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Foreword

This book is interesting for different people with a variety of interests on Artificial
Intelligence (AI). For people interested in knowledge representation, this book
offers an in depth presentation of NOOS, a representation language with singular
properties. NOOS is, by genealogy, a frame representation language that has
been designed having in mind the most recent trends in knowledge modeling
and knowledge level analysis. For persons specifically interested in reflection
and introspection in AI systems this book also offers new insights. While most
approaches on reification and reflection focus or of syntactic nature, the self-
model of NOOS is based on the knowledge modeling concepts of task, model, and
problem solving method. This approach allows a system developed in NOOS to
reason about its own content and behavior in terms of a knowledge level analysis
instead of in terms of its syntactic components.

This use of reflection is also interesting for Machine Learning people, es-
pecially those who care about the integration of ML techniques with problem
solving systems. Indeed, the integration on ML methods into the NOOS frame-
work is achieved through these notions of reflection and by a proper treatment of
episodic memory. Episodic memory, a common notion in cognitive psychology,
has received less attention than it merits both in Knowledge Representation and
Machine Learning research. From the NOOS point of view, solving a problem is
more that returning an answer: solving a problem is building a model. In fact,
NOOS builds an episodic model that links the solution with the methods used
and stores this complex pattern in permanent memory. Some readers may have
noted two things: first, that the notion of problem solving as model building
come from knowledge modeling, and second, that storing episodes for future
reuse is the trademark of case-based reasoning (CBR). These readers are right,
and they will probably find even more remarkable connections in reading ” The
NOOS knowledge representation language”

Bellaterra, July 1998

Enric Plaza i Cervera

IIIA, CSIC

email: enric@iiia.csic.es
http: www.iiia.csic.es/ “enric
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Abstract

The aim of this thesis is the design and implementation of a representation
language for developing knowledge systems that integrate problem solving and
learning. Our proposal is that this goal can be achieved with a representation
language with representation constructs close to knowledge modeling frameworks
and with episodic memory and reflective capabilities.

We have developed Noos, a reflective object-centered representation language
close to knowledge modeling frameworks. Noos is based on the task/method de-
composition principle and on the analysis of models required and constructed
by problem solving methods. Noos is formalizated using feature terms, a for-
mal approach to object-centered representations, that provides a formalism for
integrating different learning techniques.

The integration of machine learning tasks has as implication that the knowl-
edge modeling of the implemented knowledge system has to include modeling of
learning goals. Moreover, machine learning techniques have to be modeled inside
the KM framework and the knowledge requirements of ML have to be addressed.
The integration of learning requires the capability of accessing (introspection)
to solved problems (that we call episodes) and of modifying the knowledge of
the system.

The second proposal is that learning methods are methods (in the sense
of knowledge modeling PSM) with introspection capabilities that can be also
analyzed in the same task/method decomposition way. Thus, learning methods
can be uniformly represented as methods and integrated into our framework.

The third proposal is that whenever some knowledge is required by a prob-
lem solving method, and that knowledge is not directly available, there is an
opportunity for learning. We call those opportunities impasses, following SOAR
terminology, and the integration of learning is realized by learning methods that
are capable of solving these impasses.

In this memory we describe the capabilities of the Noos representation lan-
guage and they use for developing knowledge systems that integrate problem
solving and learning. Examples of applications developed in Noos will be also
presented.

xvil






Chapter 1

Introduction

The main goal of this thesis is the design and implementation of a representation
language for developing knowledge systems that integrate problem solving and
learning.

The result has been the design and implementation of Noos, a reflective
object-centered representation language for integrating inference and learning
components in a uniform representation.

Our approach builds upon a variety of preceding work: knowledge-level anal-
ysis of knowledge systems, knowledge modeling frameworks developed for the
design and construction of knowledge systems, and research on integrated archi-
tectures for problem solving and multistrategy learning.

1.1 Motivation

One of the key issues in the current development of knowledge systems is the
degree to which different components can be described, reused, and combined
in a seamless way. Moreover, the current development of knowledge systems in-
creases the necessity of incorporating learning capabilities to knowledge systems.
Currently, the integration of learning components is considered as an essential
topic for future design, building, and maintenance of knowledge systems.

The difficulties that arise in the development of complex knowledge systems
are broadly denominated the knowledge acquisition problem. Adapting the ap-
proach given in [Aamodt, 1991], our view is that knowledge acquisition is a cyclic
process required at the development phase and also at the problem solving phase
of a knowledge system (see Figure 1.1).

The goal of the development phase is to perform a knowledge modeling analy-
sis of the knowledge required for solving the problem and to design an application
using a specific computer language. First, knowledge modeling methodologies
are used to acquire knowledge models from human experts and represent these
knowledge models in an implementation independent representation formalism.
Specifically, the knowledge-level analysis of expert systems and the knowledge
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Figure 1.1. The design and maintenance cycle of knowledge systems
(adapted from [Aamodt, 1991]).

modeling frameworks are methodologies developed for describing and reusing
knowledge systems components. These knowledge modeling frameworks, like
KADS [Schreiber et al., 1993], CommonKADS [Schreiber et al., 1994] or Com-
ponents of Expertise [Steels, 1990], are based on the task/method decomposition
principle and the analysis of knowledge requirements for problem solving meth-
ods (PSM).

After the knowledge modeling process (see Figure 1.1), a design process has
to be performed for translating the knowledge models to a specific language con-
structing an executable knowledge system. A first issue arises here, since some
knowledge models built by the KM methodologies are not directly operationaliz-
able. Different languages—that partially implement the knowledge models built
by KM frameworks—have been developed. Nevertheless, an active research ac-
tivity is focused in developing fully operationalizable representation languages
with highly expressiveness capabilities.

Machine learning (ML) techniques have been used by Knowledge Modeling
methodologies as a way to acquire certain models in the knowledge acquisition
(KA) process conducive to building a knowledge system. Nevertheless, learning
is only used in the development phase. That is to say, the knowledge system
designed is not to be capable of learning. The reason of this limited use of
learning is that the working hypothesis of knowledge modeling methodologies is
that the complete knowledge model of the problem can be acquired and modeled
statically in the development phase.
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Our proposal is that certain knowledge acquisition tasks can be delayed from
the knowledge system development phase to the phase in which the knowledge
system is actually used in the task environment. That is to say, the knowledge
system can be designed with learning capabilities. Since knowledge modeling
methodologies view KA as a process that basically build models, our approach
means that some models are not built in the development phase—or, in general,
a preliminary model is build but needs to be improved—and their construction
is delayed to the problem solving phase where appropriate ML methods are
appointed to generate those models.

The delay of KA tasks has as implication that the knowledge modeling of the
implemented knowledge system has to include modeling of KA goals. Moreover,
machine learning techniques have to be modeled inside the KM framework and
the knowledge requirements of ML have to be addressed. The integration of
learning requires the capability of accessing (introspection) to solved problems
(that we call episodes) and of modifying the knowledge of the system (self-
modification).

Moreover, we want to provide a framework for developing—and integrating
with problem solving—several symbolic learning methods from the knowledge
modeling analysis of application domains.

The contributions of machine learning have grown in the last years and have
arisen many different learning techniques. Some examples of learning meth-
ods are: empirical learning or inductive learning, analytic learning or explana-
tion based learning, memory based learning, case-based learning, learning by
analogy, connectionist learning, genetic algorithms, learning by discovery, etc
[Carbonell, 1989, Moreno et al., 1994].

Each different learning method is useful for specific tasks satisfying a set of
requirements. For instance, analytical learning methods require a copious do-
main theory and few examples, while case-based learning methods require many
solved cases and may also use domain knowledge. A difficulty with learning tech-
niques is that different learning systems use different representation languages
and different knowledge models about the architecture (the self-model).

There are two main approaches adopted to integrate learning with problem
solving: (i) combining different learning methods in hybrid systems in order
to be applied in a set of broader tasks, like cASEY [Koton, 1989] or BOLERO
[Lépez and Plaza, 1993], or (ii) developing a computational framework capable
of integrating different learning methods in a uniform way. Examples of this sec-
ond approach are architectures like PRODIGY [Carbonell et al., 1991] and THEO
[Mitchell et al., 1991].

Integrated architectures propose different frameworks for integrating prob-
lem solving and learning. A difficulty with integrated architectures is that their
representation languages are far from knowledge modeling frameworks (for in-
stance, SOAR representation language is based on productions). Moreover, all
these architectures integrate diverse learning mechanisms but present some lim-
itations in their integration.
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Our approach in developing Noos was influenced by research on integrated
architectures. Nevertheless, our approach of integration of learning techniques is
restricted to symbolic learning techniques: we have focused on the integration of
inductive learning techniques, case-based reasoning techniques, and analytical
learning techniques. Another issue not covered by this thesis is the revision
process (see Figure 1.1) for re-designing knowledge models from the experience
acquired in solving problems.

One of the most research activity in machine learning, at the theoretical
and practical level, is focused on the integration of several disparate learning
techniques [Langley, 1989]. This research is focussed on the development of
systems called multistrategy learning systems (MSL systems) [Michalski, 1993].
MSL systems use several learning techniques, that are combined using a spe-
cific strategy, for learning from a greater variety of inputs and acquire more
flexible knowledge. Consequently, MSL systems potentially can be applied to
a wide range of problems. Following this direction, our approach in Noos is to
provide a representation language for facilitating the integration of several learn-
ing techniques in a knowledge system. Moreover, a domain-specific analysis for
each Noos application determines different strategies for combining these several
learning techniques.

1.2 Goals and contributions of the thesis

The aim of this thesis is the design and implementation of a representation
language for developing knowledge systems that integrate problem solving and
learning. Our proposal is that this goal can be achieved with a representation
language with representation constructs close to knowledge modeling frameworks
and with episodic memory and reflective capabilities.

The second proposal is that learning methods are methods (in the sense
of knowledge modeling PSM) with introspection capabilities that can be also
analyzed in the same task/method decomposition way. Thus, learning methods
can be uniformly represented as methods and integrated into our framework.

The third proposal is that whenever some knowledge is required by a prob-
lem solving method, and that knowledge is not directly available there is an
opportunity for learning. We call those opportunities impasses, following SOAR
terminology [Newell, 1990], and the integration of learning is realized by learning
methods that are capable of solving these impasses.

We have developed the Noos representation language, a language close to
knowledge modeling frameworks, for developing knowledge systems that allows
the integration of problem solving and learning.

Furthermore, Noos is formalizated using feature terms, a formal approach to
object-centered representations, and providing a uniform formalism for integrat-
ing different learning techniques.

Noos is a language with capabilities of :

Representation : Noos is based on task/method decomposition principle and
the analysis of knowledge requirements for methods. This capability allows
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Noos to take advantage of the KA methodologies and libraries developed
in KM frameworks. There are several specification languages developed in
KM frameworks that can be used for knowledge modeling of applications.
A knowledge modeling analysis realized in some of these specification lan-
guages can be then implemented in Noos. Nevertheless, this operational-
ization step is not structure-preserving with respect to knowledge modeling
frameworks.

An object-centered representation language : Noos provides a structured
representation of knowledge allowing the description of complex knowl-
edge. Moreover, the Noos approach to knowledge representation provides
a natural way to describe partial knowledge amenable to extension.

Introspection : Noos inference behavior is partially represented in the lan-
guage itself. This reified behavior can be accessed by problem solving
methods written in Noos. Introspective capabilities form the basis that
allows Noos programs to reason about the system behavior. Learning
methods are methods that use introspection.

Episodic memory : problems solved in Noos are automatically memorized
(stored and indexed) and amenable to be accessed and reused in solving
new problems. The problem solving behavior in these solved problems
is also represented in Noos and, using introspection, is accessible and in-
spectable. Episodic memory can be inspected by means of three different
access mechanisms: access by path, that provides a way to access to specific
portions of the episodic memory; retrieval methods, that provide a mech-
anism for content-based access to the episodic memory; and perspectives,
a mechanism to describe declarative biases for case retrieval in the struc-
tured representation of cases. The memorization of solved problems is a
basic building block—together with introspection—for integrating learning
into our KM framework.

Integrated Problem solving and learning : the integration of learning in
Noos is based on two proposals:

e Learning methods are methods (in the sense of knowledge modeling
PSM) that can be also analyzed in the same task/method decompo-
sition way. Introspective requirements of learning methods can be
fulfilled using Noos reflective operations for accessing the episodic
memory.

e Impasse driven learning: whenever some knowledge is required by
a problem solving method, and that knowledge is not directly avail-
able, there is an opportunity for learning. We call those opportunities
impasses, following SOAR terminology, and the integration of learn-
ing is realized by learning methods that are capable of solving these
impasses.
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Machine learning methods : Noos provides a collection of basic mechanisms
allowing the development of different learning methods such as inductive
learning methods, CBR, and analytical learning methods.

o Inductive learning methods are developed in Noos as search methods
(that follow certain biases) over the space of feature terms. Domain
specific knowledge is used for constructing inductive learning methods
that follow different searching biases. Inductive learning methods are
based on the feature term subsumption and antiunification operations
of Noos.

e Case-based reasoning methods are developed in Noos as problem solv-
ing methods with lazy learning capabilities that search for previously
similar solved problems in the Noos episodic memory. CBR methods
are based on the retrieval and subsumption operations of Noos.

o Analytical learning methods are developed in Noos as methods that,
given a training example whose problem task has been solved by a
problem solving method M and given an operationality criterion, con-
struct a new problem solving method M,, for solving that task and
obeying the operationality criterion. Analytical learning methods are
based on the Noos introspective capabilities for inspecting the episodic
model built in Noos while solving the training example.

A multistrategy learning approach : different learning methods can be in-
tegrated in Noos using a common scheme based on three main subtasks:
Introspection, Construction, and Revision. Using this common scheme, we
will present how different learning methods can be designed and integrated
in a problem solving system.

Noos has been implemented using Common Lisp and currently is running in
several platforms. A window-based graphical interface has been also develpped
in Macintosh Common Lisp [Digitool, 1996] for the MacOS version of Noos.
Although the implementation details are not the main focus of this thesis, we
provide a brief description of the Noos development environment in Appendix A.

Moreover, Noos has been used by several persons to develop several appli-
cations that integrate different problem solving methods and different learning
methods. The research done in one of them, called Saxex and developed by my-
self, has been awarded with the “Swets & Zeitlinger Distinguished Paper Award”
at the 1997 International Computer Music Conference [Arcos et al., 1997b].

1.3 Structure of the thesis

This thesis is organized in seven chapters, including this introduction chapter,
and four Appendices:

Chapter 2 reviews the main research relevant to our thesis and discusses their
contributions and limitations. We present research on knowledge modeling
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methodologies for analyzing and developing knowledge systems; research
on integrated architectures for exploring the relationships among problem
solving, learning, and knowledge representation; research on reflective rep-
resentation languages for providing introspection capabilities on knowledge
systems; and finally, we discuss the role of reflection in learning.

Chapter 3 presents the Noos representation language. The language is intro-

duced incrementally. First, The Noos modeling framework is presented.
Next, the basic elements of the language such as descriptions, refinement,
references, methods, and the basic inference are described. Then, the re-
flective capabilities of Noos are described introducing elements such as met-
alevels, tasks, reflective operations, reification, and reinstantiation. Next,
a declarative mechanism for decision making about sets of alternatives,
called preferences, is presented. Finally, the complete Noos inference en-
gine is described.

Chapter 4 presents the Noos capabilities for reasoning about experience and

the integration of learning and problem solving. First, the notion of
episodic memory is introduced. Then, introspective mechanisms such as
retrieval and perspectives are presented. Next, three different families of
learning techniques such as case-based reasoning, inductive learning, and
analytical learning, are presented with examples of how they have been
integrated in Noos.

Chapter 5 presents feature terms, a formalism for describing the Noos lan-

guage. Feature terms are introduced using a syntax notation based on the
AN calculus. Then, using the work on feature structures, a semantics based
on the notion of partial descriptions is presented. The results obtained by
the research on feature structures are also adapted for providing several
equivalent representations of feature terms.

Chapter 5 introduces a formalism for describing preferences based on the
notion of pre-orders. Two kinds of basic operations are defined over pref-
erences: preference operations, that take a set of source elements and an
ordering criterion and build a preference (a partially ordered set), and
preference combination operations, that take two preferences and a combi-
nation criterion and build a new preference.

Next, using feature terms perspectives are defined. Perspectives are for-
malized as second order feature terms that denote sets of terms.

Finally, we describe formally the inference in Noos using Descriptive Dy-
namic Logic, a propositional dynamic logic for describing and comparing
reflective knowledge systems.

Chapter 6 provides a set of examples of how diverse applications have been

developed using Noos by several persons at ITTA. Specifically, the chap-
ter present six applications developed using Noos: CHROMA, SPIN, SHAM,
GYMEL, Saxex, and NoosWeb.
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Chapter 7 summarizes the main contributions of the thesis and discusses fur-
ther directions of research.

Appendix A presents the Noos development environment including develop-
ment facilities such as browsing, tracing, and the extension of the built-in
methods.

Appendix B provides a glossary of the main concepts introduced in this thesis.

Appendix C presents the complete syntax of the Noos language, using BNF
notation, and the collection of compact descriptions for built-in methods.

Appendix D presents the complete list of Noos built-in methods describing
their required features and their functionality.



Chapter 2

Background

The goal of this chapter is to describe the literature relevant to our work. On
the one hand, in Section 2.1 we will present the research on knowledge model-
ing methodologies for analyzing and developing knowledge systems. Then, in
Section 2.2 we will present the research on integrated architectures for exploring
the relationships among problem solving, learning, and knowledge representa-
tion. In Section 2.3 we will focus on the research on reflective representation
languages for providing introspection capabilities on knowledge systems. Next,
in Section 2.4 we discuss the role of reflection and learning. Finally, in Section 2.5
we provide some conclusions about these research approaches.

2.1 Knowledge modeling frameworks

Knowledge modeling frameworks (KMF) propose methodologies for analyzing
and developing knowledge systems. Different approaches differ on the method-
ology they propose but all of them are based on the conception of constructing
a conceptual model of a system which describes the required knowledge and
inferences at an implementation independent way.

Knowledge modeling frameworks are highly influenced by previous work
on Knowledge Level [Newell, 1982], Generic Tasks [Chandrasekaran, 1986], and
Problem Solving Methods [McDermott, 1988].

Knowledge Level proposes a level of description of systems focused in de-
scribing the knowledge they contain rather than the implementation structures
of these knowledge. A system at knowledge level is viewed as an agent with three
components: goals, actions, and bodies. This description level provides a more
adequate level of description of knowledge systems. A principle of rationality
rule guides the behavior of the agent: Actions are selected to attain its goals.

Generic Tasks proposes a task-oriented methodology for developing knowl-
edge systems. This methodology focuses the process of analyzing and building
a knowledge system for given problem by representing a task-structure for the

9
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problem and specifying the domain requirements of the tasks in the task struc-
ture. A task structure is described in terms of the methods that are applicable to
tasks and the conditions under which each method is applicable. Each method
is itself specified in terms of how it uses knowledge and inference to achieve a
task, and in terms of which subtasks are required to be achieved before it can
succeed. This decomposition is done recursively until methods which achieve
tasks are not decomposed by additional subtasks. The task structure offers the
advantage that directs the knowledge acquisition, since knowledge and inference
requirements for the methods can be explicitly identified. The generic tasks
methodology is also based on the view that the task analysis is aided by the fact
that a number of generic tasks and methods have been identified. This library
of generic components facilitates the development of knowledge systems.

Problem Solving Methods (PSMs) are knowledge use characterizations of how
problems can be solved. Each problem solving method is described using a set
of roles that have to be filled by domain models. The advantages of focus-
ing the development of knowledge systems on the problem solving methods is
that the roles required by PSMs prescribe what domain knowledge has to be
acquired. A current research work on PSMs is focused on assumptions over
domain models required to perform the PSM. Assumptions facilitate the appli-
cation of PSMs in tasks by assuming they use a common terminological struc-
ture (see for example the work on assumptions for model-based diagnosis in
[Fensel and Benjamins, 1996]). The research on PSMs is also focused on reuse.
The progress on reuse of PSMs is an important aspect that will reduce consid-
erably the development efforts of knowledge systems.

Below we will describe briefly two methodologies proposed for the analy-
sis and development of knowledge systems: The CommonKADS methodology
and the Components of Expertise methodology. Next, we will present Krest,
a knowledge-system design tool implementing the kernel of the componential
methodology. Finally, we will present another knowledge engineering environ-
ment, called Protégé-I1, which supports the construction of knowledge systems
from reusable components.

CommonKADS

CommonKADS [Wielinga et al., 1993] [Van de Velde, 1994a] is a methodology
for the development of knowledge systems. CommonKADS is the evolution of
the KADS methodology [Wielinga et al., 1992] [Schreiber et al., 1993].

In CommonKADS the development of a knowledge system is viewed as the
construction of models of problem solving behavior in a concrete organizational
context. CommonKADS provides a set of models, called the model set, that
allow for expressing the various perspectives of the problem solving situation:
organization model, task model, expertise model, communication model, agent
model, and design model.

The organization model describes the organizational context in which the
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knowledge system to be developed occurs (e.g. resources, functions, and pro-
cesses).

The task model describes the tasks and activities that are performed for real-
izing organizational functions (e.g. tasks, task inputs, and required capabilities).

The agent model collects relevant properties of the different agents involved
in the realization of tasks described in the task model (e.g. users and software
systems).

The communication model describes communication processes among agents
(described in terms such as transaction plans, ingredients, and initiatives).

The expertise model describes the knowledge of an agent relevant to solve
a specific task and its use-specific structure. This knowledge and structure of
the expertise model is described as three kinds of knowledge models (domain
knowledge, task knowledge, and inference knowledge) and with a set of mappings
among them.

The design model describes the realization of problem solving behaviors de-
scribed in expertise and communication model in computational and represen-
tational terms.

Organization model, task model, agent model, and communication model
capture the context in which the problem solving activity is performed. The
expertise model captures the knowledge and reasoning involved in performing
tasks. The design model describes the computational realization.

Here, due to the relevance with our work, we will describe in more detail
the expertise model. The purpose of the expertise model is to describe the
collection of elements of knowledge involved and their roles in solving a specific
task. In CommonKADS the different roles are captured in three basic knowledge
categories: task knowledge, domain knowledge, and inference knowledge.

The task knowledge category describes a recursive decomposition of a top-
level task in (sub)tasks, specifies what it means to achieve these tasks, and
describes when these (sub)tasks are to be executed in order to achieve the parent
task (describes the control). A task description consists of two parts: a task
definition and a task body. The task definition specifies what it means to achieve
the task by defining its goal in terms of input and output roles. The input
and output roles are references to parts of domain knowledge. The task body
describes how the task can be achieved by means of describing a set of subtasks,
a set of additional roles, and a control structure.

A usual view of the task knowledge is the task decomposition of a top level
task. The task decomposition shows the different (sub)tasks that contribute to
the achievement of parent tasks and, at the leaves of the structure, the set of
inferences (from inference knowledge category) that can accomplish primitive
tasks.

The domain knowledge category specifies the form, structure, and contents
of domain specific knowledge that is relevant for an application. The form and
structure of domain specific knowledge is defined specifying different ontolo-
gies, that provide partial coherent views on parts of the domain knowledge. A
collection of domain knowledge statements described by a particular ontology,
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and describing a specific problem context, is called a domain model. Domain
knowledge is structured in a series of domain models.

The inference knowledge category specifies the primitive reasoning steps (in-
ferences) in an application. Inference knowledge also describes the knowledge
roles that refer to classes of domain knowledge elements manipulated by the
inferences.

The inferences modeled in a particular application form a structure called the
inference structure that describes the data dependencies between the different
inferences. An inference structure, however, does not express a control diagram.
It only expresses how knowledge elements referred to by the various roles are
used and produced by the various inferences.

Finally, one of the goals of the CommonKADS project is the reuse of knowl-
edge components of the model set. Libraries of reusable elements potentially
available for all aspects modeled in an application have been developed.

ComMet

The componential methodology [Steels, 1990], called ComMet, proposes a frame-
work for describing expertise at the knowledge level. ComMet decomposes the
expertise into three different perspectives: the task perspective, the model per-
spective, and the method perspective.

The task perspective specifies the set of tasks that a problem solver has to
achieve. Usually, there is a main task that covers the whole application (e.g. di-
agnose of car malfunctions). This task usually decomposes into several subtasks.
These tasks can still be further decomposed until a non-decomposed elementary
tasks.

The decomposition of tasks into subtasks is called the task structure. The
task structure is not necessarily static. Sometimes not all subtasks are executed
for each case. The task structure is represented as an and/or tree.

Problem solving in ComMet is viewed as a modeling activity. Solving a
problem is viewed as the construction of a model of various aspects of the world
that are relevant to find a solution to the problem.

The model perspective focuses on the question what knowledge is available
to achieve the tasks. ComMet makes a distinction between three different kinds
of models: case models, domain models, and problem solving process models. An
important effort of knowledge analysis is focused on the development of models
required in an application and the dependencies given between the different
models.

Case models describes specific situations to be solved. Case models can be
described using different perspectives. A components model is a model of a
system in terms of its components and subcomponents. A descriptive model is a
model of a system in terms of a set of observable features of the system. Causal
models, behavioral models, functional models, and temporal models are examples
of other case models. Usually the kind of model chose is strongly influenced by
the kind of tasks to be solved. For instance, configuration tasks are described in
terms of how the different components of a system are connected.
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When the different case models have been identified, the following step is to
determine how these models are related to each other. The result of this analysis
is represented in ComMet as a case model dependency diagram.

Domain models are models valid for a variety of cases. Domain models
describe domain-specific knowledge which is used by problem solving methods
to construct case models. The domain models are added to the case model
dependency diagram to yield a complete model dependency diagram. The do-
main models can be divided into two classes: the expansion models, containing
knowledge relevant for expanding a model (e.g. for adding more symptoms to
a symptom case model), and mapping models, used to construct or modify case
models based on a mapping from elements of other models (e.g. from symptoms
to malfunctions).

Problem solving process models are needed when the problem solver has to
reason about itself.

The method perspective specifies how and when the knowledge is applied. A
method is a code that imposes a control structure between tasks and is rep-
resented in a control diagram. A control diagram is a graph where the nodes
correspond to subtasks and transitions between nodes represent the control flow
between different tasks. Methods are divided into three main classes: task de-
composition methods, task execution methods, and search methods.

Task decomposition methods decompose a task into subtasks and put a con-
trol structure on the subtasks. The subtasks of task decomposition methods still
need to be further decomposed.

Task execution methods also decompose a task into subtasks and put a control
structure on the subtasks. The subtasks of execution methods are implementa-
tion tasks whose execution results in problem solving activities.

Search methods are necessary when not enough information is available to
decide in which way a case model has to be developed. Search methods are used
to choose, among several alternatives, the most appropriate.

KresT

Krest [Jonckers et al., 1992] is a knowledge-system design tool implementing the
kernel of the componential methodology. According to this methodology, the
basic components of KresT are tasks, methods, and models. These components
are described by a knowledge-level description language provided by a software
extension called application kit (or appkit). The description language is based
of feature structures.

Components can be connected together with different types of relations. Ac-
cording to ComMet, any component can be linked to any other, but KresT
implements task-roles, which link tasks to models or other tasks, and method
roles, which link methods to models or tasks.

Task roles relate tasks to models using two roles: input roles, relating the
models required by a task, and output roles, relating the output models of a
task. A task can be related to other tasks using a subtask role.
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In KresT each task is connected to exactly one method and each method
may perform only one task. The rationale for that constraint comes from the
fact that the methodology is case oriented: methods are viewed as instances of
algorithms, applied in a particular context, and with particular input and output
roles.

Method roles relate methods to models and tasks. When a task role is es-
tablished between a task and its method, a method role is also automatically
created for the method with the task. Method roles hold a set of properties.
The four basic properties of a method role are: its name, used as a key to select
it and to represent it on the diagrams, its type, inherited from the task role, the
constraints imposed to candidate fillers (related to input and output models),
and the multiplicity of the role, whether it allows multiple fillers.

Components are grouped in a larger units, called projects. A project is a set
of related tasks, models, and methods required to build a particular system.

The interface of KresT allows to design components by editing feature struc-
tures and through a graphical interface that provides a set of diagram types
such as a task-structure-diagram representing the task/subtask hierarchy, a task-
model-dependency-diagram representing task/model relations for one task, to-
gether with information about the method/model relation, and a subtask-model-
dependency-diagram representing in a same window the same relations for all
subtasks of a given task.

Protégé-I1

The Protégé-II [Puerta et al., 1992] is a knowledge engineering environment that
allows developers to build knowledge systems by selecting and modifying reusable
problem solving methods and domain ontologies. Protégé-II provides a suite of
knowledge-acquisition tools to generate domain-specific knowledge-acquisition
tools from ontologies. A main goal of Protégé-II is to support early prototyping.

The model of reuse in Protégé-11is based on the notion of a library of problem
solving methods that performs tasks. PSMs have input-output requirements and
are decomposable into subtasks. Other methods can perform these subtasks.
Methods that are not further decomposed are called mechanisms.

Ontologies in Protégé-IT are defined as class hierarchies. There are three main
types of ontologies in Protégé-11: domain ontologies, method ontologies, and ap-
plication ontologies. Domain ontologies model concepts and relationships for a
particular domain. Method ontologies model concepts related to problem solving
methods, including input and output requirements. To enable reuse, method on-
tologies should be domain independent. Application ontologies combine domain
and method ontologies for configuring a particular application.

Since a main goal of Protégé-II is to provide support for reuse of problem
solving methods and ontologies, it also provides a way to connect these two com-
ponents in an application called mapping relations [Gennari et al., 1994]. Map-
ping relations encode any adaptations from domain models to problem solving
methods.
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Protégé-I1 provides a mappings ontology for guiding the mapping process.
Mappings ontology defines a set of mapping relations (e.g. renaming mappings
applied when the semantics between method and application classes match but
slot name have to be translated) that constitute the language for specifying
mapping relations.

2.2 Integrated architectures

The goal of the research on integrated architectures is to explore the relationships
among problem solving, learning, and representation.

Different integrated architectures have divergent features that lead to differ-
ent properties concerning to the problem solving process (e.g. forward and back-
ward chaining, or impasse-driven inference), the architecture organization (e.g.
hierarchical or modular), the knowledge representation language and knowl-
edge structures used (e.g. uniform representation or heterogeneous representa-
tion), and the learning capabilities (e.g. deliberative/reflexive, monotonic/non-
monotonic).

These design decisions then lead to the support of specific capabilities such
as capabilities related to problem solving (e.g. planning, self-reflection, or meta-
reasoning) or capabilities related to learning (e.g. single or multiple learning
methods, inductive learning, explanation-based learning, or learning by anal-
ogy).

The choice of features is often made by following some explicit methodolog-
ical assumptions, often driven by the domains and environments in which the
architecture will be used.

A detailed comparison study of twelve different integrated architectures can
be found in [Wray et al., 1995]. In this monograph we will describe three archi-
tectures that were influential in the initial design and implementation of Noos:
THEO, SOAR, and PRODIGY. We will focus the description of such systems in
four aspects: the methodological assumptions, the representation language, the
problem solving process, and the integration of learning mechanisms.

THEO

The design of the THEO architecture [Mitchell et al., 1991] was motivated by the
goal of providing a framework to support basic research on general problem solv-
ing, learning, and knowledge representation, and especially on the interactions
among these three issues. A second motivation was to design an efficient frame-
work for developing effective knowledge systems. THEO is intended to provide
several levels of sophistication and efficiency depending on the user’s require-
ments.

THEO utilizes a uniform frame-based knowledge representation. Frames rep-
resent entities and have a collection of slots representing relations among entities.
The integration of a frame with a slot and a value is said to be a belief. Specifi-
cally, an assertion of the form (entity slot) = value represents the belief that
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some entity named entity stands in some relation named slot with another
entity named value. For example, we might assert (fred wife) = wilma.

Slots are themselves entities. A number of slots for describing slots are pre-
defined in THEO. Predefined slots of slots describe different types of informa-
tion about slots. Some of these slots of slots describe various slot properties
such as domain, range, inverse, and transitive?. Other slots of slots de-
scribe how to infer values of instances of the slot, such as toget, methods, and
available.methods. Slots such as whentocache and whentoebg describe con-
trol information determining whether once the value of the slot is inferred it has
to be cached. In addition slots of slots such as explanation and dependents
describe information about the interdependencies among slot values.

Slot values in THEO can be inferred using methods. There are three layers
of specification of methods for a particular slot. At the most basic layer, THEO
allows to associate a Lisp function to a slot by asserting a value for the toget
slot of that slot. At a second layer, the user can specify a list containing some of
system predefined inference methods (such as inherits, default.value, and
drop.context) in the available.methods slot of the slot. Finally, the higher
layer allows to associate the defines method. The defines method specify
the use of definitions for other slots or the use of methods built by THEO’s
explanation-based learning mechanism.

Problem instances in THEO are pairs of the form (entity slot),
representing the task of determining a justifiable belief of the form
(entity slot) = value. For example, we might pose the problem
(fred wife) whose solution is wilma.

Problem classes, or sets of problem instances, are described either by a single
token slot (e.g. wife) representing the class of problem instances of the domain
of slot, or by a pair of the form (entity slot) (e.g. (male wife)) represent-
ing the class of problem instances of slot and whose entity is a member of the
class represented by entity.

Problem instances and problem classes are themselves entities. Thus, THEO
can hold beliefs about problems and pose problems regarding problems just as it
can for any other entity. For example, we could assert the belief that the problem
of determining Fred’s wife is difficult by asserting ((fred wife) difficult?)
= true.

Problem solving in THEO corresponds to inferring the value of a slot. Infer-
ence in THEO is impasse-driven: when a problem instance is posed to the system
and whose slot value is unknown, an impasse arises, resulting in the subtask of
inferring the corresponding slot value.

Given a problem instance (E 8), the THEO’s inference mechanism is based
on three inference layers:

e Layer 1: apply the Lisp function specified in slot toget of slot S of entity
E. If unspecified, go to level 2.

o Layer 2: apply the list of methods specified in slot available.methods
of slot S of entity E until a value is obtained. If unspecified, the de-
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fault value of the available.methods slot is the list (defines inherits
drop.context default.value). The defines method starts layer 3.

e Layer 3: Utilize definitions for other slots inferred from knowledge of slots
of slot such as inverse and transitive, or definitions inferred by THEO
explanation-based learning mechanism.

Once a problem is solved, THEO may store the solution in the memory, assert-
ing the corresponding belief, indexed by the problem name—or in other words,
by the problem class. When it stores such beliefs, it also stores the explanation
justifying the new assertion in terms of the beliefs on which depends.

One of THEO’s guiding principles was that all knowledge should be open
for inspection. Because of the uniform frame-based representation of THEO,
the access to any knowledge in THEO is performed by accessing to the value
of corresponding slot. If desired knowledge is not present, an impasse occurs
and the THEO inference mechanism is automatically engaged. This knowledge
transparency along with the automatic storage of solved problems is the basis
for the incorporation of learning mechanisms in THEO.

Three learning mechanisms are available in THEO: caching of inferred val-
ues, explanation-based learning of macro-methods for inferring slot values, and
inductive learning for ordering the methods for inferring slot values (methods in
available.methods slot).

Caching is the simplest form of learning in THEO. Once the value of a slot is
inferred, the value may be stored in the slot, along with an explanation of how
the value was inferred. This mechanism decreases the cost of slot accesses in
future demands.

Explanations of how slot values are inferred constitute the input knowledge
for explanation-based learning. In particular, after THEO infers the value of some
slot S, it forms a macro-method, using a module called TMAC, by examining ex-
planations of previously successful slot inferences. This macro-method is stored
in a slot of the slot S’ from which S was specializated. Then, THEO will be able
to use this macro-method when attempting to infer values for other slots that
are specializations of S°.

Since THEO usually has several methods available for inferring the value of
any given slot, THEO also improves its performance modifying the order in which
slot inference methods are attempted. By default, THEO attempts methods in
the order in which they are listed in the available.methods slot. In order to
learn a better ordering for methods, THEO keeps a set of statistics on the cost
and likelihood of success for each slot inference method. THEO incorporates an
inductive learning method called SE [Etzioni, 1988] for ordering methods. SE
accepts as input a slot address and the corresponding list of available methods,
and produces as output a list of methods ordered in the sequence they should
be attempted.
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SOAR

Research on SOAR [Laird et al., 1987] [Rosenbloom et al., 1991] is focussed on
the development and application of an architecture for general intelligence. SOAR
is based on formulating all goal-oriented behavior as search in problem spaces. A
problem space determines a set of states and operators that can be used during
the processing to attain a goal. Each goal defines a problem solving context that
contains, in addition to a goal, the roles for a problem space, a state, and an
operator.

All knowledge in SOAR is stored in two memories: the short-term memory
(also called working memory) and the long-term memory.

Working memory consists of a set of objects and preferences about objects.
Each object in the working memory has a class name, a unique identifier, and a
set of attributes with associated values, which may be constants (e.g. numbers)
or identifiers. For example a particular person could be represented by the
following object:

(person Susan “profession engineer "age 33)

Preferences are architecturally interpretable elements that describe the ac-
ceptability, desirability, and necessity of selecting particular problem spaces,
states, and operators. The context in which a preference is applicable is spec-
ified by its goal, problem-space, state, and operator attributes. There are two
types of acceptability preferences (acceptable and reject) to select an operator,
five types of desirability preferences (worst, worse, indifferent, better, and best)
to determine the desirability of objects, and two necessity preferences (require
and prohibit) to select and object for achieving a goal. For example, the follow-
ing is a desirability preference stating that operator o1 is the best operator for
state s1, problem space p1 and goal gi:

(preference pl “role operator “value best “goal gl
“problem-space pl “state sl)

All long-term knowledge is stored in form of productions. Productions have
a set of conditions, which are patterns to be matched to working memory, and
a set of actions to perform when the production fires.

Problem solving in SOAR is decomposed in two phases: the elaboration phase
and the decision phase. This two phases are repeated until the goal of the cur-
rent task is reached. During the elaboration phase all productions that match
the current working memory are fired in parallel, and this is repeated until no
more productions are matched. The elaboration process retrieves into working
memory new objects, new information about existing objects and new prefer-
ences. The decision phase examines any preferences (added either in this phase,
or in previous ones), and chooses the next problem space, state, operator or goal
to place in the context stack. The decision phase may change any current slot
values, or any previous slot values in the context stack.

If there is not enough information (or the information is contradictory) for
the decision phase to proceed, then an impasse arises. There are four types of
impasses: tie impasse, arising when two or more elements have equal preference,
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no-change impasse, arising when no preferences are in the working memory,
reject impasse, arising when only preferences in working memory are rejected
by other preferences, and conflict impasse, arising when two or more objects are
the best choices. When an impasse occurs, a subgoal with an associated problem
solving context is automatically generated for the task of resolving the impasse.

Productions into the SOAR’s long term memory cannot be directly accessed
by other SOAR rules. Knowledge in long term memory is only indirectly accessed
by pattern matching in the elaboration phase.

All learning occurs in SOAR through the chunking mechanism. Chunking is a
form of explanation based learning that has inductive properties. Whenever the
decision cycle returns a result to a supergoal, a new production is created whose
conditions are the elements tested which existed before the impasse, and whose
actions are the preferences returned. This new production is called a chunk.
The conditions of a chunk are determined by a dependency analysis. The new
chunk is placed in long-term memory immediately, and is available on the next
elaboration phase, thus SOAR’s learning is intermixed with its problem solving.

Chunking is the only architecturally supported learning mechanism of SOAR.
However, other learning mechanisms such as learning by abstraction and basic
analogy have been developed from chunking and other architectural components.

Prodigy

PRODIGY [Carbonell et al., 1991] [Carbonell et al., 1995] is a general plan-
ner/problem solver that integrates multiple learning modules.

Knowledge in PRODIGY is described using a uniform representation, which is
called the Prodigy Description Language (PDL), based on first order predicate
logic. PDL includes four types of knowledge concepts:

e Ground atomic formulas: used to describe states and goals,

e Operators: used to describe what actions effect which changes to the states.
Operators map states into new states. PRODIGY operators consist of a
FOL expression describing the operator’s preconditions, coupled with con-
ditional add and delete lists representing the resulting changes to the state
when the operator is applied. Operators may also contain conditional ef-
fects that represent changes to the world that are dependent on the state
in which the operator is applied.

e Inference rules: used to deduce added information about a state. Inference
rules are represented as simplified operators without delete lists.

e Control rules: used to guide the search. Control rules map a set of can-
didate decisions (such as which legal operator to apply or which goal to
work on next) into a smaller or priorized decision set. Each control rule
has a left-hand side condition testing applicability and a right-hand side
indicating whether to select, reject, or prefer a particular candidate.



20 Chapter 2. Background

All the knowledge used or learned in any PRODIGY module is open for inspec-
tion and use for every other module. The uniform logic-based representation of
both control knowledge and domain knowledge provides a uniform access to all
knowledge.

A problem consists of an initial state and a goal expression. Solving a problem
in PRODIGY—given an initial state, a goal, a set of operators, and a set of control
rules—is to find a sequence of operators that, if applied to the initial state,
produces a final state satisfying the goal expression. The search tree initially
starts out as a single node containing the initial state and a goal expression. The
tree is expanded by repeating the following two steps:

1. Decision phase: There are four types of decisions that PRODIGY makes
during problem solving. First, it must decide what node in the search tree
to expand next, defaulting to a depth-first expansion. Each node consists
of a set of goals and a state describing the world. After a node has been
selected, one of the node’s goals must be selected, and then an operator
relevant to this goal must be chosen. Finally, a set of bindings for the
parameters of that operator must be decided upon.

2. Ezpansion phase: If the instantiated operator’s preconditions are satisfied,
the operator is applied. Otherwise, PRODIGY subgoals on the unmatched
preconditions. In either case, a new node is created.

When PRODIGY is solving a problem, it makes decisions about which node
to expand, which operator to apply, which objects to use, and which goal to
go on. These decisions are influenced by control rules in order to increase the
efficiency of problem solving search and to improve the quality of the solutions
that are found. Using backtracking, the candidates are attempted, according to
the preference order inferred by control rules, until all candidates are exhausted
or a global solution is found.

Learning in PRODIGY is a deliberative metareasoning process: learning mod-
ules are activated when the system believes that the acquisition of new knowledge
can be useful. PRODIGY has six learning modules: APPRENTICE, EBL, STATIC,
ANALOGY, ALPINE, and EXPERIMENT.

APPRENTICE is a graphic-based interface for knowledge acquisition of domain
knowledge and for guiding the problem solving search.

EBL is an explanation-based learning module for acquiring control rules from
a problem solving trace. After a search problem solving episode, explanations
are generated in a three stage process. First, EBL considers what to learn from
a problem solving trace, then it considers how to best represent the learned
information as control rules, and finally it empirically tests the utility of the
resulting control rules to insure that they are indeed useful. Because EBL has
access to the complete trace, it is used to learn from successes as well as to learn
from failures.

STATIC is a learning module for learning control rules by analyzing domain
descriptions. STATIC can be viewed as a compiler for PRODIGY’s domains.
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ANALOGY is a case-based learning module based on derivational analogy.
The focus of ANALOGY is to use similar previously solved problems to solve
new problems [Veloso, 1992] [Veloso and Carbonell, 1993]. The problem solver
records justifications for each decision taken during its search process. These
justifications are then used to guide the reconstruction of the solution of new
situations where equivalent justifications hold true.

ALPINE is an abstraction learning and planning module. ALPINE is used for
performing hierarchical planning in PRODIGY and is based on an analysis of the
domain for automatically generating multiple abstraction levels.

Finally, EXPERIMENT is a learning by experimentation module for refining
domain knowledge that is incompletely specified.

2.3 Reflective representation languages

The research on reflective representation languages is motivated by the fact
that the implementation of complex knowledge systems requires the incorpo-
ration of mechanisms for reasoning about themselves. The goal is therefore
the design of reflective languages for developing knowledge systems able to
describe and modify themselves. Examples of reflective representation lan-
guages based on procedural reflection are RLL-1 [Greiner and Lenat, 1980],
MOP [Kiczales et al., 1991], and 3-Lisp [Smith, 1985].

Moreover, the development of knowledge modeling frameworks carried
out the design of formal and executable specification languages for de-
scribing and implementing knowledge systems based on these knowledge
modeling frameworks (see [Fensel, 1995a]).  Examples of languages are
MODEL-K [Karbach et al., 1991], (ML)? [van Harmelen and Balder, 1992], and
KARL [Angele et al., 1994][Fensel, 1995b] based on KADS model, or KresT
[Jonckers et al., 1992] and MetaKit [Slodzian, 1994b] based on the componential
framework.

RLL-1

RLL-1 [Greiner and Lenat, 1980] is a reflective representation language which
was used as the basis for implementing the EURISKO system [Lenat, 1983], a
system for learning by discovery. RLL-1 is a highly self-descriptive representation
language developed by means of a uniform representation of frames and slots,
and by possessing declarative descriptions of parts of itself.

Every component of the RLL-1 language (e.g. individual slots, modes of
inheritance, and even data-accessing functions) is visible: can be represented
within the language, inspected and modified. The description of all components
is given also in terms of frames and slots.

KRS

KRS [van Marcke, 1987] [van Marcke, 1988] is a representation language for sup-
porting knowledge based programming. KRS design was influenced by RLLs such
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as RLL-1 and ARLO [Haase, 1987]. It is a representation language defined on
top of Lisp.

The primitive for representation in KRS is a large network of concepts, called
the concept-graph. Nodes of the network are called concepts. Links between
nodes are called subjects. Each concept represents a particular entity in the
representation domain.

The concept graph is defined and inspected by descriptions defined in a
concept-language. The concept-language has two important features: descrip-
tions are interpreted such that the concept-graph is constructed in a lazy way,
and the concept-language is lexically scoped.

Lazy interpretation allows to define large libraries without consuming all the
memory, and allows an easy description of circular parts of the concept-graph.

Lexical scope gives all concepts described by the same description in the
concept-language easy access to each other.

Inference in KRS is based on two mechanisms: referent computation and
inheritance. Referent computation is a mechanism to compute concept’s referent
from its definition. Inheritance in KRS is the process of augmenting a concept’s
description by copying the subjects of the concept’s type into the concept. A
concept’s type is also a concept. Inheritance in KRS is a single inheritance
mechanism.

The Reflect Project

The aim of the REFLECT project was the development of an architecture for the
construction of knowledge systems providing facilities such as knowledge-base
maintenance, validation, and adaptative interaction. The claim of the REFLECT
project is that more advanced knowledge systems can only be realized by a
reflective reasoning architecture.

The REFLECT approach is based on the research on basic mechanisms of self-
representation, causal connections, and integrated reflective computation in the
same direction as FOL [Weyhrauch, 1980]. The aim of the REFLECT project is to
describe an architecture by way of a generic module structure and corresponding
relationships among them.

The REFLECT architecture is based on the KADS expertise model of problem
solving. Following the KADS approach, it is proposed an architecture based on
three layers: a domain layer for defining domain knowledge, an inference layer
for defining inference knowledge, and a task layer for defining task knowledge.

The approach in REFLECT project was that this reflective architecture can be
represented in a formal language. For this purpose, languages such as MODEL-K
[Karbach et al., 1991] and (ML)? [van Harmelen and Balder, 1992] were devel-
oped. Below we will describe the REFLECT approach by means of the description
of the (ML)? language.
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(ML)?

The (ML)? language [van Harmelen and Balder, 1992] is a language developed in
the REFLECT project that provides a formal specification language for the KADS
methodology. (ML)? combines three types of logic: extended order-sorted first-
order logic for specifying the domain layer, first-order meta-logic for specifying
the inference layer, and quantified dynamic logic for specifying the task layer.

Domain knowledge is modeled in (ML)? using an order-sorted first-order
logic extended by modularization. The specification of domain knowledge can
be divided into several modules. Such a module defines a signature (i.e. sorts,
constants, functions and predicates) and defines axioms (i.e. logical formulae).
Modules can be combined by a union operator. Constants model instances of
the domain. Sorts model a class hierarchy for constants. Predicates model
relationships among concepts. Functions model attributes of concepts.

Inference knowledge is modeled in (ML)? using a first-order meta-logic. Ev-
ery inference action is described by a predicate and a logical theory (e.g. a set
of input and output roles, a signature, and a set of axioms). Inferences are
modeled using a meta-language of the domain knowledge that allows to express
properties of relations over domain knowledge formulae. The domain layer and
the inference layer are causally connected by a set of reflection rules.

Task knowledge is modeled in (ML)? using a quantified dynamic logic. Task
knowledge models dynamic control between inference actions. Every predicate
specifying an inference action in the inference knowledge is regarded as an ele-
mentary program statement and the knowledge roles are used as input and out-
put parameters of such programs. For every inference a history variable is defined
which stores the input-output pairs for every execution step. Four types of oper-
ations are available for each inference action in the task layer: checking whether
an instantiation exists, checking whether an instantiation has already been com-
puted, checking whether more instantiations exists, and actually computing and
storing a new instantiation. Moreover, (ML)? provides a set of elementary com-
bination operations such as sequential composition, non-deterministic iteration,
and non-deterministic choice.

MetaKit

MetaKit [Slodzian, 1994b] is an extension of KresT’s Basekit which provides an
ontology for metalevel design. MetaKit provides a set of methods and forms to
design meta-projects and a library of knowledge elements that can be reused in
any meta-project.

A meta-project is a project performing operations at the meta-level of another
project, called the object-project. Meta-projects are projects that operate on
another project, using methods and content forms defined in the MetaKit. The
same meta-project can be successively or simultaneously working at a meta-level
above several object-projects. A meta-project may equally operate on another
meta-project and there are no limitations imposed on the number of levels.

Domain models of a meta-project are models of parts of the object-project.
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MetaKit provides a set of attributes and values for describing such models.
For instance, the type of an object-level object is characterized by the value of
the referent attribute, which can be component (task, model, or method) or
project.

MetaKit provides also a set of metalevel methods for operating on mod-
els of methods, such as get-method-type and get-method-task, methods for
working with models of models, such as get-tasks-reading-model, meth-
ods for operating on models of tasks, such as get-task-input-models and
get-task-output-roles, methods for operating on roles, such as fills-roles
and get-method-role, methods for operate on attribute representation, such as
get-attribute-value and unify-fragments, methods for operating on mod-
els of projects and fragments, such as extract-model-set, and methods for
encoding, such as encode-component and compile-project.

These set of metalevel methods allows to work at three different levels: knowl-
edge, code, and execution.

One of the capabilities of MetaKit is that allows to design meta-projects
covering several verification strategies and to apply them to object-projects. An
example of a meta-project performing detection and correction of other projects
is a meta-project looking for missing or incompletely described relations between
models, tasks and methods.

On another hand, MetaKit offers also capabilities for completing missing
components of the current project from comparing the current project to some
older fragments of designs and deducing what has to be added to the current
project. Is in this approach how machine learning techniques could be used in
MetaKit. An example of the incorporation of decision tree learning algorithms
is described in [Slodzian, 1994a].

Finally, MetaKit can be used for controlling the execution. The execution
control is based on a description of temporal and causal relations between com-
ponents.

2.4 Introspective learning

Learning methods in a reflective framework are a type of inference methods that
have a model of certain aspects of the system (the self-model) that is useful
for improving the system behavior. Usually, this self-model is amenable to be
analyzed in order to detect the failures and successes of the system. Moreover,
the learning method has to have some knowledge about how to assign blame for
failures and merit for successes to components of the system (the meta-theory
of the learning method). As a result, the meta-theory has to decide which
actions are amenable to be effected to the system to improve it. For instance,
assuring that successful methods will be used in appropriate situations (similar
situations or classes of situations) and that failures will not be repeated (for
similar situations or classes of situations). This knowledge is also part of the
meta-theory and constitutes the extension of the self-model that the reflection
process will translate into effective modifications of the system.
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The reification process and the type of model it constructs determines the
kind of learning that can be performed. Usually, the models used in ML systems
involve “sets of rules”, in that learning results in the addition of new rules (and
the modification of old rules) to the “rule set”. Another important issue is the
typology of situations for which learning is applied. In a “rule set” system,
the typology is usually “false positives” (a rule fired and achieved an erroneous
state) and “false negatives” (no rule fired that achieved the correct state); then,
repair is achieved through learning of new rules or generalizing old rules for false
negatives and deleting or specializing old rules for false positives. Using schema
languages, on the other hand, the meta-theory talks about correct and incorrect
retrieval of schemas and repair is realized modifying the indexing of schemas (see
[Ram et al., 1992] for an instance of introspective learning in schema languages).

Learning methods that learn plans, such as learning methods in SOAR
[Newell, 1990] and PRODIGY [Carbonell et al., 1991], have self-models about the
applicability and ordering of operators. The meta-theory has to know about
properties of the architecture and of the learning method in order to decide how
to modify the rule-set. Since PRODIGY knows that new rules learned by EBL
module are assured to be correct by EBL properties, PRODIGY knows new rules
can be added and will not be modified or retracted. In SOAR, however, since
chunking can overgeneralize, the reflection process has not only to construct new
rules, but has to assure that old, overgeneralized rules will be less preferred to
the new ones (adding a worse-preference between the two, since it “knows” that
the semantics of the system will never execute the less preferred one when the
preferred one is applicable).

Although this review is very short, the points we wish to make is that the
learning methods, albeit implicitly, can be used only because they realize this
knowledge about the architecture (the self-model). Another, collateral argument
for this claim, is the fact that most ML “methods” have to be always modified
or adapted to be usable in other domains where other systems are used. This
is usually conceived of as “implementation details”, but we argue this is not so:
the proliferation of learning methods proves that some fundamental issue is at
stake. Our claim is that the families and variations of ML methods, come from
the fact that the (implicit) self-model is an essential part of learning, and many
variants of a method come from variations of meta-theory and self-model. For
instance, adapting a ML method to a different architecture require changes in
the meta-theory to include what the learning component needs to know of the
new system (and similarly adapting a ML method to some new domain involves
adapting its meta-theoretic content to the features required by the new domain).

2.5 Conclusions

In this chapter we have reviewed the research relevant to our work organiz-
ing the presentation on four main topics: the research on knowledge modeling
frameworks, the research on integrated architectures, the research on reflective
representation languages, and the role of reflection and learning.
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Knowledge modeling frameworks propose methodologies for analyzing and
describing applications at a knowledge level in an implementation independent
way. These methodologies are based on the task/method decomposition prin-
ciple and on the analysis of knowledge requirements for problem solving meth-
ods. Usually, the task/method decomposition and the models resulting from the
knowledge modeling analysis are acquired using learning techniques. Neverthe-
less, learning techniques are not incorporated for improving the behavior of the
knowledge system from reasoning about the experience of acquired in solving
problems. Moreover, the task/method decomposition and the models are fully
determined in the knowledge modeling analysis. Another difficulty with some
knowledge modeling methodologies is that knowledge models are not directly
operationalizable.

Integrated architectures propose different frameworks for integrating problem
solving and learning. A difficulty with integrated architectures is that their rep-
resentation languages are far from knowledge modeling frameworks (for instance,
SOAR representation language is based on productions). We have described three
different architectures: THEO, SOAR, and PRODIGY. All these architectures in-
tegrate diverse learning mechanisms but present some limitations in their inte-
gration. THEO has fixed learning strategy based on three predefined learning
mechanisms. Chunking is the only architecturally supported learning mecha-
nism of SOAR and other learning techniques are difficult to integrate. PRODIGY
integrates six learning modules but a specific learning module cannot influence
nor take advantage of the learning form other modules.

Reflective representation languages propose different languages providing re-
flective mechanisms for describing and implementing knowledge systems that
reason about themselves. These introspective mechanisms allows to develop
complex knowledge systems in a more clear way.

Finally, we have discussed how the reification process and the type of model
used in a system determines the kind of learning that can be performed.



Chapter 3

The Noos Approach

In this chapter we present incrementally the Noos representation language. The
chapter is organized in six main sections: Section 3.1 presents the Noos model-
ing framework based on four knowledge categories: domain knowledge, problem
solving knowledge, episodic knowledge, and metalevel knowledge. Section 3.2
describes the basic elements of the language such as descriptions, refinement,
references, methods, and the basic inference. Section 3.3 presents the reflective
capabilities of Noos introducing elements such as metalevels, tasks, reflective
operations, reification, and reinstantiation. Section 3.4 describes preferences, a
declarative mechanism for decision making about sets of alternatives. Section 3.5
presents the complete Noos inference engine. Finally, Section 3.6 summarizes the
main features of the Noos language.

3.1 The Noos modeling framework

Knowledge-based problem solving is characterized by the intensive use of highly
domain specific elements of knowledge. The purpose of knowledge modeling ap-
proaches is to describe this knowledge and how it is being used in a particular
problem in an implementation independent way. Different knowledge model-
ing approaches have proposed different categories of knowledge elements and
different abstractions to describe them (see Section 2.1).

We propose a model based on four knowledge categories: domain knowledge,
problem solving knowledge, episodic knowledge, and metalevel knowledge.

Domain knowledge

The first knowledge category of the Noos framework is domain knowledge. Do-
main knowledge specifies a set of concepts, a set of relations among concepts, and
problem data that are relevant for an application. Concepts and relations define
the domain ontology of an application. For instance, Figure 3.1 shows part of
the domain ontology defined in the diagnosis of car malfunctions application.

27
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Figure 3.1. Part of the domain ontology of the diagnosis of car malfunctions
application.

Problem data, described using the domain ontology, define specific situations
(specific problems) that have to be solved. For instance, in the diagnosis of car
malfunctions application, problem data represents specific car problems. Prob-
lem data constitutes part of the episodic model (see below).

Problem solving knowledge

Another category of the Noos framework is problem solving knowledge. Prob-
lems to be solved in a domain are modeled as tasks. For instance, following the
previous example, the main task in the cars diagnosis domain is to establish
malfunctions of cars. In our approach, a method models a way to solve prob-
lems. Methods can be elementary or can be decomposed into subtasks. These
new (sub)tasks may be achieved by other methods. A method defines a specific
combination of the results of the subtasks in order to solve the task it performs.
For a given subtask there may be multiple alternative methods that may be
capable of solving that subtask in different situations. This recursive decompo-
sition of a task into subtasks by means of a method is called the task/method
decomposition. For instance, Figure 3.2 shows a browser of the task/method
decomposition of general-diagnosis method (following [Benjamins, 1993]).
The general-diagnosis method is decomposed into three subtasks, namely
detect-complaint, generate-hypothesis, and discriminate-hypothesis.
For each subtask one or several alternative methods are specified—e.g. subtask
detect-complaint has methods ask-user, classify, and compare.

Episodic knowledge

Problem solving in Noos is considered as the construction of an episodic
model. In this sense the Noos approach to problem solving is close to
that of CommonKADS [Wielinga et al., 1993] and to the TASK language
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Figure 3.2. A browser of the task/method decomposition for a general
diagnosis method. Methods are drown with thin boxes; tasks are drown
with thick boxes; dots indicate not expanded terms.

[Pierret-Golbreich and Hugonnard, 1994]. Our view of “problem solving as mod-
eling” is that problem solving is the process of constructing an episodic model.
This model is obtained from transformations of problem data performed us-
ing problem solving knowledge. A clear and explicit separation between tasks,
methods, and domain knowledge permits the dynamical link between a given
problem, tasks, and methods as well as the dynamical choice of a method suited
to achieve a task in that problem context: a ‘task’ uses a ‘method’ on a ‘episode’
(described using domain knowledge and problem data). An episodic model is
the set of knowledge pieces used for solving a specific problem. Once a prob-
lem is solved Noos automatically memorizes (stores and indexes) the episodic
model that has been built. Episodic memory (see Section 4.1) is the (accessible
and retrievable) collection of the episodic models of the problems that a system
has solved. The memorization of episodic models is a basic building block for
integrating learning into a KM framework.

Metalevel knowledge

The last category of the Noos framework is metalevel knowledge. Metalevel (or
reflective) knowledge is knowledge about domain knowledge, problem solving
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Figure 3.3. The Noos modeling framework.

knowledge, and episodic knowledge.

On the first hand, metalevel knowledge can have models about concepts, re-
lations, tasks, and methods. These models are formed by metalevel concepts,
metalevel relations, metalevel tasks, and metalevel methods (see Fig. 3.3). More-
over, metalevel knowledge includes preferences to model decision making about
sets of alternatives present in domain knowledge and problem solving knowledge.
For instance, metalevel knowledge can be used to model criteria for preferring
some methods over other methods for a task in a specific situation. Metalevel
concepts and metalevel relations can be used to build particular views of the
domain knowledge defining more abstract models, such as causal models, that
ease the usage of domain knowledge. An example of metalevel task is one that
chooses—from a set of alternative methods—a specific method for a given task.
An example of metalevel method is one that—for a specific situation—searches
possible methods for a task, selects some methods as suitable alternatives, and
finally ranks them using a set of preferences (see Section 3.3.1).

On the other hand, metalevel knowledge has models about how problems
are solved in the system—or in other words, knowledge about episodic models.
Knowledge about episodes models knowledge such as the method that has suc-
ceeded in achieving a specific task, the methods that have failed in achieving a
specific task, the tasks that have been engaged in the evaluation of a method,
and the preference orders built while choosing among alternatives. Metalevel
knowledge about episodic knowledge is the basis for the integration of learning
in Noos (see Chapter 4).
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3.1.1 Related work

Our purpose in the design of the knowledge categories of Noos was to use a
set of knowledge categories close to the knowledge modeling proposals such as
KADS [Wielinga et al., 1993] and Components of Expertise [Steels, 1990]. We
are interested in proposing a compatible approach in order to take advantage
of their work. Specifically, the research on problem solving methods (PSM)
[Benjamins, 1993] is able to help the design of problem solving methods in Noos.
Moreover, our work on incorporating learning capabilities can benefit to other
existing knowledge modeling proposals.

Nevertheless, there are some differences between Noos and the other propos-
als. The first difference is that since in our approach a PSM defines a way in
which a task can be achieved, PSMs determine the subtask decomposition of
tasks. In this sense we have joined tasks and methods as elements of problem
solving knowledge. Another difference is that task specification and method se-
lection knowledge, as are defined in KADS, is modeled as metalevel knowledge
in Noos.

3.2 The Noos language

Noos is an object-centered representation language based on feature terms. Fea-
ture terms are record-like data structures embodying a collection of features
that are a generalization of first order terms. Feature terms and its relation
with other works are presented in Chapter 5. For now we will only introduce
some intuitions about feature terms.

In first order terms the parameters of a predicate are identified by position.
For instance, we can define a predicate person containing four parameters as
follows

person(x1,Z2, X3, T4)

with the implicit assumption that the first argument of the constructor person
carries the “feature” name, the second argument carries the “feature” age, the
third argument carries the “feature” profession, and the fourth argument car-
ries the “feature” nationality.

Using this predicate we can describe a person whose name is Peter, whose
age is 28, whose profession is butcher, and whose nationality is greek writing
the following term:

person(Peter, 28, butcher, greek)

A first order term is formally described as a tree with a fixed tree traversal
order. For instance, the previous term is represented as the following tree with

a left-to-right ordering:
person

Peter 28 butcher greek
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Let us suppose now that we want to describe a person whose name is Janet
and whose profession is engineer ignoring the age and the nationality. This kind
of representation results inappropriate for representing incomplete information
since it requires to specify all the arguments. Another limitation presented in this
representation is the support for extensibility (we cannot add a new “feature” like
spouse that would involve a fifth parameter). The fixed number of and the posi-
tional meaning of parameters is the cause of these shortcomings—and the justi-
fication for research performed on feature terms [ATt-Kaci and Podelski, 1993].

The intuition behind a feature term is that of providing a way to construct
terms embodying partial information and amenable to extension. The proposal
of feature terms is that these goals can be achieved by building terms with
parameters identified by name (regardless of order or position) and with no
fixed number of parameters. For instance, the previous example is specified as
a feature term as follows:

person[name = Peter age = 28 profession = butcher nationality = greek]

saying that the feature term has sort person, its feature name is Peter, its feature
age is 28, its feature profession is butcher, and its feature nationality is
greek.

The identification of parameters using names instead of position allows to
represent partial knowledge. Thus, we can describe a person whose name is
Janet and whose profession is engineer, ignoring other features, as follows:

person[name = Janet profession = engineer]

More formally, while first order terms can be described by trees with an
implicit ordering, feature terms can be seen as a generalization of them and can
be described by labeled graphs where nodes are labeled with sorts and edges are
labeled with named parameters (called features). For instance, the two previous
descriptions are represented as labeled graphs as follows:

person
©
o C
& \&
S %,
%
Peter 28 putcfer  dreek Janet engineer

Figure 3.4. Labeled graph representation of two feature terms.

There are two types of feature terms in Noos: constant feature terms and
evaluable feature terms (Feature terms are described formally in Chapter 5).
Domain knowledge, as defined by the Noos model, is mapped to the Noos lan-
guage as constant feature terms. A feature term F representing a concept C
clusters together (as features) the relations in which C is involved. Methods are
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mapped to the Noos language as evaluable feature terms. Numbers, strings and
symbols are considered as predefined constant feature terms without features.

All the knowledge elements of the Noos model are represented into the lan-
guage by means of feature terms. This means that with a small set of com-
putational elements we capture all the elements of the Noos knowledge model.
Besides, this uniform representation of the knowledge benefits the introspective
capabilities of Noos.

After this introduction about feature terms, we will present in the next sec-
tion descriptions, the syntax Noos uses for constructing feature terms. Following
sections describe the different elements that configure the Noos language: the
second section is dedicated to explain the refinement capabilities provided by
code reuse and subtyping. The following section presents the use of references in
the language. The next section explains the way problem solving knowledge—
tasks and methods—is represented in the language. The last section presents
the basic inference process of Noos.

3.2.1 Descriptions

Descriptions are the syntax Noos uses for constructing feature terms. The de-
scription syntax is based on lists (like Lisp) starting with token define, followed
by a name (identifier), and a body composed of some features. A feature is a pair
of feature name and feature value. A feature value can be simply the name of a
feature term described elsewhere. For instance, the following two descriptions!:

(define Peter
(age 28)
(wife Mary))

(define Mary
(age 27)
(husband Peter))

construct two feature terms; the first feature term with name Peter containing
two features: age and wife with corresponding feature values 28 and Mary; The
second feature term with name Mary containing two features: age and husband
with corresponding feature values 27 and Peter.

Features describe direct labeled relations among terms. For instance, in the
first previous description a direct relation labeled as wife is specified from Peter
to Mary.

Since a name in a feature value denotes a feature term, a symbol is described
with the quote operator for distinguishing to references to feature terms. Strings
are described using double quotes at the beginning and at the end. For instance,
the following non-sense description

Tn the Noos language, like Lisp, there is no difference in the case of letters used—Noos is
a case insensitive language. For instance, Car, car, and CAR are all valid and equivalent.
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(define Peter-variants
(name-reference Peter)
(symbol ’Peter)
(string "Peter"))

defines, in turn, a name of the feature term Peter, the symbol ’Peter, and the
string "Peter".

Noos allows features where the feature value is a set. The syntax used for
feature set values is the enumeration of names. For instance, the previous de-
scription of Peter can be extended incorporating the description of his children
as the set composed by Sara, Paul, and Shirley.

(define Peter
(age 28)
(wife Mary)
(children Sara Paul Shirley))

3.2.2 Refinement

The notion of refinement is introduced in the Noos language as a methodology
to define a feature term from another existing feature term. The feature term
that is reused is called the constituent. Refinement involves two distinct aspects:
code reuse and subtyping, that will be explained below.

Syntactically, a description by refinement is a list composed of the define
token, a constituent, a name and a body embodying a collection of features. The
syntax of a description by refinement is the following:

Named Description (define (constituent name) body)

where name and body have the same meaning as defined before and constituent
is the name of the reused feature term. The name is optional and when it is not
given we say that an anonymous feature term is defined:

Anonymous Description (define (constituent) body)

Figure 3.5 describes the basic Noos syntax that will be explained in following
sections (The complete Noos syntax can be found in Appendix C).

Anonymous feature terms can be also defined as feature values. For instance,
we may define the concept person as a feature term whose father is also a person
of sex male and whose mother is another person of sex female as follows:

(define Person
(father (define (person)
(sex male))
(mother (define (person)
(sex female))))

We say that descriptions of features father and mother are subdescriptions
of Person and that Person is the root description.
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description n=

single-description n=
named-description n=
anonymous-description ::=
metalevel-description =
set-description =

body n=
feature-description =

value n=

path-reference =

single-description

named-description
anonymous-description
metalevel-description

set-description

(define name body)

(define (constituent [:id] name) body)
(define (constituent) body)

(define (constituent (meta+ of name)) body)
(define (set nmame) value+)
feature-description*®

(feature-name value*)

(feature-name path-reference)
((feature-name value+))

name | anonymous-description

(>> feature-name* [of name))

Figure 3.5. This figure shows a subset of Noos syntax used for the defini-
tion of descriptions in BNF notation. Remark that in feature-description
double parenthesis are used to define methods. Typewriter font words are
predefined terminal symbols that are part of the language, italic words
are user-defined identifiers and ::=, |,[ |, + and * are part of the BNF

formalism.
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Code reuse

Using refinement a new feature term can be constructed reusing another exist-
ing feature term. Specifically, a new feature term N defined as a refinement
of another feature term E as (define (E N) body) includes (reuses) all the
features defined in E that are not redefined in body. In other words, N extends
E with features defined in body. For instance, we may define the concept of a
citizen, with two features lives-at and pays, as follows

(define citizen
(lives-at region)
(pays taxes))

Then, we model the citizens of a given region by a refinement of citizen
that overrides the feature value of the lives-at feature with the name of that
specific region. In addition, we may incorporate new features like the language
spoken by citizens of that region. For instance, we may define a bagenc as a
citizen that lives at Bages (a beautiful region of Catalonia) and that speaks
Catalan and Spanish.

(define (citizen bagenc)
(lives-at Bages)
(speaks catalan spanish))

Finally, a specific citizen Pep can be defined describing the languages he
speaks by overriding the speaks feature and incorporating a new feature such
as his interests:

(define (bagenc Pep)
(speaks catalan english)
(likes climbing))

Recall that descriptions are syntax for building feature terms, so the feature
term constructed for Pep in fact includes the feature pays from citizen descrip-
tion, the feature lives-at from bagenc description, and features speaks and
likes from Pep description. The graph representation of the feature term Pep
is given in the browser of Figure 3.6.

Figure 3.7 shows another example of definition by refinement. First, the
car description is defined containing the common knowledge about cars. Then,
specific models of cars can be defined by refinements of car. Finally, specific cars
can be described as refinements of models of cars. Thus, all the features defined
in car and Ibiza-car that are not redefined in the car that Peter drives are
included in this new feature term.

Sorts

Noos provides an initial set of sorts with an order relation among them. There
is a top sort called any. Any represents the minimum information and all the
other sorts are more specific than any (for each sort S we have that any <
S). Predefined sorts are for instance (see Appendix A for a description of the
complete Noos predefined sort hierarchy):
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[0 Noos Graph: Pep E[RIE

-[Lives-AtH Bagesl

Figure 3.6. A Noos browser visualizing the labeled graph representation of
Pep. Feature names are represented as thin boxes. Note that feature terms
are rooted labeled graphs. The root node in this example is node Pep.

e all numbers and the sort number, with the order relations number < n for
all numbers n,

e all strings and the sort string, with the order relations string < s for all
strings s,

e all symbols and the sort symbol, with the order relations symbol < s for
all symbols s,

e sorts boolean, true, and false with the order relations boolean < true
and boolean < false,

e sorts set and empty-set with the order relation set < empty-set.

From this set of initial sorts new sorts can be defined, using refinement, for
specifying the sort hierarchy for a given domain.

Subtyping

Using refinement we are specifying the sort of the feature term and we are also
defining a sort hierarchy for a given domain. On the one hand, names of feature
terms are interpreted as sorts. This means that when we define a named term,
we are also defining a sort with the same name. On the other hand, the notion
of refinement involves the construction of an order relation < among the sorts.

Specifically, a description such as (define (X Y) body) defines a new sort
Y with an order relation X < Y with the existing sort X. Moreover, the sort
of the new feature term being constructed is Y. For instance, the definition
of Ibiza-car as a refinement of car involves (1) the definition of a new sort
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(define Car
(owner (define (person)))
(gas-level-in-tank gas-level)
(gas-gauge-reading (>> gas-level-in-tank))
((empty-level? (define (Identity?)
(iteml empty)
(item2 (>> gas-gauge-reading)))))
(price (>> price model)))

(define (Car Ibiza-car)
(model Ibiza))

(define (car-model Ibiza)
(manufacturer Seat)
(price 12000))

(define (Person :id Peter)
(age 28)
(spouse Mary)
(drives (define (Ibiza-Car)
(owner (>> spouse))
(symptom does-not-start)
(gas-level-in-tank full))))

Figure 3.7. Car, Ibiza-car, Ibiza, and Peter are defined using Noos
descriptions; features owner, gas-level-in-tank, gas-gauge-reading,
empty-level? and price are defined for the Car description; the fea-
ture model is defined for Ibiza-car; features manufacturer and price
are defined for the Ibiza car model; features age, spouse, and drives
for Peter; finally, owner, symptom and gas-level-in-tank features are
defined in the (sub)description of the car that Peter drives. For brevity,
some descriptions like car-model or person are not included. The Noos
basic syntax is summarized in Figure 3.5.
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any

leyel ._manufacture car  model
/\ complaint malfunction
rson
full - empty l perso

Ibiza-car

Ibiza

does-not-startstrange-noise |ow-batt-malfunction

no-gas-malfunction

Figure 3.8. The Noos sort hierarchy used in the example of Fig. 3.7 (the
diagnosis of car malfunctions domain).

Ibiza-car and, (2) an order relation: car < Ibiza-car (see Figure 3.8 for the
Noos sort hierarchy relevant to the diagnosis of car malfunctions domain).

When we define a feature term using an anonymous description we are not
defining a new sort. An anonymous description such as (define (X) body)
defines a feature term that has as sort X.

The problem with anonymous feature terms is that, since they have no name,
they cannot be referred to by name. When we want to define a feature term
without introducing a new sort, but we want to have an identifier in order to
refer to it, Noos provides an extended syntax for named descriptions using the
:id token as follows:

Named Description (define (constituent [:id] name) body)

When we use the optional token :id, we are defining a feature term with
name name without introducing a new sort. For instance, for the previous
definition of a specific citizen Pep, it was more appropriate the use of the :id
token as follows:

(define (bagenc :id Pep)
(speaks catalan english)
(likes climbing))

since we are using the name Pep as an identifier and not as a sort.

Named feature terms defined with the :id token cannot be refined.

The intuition about the order among sorts is that it specifies an informational
ordering: given two sorts X and Y, the order X < Y is interpreted as Y contains
all the information contained in X plus more information. In other words, Y is
more specific than X (see a detailed description in Chapter 5).

This sort hierarchy is the basis to model an order relation among feature
terms. We call this order relation among feature terms subsumption (see Sec-
tion 5.6).
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All the feature terms constructed in Noos are in fact definitions by refine-
ment. Specifically, examples of descriptions such as Peter and Mary given in
the previous section are also considered definitions by refinement from a feature
term without features whose sort is the top sort any. When a description is
constructed directly as a refinement of this top feature term, Noos provides the
compact syntax

Single description (define name body)
that is equivalent to

(define (any name) body)

Named sets

Another kind of descriptions provided in Noos are named sets. Named sets allows
to group descriptions in an identifier and refer to them using only the name. The
syntax of named sets is the following,

(define (set setname) name; -+ namey)

where each name; is a name of a feature term described elsewhere. For instance,
we can group our favorite colors in the named set my-colors and refer them
elsewhere

(define (set My-colors)
yellow green blue)

Concluding remarks about refinement

We have presented the notion of refinement as a crucial methodology of the
Noos language for constructing feature terms that involves two distinct aspects:
(1) code reuse (the construction of a feature term by reusing another feature
term) and, (2) subtyping (the definition of the sort hierarchy). As a summary
of this section we will describe briefly the different aspects involved in each kind
of definition by refinement previously presented:

e A named description such as (define (X Y) Z) involves:

— the definition of a new sort Y,
— the definition of an order relation X < Y between sorts X and Y, and

— the definition of a feature term with name Y, with sort Y, with the
features defined in Z, and including all the features defined in X that
are not redefined in Z.

e An anonymous description such as (define (X) Z) involves:

— the definition of a feature term with sort X, with the features defined
in Z, and including all the features defined in X that are not redefined
in Z.
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e A named description such as (define (X :id Y) Z) involves:

— the definition of a feature term with name Y, with sort X, with the
features defined in Z, and including all the features defined in X that
are not redefined in Z.

3.2.3 References

There are two forms of references in Noos: name references and path references.
We already have used name references—for instance, the feature value of feature
model of Ibiza-car in Figure 3.7 is defined using a name reference to Ibiza.
However anonymous feature terms cannot be referred to by named references,
anonymous feature terms are referred to using path references. There are two
kinds of path references: absolute and relative path references.

Absolute path references

An absolute path reference is a list that starts with the >> token, followed by a
sequence of feature names, then the of token, and finally the name of a named
feature term. Following an example from Figure 3.7, an absolute path reference
to the symptom of the car that Peter drives (which is does-not-start) is
written:

(>> symptom drives of Peter) (3.1)

It is clear that this reference is in fact the concatenation of two references:
The reference to the car that Peter drives, which is an Ibiza-car, and the
reference to its symptom. These two concatenated references can also be written
as:

(>> symptom of (>> drives of Peter)) (3.2)

In fact, expression (3.1) is just shorter syntax for expression (3.2). Consider-
ing that the path reference (>> drives of Peter) refers to a feature term with
print name <Ibiza-car-33> (print names of feature terms are written in Noos
inside angles) expression (3.2) is equivalent to the path reference

(>> symptom of <Ibiza-car-33>) (3.3)

Finally, since the value of the symptom feature of <Ibiza-car-33> is the
does-not-start complaint, expression (3.3) is equivalent to the name reference
does-not-start.

Relative path references

A relative path reference elides the name of a feature term and specifies only a
sequence of feature names, e. g. (>> price model). A relative path reference
is bound to a specific description by the rules of scope and refinement.
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Scope

Scope in Noos is lexical; that is to say, a relative reference is determined by
the text in which it appears. Specifically, a relative path reference is bound to
the root of the description in which it appears—the outmost define in the text
where it occurs. For instance, considering the following description of Peter
driving a specific model of Ibiza-car (let us call it <Ibiza-car-33>):

(define (person :id Peter)
(age 28)
(spouse Mary)
(drives (define (Ibiza-Car)
(owner (>> spouse))
(symptom does-not-start)
(gas-level-in-tank full))))

the relative path reference (>> spouse) in the feature owner of the
<Ibiza-car-33> refers to Peter (and not to <Ibiza-car-33>) since Peter is
the root of the description.

In Figure 3.7 root descriptions are car, Ibiza-car, Ibiza, and Peter, so
relative path references appearing in those descriptions are bound to those roots.

Scope plus refinement

A relative path reference defined in a description D and incorporated by refine-
ment into a new description D’ is bound in the scope of D’ relatively to the root
description where D was textually defined.

For instance, feature price is defined in car by the relative path reference
(>> price model) as follows:

(define Car
(price (>> price model)))

Thus, the relative path references occurring in car description (price fea-
ture in this example) are always relative to the appropriate car in whatever
refinement of car, regardless of whether that car is a subdescription of another
description.

Then, since in the previous example <Ibiza-car-33>is defined by refinement
of Ibiza-car—and Ibiza-car is defined by refinement of car—feature price is
incorporated to <Ibiza-car-33>bound to <Ibiza-car-33> (and not to Peter).

The Noos scope is formally explained in Chapter 5.

Null path

The sequence of feature names in a path reference can be empty. A null path
(>>) is a relative path reference that denotes directly the root of the description
in which it textually appears. For instance, in the following description of Janet
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(define (person Jane) (define (person Arthur)
(brothers Adam Arthur) (wife Lucy))
(sisters Abigail Alison))
(define (person Linda)
(define (person Abigail) (brothers Clement Charles))
(husband Bob))
(define (person Lucy)
(define (person Alison) (brothers David Douglas))
(husband Bart))

(define (person Adam)
(wife Linda))

Figure 3.9. Family relations example.

(define (person :id Janet)
(drives (define (Car)
(owner (>>))
(symptom does-not-start)
(gas-level-in-tank empty))))

the null path reference in the owner feature of the car subterm would refer to
Janet.

Reference over sets

Since feature values can be sets, path references have to deal with feature values
that are sets. For instance, since a feature like brothers may have as value a set
of feature terms, a path reference like (>> wife brothers of Jane) should be
understood as referring to the sisters-in-law of Jane. Using the family relations
described in Figure 3.9, since the brothers of Jane are (the set of) Adam and
Arthur, the question is the meaning of (>> wife of <Set of Adam Arthur>).
A path reference over a set is interpreted as the set of element-wise path ref-
erences. The element-wise definition of a reference over sets indicates that the
reference (>> wife of <Set of Adam Arthur>) is interpreted as the set of ref-
erences (>> wife of Adam) and (>> wife of Arthur) —that is to say the set
of Linda and Lucy (see Figure 3.9).

It is also important to notice that references over sets produce flat sets. In
other words, the result of a reference over a set is a set containing all the results
and is not a set of sets of results. For instance, the path reference

(>> brothers wife brothers of Jane)
yields the result

<Set of David Charles Clement Douglas>
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which is the set of objects that are the brothers of the wives of the brothers of
Jane. Notice, in particular, that Noos will not return as result from a reference
over a set something like

<Set of <Set of David Douglas> <Set of Charles Clement> >

which is a set of sets of values.

Path equality

A property of feature terms is that subterms of a feature term are univocally
determined by a path leading to a subterm from the root. For instance, we may
define Edward as follows:

(define (Person Edward)
(lives-at (define (address)
(city (define (city)
(name Manchester)
(in England)))))
(daughter (define (child)
(lives-at (>> lives-at)))))

where the address subterm is determined by the path
(>> lives-at of Edward)

the city subterm is determined by the path
(>> city lives-at of Edward)

and the child subterm is determined by the path
(>> daughter of Edward)

Another property of feature terms is that of path equality. Since any feature
value can be determined by a path from the root feature term, given a feature
F1, determined by a path P1 leading from the root to F1, with feature value a
path P2, P2 determines a path equality with P1.

For instance, the path reference (>> lives-at) in feature lives-at in
Edward’s child subterm specifies the following path equality:

(>> lives-at daughter of Edward) = (>> lives-at of Edward)

saying that the daughter of Edward lives at the same place as her father (Edward).

3.2.4 Methods

Methods are represented in Noos as evaluable feature terms and are constructed
also by descriptions. The features of a method description have a different
interpretation from that of descriptions of concepts: the set of features defined
in a method description is interpreted either as a reference to some knowledge
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Figure 3.10. A partial expanded tree of the Noos built-in method hierarchy.

source required by the method, or as a subtask required to be accomplished by
the method.

Intuitively, a method can be interpreted as a function the parameters of
which are passed by name (the required feature names) instead of by position.
A method reduces to a value as result of being evaluated. The value can be any
feature term—including a method.

A second important aspect of a method is the specific way in which it com-
bines the values of its features—i.e. the knowledge of sources and the results
of its subtasks. Noos provides an initial set of existing methods, called built-in
methods, that perform specific combinations of feature values. New methods can
be defined by refinement of built-ins.

We will first present Noos built-in methods and then, how new methods are
defined in Noos.

Built-in methods

Noos provides an initial set of built-in methods that perform specific combina-
tions of knowledge sources and results of the subtasks (see Figure 3.10 for a
partial description of Noos built-in method hierarchy).

For instance, the conditional function in Lisp is an expression (if z y z)
where z is an expression returning a boolean, y is the expression evaluated
when condition is true and z is the expression evaluated when condition is false.
Clearly the role of each variable or subexpression is given by being in position
1, 2, or 3 of the parameter list. The conditional method in Noos is a built-
in called conditional, and the three roles (that we call subtasks) are given
by features with name condition, result, and otherwise. The conditional
method performs first the subtask condition and depending on its result being
true or false? either the result subtask or the otherwise subtask is performed
and its result is the value yielded by conditional method.

2Both true and false are the boolean constants in the Noos language.
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Notice that, since the evaluation ordering of the subtasks of a method is
performed taking into account the subtask names, subtasks of a method can be
defined in any order. For instance, conditional can be written defining first
the result subtask, then the otherwise subtask, and finally the condition
subtask and the evaluation ordering will be the same.

Examples of Noos built-in methods are arithmetic operations, set opera-
tions, logic operations, operations for comparing feature terms, and other basic
constructs such as conditional or sequencing (see Appendix D for a detailed ex-
planation of Noos built-in methods). Each built-in method has a set of built-in
required features. For instance, built-in method Identity? is a comparison
method that compares two feature terms passed in features item1 and item?2
returning true when are the same and false otherwise (identity? method
works like eq predicate of Lisp).

Definition of methods

Methods are defined by refinement from built-in methods or other already de-
fined methods. In order to illustrate the definition by refinement of methods in
Noos we will introduce an example: a causal-explanation method to be used
in the context of causal reasoning. A causal-explanation is a method with
two subtasks: the first subtask checks whether a given cause occurs in a target
problem, and if so the effect subtask is performed—and otherwise it fails (the
notion of failure is described in Section 3.5). This method can be defined as a
refinement of the built-in conditional method where features condition and
result (the built-in required features defined for conditional) are refined as
references to effect and cause feature values respectively.

(define (conditional Causal-Explanation)
(cause boolean)
(effect any)
(condition (>> cause))
(result (>> effect)))

Note that cause and effect are unspecified—since they are parameters to
be passed in particular causal-explanations. It is not required to write these
feature names in the description, but as a matter of style it helps in clarity
to write the feature names referred to in a description even if they will not
be specified until further refinements are made. Also note that the otherwise
subtask of conditional is unspecified, thus when the cause subtask (equivalent
to condition subtask) is not the case, the method will fail since there is no way
to achieve the otherwise subtask. Next, more specific causal explanations can
be defined through refinements of causal-explanation, as for instance:

(define (causal-explanation Wet-Causal-Expl)
(location place)
(cause (>> recent-rain? location))
(effect wet))
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Wet-Causal-Expl has a new parameter, location and determines that such
a location is wet whenever the feature recent-rain? of that location is true.
This is still a generic (or parametric) method, although specialized for a given
task. When we refine Wet-Causal-Expl method giving a specific place value for
location feature, we will have a closed method.

We say that a method is closed when all the required features (references
and subtasks) are specified (see section 5.9.1). In other words, a closed method
is amenable to be evaluated and reduced to a value. For instance, if we refine
Wet-Causal-Expl specifying a specific location as follows,

(define (Wet-Causal-Expl)
(location (define (place)
(recent-rain? true))))

we are describing a closed method amenable to be evaluated and return a result
(returning wet as result in this example).

Summarizing, first we have built the Causal-Explanation method by refin-
ing the conditional built-in method with two new named parameters called
cause and effect. Then, we have defined Wet-Causal-Expl method by re-
finement of Causal-Explanation specifying parameters cause and effect and
introducing a new parameter named location. Finally, we have defined a closed
method specifying a specific location. This last method can be evaluated.

Methods in features

A closed method can be incorporated into a feature to infer its value. Specifically,
introducing a closed method we describe a feature value by means of an inference
instead of a constant or a path reference. In order to syntactically distinguish in
a feature of a description a reference to a value from a method to infer a value,
a method is indicated by a double parenthesis. That is to say, a feature with a
method is written as follows:

(define (constituent name)
((feature-name closed-method)))

For instance, in Figure 3.7 the built-in identity? method is used to describe
the empty-level? feature value of car. The empty-level? feature value will
be true when gas-level-in-tank is empty and false otherwise.

Using another example, in the domain of digital logic circuits (see Fig-
ure 3.11) a half-adder component can be represented as a term with two input
wires (represented by features A and B), and two output wires (represented by
the features S and C). The value of feature S is defined using a composition of
closed methods (conjunction, disjunction, and not) and will become 1 (true)
whenever only one of A and B is 1. The value of feature C is defined using another
conjunction closed method and will become 1 whenever A and B are both 1.

Next, we can define a full-adder component composed of two half-adders
(represented by features H1 and H2). The full-adder is the basic circuit for
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(define Half-adder
(4)
(B)
((s (define (conjunction)
((item1l (define (disjunction)
(iteml (>> A))
(item2 (>> B)))))

(item2 (define (not) e —
(item (>> €))))))) AT > —s
((C (define (conjunction) |
(iteml (>> A)) B —t—c

(item2 (>> B))))))

(define Full-adder

(A)
(B )
(C-in ) r T -
) A half ‘
(H1 (define (half-adder) \ ‘
(B (>> s H2)))) - ]
(H2 (define (half-adder)
(A (>> B))

(B (>> C-in))))
(Sum (>> S H1))
((C-out define (disjunction)
(item1 (>> C H1))
(item2 (>> C H2)))))

Sum
C-out

Figure 3.11. Definition of an adder circuit.
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adding two binary numbers. A full-adder is represented as a term with three
input wires and two output wires (represented as features): features A and B hold
the bits at corresponding positions in the two numbers to be added. Feature
C-in is the carry bit from the addition one place to the right. The value of
feature Sum will hold the sum bit in the corresponding position. The value of
feature C-out will hold the carry bit to be propagated to the left.

Concluding remarks

We have shown how new methods can be defined as a combination of other
methods. That is to say, a new method is specified (1) by a refinement of
another method that determines how the results of subtasks are combined, (2)
by specifying which methods are used in each subtask, and (3) by specifying a
set of named parameters.

Next, we can define closed methods, by specifying the required parameters of
methods. A closed method can be incorporated into a feature to infer its value.

For instance, using the task/method decomposition for general diagnosis de-
scribed in [Benjamins, 1993], a specific configuration of a model based diagnosis
method can be defined as follows®:

(define (Sequence Model-based-diagnosis)
(device faulty-device)
((detect-complaint (define (ask-user)
(source (>> device)))))
((generate-hypothesis (define (model-based-hypothesis-generation)
(device (>> device))
(symptom (>> detect-complaint)))))
((discriminate-hypothesis (define (discrimination)
(device (>> device))
(hypothesis (>> generate-hypothesis))))))

where the Model-based-diagnosis method is defined by refinement of the
sequence built-in method, with a named parameter device, and decomposed
into three subtasks, namely detect-complaint, generate-hypothesis, and
discriminate-hypothesis. For each subtask one method is specified: The
detect-complaint task is performed by the ask-user method that requests to
the user for determining complaint symptoms; the generate-hypothesis task
is performed by the model-based-hypothesis-generation method that uses
a domain model to generate hypotheses that explain the set of initial observa-
tions from the device; and discriminate-hypothesis task is performed by the
discrimination method that determines if an hypothesis generated by previous
task has to be discarded.

3see Figure 3.2 on page 29 for a browser of a task/method decomposition for general diag-
nosis
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3.2.5 Inference

After describing the basic components of the Noos language, we are ready to
introduce the main intuitions on the basic inference process of Noos. The whole
Noos inference process involving metalevel inference and reasoning about pref-
erences, however, is described in Section 3.5.

Inference in Noos involves three processes: the inference of feature values,
the reduction of path references, and the evaluation of closed methods. Since a
feature value can be defined either as a constant value, as a path reference, or
by means of the evaluation of a closed method, the inference of a feature value
can involve, in turn, the reduction of a path reference and the evaluation of a
closed method.

A main characteristic of inference in Noos is that it is on demand (also called
lazy inference). On demand inference means that no inference is performed until
it is required.

Inference starts when the user poses a query to the system by means of a
query expression. There are two kinds of query expressions: path references and
eval expressions.

Path references

Path references can be used as query expressions. Specifically, when a query
expression (>> F of D) is posed to the system and the feature value for feature
F of D is unknown, the task of inferring the corresponding feature value is engaged
in Noos.

Tasks engaged by query expressions are called problem tasks. A problem task
F (D) engages the inference to determine the feature value for feature F of feature
term D. For instance, the following query expression:

(>> diagnosis of Peters-car)

engages the problem task diagnosis(Peters-car) for determining the feature
value of feature diagnosis of Peters-car.

Eval expressions

Another way to specify a query expression is by requesting the evaluation of a
closed method using the following syntax:

(noos-eval M)

that engages the evaluation of the closed method M.
For instance, the following query expression:

(noos-eval (define (Wet-Causal-Expl) (location my-home)))

engages the evaluation of a closed method defined by refinement of the
Wet-Causal-Expl method where a specific place value my-home for the location
feature is given (see Section 3.2.4 for the definition of the Wet-Causal-Expl
method).
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The inference engine

From the inference process engaged by a query expression, the Noos inference
engine can be described using three basic processes: the Engage-Task process,
involving the inference of feature values; the Reduce-Path-Reference process,
involving the reduction of a path reference; and the Noos-FEval process, involving
the evaluation of a method. These three processes will be presently explained in
turn.

Engage-Task

The goal of the Engage- Task process is to infer the value of a feature. Engage-
Task is engaged for solving a problem task. FEngage- Task process involves four
different actions according to the different feature value specifications as follows:

Given a task F(D) engaged for determining the value of a feature F of a
feature term D,

1. When there is a constant feature value C defined for feature F of D, the
task is achieved yielding C.

2. When there is a path reference R defined for feature F of D, the process
Reduce-Path-Reference is engaged for path reference R. The task is achieved
if the reduction process succeeds, yielding the feature term to which the
path reference R reduces. Otherwise Engage- Task fails.

3. When there is a closed method M defined for feature F of D, the Noos-Eval
process is engaged for method M. The task is achieved if the evaluation of
method M succeeds, yielding the value inferred in that evaluation. Other-
wise Engage-Task fails.

4. When neither a path reference nor a method is defined for feature F of D,
an impasse occurs. In this situation the control of the inference is passed
to the metalevel. Metalevel inference is explained in Section 3.5, so we will
ignore this case until section Section 3.5.

Once the task of inferring the value for a feature F of a term D is achieved,
the inferred value is automatically cached in the feature F. Caching mechanism
allows Noos to answer quickly future demands of previously inferred feature
values (see Section 3.5).

Reduce-Path-Reference

The goal of the Reduce-Path-Reference process is to infer the feature term
referenced by a path reference. As we have shown in Section 3.2.3, a path
reference like (>> F1 F2 of D) is in fact a concatenation of two references that
can be defined in the following equivalent syntax:

(>> F1 of (>> F2 of D))

We will call this form a canonical path reference. The Reduce-Path-Reference
process will be described considering only canonical path references.
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Given a canonical path reference R, the Reduce-Path-Reference process can
be described recursively as follows:

1. when the path reference R is of the form (>> F of D), being F a feature
name and D a name reference, the engage-task process is engaged for solving
the task F(D). If engage-task fails, then the Reduce-Path-Reference process
fails. Otherwise Reduce-Path-Reference yields the value inferred by task
F(D).

2. when the path reference R is a relative path reference of the form (>> F),
the system determines the corresponding absolute path (>> F of D) fol-
lowing the rules of scope and refinement (see Section 3.2.2). Then, the
engage-task process is engaged for solving the task F(D).

3. when the path reference R is of the form (>> F of R’), being R’ another
path reference, then the Reduce-Path-Reference process recursively reduces
R’. If we call D the feature term yielded in the reduction of R’, then the
engage-task process is engaged for solving the task F(D).

Noos-Eval

The Noos-Ewval process for a method M first engages a task for each required
feature of M and then performs a specific combination of the results of the sub-
tasks according to the built-in method it is a refinement of. The Noos-FEval
process is engaged for solving an eval expression.

Specifically, given a method M that is a refinement of a built-in method B
with required features Fy, Fo, -+, F,,

1. tasks Fy (M), Fo (M), ..., F, (M) are consequently engaged by M, using the
Engage-Task process.

2. if all tasks F{ (M), Fo (M), ..., F, (M) can be achieved, a specific combination
of the results of the subtasks, according to the built-in definition of B, is
performed and the method yields this value.

3. if there is a required task F; (M) that cannot be achieved, the evaluation of
the method fails.

For instance, being M a refinement of the identity? built-in method, first
subtasks iteml and item2 will be engaged and then, if those subtasks can be
achieved, M yields true when are the same and false otherwise.

The conditional built-in method is the only built-in method that engages its
required features in a different manner with regard to the previous description.
The conditional method performs first the subtask condition and depending
on its result being true or false either the result subtask or the otherwise
subtask is performed yielding the value inferred by that subtask.

Once a method M is evaluated, the inferred value is also automatically cached
(see Section 3.5).
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(>> kind of material-stuff)

Problem Task: kind (<material-stuff>)
Eval: <conditional-1>
—
Task: condition(<conditional-1>)
Reduce: (>> so0lid? made-of)
—
Task: made-of (<material-stuff>)
Value: <thing-1>
Task: solid?(<thing-1>)
Value: <true>
—
Result: <true>
Task: result(<conditional-1>)
Value: <material>
—
Result: <material>

<material>

Figure 3.12. Inference trace.

An example of Inference

We will illustrate the Noos inference process using a short example. Suppose we
define a concept stuff with a feature kind determining whether a given stuff is
material or ideal using a conditional method as follows:

(define Stuff
((kind (define (conditional)
(condition (>> so0lid? made-of))
(result material)
(otherwise ideal)))))

Then, we define a concept material-stuff by refinement of stuff as follows:

(define (stuff material-stuff)
(made-of (define (thing)
(s0l1id? true))))

Next, using the following query expression
(>> kind of material-stuff)

we start the inference of the problem task kind (material-stuff). Since there
is a method (that we will call <conditional-1>) defined to infer the feature
value, it is evaluated. The evaluation of the method performs first the subtask
condition reducing, in turn, the path reference (>> s0lid? made-of) in the
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scope of material-stuff. Since the result of the subtask condition is true
and the feature value of the result subtask of <conditional-1>is the constant
value <material>, the result reduced in the evaluation of <conditional-1>
is <material>. Finally, <material> is reduced as the solution for the query
expression. Figure 3.12 shows the trace of the inference performed by Noos in
this short example.

3.3 Reflection

A reflective system is a computational system which is able to reason about
aspects of itself. A reflective system has a partial representation of itself that
can be inspected and manipulated. The representations the system has of itself
are causally connected to the system. This means that a change to its self-
representation is reflected in the behavior of the system and vice versa. Following
[Rademakers, 1988] and [Maes, 1988], a programming language is said to have a
reflective architecture if it incorporates a framework for implementing reflective
systems.

On a formal view, the reflection principles specify the relationship between
a theory T and its meta-theory MT. Reflection principles, in turn, are de-
scribed using three different components: the upward principles, the metalevel
inference, and the downward principles. The upward principles specify the reifi-
cation process that encodes some aspects of T into ground facts of MT. That
is to say, reification constructs a particular model of T in the language used by
MT. The nature of reification and the model constructed is open, i.e. it de-
pends on the purpose for which the reification is made. In logical reflection, the
model is about syntactic properties of base-level formulae, so that proof schemas
and proof tactics can be the contents of the meta-theory and used to construct
strategies for proving base-level formulae [Giunchilia and Traverso, 1990]. Pro-
cedural reflection, on the other hand, is based on reifying part of the language
semantics for functional languages [Smith, 1985] or for object-oriented languages
[Kiczales et al., 1991]. We will use in Noos a knowledge-level model of inference
based on tasks and methods. The meta-theory contains knowledge that allows
to deduce how to extend the model of the base theory. This deduction process
is called metalevel inference, and the content of this theory is again specific to
the purpose at hand (the meta-theory is indeed no more than a theory). Finally,
downward principles specify the reflection process that given a new extended
model of T has to construct a new theory 7" that complies this new model (see
Figure 3.13).

There is another thing needed to characterize reflective architectures: meta-
level lift rules. Metalevel lift rules specify when reification and reflection effec-
tively occur, i.e. they specify the control regime. Mainly, there are two classes:
(1) explicit reflection and (2) impasse driven reflection (also called implicit reflec-
tion) . In (1) base-level explicitly calls the meta-theory, and in (2) meta-theory is
implicitly called when certain situations (impasses) occur at the base-level?. As

4Some systems call the meta-level every time a new fact is inferred at the base-level. Al-
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Metalevel Theory MT

Model of T _M_) Extended
inference model of T

TReification Reflection l

Theory T Theory T'

Figure 3.13. The reflection cycle. Reification constructs a model of a theory
T. Metalevel inference infers new facts or takes new decisions that extend
(or modify) the model of T using a meta-theory MT. Finally, reflection
constructs a new theory T’ that complies the extended model of T.

we will see, Noos mainly uses an impasse-driven approach. Nevertheless, Noos
provides a collection of metalevel methods that allows reasoning using explicit
reflection.

In Section 3.1 we have presented the Noos metalevel knowledge as knowledge
about domain knowledge, problem solving knowledge, and episodic knowledge.
Specifically, metalevel knowledge of Noos is modeled as tasks, metalevels, and
default metalevels. Tasks, metalevels, and default metalevels are represented in
the language as feature terms.

Each feature term is causally connected with one metalevel feature term. A
metalevel feature term M is only causally connected with one (base-level) feature
term B (called the referent of the metalevel).

The features of the referent B have a corresponding feature with the same
name on the metalevel M. A feature f of the metalevel M has as feature value
the set of methods methods {M;} that are applicable to the feature f of the
referent B. In other words, since a method is a way to solve a particular task,
the set of methods {M;} specifies alternative ways to infer a feature value for f of
B. Thus we can conceive of the sets of feature values in a feature f of a metalevel
M as a disjunction over the methods that can be used in the feature f of B. A
disjunctive expression of methods is used when there is not sufficient knowledge
to uniquely determine the method that is guaranteed to solve a specific feature.
Noos provides a backtracking mechanism that assures all alternative methods
will be reflected down to the referent B and tried if needed. Section 3.4 describes
the use of preferences as a way to reason and order the evaluation of alternative
methods for a given task. Metalevels are described in Section 3.3.1.

A default metalevel is a special kind of metalevel. A default metalevel con-
tains a set of methods that can be applied to all the features of a referent and

though it is an extreme case, it can be seen as impasse-driven systems where every new fact
causes an impasse.
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Metalevel M

Default metalevl/ fi ={Mi}
referent\

default meta referent

\

Base-level

fi=v

Figure 3.14. Metalevel components of Noos and their causal connections.

are explained in Section 3.3.2. Each feature term can be causally connected with
one default metalevel.

Tasks reify the status of the inference in the language. The status of the
inference for each feature is reified in the Noos metalevel as a task. A given
task T reifies the inference status for a feature f of a base-level B. This task T
is causally connected to the base-level B and to the metalevel M of B. Tasks
embody episodic knowledge such as the method that has succeeded in achieving
that task (the method used to infer the feature value of the feature) and the
result of the evaluation of the method (the feature value). Tasks are described
in Section 3.3.4.

Noos language provides a set of reflective operations that provides a way
to access to the metalevel relations of a given feature term with other feature
terms. For instance, reflective operation meta applied to a specific feature term
B yields the metalevel M with which is causally connected. Reflective operations
are described in Section 3.3.5. Some of them are illustrated in Figure 3.14.

Noos is mainly an impasse-driven reflective architecture. The Noos architec-
ture specifies which types of impasses can appear and which kind of metaobject
will handle them. For instance, when no method is specified for a given task,
a no-method impasse occurs and the control of the inference is passed to the
corresponding task at the metalevel. Impasses and reflection are described in
Section 3.5.

3.3.1 Metalevels

A metalevel in Noos is also a feature term constructed by means of a descrip-
tion. A metalevel description is always a refinement of (predefined) feature term
metalevel, i.e. the constituent should be metalevel or some refinement of it.
Metalevels can have a name but usually they are anonymous. An anonymous
metalevel is defined as a feature term that has a metalevel causal connection
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with another (base-level) feature term T (called the referent of the metalevel)
with the (meta of T') idiom. That is to say, a metalevel is defined as follows
(where usually metalevel is metalevel itself).

Named Metalevel (define (metalevel NewMetalevel) body)
Anonymous Metalevel (define (metalevel (meta of T)) body)

Since a metalevel feature term is also a feature term, it can have its own
metalevel that can be indicated by using two meta constructs in its definition,
as in (meta meta of T'). Although this “metalevel tower” can grow in principle
as far as needed, in practice only one or two metalevels are used.

Since metalevels are feature terms, feature values of metalevel features can be
defined by name references to feature terms, by path references, by anonymous
feature terms, or giving a (metalevel) method to compute the feature value. The
definition of feature values in metalevels by means of name references allows to
define directly a set of alternative methods for a given feature. For instance, the
following example:

(define (Metalevel (meta of Car))
(empty-level? gas-gauge-reading-expl
gas-level-in-tank-expl))

defines a metalevel that has as referent the car feature term. Moreover, it defines
the metalevel feature empty-level? using two name references to methods
gas-gauge-reading-expl and gas-level-in-tank-expl.

Metalevel feature values can be also defined using a path reference, allowing
a metalevel to refer to some methods described in any other feature term. For
instance, the nationality of a person can be inferred as follows?,

(define (Metalevel (meta of Person))
(nationality (>> comes-from of (meta of citizen))))

using methods defined for feature comes-from in metalevel of citizen.

Multiple methods to achieve a subtask

Since methods are also defined as feature terms by means of descriptions with
a set of features interpreted as subtasks, the metalevel feature description of
a subtask allows to define multiple methods to achieve that subtask. In the
example below, a metalevel for the generate-and-test method is defined. In
the generate subtask two different methods for generating hypotheses are given.
The test subtask also has two methods for testing the generated hypothesis:

(define (Metalevel (meta of Generate&Test))
(generate generate-hypothesis-method-1
generate-hypothesis-method-2)
(test test-method-1 test-method-2))

5The (meta of citizen) reflective operation is used in path references as a way to refer
the metalevel of citizen instead of citizen (see Section 3.3.5).
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There is a simplified syntax that allows to define alternative methods for
a feature without the need to explicitly define the metalevel object: the dou-
ble parenthesis syntax. For instance, the equivalent of the previous metalevel
description using double parenthesis is the following;:

(define (sequence Generate&Test)
((generate generate-hypothesis-method-1
generate-hypothesis-method-2))
((test test-method-1 test-method-2)))

That is to say, a set of methods in a double parenthesis feature is specifying
a disjunctive set of applicable methods to that feature. Note that double paren-
thesis avoids to type the metalevel description but it is, in fact, creating such a
metalevel (by refinement of metalevel) if it not yet existed.

In fact, we can combine descriptions of methods for some features using the
compact syntax and descriptions of methods for other features using a metalevel
description. Note that we cannot define methods for a given feature at the
baselevel and metalevel at the same time. The Noos interpreter detects this
inconsistency and generates an error.

Metalevel Methods

The last way to define a metalevel feature value is by means of a (metalevel)
method. A metalevel method computes a set of ordered methods for that meta-
level feature. Any metalevel method can take into account the information given
in the current problem. There are two basic ways in which a method can produce
other methods as result: searching for already defined methods or constructing
new methods.

In this section we will explain metalevel methods that search for and selects
from other methods. Metalevel methods for creating new methods are explained
in Chapter 4.7.

In the following example, a metalevel method is defined for the diagnosis
feature. The metalevel method for diagnosis is specified in a way that accesses
and obtains different methods for inferring the diagnosis of a car after consulting

the age of that particular car®.

(define (Metalevel (meta of Car))
((diagnosis (define (conditional)
((condition (define (bigger-than?)
(is-bigger (>> age of (referent)))
(than 10))))
(result (>> usual-malfunctions of (meta of old-cars)))
(otherwise (>> malfunctions of (meta of new-cars)))))

6The expression (referent) is a reflective operator that obtains the base-level entity that
is the referent of the metalevel where it occurs. In this case, referent of meta of Car refers to
Car (see Section 3.3.5).
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Learning methods are examples of methods implemented in Noos by means
of metalevel methods. For instance, a CBR metalevel method for diagnosis
can be defined as a retrieval method that examines previous solved car problems
and retrieves those that have in common with current problem at least the
same complaint. Then, it selects the explanation methods that were successfully
used in the diagnosis task of those cases as the best possible explanations for
the current diagnosis problem (CBR methods and other learning methods are
described in Chapter 4).

Multiple Inheritance as Metalevel Inference

We have said on Section 3.2.2 that, using refinement, the features of a constituent
description that are not redefined in the new description are “copied” into the
new description. In fact, the refinement operation in Noos can be seen as equiv-
alent to single-inheritance with overriding. Moreover, multiple inheritance can
be achieved by refinement plus the explicit use of metalevel descriptions.

A simple way to have specialized inheritance is creating a metalevel such that
for each feature indicates which methods (defined elsewhere) are to be used. In
the following example the methods to be used in person are defined to be those
defined in metalevels of citizen and homo-sapiens:

(define (metalevel (meta of person))
(nationality (>> comes-from of (meta of citizen)))
(children (>> children of (meta of homo-sapiens))))

In the example above we show that we can explicitly determine which features
“inherit” (reuse) methods of citizen and which of homo-sapiens, although only
two features are shown. Thus, refinements of person will reuse methods from
person, citizen, and homo-sapiens.

3.3.2 Default metalevels

A default metalevel is a special kind of metalevel that applies to all the features
of its referent. The description of a metalevel is feature-wise: for each feature
a method (as a value) or a metalevel method has to be specified. In a default
metalevel we can specify a method (or a set of methods) for any feature (and
all unspecified features) of a referent.

A metalevel description is always a refinement of (predefined) feature term
default, i.e. the constituent should be default or some refinement of it. De-
fault metalevels can have a name but usually they are anonymous. An anony-
mous default metalevel is defined as a feature term that has a default metalevel
causal connection with another (base-level) feature term T' (called the referent
of the default metalevel) with the (default of 7') idiom. That is to say, a
default metalevel is defined as follows (where usually default is default itself).

Named Default (define (default NewDefault) method+)
Anonymous Default (define (default (default of 1)) method+)
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The referent T' can be a base-level object or a metalevel (indicated by the
construct (default meta of T')). Whenever a feature f of T is unspecified
the method in the default metalevel is installed as method for feature f in T.
More precisely, it is installed as the value of feature f of the metalevel of T'. If
the default specifies a set of methods, they are installed as the value of feature
f of the metalevel of T. The default metalevel is used only when a feature is
unspecified in any of the levels of the metalevel tower. However, only one default
can be specified in such a tower. Any other default would be useless since the
first one would act on all unspecified features.

An example of the use of a default metalevel for analogical reasoning can be
found in Section 4.5

3.3.3 Refinement

As we have shown in Section 3.2.2, refinement is used to construct a new feature
term reusing another existing feature term. Metalevel knowledge is also reused
using refinement. Specifically, a new feature term N defined by refinement of
another feature term E as (define (E N) body) includes (reuses) all the fea-
tures defined in F that are not redefined in body and, at the metalevel of N, all
the features defined in the metalevel of E that are not redefined in the metalevel
of N.

For instance, giving the following description of car:

(define Car
(owner (define (person)))
(price (>> price model)))

(define (Metalevel (meta of Car))
(empty-level? gas-gauge-reading-expl
gas-level-in-tank-expl))

and defining a specific car Toms-Car by refinement of car as follows:

(define (car :id Toms-Car)
(owner Tom)
(model Ibiza))

and defining also a metalevel for Toms-Car

(define (Metalevel (meta of Toms-Car))
(fault-symptoms model-based-method
empirical-method))

then, both features price and empty-level? are included in Toms-Car from car
and from metalevel of car respectively. Feature price is included in Toms-Car.
Feature empty-level? is included in the metalevel of Toms-Car.

Default metalevels are also reused by refinement in a similar way to metalevel
descriptions of features.
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Task-NameH ‘Ernpty -Leve]?l

ITask_202 [ Empty-Level? Of <Peters-Car> ] -> <False> Task-DomainH Peters-Carl

Method || Identity ?_199] -

Figure 3.15. Task feature term reifying the inference of feature
empty-level? of Peters-Car. Note that the printname of the task con-
tains the referent.

3.3.4 Tasks

A task is a feature term that it reifies the current state of the inference for a
given feature. Tasks are built automatically by Noos. A task embodies three
features: task-name, task-domain, and method. Tasks cannot be defined by
descriptions.

Feature task-name keeps the feature name of the feature that it reifies. Fea-
ture names are represented in Noos as symbols (e.g. ’Empty-level?). Feature
task-domain keeps the feature term in which appears the feature that reifies.
Feature method keeps the method that has succeeded in achieving that task.

For instance, given a feature term D with one feature £ built from the following
description

(define D
(£ M)

the feature value of feature task-name of the task built by Noos is f, feature
value of feature task-domain is D, and the feature value of feature method is M,
assuming that M has succeeded in achieving the feature value for £. Figure 3.15
shows the task built by Noos for the feature empty-level? of Peters-car
feature term.

Tasks allow Noos programs to inspect its own inference status. The task
of a given feature can be introspected using reflective operations task and
current-task (see Section 3.3.5). Since tasks are feature terms, their features
can be inspected using path references.

3.3.5 Reflective operations

Reflective operations allows to know the metalevel relations of a given feature
term with other feature terms.

Meta

Given a reference to a feature term term, the meta reflective operation
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(meta term)

refers to the metalevel of term. The reference to a feature term term, that is
optional, can be a name reference, a path reference, or a reflective operation.
For instance, the following expression

(meta Peter)

is a reference to the metalevel of Peter. Another example is using a path
reference as follows

(meta (>> wife of Peter))

that is a reference to the metalevel of the wife of Peter. Assuming that, for
instance, the wife of Peter is Mary this metalevel operation defines a reference
to the metalevel of Mary.

The metalevel of any feature term can be always obtained. When a metalevel
is requested and it was not previously defined, it is created.

When the term is not specified it is determined by the rules of scope and
refinement (see Section 3.2.3).

Default

Given a reference to a feature term term, the default reflective operation
(default term)

allows to refer to the metalevel default of term. The reference to a feature term
term can be a name reference, a path reference, or a reflective operation. For
instance, the following expression

(default Peter)

is a reference to the default metalevel of Peter.

Default metalevels are optional. This means that not all feature terms have
a default metalevel. When the default metalevel operation is performed over a
feature term without a default metalevel, the default metalevel operation fails
(see Section 3.5 for the definition of failure).

Task

Given a feature name f and given a reference to a feature term term, the task
reflective operation

(task f of term)

allows to refer to the task feature term that reifies the inference status for a
feature f of that feature term. For instance, the following expression

(task diagnosis of Peters-car)

is a reference to the task feature term that reifies the inference status for a
feature diagnosis of Peters-car.
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Current-task

Reflective operation current-task allows to refer to the task in which a method
is involved.

(current-task method)

Since the task is a term with the task-domain feature holding the feature
term in which the method is inferring a feature value, current-task is used
in Noos as a way to access directly to other features of the feature term. This
alternative avoids the use of parameters in the method.

For instance, we define the adult? method as a method that directly accesses
to the feature value of the age feature, and returns true if the age is higher to
17 and false otherwise.

(define (higher-than adult?)
(is-higher (>> age task-domain of (current-task)))
(than 17))

Then, we define a specific person using the adult? method for inferring the
feature value of feature can-vote? as follows:

(define Carol
(age 22)
((can-vote? adult?)))

Finally, the following query expression:
(>> can-vote? of Carol)

yields true since the age of Carol is 22 years old.

Referent
The referent reflective operation is used with the following syntax:
(referent term)

where term follows also the previous defined alternatives.

The referent reflective operation performs different references depending
on the feature term from which it is applied. The referent of a metalevel feature
term M refers to the feature term T of which M is the metalevel. For instance,
the referent of the metalevel of Peter is expressed as follows:

(referent (meta Peter))

Clearly, the referent of the metalevel of Peter is Peter.

The referent of a default metalevel feature term D refers to the feature
term T of which D is the default metalevel. For instance, Peter is the referent
of the default metalevel of itself an is expressed as follows:

(referent (default Peter))
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The referent of a task T that reifies the inference status for a feature f of
a feature term B, refers to the result of the evaluation of the method used to
infer the feature value of f. For instance, assuming that the feature value for the
empty-Level? feature of Peters-Car is the feature term false, the following
expression

(referent (task empty-level? of Peters-car))

is a reference to the feature term false.

Combining reflective operations with path references

Since reflective operations are references to feature terms, reflective operations
can be used as references in path references. Specifically, path references and
reflective operations can be combined as follows:

comb = (>> feature-name* of comb)
| (meta comb)
| (default comb)
| (task feature-name of comb)
| (current-task comb)
| (referent comb)
| name

For instance, the following path reference
(>> diagnosis of (meta Peters-car))

is a referent to the set of alternative methods that are applicable to the feature
diagnosis of Peters-car that are embodied in the metalevel of Peters-car.

3.3.6 Reification

Reification is the process by which an expression is converted into an object
(a value) of a particular language. In Noos there are two kinds of reification:
reification of path references, and reification of method evaluation.

Reification of Path References

In Noos, path references can be reified into the language as query-methods. Noos
provides four kinds of built-in query-methods: Infer-value, Exists-value,
Known-value, and All-values. Infer-value is a method that reifies the in-
ference process involved in the reduction of a path reference. The rest three
query-methods provide a set of basic metalevel inference capabilities about fea-
ture values. Query-methods allow to define path references using method de-
scriptions.

Infer-value
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The Infer-value method has two required features: feature and domain
(all the query-methods have these two required features). Infer-value reifies
path reduction inference. Its evaluation engages first the feature subtask (for
obtaining a feature name F), next engages the domain subtask (for obtaining a
feature term D), and finally engages the F(D) task (see Section 3.2.5) and the
evaluation of Infer-value method yields the value inferred by task F (D). Feature
names are represented as quoted symbols.

For instance, the following path reference defined in the feature father of

Person:

(define Person
(father (>> husband mother)))

can be reified as an infer-value method in the following way:

(define Person
((father (define (infer-value)
(feature ’husband)
(domain (>> mother))))))

Finally, the remaining path reference (>> mother) can also be reified as a
method. In this case, the expression above is equivalent to the one defined as a
composition of two infer-value methods in the following way:

(define Person
((father (define (infer-value)
(feature ’husband)
((domain (define (infer-value)
(feature ’mother)

(domain (>>)))))))))

We have seen that a path reference can also be defined as a method. This
process can be performed directly using the reify construct. The reify con-
struct takes a path reference and builds an infer-method that reifies the path
reference.

For instance, the following path reference

(>> father mother of Peter)
can be reified using the reify construct as follows
(reify (>> father mother of Peter))
yielding an infer-value method equivalent to the following:

(define (infer-value)
(feature ’father)
((domain (define (infer-value)
(feature ’mother)
(domain Peter)))))
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The reify construct is handy when we require to have multiple alternative
references in a feature. In the following example, a person may be located by a
phone number, but there are several phone numbers where she could be found.
An easy way to model this situation is to have a disjunctive set of path references
to different phone numbers as follows:

(define (person professional)
((phone-number (reify (>> phone-number spouse))
(reify (>> phone-number home))
(reify (>> phone-number works-in)))))

As this example shows, the phone-number feature has at the metalevel three
path references reified as methods. Since they are methods, we can interpret
them as three alternative ways to find out the phone number where a professional
can be located.

The three other query-methods provide a set of basic metalevel inference
capabilities about feature value inference. These query-methods allows to reason
about the value of any feature F of a term D without neither modifying the value
nor engaging the inference in the task F(D).

Before to explain these other query-methods, we will extend the syntax of
path references in order to provide to all the four query-methods a syntax based
on path references as follows:

path-reference = (>> feature-name* [of name])
\ (7>> feature-name* [of name])
| (1>> feature-name* [of name])
| (*>> feature-name* [of name])

where a path reference starting with the token >> corresponds to a infer-value
method as we have seen. Moreover, a path reference starting with the token 7>>
corresponds to an exists-value method; a path reference starting with the
token !>> corresponds to a known-value method; and a path reference starting
with the token *>> corresponds to an all-values method.

Exists-value

Exists-value is a query-method that determines if the feature value for a
given feature F of a feature term D can be inferred—or in other words, if the
task F(D) can be achieved. The evaluation of Ezists-value method yields true
if there is at least one method that succeeds in achieving task F(D), and false
otherwise. Note that Fzists-value method does not yield the value that can be
inferred.

For instance, we can define a bird with a feature can-f1y? as follows:

(define Bird
((can-fly? (define (conditional)
(condition (?>> exceptional-bird?))
((result (define (not)
(item (>> exceptional-bird?)))))
(otherwise true)))))
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specifying that a bird can fly excepting when it is defined as an exceptional bird.
Note that the feature value of feature can-f1y? will yield always a feature value
without forcing to define the feature exceptional-bird? for all refinements of
bird. For instance, we can define a specific bird’s species as follows:

(define (bird sparrow))

where the exceptional-bird? feature is still undefined.

Then, performing the query expression (>> can-fly? of sparrow), value
yielded is true because path reference (7>> exceptional-bird?) will yield
false (since there is no way to infer a value for exceptional-bird? feature).

On the other hand, defining penguins as follows:

(define (bird penguin)
(exceptional-bird? true))

and performing the query expression (>> can-fly? of penguin), we will ob-
tain false as answer because path reference (7>> exceptional-bird?) will
yield true (since there is a value for exceptional-bird? feature) and the nega-
tion of value for exceptional-bird? feature is false.

Known-value

Known-value is a query-method that determines if the feature value for a
given feature F of a feature term D is already known. Since inference in Noos is
lazy, a feature value is known only if the feature value is a constant or it has been
previously inferred—or in other words, task F(D) has been previously achieved.
The required features of a known-value method are also the feature and domain
features. The evaluation of Known-value method yields true whenever task
F(D) has been previously achieved and false otherwise. Note that Known-
value method neither does yield the value of F(D).

A known-value method can be used to check the inference status in a given
task. For instance, suppose that in a specific step of the inference we have two
alternative methods m1,ms to achieve a subtask. We know that one of them
(for instance m;) requires a knowledge source that is complex to acquire. Then,
we can check first whether this source has been inferred previously using the
known-value method and choose m; only when this source is already available
and choose ms otherwise.

All-values

All-values is a query-method that, for a given task F(D), determines the
set of all feature values that can be inferred for F(D)—in other words, the set
containing the values that result from all the methods that may succeed in
achieving that task.

For instance, defining Carol by refinement of professional as follows:
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(define (professional Carol)
(spouse (define (person)
(phone-number 3344)))
(works-in (define (company)
(phone-number 8766))))

and performing the query expression (*>> phone-number of Carol) we will
yield the set of phone numbers <set of 3344 8766>. Note that the
phone-number feature of a professional was defined in page 66 with three
path references. The reference to the phone number of Carol’s home did not
succeed, so only two phone numbers are inferred by all-values.

Reification of method evaluation

The process of method evaluation can be reified also in the language. Method
evaluation is reified by means of the noos-eval method. The noos-eval method
has one required feature called methods. The evaluation of a noos-eval method
engages first the subtask methods for obtaining a method (or a set of methods)
to be evaluated, and then engages the evaluation of that method. For instance,
the evaluation of the following method defined for inferring the feature value of
feature can-vote? of Person:

(define Person
((can-vote? (define (higher-than)
(is-higher (>> age))
(than 17)))))

can be also reified using a noos-eval method as follows:

(define Person
((can-vote? (define (noos-eval)
(methods (define (higher-than)
(is-higher (>> age))
(than 17)))))))

Reification can be also performed to query expressions. For instance, the
query expression (>> diagnosis of Peters-car) has a meaning that is equiv-
alent to

(noos-eval (reify (>> diagnosis of Peters-car)))

In turn, this query expression can be reified into a noos-eval method with a
feature methods whose value is the query-method corresponding to the reification
of the original query expression, as follows:

(define (noos-eval)
(methods (reify (>> diagnosis of Peters-car))))

The reify operator constructs a query-method from a query expression. So
the former expression is equivalent to
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(define (noos-eval)
(methods (define (infer-value)
(feature ’diagnosis)
(domain Peters-car))))

In order to provide a set of metalevel inference capabilities about method
evaluation, four evaluation-methods are defined corresponding to the four ex-
isting query-methods: Noos-eval, Exists-eval, Known-eval and All-eval.
Noos-eval performs the method evaluation process previously explained. The
rest of three evaluation-methods are built on top of this basic method evaluation
process.

The Exists-eval method determines if it is possible to evaluate successfully
a method; Exists-eval yields true if it is possible and false otherwise.

The evaluation of a Known-eval method determines if a method M has been
successfully previously evaluated; Known-eval yields true when M has been suc-
cessfully previously evaluated and false otherwise.

Finally, the evaluation of an All-eval method giving a specific method M
yields the set of results of all the successful evaluations of method M.

3.3.7 Reinstantiation

Each time a method M for solving a task F(D) is reflected down to D from the
metalevel term of D, M is reinstantiated and bound in the context of D. The
reinstantiation mechanism can be understood as refinement: a new method M’
is built by refinement of method M, and relative path references are bound in the
context of D.

The calculus of the scope of a relative path reference is performed taking into
account three cases:

e When method M was defined in the context of D or in the context of its
metalevel, the new method M’ is a refinement of M where relative path
references have not to be changed;

e When method M was defined alone (as a root description), the new method
M’ is a refinement of M where relative path references to M are bound to
M’; and

e When method M is a closed method defined in the context of another term
D’, the new method M’ is a refinement of M where relative path references
are bound following refinement scope rules (see Section 3.2.3).

For instance, suppose that we define the phone-number of a professional,
as defined in Section 3.3.6, as follows:

(define Professional
((phone-number (reify (>> phone-number spouse))
(reify (>> phone-number home))
(reify (>> phone-number works-in)))))
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Next, we define Ann as a person that works in a particular company, and
with a feature phone-number using the methods described in professional as
follows:

(define (Person Ann)
(works-in (define (company)
(phone-number 2627))))

(define (metalevel (Meta of Ann))
(phone-number (>> phone-number of (meta Professional))))

Methods defined for feature phone-number in professional will be reflected
down in the context of Ann using refinement and bound to Ann. Thus, posing
the following query expression to Noos:

(>> phone-number of Ann)

one of the three methods succeeds yielding 2627 as result.
The automatic reinstantiation mechanism of Noos provides a powerful mech-
anism for integrating learning methods (see Chapter 4).

3.4 Preferences

Preferences in Noos are a declarative mechanism for decision making about sets
of alternatives present in domain knowledge and problem solving knowledge.
The main usages of preferences in Noos are:

e As a declarative control construct for search and backtracking—by deter-
mining the order in which a metalevel task chooses a method for a task
from a set of alternative methods.

e As a symbolic representation of relevance (or “similitude”) in comparing
a given current problem with problems previously solved by the system
(also called precedents).

As we have shown in Section 3.3.1, we can define a set of alternative methods
to solve a given task. Preferences provide a declarative mechanism for ranking
a set of alternative methods. Specifically, preference knowledge can be used (1)
for determining a fixed order of execution of methods in a given task, or (2)
for dynamically calculating an execution ordering of methods according of the
knowledge available for each problem. Notice that in our approach preferences
are local to some task

Preferences are also used as a symbolic representation of relevance in retrieval
and selection of precedents in case-based reasoning. For instance, preference
knowledge can be used to model criteria for ranking some precedent cases over
other precedent cases for a task in a specific situation.

Preferences over sets are modeled by partially ordered sets (also called
posets). A partially ordered set is a pair (S, <) composed by a set of elements
S and a partial order relation < defined on S. When a < b we say that a is
preferred to b. Preferences are described formally in Section 5.10.
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(define (personal-computer PC-blue)
(freq-MHz 150)
(disk-capacity-Gb 1)

(monitor color-14) (define (personal-computer PC-white)
(price-$ 4000)) (freq-MHz 200)
(disk-capacity-Gb 2)
(define (personal-computer PC-red) (monitor color-15)
(freq-MHz 133) (price-$ 6000))

(disk-capacity-Gb 2)
(monitor color-14)
(price-$ 4000))

Figure 3.16. Specification of characteristics of three personal computers
PC-blue, PC-red, and PC-white.

Preference methods

Preferences in Noos are built by means of preference methods. A preference
method takes a set of source elements and an ordering criterion and builds a
partially ordered set (for the sake of brevity, the poset that is the result of such
a method it will be simply called a preference). Since preference methods are
Noos methods, they can be used as any other method. Different preference
methods correspond to different ordering criteria.

There are several built-in preference methods in Noos. A built-in prefer-
ence method is decreasing-preference. Decreasing-preference takes a set
of elements in feature set and the identifier of a numeric feature in feature
feature-name and builds a preference where the preferred elements are those
with a lesser value in the specified feature. Another built-in preference method is
increasing-preference that builds a preference for higher values with respect
to lesser values in a similar way to decreasing-preference.

For instance, given the computer descriptions in Figure 3.16 three different
preference criteria based on numerical values of feature values can be built. A
first preference method cheaper-pref is built by a refinement of the built-in
method decreasing-preference. Preference method cheaper-pref builds an
ordering based on prices of computers, for the set of computers given in the
feature set, resulting in a partially ordered set where PCs are preferred from
cheaper to more expensive.

(define (decreasing-preference cheaper-pref)
(set PC-red PC-blue PC-white)
(feature-name ’price-$))

The preference obtained using this cheaper-pref method is shown in Fig-
ure 3.17(a).

Another preference method disk-pref is built by a refinement of the built-in
method increasing-preference that constructs a preference, in a similar way,
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PC-white
PC-blue PC-red PC-red PC-white /
\ e x 2 PChlue
PC-white PC-blue <
PC-red
@ (b) (©)

Figure 3.17. Graphical representation of three different preferences over
computers. (a) corresponds to cheaper-pref, (b) is built using disk-pref,
and (c) is obtained with faster-pref.

using the numeric feature disk-capacity-Gb.

(define (increasing-preference disk-pref)
(set PC-red PC-blue PC-white)
(feature-name ’disk-capacity-Gb))

Using this preference we are establishing an order where the preferred com-
puters are those with a higher disk capacity (see Figure 3.17(b) for a graph
representation of the preference).

Finally, we can define the faster-pref preference method (also based on
method increasing-preference) for feature freq-MHz providing a preference
from faster to slower computers using CPU clock rate as estimator (see Fig-
ure 3.17(c) for a graph representation of the preference).

(define (increasing-preference faster-pref)
(set PC-red PC-blue PC-white)
(feature-name ’freq-MHz))

Noos provides other numerical and non-numerical preference methods. Ex-
amples of non-numerical preference methods are equal-value-preference
and subsumption-preference (the complete list of preference methods is
explained in Appendix D). For instance, using the preference method
equal-value-preference in the computers example we can establish a pref-
erence over a specific kind of monitor (a preference for color-14 inch monitor
or for color-15 inch monitor).

Preference combination

There are several ways to combine different preference criteria—or, in other
words, building new preferences from existing preferences. The Noos opera-
tions dealing with preference combination are methods that create new partially
ordered sets from (a combination of) partially ordered sets—created either by
preference methods or by other preference combination methods. Examples of
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preference combinations are operations such as inversion, preference union, and
preference intersection. In this section we will only describe some of them, but
all preference combination operations are explained in Appendix D.

Inversion takes a preference P and builds a new preference P’ where all the
relations a < b defined in P are inverted in P’ (b < a). For instance, applying
the inversion of an order obtained by the increasing-preference is equivalent
to directly applying the decreasing-preference.

Preference union takes two preferences and constructs a new preference per-
forming a union of the sets and a transitive closure of the union of order relations.
The transitive union method is called t-union in Noos. For instance, we express
a criterion of preferring either cheaper computers or computers with high disk
capacity, combining with t-union the preference based on prices of computers
cheaper-pref and the preference based on disk capacities disk-pref as follows:

(define (t-union cheaper&disk-pref)
((posetl (define (cheaper-pref))))
((poset2 (define (disk-pref)))))

The result obtained with this preference criterion is shown in Figure 3.18(a).
Another possibility is to combine the preference based on prices
cheaper-pref with the preference based on CPU clock rate faster-pref, ex-
pressing a preference criterion of preferring either cheaper or faster computers:

(define (t-union cheaper&faster-pref)
((posetl (define (cheaper-pref))))
((poset2 (define (faster-pref)))))

The result obtained with this preference criterion is shown in Figure 3.18(b).

PC-red PC-blue—=— PC-white
7 N
< .
PC'ber; PC'Wh|te PC'red
(@) (b)

Figure 3.18. Combining preferences.

Taking the first combination cheaper&disk-pref (Figure 3.18(a)) we obtain
that the most preferred computer is PC-red and that PC-blue and PC-white
are equally preferred—since PC-blue < PC-white and PC-white < PC-blue.
The problem given with the second combination cheaper&faster-pref (Fig-
ure 3.18(b)) is that CPU clock rate and prices introduce inverse preferences
causing a cycle where all the three computers are equally preferred. In other
words, this situation causes an indeterminism of preferences. In order to avoid
this problem we have to use higher order preferences as will be explained in next
section.
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Higher order preferences

As we have shown, preference combination operations are modeled as methods.
This uniform representation of Noos allows to model higher order preferences also
as preference methods that build preferences from preferences over preferences.

A higher order preference operation is the preference combination method
hierarchical union (called h-union in Noos). This combination preference is
used when we have the knowledge that a preference is more important than
(is preferred to) a second preference. This preference method—given a more
preferred poset in feature higher-poset and a less preferred poset in fea-
ture lower-poset—constructs a preference order preserving the order fixed in
higher-poset and adding from lower-poset the order relations that are not in
conflict with higher-poset. For instance, considering the price as a preference
more important than the CPU clock rate we can define the following hierarchical
combination of preferences:

(define (h-union cheaper-faster-pref)
((higher-poset (define (cheaper-pref))))
((lower-poset (define (faster-pref)))))

obtaining as a result the following preference total order:
PC-blue
5
PC-red
-

PC-white

where faster-pref preference is used to discriminate between computers with
the same cost (cheaper-pref). In this last example the most preferred computer
will be PC-blue.

Notice that the uniform representation of Noos allows to have preferences over
higher order preferences, and potentially no limit of preferences over preferences
could be built.

3.5 Inference in Noos

In Section 3.2.5 we have described the basic inference process of Noos. Now,
we will complete the description of the Noos inference process incorporating
metalevel reasoning and preference-based decision taking.

As we have seen in Section 3.2.5, inference in Noos is on demand and starts
when the user poses a query to the system by means of a query expression that
engages a problem task F(D). We said then that, when neither a path reference
nor a method is defined for a task F(D), an impasse occurs and the control of
the inference is passed to the metalevel.

Solving an impasse for a task F(D) involves three processes: (i) determin-
ing a set of methods {M;}r(p) applicable to task F(D), that can be partially
ordered with preferences, (ii) selecting a method from {M;}r(p), according to
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Task F(ML)
(e F0MD)

{Mi}rD)
/ /
select

impasse M <~
\
Metalevel ML reflect

Baselevel D

Figure 3.19. Solving and Impasse for a task F(D) in the metalevel ML of D.

the preferences, and (iii) reflecting down the selected method to task F(D) (see
Figure 3.19).
Reflection ensures that:

1. when a method M is reflected down to a task F(D), M is reinstantiated and
correctly bound in the context of F(D);

2. if method M fails in solving a task F (D), backtracking is engaged and one
of the remaining non-failed methods in {M;}p(py will be reflected down;

3. if there is a preference on the set of alternative methods {M;}p(p), any
method reflected down is maximally preferred among the non-failed meth-
ods in {M;}r(p)-

Moreover, since a method M for F (D) can have subtasks, and each subtask may
have several alternative methods to solve it, metalevel inference ensures that the
possible combinations of methods for each subtask are tried, following the local
preference orderings for each subtask, until a solution is found. Furthermore,
metalevel inference ensures that all these combinations are tried before declaring
that a method M fails.

3.5.1 Metalevel methods

When an impasse occurs in solving a task F(D), the first process involved is to
determine a set of methods {M;}r(p) applicable to task F(D). Each feature F
in D has a corresponding feature with the same name F on the metalevel ML of
D (see Section 3.3). The value of this feature F at the metalevel has the set of
methods {M;} p(p)y applicable to task F(D). This set of methods can be defined
by name references, by a path reference, or by giving a (metalevel) method for
inferring the methods. When an impasse occurs in solving a task F(D) and a
metalevel method MM is defined for determining the set of methods applicable
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to task F(D), a metalevel task F(ML) is engaged for evaluating the metalevel
method MM.

Notice that, since a metalevel task F(ML) is also a task, a new impasse may
occur in solving task F(ML). When an impasse occurs at the metalevel, the
control of the inference is passed to the metalevel of the metalevel.

3.5.2 Caching

Once the task F(D) of inferring the value for a feature F of a term D is achieved
by a method M, the inferred value and method M are automatically stored in the
task term that reifies task F(D) in the language (see Section 3.3.4). This caching
mechanism allows Noos to quickly answer future demands of already inferred
feature values.

In order to maintain the consistency of values inferred in tasks and used in
different methods, only the method M’ that first engages a task F(D) can perform
backtracking on this task. We call such method the owner of task F(D) and we
also say that F(D) is engaged by M’.

When the owner of a task forces backtracking and no other possible value can
be inferred for this task, the task is disengaged. After that, any other method
can engage that task.

3.5.3 Backtracking

Three kinds of backtracking are engaged by Noos inference involving backtrack-
ing on tasks and on methods:

1. Backtracking on tasks is engaged when a method M fails in solving a task
F (D). Then, the control of the inference is passed to the metalevel and one
of the remaining non-failed methods in {M;} p(p) is selected. The selected
method is reflected down and the inference is resumed in task F (D). When
no more methods can be selected, we say that the task F(D) cannot be
achieved.

2. Backtracking on subtasks of methods is engaged when a subtask of a
method cannot be achieved. Let us assume that during the evaluation
of a method M its subtasks Fy (M), ..., F;(M) have been achieved and that
task F; 1 (M) cannot be achieved from the results of the previous achieved
subtasks. Then, backtracking is engaged for inferring another value for
subtask F; (M). The value of subtask F;(M) can be constant, inferred by a
path reference, or inferred by a closed method. When the value of subtask
F; (M) is constant, backtracking is recursively engaged for inferring another
value for subtask F;_; (M). When subtask F; (M) has been achieved by a
closed method M;—or a path reference—backtracking on F; (M) will involve
recursively backtracking on method M; (see third kind of backtracking).
Backtracking on method M; may either succeed or fail: when it succeeds,
the evaluation of method M is resumed at subtask F;; 1 (M); when it fails,
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backtracking on task F; (M) is engaged (see first kind of backtracking). Fi-
nally, when backtracking on the first subtask F; (M) of a method M for
solving a task F(D) fails, we say that the method M fails in achieving F (D).

3. Backtracking on a method M is engaged when a new value for the task F (D)
that M solves is required. Let us assume that backtracking is engaged in
a method M having subtasks F; (M), ..., F,,, (M) are achieved. Then, back-
tracking is engaged for inferring another value for the last subtask F,, (M)
and backtracking is resumed as described in previous kind. Thus, back-
tracking on methods also involves backtracking on subtasks of a method.

3.5.4 The Noos inference engine

In Section 3.2.5 the Noos inference engine was described using three basic pro-
cesses: the Engage-Task process, involving the inference of feature values; the
Reduce-Path-Reference process, involving the reduction of a path reference; and
the Noos-FEval process, involving the evaluation of a method.

Moreover, we have seen in Section 3.3.6 that path references can be reified
as query-methods. Using this property, the Noos inference engine reifies path
references as methods. Thus, the Reduce-Path-Reference process is considered
as a specific kind of Noos-Fval process and we will dispense of it in what follows.

We will now complete the description of the Noos inference engine by in-
cluding the inference process involved in solving an impasse and in backtrack-
ing. Impasses engage a metalevel process that we will call No-Method-Impasse.
Backtracking is engaged by three processes: Nezt- Value, involving backtracking
of inference of feature values; Failed-Method-Impasse, involving backtracking of
metalevel inference; and Fwval-Next, involving backtracking of the evaluation of
methods.

In summary, the Noos inference engine can be described using six basic pro-
cesses: Engage-Task and Next-Value processes, involving the inference of fea-
ture values; No-Method-Impasse and Failed-Method-Impasse processes, involv-
ing metalevel reasoning; and Noos-FEval and Fval-Next processes, involving the
evaluation of a method.

Engage-Task

The Engage- Task process is engaged by a problem task or by solving the subtasks
of a method in the evaluation of that method. The goal of the Engage-Task
process is to infer the value of a feature. FEngage-Task process involves three
different actions according to the different specifications of a feature value as
follows:

Given a task F(D) engaged for determining the value of a feature F of a
feature term D,

1. When there is a constant value or a cached feature value C (see Section 3.5.2
for an explanation of cached values) for feature F of D, the task F(D) is
directly achieved yielding C.
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2. When there is a closed method 7 M defined for feature F of D, the Noos-Eval
process is engaged for method M. The task F(D) is achieved if the evalua-
tion of method M succeeds, yielding the value inferred in that evaluation.
Otherwise Engage-Task fails.

3. When neither a value nor a method is defined for feature F of D, an impasse
occurs and the No-Method-Impasse process is engaged. If No-Method-
Impasse reflects down a method M, then the Noos-FEval process is engaged
for method M. Otherwise Engage-Task fails.

(a) If the evaluation of method M succeeds, the task F(D) is achieved
yielding the value inferred in that evaluation.

(b) Otherwise another impasse occurs and the Failed-Method-Impasse
process is engaged for reflecting down another method M’. Then,
Noos-Fval and Failed- Method-Impasse processes are iterated until the
evaluation of a method succeeds or there are no more methods to
reflect down (Failed-Method-Impasse fails). If the evaluation of a
method succeeds, task F(D) is achieved yielding the value inferred in
that evaluation. Otherwise Engage-Task fails.

No-Method-Impasse

The No-Method-Impasse process is engaged when neither a value nor a method
is defined for a task F(D). Then, the control of the inference is passed to the
metalevel. The goal of the No-Method-Impasse process is to select a method,
from an alternative set of methods {M;}p(p), for solving task F(D). Being ML
the metalevel of D, the set of methods {M;}r(p) can be defined directly in the
metalevel task F(ML) or can be inferred by engaging a metalevel method defined
in F(ML). If No-Method-Impasse fails means that no method M;, inferrable at
the metalevel ML, exists that can solve F(D) given current engagements.

No-Method-Impasse involves four different actions:

Given an impasse generated in solving a task F(D), and being ML the meta-
level term of D,

1. First, the Engage-Task process is engaged for solving the metalevel task
F(ML).

2. When metalevel task F (ML) is achieved it yields a set of partially ordered al-
ternative methods {M;} r(p) for solving task F(D). Otherwise F (ML) could
not be achieved and the No-Method-Impasse process fails.

3. Then, one of the methods M maximal in {M;}p(p), according to the pref-
erence, is selected.

"Note that path references are reified as methods. Thus, path references are also defined
as a closed method for feature F of D.
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4. Finally, the selected method M is reflected down to task F(D). The re-
flection process reinstantiates method M in the context of task F(D) (see
Section 3.3.7).

After this impasse is resolved, the inference is resumed in the engage-task
process engaged for solving task F(D).

Noos-Eval

The Noos-Eval process for a method M first engages a task for each required fea-
ture of M and then performs a specific combination of the results of the subtasks
according to the built-in method it is a refinement of.

Specifically, given a method M that is a refinement of a built-in method B
with required features Fy, Fo, ..., Fy,

1. tasks Fy (M), Fo (M), ..., F,,(M) are consequently engaged by M, using the
Engage-Task process. When a task F; (M) (i > 1) cannot be achieved (as-
suming Fy (M) -+ F;_y (M) have been achieved) backtracking is engaged in
task F;_1 (M) using the Next- Value process. Backtracking on task F;_; (M)
can succeed or can fail: when it succeeds, the evaluation of method M is
resumed at subtask F; (M); when it fails, backtracking on task F; o (M) is
recursively engaged. Finally, when backtracking on the first subtask Fy (M)
fails, the evaluation of the method fails.

2. When all tasks F; (M), Fo (M), ..., F, (M) are achieved, a specific combina-
tion of the results of the subtasks, according to the built-in definition of
B, is performed and the method yields this value.

Next-Value

The Next-Value process is engaged when backtracking is forced in a task F(D)
because the value currently inferred for F (D) is not adequated for another task.
The goal of the Next-Value process is to force backtracking and infer another
possible value of task F(D). If Next- Value fails, then no value can be inferred for
task F(D), given current engagements.

Given a term T requesting a task F(D), Next- Value determines another pos-
sible value for feature F of a feature term D involving two different actions:

1. When there is a constant feature value or task F(D) has an owner different
to term T, Nezt-Value fails.

2. When there is a closed method M defined for task F(D), the Fwal-Next
process is engaged for method M.

Task F (D) is achieved if the evaluation of method M succeeds, yielding the
value inferred in that evaluation.

If the evaluation of method M fails, an impasse occurs and the Fuailed-
Method-Impasse process is engaged for reflecting down another method M’.
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Then, Noos-Eval and Fuailed-Method-Impasse processes are iterated until
a method succeeds or there are no more methods to reflect down. If the
evaluation of a method succeeds, task F(D) is achieved yielding the value
inferred in that evaluation; otherwise Next- Value fails.

Failed-Method-Impasse

The Failed-Method-Impasse process is engaged when the evaluation of a method
M fails in solving a task F(D). Then, the control of the inference is passed to
the metalevel. Being ML the metalevel of D, and {M;}r(p) the set of partially
ordered alternative methods for solving task F(D) already inferred by metalevel
task F(ML), the goal of the Failed-Method-Impasse process is to select a not
previously selected method, from the alternative set of methods {M;}r(p), for
solving task F(D).

When all alternative methods have already been selected and have failed, the
Next-Value process is engaged at the metalevel for the metalevel task F(ML) en-
gaging backtracking in the metalevel method defined in F (ML) . If Failed-Method-
Impasse fails, then no method M;, inferrable at the metalevel ML, that solves
F(D) given current engagements.

Failed-Method-Impasse process involves two different actions:

Given an impasse generated in solving a task F(D), being ML the metalevel
term of D, and being {M;} p(p) the set of partially ordered alternative methods
for solving task F(D) already inferred by F(ML),

1. When there are alternative methods not previously selected, a non-failed
method M, maximal with respect to preference, is selected. Then, the
selected method is reflected down to task F(D) reinstantiating method M
in the context of task F(D).

2. When all alternative methods {M;}r(p) have already been selected and
have failed, the Nezt- Value process is engaged for the metalevel task F (ML) .

(a) When metalevel task F(ML) is achieved, it yields a set of partially or-
dered alternative methods { M|} p(p) for solving task F (D). Otherwise
the Failed-Method-Impasse process fails.

(b) Then, one of the maximal methods M;, from {M]}p(p), is selected
according to the preference.

(c) Finally, the selected method M; is reflected down to task F(D) rein-
stantiating M; in the context of task F(D).

After the impasse is resolved, object-level inference is resumed.

Eval-Next

The FEwval-Next process is engaged when backtracking is forced in the evaluation
of method M. If Eval-Next fails no other value, resulting from the evaluation of
M, exists given current engagements.
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Specifically, given a method M that is a refinement of a built-in method B
with required features Fq, Fo, ..., F, and tasks F; (M), Fo (M), ..., F, (M) engaged
for inferring the value of the required features,

1. Backtracking is engaged in task F, (M) using the Next- Value process.

2. Backtracking on task F, (M) can succeed or can fail: when it succeeds, the
evaluation of method M is resumed to next step; when it fails, backtracking
on task F,_1 (M) is recursively engaged (see Noos-Eval process). When
backtracking on the first subtask F; (M) fails, the Eval-Nezt process fails.

3. When all tasks F; (M), Fo (M), ..., F,, (M) are achieved, a specific combina-
tion of the results of the subtasks, according to the built-in definition of
B, is performed and the method yields this value.

The Ewal-Next backtracking process assures that all the possible collections
of values for tasks Fy (M), Fo (M), ..., F, (M) have been tried before determining
the failure in the evaluation of a method.

Moreover, at the end of the inference of an achieved problem task, the collec-
tion of all successful methods in its tree of task/method decomposition will be
maximal with respect to the preference orders inferred by the metalevels tasks
involved. Formally,

Definition 3.1 (Maxzimal solution) Given the set of achieved subtasks
t1,to - tn, that form the task decomposition of a problem task F(D), given the
set of partial orders <1, -+ <, over the alternative methods for these subtasks,
and given the set of methods mi,ms - m, engaged respectively to these sub-
tasks, a solution of F(D) is maximal if there is no other combination of methods
my <1 My, mh <9 Ma,---mh <, m, (where at least one m} # m;) that achieves
a solution for F(D).

The definition just given is indeterministic when the maximal is not unique,
and corresponds to the formalization developed in Section 5.13. In order to
avoid this indeterminism, the Noos inference engine implementation determines
a pre-established execution order among the subtasks of a method, and when no
preference order can be inferred between a set of alternative methods for solving
a specific task, the writing order is used for determining a total order.

3.5.5 An example of inference

Let us to show the Noos inference process using a short example. Suppose we
define a concept stuff with a feature kind determining whether a given stuff is
material or ideal using two methods as follows:
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(define (any stuff)
((kind (define (conditional)
(condition (>> so0lid? made-of))
(result material))
(define (conditiomal)
(condition (>> spiritual? made-of))
(result ideal)))))

Then, we define a concept spiritual-stuff by refinement of stuff as fol-

lows:

(define (stuff spiritual-stuff)
(made-of (define (thing)
(spiritual? true))))

Next, using the following query expression

(>> kind of spiritual-stuff)

the Engage-Task process starts for problem task kind (spiritual-stuff). Fig-
ure 3.20 shows the trace of the inference engaged in Noos in this short example.
We will describe the inference steps below indicating the line number from the
trace given in Figure 3.20:

(3)

(4)

(16)

The Engage-Task process for problem task kind(spiritual-stuff) is
engaged.

Since there is no method for feature kind specified in spiritual-stuff,
an impasse occurs and the control of the inference is passed to the No-
Method-Impasse process.

The No-Method-Impasse process engages first a metalevel task
for obtaining the set of alternative methods for solving task
kind(spiritual-stuff).

Two alternative methods, defined at the metalevel of stuff, and that we
will call conditional-1 and conditional-2 are yielded.

First conditional-1 is selected and reflected down to the baselevel
spiritual-stuff.

Next, the Noos-eval process is engaged for evaluating the method reflected
down (conditional-1?).

The evaluation of the method performs first the subtask condition that, in
turn, engages the evaluation of the path reference (>> s0lid? made-of)
in the scope of spiritual-stuff.

Since the path reference cannot be reduced, Noos-eval process for
conditional-1’ fails.
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(>> kind of spiritual-stuff)

1 Eval: <Infer-value (>> kind of spiritual-stuff)>

2 =

3 Task: kind (<spiritual-stuff>)

4 Impasse: No-method

5 £

6 Task: kind (<meta of spiritual-stuff>)

7 Value: <set of <conditional-1> <conditional-2>>
8 Select <conditional-1>

9

—
10 Eval: <conditional-1’>

11 -

12 Task: condition(<conditional-1’>)

13 Eval: <Infer-value (>> so0lid? made-of)>
14 4FAILY

15 <

16 AFAILY

17 Impasse: Failed-method

18 -

19 Select <conditional-2>

20 <

21 Eval: <conditional-2’>

22 -

23 Task: condition(<conditional-2’>)

24 Eval: <Infer-value (>> spiritual? made-of)>
25 Value: <true>

26 Task: result(<conditional-2’>)

27 Value: <ideal>

28 <~

29 Value: <ideal>

30 <

31 Value: <ideal>

<ideal>

Figure 3.20. Inference trace.
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(17)

(19)

(21)

(23)

(29)
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This failure engages a new impasse and the control of the inference is
passed to the Failed-Method-Impasse process.

Then, the next method conditional-2 is selected and reflected down to
spiritual-stuff.

Next, the the Noos-eval process is engaged for evaluating the method
reflected down (conditional-2’).

The evaluation of conditional-2’ performs first the subtask condition
evaluating, in turn, the path reference (>> spiritual? made-of) in the
scope of spiritual-stuff.

Since the result of the subtask condition is true, the result returned by
the method is the constant feature value defined in subtask result, that
is to say, ideal.

Finally, ideal is returned as the solution for the query expression.

3.6

Summary

In this chapter we presented the different elements of the Noos representation
language. Since we introduced many concepts of the language, now we will
summarize the main features of Noos.

In the first section, we described the Noos modeling framework based on four
knowledge categories: domain knowledge, problem solving knowledge, episodic
knowledge, and metalevel knowledge. Then, we presented how these four knowl-
edge categories are represented in Noos introducing incrementally the different
elements of the Noos language.

First, we described the basic elements of the language:

We presented descriptions, the syntax Noos uses for constructing feature
terms. A description clusters together as a collection of features the rela-
tions in which a concept is involved. Features are interpreted as functions
over sets. This view allows to define several feature terms as the value of
a feature.

Next, we introduced refinement, an operation for constructing feature
terms that involves two distinct aspects: (1) code reuse (the construc-
tion of a feature term by reusing another feature term) and, (2) subtyping
(the definition of a domain-specific sort hierarchy).

Then, two forms of reference are presented: name reference and path ref-
erence. Name references are used for defining feature values by referring to
feature terms defined elsewhere. Path references are used for designating
any feature term F by specifying a sequence of feature names that from a
feature term F’ leads to F. Path references define path equalities between
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features that can be seen as constraints. Moreover, the usual interpreta-
tion of path references is enlarged for allowing path references to deal with
feature values that are sets.

e The last basic element of Noos are methods. Methods are represented as
evaluable feature terms and are also constructed by descriptions. The set of
features defined in a method description is interpreted either as a reference
to some knowledge source required by the method, or as a subtask required
to be accomplished by the method. Noos provides a set of built-in methods
and new methods can be defined from them by refinement.

The uniform representation of methods in Noos allows to represent prob-
lem solving knowledge in the same formalism. Thus, our approach pro-
vides simpler representation constructs than other hybrid representation
languages such as LoOM [MacGregor, 1994] [MacGregor, 1991] and CARIN
[Levy and Rousset, 1996]. These systems combines a description logic represen-
tation with a datalog like rule language for representing problem solving knowl-
edge. A similar approach is taken in the CLASSIC system [Brachman et al., 1991]
where forward-chaining rules are integrated with a description logic representa-
tion as an added constructor.

Next, we presented the reflective capabilities of Noos introducing the re-
mainder elements of Noos. Three metalevel components are defined in Noos for
representing the metalevel knowledge: metalevels, default metalevels, and tasks.
All of them are represented uniformly as feature terms.

e A metalevel contains knowledge about a concept, called referent, together
with the collection of methods that are applicable to each feature of its
referent. Using metalevels, multiple methods can be defined to achieve a
task. Metalevel methods can also be defined in the features of a metalevel
for dynamically computing a set of ordered methods for solving a task
taking into account the information available in the current problem.

e A default metalevel is a special kind of metalevel that contains a set of
methods that can be applied to all the features of its referent.

e Tasks reify the status of the inference in the language. Tasks embody
knowledge such as the method that has succeeded in achieving that task
and the result of the evaluation of the method.

A collection of reflective operations defined in Noos allows to access to
and to inspect all the metalevel components (namely meta, default, task,
current-task, and referent). As we will present in the next chapter, reflective
operations are a basic component for the integration of learning and problem
solving in Noos.

Another element introduced in this chapter is the notion of reification. Reifi-
cation allows to express the inference process involved in reducing path refer-
ences as Noos methods. Path references are reified as query-methods. Using
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query-methods, a set of four different metalevel inference capabilities about fea-
ture values is provided (namely infer-value, exists-value, known-value, and
all-values). The inference process involved in the evaluation of methods is
also reified as Noos methods. Analogously to path references, the reification
of the evaluation of methods provides a set of metalevel inference capabilities
about method evaluation (namely noos-eval, exists-eval, known-eval, and
all-eval).

The automatic reinstantiation mechanism of Noos was also presented. Rein-
stantiation is a powerful mechanism for integrating learning that allows, as we
will show in the next chapter, to support derivational analogy reasoning in Noos.

Then, we described preferences, a declarative mechanism for decision making
about sets of alternatives. Preferences are a declarative control mechanism for
determining the order in which a metalevel task chooses a method for a task
from a set of alternative methods. Furthermore, preferences are used in Noos as
a symbolic representation of relevance in comparing a given current problem with
problems previously solved by the system. Specifically, preferences are used in
the retrieval and selection of precedent cases in case-based reasoning. Different
examples of the use of preferences in Noos are given in Chapter 6.

Finally, we described how inference is performed in Noos. We introduced the
notion of impasse and backtracking.

When solving a task where neither a path reference nor a method is defined,
an impasse occurs and the control of the inference is passed to its corresponding
metalevel task. Solving an impasse for a task F(D) involves three processes:
(i) determining a set of methods {M;}r(p) applicable to task F(D), that can
be partially ordered with preferences, (ii) selecting a method from {M;}p(p),
according to the preferences, and (iii) reflecting down the selected method to
task F(D).

Backtracking is engaged when a method fails in solving a task. In that case,
another remaining non-failed method in {M;} p(p) will be selected and reflected
down. Moreover, since a method M can have subtasks, and each subtask may
have several alternative methods to solve it, metalevel inference ensures that
backtracking is engaged in M. Then, the possible combinations of methods for
each subtask are tried, following the local preference orderings for each subtask,
until a solution is found.

Next Chapter will discuss the role of experience and memory in Noos problem
solving and our proposal for integrating learning techniques in Noos. In the
next Chapter we will present the Noos elements concerning to the integration of
learning. The reader can find in Appendix A the rest of elements provided in
the Noos development environment.



Chapter 4

Memory, Experience and
Learning

It is clear the importance of experience’s role in human problem solving. Ex-
perience allows people to learn how to focus on relevant details of a prob-
lem, to avoid decisions that have previously resulted in failure situations, etc.
The incorporation of experience capabilities in knowledge systems also plays
an important role in order to improve their behavior. As it was argued in
[Kolodner and Riesbek, 1986], reasoning about the experience in problem solv-
ing involves two main aspects:

e a memory structure that stores the decisions taken by the system in the
solution of problems, and

e the capability of inspecting, retrieving and reasoning about these decisions.

Another important remark is that, because memory changes depending of
the experience, the results of asking the system to solve a given task at two
different times may be different.

We call the memory structure that stores the decisions taken by Noos in
the solution of problems episodic memory. The set of decisions stored in the
episodic memory form the episodic knowledge of the system (see Section 3.1).
Episodic knowledge holds information and decisions used in solving particular
episodes (particular problems). This kind of knowledge requires the system to
have a model of certain aspects of itself (a self-model). The type of self-model
is determinant to the kind of learning that can be performed in the system.

In this chapter we will present the components of the episodic knowledge that
constitute the episodic memory of Noos. We will also present three mechanisms
for inspecting the episodic memory: access by path, that provides an access to the
episodic memory combining reflective operations and path references; retrieval
methods, that provide a powerful mechanism for accessing to the episodic mem-
ory contents; and perspectives, a mechanism to describe declarative biases for
case retrieval in structured representations of cases. Next, we will deal with the
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role of learning and its integration into the Noos language. Finally, we will ex-
plain how different symbolic learning approaches—such as case-based reasoning,
inductive learning, and analytical learning—are incorporated in Noos.

4.1 Episodic knowledge in Noos

Episodic knowledge in Noos is represented as the set of tasks, methods, pref-
erences, and problem data involved in solving problems. Episodic knowledge
is organized in episodic models. Each episodic model holds the reification (the
self-model) of the inference process engaged in Noos in solving a specific problem
task.

Episodic model

An episodic model is the ezplanation of the inference process engaged by Noos
in solving a specific problem task. In computational terms, it could be said that
it is the trace of the program that solves a specific problem task.

An episodic model holds the set of knowledge pieces used for solving a specific
problem task, how and where they were used, and the decisions taken for solving
that problem. Specifically, the episodic model constructed by Noos for solving a
specific problem task F (D) holds the problem data, the solution for that problem,
and the problem task engaged for solving that problem. This problem task
F(D) is reified as a task feature term (see Section 3.3.4) and holds, in turn, the
following knowledge:

e the name of the task (that is the name of the feature F)

e the feature term to which the task is addressed (D),

e the solution inferred by the task, and

e the method M that has succeeded in achieving that task.
The method M, in turn, holds:

e the values inferred by its subtasks (the feature values of M’s features)

e the task feature terms of M (i.e. the reification of the subtasks of M).

When a task engaged in problem solving has no method or has multiple
alternative methods for achieving that task, a metalevel task is engaged by Noos
(see Section 3.5). These metalevel tasks are also tasks that are part of the
episodic model. A metalevel task MT is a task that has a name that is the same
name as the name of the task T it solves, is addressed to the metalevel term to
which the task T is addressed, holds a metalevel method, and holds the solution
inferred by MT—a set of partially ordered alternative methods for solving the
task T.

Summarizing, the episodic model constructed by Noos for solving a spe-
cific problem task F(D) holds the problem data given for solving F(D) and the
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task/method decomposition tree engaged in solving F(D); this tree, in turn,
holds the methods succeeded in achieving each task, the reification of subtasks
engaged by each method, and the reification of the metalevel tasks that have
been engaged.

Once a problem task is solved Noos automatically memorizes (stores and
indexes) the episodic model that has been built.

Let us introduce an example of the episodic model built in solving a specific
problem task. Given the following definition of a car:

(define Bills-car
(owner Bill)
(gas-level-in-tank 2)
((gas-gauge-reading (define (conditional)
((condition (define (lower-than?)
(is-lower (>> gas-level-in-tank))
(than 5))))
(result empty)
(otherwise full))))
((empty-level? (define (Identity?)
(iteml empty)
(item2 (>> gas-gauge-reading))))))

and solving the problem task empty-level?(Bills-car), the identity method
is evaluated requiring the value of feature gas-gauge-reading. In turn,
the conditional method defined in the gas-gauge-reading feature and the
lower-than? method defined in its condition subtask are evaluated yielding
empty as result (since the value of feature gas-level-in-tank is lower than 5).
Finally, the solution yielded for the problem task is true.

The episodic model built for that problem task holds a task with name
empty-level?, addressed to Bills-car feature term, with solution value true,
and with an identity method with printname <identity?_109> as following:

Task-Name H ‘Empty-Level? l

[Task_110 [ Empty-Level? Of <Bills-Car> ] -> <True>|H{ Task-Domain }{ Bills-Car ] -

Method | Identity 7_103] -

The <identity?_109> method has, in turn, two subtasks (see Figure 4.1):
iteml and item?2 subtasks with their corresponding values. Task iteml has a
constant value empty. Task item2 holds an infer-value method that is the reifica-
tion of the path reference (>> gas-gauge-reading) in the scope of Bills-car.
This infer-value method has, in turn, three subtasks: feature, holding the con-
stant value gas-gauge-reading; domain, holding the constant value Bills-car;
and the task gas-gauge-reading(Bills-car) engaged for solving the feature
value for feature gas-gauge-reading of Bills-car. This task holds the con-
ditional method <conditional_110>. The <conditional_ 110> method has,
in turn, two subtasks: condition, holding a numerical comparison method
<lower-than?_112>; and result, holding the content value empty. The com-
parison method has, in turn, two tasks: is-lower and than. Task is-lower
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£ Task Structure Graph: EMPTY-LEUEL? of BILLS-CAR S0
Empty-Level?(<Bills-Car>)
<ldentity 2_109>
Item1 Item2
Empty (>> Gas-Gauge-Reading)
Feature Domain Gas-Gauge-Reading(<Bills-Car>)
‘Gas-Gauge-Reading Bills-Car <Conditional_110>
Condition Result
<Lower-Than?_112> Empty
Is-Lower Than
(>> Gas-Level-In-Tank) ] H
k%
<af [

Figure 4.1. A browser of the task/method decomposition from the episodic
model of the empty-level?(Bills-car) problem task.

has another infer-value method that is the reification of the path reference
(>> gas-level-in-tank) in the scope of Bills-car. Finally, task than has
the constant value 5.

All these are components of the episodic model of the problem task
empty-level?(Bills-car) and are accessible and inspectable as we will
presently explain.

Episodic memory

Episodic memory is the collection of the episodic models of the problem tasks
that the system has solved.

Noos provides three ways of accessing and reusing episodic models for solving
new problems. That is, three ways to examine the contents of episodic memory.
The first one is an access by path. The second one is an access by contents. The
third one are perspectives.

Access by path is performed by combining reflective operations and path
references (see Section 3.3.5). Access by path provides a way to access specific
portions of the episodic memory. For instance, we can access to the method
that solved the problem task empty-level?(Bills-car) using the following
combination:

(>> method of (task empty-level? of Bills-car))

yielding <identity?_109>.
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Since methods are feature terms, they are inspectable to external methods in
a uniform manner to other feature terms. Parameters and subtasks of a method
are features. Thus, they can be accessed using a path. For instance, we can
access the value of the iteml subtask of <identity?_-109> method as follows,

(>> iteml method of (task empty-level? of Bills-car))

yielding empty, or the method of the item2 subtask of <identity?_109> method
as follows,

(>> method of (task item2 of
(>> method of (task empty-level? of Bills-car))))

yielding method <infer-value (>> gas-gauge-reading)>.

We can say thus that Noos methods are transparent. The transparent capa-
bility of Noos methods allows to perform forms of inference that need to inspect
and reason about methods and how they have been used to solve particular
tasks.

An example of using introspection over methods is analytical learning (see
Section 4.7). An analytical learning method builds more efficient and compact
methods by examining the explanation (the episodic model) of the methods used
to solve a specific problem task.

On the other side, access by contents is performed by retrieval methods.
Retrieval methods provide a way to retrieve parts of the episodic memory using
the notion of feature terms as partial descriptions and the subsumption ordering
among them.

4.2 Retrieval

Noos provides a set of basic retrieval methods. Retrieval methods allow to re-
trieve previous relevant episodes from the episodic memory using relevance cri-
teria. Relevance criteria are determined by specific domain knowledge about the
importance of different features or by requirements of problem solving methods.

Usually, the notion of similitude in case-based reasoning introduces a way to
assess the relevance of precedent cases in solving a new case. Similarity measures
estimate a relevance order between precedent cases. Our approach is to work
directly over relevance orders.

Retrieval methods are based on the notion of feature terms as partial descrip-
tions and the notion of subsumption among feature terms (see Chapter 5). The
intuitive meaning of subsumption is that a term #; subsumes another term t,
(t1 C t2) when all information in ¢; is also contained in 5. Our approach is that
a knowledge modeling analysis can determine the relevant aspects of problems;
then, partial descriptions of the current problem can be built embodying the
aspects considered as relevant. These partial descriptions are used as retrieval
patterns for searching similar cases in the episodic memory using subsumption.
Thus, retrieval methods can be viewed as methods that search into the episodic
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memory the set of feature terms subsumed by a feature term, a pattern, em-
bodying the relevant aspects of a problem data.

For instance, in the diagnosis of car malfunctions domain, we could be inter-
ested in solving the diagnosis task of a new car by means of looking to previous
solved diagnosed cars with the same symptoms as that of the new car. That
is to say, retrieving feature terms of sort car, with same feature value for fea-
ture symptom as the new car, and with feature value for feature diagnosis
a feature term of sort malfunction. Given a specific car with feature value
does-not-start for the symptom feature, the feature term embodying this par-
tial description can be defined as follows:

(define (Car)
(symptom does-not-start)
(diagnosis malfunction))

This retrieval mechanism is achieved by the retrieve-by-pattern built-
in method. The retrieve-by-pattern built-in method has a required feature
called pattern. The feature value of pattern is taken as the subsumer feature
term used for retrieval over the episodic memory. For instance, we may define a
retrieval method for the diagnosis of car malfunctions domain as follows:

(define (retrieve-by-pattern Search-diag-cars)
(symptom complaint)
(pattern (define (Car)
(symptom (>> symptom))
(diagnosis malfunction)))

where we are defining a retrieval method, called Search-diag-cars method, by
refinement of the retrieve-by-pattern method, and with a parameter called
symptom.

The evaluation of the Search-diag-cars method in a specific car with a
specific complaint performs a search into the episodic memory yielding as result
the set of cars previously diagnosed by the system (i.e. that have some diagnosis
of sort malfunction) and with that specific complaint as feature value of their
symptom feature.

As we have shown, since retrieval methods are methods like any other built-
in method provided in Noos, new retrieval methods can be designed refining and
combining the existing ones from a knowledge modeling analysis of problems.

Retrieval by contents is a powerful capability that allows to develop meth-
ods based on analogical reasoning. For instance, analogy by determination
[Russell, 1990] may be directly performed as a retrieve-by-pattern method. The
approach of analogy by determination applied in solving a problem P(A), given
the information that P(A) is determined by @Q(A) and given an example of an-
other solved problem P(B) such that Q(A) = Q(B), is that problem P(A) can
be resolved as P(A) = P(B).

For instance, a classical example of an analogy justified by a determination
is that the usual language spoken by a person is determined by the person’s
nationality. In Noos this can be easily performed by the following method:
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(define (decomposition Language-determination)
(citizen person)
((precedents (define (retrieve-by-pattern)
(pattern (define (person)
(national-of (>> national-of citizen)))))))
(language (>> speaks precedents)))

that can be used for solving the speaks feature of a person as follows:

(define Person
(national-of country)
((speaks (define (language-determination)
(citizen (>>))))))

Then, given an example of a person called Janos that is Hungarian and
speaks Magyar,

(define (Person Janos)
(national-of Hungary)
(speaks Magyar))

and given the speaks task of another person that is also Hungarian,

(define (Person Petia)
(national-of Hungary))

we can conclude that Petia speaks Magyar.

In Section 4.5 we provide an example of the use of a retrieval method for
acquiring methods in an analogical reasoning approach. In Appendix D we
describe all built-in retrieval methods.

4.3 Perspectives

Perspectives is a clear and flexible mechanism to describe declarative biases for
retrieval in the Noos episodic memory. Our approach is based on the observation
that, in complex tasks, the identification of the relevant aspects for retrieval in
a given situation may involve the use of knowledge intensive methods. This
identification process requires dynamical decisions about the relevant aspects of
a problem and involves introspection.

The view of feature terms as partial descriptions allows the representation of
declarative biases also as feature terms in a natural way. The declarative biases
are interpreted as syntactic patterns. Perspectives are the way to construct, from
these syntactic patterns, partial descriptions of the current problem embodying
only those aspects considered relevant. These partial descriptions may be used
later for retrieval. Figure 4.2 shows the use of perspectives into a retrieval task.
The formal description of perspectives is presented in Section 5.11.

Perspectives are constructed in Noos using the perspective built-in method.
The perspective built-in method has two required features called pattern and
source. The feature value of the pattern feature is taken as the syntactic
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Figure 4.2. Using perspectives in a retrieval task. First, given a problem
case C and using syntactic patterns S as declarative biases, the relevant
aspects of C are determined and perspectives P; --- P, are built. Later,
these perspectives are used in retrieval methods to search precedent cases
in the episodic memory.

pattern that describes, as a declarative bias, the relevant aspects of a problem
situation (a feature term) given in the source feature. The perspective method
constructs a new term extracting from the source term those aspects declared
in the syntactic pattern given in pattern.

There are two possibilities for constructing perspectives. The first option is
to use a syntactic pattern where the relevance of some feature values is declared
using sorts. For instance, we will take an example from the Saxex musical
application (see Section 6.5 for a detailed description). Let as consider a note
Notel defined as follows:

(define (note Notel)

(pitch C5)

(position 0)

(duration Q)

(metrical-strength extremely-high)

(belongs-to (define (P)
(first-note (>>))
(med-notes Note2)
(last-note Note3)
(direction down)))

(next Note2))

Moreover, let us consider as relevant aspects of a note its duration and its
metrical strength on the melody. We can specify this knowledge by means of the
use of the following syntactic pattern in a perspective method P1 for constructing
a perspective of notel (defined before) as follows:



4.3. Perspectives 95

(define (perspective P1)
(source Notel)
(pattern (define (note)
(duration rhythm)
(metrical-strength strength))))

the following perspective will be constructed by P1,

(define (note)
(duration Q)
(metrical-strength extremely-high))

This term, in turn, can be used for retrieval obtaining, as a result, the set of
“note precedents” from the episodic memory with duration @ (quarter duration)
and a extremely-high metrical strength.

The second way to build a perspective is to use a syntactic pattern where
the relevance of some features is declared using wvariables of features. This al-
ternative allows to identify the roles of features and terms in the structure. For
instance, still in the Saxex application, let us to consider as a relevant aspect
of a note the “role” that plays in the analysis structure of the musical phrase
it belongs. Using the cognition model of musical understanding of Narmour’s
theory (see Section 6.5 for more details) a phrase can be analyzed by grouping
the notes in a sequence of basic structures (that we model by refining the com-
mon sort N-structure). A structure assigns a different role to each note (that
we represent with features) belonging to the structure. Since the feature names
differ, we can specify this knowledge by means of using variables of features; we
can use the following syntactic pattern, where feature variables are noted with
the $ symbol, in a perspective method P2 for constructing a perspective of notel
as follows:

(define (perspective P2)
(source Notel)
(pattern (define (note)
(belongs-to (define (N-structure)
($f (>> pattern)))))))

Specifically, since Notel is the first-note of a melodic P process structure
(P is a kind of N-structure), according to Narmour’s theory, the following

perspective will be constructed:

(define (note)
(belongs-to (define (P)
(first-note (>>)))))

Finally, using this perspective for retrieval we obtain, from the memory of
cases, all the notes playing the same role that Notel (i.e. first notes of melodic
process structures).

Using a specific syntactic pattern multiple perspectives can be constructed.
There are two factors that allow the construction of diverse perspectives: the
specification of a variable of features and the specification of sets in feature
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values. The backtracking mechanism of the Noos inference engine allows to
obtain all the perspectives consecutively.

4.4 Reasoning and learning

Machine Learning (ML) techniques have been used by knowledge modeling
methodologies as a way to acquire certain models in the knowledge acquisi-
tion (KA) process conducive to building a knowledge system. Our interest is
in developing knowledge systems with integrated learning capabilities: we are
interested in developing different machine learning methods and integrate them
into the problem solving of knowledge systems. This option means essentially
that certain knowledge acquisition tasks are delayed from the knowledge system
design and construction phase to the phase in which the knowledge system is
actually used in the task environment. Since knowledge modeling methodologies
view KA as a process that basically build models, our approach means that some
models are not built! in the first phase, and their construction is delayed to the
second phase where appropriate ML methods are appointed to generate those
models.
This delay of KA tasks also implies the following:

¢ Knowledge modeling of the implemented knowledge system has to include
modeling of KA goals

e ML techniques have to be modeled inside the framework, in our case ML
techniques are modeled as methods

e knowledge requirements of ML methods have to be addressed; in our frame-
work episodic memory is used to model the specific requirement of mod-
eling the “examples” or “cases” used by ML techniques.

Moreover, our approach is that any time some knowledge is required by a
problem solving method, and that knowledge is not directly available, there is
an opportunity for learning. Thus, our proposal is the use of learning methods
whose task is the acquisition of this lacking knowledge in some problem solving
process.

Moreover, our proposal is that learning methods are methods with introspec-
tion capabilities that can be analyzed also by means of a task/method decompo-
sition. For instance, case-based reasoning methods require access to precedently
solved similar problems (called cases), select some of them using some criteria,
and finally adapt the solutions from the cases to the current problem. This
adaptation phase can be just to use the exactly same previous solutions, to re-
instantiate the solutions in the new problem situation, or to construct a new
solution according the previous solutions and the current problem. As a second
example, inductive learning methods need a set of examples in order to con-
struct a new description that characterizes a target concept. Explanation-based

LOr, in general, a preliminary model is built but needs to be improved.
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learning methods analyze inference processes and construct new knowledge that
is incorporated as a new domain theory, or strategic knowledge that will be used
in the resolution of new problems.

Integrated learning is modeled as a process with three main subtasks: Intro-
spection, Construction, and Revision. This scheme allows us to model different
ML methods and their integration into a general problem solving system by
developing specific methods for the three main subtasks. Let us consider these
tasks in turn:

Introspection This task is the process by which past experience (episodic mem-
ory of the system itself or provided by a teacher) is accessed, selected and
retrieved for the purpose of solving new problems. In simple situations this
task may merely select a subset of examples in memory. In complex situ-
ations the system may have to decide which (sub)parts of all the episodic
memory qualify as “examples”, i.e. they are interesting to learn from (see
Section 4.3).

Construction This task uses the relevant past experience (resulting from in-
trospection) to generate some new model or body of knowledge. Eager and
lazy ML methods (see below) differ in the nature of what they construct.

Revision This task decides whether and how the system knowledge is modi-
fied by the newly constructed model. In simple situations the new model
just satisfies a knowledge requirement or substitutes an old model. In
more complex cases, the task has to estimate whether the new model does
improve the overall performance of the system (for instance preventing
overfitting or “expensive” rules).

Construction task involves methods that usually are called learning algo-
rithms. This is because in off-line learning the “introspection” task is simply
done by a human engineering the system, while revision is present only in in-
cremental algorithms—and in interactive systems decisions about revision are
taken by the human engineering the system. These human-intensive processes
are modeled in our framework as methods for the introspection and revision
tasks that may interact or not with the human expert/engineer.

Before proceeding to review how different ML methods are integrated into
the Noos framework, it is useful to distinguish between learning methods of eager
and lazy nature.

Eager learning Past experience is used in toto to provide a new model or body
of knowledge to be used for a specific problem solving method that will
be applied in all future problems (of a specific kind). The paradigmatic
eager learning methods are inductive techniques that generate abstract
knowledge from specific examples and teacher input. In non-incremental
approaches, past experience (episodic models) can be disposed of when the
new model has been generated.
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Figure 4.3. Lazy and eager learning and the construction of domain models
and episodic models.

Lazy learning Past experience is accessed, selected and used in a problem-
centered approach. The paradigmatic example is CBR, where for each
new problem the system filters out irrelevant past experiences, and focuses
on the relevant part from which it extracts or generates new knowledge
to the extend needed for solving that particular new problem. We view
lazy learning as constructing an episodic model for the current problem—
instead of constructing a generic model?.

Lazy learning algorithms differ from others in that they delay inference and
that they are problem-centered. Thus, they generally have low computational
costs during training and high costs during testing. Another difference is that
eager ML methods try to optimize on the average outcome for the future (unseen)
problems based on the assumption that the past (seen) solved problems are a
representative sample of the problems appearing in the task environment. Lazy
ML methods may in principle incur on higher runtime costs—that should be
nonetheless practicable for the task environment—but can optimize performance
on a problem by problem basis.

4.5 Case-Based Reasoning

Case-based reasoning (CBR) forms a family of techniques and systems that
integrate lazy learning with problem solving where domain-specific knowledge
and methods are used. We model CBR in Noos as case-based methods. Tt
is clear that case-based methods can be integrated in our framework because
of the notion of memory: past problem solving episodes (episodic models) are
stored in memory and can be recalled using the retrieval methods. These stored
problem solving episodes constitute the set of precedents (also called cases) for

2The generic domain model is only needed for being used in constructing episodic models
while solving future problems.
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Figure 4.4. Task/method decomposition of Case-based reasoning methods.

case-based methods. Generally speaking, case-based methods are decomposed
into four subtasks [Aamodt and Plaza, 1994]: retrieve, reuse, revise, and
retain (see Figure 4.4). Since there are several possible methods usable in each
subtask, several CBR techniques can be integrated in this way. Next we will
describe the goal of each CBR subtask indicating how can be achieved using
Noos methods:

e Retrieve: the retrieve subtask requires a method that recovers previous
solved cases, from the episodic memory, “similar” to the current problem.
A retrieval method is usually decomposed in three (sub)tasks: identify,
search, and select tasks.

— Identify: the goal of the identify task is to determine a set of
relevant aspects of the current problem using knowledge about the
problem to be solved. In Noos the identification task is mainly per-
formed using perspectives that determine relevance criteria.

— Search: the goal of the search task is to look for precedent cases in
the episodic memory using the relevance criteria constructed by an
identification method. The search task is performed in Noos using
retrieval methods.

— Select: the goal of the select task is to rank the cases obtained in
the previous task according to domain criteria. The select task is
performed in Noos combining preference methods. The select task
can choose the most relevant case or an ordered set (that can be
partial) of relevant cases.
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e Reuse: given a set of relevant cases, the goal of the reuse task is to build a
solution for the current problem adapting the solutions given in the cases.
Usually in CBR the solution is built either taking the solution given in the
most relevant precedent or constructing a new solution by adapting the
solution(s) of one or more precedents. An usual method for reuse sub-
task is what Carbonell called derivational analogy [Carbonell, 1986] (see
Section 4.5.1). Another alternative is to use a set of transformation opera-
tions. Transformation operations can be implemented providing methods
that access to solutions used in precedents and constructs, using domain
specific knowledge, a new solution.

e Revise: When the solution built by the reuse task is not correct, an
opportunity for learning arises. The revise task usually involves two sub-
tasks: the error detection task and the repair task. The error detection
task is usually a task performed outside of the CBR system. A possible
way to implement it in Noos is asking to the user using the set of methods
provided in Noos for interacting with users. The repair task is usually
implemented using causal knowledge for generating an explanation of why
certain parts of the solution case were not achieved. Repair methods can
be built in Noos as adapting methods in a similar way that methods con-
structed for reuse task.

e Retain: the goal of the retain task is to incorporate the new solved problem
to the memory of cases in order to help the resolution of future problems.
The incorporation of the new solved problem to the episodic memory is
performed automatically in Noos. All solved problems, in principle, may be
available for the reasoning process in future problems. Noos programming
environment provides a way to explicitly determine which solved problems
have to be stored (see Appendix A).

4.5.1 Derivational analogy

Derivational analogy [Carbonell, 1986] is a powerful reasoning mechanism for
transferring knowledge from past episodic models to a new situation, based on
preserving decisions that apply in the new situation and replacing or modifying
those that are no longer valid in the new situation.

Derivational analogy is automatically supported by Noos using the reinstan-
tiation mechanism (see Section 3.3.7). The reinstantiation mechanism is a meta-
level mechanism that provides a way of automatically bind a method in the scope
of a new situation using refinement.

Given a current task F(D), and being MT the metalevel of D, derivational
analogy in Noos consists of the following:

1. Once a most relevant precedent case P is chosen by the retrieve task, the
method M used in the precedent to solve the same task F(P) the system is
now involved in is accessed.
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(define Peters-car
(complaint does-not-start)
(battery-voltage low-voltage)
(gas-level-in-tank full)
((diagnosis (define (Causal-Explanatiomn)
((cause (define (Identity?)
(iteml low-voltage)
(item2 (>> battery-voltage)))))
(effect low-battery-malfunction))))
((empty-level? (define (Identity?)
(iteml empty)
(item2 (>> gas-level-in-tank))))))

(define Carols-car
(complaint does-not-start)
(battery-voltage high-voltage)
(gas-gauge-reading empty)
((diagnosis (define (Causal-Explanation)
(cause (>> empty-level?))
(effect no-gas-malfunction))))
((empty-level? (define (Identity?)
(iteml empty)
(item2 (>> gas-gauge-reading))))))

Figure 4.5. Two precedents from the episodic memory of solved diagnosed
cars.

2. The method is re-instantiated to the current problem—i.e. method refer-
ences are mapped from the past case P to the current case D and bound in
the scope of D.

3. The new method is used to solve the current task F(D).

Let us introduce a short example of a metalevel method called
basic-analogy, a case-based method for learning methods that succeeded in
achieving a given problem task in past precedents. The basic-analogy method
is decomposed in two subtasks, retrieve and reuse, as follows:

(define (sequence basic-analogy)
((retrieve (define (retrieve-by-task)
(task-name (>> task-name of (current-task)))))
(reuse (>> method of (task (>> task-name of (current-task)) of
(>> precedents)))))

The goal of the retrieve task is to search into the episodic memory the
set of precedent cases that solved the same task the system is involved (that
task is accessed using the current-task reflective operator). Given a set of
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precedents, the reuse subtask takes the methods applied in that precedents for
solving the current task. The Noos inference engine assures that all of them will
be re-instantiated successively to the current problem until one of them success
in achieving the task.

Note that the basic-analogy method is an introspective method that uses
the self-model of Noos for determining the task at hand and accesses to episodic
model components, such as tasks and methods used in solving those tasks.

The basic-analogy method can be used in the example of diagnosis of car
malfunctions we have already used in Chapter 3. Since the episodic memory of
each problem task contains a causal explanation between its complaint and the
diagnosis known for that case, an analogical method can retrieve those causal
explanations and apply them to a new problem to check which causal explanation
also holds in the new problem. For instance, we can define a new problem
Karls-car where their features, and specifically the diagnosis feature, can be
achieved including the basic-analogy method in the default metalevel of the
metalevel of karls-car as follows:

(define Karls-car
(complaint does-not-start)
(battery-voltage high-voltage)
(gas-level-in-tank empty))

(define (Default (default meta of Karls-car))
basic-analogy)

The basic-analogy method retrieves from episodic memory the cases
Peters-car and Carols-car (see Figure 4.5) and then takes the methods, from
their episodic models, applied in that precedents for solving the diagnosis task.
Next, one of them is selected and re-instantiated to the current Karls-car prob-
lem. Let us suppose that the system select the method applied in Peters-car
problem. The method retrieved from Peters-car fails since that causal expla-
nation does not hold in karls-car (the battery-voltage is not low). Next,
the system selects the method applied in Carols-car problem.

This method engages in turn the empty-level? task. Since there is no
method defined in Karls-car for that task, basic-analogy method is now ap-
plied in empty-level? task for searching methods for empty-level? task on the
episodic memory. Peters-car and Carols-car cases also hold methods for that
task and they are retrieved (see Figure 4.5). These methods are reinstantiated in
turn and only the method defined in Peters-car can be successfully applied to
Karls-car. Then, the method retrieved from Carols-car for diagnosis task
is resumed and is finally successful, yielding the no-gas-malfunction result.

4.6 Inductive learning

The goal of an inductive method is to construct the general knowledge needed
by a given problem solving method. Induction performs a generalization from
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a set of problem solving episodes (usually called ‘examples’ or ‘instances’). In
general, the ML community defines induction as a process that constructs, from
a set of positive examples and a set of negative examples, a general description
that “generalizes” (in some sense that may vary®) the positive examples—and
does not generalize the negative examples. Induction is also modeled in Noos by
methods.

An example of the use of an inductive method is the generation of a class
description for a category or concept from a set of examples. The acquired
knowledge will be used by an identification method deciding whether or not new
examples pertain to a certain category.

In general, inductive methods can be characterized as search methods that
follow certain biases: constraints over the hypothesis space effectively searched
and strategies for searching certain subspaces before others. These bias of ML
methods are similar to assumptions for problem solving methods, e.g. a ML
inductive method can be exhaustive (or complete—if it assures it will find a
generalization if it exists) or not exhaustive. However this comparison is left for
future work.

In our framework feature terms offer a representation formalism that is a
subset of first order logic. Inductive learning with feature terms is a relational
learning [Quinlan, 1990]. Systems that also perform relational learning are ILP
systems [Muggleton and De Raedt, 1994]—that uses horn clauses.

Inductive methods currently developed in Noos are based on the antiuni-
fication and the subsumption operations of Noos [Plaza, 1995]. Subsumption
provides a well defined and natural way for defining generalization relationships:
a feature term 1 is more general than another feature term v’ whenever that
1) subsumes 1)’. The antiunification of two feature terms gives that which is
common to both (yielding the notion of generalization) and all that is common
to both (the most specific generalization).

Formally, the antiunification of a set of feature terms yields a greatest lower
bound with respect to subsumption ordering.

Definition 4.1 (Antiunification)
Given a set of feature terms {dy,ds,...,d,} their antiunification is another fea-
ture term D such that:

1. feature terms {dy,ds,...,d,} are subsumed by D, and

2. there is no feature term D' such that subsumes {di,ds,...,dp} and sub-
sumes D.

Inductive methods are designed in Noos using antiunification and specific
biases. For instance, using relevance measures of attributes we can estab-
lish a bias for the generation of disjunctive descriptions of concepts. Sev-
eral inductive methods based on Noos have been designed, implemented and

3Specially in ILP (induction of logic programs) several different semantics have been
proposed for the notions of generalization and subsumption (see [Muggleton, 1992] and
[Lavra¢ and Dzeroski, 1994] for a detailed discussion).
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Figure 4.6. Induction example.

tested by Eva Armengol [Armengol, 1997] at the IITA, and are also described in
[Plaza et al., 1996b] and in [Armengol and Plaza, 1997]. In Chapter 6 the use
of inductive methods in applications developed in Noos is also presented.

Let us present here a short example of antiunification. Suppose we have a set
of examples of chemical structures that are instances of a same chemical concept.
Structures are represented as sets of particles of two types (alpha particles and
beta particles) connected among them with three different kinds of features:
U-1link, C-1link, and L-1link. For instance, a structure called structurel is
described as follows:

(define (alpha :id structurel)
(C-1link (define (beta)
(U-1ink (define (beta)
(L-link (>> L-link C-link))))
(L-1ink (define (alpha)
(U-1ink (>> U-link C-1ink)))))))

Taking the set of three structures given in Figure 4.6, their antiunification is
another structure such that the sort of two particles is generalized (« and 3 are
subsorts of the general particle sort p) and only features common in all examples
are preserved.

For the moment Noos inductive methods work only on descriptions and not
on methods. What is yet future work is learning of programs (methods) from
examples (as in inductive logic programming), although analytical learning of
methods has been integrated in Noos as shown in the next section.

4.7 Analytical learning

The goal of analytical learning techniques (or EBL-like learning) is to construct,
from a domain theory and a reification of the problem solving process of an
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example solved using the domain theory, a new domain theory that obeys cer-
tain restrictions. Analytical learning techniques are also modeled in Noos by
methods.

Specifically, analytical learning is modeled in Noos by methods that given a
training example whose problem task T(E) has been solved by a problem solv-
ing method M and given an operationality criterion, construct a new problem
solving method M,, for solving task T obeying the operationality criterion. The
operationality criterion describes a sub-language of the domain model. An op-
erational method will be a method requiring only the knowledge defined by this
sub-language.

This learning approach needs to inspect the episodic model built while solving
the training example. In Noos the task/method decomposition instantiated in
the construction of the episodic model for solving a problem task constitutes the
explanation (or trace) of the solution. Analytical learning methods in Noos are
metalevel methods that given an episodic model for a task T (E) solved by a PSM
M (1) inspect the methods that succeeded in each subtask of the task/method
decomposition tree of M, and (2) construct a new PSM for task T according to
an operational criterion.

We have developed PLEC, an EBL-like learning method that constructs a new
operational problem solving method for a specific problem task from a training
example and according to a specific operational criterion. The operational crite-
rion of PLEC is that the constructed method refers only to features with constant
values in the training example (e.g. those present in 0bj-1 in example below).
The result of PLEC is the construction of a new method such that it will be
directly applicable to the problem and skip intermediate inferences.

PLEC is a built-in method with two required features: task-name, for speci-
fying the name of the task; and source, for specifying a training example.

For instance, let us consider a PSM that determines whether or not an object
is an example of the cup concept defined as follows:

(define (conjunction Is-a-cup?)
(source (define (object)))
(iteml (>> stable? source))
((item2 (define (conjunction)
(iteml (>> liftable? source))
(item2 (>> open-vessel? source))))))

and let us have the following background knowledge about “cup-like” objects:

(define (object)
(stable? (>> flat? bottom))
((liftable? (define (conjunction)
(iteml (>> graspable?))
(item2 (>> 1light?)))))
(graspable? (>> handle?))
(open-vessel? (>> upward-pointing? concavity)))

Then, a training instance 0bj1 can be defined using the Is-a-cup? method in
feature cup? as follows:
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(define (object 0bjl)

(owner Fred)

(light? true)

(color red)

(handle? true)

(bottom (define (part)
(flat? true)
(size small)))

(concavity (define (part)

(upward-pointing? true)))

((cup? (define (Is-a-cup?)

(source (>>))))))

The resolution of the cup?(0bj1) problem task by the Is-a-cup? method
engages in turn other (sub)tasks for determining when a given object is stable?,
liftable?, and open-vessel? (see in Figure 4.7 the task/method decompo-
sition hold in the episodic model of the cup?(0bj1) problem task). Using the
episodic model built after a specific problem is solved, PLEC constructs a new
operational method for determining when an object is an example of a cup.
Specifically, posing the following query-expression to Noos:

(noos-eval (define (PLEC)
(source 0bj1)
(task-name ’cup?)))

The result yielded by PLEC is the following operational method, directly appli-
cable to the problem and skipping intermediate inferences, for the cup? task:

(define (conjunction Op-Is-a-cup?)

(source (define (object)))

((iteml (define (conjunction)
(iteml (>> flat? bottom source))
(item2 (>> handle? source)))))

((item2 (define (conjunction)
(iteml (>> light? source))
(item2 (>> upward-pointing? concavity source))))))

Notice that this new operational method built by PLEC has four path refer-
ences to features flat?, handle?, light?, and upward-pointing? that have
constant values in 0bj1.

4.8 Summary

This chapter presented the components of the episodic knowledge that consti-
tute the episodic memory of Noos. Episodic knowledge in Noos is organized
in episodic models. Each episodic model holds the reification of the inference
process engaged in Noos in solving a specific problem task. An episodic model is
represented as the set of tasks, methods, preferences, and problem data involved
in solving that problem task.



Figure 4.7. A browser of the Task/method decomposition for the cup? task of 0bj1.
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All the components of an episodic model are accessible and inspectable.
We described in this chapter three different access mechanisms for inspecting
episodic models of the episodic memory of Noos: access by path, that provides
an access to the episodic memory combining reflective operations and path ref-
erences; retrieval methods, that provide a content-based access to the episodic
memory; and perspectives, a mechanism to describe declarative biases for case
retrieval in structured representations of cases.

Since knowledge in Noos is represented in a structured way, retrieval meth-
ods have to deal with structured representations. Retrieval methods allow to
retrieve previous relevant episodes from the episodic memory using relevance cri-
teria. Relevance criteria are determined by specific domain knowledge about the
importance of different features or by requirements of problem solving methods.
Retrieval methods are based on the notion of feature terms as partial descriptions
and the notion of subsumption among feature terms

Our approach is based on the observation that, in complex tasks, the identi-
fication of the relevant aspects for retrieval in a given situation may involve the
use of knowledge intensive-methods. This identification process requires dynam-
ical decisions about the relevant aspects of a problem and involves introspection.
Perspectives provide Noos with a mechanism for specifying declarative biases.
Declarative biases provide a clear and flexible way to express retrieval patterns.

We also presented the role of learning and its integration into the Noos lan-
guage modeled as introspective methods that can be decomposed of three main
subtasks: Introspection, Construction, and Revision.

Finally, we described how three different symbolic learning approaches can
be integrated to Noos:

e Inductive learning methods are developed in Noos as search methods (that
follow certain biases) over the space of feature terms. Inductive learning
methods are based on the feature term subsumption and antiunification
operations of Noos. Subsumption provides a generalization relationship
over feature terms. The antiunification of a set of feature terms builds
a new feature term that is a greatest lower bound with respect to the
subsumption ordering. Diverse strategies can be developed for constructing
inductive learning methods that follow different searching biases.

o Case-based reasoning methods are developed in Noos as problem solving
methods with lazy learning capabilities that search for previously solved
problems in the Noos episodic memory. CBR methods are based on the
retrieval and subsumption operations of Noos.

Structured representations of cases offer the capability of treating subparts
of cases as full-fledged cases. That is to say, a new problem can be solved
using subparts of multiple cases retrieved from the episodic memory.

On the other hand, structured representations of cases increase the com-
plexity of retrieval mechanisms. Noos provides elements—such as content-
based retrieval and perspectives—for supporting the retrieval on these
complex representations of cases.
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Furthermore, derivational analogy is automatically supported by the Noos
reinstantiation mechanism.

o Analytical learning methods are developed in Noos as methods that given a
training example whose problem task has been solved by a problem solving
method M and given an operationality criterion, construct a new problem
solving method M,, for solving that task and obeying the operationality
criterion. Analytical learning methods are based on the Noos introspec-
tive capabilities for inspecting the episodic model built while solving the
training example.

Learning with feature terms is a relational learning. Systems that also per-
form relational learning are ILP systems [Muggleton and De Raedt, 1994]—that
use horn clauses.

Learning in Noos can be performed either on descriptions or on methods.
The different learning methods incorporated to Noos perform different kinds of
learning: inductive learning methods have been used for learning on descriptions
and not for learning on methods. CBR methods have been used for reusing and
adapting both—descriptions and methods. Finally, analytical learning methods
has been used for acquiring new methods.

In Chapter 6 we will show how several learning methods have been developed
and integrated to different applications built in Noos.






Chapter 5

Noos Formalization

The goal of this Chapter is to present a formal description of the Noos repre-
sentation language. We will present the Noos formal syntax based on feature
terms, its semantics, and the formal model of the Noos inference process.

Our approach to formalize Noos syntax and semantics is re-
lated to the research based on AN calculus [Dami, 1994], «-terms
[Ait-Kaci and Podelski, 1993] [Carpenter, 1992] [Backofen and Smolka, 1995],
and extensible records [Cardelli and Mitchell, 1994] that propose formalisms to
model object-oriented programming constructs.

As we have stated in Chapter 3 the Noos representation language is based
on feature terms formalism. The intuition behind a feature term is that of
providing a way to construct terms embodying partial information and amenable
to extension. The proposal of feature terms is that these two properties can be
achieved by building terms with parameters identified by name (regardless of
order or position) and with no fixed number of parameters.

More formally, while first order terms can be described by trees with an
implicit ordering, feature terms can be seen as a generalization of them and can
be described by labeled graphs where nodes are labeled with sorts and edges are
labeled with named parameters (called features).

The AN calculus formalism is an extension of A-calculus that introduces
named parameters as arguments of lambda abstractions. In AN, a lambda ab-
straction can have multiple arguments which can be bound separately and in any
order. AN provides a clear way to model extensible and recursive records, and
also offers a clear mapping among functions and records. We use AN calculus to
provide a syntax for Noos feature terms. Moreover, AN calculus capabilities for
modeling extensible knowledge are used for modeling the refinemement mecha-
nism of Noos. AN calculus lexical scoping is used for modeling path references
and path equality.

The v-term formalism offers an alternative approach to model relational
and object-oriented programming. [Ait-Kaci and Podelski, 1993] presents a se-
mantical interpretation for ¢ -terms that allows three equivalent representations:
terms, clauses, and graphs. ¢ -term calculus is based on the notions of unification

111
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and subsumption. We adopt a related approach to the semantical interpreta-
tion of t-terms in order to provide a semantical interpretation of Noos feature
terms. Following the i -term formalism, feature terms are interpreted as partial
descriptions. This semantical interpretation of feature terms brings an ordering
relation among them. We call this ordering relation subsumption. The intuitive
meaning of subsumption is that of informational ordering. We say that a feature
term ¢ subsumes another feature term v’ (noted ¢ C ¢') when all information
in ¢ is also contained in ¢’.

Last elements of the Noos language are the metalevel relation among feature
terms, reflection, and the inference process involved in solving a specific problem
task. AN calculus and ¢-terms are not the best suited formalisms for modeling
the Noos inference process. We formally describe the global inference process
in our system using Descriptive Dynamic Logic [Sierra et al., 1996]. Descriptive
Dynamic Logic (DDL) is a propositional dynamic logic (PDL) [Harel, 1984] that
provides a general framework for describing and comparing reflective knowledge
systems. DDL models knowledge systems as a set of units with initial local the-
ories written in possibly different languages. Each unit is also usually allowed to
have its own intra-unit deductive system. Moreover, the whole knowledge sys-
tem is equipped with an additional set of deductive rules, called bridge rules, to
control the information flow among the different units of the knowledge system.
Thus, the DDL approach is very useful to model reflective systems based on
the use of several units containing local theories (or meta-theories acting upon
theories) that influence and/or modify each other.

Moreover, two specific elements of Noos have to be defined formally:
preferences and perspectives. We presented in Section 3.4 a declarative
mechanism for decision making about sets of alternatives we call preferences.
Reasoning with preferences is modeled by partially ordered sets with a set of
operations for constructing new preferences and combining them.

Perspectives, explained in Section 4.3, are a mechanism to describe declar-
ative biases for retrieval in the Noos episodic memory. Using feature terms,
perspectives are formalized as second order feature terms that denote sets of
terms.

The structure of this Chapter is as follows: Section 5.1 contains a brief intro-
duction to AN calculus. Sections 5.2 to 5.9 present the syntax and semantics of
feature terms. Section 5.10 describe the formal basis for reasoning with prefer-
ences in Noos. Section 5.11 presents the formal principles on which perspectives
are based. Section 5.12 contains a brief introduction to DDL. Section 5.13 de-
scribes the inference in Noos using the DDL formalism. Finally, Section 5.14
summarizes our approach to formalize the Noos representation language.

5.1 Basic notions of AN calculus

The lambda calculus with Names (AN calculus) is an extended A-calculus de-
veloped by Laurent Dami [Dami, 1994] that introduces named parameters as
arguments of lambda abstractions. AN uses Bruijn indices [de Bruijn, 1972] as
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the basis for the introduction of named parameters. In AN, a lambda abstrac-
tion can have multiple arguments which can be bound separately and in any
order. This feature brings what Dami calls the extensibility property: exist-
ing software fragments can be augmented with new features while remaining
compatible with the original contexts in which they were used. The extensibil-
ity property of AN calculus allows to model records, extensible datatypes, and
object-oriented programming constructs. Moreover, named parameters are in-
troduced in AN without affecting the semantics of functions because names can
be totally dismissed in the Bruijn calculus. Thereby, AN formalism preserves
results of the standard lambda calculus such as confluence.

The AN calculus is constructed from a set V of variables (or labels). Using
this set of variables and extending the A-calculus syntax, the set of terms Ay of
the AN calculus is built from the following basic syntax!:

a == Aaxi...zp)a|a(z o b)|al|v
v = z|\v

Figure 5.1. Basic AN syntax.

In AN notation, a lambda abstraction A(z;...z,)a can have several
arguments—identified by a named parameters and declared as a list of vari-
ables x; ...z, inside two parentheses—which can be bound separately and in
any order. As a consequence of this approach, the functional application oper-
ation of A-calculus has to be split in two different operations, called bind and
close operations. An expression of the form a(z — b) (called bind expression)
binds b to the parameter = in the abstraction a. An expression of the form a!
(called close expression) ends a sequence of bind expressions.

In the context of AN, the usual B-reduction rule of lambda calculus is split
in two lambda-bind and lambda-close rules:

(AMz1...zp)a)(z; > b) —p A(z1...zp)alzr; = D) (5.1)
(AMz1...zp)a)! —p  alz. = err]

where z, denotes any unbound variable. The err constant is represented in AN as
a lambda abstraction that always reduces to itself—and that in object-oriented
systems corresponds to the “message not understood” error.

The main difference with A-calculus is that the lambda-bind rule (5.1) per-
forms a substitution without removing the outermost abstraction level (the ‘\’),
while the lambda-close rule (5.2) removes the ‘A’ and substitutes any remaining
unbound variables by err (the constant representing run-time errors).

Lexical scoping of variables is treated in the following way: a local declaration
(a variable declared as a parameter of a lambda abstraction) takes precedence

INotation remark: we will use z to denote variables; and a, b,c,... to denote terms.
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over the declaration of a variable with the same name in outer lambda abstrac-
tions. In case the same name is used at different lambda abstraction levels,
AN provides a scope escape operator ‘\’ (backslash). The use of n occurrences
of this escape operator preceding a variable x specifies that the corresponding
declaration of 2 will be looked for ignoring the inner n abstraction levels. For
instance, consider the expression

Mz A(zz)z +y+ 2+ \z

and assume that infix addition is part of the language; then z and \z are refer-
ences to different variables. The first z reference is bound to the x parameter
defined in the inner lambda abstraction A(zz), while \z reference is bound to
the z parameter defined in the outer lambda abstraction A(zy).

Recursion is defined in AN by means of a fixed point operation. Specifically, a
fixed point operation over a functional A\(x)a corresponds to the usual combina-
tor Y in the pure lambda calculus. An expression with recursion over parameter
x is written p(z)a and the translation T into de basic syntax is the following;:

T(u(x)a)
Y,

Y. (z — A(z)a)
Az)A2)\z(z = z(z = 2)))(z = M2)\z(z = z(z = 2))!))

Extensible records

From the basic AN syntax, extensible records can be introduced in the AN formal-
ism [Dami, 1994]. Extensible records are written with braces; fields are written
with the = symbol; field selection uses the common dot notation. The syntax of
these constructs and the translation T into the basic syntax is the following:

T({z1 =a1...2n, =an}) = Msel)sel(zy = a1)...(z, = ay)
T(a.x) a(sel = A(z).x)!!

A record is translated to a function which takes a selector sel and binds all
fields to corresponding named parameters in that selector. A selector for field x
is just an identity function on that name, so a field selection operation simply
binds the appropriate selector to the sel argument of the record. Notice that the
field selection operation is defined in basic syntax as an identity function plus
two close operations. The first close operation is used to close the bindings of
record a, while the second close operation binds the appropriate selector to the
sel argument of the record.

Next, a record concatenation operation ‘<’ can be introduced providing an
incremental mechanism of record construction. The a <« b expression yields a
new record from a concatenation of two records a and b in a right-preferential
order. That is to say, fields declared in b override the fields also declared in a.
The correspondent translation into the basic AN syntax is the following;:

T(a < b) = a(sel —» T(b))!
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For instance, the following expression:
{r=1 y=2} < {z=4 2=5}

yields a new record with three fields x,y, z containing the values 4,2,5 respec-
tively:

{rt=4 y=2 z=5}

Recursion can be used to define recursive records. The syntax of records is
enlarged for recursive records as follows:

u(rec){zy =ay ...z, =ay}
For instance we can define the following recursive record

Seasons = u(rec) { spring = {name = “spring” next = rec.summer}
summer = {name = “summer” next = rec.autumn}
autumn = {name = “autumn”  next = rec.winter}
winter = {name = “winter” next = rec.spring}

}

and, for example, Seasons.summer.next.next.name yields “winter”.

When we define recursive records at different levels, the ‘\’ scope escape
operator allows references to these different levels. Using the ‘\’ notation, we
can compact the syntax for describing recursive record structures by removing
the explicit reference to rec. For instance, the previous Seasons recursive record
can be described using compact notation as follows:

[4

Seasons = { spring = {name = “spring” next = \\summer}
summer = {name = “summer” nezt = \\autumn}
autumn = {name = “autumn”  next = \\winter}
winter = {name = “winter” next = \\spring}

}

Given the basic notions about AN calculus, next we describe the translation
rules from Noos descriptions to AN calculus.

5.2 Noos formal syntax

In this section we will use the AN formalization of extensible records as a basis to
formalize Noos descriptions as feature terms. The Noos refinement mechanism
will be formalized by means of the record concatenation operation.

There are two types of feature terms in Noos: constant feature terms and
evaluable feature terms. Feature terms are defined on a signature ¥ composed
by a set of sort names, a set of method names, and a set of feature names.
Formally,
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Definition 5.1 (Noos Signature)
We define the Noos signature as the tuple ¥ = {(S, <s), (M, <nn), F} such that:

Y

e S is a finite set of sort symbols including L and <, is an order relation
such that Ly is the smallest element.

e M is a finite set of method symbols including 1,, and <,, is an order
relation such that L,, is the smallest element.

o F is a finite set of feature symbols;

Given the Noos signature ¥, we define the set ' of feature terms as a union
of constant feature terms and evaluable feature terms:

r=r.ur,

In the next section we will introduce Noos formal syntax for constant feature
term step to step. The complete description of the formal syntax of Noos is
given in Figure 5.2. Evaluable feature terms will be introduced in Section 5.9.

5.2.1 Constant feature terms

Given the signature X, we define constant feature terms as follows?:

Definition 5.2 A constant feature term 1 is an expression of the form:
v n=lsfi=fvy- frn =1v)]

where s is a sort in S, f1,---, fn are pairwise distinct features in F, n > 0, and
each fv; is a feature value.

A feature term is translated to AN syntax, using the translation rule T, as a
recursive record as follows:

T(s[fi=fvi---fo=1vy]) = {fi=f--fo =1}

The sort of a feature term (noted 7(1)) = s) is a component not represented
in the AN notation and will be explained in Section 5.2.2.

Feature values

There are three kinds of feature values:

fv o=
\
| ref

where the first one is a term; the second is a set of terms; and the third is a
path reference (described in Section 5.2.3). We have shown in Section 3.2.4 that
feature values can also be described using closed methods, and in Section 5.9 we
will extend the syntax for incorporating closed methods.

2We use two equivalent notations for feature terms: the first one is as an horizontal enu-
metarion of features (the notation used here). The second notation is the vertical enumeration
of features (useful to represent feature terms inside feature terms).



5.2. Noos formal syntax 117

5.2.2 The sort of a feature term

From the set ' of feature terms we define a sorting function 7 : I' - S U M,
assigning either a sort symbol or a method symbol to each feature term. A
constant feature term has assigned a sort symbol. An evaluable feature term
has assigned a method symbol. Specifically, given a feature term v defined as
follows,

d) = [Sflifvl"'fnifvn]

the sorting function 7 for v is defined as 7(¢)) = s. We will say that the sort of
P is s.

5.2.3 Path references

A path reference has two components: a head and a path. A head is constructed
using the backslash notation (for instance, ‘\\’) A path is constructed as a
concatenation of field selections using the dot notation (for instance ‘fi.f>’).
The formal syntax for path references is the following;:

ref = head | head path
head := \head | \
path == f.path | f

An example of a path reference is \\ fi.f2. A path reference may have only
a sequence of backslashes (for instance \\). Path references are used to provide
a formalization of Noos relative path references and a precise interpretation of
the rules of scope and refinement (see Section 5.3).

Reference over sets

Since feature values can be sets, path references have to deal with feature values
that are sets. The field selection operator over sets is defined as the pointwise
extension of the AN field selection operator. The result of a field selection over
a set is a new set. Therefore, we define the field selection operator over sets as
follows:

Sf=Jsf

seS

5.2.4 Refinement

Feature terms are always constructed in the Noos language by refinement. The
definition of a feature term v by refinement of another feature term ¢’ will be
formalized as a record concatenation as follows:

Y o= Y L s fr =fvyees fr, =1y
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) = [sfi=fv. f, =] ; feature term

| ¢ < [sfi=1fv--f, =1v] ; refinement
fv = ; record

| 1ty ; set of records

| ref ; reference
ref = head | head path ; path reference
head == \head | \ ; outer reference
path == f.path | f ; path

Figure 5.2. Formal syntax of Noos using the AN approach.

Y (desc) = 7Yy(desc,0)
Y.((define (const) = Y(const) < [const Y ¢(fdescy,?)

fdesc; - - - fdescy),f) - Ty(fdescy,l)]
T, ((f desc),?) = f = Yy(desc,l+1)
T, ((f descy---descy),f) = f = Yy(descy,l+ 1) --Ty(descy,l+1)
T;((f ref),?) = f = Y,.(ref,l+1)
Tr((>> fl"'fn):g) — \\fnfl

——

1

Figure 5.3. Translation rules from Noos syntax to AN syntax.

where ¢ is defined with sort s (7(¢) = s) and by extending ' with fi,..., f,
features.

Note that concatenation operation < is a right-preferential order operation.
This means that all the definitions of features fi,..., f, also defined in v’ over-
ride the definitions given in v’

5.3 Translation rules from Noos to AN

We have introduced the formal syntax of Noos that is fully described in Fig-
ure 5.2. Now, we will introduce the translation rules T from Noos syntax to
Noos formal syntax. There are three kinds of translation rules: translation rules
for descriptions Y4, translation rules for features T¢, and translation rules for
references Y,.. We will explain these translation rules incrementally. A complete
description of translation rules is given in Figure 5.3.
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The Noos language allows the use of names for describing feature values. In
Noos formal syntax feature terms have no name. Therefore, before translating a
given description D to the formal syntax, we have to perform a preprocess where
each name reference is substituted by either the description that it denotes or by
a path reference to another feature with the same name reference as feature value.
The specification of the same name reference as the feature value of different
features requires the satisfaction of the path equality property (see Section 3.2.3).
In order to preserve this path equality only one occurrence of a name reference
will be translated to the description that it denotes. In the rest of occurrences
the name reference will be translated to a path reference to the first occurrence.

Translation rules have two parameters. The first parameter contains a de-
scription (the text to be translated). The second parameter holds and integer
indicating the depth level of the description according to the root description.
The depth level will be used to translate path references.

A Noos description desc is translated with a description rule starting with
depth level zero.

Y(desc) = Yg4(desc,0)

Since a feature term is built by refinement of another feature term, a descrip-
tion is translated as the concatenation of two records applying the following rule:

Y.((define (const) = Y(const) < [const Y ;(fdescy, )
fdescy ---fdescy,),{) - Ty(fdescy,?)]

where the feature term is built concatenating (refining) the feature term denoted
by const (Y (const)) with a record composed by the features defined in the body
of the description translated using translation rules for features Y.

Given the description fdesc of a feature as the pair (f v), translation rules
T ; define a field of a record with name f and with value that obtained from the
translation of v to formal syntax increasing the depth level by one. There is one
translation rule Y for each kind of feature value:

T;((£ desc),?) =
T;((£f descy---descy),?)
T, ((£f ref),?) =

Ya(desc,l+1)
Yq(descy,l+1)---Yy(desc,, L+ 1)
= Y,(ref,l+1)

I
FhoHh b
I

New (sub)descriptions are translated using Yy rules. Path references are
translated using the following Y, rule:

Y, (0> f1---£,0,0) =\ \fu -.fa
¢

Note that a Noos path reference such that (>> father mother) is built as
a concatenation of field selections in reverse order, i.e. mother.father, and
containing in the head as many backslashes as the depth level.

Absolute path references are not allowed in the formal language. This means
that they have to be translated to relative path references. There are two ways
of translating absolute path references:
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(define (Person :id Paul)
(spouse Mary)
(child (>> child of Mary)))

(define (Person :id Mary)
(spouse Paul)
(child (define (person)
(age 3))))

(define (Person)
(spouse (define (person)
(spouse (>>))
(child (define (person)
(age 3)))))
(child (>> child of (>> spouse))))

Figure 5.4. Substitution of name references. Given two descriptions of
Paul and Mary, Paul description is translated to the last description where
the name references to Mary are substituted by its description in feature
spouse and by a relative path reference in the absolute path reference
(>> child of Mary) in feature child.

e A first case is when an absolute path reference (>> F of D) has a name
reference D that it occurs as a feature value in another feature F’. In this
case, the name reference D can be substituted to a relative path to the F’
feature. Figure 5.4 shows an example of a substitution of an absolute path
reference.

e A second is when an absolute path reference (>> F of D) has a name
reference D that it does not occur as a feature value in another feature.
In this situation, this name reference cannot be substituted by a path
reference. We can extend the description with a new feature that has the
name reference as value. Consequently, the name reference in the absolute
path can now be substituted to a relative path to the new feature.

We are now ready to show, using an example, how a description in Noos
syntax is translated to Noos formal syntax. Taking as example the previous
description of Peter:

(define (person id: Peter)
(age 28)
(drives (define (Car)
(owner (>>))
(complaint does-not-start)
(gas-level-in-tank full))))
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where Peter is defined by refinement of Person and the car that Peter is driving
is defined by refinement of Car. Moreover, Car is defined as follows

(define Car
(owner (define (person)))
(gas-level-in-tank level)
(gas-gauge-reading (>> gas-level-in-tank)))

and person, does-not-start, full, and level are defined with no features.
Then, the feature term that represents Peter description is built from the
two following concatenations?:

Person
age = 28
Y(Peter) = Y (Person) < Car .
drives =Y (Car) <€ owner =\
complaint = does-not-start

gas-level-in-tank = full

Next, applying the operation of record concatenation to the description of that
car we will obtain gas-gauge-reading? and empty-level? feature descriptions
from the feature term car. Thus, after the concatenation operation, and since
person is a feature term without features, we will obtain the following term:

[Person l
age = 28
Car
T (Peter) = owner =\\
drives = | complaint = does-not-start
gas-level-in-tank = full
i gas-gauge-reading = \ gas-level-in-tank ]

Notice that the reference in the owner feature is to Peter (two back-
slashes), and the reference in feature gas-gauge-reading is to the feature
gas-level-in-tank in car (one backslash).

An additional notion that will be used later is the notion of subterm of a
feature term:

Definition 5.3 (Subterm)
A feature term 1); is a subterm of a feature term 1 if 1; can be accessed from 1
following a path fi.--.fn.

For instance, in the previous example of Peter feature term the car feature
term is a subterm accessible from Peter by the path constituted by the drives
feature.

3We write the sort assigned to a feature term in the head of the term in sans serif font, like
Person or Car in the example.
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5.4 Using variables in feature terms

Feture terms can also be represented using variables instead of path refer-
ences. Variables, as described in [Ait-Kaci and Podelski, 1993], provide a no-
tation based on tags. The motivation of using this new representation for fea-
ture terms is that variables provide a more adequate notation for defining the
semantical interpretation of feature terms.

A feature term can be represented using variables by means of assigning
a different variable to each feature term and replacing path references by the
variable assigned to the referenced feature term. Specifically, a feature term,

using variables, is defined as follows:

Definition 5.4 Given the signature ¥ and a set V of variables, we define a
feature term 1 as an expression of the form:

v o= Xis[iz=0---fr,=0,]

where X is a variable in V; s is a sort in S; f1, -+, fn are pairwise distinct
features in F; n > 0; each ¥; is a set of feature terms and variables; and at
most one occurrence of each variable is sorted.

We call the variable X in the above feature term the root of ¢ (noted
Root(yp) = X), and say that X is sorted by the sort s (noted 7(X) = s).
The set of variables and the set of features occurring in ¢ are noted respectively
as Vy and Fy.

The use of variables instead of path references in feature values implies that
path equality will be represented as equalities of variables.

For instance, the Peter feature term can be described using variables instead

of path references as follows:

age = X;:28
owner =X
Peter = X : Person ) . complaing = X : does-not-start
d =X : .
rwes 2 Car gas-level-in-tank = Xao @ full

gas-gauge-reading = Xao

Note that the Peter term has a path equality between features
gas-level-in-tank and gas-gauge-reading and another path equality be-
tween the owner feature and Peter (null path).

5.5 Semantics
We have presented the formal syntax for Noos and the set of translation rules

from descriptions syntax to feature terms syntax. Next, we will describe the
semantical interpretation of feature terms. We have argued our approach to



5.5. Semantics 123

construct, terms embodying partial information. In fact, we have said that fea-
ture terms are interpreted as partial descriptions.

The semantics of Noos is constructed to capture this notion of feature terms
as partial descriptions denoting sets of individuals in a given domain. First of
all, we define an interpretation Z over the Noos signature X..

Definition 5.5 (Interpretation)
We define an interpretation T over the signature ¥ = {(S, <s), (M, <), F} as
the structure

7 ={S,F,M}
such that:
1. S is a non-empty set, called domain of Z (or, universe);
2. F is a set of total unary functions f : S — P(S);
3. M is a set of total functions m : P(S) x -+ x P(S) = P(S);
4. Vse€S:[s]F CS andVs,s' € S:5< s & [s]F D [s']%;
5 VfeF:[f]* CF;
6. Ym € M : [m]* C M;
7. [Ls]* =S; and
8 [Lu]* =M.

From interpretation Z, constant feature terms are interpreted as partial de-
scriptions denoting sets of elements in the domain S under all possible valuations
of its variables Vy in S.

Specifically, the interpretation of a feature term under a specific valuation a
of its variables is given as:

Definition 5.6 (Denotation of a constant feature term under a valuation o)
Given the interpretation T, the denotation [¢]%® of a constant feature term 1,
under the valuation a : Vy — S is defined by:

[W]%e = { éa(X)} when a(X) € [s]* and Viz1,...n : [fi]* (X)) € [@:]"*

otherwise

expressing that the element assigned to the root variable X (noted (X)) has to
belong to the set of elements denoted by its sort [s]%, and for each feature f; the
value of the function that denotes [[f;]%(ca(X)) has to belong to the denotation
of the corresponding subterm [¥;]%:* under the same valuation.

Since feature values ¥; are sets of feature terms, we have to define the inter-
pretation [[ib1 - - - ] of sets of feature terms. Sets are interpreted on P(S)
as follows:
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Definition 5.7 (Semantics of sets)
Given a set ¥ = 1)y ...\, the denotation [¥]F* under the valuation « is given

by:

[1.. )™ ={w e P(S)| Fer € w-+-Tem € w(Viz1,...m : €; € []"* and
vi’jzl’.”,m Tl 75] = €; 75 ej)}

where for all 1; = X € Vy then [X]1 = {a(X)}

Finally, constant feature terms are interpreted as the union of domain ele-
ments denoted by all the valuations of Z (noted Val(Z)), as follows:

Definition 5.8 (Semantics of a constant feature term)
Given the interpretation T, the denotation []* of a constant feature term 1 is
given by:

Wir= U ™

a€ Val(Z)

Using this semantical interpretation of feature terms, it is legitimate to es-
tablish an order relation between terms. Given two terms ¢ and ', we will be
interested in determine when [¢]% C [/']%. In other words, we want to deter-
mine when a feature term ¢ is more specific (contains more information) than
another feature term ',

5.6 Term subsumption

We have just seen that the semantical interpretation of feature terms allows to
define an ordering relation between feature descriptions. We call this ordering
relation subsumption. The intuitive meaning of subsumption is that of informa-
tional ordering. We say that a feature term ) subsumes another feature term
Y (noted 3 C v') when all information in ¢ is also contained in ¢'. Formally,

Definition 5.9 (Subsumption)
Given two feature terms ¢ and ', ¢ subsumes ', b T 1), if there is a total
mapping function v : Vy — Vy such that :

1. v(Root(v))) = Root(y)'),
and Vz € Vy,
2. T($) < T(’U($)),

3. for every f; € F such that x.f; = U; is defined, then v(z).f; = ¥} is also
defined, and

(a) Vi, € O; either Fup;, € W' such that v(Root(1y)) = Root(v),)
or 3z’ € ¥ such that v(Root(yy)) = 2',
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(b) Yz € U, either I, € ¥! such that v(z) = Root(v},)
or 3z’ € W such that v(z) = 2,
(c) Vi, ¢y, € Wi (Y1 # ¥ = v(Root(yhy)) # v(Root (1)),
(d) Y, dr, € Ui (v(z) # v(Root(¥}))),
(e) Va,y € ¥; (z #y = v(z) # v(y)).

For instance, given the following two feature terms:

first = X171 : Michael

last = X1o : Smith

lives-at = X : Address[city = Xop: NYC'ity]

father = X3 : Pe’rson[name =X3;: Name[last = Xlg]]

name = X; : Name
T1 = X : Person

T9 =Y : Person| ™€ =Y:: Name[last =Y :family—name] }

father =Y5 : Person[name =Y5: Name[last = Yn]]

where Smith is a kind of family-name (family-name < Smith), we have that
T2 C T1 since T1 contains all the information given in T2 (including the fact
that the last name of a person is a family-name and is the same that the last
name of her father). Moreover, T1 specializes T2 specifying a partial description
of her home address, specifying her first name and a specific family-name.

Notice that definition 5.9 of subsumption provides a concrete interpretation
of the subsumption between two sets: given two sets of feature terms ¥, ¥’ we
say that ¥ C W' if the terms provided in ¥ are extended and refined in ¥’;
formally,

Definition 5.10 (Set subsumption)
Given two sets of feature terms U, U' we say that ¥ C U’ if for each 1) € ¥,
there is a different o' € U’ such that ¢ C 1)'.

From the definition of subsumption of two feature terms ¢ and ¢, it can be
easily proved that each subterm ; of ¢ also subsumes its corresponent )} of )’
Formally,

Lemma 5.1 Given two feature terms v and 1)', such that 1 subsumes ', if
U.f1 - fn is defined then:

Yofio fn P fie f
Proof: Let v a total mapping function satisfying the subsumption require-

ments for  C o' and .fr--- fn = ¥; since Vg C Vy we can take the same
mapping function restricted to Vg to prove the result.
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The subsumption operation captures the notion of informational ordering. In
fact, using subsumption we want to capture the notion of semantical inclusion.
When we say that a feature term v subsumes another feature term ' (¢ C 1)'),
we understand that the denotation of 1 ([¥]?) includes the denotation of 1
([4']*). Formally,

Theorem 5.1
Y Ly = [WIF 2 [W']*

Proof:

Since 1 C ' we have that exists a mapping function v : Vy — Vyr satisfying
the subsumption requirements.

Then, for all non empty valuation o' of ' we can construct a non empty
valuation a of ¢ as follows:

a(z) = o' (v(z))

having that for all x € Vy, and using Definition 5.9.2, T(z) < 7(v(x)).

Then, Definition 5.5.4 assures that [7(z)]2® D [r(v(z))]; In particular,
we have that a(Root(v)) € [r(Root(¢y))]%2.

Nezt,

1. if ¢ has not features we have that [1)]* 2 [¢']* and the theorem is proved.

2. otherwise for all f such that ¢.f = VU is defined, using Definition 5.9.3,
we have that ¢'.f = W' is also defined.

Finally, since Lemma 5.1 assures that ¥ C ¥', we have by induction that
fE(a(Root(v)))) € [¥]** and the the theorem is also proved.

From the notion of subsumption we define following additional notion of
equivalence:

Definition 5.11 (Equivalence)
Given two feature terms ¢ and ', we say that they are syntactic variants if and

only if T 4" and ¢’ T 4.

The intuition about the notion of equivalence is that two feature terms are
equivalent when contain the same information.

5.7 Representing feature terms as labeled
graphs

Feature terms can have an equivalent form of representation as la-
beled directed graphs [Carpenter, 1992] [Ait-Kaci and Podelski, 1993]
[Backofen and Smolka, 1995]. This representation is interesting because it
offers an intuitive and visual syntax.
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A feature term can be represented as a labeled directed graph that has, for
each variable X : s, a node ¢ labeled with sort s, and having an arc from ¢ to

another node ¢' labeled by f, written ¢ N q', for each feature f defined in ¢
with feature value ¢'.
For instance, the graph representation of the feature term of Peter from

Section 5.4 is the following:
owner

hant
/_\ %—\ does-not-start
Peter = personm car\w
o di full
% gas-gauge-reading

28

Formally, given the signature ¥, having a set of sort symbols S and a set of
feature symbols F we define a feature term 1 as a labeled graph as follows:

Definition 5.12 (Labeled graph representation of feature terms)
A feature term is a tuple ¢ =< Q,G,0,0 > where:

e Q : is a finite set of nodes rooted at G

e ( : is the root node

e 0:Q — S : a total node typing function.

o §:F x Q— 22 :is a partial feature value function

where 6 determines the labels of nodes, and §(f,q) = ¢’ implies that there is an
arc labeled by f from ¢ to another node ¢'.
In this labeled graph representation path references are defined as follows:

Definition 5.13 (Paths)
A path 7 is composed of a sequence of features. Let € the empty path, we extend
& to paths as follows:

e (e,9) =¢

o §(fm,q) =4d(m,6(f,q))

That isto say, if 7 = f1 ... f then (7, q0) = gn if qo LN q1 EEN gs - ELN Gn.-
The set {d(m, q)|n is a path} is the set of nodes reachable from g by some path.
The root of a feature term is a node ¢ that satisfies @ = {d(m, §)|7 is a path},
i.e. the node from which all nodes in @) are reachable.

We say that there is a path equality when two different paths m; and w5 lead
from a same node ¢ to the same node ¢' (6(71,q) = ¢’ = §(m2,q)).

Labeled graph representation of feature terms has been the basis for develop-
ing graphical browsers for the Noos development environment (see Appendix A).
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5.8 Understanding feature terms as clauses

Feature terms can be also understood as conjunctions of clauses
[Ait-Kaci and Podelski, 1993].  This clausal representation is useful and
more usual for understanding learning methods. There are two kinds of atomic
clauses: sort clauses (X : s) and feature clauses (f(X,Y)). A given feature can
be represented also as a conjunction of these two kind of atomic clauses.

Thus, we associate each feature term ¢ = X : s[f; =91 --- fn = ¢¥p,] with a
clause ¢(v)) as follows:

$() = X :s AFLX, Y1) Ad(hr) Ao A fu(X, V) A (i)

where Y7, ---,Y, are roots of ¢, - -1, respectively.
For instance, the Peter’s feature term can be represented as a clause in the
following way:

X : Person A age(X,28)
A drives(X,Y) A Y : Car A owner(Y, X)
A complaint(Y, Z) A Z : does-not-start
A gas-level-in-tank(Y, W) A W : full
A gas-gauge-reading(Y, W)

5.9 Evaluable feature terms

Noos methods are defined as evaluable feature terms. Evaluable feature terms,
like constant feature terms, are formalized as recursive records.

Given the signature ¥ = {(S, <;), (M, <), F} we define evaluable feature
terms as follows:

Definition 5.14 An evaluable feature term 1) is an expression of the form:
Y ou=[mfi =T fr =0,

where m is a sort in M, fi, -+, fn are pairwise distinct features in F, n > 0,
and each ¥; is a set of feature terms and variables.

Notice that we said the feature value can be (any) feature term; in particular
it can be a constant feature term or an evaluable feature term.

Below, we will describe how Noos built-in methods are formalizated as evalu-
able feature terms. Then, we will show how new methods are built by refinement.

Built-in methods

The set of Noos built-in methods is formalized as a collection of predefined
evaluable feature terms. A built-in method is modelled as a recursive extensible
record linked to a lambda abstraction. We call “required” features of the evalu-
able feature term those feature labels defined as the parameters of the lambda
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abstraction. For instance, the subtract built-in method is defined as a recursive
extensible record linked to the subtracty.y lambda abstraction with two named
parameters (called amount and minus) that encodes the usual subtraction oper-
ation of two numbers:

subtract = [subtract amount = number minus = number]
subtractsey = A(amount minus) amount — minus

Defining methods

New methods can be defined by refinement of built-in methods (or other meth-
ods). Refinement is modelled as record concatenation. For instance, we can
define the method minus-one by refinement of the subtract method as the
following record concatenation:

minus-one = subtract < [subtract minus = 1]

Then, we can define another method by refinement of minus-one, binding
the remaining amount parameter with a specific value obtaining a closed method
amenable to be evaluated.

The complete list of built-in methods with their parameter names is described
in Appendix D.

5.9.1 Defining methods in features

Closed methods can be evaluated to infer feature values. The evaluation of a
method m in a feature f to infer its feature value is indicated with the ‘#’ token
using the following syntax:

f=m#

The syntax m# is translated to basic AN syntax using the translation rule T as
follows:
T(m#) = m(sel = Ages)!!

where Aj.7 is the lambda abstraction linked to the built-in method b such that
b <,» m. That is to say, the evaluation of a method m is translated as the
functional application of Agqe¢ taking as values for the arguments of Age.y the
feature values of the features with same name defined in m.

For instance, the following expression

[subtract amount =7 minus = 3]#
is translated by the translation rule T to AN basic syntax as follows
A(sel)sel(amount — 7)(minus — 3)(Aamount minus) amount — minus)!!
that is reduced after a first step to
Alamount minus) amount — minus (amount — 7)(minus — 3)!

and eventually yields 4 as result.
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We say that a feature is reduced when the method incorporated to infer its
feature value has been evaluated.

Using the notion of reduced features we introduce the notion of normal form
for feature terms:

Definition 5.15 (Normal feature term)
A feature term 1 is in normal form when all their features (Fy) are reduced
(there is no feature with a method not yet evaluated).

5.9.2 Semantics of evaluable feature terms

Evaluable feature terms are interpreted, under an interpretation Z = (S, F, M),
as partial descriptions denoting sets of functions in M. Analogously to constant
feature terms, the interpretation of an evaluable feature term is given as the
union of functions denoted by all the valuations of Z (Val(Z)) as follows:

Definition 5.16 (Semantics of an evaluable feature term)
Given the interpretation I, the denotation [¢]7 of an evaluable feature term 1
is given by:

Wi = J W™

a€ Val(Z)
and for each valuation « in Val(7) its interpretation is given as follows:

Definition 5.17 (Denotation of an evaluable feature term under a valuation o)
Given the interpretation I, the denotation [)]5 of an evaluable feature term
Y, under a valuation o : Vy — MUS is inductively given by:

Let ) = X :m[fi =1 fn = 0]

a when o m]% and V=1 [fi]% (« JEe
W]]La:{ é (X)} ogzerwis(:()E[[ I* and Vizr, o« [fi] " ((X)) € [¥i]

5.10 Preferences

Preferences are modeled by partially ordered sets (also called posets). A partially
ordered set is a pair (S, <) composed by a set of elements S and a binary relation
< defined on S. We demand < to satisfy the reflexive and transitive properties.
In fact, we are asking (S, <) to form a pre-order. Formally,

Definition 5.18 (Preference)

A preference is a pair (S, <), where S is a set of alternatives and < is a binary
relation over S such that it is reflexive (a < a) and transitive (a < ¢ when a < b
and b < ¢). When a < b we say that a is preferred to b, and when both a < b
and b < a we say that a and b are equally preferred?.

4We will note (a;,a;) the pairs such that a; < a;.
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As we have shown in Section 3.4, there are two kinds of basic operations
over preferences in Noos: preference methods, that take a set of source elements
and an ordering criterion and build a preference (a partially ordered set), and
preference combination methods, that take two preferences and a combination
criterion and build a new preference.

Before to present the formalization of the preference operations we will in-
troduce some preliminary definitions. Then, we will present preference methods,
preference combination methods, and finally we show a set of properties about
these methods useful for implementing applications in Noos.

Preliminary definitions

Definition 5.19 (Restriction)
Given a preference defined by the pair (A, <) and the set B C A, we define the
preference restricted to the set B as

<Aa<>\B = <B=< ﬂ{B X B}>

Definition 5.20 (Eztension)
Given a preference defined by the pair (A, <) and A C B, we define the preference
extension to B as

(A, <)eatB = (B, < U{b x b})

Definition 5.21 (Transitive Closure)
Given a binary relation < defined on a set A we define its transitive closure <
as

X ={(a;,q;)[Fa1,...,an € At a; < a1 < ---an < a;}

3

5.10.1 Preference methods

A preference method takes a set of source elements and an ordering crite-
rion and builds a preference. There are several built-in preference methods
in Noos. Each preference method implements a different ordering criteria. The
complete list of preference methods is provided in Appendix D. Below, we
will describe two preference methods as example: increasing-preference and
subsumption-preference.

The increasing-preference method can be described as a method that
given a feature name f and a set of source elements S builds a preference (S, <)
such that:

<= {(SZ,S])‘SZf = v;, Sj.f = Vj, Vi > ’Uj}

The subsumption-preference method can be described as a method that
given a set of source elements S builds a preference (S, <) such that:

<= {(si;85)[5i C 85, 8; € si}
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5.10.2 Preference combination methods

A preference combination method takes one or two preferences (created either
by preference methods or by other preference combination methods) and builds
a new preference combining them in a specific manner. There are five preference
combination methods in Noos: inversion, T-intersection, C-intersection,
T-union, and C-union.

The inversion method takes a preference (A4, <) and builds a new preference
on the same set A inverting the order relations as follows:

Definition 5.22 (Inversion)
Given a preference defined by the pair (A, <) we define its preference inversion
as

<A7<>71 = <A={(aiaaj)|(ajaai) €<}>

The other four preference combination methods take two preferences (A, <1)
and (B, <2) and build a new preference (S, <) combining them. Since sets A and
B can be different, we will define first two basic combination operations from
preferences on the same set of elements. Then, we will explain how combination
methods extend these two operations for combining preferences on different sets.

We define two basic operations for combining two preferences (A4, <) and
(A, <), defined on the same set A. The first one builds a new preference man-
taining only the pairs a < b common to both <; and <5 as follows®:

Definition 5.23 (Basic intersection)
Given two preferences (A, <1), (A, <2) defined on the same set A we define their
intersection preference as

<A, -<1> n <A, -<2> = <A, <1 N -<2>

The second basic operation builds a new preference gathering all the pairs
a < b from either <; or <3, and performing a transitive closure as follows®:

Definition 5.24 (Basic Transitive Union)
Given two preferences (A, <1), (A, <2) defined on the same set A we define their

transitive union preference as
(4, <1) W (4, <2) = (4,1U<y)

Given two preferences P1 = (4, <1) and P2 = (B, <2) defined on two differ-
ent sets A and B, we have considered two alternatives in order to be able to use
the basic combination operations. The first one is by extending the preferences
P1 and P2 to the union set A U B. The second alternative considered is to
restrict the preferences P1 and P2 to the intersection set A N B (assuming
that A N B # ). Since we have two alternatives and two basic combination
operations, we have developed four combination methods.

5Note that the intersection of two pre-orders is also a pre-order.
6Transitive closure is performed because of the union of two orders is not always an order.
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The T-intersection method combines two preferences by restricting pref-
erences to the elements of the intersection and, then, performing the transitive
union operation on the resulting preferences as follows:

Definition 5.25 (T-Intersection)
Given two preferences (A, <1), (B, <2) we define their t-intersection N using
definitions (5.19) and (5.24) as

(A, =1)N(B, <2) = (4, <1)|anB ¥ (B, <2)|anB

The C-intersection method combines two preferences by restricting pref-
erences to the elements of the intersection and, then, performing the intersection
operation on the resulting preferences as follows:

Definition 5.26 (C-Intersection)
Given two preferences (A, <1), (B, <2) we define their c-intersection N using
definitions (5.19) and (5.23) as

(A, <1)N0(B, <2) = (A, <1)|anB N (B, <2)|anB

The T-union method combines two preferences by extending preferences to
the elements of the union and, then, performing the transitive union operation
on the resulting preferences as follows:

Definition 5.27 (T-union)
Given two preferences (A, <1), (B, <2) we define their t-union W using defini-
tions (5.20) and (5.24) as

(A, <1)¥U(B, <2) = (A4, <1)EztauB ¥ (B, <2) Bat AUB

Finally, the C-union method combines two preferences by extending prefer-
ences to the elements of the union and, then, performing the intersection oper-
ation on the resulting preferences as follows:

Definition 5.28 (C-union)
Given two preferences (A, <1), (B, <2) we define their c-union ¥ using defini-
tions (5.20) and (5.23) as

(A, <1)¥(B, <2) = (A, <1)Eatau N (B, <2) EatAUB

5.10.3 Higher order preferences

Higher order preferences are preference combination methods that build pref-
erences from preferences over preferences. In the current version of Noos we
have developed one higher order preference method called H-union (hierarchical
union). H-union takes two preferences P1 and P2, and constructs a new pref-
erence preserving all the set of order relations specified in P1 and adding the
subset of order relations from P2 that are not in conflict with P1.
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In a similar way to combination methods, we will first define a basic hierar-
chical union operation from preferences on the same set of elements. Then, we
will explain how H-union extends the basic operation for combining preferences
on different sets.

Definition 5.29 (Basic Hierarchical Union)
Given two preferences (A, <1), (A, <2) defined on the same set A we define their
basic hierarchical union preference as

(A, <1) o (A, <2) = (4, <1 U{(ai, a5) €< |(a,a;) ¢ <1 U <2})

The H-union method combines two preferences by extending preferences to
the union of sets as follows:

Definition 5.30 (Hierarchical Union)
Given two preferences (A, <1), (B, <2) we define their hierarchical union using
definitions (5.20) and (5.29) as

(A, <1) o (B, <2) = (A, <1)EatauB ® (B, <2) B2t AUB

5.10.4 Properties

Below we present some properties of preference combination operations that are
useful in the development of Noos applications. Particularly, we are interested
in properties regarding combinations of preferences—such as commutativity and
associativity.

1. The inversion of the inversion of a given preference A yields itself:

(A=) =4

2. Inversion is a morphism with respect to the intersection (4 N B)™' =
A='n B~! and to the union (AW B)~! = A=l w B~!.

3. W and N operations are associative and commutative.

4. Given two orders A, B (being reflexive, transitive, and antisymmetric) their
transitive union A W B is not always an order (may be only a pre-order).

5. Given two orders (A, <1), (4, <2), (4, <1) ® (A, <2) has finer granularity
than (A, <1).

6. Given two orders (4, <1), (A4, <2) such that (A4, <;) has finer granularity
than (A, <2)

Y

<Aa <1) d <Aa <2) = <Aa <2> d <Aa <1> = <A/ <1>

7. Hierarchical union method (5.29) is not commutative.

Example: given A = {a, b}
(A;a<b)e{Ab=<a)=(A,a<b) #(Ab<a)=(A,b<a)e(A a<Db)
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8. Hierarchical union method (5.29) is not associative.

Example: given A = {a,b, c}

((A;a<bye(Ab<c))e(A,c<a)=(A,a<b=<c)e(Ac<a)=
=(4,a<b<c)#(A,a=<b)=
=(A,a<be(Ab<c<a)=(A,a<b)e({Ab=<c)e(A c<a))

5.11 Perspectives

Perspectives is a mechanism to describe declarative biases for retrieval in the
Noos episodic memory. Given a source problem situation expressed by a feature
term, and given a syntactic pattern, the perspective method constructs a new
feature term that is a partial description of the problem describing the relevant
aspects of the problem situation. Perspectives are constructed in Noos using the
perspective built-in method (see Section 4.3).

Formally, the signature of syntactic patterns X.,; is an extension of the
signature ¥ of feature terms that incorporates a set of feature variables £ as

follows:
Zemt = {(S, Ss): <Ma Sm>a-7: U ‘C}

Using this extension of the signature ¥.,; and a set V of variables, we define
syntactic patterns as second order feature terms as follows:

Definition 5.31 A syntactic pattern w is an expression of the form:
w o u= X:is[fi=M - fn=Q]

where X is a variable in V, s is a sort in S, f1, -, fn are pairwise features in
FUL, n>0, and each Q; is a set of syntactic patterns and variables.

Given the previous definition of syntactic patterns, we define formally a per-
spective P as follows,

Definition 5.32 (Perspective)

Given a problem case C and a declarative bias defined by means of a syntactic
pattern S, a S-perspective of C' is defined as a feature term P such that there is
a total bijective function B : Vp — Vs, a total mapping function § : Vs — V¢,
and an instantiation function p : Fs — Fp satisfying:

Lof)=f VfeF
2. B(Root(P)) = Root(S), §(Root(S)) = Root(C)
and Vx € Vp

3. Sort(B(x)) < Sort(5(8(x))),
4. Sort(z) = Sort(6(8(z))),
5. for every f; € F such that x.f; = ¥, is defined, we have that
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(¢) 3fj € Fs: p(fi) = fi,

(b) both B(z).f; = Ui and 6(8(x)).f; = U have to be defined,
and Y, € U; -

(¢) Ty, € Vi such that B(Root(y)) = Root(1;,)

(d) 3} € WY such that 6(5(Root(vr))) = Root(v}).

Remark that a perspective P is constructed as a partial description of a
problem case C. In other words, this implies that P C C. Another important
remark is that several perspectives satisfying the definition can be obtained. This
implies that the implementation of the perspective mechanism has to provide
a way to obtain all of them (for instance, by providing a backtracking based
mechanism).

5.12 Descriptive Dynamic Logic

The goal of Descriptive Dynamic Logic (DDL) [Sierra et al., 1996] is to provide
a common logical framework to describe and identify the formal characteristics
of Multi-Language Architectures (MLA). In this way, DDL can be understood
as a formal basis to describe and compare different multi-language architectures.

In general, a MLA allows to build knowledge systems as a set of units with
initial local theories written in possibly different languages. Each unit is also
usually allowed to have its own intra-unit deductive system. Moreover, the whole
knowledge system is equipped with an additional set of deductive rules, called
bridge rules, to control the information flow among the different units of the
knowledge system. Thus, the DDL approach is very useful to model reflective
systems based on the use of several units containing local theories (or meta-
theories acting upon theories) that influence and/or modify each other.

In order to model knowledge systems using DDL two levels have to be consid-
ered: At the first level the Multi-Language Logical Architecture (MLA) is defined
as the concept representing the most general characteristics of target systems.
In this level languages, inference rules, and allowed topologies are described.

At the second level a particular knowledge system is represented. Particular
theories are built determining a subset of unit identifiers, the languages and
inference rules used in each unit, the set of interconnections among units and
their corresponding bridge rules, concrete signatures, and finally initial theories
for each unit.

For a full description of DDL see [Sierra et al., 1996]. Here we only present
some basic definitions of DDL in order to make easier understanding the Noos
formalization.

Definition 5.33 A Multi-Language Logical Architecture is a 4-tuple M LA =
(L,A,S,T), where:

1. L={L;};cs is a set of logical languages,
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A = {Aj, j.}iijeeg 18 a set of (instances of ) inference rules between pairs
of languages, i.e. Ay j, C 2% x L;,. In particular, when ji1 = jo, Aj, 4
denotes a set of inference rules of the corresponding language; otherwise it
denotes a set of bridge rules between two different languages,

S is a finite set of symbols for unit identifiers,

T is the set of possible topologies. Each topology is determined by a set of
directed links between symbols from S, i.e. T is a subset of 25%5.

Notice that DDL is focused only on finite languages as it is the usual case in
knowledge systems where some limitative rules are imposed on the generation
of formulas.

Definition 5.34 A Multi-Language Knowledge System MKS for a given MLA
is a T-tuple MKS = (MLA,U, My, Ma, B, Mys,, Mq) where:

1.
2.
3.

MLA is a Multi-Language Logical Architecture,
U is a set of unit identifiers, i.e. U is a subset of S,

My, assigns a language to each unit identifier, i.e. My — L,

. MA assigns a set of inference rules to each wunit identifier, i.e

Mpa : U — UQA“ such that if Mr(u) = Lj, for some j € J, then
ied
Ma(u) C Ajj,
B is a mapping that assigns a set of directed bridge rules to pairs of dif-
ferent units, i.e. B: U xU — U 284 in accordance with the allowed
ijet
topologies in MLA,

My assigns a concrete signature to each unit identifier,

Mg assigns a set of formulas (initial local theory) to each unit identifier,
i.e. Mg:U — U 2% such that if My, (u) = Ly, then Mg (u) C Ly.
i€J

Definition 5.35 The set ®¢ of atomic formulas of DDL will be defined as the
set of “quoted” formulas from the languages L in MLA, indexed by the unit
identifiers in U.

Bo = {u: [¢llu € U,p € My(u)}

Definition 5.36 The set Iy of atomic programs of DDL is defined as the union
of intra-unit inference rules TIY™% and the inter-unit rules TIJteT

T, = (U nggk”a> ul (J T

kEK k#jEK
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being Hég)fm the set of all quoted deduction steps allowed according the unit
language My (uy) and the inference rules determined by Ma (uy)

and H(I)th” the set of all quoted deduction steps allowed according the unit
languages My (ur) and My (w;) and the inference rules determined by
B(uk,ul).

Given the set ®( of atomic formulas and the set Iy of atomic programs, the
set @ of compound formulas and the set IT of compound programs is constructed
following the propositional dynamic logic composition rules defined as:

1. true € ®, false € &, &5 C P,
2. if ¢,1) € O then ~p € ® and (¢ V) € P,

3. if p € & and a € II then {(a)p € P, denoting the possibility that after the
execution of a the formula ¢ to be true.

4. T, C I,

5. if a, B € II then the sequential concatenation (a;3) € I,
6. if o, 8 € II then the indeterministic union (a U 3) € II,
7. if a € II then the self-iteration a* € II,

8. if ¢ € ® then ¢? € ®, denoting the program that evaluates whether a
given formula ¢ is true.

[a]p is the usual modal abbreviation for =(a)—¢. Also A, — and <+ are
abbreviations with the standard meaning.

Definition 5.37 The DDL semantics, following the PDL semantics, is defined
relative to a structure M of the form M = (W, T, p), where W is a set of states,
7 a mapping 7 : ® — 2V assigning to each formula ¢ the set of states in which
@ is true, and p a mapping p : II = 2W>*W which assigns to each program a set
of pairs (s,t) representing transitions between states.

After introducing the basic concepts of DDL, we are ready to formalize the
metalevel inference in Noos.
5.13 Modeling Noos inference using DDL
In order to model Noos inference in DDL we have to define the set of unit lan-

guages, the set of inta-unit and inter-unit inference rules, the possible topologies,
and finally, the inference process as a set of compound programs;
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5.13.1 Noos unit languages

Formally, every feature term is represented as a DDL unit. Every unit has a
different identifier. There are three kinds of unit languages: concept languages,
method languages and metalevel languages. Concept languages pertain to units
representing concepts (called concept units). Method languages pertain to units
representing methods (called method units) and are an extension of concept
languages. Metalevel languages pertain to units representing metalevels (called
metalevel units) and are also an extension of concept languages.

Unit languages are built from the set of feature names F and the set of unit
identifiers U. We note U,, the subset of method unit identifiers from U.

Before presenting Noos unit languages we will define a notational equivalence
that simplifies their definition:

Definition 5.38 A feature value c is considered equivalent to the singleton set
that contains as element this feature value c.

c={c}

Given the definition above, we describe feature values and the set of inference
rules for query-methods directly working on sets.

The language L. of a concept unit ¢ representing a feature term 1 contains
formulas describing the feature values pertaining to each feature of ¢) and formu-
las describing the method pertaining to each feature of ¢. Since we have shown
in Section 3.3.6 that path references can be also viewed as query-methods, we
will represent all the path references as query-methods in order to simplify the
DDL model of Noos. Specifically, the set of formulas @, of a given concept unit
c is described as:

feFue2 meU,: f=ued,
f=m# e ®,

The language L, of a metalevel unit p is a concept unit language extended
with formulas describing the set of formulas about features contained in its
referent unit. Thus, the set of formulas ®, of a metalevel unit p contains, in
addition, formulas describing for each feature in the referent unit the method
and value (referent) pertaining to the feature as follows:

f€F,meUp:method(f) =m € P,

feFue2V referent(f) =uecd,

The language L, of a method unit m contains a set of formulas ®,, describing
feature values and feature methods like concept units. Moreover, ®,, contains a
set of formulas describing the result of the method evaluation. These formulas
are described as follows:
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u €2V : result(m) =u € &,

As we have shown, query-methods are a special kind of methods that provide
metalevel capabilities of reasoning about feature values. Query-methods are also
represented as DDL units. Their languages are method languages enriched with
formulas containing the feature values of features in other units. Thus, the set
of formulas ®,, of a given query-method unit m is enriched by

feFeUue2V ¢.f=ued,

Another special kind of methods are eval-methods. Their languages are
method languages enriched with formulas containing the evaluation results of
other methods.

m; € Up,u € 2V : result(m;) = u

5.13.2 Inference rules

The elementary inference inference steps in DDL are represented as a collection
of inference rules. There are two kinds of inference rules: intra-unit inference
rules for modeling the inference within a unit, and inter-unit inference rules for
modeling the communication among the different units. Only methods and meta-
level units have intra-unit inference rules. Inter-unit inference rules may connect
a unit with any other unit following the Noos topology (see Section 5.13.3).

Intra-Unit Inference Rules

Only methods and metalevel units have intra-unit inference rules. Inference
rules in metalevel units select one method for a given feature f from a set of
alternative methods S; reflection rules (represented as inter-unit rules) will add
this selected method to its referent unit. The inference rule for method selection
is the following:

f=s
meS
method(f) =m

select __
of =

Inference rules in methods code the built-in definition of the evaluation of the
method. There is one inference rule for each type of built-in method provided by
Noos. We have only to translate the previously defined AN lambda abstractions
to the DDL syntax. For instance, the inference rule for a subtract method m
previously defined as

subtractqer = A(amount minus) amount — minus

is translated to
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amount = ¢y

minus = ¢y

W _ 9
6subs — c=a C2
m

result(m) = ¢’

where a new formula result(m) = ¢' is added with the result of the difference
between the feature values given in amount and minus.

A more interesting inference rule is the inference rule for query-methods that
allows to reason about feature values of other units. The inference rule 62 for a
query-method unit m is defined as

feature = f
domain = {c1 - -- ¢}
Cl.f = S1

cn-f = sp

result(m) = Us;

wo__
oy =

Another important inference rule is the rule for eval-methods that allows to
reason about method units. The inference rule §;/¢ for an Eval-method unit m
is defined as

methods = {my -+ -my}
result(m) = s

result(my,) = s,

67746 —
mn result(m) = Us;

Inter-Unit Inference Rules

There are four kinds of inter-unit inference rules: Reification rules, Reflection
rules, Reduction rules, and Translation rules. Reification rules specify the rep-
resentation that a metalevel unit has about its corresponding base-level unit.
Reflection rules specify the changes that a metalevel unit may perform upon
its corresponding base-level unit. Reduction rules add to a unit the result of
the evaluation of one of its methods. Finally, Translation rules specify how
formulas may be transported from a unit to another one. The collection of
inter-unit inference rules are determined by the allowed topologies in Noos (see
Section 5.13.3).

Reification rules 437 add to the metalevel unit p the set formulas about the
feature values known in the unit ¢

T referent(f) = u

Reflection rules 6d2“’” add to the base-level unit ¢ a formula about the feature
method selected by the metalevel unit u
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sdown _ method(f) =m
el 4m

Reduction rules 5,’;fcdf add to a unit ¢ the formula for a feature f with the
result of the evaluation of one method unit m.

red result(m) = u
5mcf = -
f=u

Translation rules 62%;” add from a unit ¢ to a query-method unit m the

formula for a feature f

6tquery _ f =u
emf T ef=uw
Translation rules 62¢?%  add from a method unit m; to a method unit ms- a

mimea
formula with the evaluation result of m,

result(m,) =

teval
6m1 meo

u
result(my) =u

5.13.3 Topology

The set of possible topologies in Noos is formed by three kinds of relations among
units: reference relations, feature method relations and metalevel relations. The
set of reference relations of a unit ¢ with other units ¢’ is determined by the
set of formulas f = ¢’ contained in ¢. The set of feature method relations of a
unit ¢ with other method units m is determined by the set of formulas f = m#
contained in ¢. Metalevel relations are determined by explicit meta relations
from Noos descriptions. Metalevel relations are exclusive relations: one unit can
be the metalevel of only another unit (called referent), one unit can only have
one metalevel unit, and cycles are forbidden. Note that a metalevel unit can be
the referent of another (meta)metalevel unit. Figure 5.5 shows an example of a
specific Noos topology.

5.13.4 Programs

Inference in Noos is modelled by means of four kinds of programs: task pro-
grams formalizing the inference of feature values, metalevel programs formaliz-
ing the metalevel inference, query programs formalizing the inference performed
by query methods, and ewval programs formalizing the inference performed by
eval-methods.

The formalization of the Noos inference is presented without taking into
account preferences. Then, we will extend the formalization for incorporating
preferences.
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—— reference relations
———> metalevel relations
...... » Mmethod relations

Figure 5.5. An example of an allowed topology.

Task programs

Every unit ¢ has a set III"" of task programs m. ; for features f defined in c.
Specifically,

Hgntra — U Te.f
feF

where 7. f is defined as follows

Tef = (ng U true?); U ((f = m#)7?; Tm; 5:necdf)
meUnm

The task program 7. s for a feature f of unit c is defined as the sequential
concatenation of three programs: (i) the metalevel inference program «/ ,; (ii)
the evaluation program 7, of the method m; and (iii) the inference rule 6fneff that
adds a new formula with the result of the method evaluation. The indeterministic
union wgf U true? expresses the possibility to skip the metalevel inference step
when there is a method defined in the unit c.

Metalevel inference programs

Metalevel inference 7' s for a feature f of a unit ¢ is defined as the following
sequential concatenation:

elect, sdown
)

ﬂ-g.f :52@;71.“.)0;5; uef

The metalevel inference program =’ s starts with a reification inference rule
0.7, then engages the task program 7, ;s for a feature f at the metalevel unit p,
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selects one of the methods obtained in the previous step (6;‘9’“’5), and reflects
down this selected method to the referent unit (53‘3’}”")

Evaluation programs

Evaluation of methods in Noos are also formalized as DDL programs having the
following scheme:

Tm = Tm.fy3" " Tm.fn; Om

The evaluation program m,, of a method m is composed by the sequence of
task programs to infer the values for their required subtasks (fi,- - -, f) followed
by the intra-unit inference rule of m that combines the values of subtasks into a
final value. For instance, the evaluation program 7% of a subtraction method
m is the sequence of task programs to compute the operands and the intra-unit
rule 63%* that combines them.

sub

— . X . Ssub
Tm = Tm.amounts Tm.minus) 6m

Query-methods

Query-methods have also their own evaluation programs. The evaluation
program of a query-method is the reification of inference in Noos. A query-
method m involves the subtask feature (for obtaining a feature name f); the
subtask domain (for obtaining a unit or a set of units s); and the tasks of
inferring the feature value of feature f of all units in s. We use s as a shorthand
of {¢1---en}.

The first query-method is Infer-value method. The compound program v
for an infer-value method is the following;:

v o . . v, §iv
Ty = Tm.feature; Tm.domain’ U (Rma 6m)
5,f€Lm

where

Rim” = ((feature = f) A (domain = {c1---cn}))?; Tey 43 62?%}“‘”; S e fS 527:;;9

The evaluation program 7'V of an Infer-value method m first engages the
computation of a feature name f (7. feqture), N€Xt computes a unit or set of
units s (Tm.domain), and finally the task f is performed to all units in s (R)
and the results are combined by §iY.

The evaluation program 7£! of an Exists-value method m determines if any
solution to a task f for a set of units in s exists, and returns a boolean value
accordingly:

70 = if(xi?)? then 617U¢ else 5%
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where 6¢7%¢ and §{7%¢ are just intra-unit inference rules assigning true and false
respectively.

The evaluation program 7£? of a Known-value method m determines if the

solution to a task f for a set of units in s have already been computed, and
returns a boolean value accordingly:

kv _ . . kv
T = Tm.feature; Tm.domain; U Rm

$,fELm
where
Rf: = ((feature = f) A (domain = {c; --- ¢, }))7;
i (Sney 7" o3 Opneey”)? then 670 else 671%

Notice that the REY program is composed only by translation rules. Thus,
the evaluation of Known-value methods will yield true only when all feature
values have been already inferred.

Finally, evaluation program 7%’ of an All-values method m determines the
set of all inferrable values to a task f for a set of units in s:

av _ . . av, gav
Ty = Tm.feature; Tm.domain’ U (Rm ) 6m )

S, fELm
where
Ry = ((feature = f) A (domain = {c1---cn}))?;
(Ter g3 0T s o (e g3 OtV

and where o represents the closure of program a—that is, this program will
lead to a state in which no different state is reachable by another application of
program a. Specifically, a closure (7, ; 6:3?3”)6 produces all possible values of
task program m., r. Next 62 rule puts together all the values.

Query methods deal with the methods of a specific task and determine which
of the four kinds of inference is engaged by that task. In order to deal with a

specific method unit, Noos uses four kinds of eval-methods.
Eval-methods

The evaluation program of an eval-method m involves the subtask methods
that engages in the computation of the methods to be evaluated. Next, the
evaluation programs of these methods are performed.

The first eval-method is Noos-eval. The evaluation program =) of a Noos-
eval method m is the following:

ne _ . ne, sne
Tm = Tm.methods; U (Rm ) 6m )
SEL,

where
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Ry = (methods = {my - mun ) Ty s O 5 T3 Oy m

The evaluation program =)¢ of an eval-method m first engages the computa-
tion of the methods to be evaluated (7, methods), next performs the evaluation
programs of these methods (R?¢), and finally the results are combined (62¢).

The evaluation program of an FEzists-eval method m checks whether any
solution to evaluation exists, and returns a boolean accordingly:

7 = if(7"¢)? then 57" else 57715

The evaluation program of a Known-eval method m is analogous to the
previous evaluation program for determining that methods have already been
evaluated:

k . k
ﬂ_me = Tm.methods; U Rnf

SEL,
where
RFe = (methods = {m; ---m,})?;if (O s 0me )7 then 607" else ofatse

Finally, the evaluation program of a All-eval method m infers all the possible
values:

ae . ae, gae
Tm = Tm.methods; U (Rm ) (Sm )
SEL,

where

Ry = (methods = {my -+ mn}) 75 (Tmy 5605 0) S5 (T s O )

and 43¢ rule puts together all the values.

Inference in Noos starts when the user poses a query to the system by means
of a query expression. There are two kinds of query expressions: path references
and eval expressions. A path reference (>> £ of d) will start the task program
74.f- An eval expression (noos-eval m) will start the eval program mp,.

5.13.5 Adding preferences

Several alternative solutions can be yielded in solving a problem task T, since
several methods can be defined for solving a subtask of T. The DDL-based for-
malism for modeling Noos inference presented in previous section yields a so-
lution for a problem task T in an indeterministic way. Preferences are used in
Noos for specifying a preference order on the set of alternative methods defined
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for solving a task. This preference order between methods implicitly define a
preference order on the values inferred by methods. Thus, preferences define a
preference order on solution values for a problem task T.

Preferences can be added to the previous presented formalism as a postcon-
dition constraining the results yielded for a problem task. Specifically, given a
problem task f(d) we can define the task program w;.f taking into account the
preference information as the following contatenation:

T f = Td.f; (Mazimal_Solution)?

where first 74 ¢ engages the indeterministic task program for inferring a solution
value; and Maximal_Solution is a conjunction of DDL formulas that ensures
that the solution is maximal with respect to preferences.

The DDL expression for Maximal_Solution is a conjunction of formulas
satisfying the following definition:

Definition 5.39 (Maxzimal solution)

Given the set of achieved subtasks ty,ts - t,, that form the task decomposition
of a problem task T, given the set of partial orders <, - <, over the alternative
methods for these subtasks, and given the set of methods mq,ms -+ -m, engaged
respectively to these subtasks, a solution of T is maximal if there is no other
combination of methods m| <1 my, mby <o mo,---m!, <, m, (where at least
one m} # m;) that achieves a solution for T

5.14 Summary

This chapter presented the formal description of the Noos language. We pre-
sented the Noos formal syntax based on feature terms, its semantics, and the
formal model of the Noos inference process.

We used AN calculus to provide a syntax for Noos feature terms. Moreover,
AN calculus capabilities for modeling extensible knowledge are used for modeling
the refinemement mechanism of Noos. AN calculus lexical scoping is used for
modeling path references and path equality.

We adopted a related approach to the semantical interpretation of ¢)-terms
in order to provide a semantical interpretation of Noos feature terms. Following
the 1)-term formalism, feature terms are interpreted as partial descriptions. This
semantical interpretation of feature terms brings an ordering relation among
them. We call this ordering relation subsumption.

1-terms allows three equivalent representations: terms, clauses, and graphs.
We presented a graph representation of feature terms. The graph representation
is the basis for developing graphical browsers for the Noos development environ-
ment (see Appendix A). We also presented the clausal representation. clausal
representation is useful for comparing Noos learning methods with other existing
learning methods.

We follow the work on -terms for providing a formalism for Noos.
Nevertheless, other formalisms such as description logics [Nebel, 1990] (also
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known as terminological logics) are also close to ©-terms. Examples of lan-
guages based on description logics are LooM [MacGregor, 1991] and CLASSIC
[Brachman et al., 1991].

We used Descriptive Dynamic Logic to describe the inference process involved
in solving a specific problem task. The DDL model of Noos is defined by means
of a collection of units with three kinds of unit languages: concept languages,
method languages and metalevel languages. Every feature term is represented as
a DDL unit. The elementary inference inference steps in Noos are represented as
a collection of inference rules. There are two kinds of inference rules: intra-unit
inference rules for modeling the inference within a unit, and inter-unit inference
rules for modeling the communication among the different units. Only methods
and metalevel units have intra-unit inference rules. Inter-unit inference rules
may connect a unit with any other unit following the Noos topology. Then,
combining the inference rules, inference in Noos is modeled by means of four
kinds of programs: task programs formalizing the inference of feature values,
metalevel programs formalizing the metalevel inference, query programs formal-
izing the inference performed by query methods, and eval programs formalizing
the inference performed by eval-methods.

Finally, we defined formally two specific elements of Noos: preferences and
perspectives. Preferences are a declarative mechanism for decision making about
sets of alternatives. Reasoning with preferences is modeled by partially ordered
sets with a set of operations for constructing new preferences and combining
them.

Perspectives are a mechanism to describe declarative biases for retrieval in
the Noos episodic memory. Using feature terms, perspectives are formalized as
second order feature terms that denote sets of terms.
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Applications

The purpose of this chapter is to provide a set of examples of how diverse appli-
cations have been developed using Noos by several persons at the IITA.

All these applications are described in detail in other publications. The goal
of this chapter is to describe their main characteristics. Following this purpose,
and after a brief introduction of the task that the application solves, we will
focus on three aspects of the applications: how the domain knowledge required
for problem solving methods is modeled using Noos representation capabilities,
which problem solving methods are developed to perform the task, and which
learning methods are incorporated for solving the task.

In this chapter we will present six applications developed using Noos:
CHROMA, SPIN, SHAM, GYMEL, Saxex, and NoosWeb.

CHROMA is a system for recommending a plan for the purification of proteins
from tissues and cultures using chromatographic techniques developed by Eva
Armengol [Armengol and Plaza, 1994] [Armengol, 1997].

SPIN is a sponge identification system for a class of marine sponge species
(the family of Geodiidae) also developed by Eva Armengol [Armengol, 1997].

SHAM is a tool to help a non expert musician to harmonize melodies using
background musical knowledge developed by Marti Cabré [Cabré, 1996].

GYMEL is also a system for harmonization of melodies. Nevertheless, GYMEL
harmonize melodies using a case-based reasoning approach. GYMEL has been
developed by Jordi Sabater [Sabater, 1997].

Saxex is a case-based reasoning system for generating expressive perfor-
mances of melodies based on examples of human performances that are rep-
resented as structured cases. I have developed Saxex in the context of my
M.Sc.Thesis in Computer Music [Arcos, 1996] [Arcos et al., 1997b].

Finally, NoosWeb is a WWW interface to Noos applications supporting the
same interaction capabilities provided in the Noos window-based graphical inter-
face developed for Apple computers. NoosWeb is not exactly an application such
as other applications presented in this chapter. We have included NoosWeb for
presenting the accessibility facilities of Noos and for describing the set of small
improvements performed in Noos to support remote calls. NoosWeb has been
developed by Francisco Martin [Martin, 1996].

149
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6.1 CHROMA

Noos has been used to implement CHROMA [Armengol and Plaza, 1994]
[Armengol, 1997], a system for recommending a plan for the purification of pro-
teins from tissues and cultures using chromatographic techniques. Purification is
an essential process in the analysis of the properties of molecules from biological
origin and widely used in industry and research. Proteins are a type of biological
macromolecules that are purified by a sequence of laboratory operations. The
most used operations for protein purification are chromatographic techniques.
Purification plans of CHROMA incorporate different chromatographic techniques
such as:

Ion-exchange: process based on the Coulomb’s law,

Hydrophobic Interaction: process based on the Van der Vaals law,

Gel Filtration: process that separates the molecules according its size, and

Affinity: process that exploits the existence of specific unions between
certain types of molecules.

Moreover, CHROMA incorporates different techniques such as precipitation
and clarification, previous to the chromatographic process.

A plan to purify a molecule can be composed by several steps involving a
chromatographic technique, that can be different, in each step. There is no
unique way to purify a given protein. To choose an adequate purification plan
involves reasoning about different aspects such as, for instance, the protein to
purify, the sample origin (culture, tissue, etc), and the future use of the purified
molecule. Protein purification requires the experience of an expert. Usually,
a human expert first carries out a focused search in the literature in order to
obtain a set of purification plans used in “similar” problems. Then, the expert
analyzes the set of collected precedents and chooses the most appropriate.

The goal design of CHROMA was to build a system that, using a memory of
purificated cases, was capable to find precedent cases useful for solving new ex-
periments in an expert-comparable way. CHROMA learns from experience using
two learning methods: CBR learning and induction. Four problem solving meth-
ods have been developed for recommending purification plans. One of them is
a classification method that uses the induced knowledge. Moreover, a metalevel
method is able to decide, for a particular problem, which problem solving method
is more likely to succeed. The reflective capabilities of Noos allow CHROMA to
analyze and decompose problem solving and learning methods in a uniform way,
and also to combine them in a simple and efficient way.

We will give here a brief description of CHROMA’s components. The reader
may consult [Armengol and Plaza, 1994] and [Armengol, 1997] for a more de-
tailed description of CHROMA.



Figure 6.1. A Noos browser of an experiment from CHROMA’s case-base.
An experiment is composed of two features: the sample from which the
protein has to be extracted and the purification plan. In this experiment
purification plan is formed by three steps precipitation, ion-exchange,
and affinity.

6.1.1 Modeling domain knowledge

The domain ontology of CHROMA is composed of concepts such as experiments,
samples, purification plans, proteins, species, tissues, and chromatographic tech-
niques.

Experiments have two features: the description feature, embodying a de-
scription of the protein to be purificated and of the sample from which the
protein has to be extracted, and the purification feature, embodying the pu-
rification plan to be performed (see Figure 6.1). A description is a feature
term with two features: the protein to purify and the sample. A sample is
described, in turn, by two features: the species where the sample comes from,
and the source of the sample (such as an animal or vegetal tissue, or a culture).

Purification plans are composed of a variable number of chromatographic
steps represented as features of the plan (called stepl, step2, etc) embodying
the step. Each step has two main features: the name feature, containing a
specific chromatographic technique (Affinity, ion-exchange, etc), and either
the reagent or the resin feature containing the substance used to purify the
protein. Other complementary features such as the PH feature are also defined.

CHROMA has available an episodic memory of about one hundred solved pu-
rifications. Moreover, the system has been tested using twenty-five new prob-
lems.
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6.1.2 Solving the purification task

The main task of the CHROMA application is the purification task. Given a
new experiment containing only the sample, the goal of the purification task
is to determine a purification plan using domain knowledge and the episodic
memory of purificated cases. The purification task uses four methods for rec-
ommending purification plans: equal-sample, analogy-by-determination,
classify-by-prototype, and default-plan.

Equal-Sample method

The equal-sample method detects if there is an experiment in the episodic
memory having the same sample as our current experiment.

Specifically, the equal-sample method is a CBR method decomposed in two
subtasks: retrieve and reuse subtasks.

The retrieve subtask is achieved by a method defined by refinement of the
retrieve-by-pattern built-in method. The retrieval method takes the sample
of the current experiment problem as a pattern to perform a search for precedents
into the episodic memory. The reuse task is achieved by reinstantiating the
purification plan given in the precedent found to the current problem.

The equal-sample method is useful to solve routine purifications with com-
monly occurring samples and proteins assuring a correct solution for these cases.

Analogy-by-determination method

The analogy-by-determination method is a case-based method based on ana-
logical determinations [Russell, 1990]. Determinations are functional dependen-
cies used as justifications in analogical reasoning (see an example in Section 4.2).

The analogy-by-determination method is a method decomposed in three
subtasks: retrieve, select, and reuse subtasks.

The retrieve task is achieved by a retrieval method that searches for exper-
iments from the episodic memory purifying the same protein than the current
experiment problem—that is to say, stating that the purification plan depends
on the protein.

When the retrieval method finds several precedents, the method defined for
the select task ranks the precedents according to domain specific criteria such
as similarity of species or source. When domain criteria are not sufficient to
determine a most preferred precedent, the precedents are presented to the user
who must choose one of them.

Finally, the reuse subtask is achieved by reinstantiating the purification plan
given in the most preferred precedent, according to the inference performed by
the select subtask, to the current problem.

Classify-by-prototype method

The classify-by-prototype method is a classification method. This method is
decomposed in four subtasks: obtain-classes, plausible-classes, select,
and reuse.
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The obtain-classes task is achieved by a method that obtains the set of
solution classes in which a new experiment can be classified. This set of solution
classes is generated using inductive learning by the induce-prototype method
(see next method). Solution classes are defined as feature terms embodying a
purification plan and a prototype that is a partial description of an experiment
description generalizing the set of experiments that has been solved using this
purification plan.

The plausible-classes task selects, using a method based on subsumption,
the subset of solution classes which description subsumes the new experiment.

When more than one solution class is chosen, the select task has defined
an user-interface method that presents their associated purification plans to the
user and asks to the user to select the best of them (the user required to be
himself the responsible instead of automating further the process).

As in all CHROMA methods, the reuse subtask is achieved by reinstantiating
the purification plan given in the most preferred precedent, according to the
inference performed by the select subtask, to the current problem.

Induce-prototype method

The induce-prototype method is an inductive method based on antiunification
(see Section 4.6). The goal of the induce-prototype method is to construct a
set of purification prototypes of experiments that share the same purification
plan. These set of prototypes are used by the classify-by-prototype method.

The induce-prototype method is decomposed in three subtasks:
build-partitions, select-representative-sets, and generate-prototype.

The first subtask divides the base of cases into sets containing experiments
purified following the same purification plan.

Because of some of the formed sets may have few elements and it is not desir-
able to make induction with these small sets, the select-representative-sets
task, defined by a filter method, rejects those sets having a number of elements
lower than a threshold.

Finally, the generate-prototype subtask constructs, using methods based
on antiunification such as INDIE (a bottom-up induction method) or pIsC (a
top-down induction method) [Armengol, 1997], a purification prototype for each
representative set.

Default-plan method

The default-plan method is a domain method based on a statistical analysis
of purification experiments. This method is used when there is no experiment
in the episodic memory purifying the protein we are interested in and other
methods are failed.

The default-plan method is based on the observation that when an expert
doesn’t find similar precedents in the literature for solving a given problem, the
expert uses generally valid default plans. These default plans are less efficient but
nonetheless appropriate for purification. The default-plan method captures
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this observation recommending a plan obtained from a statistical analysis of
purification experiments.

Configuration of methods

CHROMA is provided by a metalevel reasoning method to decide, on a case-by-
case basis, the applicability of the CHROMA methods and the order in which
they are attempted. The metalevel method analyzes the current problem in
order to determine the subset of applicable methods and an order for attempting
methods. An empirical assessment has shown that this approach is better for this
domain than the usual fixed sequence of methods attempted until one succeeds.

The implementation of the CHROMA metalevel reasoning method illustrates
the powerful capabilities of Noos to implement, combine and experimentally
evaluate the quality and efficiency of methods and method-combinations, and
tailor the system to the task requirements in an application domain.

6.2 SPIN

SPIN [Armengol, 1997] is another system developed using Noos at the IITA. sPIN
is a sponge identification system for a class of marine sponge species (the family
of Geodiidae). SPIN currently integrates a bottom-up induction method, a top-
down induction method, a CBR method based on an entropy measure, and a
method that combines lazy induction and CBR.

The identification of marine sponge specimens is a specially complex task that
requires an expert due to the genetic diversity and the morphological plasticity
of marine sponges. Moreover, in some sponge phylums, such as the Porifera
phylum, is not clear how the different taxa are characterized.

SPIN knowledge base has been constructed from a subset of the specimens
used to test the SPONGIA system [Domingo, 1995], a knowledge based system
implemented at our Institute using MILORD-II [Puyol-Gruart, 1995]. An impor-
tant remark is that a specific sponge specimen is described in SPIN using only
the set of features used by SPONGIA in its identification.

A specimen can be identified as belonging to five different taxonomic levels
(class, order, family, genus, and species). Currently, SPIN knowledge base con-
tains only specimens from the Geodiidae family. This implies that SPIN can only
identify specimens at genus and species levels. Nevertheless, incorporating spec-
imens from other taxa, SPIN could perform identification at the five taxonomic
levels.

Analogously to the description of CHROMA, we will give here a brief descrip-
tion of SPIN components. The reader can consult [Armengol, 1997] for a more
detailed description.



Figure 6.2. A Noos browser of a sponge problem from SPIN’s case-base. A
sponge problem is composed of two features: the description of a sponge
specimen and its classification into the five taxonomic levels.

6.2.1 Modeling domain knowledge

The domain ontology of SPIN is composed of concepts such as specimen descrip-
tions, skeleton characteristics, and taxa.

Cases are described by refinement of a sponge-problem. A sponge-problem
is a feature term holding two features: description and solution features
(see Figure 6.2). The feature value of a description feature is a feature term
describing the specific information of a sponge specimen. The feature value of
a solution feature embodies a feature term describing the classification of the
sponge specimen into the five taxonomic levels.

6.2.2 Solving the identification task

The main task of the SPIN application is the identification task. Given a new
sponge specimen, the goal of the identification task is to determine the taxa
(genus and species) to which this new sponge specimen belongs!. There are two
alternative ways to proceed in order to identify specimens: (1) analyzing whether
a new specimen has the features characteristic of some taxa, or (2) looking for
similar specimens into the episodic memory and classifying the new specimen
according to the taxa of the most similar precedents.

IThey are all of the Geodiidae family, so there is no need of identification at family or
higher levels
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The identification task can be achieved using three different meth-
ods: identify-by-subsumption, CRASS, and LID. Moreover, the
identify-by-subsumption method may use domain knowledge built by
two inductive learning methods: either by INDIE or DISC.

Identify-by-subsumption method

The identify-by-subsumption method is a classification method based on do-
main knowledge acquired by means of an inductive learning method. The goal of
identify-by-subsumption method is to classify a new sponge specimen from a
set, of concept descriptions of the taxa in which the new specimen can be classi-
fied. Concept descriptions are acquired using either INDIE or DISC. The decision
of which inductive method to use is made dynamically by the user.

The identify-by-subsumption method is a method decomposed in four
subtasks in a similar way of classify-by-prototype method developed in
CHROMA.

CRASS

CRASS is a domain independent case-based method that uses an entropy-based
assessment of similitude importance [Plaza et al., 1996b]. The goal of CRASS is
to classify a new case, from a set of solution classes and a set of precedent cases,
estimating its similarity to precedent cases.

The cRrRASs method is decomposed in two subtasks: build-similarity-
-terms and select tasks.

The goal of the build-similarity-terms terms subtask is to build a set
of similarity terms from the new case N and each precedent case P;. A sim-
ilarity term is a partial description, built using antiunification, containing the
commonalities between N and P;.

Once the set of similitude terms are generated, the goal of the select case is
to choose the precedent most similar to the new case using similitude terms.
Specifically, the select subtask is performed by a method decomposed, in
turn, in two subtasks: entropy-assessment and weight subtasks. The first
entropy-assessment subtask estimates the importance of a similitude term S
by measuring the entropy of the set of precedents subsuming S with respect
to solution classes. This estimation is performed by a method based on Shan-
non entropy. The second weight subtask uses an aggregation-based method for
weighting the entropy measure of each solution class with respect to the cardi-
nality of the set of precedents belonging to this class. The solution class selected
is that of with higher weight.

LID

LID is a domain independent method that combines top-down lazy induction and
case-based reasoning. The goal of LID is also to classify a new case, from a set
of solution classes and a set of precedent cases.
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The LD method is decomposed in two subtasks: build-description and
identify tasks.

The goal of the first build-description task is to construct a partial de-
scription of the new problem. The partial description is constructed incremen-
tally, from an empty description, by adding one feature (the most discriminating
one) to the description. The task is performed by a method that combines an-
tiunification and a discriminant measure of features’ relevance based on Lépez
de Méntaras distance [Lépez de Mantaras, 1991].

The goal of the identify task is to discriminate the new problem, using the
partial description constructed by the build-description task, with respect
to precedent cases. The method developed to perform such task is based on
subsumption and on Shannon entropy.

Build-description and identify subtasks are reiterated until the partial
description constructed by the build-description task discriminates the new
problem with respect to all precedent cases and it classifies it in a solution class,
or there is no more discriminant features. In the first option, LID yields that
solution class. In the second option, LID yields a set of ranked possible solution
classes.

6.3 SHAM

sHAM [Cabré, 1996] is also a system developed using Noos. The main goal of
SHAM was to develop a tool to help a non expert musician to harmonize melodies
using background musical knowledge.

Musical knowledge is described by means of (1) PSMs that characterize lo-
cal situations (for instance notes with specific weight in a metre), (2) PSMs
that propose chords for these local situations, and (3) PSMs that combine the
alternatives constructing a complete chord sequence.

Currently, SHAM takes a MIDI file? containing a melody line, translates the
information to Noos descriptions, and starts an inference cycle of Noos obtaining
a chord sequence and a bass line described in Noos. Finally, SHAM generates a
new MIDI file containing the melody line plus the chord sequence and the bass
line?3.

The user is not required to know neither Noos nor the internal musical rep-
resentation of the system. SHAM is provided with a window-based interface that
allows to choose an input MIDI file, specify musical information not provided
in the MIDI file such as the key and the metre, and choose a set of alterna-
tive parameters stating the harmonization style. These set of harmonization
parameters determine the set of used chords (e.g. not taking into account sev-
enths in chords and the maximum number of chord inversions) and the degree
of complexity of the final chord sequence.

2MIDI files are the standard format for representing musical scores and can be generated
by all computer music editors.

3The reader can visit our web site at <http://www.iiia.csic.es/Projects/music/> for sound
examples.



Figure 6.3. A Noos browser of the song ‘El noi de la mare’ from SHAM.
A problem to be solved in SHAM is described as a work with two features:
parts describing the hierarchical decomposition of a musical piece in terms
of bars and notes, and harm-type describing the user preferences for har-
monization.

An interesting feature of SHAM is that different runs may result in different
harmonizations depending on that several parameters and on a random compo-
nent giving, therefore, the possibility to explore and combine different results.
SHAM is being applied to harmonize catalan folk songs and sometimes shows a
good degree of creativity.

6.3.1 Modeling musical knowledge

The domain ontology of SHAM is composed of concepts analyzing musical pieces
in a hierarchical way (see Figure 6.3): a piece is represented as a work decom-
posed in several parts. Each part is able to have a different key. Moreover, a
part is decomposed in several bars. Finally, every bar holds a set of notes and
a set of chords.

Specifically, a work is a feature term with five features: parts, holding the set
of parts of the work; harm-type, holding the harmonization parameters chosen
by the user; selected-chords, holding the subset of applicable chords following



6.3. SHAM 159

the hamonization style specified in harm-type; chord-sequence, holding the
final chord sequence inferred by SHAM; and bass-line, holding the final base
line inferred by SHAM.

Feature values of features parts and harm-type are determined by using an
input graphical interface. Feature selected-chords is defined using a filtering
method that infers a subset of chords from the set of all defined chords and the
set of user preferences defined in feature harm-type. Features chord-sequence
and bass-line specify a possible harmonization of the piece and are inferred
using problem solving methods defined for the harmonization task (see next
subsection).

A part is a feature term with five features: from-work, that is a reference
to the work it belongs; order, holding a reference number identifying the part;
key, holding the key of the part; mode, holding the key mode (major or minor?);
and bars, holding the set of bars of the part.

A bar is a feature term with two kinds of features: features given as prob-
lem data (such as from-part, order, metre, and notes) and features inferred,
using background musical knowledge, while selecting the chord sequence (such
as vertical-choose, horizontal-choose, final-chords, and final-bass).
Feature from-part is a reference to the part it belongs. Feature order holds a
reference number identifying the bar. Feature metre holds the metre of the bar.
Feature notes holds the set of notes contained in the bar. Inferred features will
be described in next section.

A note is a feature term with six features: from-bar, that is a reference to
the bar it belongs; pitch, holding the pitch relative to the current key (e.g. pitch
Cin key C is represented as p1); onset, holding the delay from the start of the bar
to the start of the note; duration, holding the note’s duration; octave, holding
the note’s octave (only used for MIDI interface); and chord-note?, stating if the
note is important enough to have a chord. Feature chord-note? is defined by
means of a method that estimates the importance of the note from its duration
and its onset.

A chord is a feature term with five features: from-bar, that is a reference to
the bar it belongs; name, holding the kind of chord (e.g. Imaj7); onset, holding
the delay from the start of the bar to the start of the chord; duration, holding
the chord’s duration; and weight, stating the appropriateness of the chord in
the bar. Feature weight is defined by means of a method that estimates the
suitability of the chord taking into account the notes of the bar it belongs. SHAM
deals with more than one hundred different chords.

6.3.2 Solving the harmonization task

The main task of SHAM is the harmonization task. Given the melody of a musical
piece, the goal of the harmonization task is to find a sequence of chords and a
bass line for this piece. The chord sequence is built taking into account user

4currently SHAM supports only major modes since there are no harmonization methods

dealing with minor modes. Nevertheless, adding new harmonization methods minor modes
could be harmonizated.
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preferences and background musical knowledge expressed as methods. The bass
line is built using background musical knowledge and according to the chord
sequence.

The selection of a chord sequence is more complex than the selection of an
appropriate bass line. Here we only sketch the problem solving method developed
by selecting chord sequences. The reader can consult [Cabré, 1996] for a detailed
description of the harmonization process in SHAM.

The main reasoning in selecting chords is performed in the context of a bar.
SHAM can choose one chord covering a whole bar, two chords covering each
of them half a bar, a chord covering half a bar (the beginning or the end),
or a rest (a bar without chords). The inference process engaged for each bar
is decomposed in four subtasks: (1) first the set of chords available according
to the user preference is taken from the work feature selected-chords, (2)
then task vertical-choose is engaged in order to filter the subset of feasible
chords according to the notes of the bar, (3) next task horizontal-choose
estimates the appropriateness of chords according to neighbor bars, (4) finally
task final-chords selects a chord (or a set of chords) for the bar taking into
account the weight of chords and a random factor.

6.4 GYMEL

GYMEL [Sabater, 1997] is also a system developed in Noos for harmonization of
melodies. The main goal of GYMEL was to develop a tool to help a non expert
musician to harmonize melodies using a case-based reasoning approach. More-
over, GYMEL incorporates background musical knowledge for solving isolated
situations not covered by existing cases.

The approach taken in GYMEL is quite different to SHAM’s approach. SHAM
is based on a hierarchical decomposition of a piece, given as input, from which
the selection of possible chords is performed. On the other side, GYMEL starts
from a melody line (a sequence of notes) constructing an analysis structure over
that melody line that is the basis for retrieval of similar precedents.

GYMEL, as SHAM does, takes a MIDI file containing a melody line, translates
the information to Noos descriptions, starts an inference cycle of Noos obtain-
ing a chord sequence described in Noos, and finally generates a new MIDI file
containing the melody line plus the chord sequence.

GYMEL suggests different harmonizations for a given musical phrase. The
user can select some of them to be incorporated into the episodic memory. These
harmonizations will then be used in solving new phrases.

6.4.1 Modeling musical knowledge

The domain ontology of GYMEL is composed of concepts such as phrases, keys,
notes, chords, and nodes.

A musical piece is described as a phrase. A phrase is a feature term with
six features: key, holding the key of the piece; mode, holding the key mode



Figure 6.4. A Noos browser of a musical phrase from GYMEL’s case-base.
A Case is represented as a feature term with six features: key, mode, and
metre describe general knowledge of the phrase; melody holds a sequence of

notes; structure holds a sequence of nodes; and harmony holds a sequence
of chords.

(major or minor); metre, holding the metre of the piece; melody, holding the
melody line as a sequence of notes; structure, holding the analysis structure
of the piece as a sequence of nodes; and harmony, holding a sequence of chords.
Figure 6.4 shows a browser of a phrase structure.

A note is a feature term with six features: value, holding the corresponding
MIDI number of the note (used by the MIDI interface); name, holding the name
of the note (e.g. C4); pitch, holding the pitch relative to the current key (as
same as SHAM); dur-rel, holding the time distance from the beginning of the
phrase to the note; duration, holding the note’s duration; and next, holding a
reference to the following note in the phrase.

A chord is a feature term with four features: kind, holding the kind of the
chord (e.g. IIminor7); dur-rel, holding the time distance from the beginning
of the phrase to the chord; duration, holding the chord’s duration; and next,
holding a reference to the following chord in the phrase.

The analysis structure is composed of a sequence of nodes grouping sets of
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consecutive notes in the phrase. Each note will belong to a unique node, and
for each node one chord will be selected. A node is a feature term with six
features: notes, holding a group of consecutive notes; main-note, holding the
most important note of the group; metre, holding a reference to the metre of
the phrase; chord, holding the chord to be played at same time than the group
of notes; next, holding a reference to the following node; and prev, holding a
reference to the previous node.

6.4.2 Solving the harmonization task

The main task of GYMEL is the harmonization task. Given the melody of a
musical phrase, the goal of the harmonization task is to find a sequence of chords
for this phrase. The harmonization task is performed by a method decomposed
in two subtasks: build-analysis-structure and propose-harmony.

The goal of task build-analysis-structure is to analyze the phrase and to
construct a structure grouping subphrases candidates to share the same chord.
This grouping structure is built using background musical knowledge. A struc-
ture is composed by a sequence of nodes. For each node a collection of notes
forming a subphrase and a main note is selected.

After the construction of the analysis structure, the harmonization process
starts properly. The propose-harmony task is performed by a case-based method
that proposes a chord for each node of the analysis structure. Moreover, when
the case-based method is not able to find precedents for a given node, GYMEL
uses a method for proposing a chord based on background musical knowledge.

The case-based method is decomposed in two subtasks: retrieve and reuse.

The retrieve task is performed, in turn, by a method decomposed following
the usual retrieval subtasks: identify, search, and select subtasks.

The identify task is performed by a method, called build-node-
-perspective, based on perspectives (see Section 4.3). The build-node-
-perspective method builds a retrieval pattern based on the analysis structure
of the phrase. Given a node, the method builds a perspective of that node tak-
ing into account the main note of the node and the selected chords of its two
previous nodes. Specifically, the build-node-perspective method is defined
as follows:

(define (perspective build-node-perspective)
(node )
(pattern (define (node)
(main-note (define (note)
(pitch (define (relative-pitch)))))
(prev (define (node)
(chord (define (chord)
(kind (define (chord-kind)))))
(prev (define (node)
(chord (define (chord)
(kind (define (chord-kind))))))))))))

For instance, the application of that method to a node with a main note with
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pitch P4 and with two previous nodes with selected chords IImin7 and Imaj,
yields the following pattern:

(define (node)
(main-note (define (note)
(pitch P4)))

(prev (define (node)

(chord (define (chord)

(kind IImin7)))
(prev (define (node)
(chord (define (chord)
(kind Imaj))))))))

The search task is performed by a method based on the retrieve-by-
-pattern built-in method. This method retrieves, using the pattern constructed
by perspectives, nodes sharing the same main note and the same chord progres-
sion of the two previous nodes than the node problem.

The select task performs a random selection. The Noos backtracking mech-
anism assures that all precedents will be attempted.

The goal of the reuse task is to access to the chord of the selected precedent
node and propose a new chord, with same kind of the precedent chord, for the
current node. The other features are determined from the features of the current
node and background musical knowledge.

The GYMEL’s problem solving method is exhaustive: all alternative solutions
that it can be built are shown to the user. Then, the user chooses some of them
to be stored into the episodic memory, and thus to be used in solving future
problems.

6.5 Saxex

Saxex [Arcos, 1996] [Arcos et al., 1997b] is a case-based reasoning system for
generating expressive performances of melodies based on examples of human
performances that are represented as structured cases. Saxex has been developed
using sound analysis and synthesis techniques of the sMS environment (Spectral
Modeling Synthesis) [Serra, 1997] and the Noos language.

An input for Saxex is a musical phrase described by means of a musical score
(a MIDI file) and a sound file. The score contains the melodic and the harmonic
information of the musical phrase. The sound file contains the recording of an
inexpressive interpretation of the musical phrase played by a musician. The
output of the system is a new sound file, obtained by transformations of the
original sound file, containing an expressive performance of the same phrase.

Solving a problem in Saxex involves three phases: the analysis phase, the
reasoning phase, and the synthesis phase (see Figure 6.5).

Analysis and synthesis phases are implemented using SMS sound analysis
and synthesis techniques, based on spectrum models, that are useful for the
extraction of high level parameters from real sounds, their transformation and
the synthesis of a modified version of the original sound. Saxex uses SMS in order
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Figure 6.5. General view of Saxex components. Analysis and synthesis
phases are performed in sSMS. Reasoning phase is performed in Noos.

to extract basic information related to several expressiveness parameters such
as dynamics, rubato, vibrato, and articulation. The sMs synthesis procedure
allows Saxex the generation of new expressive interpretations (new sound files).

The reasoning phase is performed using case-based techniques and is im-
plemented in Noos. This phase of Saxex incorporates background musical
knowledge based on Narmour’s Implication/Realization model [Narmour, 1990)
and Lerdahl and Jackendoff’s Generative Theory of Tonal Music (GTTM)
[Lerdahl and Jackendoff, 1993]. These theories of musical perception and musi-
cal understanding are the basis of the computational model of musical knowl-
edge of the system: using Noos perspectives methods with background musical
knowledge, Saxex takes dynamical decisions about the relevant aspects of a given
problem. That is to say, the background musical knowledge is used by Saxex as
a set of declarative biases for retrieval.

Problems to be solved by Saxex are represented as complex structured cases
embodying knowledge about the score of the phrase, knowledge about musical
understanding of the phrase, and knowledge about the expressive performance
of the phrase.



Figure 6.6. A Noos browser of the score for the ‘All of me’ ballad. Features
are represented as thin boxes, dots indicate not expanded terms, and gray
boxes express references to existing terms.

6.5.1 Modeling musical knowledge

The domain ontology of Saxex is composed of concepts representing three differ-
ent types of musical knowledge: (1) concepts related to the score of the phrase
such as notes and chords, (2) concepts related to background musical theo-
ries such as implication/realization structures and GTTM’s time-span reduc-
tion nodes, and (3) concepts related to the performance of musical phrases. A
Saxex case is represented as a feature term with three features: the score, the
structure, and the performance.

The score

A score (see Figure 6.6) is represented embodying a musical phrase. A phrase
is a feature term with two features: the melody feature, embodying a sequence
of notes, and the harmony feature, embodying a sequence of chords (see Fig-
ure 6.6). Each note holds in turn a set of features such as the pitch of the
note (C5, G4, etc), its position with respect to the beginning of the phrase,
its duration (using CommonMusic notation [Taube, 1991][Taube, 1996]), a ref-
erence to its underlying-harmony, and a reference to the next note of the
phrase. Moreover, a note holds the metrical-strength feature, inferred us-
ing GTTM theory, expressing the note’s relative metrical importance into the
phrase. Chords have also a set of features such as the name of the chord (Cmaj7,
E7, etc), their position, their duration, and a reference to the next chord.
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Figure 6.7. A Noos browser of the prolongational reduction structure for
the ‘All of me’ ballad.

The musical structure

The musical structure embodies the musical analysis of the phrase built using
the background musical knowledge. Narmour’s implication/realization model
(IR) proposes a theory of cognition of melodies based on eight basic structures.
These structures characterize patterns of melodic implications that constitute
the basic units of the listener’s perception. Other parameters such as metric,
duration, and rhythmic patterns emphasize or inhibit the perception of these
melodic implications. The use of the IR model provides a musical analysis based
on the structure of the melodic surface.

On the other hand, Lerdahl and Jackendoft’s generative theory of tonal music
(GTTM) offers an alternative approach to understanding melodies based on a
hierarchical structure of musical cognition. GTTM proposes four types of hierar-
chical structures associated with a piece. This structural approach provides the
system with a complementary view for determining relevant aspects of melodies.

The musical analysis builds a set of structures over the musical phrase.
It is represented by the analysis feature term with three features:
prolongational-reduction, time-span-reduction, and process-structure.
The prolongational-reduction feature embodies a hierarchical structure de-
scribing tension-relaxation relationships among groups of notes. Tension-
relaxation relationships are represented in Noos as trees (see Figure 6.7). The
time-span-reduction feature embodies another hierarchical structure that de-
scribes the relative structural importance of notes within the heard rhythmic
units of a phrase. These structural relationships are also represented in Noos



Figure 6.8. A Noos browser of the musical performance structure for the
‘All of me’ ballad.

as trees. Finally, feature process-structure embodies a sequence of implica-
tion/reduction (IR) Narmour’s structures. There are eight types of IR struc-
tures. Each IR structure has a set of features representing the different roles
that can play the notes in the structure (such as first-note, med-notes, and
last-note) and characteristics specific of each IR structure such as the melodic
direction.

The musical performance

A musical performance is represented as a sequence of events (see Figure 6.8).
There is an event for each note within the phrase embodying knowledge about
expressive parameters applied to that note. Specifically, an event has features
representing expressive parameters of notes such as dynamics, rubato, vibrato
level, articulation, and attack. Expressive parameters are described using
qualitative labels as follows:

Changes on dynamics are described relative to the average loudness of the
phrase by means of a set of five ordered labels. The middle label represents
average loudness and lower and upper labels represent respectively, increasing
or decreasing degrees of loudness.

Changes on rubato are described relative to the average tempo, also by means
of a set of five ordered labels. Analogously to dynamics, qualitative labels about
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Figure 6.9. Task decomposition of the Saxex CBR method.

rubato cover the range from a strong accelerando to a strong ritardando.

The vibrato level is described using two parameters: the frequency vibrato
level and the amplitude vibrato level. Both parameters are described using five
qualitative labels from no-vibrato to highest-vibrato.

The articulation between notes is described using again a set of five ordered
labels covering the range from legato to staccato.

Finally, Saxex distinguishes two transformations over a note attack: (1)
reaching the pitch of a note starting from a lower pitch, and (2) increasing the
noise component of the sound. These two transformations were chosen because
they are characteristic of saxophone playing but other transformations can be
introduced without altering the system.

6.5.2 The Saxex task

Given a musical phrase, Saxex infers a specific set of expressive transformations
to be applied to every note in the phrase. These sets of transformations are
inferred note by note. For each note in the phrase the same problem solving
method is performed.

The problem solving method developed in Saxex for this purpose follows the
usual subtask decomposition of CBR methods described in Section 4.5: retrieve,
reuse, and retain (see Figure 6.9). Given a current note problem of a problem
phrase, the overall picture of the subtask decomposition of Saxex method is the
following;:

e Retrieve: The goal of the retrieve task is to choose the set of notes (cases)
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most similar to the current note problem. This task is decomposed in three
subtasks:

— Identify: The goal of this task is to build retrieval perspectives us-
ing two alternative biases. A first bias based on Narmour’s impli-
cation/realization model, and a second bias based on Lerdahl and
Jackendoff’s generative theory.

— Search: The goal of this second task is to search cases in the case
memory using Noos retrieval methods and previously constructed per-
spectives.

— Select: The goal of the select task is to rank the retrieved cases us-
ing Noos preference methods. The preference methods use criteria
such as similarity in duration of notes, harmonic stability, or melodic
directions.

e Reuse: the goal of the reuse task is to choose a set of expressive transfor-
mations to be applied to the current problem from the set of more similar
cases. The first criterion used is to adapt the transformations of the most
similar case. When several cases are considered equally similar, transfor-
mations are selected according to the majority rule. Finally, when previous
criteria are not sufficient, all the cases are considered equally possible al-
ternatives and one of them is selected randomly.

e Retain: the incorporation of the new solved problem to the memory of
cases is performed automatically in Noos. All solved problems will be
available for the reasoning process in future problems.

After describing the task decomposition of Saxex problem solving method,
we will introduce a simplified example to help its understanding. Let us suppose
that Saxex has to infer a set of expressive transformations for the following note
within a phrase®:

(define (note Notel)

(pitch A4)
(position 17)
(duration Q.)

(metrical-strength extremely-high) N,
(belongs-to (define (P) E%E%
(first-note (>>)) L p—

(med-notes Note2)

(last-note Note3)

(direction down)))
(next Note2))

The first task engaged is the retrieve task. The retrieve task engages
in turn the identify subtask. Taking as example the following bias based on
Narmour’s model:

5The right side presents a picture of the note in musical notation.
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(define (note P1)
(pitch C5)
(position 0)
(duration Q)
(metrical-strength extremely-high)

(belongs-to (define (Process) P - -
(first-note (>>)) (q!}AJ T t
(med-notes Notel02) U - -
(last-note Notel03) L P —

(direction down)))
(next Notel02))

(define (note P2)
(pitch E4)
(position 25)

(duration Q)
(metrical-strength extremely-high)

(belongs-to (define (Process) L p—]
(first-note (>>))
(med-notes Note21)
(last-note Note22)
(direction up)))
(next Note21))

Figure 6.10. Two precedent cases retrieved by Saxex Problem solving
method.

Determine as relevant the role that a given note plays in a impli-
cation/realization structure.
described as a Noos description as follows:

(define (note)
(belongs-to (define (N-structure)
(£ o>

We obtain the following constructed perspective of Notel:

(define (note) -
(belongs-to (define (P)
¢ (first-note (>>))))) —r -
that is, the first note of a P process.

Then, the search task is engaged in order to find similar situations among
the precedent cases. Let us assume that the search task finds the following two
notes (called P1 and P2) as precedent cases (see Figure 6.10).

Next, the select task is engaged for ranking the precedents. Taking as
preference criterion the melodic direction, precedent P1 is considered as the most
relevant precedent (since it belongs to a process with descending direction like
Notel).
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Figure 6.11. First phrase from the ‘Autumn Leaves’ theme.

After choosing precedent P1 as the most relevant precedent, the reuse task is
engaged. For this simplified example, since we only have selected one precedent,
the set of expressive transformations to be applied to Notel are the same were
applied to precedent P1 and that are stored as part of precedent case P1.

6.5.3 Experiments

We have studied the issue of musical expression in the context of tenor saxo-
phone interpretations. We have done several recordings of a tenor sax performer
playing several Jazz standard ballads (“All of me”, “Autumn leaves”, “Misty”,
and “My one and only love”) with different degrees of expressiveness, includ-
ing an (almost) inexpressive interpretation of each piece. These recordings are
analyzed, using the sMs spectral modeling techniques, in order to extract basic
information determining the expressive parameters. The set of extracted pa-
rameters together with the scores of the pieces constitute the set of structured
cases of the case-based system. From this set of cases and using similarity crite-
ria based on background musical knowledge, the system infers a set of possible
expressive transformations for a given piece. Finally, using the set of inferred
transformations and the sMS synthesis procedure, Saxex generates a new sound
file containing expressive performances of the jazz ballads.

We have performed two sets of experiments combining the different Jazz
ballads recordered. The first set of experiments consisted in using examples of
expressive performances of some phrases of a piece in order to generate new
expressive performances of another phrase of the same piece. More concretely,
we have worked with three different expressive performances of two phrases of
a piece, having about twenty notes, in order to generate new expressive per-
formances of another phrase of the same piece. This group of experiments has
revealed that Saxex identifies clearly the relevant cases even though the new
phrase introduces small variations with respect to the phrases existing in the
memory of cases.

The second set, of experiments consisted in using examples of expressive per-
formances of some pieces in order to generate expressive performances of other
pieces. More concretely, we have worked with three different expressive per-
formances of pieces having about fifty notes in order to generate expressive
performances of new twenty note phrases. This second group of experiments
has revealed that the use of perspectives allows to identify situations such as
long notes, ascending or descending melodic lines, etc. Such situations are also
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usually identified by a human performer.

Let us describe briefly some of the expressive transformations applied to the
first phrase of the ‘Autumn Leaves’ theme (see the score in Figure 6.11) based
on precedent cases of similar phrases. Concerning to changes of dynamics, the
ascending melodic progressions are performed using crescendo. For instance,
the first note of the theme (E) starts piano and the dynamics is successively
increased yielding a forte in the fourth note (C). Concerning rubato, after the
fourth note (C) the attack of the fifth note (D) is delayed and brought closer to
the next note, then the duration of sixth note (E) is expanded, and finally the
duration of the next note (F) is reduced. Vibrato is applied over notes with long
duration combined with a dynamics decay (for instance, over fourth note). In
ascending melodic progressions, articulation is also transformed by decreasing
the interruption between notes (i.e. playing closer to legato than to staccato).
Finally, the transformation of the attack consisted in reaching the eighth and
ninth notes (B and B) starting from a lower pitch ©.

6.6 NoosWeb

The goal of the development of NoosWeb [Martin, 1996] was to provide a WWW
user interface to Noos applications supporting the same interaction capabilities
provided in the Noos window-based graphical user interface developed for MacOS
computers (see Appendix A).

In order to provide full access to the Noos facilities, NoosWeb was designed
to support, at least, (i) a Noos listener and (ii) a graph browsing facility. The
Noos listener permits the evaluation of any valid Noos expression. The graph
browsing facility emulates Noos browsers generating HT ML documents.

The WWW interface to Noos is a sequence of dynamically-generated HTML
documents that include forms (for engaging actions) and tables (for graph brows-
ing). The user sees a standard NoosWeb interface document displaying a set of
forms implementing valid actions (such as browsing and evaluating an expres-
sion from the listener) and displaying the answers of the last action performed.
Although the user can view past actions using the NoosWeb client-cached doc-
uments, in order to avoid time-traveling problems, the user can only perform a
new action from the current (the last) document. Actions requested from cached
documents are detected and dismissed. Nevertheless, NoosWeb incorporates in
documents the list of browsers displayed in the session allowing to redisplay any
of them at any time.

NoosWeb is accessible at <http://www.iiia.csic.es/Interficies/NoosWeb>.

6.6.1 The NoosWeb architecture

The NoosWeb architecture is composed of two elements: a collection of clients
connected through the network to a server (see Figure 6.13). The server side

6The reader can visit our web site at <http://www.iiia.csic.es/Projects/music/Saxex> for
sound examples.



Figure 6.12. A NoosWeb browser of a sponge-problem from the SPIN sys-
tem.



Figure 6.13. The NoosWeb architecture (from [Martin, 1996]).

maintains the state for each user (client) involved in a session. The server checks
each client request against the current state. The server connects one or several
Noos applications. Each Noos application only supports one user session over
the WWW. A standard HTTP daemon uses CGI to process requests by means of
a script called NoosWebCGI. NoosWebCGI dispatches requests to several Noos
applications by TCP/IP. Each Noos application keeps contact with a Common-
Lisp program called NoosWebCL that receives the requests, asks Noos when
necessary, and returns an answer generating an adequate HTML document.

NoosWebCGI

NoosWebCGI is a CGI script implemented in the C language. NoosWebCGI
is a dispatcher that distributes incoming requests to the appropriate Noos ap-
plication by means of BSD sockets. NoosWebCGI is generic since it forwards
all the request contents to the Noos application without any pre-processing and
it also returns answers without any post-processing. NoosWebCGI maintains
information about active Noos applications and current client sessions. When a
user initiates a session, Noos WebCGI allocates a session number for an user and
a Noos application. For each client request the script checks that the session
identifier is valid. A request is valid if no time limit has been exceeded. There
are time limits for session (1 hour) and for under-using (5 minutes without any
request from a client). User sessions declared invalid are deallocated.

NoosWebCL

NoosWebCL is implemented in Common Lisp and is composed of four mod-
ules: PassiveTCP, Parser-URL-encode, Noos Web-obj, and Noos-to-HTML mod-
ules. The module Passive TCP waits to receive requests by means of TCP from
NoosWebCGI. Received requests are parsed by the Parser-URL-encode mod-
ule that determines which functionality of Noos is invoked (browsing a feature
term, asking a specific query expression, evaluating a Noos description, etc).
The Parser-URL-encode module engages Noos using the set of remote Noos
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functions. The result of the requested action is translated and stored into the
NoosWeb-obj module structures. Finally, the Noos-to-HTML module generates
an adequate HTML document that is returned to Noos WebCGI.

Changes to Noos

Noos has not been changed for allowing WWW interface. Only two new functions
has been developed in order to provide an interface to remote calls. The first
function is the remote-browse function that returns a Noos browsing structure
in a list syntax. The second function is the remote-eval function that checks it
is a legal Noos expression (a description of a query expression) and evaluates the
expression returning the result of the evaluation.

6.7 Summary

This chapter presented a set of diverse applications developed using Noos by
several persons at the IIIA. The purpose was to provide examples of how appli-
cations can be developed using Noos. In this chapter our description has focused
on three aspects of the applications: how the domain knowledge required in each
application is modeled using Noos representation capabilities, which problem
solving methods are developed, and which learning methods are incorporated.
Specifically we presented,

e how diverse domain specific case-based reasoning techniques are developed
in Noos. Case-based reasoning is modeled by domain specific methods from
a knowledge modeling analysis of an application. These methods incorpo-
rate domain-knowledge into Noos retrieval built-in methods. Examples
of applications incorporating case-based reasoning methods are CHROMA,
SPIN, GYMEL, and Saxex.

e how preferences are used for ranking precedents in case-based reasoning
modeling different domain specific criteria in applications such as CHROMA
and Saxex. The development and combination of diverse domain specific
preferences provide a mechanism for the assessment of complex structured
cases.

e how diverse inductive learning methods such as INDIE, DISC, and LID are
developed in Noos. These methods are based on a search in the space of
feature terms. Different methods perform several search strategies using
the subsumption ordering in the feature terms space.

e how several alternative problem solving methods can be defined for solving
the same task. We described how CHROMA uses four different methods for
recommending purification plans in the purification task, and how SPIN
uses three different methods for achieving the identification task.
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how CHROMA is provided by a metalevel reasoning method to decide, on a
case-by-case basis, the applicability of the problem solving methods defined
for solving the purification task and the order in which they are attempted.

how case-based reasoning and inductive learning have been integrated in
CHROMA and SPIN applications. The knowledge modeling analysis of a
specific application determine how different learning methods can be inte-
grated in different subtasks. Then, metalevel reasoning capabilities and the
episodic memory of Noos allows to effectively implement this integration.

how to use domain knowledge intensively. For instance, SHAM makes an
intensive use of background musical knowledge for harmonizing melodies.
SHAM models musical knowledge by means of (1) PSMs that identify which
notes are important in the melody, (2) PSMs that propose alternative sets
of feasible chords according to these notes, and (3) PSMs that combine the
alternatives constructing a complete chord sequence.

how the structured representation of cases offers the capability of treating
subparts of cases as full-fledged cases. For instance, in GYMEL and Saxex
applications the solution for a new problem is built by combining and
adapting subparts of solutions from several precedent cases.

how two complex musical theories for musical perception and musical un-
derstanding are modeled in Saxex and are then used for analyzing musical
phrases and assessing their similitude with respect to other phrases.

how perspectives are used as a mechanism to describe declarative biases
for case retrieval in structured representations of cases. For instance, per-
spectives provide to GYMEL and Saxex applications a flexible way to dy-
namically construct partial descriptions for retrieval.

Finally, we presented NoosWeb, a WWW interface to Noos applications sup-

porting the same interaction capabilities provided in the Noos window-based
graphical interface developed for MacOs computers. A set of small improve-
ments has been performed in Noos to support remote calls.
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Conclusions and Future
Work

This thesis addressed the design and implementation of a representation lan-
guage for developing knowledge systems that integrate problem solving and
learning.

We have developed Noos, a reflective object-centered representation language
for integrating inference and learning components in a uniform representation.

7.1 The Noos language and feature terms

Noos is a representation language close to knowledge modeling frameworks, based
on the task/method decomposition principle and the analysis of models required
and models constructed by problem solving methods. This capability allows
Noos to take advantage of the KA methodologies and libraries developed in KM
frameworks.

The Noos modeling framework is based on four knowledge categories: do-
main knowledge, problem solving knowledge, episodic knowledge, and metalevel
knowledge:

e Domain knowledge specifies a set of concepts, a set of relations among
concepts, and problem data that are relevant for an application. Concepts
and relations define the domain ontology of an application.

e Problem solving in Noos is considered as the construction of the episodic
model of a problem. This model is obtained from transformations of prob-
lem data performed by problem solving knowledge. Episodic models built
in solving problem tasks constitute the episodic knowledge of the system.

e Problem solving knowledge specifies a set of tasks and methods that con-
struct a model of a problem (solve a problem). For a given subtask there
may be multiple alternative methods that may be capable of solving that

177
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subtask in different situations. A method can be decomposed into subtasks
that may be achieved by other methods.

e Metalevel knowledge specifies knowledge about domain knowledge, prob-
lem solving knowledge, and episodic knowledge. These models are formed
by metalevel concepts, metalevel relations, metalevel tasks, and metalevel
methods. Moreover, metalevel knowledge includes preferences to model
decision making about sets of alternatives present in domain knowledge
and problem solving knowledge.

Noos is an object-centered representation language based on feature terms.
Feature terms are related to the research based on AN calculus [Dami, 1994]
and v-terms [Ait-Kaci and Podelski, 1993] that propose formalisms to model
relational and object-oriented programming constructs. Adapting the theoreti-
cal results of these formalisms to our purpose, feature terms provide a natural
way to describe partial knowledge amenable to extension. Feature terms are in-
terpreted as partial descriptions denoting sets of individuals in a given domain.
This semantical interpretation of feature terms brings about an ordering relation
among them. We call this ordering relation subsumption. The intuitive meaning
of subsumption is that of informational ordering. We say that a feature term
subsumes another feature term ¢’ when all information in v is also contained in
Yp'—or in other words, v is more general than '.

Noos incorporates a declarative mechanism for decision making about sets of
alternatives called preferences. For instance, preferences are used as a declarative
control mechanism for determining the order in which a metalevel task chooses
a method for a task from a set of alternative methods.

Furthermore, preferences are also used in Noos as a symbolic representation of
relevance in comparing a given current problem with problems previously solved
by the system. Specifically, preferences are used in the retrieval and selection of
precedent cases in case-based reasoning methods in applications such as CHROMA
and Saxex.

Inference starts in Noos when the user poses a query to the system by means
of a query expression. A query expression engages a task F(D) to be solved by
its corresponding method. When solving a task where neither a path reference
nor a method is defined, an impasse occurs and the control of the inference is
passed to its corresponding metalevel task. Solving an impasse for a task F(D)
involves three processes: (i) determining a set of methods {M;}r(p) applicable
to task F(D), that can be partially ordered with preferences, (ii) selecting a
method from {M;}p(p), according to the preferences, and (iii) reflecting down
the selected method to task F(D).

Backtracking is engaged when a method fails in solving a task. In that case,
another remaining non-failed method in {M;} p(p) will be selected and reflected
down. Moreover, since a method M can have subtasks, and each subtask may
have several alternative methods to solve it, metalevel inference ensures that
backtracking is engaged in M. Then, the possible combinations of methods for



7.2. Memory and learning 179

each subtask are tried, following the local preference orderings for each subtask,
until a solution is found.

Methods in Noos can be view as functions with named parameters and back-
tracking. We formally described the global inference process in our system using
Descriptive Dynamic Logic [Sierra et al., 1996], a propositional dynamic logic
that provides a general framework for describing and comparing reflective knowl-
edge systems.

7.2 Memory and learning

Our goal has been to provide a representation language for developing knowledge
systems with learning capabilities. This goal required that machine learning
techniques had to be modeled inside our language. Our proposal is that learning
methods are methods (in the sense of knowledge modeling PSM) that can be
analyzed also by means of a task/method decomposition and a set of models
required models constructed by learning methods.

Both problem solving methods and learning methods perform inference
(viewed in Noos as constructing episodic models). Learning methods differ from
PSMs in that they use episodic models (i.e. past solved problems). Different
kinds of learning methods use episodic models in different ways (see below the
different approach of induction versus lazy learning approaches). These solved
problems can be provided by a teacher or can be problems previously solved
by the system itself. For learning methods to be able to reason from problems
solved by the system, part of the behavior of the system has to be reified and
stored in the system. In Noos, the episodic memory stores this representation
of part of the behavior of the system. Moreover, we have incorporated a collec-
tion of reflective operations for accessing to and inspecting the episodic memory
contents.

Episodic memory: Problems solved in Noos are automatically memorized
(stored and indexed) in the episodic memory and are amenable to be accessed
and reused in solving new problems. The problem solving behavior is repre-
sented in Noos in terms of tasks, methods, metalevels, and preferences. Episodic
memory is organized in episodic models. An episodic model is the explanation
of the inference process engaged by Noos in solving a specific problem task. An
episodic model holds the set of knowledge pieces used for solving a specific prob-
lem task, how and where they were used, and the decisions taken for solving
that problem task. Introspective capabilities form the basis that allows Noos
programs to reason about the system behavior.

Integrated problem solving and learning: Our approach to integrate prob-
lem solving and learning is based on the following: whenever some knowledge is
required by a problem solving method, and that knowledge is not directly avail-
able, there is an opportunity for learning. We call those opportunities impasses
and the integration of learning is realized by learning methods that are capable
of solving these impasses.
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We have modeled the integration of different symbolic learning techniques as
methods that can be decomposed in three main common subtasks: Introspection,
Construction, and Revision. This common scheme allows us to model different
ML methods and their integration into a general problem solving system by
developing specific methods for the three main subtasks. Specifically:

e The introspection task is the process by which past experience (episodic
memory of the system itself or provided by a teacher) is accessed, selected
and retrieved for the purpose of solving new problems. In simple situ-
ations this task may merely select a subset of examples in memory. In
complex situations the system may have to decide which (sub)parts of
all the episodic memory qualify as “examples” (precedents), i.e. they are
interesting to learn from.

e The construction task uses the relevant past experience (resulting from
introspection) to generate some new model or body of knowledge.
Eager learning methods construct a new model to be used for a specific
problem solving method (that will be applied to future problems). Ex-
amples of eager learning methods are induction and analytical learning
methods.
Lazy learning methods follow a problem-centered approach—i.e. directly
building the episodic model of a current problem from episodic model(s)
of (some) retrieved precedent(s). Examples of lazy learning methods are
CBR methods.

e The revision task decides whether and how the system’s knowledge is mod-
ified by the newly constructed model. In simple situations the new model
replaces the old model. In more complex situations, the task has to esti-
mate whether the new model does improve the overall performance of the
system.

Feature terms provide a structured representation of knowledge. A problem
to be solved by the system is represented as a collection of concepts with many
relationships among them. This structured representation of precedents offer
the capability of treating subparts of them as full-fledged cases. That is to say, a
new problem can be solved using subparts of multiple precedents retrieved from
the episodic memory. This requires that new introspective mechanisms have
to be provided. We have developed three introspective mechanisms to access
the episodic memory: access by path, that provides an access to the episodic
memory combining reflective operations and path references; retrieval methods,
that provide a mechanism for content-based access to the episodic memory; and
perspectives, a mechanism to describe declarative biases for case retrieval in the
structured representation of cases.

Content-based retrieval: Since knowledge in Noos is represented in a struc-
tured way, retrieval methods have to deal with structured representations. Re-
trieval methods allow to retrieve previous relevant episodes from the episodic
memory using relevance criteria. Relevance criteria are determined by specific
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domain knowledge about the importance of different features or by requirements
of problem solving methods. Several domain-specific retrieval methods have been
developed in Noos applications for solving the introspection task.

Perspectives: In complex tasks, the identification of the relevant aspects for
retrieval in a given situation may involve the use of knowledge-intensive meth-
ods. This identification process requires dynamical decisions about the relevant
aspects of a problem. Perspectives provide Noos with a mechanism for dynami-
cally constructing retrieval patterns that specify the relevant aspects of a given
problem. For instance, perspectives provide to GYMEL and Saxex applications
a flexible way to dynamically construct partial descriptions for retrieval.

7.3 Methods and applications

Using the representation capabilities of Noos for modeling domain knowledge,
problem solving knowledge, and learning, several PSMs and learning methods
have been developed and integrated in several applications.

Based on the task/method decomposition principle, problem solving methods
that use domain knowledge intensively can be designed and implemented. For
instance, in the SHAM application several PSMs have been developed making an
intensive use of background musical knowledge for harmonizing melodies. SHAM
models musical knowledge by means of (1) PSMs that identify which notes are
important in the melody, (2) PSMs that propose alternative sets of feasible
chords according to these notes, and (3) PSMs that combine the alternatives
constructing a complete chord sequence.

Furthermore, two complex musical theories for musical perception and musi-
cal understanding are modeled in Saxex and are then used for analyzing musical
phrases and assessing their similitude with respect to other phrases in episodic
memory.

Noos provides a collection of basic mechanisms allowing the development
of different symbolic learning methods such as inductive learning, CBR, and
analytical learning;:

e Inductive learning methods in Noos are search methods (that follow cer-
tain biases) over the space of feature terms. Inductive learning methods
are based on the feature term subsumption and antiunification operations
of Noos. Subsumption provides a generalization relationship over feature
terms. The antiunification of a set of feature terms builds a new feature
term that is a greatest lower bound with respect to the subsumption or-
dering. Several strategies have been developed for constructing inductive
learning methods that follow different searching biases.

o Case-based reasoning methods in Noos are problem solving methods with
lazy learning capabilities that search for previously solved problems in the
Noos episodic memory. CBR methods are based on the retrieval and sub-
sumption operations of Noos.
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Structured representations of cases offer the capability of treating subparts
of cases as full-fledged cases. That is to say, a new problem can be solved
using subparts of multiple cases retrieved from the episodic memory.

On the other hand, structured representations of cases increase the com-
plexity of retrieval mechanisms. Noos provides elements—such as content-
based retrieval and perspectives—for supporting the retrieval on these
complex representations of cases.

Furthermore, derivational analogy is automatically supported by the Noos
reinstantiation mechanism.

o Analytical learning methods in Noos are methods that given (1) a training
example whose problem task has been solved by a problem solving method
M and (2) an operationality criterion, they construct a new problem solving
method M,, for solving that task and obeying the operationality criterion.
Analytical learning methods are based on the Noos introspective capa-
bilities for inspecting the methods used in subtasks of M for solving the
training example.

Several persons at the ITTA have developed learning methods and integrated
them to applications. For instance, several domain specific case-based reasoning
methods have been developed in Noos and integrated to applications such as
CHROMA, SPIN, GYMEL, and Saxex. Moreover, several inductive learning meth-
ods such as INDIE, DIsC, and a lazy learning method (called 1.1D) have been
developed by Eva Armengol in Noos and also integrated to CHROMA and SPIN
applications. Finally, an analytical method called PLEC has been also developed
and presented in this thesis.

We also presented how different learning methods can be designed and in-
tegrated in a problem solving system. Specifically, the research work realized
in [Armengol, 1997] provides examples of knowledge systems developed in Noos
that integrate different learning methods such as case-based reasoning and in-
ductive learning methods.

Noos has been implemented using Common Lisp and currently is running on
several platforms—including a window-based graphical interface for the Macin-
tosh version of Noos.

Finally, we want to remark that Noos has been used, and is also currently
used, by several persons at the IIIA and by other people with collaboration with
the IITA to develop different applications that integrate several problem solv-
ing methods and several learning methods. Specifically, we have described five
applications developed using Noos and a WWW interface to Noos applications
supporting the same interaction capabilities provided in the Noos window-based
graphical interface developed for MacOS computers:

e CHROMA, a system for recommending a plan for the purification of proteins
from tissues and cultures using chromatographic techniques (developed by
Eva Armengol);
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SPIN, a system for identifying specimens of Geodiidae marine sponge family
(developed by Eva Armengol);

SHAM, a system for assisting a non expert musician to harmonize melodies
using background musical knowledge (developed by Mart{ Cabré);

GYMEL, another system for assisting the harmonization of melodies that
uses a case-based reasoning approach (developed by Jordi Sabater);

Saxex, a case-based reasoning system for generating expressive perfor-
mances of melodies based on examples of human performances that I have
developed in the context of my M.Sc.Thesis in Computer Music (this appli-
cation has been awarded with the “Swets & Zeitlinger Distinguished Paper
Award” at the 1997 International Computer Music Conference); and

NoosWeb, a WWW interface to Noos applications (developed by Francisco
Martin).

7.4 Future work

From the work realized in this thesis several research lines appear to be suffi-
ciently interesting to pursue. Some of them have already started with a prelim-
inary results.

e A first research line is to extend the basic retrieval and subsumption mech-

anisms provided in Noos enriching the comparison on numbers and strings.
The work of G. Kamp [Kamp, 1997] on the admissibility of concrete do-
mains can be adapted to Noos for this purpose.

Another extension of Noos is to provide an agent-based environment for
the cooperation between different Noos applications and on an hetero-
geneous environment. We have already started the study of how different
case-based reasoning agents can cooperate in solving problems. We are de-
veloping two modes of cooperation among CBR agents: Distributed Case-
based Reasoning (DistCBR) and Collective Case-based Reasoning (Col-
CBR). Intuitively, in DistCBR cooperation mode an agent A; delegates its
authority to another peer agent A; to solve a problem—for instance when
A; is unable to solve it adequately. In contrast, ColCBR cooperation mode
maintains the authority of the originating agent: an agent A; can transmit
a mobile method to another agent A; to be executed there. That is to say,
A; uses the experience accumulated by other peer agents while maintaining
the control on how the problem is solved. These preliminary results has
been presented on [Plaza et al., 1997] [Plaza et al., 1996a].

A third research line is to explore and extend the Noos capabilities for
learning from failure. The episodic model built in solving a problem task
stores the collection of preference orders between alternative methods for
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solving a specific subtask and the method that has been effectively used
in that subtask. Using this information we can infer the set of methods
that has been failed in achieving the task. Nevertheless, Noos does not
maintain the inference processes involved in the evaluation of these failed
methods. This kind of knowledge could be useful for detecting situations
where a PSM is not able to find a solution and then, to avoid failures in
future problems.

Another research line already started is focused on the study of the degra-
dation of the system performance when the cost of searching for related
knowledge outweighs the benefit of applying this knowledge. This prob-
lem is called the utility problem in [Tambe et al., 1990] and [Minton, 1990].
Different strategies have been proposed for solving this problem and
could be useful also to Noos applications. Specifically, the research
on deletion strategies in the context of case-based reasoning such as in
[Smyth and Keane, 1995] is a promising direction to follow.

Finally, a fifth research line already started is focused on developing new
learning methods. Specifically, we are exploring inductive methods for
acquiring methods from examples (as in inductive logic programming).



Appendix A

The Noos Development
Environment

This Appendix describes the Noos development environment. The Noos language
is implemented using Common Lisp [Steele, 1990] and currently is running in
several platforms. The main development platform is the MacOS (using MCL
[Digitool, 1996]), but it is also available for Unix machines and PCs (both using
Clisp!).

The purpose of this Appendix is to show some of the tools implemented in the
Noos development environment for assisting the modeling and constructing of
applications in Noos. Our purpose is not to provide a user manual for developing
applications in Noos.

A.1 Defining feature terms in Noos

There are two ways of adding new terms in Noos: by defining descriptions in a
file and then loading the file into the Noos environment? or by directly typing
descriptions on the Noos listener. For instance, if we type the person’s descrip-
tion on the listener (as shown in Figure A.1) the returned value is <Person>,
which is the “print-name” of the person feature term.

Lazy evaluation

Lazy (on demand) evaluation means that no expression is evaluated unless it
is needed for some computation. A description can thus refer to the name of
another description even if it is defined later—on the listener or on the file
being loaded or on another file. However, refinement appearing on the root of a
description do require the constituent to be already defined. The reason is that

IClisp is a public domain Lisp available at <ftp://ma2s2.mathematik.uni-
karlsruhe.de/pub/lisp/clisp>.
2Files can be loaded by using the load Lisp function in the Listener.
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S=———————— Listener

Welcome to the Noos environment !
CApril 28th, 1997 VUersion)

NOOS> (define Person
(father (define (Person)))
(mother (define (Person))))
<Person>
NOOS>

NOOS | [ 4] m

Figure A.1. Defining a new feature term on the Noos listener.

the outmost define in a description (the root) is evaluated when loading a file or
typing on the listener. Anonymous descriptions appearing inside a description
are not evaluated until needed. For this reason subdescriptions can refine a
description that is defined later—or the same description being defined (see
Figure A.1 where father and mother features of person are defined recursively
by refinement of person).

Compact descriptions

In order to provide a more compact notation for the definition of closed methods
in features, the syntax of Noos is extended. Using this extended syntax, a
closed method defined by refinement of a built-in method can be defined using
a position-based notation for specifying all of its required feature values.

The syntax used for specifying compact descriptions is the following:

(built-in-name param;j --- param,,)

where built-in-name is the name of a built-in method, and each paramq, ...,
param,, is a feature value, a path reference, or a compact description. Compact
descriptions only can be used for specifying feature values.

The order of the required features is fixed by Noos. Appendix C describes the
names of the built-in methods that accept compact descriptions and the order
of specification of their required features.

For instance, the compact notation for the identity?, the conditional,
and the lower-than? built-in methods is the following:

(identity? iteml item2)
(if condition result otherwise)

(< is-lower than)
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where the names of the parameters indicate the specification order for the re-
quired features of each built-in method.

Using the compact notation, the following two closed methods defined in
features gas-gauge-reading and empty-level?:

(define Bills-car
(owner Bill)
(gas-level-in-tank 2)
((gas-gauge-reading (define (conditional)
((condition (define (lower-than?)
(is-lower (>> gas-level-in-tank))
(than 5))))
(result empty)
(otherwise full))))
((empty-level? (define (Identity?)
(iteml empty)
(item2 (>> gas-gauge-reading))))))

can be equivalently specified using the compact notation as follows:

(define Bills-car
(owner Bill)
(gas-level-in-tank 2)
(gas-gauge-reading (if (< (>> gas-level-in-tank) 5)
empty
full))
(empty-level? (Identity? empty (>> gas-gauge-reading))))

Note that the use of this compact notation requires that all required features
have to be specified and that no other features can be specified. A second remark
is that compact descriptions are specified using a single parenthesis in the same
way as path references. Another remark is that using the compact notation we
can only use compact descriptions for defining methods in the features—using
the compact notation we can only define feature values using either constant
values, path references, or compact descriptions. Moreover, since the name of
the features are not specified, the position of the parameters determines the
feature that a parameter is referred to.

The use of the compact notation allows also to define compositions of the
same built-in method—such as arithmetic methods and methods for manipulat-
ing sets—in a easy way. For instance, since the addition built-in method has
two required features, the sum of three numbers a, b, and c, using the compact
syntax, has to be specified as the following composition:

(+ a (+ b))
This compact syntax is extended for defining compositions as follows:
(+ abc)

For instance, we can define the earnings of a specific company comp as the
sum of the earnings of its three production-lines as follows:
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(define (Company Comp)
(line-1 (define (production-line)
(line-name cosmetics)
(earnings 12000)))
(line-2 (define (production-line)
(line-name toys)
(earnings 23000)))
(1ine-3 (define (production-line)
(line-name nourishment)
(earnings 8000)))
(earnings (+ (>> earnings line-1)
(>> earnings line-2)
(>> earnings line-3))))

Multiple path references

Another language extension is to allow specifications of multiple path references
in a feature. These multiple path references are interpreted using the union
built-in method. In fact, the following description:

(define Person
(uncles (>> brothers of mother)
(>> brother of father)))

is a short syntax equivalent to the following description:

(define Person
((uncles (define (union)
(item1 (>> brothers of mother))
(item2 (>> brother of father)))))

Engaging inference

When a user types a path reference or an eval expression in the Listener, it is
interpreted as a query-expression to be answered by the system. The Listener,
however, does not accept relative path references. The reason is that a relative
path reference only can be bound in the scope of a description. An alternative
way to engage the inference is directly using the pop-up menus provided in the
browsers (see Section A.4).

We have seen in Section 3.3.5 that, since reflective operations are references
to feature terms, path references and reflective operations can be combined.
These combined expressions are extended query-expressions that can be posed
to the system in the listener. For instance, the following query-expression:

(meta (>> father of Tom))

asks for the metalevel of the person that is the father of Tom.

Whenever Noos yields a solution value for a problem task, the user can force
backtracking to the Noos inference engine to search for another solution value
for the task using the force-backtracking command.
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For instance, let us assume that the following two descriptions have been
added to Noos:

(define (person professional)
((phone-number (reify (>> phone-number spouse))
(reify (>> phone-number home))
(reify (>> phone-number works-in)))))

(define (professional Carol)
(spouse (define (person)
(phone-number 3344)))
(works-in (define (company)
(phone-number 8766))))

Then, we can pose the following query-expression to the listener:
(>> phone-number of Carol)

The answer yielded by Noos will be 3344. Next, forcing the backtracking
with the force-backtracking command as follows:

(force-backtracking)

the inference is resumed in Noos yielding 8766. If we force backtracking once
more, the value yielded by Noos will be Fail—the token that Noos yields for
indicating that no more values can be inferred.

A.2 The predefined sort hierarchy of Noos

Noos provides an initial set of sorts with an order relation among them. There
is a top sort called any. Any represents the minimum information and all the
other sorts are more specific than any (for each sort S we have that any < S).
Predefined sorts are (see Figure A.2):

e all numbers and the sort number, with the order relations number < n for
all numbers n,

e all strings and the sort string, with the order relations string < s for all
strings s,

e all symbols and the sort symbol, with the order relations symbol < s for
all symbols s,

e sorts boolean, true, and false with the order relations boolean < true
and boolean < false,

e sorts set and empty-set with the order relation set < empty-set,

e all built-in methods and the sort method, with the order relations method
< m for all built-in methods m,
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£[J=== Refinement Hierarchy Graph: Any
- Empty-Set
Query-Method] -
Eval-Method| -
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! 3 Retrieval-Method |
String Preference-Methodl
Comparison-Methodl
-Boolean
Set-Method| -
Arithmethic-Method |
1interactive-Method| -
=
@] BiE

Figure A.2. The predefined sort hierarchy of Noos.
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e sorts metalevel, default, and task.

The complete set of predefined built-in methods is described in Appendix D.
From this set of initial sorts new sorts can be defined, using refinement, for
specifying the sort hierarchy for a given domain.

A.3 Episodic memory

Whenever a problem task is solved by Noos, the user can decide to incorporate
the episodic model built to the Noos episodic memory using the freeze com-
mand. For instance, after solving the phone-number of Carol we can type the
following command:

(freeze Carol)

that will incorporate the episodic model built in solving phone-number (Carol)
problem task into the episodic memory.

When an episodic model is incorporated to the episodic memory, no more
inference can be engaged on this episodic model.

After solving a problem task, the user can decide not to incorporate the
episodic model built in solving the task. For this situation, the Noos environ-
ment provides the forget! command. Specifying the forget! command over
a feature term, the term is removed and will become inaccessible—and conse-
quently no more inference can be engaged on this term.

Noos provides a way to explicitly determine that a specific feature term has
not to be incorporated to the episodic model using the :ephemeral token as
following:

(define (constituent name ) :ephemeral body)

Specifically, the freeze command incorporates into the episodic memory all
the feature terms belonging to an episodic model, excepting those explicitely
specified as :ephemeral. For instance, the :ephemeral token is frequently used
in retrieval patterns because a retrieval pattern is a term that is only constructed
for retrieval purposes and it should not be retrieved in next problems.

Customizing Episodic memory

Since there are applications developed in Noos that will not require all the ca-
pabilities provided by the episodic memory of Noos, episodic memory can be
customized for increasing the efficiency of the system.

A first option is to deactivate the episodic memory when the application does
not use it. For instance, the SHAM application described in Section 6.3 solves
problem tasks only using problem solving methods modeling background musical
knowledge. Thus, episodic memory capabilities are deactivated in SHAM since
they are not used.

Episodic memory can be deactivated using the exclude command with the
:all token as follows:
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(exclude :all)

Another option is to specify that some kind of terms are not to be incor-
porated into the episodic memory. For instance, there are applications that
only require the retrieval of feature values and do not reason about the meth-
ods used in a specific task. These applications (such as Saxex CHROMA, SPIN,
and GYMEL) do not require to introspect tasks, methods, and metalevels. The
exclude command can also be used for this purpose, as follows:

(exclude task method metalevel)

The exclude command accepts any combination of some of the three different
categories specified in the example: task, method, and metalevel. For instance,
another legal option is the following;:

(exclude task metalevel)

Finally, a third option is to specify that methods used in solving tasks can
be removed after their evaluation. This option requires methods to be excluded
to the episodic memory. The advantage of this option is that the Noos memory
required by an application is lower. The disadvantage is that neither reflective
operations nor browsers over the methods can be applied. The compact-methods
command can be used for activate and deactivate this option using the following
syntax respectively:

(compact-methods t)

(compact-methods nil)

A.4 Browsing

The Noos development environment provides four types of graphical browsing
facilities: a feature term browser, a task/method decomposition browser, a task
structure browser, and a refinement hierarchy browser.

There are two possibilities for browsing: using a text-based browser that
can display into the listener or into a file, or using a window-based graphical
interface. The first option is available for all the implementations of Noos. The
window-based browsers are only available on the MCL implementation.

Text-based browsers and window-based browsers can be displayed typing
specific browsing commands on the listener. Window-based browsers can be
also displayed using the Noos menu developed for the MCL version.

A.4.1 Feature term browser

The feature term browser provides a graphical representation of a feature term.
The browse command can be used to start a feature term browser using the
following syntax:

(browse name [depth])
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ik
4]
@
-[Me]odg H Note_155 I—-[Metrical-StrengthH Mediumn I
-[Underlging-Harmong ]—I Chord_154 I
Auturn-A-Score -| Belongs-To |—| P_palo
v Expand
Note_156] Hide
Metalevel
Harmony }{cherd_154] - Default Metalevel
Referent
Inspect
New Browser
Browse RH
<G| Complete features
Query

Figure A.3. A browser of the score of ‘Autumn Leaves’ ballad from Saxex
application. A pop-up menu has been activated by clicking the P_157 node.

where name is an identifier of a feature term and depth is an optional integer
number indicating the depth level of the term to be displayed. The default value
for the depth level for all the Noos browsers is 3.

For instance, a browser of the first phrase of the ‘Autumn Leaves’ ballad
from Saxex application (described in Section 6.5) can be started by the following
command:

(browse Autumn-A-Score)

obtaining the browser window of Figure A.3. Note that terms are displayed
as graphs with nodes representing their identifiers as thick boxes; features are
represented as thin boxes; ellipsis (three dots) indicate nodes amenable to be
expanded; and gray boxes express references to existing nodes—nodes expanded
in another place in the window.

Using the default value for the depth parameter (3), a feature term browser
displays a root node (depth 1) and their features: the feature names (depth 2)
and the feature values (depth 3). All feature values amenable to be expanded
are indicated with ellipsis.
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Many browsers can be open at the same time. Each browser is displayed in a
different window. Browsers can be dynamically expanded using pop-up menus.
Specifically, there are two kinds of pop-up menus: one for nodes and another for
features (in Figure A.3 a pop-up menu for terms is shown).

The pop-up menu unfolded when the user clicks on a node box has the
following ten commands:

Ezpand: the expand command allows to expand a node’s term displaying
its features. The features are displayed without engaging the inference of
their values (i.e. only computed and constant values are shown). When a
feature value is neither a constant value nor it has been inferred, a node
with label Unknown is displayed. The expand command performed on this
unknown node will engage the inference of that feature value. The result
yielded is a node with the value, if it can be inferred, or, otherwise, a node
with the FAIL label.

Hide: the hide command is the converse command to expand: the features
of a node are hidden and ellipsis are displayed for indicating that the node
is amenable to be expanded.

Metalevel: the metalevel command starts a new browser displaying the
metalevel term of the selected node. When the metalevel has not been
defined, no new browser is started.

Default metalevel: the default metalevel command starts a new browser
displaying the default metalevel term of the selected node. When the
default metalevel is not defined, no new browser is started.

Referent: the referent command is the converse command to the metalevel
command. The referent command starts a new browser displaying the
referent term of the selected node. When the referent does not exist, no
new browser is started.

Inspect: the inspect command starts the inspector of Lisp. We have ex-
tended the Lisp inspector for displaying Noos terms.

New browser: the new browser command starts a new browser displaying
the selected node. This command is not allowed over the root node. If
there is another browser where the selected node is the root, this browser
window is activated and no new browser is started.

Browse RH: the browse RH command starts a refinement hierarchy
browser with the sort of the selected node as root (see Section A.4.4).

Complete features: Following the lazy approach of inference in Noos, in
definitions by refinement, features defined in the constituent are only in-
corporated to the refined term when they are needed for any computation.
This means that when a term is expanded in a browser only features de-
fined in the term and features inferred in some problem task will be dis-
played. The complete features command forces to display all the features
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defined. This option only displays features without engaging the inference
for their values. Next, the user can use the expand command for engaging
the inference in a specific feature.

e Query: finally, the query command on a node allows to engage the inference
on any feature for that node by means of specifying a feature name.

The pop-up menu unfolded when the user clicks on a feature box has the
following six options:

e Fxpand: the erxpand command, analogously to the previous pop-up menu,
allows to expand a feature displaying its value. The value is displayed
without engaging inference. When the feature value is neither a constant
value nor it has been inferred, a node with label Unknown is displayed.

e Hide: the hide command is the converse command to expand: the feature
value of a feature is hidden.

e Task: the task command starts a new browser displaying the task term of
the selected feature.

e Method: the method command starts a new browser displaying the method
term defined for the selected feature. When no method is defined, no new
browser is started.

o Task structure: the task structure command starts a task structure browser
displaying the episodic model constructed for inferring the value of the
feature (see Section A.4.3).

o Task decomposition: the task decomposition command starts a browser
displaying the task/method decomposition defined for the selected feature
(see Section A.4.2).

The text-based version of a feature term browser can be obtained using the
tbrowse command. For instance, the score shown in Figure A.3 yielded by the
following command:

(tbrowse Autumn-A-Score 5)

obtaining the text-based browser presented in Figure A.4.

A.4.2 Task/method decomposition browser

The task/method decomposition browser provides a graphical representation
of the recursive decomposition of a task into subtasks by means of methods.
That is to say, this kind of browser provides a graphical representation for the
problem solving knowledge (See Section 3.1). The browse-task command and
the browse-method command can be used, respectively, to start a browser for
a specific task or a browser for a specific method using the following syntax
respectively:
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{Autumn-A-Score

(Melody {Note_155
(Pitch E4)
(Position -3)
(Duration Q)
(Metrical-Strength {Medium})
(Underlying-Harmony {Chord_154})
(Belongs-To P_157)
(Next {Note_156})})

(Harmony {Chord_154
(Name Cmaj7)
(Position 0)
(Duration W)
(Next {Chord_155})})}

Figure A.4. A text-based feature term browser of the score of ‘Autumn
Leaves’ ballad from Saxex application.

(browse-task task-name term-name [depth])

(browse-method method-name [depth])

For instance, a browser of the task/method decomposition of
general-diagnosis method following [Benjamins, 1993] can be started
by the following command:

(browse-method general-diagnosis)

obtaining the browser window of Figure A.5. Tasks are drawn with thick boxes;
methods are drawn with thin boxes; and ellipsis indicate the nodes amenable to
be expanded.

Note that a method can be displayed using a feature term browser and using
a task/method decomposition browser. Nevertheless, the information displayed
in each browser is different. The first one shows the method’s (sub)tasks and
their values; the task/method decomposition browser shows the method’s tasks
and their (sub)methods.

Many task/method decomposition browsers can be open at the same time
and each browsing is displayed in a different window. Browsers can also be
dynamically expanded using pop-up menus. Similarly to feature term browsers,
there are two kinds of pop-up menus: one pop-up menu for methods and another
for tasks.

The set of commands allowed in methods are the same as before, excluding
the query command: expand, hide, metalevel, default metalevel, referent, inspect,
new browser, browse RH, and complete features.

The set of commands allowed in tasks are the following: ezpand, hide, refer-
ent, inspect, and new browser.
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General-Diagnosis

Prediction-Based-Fil(eringl

Associate | «e
Empirical-Hypothesis-Generation
Probability-Filter | ==«

Select-Hypothesis |-

Generate-Hypothesis
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Interpret-Data| -
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<af

Figure A.5. A browser of the task/method decomposition for the general
diagnosis method.

The text-based version of a task/method decomposition browser can be ob-
tained using the tbrowse-task and the tbrowse-method commands. For in-
stance, the task/method decomposition for the general diagnosis method shown
in Figure A.5 yielded by the following command:

(tbrowse-method General-Diagnosis 3)

will be the following:

{General-Diagnosis
(Detect-Complaint {Ask-User}
{Classify}
{Compare})
(Generate-Hypothesis {Model-Based-Hypothesis-Generation}
{Empirical-Hypothesis-Generation})
(Discriminate-Hypothesis {Discrimination})}

A.4.3 Task structure browser

The task structure browser provides a graphical representation of the part of
the episodic model concerning the methods and subtasks effectively involved in
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£ Task Structure Graph: EMPTY-LEUEL? of BILLS-CAR S0
Empty-Level ?(<Bills-Car>)
<ldentity 2_109>
Item1 Item2
Empty (>> Gas-Gauge-Reading)
Feature Domain Gas-Gauge-Reading(<Bills-Car>)
‘Gas-Gauge-Reading Bills-Car <Conditional_110>
Condition Result
<Lower-Than?_112> Empty
Is-Lower Than
(>> Gas-Level-In-Tank) ] H
k%
<o m =]

Figure A.6. A task structure browser from the episodic model of problem
task empty-level?(Bills-car).

solving a specific problem task. The browse-stask command can be used to
start a browser for a specific task using the following syntax:

(browse-stask feature-name term-name [depth])

For instance, a task structure browser from the episodic model of problem
task empty-level?(Bills-car) can be started by the following command:

(browse-stask empty-level? Bills-car)

obtaining the browser window of Figure A.6. Each node in the browser shows a
task and the method that has solved that task. The upper part shows the task
name and the lower part shows the method printname.

Note that only the subtasks effectively involved in solving a specific method
are displayed. For instance, the subtask decomposition of the conditional_110
method of Figure A.6 is only composed of the condition task and the result
task since the result of the condition task is true.

Another example of a task structure browser built after solving the
cup?(0bj1) problem task can be found in Section 4.7.

Task structure browsers can also be dynamically expanded using pop-up
menus. The pop-up menus have the following five commands: expand, hide,
referent, inspect, and new browser.

Note that the referent of a task is the result value inferred by the evaluation
of its method (see Section 3.3.5).

The text-based version of a task structure browser can be obtained using the
tbrowse-stask command. For instance, the task structure from the episodic
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{Saxex-sort}
{Saxex-Problem}
{Score-element}

{Phrase}

{Note}

{Chord}
{Analysis-Element}

{Phrase-Analysis}

{Nstructure}

{Time-Span-Node}

{Prol-Reduc-Node}
{Performance-Element}

{Phrase-Performance}

{Event}

{Label}

Figure A.7. A text-based feature refinement hirerarchy browser of the Saxex
application.

model of problem task empty-level?(Bills-car) shown in Figure A.6 yielded
by the following command:

(tbrowse-stask empty-level? Bills-car 8)
will be the following:

(Empty-Level?(Bills-Car)
{Identity?_109
(Item1 {Empty})
(Item2 {Infer-value (>> Gas-Gauge-Reading)
(Feature ’Gas-Gauge-Reading)
(Domain {Bills-Car})
(Gas-Gauge-Reading(Bills-Car)
{Conditional_110
(Condition {Lower-Than_112})
(Result {True}) PP}

A.4.4 Refinement hierarchy browser

Finally, the refinement hierarchy browser provides a graphical representation of
the sort hierarchy defined in developing a specific application refining the built-in
sort hierarchy of Noos. The browse-RH command can be used to start a browser
from a specific sort using the following syntax:

(browse-RH sort-name [depth])

For instance, the refinement hierarchy browser defined for the Saxex appli-
cation can be started by the following command:
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B T

Refinement Hierarchy Graph: Saxex-Sort

Saxex-Problem

Score-Element

< m

Phrase-Analysis

Lnode

Time-Span-Node
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Analysis-Element f

j Tensing-Pattern

Prol-Reduc-Node
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l Phrase-PerformanceI

Event

Performance-Elementl:' Extremely-Low
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Figure A.8. A refinement hierarchy browser from the Saxex application.
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(browse-RH Saxex-sort)

obtaining the browser window of Figure A.8.

This kind of browsers can also be dynamically expanded using pop-up menus.
The pop-up menus have the following four commands: ezxpand, hide, inspect, and
new browser.

The text-based version of a refinement hierarchy browser can be obtained
using the tbrowse-rh command. For instance, the refinement hierarchy browser
defined for the Saxex application shown in Figure A.8 yielded by the following
command:

(tbrowse-rh Saxex-sort 3)

obtaining the text-based browser presented in Figure A.7.

A.5 Tracing

The Noos development environment provides two commands for tracing the in-
ference: usual-trace and trace-feature.

The usual-trace command enables a complete trace of the inference. The
trace can be disabled using the no-trace command. Examples of Noos traces
have already shown in Section 3.2.5 and in Section 3.5.

Figure A9 shows the trace generated in  solving the
empty-level?(bills-car) problem task that has the episodic model dis-
played in Figure A.6.

The trace-feature command enables a selective trace on a set of feature
names specified by the user. Since the complete trace generated in solving a
complex problem task may be too large, the trace-feature trace option allows
to trace only the representative features.

The trace-feature command is disabled using the disable-trace com-
mand. Both commands usual-trace and trace-feature can be used simulta-
neously.

For instance, the inference trace generated in solving problem task
empty-level?(bills-car) with three features selected for trace as follows:

(trace-feature empty-level? gas-gauge-reading gas-level-in-tank)
will be the following trace:

(>> empty-level? of bills-car)

1 Query: empty-level?(<bills-car>)

2 Query: gas-gauge-reading(<bills-car>)

3 Query: gas-level-in-tank(<bills-car>)

4 Result: 2

5 Result: <empty>

6 Result: <true>

<true>
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(>> empty-level? of bills-car)

1 Eval: <Infer-value (>> empty-level? of bills-car)>
2 =

3 Task: empty-level?(<bills-car>)

4 Eval: <identity?_109>

5 -

6 Task: iteml(<identity?_109>)

7 Value: <true>

8 Task: item2(<identity?_109>)

9 Eval: <Infer-value (>> gas-gauge-reading)>

10 -

11 Task: feature(<Infer-value (>> gas-gauge-reading)>)
12 Value: ’gas-gauge-reading

13 Task: domain(<Infer-value (>> gas-gauge-reading)>)
14 Value: <bills-car>

15 Task: gas-gauge-reading(<bills-car>)

16 Eval: <conditional_110>

17 -

18 Task: condition(<conditional_110>)

19 Eval: <lower-than?_112>

20 -

21 Task: is-lower (<lower-than?_112>)

22 Eval: <Infer-value (>> gas-level-in-tank)>
23 Value: 2

24 Task: than(<lower-than?_112>)

25 Value: 5

26 <=

27 Value: <true>

28 Task: result(<conditional_110>)

29 Value: <empty>

30 <

31 Value: <Empty>

32 <

33 Value: <Empty>

34 <

35 Value: <true>

36 <—

37 Value: <true>

<true>

Figure A.9. The trace generated in solving the empty-level?(bills-car)
problem task.
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A.6 Extending built-in methods

Noos provides a collection of basic built-in methods. Nevertheless, some applica-
tions may require specific elementary methods that are not provided. Noos allows
a simple way to incorporate new built-in methods using the Define-Built-In
macro and Lisp expressions. This macro allows to define a new built-in method
by means of specifying a name for the method, the set of required features of
the method, and a Lisp expression performing a specific combination of required
features. The syntax is the following:

(define-built-in name (paraml ... paramn) lisp-expression)

where name is the name of the new built-in method we are defining; param1i
... paramn are the names of the required features for the built-in; and lisp-
expression is the expression that implements the built-in method. Inside the
lisp expression values of required features can be accessed by using the names
of required features as variables.

For instance, the subtract built-in method is defined as follows:

(Define-Built-In Subtract (amount minus) (- amount minus))

Moreover, we have to specify the new description of the method in Noos
defining the subtract term as follows:

(define (method Subtract)
(amount )
(minus ))

The definition of a new built-in method can be specified in a file and then
loaded into the Noos environment.






Appendix B

Glossary

The purpose of this appendix is to provide a collection of definitions about the
set of different concepts involved in Noos language as well as a reference to the
section of the memory in which are defined.

In this glossary, terms appearing in boldface indicate they are defined in
the glossary. Often we will use term as a shorthand for feature term (and will
not appear in boldface).

Anonymous terms — A term that has no identifier, it can be ref-
erenced only by its position (as a subterm of other terms). For
instance, in (define (person Jack) (girlfriend (define (girl))))
the girlfriend of Jack is anonymous and can only be referenced by
(>> girlfriend of Jack). (§ 3.2.2).

Antiunification — A basic operation defined in Noos that given two terms
constructs another term holding which is common to both (yielding the
notion of generalization) and all that is common to both (the most specific
generalization). Formally, the antiunification of a set of terms yields a
greatest lower bound with respect to subsumption ordering. (§ 4.6).

Any — The highest sort in the Noos refinement hierarchy. Any represents the
minimum information and all the other sorts are more specific than any.
See also single description. (§ 3.2.2).

Built-in method — A Noos predefined method. Examples of Noos built-in
methods are arithmetic operations, set operations, logic operations, op-
erations for comparing feature terms, and other basic constructs such as
conditional or sequencing. (§ 3.2.4, § D).

Domain knowledge — Specifies a set of concepts, a set of relations among
concepts, and problem data that are relevant for an application. Concepts
and relations define the domain ontology of an application. (§ 3.1).

Constant term — A feature term that is not a method-i.e. is not evaluable.

(§ 5.2).
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Constituent — The constituent of a term T is the identifier of a term T’ from
which T has been constructed by refinement. (§ 3.2.2).

Current-task — A reflective operation that allows to refer to the task in
which a method is involved. (§ 3.3.5).

Default — Reflective operator that allows to refer to the default metalevel
term of a term. § 3.3.5.

Default metalevel — A special kind of metalevel that applies to all the
features of its referent. In a default metalevel we can specify a method
(or a set of methods) for any feature of a referent. (§ 3.3.2).

Description — The syntax Noos uses for constructing feature terms. The
description syntax is based on lists (like Lisp) starting with token define.
For instance, (define (person man)). (§ 3.2.1).

Episodic knowledge — The reification of part of the behavior of the sys-
tem represented in Noos. Episodic knowledge is is organized in episodic
models and stored in the episodic memory. (§ 3.1, § 4.1).

Episodic memory — Episodic memory is the (accessible and retrievable)
collection of the episodic models of the problems that a system has solved.

(§ 4.1).

Episodic model — The explanation of the inference process engaged by Noos
in solving a specific problem task. An episodic model holds the set of
knowledge pieces used for solving a specific problem task, how and where
they were used, and the decisions taken for solving that problem. (§ 4.1).

Ephemeral term — A term that is not memorized—and thus, it is not
amenable to retrieval. (§ A).

Evaluable term — A kind of feature term that models Noos methods. Evalu-
able feature terms are interpreted as functions. (§ 5.9).

Failure — In a specific subtask, a failure occurs when no value for that task
can be inferred—and causes backtracking at that point. When a global
failure occurs, the token fail is returned. (§ 3.5).

Feature termm — The basic data structure of Noos. They can be seen as a
generalization of first order terms and lambda terms. They are extend-
able records organized in a subsumption hierarchy. Feature terms are
constructed by means of descriptions and the refinement constructor.
(§ 5.2, § 5.6).

Identifier — An identifier is a symbol denoting a term. Terms that have
an identifier are named terms, otherwise they are anonymous terms.
(§ 3.2.2).
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Introspection — In Noos, the capability of accessing to and reasoning about
the episodic memory.

Labeled graph representation — A term can be represented as a labeled
directed graph that has, for each variable X : s, a node ¢ labeled with sort
s, and has an arc from ¢ to another node ¢’ labeled by f, for each feature
f defined in ¢ with feature value ¢'. (§ 5.7).

Matching — See subsumption.

Memorization — The property of permanent terms to be stored in
episodic memory and be amenable to retrieval. (§ 4.1).

Meta — Reflective operator that allows to access to the metalevel term of a
term. (§ 3.3.5).

Metalevel — A feature term in a metalevel relationship with a referent term
B. The features of the referent B have a corresponding feature with the
same name on the metalevel. A feature f of the metalevel has as feature
value the set of methods methods that are applicable to the feature f of
the referent B. (§ 3.3.1).

Metalevel knowledge — Knowledge about domain knowledge, problem
solving knowledge, and episodic knowledge. Metalevel knowledge
is formed by metalevel concepts, metalevel relations, metalevel tasks, and
metalevel methods. Moreover, metalevel knowledge includes preferences.
(§ 3.1, § 3.3).

Method — An evaluable feature term. Formally, a function that receives
parameters by feature names. A method term is closed when it possess all
required parameters. Methods are defined by refinement. (§ 3.2.4).

Named Term — A term with an identifier. A named term can be referenced
by its identifier using (>> of NamedTerm) although syntactic sugar allows
in some places to write only NamedTerm. (§ 3.2.2).

Node — See labeled graph representation.

Path reference — A list that starts with the >> token. There are two kinds
of path references: absolute and relative path references. An example of
an absolute path reference is (>> symptom of car). An example of a
relative path reference is (>> price model). (§ 3.2.3).

Permanent terms — Feature terms that are memorized (see memoriza-
tion) and, thus, amenable to retrieval. (§ A).

Perspective — A mechanism for describing declarative biases for Noos re-
trieval. (§ 4.3).



208 Appendix B. Glossary

Preferences — Model decision making about sets of alternatives present in
domain knowledge and problem solving knowledge. Furthermore,
preferences are used in Noos as a symbolic representation of relevance in
comparing a given current problem with problems previously solved by the
system. (§ 3.4).

Problem solving knowledge — Problem solving knowledge specifies a set
of tasks and methods that construct a model of a problem (solve a prob-
lem). For a given subtask there may be multiple alternative methods that
may be capable of solving that subtask in different situations. A method
can be decomposed into subtasks that may be achieved by other methods.

(5 3.1).

Problem task — A task engaged by a query expression. A problem task
F (D) engages the inference to determine the feature value for feature F of
feature term D. (§ 3.2.5).

Query expression — A question that is posed to the system.  Usu-
ally, a query expression is asking for a feature value, as in
(>> diagnosis of patient-33). Since evaluation in Noos is lazy, no fea-
ture values are inferred until a query is performed—and only those feature
values needed will be computed. (§ 3.2.5).

Reference — See identifier and path reference.

Referent — The referent of a metalevel is that term it is metalevel of. The
referent of a task is the result value of that task. Furthermore, the referent
reflective operator allows to access to the referent—if it exists—of a term.
(§ 3.3.1, § 3.3.5).

Refinement — A constructor operation that builds a term from another (al-
ready defined) term. Refinement involves two distinct aspects: (1) code
reuse (the construction of a term by reusing another term) and, (2) sub-
typing (the definition of a domain-specific sort hierarchy). (§ 3.2.2).

Reflective operator — An operation that allows to access and to inspect
the metalevel knowledge (see operations namely meta, default, task,
current-task, and referent). (§ 3.3.5).

Reification — The process by which a Noos expression is converted into an
object (a feature term). Reification is performed by the reify construct.
(§ 3.3.6).

Reify — A construct that takes a path reference or a compact description and
builds an method that reifies it.

Retrieval — A mechanism for content-based access to the episodic memory.
Noos provide a set of basic retrieval methods. Retrieval methods allow
to retrieve previous relevant episodes from the episodic memory using
relevance criteria. (§ 4.2).
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Root — The root node of a feature term is the outmost node in a
description.  For instance, the root in the following description
(define (person :id Jack) (girlfriend (define (girl)))) is the
node of sort person with identifier Jack. (§ 3.2.2).

Single description — Compact syntax for defining feature terms by refine-
ment of the top sort any. A description such as (define foo) is just a
short syntax equivalent to (define (any foo)). (§ 3.2.2).

Sort — A symbol that denotes a set of the individuals of a domain. Sorts
form a collection of partially ordered symbols. A set of predefined sorts
are defined in Noos. New sorts are defined using refinement. In Noos the
top sort is called any. (§ 3.2.2, § 5.2.2, § A).

Subsumption — Informational ordering among feature terms. We say that
a feature term v subsumes another feature term ¢’ when all information
in ¢ is also contained in t'—or in other words, ¢ is more general than 1)’.

(§ 5.6).
Symbol — See identifier.

Task — Tasks reify the status of the inference in the language. A given task
reifies the inference status for a feature of a term. Tasks embody episodic
knowledge such as the method that has succeeded in achieving that task
(the method used to infer the feature value of the feature) and the result
of the evaluation of the method (the feature value). (§ 3.3.4).

Transparent methods — Noos methods are transparent. The transparent
capability of Noos methods allows to perform forms of inference that need
to inspect and reason about methods and how they have been used to solve
particular tasks. This capability of Noos methods is used, for instance, in
analytical learning methods. (§ 4.1).






Appendix C

The Noos Syntax

This Appendix describes the syntax of Noos using BNF notation. We write
predefined terminal symbols, that are part of the Noos language, in typewriter
font. We write user-defined identifiers in italic font. We write non-terminal
symbols in normal type face. Symbols ::=, [, ] |, *, + are part of the BNF
formalism as follows:

L ::= R defines the syntax of L as R

[X] defines an optional item

X |Y  defines two alternative options X and Y
X+ defines one or more occurrences of X
X* defines zero or more occurrences of X
top-level-expression ::= description

| query-expression

description ::= single-description
| named-description
| anonymous-description
| set-description
| named-metalevel-description
| anonymous-metalevel-description
|  named-default-description
anonymous-default-description
default-descripti

single-description := (define name [:ephemeral]
feature-description*®)

named-description = (define (constituent [:id] name) [:ephemeral]
feature-description*)

211
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anonymous-description = (define (constituent) [:ephemeral]
feature-description*)

set-description @m= (define (set mame)
[name | anonymous-description]*)

named-metalevel-description = (define (metalevel name) [:ephemeral]
feature-description*®)

anonymous-metalevel-description:= (define (metalevel (meta+ of name))
[:ephemeral]
feature-description*)

named-default-description nm= (define (default name)
[name | anonymous-description]*)

anonymous-default-description ::= (define (default (default meta* of name))
[name | anonymous-description]*)

feature-description = (feature-name v-expression*)
| ((feature-name v-expression+) )

v-expression = name
| "symbol | string | number
| anonymous-description
|  path-reference
| eval-expression
| compact-method
|  reification

|  metalevel-operation

query-expression = path-reference
| eval-expression
| metalevel-operation

path-reference = (>> v-expression* [of v-expression])
| (!>> v-expression* [of v-expression])
| (7>> v-expression* [of v-expression])
| (*¥>> v-expression* [of v-expression])

eval-expression = (noos-eval [v-expression])
| (known-eval [v-expression])
| (exists-eval [v-expression])
| (all-eval [v-expression])
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compact-method = (name v-expression*)
reification nm= (reify v-expression)
metalevel-operation = (meta [v-expression])

| (default [v-expression])

| (referent [v-expression])

| (current-task [v-expression])

| (task v-expression [of v-expression])

C.1 Compact syntax for closed methods

Compact methods allows the defintion of closed methods by position instead
of by name. Since definition by position assumes that required features of a
built-in method are specified in a particular order, we introduce here, for each
built-in method, the name of the method in compact syntax (using typewriter
font) and the assumed order of parameters (inside angles). Parameters can be
any v-expression such as a feature value.

When we use the compact syntax we have to specify a value for all the
required features and only the required features can be specified. Otherwise an
error is produced.

Compact syntax for built-in methods such as conjunction, disjunction,
union, intersection, add, mult, max, and min allows the definition of n ar-
guments. In fact, these definitions are translated as a composition of compact
expressions. For instance, the following compact expression:

(max 1 354 2)
is translated to the following compact expression:
(max 1 (max 3 (max 5 (max 4 2))))

Compact syntax for Noos built-in methods is the following:

conditional = (if <condition> <result> [<otherwise>])
not = (not <item>)

conjunction = (and <iteml> <item2> ... <itemn>)
disjunction n= (or <iteml> <item2> --- <itemn>)
difference = (difference <setl> <set2>)

member = (member <element> <set> [<test>])

union »= (union <setl> <set2> --- <setn>)
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intersection m= (dintersection <setl> <set2> --- <setn>)
empty-set? = (empty-set? <set>)

cardinal = (cardinal <set>)

add n= (4 <iteml> <item2> - .- <itemn>)
subtract = (- <amount> <minus>)

mult n= (x <iteml> <item2> --- <itemn>)
div i= (/ <iteml> <item2>)

max n= (max <iteml> <item2> --. <itemn>)
min n= (min <iteml> <item2> --. <itemn>)
higher-than? = (> <is-higher> <than>)
higher-equal-than? n= (>= <is-higher> <than>)

lower-than? = (< <is-lower> <than>)

lower-equal-than? (<= <is-lower> <than>)
identity? = (identity? <iteml> <item2>)

subsumption = (subsumes? <pattern> <source>)

equivalence = (equivalent? <iteml> <item2>)
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Built-in Methods

This Appendix describes the collection of all Noos built-in methods. The goal of
this Appendix is to specify the inference involved in the evaluation of each built-
in method. We will not provide examples of their use in Noos. Each built-in
method is described in three parts:

1.

D.1

First, we will describe its required features indicating the least required sort
for each feature, and the least sort of the value yielded in the evaluation
of the method. We will use the following format:

method-name[parl = sl --- parn = sn| — s
where method-name is the name of the built-in method; parl,...,parn
are the names of the required features for the method; s1,...,sn are the

least required sorts of values for each required feature; and s is the least
sort, of the value yielded in the evaluation of the method.

When least required sorts for feature values are not preserved, an error is
produced.

. Then, a brief description of the evaluation of the method will be provided.

We will talk about feature values using their pari names. For instance,
item] <item2 means that value of feature itemI is lower to value of feature
item?2.

Finally, the corresponding inference rule, using DDL notation, will be in-
troduced.

General

Conditional

[condition = boolean result = {any} otherwise = {any}] — {any}
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The conditional method performs first the subtask condition and de-
pending on its result being true or false, either the result subtask or the
otherwise subtask is performed, and its result is the value yielded by con-
ditional method.

Inference rules §¢°"? performing the evaluation of a conditional method
m, are the following;:

condition = true condition = false

result = c' seond otherwise = ¢/
m =

cond __
Oyt =

result(m) = ¢ result(m) = ¢

Sequence [| — {any}

The sequence method allows the definition of a sequential chaining of
subtasks (relatively to the writing order) and its result is the value yielded
by the last subtask. Sequence has no required features but, at least, one
subtask has to be defined. The names of the subtasks can be any feature
name.

Since the name of the subtasks are not predetermined, given a specific se-
quence method m with subtasks ¢1, ..., tn, the evaluation of m is formal-
ized as the sequence of task programs mp, ;15 . ..; Tm.tn (see Section 5.13.4)
followed by an inference rule §;¢¢ as follows:

§5ed — tn =c
m result(m) = c

D.2 Comparison methods

Noos provides three different comparison methods for testing equality and in-
clusion relationships between of two feature terms. The identity? method
is the most specific, the subsumption method is the most general, and the
equivalence method is more general than identity? and more specific than
subsumption.

Identity? [item] = any item2 = any] — boolean

The identity? method compares if the values of features item1 and item2
are the same yielding as result true when are the same and false otherwise.

Inference rules 6:4° performing the evaluation of an identity? method m
are the following:

iteml = ¢; iteml = ¢;
5id? item2 = ¢y id? item?2 = c¢s

m

m

result(m) = true ’ result(m) = false
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Subsumption [source = {any} pattern = any] — boolean

The subsumption method checks if pattern subsumes source yielding as
result true when pattern subsumes source and false otherwise (see Sec-
tion 5.6).

Inference rules §5usu™ performing the evaluation of a subsumption
method m are the following;:

source = ¢ source = ¢

pattern = co pattern = cy
13 ” 13 ”
C1 E C2 subsum __ C1 z C2

subsum __
(Sm

m

result(m) = true ’ result(m) = false

Equivalence [item] = any item2 = any] — boolean

The equivalence method checks if item! subsumes item2 and item2 sub-
sumes item! yielding as result true when this is the case and false other-
wise.

Inference rules §29%% performing the evaluation of an equivalence method
m, are the following;:

source = ¢1 source = c1
pattern = co pattern = co
“Cl E ca N Co E 017’ “Cl z ca V Cy Z Cln

equiv __ equiv __
6m - 6m -

result(m) = true result(m) = false

D.3 Filter methods

Subsumption-matching [pattern = any sources = {any}] — any

The subsumption-matching method yields an element of the set in
feature sources such that is subsumed by pattern. Backtracking on a
subsumption-matching method yields, consecutively, all other elements
from sources also subsumed by pattern (see next).

Filter-by-subsumption [pattern = any sources = {any}] — {any}

The filter-by-subsumption method yields the subset of elements of
sources such that are subsumed by pattern.

The filter-by-subsumption method is defined using the subsumption-
matching method and by refinement of the all-eval method as follows:

(define (All-Eval Filter-By-Subsumption)
(pattern )
(sources )
(methods (define (Subsumption-Matching)
(pattern (>> pattern))
(sources (>> sources))))
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D.4 Arithmetic methods

All the arithmetic methods require that the values of their required features
be numbers. A non-number value in a feature produces an error. Moreover,
each method works on all types of numbers and automatically performs any
required coercions when parameters are of different types in the same way that
CommonLisp.

Add [item]l = number item2 = number] — number
The add method yields the sum of item1 and item2.

The inference rule 6224 performing the evaluation of an add method m is
the following:

iteml = ¢
item2 = c¢o

[{9N)

d=c +cy”

5add —
mn result(m) = ¢

Subtract [amount = number minus = number] — number

The subtract method yields the subtraction of amount and minus.

The inference rule §3“* performing the evaluation of a subtract method
m is the following;:

amount = ¢y
minus = ¢

“ol — ¢ — 027:

saub — -
result(m) = ¢
Mult [item] = number item2 = number] — number

The mult method yields the product of item! and item2.

The inference rule 6% performing the evaluation of a mult method m
is the following;:

iteml = ¢;
item2 = ¢y
“C/ — cl * 0277

mult __
ot =

result(m) = ¢

Div [item]1 = number item2 = number] — number
The div method yields the division of item1 by item?2.

The inference rule 4 performing the evaluation of a div method m is
the following;:
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iteml = ¢;
item2 = c¢o
“cl — C1/0277

6div —
m result(m) = ¢
Max [item] = number item2 = number] — number

The max method yields the greatest number of item1 and item?2.

Inference rules 4,2%* performing the evaluation of a max method m are
the following;:

iteml = ¢; iteml = ¢;
item2 = ¢y item2 = ¢y
[44 ” [44 ”
m == ) m -

result(m) = ¢; result(m) = ¢y

Min [item] = number item2 = number] — number
The min method yields the least number between item! and item2.

Inference rule 67" performing the evaluation of a min method m are the

following;:
iteml = ¢; iteml = ¢;
item2 = ¢y item2 = ¢y
[44 ” [44 ”
m - ’ m -

result(m) = ¢; result(m) = ¢y

D.4.1 Numeric comparisons

Higher-than? [is-higher = number than = number] — boolean

The higher-than? method yields true if is-higher is higher than than.
Otherwise yields false.

Inference rules 4, performing the evaluation of a higher-than? method
m are the following:

is-higher = ¢; is-higher = ¢;
than = ¢y than = c»
> _ “cl > 0277 > _ “cl S 0277
result(m) = true ’ m result(m) = false

Higher-equal-than? [is-higher = number than = number] — boolean

The higher-equal-than? method yields true if is-higher is higher or
equal than than. Otherwise yields false.
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Inference rules 7 performing the evaluation of a higher-equal-than?
method m are the following;:

is-higher = c; is-higher = ¢;
than = cs than = c»
S Hcl Z 02’7 S Hcl < CQ”
m result(m) = true ’ m result(m) = false

Lower-than? [is-lower = number than = number] — boolean

The lower-than? method yields true if is-lower is lower than than. Oth-
erwise yields false.

Inference rules 455 performing the evaluation of a lower-than? method
m are the following:

1s-lower = ¢; 1s-lower = ¢
than = cs than = cs
< _ “cl < 0277 §< _ “cl Z 0277
result(m) = true m result(m) = false

Lower-equal-than? [is-lower = number than = number] — boolean

The lower-equal-than? method yields true if is-lower is lower or equal
than than. Otherwise yields false.

Inference rules d5, performing the evaluation of a lower-equal-than?
method m are the following;:

is-lower = ¢; 1s-lower = ¢
than = ¢y than = cs
S _ Hcl S 02’7 S _ Hcl > CQ”
result(m) = true " result(m) = false

D.5 Methods on sets

All the methods on sets require that the values of their required features be sets
of elements. If one of them is a singleton is considered as a set with one element.

Empty-set? [set = {any}] — boolean

The empty-set? method yields true if set is empty-set and false other-
wise.

Inference rules 6P’ performing the evaluation of an empty-set? method
m are the following:

set = empty-set set ={c1-cn}

6emp? — ) 6emp? —
" result(m) = true ’ " result(m) = false
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Cardinal [set = {any}] — number
The cardinal method yields the number of elements in set.

The inference rule §%"¢ performing the evaluation of a cardinal method
m is the following:

poard _ St = o1 )
card _

result(m) =n

Union [setl = {any} set2 = {any}] — {any}
The union method yields the union of sets set! and set2.

The inference rule §4*°" performing the evaluation of a union method m
is the following;:

setl = {ey - e}
set2 ={c---c,}
“S — {Cl .. .cn} J {Cll .. .c;’n}”
result(m) = S

union __
(Sm

Intersection [setl = {any} set2 = {any}] — {any}
The intersection method yields the intersection of sets set! and set2.

The inference rule §i"" performing the evaluation of an intersection
method m is the following:

setl = {cy---cn}
set2={c}---c,}
“S - {cl . e .cn} N {c’l . e .c;’n}”
result(m) = S

6inter —
Difference [setl = {any} set2 ={any}] — {any}
The difference method yields the set difference of set! and set2.

The inference rule 6:,111}7 performing the evaluation of a difference method
m is the following;:

setl = {ey---cn}

set2={cy---cl,}
i S =le e \ (e y
" result(m) = S

Member [set = {any} item =any test = symbol] — boolean

The member method yields true if item is found in set using the com-
parison criterion test. Otherwise yields false. Three comparison criteria
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can be used: identity, subsumption, and equivalence corresponding to the
comparison methods described before (see Section D.2).

Inference rules 5™ performing the evaluation of a member method
m with identity comparison criterion are the following;:

set ={cy---cn} set ={cy---cn}
element = ¢; element = ¢;
test = “identity test = “identity
6m€mber — “Ci € {01 T CN}” member — “Ci ¢ {Cl T CTI}”
m m

result(m) = true result(m) = true

Inference rules §m°™"°" performing the evaluation of a member method
m with subsumption comparison criterion are the following;:

set = S set =8
element = ¢; element = ¢;
test = ‘subsumption test = ’subsumption

“Iej € S:ci Cy”

result(m) = true

“Be; € S:te; Eey”

result(m) = true

member __
Om

member __
O

)

Inference rules §m°™%" performing the evaluation of a member method
m with equivalence comparison criterion are the following:

set = S set =S
element = ¢; element = ¢;
test = ’equivalence test = ’equivalence

[44 . . . . R [44 . . . . R
5member _ Ec] €S: Cj CgLC Cj 6member _ 390] €S: Cj CeC Cj
m »Om

result(m) = true result(m) = true

D.6 Logic methods

All the logic methods require that the values of their required features be
boolean. A non-boolean value in a feature produces an error.

Not [item = boolean] — boolean
The not method yields the negation of item.

Inference rules 67°! performing the evaluation of a not method m are the

following:
not item = false not item = true
67’71 = m =

result(m) = true ’ result(m) = false
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Conjunction [item]1 = boolean item2 = boolean] — boolean

The conjunction method yields true if item! and item2 are both true
and false otherwise.

The inference rule §5°™ performing the evaluation of a conjunction
method m is the following:

iteml = by
item2 = by
“p = bl A bg”

5con]’ —
" result(m) = b

Disjunction [item1 = boolean item2 = boolean] — boolean

The disjunction method yields true if either item! or item2 is true and
false if both are false.

The inference rule §2%7 performing the evaluation of a disjunction
method m is the following:

iteml = false
item2 = false
“h = bl vV bg”

5disj —
m result(m) = b

D.7 Retrieval methods

Retrieval methods provide a powerful mechanism for accessing to the episodic
memory contents. There are three built-in methods for retrieval defined in Noos:
retrieve-by-pattern, retrieve-by-task, and retrieve-by-feature-value.

Retrieve-by-pattern [pattern = any] — {any}
The retrieve-by-pattern method yields the collection of terms, from the
episodic memory, subsuming the pattern.

The inference rule 7P performing the evaluation of a retrieve-by-
pattern method m on the episodic memory U is the following;:

pattern = ¢
S={c eUlcCe¢}

6rbp —
mn result(m) = S

Retrieve-by-task [task-name = symbol] — {any}

The retrieve-by-task method yields the collection of terms, from the
episodic memory, that have solved the task task-name.

The inference rule 67" performing the evaluation of a retrieve-by-task
method m on the episodic memory U is the following:
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task-name = ’f
S ={e; € Ule;.f is defined}
result(m) = S

rbt __
oyt =

Retrieve-by-feature-value [task-name = symbol wvalue = any] — {any}
The retrieve-by-feature-value method yields the collection of terms,
from the episodic memory, that have value in task-name.

The inference rule §7°/Y performing the evaluation of a retrieve-by-
feature-value method m on the episodic memory U is the following:

task-name = ’f
value = ¢
S={c; €Ule.f =c}
result(m) = S

5rrnbfv _

D.8 Preferences

We have described preferences in Section 3.4. Now we will briefly describe prefer-
ence methods indicating their required features and their corresponding inference
rules using the definitions of preference operations given in Section 5.10. The
reader can consult Section 3.4 for examples of the use of preferences in Noos.

We have explained that a preference method takes a set of source elements
and builds a preference taking into account an ordering criterion. In fact, built-in
preference methods are more powerful: when the set of source elements is already
a partially ordered set, the new preference is added using the hierarchical union
operator. Since all preference methods performs a hierarchical union, for the
sake of clarity we will first describe a preference method without the hierarchical
union and then, we will present its inference rule incorporating the hierarchical
union.

Increasing-order-preference [poset = poset feature = symbol] — poset

The increasing-order-preference method takes the set of elements in poset,
the feature name feature of a feature with numeric value, and yields a new
preference where the most preferred elements are those with a higher value
in the specified feature. If any value for feature is not numeric an error is
produced.

The inference rule §7"°P performing the evaluation of a increasing-order-
preference method m is the following:

poset = (S, <)
feature = ’f’
“ = {(CZ',C]')‘CZ',C]‘ € S,¢.f > C]'.f}
Mpl — <S’ _<> ° <S= _<I>7)

6incp —
mn result(m) = p'
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Decreasing-order-preference [poset = poset feature = symbol] — poset

The decreasing-order-preference method takes the set of elements in poset,
the feature name feature of a feature with numeric value, and yields a new
preference where the most preferred elements are those with a lesser value
in the specified feature. If any value for feature is not numeric an error is
produced.

The inference rule §2¢°P performing the evaluation of a decreasing-order-
preference method m is the following:

poset = (S, <)
feature = ’f
“ <'={(ci,cj)leicj € Sieif <ejf}
“p/ — <S’ _<> ° <S’ _</>’7

decp __
0P = -

result(m) = p

Higher-threshold-preference
[poset = poset  feature = symbol threshold = number] — poset

The higher-threshold-preference method takes the set of elements in poset,
the feature name feature of a feature with numeric value, a threshold, and
yields a new preference where the elements with a higher value than value
in feature are preferred to elements with lower or equal value than value.
If any value for feature is not numeric an error is produced.

The inference rule 877 performing the evaluation of a higher-threshold-
preference method m is the following;:

poset = (S, <)
feature = ’f
threshold = ¢
“'={(ciycj)lciscj € Syeif > e, f <)
W= (5.2 ¢ (5,

!

6htp —
" result(m) = p

Lower-threshold-preference
[poset = poset  feature = symbol threshold = number] — poset

The lower-threshold-preference method takes the set of elements in poset,
the feature name feature of a feature with numeric value, a threshold, and
yields a new preference where the elements with a lower value than value
in feature are preferred to elements with higher or equal value than value.
If any value for feature is not numeric an error is produced.

The inference rule 317 performing the evaluation of a lower-threshold-
preference method m is the following;:
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poset = (S, <)
feature = °’f
threshold = ¢
“<'={(ciycj)lei¢j € Syeif < eyej.f >}
“pl = <Sa <> b <Sl <I>”

6ltp —
mn result(m) = p'

Subsumption-preference [poset = poset pattern = any] — poset

The subsumption-preference method takes the set of elements in poset, the
term pattern, and yields a new preference where the preferred elements are
those pattern subsumes.

The inference rule 63*P performing the evaluation of a subsumption-
preference method m is the following;:

poset = (S, <)
pattern = ¢
“<'={(ci,c5)lci,c; € S,eif Ceyejf L e}
“pl = <Sa <> ® <Sa <l>7’

/

(Ssubp —
m result(m) = p

Equal-value-preference
[poset = poset feature = symbol wvalue = number] — poset

The equal-value-preference method takes the set of elements in poset, the
feature name feature of a feature with numeric value, a value, and yields
a new preference where the elements with value in feature are preferred to
others.

The inference rule §¢'P performing the evaluation of a equal-value-
preference method m is the following:

poset = (S, <)
feature = °’f
value = ¢

“ <'={(ci,cj)leicj € Syeif = ¢5.f #c}”
“p/ — <S, <> ° <S’ <I>77

S —
result(m) = p

User-preference [poset = poset] — poset

The user-preference method takes the set of elements in poset and yields
a new preference according to the answer provided by the user using a
window interface.
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Inversion [poset = poset] — poset

The inversion method yields a new preference, inversion of preference
poset.

The inference rule §:7v*" performing the evaluation of a inversion method
m is the following;:

poset = p
i) —1»

6inver — p =P
mn result(m) = p'

T-intersection [posetl = poset poset2 = poset] — poset

The t-intersection method yields a new preference by restricting prefer-
ences poset! and poset2 to the elements of their intersection and, then, per-
forming a transitive union on the resulting preferences (see Definition 5.25
in Section 5.10).

The inference rule ¢ performing the evaluation of a t-intersection method
m is the following:

posetl = py
poset2 = po
A “p = p1Npz”

result(m) = p

C-intersection [posetl = poset poset2 = poset] — poset

The c-intersection method yields a new preference by restricting prefer-
ences posetl and poset2 to the elements of their intersection and, then,
performing an intersection on the resulting preferences (see Definition 5.26
in Section 5.10).

The inference rule o performing the evaluation of a c-intersection method
m is the following:

posetl = py
poset2 = py
n “p = plﬁp?”

result(m) = p

T-union [poset]l = poset poset2 = poset] — poset

The t-union method yields a new preference by extending preferences
poset] and poset?2 to the elements of their union and, then, performing
a transitive union on the resulting preferences (see Definition 5.27 in Sec-
tion 5.10).

The inference rule 62 performing the evaluation of a t-union method m is
the following;:
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posetl = py
poset2 = po
=l ‘p = p1Up”

result(m) = p

C-union [posetl = poset poset2 = poset] — poset

The c-union method yields a new preference by extending preferences
poset! and poset2 to the elements of their union and, then, performing
an intersection on the resulting preferences (see Definition 5.28 in Sec-
tion 5.10).

The inference rule 6,% performing the evaluation of a c-union method m is
the following;:

posetl = py
poset2 = po
W “p = pl@p2”

~ result(m) =p

H-union [higher — poset = poset lower — poset = poset] — poset

The h-union method yields a new preference by extending preferences
higher-poset and lower-poset to the elements of their union and, then,
performing a hierarchical union on the resulting preferences (see Defini-
tion 5.30 in Section 5.10).

The inference rule 63, performing the evaluation of a h-union method m
is the following;:

higher — poset = p;
poset2 = po
‘P=p1epy”

result(m) = p

Oy, =

m

D.9 Methods for interaction

These kind of methods allow user interaction within the inference process. These
methods are commonly used for dynamically choosing among alternatives and
for introducing new values for features.

We will describe the two built-in methods provided by Noos without intro-
ducing inference rules.

Ask-option-to-user [question = string options = set] —» set

The ask-option-to-user method shows question and options to the user
and yields the subset of elements of options chosed by the user.
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Ask-value-to-user [question = string] — {any}

The ask-value-to-user method shows question and request a value to the
user. The value can be any feature term already defined. Otherwise an
error is produced.

D.10 Query methods

We have described query-methods in Section 3.3.6. Now we will briefly describe
query-methods indicating their required features. Inference rules and DDL pro-
grams formalizing inference of query-methods are given in Section 5.13. The
reader can consult Section 3.3.6 for examples of the use of query-methods in
Noos.

Infer-value [feature = symbol domain = {any}] — {any}

The infer-value method takes a feature name f in feature; a unit or a set
of units S in domain; performs tasks f(s;) for all units in S; and yields as
result the union of the values inferred in those tasks.

Known-value [feature = symbol domain = {any}] — {any}

The known-value method takes a feature name f in feature; a unit or a
set of units S in domain; and determines if a solution to a task f for the set
of units in S have already been computed, yielding a boolean accordingly.

Exists-value [feature = symbol domain = {any}] — {any}

The exists-value method takes a feature name f in feature; a unit or a
set of units S in domain; and determines if any solution to a task f for
the set of units in S exists, yielding a boolean accordingly.

All-values [feature = symbol domain = {any}] — {any}

The all-values method takes a feature name f in feature; a unit or a set
of units S in domain; determines the set of all inferrable values of tasks
f(s;) for all units in S; and yields as result the union of all those values.

D.11 Eval methods

Eval-methods have been described in Section 3.3.6. Now we will briefly de-
scribe eval-methods indicating their required features. Inference rules and DDL
programs formalizing inference of eval-methods are given in Section 5.13.

Noos-eval [methods = {method}] — {any}

The noos-eval method takes a method or a set of methods M in methods;
performs their evaluation; and yields as result the union of the values
inferred in the evaluation of those methods.
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Known-eval [methods = {method}] — {any}

The known-eval method takes a method or a set of methods M in methods
and determines if a solution for methods in M have already been computed,
yielding a boolean accordingly.

Exists-eval [methods = {method}] — {any}

The exists-eval method takes a method or a set of methods M in methods
and determines if exists a solution for methods in M, yielding a boolean
accordingly.

All-eval [methods = {method}] — {any}

The all-eval method takes a method or a set of methods M in methods;
determines the set of all inferrable values in their evaluations; and yields
as result the union of all those values.

D.12 Reflective operations

We have described reflective operations in Section 3.3.5. Reflective operations
are also reified as methods. Now we will briefly describe these methods indicating
their required features and no inference rules will be provided. The reader can
consult Section 3.3.5 for examples of the use of reflective operations.

Meta [object = any] — any
The meta method performs the subtask object and then, yields the meta-
level of object as result.

Default [object = any] — any
The default method performs the subtask object and then, yields the
default metalevel of object as result.

Referent [object = any] — any
The referent method performs the subtask object and then, yields the
referent of object as result.

Constituent [object = any] — any
The constituent method performs the subtask object and then, yields the
constituent of object as result.

Task [task-name = symbol domain = any] — task

The task method performs subtasks task-name and domain obtaining re-
spectively a task name F and a term D. Then, yields the task term that
reifies the inference F(D) as result.
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Current-task [method = method] — task

The current-task method performs the subtask method, obtaining a
method M, and then yields as result the task term that reifies the task
M is solving.
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