agent has the intention to achieve ϕ through the
action α, and its truth degree (from 0 to 1) represents a measure of the trade-off
between the benefit and counter-effects of achieving ϕ through α. Moreover,
IC-logic is defined in terms of a Lukasiewicz logic in the same way as DC-logic.
Also, formulas like r ⇒ Iϕ will be written as (Iϕ, r). For the technical details
and the proof of completeness we refer to [Casali, 2008].

Our system generates intentions through the bridge rule 3, from a positive
concrete desire and the set of negative desires that may be achieved through the
same action.

5.2.4 Planner Context (PC) and Communication Context
(CC):

The logic in the Planner context is a first-order logic restricted to Horn clauses.
In this first approach, this context only holds the special predicate action, which
defines a primitive action together with its precondition. We look forward to
introducing plans as a set of actions in the future. Communication context is
a functional context as well, and its logic is also a first-order logic restricted to
Horn clauses with the special predicates does to perform actions, and recjϕ to
indicate that the agent has received the communication ϕ from agent j. They
are first order predicates, not modalities.

5.2.5 Repage Context (RC)

The Repage context contains the Repage model. We capture the informa-
tion that the model computes with the predicates Img(j, r, [Vw1

,Vw2
,. . .]) and

Rep(j, r, [Vw1
,Vw2

,. . .]), corresponding to the Image and Reputation of agent j
playing the role r. See chapter 4 for the details.
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AI :

RC : Img(j, r, [Vw1
, Vw2

, . . .])
BC : E(Rrj , Tr,w1 , Vw1 , {r})
BC : E(Rrj , Tr,w2 , Vw2 , {r})

. . .

AR:

RC : Rep(j, r, [Vw1
, Vw2

, . . .])
BC : S(Rrj , Tr,w1

, Vw1
, {r})

BC : S(Rrj , Tr,w2
, Vw2

, {r})
. . .

Figure 5.2: The bridge rules AI and AR (see Figure 5.1). They translate Image
and Reputation predicates respectively into the belief context.

5.2.6 Bridge Rules

Bridge Rules AI and AR

Bridge rules AI and AR (see Figure 5.2) are in charge of generating the cor-
responding E and S predicates from images and reputations respectively, as
explained in section 4.3. The key idea in this interface is that if the image or
reputation information changes in Repage, the previously generated E and S
predicates will not have the support to be valid any more, and thus, they must
be out withdrawn from the theory (together with all the inferences performed so
far from these predicates), placing the new ones instead. In this way, the theory
is always consistent with the information that Repage computes.

5.2.7 Bridge Rules 1, 2, 3, 4

Bridge rules 1 and 2 (see Figure 5.3) transform generic desires to more concrete
and realistic desires. To do this, these bridge rules merge generic desires from DC
(with absolute values of satisfaction or disgust) with the information contained
in BC, which includes the probability to achieve the desire by executing certain
action. The result is a desire whose gradation has changed, becoming more
realistic. This is calculated by the function g. If we define it as the product of
both values, we obtain an expected level of satisfaction/disgust2.

Bridge rule 3 generates intentions. It takes into account both the expected
level of satisfaction and the cost of the action. At the same time, executing an
action to achieve certain formula can generate undesirable counter-effects. Thus,
bridge rule 3 also takes into account the possible negative desires that can be
reached by executing this action. In this bridge rule, for each positive realistic
desire (D+), we must include all negative desires (D−) that can result from the
same action. In this way we have the value of the positive desire (δ+) and the
sum of all negative desires (δ−) that can be achieved by executing the same

2When g is defined as the product, the outcome is very similar to the notion of expected
utility used in decision theory.
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1:
DC : (D+ϕ, dϕ)

BC : B(α,ϕ, pψ, Q)
DC : (D+

αϕ, g(dϕ, pψ))

2:
DC : (D−ϕ, dϕ)

BC : B(α,ϕ, pψ, Q)
DC : (D−αϕ, g(dϕ, pψ))

3:

DC : (D+
αϕ, δ), PC : action(α, P ), PC : P

DC : (D−αψ1, δψ1
), . . . , (D−αψn, δψn

)
δ −∑n

k=1 δψk
≥ 0

IC : (Iαϕ, f(δ,
∑n

k=1 δψk
))

4:
IC : (Iαϕ, εmax)
CC : does(α)

P ,Q ,B:
BC : Bϕ
PC : ϕ

,
BC : Bϕ
RC : ϕ

,
CC : recjϕ
RC : recjϕ

Figure 5.3: The bridge rules 1, 2, 3, 4, P, Q and B (see Figure 5.1).

action. The strength of the intention that is created is defined by a function f .
Different f functions would model different behaviors. In our examples we use
the following definition: f(δ+, δ−) = max(0, δ+ − δ−).

Finally, bridge rule 4 instantiates a unique intention (the one with maximum
degree) and generates the corresponding action in the communication context.

5.2.8 Bridge Rules P,Q and B

Bridge rules P and Q allow the planner and Repage context respectively to be
aware of the beliefs of the agent. The planner context uses this information to
build plans, actions and their preconditions. Repage uses the information to
configure the mappings R and T .

Rule B reflects the reaction of the communication context once it receives
communicated images, communicated reputation, third party images from other
agents and fulfillment predicates. The content of these communications is di-
rectly introduced in Repage, which will update its information.

5.3 An Example

In this section we analyze the reasoning processes performed by an executable
version of the model presenting an example.

The base scenario we use involves a BDI agent that, as a manager of a small
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restaurant, needs to periodically order wine to refill the stock. In this scenario,
several providers are available. The information our agent wants to capture
about them includes reliable information, for instance the price she will have
to pay, but also uncertain information such as the delivery time of the orders
and the quality of the wine. While reliable information is introduced as beliefs
of probability 1, uncertain information will result in beliefs of lower probability
values.

This situation can be formalized in multiple ways. We can define four possible
pairwise disjoint predicates for the quality of the wine: poorWine, averageWine,
goodWine, excellentWine (pW , aW , gW and eW from now on) and five pair-
wise disjoint predicates for the delivery time: days(0, 1), days(2, 3), days(4, 5),
days(6, 10), days(11,∞) indicating respectively a delivery time up to 1 day, be-
tween 2 and 3 days etc. Also we define the predicates paid(X), paidLess(X),
paidMore(X) to indicate that the agent has paid X, less than X and more
than X respectively,and the implication relation paid(X)→ paidLess(Y ) when
X < Y , and paid(X) → paidMore(Y ) when X > Y . The predicate budget(X)
indicates that the money she has in the budget is X. This knowledge and the
implication among predicates must be introduced also as beliefs.

The interaction model defining the purchase of wine indicates that providers
act as wineSellers, but agent i wants to evaluate them in the two independent
dimensions: the quality of the wine and the delivery time. Thus, Repage uses the
roles wineSeller(quality) and wineSeller(dT ime). The mapping R (see section
4.3.1) of these two roles points to the same action buyWine (buy from now on),
which then summarizes the entire interaction model. The mapping T of the role
wineSeller(quality) relates w1 to poorWine, w2 to averageWine etc, and the
mapping T of the role wineSeller(dT ime) relates w1 with days(0, 1), w2 with
days (2, 3), etc.

5.3.1 The Initial Knowledge

In this world, our agent knows the existence of four providers represented by
alice, bob, charlie and debra respectively. Our agent is aware of their prices, and
so this knowledge is introduced as beliefs:

B(buy(alice), hasWine ∧ paid(1000), 1, e∅)
B(buy(bob), hasWine ∧ paid(900), 1, e∅)

B(buy(charlie), hasWine ∧ paid(400), 1, e∅)
B(buy(debra), hasWine ∧ paid(1300), 1, e∅)

(5.1)

Bridge rule P introduces the information above into the planner context in order
to generate the corresponding plans (simple actions in this case). It follows then,
that in PC we find

action(buy(alice), hasMoreMoney(1000))

indicating that the action of buying wine from alice is preconditioned on the
budget having more than 1000.
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5.3.2 Study Cases

Exploring the Space: Case 1

Our agent is new to the business and only trusts her own direct experiences.
It means that axiom IRB uses a function h of the class H1. Since she is just
starting the business, she is mostly concerned about the quality of the wine
rather than the delivery time. She has a budget of 1350 (budget(1350)) for the
purchase. Regarding her desires, she would be satisfied with paying up to 1350
for an excellent wine. With the same strength she would be satisfied paying up
to 800 for a good wine. In any case, she needs the wine. What she does not
want is a poor or average wine. Lower on her priority list is obtaining the wine
quickly, but still a long delivery time is not desired. These preferences can be
formalized as desires in the DC as follows:

(D+(hasWine ∧ paidLess(1350) ∧ eW ), .9)
(D+(hasWine ∧ paidLess(800) ∧ gW ), .9)

(D+hasWine, .7)
(D−pW, 1)
(D−aW, .8)

(D−days(11,∞), .5)
(D−days(6, 10), .4)

(5.2)

Since she does not have any information about the providers, Repage predicates
contain the maximum possible uncertainty. For instance, the corresponding
image predicates for charlie are:

Img(charlie, wineSeller(quality), [.25, .25, .25, .25])
Img(charlie, wineSeller(time), [.2, .2, .2, .2, .2])

(5.3)

Under these conditions the reasoning process leads to a random choice between
three agents (charlie,bob and alice) to achieve the desire hasWine. In the
following lines we briefly explain the most relevant steps.

Bridge rule AI generates beliefs in the BC from images. As said before, the
epistemic decision is not done at this rule but inside Repage, which computes
image and reputation. In the case of charlie this rule is activated regarding the
role wineSeller(quality) as:

RC : Img(charlie, wineSeller(quality), [.25, .25, .25, .25])
BC : E(buy(charlie), pW, .25, {wineSeller(quality)})
BC : E(buy(charlie), aW, .25, {wineSeller(quality)})
BC : E(buy(charlie), gW, .25, {wineSeller(quality)})
BC : E(buy(charlie), eW, .25, {wineSeller(quality)})

. . .

(5.4)

All possible outcomes after buying from charlie have the same probability. This
rule also generates the probabilities of disjoint formulas:
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BC : E(buy(charlie), pW ∨ aW, .50, {wineSeller(quality)})
BC : E(buy(charlie), pW ∨ gW, .50, {wineSeller(quality)})
BC : E(buy(charlie), pW ∨ eW, .50, {wineSeller(quality)})
BC : E(buy(charlie), aW ∨ gW, .50, {wineSeller(quality)})
BC : E(buy(charlie), aW ∨ eW, .50, {wineSeller(quality)})
BC : E(buy(charlie), gW ∨ eW, .50, {wineSeller(quality)})
BC : E(buy(charlie), pW ∨ aW ∨ gW, .75, {wineSeller(quality)})
BC : E(buy(charlie), pW ∨ gW ∨ eW, .75, {wineSeller(quality)})
BC : E(buy(charlie), aW ∨ gW ∨ eW, .75, {wineSeller(quality)})
BC : E(buy(charlie), pW ∨ aW ∨ gW ∨ eW, 1, {wineSeller(quality)})

The previous E predicates are directly transformed to B predicates
through the axiom IRB, which uses a h function belonging to H1 (only
images are taken into account). In BC, because of the assumption that
the quality and delivery time dimensions are stochastically independent,
probabilistic inference rules of the LBC theory are applied. For exam-
ple, from B(buy(charlie), eW, .25, {wineSeller(quality)}) and B(buy(charlie),
days(0, 1), .2, {wineSeller(time)}) can be deduced

B(buy(charlie), eW ∧ days(0, 1), .05, {wineSeller(quality), wineSeller(time)})

, where .05 is the product of .25 and .2. In particular, and for
the interest of our example, the following belief is also generated:

B(buy(charlie), hasWine ∧ paid(400) ∧ eW, .25,
{wineSeller(quality), wineSeller(time)})
Bridge rules 1 and 2 are executed for each generic positive and negative desire

respectively. For instance, rule 1 is fired for the first desire as follows:

DC : (D+(hasWine ∧ paidLess(1350) ∧ eW ), .9)
BC : B(buy(charlie), hasWine ∧ paidLess(1350) ∧ eW, .25, Q)

(D+
buy(charlie)(hasWine ∧ paidLess(1350) ∧ eW ), g(.9, .25))

(5.5)

If we consider that g(p, q) = p · q, the resulting grade of the positive concrete
desire is .225. It indicates that performing the action of buying from charlie
to obtain an excellent wine and paying less than 1350 has an expected level of
satisfaction of .225. Of course, for the same desire bridge rule 1 can be executed
several times because different actions can lead to the same desire. Negative
desires fire bridge rule 2 generating concrete negative desires. They indicate the
expected level of disgust if the action is executed.

These negative desires are used in bridge rule 3 to take into account possible
counter-effects of satisfying certain desire. Rule 3 is executed only one time for

98



each positive concrete desire. For example, considering the desire above:

DC : (D+
buy(charlie)(hasWine ∧ paidLess(1350) ∧ eW ), .225)

DC : (D−buy(charlie)days(11,∞), .08)

DC : (D−buy(charlie)days(6, 10), .08)
DC : (D−buy(charlie)aW, .2)

DC : (D−buy(charlie)pW, .25)

PC : action(buy(charlie), budgetMore(400))
PC : budget(1100)→ budgetMore(400)

IC : (Ibuy(charlie)(hasWine ∧ paidLess(1350) ∧ eW ), f(.225, .61))

(5.6)

In this case, notice that the expected level of satisfaction of achieving the
desire by buying from charlie is .225 but its counter-effects bring an expected
level of disgust of .61. Taking f(δ+, δ−) = max(0, δ+− δ−), this intention has
a grade of 0. Why would we perform an action if we expected from it to obtain
more disgust than benefit?.

If the intention had the maximum degree, bridge rule 4 would generate the
corresponding action. In our example, after calculation, the intentions with a
grade higher than 0 result to be:

(Ibuy(charlie)hasWine, .14)
(Ibuy(bob)hasWine, .14)
(Ibuy(alice)hasWine.14)

(5.7)

As expected, since Repage does not have any information and our agent needs
to buy wine, a random choice can be made among these possibilities. Buying
from debra is not considered because in rule 3 the precondition of having a
budget greater than 1300 does not hold (see the action definition in the planner
context). Assuming that she picks (Ibuy(charlie),hasWine,.14), bridge rule 4 is
fired executing the action buy(charlie).

The result of this transaction fulfills the agent’s desires in terms of delivery
time and quality. This information is inserted into Repage by means of the bridge
rule B. Repage evaluates the outcomes and updates the values of image and
reputation. In the next reasoning process, this information will be introduced
as beliefs by bridge rule AI and AR, as we have shown at the beginning of this
case.

Continuing with our example, we suppose that charlie delivers the wine quite
fast, in less than one day, but the quality of the wine is not very good. This
makes Repage update image predicates as

Img(charlie, wineSeller(quality), [.4, .4, .1, .1])
Img(charlie, wineSeller(time), [.45, .25, .1, .1, .1])

(5.8)

We recall here that w1, w2, . . . in the role wineSeller(quality) correspond to pW ,
aW ,. . . meanwhile in the role wineSeller( time) they correspond to days(0, 1),
days(2, 3), . . . respectively.
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Receiving Reputation Information: Case 2

After a while, our agent needs to buy more wine. She has exactly the same desires
as before and the same budget, so she is mainly interested in the quality of the
wine rather than delivery time. But this time, her image information about
charlie has changed. Furthermore, we assume that she has received several
reputation communications, about both charlie and alice. This information
makes Repage generate the following reputation predicates:

Rep(charlie, wineSeller(quality), [.5, .3, .1, .1])
Rep(alice, wineSeller(quality), [.1, .2, .2, .4])

(5.9)

The reputation information regarding charlie coincides more or less with the
image our agent has about him. This is not the case with alice. Through bridge
rule AR these predicates generate beliefs into BC. For charlie:

RC : Rep(charlie, wineSeller(quality), [.5, .3, .1, .1])
BC : S(buy(charlie), pW, .5, {wineSeller(quality)})
BC : S(buy(charlie), aW, .3, {wineSeller(quality)})
BC : S(buy(charlie), gW, .1, {wineSeller(quality)})
BC : S(buy(charlie), eW, .1, {wineSeller(quality)})

(5.10)

Note that these beliefs refer to what others say, not what our agent really be-
lieves. Since our agent only trusts herself, she does not take into account these
predicates. In terms of the BC-logic it indicates that there is no relationship
between operator S and operator Bi so far. This situation is also common: we
can accept that a given person has a bad reputation, that most people say this,
even when we believe the opposite [Conte and Paolucci, 2002].

Under these conditions, the reasoning process is similar to the previous case.
This time though, charlie is no longer a possible choice, since the last experience
with him was bad regarding the quality of the wine. Bridge rule 3 generates the
intention to buy from charlie with a very low grade, in fact zero, since it is likely
a poor or average wine would be delivered. In this case, the generated intentions
are

(Ibuy(bob)hasWine, .14)
(Ibuy(alice)hasWine, .14)

(5.11)

Our agent chooses alice. This time we suppose the result is in tune with the
expectations of our agent; she obtains a good wine, even though the delivery time
is not very fast. Repage updates image predicates regarding alice as follows:

Img(alice, wineSeller(quality), [0, 0, .15, .85])
Img(alice, wineSeller(time), [0, 0, 0, .1, .9])

(5.12)

Keeping the Same Desires: Case 3

Maintaining the exact same desires as case 1 and 2, the next time that our agent
wants to buy wine, she has the following intentions whose grade is higher than
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0:
(IbuyWine(bob)hasWine, .14),
(IbuyWine(alice)hasWine, .35)

(IbuyWine(alice)(hasWine ∧ paidLess(1350) ∧ eW ), .365)
(5.13)

Since alice provided wine that was mostly excellent, and this is the main concern
of our agent, she chooses again to buy from alice, but to satisfy the desire
hasWine∧ paidLess(1350)∧ eW . The option to buy from bob appears due to the
uncertainty around his performance. We suppose that the resulting transaction
confirms the same results as the previous case: an excellent wine but a long
delivery time.

Changing Desires: Case 4

This time our agent accepts the suddenly request to host a big birthday banquet
that will take place in less than 12 days. Her cellar is not prepared for this event,
so, she needs to order more wine. In this situation, her desires are different, since
delivery time is now a key issue while the quality of the wine drops in importance:

(D+hasWine ∧ paidLess(1350) ∧ days(0, 1), .9)
(D+hasWine ∧ paidLess(800) ∧ days(2, 3), .7)

(D−pW, .2)
(D−aW, .2)

(D−days(11,∞), .8)
(D−days(6, 10), .7)

(5.14)

Thanks to her previous interactions with the providers our agent already has
some information about their performance. In this case, the only intention with
a degree higher that 0 is

(IbuyWine(charlie)(hasWine ∧ paidLess(1350) ∧ days(0, 1)), .095)

She picks charlie, and the results are like the first time she bought from him in
case 1: a short delivery time but a low quality.

Using Reputation Information: Case 5

Several weeks after the successful banquet, our agent recuperates her initial
desires and needs to order wine again. During this time she has heard about
both bob and debra’s reputations which indicates that both offer excellent wines
and that furthermore debra is capable to deliver the order in a day. This is not
the case with bob:

Rep(bob, wineSeller(quality), [0, 0, .05, .95])
Rep(bob, wineSeller(time), [.1, .2, .3, .3, .1])
Rep(debra, wineSeller(quality), [0, 0, 0, 1])
Rep(debra, wineSeller(time), [1, 0, 0, 0, 0])

(5.15)

This information is introduced through rule AR as S predicates. Unfortunately
for our agent, alice notifies that she will not be available this time because she
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will be on holidays. Because of that, and because the reputation information she
received in case 2 was in concordance with what she really believed, our agent
starts trusting what others gossip. In this new scenario, the IRB axiom is set to
use a h function belonging to H2 (only reputation is taken into acount). Thus,
the axiom IRB states the following:

∀axp1p2r(I(a, x, p1, r) ∧ S(a, x, p2, r))→ B(a, x, p2, r)

It means that reputation predicates from Repage, once they have been
inserted into the BC-context as S predicates, they become belief predi-
cates. For instance, regarding bob in the role of wineSeller(quality), rule
AR generates, among others, the following predicate: S(buy(bob), eW, .95,
{wineSeller(quality)}), meaning that people is gossiping that with is a proba-
bility of .95, the wine will be excellent when buying from bob. Since our agent
believes what it gossiped due to axiom IRB, it can be deduced that B(buy(bob),
eW, .95, {wineSeller(quality)}). In this case, the only non-zero graded intention
generated is

(Ibuy(bob)(hasWine ∧ paidLess(1350) ∧ eW ), .565)

From the activation of bridge rule 3 as follows:

DC : (D+
buy(bob)(hasWine ∧ paidLess(1350) ∧ eW ), .0.855)

DC : (D−buy(bob)days(11,∞), .08)

DC : (D−buy(charlie)days(6, 10), .21)
PC : action(buy(bob), budgetMore(900))
PC : budget(1100)→ budgetMore(900)

IC : (Ibuy(bob)(hasWine ∧ paidLess(1350) ∧ eW ), f(.855, .29))

(5.16)

We suppose in this situation that the results are not as the agent expects,
obtaining an average wine. Thus, Repage image predicates are updated as:

Img(bob, wineSeller(quality), [.3, .4, .2, .1])
Img(bob, wineSeller(time), [.1, .2, .3, .3, .1])

(5.17)

Image and Reputation Interference: Case 6

Note that in the previous situation, the image about bob in the role
wineSeller(quality) contradicts bob’s reputation in the same role. This has
already happened in case 2 with alice, but axiom IRB was only taking into
account image information. in this new case, we assume that the IRB uses a
h function from the class H4, where both image and reputation are taken into
account but image is more important. As a matter of example, we set function
h as

h(pE , pS) =
7 · pE + 3 · pS

10
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We show how the reasoning process proceeds. Regarding the role
wineSeller(quality), through bridge rule AI the following E predicates are gen-
erated into the belief context:

E(buy(bob), pW, 0.3, {wineSeller(quality)})
E(buy(bob), aW, 0.4, {wineSeller(quality)})
E(buy(bob), gW, 0.2, {wineSeller(quality)})
E(buy(bob), eW, 0.1, {wineSeller(quality)})
. . .

and through bridge rule AR the following:

S(buy(bob), pW, 0, {wineSeller(quality)})
S(buy(bob), aW, 0, {wineSeller(quality)})
S(buy(bob), gW, 0.05, {wineSeller(quality)})
S(buy(bob), eW, 0.95, {wineSeller(quality)})
. . .

Then, the presence of axiom IRB with the h function defined above combines
both predicates generating a new probability distribution. In this case:

B(buy(bob), pW, 0.21, {wineSeller(quality)})
B(buy(bob), aW, 0.28, {wineSeller(quality)})
B(buy(bob), gW, 0.155, {wineSeller(quality)})
B(buy(bob), eW, 0.355, {wineSeller(quality)})
. . .

In this way we preserve the properties of probability distributions, reflecting
in the resulting beliefs a combination of the both source of information: image
and reputation from Repage.

Turning again to the example above, note that the resulting beliefs for bob
presents a distribution that model an almost uncertain distribution, here val-
ues are close to 0.25. This make sense since image and reputation information
regarding bob where quite contradictory. In this situation, our agent picks alice.

Increasing the Budget: Case 7

To conclude, we want to show the effect of a simple environment change. In
this case, our agent decides to increase the wine budget to 2000. With exactly
the same desires and the same reputation and image information as before, the
reasoning process generates the maximum intention to buy from debra. This
provider was always filtered out at bridge rule 3 because the precondition of
buying from debra (to have more than 1300) was never fulfilled. Thus, the
intention to buy from debra is only slightly higher than buying from alice.
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Figure 5.4: The choices of the agent throughout the situations explained in this
section

5.3.3 Implementation Details

The scenario and each one of the situations have been implemented in Pro-
log3. An implementation of logical systems usually entails the simplification
or limitation of some aspects of the logic. In our case, we assume that each
logical formula is expressed as a Horn clause and that modal operators are first-
order predicates. Also, we do not accept logically omniscient agents that use
a forward-reasoning engine, even when some implementations of multi-context
systems use this approach [Sabater-Mir et al., 2002]. Instead, we take advantage
of the backward-reasoning engine of Prolog.

Note that the multi-context system specification of our BDI agent models
an agent whose purpose is to execute a single action. This action is generated
through rule 4 by choosing the intention of maximum grade. For this choice
the agent must generate all possible intentions, which are created through rule
3 from desires, and so on. This schema follows a backward-reasoning algorithm
that can be implemented in Prolog.

Thus, considering predefined knowledge as Prolog predicates, and inference
rules and bridge rules as Prolog rules, the agent’s reasoning can be started by
asking Prolog to satisfy the predicate does(A). While this is an oversimplification
of what should be understood as multi-context systems, for simple examples the
results are coherent and useful. We plan to study implementation issues in the
future, an the effects of the simplifications in the desirable properties of the
system.

5.4 Extending the BDI+Repage Architecture :
The Norm Context

In this section we show how the organizational mechanism describes in
[Centeno et al., 2009a] is integrated into the BDI+Repage defined above, show-
ing the flexibility of our model. In this case, we assume that agents are aware
of the norms of the society, and due to that, are capable of evaluating other
agents’ behaviour according to them. In our integrated model, such evaluations
are computed by the reputation model Repage, and through the appropriate

3The source code can be download at
http://www.iiia.csic.es/∼ipinyol/sourceJAAMAS09.zip.
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Figure 5.5: A graphical representation of the BDIRepage+Norm model. Ele-
ments with dot lines are the new elements introduced in this section.

bridge rules, the knowledge is introduced into the belief base of the agent. This
information then can be used in the normal reasoning BDI process of the agent
as shown earlier

5.4.1 Preliminaries

In this extension, we deal with the notion of personal and organizational norms,
that was introduced in [Centeno et al., 2009a]. Such organization model formal-
izes a particular type of organized multiagent system - from now on organization
- following the framework proposed in [Centeno et al., 2009a] that provides a
minimum set of mechanisms to regulate agents’ interactions: Rom and ON om.
A Rom is an organizational mechanism based on roles that defines the positions
agents may enact in the organization.

Formally, an organization is defined as a tuple
〈Ag,A,X , φ, x0, ϕ, {ON om,Rom}〉 where Ag represents the set of agents
participating within the organization; A is the set of actions agents can
perform; X stands for the environmental states space; φ is a function describing
how the system evolves as a result of agents actions; x0 represents the initial
state of the system; ϕ is the agents’ capability function describing the actions
agents are able to perform in a given state of the environment; ON om is
an organizational mechanism based on organizational norms; and Rom is an
organizational mechanism based on roles that defines the positions agents may
enact in the organization (see [Centeno et al., 2009b] for more details).

ARom is an organizational mechanism [Centeno et al., 2009a], that attempts
to regulate agents’ interactions by providing different positions to agents. Role
characteristics are: i : provides a first-order block to build organized multiagent
systems; ii : encapsulates a set of functionalities an agent playing such a role is
permitted to perform in the system; and iii : informs about an expected behavior
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that an agent playing such a role should show.
Agents participating in an organization are involved in different situations

through the time. Situations represent an agent – in Ag – playing a role, defined
by Rom, performing an action in the system – in A. A situation is defined as a
tuple 〈Ag,R,A, T 〉, that is, it defines an agent (Ag) playing a role (R) in certain
action (A) during a time period (T ).

A ON om is an organizational mechanism that regulates participants’ be-
havior by using norms, and it is the part of the organizational mechanism
that is relevant in this section. An organizational norm is defined as a tu-
ple 〈deon, Sit, Org〉, where deon is a deontic concept in the set {prohibition,
obligation, permission} representing the different constraining possibilities
over the situation Sit (where an agent is playing a role and executing an action)
within the organization Org.

Agents in an organization are supposed to have their own preferences and
goals. In [Centeno et al., 2009b] the concept of personal norm is proposed to
represent agent’s preferences over different situations in which other agents may
be involved. Thus, a personal norm models how an agent wants the others
to behave when interacting with it. A personal norm is defined as a tuple
〈Ag, deon, Sit〉, where Ag is the owner of the norm, deon is a deontic concept in
the set {prohibition, obligation, permission} representing the preferences
of agent Ag over the situation Sit.

5.4.2 Norms and the BDI+Repage Model: An example

Let us consider a supply chain (SC) formed by beverage/food providers and
pubs. Pubs contact the beverage and food providers with the aim of buying the
goods that they later will sell to their customers. The following roles participate

in such SC:

Providers sell their goods to the Pubs.
Pubs buy beverages and foods from Providers and

sell them to Customers.
Customers buy the beverages and foods sold by Pubs.

For our example we stress on the relationships between pubs and providers.
Those relationships are regulated by some market rules, that all participants
must fulfil. In the scenario we take the perspective of a BDI agent (from now
on our agent, or agent i) that represents a pub owner. This agent needs very
often to place orders to refill the stock. Our agent has a set of possible providers
to choose from, and makes the selection following certain criteria (monetary
cost, delivery time, quality of the product, etc.). One of these criteria is the
observance of norms. For instance, one of the organizational norms that rules
our scenario is:

• ON - Orders must not be delivered later than 7 days after the date they
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were placed.

1. Norm ON is evaluated after the action placeOrder is performed by an
agent playing the role pub.

2. This evaluation can be done because after the action, a fulfilment indicates
that the number of days for the delivery was exactly dT ime.

3. If dT ime < 7 the norm is fulfilled while if dT ime ≥ 7 the norm is violated.
In both cases, this information is taken into account by the reputation
model for future interactions.

Notice that it is not the same to deliver the product in 8 days than in 20. For
this, we introduce the concept of evaluative patterns of a norm, which enriches
the reasoning capabilities of the agent. Following the example, we consider
four evaluative patterns for ON : dT ime < 7, 7 ≤ dT ime < 9, 9 ≤ dT ime <
15, 15 ≤ dT ime. After a transaction, the fulfillment of the norm regarding
dTime is classified in one and only one of the previous evaluative patterns.
This information is introduced into the Repage context. Then Repage computes
a probabilistic distribution over the four possible patterns that estimates the
potential behavior of the agent playing the role seller.

As we will see in section 5.4.5, two bridge rules introduces such evaluations as
beliefs. Once this step is performed, desires start playing an important role for
the practical reasoning process. On the one hand, Repage information provides
for each agent evaluations according to the evaluative patterns. On the other
side, the desires of our agent determine a preference between each one of the sit-
uations. For instance, our agent i can have the following desire: (D+dTime < 7, 1)

indicating that i wants to achieve a dT ime lower than 7 days with a strength of
1. So, she wants the norm completely fulfilled. However, in another situation we
could have: (D+dT ime < 7, 1), (D+7 ≤ dT ime < 10, 0.7), (D−10 ≤ dT ime, 1).
In this case, agent i wants with maximum strength a delivery time below 7 days,
but also would consider a delivery time between 7 and 10 days, with less strength
(0.7). What agent i rejects with maximum strength is a delivery time higher or
equal than 10.

We argue that the separation between an objective evaluation and the desired
behaviour is crucial for real autonomous entities. Then, an agent can change the
desires but keeping and using the same evaluations. In the following sections we
formally describe the new BDI+Repage+Norm model.

5.4.3 The Norm Context (NC)

The new BDI+Repage+Norm multicontext model is represented with the tuple
Ag = 〈{BC, DC, IC, PC, CC, RC, NC}, �br〉. These correspond to Belief,
Desire, Intention, Planner, Communication and Repage contexts, respectively,
plus a new NC (norm context). The set of bridge rules �br incorporates the
original rules 1, 2, 3, 4, P,Q and B, shown in Figure 5.3, plus the modified rules
AI and AR (section 5.4.5), and rules F , R and C (section 5.4.4) that are new
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and related to the norm context. Figure 5.5 shows a graphical representation of
this multicontext specification.

To specify NC we define the language Lnorm as a first-order language with
the special predicates F (·) and N(·) to model fulfilments and evaluative patterns
respectively. We restrict the language to a conjunction of such predicates. It is
important to remark that the language is used to describe how the norms are
evaluated. Thus, there is no reference to the deontic concepts of the norm, which
are implicit in the description and in the desires of the agent.

The syntax of Lnorm

The two special predicates in Lnorm are identified by their sorts. The sorts that
Lnorm includes are a finite set of agent identifiers A, a finite set of role identifiers
R, the finite set I ⊂ IN of indexes to identify each evaluative pattern of a norm
and a countable set of time instants T to represent the time that fulfillments are
produced. To express the content of the normative patterns and fulfillments we
need an object language that talks about the domain and that must be the same
used in the beliefs, desires and intentions. Such language is Lbasic, defined in
chapter 4 and used earlier in this chapter. Again, we introduce each ϕ belonging
to the set of well-formed formula of Lbasic (wff(Lbasic)) as a constant �ϕ� of
Lnorm. In the examples, we omit the quote �·�.

Let ϕ, φ ∈ wff(Lbasic), j ∈ A, r ∈ R, n ∈ I and t ∈ T , the predicates of the
language are:

• N(n, r, ϕ): It describes an evaluative pattern for a given role. For instance,
the previous example that has four evaluative patterns for the norm ON
can be represented as

N(1, provider(ON), dT ime < 7)
N(2, provider(ON), 7 ≤ dT ime < 9)
N(3, provider(ON), 9 ≤ dT ime < 15)
N(4, provider(ON), 15 ≤ dT ime)

Since each role can be evaluated by different norms, we consider evaluative
patterns for each role × norm, as shown in the example (provider(ON)).

• F (j, r, φ, t): It indicates that after an interaction with agent j playing the
role r at time t, φ holds. For instance, the formula

F (j, provider(ON), dT ime = 6, 2)

indicates that the result of the interaction with agent j playing the role
provider at time 2 has been a delivery time of 6 days. Again, we write
Fi(j, r, ϕ, t) to indicate that agent i is the holder of the predicate.
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For a consistent interpretation of the norm context, we require that Lbasic

predicates involved in evaluative patterns of the same role are pairwise dis-
joints. Formally, let us consider the set of evaluative patters over the role r:
N(1, r, ϕ1), N(2, r, ϕ2), . . . , N(p, r, ϕp). Then, we must guarantee that for each m,n
such that m �= n and 1 ≤ m,n ≤ p, it happens that ϕn ∧ ϕm �basic ⊥, where
�basicis a classical logical consequence defined over Lbasic. This ensures that two
or more evaluative patterns do not cover the same space.

Intuitively, the evaluative patterns classify the possible results that the agent
wants to evaluate, providing semantics to the evaluation of norms. After each
transaction, the fulfillment is captured by F (·) predicates in the NC-context.
Through the appropriate bridge rules, the information is introduced into the
Repage context as outcomes. This mechanism is explained in the next subsec-
tion.

5.4.4 Rules F and C

On the one hand, rule F is in charge of introducing fulfillments into the norm
context, in the form of F (·) predicates . We assume that the communication
context is able to capture the fulfillment of the transactions and generate such
predicates (it is domain-dependent).

On the other hand, Rule C is in charge of generating outcome predicates to
feed the Repage model. It is defined as:

C:
NC : N(n, r, ϕ)
NC : F (j, r, φ, t)

BC : B(ι, φ→ ϕ, 1, e∅)
RC : Outcome(j, r, n, t)

Again, following the example, if agent i after interacting with j generates
through rule F the predicate F (j, seller, dT ime = 8, t), rule C would fire as

C:
NC : N(2, provider(ON), 7 ≤ dT ime ≤ 10)
NC : F (j, provider(ON), dT ime = 7, t)

BC : B(ι, (dT ime = 8)→ (7 ≤ dT ime ≤ 10), 1, e∅)
RC : Outcome(j, provider(ON), 2, t)

Under the assumption that the norm context is consistent as defined above,
rule C is only fired one time for each fulfillment. With outcome predicates,
Repage is able to calculate a probability distribution for each agent and role
over the defined evaluative patterns.

From outcomes and communications, Repage generates image and reputation
predicates, and through rules AI and AR the knowledge is introduced into the
belief context.
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5.4.5 Rules AI and AR

In the original BDI-Repage model these rules are in charge of updating the
beliefs of the agent with the information coming from the reputation model. In
the extended model we have modified the original rules to take into account the
information contained in the norm context:

AI : AR:

RC : img(j, r, [V1, V2, . . .])
NC : N(1, r, ϕ1)
NC : N(2, r, ϕ2)

. . .
BC : E(Rrj , ϕ1, V1, {r})
BC : E(Rrj , ϕ2, V2, {r})

. . .

RC : rep(j, r, [V1, V2, . . .])
NC : N(1, r, ϕ1)
NC : N(2, r, ϕ2)

. . .
BC : S(Rrj , ϕ1, V1, {r})
BC : S(Rrj , ϕ1, V2, {r})

. . .
The key idea is that each linguistic label of the probability distribution pro-

vided by Repage and a role r refers to a unique evaluative pattern, i.e. a single
predicate N (notice that this mechanism implements the mapping T introduced
in the previous chapter). Also, since an agent j in a role r determines a concrete
interaction model (the mapping R introduced also in the previous chapter), the
agent can infer the probability to achieve certain results after interacting with j
in the role r.

To illustrate this, imagine that agent i has interacted with j as provider
several times, and that most of the times the delivery time was below 7 days
(dT ime < 7). Assuming the evaluative patterns for norm ON in the exam-
ple of section 5.4.3, Repage may have generated the following image predicate
img(j, provider(ON), [0.8, 0.1, 0.1, 0]). In this situation, rule AI is fired instan-
tiated as follows, assuming that Rprovider,j is the action order(j)

AI :

RC : img(j, provider(ON), [.8, .1, .1, 0])
NC : N(1, provider(ON), dT ime < 7)

NC : N(2, provider(ON), 7 ≤ dT ime < 9)
NC : N(3, provider(ON), 9 ≤ dT ime < 15)
NC : N(4, provider(ON), 15 ≤ dT ime)

BC : E(order(j), dT ime < 7, .8, {provider(ON)})
BC : E(order(j), 7 ≤ dT ime < 9, .1, {provider(ON)})
BC : E(order(j), 9 ≤ dT ime < 15, .1, {provider(ON)})

BC : E(order(j), 15 ≤ dT ime, 0, {provider(ON)})

5.4.6 An Example

Let us consider a supply chain (SC) formed by beverage and food providers, and
pubs. Pubs contact the beverage and food providers with the aim of buying the
goods they sell to their customers afterwards. The following roles participate in
such SC:
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Figure 5.6: Example of Bar Supply Scenario

Providers sell their goods to the Pubs.
Pubs buy beverages and foods from Providers and

sell them to Customers.
Customers buy the beverages and foods sold by Pubs.

The scenario we present stresses on the relationships between pubs and
providers. Those relationships are regulated by some market rules, that all
participants must fulfill. For instance, providers must not change the agreed
price for an order or, a customer cannot pay less than the price fixed by a pub
for a drink. Furthermore, each participant could have their own preferences. For
example, pubs would like to have extra batches of goods when the orders they
place are significantly expensive.

Codifying the Initial Knowledge

In the scenario we take the perspective of a BDI agent (from now on our agent,
or agent i) that represents a pub owner. This agent needs very often to place
orders to refill the stock. We describe the following two cases: (i) how the agent
evaluates others’ behavior regarding both organizational and personal norms,
and (ii) how the agent reasons using this knowledge to select appropriate actions.
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Summarizing:

1. In the first case we show how the agent incorporates the information related
to others’ behavior regarding organizational and personal norms. That is,
the dynamics of the architecture from the perceived facts to the evaluation
using Repage.

2. The second case represents our agent’s reasoning using the acquired knowl-
edge to reach concrete intentions, and thus, the best reasonable action.

For the sake of clarity, predicates of the shape Pred(X) where X ∈ IR will
be written as Pred = X. In the same way, predicates of the shape Pred(X) ∧
X � Y where � stands for whatever boolean binary function over the set of
real numbers, will be written as Pred � Y . For instance, order ≤ 100 stands
for order(X) ∧ X ≤ 100, and agreedPaid < paid stands for agreedPaid(X) ∧
paid(Y ) ∧X < Y , where X and Y are variables of the logical language.

Organizational Norms: The following are the organizational norms that rule
our scenario. These norms are known by all participants in the system at start-
up. We assume they already exist in the Normative Context (NC) in our agent’s
BDI architecture:

• ON - Orders must not be delivered later than 7 days after the date they
were placed.

This norm was introduced above, in section 5.4.3. Assuming the agent wants
to capture different grades in the possible violation of the norm, the set of
evaluative patterns for the role Provider(ON) is specified as:

N(1, P rovider(ON), dT ime ≤ 7)
N(2, P rovider(ON), 7 < dTime ≤ 9)
N(3, P rovider(ON), 9 < dTime ≤ 15)
N(4, P rovider(ON), 15 < dTime)

Personal Norms: Our agent holds the following personal norm:

• PN - Providers should give away some extra chips units when the order
exceeds 100 units.

Notice that this norm is only applicable when certain condition (order exceeds
100 units) occurs. Since we have an underlying logical language this is easy to
model by adding logical conjunctions:

N(1, P rovider(PN), order ≥ 100 ∧ extraChips = 0)
N(2, P rovider(PN), order ≥ 100 ∧ 0 < extraChips ≤ 15)
N(3, P rovider(PN), order ≥ 100 ∧ 15 < extraChips ≤ 30)
N(4, P rovider(PN), order ≥ 100 ∧ 30 < extraChips)
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From now on we will write xCh for extraChips, dT for dT ime and odr for
order.

Predefined knowledge: Firstly, our agent is interested in buying chips
batches. She previously knows three different snack providers, namely: Mr.
Potato, Fringles and Truffles. Our agent needs to select one of these providers
to place an order. As a first approach the agent asked those providers for their
offers to sell their goods. So we consider our agent already knows the price per
batch. Thus she has already introduced this information as beliefs in BC for all
possible X:

B(buy(Mr.Potato,X), odr = X ∧ agreedToPay(10 ·X), 1, e)
B(buy(Fringles,X), odr = X ∧ agreedToPay(7 ·X), 1, e)
B(buy(Truffles,X), odr = X ∧ agreedToPay(11 ·X), 1, e)

In this example, the action buy can be instantiated with the number of chips
batches (X). Then, when an agent performs the action buy(Mr.Potato, 230)
the predicates odr = 230 and agreedToPay(2300) hold in the belief context to
support the action.

5.4.7 Norms Evaluation: Example

Following the example introduced in the previous section, and considering the
organizational norm ON2 and the personal norm PN, we show as a matter of
example, how such norms are evaluated. We show how our agent, playing the
role Pub, evaluates the behavior of three different providers regarding such two
norms that regulate the role Provider (we assume that the action associated with
the role Provider is buy(j,X), where j is the agent playing the role Provider and
X the quantity of chips unit). The process involves the rules F , C. Afore-
said, after an action is performed, a fulfillment predicate is introduced into the
system by means of bridge rule F . Once the fulfillment is introduced into the
Norm Context, rule C can be fired. We illustrate this with an example: let
buy(Mr.Potato, 230) be the action that our agent has just performed. Due to
this, the following predicate is generated:

F (Mr.Potato, provider, order = 230 ∧ xCh = 35 ∧ dT ime = 8, t)

For norm ON , rule C is instantiated as (we only put the relevant information
of the fulfillment)

NC : N(2, provider(ON), 7 < dTime ≤ 9)
NC : F (Mr.Potato, provider(ON), dT ime = 8, t)
BC : B(ι, imply(dT ime = 8, 7 < dTime ≤ 9), 1, e∅)
RC : Outcome(Mr.Potato, provider(ON), w2ON

, t)

For personal norm PN , rule C is fired as
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NC : N(4, provider(PN), order ≥ 100 ∧ 30 < xCh)
NC : F (Mr.Potato, provider(PN), xCh = 35, t)

BC : B(ι, (order = 230 ∧ xCh = 35)→ (order ≥ 100 ∧ 30 < xCh), 1, e∅)
RC : Outcome(Mr.Potato, provider(PN), w4PN

, t)

In the example, w2ON
and w4PN

correspond to the linguistic labels used to
evaluate the outcomes of the transaction for each norm.

Repage context receives the outcome predicates and aggregates them, updat-
ing the final image predicates. These predicates provide a probabilistic distri-
bution over the possible outcomes. For instance, the predicate Img(Mr.Potato,
provider(ON), [0.5, 0.4, 0.1, 0.0]) indicates that when agent i interacts with Mr.
Potato, who plays the role of provider, dT ime < 7 occurs with a probability of
0.5, while 7 ≤ dT ime < 9, 9 ≤ dT ime < 15 and 15 ≤ dT ime occurs with a prob-
ability of 0.4, 0.1 and 0.0, respectively. Through rules AI and AR image and
reputation predicates are introduced into the belief context. Next subsection
illustrate the whole reasoning process.

5.4.8 Reasoning Using Norms Evaluation: Example

In this part we show the agent’s reasoning process, in which knowledge acquired
through the evaluation of others w.r.t. different norms is used.

Let us assume that our agent wants to order 230 units of chips batches. She
needs them in a week, but she may consider few days of delay. What she does
not want at all is a provider who makes her paying more than the quantity they
agreed. Furthermore, as the order exceeds 100 units, she would like to receive
some extra units. One possible theory in the Desire context could be:

(D+order = 230 ∧ dT ime ≤ 7 ∧ xCh > 30, 1)
(D+order = 230 ∧ 7 < dTime ≤ 9 ∧ xCh > 30, .8)
(D−order = 230 ∧ 15 ≤ dT ime, 1)

On the other side, the Belief Context has the means by which the agent can
achieve the desires. In particular, notice that both organizational norms (ON)
and personal norms (PN), are somehow present in the desires. The performance
of the agents regarding these norms is computed by the Repage Context which
provides the information in terms of Image and Reputation predicates. In the
example we only consider the Former. To show the reasoning process we assume
that the agent has already been interacting with the providers, generating the
following Images:
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Img(Mr.Potato, provider(ON), [.8, .1, .1, 0])
Img(Fringles, provider(ON), [.6, .2, .2, 0])
Img(Truffles, provider(ON), [.2, .5, .2, .1])

Img(Mr.Potato, provider(PN), [0, .1, .2, .7])
Img(Fringles, provider(PN), [.3, .5, .1, .1])
Img(Truffles, provider(PN), [.5, .4, .1, 0])

These predicates instantiate rule AI generating beliefs. For instance, regard-
ing MrPotato:

NC : N(1, provider(ON), dT ime ≤ 7)
NC : N(2, provider(ON), 7 < dTime ≤ 9)
NC : N(3, provider(ON), 9 < dTime ≤ 15)
NC : N(4, provider(ON), 15 < dTime)

RC : Img(Mr.Potato, provider(ON), [0.8, 0.1, 0.1, 0])
BC : B(buy(MrPotato,X), dT ime ≤ 7, 0.8, {provider(ON)})

BC : B(buy(MrPotato,X), < dT ime ≤ 9, 0.1, {provider(ON)})
BC : B(buy(MrPotato,X) < dTime ≤ 15, 0.1, {provider(ON)})

BC : B(buy(MrPotato,X)15 < dTime, 0, {provider(ON)})

NC : N(1, provider(PN), order ≥ 100 ∧ xCh = 0)
NC : N(2, provider(PN), order ≥ 100 ∧ 0 < xCh ≤ 15)
NC : N(3, provider(PN), order ≥ 100 ∧ 15 < xCh ≤ 30)

NC : N(4, provider(PN), order ≥ 100 ∧ 30 < xCh)
RC : Img(Mr.Potato, provider(PN), [0, .1, .2, .7])

BC : B(buy(MrPotato,X), order ≥ 100 ∧ xCh = 0, 0, {provider(PN)})
BC : B(buy(MrPotato,X), order ≥ 100 ∧ 0 < xCh ≤ 15, .1, {provider(PN)})
BC : B(buy(MrPotato,X), order ≥ 100 ∧ 15 < xCh ≤ 30, .2, {provider(PN)})

BC : B(buy(MrPotato,X), order ≥ 100 ∧ 30 < xCh, .7, {provider(PN)})

Also, assuming independence between ON and PN , by simple logical deduc-
tion, these predicates can be combined by multiplying their probabilities (see
chapter 4). For instance:

B(buy(MrPotato,X), dT ime ≤ 7, 0.8, {provider(ON)})
B(buy(MrPotato,X), order ≥ 100 ∧ 30 < xCh, .7, {provider(PN)})

B(buy(MrPotato,X)dT ime ≤ 7 ∧ order ≥ 100 ∧
∧ 30 < xCh, .56, {provider(ON), provider(PN)})

Bridges rule 1 and 2 are executed for each generic positive and negative
desires, respectively. For the positive desire in our example:
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DC : (D+order = 230 ∧ dT ime ≤ 7 ∧ xCh > 30, 1)
BC : B(buy(MrPotato, 230), dT ime ≤ 7 ∧ order ≥ 100 ∧

30 < xChips ∧ order = 230, .56, {provider(ON), provider(PN)})
BC : B(ι, order = 230→ order ≥ 100, 1, e∅)

DC : (D+
buy(MrPotato,230)order = 230 ∧

order ≤ 7 ∧ xCh > 30, g(1, .56))

where g(x, y) represents the grade of the positive desire. We will consider
g(x, y) = x · y, resulting a value of .56. This value indicates an expected level
of satisfaction for our agent if she places the order to MrPotato, regarding the
positive desire. Positive desires indicate the grade of satisfaction for our agent
w.r.t. a concrete action (in this case buy(MrPotato,X)). Analogously, if we
apply bridge rule 1 and 2 for the remaining desires we obtain the following new
concrete desires:

DC : (D+
buy(MrPotato,230)order = 230 ∧ 7 < dTime ≤ 9 ∧ xCh > 30, .07)

DC : (D−buy(MrPotato,230)order = 230 ∧ 15 ≤ dT ime, 0)

Thus, using positive desires and taking into account negative desires, bridge
rule 3 generates intentions:

DC : (D+
buy(MrPotato,230)order = 230 ∧

dT ime ≤ 7 ∧ xCh > 30, .56)
DC : (D−buy(MrPotato,230)order = 230 ∧ 15 ≤ dT ime, 0)

PC : action(buy(MrPotato, 230),�)
IC : (Ibuy(MrPotato,230)(order = 230 ∧ dT ime ≤ 7 ∧

∧ xCh > 30), f(.56, .0))

In this case, the expected level of satisfaction of achieving the desire by
buying from MrPotato is .56 and there are not counter-effects entailing an
expected level of disgust, since no negative desires affect this action. Taking
f(δ+, δ−) = max(0, δ+ − δ−), the generated intention would have a grade of
.056. Applying the same to the other positive desire we obtain:
IC : (Ibuy(MrPotato,230)(order = 230 ∧ 7 < dTime ≤ 9 ∧ xCh > 30), f(.07, 0))

If we apply the same process for the rest of providers we would obtain the
following intentions (we have omitted the intermediate process):

(Ibuy(Fringles,230)(order = 230 ∧ dT ime ≤ 7 ∧ xCh > 30), .06)
(Ibuy(Fringles,230)(order = 230 ∧ 7 < dTime ≤ 9 ∧ xCh > 30), .02)
(Ibuy(Truffles,230)(order = 230 ∧ dT ime ≤ 7 ∧ xCh > 30), 0)
(Ibuy(Truffles,230)(order = 230 ∧ 7 < dTime ≤ 9 ∧ xCh > 30), 0)

After calculating all possible intentions, bridge rule 4 would generate the
action CC : does(buy(MrPotato, 230)), since the intention for the action

buy(MrPotato, 230)
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has the maximum grade of satisfaction. Consequently, our agent will select
MrPotato as a seller to place her order to.

5.5 Conclusions

The chapter introduces the BDI+Repage model, one of the main contribu-
tions of this work. We define an agent architecture, a belief-desire-intention
(BDI) architecture, that integrates image and reputation information calculated
from Repage [Sabater-Mir et al., 2006] into the practical reasoning process of
the agent. Even when in the introduction of this book we already state the main
features of the model, we would like to enhance the following ones:

• It is defined as a multi-context system (MCS)
[Giunchiglia and Serafini, 1994]. From a software engineering per-
spective it supports modular architectures and encapsulation. From
a logical modeling perspective, it allows the construction of agents
with different and well-defined logics, keeping all formulas of the same
logic in their corresponding context. This increases considerably the
representation power of logical agents, and at the same time, simplifies
their conceptualization.

• It is based on solid logical frameworks. We use an existing complete logic
of preferences based on Lukasiewicz [Casali, 2008] to model the desires and
intentions, and we use the logic defined in chapter 4 to model the beliefs.

• It handles image and reputation. The Repage model is based on a cogni-
tive theory of reputation that states a main difference between image and
reputation.

• It is generic. The model is not attached to any specific domain ontology
nor network typology, and inherits the properties and characteristics of
the underling reputation model. We use Repage as a paradigmatic exam-
ple, but any model whose information can be captured by the reputation
language Lrep could be placed into the system.

Moreover, we introduce the BDI+Repage+Norm model, an extension of the
BDI+Repage model that deals with norms. For developing such extension, we
introduce a new context (normative context) which includes a first-order lan-
guage to describe how norms are evaluated. This new context is endowed with
a set of bridge rules that feed the other context of the model.

The extension demonstrates the flexibility of the BDI+Repage model and
illustrate how other possible extensions could be done.
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Chapter 6

Arguing about Social
Evaluations

6.1 Introduction and Motivation

Reputation and trust models provide social evaluations of the potential perfor-
mance of agents in the society regarding a specific context, using the history of
interactions and its results, and third-party communications as a main source to
compute them. Also, some of them include a reliability measure attached to the
social evaluations, indicating how confident the agent is about the evaluation
(see [Sabater and Sierra, 2005] for a review).

The latter though carries out a big problem when such evaluations are com-
municated. Due to the subjectivity of reputation information, a social evaluation
totally reliable by an agent A may not be reliable for B, because the bases un-
der which A has inferred the social evaluation cannot be accepted by B. This
can happen because agents have different inference rules, have had different ex-
periences, have different goals, etc. Usually, reputation models that manage
reliability measures consider a threshold below which communicated social eval-
uation are not taken into account. Yet, since the source agent calculates the
reliability measure and it is a subjective matter, the acceptance/rejection of
communicated social evaluations according to this criteria may produce noise
for the recipient agent.

This paper offers a possible solution that can complement already existing
methods. We suggest that, in communicated social evaluations, the reliability
measure cannot be dependent on the source agent, but must be fully evalu-
ated by the recipient agent according to its own knowledge. In our approach,
rather than allow only single communications, we allow agents to participate in
argumentation-based dialogs regarding reputation elements in order to decide
on the reliability (and thus acceptance) of a communicated social evaluation.
Our approach differs from others in that it is the recipient agent, not the source
agent, who decides about the reliability of a communicated evaluation.
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We develop an argumentation-based dialog protocol for the exchange of
reputation-related information. Due to the subjectivity of reputation informa-
tion, a social evaluation totally reliable by an agent A may not be reliable for
B, because the bases under which A has inferred the social evaluation cannot be
accepted by B. This can happen because agents have different inference rules,
have had different experiences, have different goals, etc. When such information
is communicated this can become very problematic, specially if the reputation
model assigns a reliability measure to the communicated information, because
of the reasons above.

The main characteristics of the system are:

• Only the recipient agent decides about the reliability of a communicated
evaluation. This differs from other approaches in which the source agent
attaches a reliability measure to the communicated social evaluation. This
makes more difficult for dishonest agents to intentionally send fraudulent
information, because they must be aware of the knowledge of the recipient
and justify the lie accordingly.

• It uses argumentation frameworks to give semantics to the dialog. We
exploit the Lrep language (a many-sorted first-order language to express
reputation related concepts) to completely define how arguments are con-
structed and how arguments influence one another. We instantiate a
weighted abstract argument framework to define the acceptability seman-
tics of a communicated social evaluation.

• It handles quantitative and qualitative graded information. One of the
main characteristics of reputation information is that it is graded. Nowa-
days it is strange to find a model that provides crisp evaluations of the
agents. For instance, an agent A may be bad, very bad or very good etc.
as a car driver, and this has to be taken into account when arguing about
evaluations.

• It permits dialogs between parties that use different reputation models.
Even when we assume that agents use the same language to talk and reason
about reputation information (Lrep language), we suppose that they can
use different inference rules (different reputation models) without having
to exchange the exact rules that each agent uses for the inferences.

6.2 Communicated Social Evaluations and their
Reliability

6.2.1 Preliminaries

The problematic regarding communicated social evaluations that the subjective
notion of reputation brings, it is the same as for any rhetorical construct that
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depends on internal elements that are private. Let us consider a very simple
example:

i : How is John as a car driver?
j : He is a very good driver
i : Why?
j : Well, Emma told me that, and she is a good informer
i : Oh! for me, Emma is very bad as informer!

In the previous example, should agent i consider the information sent by j
saying that John is a very good driver? Notice that j is justifying her opinion
with a previous communication from Emma, which she thinks is a good informer.
But it contradicts an information that i considers valid. For i, the information
is not reliable, even when j may be totally honest.

When talking about social evaluations and reputation models, usually the
model already handles possible inconsistent knowledge. Different opinions re-
ferring to the same target agent may be totally contradictory, and the agent
integrates and aggregates the information in order to achieve a consistent men-
tal state. Determining whether a piece of information is acceptable in a possibly
inconsistent knowledge base has been faced in argumentation theory. In this
field, each piece of information is justified by the elementary elements from
which it has been inferred, the so called arguments. Then, two arguments can
attack each other, indicating that the information supporting them would be
inconsistent if they are both accepted at the same time.

6.2.2 Characterizing the Problems behind Reliability
Measures

We start this subsection by recalling the notion of reputation theory explained
in chapter 3 and how we characterized the reputation information that agents
hold.

Definition (Reputation Theory) Let Δ ⊂ wff(Lrep), we say that Δ is a repu-
tation theory when ∀α ∈ Δ, α is a ground element. Then, letting d ∈ wff(Lrep),
we write Δ � d to indicate that from the reputation theory Δ, it can be deduced
d via �. Ground elements are communications and direct experiences (comm
andDE respectively), while non-ground elements are images, reputations, shared
voices and shared evaluations.

Having introduced the reputation language, we can illustrate more precisely
the kind of problems we deal with in this chapter, and the characteristics of the
proposed system. We start with a very simple example. Let i, j be two agents
with their respective reputation theories and reputation models 〈Δi,�i〉 and
〈Δj ,�j〉. Let us consider that agent i has a V G image of John as a car seller
(with a maximum reliability), so Δi �i Imgi(John, car seller, V G). When i
communicates such information to j at time t, j updates its reputation theory
with a new communication:
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Δj ∪ {Commj(i, �Img(John, car seller, V G)�, t)}
Let us assume that i inferred the image of John as a car seller from (1) a
communication from Alice and (2) the very good reputation (according to i) of
Alice as informer:

(1)Commi(Alice, �ImgAlice(John, car seller, V G)�, t)
(2)Repi(Alice, informer, V G)

Also, assume that j has a very different opinion about the reputation of
Alice as infomer, a very bad reputation indeed. Specifically, Δj �j Repj
(Alice,informer,V B). With this scenario, at least one question arises. Should
j update its reputation theory with the original communication from i?

We argue that the communicated information from i is not reliable for j in
this example. Without the analysis of the internal elements, such a situation
is impossible to detect, and the effects of including i’s communication in j’s
reputation theory can be devastating for j. Agents use social evaluations to
decide what to do. It may happen that i’s communication helps j choose John
as a car seller when j wants to buy a car. If the direct interaction with John
does not go well, several things may occur:

1. Direct experiences are costly. Probably j has bought a car before noticing
that it was not good.

2. j may generate a bad image of i as informer, which can lead to j not
considering anymore future communications from i, even when i, according
to j’s knowledge, was honest.

3. Also j may spread bad reputation of i as informer, and thus collide with
the opinion of other members of the society that are aligned with i. Conse-
quently such members may retaliate against j [Conte and Paolucci, 2002].

All the previous situations can be avoided if j has the capability to decide
whether the piece of information is reliable enough, not based on the reliabil-
ity measure that i assigns, but on the internal elements that i uses to justify
the communicated social evaluation and that j can check. Furthermore, our
approach makes more difficult to intentionally lie, since a potential liar should
know beforehand what the recipient knows, and build the argument accordingly
to it. In current approaches, a liar agent can put a very high reliability value in
the communicated social evaluation to introduce noise in the recipient agent.

To allow agents to analyze the justifications, we propose a protocol that
performs a dialectical process between the agents. Intuitively, both the source
and the recipient agents, following a well-defined protocol, can exchange at each
turn a justified social evaluation (argument) that counterargues (attacks) some
of the arguments uttered by the other agent. At the end of the process, the
recipient agent holds a tree of arguments that can be used to decide whether

122



the original communication from the source agent is reliable, and update its
reputation theory accordingly. The technical details to design such protocol and
the posterior analysis are taken from the field of computation argumentation,
which has proposed frameworks and methods to deal with similar situations. We
have taken some of these concepts and tools and adapted them to confront the
peculiarities that reputation information and our scenarios have. We highlight
just two:

The attacks are graded: In the previous example, j holds a very dif-
ferent opinion of the reputation of Alice as informer than i has, very bad
(VB) against very good (VG) respectively. However, this would note the
case if j thinks that the reputation of alice as informer is good (G), so
Δj �j Rep(Alice, informer,G). The attack should be considered weaker in the
latter case. Our framework handles graded attacks by assuming that each agent
has a distance function � : G × G → IQ over the totally order set M = 〈G,≤〉
which is used to represent the values of the social evaluations (see section 3.3.1).

Heterogeneity of the agents: Even when agents use the same language
to talk and reason about reputation, they may use different reputation models.
Usually, an argument is defined as a pair composed of a conclusion and a set
of elements that have been used to infer such conclusion (supporting set). The
conclusion is the element that is being justified by the supporting set. If agents
use different inference rules, the supporting set must include enough information
to reconstruct the reasoning path followed by the agent that has built the argu-
ment. This could also be easily done by sending the exact inference rules of the
reputation model in the arguments, but it would violate the privacy of the agents
and therefore is not an option. Instead, our framework provides an intermediate
solution. We define a very simple inference consequence relation �arg that all
agents must know, and specify a transformation that agent should use to build
arguments using �arg. From 〈Δi,�i〉 and 〈Δj ,�j〉, we move to 〈Γi,�arg〉 and
〈Γj ,�arg〉, where Γi and Γj are argumentative theories built from their respec-
tive reputation theories and reputation models. Argumentative theories contain
all the elements from their respective reputation theories, and simple implica-
tion rules that simulate inference steps performed by their respective reputation
model, without indicating how they were performed internally.

The protocol allows agents to construct trees of arguments with their respec-
tive attacks. We provide then an acceptability semantics, a mechanism for de-
ciding whether the information from the source agent can be considered reliable
enough for the recipient. We can do that because the argumentation frame-
work we instantiate [Dunne et al., 2009] introduces the concept of inconsistency
budgets. Intuitively, inconsistency budgets indicate the amount of inconsistency
that an agent can (wants to) tolerate. For instance, in the previous example
where Δj �j Rep(Alice, informer,G), agent j may consider that the difference
between G and V G is small enough to accept that they are not contradictory,
even when that might not be the case for another agent. Agents autonomously
decide the strength of a given attack according to their own distance function
and therefore to which extent they can accept inconsistencies.
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The next section formally describes: (1) how agents build arguments; (2)
how agents construct an argumentative theory from a reputation theory; (3)
how such arguments influence each other and with which strength; and (4) how
the recipient agent can decide whether a piece of communicated information is
reliable or not.

6.3 The Reputation Argumentation Framework

Our approach suggests that agents use argumentation techniques to decide
whether a piece of information can be considered reliable or not. For this,
we need to define an argumentation framework for reputation-related concepts.
First, we specify the notion of argument, the construct of arguments, and how
they influence each other. Second, we define Larg, a language based on LRep to
write argument sentences, and the consequence relation �arg associated with the
language and used to build arguments. We also give an acceptability semantics,
indicating under which conditions, an agent would accept a given communicated
social evaluation as reliable.

Definition (Argument) A formula (Φ:α) ∈ wff(Larg) when α ∈ wff(LRep)
and Φ ⊆ wff(LRep). Intuitively, we say that the set Φ is the supporting set of
the argument, and α its conclusion. It indicates that α has been deduced from
the elements in Φ.

The validity of a given well-formed argument must be contextualized
in an argumentation theory, a set of elementary argumentative formulas,
called basic declarative units (bdu). We adapt the following definition from
[Chesevar and Simari, 2007]:

Definition (Argumentative Theory) A basic declarative unit (bdu) is a formula
({α}:α) ∈ wff(Larg). Then, a finite set Γ = {γ1, . . . , γn} is an argumentative
theory iff each γi is a bdu.

From an argumentative theory Γ, we can now define how arguments are
constructed. For this we use the inference relation �arg, characterized by the
deduction rules Intro-BDU, Intro-AND and Elim-IMP (figure 6.1). Rule Intro-
BDU allows the introduction of a basic declarative unit from the argumentative
theory. Rule Intro-AND permits the introduction of conjunctions. Finally, rule
Elim-IMP performs the traditional modus ponents.

Definition (Valid Argument and Subargument) Let (Φ:α) ∈ wff(Larg) and let
Γ be an argumentative theory. We say that (Φ:α) is a valid argument in the
bases of Γ iff Γ �arg (Φ:α). Also, we say that a valid argument (Φ2:α2) is a
subargument of (Φ:α) iff Φ2 ⊂ Φ.

As mentioned earlier, each agent i has to construct its argumentative theory
Γi in order to build arguments. This argumentative theory is based on the rep-
utation information that i has, characterized with the tuple 〈Δi,�i〉. Assuming
that �i is defined by a finite set of natural deduction rules {�i1 , . . . ,�im},
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Intro-BDU:
({α}:α) Intro-AND:

(Φ1:α1), . . . (Φn:αn)
(
⋃n

i=1 Φi:α1, . . . , αn)

Elim-IMP:
(Φ1:α1, . . . , αn → β) (Φ2:α1, . . . , αn)

(Φ1 ∪ Φ2 : β)

Figure 6.1: Deductive rules for the consequence relation �arg.

• For all α ∈ Δi then ({α}:α) ∈ Γi. That is, all ground elements from the
reputation theory are bdu in the argumentative theory.

• For all α1, . . . , αn s.t. Δi �i αk where 1 ≤ k ≤ n, if there exists m
s.t. α1, . . . , αn �im β, then ({α1, . . . , αn → β}:α1, . . . , αn → β) ∈ Γi. This
construct introduces every instantiated deductive step as a rule in the form
of a basic declarative unit. For instance, if α, β �i2 γ, the argumentative
theory will include the bdu formula ({α, β → γ} : α, β → γ).

The following proposition is easy to prove.

Proposition Let 〈Δi,�i〉 be the reputation information associated with agent
i, and Γi its argumentative theory. If Δi �i α, then there exists an argument
(Φ : α) such that Γi �arg (Φ : α).

6.3.1 Argument Interactions

We have explain how agents construct their argumentative theory from their
reputation information, and how from such theory they can build arguments
using �arg. In this subsection we detail how arguments generated from different
agents influence one other (attack). Differently from argumentation systems used
as theoretical reasoning processes to analyze the possible inconsistencies that a
single agent may hold, our framework is designed to be part of a dialectical
process, where attacks are produced only from arguments sent by other agents.

To specify the attack relationship among arguments, we define first
the binary relation ∼= between Lrep predicates. Let α, β be well-formed
non-ground formulas from LRep. Then, α ∼= β iff type(α) = type(β),
α.target = β.target, α.context = β.context and α.value �= β.value. We
can see that ∼= is symmetric but not reflexive nor transitive. For instance,
Rep(i, seller, V B) ∼= Rep(i, seller,G), but Rep(i, seller, V B) � Img(i, seller,G)
and Rep(i, seller, V B) � Rep(i, buyer, V G).

Definition (Attack between Arguments) Let (Φ1:α1), (Φ2:α2) be valid argu-
ments in the bases of Γ. We say that (Φ1:α1) attacks (Φ2:α2) iff ∃(Φ3:α3)
subargument of (Φ2:α2) s.t. (α1

∼= α3).

We want also to quantify the strength of the attack. Let a = (Φ1:α1) be an
argument that attacks b = (Φ2:α2). Then, by definition, a (Φ3:α3) subargument
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of (Φ2:α2) s.t. (α1
∼= α3) exists. The strength of the attack is calculated

through the function w as w(a, b) = α1.value � α3.value, where � is a binary
function defined over the domain of the representation values used to quantify
the evaluations (the total ordered set M = 〈G,≤〉). For instance, if M =
〈[0, 1] ∩ IQ,≤〉, we can define �(x, y) = |x − y|. In this case, 1 is the strongest
attack. If M = 〈{V B,B,N,G, V G},≤s〉, we could first assign each label a
number: f(V B) = 0, f(B) = 1, . . . , and then, �(x, y) = |f(x) − f(y)|. In
this case, the strongest attack is quantified with 4. � implements a difference
function among the possible values.

The previous attack definition does not consider attacks between direct expe-
riences nor communications. This means that discrepancies at this level cannot
be argued, even when they are completely contradictory. Yet, this is justified
by the fact that, in our framework, ground elements are not generated from any
other piece of information. Thus, a communicated ground element should be
introduced directly into the reputation theory. Obviously, the language could be
extended to capture the elementary elements that compose direct experiences
(contracts, fulfillments etc.). Again though, we think that sharing this low level
information would violate the privacy of the agents.

6.3.2 Deciding about the Reliability

At this point, agents can build arguments, determine when their arguments
attack arguments from other agents (and vise versa), and assign a strength
to these attacks. However, we are still missing how agents can decide when
to accept a given argument, considering that they will have a weighted tree
of arguments where each node is an argument and each edge represents the
strength of the attack. For this, we instantiate a weighted version of the classic
Dung abstract argumentation framework [Dung, 1995], and use an acceptability
semantics defined for this framework.

Dung’s framework is defined as follows:

Definition (Abstract Argumentation Framework) An abstract argument sys-
tem (or argumentation framework) is a tuple AF = 〈A,R〉 where A is a set of
arguments and R ⊆ A×A is an attack relation. Given a, b ∈ A, if (a, b) ∈ R (or
aRb), we say that a attacks b. Let S ⊆ A, and a, b ∈ A then

• S is conflict-free iff �a, b ∈ S s.t. aRb.

• An argument b is acceptable w.r.t. the set S iff ∀a ∈ A, if aRb then ∃c ∈ S
s.t. cRa.

• S is admissible if it is conflict-free, and each argument in S is acceptable
w.r.t. the set S. Also, S is a preferred extension iff it is maximal w.r.t.
the set inclusion.

• An argument b is credulously accepted iff it belongs to at least one preferred
extension.
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This abstract framework does not consider strength in the attacks. Recent
work from Dunne et al. [Dunne et al., 2009] extends Dung’s framework with
weights.

Definition (Weighted Abstract Argumentation Framework) A weighted argu-
ment system is a triple AFw = 〈A,R,w〉 where 〈A,R〉 corresponds to a Dung’s
argumentation framework, and w : R → IR> is a function that assigns weights
to each attack relation1.

The semantics of w gives a pre-order between possible inconsistencies. Let
a1, b1, a2, b2 ∈ A where a1Rb1 and a2Rb2, if w((a1, b1)) < w((a2, b2)) means
that accepting both a1 and b1 is more consistent than accepting both a2 and
b2. This leads to the definition of inconsistency budgets and β−solutions (β
s.t. β ∈ IR≥). Intuitively, a β-solution is a solution of the unweighted Dung’s
framework in which the amount of inconsistency (calculated through the sum of
the weights of the attacks) is lower or equal to β. Formally:

Definition (β-solutions [Dunne et al., 2009]) Given AFw = 〈A,R,w〉, a solu-
tion S ⊆ A is a β−solution if ∃T ∈ sub(R,w, β) s.t. S is a solution of the
unweighed system AF = 〈A,R\T 〉. Function sub returns a set of subsets of R
in which the weights sum up to a maximum of β: sub(R,w, β) = {T |T ⊆ R and
(
∑

r∈T w(r)) ≤ β}

We theorize that a credulous semantics for the acceptance of reliable information
is enough. In the weighted version, we can define that, given AFw = 〈A,R,w〉,
an argument b ∈ A is credulously accepted if it belongs to at least one β-preferred
extension, so, if ∃T ∈ sub(R,w, β) s.t. b ∈ S, and S is a preferred extension of
the Dung’s framework AF = 〈A,R\T 〉.

We can instantiate now the weighted argument system by using the con-
structs defined in this section. Let Γ be an argumentative theory as defined in
this section. We define:

• C(Γ) = {(Φ : α)|Γ �arg (Φ : α)}, the set of all valid arguments that can
be deduced from Γ.

• R(Γ) = {((Φ1 : α1), (Φ2 : α2))|(Φ1 : α1) attacks (Φ2 : α2) and (Φ1 : α1) ∈
C(Γ) and (Φ2 : α2) ∈ C(Γ)}, the set of all possible attack relations between
the arguments in C(Γ).

Then, we can describe the instantiation:

Definition (Reputation Argument Framework) The reputation argument sys-
tem for the argumentative theory Γ is defined as AFΓ = 〈C(Γ), R(Γ), w〉, where
w : R(Γ) → IR is the strength function as defined above using the � difference
function.

1Following the notation in [Dunne et al., 2009], we write IR> and IR≥ to refer to the set of
real numbers greater than 0 and greater or equal to 0 respectively.
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counterkPRO(b)

Precondition

(1) k is even, b ∈ C(ΓPRO ∪Xk−1
OPP ) and b has not been issued yet

(2) ∃r ∈ IN s.t. 1 ≤ r < |Sk−1|, r is odd and (b, Sk−1
r ) ∈ R(ΓPRO ∪Xk−1

OPP )

(3) �γ ∈ C(ΓPRO ∪Xk−1
OPP ) s.t. (γ, Sk−1

t ) ∈ R(ΓPRO ∪Xk−1
OPP ) where

r + 1 ≤ t < |Sk−1| and t is odd

Postcondition

(i)Xk
PRO = Xk−1

PRO ∪ BDU(supp(b))

(ii)Xk
OPP = Xk−1

OPP

(iii)Sk = 〈Sk−1
0 , . . . , Sk−1

r , b〉

counterkOPP (b)

Precondition

(1)k is odd, b ∈ C(ΓOPP ∪Xk−1
PRO) and b has not been issued yet

(2)∃r ∈ IN s.t. 0 ≤ r < |Sk−1|, r is even and (b, Sk−1
r ) ∈ R(ΓOPP ∪Xk−1

PRO)

(3)�γ ∈ C(ΓOPP ∪Xk−1
PRO) s.t. (γ, Sk−1

t ) ∈ R(ΓOPP ∪Xk−1
PRO) where

r + 1 ≤ t < |Sk−1| and t is even

Postcondition

(i)Xk
PRO = Xk−1

PRO

(ii)Xk
OPP = Xk−1

OPP ∪ BDU(supp(b))

(iii)Sk = 〈Sk−1
0 , . . . , Sk−1

r , β〉
(or 〈Sk−1

0 , b〉 if r = 0)

Table 6.1: Possible movements of the dialog game at turn k. The function
supp(b) returns the supporting set of b.

This finishes the definition of the reputation argument system. The idea is
that each agent will be equipped with its own argumentation reputation system,
and will add incrementally the arguments issued by the other agent. Intuitively,
if the argument that justifies the original communicated social evaluation belongs
to a preferred extension of the recipient agent, the latter will introduce the social
evaluation into its reputation theory.

6.3.3 The Dialog Protocol

A dialog between two parties that can be seen as a game in which each agent
has an objective and a set of legal movements (illocutions) to perform at each
turn. Walton et al. in [Walton and Krabbe, 1995] state several types of dialogs
depending on the participants’ goals. In our case, we model a special kind
of information-seeking dialog. The goal of the game then is to see whether
the opponent (OPP) can accept reasonably the inquiring information from the
proponent (PRO).

We use the argumentation framework defined in the previous sections to give
semantics to the dialogs. The key is that each agent participating in the dialog
will use its own argument framework to deal with possible inconsistencies. It is
important to notice that agents do not have access to the set of arguments of the
other agents. They incorporate such knowledge from the exchange of illocutions
uttered in the dialog.

Let PRO and OPP be the proponent and the opponent agents engaged in the
dialog respectively. Following a similar approach used in [Amgoud et al., 2000],
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both agents are equipped with a reputation argument system:
AFPRO = 〈C(ΓPRO ∪XOPP ), R(ΓPRO ∪XOPP ), wPRO〉
AFOPP = 〈C(ΓOPP ∪XPRO), R(ΓOPP ∪XPRO), wOPP 〉

where ΓPRO,ΓOPP are the argumentative theories of agents PRO and OPP,
which are private. wPRO and wOPP are the weight functions of agents PRO and
OPP. Finally, XPRO (XOPP ) is the set of bdu from the arguments that results
from the proponent’s (opponent’s) issued arguments. Both XPRO and XOPP are
public and are the result of the exchange of arguments. This allows the agents to
recognize and reconstruct arguments from the other agent. As for the state of our
dialog protocol, we give a definition inspired in [Dunne and Bench-Capon, 2003]:

Definition (State of the Dialog) A state of a dialog at the k-th turn (where k ≥
0) is characterized by the tuple 〈Sk, Xk

PRO, X
k
OPP 〉k where Sk = 〈Sk

1 , . . . , S
k
t 〉

is the ordered set of arguments that represents a single dispute line. A dispute
line is a finite sequence of arguments a1, . . . , an where ∀l s.t. 1 ≤ l < n, al+1

attacks al. X
k
PRO, X

k
OPP are the public sets of BDU formulas of the proponent

and the opponent respectively at turn k, incrementally built after each argument
exchange and that are public.

The proponent is the initiator of the dialog and issues the argument a =
(Φ:α). The initial state at turn 0 is then characterized by 〈〈a〉, BDU(Φ), {}〉0.
The function BDU(X) returns the set of elements from X as a BDU formula.
So, if α ∈ X, then {α}:α ∈ BDU(X). The possible types of movements are
summarized in figure 6.1, where we include preconditions and postconditions:

The proponent can perform the movement counterkPRO(b) when the turn k
is even (1). Of course, b should be a valid argument built from its argumentative
theory and the bdu from the previous exchange of arguments (C(ΓPRO∪Xk−1

OPP ))
(1). We also require that b attacks some of the arguments of the current dispute
line that the opponent has issued (so, in an odd position)(2). When this occurs,
we also want to ensure that the proponent cannot attack any other argument
issued by the opponent later than the one being attacked (3). Once the illocution
is submitted, the effects in the dialog state are also described in figure 6.1.
First, the set XPRO is updated with the supporting set of the argument b (i).
Notice that in the way we define the construction of arguments (see section
6.3) the supporting set only contains bdu. Thus, since this set is added to the
argumentative theory of the opponent, it is able also to recognize the argument
and attack it if necessary. Moreover, when an argument of the dispute line is
attacked at point r of the dispute line, the dialog starts a new dispute line from
that point(iii).

The opponent can submit counterarguments by sending counterkOPP (b) with
symmetric effects as explained in the previous paragraph. In this case, k must
be odd. A dialog finishes when there are no possible movements.

The winner is the last participant who makes a move. Hence, if the num-
ber of moves is even, the winner is the proponent. If the number of moves
is odd, the opponent wins. This protocol is a simplification of a TPI-Dispute
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Figure 6.2: Arguments uttered by the proponent (S0,S2,S2′) and the opponent
(S1,S1′ ,S3′) in the example respectively. Dot arrows indicate attack. For the
sake of clarity, we omit the notation �·�. nComm(·) and nDE(·) indicates that
the agent holds n communications and n direct experiences respectively.

(two-party immediate response dispute) and instantiates a protocol described in
[Amgoud et al., 2000]. From there, the following proposition can be deduced:

Proposition Let AFPRO and AFOPP be the argument frameworks of the par-
ticipants of a dialog. When the game is finished and the proponent is the winner,
the original argument a = (Φ:α) belongs to a 0-preferred extensions of AFOPP .

This means that the argument a is credulously accepted by the opponent.
Therefore, the conclusion α can be introduced into the reputation theory of the
opponent.

If OPP wins, OPP cannot find a 0-preferred extension that includes the
argument a. In this case, OPP could choose not to update its reputation the-
ory. However, depending on its tolerance to inconsistencies, OPP can find a
1-preferred extension that includes argument a, or even a 2-preferred extension.
By increasing the inconsistency budget, the original argument may become ac-
ceptable, and thus the communicated social evaluation considered reliable. This
might be seen equivalent to the threshold that some reputation models that
manage reliability measures use to accept communicated information. The dif-
ference is that contrary to the measure being calculated by the source agent, in
our approach, the reliability is computed by the recipient, who assigns strengths
that can be different from the source. Algorithm 1 formalizes the procedure we
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have just described. In the next subsection we provide an example that shows
the use of the protocol and the inconsistency budgets.

Algorithm 1: Reputation Theory Update Algorithm (for the agent j)

Data: Agent i, j
Data: Argument Φ:α (sent by i)
Data: Reputation Information 〈Δ,�R〉
Data: Inconsistency Budget b
Result: Δres

(Reputation Theory Updated)
Γj ← Argumentative Theory from 〈Δ,�R〉;
AFj ← 〈C(Γj), R(Γj), wj〉 /*The argument framework of j*/;
〈winner,Xi〉 ← dialogGame /*AFj ,i, 〈〈α〉,Φ, {}〉0*/;
if winner = i then

Δres ← Δ ∪ {Comm(i, α)} /*i wins, then j updates its reputation
theory*/;

else
if Φ:α is acceptable w.r.t. 〈C(Γj ∪Xi), Rj , wj〉 and budget b then

Δres ← Δ ∪ {Comm(i, α)} /*With inconsistency budget b, j
accepts also the argument*/;

else
Δres ← Δ /*Agent j rejects the argument*/;

end

end

6.3.4 An Example

We want to finish this section by showing a simple example. Here, agent i
(the proponent) sends the first communication to j (the opponent). The ar-
guments they build are shown in figure 6.2. In the domain, we have the con-
text seller, composed of sell(q) (quality dimension of the sold products) and
sell(dt) (delivery time of the product). We use the Lrep language taking M
as 〈{V B,B,N,G, V G},≤s〉 (see chapter 3). Also, the context Inf is used and
stands for informant. For instance, the argument S0 (figure 6.2) indicates that
the agent has a VG (very good) image of a as a seller, because of the images it
has about a taking into account the quality of the products (sell(q)) and the de-
livery time (sell(dt)) are G and VG respectively. The latter is justified because it
had three direct experiences with a resulting in a very good delivery time (VG),
and so on. In the figure, elements in dot lines belong to the ground elements of
the argumentation theory of i. Arrows represent implication relation which are
also in the argumentative theory. For instance, there is an implication relation
in the theory that says:

Img(a, sell(dt), V G), Img(a, sell(q), G)→ Img(a, seller, V G)
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Figure 6.3: The dialectical tree of agent j after the game. Arrows represent
attack relation and the labels indicate the strength of the attacks.

and another saying that

Rep(a, sell(q), G)→ Img(a, sell(q), G)

In figure 6.2 we show arguments and sub-arguments already instantiated to
facilitate the reading.

The next table shows the illocutions that the agents exchange. The column
Dispute Line shows the state of the dispute line.

Action Dispute Line
- S0 = {S0}
counter1OPP (S1) S1 = {S0, S1}
counter2PRO(S2) S2 = {S0, S1, S2}
counter3OPP (S1′) S3 = {S0, S1′}
counter4PRO(S2′) S4 = {S0, S1′ , S2′}
counter5OPP (S3′) S5 = {S0, S1′ , S2′ , S3′}

In the first move, the opponent (OPP) utters the argument S1 which attacks
the original S0. S1 has the conclusion formula Rep(a, sell(q), B) and attacks the
subargument of S0 that has as a conclusion Rep(a, sell(q), G). The strength is
calculated applying the function � on the values of the predicates. In this case,
�(B,G) = 2. In the next move, the proponent (PRO) attacks S1 by sending
S2 (strength = 4). At this point, we assume that OPP cannot attack S2, but it
can attack again the original S0. In movement 3, OPP sends the argument S1′

to attack S0 (strength = 2). Notice that the dispute line has changed. Then,
the proponent counterargues S1′ by sending S2′ (strength = 2). Finally, OPP
finishes the game at movement 5 by issuing S3′ , which attacks S2′ (strength =
1).

The opponent wins the game. This means that OPP considers unreliable
the initial information from PRO. The dialectical tree after the game is shown
in figure 6.3. With this tree, OPP cannot construct an admissible set that
includes S0, and thus cannot accept it. But this is only true when OPP takes
an inconsistency budget of 0. As soon as it tolerates a budget of 1, the result
changes. Now, the set {S0, S2, S2′ , S3′} is a 1-preferred extension and S0 becomes
acceptable. At this point OPP, could update its reputation theory, considering
that the information is reliable enough.
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6.4 Related Work and Discussion

A review on reputation and trust models that use reliability measures calcu-
lated from the source can be found in [Sabater and Sierra, 2005]. In this related
work though, we provide an overview of the work that takes advantage of the
constituent elements of reputation-related concepts. For instance, models like
[Huynh et al., 2006b] and [Maximilien and Singh, 2002] use certified reputation,
in which the same target agent is able to justify its own reputation by pre-
senting references (like reference letters when applying for a job). However,
neither dialogs nor specific acceptability semantics is provided. Work presented
in [Heras et al., 2009] explicitly uses argumentation techniques to handle recom-
mendations. Its focus is bounded to peer-to-peer networks and recommendation
systems. In a similar approach, in [Bentahar et al., 2007] reputation values are
justified by the history of interactions and social network analysis. In this ap-
proach, argumentation is used as a theoretical reasoning process, instead of a
dialectical procedure.

The work presented in [Pinyol and Sabater-Mir, 2007] analyses reputation-
related concepts in terms of the internal elements used to infer them. How-
ever, it does not provide any formal protocol nor any acceptability semantics.
More pragmatic approaches provide agent architectures for fuzzy argumenta-
tion on trust and reputation, but they lack formal definitions of acceptability
[Stranders et al., 2008].

A promising research line that can be complementary to our approach comes
from the solution of the trust alignment problem [Koster et al., 2009]. Their
approach suggests that with the exchange of ground elements to justify trust
values (they consider only interactions, composed of contracts and fulfillments),
it is possible to model other agents’ inferences through inductive logic algorithms.
This approach requires though a very stable social groups where agents can
gather a lot of shared interactions and relatively simple reputation models. Also,
the exchanged of this kind of information can be seen as a violation of agents’
privacy.

Finally, we do not want to forget the incursion of argumentation-based ne-
gotiation in the reputation and trust field. For instance, the work presented
in [Morge, 2008] acknowledge the notion of trust as a multi-faced holistic con-
struct, based on evaluable elements that can be used to argue and that lead
the decision making. We can say that the approaches are somehow comple-
mentary. While our work focuses on the analysis of the internal elements of
reputation-related components, contributing to the field of computational repu-
tation models, negotiation approaches try to integrate it in argumentation-based
negotiation processes.

6.5 Experimental Results

We have presented so far the theoretical development of the reputation argumen-
tation framework and have discussed the reasons why we need such a system,
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and under which theoretical conditions the framework should help improving
the performance of the agents. However, there are questions that are difficult
(or impossible) to answer without experimental simulations. In particular, the
most relevant question that arises from the previous development is very clear:

When is it worth it to use the reputation argumentation framework?

Firstly, there is an obvious trade off between time and cost, which in our
framework is strictly related to the number of exchanged messages and the
achieved accuracy respectively. In this sense, (1) if the cost of achieving a bad
interaction is higher than the cost of messaging (or waiting time), the accuracy
becomes a crucial issue, and argumentation can help. On the opposite, (2) when
the cost of messaging dominates the potential failure of an interaction, for sure
argumentation is not a good solution. Of course, we focus on (1), and assume
that the cost of messaging is not relevant in comparison to the cost of a bad
interaction 2.

Also, notice that the reputation argumentation framework is nothing else but
a complement attached to an existing reputation model, which in general is al-
ready pretty accurate. In fact, there is no guarantee that the use of our argumen-
tation protocol significantly improves the accuracy of the agents. In this section
we present the results of a set of simulations that explore some parameters that
we consider crucial, and that empirically validate that the argumentation-based
protocol for social evaluation exchange significantly improves (statistically) the
accuracy of the agents when modeling the behavior of others.

The simulations should be considered only a proof-of-concept environment
that proves that in the scenario described below the use of argumentation is
useful. Even when we would require a more complete set of experiments to
completely validate the utility of the argumentation-based protocol, interest-
ing conclusions can be extracted, and of course can be extrapolated to other
scenarios.

6.5.1 Description of the Simulations

As in the simulations presented in chapter 2 we consider an scenario with buyers
and sellers. In this scenario, sellers offer products with constant quality (q)
and deliver them with a constant delivery time (dt). Buyers are endowed with
a reputation model and evaluate sellers in the role seller, which is composed
of sell(q) (quality dimension of the sold products) and sell(dt) (delivery time).
Also, the context Inf stands for informant.

To enhance the utility of the protocol and simulate a difference between rep-
utation models, we consider that different buyers can evaluate sellers in different
ways (they have different goals). To simplify, some buyers only take into account
good sellers accordingly to the quality of the products (QBuyers), while others,

2Even when the cost of messaging is null, if the cost of interacting is very low there is no
motivation for the agents to exchange information. An experimental evidence of this can be
found at [Sabater-Mir, 2003] (chapter 7)
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only accordingly to the delivery time (DTBuyers). The crucial point is that
initially, buyers communicate social evaluations only regarding the role seller.
Because of that, a good seller for agent A is not necessary good for agent B.

Our main hypothesis is that when no argumentation is present, the intro-
duction of information from unaligned buyers may bias the final accuracy of the
model, while when using argumentation, such information can be filtered, and
thus, the accuracy should improve. This evidence clashes with the idea that
to argue, both the source and the recipient agents must have some knowledge
about the environment, but not too much. If agents do not have any information
(or few), no argumentation is possible. On the opposite, if agents have already
a lot of information that includes a high number of direct trades, agents will not
be able to respond, since direct experiences cannot be attacked. To parametrize
the former situation we include a bootstrap phase, where agents explore the
environment without arguing. To deal with the latter, we do not let agents to
trade directly with all the agents, only with a subset of them. In concrete, our
simulations have the following phases:

• Bootstrap phase: It is used to endow the buyers with some knowledge
about the environment (that is, other sellers and buyers). At each turn,
each buyer perform two task: (1) chooses randomly a seller, buying from it,
and (2)sends a communication of an image predicate regarding a random
seller or buyer (in this case as informant) to a random buyer agent. No
argumentation is present in this phase. The number of direct trades and
messages send at each turn by each buyer agent can be parameterized. In
our simulations we allow to each agent one direct trade and one message
per turn.

To parametrize the fact that agents do not have too much information in
terms of direct trades, a percentage of the buyers (pctBuyers-Bootstrap)
can only perform direct trades with a percentage of sellers (pctSellers-
Bootstrap). The other buyers can trade directly to any seller. Such special
buyers will have to model the reminding sellers only using third-party
information. Figure 6.4 illustrates the scenario in this phase.

• Experimental phase: After the bootstrapping phase we create a single
Q-buyer agent (our subject of study) that wants to model the behavior of
a set of sellers (which correspond to a 100 - pctSellers-Bootstrap% of the
sellers 3) before trading with one of them. As discussed earlier, both the
source and the recipient of the communication must have some knowledge
before arguing, and because of that, our subject of study needs to go also
though a bootstrap phase.

An intuitive example that fits into the structure of this phase is a situation
in which a human buyer navigates though on-line forums starting new
traces before making the decision of buying an expensive good (like a
laptop, a car, etc.).

3We use the same pctSellers-Bootstrap value, but the set of sellers is not necessary the same
as in the bootstrap phase
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Once the subject of study finishes the bootstrap, the simulation proceeds.
As said before, the subject of study wants to buy a good, and for this, he
needs to model the behavior of the unknown sellers. It receives a single
message from each buyer agent about each of the unknown sellers. De-
pending on the experimental condition, the studied agent will aggregate
the communication directly to its reputation theory without any argu-
mentation phase, or will argue and decide whether to accept or not the
message. See figure 6.5 for an illustration of this phase.

Thus, the two experimental conditions are:

• NO-ARG: The studied agent does not use argumentation when receives
the messages. This means that the reputation model is the only mechanism
to avoid information from bad informants. Agents use an extension of the
Repage system (see chapter 2) that contemplates an ontological dimension.
In any case, the reputation model is able to detect bad informants com-
paring what they said with what they experienced. We recall here that we
have two groups of buyer agents (QBuyer and DTBuyer) and that have
different perspectives of what a good seller is.

• ARG: The studied agent and the source buyer agent (informant) engage
in a dialog following the protocol described in the chapter. In this exper-
imental condition the β parameter plays a crucial role. It is easy to see
that the higher the β parameter, the closer the performance results to be
to the NO-ARG condition, since when β is big enough, the argument is
always accepted [Dunne et al., 2009].

The main parameters that we manage in the simulations are:
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Parameter Description

#sellers Number of sellers (40)
#buyers Number of buyers (20)
pctGoodQuality Percentage of sellers that offer

good quality (25%)
pctGoodDTime Percentage of sellers that offer good

delivery time (25%)
pctQBuyers Percentage of QBuyers. 100 - pctQBuyers

are DTBuyer (20%, 50%, 80%)
pctBuyers-bootstrap Percentage of buyers that during the bootstrap

phase can only trade with a subset of randomly
selected sellers that represent the percentage
pctSellers-bootstrap

pctSellers-bootstrap It also determines the percentage of sellers
that during the experimental phase the studied
agent does bootstrap with. Then, the rest
of sellers are those that the studied agent
must discover only through messages (20%).

turnsBootstrap Turns in the bootstrap phase. We use such
parameter to control the amount of initial
information

β Inconsistency budget (0)

For the simulations, agents use the Lrep language taking M as 〈{V B, B, N,
G, V G},≤s〉, as in the example shown in this chapter. The performance of an
execution computes how well the studied agent is able to model the unknown
sellers. We compare the best possible evaluation as a seller (according to the
parameters of the seller and the goals of the studied agent), with the actual
evaluation. For instance, given a seller who offers a bad quality and a very good
delivery time, the best theoretically evaluation for an agent that is only interested
in the quality dimension should be B (bad). In the case that our studied agent
has evaluated such seller as G, the difference between both evaluations gives us
a measure of the achieved accuracy.

We make use of the difference function � defined over the ordered set M ,
in which we consider a mapping f : {V B,B,N,G, V G} → [0, 4] ∩ IN where
f(V B) = 0, f(B) = 1, f(N) = 2, f(N) = 3, f(N) = 4, and define �(X,Y ) =
|f(X)− f(Y )|. Then, 0 is the minimum difference, when both evaluations have
the exact same value, and 4 is the maximum, occurring when one evaluation is
V G and the other V B.

In our simulations we define the accuracy as the percentage of improvement
with respect to the expected difference of two random evaluations. It is easy to
compute that given two random evaluations, their expected difference is exactly
40
25 = 1.6. The computation is summarized in the following table:
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Figure 6.4: A possible scenario during the bootstrap phase
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Figure 6.5: A possible scenario during the experimental phase
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Difference Possible Values Prob. Expected
4 (V B, V G) 2 · 15 · 15 0.32
3 (V B,G),(B, V G) 2 · 2 · 15 · 15 0.48
2 (V B,N),(B,G),(N,V G) 2 · 3 · 15 · 15 0.48
1 (V B,B),(B,N),(N,G),(G, V G) 2 · 4 · 15 · 15 0.32

Total 1.6

For instance, to compute the partial expectation of obtaining a difference of
2, we have to realize that there are only three situations in which this occurs:
(V B,N), (B,G), (N,V G). Therefore, the probability of archiving a situation
in which the difference is two is 3 · 1

5 · 1
5 . Since we also consider the symmetric

situation (so, (N,V B), (G,B) and (V G,N)), the probability is in fact 2·3· 15 · 15 =
0.24. Thus, the partial expected value is 0.24 · 2 = 0.48.

One expects that the reputation model improves such value, so, that the
difference decreases to some extend from 1.6. For this, we calculate the av-
erage difference of all the unknown sellers and compute the percentage with
respect to 1.6. For instance, an average difference of 0.5 improves 68.75%
(68.75 = (1.6−0.5) ·100/1.6), while an average difference of 0.3 improves 81.25%
the random expected difference. Using this measure we can compare the exper-
imental conditions ARG and NO-ARG.

6.5.2 Simulation Results

As said above, our main concern is to validate that the use of our argumentation
mechanism improves significantly the accuracy of the agents in some conditions,
and characterize them to some extend. Concretely, and in the terms used in the
description of the experiment, the hypothesis is:
H: The experimental condition ARG achieves a higher improvement
than the condition NO-ARG

We analyze such statement by the parameters pctBuyers-Bootstrap and turn-
Bootstrap

pctBuyers-Bootstrap

The parameter models the number of buyer agents that in the bootstrap phase
cannot interact with all the sellers, only with a subset of them. Then, when the
parameter is high it indicates that most of the buyers are not able to explore
directly some sellers, and when it is low, that most of the buyers are able to
explore all the sellers. In our setting this parameter is an indicator of how well
the set of buyers is informed. We theorized that too few information, as well as
too much can be critical in the use of argumentation. The simulation results are
in tune with this idea.

Figures 6.6, 6.7 and 6.8 show the performance of ARG and NO-ARG when
varying pctBuyers-Bootstrap from 5% to 95% (setting turnsBootstrap to 20) with
pctQBuyers=80%, pctQBuyers=50% and pctQBuyers=20% respectively . The
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Figure 6.6: The performance of both experimental conditions varying the
pctBuyers-Boostrap, with pctQBuyers=80% and pctDTBuyers = 20%

results confirm the hypothesis for most of the points in the graph4 (we highlight
such intervals in the figures). It is interesting to observe that all three graphs
show a range of pctBuyers-Bootstrap in which the hypothesis is always confirmed
with a p value ≤ 0.01. The following table summarizes them:

pctQBuyers Intervals (%)
80% (fig. 6.6) 40 - 80
50% (fig. 6.7) 35 - 70
20% (fig. 6.8) 5 - 70

The results indicate that when pctBuyers-Bootstrap is high (higher than
80%), ARG does not improve significantly NO-ARG. Those are the cases where
there is not enough ground information to make useful the argumentation pro-
cess. Also, when pctBuyers-Bootstrap is low, ARG does not necessary improve
significantly NO-ARG. This is when the agents have already too much ground
information that the studied agent cannot reject any argument.

It is also interesting to observe that as pctBuyers-Bootstrap increases, the
accuracy of both ARG and NO-ARG decreases a bit. This is because direct
trades offer always a better way to discover sellers than just communications.
Then, when pctBuyers-Bootstrap is high, less buyers can directly interact with
all the sellers.

4We performed t-test statistical analysis to validate whether ARG significantly improves
NO-ARG with a p value ≤ 0.01. When this is the case, we say that H is confirmed. For
the statistical analysis, each simulation is repeated 20 times. To give arguments in favor of
assuming normality on the distributions, we applied the Jarque-Bera (JB) test for normality,
and we could not reject the null hypothesis, which assumes that the distribution follows a
normal distribution.
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Figure 6.7: The performance of both experimental conditions varying the pct-
BuyersBoostrap, with pctQBuyers=50% and pctDTBuyers = 50%

Figure 6.8: The performance of both experimental conditions varying the
pctBuyers-Boostrap, with pctQBuyers=20% and pctDTBuyers = 80%
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turnBootstrap

Related to the previous parameter, we want to study the amount of information
that is needed to actually achieve an improvement by using argumentation. For
this, we set the parameter pctBuyers-Bootstrap to 75% and vary the number of
turns that agents spend in the bootstrap phase. The higher turnsBootstrap is,
the higher the amount of information the agents will have about the sellers when
the experimental phase starts.

Figures 6.9, 6.10 and 6.11 illustrate the obtained results with pctQBuy-
ers=80%, pctQBuyers=50% and pctQBuyers=20% respectively. As expected,
ARG does not perform better than NO-ARG until certain amount of data is
managed by the agents. Figure 6.11 is maybe the most illustrative situation.
There it can be observed how from 10 turns on, ARG is always better than
NO-ARG. This is an indicator of the amount of information needed to take ad-
vantage of argumentation. The following table summarizes the intervals where
ARG improves significantly NO-ARG.

pctQBuyers Intervals (turns)
80% (fig. 6.9) 18-20
50% (fig. 6.10) 17-20
20% (fig. 6.11) 10-20

The intervals show the points in which the difference is statistically significant
with a p value < 0.01. However, some other points achieve a p value < 0.05,
which in many cases it would be enough to consider it a significant improvement.

It is also interesting the behavior of pctQBuyers. When it is 20% the im-
provement can be already appreciated in the turn 10, while when it is 50% and
80% the improvement is appreciated much later. We recall here that the studied
agent is always a QBuyer, and then, when pctQBuyers is low, there are few
QBuyers, so, few agents with the exact same goals. Thus, the results confirm
that when the percentage of QBuyers is low, few bootstrap turns are enough
to encourage the use of argumentation. Notice that when pctQBuyers is high,
the achieved improvement by NO-ARG is already high, while it is low when
pctQBuyers is low. We can extrapolate here that when everybody has similar
goals it is not worth it to argue, while when it is not the case, argumentation can
improve significantly the performance. The problem is that in real scenarios, it
is hard to know the goals of the agents beforehand. Nevertheless, they can be
learned by the agents.

6.5.3 Discussion

We have performed a set of simulations to empirically validate the utility of the
argumentation protocol. We compare the accuracy obtained by agents using our
argumentation protocol (ARG), and those not using it (NO-ARG). We show how
in most of the checked conditions, ARG improves significantly (p value ≤ 0.01)
the accuracy obtained by NO-ARG. We explore several parameters and provide
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Figure 6.9: The performance of both experimental conditions varying the turns-
Bootstrap, with pctQBuyers=80% and pctDTBuyers = 20%

Figure 6.10: The performance of both experimental conditions varying the turns-
Bootstrap, with pctQBuyers=50% and pctDTBuyers = 50%
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Figure 6.11: The performance of both experimental conditions varying the turns-
Bootstrap, with pctQBuyers=20% and pctDTBuyers = 80%

intervals in which ARG works better than NO-ARG. In concrete, we show how
when (1) there is an heterogeneity of agents (not everybody has the same goals)
and (2) agents do not base all their inferences in direct experiences, agents using
argumentation achieve significantly a better accuracy that agents not using it.

When everybody has similar goals the gain in accuracy obtained using ARG
may not be significant (1). The reason is that though argumentation, agents can
reject information that they consider not reliable. In our settings where no cheat-
ing is present, when the goals are similar the inclusion of the communications
into the reputation theories does not produce much bias in the new deductions.
In other words, the reputation mechanism by itself obtains very good accuracy
levels that are difficult to be improved by argumentation techniques.

The empirical analysis show the importance of the bootstrapping phase,
which models the fact that argumentation is useful when agents are endowed
with some knowledge (2). Regarding this, the experiments reveal that given a
set of parameters, there is always a need for a certain number of bootstrapping
turns to make ARG better than NO-ARG. This situation is specially illustrated
by the figure 6.11.

We want to remark that the presented simulations were performed indepen-
dently for ARG and NO-ARG. It means that for each simulation, a bootstrap
phase was executed and either ARG or NO-ARG where executed. We partially
explored what happens when after the same bootstrap phase, we run ARG and
NO-ARG. We observe that in most of the cases (almost all of them) ARG per-
forms better than NO-ARG. Preliminary results are illustrated in figure 6.12.
We let for future work a more exhaustive exploration in this direction, plus the
study of other parameters.
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Figure 6.12: The performance of both experimental conditions keeping the same
bootstrap data, with fix parameters. We illustrate how when keeping the same
bootstrap data, argumentation always performs better than not using it.

6.6 Conclusions

In this chapter, we have defined an argumentation-based protocol for the ex-
change of reputation-related information that allows agents to judge whether a
given piece of information is reliable or not. We use argumentation techniques
to give semantics to the protocol.

We have made an important assumption: the agents use the same language
to talk about reputation concepts. This requires that the concepts described by
the language have the same semantics for both agents. We allow though the
use of different deduction rules to infer the predicates. In the case agents use
different semantics they should engage first in a process of ontology alignment.

At the theoretical level, the next step regarding this work will be the inclusion
of defeats among arguments. We plan to use the typology of ground elements
to give strength to the arguments, independent of their attack relations. For in-
stance, one may consider that arguments based on direct experiences are stronger
than those based on communications.

It is also important to remark that as shown in [Prakken, 2000], dialog games
in dynamic contexts may be neither sound nor complete. This implies that
we can only ensure the correctness of the presented dialog protocol in static
environments, so, when the information that agents have remains static during
the game. This constrain can be too strong in certain scenarios, specially when
each step of the dialog can be considered a communication that may change the
internal mental state of the recipient agents. This is a research line that should
be explored and investigated in the future.
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Chapter 7

Conclusions and Future
Work

In this final chapter we summarize the main contributions of this book that have
already appeared partially in the respective sections. We also state the future
lines of research that this work has opened.

7.1 Reasoning Using Social Evaluations

We have presented the BDI+Repage model, a BDI agent architecture that inte-
grates in the reasoning process reputation information from the existing Repage
model. The main characteristics of the model have been already mentioned in
chapter 1, but in any case, we want to remark the following features:

• The model is defined as a multi-context system (MCS), a framework that
allows several distinct theoretical components to be specified together, with
a mechanism to relate these components. From a software engineering
perspective, MCS supports modular architectures and encapsulation. This
modular architecture permits smooth integrations of possible modules that
could extend the functionalities of the original one

• We use DC-logic and IC-logic extracted from [Casali, 2008] to model the
desires and intentions of the agent. This allows the agents to be endowed
with graded attitudes. Also, we introduce a new logic to deal with the
beliefs of the agent. The belief logic is a classical first-oder many-sorted
logic, deals with probabilities and is capable of representing and combine
the information that the reputation model Repage computes.

• It handles image and reputation. The Repage model is based on a cogni-
tive theory of reputation that states a main difference between image and
reputation. The belief logic that we develop captures both concepts and
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combines them, defining a family of agents depending on how such com-
bination is performed. It is important to remark that we use Repage as a
paradigmatic example, but any model whose information can be captured
by the reputation language Lrep could be placed into the system.

Considering trust as a decision to rely on somebody, the BDI+Repage model
can be seen as a trust model, becoming as far as we know the only cognitive
trust model which defines analytically the components of the trust mental state.
In this sense, when an agent that uses the BDI+Repage architecture makes a
decision, the mental state is composed of a set of beliefs, desires and intentions.
Some of the beliefs are generated from Repage and model several aspects that
other cognitive models of trust suggest, like competence and disposition be-
liefs [Castelfranchi and Falcone, 1998b, Herzig et al., 2008]. The BDI+Repage
model assumes that the general desires of the agents are already in the system
(with their respective grades). These generic desires correspond in fact to the
wishes from Castelfranchi & Falcone’s model [Castelfranchi and Falcone, 1998b],
and the final intention generated though the reasoning process, to the goal atti-
tude defined in [Castelfranchi and Falcone, 1998b].

We also provide the BDI+Repage+Norm model, an extension of the orig-
inal BDI+Repage architecture that shows the flexibility of the model. The
BDI+Repage+Norm architecture uses the reputation model to evaluate the ac-
complishment or not of the norms, which are specified in a new Norm Context.
Even when a big amount of effort has been put into the study of normative sys-
tems from an organizational perspective or through deontic aspects that restrict
the possible actions agents can perform, few attention has been paid to how
agents evaluate such norms and use them to reason. The BDI+Repage+Norm
proposes a solution for this by specifying the normative language Lnorm to ex-
press norms, and integrating it to the BDI+Repage system.

From the examples we place in chapter 5 it should be clear that on one
hand, epistemic decisions play a crucial role in the pragmatic-strategic decisions
of the agent, and that a formal model for its integration improves the con-
ceptualization of the reasoning process. On the other hand, the consequences of
pragmatic-strategic decisions may also effect the epistemic decisions, implement-
ing somehow the loop that Conte and Paolucci in [Conte and Paolucci, 2002]
state.

7.1.1 Future Work

The future work regarding this part concerns several aspects that exploit the
usage of the BDI+Repage model and the empirical evaluation of certain proper-
ties regarding the relationship between image and reputation. In appendix B we
already explore an heuristic implemented through a simple Q-learning algorithm
that helps agents to decide whether to rely on image more that reputation in-
formation or vice versa. We statistically validate that the method is effective in
the simple and artificial scenario we provide. However such exploration requires
more development:
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• It would be nice to generalize the heuristic presented in the appendix to
include not only the classes H3, H4 and H5, but the classes H1 and H2,
which consider only image and only reputation respectively. This is to
establish under which (environmental or social) conditions the agent can
withdraw image or reputation from the system.

• Also, the experiments performed in the appendix B considers a very sim-
ple environment. Future work requires an exhaustive study of a different
typology of scenarios. For example, reproducing the simulations described
in chapter 2, with societies where the number of cheaters differ, or where
the fear of retaliation is present, with few/many resources, or few/many
bad/good informers, etc.

• An empirical comparison of the model with other existing models is a
challenging objective. The reason is that there are no models that make
use of the distinction between image and reputation, which is one of the
main characteristics of the model presented here. However, some models
could be slidely modified to capture such difference.

Regarding the future research on the development of the model, we want to
integrate it in argumentation-based negotiation processes. Some published work
[Parsons et al., 1998] already makes use of a multicontext BDI agent to define
processes of negotiation through argumentation, that we could exploit using the
BDI+Repage model. The challenges regarding this issue are:

• The adaptation of/to the negotiation model with graded information. The
BDI+Repage model incorporates graded attitudes that should be taken
into account when arguing in a process of negotiation. In our case, agents
not only desire certain goals but they do it with a degree.

• Also, since our model incorporates a reputation model, such valuable
source of information should be integrated in the negotiation process. The
integration will enrich the accuracy of the process and help agents deter-
mine better choices accordingly to their individual objectives.

• In chapter 6 we propose an argumentation system that already consider
graded information. Its focus though relies on the internal elements of
the reputation model. To develop argumentation-based negotiation pro-
tocols we need to develop argumentation systems at the BDI level, where
beliefs, desires and intentions justify themselves through the bridge rules.
Some work regarding practical reasoning have been done where these three
attitudes are the main part of the arguments.

7.2 Dialogs and Argumentation

The other main contribution faces definition of an argumentation-based dialog
protocol for the exchange of reputation-related information. The protocol in-
tends to give an alternative solution to one of the main problems in the field
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of trust and reputation models, regarding the subjectivity of reputation infor-
mation and its harmful consequences when it is communicated. Due to the
subjectivity of reputation information, a social evaluation totally reliable for an
agent A may not be reliable for B, because the bases under which A has in-
ferred the social evaluation cannot be accepted by B. This can happen because
agents have different inference rules, have had different experiences, have differ-
ent goals, etc. When such information is communicated this can become very
problematic, specially if the reputation model assigns a reliability measure to
the communicated information, because it depends on the source agent.

The system we propose offers a possible solution for this, and can comple-
ment already existing methods. Taking advantage of the internal structure of
reputation-related information, rather than allow only single communications,
we allow agents to justify their communications following the guidelines of the
argumentation-based protocol. Then, the agent can incrementally construct a
tree of arguments with their attack relations that can be used to decide on the
reliability (and thus acceptance) of a communicated social evaluation. The main
features of the system are:

• The recipient agent is who decides about the reliability of a communicated
evaluation. This makes more difficult for dishonest agent to intentionally
send fraudulent information, because they must be aware of the knowledge
of the recipient.

• It handles quantitative and qualitative graded information. One of the
main characteristics of reputation information is that it is graded. Nowa-
days it is strange to find a model that provides crisp evaluations of the
agents. For instance, an agent A may be bad, very bad or very good etc. as
a car driver, and this has to be taken into account when arguing about eval-
uations. For this, we make use of the weighted argument system defined
in [Dunne et al., 2009].

The system is generic enough to permit interactions among agents that use
different reputation models. We only require that the language of such models
must be captured by Lrep.

We also provide some empirical validations of the system. The simulation
experiments confirm that when (i) there is an heterogeneity of agents, (ii) they
do not base all their inferences in direct experiences (they have not explored all
the environment by direct interactions), and (iii) agents are partially endowed
with a moderate amount of information, agents that use our argumentation
protocol improve significantly the accuracy when modeling sellers. The results
assume that the cost of direct trades is high, while the cost of communication
is very low. If this is not the case, the agents do not have the motivation to
communicate.

7.2.1 Future Work

We have several research lines in mind regarding this topic:

150



• We want to introduce explicitly the notion of defeat among arguments. In
this sense, we plan to use the typology of ground elements to give strength
to the arguments, independently of their attack relations. For instance,
one may consider that arguments based on direct experiences are stronger
than those based on communications. This requires further development,
since as far as we know, no argument system has included yet strength in
the attacks and weights in the arguments.

• Another research line involves the extension of Lrep to include possible ar-
guments about ground elements, specially direct experiences. The frame-
work presented in this work omit such kind of arguments, arguing that
this could effect the privacy of the agents. Nevertheless, some promising
work [Koster et al., 2009] makes use of such basic interactions to establish
alignments between different trust models. We think both approaches are
complementary and could be used together.

• Also, more empirical valuations are required. We want to perform an ex-
haustive exploration of scenarios where the application of argumentation
about reputation-related concepts makes a difference. In particular, we
would like to play with the percentage of cheaters and fraudulent infor-
mation, the heterogeneity level of the agents in the society, the level of
inconsistencies etc...

• It would be also nice to study the impact of the most classical attacks
in virtual societies, specially whitewashing. We theorize that an argu-
mentation system like ours could discourage such behaviors by adjusting
inconsistency budgets.

• Also, we would like to study the effect of allowing argumentation in P2P
systems, with different topologies of networks. The literature on P2P
is extensive and the attempts to minimize the impact of whitewashing
or free-raiders attacks are the main issues. Some of them are based on
reputation-based trust (other are policy-based trust, where the trust on
peers in built through the exchange of credentials), and a similar argu-
mentation framework presented in this book could be very useful.
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Appendix A

Entropy of the
Representations

A.1 Introduction

As stated before, in a system where participants may be using different kinds of
reputation and trust models, the necessity of exchanging social evaluations to
achieve their goals may drive in a situation where an agent that uses a boolean
representation needs to communicate with one that uses probabilistic distribu-
tion, and then, a conversion of representations must take place. However, type
conversions carry lose of precision and addition of uncertainty. As an exam-
ple, some evaluation represented as a boolean that is Bad, when is converted
to a real representation may have an evaluation from 0 to 0.5 (not included),
when is converted to discrete set, it may be one of these elements {V B,B} etc...
This factor of uncertainty that is added when we convert a value to a more ex-
pressive representation is what we call Conversion Uncertainty (CU), and is an
information that the recipient should know.

A.2 Entropy of the Representations

In order to calculate the CU we use the information theory approach introduced
by Shannon [Shannon, 1948]. In this context, the entropy of a random variable
X (H(X)) can be understood as the uncertainty of X, and is defined as

H(X) = −
∑
x∈X

p(X = x) log(p(X = x)) (A.1)

From Shannons’s theory we can define the conditional entropy as follows:

H(X|Y = x) = −
∑
x∈X

p(X = x|y = Y ) log(p(X = x|Y = y)) (A.2)
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Type Entropy

BO 1.00
DS 2.31
RE 6.64
PD 22.19

Table A.1: Entropies of the type representation

and finally,

H(X|Y ) = −
∑
y∈Y

p(Y = y)H(X|Y = y) (A.3)

Now, we consider each one of the representations as discrete random variables.
Without lose of generality we can discretize the Real representation using two
digits (in base 10), having a hundred possible values. The fact of using 100
divisions for the interval and not a bigger amount is because we think that a
greater precision is completely unnecessary (and even counterproductive) given
the nature of the measure that is represented with this value, that is, a measure of
a social evaluation. At the same time, taking into account the hundred possible
values of a Real number, we can count the number of elements of the Probabilistic
Distribution representation considering all possible combinations of distribution
values that need to achieve the unit1. Let A be this number, the following
equation holds:

A =

4∑
i=0

(
5

i

)(
100

4− i

)
= 4780230 (A.4)

Each random variable has as elements each possible element of the represen-
tations and its probability distribution is totally equiprobable. Then, we define
the conversion uncertainty of the source random variable X to the target random
variable Y as

CU(X,Y ) = H(Y |X) (A.5)

In other words, CU is the increment of uncertainty produced when a value
is represented in X and it is converted to a value of type Y , which is more
expressive. There is a set of candidate values that makes conditional entropy
increase. The values of the entropy of each type is showed in table A.1. See
appendix A for the details of the calculus.

The CU values for each conversion is showed in table A.2. Each row is the
source and each column is the target.

An example will illustrate the usage of the CU value. Let’s suppose agent A is
using a Boolean representation, and generates and sends an evaluation to agent
B that uses a discrete set representation. Agent B would reach the evaluation
with a CU value of 1.29. If agent B send the same evaluation to agent C that

1This is a combinatorial problem related to the famous Balls and Bins problem
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BO DS RE PD

BO 0 1.29 5.64 21.19
DS 0 0 4.32 19.89
RE 0 0 0 15.55
PD 0 0 0 0

Table A.2: CU values

uses a probabilistic distribution, agent C would receive the evaluation with a CU
value of 1.29 (the base value coming from the communication) plus 19.89 (from
the type conversion between DS to PD), it means, a CU value of 21.18. The idea
is that the uncertainty of the evaluations is accumulative, without allowing loops
(if the evaluation goes back to an agent using a representation type that have
already been used in some transformation there is no addition of uncertainty)

A.3 Calculus of CU

In this section we provide the calculus to compute each one of the CU that are
summarized in table A.2.

CU(BO,DS) = 1.29

Considering True as t and False as f:

CU(BO,DS) = H(DS|BO) (A.6)

Knowing that p(BO = t) = p(BO = f) = 1
2 we can write that

CU(BO,DS) =
1

2
H(DS|BO = t) +

1

2
H(DS|BO = f) (A.7)

At this point, when BO = t and following our semantic interpretation we know
that it may refer to one value of the set {N,G, V G}, and if BO = f of the set
{VB,B}. Then P (DS = {V B}|BO = f) = P (DS = {B}|BO = f) = 1/2 (zero
in other values of DS) and P (DS = {N}|BO = t) = P (DS = {G}|BO = t) =
P (DS = {V G}|BO = t) = 1/3 (zero in other values of LL). Then, following the
previous equations and developing the entropy formula we have that

H(DS|BO = t) = −31
3
log(

1

3
) ≈ 1.58 (A.8)

H(DS|BO = f) = −21
2
log(

1

2
) = 1 (A.9)

finally, computing the equation A.7 we have

CU(BO,DS) = 0.79 + 0.5 = 1.29 (A.10)
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CU(BO,RE) = 5.64

Here, knowing that BO = t our semantic indicates that as a real, it could be a
value from 0.50 and 1, then ∀i∈[0,1]p(RE = i|BO = t) = p(RE = i|BO = f) =
1/50 and therefore,

H(RE|BO = t) = H(RE|BO = f) = −50 1

50
log(

1

50
) ≈ 5.64 (A.11)

CU(BO,RE) = 5.64 (A.12)

CU(BO,PD) = 21.19

Having in mind the total number possible elements in PD (see equation A.4),
we know that BO = t implies that whatever representation of PD will tend
towards a good evaluation, it means that the probability of being good is higher
that the opposite. That eliminates exactly 50% of all the representations, and
therefore

∀i∈PDp(PD = i|BO = t) = p(PD = i|BO = f) =
2

A
(A.13)

H(PD|BO = t) = H(PD|BO = f) = −A

2

2

A
log(

2

A
) ≈ 21.19 (A.14)

CU(BO,PD) = 21.19 (A.15)

CU(DS,RE) = 4.32

Following the same reasoning:

CU(DS,RE) = H(RE|DS) (A.16)

CU(DS,RE) =
∑

i∈{vb,b,n,g,vg}

1

5
H(RE|DS = i) (A.17)

Notice that in this case, the difference between a Real and DS is that the first
is continuous and the second discrete. Then, dividing the [0, 1] interval into
five identical parts, and assigning each of them into a value of DS we have the
problem almost done. In this situation, each value of DS correspond to a 20
values of Real, and therefore,

∀i∈{vb,b,n,g,vb}∀j∈[0,1]p(RE = j|DS = i) =
1

20
(A.18)

Then,

∀i∈{vb,b,n,g,vb}H(RE|DS = i) = −20 1

20
log(

1

20
) ≈ 4.32 (A.19)

and then,

CU(DS,RE) = 4.32 (A.20)
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CU(DS,PD) = 19.89

The key in all the calculus is in the fact that each element of DS may correspond
to a set of elements of PD whose center of mass is included in the interval
corresponding to the function defined in R′. In the same way we have discretized
the interval [0, 1] in five parts, for each of these intervals we have a total of A

5
elements of PD with a center of mass that points inside the interval. Therefore,
we can establish the following statement:

∀i∈{vb,b,n,g,vb}∀j∈PDp(PD = j|DS = i) =
5

A
(A.21)

and,

∀i∈{vb,b,n,g,vb}H(PD|DS = i) = −A

5

5

A
log(

5

A
) ≈ 19.89 (A.22)

then,
CU(DS,PD) ≈ 19.89 (A.23)

CU(RE,PD) = 15.55

Following the same reasoning than in the previous point, the number of elements
of PD whose center of mass is the one being converted is approximately A

100 ,
and therefore,

∀i∈[0,1]∀j∈PDp(PD = j|RE = i) =
100

A
(A.24)

and,

∀i∈{vb,b,n,g,vb}H(PD|RE = i) = − A

100

100

A
log(

100

A
) ≈ 15.55 (A.25)

then,
CU(RE,PD) = 15.55 (A.26)
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Appendix B

An Heuristic for the Axiom
IRB

B.1 Introduction

In chapter 5 we have presented the BDI+Repage model which makes use of the
belief language LBC defined in chapter 4. There, we define a typology of agents
depending on the axiom IRB:

∀axp1p2r(E(a, x, p1, r) ∧ S(a, x, p2, r))→ B(a, x, h(p1, p2), r)

We propose a family of agents whose h function is defined generically as

h(pE , pS) =
δE · pE + δS · pS

δE + δS

where δE , δS ∈ IQ≥. Table 4.1 summarizes the behavior of a family of agents
depending on the values of δE and δS .

When considering this generic definition, one question arises: which is the
best function? Notice that by changing it the reasoning process of the agents
is touched. We theorize that it is context dependent. To investigate a little bit
more in this direction, we propose an heuristic process that decides at each turn
which is the best function to use. We validate it through simulations.

The experiments should be also understood as a proof-of-concept platform
that shows the viability of possible implementations of the BDI+Repage model.
It should not be considered a complete empirical validation of the model. This
is only a first step towards a potential set of simulation experiments that can be
done using our model to answer questions about image and reputation. Further
possible simulations are described in the future work section (chapter 7).
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B.2 A Metaprocess for Updating Function h

We propose a mechanism that learns which is the best function h at each stage.
For this, we consider the h function as

h(pE , pS) = (1− Z) · pE + Z · pS
where Z ∈ [0, 1] ∩ IQ. Then, our process only needs to decide which value to

assign to Z. Notice that when Z is 0, the agent only takes into account image
information. When Z is 1, reputation information is more important. Previous
work on cognitive theories and simulation of image and reputation dynamics (see
chapter 2) reveals that the amount of reputation information that circulates
in a society is a lot higher than image-based information, due to the implicit
commitment that sending image information carries out 1.

However, even when reputation information is mostly inaccurate, open soci-
eties perform better when reputation information is allowed in the system, and
also are more robust with respect to certain level of cheating information 2. This
indicates that agents face mostly inaccurate information but that they need to
use it to face real uncertain and unpredictable scenarios.

These studies are very helpful when defining a process to decide Z. Our IRB
axiom is in fact a predicate that indicates how much information that circulates
in the society can be considered true by the agent. In the way we have defined
rules AI and AR, settings of Z tending to 0 could be useful when the number of
cheaters is considerably big, meanwhile settings of Z close to 1 would be helpful
in the opposite way. Then, our process tries to calculate how different image
and reputation information results to be.

As defined in chapter 4, Repage provides image and reputation information
as

img(j, r, [v1, . . . , vt])

rep(j, r, [v1, . . . , vt])

where j is the target agent, r is the role and [v1, . . . , vn] is the value of the
social evaluation. The value represents a probability distribution over a sorted
set of labels, like {Very bad, bad, neutral, good, very good}. The informal
idea is to average the distances between all pairs of image and reputation values
corresponding to the same target agent and role to estimate the value of Z.
Then, if for most of the agents and roles, the values of image and reputation

1As explained in [Pinyol et al., 2007a], when an agent communicates image information,
she is in fact informing about her thoughts, about what she thinks. The source agent is
both revealing her identity and certifying that the information is true. Because of the fear of
retaliation from the other members of the society, an agent only sends image information if
she is mostly certain about it. If this is not the case, it is more likely that this information
is not communicated or communicated as reputation, which involves a detachment from the
source of information and thus, no commitment.

2More than 50% of cheaters in a society still produces a benefit in the overall performance
when reputation communication is allowed. See chapter 2.
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Figure B.1: Possible scaleZ functions. x is the average distance, and y the
estimated Z

considerably differ, Z should tend to 0. Otherwise, it should tent to 1. In the
following lines we formalize this process, whose schema is shown in figure B.2.

Firstly, we state the definition of the function dist that provides a measure
of the distance between two Repage evaluations.

Definition Let w1 and w2 be Repage evaluations with t partitions, and w1j the
j-th value of the evaluation w1. The distance between them is calculated as

dist(w1, w2) =

t∑
j=1

|w1j − w2j | · |(j − 1− CM(w1, w2))| (B.1)

where CM (center of mass) is

CM(w1, w2) =

∑t
j=1 |w1j − w2j | · (j − 1)∑n

j=1 |w1j − w2j |
(B.2)

Notice that the maximum possible distance is exactly t− 1. This is the case
in which one evaluation is (1, 0, . . . , 0) and the other (0, . . . , 0, 1). The minimum
distance is 0 and this is the case when both evaluations have exactly the same
weights. We usually present this value normalized between -1 and 1, where -1 is
the minimum difference, and 1 the maximum:

distN (w1, w2) = 2 · dist(w1, w2)/(t− 1)− 1 (B.3)

We use this function to calculate the general distance between image and
reputation predicates about the same agent playing the same role. Let S =
{s1, . . . , sn} be the set composed of pairs of image and reputation predicates
from Repage, where each si= 〈img(a, r, w1)i, rep(a, r, w2)i〉i, a is an agent name,
r is a role name and w1 and w2 are evaluations. The average distance between
each pair is calculated as

distAvg(S) =

∑n
i=1(distN (si.w1, si.w2))

n
(B.4)
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Figure B.2: Schema for the calculus of the new Z value.

This gives us the average distance between what the agent believes and what
the agent believes to be said (in terms of Repage predicates). Aforesaid, lower
values should carry higher values of Z, while higher differences, low Z. To scale
this measure, we can consider several functions (named scaleZ). We show some
of them in figure B.1.

Once we have this value we are ready to update the current Z value of the
agent. Let currZ be the current Z level of the agent, the new Z value is calculated
as

newZ = currZ + (scaleZ(distAvg(S))− currZ) ∗ inc (B.5)

where inc is the increment index, or learning rate (from 0 to 1). This schema
follows the classical Q-learning equation. Then, with inc = 0 the agent does not
learn anything and with inc = 1 only the last value is taken into account. We
need to normalize this value in the interval [0,1]. The final value is then

(newZ + 1)/2

In the next section we validate the previous process by simulating a simple
market.
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B.3 Validation of the Proposed Method

B.3.1 Scenario and Simulation Settings

To validate the proposed method, we replicate a simple wine market with buy-
ers, sellers and informants. In this scenario, all sellers offer wine that has certain
quality. Also, a delivery time expressed in weeks is associated with the seller.
Buyers are BDI agents following the model described in this paper. Therefore,
the goals of the agents are described in terms of graded desires. The set of infor-
mant agents send out reputation information about the sellers. We control the
experiment by setting a percentage of informants that spread wrong reputation
(liars), the number of sellers and the distribution of qualities and delivery times.

We focus our attention in the performance of the buyer agents. Figure B.3
shows the sequence diagram of a single turn. First, all informant agents send
reputation information about the sellers. Each informant communicates at each
turn one reputation communication referring to a single seller agent and focusing
on either the quality of the products offered by such seller or the delivery time
of the products. The buyer agent incorporates all these information into the
Repage model. After the communications, the buyer starts the BDI reasoning.
The result is a decision. In this case, the purchase of the product from the best
reasonable seller according to the desires of the buyer agent. Once the purchase
is done, the buyer agent receives a fulfillment indicating the quality and the
delivery time of the product. This new direct experience is introduced into the
Repage model, before starting the metareasoning process to updates bridge rules
and axioms. After that, the turn finishes and the buyer agent is evaluated.

Seller configurations

Each seller has two parameters: Quality of the product offered and the delivery
time of the product that they achieve. To simplify the simulations we consider
that the quality of the wine has four possible values: excellentWine, goodWine,
regularWine, poorWine. The delivery time of the product is given in terms of
days. However, buyer agents evaluate them in terms of five possible outcomes:
days(0,1), days(1,3), days(3,5), days(5,10), days (10,∞), where days(x,y) indi-
cates a delivery time between x (inclusive) and y(exclusive) days.

We state a distribution of qualities such a way that the best qualities are
scarce. Instead, good delivery times are not rare. The impact of such distri-
butions in the performance of the simulations depends on the desires of the
buyer agents, and thus, their importance is subjective. We select the following
distributions in this paper:
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Quality Delivery Time
Concept %
excellentWine 15
goodWine 20
regularWine 30
poorWine 35

Concept %
days(0,1) 30
days(1,3) 25
days(3,5) 15
days(5,10) 15
days (10,∞) 15

Sellers are completely reactive and always sell the wine under request. We
run experiments with different numbers of sellers and informants. But since
the distribution of quality products and delivery times is done in percentage,
at certain point there is no difference in the performance. Furthermore, unlike
previous work [Pinyol et al., 2007a, di Salvatore et al., 2007], sellers are always
available.

Informant configurations

Informants are aware of the parameters of the sellers, and can be honest or liars.
Honest agents spread accurate reputation information while liars spread wrong
reputation. At each turn each informant randomly chooses a seller, and sends a
reputation communication to the buyers regarding that seller. If the informant
is honest, it will send the exact parameters of the seller. Else, the informant
will send reputation values with different parameters of the chosen seller. In the
simulations we present in this paper, the parameters are modified to the value
of maximum difference. The following table shows the transformation that liar
informants do when sending wrong reputation.

Quality Delivery Time
Real Send
excellentWine poorWine
goodWine poorWine
regularWine excellentWine
poorWine excellentWine

Real Send
days(0,1) days(10,∞)
days(1,3) days(10,∞)
days(3,5) days(0,1)
days(5,10) days(0,1)
days (10,∞) days(0,1)

The number of informants also is a parameter of the simulation although
we fix it to 5. Then, at each turn the buyer agent receives 5 communicated
reputations and only performs one direct experience, simulating the fact that
reputation information is more present than image information. In these simu-
lations we do not consider image communications. Therefore, image information
is only calculated through direct experience. At each turn one direct experience
is contrasted with N reputation communications from the informants (where
N > 1). The increment in the number of informants increases the effects shown
in the following experiments, but shows the same pattern of behavior. Instead,
we play with the percentage of honest and liar agents, which directly impact the
metareasoning process.
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Evaluation of Buyers

We evaluate the performance of buyers at each turn by considering the maximum
grade of the positive desires achieved (if any) and subtracting the grades of the
negative desires. See the following example.

Example : Let us assume that our agent buyer i wants to get a very good
quality product. However, she also would accept a product with less quality but
delivered in less than one day. What she does not want at all is a very bad
quality product and a delivery time higher than 5 days. These desires can be
modeled as follows:

(D+
i excellentWine, 1)

(D+
i goodWine ∧ dT ime < 1, 0.85)

(D+
i goodWine ∧ dT ime < 3, 0.65)

(D+
i goodWine ∧ dT ime < 5, 0.55)

(D+
i goodWine, 0.45)

(D−i poorWine, 1)
(D−i 3 < dTime ≤ 5, 0.6)
(D−i 5 < dTime, 0.8)

In the following table we exemplify the performance evaluation given some
fulfillments:

Fulfillment Positive Negative Eval.
excellentWine
dTime = 6

(D+
i excellentWine, 1) (D−

i 5 < dTime, 0.8) 0.2

goodWine
dTime = 2

(D+
i goodWine ∧ dTime ≤ 3, 0.65)

(D+
i goodWine ∧ dTime ≤ 5, 0.55)

(D+
i goodWine, 0.45)

- 0.65

goodWine
dTime = 5

(D+
i goodWine, 0.45) (D−

i 3 < dTime ≤ 5, 0.6) −0.15

poorWine
dTime = 4

-
(D−

i poorWine, 1)

(D−
i 3 < dTime ≤ 5, 0.6)

−1.6

The maximum possible performance is the maximum grade of the positive
desires, while the minimum could be as low as the sum of all negative grades.
We could consider other forms of evaluation. However, we consider that this is
the most reasonable because goes in tune with the semantics given to the desire
context [Casali et al., 2004] and the reasoning process led by the set of desires
[Pinyol and Sabater-Mir, 2009a] (see also chapter 5).

In the specification, we are considering the evolution of a single buyer with
10 sellers and 5 informants. We executed 10 times each experiment and consider
the average level of satisfaction for each turn 3.

3For the implementation we use the JASON platform [Bordini et al., 2007], which offers to
logic-based agents (prolog-like) a multiagent communication layer. The source code, together
with the exact parameters and the set of desires used to run the experiments can be found at
http://www.iiia.csic.es/∼ipinyol/sourceJASSS.zip
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Figure B.3: Sequence diagram of one turn of the simulations.

B.3.2 Experimental Results and Discussion

Static Experiments

It is easy to show the effects of a static Z value in different situations. Figure B.4
shows the accumulated average level of satisfaction obtained by a buyer at each
turn in an environment where all informants are honest, and when all informants
are liars, considering Z = 0 and Z = 1. Since when Z = 0 reputation information
is not taken into account, the performance in this case does not depend on the
quality of the reputation information.

The graphic shows that when Z = 1, in the case of a scenario with honest
informants (0% liars), the level of satisfaction obtained by the agent increases
considerable with respect to the case in which Z = 0. Assuming normality in
the data, from the turn 10, the difference is already statistically significant with
a 95% of confidence (p value≤ 0.05), and from the turn 20 on, the difference
becomes significant with a 99% of confidence (p value≤ 0.01).

Also, when Z = 1 and in the scenario all informants spread false reputation,
the performance of the buyer decreases considerably with respect to the case in
which Z = 0. In fact, from the very first turns, the difference becomes already
significant with a confidence of 99%.

These results are quite obvious. Since image information is only created from
direct experiences (1 at each turn) and reputation information through commu-
nicated reputation (5 at each turn) if the communicated information corresponds
to the reality and the agent believes what circulates in the society (Z = 1) the
buyer should discover faster which are the sellers that accomplish her objectives.
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Figure B.4: Level of satisfaction obtained with no adaptation. When Z=0m
the percentage of liars does not affect the performance, because no reputation
information is considered.

As well, if reputation information if mostly false, and the agent believes it, for
a long time the buyer would not be able to fulfill her objectives.

Dynamic Experiments

The main idea behind the updating of Z is that in scenarios where mostly false
reputation information circulates Z should tend to 0. On the contrary, scenarios
where reputation information is mostly accurate, Z should tend to 1. In this
very preliminary paper, we study the effects of an adaptation strategy in the
same situations tested in the previous extreme experiments.

The strategy is very simple, but effective. If most of the image information
coincide with reputation information (about the same agent/role), the Z value
should increase from the current value (in certain proportion). On the contrary,
it should decrease. This algorithm contains the parameter Increment (inc),
which could be also considered as another degree of freedom. For the sake of
simplicity we consider it as a constant value.

Figure B.5 and B.6 show the performance obtained in both scenarios. It can
be observed how the final performance tends to the theoretical optimum in each
situation. In both scenarios there is no statistical significant difference between
the performance and the theoretical optimum, with p-values higher than 0.2
with most of the points of the graph.

B.4 Conclusions

In this appendix we propose an heuristics to choose, at run-time, the best h
function, which determines the axiom IRB of the LBC theory. Our function h is
defined as h(pE, pS) = (1−Z) · pE+Z · pS,where Z ∈ [0, 1]∩ IQ. When Z < 0.5
function h defines an agent in class H4 (image is prevalent over reputation).
Instead, when Z > 0.5 the implemented agent belongs to the classH5 (reputation
is more important than image). The heuristics defined in this appendix computes
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Figure B.5: Level of satisfaction obtained with agents using adaptation in a
scenario with 100% of liars. Dot line represents the theoretical best possible
performance

Figure B.6: Level of satisfaction obtained with agents using adaptation in a
scenario with no liars . Dot line represents the theoretical best possible perfor-
mance
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the parameter Z at each run-time, in order to maximize the satisfaction level of
the agent in its interactions.

Since image information is computed from direct experiences and reputa-
tion from communications, the main underlying idea is that when reputation
information is similar to image information, Z should increase. This is be-
cause we hold the assumption that the amount of reputation information is
much higher than the amount of image information, and thus, if it can be es-
timated that reputation and image information coincide, the use of reputation
allows a faster way of discovering good partners. Such assumption is justified in
[Conte and Paolucci, 2002].

The proposed heuristics is validated though computational simulations. The
results show that agents do not archive statistically significant differences in the
level of satisfaction obtained compared to the theoretical optimum. We also
validate that when the heuristics is not used, agents archive statistically a lower
level of satisfaction. This demonstrates the validity of the heuristics.
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