MONOGRAFIES DE L'llIA

PROOF PROCEDURES
FOR MULTIPLE-VALUED
PROPOSITIONAL LOGICS

il Felip Manya Serres

MONOGRAFIES DE L’INSTITUT D'INVESTIGACIO
EN INTEL-LIGENCIA ARTIFICIAL
Number 9

Institut d’Investigacié
en Intel-ligéncia Artificial

Monografies de 'Institut d’Investigacié en

Num.

Num.

Num.

Num.

Num.

Num.
Num.

Num.

Num.

Intel-ligéncia Artificial

J. Puyol, MILORD II: A Language for Knowledge-Based Sys-
tems

J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Ll. Vila, On Temporal Representation and Reasoning in
Knowledge—Based Systems

M. Domingo, An Ezpert System Architecture for Identification
in Biology

E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

J.L1. Arcos, The Noos Representation Language

J. Larrosa, Algorithms and Heuristics for Total and Partial Con-
straint Satisfaction

P. Noriega, Agent Mediated Auctions: The Fishmarket
Metaphor

F. Manyd, Proof Procedures for Multiple-Valued Propositional
Logics

Proof Procedures for Multiple-Valued
Propositional Logics

Felip Manya

Foreword by Gonzalo Escalada-Imaz
Institut d’Investigacié en Intel-ligéncia Artificial
Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigacié en Intel-ligéncia Artificial
Consell Superior d’Investigacions Cientifiques

Foreword by

Gonzalo Escalada-Imaz

Institut d’Investigacié en Intel ligéncia Artificial
Consell Superior d’Investigacions Cientifiques

Volume Author
Felip Manya
Universitat de Lleida

Institut d’Investigacid
en Intel-ligéncia Artificial

ISBN: 84-00-07793-8
Dip. Legal: B-17127-99
© 1999 by Felip Manya,

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
TITA, Institut d’Investigacié en Intel-ligéncia Artificial, Campus de la Universitat
Autdnoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Printed by CPDA-ETSEIB.
Avinguda Diagonal, 647.
08028 Barcelona, Spain.

Als meus pares

Contents

Foreword
Abstract
Acknowledgements

1 Introduction
1.1 Context and objectives
1.2 Contributions e e
1.3 Overview of the thesis

2 Multiple-Valued Logics
2.1 Introductionm Lo
2.2 Syntax and semantics of multiple-valued logics

221 Synmtax e
2.2.2 Semantics
2.2.3 Examples of multiple-valued logics
2.3 Multiple-valued signed formulas
24 Regular CNF formulas
2.5 Monosigned CNF formulas
2.6 Fuzzy logics as regular logics

3 The Satisfiability Problem in Signed CNF Formulas
3.1 Imtroduction.
3.2 Resolution-based proof methods
3.2.1 Signed resolution
3.2.2 Regularresolution
3.2.3 Monosigned resolution
3.3 The Davis-Putnam procedure
3.4 Maximal truth valueset
3.5 A satisfiability checking procedure for signed CNF formulas . . .
3.5.1 Branching heuristics,
3.6 A satisfiability checking procedure for regular CNF formulas . . .
3.6.1 Alternative branching rules

23
23
24
25
26
28
28
32
35
38
40

3.6.2 Branching heuristics
3.6.3 DataStructures.o 46

3.6.4 Deletion strategieso 49
4 Polynomially Solvable Satisfiability Problems 53
4.1 Introduction v o i e e e 53
42 TheHorn SAT problemo 54
4.2.1 The Horn SAT problem in mv-formulas 55
4.2.2 The Horn SAT problem in regular CNF formulas 67
43 The2-SATproblem 72
4.3.1 The 2-SAT problem in signed CNF formulas 72
4.3.2 The 2-SAT problem in regular CNF formulas 74
4.3.3 The 2-SAT problem in monosigned CNF formulas 81

5 An Interpreter for Multiple-valued Propositional Logic Pro-
grams 89
5.1 Introduction o o 89
5.2 Thelogic of programs 91
521 SYmBax . .« . oo e 91
5.2.2 SemantiCs . . .« v « « v v e e e e e e e e 91
52.3 Logicalinference 93
53 Theinterpreter o oo 96
531 Asimpleversion 96
5.3.2 Animproved version 101
54 Negablom v v o v i 103
5.5 CUE o o o o e e e e 104
5.6 Implementation 105
6 Conclusions 109
References 111
Index 121

il

Foreword

Automated theorem proving in multiple-valued logics has received increasing
interest and activity in the last years. This fact is motivated by attractive
applications relying on multiple-valued logics that have been suggested in fields
such as Expert Systems, Logic Programming, Error Correcting Codes, Deductive
Databases, Non-Monotonic Reasoning and Multi-Agent Systems. Needless to
say that all these applications demand efficient proof procedures for solving
real-world problems.

This book contains the description of original satisfiability checking proce-
dures for signed formulas and an efficient interpreter for multiple-valued logic
programs; and the ultimate goal of this work is to achieve computationally com-
petitive algorithms in the multiple-valued setting. Because of that, special at-
tention is devoted to the definition of appropriate calculi for mechanical proofs,
complexity issues, clever heuristics for scanning the proof search space and suit-
able data structures for representing instances of problems.

Several authors have already pointed out that the logic of signed formulas
offers a suitable formal framework for representing and solving problems for
practical applications. The results presented here reinforce such idea by pro-
viding new and fast algorithms that can improve the performance of existing
applications.

In Chapter 1, the context and objectives of the book are presented and the
main contributions are listed. This chapter also provides a summary of the
contents of the remaining chapters.

In Chapter 2, the logics used throughout this book are defined and their
relevance in the field of automated theorem proving in multiple-valued logics is
discussed.)

In Chapter 3, the propositional satisfiability problem in both signed and regu-
lar CNF formulas is considered. In both cases, Davis-Putnam-style satisfiability
checking procedures are described in detail. In particular, this chapter con-
tains original branching rules, branching heuristics, data structures and deletion
strategies.

In Chapter 4, it is shown that the propositional satisfiability problem in
regular Horn formulas can be solved in linear time when the truth value set is
finite, whereas its time complexity is almost linear for infinite truth value sets.
On the other hand, it is proved that the propositional satisfiability problem

iii

in signed CNF formulas whose clauses are binary is NP-complete. In the case
that the clauses are regular or monosigned it is shown that this problem is
polynomially solvable by designing quadratic-time algorithms.

In Chapter 5, a linear-time interpreter for infinitely-valued propositional logic
programs, enhanced with a cut operator and a negation as failure rule, is de-
scribed in detail. The low complexity achieved is due to the definition of suitable
data structures for representing logic programs and strategies for pruning the
proof search space.

In Chapter 6, the conclusions, as well as some open problems and future
research perspectives, are presented.

The approach presented here to design and analyze algorithms should be
particularly useful to those interested in developing efficient implementations.
To identify new polynomially solvable problems, define more powerful calculi for
signed formulas and develop encodings of problems for testing and comparing
the proof procedures designed are some of the open problems that may attract
the attention of other researchers working on multiple-valued logics.

Gonzalo Escalada-Imaz
Bellaterra, 1998

iv

Abstract

In this thesis we design proof procedures for solving both satisfiability and de-
duction problems in multiple-valued propositional logics. As our ultimate goal
is to obtain competitive algorithms from a computational point of view, our
approach is not confined to present complete calculi and sketch pseudo-code of
algorithms that automate their application. We also pay special attention to
the definition of suitable data structures for representing formulas, heuristics

for exploring the proof search space and techniques for avoiding redundant and
useless computations.

Regarding satisfiability problems we focus on signed CNF formulas, since
the satisfiability problem in any finitely-valued propositional logic is polynomi-
ally reducible to the satisfiability problem in signed CNF formulas. We design
Davis-Putnam-style decision procedures for both signed and regular CNF formu-
las. To this end, we extend the concept of one-literal rule to the signed setting,
introduce the new concept of maximal truth value set and define original branch-
ing rules and branching heuristics. For the subclass of regular CNF formulas, we
also define suitable data structures for representing formulas and some deletion
strategies for eliminating redundant and irrelevant clauses.

Starting out from the fact that there exist polynomial-time algorithms for
testing the satisfiability of classical Horn and 2-CNF formulas, we then investi-
gate what happens with these particular subclasses of formulas in the logic of
signed CNF formulas. First, we develop a complete unit resolution-style calculus
for regular Horn formulas. We then design efficient Horn satisfiability checking
procedures with linear-time complexity when the truth value set is finite (if
infinite, the complexity is almost linear). Second, we demonstrate that the sat-
isfiability problem in arbitrary signed 2-CNF formulas is NP-complete. We then
show that this problem is polynomially solvable when the formulas are regular
or monosigned. We describe efficient satisfiability checking procedures for these
subclasses of signed 2-CNF formulas. These procedures reach a quadratic-time
complexity in the worst case.

Regarding deduction problems we focus on a wide and important family of
infinitely-valued logics, including Lukasiewicz logic. First, we define a propo-
sitional logic programming language for this family of logics and prove that a
modus ponens-style inference rule is complete for determining the maximum de-
gree of logical consequence of a goal in a given infinitely-valued logic program.

AY

Second, we define a multiple-valued negation as failure rule and a cut operator.
Finally, we define suitable data structures for representing logic programs and
describe an interpreter with a linear-time complexity in the worst case.

vi

Acknowledgements

This book contains my PhD thesis, submitted to the Departament d’Informatica,
Universitat Autonoma de Barcelona, in November 1996.

This thesis would never exist without the help and encouragement of many
people. My sincerest thanks go to:

— Gonzalo Escalada-Imaz, my advisor, for his support and advice during my
work on this thesis;

— Jaume Agusti, Francesc Esteva, Llufs Godo, Reiner Hihnle and Ventura Verdu

for accepting to join my examining committee and for valuable comments and
suggestions;

— the Institut d’Investigacid en Intel-ligéncia Artificial (IITA-CSIC) whose mem-
bers contributed with ideas, discussions and in many other ways to this thesis.

— the Escola Universitiria Politécnice and the Departament d’Informatica at the
Universitat de Lleida for providing a very special work environment;

— the CICYT, La Paeria and the Universitat de Lleida for partially supporting
this research;

— my colleagues and friends Teresa Alsinet, César Fernandez, Jordi Levy and
Lluis Vila for the good times we have shared;

— and especially my family and Teresa for their love and support over the years.

vii

Chapter 1

Introduction

1.1 Context and objectives

The first time a computer was used to prove theorems was in 1954: Martin Davis
did a straightforward implementation of the Presburger’s decision procedure for
additive number theory, but led to no publication. Three years later, Newell,
Shaw and Simon published the first paper that reported results of a computer
program that could prove some theorems in classical propositional logic, the
Logic Theory Machine (Newell et al., 1957). Since then, a lot of work has
been done in the field of Automated Theorem Proving, and its results have not
only been applied to prove mathematical theorems, but also to different areas
of Computer Science such as Program Synthesis and Verification, Data Bases,
Logic Programming and Artificial Intelligence.!

The idea of automating the reasoning task leads to a new vision of Logic
in which the notions of validity and logical consequence gain a computational
dimension. Martin-L6f (1987) says that Computational Logic must take into
consideration four aspects:

¢ The language.
e The semantics.
e The proof theory.

¢ An automated deduction system.

The design of most proof procedures, which are the core of any automated
deduction system, offers serious obstacles because of the computational complex-
ity of the problems they have to solve: on the one hand, it is not always possible

1See (Davis, 1983a) for a description of the implementation of the Presburger’s decision
procedure. See (Davis, 1983b; Loveland, 1984) for an overview of the history of automated
theorem proving. In (Siekmann and Wrightson, 1983a; Siekmann and Wrightson, 1983b) are
collected the main contributions to this field until the early 1970’s.

2 Chapter 1. Introduction

to devise a procedure for determining the validity of a formula in a finite number
of steps. In classical first-order logic, this problem was first posed by Hilbert and
Ackermann (1928), who called it the Entscheidungsproblem. Church (1936) and
Turing (1936), independently, gave a negative answer to the Entscheidungsprob-
lem. On the other hand, even though such a decision procedure exists in classical
propositional logic, a wide variety of problems are computationally intractable,
in the sense that the known algorithms for solving them require an exponential
number of steps in the length of the input for some problem instances. Cook
(1971) proved that the propositional satisfiability (SAT) problem in classical
logic is NP-complete. _

Several approaches to solving computationally intractable problems have
been suggested in Computational Logic. For the purposes of this thesis, we
emphasize the following ones:

e To design relatively fast proof procedures based on logic calculi such as
resolution and semantic tableaux. These calculi are generally more ap-
propriate for automated theorem proving than Hilbert-style systems or
natural deduction.

e To identify subclasses of computationally intractable problems which are
polynomially solvable. This leads to develop logic calculi, or refinements
of existing ones, which are complete for such subclasses. This is the case,
for instance, of the classical SAT problem in Horn formulas (Horn SAT)
and 2-CNF formulas (2-SAT).?

Nevertheless, there is a gap between a high-level description of a proof pro-
cedure and a competitive implementation from a computational point of view.
Bridging this gap involves to make non-trivial decisions concerning, among other
things, the definition of clever heuristics for solving the non-determinism inher-
ent in logic calculi (i.e. what inference rule is applied and over what formulas)
and suitable data structures for representing instances of the problem. A clever
choice of heuristics and a suitable design of data structures are decisive factors
to get implementations that run as fast as possible on a wide range of computa-
tionally difficult instances.

The primary concern of this thesis is the design of fast decision proce-
dures for solving problems in multiple-valued propositional logics. In par-
ticular, our research will focus on the design of satisfiability checking proce-
dures for multiple-valued formulas and interpreters for a particular family of
infinitely-valued logic programs. Before going into more technical details about
the solutions we propose, we will motivate and set our objectives.

For tackling the SAT problem in multiple-valued logics we will develop sat-
isfiability checking procedures based on resolution-style logic calculi and, there-
fore, we will need to have some kind of normal form. Baaz and Fermiiller

27 Horn formula is a set of clauses such that each clause contains at most one positive
literal. A 2-CNF formula is a set of clauses such that each clause contains exactly two literals.

1.1. Context and objectives 3

(1995) suggested a two-level approach to resolution-based theorem proving in
finitely-valued logics which is suitable for putting our work into context:®

e The first level consists in translating arbitrary formulas of a particular
finitely-valued propositional logic into clause form. Given the definition of
a finitely-valued logic by means of the truth tables of its connectives, it
can be devised a logic-dependant translation calculus that derives a clause
form from a formula of the source logic. This translation can be done
in such a way that the language of the clause forms is independent from
the particular language of the source logic except for the number of truth
values; i.e. clause forms are logic-independent.

e The second level consists in the application of a logic-independent resolu-
tion calculus to the clause forms obtained in the first level.

These logic-independent clause forms are known as signed formulas in con-
junctive normal form (signed CNF formulas). They are the basis for under-
standing most of the results of this thesis, because the satisfiability checking
procedures we develop in subsequent chapters take as input a signed CNF for-
mula. Next, we succinctly introduce the logic of signed CNF formulas.*

A signed CNF formula is a set of signed clauses and a signed clause is a set, of
signed literals. A signed literal is an expression of the form S:p, where S, called
the sign of the literal, is a subset of the truth value set and p is a propositional
atom. An interpretation is mapping that assigns to every propositional atom an
element of the truth value set. An interpretation satisfies a signed literal S:p
iff it assigns to p a truth value that appears in S. An interpretation satisfies a
signed clause iff it satisfies at least one of its literals. A signed CNF formula is
satisfiable iff there exists an interpretation that satisfies all its clauses; otherwise,
it is unsatisfiable.

One significant subclass of signed CNF formulas that we consider in this
thesis is the class of regular CNF formulas. Roughly speaking, regular CNF
formulas are those signed CNF formulas such that the signs of the literals are
either of the form {j € N|j > i} or of the form {j € N|j < i}, where N is
the truth value set, < is a total order on N and i,j € N. Another subclass that
we consider is the class of monosigned CNF formulas. They are those signed
CNF formulas whose signs are singletons instead of arbitrary subsets of the truth
value set. _

It is interesting to note that the main semantic difference between classical
and signed CNF formulas arise in the definition of interpretation, where the
number of truth values is greater than two. Then, the concept of satisfiability
for signed CNF formulas is the same as the classical one, but with respect to

3The signs considered by Baaz and Fermiiller (1995) are singletons, whereas we will deal
with signs that are arbitrary subsets of the truth value set (sets as signs). Nevertheless, our
interest in the present section is their description of the two-level approach to resolution-based
theorem proving in finitely-valued logics. This approach remains valid for signs that are subsets
of the truth value set. ’

4See Chapter 2 for further details.

4 Chapter 1. Introduction

multiple-valued interpretations. It is in this sense that we will say that the
semantics of signed CNF formulas is classical above the literal level. Signed
literals, for instance, do not have the notions of positive and negative polarity,
and more than two literals are required for detecting unsatisfiability.” Therefore,
classical proof methods may be generalized naturally to work with signed CNF
formulas provided that special care be taken at the literal level.

Murray and Rosenthal (1994) view the logic of signed CNF formulas as a
meta-logic for representing and solving certain problems in multiple-valued log-
ics. These problems are often represented more easily or cannot be always ex-
pressed in the source logic. One of such problems is the transformation of a
formula into a normal form that contains only connectives of the source lan-
guage.

Two remarkable contributions to the first level of Baaz and Fermiiller’s ap-
proach to resolution-based theorem proving are the following ones:

e The system MUltlog (Baaz et al., 1993; Baaz et al., 1996) which com-
putes an optimized logic-dependant translation calculus for deriving signed
CNF formulas from the definition of the operators and quantifiers of any
finitely-valued first-order logic. It produces a sequent calculus and a nat-
ural deduction system as well.8

e Hihnle’'s method for deriving a satisfiability equivalent? signed CNF for-
mula from an arbitrary formula of any finitely-valued logic (Hahnle,
1994b). He has described a structure-preserving method for generating
short conjunctive normal forms (i.e. short signed CNF formulas) whose
length is linear in the length of the input formula and polynomial in the
cardinality of the truth value set.®

Concerning the second level, there exist several resolution calculi for signed
CNF formulas and their subclasses. We review them in Section 3.2.

Accordingly, one way to solve the SAT problem in finitely-valued logics is as
follows: first, we derive a signed CNF formula which is satisfiability equivalent to
the input finitely-valued formula by using, for instance, the methods described
in (Baaz and Fermiiller, 1995; Hihnle, 1994b); and second, we check the sat-
isfiability of the signed CNF formula so obtained with a satisfiability checking
procedure for signed CNF formulas.

However, to the best of our knowledge, little attention has been paid so far to
the design of resolution-based satisfiability checking procedures for signed CNF
formulas equipped with clever heuristics for exploring the proof search space and

5Remember that, in classical propositional logic, many satisfiability testing algorithms de-
tect unsatisfiability when a propositional atom p is derived with positive (p) and negative (—p)
polarity.

8 A funny feature of the system MUltlog is that the calculi derived are presented as a paper
written in IXTEX.

7A formula A is satisfiability equivalent to a formula B if it holds that A is satisfiable iff
B is satisfiable. This property is weaker than logical equivalence. For proofs by refutation,
satisfiability equivalence suffices.

8Tn this thesis, we always refer to worst-case time complexity.

1.1. Context and objectives 5

suitable data structures for representing formulas. In view of this, our intention
is to look into this question and find some new results. To this end, our first
objective is to extend the Davis-Putnam (DP) procedure (Davis and Putnam,
1960) to the setting of signed CNF formulas. Our motivation to choose this
procedure is twofold: on the one hand, it is one of the fastest and most widely
used methods for solving the SAT problem in classical logic; on the other hand,
the semantics of signed CNF formulas is classical above the literal level.

Our second objective is to refine the results obtained and to design a DP-style
procedure for regular CNF formulas. We think that it is justified to consider
separately the SAT problem in regular CNF formulas since simpler logic cal-
culi exist for this subclass of signed CNF formulas. Moreover, classical proof
procedures can be easily extended to the regular setting.

Taking into account that there exist polynomial-time algorithms for testing
the satisfiability of classical Horn and 2-CNF formulas, another objective of
this thesis is to investigate what happens with these particular subclasses in
the framework of signed CNF formulas. The Horn SAT problem will be only
considered in regular CNF formulas because signed and monosigned literals do
not have the concept of polarity (cf. Section 2.4). The 2-SAT problem will be
investigated in signed, regular and monosigned CNF formulas.

Unfortunately, there is no general method as the one explained above for
solving the SAT problem in arbitrary infinitely-valued logics; i.e. it has not been
developed so far a method for obtaining a logic-independent clause form from
any infinitely-valued formula. Hihnle (1994a) defined a reduction of the SAT
problem in certain infinitely-valued logics to the mixed integer programming
problem. Among such infinitely-valued logics are Lukasiewicz’s and Post’s logics.
Automated theorem proving in Lukasiewicz logic was also studied by Mundici
(1991,1994) and in Post logic was considered by Zabel (1993).

In this thesis we will address the SAT problem in infinitely-valued logics fo-
cusing on regular CNF formulas. This is possible because regular CNF formulas
admit a finite representation of infinite signs, and the search space that has to
be explored for solving the SAT problem is finite.

In the infinitely-valued case, we will also focus on a family of infinitely-valued
propositional logics, including Lukasiewicz logic, which are chiefly characterized
by the following points: the interpretation function of the conjunction connec-
tive has to fulfill the properties of triangular norm, the implication connective is
defined by residuation with respect to the conjunction.connective, and the inter-
pretation function of the negation connective is the unit complement function
(cf. Section 2.6).

This family of infinitely-valued logics was well studied, among others, by
Pavelka (1979), Valverde and Trillas (1985) and Godo (1990). They showed
that, in this case, the triangular norm that gives meaning to the conjunction
connective is a modus ponens generating function for the implication. Start-
ing out from the fact that the modus ponens inference rule that they defined
is sound, one of our objectives is to define a complete calculus for deducing
infinitely-valued facts from a set of infinitely-valued facts and rules. Notice that-

6 Chapter 1. Introduction

if we use this infinitely-valued modus ponens inference rule, we do not need any
transformation into normal forms.

Another objective regarding the infinitely-valued facts and rules mentioned
above is to design an efficient proof procedure that could act as a propositional
interpreter for infinitely-valued logic programs, as well as defining a negation as
failure rule and a cut operator. :

The design of competitive algorithms is common to all the previous objec-
tives. Consequently, throughout this thesis we will pay special attention to
the definition of appropriate calculi for mechanical proofs, clever heuristics for
exploring the proof search space and suitable data structures for representing
instances of problems.

It is worth mentioning that the interest in multiple-valued theorem proving
goes beyond the theoretical level. In recent years, interesting applications have
been suggested in several fields such as functional analysis (Mundici, 1986),
logic programming (Fitting, 1988), adaptive error-correcting codes (Mundici,
1990), formal hardware verification (Hahnle and Kernig, 1993c) and deductive
databases (Subrahmanian, 1994).° This fact justifies to some extent the prac-
tical interest of our work because all these applications demand efficient proof
procedures.

Finally, we would like to point out that there exist some automated theo-
rem provers for multiple-valued logics. The most representative among them is
74P (Beckert et al., 1996), developed at the University of Karlsruhe. It is a
generic tableau-based theorem prover for finitely-valued first-order logics with
sorts and equality; it was implemented in Prolog.

1.2 Contributions

Once we have stated and motivated the main objectives of this thesis, we
summarize its contributions in the subfield of automated theorem proving in
multiple-valued logics.

The SAT problem in signed CNF formulas:

We have designed a DP-style decision procedure for signed CNF formulas.
To this end, we have extended the one-literal rule to the signed setting and
defined an original branching rule based on a new concept that we have
coined as maximal truth value set. We have also designed a satisfiability
checking procedure for regular CNF formulas that can be seen as a refine-
ment of the former. We have equipped it with suitable data structures for
representing instances of the regular SAT problem, and proposed several
alternative branching rules and deletion strategies.'® In both cases we have
defined heuristics for selecting the next literal to which the branching rule
is applied and proved the completeness of the proof procedures described.

9See (Hihnle, 1993a; Chapter 7) for an exposition of other applications.
L0By deletion strategies we mean ways of eliminating irrelevant and redundant clauses.

1.3.

Overview of the thesis

~I

The Horn SAT problem in regular CNF formulas:

The

First, we have developed a refutation complete unit resolution calculus for
a subclass of infinitely-valued regular Horn formulas that we have called
Horn mv-formulas. Second, we have designed an almost linear-time satisfi-
ability checking procedure for Horn mv-formulas. Third, we have extended
our results to arbitrary regular Horn formulas. The satisfiability checking
procedures we have obtained reach a linear-time complexity when the truth
value set is finite (if infinite, the complexity is almost linear). This low
complexity is due to the definition of suitable data structures.

2-SAT problem in signed CNF formulas:

We have first demonstrated that the 2-SAT problem in signed CNF for-
mulas is NP-complete, contrary to what happens in classical propositional
logic.!* Then, we have shown that this problem is polynomially solv-
able when the formulas are regular or monosigned. We have described
quadratic-time satisfiability checking procedures for these subclasses of
signed 2-CNF formulas, proved their completeness, and defined suitable
data structures and different branching rules.

Interpretation of infinitely-valued logic programs:

Regarding deduction problems we have focused on a wide and important
family of infinitely-valued logics, including Lukasiewicz logic. First, we
have defined a propositional logic programming language for this family of
logics and proved that a modus ponens-style inference rule is complete for
determining the maximum degree of logical consequence of a goal in a given
infinitely-valued logic program. Second, we have defined a multiple-valued
negation as failure rule and a cut operator. Third, after analyzing carefully
several factors that contribute to improve the efficiency of algorithms, we
have designed a linear-time propositional interpreter.

1.3 Overview of the thesis

The thesis is organized in six chapters, whose contents are summarized below.

Chapter 2: Multiple-valued logics

After defining the syntax and semantics of multiple-valued propositional
logics, we introduce the logic of signed formulas and motivate their use in
the field of automated theorem proving. For our purposes, the clause forms
of signed formulas, so-called signed CNF formulas, become a suitable for-
malism for representing and solving multiple-valued SAT problems. Then,
we define regular CNF formulas and monosigned CNF formulas, which are
two significant subclasses of signed CNF formulas. Finally, we define a

11 There exist linear-time algorithms for solving the classical 2-SAT problem (cf. Section 4.3).

8 Chapter 1. Introduction

family of fuzzy logics (which in turn are infinitely-valued logics) as a sub-
class of signed formulas. Such infinitely-valued logics give meaning to the
logic programs of the propositional interpreter we develop later on.

Chapter 3: The SAT problem in signed formulas

In this chapter we investigate the SAT problem in both signed and regular
CNF formulas. After reviewing the existing resolution calculi for signed,
regular and monosigned CNF formulas, we introduce the DP procedure,
which is our starting point for facing the SAT problem in multiple-valued
logics. Then, we present the concept of maximal truth value set, which
we use to define an optimized multiple-valued branching rule. Next, we
extend the DP procedure to signed CNF formulas, prove its completeness
and propose heuristics for choosing the propositional atom selected for
doing branching. Finally, we describe a satisfiability checking procedure
for regular CNF formulas that can be seen as a refinement of the former.
We prove its completeness and analyze carefully those aspects that are
able to improve the computational performance of satisfiability testing
algorithms. In particular, we offer different options for doing branching,
suitable data structures for representing formulas, heuristics for choosing

the next literal to which the branching rule is applied and several deletion
strategies.

Chapter 4: Polynomially solvable SAT problems

The SAT problem in classical logic is polynomially solvable for Horn and
9-CNF formulas. In this chapter we address the Horn SAT and 2-SAT
problems in signed CNF formulas. Our objective is to investigate under
which circumstances such signed SAT problems are polynomially solvable.
Concerning the Horn SAT problem, we first describe an almost linear-time
decision procedure for a subclass of infinitely-valued regular Horn formulas.
Then, we extend this result to arbitrary regular Horn formulas and give
a satisfiability checking procedure that reaches a linear-time complexity
when the truth value set is finite. The complexity is almost linear in the
infinitely-valued case. Concerning the 2-SAT problem, we start by proving
that it is NP-complete in signed CNF formulas, contrary to what happens
in classical logic. The 2-SAT problem, however, turns out to be polyno-
mially solvable in regular and monosigned CNF formulas. We describe
quadratic-time decision procedures for solving the 2-SAT problem in such
subclasses of signed CNF formulas. To this end, we define appropriate
calculi, design decision procedures equipped with suitable data structures,
prove their completeness and analyze their time complexity.

Partial and preliminary results about the Horn SAT problem in
multiple-valued formulas appeared in (Escalada-Imaz and Manya, 1993b;
Escalada-Imaz and Manya, 1994a; Escalada-Imaz and Manya, 1994c).

A communication about the 2-SAT problem in signed CNF formulas was
presented in a workshop (Escalada-Imaz and Manya, 1996b).

1.3. Overview of the thesis 9

Chapter 5 An interpreter for multiple-valued logic programs

In recent years, new logic programming languages have been developed for
reasoning and representing knowledge in situations where there is vague,
incomplete or imprecise information. Some of such languages rely on
multiple-valued logics and demand fast deduction procedures. In this chap-
ter, we describe an efficient interpreter of logic programs that can deal with
a wide family of infinitely-valued propositional logics. To this end, we first
define a logic programming language, a complete calculus that contains
a modus ponens-style inference rule, suitable data structures for repre-
senting logic programs and strategies for pruning the proof search space.
Then, we define a negation as failure rule and a cut operator adapted
to our multiple-valued setting. Finally, we describe an interpreter whose
worst-case time complexity is linear in the total number of occurrences of
propositional atoms in the input logic program.

Part of the material included in this chapter appeared in (Escalada-Imaz
and Many, 1993a; Escalada-Imaz and Manya, 1994b; Escalada-Imaz and
Manyd, 1995; Escalada-Imaz and Manyé, 1996a).

Chapter 6: Conclusions

We conclude the thesis with a brief summary of its main contributions,
and we point out some open problems and future research perspectives.

Finally, the reader can find the references appearing in the text and an index

that is intended to be a pointer to the main concepts used throughout this
thesis.

Chapter 2

Multiple-Valued Logics

Abstract:

After defining the syntax and semantics of multiple-valued proposi-
tional logics, we introduce the logic of signed formulas and motivate their
use in the field of automated theorem proving. For our purposes, the clause
forms of signed formulas, so-called signed CNF formulas, become a suit-
able formalism for representing and solving multiple-valued SAT problems.
Then, we define regular CNF formulas and monosigned CNF formulas,
which are two significant subclasses of signed CNF formulas. Finally, we
define a family of fuzzy logics (which in turn are infinitely-valued logics) as
a subclass of signed formulas. Such infinitely-valued logics give meaning
to the logic programs of the propositional interpreter we develop later on.

2.1 Introduction

This chapter contains some basic definitions and terminology that will be used
in this thesis. We start by introducing a formal framework for defining the
syntax and semantics of multiple-valued propositional logics' and showing how
some well-known logics can be represented in it. We then define multiple-valued
signed formulas and motivate their use in the subfield of automated theorem
proving in multiple-valued logics. We also present the syntax and semantics of
signed CNF formulas, which are the clause forms that the satisfiability checking
procedures we describe in subsequent chapters take as input. Next, we introduce
two significant subclass of signed CNF formulas, so-called regular CNF formu-
las and monosigned CNF formulas, and discuss the computational advantages
derived from developing specific proof procedures for these kinds of formulas.
It turns out that the infinitely-valued facts and rules of the logic programming
language of the interpreter we will design in Chapter 5 can be defined as a
subclass of signed formulas. The family of infinitely-valued logics that give
meaning to such facts and rules are chiefly characterized by the interpretation

I Multiple-valued logics are also called many-valued and multi-valued logics in the literature.

11

12 Chapter 2. Multiple-Valued Logics

functions of the conjunction and implication connectives, which have to fulfill
the properties of triangular norm and residuated implication, respectively. All
these topics are discussed at the end of the chapter.

The main difference between classical and multiple-valued logic is that for-
mulas are not determinedly either true or false. They take a truth value from a
truth value set with cardinality greater than two. The motivation to deal with
a wider range of truth values, as well as the election of the subset of designated
truth values and the interpretation functions of the logical connectives, has arisen
from the semantic analysis of logical statements based on real-world problems or
philosophical considerations. For instance, Kleene (1938) defined a 3-valued logic
whose truth value set, {f,%,t}, can be interpreted as follows: given an evaluation
of a predicate p by a computer, f means that p was evaluated to false, i means
that the computer was unable to evaluate p and ¢ means that p was evaluated
to true. The reader interested in a deeper discussion about these questions can
consult some standard references; e.g. (Rosser and Turquette, 1952; Zinovev,
1963; Ackermann, 1967; Rescher, 1969; Urquhart, 1986; Gottwald, 1989; Bolc
and Borowik, 1992).

This chapter is organized as follows. In Section 2.2 we introduce a formal
framework for defining the syntax and semantics of arbitrary multiple-valued
propositional logics; in Section 2.3 we present the syntax and semantics of signed
formulas and signed CNF formulas; in Section 2.4 we define regular CNF formu-
las; in Section 2.5 we define monosigned CNF formulas; and in Section 2.6 we
show that the infinitely-valued facts and rules of the interpreter we describe in
Chapter 5 can be understood as a subclass of signed formulas. We motivate the
use of all these kinds of formulas as well. Part of the material included in this
chapter has been borrowed from (Ryan and Sadler, 1992; Hiahnle, 1993a).

2.2 Syntax and semantics of multiple-valued
logics

A logic has a syntax (form) and a semantics (meaning). The formulas of a
logic are defined by means of a formal language, and meaning is attached to
them stating precisely the meaning of the logical connectives by means of a
matrix and the meaning of the atomic formulas by means of an interpretation.

The concept of logical consequence is introduced to capture the notion of valid
argument.

2.2.1 Syntax

Definition 2.1 propositional language A propositional language L is an or-
dered pair (P,0) consisting of a denumerable set P = {po,p1,...} of proposi-
tional variables, called atomic formulas or propositional atoms, together
with o finite or denumerable set O = {o0g,01,...} of operators, called logical
connectives. FEach operator o; comes with an arity.

2.2. Syntax and semantics of multiple-valued logics 13

Definition 2.2 formulas of a propositional language The formulas of a
propositional language L are inductively defined as follows:

o every propositional atom is a formula;

o if ¢1,...,0m are formulas and o; is a logical connective with arity m, then
0i(¢1,...,bm) is is a formula.

Throughout this thesis we make the usual conventions on elimination of

parentheses, as well as on precedence and infix notation for well-known logi-
cal connectives.

2.2.2 Semantics

Definition 2.3 matrix 4 matriz M for a propositional language L = (P,0)
is a triple M = (N, D, F) where:

o N is a set with at least two elements, the truth value set;
e D is a non-empty proper subset of N, the set of designated truth values;

¢ F = {for,foar---sJo.} is a set of functions, one corresponding to each
operator in O = {01,09,...,0,} such that f,, : N*: — N, where n,, is
the arity of the operator o;. We say that f,, interprets o; and F is the set
of interpretation functions.

We will usually take as truth value set either a finite set of equidistant rational
numbers of the form {0, X5, ..., 2=2,1} or the unit interval [0, 1] on the rational
numbers. Nevertheless, our results concerning arbitrary signed CNF formulas
and monosigned CNF formulas are valid for any other finite truth value set, and
our results concerning regular CNF formulas are valid for any totally ordered
truth value set.

Definition 2.4 n-valued propositional ldgic Let L be a propositional lan-
guage, let M = (N,D, F) be a matriz for L and let n be the cardinality of N.

The pair L = (L, M) is called n-valued propositional logic with designated truth
values D.

Definition 2.5 interpretation Let £ = (L, M) be an n-valued propositional
logic and let N be the truth value set of the mairiz M. An interpretation I
for the propositional language L = (P,0) is a mapping that assigns to every
propositional atom of P an element of the truth value set N. An interpretation
I is extended to any arbitrary formula ¢ of L as follows:

e if ¢ = p is a propositional atom, then I{¢$) = I(p);

b 'Lf‘ﬁ: O'i(ﬁbl;---)‘bm); then I(O'i((isl)---)¢m)):fo;(I(¢1);--'7I(¢m))'

14 Chapter 2. Multiple-Valued Logics

Definition 2.6 satisfiability Let £ = (L, M) be an n-valued propositional
logic with designated truth values D. A formula ¢ of L is satisfiable iff there
ezists an interpretation I for L such that I (¢) € D. We say then that I satisfies
é or that I is a model of ¢, and we write I |= ¢. A set of propositional formulas
T is satisfiable iff there exists an interpretation that satisfies all the formulas of
T. A formula (a set of formulas) that is not satisfiable is unsatisfiable.

Definition 2.7 tautology A formula ¢ is a tautology, denoted by k= ¢, iff every
interpretation satisfies ¢.

Definition 2.8 logical consequence A formula ¢ is o logical consequence of

a set of formulas T, denoted by I’ E ¢, iff every interpretation that satisfies T’
also satisfies .

2.2.3 Examples of multiple-valued logics

Here we define the multiple-valued propositional logics of Lukasiewicz and Post
using the formal framework explained in the preceding subsections.

a) 3-valued propositional Lukasiewicz logic (Lukasiewicz, 1920)
1. Operators: A,V,—; .
The arity of — is 1 and for the remaining operators is 2.
9. Truth value set: N = {t(rue), p(ossible), f(alse)}
3. Designated truth values: D = {t}

4. Interpretation functions (truth tables):

p1Ap |t p f Ve |t p
t t p f t t t ot
P p p f P t p P
£ £ £ f £ t p f

pr—d2 |t p f —é
t t p f t | f
p t t P PP
f t &t f t

b) n-valued propositional Lukasiewicz logics (Lukasiewicz and Tarski,
1930)

1. Operators: A,V,—, .
The arity of - is 1 and for the remaining operators is 2.

9. Truth value set: N = {0,=15,...,2=F,1} for finitely-valued logics

Y p-1?

and the real unit interval [0, 1] for infinitely-valued logics.
3. Designated truth values: D = {1}

2.3. Multiple-valued signed formulas 15

4. Interpretation functions:

fo(z,y) = min(l,1-z+y)
fo(z) = 1—-2

fu(zy) = max(z,y)

falz,y) = min(z,y)

c¢) n-valued propositional Post Logics (Post, 1921)

1. Operators: A,V,o.
The arity of o is 1 and for the remaining operators is 2.
LN = i n—2
2. Truth value set: N = {0, =5,..., 2=}, 1}

3. Designated truth values: D = {1}

4. Interpretation functions:

fo(z) = min(l,z + 335)
fu(z,y) = max(z,y)
fa(z,y) = min(z,y)

2.3 Multiple-valued signed formulas

In classical logic, the idea of associating a truth value (sign) with a formula can
be found, for example, in the setting of semantic tableaux (Smullyan, 1995). In
multiple-valued tableau systems, this idea was first introduced by Suchén (1974)
in a tableau system for Lukasiewicz logics and since then appeared in other works
(Surma, 1984; Carnielli, 1987; Zabel, 1993; Baaz and Fermiiller, 1995). But in
all of them signs are only single truth values. Hahnle (1990) used subsets of the
truth value set as signs (sets as signs) and the formulas extended with this kind
of signs were called signed formulas. He showed that using truth value sets as
signs enables one to optimize tableau systems: on the one hand, they avoid to
build more than one tableau in order to prove that a multiple-valued formula
is valid, as it happened for instance in (Surma, 1984; Carnielli, 1987); on the
other hand, expansion rules become more concise. A similar concept of signed
formulas was independently introduced by Murray and Rosenthal (1991a).

There are several reasons for introducing signed formulas in this thesis. We
summarize them below:

e Signed formulas are the expressions used to translate any finitely-valued
formula into a satisfiability equivalent signed CNF formula (cf. Section 1.1).

e Signed CNF formulas are a subclass of signed formulas.

e Signed CNF formulas are the logic-independent clause forms of the second
level of Baaz and Fermiiller’s approach to resolution-based theorem proving
in finitely-valued logics (cf. Section 1.1).

16 Chapter 2. Multiple-Valued Logics

e Signed CNF formulas are the input to the satisfiability checking procedures
we describe in Chapter 3 and Chapter 4.

e The infinitely-valued facts and rules of the logic programming language of

the interpreter we design in Chapter 5 are defined as a subclass of signed
formulas.

It is worth mentioning that it was shown that annotated logics (Lu et al.,

1993) and fuzzy operator logics (Lu et al., 1994) are special cases of the logic
of signed formulas.

Definition 2.9 signed formula Let S be a subset of the truth value set N and

let ¢ be a propositional formula. An ezpression of the form S: ¢ is a signed
formula and S is its sign.

The semantic notions of matrix and interpretation remain the same and the
notion of satisfiability is defined as follows:

Definition 2.10 satisfiability Let £L = (L, M) be an n-valued propositional
logic. A signed formula S:¢ is satisfiable iff there ezists an interpretation I for
L such that I(¢) € S. Otherwise, S:¢ is unsatisfiable.

The concept of satisfiability for signed formulas is more general than that
of Definition 2.6. Here, instead of considering a formula to be satisfiable when
an interpretation assigns an element of the set of designated truth values to
the formula, it is allowed to consider a local set of designated truth values for
each propositional formula. Observe that the multiple-valued formulas defined
in Section 2.2 are a particular case of signed formulas (we only have to put to
each formula the set of designated truth values as sign).

As said before, one of our concerns in this thesis is the design of satisfiability
checking procedures whose inputs are signed CNF formulas. Next, we introduce
the basic concepts of these signed clause forms.

Definition 2.11 signed literal Let S be a subset of the truth value set N and

let p be a propositional atom. An ezpression of the form S:p is a signed literal
and S is its sign.

Definition 2.12 complement of a signed literal Let L = S:p be a signed

literal and let N be the truth value set. L = (N \ S):p denotes the complement
of L.

Definition 2.13 subsumption of signed literals A signed literal S:p sub-
sumnes a signed literal S':p, denoted by S:p C S":p', iff p=7p and SC S'.

Definition 2.14 signed clause A signed clause is a finite set of signed literals.
A signed clause that contains ezactly one literal is a signed unit clause. A signed
clause that contains ezactly two literals is a signed binary clouse. The signed
empty clause is denoted by O.

2.4. Regular CNF formulas 17

Definition 2.15 signed CNF formula A signed CNF formula is o finite set

of signed clauses. A signed CNF formula whose clauses are binary is a signed
2-CNF formula.

Definition 2.16 length The length of a signed clause C, denoted by |C|, is the
total number of occurrences of signed literals in C. The length of a signed CNF
formula T, denoted by |T|, is the sum of the lengths of its signed clauses. The
number of distinct signed literals occurring in I is denoted by lit(T').

Definition 2.17 satisfiability An interpretation I satisfies a signed literal
S:p iff I(p) € S. An interpretation satisfies a signed clause iff it satisfies at least
one of its signed literals. A signed CNF formula T is satisfiable iff there exzists at
least one interpretation that satisfies all the signed clauses in I'. A signed CNF
formula that is not satisfiable is unsatisfiable. The signed empty clause is always
unsatisfiable and the signed empty CNF formula is always satisfiable.

The clauses of a signed CNF formula are implicitly conjunctively connected.
The literals in a signed clause are implicitly disjunctively connected. Sometimes
we will use Sy:p1 V- -V Sp:pr to represent a signed clause {S1:p1,...,Sk:pr}-

Hahnle (1994b) described a structure-preserving method for translating for-
mulas from any finitely-valued logic into a satisfiability equivalent signed CNF
formula. This method has the advantage that it produces signed CNF formu-
las whose length is linear in the length of the input formula and polynomial
in the cardinality of the truth value set.? Consequently, the SAT problem in
finitely-valued logics is polynomially reducible to the SAT problem in signed
CNF formulas. Murray and Rosenthal (1994) also addressed the derivation of
signed normal forms but their method is exponential in the length of the input
formula.

On the one hand, signed CNF formulas are sufficient to solve any SAT prob-
lem in finitely-valued logics (Hihnle, 1994b). On the other hand, there exist
sound and complete calculi for signed clauses (cf. Section 3.2). Therefore, satis-
fiability checking procedures for signed CNF formulas are sufficient to solve the
SAT problem in any finitely-valued logic.

2.4 Regular CNF formulas

In the present section we concentrate on a particular subclass of signed CNF
formulas known as regular CNF formulas. Roughly speaking, we will now assume
that there is a total order over the truth value set and signs have a specific
form. As we will see later on, these restrictions turn out to be beneficial for
developing simple logic calculi and designing proof procedures which bear a
close resemblance to the classical ones.

Definition 2.18 regular sign Let denote the set {j € N|j > i} and let
denote the set {j € N|j < i}, where N is the truth value set, < is a total

2In the rest of this chapter, the complexities given are in the worst case.

18 Chapter 2. Multiple-Valued Logics

order on N and i € N. If a sign S is equal to either or , for some 1,

then it is a reqular sign and i is its value.

Definition 2.19 regular literal Let S be a regular sign and let p be a propo-
sitional atom. An ezpression of the form S:p is a regular literal. If S is of the

form (), then we say that S:p has positive (negative) polarity.

The notions of positive and negative polarity are useful for extending classical
concepts such as Horn clauses (i.e. clauses having at most one positive literal)
or positive unit resolution to our multiple-valued setting (cf. Section 4.2.2). In
the following, when we say regular positive (negative) literal we mean a regular
literal with positive (negative) polarity.

Definition 2.20 regular clause A regular clause is a finite sei of regular lit-
erals. A regular clause that contains exactly one literal is a regular unit clause.
A regular clause that contains ezactly two literals is a regular binary clause.
A regular clause that contains at most one reqular positive literal is a Tegular
Horn clause. A regular clause that contains only regular literals with positive
(negative) polarity is a regular positive (negative) clause.

Definition 2.21 regular CNF formula A regular CNF formula is a finite set
of regular clauses. A regular CNF formula whose clauses are binary is a regular
2-CNF formula. A regular CNF formula whose clauses are Horn is o regular
Horn formula.

Since regular CNF formulas are a subclass of signed CNF formulas, the def-
initions of the semantics of signed CNF formulas remain valid for regular CNF
formulas.

When considering arbitrary signed CNF formulas we assume that the iruth
value set is finite. Tt is interesting to note that regular CNF formulas admit a
finite representation of infinite signs. So, they are attractive for dealing with
an infinite truth value set. Moreover, the search space that has to be ex-
plored for solving the SAT problem in regular CNF formulas is finite even in
the infinitely-valued case. In this case, we should first scan all regular signs
occurring in the formula and restrict N to the finite truth value set formed by
all the different values of signs occurring in the formula. We will assume this
approach of dealing with infinitely-valued regular CNF formulas in the rest of
the thesis. ‘

Murray and Rosenthal (1994) and Hihnle (1996) proved that for every signed
CNF formula there exists a regular CNF formula such that both are logically
equivalent, but their transformation can generate regular CNF formulas whose
length is exponential in the length of the signed CNF formula.

Regular formulas originated in the setting of multiple-valued semantic
tableaux. Hihnle (1991) showed that there exists a wide and important class
of logics, so-called regular logics, whose minimal expansion tableau rules can be
expressed by regular signs and have a uniform notation as the one proposed
by Smullyan (1995) for classical semantic tableaux. The fact of using regular

2.5. Monosigned CNF formulas 19

signs enables one to easily extend classical proof methods to the multiple-valued
setting. Moreover, there exist algorithms for obtaining short normal forms for
regular logics that are linear in both the length of the input formula and the
cardinality of the truth value set (Hahnle, 1994b).

The concept of regular formulas also appears in (Lu et al., 1993), where their
relationship with annotated logics is established. Nevertheless, these regular
formulas are a little bit different; they assume that the truth value set is a
complete lattice whereas we assume that it is a totally ordered set.

2.5 Monosigned CNF formulas

Definition 2.22 monosigned CNF formula A monosigned literal is a signed
literal whose sign is a singleton. A monosigned clause is a finite set of
monosigned literals. A monosigned clause that contains ezactly one literal is
a monosigned unit clause. A monosigned clause that contains ezactly two lit-
erals is a monosigned binary clause. A monosigned CNF formula is a finite set
of monosigned clauses. A monosigned CNF formula whose clauses are binary is
a monosigned 2-CNF formula.

Monosigned CNF formulas were studied, among others, by Baaz and
Fermiiller (1995). They developed a structure-preserving translation method
into monosigned CNF formulas — which is valid for any finitely-valued logic —
and a resolution calculus, as well as some refinements.

2.6 Fuzzy logics as regular logics

Fuzzy logic is a term generally used to refer to a wide range of logics which
are suitable for representing and manipulating vague, incomplete or imprecise
information. In particular, several infinitely-valued logics are considered as fuzzy
logics. In this thesis we will deal with a family of fuzzy logics, which in turn
are infinitely-valued logics, that can be defined as a subclass of signed formulas.
Our interest in such logics is motivated by the following points:

o These logics have been carefully investigated by Pavelka (1979), Valverde
and Trillas (1985) and Godo (1990), among others. In particular, a sound
modus ponens inference rule has been defined for this family of logics.

¢ Knowledge-based systems have used these logics as a powerful knowl-
edge representation language in expert systems for diagnosis applica-
tions (Sierra, 1989; Puyol-Gruart, 1994).

¢ The design of efficient deduction algorithms for these logics has not been
investigated so far despite their significance in real-world applications.

In Chapter 5 we will design a linear-time proof procedure for deduc-
ing, using a modus ponens-style inference rule, infinitely-valued facts from a

20 Chapter 2. Multiple-Valued Logics

set of infinitely-valued facts and rules. These results could be incorporated,
for example, into the inference engine of knowledge-based systems such as .
Milord II (Puyol-Gruart, 1994). In addition, we will define a negation as failure
rule and a cut operator. Such a proof procedure can be seen as an interpreter
of multiple-valued logic programs.

In this section we introduce the family of infinitely-valued logics mentioned
above and integrate them into the framework of signed formulas. In Chapter 5
we present the sub-logic of facts and rules. We define them as the subclass of
signed formulas that fulfill the following conditions:

e the set of operatorsis O = {-,A,—}; A and — are binary and - is unary;

e each formula is a signed formula whose sign is regular and has positive
polarity;

e the truth value set of the matrix is the unit interval on the real numbers,
denoted by [0, 1};

e the choice of the set of interpretations functions of the matrix (i.e.

{f=y fr, f=}) is not arbitrary, they must satisfy some properties we ex-
plain below.

In order to be standard with the literature, we will denote f-, fn and
f— by N, T and Ir, respectively. In fact, we offer different options for
defining T and I7. Therefore, we have a different logic for every election
of T and Ip. It is in this sense that we say that we will deal with a family
of infinitely-valued logics.

N, T and It must satisfy the following properties:

negation: the negation operator N has to be a unary operation that ful-
fills the following properties:
N1: if a < b then N(a) > N(b), Va,b € [0,1]
N2: N2 =1d
The only unary function that fulfills the previous properties in the

finitely-valued case is N(a) = 1 — a. In our infinitely-valued case we
take N(a) = 1 — a as the negation operator.

conjunction: the conjunction operat'or T has to be a triangular norm
(T-norm), i.e. it has to be a binary continuous operation such that
for all a, b, ¢ € [0, 1] satisfies:
T1: T(a,b) =T(b,a)
T2: T(a,T(b,c)) =T(T(a,b),c)
T3: T(0,a) =0
T4: T(1,a) =a
T5: if @ < b then T'(a,c) < T(b,c) for all ¢

2.6. Fuzzy logics as regular logics 21

implication: the implication operator Ir is defined by residuation with
respect to T, i.e.

Ir(a,b) = Sup{c € [0,1}| T(a,c) < b},

and satisfies the following properties:

11: I7(a,b) = 1if, and only if, a < b

12: I7(1,0) =a

13: Ir(a, I7(b,c)) = It (b, Ir(a,c))

I4: If a < b, then Iz(a,c) > I7(b,¢) and I(c,a) < Ir(c,b)
15: Ir(T(a,b),c) = Ir(a, IT(b,c))

This kind of implications are known as residuated implications
(R-implications) in the fuzzy literature. Observe that once we have de-
fined a T-norm we can obtain its corresponding R-implication.

Example 2.1 The following signed formulas are ezamples of our
infinitely-valued formulas:

I

03] : p1 Ap3 = P2
[205]: "P1AP2 AP 11

In the literature, given a signed formula of the form : é, it is usual to
represent it like (¢;1). We will follow this convention in the rest of the thesis.
Hence, the previous formulas will be represented as follows:

(p1 A —ps — p2;0.3)
(—py A p2 A —p3 — p1;0.5)

Example 2.2 Some ezamples of T-norms and their corresponding
R-implications are shown below.

1 ifa<sbd

T(a,b)=a-b Ir(a,b) = { b/a otherwise

T(a,b) = maz(0,a+b—1) Ir(a,b) =min(l,1-a+ b)

1 ifa<b

T(a,b) = min(a,b) Ir(a,b) = { b otherwise

Chapter 3

The Satisfiability Problem
in Signed CNF Formulas

Abstract: In this chapter we investigate the SAT problem in both signed
and regular CNF formulas. After reviewing the existing resolution cal-
culi for signed, regular and monosigned CNF formulas, we introduce
the Davis-Putnam (DP) procedure, which is our starting point for fac-
ing the SAT problem in multiple-valued logics. Then, we present the
concept of maximal truth value set, which we use to define an optimized
multiple-valued branching rule. Next, we extend the DP procedure to
signed CNF formulas, prove its completeness and propose heuristics for
choosing the propositional atom selected for doing branching. Finally, we
describe a satisfiability checking procedure for regular CNF formulas that
can be seen as a refinement of the former. We prove its completeness
and analyze carefully those aspects that are able to improve the compu-
tational performance of satisfiability testing algorithms. In particular, we
offer different options for doing branching, suitable data structures for
representing formulas, heuristics for choosing the next literal to which the
branching rule is applied and several deletion strategies.

3.1 Introduction

The propositional satisfiability (SAT) problem in classical logic (i.e. the prob-
lem of determining whether a two-valued formula is satisfiable) was the first
problem shown to be NP-complete (Cook, 1971). In the last years, it has
attracted the interest of several research communities (Artificial Intelligence,
Complexity Theory, Logic, Operations Research, ...), and a wealth of papers
reporting algorithms for solving that problem have been published. Because of
the state of maturity reached, even competitions for evaluating and comparing
satisfiability testing algorithms haveé been organized (Buro and Biining, 1993;
Harche et al., 1994). For solving the SAT problem in classical logic, algo-
rithms based on the Davis-Putnam (DP) procedure (Davis and Putnam, 1960)

23

24 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

are among the most competitive ones. Actually, efficient implementations are
variants of a modified version proposed two years later by Davis, Logemann and
Loveland (Davis et al., 1962; Loveland, 1978). The main achievement of the
latter is that it introduces the branching rule.!

Tn this chapter we investigate the SAT problem in both signed and regular
CNF formulas taking the DP procedure as a starting point. ‘We think that this
is a promising approach since the semantics of signed CNF formulas is classical
above the literal level. Therefore, classical proof procedures may be naturally
generalized to work with signed CNF formulas provided that special care be
taken at the literal level.

After reviewing the existing resolution calculi for signed, regular and
monosigned CNF formulas, we present the DP procedure. Then, we define the
concept of maximal truth value set. This new concept is aimed at formalizing
the minimum number of assignments of truth values to a given propositional
atom that a satisfiability checking procedure for signed CNF formulas needs to
test. We use it to define an optimized multiple-valued branching rule. Next, we
describe a DP-style procedure for signed CNF formulas and prove its complete-
ness. We also propose heuristics for choosing the propositional atom involved in
the branching rule, since it is a decisive factor to get small size proof trees.

The previous proof procedure turns out to be an appropriate framework for
defining refinements for special classes of signed CNF formulas such as regular
CNF formulas. In view of this, we give a DP-style procedure for regular CNF
formulas, prove its completeness and analyze carefully those aspects that are
able to improve its computational performance. In particular, we offer different
options for doing branching, suitable data structures for representing formulas,
heuristics for choosing the next literal to which the branching rule is applied and
some deletion strategies.

This chapter is organized as follows. In Section 3.2 we review several resolu-
tion calculi for signed, regular and monosigned CNF formulas; in Section 3.3 we
present the DP procedure; in Section 3.4 we define the concept of maximal truth
value set and an optimized signed branching rule; in Section 3.5 and Section 3.6
we describe in detail satisfiability checking procedures for signed and regular
CNF formulas, respectively.

3.2 Resolution-based proof methods

We have already discussed, in the previous chapters, the importance of signed
CNF formulas for solving the SAT problem in multiple-valued logics. Our aim
in this section is to review the existing resolution systems for signed, regular and
monosigned CNF formulas.

We focus our attention on propositional logics because, as Hahnle (1996)
points out, all deviations from classical logic occur on the ground level while

1The branching rule is also known as splitting rule. In the following when we say
Davis-Putnam (DP) procedure we mean the version that incorporates the branching rule.
In the literature, this version is usually known as the Dayvis-Putnam-Loveland procedure.

3.2. Resolution-based proof methods 25

lifting is done exactly as in the classical case and presents no new insights. The
concepts of proof and refutation for the calculi described below are defined in the
usual way. Thus, we will only present the inference rules that lead to refutation
complete calculi”

The reader interested in an homogeneous exposition and the main references
of earlier approaches to multiple-valued resolution not based on signed clauses
can consult (Héhnle, 1993a; Chapter 8). Among the resolution systems examined
there are those of Morgan (1976), Orlowska (1978) and Di Zenzo (1988) for
Post logics, those of Lee and Chang (1971,1972) for fuzzy logic, that of Schmitt
(1986) for a specific three-valued logic for use within a natural language dialogue
system and those of Stachniak and O’Hearn (1990b,1990a,1988) for a wide class
of multiple-valued logics.

We divide our exposition into three subsections. Section 3.2.1, Section 3.2.2
and Section 3.2.3 are devoted to signed, regular and monosigned resolution,
respectively.

3.2.1 Signed resolution

In this section we present three refutation complete resolution calculi for signed
CNF formulas that appeared in the literature. The first one was defined by Mur-
ray and Rosenthal (1993) and is one of the first resolution systems published.?
It is formed by the following inference rules:*

signed parallel resolution

Si:pVDy -+ SpipVDy,
(S1n---NSyp)ipvVDyV- -V Dy

merging
Sl pV 59 pV D
(51 U Sg) :pV D
simplification
§:pv D
D

2A calculus is refutation complete if there exists a refutation for any unsatisfiable formula.

3The signed CNF formulas we are dealing with correspond to the atomic signed formulas
of Murray and Rosenthal. In fact, they work with a more general notion of signed literal
where the sign part is followed by any propositional formula; it is not necessarily followed by a
propositional atom. Nevertheless, the calculus presented here is only complete for their atomic
signed formulas.

4These inference rules also appeared in (Murray and Rosenthal, 1991b), but the truth value
set was assumed to obey some restrictions.

26 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

Independently, Hahnle (1993b) defined a similar resolution calculus:
signed parallel resolution

Si:pVDy - Sm:pV Dp
DyV---V Dy

FfSN-NSy=0

merging
S1:pV:-VSuipVD
(S1U--USy):pVD

A sequential refutation complete resolution calculus for signed CNF formulas
was defined in (Hshnle, 1994b):

signed binary resolution

Sl:pVDl Sg'.pVD-_)_
(Sl ﬂSg):pVDl VvV D»

simplification
0:pv D
D

Completeness of the previous calculi was proved using a straightforward gen-
eralization of classical semantic trees to the multiple-valued context. Héhnle
(1996) pointed out that for obtaining refutation completeness the merging rule
is not necessary. This can be proved using the excess literal technique of Ander-
son and Bledsoe (1970).

The previous calculi are a first step to resolution-based automated theorem
proving for signed CNF formulas. Nevertheless, we believe that further research
on resolution refinements for signed clauses has to be done before achieving
competitive resolution-based automatic theorem provers.

3.2.2 Regular resolution

The fact of developing separately inference rules for regular clauses appears to be
very beneficial for obtaining efficient proof procedures for regular CNF formulas.
On the one hand, all regular literals have either positive or negative polarity;
on the other hand, any unsatisfiable set of regular literals has an unsatisfiable
subset of cardinality two, contrary to what happens with signed literals. These
points enable one to define refinements of signed resolution calculi which are
complete for regular CNF formulas and bear a close resemblance to classical
resolution versions.

Hihnle (1994b) proved that the calculus formed by the following regular

versions of the resolution and merging rules is refutation complete for regular
CNF formulas:

3.2.- Resolution-based proof methods 27

regular resolution

:pVD1 :pVDm l_gl:pVD

Dyv.--vD,VD

if max iy >J
1<k<m
merging

:pV---VIZi, pV[<i|ipVeV[<im|:pV D
EminlSkSl ik | p \Y | Sma,xlsklsm Jn I D v D
As already noted, the merging rule is not necessary for obtaining complete-

ness. Later, Hihnle (1996) defined the following complete regular version of
negative hyperresolution:

regular negative hyperresolution

1P1VD1 3PmVD-m |ZJ'1 1p1V"'V5PmVE

Div.---VDyVE

provided m > 1,4 < j; for all 1 <1 <m, Dy,...,Dn, E are negative.

Moreover, he claimed that the following regular unit resolution rule is complete
for regular Horn formulas.

regular unit resolution

S:p
S'pvC
ZPLY iisns' =0

C

In Section 4.2 we prove that, for obtaining completeness, it is enough to

resolve on regular positive unit clauses. Hence, the rule below constitutes a
refutation complete calculus for regular Horn formulas.

regular positive unit resolution

[i]:
:pVC'

= ifi<y

The concept of regular resolution also appears in (Lu et al., 1993), although
there the truth value set is a complete lattice whereas we assume that the truth
value set is a totally ordered set. Therefore, their notion of regular sign is a
little bit more general than ours. It is worthwhile to point out that with their
more general regular signs the resulting resolution calculus is equivalent to the
p-resolution calculus for the paraconsistent logics defined in (Kifer and Lozinskij, "
1989; Lu et al., 1991).

28 ‘ Chapter 3. The Satisfiability Problem in Signed CNF Formulas

3.2.3 Monosigned resolution

Baaz and Fermiiller (1995) studied monosigned resolution and proved that only
one inference rule is needed to determine the satisfiability of monosigned CNF
formulas. This rule is very close to classical binary resolution:

{ni}:pVv D, {v2}:pV Ds
D1V D,

They also defined a first-order rule which is a straightforward generalization
of the classical one. Such a rule needs to be enhanced with factoring in order
to obtain completeness. Moreover, Baaz and Fermiiller extended A-ordering
resolution and hyperresolution to the monosigned setting.

if vy £va; V1,2 EN

3.3 The Davis-Putnam procedure

The Davis-Putnam (DP) procedure (Davis et al., 1962) is one of the fastest
and most widely used methods for solving the SAT problem in classical logic.
As our intention is to extend this proof procedure to the framework of signed
CNF formulas, we will first discuss the details of the two-valued version. It is
based on two inference rules known as unit resolution and branching rule:

unit resolution

SIS

branching rule

p| P

The algorithm automates the application of the previous rules as follows:
first, it applies unit resolution until either the empty clause is deduced or a
saturation state is reached. Actually, given a CNF formula T' that contains a
unit clause {L}, the algorithm removes all clauses that_contain the literal L
from T', and then removes all occurrences of the literal L from the remaining
clauses (this step is known as application of the one-literal rule). This way, after
several applications of the one-literal rule, the algorithm produces a simpler CNF
formula [, without unit clauses, from the CNF formula I'. Second, it selects
a literal L' occurring in T and reduces the problem of testing the satisfiability
of T to two new subproblems: to determine whether IV U {L'} is satisfiable or
I U {I} is satisfiable (this step is known as application of the branching rule).
As these subproblems by construction contain a unit clause, the one-literal rule
can be applied again. These steps are repeated and the algorithm stops when
the empty formula is derived in some subproblem (then, the input formula is
satisfiable) or the empty clause is derived in all the subproblems (then, the input

3.3. The Davis-Putnam procedure

0 function dp-sat (T': set of clause) : boolean
1 var L: literal

2 begin

3 T := unit-resolve(T);

4 if T = § then return(true);
5 if O € T then return(false);
6 L := pick-literal{T);

7 if dp-sat (T U {L}) then

8 return(true)

9 else

10 return(dp-sat(T' U {L}))
11 endif

12 end

function unit-resolve (T: set of clause) : set of clause
var L: literal
var C: clause
begin
while ML} cT and O ¢ I do
T:={C|L¢gCeT}
Ir:={C\{L}|CeT}
endwhile;
return(l’)
end

OO0 N U WwN — O

Figure 3.1: The Davis-Putnam procedure

29

30 Chapter 3. The Satisfiability Problem in Signed CNF. Formulas

T
ru {pl}/ \J {-p1}
{{-p2,p3}, {~Ps, P},
{p2, pa}, {p2,p3,P4}, a
{-=p2,—p3, ~Pa}}
TU{p:} I'U {-p2}

O O

Figure 3.2: A DP proof tree for the formula I' from Example 3.1

formula is unsatisfiable). This algorithm is a decision procedure for solving the
SAT problem in classical propositional CNF formulas.

The pseudo-code of the DP procedure is shown in Figure 3.1. This procedure
can also be viewed as the construction of a proof tree: nodes are labelled by
formulas and the root node contains the input formula I'. Before expanding a
node, function unit-resolve applies repeatedly the one-literal rule to the formula
of the node. Then, a new formula I is obtained and pick-literal selects a literal
L of T'. Two branches, labelled I U {L} and I U {L}, are created and their
leaf nodes contain the formulas obtained after applying function unit-resolve to
TYU{L} and I"U{L}, respectively. The proof tree is created using the depth-first
strategy and the procedure backtracks when a node contains the empty clause.
The search terminates when either the empty formula is deduced (in this case,
the input formula T is satisfiable) or until the procedure backtracks to the root
node (in this case, all the leaf nodes contain the empty clause and the input
formula I is unsatisfiable).

Example 3.1 Let T' be the following CNF' formula:

I' = {{_‘pl7ﬁp2)p3}){_'pla_'p3)p4},{p1’p5}a{p?.>_'p4}a
{p2,p3, P4}, {-p2,~p3,~pa}, {P1, "5 }}
Figure 8.2 shows the proof tree created by the DP procedure when the input CNF
formula is T. The root node contains T' and the remaining nodes contain the

CNF formula obtained after applying unit-resolve to the formula selected for
doing branching.

A concrete implementation of the DP procedure, in order to be efficient,
should take into account the following points:

o The definition of suitable data structures for representing formulas is an
important factor to get time efficient operations in satisfiability testing

3.3. The Davis-Putnam procedure 31

algorithms. In particular, a right choice of data structures enables one to

implement function unit-resolve with a linear-time complexity in the worst
case.

A clever choice of the heuristic embodied in pick-literal, for selecting the
next literal to which the branching rule is applied, can reduce the size of

a DP proof tree considerably. From now on, we will refer to this kind of
heuristics as branching heuristics.

Deletion strategies (i.e. strategies for eliminating irrelevant and redundant
clauses) simplify formulas. It is important to test if the inclusion of any of
them in the current implementation leads to faster algorithms.

As already noted, the branching heuristic embodied in pick-literal is an im-
portant factor to reduce the size of a DP proof tree considerably. Two branch-
ing heuristics that have achieved a good performance in satisfiability competi-
tions (Buro and Biining, 1993; Harche et al., 1994) are the following ones:

Two-sided Jeroslow-Wang rule (Jeroslow and Wang, 1990) : Given a propo-

sitional CNF formula T', for each literal L that occurs in T the following
function is defined:

Jy= > 27iel

LeCer

where |C| is the length of clause C. Then, pick-literal selects a literal that
maximizes J(L) + J(T).5

Hooker and Vinay (1995) offer a careful analysis of the family of branching
heuristics known as J eroslow-Wang rules. By constructing a Markov chain
model and by experiments, they conclude that the success of the two-sided
Jeroslow-Wang rule is explained because it selects a literal that allows
to eliminate more literals and clauses during the execution of function

unit-resolve in each one of the branches, so that it is more likely to resolve
the SAT subproblems obtained without a great deal of branching.

Lexicographic heuristic (Bshm and Speckenmeyer, 1996): Given a propo-

sitional CNF formula T, for each atom p that occurs in I" the following
vector is defined:

(Hi(p), Ha(p), - .., Hi(P)),
where
Hilp) = amaz(hi(p), hi(-p)) + Bmin(hi(p), hi(-p)
and hi(p) (resp. hi(-p)) is the number of clauses of length i that contain

the literal p (resp. —p). Pick-literal selects an atom with maximal vector
under the lexicographic order. It was shown experimentally that, in order

3When we write L€ C €T, we mean L € C and C € T.

32 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

to get subproblems of about the same size, good values for the parameters
o and B are 1 and 2, respectively.

The idea behind the lexicographic heuristic of Bohm-Speckenmeyer is to
select a literal occurring as often as possible in the shortest clauses of
the formula, so that after a few steps the shortest clauses become often
unit clauses. This way, the formula collapses fast during the execution of
function unit-resolve. .

3.4 Maximal truth value set

Before extending the DP procedure to the framework of signed CNF formulas,
we first analyze how to extend the branching rule in such a way that the number
of branches for each node of the proof tree is as small as possible.

In the classical case, the branching rule states that a CNF formula I' is satis-
fiable iff T U {p} is satisfiable or I'U{—p} is satisfiable, where pis a propositional
atom occurring in T'. In the multiple-valued case, a straightforward generaliza-
tion of the two-valued branching rule for a signed CNF formula I would be
as follows: T" is satisfiable iff T' U {{0} : p} is satisfiable or I' U {{35} : p} is
satisfiable or ...or " U {{2=2}: p} is satisfiable or I U {{1}: p} is satisfiable,
where p is a propositional atom occurring in I and N = {0, ﬁ, . g:i , 1} is
the truth value set.® Therefore, if we want to expand a node of a proof tree, we
should develop [N| branches, where | V| denotes the cardinality of N. However,
we show below that, in many cases, it is enough that the branching rule considers
only a subset of V.

In the following we assume, without loss of generality, that a signed CNF
formula has the property that a propositional atom occurs at most once in
each clause. If this is not the case and we have a signed clause of the form
Sp:pV-- VS :pVD, then we replace it with the signed clause (S1U---USg) :pVD;
i. e. we apply the merging rule defined on page 26. Observe that both clauses
are logically equivalent.

From now on, we denote by NF the set formed by the truth values of N that
appear in a signed CNF formula T’ in literals of the form S:p.

Given a signed CNF formula T and a propositional atom p occurring in T', it
can happen that some truth values y1, ...,y appear exactly in the same signs of
literals of the form S:p. In this case, it suffices that the branching rule considers
only one of the truth values from ¥y, ..., yx; if a model of I' assigns to p one truth
value from ¥, . . ., ¥k, the interpretation that assigns to p any other truth value
from ¥1,...,yr and is identical for the remaining propositional atoms satisfies
T as well. To identify the truth values that appear exactly in the same signs of
literals of the form S:p we define the following equivalence relation over Nf:

a:xpy<=>VS:psuchthatS:pGCandCEF,mESiﬁyES (3.1)

6As already noted in the previous chapter, our results for signed CNF formulas are also
valid for any other finite truth value set.

3.4. Maximal truth value set 33

Next, we define the following partial order relation over the equivalence
classes of NE/ =,

T <, <= VS:psuchthat S:peCand C€T, ifzeSthenyeS (3.2)

Observe that if T <, ¥, the elements in class § appear, among other signs, in
all those signs in which the elements in class T appear. Therefore, the branching
rule can ignore the elements of class T; if a model of T assigns to p a truth value
from class %, the interpretation that assigns to p any truth value from class §
and is identical for the remaining propositional atoms satisfies I as well. Then,
we have that it suffices that the branching rule considers only the maximal
elements of the relation <,. Even more, it is enough that it considers only
one representative element of each one of the maximal elements of <, because

maximal elements are equivalence classes. This is the idea behind the concept
of maximal truth value set.

Definition 3.1 maximal set of signs Let T be a signed CNF formula, let p
be a propositional atom occurring in T, let =, be the equivalence relation over
NP defined in (3.1), and let <, be the partial order relation over N¥/ =, defined

in (3.2). The set formed by the mazimal elements of <, is the mazimal set of
signs of p in T.

Definition 3.2 maximal truth value set Let T be o signed CNF formule, let
p be a propositional atom occurring in T, and let {Z1,..., T} be the mazimal set
of signs of p inT'. A set of the form {z1,...,Zm}, where 1 €T1,...,T;m € Ty,
is a mazimal truth value set of p in T.

In the following, when we say a maximal truth value we mean an element of
a maximal truth value set.

Example 3.2 Let N = {0, ¢, 3,5, 2, 2,1} and let

$1}:pVv Dy
{0,1,2}:pVv Dy
{01 %’ %}ZPV Dy
{0,%,5,1}:pV Dy
{%,%,1}IPVD5

be the clauses in a signed CNF formula T in which literals of the form S:p occur.
Then, the equivalence classes of NE/ =, are

o)
Il
~
o=
—
—
ol
il
——
P
Wl
—
|

(M1
ol

={) I={3 I={}

The mazimal elements of the partial order relation =, are g and %—. A mazimal

truth value set of p in T s {3, 5}

34 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

Once we have introduced the concept of maximal truth value set, we define
a branching rule that considers a maximal truth value set instead of the whole
truth value set.

Proposition 3.1 signed branching rule LetI' be a signed CNF formula,
let p be a propositional atom occurring in I', and let {z1,...,2n} be o mazimal
truth value set of p in T'. Then, T is satisfiable iff there is an i € {1,...,m}
such that T'U {{z;}:p} is satisfiable.

Proof: Suppose that T is satisfiable: Let I be a model of T" and let I(p) = a.
‘We distinguish two cases:

1. There are no occurrences of literals of the form S:p in I such that c € S.
Then, the value that I assigns to p has no effect on the satisfiability of T
We define an interpretation I’ which assigns to p a maximal truth value
of pin T, say z;, and is identical for the remaining atoms. Then, we have
that I’ satisfies both I’ and T'U {{z;} :p}.

2. T contains literals S; : p,..., Sk : p such that @ € S1,...,a € Sg. Thus,
a € S1N---NSp. If ais a maximal truth value, then we are done.
Otherwise, we have that there exists a maximal truth value z; such that
z; € S1N---NSk. The interpretation I’ which assigns to p the truth value x;
and is identical for the remaining atoms satisfies both I and T'U {{z;} : p}.

Suppose that there exists an ¢ € {1,...,m} such that T U{{z;}:p} is satisfiable.
Since T is a subset of I'U {{z;}:p}, it follows that T is satisfiable. [

The branching rule of Proposition 3.1 can reduce the size of a proof tree
considerably. For instance, when this branching rule is applied to the signed

CNF formula from Example 3.2, the number of branches is reduced from seven
to two. :

Given a signed CNF formula I" and a propositional atom p occurring in
T', a maximal truth value set of p in I" can be computed in polynomial time.
The cost of calculating the equivalence classes of NE/ &, and calculating the
maximal elements of <, with a brute force search algorithm is in O(JN|? |T),
where |N| denotes the cardinality of the truth value set and |I'| denotes the
length of I'. Nevertheless, we believe that this complexity could be improved
with an appropriate definition of data structures.

We claim that the usefulness of the concept of maximal truth value set is
not confined to define optimized branching rules, it could be very beneficial in
the multiple-valued setting when we work with enumerative proof procedures
(i.e. proof procedures whose principle is to assign truth values to propositional
atoms) because it allows to reduce the number of truth values that must be
considered for a given propositional atom.

3.5. A satisfiability checking procedure for signed CNF formulas 35

3.5 A satisfiability checking procedure for
signed CNF formulas

Tn this section we describe a DP-style procedure for signed CNF formulas. As
explained in Section 3.3, the DP procedure relies on the branching rule and the
one-literal rule. Since we have already defined an optimized signed branching
rule based on the concept of maximal truth value set, our next step is to define
a one-literal rule for signed CNF formulas.

Proposition 3.2 signed one-literal rule Let T be a signed CNF formula and
let {S1:p},...,{Si:p} be signed unit clauses of I' such that S1N---NS; #0. Let
T' be obtained from T by first removing all clauses that contain a literal of the
form S:p such that Sy N---N Sy C S, and second by removing all occurrences
of literals of the form S':p such that Sy N ---NS;NS' = @ from the remaining
clauses. Let T be obtained from I by replacing all occurrences of literals of the
form S":p with (S10---NS;NS"):p. Then, T is satisfiadle iff T is satisfiable.

Proof: Suppose that T is satisfiable. Since {S1:p} € T, ..., {Si:p} € T', there
exists a model I of T such that I(p) € S; N---N.S;. On the one hand, I is a
model of any subset of T'. On the other hand, if we remove the literals of the
form S’ :p such that Sy N---NS NS =0, Iis also a model of I because
I(p) € S'. Since I(p) € S1N---N.S;, we can now replace in I all occurrences of
literals of the form S":p with (S1N---NS; NS"):p, and we have that I satisfies
.

Suppose that T is satisflable. By construction of I', we have that all oc-
currences of literals of the form S;:p in T verify that S; C Si N ---N.S;. Thus,
there exists a model I of T such that I(p) € S1N---N.S;. For obtaining I from
T we add some truth values to the signs of the atom p, but anyway I continues
being a model of I'. For obtaining I' from I" we add new clauses to I' and
literals to clauses of I''. The addition of literals has no effect on the satisfiability
and the new clauses contain a literal S:p such that SN ---NS; € S. Therefore,
I(p) € Sy N---NS; C S and I satisfies T |

The pseudo-code of a satisfiability checking procedure based on the notions
of signed branching rule (cf. Proposition 3.1) and signed one-literal rule (cf.
Proposition 3.2) is shown in Figure 3.3. The main function is signed-sat, which
takes as input a signed CNF formula I' with the property that a propositional
atom occurs at most once in each clause. It returns true if T is satisfiable, and it
returns false if " is unsatisfiable. Function signed-unit-resolve applies repeatedly
the signed one-literal rule, function pick-atom selects, by applying an heuristic,
the next propositional atom to which the signed branching rule is applied (this
question is discussed in Section 3.5.1) and function maximal-truth-value-set(T’, p)

computes a maximal truth value set of the propositional atom p in the signed
CNF formula T

36 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

function signed-sat (I': set of clause) : boolean
var p: atom
var x: truth-value
var S: set of truth-value
begin
T := signed-unit-resolve(T’);
if T' = 0 then return(true);
if O € T then return(false);
p := pick-atom(I");
S := maximal-truth-value-set (T, p);
10 if 3z € S such that signed-sat(I’' U {{z}:p}) then

O 00 NI U WwWN—=O

11 return(true)

12 else

13 return(false)

14 endif

15 end

0 function signed-unit-resolve (I': set of clause) : set of clause
1 var p: atom

2 var C, D: clause

3 wvar S,Si,...,5: set of truth-value

4 begin

5 while 3{S;:p} €T,..., {Si:p} €T and O¢T do

6 I':={C| AS:pe C €T suchthat S;N---NS C S}

7 :={C\{S:p|S:peCand S1N---N5NS=0}|CeT};
8 for each C = S:pv D €T do

9 C=(Sn---nSnS)y:pvD

10 endfor

11 endwhile;

12 return(l’)

13 end

Figure 3.3: A DP-style procedure for signed CNF formulas

3.5. A satisfiability checking procedure for signed CNF formulas 37

TU{{0}:p} TU{{3}:p1}

{{{%’ 1}:p37 {1} :pQ}:
{{1} 03, {3}:p2, {3} : 14},
{{%’ 1} D3, {07 1} :p4}
{{1}:05,{0, 3} :p2}}

Tu{{1}:ps}
)l

Figure 3.4: A signed-sat proof tree for the formula I" from Example 3.3

Example 3.3 Let N = {0, %, 1} and let T be the following signed CNF formula:

r = {{{%,1}:p1,{0,%}:pL;},{{O}:pl, %)1}:p37{1}:p2})
{0} 1, {1} 13, {5} im0, {5} :pa}, ({3, 1 im0, {1} i1},
{{%’ 1} ‘D3, {0’ 1}:1)4}) {{1} D3, {01 %}sz}}

Figure 8.4 shows the proof tree created by function signed-sat when the input
signed CNF formula is I'. The root node contains I' and the remaining nodes
contain the signed CNF formula obiained after applying signed-unit-resolve to
the formula selected for doing branching.

Let, us prove that signed-sat is a decision procedure for the SAT problem in
signed CNF formulas.

Theorem 3.1 Given e signed CNF formula T, function signed-sat terminates

and returns either true or false. if it returns true, then T’ is sotisfiable. If it
returns false, then I" is unsatisfiable.

Proof: First, we show that if function signed-sat terminates then either some
branch of the proof tree created by signed-sat contains the empty formula (i.e.
returns true) or every branch of the proof tree contains the empty clause (i.e.
returns false). Suppose we have a proof tree with no branch containing the empty
formula and some leaf node of a branch with a signed CNF formula I which
does not contain the empty clause; we show that signed-sat does not terminate.
If I contains signed unit clauses, then signed-sat calls signed-unit-resolve and
applies the signed one-literal rule; otherwise, signed-sat selects a propositional

atom of I and applies the signed branching rule. Either way, signed-sat does
not terminate.

38 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

Next we show that every proof attempt must terminate. Function signed-sat
applies the signed one-literal rule and the signed branching rule. On the one
hand, the signed one-literal rule decreases the number of distinct signed literals
occurring in the formula. On the other hand, after applying the signed branching
rule we obtain new signed CNF formulas that contain a signed unit clause. Then,
signed-sat applies the signed one-literal rule to such formulas and so decreases
the number of distinct signed literals occurring in them. Since we began with a
finite number of occurrences of distinct signed literals, these rules can only be
applied a finite number of times.

As we have shown that the signed one-literal rule (see Proposition 3.2) and
the signed branching rule (see Proposition 3.1) preserve satisfiability, it is clear
that when signed-sat returns false (i.e all the branches of the proof tree contain
the empty clause), the input signed CNF formula T is unsatisfiable, and when
signed-sat returns true (i.e. there is a branch with the empty formula), T is
satisfiable.]

3.5.1 Branching heuristics

Function signed-sat creates a proof tree whose size depends on the propositional
atom selected for doing branching. Consequently, the heuristic embodied in
pick-atom is a key element for achieving a proof procedure that runs as fast as
possible in a wide range of hard instances. Two factors that are relevant for
selecting a good propositional atom in the signed case are the following ones:

e The branching factor that results of doing branching on the propositional
atom selected by function pick-atom.

¢ For each maximal truth value z; and each propositional atom p, the number
of small size clauses that contain a signed literal S:p such that z; ¢ S.
As such signed clauses are shortened during the application of the signed
one-literal rule, they may become unit clauses after a few steps.

For each propositional atom p that appears in a signed CNF formula T, we
define its branching factor bf(p) as follows:

b.f(p) = I{mb cen ’:v-m}l;

where {z1,...,Zm} is a maximal truth value set ofpinT.

A simple branching heuristic is to choose a propositional atom with a low
branching factor. This way, we may get smaller proof trees. It is expected that
this branching criterion works better than a random choice of the propositional
atom selected for doing branching. The branching factor is at most two in the
classical case, whereas it can be as large as the cardinality of the truth value
set in the signed case. Tt is also interesting to note that the branching factor of
a propositional atom p may decrease during the execution of signed-sat. This
follows from the fact that some signed literals of the form S:p are eliminated
and the sign of some signed literals of the form S’:p is shortened during the
application of the signed one-literal rule.

3.5. A satisfiability checking procedure for signed CNF formulas 39

Besides obtaining a low branching factor, it is also important to get sub-
problems that give rise to small proof subtrees: on the one hand, we should take
into account the some signed clauses are shortened during the application of the
signed one-literal rule; on the other hand, subproblems should have about the
same size in order to avoid to explore a large search space when the algorithm
backtracks.

The rest of this section is devoted to a first approach to the definition of a
branching heuristic that relates the branching factor and the number of small size
signed clauses that are shortened during the application of the signed one-literal
rule. We take the lexicographic heuristic as a starting point.

In the lexicographic heuristic, given a classical CNF formula [’ and a propo-
sitional atom p, we have that h;(p) measures the number of occurrences of the
literal p that are eliminated in clauses of length ¢ when the one-literal rule is
applied to TU{—p}, and h;(—p) measures the number of occurrences of the literal
—p that are eliminated in clauses of length ¢ when the one-literal rule is applied
to T'U {p}.

Let us extend function h; to the signed setting. Let I' be a signed CNF
formula, let p be a propositional atom occurring in T, and let {z1,...,Zx } be a
maximal truth value set of p in I'. For each propositional atom p and for each
maximal truth value z;, 1 < j < m, we define h;i({z;}:p) as follows:

hi({z;}:p) = {C|S:pe C, C €T, z; ¢S, |C| =i}

We have that h;({z;} : p) measures the number of clauses of length 7 that
are shortened because a literal of the form S:p is eliminated when the signed
one-literal rule is applied to I' U {{z;}:p}.

Let h;({z1, }:D),. .., hi({z1,. }:p) be the sequence of the h;({z;}:p)’s in in-
creasing order of their values. Then, we define

Hi(p) = an hi({z1, }:p) + - + am hi({z1,, } 1 p)

Function H; is a heuristic measure of the number of clauses of length 7 that are
shortened. As it is important that the subproblems generated have a similar size
we provide the adjustable parameters ¢y, ..., a,. Such parameters are similar
to the parameters o and § of the classical lexicographic heuristic. The setting
of such adjustable parameters should be done experimentally as in the classical
case.

Now we are ready to define a branching heuristic combining the two factors
mentioned as follows: the signed lezicographic heuristic selects a propositional
atom p with maximal vector

(Hl (p) Ha(p) He(p) >
bf(p) bf(p)" " bf(p)
under the lexicographic order.

The idea behind the adjustable parameter v is to give priority to the propo-
sitional atoms that have a low branching factor. In practice, we would choose

40 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

a propositional atom p with maximal vector (lg'(;’;l , Ig—“’f(‘;})—f” , where [is the

length of the shortest signed clause. Then, we should develop the proof tree
using the depth-first strategy starting by the branch with fewer clauses.

‘We claim that the previous branching heuristic could be extended taking into
account, for each propositional atom p and for each maximal truth value z;, the
number of clauses that are removed when the signed one-literal rule is applied to
a signed CNF formula that contains a signed unit clause of the form {{z;}:p}.

3.6 A satisfiability checking procedure for
regular CNF formulas

In this section we describe a satisfiability checking procedure for regular CNF
formulas that can be viewed as a refinement of the proof procedure for arbitrary
signed CNF formulas we have presented in the previous section.

Hahnle (1996) gave the pseudo-code of an extension of the DP procedure
for regular CNF formulas and, as far as we know, it is the only multiple-valued
DP-style procedure published so far. Nevertheless, our proof procedure differs
in several aspects: we define suitable data structures for representing formulas,
different branching rules, deletion strategies, and a branching heuristic which
is an extension of the lexicographic heuristic (an extension of the two-sided
Jeroslow-Wang rule was proposed in (Hihnle, 1996)).

As our aim is to design a DP-style procedure for regular CNF formulas, we
first define the concepts of regular branching rule and regular one-literal rule.
The branching rule and the one-literal rule we give below are the ones described
in (Hahnle, 1996). In Section 3.6.1 we define an improved version of Hihnle's
branching rule and a regular version of the shortest positive clause rule (used,
for instance, in (Gallo and Urbani, 1989)).

Proposition 3.3 regular branching rule LetI' be a regular CNF formula,
let S:p be a regular literal occurring in T and let N be the truth value set. Then,
T is satisfiable iff T U{S:p} is satisfiable or T U {(N \ S):p} is satisfiable.

Proof: Assume that I" is satisfiable. By definition of interpretation, I(p) € N
for any model I of I'. If I(p) € S, then I'U {S:p} is satisfiable. Otherwise,
I(p) € (N\ S) and TU {(IV \ S):p} is satisfiable.

Assume that T'U {S:p} is satisfiable or TU {(IV \ S):p} is satisfiable. If

T'U{S:p} is satisfiable, then T is satisfiable. If T U {(N \ S):p} is satisfiable,
then T is satisfiable. [|

Proposition 3.4 regular one-literal rule Let T be a regular CNF formula
that contains a regular unit clause {S:p}. Let I be obtained from T by first
removing all clauses that contain a literal of the form S':p such that S C S’
and second by removing all occurrences of literals of the form S” :p such that
SNS" =0 from the remaining clauses. Then, I' is satisfiable iff I is satisfiable.

3.6. A satisfiability checking procedure for regular CNF formulas 41

Proof: Suppose that I' is satisfiable. Since {S:p} €T, there exists a model [
of T such that I(p) € S. On the one hand, I is a model of any subset of T.
On the other hand, if we remove the literals S” :p such that SN S" =, then I
continues being a model of I because I(p) & S".

Suppose that I" is satisfiable. One can realize that by construction of I
there exists a model I of I such that I(p) € S. To obtain I from I'" we add new
clauses to I" and literals to clauses of I'. The addition of literals has no effect on
the satisfiability and all the new clauses contain a literal S':p such that S C S’
But I also satisfies these new clauses because S C S’ and I(p) € S. Thus, T is
satisfiable. |

The pseudo-code of a satisfiability checking procedure based on the concepts
of regular branching (cf. Proposition 3.3) and regular one-literal rule (cf. Propo-
sition 3.4) is shown in Figure 3.5. The main function is regular-sat: it returns
true if the input regular CNF formula T is satisfiable, and it returns false if
T is unsatisfiable. Function regular-unit-resolve applies repeatedly the regular
one-literal rule and function pick-literal selects the next literal to which the
regular branching rule is applied.

Example 3.4 Let N = {0, %, %, 1} and let T be the following regular CNF for-
© mula:

r = {{xo 2P1,El_lip3,!§\1174},{3p1,1p372P4},
:p3;:p4}1{:p1):p5}5
ok {31]: po[4] pad)

Figure 8.6 shows the proof tree created by function regular-sat when the input
reqular CNF formula is T. The root node contains I' and the remaining nodes
contain the reqular CNF formula obtained ofter applying regular-unit-resolve to
the formula selected for doing branching.

Let us prove that regular-sat is a decision procedure for the SAT problem in
regular CNF formulas.

Theorem 3.2 Given a regular CNF formula T', function regular-sat terminates
and returns either true or false. If it returns true, then T' is satisfiable. If it
returns false, then T is unsatisfiable.

Proof: First, we show that if function regular-sat terminates, then either some
branch of the proof tree created by regular-sat contains the empty formula (i.e.
returns true) or every branch of the proof tree contains the empty clause (i.e.
returns false). Suppose we have a proof tree with no branch containing the empty
formula and some leaf node of a branch with a regular CNF formula I which
does not contain the empty clause; we show that regular-sat does not terminate.
If T' contains regular unit clauses, then regular-sat calls regular-unit-resolve and

42

O 00~ O Ut WO

O 00~ U WN O

Chapter 3. The Satisfiability Problem in Signéd CNF Formulas

function regular-sat (I': set of clause) : boolean
var L: literal
begin
' := regular-unit-resolve(T');
if T' = 0 then return(true);
if 0 € T then return(false);
L := pick-literal(T");
if regular-sat (I'U {L}) then
return(true)
else
return(regular-sat (I'U {L}))
endif
end

function regular-unit-resolve (I': set of clause) : set of clause
var L: literal
var C: clause
begin
while 3{L} €T and O ¢T do
I':={C| AL' € C €T such that L C L'};
T:={C\{L|L' € Cand L' C LYC e T}
endwhile; :
return(T)
end

Figure 3.5: A DP-style procedure for regular CNF formulas

3.6. A satisfiability checking procedure for regular CNF formulas 43

ru{>3]:m}

{{ : pa, tpat, { : P3, tpat,

{l?é—lips,l—ﬁ—%—lim},{ipljips}, d
{ ; Pa,li%_l tpat}

I‘U{:pg} I‘U{:pg}

O]

Figure 3.6: A regular-sat proof tree for the formula I from Example 3.4

applies the regular one-literal rule; otherwise, regular-sat selects a regular literal
of IV and applies the regular branching rule. Either way, regular-sat does not
terminate.

Next we show that every proof attempt must terminate. Function regular-sat
applies the regular one-literal rule and the regular branching rule. On the one
hand, the regular one-literal rule decreases the number of distinct regular literals
occurring in the formula. On the other hand, after applying the regular branch-
ing rule we obtain two new formulas to which regular-sat applies the regular
one-literal rule and so decreases the number of distinct regular literals occurring
in them. Since we began with a finite number of occurrences of distinct literals,
these rules can only be applied a finite number of times.

Proposition 3.4 and Proposition 3.3 state that ' is satisfiable iff
regular-unit-resolve(T'U {L}) is satisfiable or regular-unit-resolve(I'U {L}}) is
satisfiable. Then, it is clear that when regular-sat returns false (i.e all the
branches of the proof tree contain the empty clause), the input CNF formula I'
is unsatisfiable, and when regular-sat returns true (i.e. there is a branch with
the empty formula), I" is satisfiable. |

The computational performance of an implementation of the previous satis-
fiability checking procedure depends on some aspects we list below:

e Hihnle’s branching rule can be improved and other alternative branching
criteria can be defined. This topic is considered in Section 3.6.1.

e The branching heuristic embodied in function pick-literal is an important
factor to reduce the size of the proof tree created during the execution of
function regular-sat. This question is discussed in Section 3.6.2.

44 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

¢ The computational complexity of the operations appearing in the proof
procedure depends greatly on the data structures defined for represent-
ing formulas. In particular, function regular-unit-resolve can reach a
linear-time complexity in the worst case. This point is treated in Seé-
tion 3.6.3.

o Regular CNF formulas can be simplified using the deletion strategies de-
fined in Section 3.6.4.

3.6.1 Alternative branching rules

As said before, the branching rule defined in Proposition 3.3 is not the only
option we have of doing branching in the regular setting. In this section, we
first define an improved version of Hahnle’s branching rule and then a regular
version of the two-valued shortest positive clause rule.

Proposition 3.5 Let I' be a regular CNF formula, let p be a propositional atom
that occurs in I', and let T and L denote the top and bottom elements of the
truth value set. Then,

1.TU { : p} is satisfiable iff T' U { . p} is satisfiable, where

T ,ZI:pECEFsuchthatﬂZa
me min{ﬂ|:p € C €T, B> a}; otherwise

2. TU{[<a]: p} is satisfiable” iff T U { : p} is satisfiable, where

B 1 4f /H:pECGI‘suchthatﬂ<a
= max{ﬂ]:pe C eT,8 < a}; otherwise

Proof: We will only prove the first statement; the proof of the second one is
similar. Suppose that T'U { : p} is satisfiable. Then, there exists an inter-

pretation I that satisfies I' U { : p}. It follows that I(p) > o. We distinguish
two cases:

1. There is no regular negative literal : pin I’ such that 8 > a: then, the
interpretation I', obtained from I, which assigns to p the truth value T and
is identical for the remaining propositional atoms satisfies I' U { :p}
and T'U { :p}. This is so since if there is a regular literal S:p in

T'u { : p} whose sign S contains a truth value v such that v > ¢, then
it has positive polarity and T € S.

"When we say we mean the truth values which precede « on the chain of truth values.
If o' is the greatest value of a regular sign, which appears in the regular CNF formula under

consideration, such that ¢’ < a, then means .

3.6. A satisfiability checking procedure for regular CNF formulas 45

2. There is some regular negative literal :pin I such that 8> a: let
7 be min{‘8| :p€CET,B>a}. If I(p) >, then I also satisfies

Tu { : p}. Otherwise, we have that o < I(p) < ;. Then, the inter-
pretation I' which assigns to p the truth value -y, and is identical for the

remaining atoms satisfies I'U { :p} and T'U { :p}. This is so

since if there is a regular literal S:p in T'U { : p} whose sign contains
a truth value v such that a < v < v;, then v € S, too.

Suppose that T"U {: p} is satisfiable. As v > a, it is clear that if
Tu { : p} is satisfiable, then T'U { : p} is also satisfiable.]

Proposition 3.5 enables us to redefine Hihnle’s branching rule as follows: in-
stead of doing branching on I" U { :p} and T'U {[<a]: p}, we now branch
onTU { :p}and T'U { : p}, where v; and +, are defined as in Propo-
sition 3.5. This way, the regular CNF formula obtained after the application of
function regular-unit-resolve will usually have a smaller size than without this
improvement. This is so since the new branching rule allows to remove a greater
number of clauses during the execution of the regular one-literal rule.

Next, we present another another regular branching rule which can be viewed
as a regular version of the two-valued shortest positive clause rule. As explained
in (Hooker and Vinay, 1995), the two-valued shortest positive clause rule selects
a shortest positive clause and creates as many branches as literals occur in the
positive clause. Suppose we have the classical clause p; V pa V ps, then three
branches are created. The first one sets p; to true, the second one sets ps to
true and p; to false (to avoid regenerating solutions in which p; is true), and
the third one sets p3 to true and p» and p; to false. By branching on positive
clauses, it exploits the fact that there is no need to branch on any literal that
never occurs in a positive clause. This is because if only such literals remain,
the remaining clauses can always be satisfied by setting all propositional atoms
to false.

Shortest positive clause branching is extended to the regular setting as
follows: given a regular CNF formula T' that contains a regular positive
clause (L1 V Ly V --- V L), we branch on I'U {L;}, T U {L:} U {1}, ...,
PU{Lg}U{Ly—1}U---U{L1}. The main disadvantage of this approach is that
the expansion of a node can create more than two branches. However, if the
input formula has at most two regular literals per clause, then the number of
branches is at most two. In Section 4.3.2 we define a satisfiability checking pro-
cedure for regular 2-CNF formulas which incorporates this branching criterion.

Finally, it is worth mentioning that the branching rule we have defined for
arbitrary signed CNF formulas, which is based on the concept of maximal truth
value set (cf. Proposition 3.1), is also valid for the subclass of regular CNF
formulas. Contrary to the other branching rules, it has the advantage that
it eliminates all the occurrences of regular literals of the form S:p during the
application of the one-literal rule if we branch on the propositional atom p.

46 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

3.6.2 Branching heuristics

Function regular-sat creates a proof tree whose size depends on the literal se-
lected by the heuristic embodied in pick-literal. Notice that a regular branching
heuristic has to choose both a propositional atom and a sign.

Hihnle (1996) defined a branching heuristic which is a regular version of
the two-sided Jeroslow-Wang rule: given a regular CNF formula I, pick-literal
selects a regular literal L occurring in T' that maximizes J(L) + J(L), where

Jry= 5 o7k
3L L'CL
L'eCeT
We will now define a refinement of the signed lexicographic heuristic given
in Section 3.5.1. As the branching factor of the proof tree created by function
regular-sat is at most two, we drop this factor from the branching heuristic
defined and we get the following regqular lezicographic heuristic:
We select a regular literal .S:p with maximal vector

(Hy(S:p), Ha(S:D), .., Hi(S:p))
under the lexicographic order, where

H;i(S:p) = cn max(hi(S:p), hi((N'\ S):p)) + a2 min(hi(S:p), hi((NV \ 5):p))
and h;(S:p) is defined as follows:

hi(S:p) = |{C|S":peC,Cel,5NS=0,|C}=1i}|

Observe that 11;(.S:p) measures the number of regular literals containing the
propositional atom p which are removed in regular clauses of length i when we
apply the regular one-literal rule to I'U {S:p}. The meaning of the parameters
o1 and @ is like in the signed case.

In practice, we would choose a regular literal S:p with maximal vector
(H{(S:p), Hi+1(S:p)), where [is the length of the shortest regular clause. Then,
we should develop the branch with the fewest number of regular clauses.

As in the classical case, the idea behind the previous branching heuristics is
to select regular literals occurring as often as possible in the shortest clauses of
the formula, so that after a few steps the proof procedure generates as many
regular unit clauses as possible in both branches of the proof tree.

3.6.3 Data Structures

In (Hihnle, 1996) there are no details about the underlying data structures used
to represent formulas. This point, however, is significant because linear-time
simplifications discussed below can only be achieved by choosing suitable data
structures. In particular, our regular-unit-resolve has a linear-time complexity
in the worst case in contrast with the -quadratic complexity of (H&hnle, 1996).

The data structures we have developed to get time efficient operations in
function regular-sat are the following ones:

3.6. A satisfiability checking procedure for regular CNF formulas 47

o A regular CNF formula is represented as a doubly-linked list of its clauses,
called regular clause list. A global counter of regular clauses is maintained
and also a list of regular unit clauses.

e For each clause we maintain a doubly-linked list of its literals and each
literal has a pointer to the head of the clause. The head of a clause contains
a counter of its length.

e We maintain an array of all the different propositional atoms occurring
in the formula. For each atom in the array we have a doubly-linked list
of all its positive occurrences (called positive literal occurrence list) and
a doubly-linked list of all its negative occurrences (called negative literal
occurrence list). During the initialization phase, these lists are sorted in
increasing order of the values of the regular signs. Thus, these lists are
ordered. We have also pointers to the first and last elements of each list.

When we apply the regular one-literal rule to a regular CNF formula I" that
contains a regular unit clause {L}, we have to eliminate all the regular clauses
that contain a literal L' such that L C L' and delete all the occurrences of
regular literals L" such that L" C T. Observe that if the literal occurrence lists
are ordered, these lists are traversed only once. For instance, if L = 1 p we
have to eliminate all the clauses that contain a literal -: p such that ¢ < 0.5.
Then, we scan only the positive literal occurrence list from the first element until
we reach a regular positive literal : p such that 1 > 0.5 (these literals are
removed from the positive occurrence list when the clause is deleted). NMoreover,
we have to delete all the occurrences of regular literals : p such that 7 < 0.5.
Then, we scan only the negative literal occurrence list from the first element
until we reach a negative literal :p such that 7 > 0.5 (these literals are
removed from the positive occurrence list when the literal is deleted). When the
regular unit clause {L} contains a regular literal with negative polarity we start
to traverse the literal occurrence lists from the last element instead of the first
one.

Observe that if we do not sort the literal occurrence lists, they can be tra-
versed, during the execution of regular-unit-resolve, as many times as regular
literals they contain. ’

Example 3.5 Figure 3.7 shows the data structure defined above for the follow-
ing regular CNF formula:

{{[z05]: 1, [203]: pa,[<08]: pu}s {[207]: P, [204 1 pa,[<01]: pa},
{[508]: 1}, {{<08]: ps,[<09] : pa}, {{209]: P2, [<04]: p5}}

In the following we will examine the worst-case time complexity of the main
operations appearing in function regular-sat.

48 Chapter 3. The Satisfiability Problem in Signed CNF Formulas

Unit Regular Clauses Counter

““““““““““““““ ' 5

Regular Clause List

T LI L {12

P S 20.5.-P1| |2 07:p1]----- {2 06:p1]
PI : !
N S
E > 0.3.-le— ----- > 04P2F — e > 0.9:P2
P2
<
>
P3
P N { <01 P3l |s 0.8:P3|----- { < 0.4.P3|
1 1
L R 1
>
P4
R R | < o.e.~1=4} ———————————————————————————— { < o.9.-P4|

Figure 3.7: Data structures

3.6. A satisfiability checking procedure for regular CNF formulas 49

operation | complexity
T="0 0(1)
0e’r 0(1)
pick-literal(T") o(Th

regular-unit-resolve(T') | O(|T)

Since a global counter of clauses is maintained, the test I' = §) needs constant
time. Since we can detect in constant time if we delete a regular literal from a
regular unit clause, the test O € I" needs constant time.

The steps and their corresponding worst-case running times of function
pick-literal are the following omes: first, it traverses the regular clause list to
find out the smaller clause length ! and, as the head of each clause contains its
length, this step is proportional to the number of clauses. Second, it creates a
list of all the different atoms occurring in the regular clauses of length I. This
step is in O(T"). And third, for each sign S and for each atom p of the previous
list, it calculates H;(S:p) and Ry+1(S:p) (defined in Section 3.6.2) and chooses
the most promising literal. This step is in O(I'). Thus, the worst-case time
complexity of pick-literal is in O(T"). .

The worst-case time complexity of regular-unit-resolve for a regular CNF for-
mula T is in O(|T'}) due to the following facts: detection of regular unit clauses is
done in constant time, because a list of regular clauses of length 1 is maintained;
direct access to the lists of all the regular literals and all the regular clauses that
have to be eliminated by the regular one-literal rule is provided by the literal
occurrence lists; deletion of a specific regular literal is done in constant time (we
remove the literal in constant time because clauses are doubly-linked lists, we
delete the literal from the literal occurrence list in constant time because literal
occurrence lists are doubly-linked, and we decrement the counter of the corre-
sponding clause in constant time because a pointer to the head of the clause is
provided); and deletion of a specific regular clause is proportional to the length
of the clause (we remove each literal in constant time and also decrement the
global counter of regular clauses in constant time).

As already noted, literal occurrence lists are scanned only once since they
are sorted during the initialization phase. The cost of sorting is in O(n logn)
for each list, where n is the length of the list. This cost has not been considered
for obtaining the complexity of regular-unit-resolve. In the finitely-valued case,
this sorting is not necessary as we will show in Section 4.3.2.

An implementation of the proof procedure should also maintain a stack con-
taining the information removed during the application of the regular one-literal
rule. This way, this information could be recovered when the algorithm does
backtracking and it would be necessary to maintain just one regular CNF for-
mula in the computer memory.

3.6.4 Deletion strategies

In this section we present several deletion strategies (i.e. elimination of irrele-
vant or redundant regular clauses for proving satisfiability). It is important to

50 Chapter 3. The Satisfiability Problem in Signed CNF Formuias

check if the inclusion of any of them improves the computational performance
of particular satisfiability testing algorithms for regular CNF formulas.

Proposition 3.6 regular pure literal rule Let I' be a regular CNF formula,
let p be a propositional atom appearing in I' such that all its occurrences have
the same polarity, and let T ={C € T'| AS:p € C €T}. Then, T is satisfiable
iff T is satisfiable.

Proof: Suppose that T is satisfiable. Since I is a subset of T, it follows that I
is satisfiable.

Suppose that I is satisfiable and I is a model of I''. Observe that I’ contains
no occurrences of the propositional atom p. let T and L denote the top and
bottom elements of the truth value set. If all the occurrences of regular literals of
the form S:p in I’ have positive polarity, then the interpretation I' that assigns
to p the value T and is identical to I for the remaining propositional atoms,
satisfies I". If all the occurrences of literals of the form S:p in I' have negative
polarity, then the interpretation I’ that assigns to p the value 1 and is identical
to I for the remaining propositional atoms, satisfies I'. n

Proposition 3.6 states that as long as there are monotone regular literals
(literals with the same polarity for a given propositional atom) in a regular CNF
formula, we can remove the regular clauses that contain them, and satisfiability
is preserved.

Proposition 3.7 Let T be a regular CNF formula, let p be a propositional atom
appearing in T such that max{i] peCel}< min{jl :peCerl},
and let TV = {C € T'| AS:p € C € T'}. Then, I is satisfiable iff I is satisfiable.

Proof: Suppose that T is satisfiable. Since I' is a subset of T, it follows that IV
is satisfiable.

Suppose that I' is satisfiable and I is a model of T'. Observe that the
intersection of all the regular signs occurring in I' with the propositional atom
p is non-empty and I” contains no occurrences of p. Thus, the interpretation I’
that assigns to p an arbitrary value of such an intersection and is identical to I
for the remaining propositional atoms satisfies I'. [|

Given a regular CNF formula, Proposition 3.7 allows to remove all the regular
clauses with a propositional atom p if the intersection of all the signs occurring
in the formula in regular literals of the form S':p is non-empty.

Given a signed CNF formulas I" and a propositional atom p occurring in T',
if the maximal truth value set of p in T' is a singleton {2}, then the application
of the signed one-literal rule to T'U {{z}:p} can be seen as an extension of
Proposition 3.7 to arbitrary signed CNF formulas.

Finally, we consider the elimination of subsumed and tautology clauses.

Definition 3.3 subsumed regular clause Let C) and C> be fegular clauses.

Cy is subsumed by Cy iff for each regular literal Sy :p € Cy there is a literal
Ss:p € Cy such that S; C Ss.

3.6. A satisfiability checking procedure for regular CNF formulas 51

Tt is clear that the elimination of subsumed regular clauses in a regular CNF
formula has no effect on the satisfiability of the formula; if a regular clause Cs
is subsumed by a regular clause Ci, then C- is satisfiable if Cy is satisfiable.
The elimination of subsumed clauses defined for regular clauses is also valid for
signed clauses, provided they are merged in the sense of the assumptions made
on page 32.

On the other hand, signed and regular clauses can be eliminated if they
contain literals of the form S :p, ..., Sy :p such that S; U---U S, = N. Such
clauses are tautologies.

Chapter 4

Polynomially Solvable
Satisfiability Problems

Abstract: The SAT problem in classical logic is polynomially solvable
for Horn and 2-CNF formulas. In this chapter we address the Horn SAT
and 2-SAT problems in signed CNF formulas. Our objective is to inves-
tigate under which circumstances such signed SAT problems are polyno-
mially solvable. Concerning the Horn SAT problem, we first describe an
almost linear-time decision procedure for a subclass of infinitely-valued
regular Horn formulas. Then, we extend this result to arbitrary regular
Horn formulas and give a satisfiability checking procedure that reaches a
linear-time complexity when the truth value set is finite. The complexity
is almost linear in the infinitely-valued case. Concerning the 2-SAT prob-
lem, we start by proving that it is NP-complete in signed CNF formulas,
contrary to what happens in classical logic. The 2-SAT problem, however,
turns out to be polynomially solvable in regular and monosigned CNF
formulas. We describe quadratic-time decision procedures for solving the
92-SAT problem in such subclasses of signed CNF formulas. To this end,
we define appropriate calculi, design decision procedures equipped with
suitable data structures, prove their completeness and analyze their time
complexity.

4.1 Introduction

Tt is a well-known fact that there exist subclasses of classical formulas whose SAT
problems are polynomially solvable. Horn and 2-CNT formulas are the two most
representative examples. Nevertheless, little attention has been paid so far to
identify similar subclasses of multiple-valued formulas whose SAT problems are
also polynomially solvable. In view of this, our aim in this chapter is to look into
this question and present some new results. More specifically, we focus on the
Horn SAT and 2-SAT problems, whose classical counterparts admit linear-time

83

5 Chapter 4. Polynomially Solvable Satisfiability Problems

algorithms.!

Our approach to investigate polynomially solvable SAT problems in signed
CNF formulas starts by defining refinements of existing logic calculi for signed
CNF formulas and proving that they are refutation complete for Horn formulas
or 2-CNF formulas. We then define suitable data structures for representing for-
mulas and design efficient satisfiability checking procedures. Finally, we analyze
the computational complexity of the proof procedures and prove their complete-
ness. . '

Concerning the Horn SAT problem, we define a unit resolution-style cal-
culus and describe an almost linear-time decision procedure for a subclass of
infinitely-valued regular Horn formulas we call Horn mv-formulas. Then, we ex-
tend all these results to arbitrary regular Horn formulas and give a satisfiability
checking procedure that reaches a linear-time complexity when the truth value
set is finite. The complexity is almost linear in the infinitely-valued case.

Concerning the 2-SAT problem, we begin by showing that it is NP-complete
in signed CNF formulas. The 2-SAT problem, however, turns out to be polyno-
mially solvable in regular and monosigned CN¥ formulas. Taking as a starting
point a refinement of the DP-style procedures described in Chapter 3, we then
design several quadratic-time decision procedures for solving the 2-SAT problem
in these special, but important, subclasses of signed CNF formulas. In addition,
we propose different alternative branching rules for the binary case.

This chapter is organized as follows. In Section 4.2 we define the logic of
mv-formulas and a unit resolution-style calculus, and we describe an efficient
satisfiability checking procedure for Horn mv-formulas. We then extend all these
results to the framework of regular Horn formulas. In Section 4.3 we prove the
NP-completeness of the 2-SAT problem in signed CNF formulas. Finally, we
present a detailed description of quadratic-time decision procedures for solving
the 2-SAT problem in regular and monosigned CNF formulas.

4.2 The Horn SAT problem

The linearity of the Horn SAT problem in classical logic was first proved by
Dowling and Gallier (1984) and since then other linear-time algorithms have been
published; e.g. (Minoux, 1988; Escalada-Imaz, 1989a; Scutelld, 1990; Ghallab
and Escalada-Imaz, 1991).

As far as we know, the first paper that addressed the Horn SAT problem in
the multiple-valued setting is due to Escalada-Imaz and Many# (1994c). This pa-
per presents an almost linear-time satisfiability checking procedure for a subclass
of infinitely-valued regular Horn formulas we call mv-formulas. Later, Hahnle
(1996) described a graph-based satisfiability testing algorithm for arbitrary reg-
ular Horn formulas. It has the same complexity in the infinitely-valued case and
a linear-time complexity in the finitely-valued case.

1 As already noted, the Horn SAT problem can only be considered in regular CNF formulas
because other known subclasses of signed CNF formulas lack the concept of polarity of literals.

4.2. The Horn SAT problem 53

In this section, we first present a detailed description of a decision procedure
for solving the Horn SAT problem in mv-formulas. Then, we extend our result to
arbitrary regular Horn formulas. In both cases we define a unit resolution-style
calculus, prove its refutation completeness, define suitable data structures for
representing Horn formulas, describe a satisfiability checking procedure, and
analyze the computational complexity.

4.2.1 The Horn SAT problem in mv-formulas

First of all, we make precise the logic of mv-formulas. Then, we define a calculus
and prove its soundness and completeness in the Horn case.

Syntax and semantics

Definition 4.1 literal A literal is either a propositional atom p, called positive
literal, or the negation of a propositional atom —p, called negative literal.

Definition 4.2 mv-clause Let Li,..., Ly be literals and let o € [0,1]. An
egpression of the form (L1 V -V Ly; a) is an my-clause and a s is sign. An
mu-clause (S;a) such that S has ezactly one literal is a unit mv-clause. An
mu-clause (S; @) such that S has at most one positive literal is a Horn mv-clause.
An mu-clause (S;) such that all the literals occurring in S are positive (are
negative) is a positive (a negative) mv-clause.

Definition 4.3 Horn mv-formula An mv-formula is o finite set of
mu-clauses. A Horn mu-formula is o finite set of Horn mu-clauses.

Definition 4.4 interpretation An interpretation I is a mapping thal assigns
to every propositional atom an element of the unit interval [0,1]. An interpre-
tation I is eztended to literals as follows:

e if L =p, then I(L) = I(p);
o if L =—p, then I(L) =1—I(p).

Definition 4.5 satisfiability An interpretation I satisfies an mu-clause
C=(LiV---VLn;a), denoted by I |= C, iff I(L;) > o for some literal L;,
1 <i<m. An mu-formula T is satisfiable iff there exists an interpretation that
satisfies all the mu-clauses in I'. An mu-formula that is not satisfiable is unsai-

isfiable. The empty mu-clause is always unsatisfiable and the empty mu-formula
is always satisfiable.

Looking at the previous definitions, it is easy to realize that an mv-clause of
the form

(pr V- VpiV-pig1 V-V Py, @)

is equivalent to the following regular clause:

:p1V---V[Zal:pivlgl—al:p,q_lV---V:pm.

56 Chapter 4. Polynomially Solvable Satisfiability Problems

Thus, mv-formulas can be considered to be a subclass of regular CNF formulas.?

Proposition 4.1 Let T' be an mu-formula. If T' contains two mu-clauses
(-p; @), (p; B) such that &+ B > 1, then T’ is unsatisfiable.

Proof: Assume that there exists an interpretation I that satisfies I. Since I
satisfies (—p; @) and (p; B), it must be that I(p) < 1— «a and I(p) > B. But this
is a contradiction because o + 8 > 1. Therefore, I is unsatisfiable. | |

The satisfiability checking procedure for Horn mv-formulas we describe later
on tries to derive two mv-clauses that fulfill the conditions of Proposition 4.1.

Logical inference

Next, we present a refutation complete calculus for Horn mv-formulas. Its only
inference rule is called Multiple-valued Positive Unit Resolution (MPUR).

Definition 4.6 multiple-valued positive unit resolution Let (—pVS;a) be
a Horn mu-clause and let (p; B) be a positive unit my-clause. The multiple-valued
positive unit resolution rule (MPUR) is defined as follows:

(-pVS;a) (p;B)
(S;)

provided that o + 8 > 1.

Definition 4.7 proof A proof of an mu-clause C from o Horn mu-formula T',
denoted by T' Fypur C, is a finite sequence of mu-clauses Cy,. .., Cy such that
Cm = C and, for each k (1 < k < m), either Cy is a clause of T or Cy is
obtained from C; and C; (k > 1,3) applying the MPUR rule.

The mv-clause derived from (—p;a) and (p; 3), provided that a + 8 > 1, is
the empty mv-clause, denoted by O. A proof of the empty mv-clause from a
Horn mv-formula I" is a refutation of T'. Next, we show that the MPUR calculus
is refutation complete for Horn mv-formulas.

Proposition 4.2 one-literal rule for mv-formulas Let T' be a Horn
mu-formula that contains a positive unit mu-clause (p;a). Let IV be obtained
from T by first removing all mu-clauses of the form (S; B) such that S contains
an occurrence of the literal p and o > B, and second by removing all occurrences
of the literal —p in all mv-clauses of the form (S';v) such that S' contains an
occurrence of —=p and o+ > 1. Then, T is satisfiable iff I is satisfiable.

Proof: Suppose that T' is satisfiable. Since (p;a) € T, there exists an inter-
pretation I that satisfies T' such that I(p) > . On the one hand, I satisfies
any subset of I'. On the other hand, if we delete the occurrences of the literal
—p in mv-clauses of the form (S';) such that S’ contains an occurrence of —p

2This fact was already noted by Héihnle (1996).

4.2. The Horn SAT problem 57

and a + - > 1, the interpretation I also satisfies I because I(—p) <1 —a and
1—a <. Thus, IV is satisfiable.

Suppose that I" is satisfiable. One can realize that by construction of I"
there exists an interpretation I that satisfies I such that I(p) > a. To obtain
I from I’ we add new clauses to I and literals to clauses of I'. The addition
of literals has no effect on the satisfiability and the new clauses (S; a;) we add
contain an occurrence of the literal p. Since by construction of I’ we have that
a > a; and I(p) > a > a;, the interpretation I also satisfies these new clauses.
Thus, T is satisfiable.]

Theorem 4.1 soundness and completeness A Horn my-formule T' is un-
satisfiable iff there exists a refutation of I.

Proof: (Soundness) Since the empty mv-clause is unsatisfiable (cf. Proposi-
tion 4.1) and is obtained after a finite number of applications of the MPUR
rule, it suffices to show that if there exists an interpretation that satisfies both
(-pV S;a) and (p; B), and &+ B > 1, then this interpretation satisfies (S; a) as
well. Assume that (-p V S; @) and (p; B) are satisfiable. Let I be an interpreta-
tion that satisfies both (-pV S;a) and (p; 8). Then, it must be that I(p) > 8
and I(-p) < 1— . Since I(-p) <1—p and 1 - < o, the interpretation I
satisfies (S;) as well.

(Completeness) Suppose that I is unsatisfiable. We must show that there exists
a refutation of I using the MPUR rule. We proceed by induction on I, where [
is the length of T (i.e. the sum of the total number of literal occurrences in each
mv-clause of I'). If{ = 0, then it must be that I' = {0} because I' is unsatisfiable.
Thus, there exists a refutation of I'.

Suppose now that there exists a refutation for every unsatisfiable Horn
mv-formula whose length is at most [, and suppose that the length of " is [+ 1.
Since I is unsatisfiable, I' must contain at least one positive unit mv-clause (oth-
erwise, the interpretation that assigns to every propositional atom the value 0
satisfies T'). Let (p;a) be a positive unit mv-clause that appears in I' and let
T be the Horn mv-formula obtained from I' by applying the one-literal rule for
mv-formulas using the unit mv-clause (p;a) (cf. Proposition 4.2). Then, the
length of TV is at most ! and, by Proposition 4.2, I is unsatisfiable. By the in-
duction hypothesis, there exists a refutation R of I'. If all the mv-clauses of I"
appearing in R are also mv-clauses of I, then R is also a refutation of I' and we
are done. Otherwise, let (Si1;711),- - -, (Sm;¥m) be the mv-clauses of I' appearing
in R such that the literal —p was deleted during the application of the one-literal
rule for mv-formulas. We put back the literal —p at these mv-clauses, and we
have that the mv-clauses so obtained belong to T'. We now apply the MPUR rule
to each one of these mv-clauses together with the unit mv-clause (p; &) used to
create I''. Since by construction of I'.we have that y1 +a > 1,...,9m +a > 1,

we obtain (S1;71),-- -, (Sm;¥m) again. Adding these resolution steps to R we
get a refutation of T'.]

58 Chapter 4. Polynomially Solvable Satisfiability Problems

procedure Hmv-sat-1 (I': Horn_mv-formula)
var p, —p: literal
var S: clause
var a, 3: truth_value
var I'': Horn_mv-formula
begin
T'".=T
while IV # 0 and O ¢ I do
T':=Tur
=0
10 while 3(p; a), (-p V S;B8) € I" such that «+ 4 > 1 do
11 if (S;8) ¢ T then I' :=T" U {(S;8)}
12 endwhile
13 endwhile;
14 if 0T then

OO~ U= O

15 return(unsatisfiable)
16 else

17 return(satisfiable)
18 endif

19 end

Figure 4.1: A first satisfiability checking procedure for Horn mv-formulas

A satisfiability checking procedure for Horn mv-formulas

The remainder of this section is devoted to design an efficient satisfiability check-
ing procedure for Horn mv-formulas based on the MPUR calculus. As it has some
complicated data structures and operations, we present three descriptions of the
procedure. The first description is shorter and more abstract; the others are
longer and more detailed.

A first description of the procedure

The pseudo-code of the first proof procedure for checking the satisfiability of
Horn mv-formulas is shown in Figure 4.1. ‘The principle of this procedure con-
sists in applying repeatedly the MPUR rule until either the empty mv-clause is
derived (in this case, the input mv-formula is unsatisfiable) or a saturation state
is reached (in this case, the input mv-formula is satisfiable provided that the
empty mv-clause has not been derived). In the pseudo-code, I" contains initially
the input Horn mv-formula. In the i-th iteration, I' contains both the input
Horn mv-clauses and the resolvents derived in the ¢ — 1 previous iterations.

4.2. The Horn SAT problem 59

Example 4.1 Let T be a Horn my-formula that contains the following clauses:

(—'pl)p'.?; 017)
(_'p2)p3; 0) 9)
(_'p3)p'2;0) 5)
(_'p3) —P1; 0) 7)
(pl; 0, 4)

The different values that T takes in successive iterations are

' « T

I' « TU{(»0,7),(-ps;0,7)}

I' + TU{(p0,7),(-p3;0,7)} U {(ps;0,9)}

I « FU{OJ?;O)?)a(_'p%O’T)}U{(p3;0a9)}U{(pQ;O:S)a(_'pl;O:7))D}

T is unsatisfiable because we have derived the empty mu-clause.

Theorem 4.2 Given a Horn mu-formula T', procedure Hmu-sat-1 terminates
and returns either satisfiable or unsatisfiable. It returns satisfiable if the in-
put Horn mu-formula T is satisfiable. It returns unsatisfiable if the input Horn
mu-formula T’ is unsatisfiable.

Proof: The procedure applies the MPUR rule to each pair of mv-clauses of the
form (p;B), (-p V S;c) such that a + f > 1, eliminates the literal —p and
adds to the input formula the new mv-clauses so derived until either the empty
mv-formula is derived or a saturation state is reached. Since the input Horn
mv-formula contains a finite number of negative literals, only a finite number of
negative literals can be eliminated. Hence, the procedure terminates and two
final situations can arise:

1. The empty mv-clause is derived because of applying the MPUR rule to
two mv-clauses of the form (—p;) and (p; §) such that o + 8 > 1. Then,
the input Horn mv-formula is unsatisfiable by virtue of the soundness of
the MPUR calculus.

2. A state is reached in which the MPUR rule cannot produce new resol-
vents and the empty mv-clause has not been derived. Then, the input
Horn mv-formula is satisfiable by virtue of the completeness of the MPUR
calculus.

An improved procedure

Even though procedure Hmyv-sat-1 is a decision procedure that allows us to solve
the Horn SAT problem in mv-formulas in polynomial time, it is worthwhile to
pursue a faster proof procedure taking into account the following points:

60 Chapter 4. Polynomially Solvable Satisfiability Problems

1. Tt is not necessary to save all the positive unit mv-clauses that have a same
propositional atom and only differ in the value of their sign. For instance,
if we have two positive unit mv-clauses G, = (p;) and Co = (p; B) such
that a > A, then it suffices to save C;. This follows from the fact that
the interpretations that satisfy both C; and C» are exactly the same inter-
pretations that satisfy Ci. In other words, Gy A C3 is logically equivalent
to C;. From a computational point of view, this is obtained with a data
structure —val(p)— that is updated to the value « each time a new positive
unit mv-clause (p;a) such that a > val(p) is derived. If a positive unit
mv-clause (p; 8) such that val(p) > 8 is derived, then it is not considered.

9. Tn order to determine the mv-clauses to which we can apply the MPUR rule
in a given state, we must pick up a positive unit mv-clause (p; @) and a Horn
mv-clause (S; 8) such that S contains an occurrence of —p and ez + 8 > 1.
This could be done as follows: we maintain one list —negative-clauses(p)—
for each propositional atom p. Initially, negative-clauses(p) contains all the
mv-clauses that have an occurrence of the literal —-p. Each time a new pos-
itive unit mv-clause (p;) is derived, the mv-clauses in negative-clauses(p)
are scanned. For each Horn mv-clause C' = (S; B) such that S contains an
occurrence of —p and o + B > 1, the literal —p is removed from S and C
is deleted from negative-clauses(p). If all the negative literals have been
removed from S then the clause (q; 3) is derived, where g is the positive
literal in S. If there is no positive literal in S, then the empty mv-clause is
derived and so the input mv-formula I’ is unsatisfiable.

Although this principle is simple, one can realize that to find an occurrence
of a literal —p in an mv-clause (S; 8), when its literals are represented as a
list, is in O(|S|) and to remove all the negative literals occurring in (5; 8)
is in O(}S|?). Thus, instead of representing S as a list we associate with
each clause C = (S;) a counter —counter(C)- that indicates the number
of occurrences of negative literals —p in S such that val(p) +8 <1 (i.e.
the number of negative literals in S that have not yet been removed by an
application of the MPUR rule). With this data structure, to eliminate a
negative literal of S is done in constant time and to remove all the negative
literals of S isin O(|S]). When counter(C) = 0, the mv-clause (g; 8), where
g is the positive literal in S, is derived. If S has no positive literal, then
the empty mv-clause is derived.

Our next step is to incorporate the previous improvements into procedure
Hmv-sat-1, as well as to define suitable data structures for representing Horn
mv-formulas. First of all, we introduce the data structures that the new satisfi-
ability checking procedure will use.

For each propositional atom p that occurs in the input Horn mv-formula I*:

val(p) = @, where « is the sign with maximum value that appears in the
unit mv-clauses containing p that have been derived so far.

4.2. The Horn SAT problem 61

negatiwe-clauses(p) = {(S;a) € I'| ~p € S}
For each Horn mv-clause C' = (S,a) in I:

sign(C) = a, where a is the sign of C
counter(C) = r, where 7 = |{-p € S|val(p) + sign(C) < 1}|

positive(C) = p, where p is the positive literal in S; otherwise it is nil.

The pseudo-code of the improved procedure is shown in Figure 4.2 and Fig-
ure 4.3. Procedure initialization takes as input a Horn mv-formula I" and creates
and updates the data structures we have defined. Procedure Hmv-sat-2 takes as
input a Horn mv-formula I, and returns satisfiable if T is satisfiable and returns
unsatisfiable if ' is unsatisfiable.

Theorem 4.3 Given a Horn mv-formula T, Hmv-sat-2(T") terminates and re-
turns satisfiable iff T' is satisfiable. The time complezity of Hmv-sat-2(T') is in
O(T| + ck), where |T'| is the length of T, c is the number of mv-clauses whose
positive literal also occurs in another mu-clause of T and k is the mazimum
number of my-clauses of T' that contain an occurrence of a same negative literal.

Proof: The completeness of procedure mvH-sat-2 is a straightforward conse-
quence of Theorem 4.2 and the improvements discussed above. Let us analyze
its complexity:

Procedure initialization is in O(|T'|) due to the following facts:

e The for loop of line 8 has a time complexity that is bounded by |T}.

e The for loop of line 12 has a time complexity that is bounded by the
number of mv-clauses in T'.

o The for loop of line 16 is executed as many times as mv-clauses are in I and
the time complexity of each iteration is the number of occurrences of literals

in the mv-clause under consideration. Therefore, iis time complexity is
bounded by |T}.

Procedure mvH-sat-2 is in O(|T] + ck):
e Line 5 is in O(|T}).

e The for loop of line 10 is executed at most k times and if this loop is
executed once for each distinct positive literal occurring in T', then the
complexity of the while loop of line 6 is in O(|T). But, as some positive
literals p can be derived with different sign, negative-clauses(p) can be
scanned as many times as mv-clauses exist containing an occurrence of the
literal p. Therefore, the worst-case complexity of the while loop of line 6
is in O(|T| + ck).

Chapter 4. Polynomially Solvable Satisfiability Problems

0 procedure initialization (I': Horn_mv-formula)
1 var p, —p: literal

2 var S: clause

3 wvar a: truth_value

4 var C: mv-clause

5 wvar Iy set of mv-clause

6 begin

7 Tunit == 0;

8 for each atom pin " do

9 val(p):= 0;

10 negative-clauses(p):= 0

11 endfor;

12 for each unit clause (p;a) € " do

13 if val(p)=0 then Ty = Tunat U {p};
14 if & >val(p) then val(p):= a

15 endfor;

16 for each clause C = (S,a) € T do

17 sign(C) = a;

18 if 3p € S then

19 positive(C) = p;

20 counter(C) := |S| — 1

21 else

22 positive(C) = nil;

23 counter(C) := |S|

24 endif;

25 for each —-p € S do

26 negative-clauses(p) := negative-clauses(p) U{C'}
27 endfor

28 endfor

29 end

Figure 4.2: Initialization phase for Horn mv-formulas

4.2. The Horn SAT problem

0 procedure Hmv-sat-2 (I': Horn_mv-formula)

1 var p, —p: literal

2 var C: mv-clause

3 var Dynit, [0 set of mv-clause

4 begin

5 initialization(I');

6 while Typnir # 0 do

7 im;it 1= Dynit;

8 Tunit 1= 0;

9 for each atom p inI',,;; do

10 for each C € negative-clauses(p) do -

11 if sign(C) + val(p) > 1 then

12 decrement(counter(C));

13 negative-clauses(p) := negative-clauses(p) \ {C};
14 if counter(C) = 0 then

15 if positive(C) = nil then return(unsatisfiable);
16 if sign(C) > val(positive(C)) then
17 val(positive(C)) = sign(C);

18 Tunit := Dunit U {positive(C)}

19 endif

20 endif

21 endif

22 endfor

23 endfor

24 endwhile;
25 return(satisfiable)
26 end

Figure 4.3: A satisfiability checking procedure for Horn mv-formulas

63

64 Chapter 4. Polynomially Solvable Satisfiability Problems

The definitive proof procedure

In order to improve the time complexity of procedure initialization and procedure
Hmv-sat-2, we can incorporate the following modifications:

o For each propositional atom p that appears in T, the list negative-clauses(p)
is sorted. An ordered list {Ci,...,Ci,...,Cj,...,Cp} such that
sign(C;) > sign(C;) for all i < j (1 <4,j < n) is obtained.

e This ordering enables one to efficiently scan the lists negative-clauses(p):
each time a new unit mv-clause of the form (p;a) is derived, only the
mv-clauses C; such that sign(C;) + o > 1 are scanned and removed from
the list. This way, the lists negative-clauses(p) are scanned only once.

The previous modifications are incorporated into procedure initialization and
procedure mvH-sat-2, giving raise to the definitive satisfiability checking proce-
dure for Horn mv-formulas. Its pseudo-code is shown in Figure 4.4 and Fig-
ure 4.5.

Theorem 4.4 Given a Horn mu-formula T', Hmuv-sal(T') terminates and re-
turns satisfiable iff T is satisfiable. The time complezity of Hmu-sat(I') is in
O(|T| + mlogk), where |T'| is the length of T', m is the sum of the number of
occurrences of negative literals in T and k is the mazimum number of mu-clauses
of T' that contain an occurrence of a same negative literal.

Proof: The completeness of procedure Hmv-sat is a straightforward consequence
of Theorem 4.3 and the improvements discussed above. Let us analyze its com-
plexity:

The new procedure initialization is in O(|T| + mlogk) due to the following
facts:

¢ The for loops of lines 8, 12 and 16 have the time complexity calculated in
the proof of Theorem 4.3.

e The for loop of line 29 is executed as many times as distinct propositional
atoms occur in I'. Let py,...,p, be such propositional atoms. The cost
of each iteration is kp, log kp;, where kp, is the number of mv-clauses that
contain an occurrence of the literal —p;. Then, the sum k,, logky, +...+
kp, logk,, is bounded by mlogk.

Procedure Hmv-sat is in O(|T| + mlogk):
e Line 5 is in O(|T'| +mlogk).

e Now, the total number of mv-clauses scanned and removed on the lists
negative-clauses(p) is bounded by m. Therefore, the worst-case complexity
of the while loop of line 6 is in O(m).

4.2. The Horn SAT problem 65

0 procedure initialization (I': Horn_mv-formula)
1 wvar p, —p: literal

2 var S: clause

3 var o: truth_value

4 wvar C: mv-clause

5 var [ynie: set of mv-clause

6 begin

7 Tunit := 0;

8 for each atom p in T' do

9 val(p):= 0;

10 negative-clauses(p):= @

11 endfor;

12 for each unit clause (p;) € ' do

13 if val(p)=0 then Tynit = Tunit U {r};
14 if @ >val(p) then val(p):= a

15 endfor;

16 for each clause C = (S,a) € ' do

17 sign(C) = a;

18 if 3p € S then

19 positive(C) := p;

20 counter(C) := |S| -1

21 else

22 positive(C) = nil;

23 counter(C) = ||

24 endif;

25 for each -p € S do

26 negative-clauses(p) = negative-clauses(p) U{C}
27 endfor

28 endfor;

29 for each atom p in I do

30 negative-clauses(p):= sort(negative-clauses(p))
31 endfor

32 end

Figure 4.4: Initialization phase for Horn mv-formulas

Y
66 Chapter 4. Polynomially Solvable Satisfiability Problems
0 procedure Hmv-sat (I': Horn_mv-formula)
1 var p, —p: literal
2 var C: mv-clause
3 wvar Dyni, [, set of mv-clause
4 begin
5 initialization(T');
6 while 'y # 0 do
7 Fim,it = Lunit;
8 Tunit == 0;
9 for each atom p in I',;, do
10 C := head(negative-clauses(p));
11 while C # nil and sign(C) + val(p) > 1 do
12 decrement(counter(C));
13 negative-clauses(p) := tail(negative-clauses(p));
14 if counter(C) = 0 then
15 if positive(C) = nil then return(unsatisfiable);
16 if sign(C) > val(positive(C)) then
17 val(positive(C)) = sign(C); \
18 TCunit := Lunit U {positive(C)} \
19 endif
20 endif; ‘
21 C := head(negative-clauses(p)) .
22 endwhile ‘
23 endfor

24 endwhile;
25 return(satisfiable)
26 end

Figure 4.5: The definitive version of a satisfiability checking procedure for Horn
mv-formulas

4.2. The Horn SAT problem 67

4.2.2 The Horn SAT problem in regular CNF formulas

The aim of this section is to extend the results obtained for mv-formulas
to arbitrary regular Horn formulas. Therefore, we begin by defining a unit
resolution-style calculus and proving that it is refutation complete for regular
Horn formulas. Then, we describe an efficient satisfiability checking procedure
for regular Horn formulas. As such a proof procedure is similar to the procedure
we have designed for mv-formulas, we only present the definitive version.

Logical inference

Unit resolution for regular clauses is known to be complete for determining the
satisfiability of regular Horn formulas (Héhnle, 1996). The calculus we introduce
here is a refinement of regular unit resolution since only regular positive unit
clauses must be considered for deriving resolvents. We make precise our calculus
in the following definitions and then prove its refutation completeness.

Definition 4.8 regular positive unit resolution (RPUR) Let :p be

a regular positive unit clause and let :pV C be a regular Horn clause. The
reqular positive unit resolution rule (RPUR) is defined as follows:

el
:pVC’

C
provided that i > j.

Definition 4.9 proof A proof of a regular clause C from a regular Horn for-
mula T, denoted by T Frpyr C, is a finite sequence of regular Horn clauses
Ci,...,Cm such that Co = C and, for each k (1 < k < m), either Cy, is a
clause of T' or Cy, is obtained from C; and C; (k> i,) applying the RPUR rule.

The regular clause derived from : p and : p, provided that ¢ > j, is
the regular empty clause, denoted by O. A proof of the regular empty clause
from a regular Horn formula T is a refutation of .

Theorem 4.5 soundness and completeness A reqular Horn formula L' is
unsatisfiable iff there ezists a refutation of I'.

Proof: (Soundness) Since the regular empty clause is unsatisfiable and is ob-
tained after a finite number of applications of the RPUR rule, it suffices to show
that if there exists an interpretation that satisfies both : p and :pVC,
and i < j, then this interpretation satisfies C as well. Assume that :p and
: pV C are satisfiable. Let I be an interpretation that satisfies both 'p

and : pV C. Then, it must be that I(p) > j. Since i < j, the interpretation
I satisfies C' as well.

hsl‘

|

0

68 Chapter 4. Polynomially Solvable Satisfiability Problems

(Completeness) Suppose that T is unsatisfiable. We must show that there exists
a refutation of I" using the RPUR rule. We proceed by induction on I, where [is
the length of I'. If | = 0, then it must be that I' = {0} because I is unsatisfiable.
Thus, there exists a refutation of T'.

Suppose now that there exists a refutation for every unsatisfiable regular
Horn formula whose length is at most I, and suppose that the length of I" is [+1.
Since I' is unsatisfiable, I' must contain at least one regular positive unit clause
(otherwise, I' is clearly satisfiable). Let {: p} be a regular positive unit
clause that appears in I" and let IV be the regular Horn formula obtained from
T’ by applying the regular one-literal rule using the regular unit clause { :p}
(cf. Proposition 3.4). Then, the length of I is at most [and, by Proposition 3.4,
I is unsatisfiable. By the induction hypothesis, there exists a refutation R of I".
If all the regular clauses of IV appearing in R are also regular clauses of I', then
R is also a refutation of I' and we are done. Otherwise, let Cy,...,C,, be the
regular clauses of [V appearing in R such that the literals iDye , 'p
were deleted during the application of the regular one-literal Tule. We put back
the eliminated literals E D, ... , : p at these clauses, and we have that
the regular clauses so obtained belong to I'. We now apply the RPUR rule to
each one of these clauses together with the regular unit clause { : p} used to

create I'. Since by construction of I' we have that 4; < j,...,%n < j, we obtain
Ci,...,Cnm again. Adding these resolution steps to R we get a refutation of T
|

A satisfiability checking procedure for regular Horn formulas

First of all, we define suitable data structures for representing regular Horn
formulas. The differences between the data structures for Horn mv-formulas and
the data structures for regular Horn formulas are: the lists negative-clauses(p)
not only contain the regular clauses in which there is an occurrence of a regular
negative literal containing the propositional atom p, but also contain the value
of the sign of such regular literals; and as regular clauses contain a local sign for
each literal instead of a local sign for each clause, the sign has been eliminated
in the data structure used to represent clauses.

Data Structures:
For each propositional atom p that occurs in the input regular Horn formula I
val(p) = i, where i is the greatest value of the regular sign that appears in

the regular positive unit clauses containing p that have been derived
so far.

negative-clauses(p) = {(C,1) | :peCand CeT}
For each regular Horn clause C = (Ly V-V Ly,) in I':

counter(C) =r, wherer = |{L; € C|L; = : p and valkp) <iH

4.2. The Horn SAT problem 69

positive(C) = L, where L is the positive literal in C; otherwise it is nil.

The pseudo-code of the satisfiability checking procedure for regular Horn for-
mulas we propose is shown in Figure 4.6 and Figure 4.7. Procedure initialization
takes as input a regular Horn formula T and creates and updates the data struc-
tures defined. Procedure Horn-sat takes as input a regular Horn formula T'; it
returns satisfiable if T is satisfiable and returns unsatisfiable if T is unsatisfiable.

Theorem 4.6 Given a regular Horn formula T, Horn-sat(T") terminates and
returns satisfiable iff T is satisfiable. The time complezity of Horn-sai(T') is in
O(|T| + mlogk), where |T'| is the length of T, m is the sum of the number of
occurrences of negative literals in T’ and k is the mazimum number of regular
clauses of T' that contain en occurrence of a regular negative literal with the same
propositional atom.

Proof: The arguments used to establish the completeness of procedure Hmv-sat
remain valid to establish the completeness of procedure Horn-sat taking into
account that we now automate the application of the RPUR inference rule,
which is refutation complete for regular Horn formulas. The time complexity of
Horn-sat(T) is in O(|T|+mlog k). This complexity coincides with the complexity
we have obtained for procedure Hmv-sat because we have only introduced minor
changes which have no effect on the time complexity. n

Procedure Horn-sat may reach a linear-time complexity, provided that the
truth value set is fixed and finite, modifying slightly the data structure used to
represent propositional atoms. Remember that we maintain, for each proposi-
tional atom p, the list negative-clauses(p) formed by all the regular clauses that
contain an occurrence of a regular negative literal of the form S:p. Now, we
should maintain, for each truth value k and atom p, the list clauses (: p)
formed by all the regular clauses that contain an occurrence of the regular literal
: p. This way, we have that

o the lists clauses (: p) do not need to be sorted during the initialization
phase;

e if a regular positive unit clause of the form { : p} is derived, we have
to scan all the lists clauses (: p) such that ¢ > j. Observe that the lists

clauses (‘ <ji: p) are scanned only once during the execution of Horn-sat,
since once they are scanned they become empty lists.

Therefore, it is easy to realize that if we incorporate the previous modifi-
cations into procedure Horn-sat we obtain a linear-time complexity when the
truth value set is fixed and finite. In Section 4.3.2 we give more details about
this question. .

Hihnle (1996) obtained the same results on time complexity for his satisfia-
bility checking procedure for regular Horn formulas, but with a different method.

Chapter 4. Polynomially Solvable Satisfiability Problems

0 procedure initialization-Horn (I': regular_Horn_formula)

1 var p: atom '

2 var L: regular literal

3 vari,j,k: truth_value

4 wvar C: regular_clause

5 wvar [y set of regular_clause

6 begin

7 Tunit == 0;

8 for each atom pin I’ do

9 val(p):= 0;

10 negative-clauses(p):= 0

11 endfor;

12 for each positive unit clause { :pt €T do

13 if val(p)=0 then CTynit := Tunit U {P};

14 if 1 >val(p) then val(p):= i

15 endfor;

16 for each clause C = (L1 V.-V Ly) €T do

17 if there is a positive literal L; € S then

18 positive(C) := Lj;

19 counter(C) := |C] -1 ‘.
20 else |
21 positive(C) := nil; |
22 counter(C) := |C|

23 endif;

24 for each negative literal :peC do

25 negative-clauses(p) := negative-clauses(p) U{(C, k)}
26 endfor

27 endfor;

28 for each atom p in I' do

29 negative-clauses(p):= sort(negative-clauses(p))

30 endfor

31 end

Figure 4.6: Initialization phase for regular Horn formulas

4.2. The Horn SAT problem 71

0 procedure Horn-sat (I': regular Horn_formula)

1 wvar p: atom

2 var C: regular_clause

3 var Tynit, L, ¢ set of regular_clause

4 begin

5 initialization-Horn (T');

6 while F-u.nit 74 @ do

7 -,u.-n.it = Dynit;

8 Tunit =05

9 for each atom p in I',,;; do

10 (C,i) = head(negative-clauses(p));

11 while (C, 1) # nil and val(p) > i do

12 decrement(counter(C));

13 negative-clauses(p) := tail(negative-clauses(p));
14 if counter(C) = 0 then

15 if positive(C) = nil then return(unsatisfiable);
16 if positive(C) = :p' and k > val(p') then
17 val(p) = k; -
18 Cunit = Lunit U {p’}

19 endif

20 endif;

21 (C,i) := head(negative-clauses(p))

22 endwhile

23 endfor

24 endwhile;
25 return(satisfiable)
26 end

Figure 4.7: A satisfiability checking procedure for regular Horn formulas

72 Chapter 4. Polynomially Solvable Satisfiability Problems

4.3 The 2-SAT problem

The 2-SAT problem in classical logic is polynomially solvable (Cook, 1971).
Several efficient algorithms for solving this problem have been described in the
literature: Even et al. (1976) reduce the 2-SAT problem to the timetable
problem; Aspvall et al. (1979) and Escalada-Imaz (1989b) reduce the 2-SAT
problem to the problem of finding strongly connected components in a digraph
and describe algorithms with linear-time complexity in the worst case. It is also
worth mentioning the parallel algorithms developed by Jones et al. (1976) and
Cook and Luby (1988). Petreschi and Simeone (1991) give a comparison of the
computational performance of different algorithms.

As far as we know, the 2-SAT problem in multiple-valued logics has not
been considered before. In view of this, our first aim is to study the complexity
class of this problem. In Section 4.3.1 we prove that, contrary to what happens
in classical logic, the 2-SAT problem in signed CNF formulas is NP-complete.
Since we are faced with an intractable problem in the sense of polynomially
bounded time complexity, our next step is to identify subclasses of signed 2-CNF
formulas whose SAT problems are polynomially solvable. In Section 4.3.2 and
Section 4.3.3 we describe quadratic-time satisfiability checking procedures for
regular 2-CNF formulas and monosigned 2-CNF formulas, respectively.

4.3.1 The 2-SAT problem in signed CNF formulas

Our aim in this section is to show the NP-completeness of the 2-SAT problem
in signed CNF formulas (signed 2-SAT).

Theorem 4.7 The 2-SAT problem in signed CNF formulas is NP-complete.

Proof: We will show that (i) this problem belongs to NP and (ii) the
3-colourability problem is polynomially reducible to the signed 2-SAT problem.

The signed 2-SAT problem clearly belongs to NP: given a satisfiable signed
2-CNF formula, a nondeterministic algorithm can guess a satisfying interpreta-
tion and check that it satisfies the formula in polynomial time.

In the 3-colourability problem we are given an undirected graph G = (V, E)
and we are asked whether there is a function ¢ : V' — {1,2,3} such that
for each edge [u,v] € E we have c(u) # ¢(v). This problem is known to be
NP-complete (Garey and Johnson, 1979). Given such a graph we construct an
instance of the signed 2-SAT problem as follows: for each edge [u,v] € E, we
define three signed binary clauses

{{2,3}:u,4{2,3}:v}, {{1,3} 4, {1, 3} 0}, {{1,2}:u, {1,2} 0}

and we take as truth value set N = {1,2,3}. The intended meaning of the
previous signed clauses is that there are no two adjacent vertices with the same
colour. Observe that from the definition of interpretation we can ensure that
every vertex is coloured with only one colour. This reduction can obviously be
performed in polynomial time.

4.3. The 2-SAT problem 73

Let T be the signed 2-CNF formula obtained by reducing an instance of the
3-colourability problem for an arbitrary graph G to an instance of the signed
2-SAT problem. Observe that if 1" is empty, we obtain the signed empty formula.
We claim that T is satisfiable iff the graph G is 3-colourable. On the one hand,
if there exists an interpretation I that satisfies ', we define, for each vertex u,
c(u) = I(u). It is clear that this is a valid colouring. On the other hand, if G is
3-colourable then it is easy to check that, for each vertex u, the interpretation I
such that I(u) = c(u) satisfies I' since adjacent vertices have different colour. M

From the previous proof we get the following results as corollaries:

Corollary 4.1 The SAT problem in signed CNF formulas (signed SAT) is
NP-hard.

Corollary 4.2 The signed 2-SAT problem, when |N| > 3 and the length of signs
is > 2, is NP-hard.

The 3-colourability problem can also be reduced to the classical SAT problem.
Given an undirected graph G = (V, E), we construct a classical CNF formula T’
as follows:

o For each vertex u € V, the CNF formula I' contains the following clauses:

\/ u; A /\ (—-u,-V—-uk)

je{1,2,3} gk €{1,2,3}
ik

i#

The intended meaning of u; is that vertex u is coloured with colour
j € {1,2,3} and the intended meaning of the whole expression is that ver-
tex u is coloured with only one colour.

o For each edge [u,v] € E, the CNF formula I' contains the following clauses:

N (s v owy)
je{1,2,3}
The intended meaning of this expression is that the adjacent vertices u
and v do not have the same colour.

Observe that the 3-colourability problem for an undirected graph can be
represented in a more concise way if we use signed 2-CNF formulas instead of
classical CNF formulas. This shows that signed CNF formulas can be used
as a powerful knowledge representation language for certain kinds of problems.
Moreover, as new satisfiability checking procedure for signed CNF formulas ap-
pear, we will need to evaluate and compare the computational performance of
such procedures by performing experiments on both real-world and randomly
generated problems. Thus, in this section, we have made a first step into this
direction because the 3-colourability problem is frequently used as a benchmark
in satisfiability competitions.

74 Chapter 4. Polynomially Solvable Satisfiability Problems

4.3.2 The 2-SAT problem in regular CNF formulas

In the preceding section we have shown that the signed 2-SAT problem is
NP-complete. In the present section we examine this problem again, but we
turn our attention to regular CNF formulas (regular 2-SAT problem). We show
that, in this special but important case, there exist polynomial-time satisfiability
testing algorithms.

Our approach to design efficient algorithms for solving the regular 2-SAT
problem relies on an improvement of the classical DP procedure suggested by
Rauzy (1995). Such an improvement is known as model separation and is implicit
in other algorithms that solve the classical 2-SAT problem. The key idea is that
when a pair variable-value is chosen in an enumerative algorithm, either this
assignment is demonstrated unsatisfiable by applying repeatedly the one-literal
rule or it can be definitively kept. In the regular setiing, this amounts to the
following proposition:

Proposition 4.3 Let T be a regular 2-CNF formula, let L be a regqular literal oc-
curring in T and let T be the formula obtained after applying regular-unit-resolve
to TU{L}. Then, I' is satisfiable iff T' is satisfiable and O ¢ T,

Proof: Suppose that I' is satisfiable. As regular-unit-resolve applies a finite
number of times the regular one-literal rule and this rule preserves satisfiability
(cf. Proposition 3.4), it follows that I" is satisfiable iff I' U {L} is satisfiable.
Since I' U {L} is satisfiable and ' C T'U {L}, it follows that I is satisfiable. As
T” is satisfiable, it is clear that O ¢ TV,

Suppose that T is satisfiable and O ¢ TV. As the regular clauses of T’ are
binary, regular-unit-resolve derives a regular unit clause when a literal from a
clause of I is deleted. As O ¢ I, regular-unit-resolve cannot delete literals from
regular unit clauses; it removes all such clauses. Therefore, the set of regular
clauses returned by regular-unit-resolve(I'U {L}) is a subset of T". Since T is
satisfiable and I" is a subset of T, it follows that I is satisfiable. |

Rauzy (1995) points out that the worst-case time complexity of the DP pro-
cedure is not polynomial when the input formula is a 2-CNF formula, contrary to
what many authors have written. From the results of Proposition 4.3, we now
describe a satisfiability checking procedure for regular 2-CNF formulas with
quadratic-time worst-case complexity which can be viewed as a refinement of
function regular-sat (cf. Section 3.6).

A satisfiability checking procedure for regular 2-CNF formulas

Proposition 4.3 states that, when the input formula to regular-sat is a regular
2-CNF formula, it suffices to expand only one node per level in the proof tree
created by regular-sat. The node expanded does not have to contain the empty
clause. This is the idea behind the procedure whose pseudo-code is shown in
Figure 4.8. Function regular-2sat returns true if the input regular 2-CNF formula
T" is satisfiable, and it returns false if I is unsatisfiable, regular-unit-resolve

4.3. The 2-SAT problem 75

function regular-2sat (I': set of clause) : boolean
var L: literal
var I': set of clause
begin
if T = 0 then return(true);
if O € T then return(false);
L, := pick-literal(T");
T' := regular-unit-resolve(I'U {L});
{0 T' then I' := regular-unit-resolve(I'U {L});
regular-2sat(T")
0 end

O 00~ O OV W N = O

Figure 4.8: A proof procedure for regular 2-CNF formulas

applies repeatedly the regular one-literal rule (cf. Section 3.6) and pick-literal
selects the next literal to which the branching rule is applied.

Theorem 4.8 Let I' be a reqular 2-CNF formula. IfT is satisfiable, then func-
tion regular-2sat terminates and returns irue. IfT is unsatisfiable, then function
regqular-2sat terminates and returns false.

Proof: First, we show that if function regular-2sat terminates, then either some
branch of the proof tree created by regular-2sat contains the empty formula (i.e.
returns true) or every branch of the proof tree contains the empty clause (ie.
returns false). Suppose we have a proof tree with no branch containing the empty
formula and some leaf node of a branch with a regular CNF formula T” which
does not contain the empty clause; we show that regular-2sat does not terminate.
If I' contains regular unit clauses, then regular-2sat calls regular-unit-resolve
and applies the regular one-literal rule; otherwise, regular-2sat selects a regular
literal of I and applies the regular branching rule. Either way, regular-2sat does
not terminate.

Next we show that every proof attempt must terminate. Function
regular-2sat applies the regular one-literal rule and the regular branching rule.
On the one hand, the regular one-literal rule decreases the number of distinct
regular literals occurring in the formula. On the other hand, after applying the
regular branching rule we obtain two new formulas to which regular-2sat can
apply the regular one-literal rule and so decrease the number of distinct regular
literals occurring in them. Since we began with a finite number of occurrences
of distinct literals, these rules can only be applied a finite number of times.

Proposition 3.4 and Proposition 3.3 state that T is satisfiable iff
regular-unit-resolve(T'U {L}) is satisfiable or regular-unit-resolve(I'U {L}}) is
satisfiable. If O € regular-unit-resolve(T'U {L}), then I' is satisfiable iff
regular-unit-resolve(T' U {L}) is satisfiable. Otherwise, by Proposition 4.3 we

76 Chapter 4. Polynomially Solvable Satisfiability Problems

have that T is satisfiable iff regular-unit-resolve(I' U {L}) is satisfiable. Then,
it is clear that when regular-2sat returns false (i.e all the branches of the proof
tree contain the empty clause), the input formula T is unsatisfiable, and when
regular-2sat returns true (i.e. there is a branch with the empty formula), I' is
satisfiable. u

As our procedure expands only one node per level, the literal selected by
pick-literal is not so critical for the computational performance of the algorithm
and, if any branching heuristic is used, we should consider a trade-off between
the cost of computing the heuristic and the benefits obtained. Actually, most
. algorithms developed for solving the classical 2-SAT problem do not incorporate
any kind of heuristic. Thus, an option is to choose a random literal. Another
option is to choose the most frequent literal. Our intention is to develop this topic
in the future: on the one hand, implementing different algorithms for solving
the regular 2-SAT problem; on the other hand, looking for both real-world and
randomly generated instances for evaluating and comparing such algorithms.

Example 4.2 Let N = {0, 5,1} and let T be the following regular 2-CNF for-
mula:

L= {{ tpy[21]: P2}»{:P3,3p4},{ P,

(<3 v 5] mab 23] oo 23] e oo | <3),
{:pl,:pl},{:pl,:p-z},{:m, pa}}

Figure 4.9 shows the proof tree created by function regular-sat when the input
formula is T'. Figure 4.10 shows the proof tree created by function regular-2sat
when the input formula is T

Data structures and complexity

The data structures we propose to get time efficient operations in procedure
regular-2sat, provided we are working with a fixed and finite truth value set, are
the following ones:

¢ Fach regular clause has a head and a doubly-linked list of its regular lit-
erals.

¢ We maintain a global counter of regular clauses and a list of regular unit
clauses.

e For each possible combination formed by a regular sign S and a propo-
sitional atom p occurring in the formula (i.e., for all the possible regular
literals, where S can have either positive or negative polarity) we maintain
a list of the regular clauses containing an occurrence of the regular literal
S :p. These lists are called literal occurrence lists.

4.3. The 2-SAT problem ™

—
——
n
—
I
—
=
=
i
—

3 '-P?,-.:P-l}: {{:1)3::1)4}-.{
23 :P4=3P3}} {'-P3-."P4}-.

TU{pg} l"U{p3} rU{p3}

o o o 0O

Figure 4.9: A regular-sat proof tree for the formula I' from Example 4.2

I‘U{:pl}

{{ : P3: . P4}1{ :P3) . p4}a
B RIBAS B NEI g A

ru{{>1]:ps} FU{:ps}
o 0O

Figure 4.10: A regular-2sat proof tree for the formula I" from Example 4.2

78 Chapter 4. -Polynomially Solvable Satisfiability Problems

Counter

il B : [s]
[a] [e] [ob{e] [e] o]

<]

v

N
FL
&J

||v||
-

Pl

IA
o

IE]

[

N
V]
3]
@

N4
N

IYII

[/
S
IN
o L.
R
IN]
(T
1/\—‘
(=]
Yy
EN]

P2

ATA
=8

’I

%
o

[?0:P3 l

Vv
~[5

P3

IN
o

A
AH
)
N
py

N
~

II

Figure 4.11: Data structures

Example 4.3 Figure 4.11 shows the data structure defined above for the follow-
g regqular 2-CNF formula:

{{l;;__l : pl):p'Z}){ : p?.) : p3}){ >
{ : p?.}){E%_‘ : p11:p'2}){ P <

Theorem 4.9 complexity Let I be a reqular 2-CNF formula and let m be the
number of regular clauses in I'. The worst-case time complexity of regular-2sat
for T is in O(m - |T'|) when the truth value set N is fized and finite.

Proof: The complexity of regular-2sat follows from the following facts:

o Function regular-2sat generates a proof tree such that the number of levels
is bounded by m, the number of clauses in I'.

¢ Function regular-2sat generates at most two new nodes per level.

¢ Function regular-2sat expands at most one node per level.

]

4.3. The 2-SAT problem 79

e Checking whether ' =) needs constant time because a global counter of
regular clauses is maintained.

e The test O € T needs constant time because we can check whether D eT
when we eliminate a literal from a regular unit clause.

e The worst-case time complexity of regular-unit-resolve is in O(|T)): detec-
tion of regular unit clauses can be done in constant time, since we maintain
a list of regular unit clauses. Given a regular literal L, direct access to all
the clauses containing this literal is provided. On the one hand, we have
to remove all the clauses containing a regular literal L' such that LCL.
These clauses can be found immediately looking up all the literal occur-
rence lists of regular literals L'’s (L C L') and each clause can be eliminated
in constant time, since each clause contains at most two literals. On the
other hand, we have to shorten all the clauses containing a a regular literal
L" such that L” C T. These clauses can be found immediately looking up
all the literal occurrence lists of regular literals L'"’s (1" C L) and a literal
can be removed in constant time.

When the truth value set N is infinite, then the only difference is that the
worst-case time complexity of regular-unit-resolve is almost linear instead of
linear. The trick for obtaining a low complexity is the same as that used in
Section 3.6.3 for arbitrary infinitely-valued regular formulas: we now have to
maintain, for each propositional atom p, a list of all the occurrences of regular
literals S : p with negative polarity and a list of all the occurrences of regular
literals S’ :p with positive polarity. Then, these lists must be sortéd, during the
initialization phase, in such a way that they are scanned only once during the
execution of the procedure.

Another satisfiability checking procedure for regular 2-CNF formulas

We now present another proof procedure for solving the regular 2-SAT problem
which can be viewed as a variant of the previous procedure. It incorporates a
refinement of the branching rule that we have defined as regular shortest positive
clause branching in Section 3.6.1.

Proposition 4.4 regular shortest positive clause branching Let I' be a
regular 2-CNF formula and let {Ly,L2} be a regular clause of . Then, T is
satisfiable iff T U {L1} U{L2} is satisfiable or TU{Lz} is satisfiable.

Proof: Suppose that I is satisfiable. For any interpretation I that satisfies I, it
bolds that I satisfies {L1,La}. If I satisfies L1, then we distinguish two cases:
(i) I does not satisfy Le; in this case, I satisfies T'U {L;} U {Z2}; and (i) I
satisfies Lo; in this case, I satisfies I'U {L»}. If I satisfies Ly, then T satisfies
TU{Ls}.

Suppose that T'U {L1} U {I.} is satisfiable or I'U {L,} is satisfiable. Since
T is a subset of both formulas, it follows that I is satisfiable. |

80 Chapter 4. Polynomially Solvable Satisfiability Problems

function regular-2sat’ (T': set of clause) : boolean
var L;, La: literal
var I'': set of clause
begin
if T' = 0 or I contains no positive clauses then return(true);
if O € T then return(false);
Let {L1, Lo} be a positive clause of T';
I := regular-unit-resolve(T'U {L1} U {L.});
if O € I then I" := regular-unit-resolve(I'U {L2});
regular-2sat’(T')
0 end

= WO~ UL N = O

Figure 4.12: A proof procedure for regular 2-CNF formulas with positive clause
branching

Observe that clause branching with binary clauses can be viewed as a refine-
ment of the B-rule with local lemma of semantic tableaux: given a f-formula
(B = B10opPa), two expansions are created; the first one contains By and the
second one contains B2 and —f;.

Figure 4.12 shows the pseudo-code of a satisfiability checking procedure for
regular 2-CNF formulas that incorporates the results of Proposition 4.3 and
the branching rule defined in Proposition 4.4. Function regular-2sat’ returns
true if the input regular 2-CNF formula [is satisfiable and it returns false if

I" is unsatisfiable. Function regular-unit-resolve applies repeatedly the regular
one-literal rule.

Theorem 4.10 Let T' be a regular 2-CNF formule. If T is satisfiable, then
function reqular-2sat’ terminates and returns true. If T' is unsatisfiable, then
function regular-2sat terminates and returns false.

Proof: The same arguments used in Theorem 4.8 for proving completeness are
valid for function regular-2sat’ because the new branching rule also preserves
satisfiability.

n

Theorem 4.11 complexity Let T a regular 2-CNF formula and let m' be the
number of reqular positive clauses in T'. The worst-case time complezity of

reqular-2sat’ for T' is in O(m' - |I'|) when the truth value set N is fized and
finite.

Proof: The complexity of regular-2sat’ follows from the following facts:

¢ Function regular-2sat’ generates a proof tree such that the number of levels
is bounded by m’, the number of positive clauses in I'.

4.3. The 2-SAT problem 81

o Function regular-2sat’ generates at most two children per level.
o Function regular-2sat’ expands at most one node per level.

¢ The worst-case time complexity of regular-unit-resolve is in O(|T'|), using
similar data structures to those defined for function regular-2sat.

As explained above, if the truth value set IV is infinite, then the only difference
is that the worst-case time complexity of regular-unit-resolve is almost linear
instead of linear.

4.3.3 The 2-SAT problem in monosigned CNF formulas

‘We have shown that the 2-SAT problem in signed CNF formulas is NP-complete,
whereas the 2-SAT problem in regular CNF formulas is polynomially solvable. In
this section we investigate the 2-SAT problem in monosigned CNF formulas and
describe a satisfiability checking procedure with a quadratic-time complexity in
the worst case.

Baaz and Fermiiller (1995) proved that the below resolution rule is refutation
complete for monosigned CNF formulas.

{nu}:pv Dy {va}:pV Dy
D1V Dy

if v1 ?,é’l)g; v, €N

Observe that (i) resolvents have at most two literals when this rule is applied
to monosigned binary clauses and (ii) the number of possible resolvents for a
given monosigned 2-CNF formula I' is polynomial in the number of distinct lit-
erals occurring in I'. Therefore, the monosigned 2-SAT problem is polynomially
solvable. This fact was not noticed in (Baaz and Fermiiller, 1995).

Next, we design a DP-style procedure for monosigned 2-CNF formulas. To

this end, we first define a branching rule and a one-literal rule for monosigned
CNF formulas.

Proposition 4.5 monosigned clause branching rule Let T' be a
monosigned 2-CNF formula and let {L1,L>} be a monosigned binary clause of
T. Then, T is satisfiable iff T U {L1} is satisfiable or T'U {La} is satisfiable.

Proof: Assume that T is satisfiable. For any model I of T, I satisfies { L1, Lo}, If
I satisfies L, then T satisfies TU{L}. If I satisfies L,, then I satisfies TU{L2}.

Assume that T'U {L,} is satisfiable or T'U {L»} is satisfiable. If T U {L1} is
satisfiable, then T is satisfiable. If T U {L»} is satisfiable, then I' is satisfiable.

This is not the only possible branching rule we can define. For instance, the
branching rule defined in Proposition 3.1 is another alternative.

82 Chapter 4. Polynomially Solvable Satisfiability Problems

Proposition 4.6 monosigned one-literal rule Let ' be a monosigned 2-CNF
formula that contains a monosigned unit clause {{z}:p}. LetI" be obtained from
T by first removing all clauses that contain an occurrence of the literal {z}:p,
and second by removing all occurrences of literals of the form {y}:p such that
z # y from the remaining clauses. Then, T' is satisfiable iff I" is satisfiable.

Proof: Suppose that T is satisfiable. Since {{z}:p} € T, every model of I" must
assign to p the value . Let I be an arbitrary model of I'. On the one hand,
T satisfies any subset of I'. On the other hand, if we remove the literals {y}:p
such that z # y, then I also satisfies the formula so obtained because I(p) = z.
Therefore, IV is satisfiable.

Suppose that I is satisfiable. Let I be a model of I'. To obtain I from I" we
add literals to clauses of I and new clauses that contain the literal {z}:p. Since
T’ contains no occurrences of p, the interpretation I' such that I'(p) = = and is
identical to I for the remaining propositional atoms is a model of I". Therefore,
T" is satisfiable. |

The results obtained in Proposition 4.3 for regular 2-CNF formulas can be
moved to monosigned 2-CNF formulas as the following proposition states:

Proposition 4.7 Let T be a monosigned 2-CNF formula, let {z}:p be a
monosigned literal occurring in T' and let T be the formula obtained after ap-
plying monosigned-unit-resolve to T'U {{z}:p}. Then, I" is satisfiable iff T" is
satisfiable and O ¢ TV,

Proof: Suppose that T” is satisfiable. As monosigned-unit-resolve applies a finite
number of times the monosigned one-literal rule and this rule preserves satisfi-
ability (cf. Proposition 4.6), it follows that I' is satisfiable iff T U {{z}: p} is
satisfiable. Since T' U {{z}:p} is satisfiable and T' C T'U {{z}:p}, it follows that
T is satisfiable. As I” is satisfiable, it is clear that O ¢ T".

Suppose that I' is satisfiable and O ¢ I"'. As the monosigned clauses of I" are
binary, monosigned-unit-resolve derives a monosigned unit clause when a literal
from a clause of T' is deleted. As O ¢ I, monosigned-unit-resolve cannot elimi-
nate literals from monosigned unit clauses; it removes all such clauses. Therefore,
the set of monosigned clauses returned by monosigned-unit-resolve(T'U {{z}:p})

is a subset of I". Since I is satisfiable and I" is a subset of T, it follows that I
is satisfiable. u

The results of the previous propositions give raise to the satisfiability checking
procedure shown in Figure 4.13. Function monosigned-2sat returns true if the
input monosigned 2-CNF formula I is satisfiable, and it returns false if I is un-
satisfiable. Function monosigned-unit-resolve applies repeatedly the monosigned
one-literal rule.

Theorem 4.12 Let T’ be a monosigned 2-CNF formula. If U is satisfiable, then
function monosigned-2sat terminates and returns true. If T is unsatisfiable, then
function monosigned-2sat terminates and returns false.

!

4.3. The 2-SAT problem 83 i

function monosigned-2sat (I': set of clause) : boolean
var L, La: literal
var I'': set of clause
begin
if I' = § then return(true);
if O € T then return(false);
Let {L1,L>} be a clause of I';
T' := monosigned-unit-resolve(T'U { L1 });
if O € T’ then I := monosigned-unit-resolve(T'U {L2});
monosigned-2sat (I")
0 end

— O 00 IO U WN RO

0 function monosigned-unit-resolve (I': set of clause) : set of clause
1 wvar p: atom

2 var x,y: truth_value

3 wvar C: clause

4 begin

5 while 3{{z}:p} €T and O ¢ T do
6 ={C| A{z}:pe CeT)

7 I:={C-{{y}:pl{y}:p€Candz #y}C €T}
8 endwhile;
9 return(I’)
10 end

Figure 4.13: A proof procedure for monosigned 2-CNF formulas

84 Chapter 4. Polynomially Solvable Satisfiability Problems

Proof: First, we show that if function monosigned-2sat terminates then either
some branch of the proof tree created by monosigned-2sat contains the empty
formula (i.e. returns true) or every branch of the proof tree contains the empty
clause (i.e. returns false). Suppose we have a proof tree with no branch contain-
ing the empty formula and some leaf node of a branch with a monosigned formula
T’ which does not contain the empty clause; we show that monosigned-2sat does
not terminate. If IV contains monosigned unit clauses, then monosigned-2sat
calls monosigned-unit-resolve and applies the monosigned one-literal rule; oth-
erwise, monosigned-2sat selects a monosigned clause {Li, L2} of T and applies
the monosigned clause branching rule. Either way, monosigned-2sat does not
terminate.

Next we show that every proof attempt must terminate. Function
monosigned-2sat applies the monosigned one-literal rule and the monosigned
clause branching rule. On the one hand, the monosigned one-literal rule de-
creases the number of distinct propositional atoms occurring in the formula.
On the other hand, after applying the monosigned clause branching rule we
obtain two new formulas to which monosigned-2sat can apply the monosigned
one-literal rule and so decrease the number of distinct propositional atoms oc-
curring in them. Since we began with a finite number of distinct propositional
atoms, these rules can only be applied a finite number of times.

By Proposition 4.5 and Proposition 4.6 we have that T' is
satisfiable iff monosigned-unit-resolve(l'U {L1}) is satisfiable or
monosigned-unit-resolve(T'U {L»}}) is satisfiable. If the empty clause is
contained in monosigned-unit-resolve(T'U {L,}), then T is satisfiable iff
monosigned-unit-resolve(T' U {L»}) is satisfiable. Otherwise, by Proposition 4.7
we have that T is satisfiable iff monosigned-unit-resolve(I'U {L1}) is satisfiable.
Then, it is clear that when monosigned-2sat returns false (i.e all the branches of
the proof tree contain the empty clause), the input formula T is unsatisfiable,
and when monosigned-2sat returns true (i.e. there is a branch with the empty
formula), T is satisfiable.

Example 4.4 Let N = {0,%,1} and let T be the following monosigned 2-CNF
formula:

r = {{{0} ‘P, {1} :pQ}i {{O} D3, {]‘} :p4}, {{%} ‘D1, {1} 3P‘2},
{{%} 1 D3, {0} :p4}1 {{1} ‘D3, {0} :p‘l}r {{%} P1, {%} PZ}}
Figure 4.14 shows the proof tree created by monosigned-2sat when the input
formula is T

Data structures and complexity

The data structures we propose to get time efficient operations in function
monosigned-2sat are the following ones:

e Each monosigned clause has a head and a doubly-linked list of its
monosigned literals.

4.3, The 2-SAT problem 85

T
LU {{0}:p:1} LU {{1}:ps}
{{{0}:p3, {1} :p4},

d {{3}:p5,{0}:p4},
{{1}:p5,{0}:ps}}

r'u {{0}:ps}
0

Figure 4.14: A monosigned-2sat proof tree for the formula I' from Example 4.4

e We maintain a global counter of monosigned clauses and a list of
monosigned unit clauses.

e Tor each possible combination formed by a propositional atom p and a
sign {z} (i.e., for all the possible monosigned literals) we maintain a list of
the monosigned clauses containing an occurrence of the monosigned literal
{z}:p. These lists are called literal occurrence lists.

Example 4.5 Figure 4.15 shows the data structure defined above for the follow-
ing monosigned formula:

{{0}:m} {{1}: ;1

{335} {5} 2},
{{0}:p1, {1}:p2}, {

{%}) 2
{3}:m2,{3}:ps}}

Theorem 4.13 complexity Let T' be a monosigned 2-CNF formula and let m
be the number of monosigned clauses in I'. The worst-case time complezity of
monosigned-2sat for T is in O(m - [T').

Proof: The complexity of monosigned-2sat follows from the following facts:

¢ Function monosigned-2sat generates a proof tree such that the number of
levels is bounded by m, the number of clauses in I'.

¢ Function monosigned-2sat, generates at most two new nodes per level.
¢ Function monosigned-2sat expands at most one node per level.

¢ Checking whether T' = § needs constant time because a global counter of
clauses is maintained.

e The test O € I needs constant time because we can check whether O € T'
when we eliminate a literal from a monosigned unit clause.

86 Chapter 4. Polynomially Solvable Satisfiability Problems

Counter
Unit Monosigned
Clauses

0 {0):p1 —— —T {0):P1

P1 |12

L {1):P1

o]
P2 |12 4 (172):P2 — P {172):p2
LI_ d {1):p2

P3 1122 {172):P3 {1/2]:P3

Figure 4.15: Data structures

4.3, The 2-SAT problem 87

e The worst-case time complexity of monosigned-unit-resolve is in O(|T1):
detection of unit clauses can be done in constant time, since we maintain a
list of monosigned unit clauses. Direct access to all the clauses containing
a literal {z}:p and all the clauses containing a literal {y}:p (z #y) is
provided. On the one hand, we have to remove all the clauses containing
{x}:p. These clauses can be found immediately looking up the literal
occurrence list of {z}:p and each clause can be eliminated in constant
time, since they have at most two literals. On the other hand, we have to
shorten all the clauses containing a literal {y}:p (z # y). These clauses
can be found immediately looking up the literal occurrence list of {y}:p
and a literal can be removed in constant time.

|

Chapter 5

An Interpreter for

Multiple-valued
Propositional Logic

Programs

Abstract: In recent years, new logic programming languages have been
developed for reasoning and representing knowledge in situations where
there is vague, incomplete or imprecise information. Some of such lan-
guages rely on multiple-valued logics and demand fast deduction proce-
dures. In this chapter, we describe an efficient interpreter of logic pro-
grams that can deal with a wide family of infinitely-valued propositional
logics. To this end, we first define a logic programming language, a com-
plete calculus that contains a modus ponens-style inference rule, suitable
data structures for representing logic programs and strategies for pruning
the proof search space. Then, we define a negation as failure tule and a cut
operator adapted to our multiple-valued setting. Finally, we describe an
interpreter whose worst-case time complexity is linear in the total number
of occurrences of propositional atoms in the input logic program.

5.1 Introduction

Logic programming languages have been applied to a wide range of areas such as
Artificial Intelligence and Deductive Databases. Among these languages, Prolog
is the most representative, but it is not powerful enough for representing knowl-
edge and reasoning in situations where there is vague, incomplete or imprecise
information. To overcome this problem, new logic programming languages have
been developed. They are based on a variety of non-standard logics such as
multiple-valued logics (Ishizuka and Kanai, 1985; Mukaidono et al., 1989; Mar-

89

90 Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

tin et al., 1987; Li and Liu, 1990; Alsinet and Manya, 1996), possibilistic
logic (Dubois et al., 1990), evidential logic (Baldwin et al., 1995; Baldwin,
1987) and fuzzy operator logic (Weigert et al., 1993). Depending on the under-
lying logic some systems are more suitable for dealing with vague information
while others are more appropriate for processing incomplete or imprecise infor-
mation. In (Escalada-Imaz et al, 1996¢), there is a uniform exposition and
discussion of the capabilities of these systems.

In this chapter we turn our attention to the family of infinitely-valued propo-
sitional logics defined in Section 2.6. More specifically, we focus on the logic
programming language formed by their corresponding infinitely-valued facts and
rules. The election of such facts and rules is motivated by the following points:

e They have been previously used as a powerful knowledge representation

language in expert systems for diagnosis applications (Sierra, 1989; Puyol-
Gruart, 1994).

e Their underlying logics have been carefully investigated by Pavelka (1979),
Valverde and Trillas (1985) and Godo (1990), among others. In particular,

a sound modus ponens-style inference rule has been defined for this family
of logics.

e The design of efficient deduction algorithms for these facts and rules has not
been investigated so far despite their significance in real-world applications.

Our first objective in this chapter is to design an efficient proof procedure
for these infinitely-valued facts and rules. Qiven an infinitely-valued logic pro-
gram P (i.e. a set of facts and rules) and a propositional atom’q (goal), such a
proof procedure should determine the greatest a such that P |= (g; @); ie. the
maximum degree of logical consequence of g in P. To this end, we first define a
complete calculus that contains the modus ponens-style inference rule described
in (Godo, 1990), and then suitable data. structures for representing logic pro-
grams and strategies for pruning the proof search space. Next, we design a
proof procedure whose worst-case time complexity is linear in the total number
of occurrences of propositional atoms in the input logic program. This proof
procedure could be incorporated into the inference engine of knowledge-based
systems such as Milord II (Puyol-Gruart, 1994).

Our second objective is to design an efficient interpreter for infinitely-valued
propositional logic programs. To this end, we first define a negation as failure rule
and a cut operator adapted to our multiple-valued setting. Then, we modify the
proof procedure we have designed for dealing with this extended programming
language, and this way we obtain an interpreter of infinitely-valued propositional
logic programs. Finally, we prove that this interpreter of logic programs also
reaches a linear-time complexity in the worst case.

This chapter is organized as follows. In Section 5.2 we define the syntax,
semantics and logical inference of the infinitely-valued logic programs the inter-
preter can deal with. In Section 5.3 we present a detailed description of the
interpreter. In Section 5.4 and Section 5.5 we define a negation as failure rule

5.2. The logic of programs 91

and a cut operator adapted to our multiple-valued context, respectively. In Sec-
tion 5.6 we outline the implementation of a programming environment based on
the interpreter.

5.2 The logic of programs
5.2.1 Syntax

Definition 5.1 logic program An infinitely-valued fact is an ordered pair
(p;c), where p is a propositional atom and & € [0,1] is a truth value. An
infinitely-valued rule is an ordered pair (@< p1,...,pr;Q'), whereq < P1,... Pk
is a propositional rule and o € [0,1] is a truth value. An infinitely-valued logic
program is a finite set of infinitely-valued facts and rules.

In the following when we say fact (rule, logic program) we Imean
infinitely-valued fact (rule, logic program). From a syntactic point of view,
the only difference between classical and infinitely-valued logic programs is that
facts and rules are followed by a positive regular sign.

Example 5.1 We show below an ezample of logic program. In Section 5.5.1
we describe how the interpreter determines the mazimum degree of logical con-

sequence of the goal g=“renal failure because hypovolemia secondary to bleeding”
in this logic program.

R1: (renal failure < high serum creatinin; 1)
R2: (renal failure because hypovolemia ¢+
hypovolemia, arterial hypotension, oliguria; 1)
R3: (renal failure because hypovolemia secondary to bleeding <
renal failure, hypovolemia, drainage bleeding > 2 ml/kg/hour; 1)
R4: (renal failure because hypovolemia secondary to bleeding
drainage bleeding > 2 ml/kg/hour, tachycardia,
renal failure because hypovolemia; 1)
R5: (hypovolemia « tachycardia, low CVP; 0.6)
R6: (hypovolemia + weak arterial pulse, delayed capillary refill, low CVP; 0.8)
F1: (low CVP; 0.8)
F2: (oliguria; 1)
F3: (tachycardia; 0.5)
F4: (high serum creatinin; 0.9)
F5: (weak arterial pulse ; 0.8)
F6: (arterial hypotension; 0.9)
F7: (delayed capillary refill; 1)
F8: (drainage bleeding > 2 ml/kg/hour; 1)

5.2.2 Semantics

Given a classical logic program P and a propositional atom g, called goal, the
objective of a classical propositional interpreter is to determine whether all the

92 Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

models of P are also models of gq. If so, we say that ¢ is a logical consequence
of P. Given an infinitely-valued logic program P' and a goal ¢', each model
of P' may assign to q' a different truth value. This fact leads us to define the
notion of maximum degree of logical consequence, i.e. the greatest a such that
P' k= (¢',@). The objective of our interpreter will be to find the maximum
degree of logical consequence of a goal in a program.

Definition 5.2 interpretation Let T be a triangular norm and let It be the
implication defined by residuation with respect to T. An interpretation I for a
logic program P is a mapping that assigns to every propositional atom occurring
in P a truth value from the interval [0,1]. An interpretation I is extended to the
first components of the rules of P as follows: '

e I(g + p) = Ir(I(p), I1(9));
d I(q D1y 7p'n) = IT(T(I(pl)a ' "I(p'n));I(q))'

Observe that the the truth value that an interpretation assigns to a rule can be
computed once the interpretation of the propositional atoms and the functions
Iy and T are provided.

Definition 5.3 satisfiability Let (.S;) be either a fact or a rule. An interpre-
tation I satisfies (S;a) iff I(S) > a. A interpretation I satisfies a logic program
P, denoted by I |= P, iff I satisfies all the facts and rules of P. We say then
that I is a model of P.

Observe that an interpretation I not only satisfies a fact (p;a) (a rule
(g < p1,...,pr;@)) when I assigns to p (to ¢ < p1,...,px) the truth value c.
The interpretation I satisfies the fact (rule) when the value assigned by I is any
truth value from the interval [, 1]. The main reason for considering such inter-
vals is to guarantee that there exists an interpretation that satisfies the facts and
rules of a logic program. The interpretation that assigns to every propositional
atom the value 1 is a model of any logic program.

From the previous definitions one can realize that the logic of the
infinitely-valued logic programs we have defined is a sub-logic of the logics de-
fined in Section 2.6.

Definition 5.4 logical consequence A fact (p;a) is a logical consequence of

a logic program P, denoted by P |= (p;), iff all the interpretations that satisfy
P also satisfy (p;).

Definition 5.5 maximum degree of logical consequence The mazimum

degree of logical consequence of a goal q in a logic program P is the greatest
truth value o such that P |= (¢;).

The following proposition states that the maximum degree of logical con-

sequence of ¢ in P (i.e. Sup{a|P = (g;a)}) is the least truth value that the
models of P assign to ¢ (i.e. Inf{I(q)|I | P}).

5.2. The logic of programs ' 93

Proposition 5.1 Let P be a program, let q be a goal and let o € [0,1] be a truth
value. Then,

Sup{a| P | (g;0)} = Inf{I(q)|] |= P}.
Proof: We define a; = Sup{a| P = ()} and s = Inf{I(g)|I = P}.
1. as > oy

As oq = Sup{ca|P E (g;a)} we have that P = (g;a), for all a < ;.
Then, for every model I of P we have that I(g) > a for all @ < a;. Thus,
as = Inf{I(g)|I E P} > o, for all o < a1, hence, az > a.

2. as < @y

As as = Inf{I(q)|I = P} we have that I(q) > a» for all I such that
I |= P, that is, P |= (¢, @2), and thus a» < Sup{c|P = (¢ o)} =o.

5.2.3 Logical inference

Tn this section we define a calculus and then prove that it is sound and complete
for determining the maximum degree of logical consequence of a goal in a logic
program. The calculus has the following inference rule and axiom:

Multiple-valued modus ponens:
(p1; 1)

(pn;an)
(g < p1s---»Pn;OR)

(¢;T(ar,0n,--.,0n))

Axiom:

(;0)
Godo (1990) proved that multiple-valued modus ponens is sound.

Definition 5.6 degree of deduction A goal g is deduced with a degree of
deduction o from a logic program P, denoted by P (g; a), iff there exists a
finite sequence of facts and rules Cy,...,Cn such that Cm = (g;@) and, for
each k € {1,...,m}, it holds that Cy, is a fact or rule of P, C) is an instance
of the aziom or Cy, is obtained by applying the multiple-valued modus ponens to
previous facts and rules in the sequence.

Next, we define the syntactic counterpart of maximum degree of logical con-
sequence. We call it maximum degree of deduction.

Definition 5.7 maximum degree of deduction The mazimum degree of de-
duction of a goal q in a logic program P is the greatest o such that P - (g; Q).

94 Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

Restriction: In the logic programs considered in the present chapter we will
assume that we do not have the recursivity problem; i.e. it cannot happen that
the value of a propositional atom p depends on itself. For instance, a logic
program cannot contain two rules of the form (¢ + p; ;) and (p + ¢; o).

Justification: The deduction of a goal ¢ from a logic program P can be graph-
ically represented by an AND/OR graph which is defined as follows:

¢ for each propositional atom p occurring in P, there is a node labelled p;

o for each rule (¢ « p1,...,pr;@) occurring in P, there is a connector

An AND/OR graph representing the deduction of a goal from a logic pro-
gram without indirect recursivity has no cycles. It is known that algorithms
for classical propositional logic dealing with cycles are fairly difficult (Dowling
and Gallier, 1984; Ghallab and Escalada-Imaz, 1991). Moreover, cycles are not
included in any solution and complicate the search in the propositional case.

Figure 5.1 shows the AND/OR graph corresponding to the deduction of the

goal “renal failure because hypovolemia secondary to bleeding” from the program
from Example 5.1.

Proposition 5.2 (Godo, 1990) Let I be an interpretation and let P be a logic
program of the form

(p-n;a'n.)
(g p1,...,PniaR)

Then, Inf{I(¢)|I E P} =T(ar,01,...,ay).

Theorem 5.1 soundness and completeness Let P be a logic program and
let q be a goal. If o is the mazimum degree of logical consequence of ¢ in P and
B is the mazimum degree of deduction of q¢ in P, then a = .

Proof: We must prove that Sup{a|P | (g;a)} = Sup{B|P + (¢;8)}. We
proceed by induction on I, where [is the number of facts and rules of P.

If | = 1, then it must be that the program P contains only either one
fact, say (p;v), or one rule, say (p < p1,...,Pn;77). We assume that ¢ oc-
curs in P; otherwise, we have Sup{a|P = (¢;)} = Sup{B|P+ (¢;6)} =0.
Suppose that P contains only the fact (g;y). Then, it is clear that
Sup{a|P E (¢;2)} = Sup{B| P+ (q;8)} =~. Suppose that P contains only
the rule (p + p1,...,Pn;7). Let I be an interpretation such that I(p;) = 0
(1 <i < n)and I(p) = 0. By definition of R-implication (cf. Section 2.6),
Ir(a,b) = 1 iff @ < b. Therefore, I(q « p1,...,Pn) =1 > v and I = P. Thus,
Inf{I(p)|I E P} = 0and Inf{I(p;)|I = P} =0 (1 <% < n). By Proposi-
tion 5.1, it follows that Sup{a|P | (p;a)} = 0 and Sup{a|P [(pi;a)} =0

5.2. The logic of programs 95

renal failure because
hypovolemia secondary

to bleeding

drainage bleeding
> 2 ml/kg/hour

renal failure renal failure because

hypovolemia

high serum creatinin hypovolemia

weak arterial pulse arterial hypotension oliguria

delayed capillary refill tachycardia

low CVP

Figure 5.1: AND/OR graph

96 Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

(1 < i < n). On the other hand, Sup{8|P F (p;8)} = T(0,...,0,7) =0
and Sup{B|P F (p;;8)} = 0 (1 <i < n). So, if p= g orp; = g, for some ¢
(1 < i < n), we have that Sup{c| P | (¢;a)} = Sup{B| P + (¢; 8)}.

Suppose now that for any program P’ that contains ! facts and rules it

holds that Sup{a’|P' = (¢;a")} = Sup{B'| P' +- (¢;8')}, and suppose that the
program P contains [+ 1 facts and rules. We distinguish three cases:

Case 1: ¢ occurs in a fact; i.e. P = P' U {(¢;7)}. Then, it is clear that
Sup{e| P | (g;a)} = max(y, Sup{e’ | P' [(g;¢')}) = Sup{a| P+ (g;2)}.

Case 2: q is the consequent of a rule; ie. P =P U{(q L))
By the induction hypothesis, for any propositional atom p
it holds that Sup{c|P [(p;a')}=Sup{B|P'F (p;B')}. Let
a; = Sup{c’ | P' = (piio)} (1 <i<n) and o = Sup{a' | P’ = (g5 a')}.
By Proposition 5.2, it holds that T(ay,...,an,7) = Inf{I(@)|I E
(p1,o1),..., T E (Pn,an), I E (¢ & p1,-.-,Pn;7)}. Therefore,
max(T(as, ..., on,7),) = Sup{a| P |= (g;2)} = Sup{B| P+ (¢; B)}.

Case 3: q is an antecedent of a rule; i.e. P = P'U{(p &< p1,---,&--,Pns V) }
In this case, Sup{c' | P' = (g;¢')} = Sup{a| P = (¢; @)} = Sup{B'| P' +
(¢:8)} = Sup{BI P+ (g, 8)}-

In (Puyol et al., 1992), there is a similar result of soundness and complete-
ness for the finitely-valued case. Nevertheless, they do not consider the concept
of maximum degree of deduction. ’

5.3 The interpreter

Our primary objective in this section is to define a linear-time procedure for
obtaining the maximum degree of deduction of a goal in a program. So, we will
define suitable data structures for representing logic programs and techniques for
reducing the search space to be explored. In order to facilitate its comprehension,
we present first a simple version. Then, we complete the algorithm in a second
stage.

The interpreter we will describe applies multiple-valued modus ponens in a
reverse way as it is done in classical backward inference systems; i.e. rather than
applying the inference rule to 7 + p,q once p and ¢ are deduced, it checks first

whether r can be deduced which in turn leads to check whether p and ¢ can be
deduced.

5.3.1 A simple version

We have seen that the problem of determining the maximum degree of deduction
of a goal q in a logic program P can be represented by an AND/OR graph. The

5.3. The interpreter 97

principle of our procedure relies on a depth-first search through the graph for
establishing the maximum degree of deduction.

In a brute force search through the AND/OR graph, redundant computations
can appear because of examining certain parts of the graph more than once;
a node p can have several connectors as successor nodes. To overcome this
problem we will use a marking technique for nodes when scanning the graph:
the first time an atom node is visited, all the possible deduction paths concluding
this atom are explored and the maximum degree of deduction obtained by this
exploration will be assigned to the atom node. This way, further visits to an
~ already visited node will retrieve the previous computed maximum degree of
deduction, avoiding so redundant expansions of a same node.

The data structures we define for representing the AND/OR graph and getting
time efficient operations are the following ones:

Data Structures

For each propositional atom p:

val(p) represents the maximum degree of deduction of p in a given state
of the algorithm. Initially, if (p;1),...,(p;an) are the facts that

appear in P containing p, then val(p) =max(ay, ..., @,). Otherwise,
val(p)=0.

visit(p) € {true, false}, where visit(p) = true iff p has already been ex-
panded. Initially, visit(p) = false for all the atoms.

rules—conseq(p) = {R|p is the consequent of rule R}, the sequence of
rules concluding p. :

For each rule R=(q < p1,.--,Pn;QR) :
val(R)=ag. -
antecedents(R)={pi,...,Pn}, the sequence of propositional atoms which

are antecedents of rule R.

Figure 5.2 shows the pseudo-code of the first version of the interpreter. It has
two functions called or-extension and and-extension. Function or-extension scans

all the rules R : (p < p1,. - -, Pn; @r) whose consequent is a given atom p. To do
it, or-extension calls and-extension that visits recursively, calling or-extension,
the successor nodes pi, . . . , Pn appearing in the antecedents of each rule R. Given

the value ap of a rule R and after obtaining the maximum degree of deduction
a; of each successor node p;, and-extension computes a deduction degree o for
p using rule R. This computation applies multiple-valued modus ponens; i.e.
a =T(ar,a1,...,0,). The scanning of all the rules by or-extension enables to
determine the maximum degree of deduction of p among the different deduction
paths defined by the different possible applications of the rules. This maximum
deduction degree is given back to the corresponding and-extension function per-
forming thus a bottom-up propagation of the maximum degree of deduction from
the facts up to the goal.

98

Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

O 00~ U WO

O 00O U WO

10
11

function interpreter (P: program, q: goal): truth_value
var p: atom
var R: rule
begin
for each atom p in P do
if P contains (p;a1),...,(p;an) then
val(p) := max(a,...,0n)
else
val(p) :== 0
endif;
visit(p) := false
endfor;
for each rule R = (p < p1,...,Pn;@) in P do
val(R) == o;
antecedents(R) := {p1,...,Pn}i
rules-conseq(p) := rules-conseq(p) U R
endfor;
return(or-extension(q))
end

function or-extension (p: atom): truth_value
var R: rule
var value: truth_value
begin
if visit(p) then return(val(p));
visit(p) := true;
for each rule R in rules-conseq(p) do
value := and-extension(R);
if value > val(p) then val(p) := value
endfor;
return(val(p))
end

5.3. The interpreter 99

function and-extension (R: rule): truth_value
var p: atom
var value: truth_value
begin
value := val(R);
for each atom p in antecedents(R) do
value := T'(value, or-extension(p))
endfor;
return(value)
end

© 00~ U W= O

Figure 5.2: A first version of the interpreter

Example 5.2 Let us consider the program P from Example 5.1 and its AND/OR
graph (cf. Figure 5.1) for the goal q="renal failure because hypovolemia sec-
ondary to bleeding”. The interpreter computes the maximum degree of de-
duction of ¢ in P as follows: it starts by visiting the root node “renal failure
because hypovolemia secondary to bleeding” and, following a depth-first strat-
egy, visits “renal failure” and then “high serum creatinin”. If we assume that
T(z,y) = =y, then “renal failure” is established with maximum degree of deduc-
tion 0.9 = T'(0.9,1). The next arc of the first connector outgoing from the root
is traversed and “hypovolemia” is established with maximum degree of deduc-
tion 0.51 = 7°(0.8,1,0.8,0.8), corresponding to the value of its first connector,
because the second one deduces “hypovolemia” with degree of deduction 0.24.
As “drainage bleeding > 2 ml/kg/hour” only appears in the program as a fact
with value 1, we have that the first connector outgoing from the root enables
to deduce the goal “renal failure because hypovolemia secondary to bleeding”
with degree of deduction 0.46 = 1-0.9-0.51 - 1. Repeating the same process
for the second connector outgoing from the root, the interpreter determines that
“renal failure because hypovolemia secondary to bleeding” is deduced with a
smaller degree of deduction (0.18). Therefore, the interpreter returns 0.46 as
the maximum degree of deduction of ¢ in P.

Theorem 5.2 correctness Function interpreter(P,q) returns o iff o is the
magzimum degree of deduction of the goal q in the program P.

Proof: We will prove by induction on rank(p) that
or-extension(p) returns Sup{a|P F (p;a)}, '
where rank(p) is defined as follows:

rank() _ 0 if there is no rule whose consequent is p
P)=131+ maz{rank(p') | p’occurs in a rule with consequent p},otherwise.

100 Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

Induction base: rank(p) = 0. In this case, as there are no rules whose consequent
is p we can only deduce the facts (p; a) appearing in P. Thus, or-extension(p) =
Sup{a|(p;a) € P} = Sup{a|P F (p;a)}. If there is no fact (p;@) in P, then
or-extension(p) returns 0.
Induction step: rank(p) = k + 1. Suppose that for each atom p; such that
rank(p;) < k it holds that or-extension(p;) returns Sup{ca|P I (p;;@)}. In this
case, as well as deducing the facts (p; @) appearing in P, we can deduce the con-
clusion of the rules p « pi1,...,Pn appearing in P by applying multiple-valued
 modus ponens. The atoms p; appearing as antecedents in the rules that con-
clude p verify that rank(p;) < k. By induction hypothesis, we can ensure that
the value of p;, val(p;), used by the interpreter is Sup{a|P F (pi;a)}. Since
T-norms are non-decreasing in the first argument (i.e. T'(a,b) < a), it is clear
that or-extension(p) returns Sup{a|P I (p;a)}.

Theorem 5.3 complexity Let P be a logic program, let ¢ be a goal and let
m be the total number of occurrences of propositional aetoms in P. Then, the
worst-case time complexity of function interpreter(P, q) is in O(m).

Proof: The time complexity of the algorithm follows from the following facts:

1. During the initialization phase of the interpreter are executed three for
loops: the first one is bounded by the number of distinct propositional
atoms, the second one is bounded by the number of facts and the third

one is bounded by the number of rules. Therefore, the initialization phase
is clearly in O(m).

2. The algorithm explores an AND/OR graph using a depth-first strategy. The
number of nodes of the graph is bounded by the number of different atoms,
the number of or-connectors is bounded by the number of rules and the
total number of arcs of the and-connectors is bounded by the total number
of atoms. '

3. Function or-extension is executed at most once for each different atom p:
if p is the goal, it is called once by function interpreter; otherwise, it is
called once by and-extension if visit(p) is false. Observe that the first time
or-extension(p) is called, visit(p) is marked to avoid subsequent calls.

4. The number of iterations of the for loop of or-extension(p) is bounded by
the number of rules that conclude p. In each iteration, and-extension is
called for each one of those rules. Taking into account that and-extension
needs constant time to process each node, the total computational cost of
or-extension and and-extension is in O(m).

— e —

5.3. The interpreter 101

5.3.2 An improved version

The previous proof procedure, in order to determine the maximum degree of
deduction of a goal in a logic program, explores all the nodes of the AND/OR
graph generated. Nevertheless, some portions of the graph could be pruned
by virtue of the following fact: given a triangular norm T' and truth values
z1,%32,T3,- ., Lk € [0,1], it holds that

T(x1,22) > T(z1,22,23) > ... 2 T(T1,%2, 3, .-, Th)-

Given a node of the graph containing an atom p with several connectors, the
interpreter starts by exploring the first connector of node p, then continues by the
second connector and so on. Suppose that the interpreter has obtained a degree
of deduction o for the first connector and (we assume that the second connector
is (p, (p1, -, Pm); @r)) has established that a1, ..., am are the maximum degrees
of deduction of py,...,Pm, respectively. Then, the degree of deduction for the

second connector is T(ag, a1, ---,am). Using the above property of triangular
norms, we have that

T(aR)al) Z ZT(QR,O!I,...,OH) Z v ZT(aR)a:l’"-;a‘ln); 1< m.

As this function is calculated incrementally, as soon as the interpreter reaches
an arc containing an atom p; (¢ < m) such that

T(aﬂaal;---)ai) a

we can prune the remaining search space defined by the subgraphs whose root
nodes are the nodes pit1,...,Pm-

We have confined our explanation to the first and second connectors of a
node, but it is straightforward to generalize this result to all the connectors
outgoing from a given node.

In order to incorporate this improvement into the previous interpreter, we
have to modify function or-extension and function and-extension. The new
pseudo-code for such functions is shown in Figure 5.3.

Theorem 5.4 correctness Function interpreter(P,q) returns o iff o is the
mazimum degree of deduction of q in P.

Proof: The correctness follows from Theorem 5.2 and from the fact that the
pruning strategy only eliminates some portions of the graph which are irrelevant
for computing the maximum degree of deduction. [

Theorem 5.5 complexity Let P be a logic program, let ¢ be a goal and let
m be the total number of occurrences of propositional atoms in P. Then, the
worst-case time complexity of function interpreter(P,q) is in O(m).

Proof: Tt is clear that if ¢ is the number of execution steps of function
interpreter(P, q) of the former version and ' is the number of execution steps of
the latter version, then ¢t > t'. | |

102

== O 00 DU WD O

OO~ WU W= O

10
11

Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

function or-extension (p: atom): truth_value
var R: rule
var value: truth_value
begin
if visit(p) then return(val(p));
visit(p) = true;
for each rule R in rules-conseq(p) do
value := and-extension(R,val(p));
if value > val(p) then val(p) := value
endfor;
return(val(p))
end

function and-extension (R: rule, max_value: truth_value): truth_value
var p: atom
var value: truth_value
begin
if val(R) < max_value then return(val(R));
value = val(R);
for each atom p in antecedents(R) do
value := T'(value, or-extension(p));
if value < val(p) then return(value)
endfor;
return(value)
end

Figure 5.3: An improved version of the interpreter

5.4. Negation 103

5.4 Negation

The negation as failure rule is generally used to deduce negative information in
logic programming. Before incorporating such a rule into the interpreter, we will
first review how it works in classical logic.

Assume that we have a classical propositional rule p < p1,..., i, ..., Pk
with a negative literal —p; in the body. The negation as failure rule works as
follows: if P I/ p; then P F —p;.}

From a semantical point of view, P [~ p; implies that p; is false (or 0) in
some models of P and is possibly true (or 1) in others. In this case, the negation
as failure Tule establishes that we restrict the models of P to those models I of
P such that I(p;) = 0 (I(-p;) = 1).

A possible extension of the negation as failure rule to our multiple-valued
setting could be as follows: if the maximum degree of logical consequence of a
propositional atom p; is 0, then we apply the negation as failure rule considering
only the interpretations I(p;) = 0 and so I(—p;) = 1. In a more general case,
if P |= (pi;a), where a is the maximum degree of logical consequence, then
we consider only the models I of P such that I(p;) = . This means that the
negation as failure rule in the multiple-valued case considers only those models
of P where I(-p;) > 1 — @, namely in the interval 1-e1]

Example 5.3 Given the goal q and the following logic program

(q DP1,7P2,P3; a)
(p1; a1)
(p2; @2)
(p3; as)

the mazimum degree of deduction of pa is as and the mazimum degree of de-
duction of ~ps is 1 — aa. Therefore, the mazimum degree of deduction of q is
T(a, 1,1 — a2, a3).

Remark: Inconsistencies can be derived when negative literals occur in the body
of a rule (Lloyd, 1987). Given the program formed by (p < —p; 1) and (p; 0), p
and —p are deduced with maximum degree of deduction 1. It should be noticed
that this also happens in classical propositional logic. Some conditions under
which the consistency of a program is guaranteed could be studied (Escalada-
Tinaz, 1989a), but they are beyond the scope of the present thesis.

In order to incorporate the negation as failure rule into our interpreter, we
assume that negated atoms appear only in the body of rules and are stored in
the field antecedents of the data structure used to represent rules. We also need
to modify function and-extension; the new pseudo-code is shown in Figure 5.4.

Theorem 5.6 correctness Function interpreter(P,q) returns a iff P+ (g;),
where o is the mazimum degree of deduction of q using the deduction relation
and the negation as failure rule.

1In the propositional case, the negation as failure rule coincides with the closed world
assumption.

104 Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

0 function and-extension (R: rule, max.value: truth_value): truth_value
1 wvar p: atom

2 var L: literal

3 var value: truth_value

4 begin

5 if val(R) < max_value then return(val(R));
6 value := val(R);

7 for each L in antecedents(R) do

8 if L= p then

9 value := T'(value, or-extension(p))

10 else [*L=-p*/

11 value := T'(value, 1 — or-extension(p))
12 endif;

13 if value < val(p) then return(value)

14 endfor;

15 return(value)

16 end

Figure 5.4: Function and-extension

Theorem 5.7 complexity Let P be a logic program, let q be a goal and let
m be the total number of occurrences of propositional atoms in P. Then, the
worst-case time complezity of function interpreter(P,q) is in O(m).

55 Cut

In classical logic programming, the cut operator, denoted by “/”, is a control
facility used to prune some portions of the search space. For example, assume
that we have a rule ¢ < p1,P2,/,ps- Once the cut is executed, it prunes the
possible alternatives for all the literals on its left in the body of the rule as well
as the alternatives to satisfy the consequent.

If we are dealing with propositional logic, the cut influences only the search
space of the consequent of the rule because there are no variables to be in-
stantiated; i.e. the alternatives for ¢,p; and ps are not considered if the cut is

executed. So, in our multiple-valued propositional context, we could define a
multiple-valued cut as follows:

Definition 5.8 multiple-valued cut (/, a) If the interpreter finds a rule of
the form q < D1,D3,---»Pi, (/, @), Pis1s ---,Dr then if the mazimum degree of
deduction on; of the conjunction py A...Ap; verifies that o > oy (that a < a1;)
then the remaining alternatives for q are (are not) considered.

5.6. Implementation 105

Note that in our multiple-valued propositional context it makes no sense to
consider the alternatives of satisfving the literals in the body which are on the
left of the cut. Before arriving at the cut, the maximum degrees of deduction of
such literals have been computed and so the search space involving such literals
has been explored.

Example 5.4 Let T(z,y) = z-y. Given the following portion of a logic program.:

(q — P1,P2, (/)0°6)1p3)p4; 1)
(q ¢ pa,ps5; 1)

(g ¢ ps,p6,P1;1)

(91;0.8)

(p2;0.8)

the mazimum deduction degree of py A pa is 0.64 and hence only the first rule
should be considered among those concluding q. If we assume that the first rule
is (g < p1,p2,(/,0.8),p3,p4; 1), then the mazimum degree of deduction of q is
obtained considering the remaining rules with consequent g.

A proof procedure for logic programs incorporating the multiple-valued nega-
tion as failure rule and the cut operator is shown in Figure 5.5. We add the field
cut to the data structure used to represent rules; cut(R) = true iff rule R con-
tains a cut. If a rule R' contains a cut, then such a cut is stored as a literal
in antecedents(R'). These changes are incorporated into function interpreter.
Function or-extension scans the rules whose consequent is a propositional atom p,
but this scanning is stopped if arule (p < p1,..., i, (/, @), Pit1,- - - i Pns ag) such
that T'(val(p1),...,val(p;)) > « is found. To this end, function and-extension
returns a boolean variable (prune). It holds that prune=true iff there is a rule
(p < pl,...,pi, (@), Pit1, - - - »Pn; r) such that T(val(py,...,val(pi) > .

Theorem 5.8 correctness Function interpreter(P,q) returns ¢ iff P F (q;),
where « is the mazimum degree of deduction of q using the deduction relation,
the negation as failure rule and the cut operator.

Theorem 5.9 complexity Let P be a logic program, let q be a goal and let
m be the total number of occurrences of propositional atoms in P. Then, the
worst-case time complezity of function interpreter(P, q) is in O(m).

The proof of the previous theorems is a straightforward consequence of the
correctness and complexity stated before.
5.6 Implementation
Béjar (1993) implemented, in C++, a programming environment for

infinitely-valued propositional logic programs. The .main features of this en-
vironment are the following ones:

106 Chapter 5. An Interpreter for .Multiple-valued Propositional Logic Programs

0 function interpreter (P: program, q: goal): truth_value
1 wvar p: atom

2 wvar R: rule

3 begin

4 for each atom p in P do

5 if P contains (p;cn), - - ., (P;) then
6 val(p) := max(a1,. .- ,0n)

7 else

8 val(p) =0

9 endif’;

10 visit(p) = false

11 endfor;

19 for each rule R = (p < p1,..-,Pn;@) in P do
13 val(R) = o;

14 antecedents(R) := {p1,..-»Pn};

15 rules-conseq(p) := rules-conseq(p) U E;

16 if R contains a cut (/,B) then

17 cut(R) := true

18 else

19 cut(R) := false

20 endif

21 endfor;

22 return(or-extension(q))

23 end

0 function or-extension (p: atom): truth_value
1 wvar R:rule

9 var prune: boolean

3 var value: truth value

4 begin

5 if visit(p) then return(val(p));

6 visit(p) := true;

7 prune := false;

8 for each rule R in rules-conseq(p) do

9 if prune then return(val(p));

10 (value, prune) := and-extension(R,val(p));
11 if value > val(p) then val(p) := value
12 endfor;

13 return(val(p))
14 end

5.6. Implementation 107

o

function and-extension (R: rule, max_value: truth.value):
(truth_value, boolean)
var p: atom
var L: literal
var prune: boolean
var value: truth_value
begin
if val(R) < max_value and not cut(R) then
return(val(R), false)
endif;
value := val(R);
10 prune := false;
11 for each L in antecedents(R) do
12 case L, of

W© 00~ O O R W

13 p: value := T(value, or-extension(p));

14 —p: value := T(value, 1 — or-extension(p));
15 (/,8): if B < value then prune := true

16 endcase;

17 if value < max_value and not cut(R) then

18 return(value, prune)

19 endif

20 endfor;

21 return(value, prune)

22 end

Figure 5.5: The final version of the interpreter

108 Chapter 5. An Interpreter for Multiple-valued Propositional Logic Programs

o It has a compiler that from the source program creates the data structures
. for representing facts and rules. This compiler is formed by a lexical an-
alyzer and a syntactical analyzer which were implemented with Lex and
Yacc, respectively. The compiler has facilities for handling lexical and
syntactical errors.

e The T-norm used by the program can be modified. Some T-norms are
predefined, but the user can define his/her own T-norms.

¢ Programs can be executed in debug mode. The user can know the state
of the execution when entering and leaving functions and-extension and
or-extension. He/she can also select a particular list of atoms to be exe-
cuted in debug mode.

o It has user-friendly interface implemented using Object Windows Borland
Library 2.0 for IBM PC-like computers.

Chapter 6

Conclusions

In the preceding chapters we have been concerned with the design of proof pro-
cedures for solving both satisfiability and deduction problems in multiple-valued
logics. As our ultimate goal was to obtain competitive algorithms from a compu-
tational point of view, our approach has not been confined to present complete
calculi and sketch pseudo-code of algorithms that automate their application.
We have also paid special attention to the definition of suitable data structures
for representing formulas, heuristics for exploring the proof search space and
techniques for avoiding redundant and useless computations.

Our next step should be to implement the proof procedures designed and
incorporate them into some automated theorem prover, as well as to examine
their behaviour in real-world applications. This way, we could put our ideas into
practice and, from this experience, gain new insights for developing other proof
methods and improving existing ones.

In Chapter 1, we have already given in detail the main contributions of this
thesis. Here, we summarize them briefly:

Regarding satisfiability problems we have focused on signed CNF formulas,
because they are an appropriate formalism for representing and solving the SAT
problem in any finitely-valued propositional logic. We have described DP-style
decision procedures for both signed and regular CNF formulas. To this end,
we have extended the one-literal rule to the signed setting, introduced the new
concept of maximal truth value set and defined original branching rules and
heuristics. For the subclass of regular CNF formulas, we have also defined suit-
able data structures for representing formulas and some deletion strategies for
eliminating redundant and irrelevant clauses.

Starting out from the fact that there exist polynomial-time algorithms for
testing the satisfiability of classical Horn and 2-CNF formulas, we have then
investigated what happens with these particular subclasses of formulas in the
logic of signed CNF formulas. First, we have developed a complete unit res-
olution calculus for regular Horn formulas. Then, we have designed efficient
Horn satisfiability checking procedures with linear-time complexity when the
truth value set is finite (if infinite, the complexity is almost linear). Second, we

109

110 Chapter 6. Conclusions

have demonstrated that the SAT problem in arbitrary signed 2-CNF formulas
is NP-complete. Third, we have shown that this problem is polynomially solva-
ble when the formulas are regular or monosigned. We have described efficient
satisfiability checking procedures for these subclasses of signed 2-CNF formulas.
These procedures reach a quadratic-time complexity in the worst case.

Regarding deduction problems we have focused on a wide and important
family of infinitely-valued logics, including Lukasiewicz logic. First, we have
defined a propositional logic programming language for this family of logics and
proved that a modus ponens-style inference rule is complete for determining the
maximum degree of logical consequence of a goal in a given infinitely-valued logic
program. Second, we have defined a multiple-valued negation as failure rule and
a cut operator. Third, we have defined suitable data structures for representing
logic programs and described an interpreter with a linear-time complexity in the
worst case.

Apart from the implementation of the proof procedures we have introduced
in this thesis, we would like to point out some other future research perspectives:

o To create a test-bed, formed by a collection of both real-world and ran-
domly generated instances, for evaluating and comparing satisfiability test-
ing algorithms for signed CNF formulas.

o To define new branching heuristics for the signed DP-style procedures de-
scribed in this thesis and perform an experimental comparison.

¢ To develop new concepts, such as maximal truth value set, that allow one
to avoid redundant and useless computations during the exploration of the
proof search space. :

¢ To investigate the use of stochastic local search algorithms, e.g. GSAT (Sel-

man et al., 1992), for finding satisfying interpretations in signed CNF
formulas.

o To identify new subclasses of multiple-valued formulas whose satisfiability
and deduction problems are polynomially solvable, and equip them with
complete calculi and efficient proof procedures.

o To find further application areas for the the infinitely-valued logic program-
ming language defined, extend it to the first-order case and implement a
declarative programming environment.

References

Ackermann, R. (1967). Introduction to Many- Valued Logics. Routledge & Kegan,
London. :

Alsinet, T. and Manya, F. (1996). A declarative programming environment
for infinitely-valued logics. In Proc. International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems,
IPMU’96, Granada, Spain, volume 3, pages 1205-1210.

Anderson, R. and Bledsoe, W. (1970). A linear format for resolution with merg-
ing and a new technique for establishing completeness. JACM, 17:525-534.

Aspvall, R., Plass, M. and Tarjan, R. (1979). A linear time algorithm for testing
the truth of certain quantified boolean formulae. Information Processing Letters,
8(3):121-123.

Baaz, M., Fermiiller, C. G., Ovrutcki, A. and Zach, R. (1993). MULTLOG: A
system for axiomatising many-valued logics. In Voronkov, A., editor, Proc 4th
Int. Conf. on Logic Programming and Automated Theorem Proving LPAR,
St. Petersburg, Russia, pages 345-347. Springer, LNAT 698.

Baaz, M. and Fermiiller, C. G. (1995). Resolution-based theorem proving for
many-valued logics. Journal of Symbolic Computation, 19:353-391.

Baaz, M., Fermiiller, C. G., Salzer, G. and Zach, R. (1996). MUltlog 1.0: To-
wards an expert system for many-valued logics. In Proc 13th Int. Conf. on Auto-
mated Deduction CADE’96, New Brunswick/NJ,USA, pages 226-230. Springer,
LNAT 1104.

Baldwin, J. (1987). Evidential support logic programming. Fuzzy Sets and
Systems, 24:1-26.

Baldwin, J., Martin, T. and Pilsworth, B. (1995). Fril: Fuzzy and Evidential
Reasoning in Artificial Intelligence. John Whiley & Sons Inc.

Beckert, B., Hihnle, R., Oel, P. and Sulzmann, M. (1996). The many-valued
tableau-based theorem prover sT4P: Version 4.0. In Proc 18th Int. Conf. on Auto-
mated Deduction CADE’96, New Brunswick/NJ,USA, pages 303-307. Springer,
LNAI 1104.

111

112 References

Béjar, R. (1993). Implementacidn de un intérprete proposicional y de un
intérprete de primer orden para programacién légica multivaluada. EUP-
Universitat de Lleida. Master’s Thesis.

Béhm, M. and Speckenmeyer, E. (1996). A fast parallel SAT-solver - efficient
workload balancing programming. Annals of Mathematics and Artificial Intelli-
gence, 5(17):381-400.

Bole, L. and Borowik, P. (1992). Many-Valued Logics. 1: Theoretical Founda-
tions. Springer Verlag.

Buro, M. and Biining, H. K. (1993). Report on a SAT competition. EATCS
Bulletin, 1(49):143-151.

Carnielli, W. A. (1987). Systematization of finite many-valued logics through
the method of tableaux. Journal of Symbolic Logic, 52(2):473-493.

Church, A. (1936). An unsolvable problem of elementary number theory. Amer-
ical Journal of Mathematics, 58:345-363.

Cook, S. (1971). The complexity of theorem-proving procedures. In Proceedings
of the 8rd Annual ACM Symposium on Theory of Computing, pages 151-158.

Cook, S. and Luby, M. (1988). A simple parallel algorithm for finding a satisfying
truth assignment to a 2-CNF formula. Information Processing Letters, 27:141-
145.

Davis, M. and Putnam, H. (1960). A computing procedure for quantification
theory. JACM, 7(3):201-215.

Davis, M., Logemann, G. and Loveland, D. (1962). A machine program for
theorem-proving. Communications of the ACM, 5:394-397.

Davis, M. (1983a). A computer program for Presburger’s algorithm. In Siek-
mann, J. and Wrightson, G., editors, Automation of Reasoning: Classical Papers
in Computational Logic 1957-1966, volume 1, pages 41-48. Springer-Verlag.

Davis, M. (1983b). The prehistory and early history of automated deduction.
In Siekmann, J. and Wrightson, G., editors, Automation of Reasoning: Classi-

cal Papers in Computational Logic 1957-1966, volume 1, pages 1-28. Springer-
Verlag.

Di Zenzo, S. (1988). A many-valued logic for approximate reasoning. IBM
Journal of Research and Development, 32(4):552-565.

Dowling, W. and Gallier, J. (1984). Linear-time algorithms for testing the satisfi-
ability of propositional Horn formulee. Journal of Logic Programming, 3:267-284.

Dubois, D., Lang, J. and Prade, H. (1990). Poslog, an inference system based
on possibilistic logic. Proceedings North American Fuzzy Information Processing
Society Congress, pages 177-180.

References 113

Escalada-Imaz, G. (1989a). Optimisation d’Algorithmes d’Inference Monotone

en Logique des Propositions et du Premier Ordre. PhD thesis, Université Paul
Sabatier, Toulouse.

Escalada-Imaz, G. (1989b). Un algorithme de complexité quadratique et un

algorithme de complexité lineaire pour la 2-satisfiabilité. Technical Report 89378,
LAAS, Toulouse.

Escalada-Imaz, G. and Many3, F. (1993a). An interpreter of logic programs in
multivalued propositional logic. In Agusti, J. and Garcia, P., editors, Proc. Se-

gundo Congreso de Programacién Declarativa PRODE’93, Blanes, Spain, pages
245-259.

Escalada-Tmaz, G. and Many3, F. (1993b). Testing the satisfiability of multival-
ued Horn formulee. In Proc. V Conferencia de la Asociacidn Espafiola para la
Inteligencia Artificial CAEPIA’93, Madrid, Spain, pages 226-235.

Escalada-Tmaz, G. and Manya, F. (1994a). El problema de la satisfactibilidad
en clausulas de Horn multivaluadas. Nowatica, 108:11-15.

Escalada-Imaz, G. and Manya, F. (1994b). A linear interpreter for logic program-
ming in multiple-valued propositional logic. In Proc. International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, IPMU’94, Paris, volume 2, pages 943-949.

Escalada-Tmaz, G. and Manya, F. (1994c). The satisfiability problem for
multiple-valued Horn formule. In Proc. International Symposium on Multiple-

Valued Logics, ISMVL’94, Boston/MA, USA, pages 250-256. JEEE Press, Los
Alamitos. :

Escalada-Tmaz, G. and Manya, F. (1995). Efficient interpretation of proposi-
tional multiple-valued logic programs. In B. Bouchon-Meunier, R. Y. and Zadeh,

L., editors, Advances in Intelligent Computing, pages 428-439. Springer Verlag,
LNCS 945.

Escalada-Imaz, G. and Many3, F. (1996a). On multiple-valued logic program-
ming. In Dahl, V. and Sobrino, A., editors, Estudios sobre Programacién Ligica
y sus Aplicaciones, pages 387-419. Servicio de Publicaciones de la Universidad
de Santiago de Compostela.

Escalada-Imaz, G. and Many3, F. (1996b). On the 2-SAT problem for signed
formulas. In Proc. Workshop/Conference on Many-Valued Logics for Computer
Science Applications, COST Action 15, Barcelona, Spain.

Escalada-Imaz, G., Many, F. and Sobrino, A. (1996¢). Principios de progra-
macién 16gica con informacién incierta. Descripcién de algunos de los sistemas
més relevantes. Theoria, 11(27):123-148.

Even, S., Itai, A. and Shamir, A. (1976). On the complexity of timetable and
multicommodity flow problems. SIAM J. Computing, 5:691-703.

