
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259465849

The use of complementary techniques of machine learning to discover

knowledge in real complex domains

Thesis · July 2002

CITATIONS

0
READS

81

1 author:

Some of the authors of this publication are also working on these related projects:

Online Forum Meme Extractor View project

OPENMIND View project

David F. Nettleton

Innovació i Recerca Industrial i Sostenible / Universitat Pompeu Fabra

117 PUBLICATIONS   579 CITATIONS   

SEE PROFILE

All content following this page was uploaded by David F. Nettleton on 27 December 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/259465849_The_use_of_complementary_techniques_of_machine_learning_to_discover_knowledge_in_real_complex_domains?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/259465849_The_use_of_complementary_techniques_of_machine_learning_to_discover_knowledge_in_real_complex_domains?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Online-Forum-Meme-Extractor?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/OPENMIND?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Nettleton?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Nettleton?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Nettleton?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Nettleton?enrichId=rgreq-f837822e0596e9513cdee301bc3a73b8-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ2NTg0OTtBUzoxMDE3MzczMzU2MjM2ODdAMTQwMTI2NzQ3OTI2Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


 0 

 

 Doctoral Thesis Dissertation  
 

 

 

 

 

 

 “The use of complementary techniques of machine learning to discover 

knowledge in real complex domains” 

 

 

 

 

 

Presented for the Doctorate of Artificial Intelligence 
 

 

 

 

 

 

 

 

 

 

 

 
 

Doctorand: David F. Nettleton 
 

 

Programa de doctorat en Intel.ligència Artificial 

Departament de Llenguatges i Sistemes Informàtics 
 

 

Instititution: Universitat Politècnica de Catalunya 

Date: 2
nd

 July 2002 

Thesis Directors: Dr. Vicenc Torra (IIIA-CSIC), Dr. Juan Jacas (EA-UPC) 

Thesis Tutor: Dr. Javier Bejar (LSI-UPC) 

 



 1 

Summary 
 

This thesis is concerned with developing and refining a collection of methods and tools which can be applied to the 

different steps of the Data Mining process. Data Mining is understood as the analysis of data using sophisticated tools 

and methods, which include aspects of data representation, data exploration, knowledge discovery, data modelling and 

data aggregation. Data Mining can be applied in real and complex domains, such as the domain of clinical prognosis, as 

well as with artificial test, or benchmark data. Medical informatics is a dynamic area where new approaches and 

techniques are constantly being developed, the objective being to improve current data representation, modelling and 

aggregation methods to achieve better diagnosis and prognosis. In this work we focus on two medical data domains: 

prognosis for ICU patients and diagnosis of Sleep Apnea cases, although it is proposed that the techniques have general 

use for any data domain. A key approach which is used for data processing and representation is that of fuzzy logic 

techniques. Existing techniques are benchmarked against the data, such as neural networks, tree induction and standard 

statistical analysis methods such as correlation, principal components and regression models.  

We carry out a survey of existing techniques, authors and their approaches, in order to establish their strong and 

weak points, limitations, and opportunities where improvement may be achieved. 

The first major area under consideration is data representation: how to define a unified scheme which encompasses 

different data types, such as numeric, continuous, ordered categorical, unordered categorical, binary and fuzzy; how to 

define membership functions; how to measure differences and similarities in the data. This is followed by a 

comprehensive benchmarking of existing AI and statistical algorithms on a real ICU medical dataset, comparing the 

‘Data Mining’ results to methods proposed by the author.  

We define  ‘fuzzy covariance’ as a  value which permits the measurement of relation between two fuzzy variables. 

Previous fuzzy covariance work was limited to the covariance of a fuzzy cluster to its fuzzy prototype [Gustafson79]. 

More recent authors [Nakamori97][Wangh95][Watada94] have created specialised fuzzy covariance calculations 

tailored for specific applications. In this work, a general fuzzy covariance algorithm, which measures the fuzzy 

covariance between two fuzzy variables, has been conceived, developed and tested. The initial work based the Hartigan 

joining algorithm and fuzzy covariances evolves into and is contrasted with the later work on data and attribute fusion 

using the WOWA aggregation operator . 

     We consider  ‘aggregation operators’ as a method for modelling data for clinical diagnosis, and use ‘relevance’ and 

‘reliability’ meta-data together with grades of membership to enhance the information which the aggregation operator 

receives in order to model the data. We also make enhancements to the WOWA operator, to enable it to process data 

with missing values and we develop a novel method for learning the weighting vectors.  
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Chapter 1.  Introduction - general 
 

The thesis covers the work carried out from 1996 to 2001, and is concerned with developing and refining a collection of 

methods and tools which can be applied to the different steps of the Data Mining process. This first requires the 

consideration of how to represent and process mixed categorical, numeric and fuzzy data types using aggregation, 

variable clustering and fuzzy techniques. The first section of work covers the period 1996-1997, in collaboration with 

Dr. Karina Gibert. This is followed by the work on contrasting different data modelling techniques such as clustering, 

neural networks and tree induction. In a second period, there is the work with Dr. Vicenc Torra and Dr. Juan Jacas from 

1997-2001, which is centred on the use of aggregation operators such as WOWA to process real medical data domains, 

and the solution of some of the problems of these operators, such as missing data and weight assignment. 

 

In addition to the standard test data sets such as Iris, and those published by Hartigan, Bezdek and Torra, two medical 

problem domains have been used, in collaboration with three hospitals over a five year period: ICU patient data from 

the Parc Tauli Hospital, Sabadell, Spain; Apnea patient data from the Hospital Clinic, Barcelona, Spain, and Apnea 

patient data from the Sleep Clinic, Salamanca, Spain. 

 

1.1    Introduction - detail 

 
Data analysis and data representation are two areas which have been revolutionised by the advent of  machine learning 

methods from the 1950’s onwards. In the mid-1960’s, Zadeh introduced fuzzy concepts in data analysis, which was 

further developed by Bezdek and the fuzzy c-Means algorithm. Other key developments were those of neural networks 

for supervised modelling, of which feedforward NN were the most common, one of the earliest references being 

[Rosenblatt59]. Rule induction came later and Quinlan introduced ID3, which became the first ‘industry standard’ 

algorithm. Neural networks lost popularity in the 1970’s due to some key unresolved theoretical problems, but were to 

come back in the 1980’s. Expert systems became popular in the 1980’s but with the advent of the following decade they 

were absorbed into hybrid and problem specific applications. Rule based systems became a combination of expert 

knowledge and rules automatically induced from historical data, together with Cased Based Reasoning and other 

approaches such as Belief Networks. Another approach has been that of the AI data aggregators, which matured into 

useful tools, especially due to the consolidative work of Yager published in the late 1980’s. 
 

1.1.1 Motivation 

 
Many aspects of data analysis and data representation are still unresolved when data does not fall into well defined 

categories, or cannot be represented by simple forms. Especially in medical data analysis, there is a constant search for 

methods which give improved diagnostic precision for positive and negative cases, and prognostic accuracy for medium 

and long term recovery. The debate on how to best represent and capture data, also is an active field with no best 

solutions. Another aspect is the requirement of many algorithms to require large data volumes to be able to work. This 

is despite the fact that many real medical and other domain data sets are relatively small, that is, with less than 150 

cases, while being defined by a large number of variables, that is to say, more than 15. There are still many statistical 

and data mining techniques which resort to arbitrary type assignment of variables in order to be able to input the data 

into data exploration or data modelling algorithms. In the case of the standard WOWA operator, we need it to be able to 

process data with missing values, with a minimum loss of overall precision. Also we needed to be able to learn the 

weighting vectors of the WOWA operator from historical data, given the difficulty of manual weight assignment for a 

real data domain.  The development of a method to compare fuzzy variables and ‘join’ them into a reduced number of 

most significant factors, stems from the need to explore and model a data set containing these variables types. 

If we review existing commercial Data Mining toolkits, such as Clementine, Darwin or SAS Enterprise Miner, we can 

identify common shortcomings, such as the lack of fuzzy data processing or representation, the impossibility of defining 

multiple weighting vectors as input to data model, and the lack of aggregation operators and modelling algorithms 

which give acceptable results for datasets consisting of a small number of cases. 

 

1.1.2 Objectives 

 
We wish to develop a collection of methods and tools which can be applied to the different steps of the Data Mining 

process: data representation, data exploration and data modelling. One of the objectives of the work is to review 

existing techniques, applying them to real and artificial datasets, thus identifying their limitations. In this manner we 

may define areas susceptible to improvement and we can develop techniques which give better solutions for the given 

data and application domains. A review of a selection of the ‘best of breed’ AI supervised and unsupervised techniques 
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shows their strengths and weaknesses in processing real data sets. The techniques reviewed include clustering 

algorithms, such as Kmeans, fuzzy c-Means, Kohonen SOM. In the case of classification or predictive modelling 

techniques we benchmark algorithms such as Feedforward Neural Networks, C4.5 and ID3 rule induction, Linear 

Regression and Logistic Regression. 

 

We study different aspects of the nature of data, for example its type, that is, numeric, categorical, binary, and so on. 

We study different ways of representing and analysing data, such as by clustering and classification, adding value to it 

by using weight criteria to indicate attribute reliability and relevance, creating models by aggregation, and eliciting 

underlying data structure. It follows from Section 1.1.1, that we are also interested in finding techniques of representing 

and processing which make it possible to extract a classification, clustering or predictive model from a relatively small 

number of cases. 

 

Thus we will develop tools and methods for all steps of Data Mining, from the initial representation and definition of 

the data, the exploration phase which includes the study of relationships between variables which may be defined with 

different types, and finally the modelling phase. These tools will enable us to represent and process data in the fuzzy 

form, together with non-fuzzy data. In the case of the exploration phase, we use such algorithms as Hartigans ‘joining 

algorithm’ and a new fuzzy covariance distance calculation. In the case of the modelling phase, we use aggregation 

operators such as WOWA, to process datasets with a small number of cases. WOWA needs to be modified to process 

data with missing values, and a method for learning the weighting vectors used by WOWA, from historical data. 
 

1.1.3 Scope and Orientation 
 
The scope in terms of data is defined as standard test datasets, and several real medical domain datasets captured 

specially for this work. In terms of data representation, a diversity of different data representation types are reviewed, 

and the case for the fuzzy form is evaluated. In terms of data processing methods, a selection of standard methods are 

tested against the data, such as, neural networks, rule induction and classical statistical methods.  We then test 

complementary techniques, such as those of Hartigan, fuzzy c-Means and aggregation operators. Two emphases are 

made in the orientation of the work: (i) the use of fuzzy techniques to enhance existing data analysis and representation 

methods; (ii) their application to medical data for prognosis in the case of the ICU data, and diagnosis in the case of the 

Apnea data. In Figure 1 we can see a summary of the different methods which have been developed, together with those 

used for testing and benchmarking, and their relation to the steps of data mining. We note that clustering methods such 

as Kmeans or Kohonen SOM, are restricted to the data exploration phase, whereas classification methods such as rule 

induction are used both in the data exploration phase and the data modelling phase. In Chapter 2 we enter into detail of 

the clustering and classification methods which have been used. 

 

DEFINITION AND          DATA         DATA 

REPRESENTATION       EXPLORATION      MODELLING 

OF THE DATA 

 

 

     Membership function definition,          Fuzzy covariances,                                                                  

     Quantifiers, weight vectors,           visualisation,                 WOWA aggregation 

     homogeneous representations-             Hartigan ‘joining algorithm’,                                    operator 

     for different data types,                        fuzzy c-Means                                                            

     data capture 

                    

 

 

 

 

     Categorical and non-fuzzy                     Kmeans, Kohonen SOM,                               FF Neural networks, 

     Representations                                      non fuzzy covariances,                                  Rule induction(C4.5), 

                                                                  rule induction (C4.5 and ID3)                  Logistic and linear regression, 

                                                                                                                                    OWA, WM 

 

 

Figure 1. Tools and methods used and developed (centre row), their relation to the different steps of Data Mining 

(upper row), and existing methods used for benchmarking (lower row) 
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1.1.4 Overview of thesis organisation 
 
The thesis is organised in the following chapters: 

 

Chapter 1 defines the motivation, objectives, scope and orientation and organisation of the work detailed in the thesis 

dissertation. A brief overview of the state of the art and previous work is detailed in Chapter 1, including a summary of 

the main contributions which the work of the thesis gives to the field. 

 

Chapter 2 consists of a review of preliminaries in key areas which the thesis deals with, including a detailed review of 

the history and evolution of AI and statistical data analysis and data modelling fields. This also includes description and 

discussion of key algorithms such as Hartigan’s ‘joining algorithm’, aggregation operators (WM, OWA, WOWA, …), 

C4.5, ID3, Kohonen SOM and fuzzy c-Means. There is also discussion of how to best introduce fuzzy concepts into 

algorithms such as C4.5 and the Kohonen SOM. 

 

Chapter 3 summarises the theoretical aspects and ideas related to the development work which has been undertaken 

during the four year period. This includes the evolution of ideas with respect to issues such as data fusion of variables of 

different types, comparison of variables of different types to generate covariances, and ideas for representation of crisp 

and fuzzy data attributes. The consideration of aggregation operators, provides a contrast to ‘data fusion’, and we 

consider variable and data aggregation, with application to medical diagnosis and prognosis, and developing solutions 

for problems such as missing values, weight assignment. We also consider a new weighting ‘bias’ scheme, based on a 

vector of ‘vectors’. 

 

Chapter 4 gives results of the application of the methods and algorithms to artificial and real data sets, with emphasis 

on some real medical domain problems. The real domains included are: ICU prognosis and Apnea syndrome screening. 

In Section 4.1 there is an extensive analysis of a real hospital ICU dataset, using first standard statistical techniques such 

as principal components, distribution analysis using plots and histograms, and correlation analysis. We then apply data 

mining techniques to the data: ID3 and C4.5 induction, back propagation neural network and Kohonen SOM. Finally 

we contrast these previous techniques with two approaches which are not usually included in ‘Data Mining toolkits’: we 

use the Hartigan ‘joining algorithm’ with crisp and fuzzy covariances as input to analyse relationships between 

attributes; and we use fuzzy c-Means to cluster data and give indications of relation between variables and the cluster 

prototypes. 

 

In Section 4.2 we apply four variants of a novel fuzzy covariance algorithm [Nettleton98b] to artificial datasets to 

generate a fuzzy covariance matrix which is then given as input to the Hartigan ‘joining algorithm’. The objective is to 

identify and rank the most significant attributes in each dataset. The benchmark results are compared with C4.5 and a 

Neural Network applied to the same data.  

 

In Section 4.3 the OWA and WOWA aggregation techniques are applied to a dataset of  Apnea cases from the Hospital 

Clinic of Barcelona, the data being captured in a crisp form, and the output being a binary valued diagnosis. Both the 

OWA and the WOWA operators use reliability and relevance vectors for input variable weighting which are assigned 

by a consensus of medical expertise and statistical analysis. We use the new weighting ‘bias’ scheme for the reliability 

weights.  

 

In Section 4.4 we apply the WOWA aggregation operator to diagnose Apnea cases using a dataset collected by the 

Hospital of the Santisima Trinitat, Salamanca. In this case, the data was captured in both crisp (categorical) and fuzzy 

(continuous scale) form, using a specially designed questionnaire. Different types of weight assignment were tried: 

machine learning, medical expert assignment, machine learning and medical expert assignment. Also, the WOWA 

precision for diagnosing positive and negative cases was benchmarked against ID3 tree induction and a feedforward 

neural network.   The data processing differs from the crisp Apnea data of Section 4.3, given that we also incorporate 

membership grade values as part of the input data. We use the techniques developed in Chapter 3, to process missing 

values and learn the ‘relevance’ weights from historical data using a genetic algorithm. 

 

Chapter 5 summarises the work and draws together some conclusions which may be made from the results. Finally, the 

annexes include a selection of documents and forms used, together with a complete bibliography of references given in 

the text. 
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1.2  State of the Art and Previous Work 

 
In this section we give an overview of some of the most recent works of investigation and innovative ideas in areas 

relevant to the thesis, such as the work of Takagi and Sugeno, Dubois and  Nakamori and Baldwin in data modelling, 

representation, and factor analysis. Later, in Chapter 2, we enter into more detail of the ideas and work of the major 

authors such as Bezdek and Quinlan, with special reference to recent developments on their original algorithms, such as 

fuzzy c-Means and C4.5 rule induction, respectively.  

 

In summarising the most important authors and papers in the fields which are relevant to the thesis work, the following 

areas are reviewed: fuzzy data analysis, especially the work of Zadeh and Bezdek; fuzzy data representation; 

aggregation of variables and data, especially the work of Yager and Torra; clustering; classification; medical diagnosis 

and prognosis; diagnosis of the sleep apnea syndrome. Later in Chapter 2, we enter into a greater level of detail for each 

of these aspects.  

 

1.2.1 Data Mining 
 

Data Mining is understood as data analysis with sophisticated tools, which allow processing and visualisation of 

multiple ‘views’, and the search for complex interrelations in the data. As well as presenting and manipulating known 

information about the Data, it allows the discovery of new information. Data Mining is characterised by the discovery 

of new knowledge.  

 

Data Mining (or Knowledge Data Discovery) is also a data analysis process of an inter-disciplinary nature, whose 

proposal is to identify and extract high value knowledge from data. The datasets may be high or low volume, have 

many descriptive attributes, non evident structure, and include ‘missing’ values, errors and noise. 

 

Data Mining uses diverse techniques to analyse and process data:  

 

 (a) Classical statistics: linear regression, correlation, and so on. 

 

 (b) Learning algorithms for classification and prediction: rule induction, neural networks, and so on.  

 

 (c) Data exploration using tools for graphical visualisation and manipulation. 

 

Statistics, on its part, offers techniques such as automatic classification, discrimination, factorial methods and graphical 

visualization. The proposal of ‘intelligent’ algorithms, on the other hand,  is to ‘learn’ from a dataset, and form a model 

which represents the environment, be it predictive or classicative. The techniques most often used are: neural networks 

to predict and classify, rule induction to explain the structure of a model and the profiles of the classifications, genetic 

algorithms for optimization problems, and correlation algorithms in order to identify the most relevant factors in a given 

problem. All these techniques are orientated towards the discovery of structure in a multidimensional dataset. The 

relationship between knowledge discovery in databases and classical data analysis is depicted in Figure 2. 

 

 

                                                                           Data Base 

  Statistics     Management       Visualisation 

                                                               Systems 

 

 

 

 

 

 

                Knowledge                                                                                                    Classical 

   Discovery                                  Artificial          Data 

   in Databases      Intelligence                                          Analysis 

 

 

Figure 2. Knowledge Data Discovery and Classical Data Analysis understood as interdisciplinary areas 
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Data Mining applications are usually orientated towards knowledge discovery and the generation of models, often using 

techniques such as prediction, classification, segmentation, association and the discovery of sequences and time series. 

Predictive models are used, for example, to predict those male customers between 25 and 45 years of age with 

probability greater than 70% of contracting a pension plan. Induction models, on the other hand, can tell us the profiles 

of the 1000 most profitable customers for a product line X. Association processes extract information such as: if the 

customer has bought A, then s/he will buy B, in 65% of all cases. We can also use sequence discovery techniques to 

deduce, for example, that a purchase transaction of beer occurs before a purchase transaction of Coñac, for 2 out of 

every 5 customers. The discovery of similar time sequences provides us with information such as: if the customer has 

bought A, then s/he will also buy B in the next 3 months, in 70% of all cases. Finally, segmentation, or clustering, can 

describe underlying structures without having prior knowledge of the data. For example, we could establish common 

tendencies among customers in different geographical areas, and define a common offering for them. 

 

Some of the key centres for Data Mining and investigators are: Usama Fayydad in MicroSoft Research, USA; Willi 

Klösgen in GMD (German National Research Centre for Information Technology) ; Heikki Mannila, previously of the 

University of Helsinki, Finland and now in Microsoft Research, USA; G. Nakhaeizadeh of Daimler Benz Research 

Centre AG,Forschungszentrum, Ulm, Germany; Gregory Piatetsky-Shapiro of  GTE Laboratories, USA; Ross Quinlan, 

of the  Centre for Advanced Computing Sciences, New South Wales Institute of Technology, Australia;  Ken Totton, 

Data Mining Group, British Telecom, England; Barry Devlin, IBM Dublin, Ireland. 

 

The approach of the group at Helsinki University,  is based on the analysis of data sequences, and the identification of 

recurrent characteristics inside of sequences of events. They use Markov chains and Monte Carlo methods to examine 

the interdependence of events in detail. They apply clustering methods to find regularities in the data. One of the special 

approaches adopted by this group is based on Kohonen neural networks for unsupervised clustering. 

 

Current focuses 

 

At present and in the past decade,  there has been much investigation with respect to neural networks, rule induction and 

genetic algorithms, combining these with classical statistics. There are also references to fuzzy logic concepts in Data 

Mining, especially for clustering, representation and the treatment of imprecision. In the area of hierarchical 

classification, the references tend to be related to tree induction.  

 

Borgelt, of the University of Magdeburg, Germany, in [Borgelt97] has focussed on "Evaluation Measures for Learning 

Probabilistic and Possibilistic Networks", which characterises a fuzzy system with a learning capability. Borgelt has 

worked with the Data Mining Group at Daimler-Benz under Nakhaeizadeh. In [Borgelt97], chi-square and entropy 

measures are used to calculate the information gain/loss and propagate this information in a network. In  Daimler-Benz 

the group is working on data reduction techniques for large numbers of attributes, with a reduced number of data types, 

and their algorithms are being tested with different data domains for benchmarking (not just fault analysis of car 

components and characteristics). 

 

Dubois, of the Institut de Recherche en Informatique de Toulouse, France, in [Dubois97] has focussed on  "User-Driven 

Summarisation of Data Based on Gradual Rules" in the context of data analysis. Some of the problems his group have 

encountered are: pre-process and dimension reduction and discovery of initial structure in the data. If we are interested 

in using Kohonen, C4.5 and c-Means to elicit the initial structure of the data, in a co-operative manner, c-means must be 

used with caution as it does not perform well with ‘outliers’, and it is necessary to define the initial number of clusters, 

such as in c-Medians and mixed c-Means. Alternatively, a simulated annealing (ID3) type algorithm could be used for 

finding a good initial solution. Also the Sugeno-Takagi model could be used as a substitute for the standard Kohonen 

SOM. The Kohonen SOM and c-Means may find very different partitions in the data, which would be an appropriate 

result in order to demonstrate contrasting techniques. [Dubois97] outlined a methodology for analysing a data set from 

scratch (step1, identify typical points; step2, compute cores; step3, refine rules). In the data example, there were only 

two attributes, because a previous pre-process of the data was assumed, in order to choose the most significant variables 

and the method focuses on creating rules from these variables.  

 

In the EC (Esprit) StatLog project [StatLog94], a benchmarking was carried out of 20 principal algorithms for AI 

classification and classical statistics classification. The following algorithms were included: C4.5; Linear and quadratic 

discriminant; NewID (variant of ID3). No algorithm was included which had its basis in fuzzy logic (e.g. fuzzy c-

Means). 
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Commercial data mining systems 

 

There are a number of commercial data mining systems in existence for general purpose data mining. These are, for 

example, SPSS’s Clementine, SAS Enterprise Miner, IBM’s Intelligent Miner for Data, Thinking Machine’s Darwin, 

and so on. All these systems contain algorithms which have come from investigation backgrounds. Apart from a basic 

set of statistical functions for data exploration and modelling, there are usually several algorithms for classification and 

clustering. These are typically: for prediction, feedforward neural networks, logistic and linear regression. For 

classification: rule induction algorithms, typically ID3 and C4.5 or similar. For clustering: Kohonen SOM Neural 

Network, K-means.  

 

In the case of Intelligent Miner, for prediction there is also the Radial Basis Function (RBF), and for clustering there is 

the Condorcet Criterion (Demographic) model which enhances processing for symbolic type data. There are separate 

algorithms for association analysis, temporal sequences and sequential patterns, which are based on statistical frequency 

techniques and direct sequence pattern matching. 

 

Enterprise Miner uses a data mining methodology-Sample, Explore, Modify, Model, and Assess (SEMMA). It has a 

‘canvas’ type icon based interface which uses drag and drop to create data mining processes following the SEMMA 

methodology. It provides specific algorithms for associations, sequential patterns, decision trees (CHAID/CART/C4.5), 

neural networks, logistic regression, clustering(K-means), RBF and a wide selection of statistical techniques.  

 

Clementine uses neural networks, regression and rule induction, with Kohonen nets for clustering and C4.5 rule 

induction for decision trees. Clementine makes extensive use of visualization techniques which give the user agility in 

manipulating the data mining process,  and for viewing results through a variety of graphical representations such as 

plots, points, histograms or distribution tables (horizontal bar charts) and webs of relationship. It can also generate 

models for prediction, forecasting, estimation and classification that can be exported as C language and used in other 

programs. It has a ‘canvas’ type interface similar to Enterprise Miner. 

 

Although these modern data mining toolkits are quite comprehensive in their data exploration and modelling 

capabilities, none of the mainstream systems offer fuzzy data processing or representation, or genetic algorithm based 

processing. Specific commercial toolkits do exist for fuzzy data processing, such as MIT GmbH’s DataEngine which 

allows design, definition and execution of fuzzy logic rules and membership functions. In the field of genetic 

algorithms, Ward Systems’ GeneHunter allows definition and execution of problems (dataset, modifiable genes and 

parameters such as mutation rate and crossover type) with a spreadsheet interface. 

 

 

 

In terms of data aggregation, there are no explicit aggregation operators. For attribute selection and significance ranking 

there are usually contrasting techniques available, such as principal component analysis, neural network sensitivity 

analysis, decision tree pruning, and different types of correlation and covariance. What may occur is that different 

techniques may give different results. 

 

 

 

 

1.2.2 Relevance and reliability 
 

Consider a set of cases C1, for example the set of  low-contaminant-emission vehicles. Each vehicle Vn in the set is 

defined by M attributes which describe it, for example, engine horse power, type of fuel (gasoline or diesel), date of 

registration, length, colour, and so on. Given that we have already determined the defining concept DGC for the 

members of the set, that is, vehicles with low contaminant emission, we can say that some attributes of the vehicle will 

be more relevant than others to the defining group concept DGC. For example, the attribute ‘date of registration’ 

indicates the age of the vehicle, and we know that vehicles registered before a certain date did not have to comply with 

current exhaust emission regulations. Also, recent innovations in engine design and the chemical composition of the 

gasoline itself have resulted in lower contamination. Thus we can make an initial qualitative assumption that ‘date of 

registration’ is relevant to low contaminant emission. On the other hand, the attribute ‘colour’ has no influence 

whatsoever on whether a vehicle pollutes more or less. In complex datasets with many attributes, a key initial problem 

is the quantitative determination of  relevance among attributes in relation to a given concept or ‘output’, and the 

ranking of all the attributes in order of their relevance. This can lead us to eliminate attributes whose relevance is below 
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a certain ‘threshold’, and therefore achieve a reduced minimal set of the most relevant attributes. In data analysis, this is 

our goal in the context of relevance. 

 

The work of [Gonzalez97] presents two contrasting approaches to the problem of obtaining the set of most relevant 

attributes. The first approach is to eliminate the non-relevant variables from the complete set, and the second approach 

is to incrementally build a set of the most relevant ones. SLAVE (Structured Learning Algorithm in Vague 

Environment) has as objective to accelerate the learning process, running time twice as fast with the same number of 

rules. Criteria for the goodness of a rule are (i) the degree of soft consistency  and  (ii) the degree of completeness. The 

datasets used for testing were the Ionosphere, Soybean & Wine datasets. Rule selection  is achieved by a 2 level Genetic 

Algorithm, at the variable level and the value level. 

 

Two information levels are considered, the relevance level and the level of dependence between variables. A rule has 

the following structure: 

 

 

Rule 

 IF Precedent 

 THEN Antecedent {represented by a chromosome} 

 

 

In conclusion, this work uses information  about the relevance of the predictive variables to improve the resulting 

models. 

 

 

[Blum97] makes several definitions of relevance, depending on the context and goals in each case. ‘Relevance to the 

target’, states that a feature xi is relevant to a target concept c if there exists a pair of examples A and B in the instance 

space such that A and B differ only in their assignment to xi and c(A) c(B). Thus, feature xi is relevant if there exists 

some example in the instance space for which, as a consequence of modifying its value, the classification given by the 

target concept will be affected. Blum also cites other relevance definitions, such as ‘strong relevance to the 

sample/distribution’, ‘weak relevance to the sample/distribution’, ‘relevance as a complexity measure’ and ‘incremental 

usefulness’. Depending on which definition of relevance is used, different features or groups of features may be 

identified as relevant, as is illustrated with a simple Xor type example. With respect to  pre-processing to reduce 

features before the classification (induction) algorithm begins, they detail a ‘filter’ type approach, which seems less 

interactive than Kohavi’s approach [Kohavi97], in that a filter module first executes to completion, followed by the 

induction algorithm. Two examples of filter algorithms are cited. The first filter algorithm is RELIEF [Kira92], which 

has been used by many medical data analysis applications, and which is also referenced in Section 1.4.6 of this thesis. 

RELIEF assigns a ‘relevance’ weight to each feature, which denotes the relevance of the feature to the target concept. It 

then samples instances randomly from the training set and updates the relevance values based on the difference between 

the selected instance and the two nearest instances of the same and opposite class. The second filter algorithm is 

FOCUS [Almuallim91], which exhaustively examines all subsets of features, selecting the minimal subset of features 

that is sufficient to determine the label value for all instances in the training set.   

 

[Kohavi97] explores the relation between optimal feature subset selection and relevance. It also develops a ‘wrapper’ 

mechanism , or FSS-Feature Subset Selection, which is embedded in rule induction algorithms C4.5 and ID3, and the 

Naive-Bayes algorithm. It shows an improvement in classificative accuracy for datasets such as Corral, Monk1 and 

Monk2-local, from the University of California at Irving repository. In some of the cases where the precision was not 

improved, the existing precision was equalled, but using fewer features. The justification for this approach is that many 

of the principal induction algorithms degrade rapidly in predictive accuracy in the presence of many features which are 

unnecessary for predicting the desired output. The Naive Bayes algorithm degrades for slowly under the same 

circumstances, but degrades rapidly when correlated features are added – that is irrelevant features with a significant 

correlation to other relevant features, but with low correlation to the desired output. 

 

Kohavi states that the wrapper approach is an improvement on simply using a filter such as FOCUS or RELIEF, 

because it avoids the main disadvantage of the filter approach which is that it ignores the effects of the selected feature 

subset on the performance of the induction algorithm. In the ‘wrapper’ approach, the feature subset is effectively 

optimised for use with the induction algorithm. 
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[Kohavi97] also gives several definitions from the literature for ‘relevance’, but which are only applicable to discrete 

features, although Kohavi states they can be extended to continuous features. Basically it is decided that two degrees of 

relevance are needed, ‘weak’ and ‘strong’,  in order to guarantee unique results. This is demonstrated by an example 

using Xor. A feature Xi is strongly relevant iff there exists some xi, y and si for which p(Xi = xi, Si=si) > 0 such that 

p(Y=y|Xi=xi,Si=si)!=p(Y=y|Si=si). A feature Xi is weakly relevant iff it is not strongly relevant and there exists a subset 

of features S’i of Si for which there exists some xi, y, and s’i with p(Xi =xi,S’i=s’i) != p(Y=y|S’i =s’i) 

 

 

 

 

 

Training set      Feature selection search          Training set 

                                           Induction 

    Feature               Performance   Algorithm 

                                            set                       estimation           Feature set 

                               

                      

                                                  Feature evaluation 

                                           Feature 

                                           set                       Hypothesis 

 

                                                  Induction algorithm 

 

          Estimated 

                   Test set                                                                         Final evaluation          accuracy 

 

 

 

Figure 3. The wrapper approach to feature subset selection. The induction algorithm is used as a ‘black box’ by 

the subset selection algorithm 

 

In Figure 3 we see a synthesis of the Wrapper approach [Kohavi97], in which the feature subset selection algorithm 

exists as a wrapper around the induction algorithm. The feature subset selection algorithm conducts a search for a good 

subset using the induction algorithm itself as a component of the function which evaluates the feature subsets. Hence 

the induction algorithm is considered as a black box, which is executed with the dataset, partitioned into internal 

training and test sets, for which different sets of features have been removed from the data. The feature subset with the 

highest evaluation is chosen as the final set on which to run the induction algorithm. The resulting classifier is then 

evaluated on an independent test set that was not used during the search. 

 

Kohavi contrasts two algorithms as the engine for the feature selection search: (i) hill climbing and (ii) best first search. 

These are applied successively to the tests datasets, with the induction algorithms being ID3, C4.5 and Naive Bayes. 

The results in some cases show slight improvements in classificative accuracy, but the real improvement is the creation 

of a classificative model which uses significantly less input features, while demonstrating a similar predictive accuracy 

to the original algorithms. 

 

Reliability 
 

Reliability is an area which in the 1980’s was an active field especially in relation to fault tolerance, and more 

specifically, fault tolerance of communications networks and computer CPU’s and storage. One traditional, simple, but 

expensive solution was to replicate units, execute them in parallel, and poll the outputs for a majority vote as the 

outcome. Fault tolerance was also achieved by built in ‘redundancy’. 

 

In terms of the reliability of data values, this usually also means having multiple sources for the same value, for 

example a temperature reading, or a medical diagnosis, and polling an odd number for a majority vote as the correct 

output. For example: we have five temperature sensors A,B,C,D,E  and three {A,C,E  say the temperature is between 

10 and 12 Celsius, {B  says the temperature is between 10 and 15 Celsius, and {D  says the temperature is between 25 

and 50 Celsius. The resulting output would be that the temperature is between 10 and 12 Celsius, by simple majority. 
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Note this method requires an odd number of sensors. Even though a majority of 60% of the sensors gave the same 

output, 40% gave different outputs. We could include this information as a further confidence level in the output. 

 

Replicated systems and polling are of extreme importance in vital control systems such as those found in airliners, 

railway networks, nuclear power plants, and so on. 

 

In the case of a numerical input variable, for example, temperature, in which we have just one sensor and one data 

value, we could assign a weight to the variable which indicates its reliability in general. That is, its tendency to give 

incorrect results, relative to some (absolute) measure. Another option is that a variable has a reliability weight for 

different bands of its distribution. For example, if we have the following set of temperature readings in degrees Celsius, 

{1,1,3,3,25}, the value 25 would be considered suspect, unlikely, or unreliable. Notwithstanding, the reliability of the 

values depends on the distribution in each case, thus the value 25 in the set {25, 25, 30, 30, 45} would be reliable. It 

follows that to each value, we could assign a reliability weight, with a value between 0 and 1, where 1 is totally reliable 

and 0 totally unreliable. 

 

Later we will see how Yager and Torra have extended this idea for aggregation operators to include weights for both 

relevance and reliability of input variables. 

 

 

1.2.3 Aggregation of variables and data 
 

The Ordered Weighted Average (OWA) aggregation operator allows the incorporation of ‘quantifiers’ into an 

aggregation process of corresponding data cases, and was first detailed by Yager in [Yager88]. More specifically, Yager 

deals with the problem of aggregating multicriteria to form an overall decision function. One key property of the OWA 

operator is that can position its output between the “and”, for which all the criteria must be satisfied, and the “or”, for 

which at least one of the criteria have to be satisfied. This allows a closer approximation to human decision making, in 

which case often we require “most” or “many” or “at least half” or “more than four” of the criteria to be satisfied. 

 

Yager’s work [Yager88] considers the use of t-norms, t-conorms and the s-operator to effect a quantitative 

implementation of the “anding” and “oring”. Although this implementation only allows the extremes “all” or “at least 

one”, while OWA permits intermediate situations. Yager, in [Yager88], and referencing [Dubois80], understands t-

norms as providing a way of quantitatively implementing the type of “anding” aggregation implied by the “all” 

requirement. T-conorms, a closely related set of operators, provide a way of implementing a type of “oring” operator. 

 

The WOWA Operator: Torra in [Torra97a  described the Weighted OWA operator (WOWA), which combines 

advantages of the weighted mean and the OWA operator, thus solving some of the shortcomings of the latter two 

operators. It considers two weight vectors:  corresponding to the relevance of the sources (as in weighted mean), and  

corresponding to the relevance (which we interpret as ‘reliability’) of the values (as in OWA). One of the difficulties in 

using aggregation operators is the initial fixing of the associated parameters, for example the relevance weights  of 

each information source. In [Nettleton01b] different data analysis methods are contrasted for determining the weights of 

the aggregation function. 

 

Choice of WOWA Operator: The WOWA operator has been chosen in order to aggregate data cases to produce a 

diagnosis for Apnea syndrome, as detailed later in Chapters 3 and 4. WOWA was chosen because it enabled us to 

include a quantification for both ‘reliability’ and ‘relevance’ into the aggregation. The operator is also adequate for 

processing data represented in the fuzzy form, including membership grades as part of the input. The WOWA operator 

has already been benchmarked, tested and compared against other operators and techniques, such as OWA, Choquet 

Integral, Sugeno Integral [Sugeno74], fuzzy t-Integral [Murofushi91]. One could say that the Choquet Integral or 

Sugeno Integral are more appropriate for processing data with grades of membership, but Torra has demonstrated in 

[Torra98c] that WOWA is equivalent to the Choquet Integral in given circumstances.  

 

Hartigan’s ‘joining algorithm’: Hartigan's  'Joining Algorithm' [Hartigan75  performs successive fusions of attributes 

(variables) using as input a covariance matrix of the attributes. One consequence of fusion is the reduction of the initial 

attribute set to a space of dimension 2 or 3, which simplifies, for example, the visualisation of the data. The fusion 

algorithm serves two objectives: the first being the reduction of attributes through their progressive unification; the 

second is the identification of the most significant factors and the factors between which there is the greatest relation. 

Outline: in each step, the pair of attributes with the highest covariance is fused to form new attributes, until the number 

of desired attributes is obtained, or until the binary tree of groupings is complete. It is from this tree of fused attributes 
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that we can select distinct descriptions of the objects being analysed; descriptions with the most convenient dimension 

in each case. 

 

Choice of Hartigan’s ‘joining algorithm’: Hartigan’s book ‘Clustering Algorithms’ [Hartigan75] was a landmark in 

the clustering algorithm community and has been used since as a source book for benchmarking algorithms and from 

which a wide range of variants and enhancements have emerged. Apart from providing ‘tried and tested’ algorithms, the 

book also provides and (in general) clearly explains the Fortran source code listings, although my implementation was 

in Borland ‘C’. Hartigan’s approach is based firmly in the traditional statistical field, and his algorithms are clearly 

‘crisp’ in nature. This provides a sounding board for generalising and adapting them to enable fuzzy data processing. 

Later work by Hartigan includes considerations of distribution in clustering [Hartigan77][Hartigan78], consistency 

[Hartigan81] and more theoretical aspects [Hartigan85a][Hartigan85b].  

 

Other comparable authors in the field of  factorial and multivariate analysis: three other references which explain 

applications to ‘factorial analysis’ are [Mardia79][Lebart85][Kaufman90]. [Kaufman90], is especially relevant, as its 

analysis methods are based on the fuzzy form, and has a wide range of 10 different algorithms for attribute fusion, 

which are distinct to those of Hartigan.  

 

 

1.2.4 Fuzzy data representation 
 

Different techniques exist for representing data in the fuzzy form. For example, the heterogeneous representation of 

Hathaway and Bezdek [Hathaway96] and the ‘Parmenidean Pairs’ of [Aguilar91]. [Aguilar91] presents a technique 

called ‘Parmenidean Pairs’, which automatically constructs an odd number of linguistic labels from two initial 

antagonistic linguistic concepts. This method automatically constructs a system of 5 linguistic labels which represent 

the ordered values of the variable, derived from what is called a parmenidean pair, which responds to the basic opposite 

values which the variable may assume. This method is very apt for variables such as ‘days of stay in the hospital’, for 

which we could define the fuzzy values VERY SHORT, SHORT, MEDIUM, LONG, VERY LONG derived from the 

basic opposites of SHORT, LONG. The complexity and usefulness of the technique lies in the automatic calculation of 

the geometric properties of the membership functions: gradient, centre of mass, overlap between each linguistic labels, 

length of the gradients, and the resulting grade of fuzziness which these properties define. 

 

Grade of      

Member-       

ship      

 

1   

                     Short          Medium         Long 

 

 

      Very Short                                            Very Long 

0   

     0          50  100         150 

  Days of Stay in Hospital 

 

Figure 4.  Representation of Lexical Variables with Trapezoidal Areas 

 

Figure 4 shows a simple fuzzy representation for a typical questionnaire  'response'  using a FLV (Fuzzy Linguistic 

Variable). From a semantic point of view, a FLV can be identified by 3 parameters: its relative position with respect to 

the other ones, its degree of imprecision, and its degree of uncertainty, these last can be merged into a single concept of 

softness, as opposed to crispness. 

 

The trapezoidal and triangular forms can be considered as approximations of membership functions whose natural form 

is curved. The curved form is more complex to generate and is often represented by a parametric equation. The desired 

curved form has to be generated, or interpolated, from a finite number of points. In Figure 5 we see an  example of a 

non-linear membership function, in which the five fuzzy sets defined by trapezoids in Figure 4 are now represented by 

smooth curves. Note that, in Figure 4 there is an area of overlap of three fuzzy sets; very short-short-medium, and 

medium-long-very long. This means that a point could have a non-zero membership grade to each of three possible 

fuzzy sets. In Figure 5, on the other hand, overlap only exists between two fuzzy sets in any one point. The ranges of the 

fuzzy sets over the x-axis also differs between Figures 4 and 5. 
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Figure 5. Example of  non linear membership functions 

  

 

Associated work with respect to the representation of membership functions and linguistic labels 

 

Some recent references are as follows: in the case of  trapezoidal and triangular fuzzy sets, such as [Roychowdhury97]; 

for complex membership functions, [Boixader97] treats of membership functions which may have irregular forms; and 

[Torra99c] considers the generation of membership functions from a set of observations. 

 

 

1.2.5 Fuzzy data analysis 
 

Fuzzy data analysis is covered extensively in Sections 2.2 and 3.1. This section provides a brief introduction with 

reference to some of the key algorithms. 

 
Fuzzy c-means clustering: fuzzy clustering algorithms are mathematical tools for detecting similarities between 

members of a collection of objects. One of the most widely known algorithms is the fuzzy isostar or fuzzy c-Means 

algorithm developed by Dunn [Dunn74] and extended by Bezdek [Bezdek73]. The fuzzy c-Means (FCM) clustering 

algorithm is a set-partitioning method based on Picard iteration  through necessary conditions for optimising a weighted 

sum of squared errors objective function (Jm). The number m is a parameter ranking from 1 to ; J1 is the classical 

WGSS objective function which serves to define the hard (or crisp) c-means (HCM) and hard ISODATA algorithms 

[Duda73]. Dunn first extended J1 to J2 in [Dunn74], and Bezdek then generalised J2 to Jm for 1  m   in [Bezdek73]. 

Much of the work carried out on theoretical issues related to its mathematical structure is summarised in [Bezdek81]. 

Later work such as [Bezdek87] and [Pal97] have introduced the c-varieties and c-medians algorithms, respectively, 

which do not require an a priori assignment of the parameter ‘c’ (the number of partitions), and which allow for mixed 

data types for input attributes. 

 

Fuzzy covariance matrix: Gustafson and Kessel [Gustafson79] were the first to use the term ‘fuzzy covariance 

matrix’, and they generalised the fuzzy c-Means algorithm to include it, their motivation being  the obtention of a more 

accurate clustering. The calculation itself was limited to the covariance of a fuzzy cluster with respect to its fuzzy 

prototype. More recent works, such as that of [Watada94][Wangh95][Nakamori97] have created specialised fuzzy 

covariance calculations tailored and tuned for specific applications. 

 

Fuzzy clustering with weighting of data variables: a recent work by [Keller00] considers fuzzy clustering with 

weighting of data variables, in which an objective function-based fuzzy clustering technique assigns one influence 

parameter to each single data variable for each cluster. The distance measure determines de influence of given data 

attributes for each cluster, and therefore allows attributes to be identified which determine the class represented by the 

cluster. The influence parameter can be used to reduce the influence of one attribute on only some clusters without 

ignoring that attribute for the whole classification. The resulting information can be used to partition a dataset into 

smaller data parts with a reduced number of attributes, which can then be subject to further analysis.  

 
Fuzzy data modelling: data modelling has as its objective the creation of a model with N inputs and M outputs, which 

is able to simulate the behaviour of the outputs with respect to the inputs. A typical statistical model is a regression 

model, which finds a best ‘fit’ of the outputs to the inputs. Clustering and classification are both modelling techniques, 
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as we will see in later sections of the thesis. If we suspect that in the nature of the data there is a ‘fuzzy’ component, 

then we can consider techniques which allow the manipulation of this type of information. In the Sugeno-Takagi fuzzy 

model [Takagi85], Guassians are used with the Mahalonobis distance to ‘fine tune’ the function. The objectives are to 

improve the optimisation with one of the ways being to initialise the parameters with a ‘good guess’ or a ‘better guess’. 

The model is made to grow incrementally, using one, two or three initial rules and then go on adding. 

  

Fuzzy neural modelling: neural network models attempt to simulate the functionality of the biological brain by 

defining an interconnected network of ‘neurons’ to process data inputs and produce corresponding outputs. A simple 

neural network model consists of an input ‘layer’ of neurons, a ‘hidden’ intermediate layer and an ‘output’ layer. 

Weights are defined for the interconnections between neurons. The weights are augmented or diminished by the 

stimulus of the inputs and the propagation of the data through the different layers. Thus by successive presentations of 

inputs the network begins to model the data and produce the most adequate outputs in each case. Fuzzy techniques can 

be included in different ways in a neural model, the first being in the representation of the data, including the grades of 

membership as input, for example. Alternatively, the internal working of the model itself may be modified to process in 

a fuzzy manner, for example in the internal assignment of the weights or the propagation mechanism. 

 

Fuzzy rule induction: rule induction is a technique whose goal is to create a set of rules from a dataset. The rule 

induction algorithm has no additional information apart from the data itself. The quality of the rules is a key aspect, 

combining precision, that is a given rule correctly classifies a high percentage of the corresponding cases, with 

significance. By precision, we mean that a given rule correctly classifies a high percentage of the cases which 

correspond to it, and by significance we mean that a significant number of cases as a proportion of the total number of 

cases, correspond to the given rule. Fuzzy techniques can be included in different ways to rule induction, the first being 

in the representation of the data, including the grades of membership as input, for example. Alternatively, the internal 

working of the induction process itself may be modified to process in a fuzzy manner, for example in the definition of 

the decisions made at each node in the tree or in the pruning and compaction phases. 

 

A Fuzzy Projection Pursuit, called  ID3* has been developed by [Miyoshi97  which references other fuzzy versions of 

the ID3 rule induction algorithm and more recent work by Quinlan. In his work, Miyoshi unifies the Fuzzy ID3 

approach of [Umano94  and the Projection Persuit approach of [Friedman74 . [Wangc96] introduces ‘FILSMR’, a 

fuzzy inductive learning strategy for modular rules. This method chooses the best 'attribute-value' while ID3 chooses 

the 'best-attribute'. This indicates its greater level of 'granularity'. A ‘class membership value’ is considered equivalent 

to a  ‘soft instance’. The algorithm used by Wang finds relevant attribute-relation pairs, maximising the 'fuzzy 

information gain'. The heuristic of minimising 'entropy' is used to determine which attribute should be next selected in 

the decision tree, looking for good rules with truth level above a given threshold.  

 

Fuzzy factorial analysis: factorial analysis is defined as the analysis of an initial set of input attributes, in order to 

identify relationships and a reduced number of factors in terms of the original values, which best represent the data. 

This is different to defining the most relevant attributes as seen in Section 1.2.2, because the objective in factorial 

analysis is create new factors in terms of the original attributes, then eliminating those original attributes. Fuzzy 

factorial analysis may be considered as factorial analysis, extended to treat data in a fuzzy form, or it may imply that the 

factorial analysis algorithm itself processes in some way in a fuzzy form.  

 

Factor analysis for fuzzy data is also a theme tackled in [Nakamori97 . Traditional data analysis methods are initially 

cited, such as those of Spearman, and methods using Eigenvectors. The classification of adjectives by factor analysis is 

considered. Nakamori cites that one reason that factor analysis for fuzzy data has not been developed more, is the 

difficulty to calculate the second moment of fuzzy data given by interval fuzzy numbers. He defines a fuzzy correlation 

matrix and a proposal for fuzzy factor analysis based on this: (i) correlation matrix of averaged data R = (r ij ) ; (ii) 

correlation matrix R
k
 = (rij

k
) of subject k; (iii) variance of correlation {rij

k
}   ij

2
 ; (iv) fuzzy correlation matrix R = ( 
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1.2.6 Clustering 

 
Clustering may be defined as the process of dividing a data set into mutually exclusive groups such that the members of 

each group are as ‘close’ as possible to one another, and different groups are as ‘far’ as possible from one another, 

where distance is measured with respect to all available variables. We consider clustering given that it is one of the 

fundamental aspects of Data Mining and may be applied both in the data exploration phase as well as in the data 

modelling phase. [Hartigan75] defines clustering as the grouping of similar objects, whereas, classifying is naming, 

such as in the taxonomy of animals and plants of Aristotle, and Linnaeus (1753). Each species belongs to a series of 

clusters of increasing size with a decreasing number of common characteristics. For example, man belongs to the 

primates, the mammals, the vertebrates, the animals. 

 

The principal classification problem in medicine is the classification of disease. The World Health Organisation 

produces  a Manual of the International Statistical Classification of Diseases, Injuries and Causes of Death (1965). This 

provides a standard nomenclature which allows the compilation of health statistics, comparable across different 

countries and time intervals. A particular type of classification within a disease is the identification of stages of severity 

– for example, for renal disease (1971). Various symptoms are grouped by expert judgement to make up ordered classes 

of severity in three categories. Goldwyn et al (1971) use clustering techniques to stage critically ill patients. 

 

For diseases that are caused by viruses and bacteria, the techniques of numerical taxonomy are employed, and there are 

many papers in the literature with respect to these techniques. For example, Goodfellow (1971) measures 241 

characteristics of 281 bacteria, some being biochemical, some physiological and others nutritional. He identifies seven 

groups substantially conforming to previously known groups. However, the classifications of viruses of Wilner (1964) 

and Wildy (1971) and the classification of bacteria of Prevot (1966) are still based on picking important variables by 

expert judgement. 

 
Clustering is a technique which is generally considered as unsupervised, which does not benefit from a priori structure 

into which the cases may be inserted. It is the job of the data analyst to later give meaning to the groupings which have 

been generated. For example, in Figure 6, Cluster I may correspond to young healthy patients, Cluster II to middle age 

overweight patients and Cluster III to middle age non-overweight patients. Notwithstanding, the clustering algorithm 

would have no previous information that the cases should be grouped by age and weight categories. Figure 6 shows 

three clusters with cluster centres indicated by a cross: in Cluster III we see the highest compactness and smallest 

average intra-cluster distance, whereas Cluster I demonstrates the least compactness and greatest intra-cluster density. 

In this sense, we could say that Cluster III has the highest ‘quality rating’ in terms of similarity of the cases assigned to  

it, and Cluster I has the lowest ‘quality rating’ for the same reasons. In terms of similarity of clusters, we observe that 

the two clusters with the minimum distance between cluster centres are Clusters I and II, whereas Clusters II and III are 

the most distant. 

 

Extended details of the clustering techniques relevant to the thesis are given in Sections 2.4 and 2.5. 
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1.2.7  Classification 
 

Classification may be defined as the process of dividing a data set into mutually exclusive groups such that the members 

of each group are as ‘close’ as possible to one another, and different groups are as ‘far’ as possible from one another, 

where distance is measured with respect to specific variable(s) which are trying to be predicted. For example, a typical 

classification problem would be to divide a database of patients with respect to a ‘state of health’ variable with values 

‘good’ and ‘bad’. Classification, as well as clustering, is a fundamental part of any Data Mining process, although, in 

contrast to clustering, its application is limited to the data modelling phase. 

 

Statistics has given rise to a large number of classification methods, which are summarised in [Hunt75]. CART 

[Breiman84] is a well known system for building decision trees which was developed by statisticians, being based on 

the previous work by Friedman [Friedman77], also related to Quinlan’s ID3 [Quinlan83]. 

 

 
 

Classification distinguishes itself from clustering given that in the former a previous classification structure is defined, 

and the objective is that of successfully placing each case in the class which it best belongs, with respect to its 

characteristics. Classification is generally a supervised process, which may be trained, for instance, in positive and 

negative examples. In the above classification tree, the data would consist of different patient types, covering all classes 

defined in the structure: thorax injuries, head injuries, non-accident cases (e.g. heart attack) and non-emergency cases 

(e.g. broken arm). 

 
Extended details of the classification techniques relevant to the thesis are given in Section 2.6. 
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1.2.8 Medical Diagnosis and ICU Prognosis 

 
We distinguish diagnosis as the problem of establishing what category of illness or illnesses the patient has, while 

prognosis deals with the recovery prospects for a patient whose diagnosis has been previously established. Depending 

on the diagnosis a given treatment is prescribed, and depending on the prognosis, this treatment may be modified or 

adapted and a series of recovery phases planned, with the assignment of the human and clinical resources necessary for 

each phase.  

 

Classical Statistical Approach 
 

The literature of statistical treatment of medical diagnosis and prognosis is very extensive. One of the key books which 

provides a survey of the work in the area is [Lee80], dealing with statistical methods for survival data analysis, with a 

comprehensive overview of survival distributions, identification of risk factors and prognostic factors, and execution of 

clinical trials. ‘Survival time’ is defined as the time to the occurrence of a given event, such as the development of a 

disease, injury, response to a treatment, relapse or death. ‘Survival data’ is defined as including variables such as 

survival time, response to a given treatment, and patient characteristics related to response, survival and the 

development of a disease or injury. If there are no censored observations, that is, those with missing data, the 

survivorship function is estimated as the proportion of patients surviving longer than t: 

 

  ^ 

S(t) = number of patients surviving longer than t     (1.1) 

                   total number of patients 

 

where the circumflex denotes an estimate of the function 
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Figure 8. Example of a survival curve 

 

 

Prognostic Scoring Systems in Intensive Care 

 
Prognostic scoring systems are systems which predict patient outcome based on physiologic parameters considered to 

be correlated with outcome (based on statistical analysis or expert opinion). These scoring systems have been 

historically developed to predict outcome for populations of patients as opposed to individual patients. Prognostic 

scoring systems essentially allow physicians to compare observed outcome, such as mortality, with a predicted 

mortality for the population of patients admitted to their intensive care units (ICU).  
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Frequently Employed Prognostic Scoring Systems 
 

The major scoring systems in the United States are the Acute Physiology and Chronic Health System (APACHE), the 

Mortality Prediction Model (MPM), and the Simplified Acute Physiology Score (SAPS).  

 

The APACHE system first developed in 1981 by William Knaus and associates [Knaus81] is now in its third generation 

(APACHE III), although APACHE II is still the most widely employed system due to the high cost of APACHE III. 

APACHE II and III are based on four major components: diagnosis (including surgical and medical categories), 

physiologic derangement, chronic health, and age. Also included in the data base is patient origin. The APACHE 

system computes data for each ICU patient based on the first 24 hours of ICU hospitalisation, with the worst value in 

the 24-hour period for each variable inserted into the predictive formula.  

 

APACHE II was developed in 1985. It was initially evaluated in a study of 5,815 patients. It is to date the most 

extensively used severity of disease program and as such, is the most validated of all scoring systems. Data must be 

hand entered into a computer by a trained technician, and from that an APACHE score is computed for each patient. 

The higher the score the greater the severity of disease. This data is also converted into a predicted probability of death 

for each patient. This data, combined with other information, is then used to compute a predicted mortality for the 

population of patients entered into the program. The mortality prediction equation is the following:  

 

 

     LN(R/1 - R) =  -3.517 + {(APACHE II) (0.146) + S + D}     (1.2) 

 

     where 

 

          R = Risk of hospital death 

 

          S = Additional risk imposed by emergency surgery 

 

          D = Risk (+ or -) imposed by specific disease 

 

 

Individual survival outcomes for each patient are entered into the program. This predicted mortality for the entire 

population is then compared with the observed mortality for the entire population.  

 

APACHE III was developed in 1991. It is the first scoring system to allow for fully automated entry of data. It follows 

the same pattern as APACHE II. It was initially tested on 17,440 patients. Factors such as the diagnosis and patient 

origin play a more important role in the predictive formula in this model. An APACHE III score is tabulated based on 

the worst values for each parameter over the first 24-hour period. There is a decreased emphasis on the global APACHE 

III score, with greater emphasis placed on the APACHE III score within each diagnostic group.  

 

Conversion of the APACHE III score to a probability of hospital mortality is achieved through logistic regression 

equations which are individualised for each of 79 diagnostic categories and for each of nine patient origins. Although 

the predictive equations have not been published by the authors of APACHE III, the authors have stated that the 

equations can be acquired through direct correspondence with them.  

 

MPM was first developed in 1987 by Terres and associates. The model differs from APACHE in that it does not 

produce a score, but a direct probability of mortality. It is now in its second generation. This system is based on 19,000 

patients from 139 ICUs. This model offers two capabilities which distinctly define itself from the APACHE model. 

First, it provides a probability of hospital mortality at admission. This allows a prediction to be made before any 

intervening ICU care can be given, which over the ensuing 24 hours could modify prognosis. In addition, those patients 

who die or are transferred out of the ICU before 24 hours have elapsed receive a mortality prediction at admission. 

Secondly, a specific probability model designed for use at 24 hours is available. This allows for a revaluation of 

prognosis at 24 hours based on a model designed for a 24-hour evaluation. The APACHE model can be used on a daily 

basis, but a specific 24-hour model does not exist.  

 

SAPS was developed by LeGall and associates in 1984 and is now in its second generation [LeGall93]. It was 

developed to offer a simplified version of the original APACHE model which in turns facilitates data collection. The 

model relies on 13 physiology variables plus age. SAPS II employs statistical methodology to determine the range for 

predictor variables, to assign points to each of these ranges, and to convert a SAPS score to a probability of hospital 
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mortality. The SAPS score is converted to a statistical probability using a plot. SAPS uses the worst variables during the 

first 24 hours and does not require a diagnosis to obtain the probability of hospital mortality. 

 

 

Artificial Intelligence Approaches 
 

The SMASH project at the IIIA Institute, Catalunya, Spain [IIIA96], applies ‘intelligent agent’ technology to the 

medical environment. The objective of SMASH (Systems of Multiagents for Medical Services in Hospitals) is the 

definition of a rational multi-agent architecture, and the development of prototype multi-agent systems with learning 

capabilities that cooperate in the solution of complex problems in medical environments. The system comprises four 

aspects: (i) complex rational behaviour, divided into ontological, epistemic, motivational and communicational; (ii) 

transcription into an object-oriented environment using logic-based tools; (iii) deployment of rational general-purpose 

accountable software agents, that can be tailored to cooperatively solve different tasks; (iv) application to the medical 

and hospital-management environments for "proof of concept". 

 

[Armengol00] is a second system developed at IIIA, which applies a CBR (Cased Based Reasoning) approach to the 

individual prognosis of diabetes long-term risks. The system, called DIRAS, is an application which gives support to 

physicians to determine the risk of complications for individual diabetic patients. The risk pattern of each diabetic 

patient is obtained using a Case-based Reasoning method. Case-based Reasoning is defined as technique which uses 

past experiences (cases) to solve new situations. For each patient, the method determines the risk of each diabetic 

complication according to the risk of already diagnosed patients. A description is then built which can be viewed as an 

explanation of the obtained risk.  

 

[Escalada99] presents another work carried out at IIIA, which consists of a knowledge based system for  real time 

physiopathological diagnosis in a critical care environment. In a paediatric intensive care unit (ICU), patients are 

monitored continuously, and many variables are gathered which indicate their physical. According to the situation in 

any given moment, control signals are sent to the patient so that his/her medical situation is always kept under control. 

The solution involves a knowledge based system appropriate for a real-time environment, and consists of specific 

modules which mutually interact. 

 

[Irani95] presents a work whose objective is to elicit structure and causal relationships from a medical records database 

of hyperlipidemias. Some interesting concepts are used, such as a linear scale to transpose the linguistic labels onto a 

numeric sequence. That is: 

 

   -3           -2           -1            0            1            2             3 

 

much    worse     slightly no slightly better much 

worse               worse change   better  better 

 

The average agreement of the output causal relationship was calculated between the Expert Cardiologist, a Regression 

Equation and an Expert System. The predictive model was based on a back-propagation neural network, which, in this 

case gave worse results than a multiple linear regression model. 

 

In contrast to the elicitation of causal relationships of [Irani95], the work of [McLeish95  studies information discovery, 

using such techniques as ‘weight of evidence and belief functions’. [McLeish95] typically uses a subset of 18 key 

attributes as a starting point for input to the belief function. One of the conclusions of the study was that in this case, the 

statistically derived data outperformed the expert derived data. 

 

One of the more interesting recent works is that of [Dreiseitl99], which presents a set of variable selection methods for 

diagnosis of Myocardial Infarction. This is carried out in two steps: (i) determine which inputs are deemed relevant for 

predicting myocardial infarction by various methods; (ii) validate and visualise these inputs using self-organising maps 

(SOM). The input selection methods used are: (a) logistic regression with stepwise, forward and backward variable 

selection, as implemented in the SAS LOGISTIC procedure; (b) feedforward neural nets with input relevance 

determination; (c) Bayesian neural nets with automatic relevance determination; (d) rough sets. The initial input 

variable set consists of 43 attributes (age, gender, smoker, ex-smoker, family history, diabetes, hypertension, ….) and 

from these each method must select the 8 most relevant attributes for diagnosis of Myocardial Infarction. The result was 

a quite good consensus between different methods, although three attributes chosen by the medical expert were not 

selected by any of the methods. The SOM was used to plot the distribution density of the output variable, and validate 

correlations. 
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[Demsar99] use ID3 classification trees and a Naive Bayes classifier to predict survival or not of each of 68 patients in 

the dataset. The initial number of features was 174, and for 78 features, data was missing for 50% or more of the cases. 

The data was pre-processed to categorise (discretise) the continuous features, given that the Naive Bayes technique 

cannot directly handle continuous features. Categorisation was carried out by using quartiles and entropy-MDL based 

discretisation. After categorisation, features were ranked using a system called RELIEFF [Kira92], which measures the 

usefulness of a feature by observing the relation between its value and the patient’s outcome. After feature selected, the 

number of features was reduced from 174 to 12. The features were all specific clinical indicators, such as “the worst 

partial active thromboplastin” with categories < 78.7 and  78.7. The reasoning was that if there is a group of patients 

with the same of similar feature values, the observed feature is “valuable” as a predictor if it has different values on 

pairs of patients with different outcomes (thus distinguishing between them), but the same value on pairs with the same 

outcome. 

 

Assuming the independence of predictive variables, the probability that a patient described with values of predictor 

variables V = (v1, … , vn) survives can be estimated by the naive Bayesian formula: 

                  n 

 P (R / V) = P (R)   P (R|vi)       (1.3) 

                 
i=1

   P (R) 

 

where P(R) is the a priori probability of survival and P(R|vi) is the conditional probability of survival if the i-th 

predictor variable has the value vi; both are estimated from the training set of patients. 

 

[Pessi95] is an application of SOM nets to patient grouping. Patient grouping is normally based on ‘period of stay’, 

‘intensive care needs’, ‘different service needs’, and so on. A correct classification is important to enable a good 

planning of resource allocation, and cost optimisation. Diagnosis codes were used as part of the input to a SOM in order 

to group 8000 patient cases. The diagnostic codes are complex, having a binary tree structure down to 4 levels. The best 

accuracy was a 75% correct classification, which compares favourably with conventional assignment methods. 

 

[Khang99] on the other hand,  applies the ‘hedge algebras’, originally defined in [Zadeh73] (see Section 2.2) to extend a 

MYCIN type rule based medical diagnosis system. For example, the linguistic variable FEVER = {high_feverish, 

low_feverish, ,medium_feverish, continuous_feverish, fitful_feverish, fever_in_afternoon, fever_at_night, 

fever_with_sweats, …}.  This is analysed in terms of  a ‘symmetrical extended hedge algebra’ which is developed in the 

paper: FEVER_DEGREE: high_feverish, medium_feverish, … . FEVER_TYPE: continuous_feverish, 

periodic_feverish, … . FEVER_TIME: morning, afternoon, night_feverish, … . FEVER_DAYS: one_day, two_days, 

some_days_feverish, … . WITH_HEADACHE: with_headache, without_headache, … . WITH_COLD_TREMBLE: 

with_, without_coldtremble, … . WITH_SWEATS: with_sweats, without_sweats, … . 

 

From the previous definition, [Khang99] can develop rules of the following type, based on the ‘aggregate hedge 

algebra’ for the objective label of FEVER_OF_HEPATITIS: 

 

Rule 1: If FEVER_DEGREE=”low_feverish” 

 And FEVER_TYPE=”not_fitful_feverish” 

 And FEVER_DAYS=”7-10 days” 

 And WITH_HEADACHE=”with_headache” 

 Then FEVER_OF_HEPATITIS=”very_specific” 

 

Rule 2: If FEVER_DEGREE=”medium_feverish” 

 And FEVER_TYPE=”not_fitful_feverish” 

 And FEVER_DAYS=”7-10 days” 

 And WITH_HEADACHE=”with_headache” 

 Then FEVER_OF_HEPATITIS=”little_specific” 

 

Rule 3: If FEVER_DEGREE=”high_feverish” 

 And FEVER_TYPE=”fitful_feverish” 

 Then FEVER_OF_HEPATITIS=”very_unspecific” 
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UCI Machine Learning Group Data Base Repository 

 

This is a key source for test data sets for investigators which wish to test new algorithms and techniques on standard 

datasets, for which there exists previous benchmarks. This makes it easier for investigators working in the field to cross 

compare their results with other techniques. In the medical domain, the following four datasets can be highlighted: (i) 

Echocardiogram Database from the Reed Institute, Miami. This has a reasonable level of documentation, consisting of 

13 attributes with numerical values, and a binary classification: patient alive or dead after a given ‘survival’ period. (ii) 

ICU Data from Serdar Uckun (AIM ‘94), which is a data set of treatment of patients in the  ICU who have ‘Adult 

respiratory distress syndrome (ARDS). It is one of the more complex datasets. (iii) Post operative patient data base from 

Jserzy W. Grzymala-Busse, which consists of  3 classes, 90 instances and 8 attributes, one of which is numeric with 

missing values. 

(iv) Coronary disease data base which comes with extensive documentation. It consists of 4 data bases: Cleveland, 

Hungary, Switzerland and VA Long Beach. 13 of the 75 attributes are used for prediction in two separate test, each of 

which achieved a classification precision of  75-80%. All 13 chosen attributes are continuous values, and it includes 

clinical cost data which is useful for studies whose objectives are the minimisation of operating costs. 

 

 

1.2.9 Diagnosis of the Sleep Apnea Syndrome 
 

The Sleep Apnea Syndrome 
 

The Sleep Apnea Syndrome is a frequent problem, which to a greater or lesser extent affects between 2 and 4% of the 

adult population in the developed countries[Duran96][Olson95]. It is characterized by complete (apnea) or partial 

(hypopnea) interruption of respiration during sleep. The presence of this syndrome has been associated with excessive 

somnolence, with consequences such as traffic accidents and the reduction in quality of life and professional 

development[Lavie84]. It has also been linked to cardiovascular illnesses, there being a greater prevalence of 

hypertension, cardiac arrhythmia’s, cardiopathic isquemica and cerebral-vascular accidents (stroke) in these patients. 

 

The Obstructive Sleep Apnea Syndrome (OSAS) is a set of secondary clinical manifestations relating to the ceasing 

(apnea) or reduction (hypopnea) of air flow during sleep, caused by a partial or total collapse of the upper air way at the 

faring level. The severity of the OSAS is defined by the apnea hypopnea index , or AHI, (also known as RDI, 

Respiratory Disorder Index) which is the number of apneas plus the number of hypopneas per hour during sleep. 

Generally an AHI 10-15 is considered pathological. Patients with low AHI’s, that is, less than 5 apneas, do not tend to 

have clinical consequences. Light cases, between 5 and 20, have slight consequences while moderate cases, between 20 

and 40 usually show clinical manifestations. Severe cases, with an index above 40, show the most evident symptoms 

and present an increase in illnesses and death[Lugaresi83][Partinen88]. 

 

Clinical presentation 
 
There are diverse symptoms associated with OSAS. They often become introduced insidiously during a certain period 

of time and are often overlooked in clinics and even by the patients themselves, due to their lack of specificity. The 

snore is one of the principal symptoms. The long snoring history which refer to patients with OSAS reflects the increase 

of resistance of the upper air tract during sleep. The presence of respiratory pauses witnessed by the room partner is 

another important data referenced in the literature, and tends to be a good symptom predictor. 

 

Other clinical manifestations of OSAS seem to be due to the de-structuring of sleep, by the multiple transitory micro-

awakenings, the loss of deep sleep levels, and to recurrent episodes of arterial hypoxemia. Among these symptoms we 

can highlight daytime hypersomnolence, alterations of personality, loss of memory and of concentration, which can 

gravely alter the daily life of these people.  

 

Prevalence 
 

The prevalence of OSAS oscillates between 1-9% according to studies. This difference in the percentages obtained  

reflects the diversity of methods and criteria used to diagnose OSAS and the possible differences in the populations that 

have been studied. The study of reference is that realised in the population of Wisconsin is [Young94], where the 

prevalence obtained reached 2% for females and 4% for males, showing minimum symptoms. When we extrapolate 

these results to the general population, 9% of women and 24% of men would present sleep related respiratory 
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alterations. This elevated prevalence in adults is considered to be a significant problem for public health. The studies 

realised in mixed sex populations are limited, but it is estimated that the proportion of men/women is 3/1. 

 

Morbidity and mortality 
 

Daytime hypersomnolence has been related to a reduction of physical and mental effectiveness, in the daily activity of 

the individual, including the work environment, and the ability to drive automobiles (drive worse and have greater risk 

of suffering traffic accidents). As well as daytime hypersomnolence, a certain relation has been identified between 

OSAS and systemic arterial hypertension. The patient with OSAS tends to present an elevated sympatic activity, which 

can cause an increase in the daytime blood pressure. 

 

Some studies with patients suffering from high blood pressure, indicate that a third of them suffer from OSAS. Other 

studies indicate that snoring and OSAS increase the risk of suffering encefalovascular and cardiovascular accidents. 

[Guilleminault92] has found that the cardiovascular morbidity and mortality are lower, in statistically significant level, 

in treated patients compared to the patients in the control group, independently of age, body mass index (BMI) and 

previous severity index. It is also known that OSAS can contribute to the development of respiratory insufficiency, 

pulmonary hypertension and failure of the right ventricular. The presence of chronic limitation of airflow, daytime 

hypoxemia, hypercapnia and profound nocturnal hypoxemia are factors related to this fact.  

 
The causes of mortality are variable and include cardiovascular complications derived from systemic arterial and 

pulmonary hypertension, episodes of arterial hypoxemia and those derived from excessive daytime hypersomnolence, 

such as accidents in  the workplace and traffic accidents. 

 

Diagnosis 
 

The diagnosis of Sleep Apnea Syndrome, and the categorization of its seriousness (light, moderate and severe) is 

achieved by the evaluation of  a combination of clinical manifestations and data derived from a polysomnogram. The 

polysomnogram consists of a continuous recording, during night-time, of numerous physiological variables, including 

electroencephalogram, electrooculogram, electromyogram, leg movement, oral-nasal airflow, snoring, thoracic and 

abdominal respiratory effort, electrocardiogram,  body position and haemoglobin oxygen saturation. Other biological 

signs can also be used if considered necessary. 

 

Due to the high cost of this type of clinical study, and the shortage of adequate centers, a series of more limited tests 

have been devised, which can be used for ‘screening’ in diagnosis. In general, the tests consist of a reduced number of 

variables (for example, only the pulsioximetry), which allow non-supervised studies to be made in the patients own 

home[Martin85]. 

 

One of the most interesting tools available for diagnosis, due to its simplicity and low cost, are self-administered or 

supervised questionnaires. Having identified a set of variables with high predictive value for sleep apnea syndrome, 

diverse questionnaires have been developed, with combinations of questions and clinical variables. Unfortunately, this 

method has not found great acceptance in clinical use, due to its low predictive accuracy and the numerous false 

negative and positive diagnosis that it produces[Kushida97]. 

 

Table 1. Multiple linear regression models for diagnosing sleep apnea 

 

Study n Diagnostic 

criterion 
Predictive variables r

2 

Stradling 

(1991) 
1001 ID4%>5 Neck circumference, alcohol 

consumption, age, obesity 
0.14 

Davies 

(1992) 
150 ID4% Sleep when inactive 

Neck circumference 
0.13 

0.35 
Hoffstein 

(1993) 
594 AHI>10 BMI,age, sex, snoring, exploration of 

ORL 
0.36 

Flemons 

(1994) 
180 AHI>10 Neck circumference, HTA, snoring, 

observed apneas  
0.34 

Deegan 

(1994) 
250 AHI 15 BMI, age, alcohol consumption 0.19 

ID4%: index of desaturation with fall of 4%. AHI: apnea-hypopnea index. r2: regression coefficient. BMI: body mass index. ORL: 

otorrinolaringologic exploration. HTA: arterial hypertension. 
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The predictive value of the clinical data in OSAS diagnosis is low. Hoffstein [Hoffstein93] published results that 

indicated that clinical data explains 36% of the variability of the AHI (apnea hypopnea) and Katz [Katz90] reported a 

figure of 39%, other authors report lower figures (Table 1). The subjective clinical evaluation of the interviewer has 

also been evaluated and tends to have a low sensibility and specificity, in the order of 55%-65% respectively, for 

correctly classifying the sick. On the other hand, The predictive models for AHI based in clinical data have a higher 

sensibility of up to 90%. Their specificity, in the best of cases, does not reach 70% (Table 2). 

 

Table 2: Logistic regression models 

 

Study n diagnostic 

criterion 
Predictive variables S 

(%) 
E 

(%) 
ROC  

Crocker 

(1990) 
214 AHI>15 age, observed apneas, BMI, HTA 85 61 - 

Viner 

(1991) 
410 AHI >10 age, BMI, sex, snoring 94 28 0.77 

Rauscher 

(1993) 
300 AHÍ 10 Sex, %ideal weight, sleep while 

reading, observed apneas 
94* 45* - 

Kump 

(1994) 
456 IAA>5(<15yrs) 

IAA>10(15-50y) 

IAA>15(>50 y) 

snoring, observed apneas, sleep 

while driving 

+(BMI, sex, age)** 

 

- 
 

- 
0.78 

 

0.87 
Dealberto 

(1994) 
129 AHI 10 sex, age, BMI, snoring, observed 

apneas 
95 64 - 

Flemons 

(1994) 
180 AHÍ >10 circumference of thorax, change 

of weight, observed apneas, HTA 
(†) (†) (†) 

Maislin 

(1995) 
427 AHÍ 10 index 1(‡), BMI, IMC, age, sex - - 0.78 

Deegan 

(1996) 
250 AHÍ 15 sex, age, snoring, observed 

apneas, BMI, alcohol 

consumption, sleep while driving 

100 11 - 

S: sensibility. E: specificity. ROC: area under the curve. AHI:apnea-hipopnea index. IAA: index of increase in apneic activity. BMI: body mass index. 
HTA: arterial hypertension. (*) data obtained after model verification. (**): model which includes the previous symptoms and those in parenthesis. 

(†): refer to data similar to that of Viner and Crocker. (‡): includes intense snoring, observed apneas and respiratory insufficiency. (-): data not 

available. 

 

The reference method for OSAS diagnosis is the polysomnogram. It consists of the simultaneous recording of a number 

of sleep parameters, which allow us to identify its different phases and the correlation of these with cardiorespiratory 

events such as apneas, desaturation of oxyhaemoglobine and changes in cardiac rhythm. For sleep measurement, 

including body position changes, respiratory effort and efficiency in ventilation, there exist multiple methods and each 

clinic tends to use its own variables which are obtained with the resources available in each centre. 

 

At present, it is not appropriate to define rigid diagnostic criteria in this rapidly developing area. Neither is it possible to 

identify the ideal equipment for sleep studies. 

 

The Polysomnogram is a technique which is complex to realise and to interpret, and its economic cost is high. This 

provokes a saturation of the few installations available for its practise and the resulting diagnostic delay. The situation 

has obliged the search for simpler diagnostic alternatives, the majority of which are based in the registration and 

evaluation of the cardiorespiratory parameters, or in the use of simplified portable equipment for home diagnosis. The 

validation of many of these diagnostic kits is still being studied. A previous filtering of patients is recommended to 

select those which are most appropriate to be given a Polysomnogram.  An effort has to be made to define which is the 

most useful method for this objective, given that a filtering method has to be sensitive, specific and economical. Due to 

the high prevalence of respiratory alterations during sleep, we should evaluate the cost/benefit of these methods in order 

to identify, diagnose and treat the majority of the sick. 
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1.3  Main contributions 
 

The following section summarises the main contributions of the thesis to the chosen fields of study, namely: mixed data 

type processing and representation; a novel use of the Hartigan ‘joining algorithm’ using as input a ‘fuzzy covariance 

matrix’; theoretic conception, development and testing of a fuzzy covariance calculation; analysis of ICU medical data 

using standard data mining algorithms with the motivation of comparing the results to analysis of the same data using 

Hartigan’s ‘joining algorithm’ with fuzzy and crisp covariance matrices as input, and using fuzzy c-Means for analysis 

of the relationship between the variables and the clusters; the use of a genetic algorithm for weight vector selection for 

the WOWA aggregation operator; modification of WOWA for variable weight vector and missing values processing; 

data representation and membership function design for fuzzy question responses in Apnea screening questionnaire. 

 

1.3.1 Analysis of existing algorithms 
 

A selection of existing AI Data Mining and statistical techniques are executed against the medical test data sets in order 

to establish their capacity to produce coherent results from the data. The AI and statistical techniques include C4.5 and 

ID3 rule induction, feedforward neural network, statistical analysis (covariance, max, mix, mean, median, distribution 

plots), Kohonen SOM clustering. We identify areas which the standard techniques produce reasonable results, and those 

areas where the results have room for improvement. The ICU data from the Hospital of Sabadell is thoroughly analysed 

by a battery of AI and statistical analysis techniques, which identifies some of the strengths and weaknesses of each 

[Nettleton96][Nettleton99a]. Then this is contrasted by processing the data with Hartigan’s ‘joining algorithm’  using 

fuzzy and crisp covariances as input, and fuzzy c-Means to cluster the data and show relationships between variables 

and the fuzzy cluster prototypes. The techniques are discussed in Chapter 2 of the thesis, and the results are given in 

Section 4.1. 

 

1.3.2  Mixed data type processing and representation 
 

Mixed data type processing is an area which is still unresolved or even not approached by many statistical techniques. 

The major data types (integer, categorical ordinal, nominal, binary, …) have been considered systematically to establish 

forms of representing , comparing and processing them together. For example, how would one calculate the covariance 

between a first variable defined as numerical and a second variable defined as non orderable categorical? Possible 

approaches are developed from basic notions, for establishing covariance between variables of different types, such as 

the point density diagrams of Figures 42 and 43. This section revisits different techniques for comparing variables of 

distinct types and presents some novel interpretations from statistical first principles. This area of the work is 

summarised in [Nettleton97][Nettleton98a] and in the thesis it is covered in Sections 3.1 and 4.1. 

 

1.3.3  Novel use of Hartigan Joining Algorithm 
 

The Hartigan clustering algorithms [Hartigan75] are a work of reference in the statistical field. In this thesis, the 

‘joining algorithm’ has been used in a new context, that of factor reduction from covariances of mixed and fuzzy data 

types. It is applied to test data sets and real ICU and Apnea medical data sets for data reduction and factor analysis. One 

of the interesting characteristics of this algorithm is that it allows one to observe the successive ‘joinings’ of attributes  

in a tree, reducing the number of attributes by pairs in each iteration. This allows the study of the groupings of variables 

in a data set, such as that of the ICU data [Nettleton98b]. This area of work is covered in Sections 3.2 and 4.1 of the 

thesis. 

 

1.3.4  Fuzzy covariance calculation 
 

Bezdek, Gustafson and Kessel defined the basis for fuzzy covariances between the fuzzy prototype and a fuzzy data 

instance. In this thesis the formula has been extended to calculate the covariance between two fuzzy variables in a fuzzy 

set. Different versions of the algorithm were defined and tested against standard test data sets (Iris, Gustafson’s Cross, 

…) and against a real medical dataset. The resulting covariances were compared against the standard SPSS covariances 

generated from the same data, and also with techniques such as principal components, neural network and rule 

induction to identify and rank the most significant variables in a data set [Nettleton98b]. This area of work is covered in 

Sections 3.1 and 4.2 of the thesis. 
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1.3.5 Genetic algorithm for learning of WOWA weights 
 

One of the problems with algorithms which use weighting factors is how to assign the weights, and find the best values 

for the initial weight assignments. The WOWA aggregation operator uses two weighting vectors for relevance and 

reliability, and different tests were carried out to learn both vectors, just the relevance vector, or just the reliability 

vector, using a genetic algorithm to learn the weights. This is a new approach with respect to establishing weights for 

aggregation operators in general, and the WOWA operator in particular. The GA learning was benchmarked against the 

ASM Active Sets Method and by expert assignment of the weights, and compared favourably [Nettleton01b]. This area 

of work is covered in Sections 3.2 and 4.3 and 4.4 of the thesis. 

 

1.3.6 WOWA modified for variable weight vector and missing values processing 
 

The standard WOWA aggregation operator was modified to enable processing of data for which one or more data 

values of one or more variables was missing, or undefined. This enables processing of real data sets in which missing 

data is often  a problem. The algorithm detects the missing values in a pre-processing phase and ‘contracts’ the 

weighting and data vector to cover only the known values. Also methods were tested for enabling the reliability weights 

to be dynamically interpreted for each case, which would allow the algorithm to adapt to different data distributions 

which may exist from one dataset to another, or from one application domain to another [Nettleton01b]. This area of 

work is covered in Section 3.2 of the thesis. The results of using dynamical interpretation of the reliability weights are 

detailed in Section 4.3. 

 

1.3.7 Data representation for fuzzy processing – Apnea questionnaire 
 

Screening of Apnea patients is a practise which can avoid costly and unnecessary admission and testing of patients who 

do not have the ailment. Unfortunately, questionnaire screening, the standard method, does not have a high precision 

rate. One of the reasons may be the lack of more subtle interpretation of the responses; we consider that the use of 

‘membership grades’ may provide a solution. A scalar format was introduced for the questionnaire responses, and we 

designed an appropriate membership function curve to be overlaid on the corresponding scale. This permits a fuzzy 

response and the calculation of a grade of membership for the five defined linguistic labels. A reliability vector and a 

relevance weight were also assigned to each variable-attribute. These weights give a greater flexibility in processing 

data which is susceptible to variability in terms of its reliability and relevance, and controls the impact that these aspects 

have on the overall outcome (diagnosis). The work related to Apnea data aggregation and representation is summarised 

in [Nettleton99b] [Nettleton99c] [Nettleton99e] [Nettleton01a]. This area is covered in Sections 3.1, 4.3 and 4.4 of the 

thesis. 

 

1.3.8 Application of AI techniques to Apnea Diagnosis 
 

In contrast to ICU patient prognosis, which is an area which has received considerable investigation both with statistical 

and AI techniques, Apnea diagnosis is little explored with AI techniques. We apply WOWA aggregation to give a 

diagnostic output, employing reliability and relevance weights to refine the model, and contrasting expert weight 

assignment to weight learning with a genetic algorithm. Also we benchmark neural nets, induction algorithms, principal 

components and the OWA aggregator against the same data, the results of which are detailed in Sections 4.3 and 4.4 of 

the thesis. 
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Chapter 2.  Some Preliminaries 

 
This Chapter details the background of the most relevant authors and methods which have served as the basis for the 

areas associated with the thesis work. The following themes are covered: classical statistics, fuzzy set theory and fuzzy 

covariance, aggregation, clustering, fuzzy clustering and classification. As outlined in Chapter 1, and summarised in 

Figures 1 and 2, we understand the Data Mining process as consisting of three main steps: data definition and 

representation, data exploration, and data modelling. Thus for each of these steps, we have studied corresponding 

themes. In the case of data definition and representation we consider classical statistical methods, fuzzy set theory and 

issues related to representation of data in the fuzzy form, such as the definition of membership functions and 

quantifiers. In the case of data exploration we consider how to identify relations in the data and between variables, with 

techniques such as correlation, covariance, fuzzy covariance, clustering and fuzzy clustering. Finally, for the data 

modelling phase we consider rule induction methods such as ID3 and C4.5 to establish a meaningful classification for 

the data and also serve as predictive or diagnostic models. Aggregation operators are also considered a method of data 

modelling, given that their output is interpreted as a predictive value or diagnosis. Emphasis is given to the background 

of aggregation operators, such as OWA (ordered weighted average) and WOWA (weighted OWA), given that this is the 

method experimentally developed in Chapter 3 and applied in Chapter 4 to real data domains. Fuzzy data processing 

and fuzzy representation are also given extensive coverage,  as in Chapter 3 and 4 fuzzy techniques play a central role 

in the development of methods for data inputs and outputs whose most adequate representation is in the fuzzy form. 

 

2.1 Classical statistics 
 

In this section we cover a selection of the standard statistical concepts and methods used in data analysis, and some of 

which are used in later sections to analyse the datasets, and compare with other methods such as those of AI and the 

techniques developed in this thesis. The methods covered are: variance, covariance, correlation, multivariate variance 

analysis, likelihood, variance analysis (ANOVA), covariance analysis and regression models. 

 

Variance, Covariance and Correlation [Lebart85],  pp24. 

 

Let ( , ( ), ) be a finite probability space in which the random variables X and Y have been defined; we note that x 

= E(X) and y = E(Y). The following quantities are defined: 

 

(1) variance of X :  Var(X)      = E[(X 
 

  x)
2 

     (2.1) 

 

(2) covariance between X and Y : Cov(X,Y)  = E[(X 
 

  x)
 
(Y 

 
  y)

 
    (2.2) 

 

(2) correlation between X and Y :   (X, Y)      = Cov(X,Y)   ( Var(X) Var(Y) )   (2.3) 

 

 
Multivariate Variance Analysis  [Cuadras80], pp503. 

 

The observed variables are indicated by Y (in the univariate case) or Y1, ..., Yn (in the multivariate case). In ‘linear 

mode’, the definition is as follows: let Y be an observable variable of which a sample of size N has been obtained, in 

different experimental conditions. We indicate the sample by the column vector 

 

 y = (y1, ..., yN)' 

 

The linear mode of the variance analysis consists of the following elements: 

 

1) m unknown parameters 1, ... , m known as regression parameters. In vectorial notation 

 

  = ( 1, ..., m)' 

 

2) A matrix of known elements 

 

   a11 .......... a1m  

 A =      a21 .......... a2m  

    ......................  

    aN1 ......... aNm  
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called a factorial design matrix. The range of A is known as the design range. If the range is m it is said that the design 

has maximum range. 

 

 

3) The linear model that relates the observations to the parameters 

 

 yi = ai1 1  + ... + aim m + ei i = 1, ... , N       (2.4) 

 

where ei  is the error or random deviation of the model.  

 

Indicating e = (e1, ... , eN)', the matricial expression of the model is 

 

 y = A  + e          (2.5) 

 

4) It is assumed that e1, ... , eN are independent, with mean 0 and variance 
2
 . It is also assumed that the variance, which 

is another unknown parameter of the model, is the same for each ei (condition of homoscedacity). In consequence y1, ... 

, yN are also independent, with the same variance 
2
 , and with means  

 

 E(yi ) = ai1 1  + ... + aim m i = 1, ... , N, 

 

in matrix notation, this is written as 

 

 E (y )= A           (2.6) 
 

5) If it is also assumed that each ei follows the normal distribution, we can then refer to a normal linear model. 

 

As part of the definition, one can also define the 'reduced design matrix' and the estimation of parameters   = ( 1, ..., 

m)' , by the criteria of squared minimums, and of 
2
 with an unslanted estimator. 

 

Likelihood 

 
Given a random variable X that can assume a series of values x1, x2,...xn with probabilities respectively equal to p1, 

p2,...pn , we can define its likelihood E(X) as the expression: 

   n 

 E(X) =     xi  Pi          (2.7) 

  
i=1 

If a series of  s independent tests is realised and their average value calculated, the probability of this tends to the 

likelihood when s approaches infinity. The likelihood possesses interesting properties of linearity: 

 

 E(X + Y) = E(X) + E(Y)          (2.8) 

 

 E(aX) = aE(X)          (2.9) 

 
 
Variance Analysis. [Peña84], Vol II, pp29-77. 

 
Variance Analysis is a procedure, created by R.A.Fisher in 1925, to decompose the variability of an experiment in 

independent components that can be assigned to distinct causes. 

 

Example: 

Suppose that we wish to establish if the life of the elements produced by a group of   machines is the same in the long 

term (does not depend on the machine). We assume that the life of the elements produced by the same machine varies 

due to many non-controllable factors (pureness of the raw materials, random loss of precision of the machine, running 

temperature, operator skill, etc.), and that we have measured the life of n1 elements of machine 1, and ni of machine i, 

with a total of n data for the set of  machines: 

 

   ni = n
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Let yij be the random variable 'life of element j produced by machine i'. The objective of the study is: 

 

  (1)  verify if all the machines are identical: that is, produce elements with 

    the same average life;  

  (2)  if the machines are not equal, estimate the average life of the 

    elements produced by each one.  

 

To achieve this, we have to formalise the situation with a mathematical model, which is now briefly detailed. 

 
The Model 

 

We permit that the average life  oscillates randomly about an unknown value i , that characterises a machine. The 

differences between the effectively observed values for a machine yij , and its mean, i , are the result of multiple factors 

that we encompass in a term known as 'experimental error' or 'perturbation'. Thus: 

   yij  i  ij        (2.10) 

We assume that the perturbations ij  yij  i, verify the following hypotheses: 

  a)  E[ ij  = 0  i, j 

  b)  Var[ ij  = 
2  

i, j       (2.11) 

  c)  E[ ij rk  = 0  i r, or j k 

  d)  Its distribution is normal 

 

Condition (a) requires that the n random variables ij have average zero, and is equivalent to requiring that the ni 

observations proceeding from the machine i have the same mean ui. In order for this to occur, the distinct measures of 

the life of the elements have to have been taken in homogeneous conditions. 

Condition (b) requires that the perturbations have the same variability in all the machines and that, besides, this 

variability is stable  that is, it does not tend to increase and to decrease  in the experiment. This condition is 

equivalent to saying that the variance of the n random variables yij must be the same. 

Condition (c) imposes that the experimental errors or perturbations are produced in an independent manner, from one 

observation to another, which implies the independence of the observations yij . This hypothesis is difficult to test in 

practice and, as we see later, one of the objectives if designing an experiment is to guarantee this independence. 

Finally, the hypothesis of normality is justified by the central theorem of the limit: assume that the perturbations cannot 

be predicted or assigned to concrete causes, but that they result from the accumulated effect of many distinct factors, 

none of which is predominant. 

To summarise, the model established by (2.10) and (2.11) above, specifies that the ni observations of machine i are a 

simple random sample of a random variable with normal distribution, N( i, ). 

 
Variance analysis can be understood in two forms: 

 

 (i)  A procedure to compare groups that may or may not differ in their averages. 

 (ii)  A type of statistical model in which a qualitative variable is used to explain the 

        possible differences between quantitative variables: the group to which they 

   belong. 

 

In emphasising the construction of a model, we show the contrast depends on certain hypotheses, which, on verification, 

guarantee its validity.  

 

Decomposition of the Variability. 

The deviations between the observed data and the general mean can be expressed by the identity: 

  

 yij  ÿ..  (ÿi.  ÿ..)  (yij  ÿi.)        (2.12) 

 

which decomposes the variability between the data and the mean in two terms: the variability between the means and 

the general mean, and the residual, or variability in side the group. We raise to the square, and sum for the n terms . 

Now, ‘Total Variability’ will be: 

 

 TV      (ÿij.  ÿ..)
2
  

  
i 
  

j 
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Explained Variability will be: 

 

 EV      ni(ÿi.  ÿ..)
2
 

 

 

UnExplained Variability (or residual) will be: 

 

 UEV      (ÿij.  ÿ..)2
     e

2
ij
 

 
 
we will have that: 

 

 VTV = EV + UEV       (2.13) 

 

This result is due to the fact that the sum of the double products resulting from raising to the square (2.12, above) is 

null: 

 

   (ÿi.  ÿ..) (yij  ÿi.) =  (ÿi.  ÿ..) eij = 0    (2.14) 

   
i 
  

j                    i                        i 

 

being that, the sum of the residuals is zero inside each group. 

 

 

Table 3. ANOVA - Analysis of Variance 

 

Source of Variation Sum of Squares Grades of Freedom Variances 

Between Groups (EV) ni( yi.  ÿ.. )
2 

 
 - 1 s'

2
e        EV

 

                   - 1  

Internal, not explained 

or residual (UEV) 
( yij  ÿi. )

2 

 
 n -  s'

2
R       UEV

 

                   n -   

 

TOTAL ( yij  ÿ.. )
2 

 

 n - 1 s'
2

y 

 
 
Methodology 

 

 (a) Specify the model 

   1) yij  i  uij 

   2) uij  N(0,
2
) 

 

  

 (b) Estimate the parameters 

   ( 1 , ...,  ; 
2
)  

   'i  ÿi 

   s'
2

R  ( yij  ÿi. )
2 

        
n -   

    

 (c) Contrast if a simplification is possible (ADEVA contrast) 

 

   H0 : 1  2  ...  1   

   F        ni( y'i.  ÿ.'. )
2 

        
(  - 1) s'

2
R 
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 (d)  Construct confidence  intervals for the parameters and revise the basic 

   hypotheses. 

 

   (1) if the averages are the same, intervals for  will be: 

    s'
2

R   ( yij  ÿi. )
2 

                                 
n -   

 

   (2) if the averages are not the same, intervals for i - j ,  

        multiple contrasts. 

 
   
 (e) If the model is not adequate it will have to be reformed (data transformations, 

  introduction of new explicative variables, modify the hypothesis). 

 

  Diagnosis and validation. 

   - homogeneity E[ ij  = 0 ? 

   - homocedasticity Var[ ij  = 
2  

? 

   - normality 

   - independence 

 

 
Covariance [Cuadras80], Vol.I, pp.233. 

 

Definition of Covariance: we assume that we have a sample of n pairs of observations of two variables X and Y 

 

  X: x1 x2 ... xn 

  Y: y1 y2 ... yn 

 

 

Let x' =  1  xi  ,   y' =  1  yi  . 

  
n
          

n
 

 

 

The following is called the covariance of the sample 

    n 

 Sxy =    1    ( xi - x' ) ( yi - y' ) 

      
               n

 
i = 1

   

 

We verify that 

    n 

 Sxy =    1    xi yi - x' y'  

      
               n

 
i = 1

   

The generalisation of the covariance to random variables consists in defining 

 

 cov(X, Y) = E[(X - E(X)) . (Y - E(Y))] 

 

for two random variables X, Y, assuming that E(X), E(Y) and E(X . Y) exist. 

 

 

Covariance of qualitative values [Cuadras80], Vol. II, pp.324. 

 

Covariance analysis: is a synthesis of ‘variance analysis’ and ‘regression’ methods. It thus combines a number of 

qualitative variables with a number of quantitative variables. It proposes to relate an observable variable Y with a 

second variable X, called the concomitant, which influences in the design, and establishes hypothesis taking into 

account this relation. 
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The Chi-Squared test (
2
) [Cuadras80], Vol. II, pp.211. 

 

This is a statistical test which lets us decide if some observed frequencies adjust to some expected frequencies. It is 

based in two theorems, the first relates to the case in which the probabilities pi are known, and the second relates to the 

case in which they depend on certain parameters which must be estimated.  

 

 

Regression analysis 

 

Linear regression is a statistical modelling technique which examines the relationship between a dependent variable 

and a set of independent variables. For example, we could try to predict a customers’ total yearly purchases (the 

dependent variable) from independent variables such as age, socio-economic indicator, years as customer, and region of 

residence. Both the dependent and independent variables must be measured on an interval scale. Nominal variables such 

as gender or region of residence have to be recoded as binary variables. To establish how well the regression model fits 

the data, one can examine the residuals and identify any outlier values which may be present. Linear regression 

analyses the relationship between two variables, X and Y. For each case in the dataset being analysed, the values of X 

and Y are known and the objective is that of finding the best straight line through the data. For some data domains, the 

slope and/or intercept have a interpretable meaning. In other cases, the linear regression line is used as a standard to 

find new values of X from Y, or Y from X. The goal of linear regression is to adjust the values of slope and intercept to 

find the line that best predicts Y from X. More precisely, the goal of regression is to minimise the sum of the squares of 

the vertical distances of the points from the line. 

 

Non-linear regression is a general technique to fit a curve through a given dataset. It fits data to any equation that 

defines Y as a function of X and one or more parameters. It finds the values of those parameters that generate the curve 

that comes closest to the data (minimises the sum of the squares of the vertical distances between data points and 

curve). Except for a few special cases, it is not possible to directly derive an equation to compute the best-fit values 

from the data. Instead non-linear regression requires a computationally intensive, iterative approach, with a basis in 

matrix algebra. 

 

If the equation that we wish to fit is known, and its parameters are non-linear, a non-linear technique can be used. If 

the dependent variable is binary, such as whether a particular diagnosis is positive or negative, the logistic regression 

model is used. If the dependent variable is censored, such as survival time after surgery, some possible techniques 

would be Life Tables, Kaplan-Meier, or a Cox Regression. 

 

Logistic regression estimates regression models in which the dependent variable is binary. For example, one could use 

a logistic regression to estimate the probability of a rise in the share value of a company in the stock market based on 

the expertise, past performance, type of business, and zone of operations of the company. Or one could estimate the 

probability that a patient will survive based on characteristics of the patient and the severity of the disease. Typically, a 

variable selection technique is used to identify a subset of independent variables that are best related to the outcome of 

interest. This is accompanied by diagnostic procedures  to assess how well the model fits and to identify outliers. 

Logistic regression produces a formula that predicts the probability of the occurrence as a function of the independent 

variables. A special s-shaped curve is fitted by taking the linear regression, which could produce any y-value between 

minus infinity and plus infinity, and transforming it with the function: p = Exp(y) / ( 1 + Exp(y) ) which produces p-

values between 0 (as y approaches minus infinity) and 1 (as y approaches plus infinity).  

 

If the dependent variable has more than two categories, a discriminant analysis can be used to identify variables which 

permit assignment of the cases to the various groups. If the dependent variable is continuous, one can also use a linear 

regression to predict the values of the dependent variable from a set of independent variables. 
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2.2 Fuzzy sets and fuzzy data processing 
 

In this section we revise some of the key concepts associated with fuzzy set theory, namely: fuzzy set, fuzzy relation, 

membership function, fuzzy variable,  fuzzy number, the concept of fuzzy membership and the elicitation of 

membership functions. This summary is drawn from the definitions of key investigators in the field, such as Zadeh and 

Bezdek. 

 

2.2.1    Basic concepts 
 

Uncertainty: the presence of ‘uncertainty’ in a mathematical model may be due to: imprecise measurements; random 

occurrences; vague descriptions, that are manifested in deterministic probabilistic and fuzzy models, respectively. 

 

Deterministic: the result may be predicted with total certainty, by replication of the circumstances that define it. 

 

Probabilistic: the result of a physical process is random, with an element of ‘chance’, that belongs to the evolution of a 

process which is not affected by imprecision in the environment (e.g. throw a coin). Allows ‘stochastic’ laws to be 

derived which allow the evaluation of the probability of observing a given result. 

 

Fuzzy: exists in a physical situation which manifests a non-stochastic source of uncertainty (e.g. class of people who 

are almost two metres tall). Introduces membership grades. It is neither deterministic or probabilistic.  

 

In the case of the ‘hospital admissions’ (ICU) data set considered in Sections 3.1 and 4.1, we have to evaluate each 

attribute to decide whether it is deterministic, probabilistic, or fuzzy. 

 

Concept of Fuzzy Membership 

 

A fuzzy subset, F, has a membership function F, defined as a function from a well defined universe (the referential 

set), , into the unit interval as: F :   0, 1 . Hence, the vague predicate "Patient (x) is Long Stay (S)" is represented 

by a number in the unit interval S(x). There are several possible answers to the question "What does it mean to say 

S(x) = 0.7 ?" 

 

likelihood view   70% of a given population declared that Patient is Long Stay. 

 

random set view  70% of a given population described "Long Stay" as an interval containing Patient's duration. 

 

similarity view  Patient's Length of Stay is away from the prototypical object which is truly "Long Stay" to 

the degree 0.3 (a normalised distance). 

 

utility view   0.7 is the utility of asserting that Patient is Long Stay. 

 

measurement view  when compared to others, Patient is Longer Stay than some and this fact can be encoded as 

0.7 on some scale. 

 

These interpretations can be further summarised as: subjective Vs objective on one dimension and individual Vs group 

on the other. 

 

Zadeh is possibly the key author in Fuzzy Set Theory. His landmark paper [Zadeh65] coined the term ‘fuzzy set’ and 

defined its properties. He cited examples of fuzzy classes such as “the class of tall men” or “the class of all real numbers 

much greater than 1”. He states that a “fuzzy set” is a “class” with a continuum of grades of membership, and proposed 

that “fuzzy sets” provide a framework similar to ordinary sets, but more general and with a potentially wider scope and 

applicability in fields such as pattern classification and information processing. Zadeh’s electrical engineering 

background suggest the possibility that analogies in electrical theory contributed in giving rise to these new ideas. 

 

The key definition of a fuzzy set is the following [Zadeh65]: Let X be a space of points (objects), with a generic element 

of X denoted by x. Thus, X = {x}.A fuzzy set (class) A in X is characterised by a membership (characteristic) function 

fa(x) which associates with each point in X a real number in the interval [0, 1], with the value of fa(x) at x representing 

the “grade of membership” of x in A. Thus the nearer the value of fa(x) to unity, the higher the grade of membership of x 

in A. 
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Examples and illustrations are given of unions and intersections on fuzzy sets,  algebraic operations, and convexity and 

non-convexity. Finally a proof of the separation theorem for fuzzy sets is given in terms of a hyperplane H and the 

consideration of specific points on it. 

 

       fA(x), fB(x) 

 

 

 

             fA 

       MA                                                           MB 

 

                                                             fB 

 

 

 

 

 

     M      x 

 

              hyperplane H (point) 

 
Figure 9. Illustration of the separation theorem for fuzzy sets in a real Euclidean space of E

1
 

 

In Figure 9, a hyperplane H exists which realises 1 – M as the degree of separation of A and B, and MA and MB are the 

maximal membership grades achieved by fuzzy sets A and B, respectively. 

 

‘Fuzzy Relations’  
 

Zadeh’s paper [Zadeh71], introduces three basic concepts for fuzzy set theory: “similarity”, “similarity relation”, and 

“fuzzy ordering”. “Similarity” is defined as a generalisation of the notion of equivalence.  

 

A fuzzy (binary) relation R is defined as a fuzzy collection of ordered pairs. Thus, if X = {x} and Y = {y} are collections 

of objects denoted generically by x and y, then a fuzzy relation from X to Y or, equivalently, a fuzzy relation in X  Y, is 

a fuzzy subset of X  Y characterised by a membership (characteristic) function R which associates with each pair (x, y) 

its “grade of membership”, R(x, y), in R. The range of R is assumed for simplicity to be the interval [0, 1] and the 

number R(x, y) is referred to as the strength of the relationship between x and y. 

 
A “fuzzy partial ordering” of a fuzzy relation P in X exists iff it is reflexive, transitive and antisymmetric, where 

antisymmetry of P is defined as: 

 

p(x, y)  0     and  p (y, x)  0  x = y,      x, y  X.       (2.15) 

 

A relation matrix and a ‘fuzzy Hasse diagram’ are used to illustrate an example of a fuzzy partial ordering. 

 

Zadeh, in [Zadeh71], adds the following definitions to his paper of 1965: 

 

Similarity Relation: S, is a fuzzy relation which is reflexive, symmetric and transitive. Thus, let x, y be elements of a set 

X and s(x,y) denote the grade of membership of the ordered pair (x, y) in S. Then S is a similarity relation in X if and 

only if, for all x, y, z in X, s(x, x)=1 (reflexivity), s(x, y)= s(y,x) (symmetry), and s(x, z)   ( s(x,y)  s(y,z)) 

(transitivity), where  and  denote max and min, respectively. 

 

Fuzzy Ordering:  is a fuzzy relation which is transitive. In particular, a fuzzy partial ordering, P, is a fuzzy ordering 

which is reflexive and antisymmetric, that is ( p(x, y)  0 and x  y)  P(y, x) = 0. A fuzzy linear ordering is a fuzzy 

partial ordering in which x  y  s(x, y)  0 or s(y, x)  0. A fuzzy preordering is a fuzzy ordering which is reflexive. 

A fuzzy weak ordering is a fuzzy preordering in which x  y  s(x, y)  0 or s(y, x)  0. 
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The ‘Fuzzy’ Relation: in the case of the ‘hard’ relation,  a data item is a member of a cluster (membership=1), or it is 

not (membership=0). If all the data in the data space is classified in clusters, the fact that one data item has 

membership=0 for one cluster, implies that in some other cluster, it must have membership=1. It may only have 

membership=1 for one cluster in the data space. 

 

In the fuzzy case, ‘membership grades’ are introduced, which assume values in a continuous range between 0 and 1, for 

example: 0.55, 0.1, 0.965, 0.73, etc. Thus it may be said that data item a is a member of cluster A with membership 

grade 0.2 (which is little), and also that data item a is a member of cluster B with membership grade 0.77 (which is 

quite high). This implies that data item a is a member of clusters A and B, although it has a greater membership grade to 

cluster B. 

 

The standard definition of a relation is that of a set of ordered pairs. For example, the set of all ordered pairs of real 

numbers x and y such that x  y. In the context of fuzzy sets, a fuzzy relation in X is a fuzzy set in the product space X 

 X. For example, the relation denoted by x  y, x,y  R
1
, may be considered a fuzzy set A in R

2
, with the 

membership function of A, fA(x,y), having the following representative values: fA(10,5) = 0; fA(100,10) = 0.7; fA(100,1) 

= 0.1; and so on. 

 

More generally, an n-ary fuzzy relation in X is defined as a fuzzy set A in the product space X  X  ...   X. For such 

relations, the membership function is of the form fA(x1,...,xn), where x1  X , i = 1, ... , n. 

 
In the case of binary fuzzy relations, the composition of two fuzzy relations A and B is denoted by B  º A and is defined 

as a fuzzy relation in X whose membership function is related to those of A and B by 

 

 f B  º A(x,y) = Supv Min[fA(x, v) ,  fB(v, x)  

 

Definitions for  Fuzzy Relations  

(i) Convexity: A fuzzy set A is convex if and only if the sets  defined by 

 

   = {x | fA(x)  }         (2.16) 

 

are convex for all   in the interval (0,1 .  

 

(ii) Boundedness: A fuzzy set A is bounded if and only if the sets = {x | fA(x)  } are bounded for all   0; that is, 

for every   0 there exists a finite R( ) such that ||x ||  R( ) for all x in  . 

 

If A is a bounded set, then for each   0 there exists a hyperplane H such that fA(x)   for all  x on the side of H  which 

does not contain the origin. For example, consider the set   = {x | fA(x)  }. By hypothesis, this set is contained in a 

sphere S of radius R( ). Let H be any hyperplane supporting S. Then, all points on the side of H  which does not contain 

the origin lie outside or on S, and hence for all such points fA(x)   . 

 

(iii). Strict Convexity: A fuzzy set A is strictly convex if the sets  , 0    1 are strictly convex (that is, if the 

midpoint of any two distinct points in   lies in the interior of  ). Note that this definition reduces to that of strict 

convexity for ordinary sets when A is such a set. 

 

(iv) Strong Convexity: A fuzzy set A is strongly convex if, for any two distinct points x1 and x2, and any  in the open 

interval (0,1) 

 

 fA[ x1    (1 -  ) x2     Min [fA(x1), fA(x2) . 

 

Note that strong convexity does not imply strict convexity or vice-versa. Note also that if A and B are bounded, so is 

their union and intersection. Similarly, if A and B are strictly (strongly) convex, their intersection is strictly (strongly) 

convex. 

 

(v) Separation of Convex Fuzzy Sets: the classical separation theorem for ordinary convex sets states , in essence, that if 

A and B are disjoint convex sets, then there exists a separating hyperplane H such that A is on one side of H and B is on 

the other side. 

Can this theorem can be extended to convex fuzzy sets, without requiring that A and B be disjoint ? We wish to avoid 

the condition of disjointedness given that it is too restrictive in the case of fuzzy sets. The following shows that the 

classical separation theorem for ordinary convex sets can be extended to convex fuzzy sets. 
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First we define A and B as two bounded fuzzy sets and H as be a hypersurface in E
n 

defined by an equation h(x) = 0, 

with all points for which h(x)  0 being on one side of H and all points for which h(x)  0 being on the other side. KH  is 

defined as a number dependent on H  such that fA(x)  KH on one side of H and fB(x)  KH on the other side. MH is 

defined as Inf KH . The number DH = 1 - MH  is defined as the degree of separation of A and B by H. The case is 

generalised from that of a given hypersurface H to that of a family of hypersurfaces {H }, with   ranging over E
m
. The 

problem is stated as that of finding a member of this family which achieves the highest possible degree of separation. 

 

Taking a special case of this problem, where the H  are hyperplanes in E
n
 , with  ranging over E

n
 . In this case, we 

define the degree of separability of A and B by the relation 

    _ 

   D = 1 - M        (2.17) 

 

where 

   _ 

   M = InfH MH        (2.18) 

 

with the subscript  omitted for simplicity. 

 

      fA(x), fB(x) 

 
 
 
 

   fA    fB 

 
 
 
 
 
          
          x   
 

Figure 10. Illustration of the union and intersection of fuzzy sets in R
1
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Figure 11. Convex and nonconvex fuzzy sets in E
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Definition of a Fuzzy Set  
 

Bezdek, in [Bezdek81 , gave the following illustration of a fuzzy set: X is defined to represent a sample of n people, 

and A1 is defined as the subset of X for which h(x) is exactly two metres: 

 

  A1 = {x   X | h(x) = 2}        (2.19) 

 

If we agree to say that x is nearly two metres if and only if x belongs to A1 ( x  A1 ), then A1 will be a very sparse set, 

its obvious shortcoming being that we cannot measure h(x) exactly. To overcome this deficiency, consider the set  

 

  A2 = {x  X | h(x) = 2   0.005}       (2.20) 

 

If membership in A2 is equivalent to nearly two metres, the resulting decision rule will identify many people that are 

nearly two metres tall. But, the threshold  0.005 would exclude, for example, person y, whose observed height h(y) is 

2.0051 metres. Another set of problems occur which stochastic or possibilistic models. 

 

A more appropriate model was suggested by [Zadeh65 : since set membership is the key to our decisions, let us alter 

our notion of sets when the process suggests it, and proceed accordingly. Mathematical realisation of this idea is the 

following. We let 

 
  A3 = {x | x is nearly two metres tall}      (2.21) 

 

Since A3  is not a conventional (hard) set, there is no direct interpretation for it in traditional set theory. We can, 

however, imagine a function-theoretic representation, by a function, say u3: X  [0,1 , whose values u3:(x) give the 

grade of membership of x in the fuzzy set u3. This is a natural generalisation of the function-theoretic relation of sets A1 

and A2 by their characteristic (or indicator) functions, say u1 and u2, respectively, where 

 

 u1 (x) =    1; x  A1             (2.22) 

    0; otherwise  

 

 u2 (x) =    1;  x  A2                 (2.23) 

    0; otherwise  

 

u3  embeds the two-valued logic of {0,1} in the continuously valued logic [0,1  . 

 

 

We might define a discrete fuzzy model such as  

 

   1, 1.995  h(x)  2.005     

  0.95, 1.990  h(x)  1.995 or 2.005 < h(x)  2.010  

       .  

u3 (x) =   .      .    (2.24) 

  .      .  

  0.05   ...     

  .      .  

  .      .  

   .      .  

 

 

Zadeh in [Zadeh65], defines the following: let X be a space of points (objects), with a generic element of X denoted by 

x. Thus X = {x}. A fuzzy set (class) A in X  is characterised by a membership (characteristic) function fA(x) which 

associates with each point in X a real number in the interval [0,1 , with the value of fA(x)  at x representing the "grade of 

membership" of x in A. 

 
Thus, the nearer the value of fA(x)  to unity, the higher the grade of membership of x in A. When A is a set in the 

standard sense of the term, its membership function can take on only two values 0 and 1, with fA(x) = 1 or 0 according 

as x does or does not belong to A. Thus, in this case fA(x) reduces to the familiar characteristic function of a set A.  
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Definitions for Fuzzy Sets: 

 

(i) Empty Set: a fuzzy set is empty if and only if its membership function is identically zero on X. 

 

(ii) Equality: two fuzzy sets A and B are equal, written as A = B, if and only if fA(x) =  fB(x) for all x in X. 

 

(iii) Complement: the complement of a fuzzy set A is denoted by A' and is defined by 

 

 fA' = 1 - fA .          (2.25) 

 

(iv) Containment: A is contained in B (or, equivalently, A is a subset of B, or A is smaller than or equal to B) if and 

only if fA(x)   fB(x). In symbols 

 

  A  B  fA(x)   fB(x).        (2.26) 

 

(v) Union: The union of two fuzzy sets A and B with respective membership functions fA(x) and  fB(x) is a fuzzy set C, 

written as C = A  B, whose membership function is related to those of A and B by  

 

 fC(x) = Max[fA(x) ,  fB(x) , x  X.       (2.27) 

 

or, in abbreviated form, 

 

  fC(x)  = fA(x)  fB(x)        (2.28) 

 

 

(vi) Intersection: the intersection of two fuzzy sets A and B with respective membership functions fA(x) and fB(x) is a 

fuzzy set C, written as C = A  B, whose membership function is related to those of A and B by 

 

 fC(x) = Min[fA(x) ,  fB(x) , x  X.        (2.29) 

 

or, in abbreviated form 

 

  fC(x)  = fA(x)  fB(x)        (2.30) 

 

 
Membership Function: Zadeh, in [Zadeh71], defines the following: A membership (characteristic) function fA(x) 

associates with each point in X a real number in the interval [0,1 , with the value of fA(x)  at x representing the "grade of 

membership" of x in A. We could define a membership function as any function from a well defined referential set X 

into the unit interval: 

 

  :    0, 1  
 

Therefore, we could say that  (x) = 0.4 where x is a certain object. This could be the grade of membership of the 

sponge (x) to the fuzzy set ' large'  is 0.4. A membership function may be triangular, trapezoidal, convex, concave, etc. 

 

 

Eight methods for eliciting membership functions: 

 

polling:   do you agree that the Patient is Long Stay? (Yes/No). 

 

direct rating (point estimation):   classify colour A according to its darkness, classify Patient according to his Length 

of Stay. In general, the question is: "How  F is a ?". 

 

reverse rating:   identify the Patient who is Long Stay to the degree 0.6? In general, identify a who is F to the degree 

F(a). 

 

interval estimation (set valued statistics):   give an interval in which you think colour A lies, give an interval in which 

you think the Length of Stay of Patient lies. 

 



 46 

membership function exemplification:   what is the degree of belonging of colour A to the (fuzzy) set of dark 

colours? What is the degree of belonging of Patient to the set of Long Stay patients? In general, "To what degree a is 

F?". 

 

pairwise comparison:     which colour, A or B, is darker (and by how much?) 

 

clustering methods:  given a set of input data extract the fuzzy subset of Long Stay patients. 

 

neural-fuzzy methods:    given a set of input data and a neural structure, extract the fuzzy subset of Long Stay patients. 

 

Fuzzy Algorithm 

 
Another key definition of [Zadeh73] is that of the fuzzy algorithm. He states that in broad terms, a fuzzy algorithm is an 

ordered set of fuzzy instructions which upon execution yield an approximate solution to a specified problem. Humans 

use fuzzy algorithms all the time to: park the car, cook a meal, find a number in a telephone directory, and so on. A 

simple example of a relational algorithm R defines a fuzzy ternary relation R in the data space U = 1 + 2 + 3 + 4 + 5 

with small and large defined as follows: 

 

small = 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5        (2.31) 

 

large =0.2/1 + 0.4/2 + 0.6/3 + 0.8/4 + 1/5        (2.32) 

 

 

algorithm R(x, y, z) 

{ 

IF x is small AND y is large THEN z is very small ELSE z is not small; 

IF x is large THEN (IF y is small THEN z is very large ELSE z is small) ELSE z and y are very very small; 

} 

 

The relation R is the result of the intersection of the relations defined by each of the two instructions. In the definitions 

(2.31) and (2.32) above we can see some similarities with the definitions of weighted aggregation operators and the 

work of Yager. Another example consists of rules such as “IF x is small and x is increased substantially THEN y will 

increase substantially”. 

 

Fuzzy Variable 
 

Is  a variable whose values are definable as members of a fuzzy set, with a given membership function. The concepts of 

'Fuzzy' as conceived by Zadeh or Bezdek do not refer to fuzzy variables as such. Rather they begin with a definition of 

a 'fuzzy set theory' as an extension of classical set theory. Zadeh introduced notions of 'fuzzy set', 'membership 

function', 'similarity relation', 'fuzzy ordering' using traditional set theory as a starting point. 

 

Therefore the concept of a fuzzy variable is not directly defined. Rather we have a crisp variable with crisp values, 

which are passed through a membership function to give grades of membership to the fuzzy sets identified. In contrast, 

consider a variable which 'begins life' as fuzzy (the initial reading is in terms of grades of membership to fuzzy sets). 

This implies a previous interpretation by some membership function. Often, 'linguistic variables' are good candidates 

for fuzzy representation.  

 

Consider an object, such as a sea sponge, which may have many variables of different types associated with it. Possibly, 

for some of those variables, the most adequate representation is the fuzzy form. For example, the variable 'diameter' 

may be representable by three fuzzy sets: 'small', medium' and 'large'. For each object (sea sponge), the variable 

'diameter' would then be expressed as three values, each one being a membership grade for the respective fuzzy sets 

defined previously. The fuzzy sets will be defined for all objects for each fuzzy variables, by a unique membership 

function. Rather than fuzzy variable, reference is usually made in the literature to 'fuzzy number' or 'fuzzy value', such 

as in [Delgado95]. 

 

Fuzzy Number 
 

[Kahraman97] defines a fuzzy number as a normal and convex fuzzy set with membership function  (x) which both 

satisfies 
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 normality :  (x) =1, for at least one x  R 

and 

 convexity:  (x')   (x1)   (x2)  

 

where  (x)   0, 1  and  x'   x1, x2 . 

 

Fuzzy numbers are very useful in promoting the representation and processing of information under a fuzzy 

environment. A trapezoidal fuzzy number (TzFN) can be denoted by (a,b,c,d) while a triangular fuzzy number (TFN) 

can be denoted by (a',b',c'). The membership grades are simple readings off the graphical representations of the 

membership functions. 

 

2.2.2 Quantifiers 
 

In [Zadeh73] Zadeh focuses on the problem of processing linguistic variables, such as “tall”, “not tall”, “very tall”, 

“very very tall”, and so on. A linguistic variable is defined as one whose values are sentences in a natural or artificial 

language. 

 

 
          

                                    young                    old 

 
1 

 

 

 
0.5 

 

 

 

                                                      age (years) 
                                          25               37.5                 50 

                               crossover points 

 
Figure 12. Graphical representation of ‘young’ and ‘old’ 

 

Zadeh considers defining a fuzzy linguistic label by the union of fuzzy singletons, that is fuzzy sets whose support is a 

single point in U, over a given range. In Figure 12, for example, if the universe U is the interval [0, 100]  then the label 

‘young’ could be defined by the union of the fuzzy singletons over 0 to 37.5 (years), while ‘old’ could be defined by the 

union of the fuzzy singletons over 37.5 to 100. 

 

 

This leads on to the definition of ‘fuzzy conditional statements’, which are expressions of the form: IF x is very small 

THEN y is quite large. One key aspect in Zadeh’s opinion is that the meaning of such statements when used in 

communication between humans is poorly defined. Zadeh demonstrates that the condition statement IF A THEN B can 

be given a precise meaning even when A and B are fuzzy rather than nonfuzzy sets, as long as the meanings of A and B 

are precisely defined as specific subsets of the universe of discourse. 

 

In [Zadeh73] the idea of ‘hedges’ is also introduced. The idea ‘hedges’ consists of two basic concepts: (i) primary terms 

such as ‘young’ and ‘old’; (ii) ‘modifiers’ of the primary terms such as ‘very’, ‘much’, ‘slightly’, ‘more or less’, and so 

on. In terms of the membership function curves, if x = ‘old’ then, for example, x
2
 = ‘very old’. As a consequence, the 

derivative of the curve which represent ‘old’ becomes steeper with respect to the y-axis and shifts proportionately to the 

right on the x-axis, as can be seen in Figure 13. This is calculated by applying the increase of the order of the root to the 

right hand side of the equation of the derivative. 
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Figure 13. Effect of hedge ‘very’ 

 

With respect to ‘quantifiers’, Yager [Yager88] makes reference to Zadeh’s [Zadeh83] concept of linguistic quantifier. 

Yager applies this to multicriteria decision making to give a more profound interpretation of the weighting function ‘W’ 

associated with an aggregation operator ‘F’. Zadeh said [Zadeh83] that quantifiers are of at least two kinds – those 

which say something about the number of elements and those which say something about the proportion of elements. 

Quantifiers can be represented a fuzzy subsets of either the unit interval or the real line. The distinction is based on 

whether the quantifier is related to an absolute or is a proportion type statement. It follows that if Q is relative to a 

quantity such as “most” then Q may be represented as a fuzzy subset of I such that for each r  I, Q(r) indicates the 

degree to which r portion of the objects satisfies the concept denoted by Q, as can be seen in Figure 14. 

 

 

Q “and” 

 

 

 

Q “or” 

      1                             n 

 

 

 

Q “mean” 

   

 

 

 
Figure 14. Three different quantifiers and their linguistic interpretation 

 
The weights associated with the OWA function, described in Section 2.3, determine the kind of ‘quantifier’ it is 

effecting. By varying the assignment of the weights in W, we can move from a Min type “for all” quantifier, to a Max 

type “there exists” quantifier. Also, aggregations which emulate concepts like “most” can be represented. Yager 

explains how the degree of “andness” and “orness” may be measured. 

 

 

2.2.3      T-norms, t-conorms and indistinguishability 

 
The work of Jacas [Jacas88,90,93,95] includes the study of relations of indistinguishability and its application to 

classification processes, similarities,  fuzzy equalities, and the study of properties and uses of t-norms and t-conorms. 

The basic elements are things such as fuzzy sets; membership functions, types of membership functions such as 

trapezoidal, triangular, and so on; union, intersection, complement; fuzzy relations; max-min and min-max products and 

transitivity. 

 

With respect to t-norms and t-conorms, key aspects are Lings theorem, De Morgans terms, continuous t-norms and t-

conorms, additive generators. In the case of classifications, relations and equivalence classes are considered, along with 

partitions, discrete pseudo distances, and fuzzy classifications,  especially that of fuzzy c-Means, supervised and non 

supervised classifications. Fuzzy c-Means is described in Section 2.5 of the thesis. 
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In the case of relations of indistinguishability, the following are considered: t-indistinguishability, s-metrics, generation 

via Max-T and Min-S, generators, bases and dimension. In the case of t-indistinguishability: theorems of 

characterisation (e.g. Poincaré), similarities, algorithms which find the base. In the case of m-partitions,: classification 

with respect to a given metric, relation between m-partitions, t-indistinguishabilities and s-metrics. 

 

Similarity is considered a generalisation of the notion of equivalence. A similarity relation has the following properties: 

it is reflexive, symmetric and transitive, where: 

 
reflexive: s(x,x) = 1 

 

symmetric: s(x,y) = s(y,x) 

 

transitive: s(x,z)  ( s(x,y)  s(y,z)) 

 

and 

 

  = max, and =min 

  

 

 

The grade of membership  

 

r(x,y) = 1 

 

is considered the strength of relation between x and y. A possibility is considered equivalent to a similarity which is 

equivalent to an indistinguishability.  

 

T-norms 

T-norms are a class of ordered topological semigroups in the unit interval. In 1942, Karl Menger introduced a 

probabilistic generalisation of metric spaces by replacing the real values d(p,q) by a probability distribution function Fpq 

. The main problem with the theory was how to generalise the classical triangle inequality. Menger analysed a relation 

of the form Fpr(x+y) T(Fpq(x), Fqr(y)), where the function T from [0,1]  [0,1] into [0,1] was supposed to satisfy some 

special requirements: 

 

(i) T(a, b) = T(b, a) 

(ii) T(a, b)  T(c, d) whenever a  c and b  d 

(iii) T(a, 1)  0 whenever a  0, and T(1, 1) = 1 

 

In 1956 Berthold Schweizer and Abe Sklar rediscovered Menger’s inequality and in 1960 published a paper where 

condition (iii) was replaced by the boundary condition: 

 

 (iii’) T(a, 1) = a for all a in [0,1] , 

and the associativity of T was also assumed: 

(iv) T(a, T(b, c)) = T(T(a, b), c). 

 
Since the operations T satisfying (i), (ii), (iii) and (iv) were related to a class of triangle inequalities, they were named 

‘triangular norms’, abbreviated to ‘t-norms’. Thus we have: 

 

Definition 1. A two place function T from [0,1]  [0,1] into [0,1] is a t-norm if T satisfies the following conditions for 

all a,b,c,d in [0,1]: 

(a) T(a, 1)=a; 

(b) T(a, b)  T(c, d) whenever a  c, c  d; 

(c) T(a, b) = T(b, a) 

(d) T(a, T(b, c)) = T(T(a, b), c). 
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A t-conorm is analogous to a t-norm: an operation S of [0,1]  [0,1] in [0,1] is called a continuous t-conorm if it 

satisfies the following properties: 

 

(i) associative: S(x,S(y,z) = S(S(x,y),z); 

(ii) monotonous:  if x  x’ then S(x,y)  S(x’, y); 

if y  y’ the S(x,y)  S(x,y’); 

(iii) conditions of contorn: S(x,0) = S(0,x) = x; 

(iv) continuity: S is continuous as a function of two variables 

 

Max(x+y-1,0)        x y      Min                       Max       x+y-xy    Min(x+y,1) 

 

 Lucaseiwicz         Prod          Min                       Max               Sprod                Sluke 

 

 

             t-norms                                    t-conorms 
                                                                   Aggregation 

                                                                   operators 

                                                                   (e.g. OWA, WOWA, Weighted Mean, Choquet Integral, …) 

 

Figure 15. T-norms and t-conorms are a special type of topological semigroup ordered in the real index. 

 

With reference to Figure 15, aggregation operators, such as OWA and WOWA, could be considered to exist in the 

range between ’Min’ and ‘Max’, with the following conditions: (i) Min ai   C(a1, ….an)  Max ai; (ii) C(a, …., a) = a. 

Aggregation operators are covered in detail  later in Section 2.3. 

 

In [Jacas88] the structure of the generator’s set of a t-indistinguishability operator is analysed. A suitable 

characterisation of such generators is given. T-indistinguishability operators generated by a single fuzzy set, in the sense 

of the representation theorem, are studied. 

 

The following is the representation theory of a t-indistinguishability: a map E from X  X into [0,1] is a T-

indistinguishability operator if, and only if there exists a family {hj}j  J of fuzzy subsets of X such that 

                                  

E(x, y) = inf T (max(hj(x),hj(y))|min(hj(x),hj(y))) 
                              j  J 

 

In [Jacas93] a general vision is presented of the concept of equality. The key aspect resides in achieving a good 

generalisation of the concept of transitivity which allows us to include different approximations of the idea of equality 

present in different branches of knowledge (physics, psychology, social sciences, fuzzy set theory and information 

theory) in a widened model. The definition of fuzzy equality presented allows a formulation ‘more realistic’ of the 

equality between objects which is shown to have a duality with the concept of distance. 

 

One of the key ideas consists of defining a distance in a set X as an application m which assigns a positive number m(x, 

y) to each pair of elements (x, y) of X, which satisfies: 

 

(i) m(x, x) = 0 

(ii) m(x, y) = m(y, x) 

(iii) m(x, y) + m(y, z)  m(x, z)   {triangular property} 

 

 

An indistinguishability operator in a set X is an application E:X X  L such that 

 

(i) E(x, x)   

(ii) E(x, y) = E(y, x) 

(iii) E(x, y) * E(y, z)  E(x, z) 

Irrespective of what x, y, z of X are, and assuming that (L, ) is a partially ordered set (L, *) is a semigroup and  is a 

distinguished element of L. 

 



 51 

In [Jacas95], the set of generators of a generalised equality relation (T-indistinguishability operator) is studied. This set 

is identified with the set of the eigenvectors of the relation. The relation between the fuzzy and ‘metric’ topologies 

derived from these equalities is established. The concept of basis is introduced and the construction of a procedure is 

proposed in order to explicitly calculate the basis of a T-indistinguishability operator, for T archimedean. 

 

The following is the algorithm to calculate a basis of T-indistinguishability E on a finite set X (# X = n) for T =  or T 

= L. 

 

(i) calculate the edges of the set HE . 

(ii) count = 1 

(iii) build a set A obtained by taking a generator from each edge of HE 

(iv) define B(count) = the set of subsets of A of count elements. 

(v) select a set H of B(count) and generate the relation EH . 

(vi) if EH = E then stop 

(vii) do step (v) and step (vi) for all different elements of B(count) . 

(viii) count = count + 1. Go to step (iv) . 

 

We observe that the elements of a preceding basis belong to different edges and since the number of edges is finite, a 

method can be derived to calculate a basis of E. 

 

2.2.4       Fuzzy data representation 
 

We now consider different aspects of fuzzy data representation, including the representation of fuzzy linguistic labels, 

binary variables, and the homogeneous fuzzy representation of variables of different types 

 

Heterogeneous representation for fuzzy data 

 

Hathaway and Bezdek proposed, in [Hathaway96], the following scheme for representing any type of data (including 

fuzzy) in the same scheme. Figure 16 shows the four kinds of symmetrical trapezoidal fuzzy numbers (STFN) which are 

considered: real numbers, intervals, and symmetrical triangular and trapezoidal fuzzy numbers, represented in the figure 

as ma(x:e), ma(x:f), ma(x:g), and ma(x:h), respectively. The notation, ma(x:a1, a2, a3) = ma(x:a) is used, where a = (a1, a2, 

a3) is the vector of parameters that specifies m in the chosen representation. ma defines the standard representation of an 

STFN, where a1 is the centre, a2 is the inner radius and a3 is the outer radius of the structure specified by ma(x:a). 

 

 

         real number     interval      triangular       trapezoidal 

         ma(x:e1, 0,0)             ma(x:f1, f2, 0)   ma(x:g1, 0, g3)                  ma(x:h1, h2, h3)  

1                      

     f2           h2 

          

 

0   

g3                                       h3 

         e1               f1          g1     h1 

 

Figure 16.  Representation of real, interval, triangular and trapezoidal fuzzy variables with symmetrical forms 

 

With reference to Figure 16, the definition of a real number, for example, 1.1, using this scheme would be ma(x:1.1, 0.0 

,0.0). In a similar manner, the definition of an interval would be ma(x:1.5, 1.0, 0.0). Note that because the scheme 

applicable to all four forms, one or more elements in the vector of parameters may be redundant and is assigned 0 in this 

case. This representation method is very flexible, and we will see in Section 3.1.2 of the thesis, how this idea is 

generalised to include parmenidean pairs, and the data format is extended. 

 

Representation of Fuzzy linguistic labels 

 

Linguistic labels, such as ‘high’, ‘low’, ‘medium’, ‘strong’, ‘weak’, are one of the prime targets for fuzzy 

representation, given their inherent imprecision and context dependency. The areas of investigation range from those 

based on linguistic theory, to geometrical descriptions, and from those which use neural networks for processing, to 

those which use rule based systems. 



 52 

 
Baldwin’s work [Baldwin95] deals with the modelling of words using Cartesian granule features (CGF). A 'Cartesian 

granule' is a collection of 'words', each 'word' being represented by a fuzzy set, and a T-Norm 'min' or 'product' being 

applied. One of the objectives of this approach was to demonstrate an improvement over other approaches. 

 

The process is as follows: first, the data is pre-processed with a Kohonen net  or with Fuzzy c-Means. Then the 

following process is applied: (i) extract CGF from data by induction; (ii) choose which features to use; (iii) create 

linguistic partition; (iv) then add features one by one. Figure 17 shows the entity relationship between Cartesian 

Granules, Words and Fuzzy Sets.  

 

 

 

            C.G.            Words           Fuzzy Set 

           1       :      N                                        1       :      1 

 

 

Figure 17. Entity relationship between ‘Cartesian granules’, ‘words’ and ‘fuzzy sets’. 

 

The algorithm uses a weight measure to represent the discriminant power of the features. The real application to which 

the method is applied is that of image recognition of a street with a couple of parked cars - 83% of the image area was 

correctly classified. There were 28 input features (unseen data), which were less features than those needed by a Neural 

Network. 

 

 

Table 4.   Properties of a feature 

 

 

  intensity......................................... 

  centroid.......................................... 

  X,Y dimensions.............................. 

  Texture.......................................... 

  Green-Blue measure (G-B)............ 

  Yellow-Green measure (Y-G)......... 

  Red-Blue measure (R-B)................ 

 

 

In summary, the work of Baldwin, ‘feature and granularity selection’, is based on the selection of features by the use of 

a semantic discriminant analysis. One of the key criteria applied is to look for features with a good class separation. In 

Figure 18a, feature A is comprised of three fuzzy classes, which could be ‘low’, ’medium’ and ‘high’, for example.  

Each hemisphere in the figure represents a fuzzy class, and we observe that there is little overlap. This means that for 

feature A, each of the three fuzzy classes which comprise it are mainly distinct from one another. On the other hand, in 

Figure 18b, we see that for a given feature B, the three hemispheres overlap to a greater extent, and therefore there is a 

proportionately reduced distinction between the corresponding fuzzy classes. We would conclude that feature A has a 

better class separation, and is therefore has greater discriminative power than feature B. The system was developed in 

FRIL, C++, Java, and SNNS (neural network software). 

 

 

   Feature A                                                                  Feature B 

 

 

 

 

  

             Figure 18a. Example of good separation   Figure 18b.  Example of bad separation  

     of fuzzy sets                                        of fuzzy sets 
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On the fuzzy representation of binary type variables 

 

Nominal (binary) variable. (respiratory failure{yes,no}, Duration of stay in ICU for 24 hours or more{yes,no}) 

 

This could be considered as a special case of nominal variables: In clinical records, such as the ICU dataset, many 

values are often the binary type, with a 1 or 0 response to clinical states and states of concentrations, presences, 

durations, and so on. Bezdek [Bezdek81], pp86, elaborated a method specially for attributes which assume binary 

values in medical data. The details of the method are extensively detailed in [Bezdek81]. The following depicts the 

table which gives the fuzzy cluster centres for each of the 11 variables considered. Fuzzy c-Means calculates these 

centres, together with the membership grades of each patient for each value of the binary variable (Hernia). 

 

 

Table 5. Prototypes for Membership functions  

 

 Symptom (Hernia)   (Gallstone)  Absolute 

   1 j   2 j    differences,  f12,  j 

         

 1  0.57   0.27   0.30 

 2  0.98   0.67   0.31 

 3  0.06   0.93              0.87 

 4  0.22   0.55   0.33 

 5  0.17   0.10   0.07 

 6  0.77   0.84   0.07 

 

 7  0.42   0.05   0.37 

 8  0.39   0.84   0.45 

 9  0.48   0.04   0.44 

 10  0.02   0.16   0.14 

 11  0.12   0.25   0.13 

 

In Table 5 (above) we observe that attribute (symptom) 2 is the most significant (as identified by fuzzy c-Means) for 

Hernia, while attribute 3 is the most significant for Gallstone. 

 

All the patients have Hernia or Gallstone. Thus we have a data set which should fall into two clusters, in a binary 

fashion. Nevertheless, it is not completely clear how to assure that with the number of clusters assigned to two, fuzzy c-

Means is able to identify which is the flag attribute (hernia={yes,no}) which distinguishes the groups, and not any of 

the other 11 attributes (or permutation groupings of the other 11 attributes). It would seem reasonable that the values 

represent the weighted mean of all the cases, for each variable.  

 

The method detailed assumes that all the attributes are in a binary form (not only the possible classes, c being equal to 

2). Thus, for variables of different types we cannot use this method, being restricted to subsets of the attributes which 

are binary. Nevertheless, the interpretation of the membership grades is by the standard fuzzy c-Means algorithm, and 

we may use this for all types of variables. 

 

In [Bezdek81 , pp86, the selection of variables from binary data is considered, for principal medical symptoms. 

 

A method is developed for selecting attributes for binary data, based on diffuse prototypes (fuzzy) { i} derived from the 

fuzzy c-Means algorithms. For the demonstration, data set X must possess binary values in each attribute; each j  is the 

set {0,1}, and for  attributes, we have: 

 

 X  ({0,1}  {0,1}  ........  {0,1}) = [{0,1}   
     

 (2.33) 

 

It is assumed that kj = 0 or 1, respectively, that represents if “patient” k has or does not have symptom j . In general, 0 

(= absent) and 1 (= present) are attributes observed in many applications, and the method which is detailed as follows is 

pertinent to them, given that the objective is quite intuitive: 

 

 A doctor collects  responses to clinical questions. Which of the questions (which of the attributes measured) 

of patient k allows the doctor to make a correct diagnosis ? Are there redundant attributes? Confusing 
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symptoms? Too much data? Insufficient data? To  summarise, we are looking for a means of identifying the 

“best” attributes (features) for medical diagnosis [Bezdek81]. 

 

With reference to Section 4.1, we can use this representation for attributes such as ‘Increase in Creatinine’ and ‘Vital 

state on leaving the ICU’.  

 

Non-linear membership functions 

 

The generation of membership functions is also related to quantifiers which interpolate a set of points to form a 

‘continuous’ curve. There are many functions we can choose to generate a curve. Notwithstanding, we are interesting in 

functions whose parameters we can control in order to model linguistic labels and phrases. To this end, we consider 

‘hedges’ as auxiliary qualifiers to linguistic labels which strengthen or weaken the initial concept. An example of a 

hedge would be the use of ‘very’ to strengthen the concept ‘cold’. 

 

Zadeh’s S-Function is an example of an adequate function with which ‘hedges’ can be applied to non-linear 

membership functions. It is defined as follows: 

 

   0   x   

    

S(x; , , ) =                x  
2
   x       

                    
           (2.34) 

    x
2
   x  

     
    

   1    x 

 

Now  

      1 + 3 (x 1/2)   x  ½     

      2    2 2 (1/2) 

f(x) =            (2.35) 

      1  3 (1/2 x)   x  1/2 

      2    2 2 (1/2) 

 

 

The use of f(S(x; , , )) increases all the membership values above 0.5, and decreases all the others. This is the 

definition for "very"; for "extremely" we can replace in formula 2 the 3rd root by the nth root (for a suitable n  3, n 

odd). 

 
Graphical display of fuzzy memberships 

 

Kaufman and Rousseeuw in [Kaufman90], pp195,discuss ways of representing fuzzy memberships graphically. Lists of 

membership coefficients are often produced as output by programs and do not lend to an easy interpretation. In 

[Rousseeuw89] a method was proposed for computing the principal components of the membership coefficients. This 

involved simply applying a standard principal components program such as that found in SPSS or SAS, to the 

memberships, in the same way that it is usually applied to measurements. The number of nondegenerate principal 

components is the number of fuzzy clusters minus 1, given that the sum of the memberships is constant for each object. 

 

As an example, Kaufman & Rousseeuw [Kaufman90] applied their fuzzy analysis program FANNY to a ‘countries’ 

dataset with c=3 and 12 countries. Given there were 3 fuzzy clusters, 2 principal components were obtained, as can be 

seen in Figure 19. The vertical component was interpreted as the countries political orientation while the horizontal 

component seemed to correspond to the degree of industrialisation. Egypt seems to hold a more intermediate and 

ambiguous position. Note that the criteria for plotting the positions is in the historical context taken at the end of the 

1980’s !  

 

For two fuzzy clusters, the membership ui1 may be plotted for each object in the first cluster, then the membership in the 

second cluster can be read from right to left as ui2 = 1 – ui1 . 
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For three fuzzy clusters, each object has memberships (ui1, ui2, ui3) and the possible combinations fill an equilateral 

triangle in 3-D space. Or we can use principal components to recover the triangle, or plot the memberships using 

barycentric (or trilinear) co-ordinates. 

 

For more than three clusters, the two components may be shown which have the largest eigenvectors, thus explaining 

the largest portion of the variability. Alternatively a 3-D plot can be made or 2-D plot of different pairs of principal 

components. 
 
 

  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

 
 

Figure 19.  Principal components of memberships of 12 countries  in three fuzzy clusters 

 

 

2.2.5      Fuzzy data analysis 
 

We now consider work relating to different aspects of fuzzy data analysis, including fuzzy clustering, fuzzy data 

modelling, fuzzy neural modelling, fuzzy rule induction and fuzzy factorial analysis. 

 

Bezdek is a second key author (after Zadeh) in the fuzzy clustering field and is best known for his work related to the 

fuzzy c-Means family of clustering algorithms. In [Bezdek81], a feature selection scheme is detailed for medical binary 

data based on fuzzy prototypes {vi} derived from the fuzzy c-Means algorithms. This is interesting because medical 

diagnosis often involves many input variables which are of a nominal binary type, defined by a state or condition. One 

example would be the attribute ‘respiratory failure’ which has two possible values, {yes,no}; a second example would 

be ‘duration of stay in ICU for 24 hours or more’, also with two possible response values, {yes,no}. 

Bezdek defined a measure to establish the features which possess optimal discriminatory power for interclass 

separation. For i  j, where j are the different symptoms and i are the possible diagnoses, he defines a ‘separation 

vector’: 

 

 fij = (|vi1 – vj1| , |vi2 – vj2| , … , |vip – vjp|)  

 

Bezdek follows with the definition of a plausible heuristic for ranking features k as discriminators of classes i and j by 

ordering them by the components of fij . If c, the predefined number of clusters given to fuzzy c-Means is equal to 2, the 

procedure is direct; for c  2 the average of fij,k is calculated over the c(c-1)/2 pairs (i, j) with i j. This gives an overall 

average efficiency for feature k. 

              c-1       c 

 fk = (2/(c)(c-1))       fij,k 

             
i=1       j=i+1 

 

fk then measures the relative ability of feature k for the interclass separation over all the distinct pairwise fuzzy clusters 

in the binary valued data, X. Optimal features are then selected by ordering the {fk|1  k  p}, where p is each individual 

response. 
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Also in [Bezdek81], a method for obtaining ‘shape descriptions’ is given, with fuzzy covariance matrices. The shape of 

the cluster (in a two dimensional feature space) is defined by the norm. Thus if the norm can be varied locally, this 

makes it possible to alter the shape of individual clusters in the same feature space, thus more truly representing the 

underlying characteristics of the dataset. The mechanism to achieve this includes the use of the fuzzy covariance matrix 

defined by Gustafson and Kessel in [Gustafson79], which each fuzzy covariance matrix induces a different norm.  
 
The sample covariance matrix measures the covariance of each sample with respect to each cluster prototype: 

 

 Ci =       (xk –vi)( xk –vi)
T
 / ni 

       xk
  

uig
 

 

The memberships are effectively distributed to minimise the overall “fuzzy scatter volume” of the c fuzzy clusters  

 
The number (xk –vi)

 T
 Ci 

-1
 ( xk –vi)  is the squared Mahalonobis distance between xk  ui and its sub sample mean vi , Ci 

-1
 

being the inverse of the sample covariance matrix of the points in ui . 

 

The fuzzy c-Means algorithm modified to incorporate the fuzzy covariance calculation, and defined by Gustafson and 

Kessel in [Gustafson79], is as follows: 

 

Step 1: assign c, 2  c  n, assign m (1, ), assign c volume constraints j  (0, ), 1  j  c. Initialise U
(0)

  Mfc . And 

so on at step l, l=0,1,2, … 

Step 2: calculate the c fuzzy cluster centres {vi
(l)

}. 

Step 3: calculate the c fuzzy scatter matrices {Sfi
(l)

}. Calculate their determinants and their inverses. 

Step 4: calculate the norm-inducing matrices {Aj
(l)

}. 

Step 5: update U
(l)

 to U
(l+1) 

. Distance dik
(l)

 = ||xk –vi
(l)

||Ai ; 1  i  c, 1  k  n. 

Step 6: compare U
(l)

 to U
(l+1) 

in a convenient matrix norm: if || U
(l+1) 

– U
(l)

 ||  L , stop. Otherwise return to Step 2 with l 

= l + 1. 

 
In [Bezdek77] the fuzzy ISODATA algorithms are used to address: (i) feature selection for binary valued data sets; (ii) 

the design of a fuzzy one-nearest prototype classifier. Feature selection has already been covered in the notes on 

[Bezdek81]. In the case of prototype classification, an average classifier performance of 62% was reported using fuzzy 

1-NP classification for patients known to have one of the six stomach disorders under consideration. The objective is 

that the cluster centres are good classifiers, and the method is compared with k-nearest neighbour classifiers.  

 

Fuzzy clustering with weighting of data variables 

 

 [Keller00] considers fuzzy clustering with weighting of data variables. An objective function-based fuzzy clustering 

technique assigns one influence parameter to each single data variable for each cluster. The concept consists of 

weighting single attributes for each cluster using a distance measure in which the distance between a datum xk and a 

cluster (vector) vi is defined by 

         p 

 d
2 
(vi,  xk) =  

t
is  ( xk 

(s)
 – vi 

(s) 
) 

2
 

        
s=1 

xk 
(s)

 and vi 
(s)

 indicate the sth coordinates of the vectors xk and vi, respectively. The number of variables or attributes is 

denoted by p. 
t
is is a parameter determining the influence of attribute (coordinate) s for cluster i. t  1 is a real-

valued parameter which allows for the definition of the strongness of the emphasis that is put on the attribute weighting 

task.  

 

As an example of how the influence parameter works, consider a partition of four clusters: for cluster 2, the attribute 

influence parameters is have nearly the same value, while the data co-ordinates are approximately uniformly 

distributed for the two domains of the cluster. For clusters 3 and 4, the data values for attribute x are scattered widely 

whereas the values for attribute y have a small range – thus the influence parameters ix are small in comparison to iy 

for clusters 3 and 4. In the case of cluster 1 the data values for attribute y are scattered widely, resulting in a high value 

for influence parameter ix. 
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Fuzzy data modelling 

 

The Sugeno-Takagi fuzzy model [Takagi85] determines an optimal structure by using a criterion chosen by cross 

validation. With respect to initialisation, a supervised Gustafson & Kessel algorithm is applied to the input-output 

space, in which compatible clusters are merged, and fuzzy rule antecedents are generated by the projection of the 

clusters into the input space. The algorithm splits a rule to determine the parameters of the children and the optimal 

antecedents (called priors). The results were benchmarked using [Platt91], and with a training set of 500 points it is easy 

to identify the point in which overfitting starts. One drawback of the method is the high consumption of processing 

time.  

 

Rule models in [Takagi85] are constructed from rules defined in the following manner: 

 

 

 

 

If x is    0.0                       7.0    then y = 0.6x + 2 

 

 

 

 

 

If x is    4.0                          10.0    then y = 0.2x + 9.0 

 

Figure 20. Example of Takagi-Sugeno fuzzy rule definitions  

 

The rules in Figure 20 (above) represent a perfect (linear) distribution of the points. If noise is introduced into the 

dataset as can be seen in Figure 21 (below) where the points no longer lie perfectly along the line, but are dispersed as 

in a real dataset, the method is able to adapt to it by altering the parametric values in the rules. 

 

 
 

When the premise parameters are derived again from the new data, we see some small but significant changes to the 

coefficients, as illustrated in Figure 22, which model the dataset of Figure 21. 
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If x is    0.0                       6.6    then y = 0.59x + 2.2 

 

 

 

 

 

If x is    4.0                       10.0    then y = 0.12x + 9.5 

 

Figure 22. Example of Takagi-Sugeno fuzzy rule definitions after the addition of noise to the data 

 

A Fuzzy Q-Learning  method [Glorennec94   uses agents to learn about the input space. There are three variants: 

discrete action space, knowledge extraction and knowledge fusion. A predefined number of agents compete against 

each other to control the system. One of the objectives is that of knowledge fusion from several experts, a similar 

objective to aggregation algorithms. Learning involves a knowledge extraction phase followed by a knowledge 

integration phase. In order to reach a certain type of behaviour a reward-punishment tactic is used, to reinforce the 

desired behaviour of the system. Rule based optimisation is shown to be an efficient process, and may be changed by 

expert. Actions are considered to be continuous, as opposed to discrete. 

 

 [Baldwin95]. The problem of representing attributes such as 'age' or  'hobbies' in a fuzzy form is considered from a 

semantic point of view. Binary relations are considered in which vagueness is defined as the crispness of an object, or 

that of not being sure in which set it is, that object having a membership to more than one set. ‘Vagueness’ is contrasted 

with ‘uncertainty’, which is considered as applying only to binary variables. A fuzzy object can be an ‘uncertain object’, 

or an ‘incomplete object’, which may have a subjective or objective interpretation. It is stated that an object may be at 

the same time ‘uncertain’ and ‘incomplete’. The purpose of fuzzy types is considered: they can be used in the case of an 

incomplete specification, can permit vagueness in the case of ranges and default values, and can interpret subjective as 

opposed to objective definitions. It was stated that one of the objectives was to define the properties of ‘type’, as well as 

the meta-properties of ‘type’.  

 

[Bouaziz96] defines a set of  trapezoidal 'linguistic types', which employ  a squeezing mechanism to ‘squeeze’ the 

membership graph towards the origin, which helps to cope with ‘data explosions’. The squeeze factor depends on 

events – a smaller squeeze implies a weaker reaction. The form of  codification of the trapezoidal functions allows for 

the creation of new linguistic types’.  

 

 [Cordon97] in his work on ‘new reasoning methods in a classification system based on fuzzy rules’ considers fuzzy 

rules with grade of truth, which can be applied to fuzzy classes. [Delgado95] in his work on ‘hybrid techniques for 

generating and tuning rules in fuzzy modelling’ treats of the evolution of fuzzy rules from an initial state. The end result 

is susceptible to local minimum’s and a lucky (or unlucky) first guess at the first rule to evolve. He mentions fuzzy 

fusion as being in two steps: (a) correlation of homogeneous values and (b) distances between membership grades.  

[Castro98], in his work on ‘a methodology for SBC development’ is partially inspired by MILORD [Sierra89]. He has 

an interesting methodology, which consists of the following: (a) extraction phase of relevant variables ; (b) selection of 

a representative set of examples; (c) knowledge acquisition phase; (d) validation phase; (e) verification phase. His test 

data was the Iris set, and the rule generation step produced three rules. A hierarchic control is used in the movement of 

the rules. If it doesn't arrive at a satisfactory result, it looks for a more general rule. 

 

[Flores-Sintas97] tested the fuzzy-minimals algorithm using real data. We recall that fuzzy-minimals is one of the fuzzy 

c-Means developed by Bezdek. They have realised studies based on covariance matrices, employing a ‘defuzzification’ 

process to tackle a real problem posed by the ‘Caja de Murcia’, that of classifying the offices of the bank. A partition 

tree was generated , containing 9 groups of which 3 were 'spurious'. [López-García97] defined and studied some of the 

conditions for existence of ‘Gastwirth type fuzzy inequality measures’. They have employed an interesting type of 

membership function based on  hyperbolic indexes to represent ‘relevance grade’ responses of scientific-professional 

training. (very low, low, medium, high, very high, don't know/don't answer). 
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Fuzzy neural modelling 

 

[Kim96] defines the following simple algorithm for a ‘fuzzy neural classifier’: (i) find nearest k neighbours of x; (ii) 

determine class of x by voting of all k neighbours and the majority wins. A ‘condensing’ phase is used to remove 

redundant (deeply embedded data) and to remove boundary data (that which is borderline between 2 clusters). An 

example of how the ‘rule base’ is defined is as follows: 

 

IF x is close to (A1, A2, A3) THEN class =  

IF x is close to (B1, B2, B3) THEN class =  

 

  A1  

 

 x1 A2   max 

 

  A3 

                Voting                               Winning class is that 

  B1                       voted by the simple 

              majority 

 x2 B2   max 

 

  B3 

 

Figure 23. Example architecture of a fuzzy neural model 

 

 

For testing,  578 test cases and 1063 training cases were used, with three clusters. A sample size of 497 was reduced to 

64 by the ‘condensing’ phase. The sample size was further reduced to 60 after processing with Fuzzy c-Means to find a 

reduced sample set.  

 

[Juang97] defines a recurrent self-organising neural fuzzy inference network which includes a time dimension. An 

example of one of the rules is as follows: 

 

IF at '1' THEN have to predict '2'. IF at '2' THEN have to predict '3'.  

 

This is depicted graphically in Figure 24 (below). 

 

            x2 

      

         12            1            2 

              Order of 

                        presentation 

                  

      11                        3 

 

 

     4/10           x1 

 

 

     5     9 

 

 

          6          7             8 

 

 

Figure 24. Graphical representation of the temporal dependencies of the tests a, b and c 
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A ‘best trajectory’ is achieved by their algorithm ‘RSONFIN’, which they claim is better than the trajectory found by a 

feedforward fuzzy neural network. The benefits of the model are that it is constructed from a recurrent net, has no 

preassignment, and has a small number of parameters.  

 
Fuzzy rule induction 

 
The Fuzzy Projection Pursuit method, called  ID3* and developed by [Miyoshi97 , unifies the Fuzzy ID3 approach of 

[Umano94  and the Projection Persuit approach of [Friedman74 . A brief description of the method is as follows: 

 

Equation (1) - In a leaf node b, a sample data x belongs to a fuzzy set with membership 

 

 b =   il         (2.36) 

          (i, l)  Qb 

 

where  il is a membership function of the attribute value, (i, l) means the lth attribute value (fuzzy set) of the ith 

attribute and Qb is a set of the pair (i, l) along the branches from the root to a node b. 

 

Miyoshi [Myoshi97] proposed a method which generates a decision tree whose nodes consist of the projections of 

attribute values. For example, the data whose attributes are x1 and x2 is classified into two classes, B and S, as shown in 

Figure 25 (a). The standard ID3 algorithm has difficulty in obtaining a simple decision tree from the given data, but the 

projection persuit ID3 can produce a simple decision tree, as shown in Figure 25 (b), if an appropriate projection vector 

is given as defined in [Myoshi97]. 

  

 

   x2                             y2                                                                                                        Projection                

          S                                                                                       y1 

        S    B                    

              B             S                   B     S          Projection        

        y1                                                                                                                                                y2 

                             

(a)                        x1                                                                 (b)      S       B        S   

 

 

Figure 25. Example of projection persuit ID3: (a) fuzzy partitions; (b) decision tree corresponding to the fuzzy 

partition in (a) 

 

[Branco94] considers methods for decomposing  ‘Sugeno rules’, with the values of the variables taken as features. The 

resulting table is converted into a decision tree. For example: 

 

Table 6. Classification of different geometrical shapes in terms of the number of sides and angles 

 

            sides           angles= 

 3 4 2 3 4 

Equilateral 

triangle 

1 0 0 1 0           

Isosceles 

triangle 

1 0 1 0 0 

Square 

 

0 1 0 0 1 

Rhombus 

 

0 1 1 0 0 

 

is converted to (next page): 
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     sides 

 

 3               4 

 

         angles           angles 

 

2 3 4 2 3 4 

 

Figure 26. Tree representation of geometric features generated from Table 6. 

 

A table such as that shown in Table 6, is constructed for the objects and features, where the objects in this example are 

geometric shapes (square, rhombus, …) and the features are ’sides’ and ‘angles’. A supervised learning method is then 

used to generate a tree representation, such as that seen in Figure 26. A learning set of 250 points was used, derived 

from PROBEN1, a collection of data sets for neural network learning. 

 

The results showed that  the classification error depends on the number of fuzzy sets, one drawback being that the 

method depends on the fuzzy partition. Trapezoidal and triangular fuzzy sets were used, and it combines rules to 

incorporate those elicited from the data and from the expert.  

 

[Loutchmia97] defines a method for inductive learning using similarity measures on a lattice-fuzzy set. This employs a 

‘case based’ approach for learning, and the ‘lattice’ approach is used to  handle uncertainty and imprecision. The 

method has been tested on the ‘sponge’ and ‘iris’ datasets, and the distance measure used is as follows: 

 

         

  (x, y)  =   k db ( xk, yk )       (2.37) 

      k=1 

      

     k 

    k=1 

 

where the observations are described by a set of  attributes which are considered elements of a lattice T,  k  is a weight 

associated to the attribute Ak, db is the bipartite distance,  is the average bipartite distance and  x = (x1, …, x ), y = (y1, 

…, y ) are two elements of the lattice T. 

  
Fuzzy factorial analysis 

 

[Inuiguchi97  introduces a ‘mean-absolute deviation based fuzzy linear regression analysis’, whose objective is to 

achieve automatic deduction from data. The motivations are that it is not based on minimising the deviations, and 

performs a minimum range estimation, without any initial parameters. Its strong points are that it avoids non-intuitive 

results, is non-parametric, and the regression is obtained by a sequential simplex method.  

 

[Dubois97] describes a user-driven summarisation of data based on gradual rules. This consists of three main steps: (i) 

identify typical points along the data; (ii) compute cores of each output fuzzy set using 'convex hull' method; (iii) rule 

refinement. One problem which may occur in step three is that the core may be found to be too large, as can be seen in 

Figure 27  below. Also, the support of a fuzzy output may be too large. An example of a ‘gradual rule’, would be: the 

more X is A, the more Y is B . 
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        groups too much data 

 

 

 

 

       

Figure 27. Illustration of generation of a core with excessive grouping of data 

 

 

 [Watada94] considers the processing of crisp data into fuzzy sets. As can be seen in Table 7, a fuzzy factor loading is 

considered as the correlation between a given principal component and a given attribute-variable. 

 

Table 7. Definition of a fuzzy factor loading  r (Zk , xi ) which is considered as the correlation between the 

Principal Component Zk and the attribute xi  

 

  factor 1   factor 2  …….  factor N  

Item    L   C U   L C U .......   L C   U 

1           

2           

3           

4           

......           

N           

 

L=Lowerbound, C=Centre, U=Upperbound. 

 

 

One of the more interesting references in the field of factor analysis for fuzzy data is that of  [Nakamori97 . He states 

that one reason that factor analysis for fuzzy data has not been developed is the difficulty to calculate the second 

moment of fuzzy data given by interval fuzzy. Nakamori uses intervals (min, max) for the distances between attributes, 

in which the first step is to define a Fuzzy Correlation matrix. Nakamori´s proposal for fuzzy factor analysis uses a 

correlation matrix between measures R = (rij ), and for subject k it is R
k
 = {rij

k
} .  

 

First the correlation matrices are computed based on the data of individual subjects. Then, the standard deviations  ij
  
of 

(i, j)-elements of all correlation matrices are calculated. The variance of  the correlation {rij
k
}   ij

2 

 

Now the following range is defined: 

 

 rij
L
  = max{-1, rij -  ij

 
},         (2.38) 

 rij
R
  = min{rij +  ij

 
,+1}, 

 

where  is the parameter indicating the degree of fuzziness. The fuzzy correlation matrix 

  =  (rij) =( [rij
L
 , rij

R
 ),  i, j = 1,2, ... , N,        (2.39) 

 

Where  [rij
L
 , rij

R
 denotes an interval fuzzy number. The fuzzy correlation matrix holds the relative fuzziness of 

correlation coefficients. 

 

The fuzzy distance between two fuzzy objects Oi and Oj can be defined as a fuzzy number: 

 

 d ij = [dij
L
 , dij

R
          (2.40) 

 

First the minimum and maximum distances along each factor axis is computed, then the lower (L) and upper (R) 

distances are defined. The same mechanism for traditional factor analysis (loading matrix holding the loading factors, 
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rotation matrix, and correlation matrix) exist and implies that this method follows similar lines to the Hartigan joining 

algorithm. 

 
In the case of fuzzy distance measures, [Loutchmia97] considers inductive learning  using similarity measures, and 

refers to the ID3 [Quinlan86] algorithm and to fuzzy decision trees [Dubois91  [Okamoto94  [Zeidler96 .  

 

Selection of Characteristics 

 

For the constitution of a ‘data space’ S, it is necessary to evaluate if the characteristics of data item xk  X, are 

sufficiently representative of the physical process, to permit the construction of clusters which classify and which are 

realistic. It is necessary to evaluate if we possess the correct data space. ¿Is it necessary to eliminate some attributes 

from xk , modify them, enrich them, transform them? 

 

It is necessary to look for the ‘internal’ structure in the data, the objective being to improve its utility for the clustering 

process and / or classification in the data set. In the case of the ‘hospital admissions’ data set (see Section 4.1), there are 

two considerations: (i) reduction of the number of attributes in order to only keep the most significant ones, with respect 

to a key ‘objective’ attribute, for example, ‘duration of stay in hospital in days’; (ii) fuse the most significant attributes 

in two or three ‘super-attributes’, thus allowing data analysis in these dimensions. We assume that these two aspects 

will be carried out separately and with different techniques. 

 

 
2.2.6    Fuzzy covariances 
 

In this section we introduce some concepts and definitions of fuzzy covariances, which are considered in more detail in 

Section 3.1 of the thesis. In the literature, the term fuzzy covariance is often used to describe different things, and it is 

difficult to establish a strict definition. In conceptual terms, [Gustafson79] understands fuzzy covariance as the 

covariance between a fuzzy instance in a dataset and the centroid of a corresponding fuzzy cluster. The formal 

definition of this is given below. Other  authors, such as [Nakamori97] or [Watada94] define application specific fuzzy 

covariance calculations. The definitions we later make in Section 3.1 of the thesis in order to define a fuzzy covariance 

which defines the covariance between two variables defined in the fuzzy form, are derived from the definition given by 

[Gustafson79]. 

 

Derivation of the Gustafson & Kessel fuzzy covariance matrix [Gustafson79] 

 

Covariance matrix: the Gustafson and Kessel algorithm, as detailed in [Bezdek81,pp168], takes as starting point a 

‘simple’ data set, and is based on a modified version of fuzzy c-Means. 

 

The family of functions {Jm | 1  m   }is considered, where Jm is an infinite family of fuzzy clustering algorithms, 

based on a least-squared error criterion. Mfc is a fuzzy c-partition [Bezdek81, pp26], and 
cp

 is a real p-dimensional 

vector space, for c fuzzy partitions[Bezdek81, pp48],. Let Jm : Mfc  
cp

  
+
 be 

 

    n        c 

 Jm (U, )  =           (uik)
m 

(dik)
2

       (2.41) 

   
 k=1

    
 i=1 

 

where  

 

U  Mfc 

 

is a fuzzy c-partition of X; 

 

  = ( 1 , v2, …. , c )  
cp

 , with     i   
p
 

 

is the cluster centre or prototype of ui , 1  i  c ; 

 

 (dik)
2 

=  || xk - i ||
2

 and  || . ||
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is any inner product induced norm on  
p
; and weighting exponent  m  [1, ) 

 

 Examination of Jm reveals that the dissimilarity measure is dik = || xk - i ||, which represents the distance between each 

data point xk and the fuzzy prototype vi ; then the squared distance is weighted by (uik)
m
 = (ui (xk))

m
, the mth square of 

the membership of xk in fuzzy cluster ui. Given that each term of Jm is proportional to (dik)
2
, Jm is a squared error 

clustering criteria, and solutions of  

 

  minimise { Jm (U, )}        (2.42) 

  Mfc x R
CP

 

 

are minimum squared error stationary points of Jm   [Bezdek81,pp66]. 

 

Bezdek defines the following theorem 2.43, that allows the calculation of the fuzzy cluster centres (prototypes). 

 

The conditions are valid for any norm-metric induced on the interior product. It follows that any positive defined matrix 

A  Vpp induces this norm via the weighted interior product : 

 

             

 x, y A    x
T 

Ay          xi aij yj        (2.43) 

         
 i=1

    
 j=1 

 

x, y  
p
. With respect to this special class of norms, we may write Jm as: 

 

    n       c 

 Jm (U, , A)  =           (uik)
m 

|| xk - i ||
2

A       (2.44) 

   
 k=1

    
 i=1 

 

where 

 

 (dik)
2 

=  || xk - i ||
2

A =   xk - i , xk - i A    =  ( xk - i )
T
 A (xk - i ) 

 

This form makes an emphasis on the dependence of Jm on the matrix A, defining the norm for R
P 

 through (2.43). There 

are two reasons for doing this:  

 

(i) Under certain special conditions, A may be included as theoretical variable for optimisation, as in the 

modification made by Gustafson and Kessel. 

 

 (ii) In any case, A is an algorithmic variable, for the fuzzy c-Means methods. 

 

A popular idea often associated with fuzzy sets is their "core". The usual definition involves a threshold, for example  , 

to identify the core. 

 

Definition  1. ( -Level-Set). Let ui  be a fuzzy subset of X. The -core or -level set of X derived from ui  at each   

[0, 1  is the hard set 

 

  C(ui ; ) = {x  X | ui (x)  }       (2.45) 

 

 Note that ui  is its own core for every  in case ui  is hard. 

 

The core of a fuzzy set provides a different way to compare c-partitions of data.  
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Definition 2 (Fuzzy Scatter Matrix). Assume   m    (1, ); X = { x1 , x2 ,..., xn}  
P
 ; and  (U, )   Mfc  

cp
 . The 

following is defined: 

 

 Fuzzy centroid or prototype of cluster ui : 

                        n 

  i =     (uik )
m    

xk 

                
k=1 

         
n          (2.46) 

                 (uik )
m

 

                 
k=1 

 

 Fuzzy scatter matrix  of cluster ui : 

                  n 

  Sfi  =     (uik )
m
(xk - vi)(xk - vi)

T 
      (2.47) 

            
k=1 

 

 Fuzzy within-cluster scatter matrix: 

                     c 

  SfW  =     Sfi          (2.48) 

             
i=1

 

 

 

The fuzzy scatter matrices { Sfi } at (2.47) arise naturally in the generalisation of Jm detailed in the fuzzy "covariance" 

algorithm of Gustafson and Kessel. 

 

Evidently, (2.48) is a generalised minimum variance partitioning problem. There is a statistical interpretation to the 

criterion Jm which is entirely analogous to that enjoyed by J1 as long as the measure of dissimilarity is Euclidean. 

 

Summary 

 

Now we reach the ‘objective’, which is the fuzzy covariance matrix itself, having seen the definition of Jm as the 

squared error clustering criteria, and A as the positive defined matrix. A may be included as a theoretical variable to be 

optimised, as in the modification given by Gustafson and Kessel. 

 

Solutions of (2.48) can be regarded as solutions of generalised minimum variance partitioning problems by introducing 

a fuzzy extension of the hard scatter matrices of Wilks. 

 

Fuzzy scatter matrices { Sfi } at (2.47) arise naturally in the generalisation of Jm detailed in the fuzzy "covariance" 

algorithm of Gustafson and Kessel. 

 

The line of reasoning follows from the definition of fuzzy c-Means by Bezdek, followed by the modified version of 

fuzzy c-Means of Gustafson and Kessel, which uses the A matrix. It is followed by Bezdek’s ‘fuzzy scatter matrix’ 

algorithm from which we reach the fuzzy covariance algorithm of Gustafson and Kessel. 

 

Fuzzy covariance matrix 

 

We assume that m    (1, ); X = { x1 , x2 ,...,xn}  
p
; y (U, v)  Mfc  

cp
. The fuzzy covariance matrix of cluster ui 

is: 

                n 

  Cfi =     (uik )
m
(xk - vi)(xk - vi)

T 
=     Sfi  

            
k=1 

        
n         n 

                (uik )
m      

(uik )
m

 

                
k=1       k=1 

            (2.49) 
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where Cfi  is each element of the matrix, and we consider the class of interior product norms induced on 
p
 (space of-

tuples of real numbers) by symmetrical and positive matrices in Vpp (V is a vectorial space of p  p matrices). X is a 

data set which contains n clusters. 

 

2.3 Aggregation 
 

In this section, we consider data aggregation methods based on the use of weighting vectors to bias the data, with 

respect to relevance and reliability. Three methods are considered: principal components (PC), ordered weighted 

average (OWA), and weighted ordered weighted average(WOWA). These methods contrast different weighting factors; 

PC correlates the input variables in order to reduce the dimensionality in one or more factors, OWA weights the data 

values, and WOWA weights both the variables and the data values. Weighted mean (WM) is an aggregation technique 

which has as input a data vector and a weight vector. The weight vector contains one degree of reliability value between 

0 and 1, for each corresponding variable. 

A special focus is given to the WOWA data aggregation operator [Torra97a]. This operator is a hybrid of the 

weighted mean and the OWA Ordered Weighted Average operators, as described in [Torra97a]. The OWA operator 

was first introduced in [Yager88] and is one of the key references of a technique for aggregating data values, using a 

weighting vector to allow the introduction of a reliability factor for each value. The WM operator introduces a 

weighting vector for the variables, thus WOWA combines both approaches to allow two data vectors which weight the 

data values and the variables in the same pass. All the methods WM, OWA and WOWA are considered as Choquet 

Integrals; as is illustrated in Figure 28 (page 69), which illustrates that the Choquet Integral is a generalization of WM, 

OWA and WOWA. 

 

2.3.1 Basic definitions 

 
PC – Principal Components 

 

PC is a standard statistical technique which correlates the input variables in order to reduce the dimensionality in one or 

more factors. In order to combine two variables into a single factor, we could summarise the correlation between the 

two variables in a scatterplot. A regression line could then be fitted which represents the ‘best’ summary of the linear 

relationship between the variables. If we could define a variable that would approximate the regression line in such a 

plot, then that variable would capture most of the ‘synthesis’ of the two items. The individual scores of cases on the new 

factor, represented by the regression line, could then be used in future data analyses to represent the ‘synthesis’ of the 

two variables. In a sense we have reduced the two variables to one factor.  

 

This example illustrates the basic idea of factor analysis, or of principal components analysis. If we extend the two-

variable example to multiple variables, then the computational effort increases, but the basic principle of expressing two 

or more variables by a single factor remains the same.  

 

The extraction of principal components can be summarised as a variance maximising (varimax) rotation of the original 

variable space. For example, in a scatterplot we can think of the regression line as the original X axis, rotated so that it 

approximates the regression line. This type of rotation is called variance maximising because the criterion for (goal of) 

the rotation is to maximise the variance (variability) of the "new" variable (factor), while minimising the variance 

around the new variable. When there are more than two variables, we can think of them as defining a "space," just as 

two variables defined a plane. Thus, when we have three variables, we could plot a three dimensional scatterplot and 

then a plane could again be fitted through the data. 

 

OWA – Ordered Weighted Average 

 

OWA is a data aggregation method which was originally defined in [Yager88]. Ordered Weighted Average has 

two vectors as input: a data vector and a weight vector. The weight vector contains two or more degree of relevance  

values between 0 and 1, which are used to interpret  the data values. OWA permits an AND/OR effect on the data 

inputs, controlled by the relevance weights. 

 

Definition: A mapping F from 

 

   I
n
  I (where I = [0, 1 ) 

 

is called an OWA operator of dimension n if associated with F, is a weighting vector , 
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          1  

  =   2 

          ..... 

          n 

 

such that 

 

 1) i (0,1) 

 2) i i  1 

 

and where 

 

 F(a1, a2, ..., an) = 1b1  2b2  ...  nbn,       (2.50) 

 

where bi is the ith largest element in the collection a1, a2, ..., an. B is called an ordered argument vector if each element bi 

[0,1  and bi  bj if j  i. Given an OWA operator F with weight vector  and an argument tuple (a1, a2, ..., an) we can 

associate with this tuple an ordered input vector B such that B is the vector consisting of the arguments of F put in 

descending order. It is important to note that weights are associated with a particular ordered position rather than a 

particular element. 

 

Yager’s paper [Yager93], published five years later than [Yager88], shows the evolution of his work towards more 

specialised OWA operators, enhancements, and ways of establishing (learning) the weights.  

 

An example of applying the OWA operator is as follows. Assume: 

 

W = [0.4, 0.3, 0.2, 0.1]
T
 

 

Then f(0.7, 1.0, 0.3, 0.6) = (0.4)(1.0) + (0.3)(0.7) + (0.2)(0.6) + (0.1)(0.3)=0.76. 

 

Different OWA operators are distinguished by their weighting function. Yager distinguishes three special cases of 

OWA aggregation: 

 

(i) F* :  in this case,  W= W*=[1  0 … 0]
T
 , 

(ii) F* :  in this case,   W=  W* = [0  0 … 1]
T
 ,  

(iii) FA : in this case,  W = Wave =  [1/n …. 1/n]
T
 . 

 

It can be seen that 

 

F*(a1, … an) = Max(ai) , 

                            
i 

F*(a1, … an) = Min(ai) , 

                            
i 

FAve(a1, … an) = 1/n  (ai) , 

 

 
WOWA – Weighted Ordered Weighted Average 

 

The work of Torra is characterised by the study of aggregation operators such as WOWA [Torra96], and the 

construction of membership functions using interpolation methods [Torra99a]. One of the original contributions of 

Torra to the field of aggregation is the WOWA operator , which combines the characteristics of the OWA and WM 

operators. It uses two weighting vectors, one relating to ‘relevance’ and another to ‘reliability’ of the sources, which are 

used to aggregate the values.  

 

The WOWA (Weighted OWA) aggregation operator is first presented in [Torra96]. It is stated that the OWA operator 

satisfies the commutative property, while the weighted mean does not. The commutative property implies equal 

reliability of all the information sources which supply the data.  First the properties of the OWA operator are formally 

defined, followed by those of the weighted mean and of the WOWA operator itself. The determination of the WOWA 
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operator is explained, followed by some examples of interpolation and aggregation outputs with simple datasets. 

Finally, possible variants such as ‘Quasi-WOWA’, which is derived from the quasi-arithmetic mean and quasi-OWA, is 

a generalisation; while the ‘Linguistic WOWA’ serves to combine information in a qualitative form (instead of 

quantitative), based the convex combination of linguistic labels. 

 

Definition 1. A vector v= [v1 v2 .... vn] is a weighting vector of dimension n if and only if  

vi [0,1]                   i vi = 1 

 

Definition 2 [Torra97a]. Let p be a weighting vector of dimension n, then a mapping WM: K
n
 -> K is a weighted mean 

of dimension n if WMp (a1,...,an) = i pi ai.  

 

Definition 3 [Yager88]. Let w be a weighting vector of dimension n, then a mapping OWAw: K
n
 -> K is an Ordered 

Weighted Averaging (OWA) operator of dimension n if  

OWAw (a1,...,an) = i wi a (i) 

where { (1),..., (n)} is a permutation of {1,..,n} such that a (i-1) a (i) for all i=2, ..., n. (i.e., a (i) is the i-th largest 

element in the collection a1,..., an). 

 

Definition 4. Let p and w be two weighting vectors of dimension n, then a mapping WOWA:K
n
 -> K is a Weighted 

Ordered Weighted Averaging (WOWA) operator of dimension n if  

WOWAp, w (a1,...,an) = i i a (i) 

where { (1),..., (n)} is a permutation of {1,..,n} such that a (i-1) a (i) for all i=2, ..., n. (i.e., a (i) is the i-th largest 

element in the collection a1,..., an), and the weight i is defined as  

i = w
*
 ( j i p (j)) - w

*
 ( j<i p (j)) 

with w
*
 a monotone increasing function that interpolates the points (i/n, j i wj) together with the point (0,0). The 

function w
*
 is required to be a straight line when the points can be interpolated in this way.  

 

Proposition 1 [Torra97a]. The WOWA operator satisfies the following properties: 

 

(1) It is an aggregation operator which remains between the minimum and the maximum. 

(2) It satisfies idempotency (unanimity). 

(3) It is commutative if and only if pi=1/n for all i=1,…,n such that wi  0. 

(4) It is monotone in relation to the input values ai. 

(5) It leads to dictatorship of the i-th value when pi = 1 and pj = 0 for all j = 1, …, n but j   i. 

(6) It leads to the arithmetic mean when pi = 1/n and wi =1/n for all i=1, …, n 

(7) It leads to the weighted mean when wi=1/n 

(8) It leads to the OWA operator when pi=1/n 

 

 

Definition of the Choquet integral 

 

The Choquet integral generalises the OWA and WM operators, and is defined as follows. Let  be a fuzzy measure on 

X. A fuzzy measure on X is defined as a monotonic set function  : 2
N
 [0,1] with  (  ) = 0 and (N)=1. 

Monotonicity implies that (S)  (T) whenever S  T. The Choquet integral of a function f: X  with respect to  is 

defined by: 

                         n 

(C) f d  =  ( f(xs(i) ) – f(xs(i-1) ) )   (As(i) )        (2.51) 

                             i=1 

 

where f(xs(i) ) indicates that the indices have been permuted so that 0  f(xs(1) )  ….  f(xs(N) )  1, As(i) = { xs(i), … , xs(N) 

} and f(xs(0) )=0. This definition shows that in a Choquet integral each segment f(xs(i) ) – f(xs(i-1) )  is considered 

(weighted) according to all the elements xj such that f(xs(j) )  f(xs(i) ). That is, the importance of each segment f(xs(i) ) – 
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f(xs(i-1) ) corresponds to the measure of all the elements whose evaluation embeds that segment (i.e. xj such that f(xs(j) )  

f(xs(i) ) ). 

 

Definition of the Sugeno integral [Sugeno74] 

 

The Sugeno integral generalises the ‘weighted min’ and ‘weighted max’ operators, and is defined as follows. Let  be a 

fuzzy measure on X. The Sugeno integral of a function f: X  with respect to  is defined by: 

 

 S  , f (X=(x1, …, xn) ) = Max i Min ( f(xs(i) ),  (As(i) ) )     (2.52) 

 

where f(xs(i) ) indicates that the indices have been permuted so that 0  f(xs(1) )  ….  f(xs(N) )  1, As(i) = { xs(i), … , xs(N) 

} and f(xs(0) )=0. 

 

 

Definition of the Fuzzy t-integral [Murofushi91] 

 

The Fuzzy t-integral generalises both the Choquet integral and the Sugeno Integral. It is defined over a tuple called a t-

conorm system for integration, and an operator -  based on one of the elements of this tuple. Let (X, X, ) be a fuzzy 

measure space and ( , , ,  ) a t-system. For a measurable function f: X  [0,1], the fuzzy t-conorm integral (or fuzzy 

t-integral) of f  based on ( , , ,  )  with respect to  is defined as follows: 

  

 (  ) f  d  = 
lim

 n   (  ) fn  d        (2.53) 

 

Where {fn} is a non-decreasing sequence of simple functions which pointwise converges to f. 

 

 

 

                 Fuzzy t-integral 

                                                                                                      Sugeno integral 

 

                    Choquet 

                     Integral                         owa       min                   weighted min 

 

 

 

                                        wowa                       max                   weighted max 

 

                        weighted sum        am 

 

 
Figure 28. Relation between several numeric aggregation operators 

 
Figure 28 depicts each aggregation operator as a polygon form or a rectangular form. A form1 is inside a form2 if the 

operator corresponding to form2 is a generalisation of the operator corresponding to form1. 

 

 

‘Orness’ and ‘Andness’ 

 

Yager , in [Yager93], formally defined two concepts, ‘orness’ and ‘andness’, in which the former is a type of bias which 

is related to ‘optimism’, which can be quantified and applied to a set of attribute-values. The opposite of ‘orness’ in this 

context is ‘andness’, which equates with ‘pessimism’. This is an attempt to capture the subjectivity which exists 

whenever an expert makes a judgement with respect to a given attribute or attribute-value. 

 

The following is a definition of ‘orness’, or the grade to which an OWA operator tends towards a pure ‘or’ condition.  

 

orness(F) = ½ + ((n-i)/(n-1))wi – ½           (2.54) 

                           
i 
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A second interesting definition is that of ‘biasness’, which is as follows: 

 

biasness(W) = ½ (orness(W) – ½ )         (2.55) 

 

This is said by Yager [Yager93] to be the biasness of the average. If it takes a positive value it accentuates the higher 

values, and if it takes a negative value it accentuates the lower values. 

 

Another concept relevant to decision making is that of ‘optimism’. It observed that in a decision making environment 

the measure of dispersion may be interpreted as the entropy of the probability distribution. Further, the measure of 

‘orness’ of W may be interpreted as a measure of the optimism of the decision made, while the measure of ‘andness’ 

could be a measure of pessimism. For the Hurwicz model the following is obtained: 

             n 

optimism(W) = 1/(n-1) (n-i)  wi         (2.56) 

                    
i=1 

 = 1/(n-1) ((n-1) )+(n-n)/(n-1) (1- ) 

 =  

 

Yager in [Yager93] comments that in some applications the weights associated with an OWA operator must be learned 

from observations. Let F be an OWA operator of dimension n with weighting vector W. Assume there is a collection of 

m pieces of data each of which is an n+1 tuple of the form 

 

(ai1, ai2, … ain, yi). 

 

where the aij, j=1, …. , n are the input (aggregate) values for the ith sample and yi is the aggregated value for this ith 

sample. The objective is to find the weights of an OWA operator to model this process. A simple neural net is proposed 

to learn the approximate weights, which has a sorter pre-process to order the data values. The net is run until the 

successive change in weights is less than a predetermined value. 

 

Degree of disjunction: Marichal, in [Marichal98] also considers the concept of ‘orness’ and derives a definition in 

terms of the Choquet Integral. The Choquet Integral permits, by appropriate choice of the fuzzy measure, to move 

continuously from the min operator to the max operator. In order to classify these Choquet integrals in terms of their 

location on this continuum a measure of disjunction can be defined as follows. Let the average value of the Choquet 

integral be: 

 

 m(C ) := [0,1]n  C  (x)dx.          (2.57) 

 

Where  is a fuzzy measure and C  is the Choquet integral. 

 

Now, a degree of orness of C   will be: 

 

 orness(C ) :=     m(C ) – m(min)         (2.58) 

                                        m(max) – m(min) 

 

It is observed that orness(C ) is always in the unit interval, where orness(min)=0 and orness(max)=1. One characteristic 

is that the closer orness(C ) is to 0, the nearer C   is to ‘min’ and has a conjunctive behavior, while the closer orness 

(C ) is to 1, the nearer C   is to ‘max’ and has a disjunctive behavior. Thus, the degree of orness can be interpreted as a 

measure of the ‘strictness’ of the decision maker. Less strict decision makers allow that only some criteria have to be 

satisfied, which corresponds to a disjunctive behavior (orness (C )  0.5), with extreme example of ‘max’. In contrast, 

more strict decision makers decision makers requiere that most criteria be satisfied, which corresponds to a conjunctive 

behavior (orness(C )  0.5), and whose extreme example will be ‘min’. It follows that orness(C ) = 0.5 would represent 

an equitable decision maker. 

 

It is noted that, in the case of Marichal’s definition of orness, the degree of orness corresponds to decision making 

problems which are modelled by the Choquet integral, although it may be defined for any compensative aggregation 

operator.  
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2.3.2 Mechanisms for learning weights 
 

In this section we consider the determination of the parameters (weights) for aggregation functions. We can divide 

the determination methods into two camps: those which rely on expert judgement, and those which rely on automated 

algorithmic means. In relation to the first approach, we can cite Saaty's Analytic Hierarchy Process [Saaty80] for the 

weighted mean or the method defined in [O'Hagan88] for the OWA operator. These methods are based on a user, or a 

set of users/experts, who supply critical information which is subsequently used in a certain way to define or extract the 

weights. This approach can be applied when there is some background knowledge about the system we want to model 

or about the decision process. To deal with the case when this background knowledge does not exits, there exist 

‘automated’ approaches such as those based on machine learning techniques. These latter techniques attempt to learn 

the parameters from a set of examples. This is the case in [Filev98] which learns the weighting vector for OWA 

operators, in [Torra99b] for the weighted mean and OWA operators, or in [Marichal99] for Choquet integrals. In all 

these works, a set of examples (defined as a set of input parameters and their corresponding output) are given and from 

them the weighting vectors or the fuzzy measures are inferred.  

The advantage of the automated approach is that it does not require a priori background knowledge. By 

automating the whole process through the use of examples, learning the weights allows the extension of these operators 

to larger problems where the number of parameters is great. This is not possible when all the information has to be 

supplied by experts as a large amount of knowledge is then required.  

On the other hand, expert assignment of the weights implicitly includes the experience, intuition and common 

sense of those domain experts. This can save time in avoiding nonsensical or incongruent results, and is independent of 

a given dataset which could incorporate noise, missing values or skew distributions for certain attributes.  An 

intermediate approach is to combine automated learning with expert assignment, or expert review of the automated 

assignments for validation. This joint approach is later compared with the exclusively automated approach and the 

exclusively expert assignment approach, in Sections 4.3 and 4.4 of the thesis.  

 
Expert weight assignment 

 

O’Hagan, in [O’Hagan88], employs the methodology described by Saaty in [Saaty77] for use in hierarchical structures 

with data values in the [0,1] interval, together with the methodology described by Yager in [Yager 88] for normalised 

weighting. O’Hagan considers the situation in which a panel of experts agree to a set of rankings for the relative 

importance of the following events: 

 

IF (Event 1 observed with confidence a1, AND  

      Event 2 observed with confidence a2, AND …. 

      Event n observed with confidence an) 

THEN conclusion with Max Confidence Factor (CF) 

 

The set of rankings being: 

 

- Event 2 is weakly more important in defining our conclusion than Event 1. 

- Event 3 is somewhere between equal and weakly more important than Event 1. 

- Event 2 is weakly more important than Event 3. 

 

The above relative importance ranking results in a paired comparison matrix using Saaty’s analytic hierarchical process 

[Saaty77] of: 

 

   1   1/3   1/2   

 A =    3   1      3        

    2  1/3   1      

 

The Eigen solution of A yields a maximum real Eigen value of 3.05 and a unit normalised Eigen vector to be used as 

relative importance weights of: 

 

 Event Eigen Vector ( j ) 

    1  0.157 

    2  0.594 

    3  0.249 

The relative importances, denoted by aj , are constrained to the unit interval by the method described by Yager in 

[Yager88]. A normalisation process is then performed using the general form given in [Yager88], which uses the CF of 
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the conclusion as the degree of orness or optimism. The general form with the j relative importances constrained to the 

unit interval is: 

  aj = H ( Aj (x), j )  ( j  p )  Aj (x) 
( j  q) 

 

Given the fuzzy scores or confidences in the individual events, the general expression is used to normalise the values 

while still reflecting the general orness for the overall conclusion associated with the rules. Using a CF of 0.90, and the 

calculated relative importances, we have: 

 

  a1 = (0.157  0.10)  (0.7) 
(0.157   0.9)

 

       = 0.157  (0.7)
0.90

  =  0.11 , 

 

  a2 = (0.594  0.10)  (0.5) 
(0.594   0.9)

 

       = 0.594  (0.5)
0.90

  =  0.32 , 

 

  a3 = (0.249  0.10)  (0.5) 
(0.249   0.9)

 

       = 0.249  (0.5)
0.90

  =  0.13 . 

The resulting normalised fuzzy values are then sorted and a set of OWA coefficients are applied to perform the 

aggregation. The resulting sorted values are called the B vector with elements bj corresponding to the sorted ajs. Thus 

we have: 

 [a2, a3, a1] = [0.32, 0.13, 0.11] = [b1, b2, b3] = b’ 

 

Before the aggregation operator is executed, the OWA weights used in the aggregation process are computed, following 

the method which we have just described. Then the actual aggregation process can be considered a dot product 

operation F = B’W with the B vector computed by sorting the a values as described previously: 

 

           0.825  

 F = B’W  = [0.32, 0.13, 0.11]    0.150     = 0.286 

           0.025  

 

Automated weight assignment 

 

Filev in [Filev98] considers obtaining the OWA weights based on historical data, that is, input data values and their 

corresponding aggregated outputs. Yager, in [Yager93] defines two concepts, ‘orness’ and ‘optimism’, which have 

already been discussed in Section 2.3.1 of the thesis. Filev makes use of these concepts in [Filev98]. Yager proposed 

that ‘orness’ is a type of bias which is related to ‘optimism’, both of which can be quantified and applied to a set of 

attribute-values. The opposite of ‘orness’ in this context is ‘andness’, which equates with ‘pessimism’.   

 

The method described by Filev in [Filev98] uses a gradient descent method to find the minimum error, which is 

illustrated by an example of learning from a collection of samples, as can be seen in Table 8, which constitutes the 

historical data. Each sample consists of 4 attribute values and the corresponding aggregate value. 

 

Table 8. Historical data used for OWA weight learning 

 

Sample Attribute values                       Aggregated value 

1 0.4 0.1 0.3 0.8 0.24 

2 0.1 0.7 0.4 0.1 0.16 

3 1.0 0.0 0.3 0.5 0.15 

4 0.2 0.2 0.1 0.4 0.17 

5 0.6 0.3 0.2 0.1 0.18 

 

The aggregated values for each sample are calculated by the Hurwicz [Engemann96] method for comprimised 

aggregation. This method defines that the aggregated value d obtained from a tuple of n arguments, a1, a2, …, an, is 

defined as a weighted average of the Max and Min values of that tuple 

 

  Max ai + (1 – ) Min ai = d , 

       
i
       

i
 

where parameter  represents the optimism of the decision maker, 0    1. For example, the aggregated value for the 

samples in Table 8 were calculated using  = 0.2. For sample 1, the Max and Min values for the first sample produce: 
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 0.2 (0.8) + (1 – 0.2) (0.1) = 0.24 

 

Small variations in the value of parameter  for each argument tuple reflect variations due to the individuality of 

different experts, which would result in slight differences of aggregation for different samples. The  parameter for 

samples 1 to 5 was, respectively, {0.2, 0.1, 0.15, 0.25, 0.18}. 

 

The OWA weights have to satisfy the properties that they must sum to 1, be non negative and be in the range [0,1]. The 

following definition of the OWA weights guarantees these properties: 

 

wi   =         e
i
              , i = (1, …, n)        (2.59) 

             
n 

j=1  e
j
 

 

From definition 2.59, for any values of the parameters i, the weights wi will be positive and will sum to 1.  

 

The learning algorithm was applied on the reordered argument tuples, started with initial values i(0)=0, i=(1,4), and the 

OWA weights wi initialised to 0.25. Using a learning rate  = 0.35, the estimated values of wi after 150 iterations are: 

 

 w1=0.08, w2=0.11, w3=0.14, w4=0.67 

 

Estimated aggregated values dk at the end of the learning process are: 

 

d1=0.22, d2=0.18, d3=0.15, d4=0.15, d5=0.18 

 

Using the learned OWA weights as above, and applying the formula for orness as defined in Section 2.3.1, a degree of 

orness of 0.199 is calculated. Filev concludes that this is a reasonable reflection of the total level of orness associated 

with the complete sample set, when contrasted with the different levels of optimism for each individual sample.  

 

The learning of weights for the Choquet integral is considered in [Marichal99]. The Choquet integral has been defined 

and discussed previously in Sections 2.3.1. The problem is limited to 2-order fuzzy measures; which means a fuzzy 

measure which can be represented by a polynomial expression of degree 2. Also the problem involves the identification 

of weights of interacting criteria, that is attributes which have mutual influence. Semantic considerations about criteria 

are made and are as follows: 

 

- Importance of criteria. Realised by a partial preorder on N, representing a ranking of the weights ( i ), i  N. The 

ranking may or may not be defined by exact values. 

 

- Interaction between criteria. This enables the appraisal of the degree of interaction among any subset of criteria. In 

order to formalise this concept, consider a pair {i, j}  N of criteria, where N is a set of criteria {1, …, n}. The 

difference 

 

a( ij ) =  ( ij ) –  ( i ) –  ( j ) 

 

reflects the degree of interaction between i and j. The difference is zero when there is no interaction between i and 

j, and the difference is positive if an interaction with ‘positive interference’ exists between i and j. If the difference 

is negative then an interaction with ‘negative interference’ is said to exist. Thus, one possible ‘interaction index’ is 

I( ij ) = a( ij ). This allows a partial preorder on the set of pairs of criteria. The sign of each interaction a( ij ) can be 

given, including exact values. 

 

- Symmetric criteria. Two criteria i and j are symmetric if they can be exchanged without changing the          

aggregation mode. Then ( T  i ) = ( T  j ) for all T N \ ij. This has the effect of reducing the number of 

coefficients. 

 

- Veto and favour effects. A criterion i  N is said to be a veto for a decision problem modelled by the Choquet 

integral if C (x)  xi for all x  
n
. This implies that a low score on criterion i will lead to a bad global score, 

irrespective of the values of the remaining scores. This effect can be modelled by taking a fuzzy measure  such 

that (S)=0 whenever i  S. In the same manner, criterion i is said to be a favour if C (x)  xi for all x  
n
. In this 
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case, a good score on i will result in a good global score, irrespective of the remaining score values. This effect can 

be modelled by taking  such that (S)=1 whenever i  S. 

 

The above four criteria assume that an expert is available who can make judgements on the relative importance of 

criteria, and interactions between criteria. It is said that experts find it easier to provide information in terms of weights 

u(i) and on interaction indices, than directly on the values of fuzzy measures. The success of elicitation from the expert 

also depends on asking the right questions and expressing them in an adequate manner. 

 

The problem, defined in terms of the input data, is as follows: 

 

- The set A of alternatives and the set N of criteria, 

- A table of individual scores (utilities) x
a
i given on the same interval scale X , 

- A partial preorder A on A (ranking of alternatives), 

- A partial preorder N on N (ranking of criteria), 

- A partial preorder P on the set of pairs of criteria (ranking of interaction indices), 

- The sign of interaction between some pairs of criteria a(ij) : 0, 0, 0 . 

 

The above defined data can be formulated in terms of linear equalities or inequalities, which link the unknown weights 

‘ ’. This reduces to a linear constraints satisfaction problem, which, when written in terms of the Möbius representation 

[Roubens96] allows the following definition of a model for eliciting the weights: 

 

Maximise x =  

 

Subject to 

 

C(a) – C(b)     if a  Ab  

-     C(a) – C(b)    if a  Ab   partial semiorder with threshold  

 

a(i) – a(j)   if i  N j  

a(i) = a(j) if i  N j   ranking of criteria (weights on singletons) 

 

a(ij) – a(kl)   if ij  P kl  

a(ij) = a(kl) if ij  P kl   ranking of pairs of criteria (interactions) 

 

a(ij)   (resp.  - )   if a(ij) > 0 (resp. < 0)     

a(ij) = 0                   if a(ij) = 0                       sign of some interactions 

 

i N a(i) + {i,j} N a(ij) = 1     boundary and 

a(i) 0    i N     monoticity 

a(i) +  j Ta(ij)  0  i  N , T  N  \ i   conditions 

 

C(a) =  i N a(i) x
a
i + {i,j} Na(ij)[ x

a
i  x

a
i] a  A  definition of C  

 

 

In [Torra99b] the learning of weights is considered for the weighted mean, OWA and WOWA operators. The results for 

the different operators are compared. In the case of WM, the ideal weights are considered to be those which 

approximate the solutions of the example with a minimum error.  The distance to be measured is the difference between 

the ideal value (m) and the calculated one ( aipi) for each example j, and the expression to be minimised is: 

                 M   N 

D(p) = ( ai
j 
pi - m

j
)

2          
(2.60) 

           
j=1 i=1 

where the dimension of the weighted mean is settled to N and the number of examples is M. 

 

For the OWA, the expression used is the same, except that a permutation is introduced a i
j
 in substitution of ai

j
 . 

 

The least squares method is also defined for the WOWA operator, with the modification that the distance has to be 

defined in terms of the operator with the two sets of weights, thus: 
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                 M   N 

D(p) = ( WOWAw,p(a
j
 ) - m

j
)

2         
(2.61) 

           
j=1 i=1 

                                N                     N 

Such that      pi
 
=1   , wi

  
=1    , pi  0 , wi  0 

                     
i=1                  i=1 

 

 

2.3.3 Construction of membership functions 
 

Generation of membership functions from observations: in [Zhang93] a formal definition of fuzzy sets to describe fuzzy 

categories is introduced. The approach assumes that for any fuzzy category â to be described, there is a partition of the 

reference set into three subsets X0, Xf and Xl: X0 corresponds to all elements that do not belong to the fuzzy category â; 

Xf to the elements such that their membership to â is ‘doubtful’; and X1,  to the elements that belong to â with total 

certainty. The three sets, X0, Xf and Xl , are referred to, respectively, as the 0-subset, the fringe and the 1-subset for â 

and the partition X=[ X0, Xf , Xl ] is called the fringe partition. 

 

In order to build a membership function for a fuzzy category â, [Zhang93] assumes a partial ordering  â  in the fringe 

of â, such that x  ây means x is at least as qualified to be a member of â as y, and with respect to a reference measure .
 

 

Torra, instead of building a membership function from the set X, considers the construction of the function from a set of 

observations  obtained from a given experiment to elicit the fuzzy concept â. 

 

Taking this into account, and letting  f  be a set of observations which correspond to the fringe of a fuzzy category â, 

owa
Q
 be a combination function, and I  is the I-family of fuzzy quantifiers. Then, a membership function for the fuzzy 

category â may be expressed as the set of -cuts {A } [0,1] : 

                            

A  =[ owa 
I
 ( f) , + ] 

 

This may be understood in terms of fuzzy quantifiers as follows: if each observation xi corresponds to an expert i who 

asserts that the concept is fully satisfied when x xi and is totally unsatisfied when x<xi, then y= owa
I

( f) means 

approximately that a proportion  of the experts agree that the interval beginning at the right of y fully satisfied the 

concept. In the extreme case, all agree with the interval when =1 , which corresponds to the intersection of the 

intervals, and y= f, and only one agrees when =0 and y = min f.  

 

Interpolation 

 

One of the problems we face in defining a membership function is that of the construction of a smooth curve that passes 

through a given set of data points. The most common technique is that of cubic spline interpolation, although this 

technique may produce undesirable oscillations that make the curve non-compliant with some characteristics which we 

may require of the membership function. Such characteristics may be those of monotonicity and/or convexity, and we 

thus require an interpolation scheme which preserves the desired shape and characteristics. Algorithms which preserve a 

desired shape typically introduce additional ‘knots’ or modify the prescribed slopes in order to give the required shape 

as the final ‘product’ [Iqbal92]. We now look at three contrasting algorithms which preserve desired characteristics, that 

of Mc Allister and Roulier [McAllister81], that of Schumaker [Schumaker83] and that of  Chen and Otto [Chen95]. 

 

The algorithm presented in [McAllister81] has the slope and knot assignments based on a geometrical argument which 

preserves monotonicity and/or convexity. The resulting quadratic piecewise polynomial is constructed from Bernstein 

polynomials. [Schumaker83] presents a similar algorithm using quadratic piecewise polynomials, which preserves 

monotonicity and/or convexity by the addition of one knot, if necessary, in each data subinterval. One notable aspect of 

this algorithm is that the user is able to modify the interpolant either by changing the slopes or by altering the knot 

locations. 

 

The interpolation problem is defined formally as follows: given points t1  …  tn and values {zi}
n

1 , find s such that 

 

 S(ti) = zi ,  i = 1,2, … , n . 
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A method must be found which preserved the shape of the data. This means that in those intervals where the data is 

monotone increasing or decreasing, s should have the same property. Similarly, in those intervals where the data is 

convex or concave, the same should be true of s. 

 

[Schumaker83] describes a relatively simple method which preserves a desired shape, by constructing the interpolant as 

a C
1
 quadratic spline with knots at the data points t1, …, tn and with one additional knot in each subinterval (ti , ti+1 ), 

i=1, …, n–1. If t1  t2 , and it is assumed that z1, z2, s1 and s2 are real numbers, then a function s  C
1
[t1, t2] is to be 

found such that  

 

 s(ti) = zi , s’(ti) = si , i=1,2         (2.62) 

 

The following lemma shows that in certain cases, problem (2.62) can be solved by a quadratic polynomial. 

 

Lemma l.a. There is a quadratic polynomial solving problem (2.62) if and only if  

 

 s1 + s2    =    z1 –z2         (2.63) 

      2              t2 – t1 

 

In particular, if (2.63) holds, then 

 

 S(t) = z1 + s1(t - t1) + (s2 - s1)(t - t1)
2
       (2.64) 

             2 (t2 - t1) 

 

is a solution. 

 

The following considers the conditions of monotonicity and convexity. This is preceded by some  notational definitions: 

 

 Ii = [ti, ti+1 ] and 

 

 i  =  zi + 1 – zi ,  i = 1, 2, …, n -1. 

  ti  + 1 – ti 

 

If a knot has been inserted in the interval Ii, it is denoted by i . 

 

Monotonicity                 . To guarantee that s is monotone on the interval Ii, it first has to be assured that si  si+1  0. In 

addition, if a knot i is inserted in the interval Ii, then another requirement is that the following expression has the same 

sign as si and si+1. 

 

 si = 2(zi+1 – zi) – ( i – ti)si – (ti-1 – i)si+1       (2.65) 

                                         (ti+1 – ti) 

 

If (si – i)(si+1– i)  0 , in order to ensure (2.65) the size of si and si+1 must be restricted , depending on the location of 

i. In particular, the following must hold: 

 

 2|zi+1 – zi |  |( i – ti)si + (ti+1 – i)si+1|.       (2.66) 

 

These conditions show how to make s monotone in the interval Ii . If the data is globally monotone, that is, z1 < z2 … < 

zn , then by selecting the slopes { si }
n

1 correctly, s can also be made globally monotone. 

 

Convexity. To guarantee that s is convex on the interval Ii , we need to assure that the condition s1 s’ s2 holds, while 

for concavity, the condition s2 s’ s1 is required. These conditions can be guaranteed by choosing the knot i in the 

interval Ii, satisfying the following: 

 

 ti < i   ti   +   2(ti+1 – ti) (si+1 – i)  if |si+1 – i | < |si – i | ,    (2.67) 

                                               (si+1 – si) 

 

 ti+1   +   2(ti+1 – ti) (si – i)      i <  ti+1 if |si+1 – i | < |si – i | ,    (2.68) 

                                  (si+1 – si) 
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respectively. If the data is globally convex, that is 1 < 2 < … < n , s will be globally convex by choosing s1 < s2 < … 

< sn such that s is locally convex in each subinterval. A similar assertion holds for global concavity. 

 

The algorithm detailed in [McAllister81] produces a local C1 quadratic spline interpolant which preserves monotonicity 

and/or convexity of the data by inserting at most two additional knots per data interval. The selection of slopes and 

knots is based on the geometric arguments given below, while the polynomial pieces are constructed using Bernstein 

polynomials. S=(xi, yi) and T=(xi+1 ,yi+1) are defined as two nondecreasing data points with xi<xi+1 having slopes di and 

di+1, respectively. L1 and L2 are defined as the two straight lines through points S and T with slopes di and di+1 , 

respectively. R is defined as the set of points, 

 

 R = {(x, y): xi  x  xi+1, and yi  y  yi+1} – {S, T} 

 

where R is the boundary and interior of the rectangle defined by the points (xi, yi), (xi, yi+1), (xi+1, yi+1), and (xi+1, yi) 

minus the points S and T. M is then defined as the midpoint line segment through the points 

 

 F = xi + xi+1    ,  yi          and       G = xi + xi+1       ,  yi+1  

             2                        2                     

Let Z = (z1, z2) be a point of intersection of line segments L1 and L2. The following shows how to construct the desired 

quadratic spline interpolant p. 

 

In Case 1, L1 and L2 intersect each other at point Z = (z1, z2) in R as shown in Figure 29, where 

 

 z1 = i = (yi – yi+1+ di+1 xi+1 – di xi )/(di+1 – di )      (2.69) 

 

 

                                                                                                                                          T 

 

 

 

 

                                                                                                       W 

 

 

                                                                             U 

                                                                                                                      L1 

                                 

                                                                                Z 

                                                V                              

                                                           L2 

 

            S                                                              i 

 

Figure 29. The case in which straight line segments L1 and L2 intersect. 

 

The algorithm inserts an additional knot at x = i . Now assume that 

 

 

 

 

 

 V = ( 1, 2) =      xi + i  ,  L1  xi + i          (2.70) 

                                           2                   2        

 

 W = (w1, w2) =   xi+1 + i  ,  L2  xi+1 + i         (2.71) 

                                             2                   2          

 

Now i=L( i) is defined, L is the line passing through the points V and W.  on [xi , x i+1] is then defined with a join 

point U = ( i , i) as follows: 
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       1 

               ( i + xi )
2   

[yi( i – x)
2
 + 2 2(x-xi) 

 P(x)    =                    ( i – x) + i(x – xi)
2
 ] ,     x  [xi, i]     (2.72) 

        1 

              (xi+1 – i)
2   

[ i (xi+1  – x)
2
 + 2w2(x – i) 

                                  (xi+1  – x) + yi+1(x – i)
2
 ] ,     x  [ i, xi+1]    

 

If the first degree spline defined by join points S, V, U, W and T is convex (concave) and/or monotone, then  is also 

convex (concave) and/or monotone. 

 

In Case 2, L1 and L2  do not intersect in R; instead both intersect the line segment M, as can be seen in Figure 30, and 

the method introduces one additional knot in (xi, xi+1), which is: 

 

 i = (xi + xi+1 ) / 2          (2.73) 

 

V, W U, and the spline  are then defined with a common point U = ( i, i) on [xi, xi+1] as in Case 1. Then  will have a 

continuous first derivative and preserve the shape of the data on [xi, xi+1].   

 

                                                                                                                                          T 
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                                        V                    

 

            S                                                         F                                                          

                                                                       i 

 

Figure 30. The case in which straight line segments L1 and L2 do not intersect. 

 

 

In [Torra99a] some corrections are made to Chen and Otto’s interpolation method for defining membership functions 

from a set of points. Some new conditions are also introduced on the boundaries which are more general than those of 

the original work. The relation of this method to the WOWA aggregation operator is that it is then used by WOWA as 

the interpolation method to calculate a set of point values from a combination of the two input weighting vectors. The 

desired ‘smooth’ curve can then be plotted from the point values. The point values are stored in an appropriate vector. 

 

The interpolation procedure of Chen and Otto follows the following steps: 

 

(i) for each point di , its slope mi is calculated. 

(ii) A knot point oi is inserted between each di and di+1 and a second degree Bernstein polynomial is 

defined between contiguous pairs of points. 

 

This procedure follows the guidelines of Chen and Otto’s original paper [Chen95]: 

 

1. With respect to mi for all i in {2, …, n}; 

(a) mi must be consistent with the monotonicity and convexity of the piecewise linear function determined by the 

data points di-1 , di and di+1. 

(b) mi must vary continuously with respect to changes in si and si+1 (si is defined below as si = (ui – ui-1) / (xi – xi-1)). 

(c) Points that are maximum or minimum points are fixed to have a slope equal to zero (i.e. , mi=0 for al points di 

such that ui > max(ui-1 , ui+1)): 
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2. With respect to m1 and mn : 

(d) Extreme points d1 and dn are also required to have a slope equal to zero (i.e. , m1=mn=0). 

 

3. With respect to knot points: 

(e) Only one knot point should be required between two data points. This is to minimise the complexity of the 

algorithm. 

 
Membership functions for medical data 

 

The construction of membership functions for medical diagnostics is considered by Amaya and Beliakov in [Amaya95]. 

The laboratory tests in medical diagnostics are precise in nature. A result of such a test is typically represented as a 

number, for example, temperature = 37.2ºC, or haemoglobin=14g/dL. Nevertheless, for this precision to be useful we 

need to specify a normal range, and the specific context of the test. It is common in medicine to use symbols such as 

, , ,N, , ,  to denote variations, where N indicates normal. A physician who performs a given test usually 

relies on a table of normal ranges and on previous experience, especially when the result is ‘borderline’, or on a 

boundary. In practise, a coding with ’s and ’s is sometimes too restrictive and a scale between 0 and 1 is more 

convenient. In the medical context, there are two main causes of fuzziness: (i) classification in an under or 

overdimensioned universe, and (ii) intersubject differences in respect to the membership functions. Fuzziness due to 

inexact conditions of data recording for precise laboratory tests is not considered as significant. 

 

The usual practise in medicine is to specify the range of ‘normal’ values for each test. Thus the statement 

‘haemoglobin=14g/dL’ can be interpreted as ‘haemoglobin level is normal if 14g/dL is inside this range and otherwise 

is abnormal’. The range of normal values specifies the necessary context inside which the precise value of haemoglobin 

may be interpreted. Notwithstanding, problems arise when values are on boundaries. For example, the normal range for 

haemoglobin is between 14 and 18 g/dL for males at sea level. But, using a crisp boundary has the consequence that 

14g/dL is a normal value but 13.99g/dL is abnormal. One solution to this problem is to fuzzify the range of normal 

values. The remaining problem is that of establishing how to best fuzzify the range. 

 

The boundary problem, in practise, may result in the physician who performs the test considering that a value outside 

the normal range is normal. This may occur as a consequence of the cause of fuzziness (i) stated previously: 

classification in an under or overdimensioned universe. If the universe is underdimensioned, the physician who 

performs the classification can only measure some of the necessary parameters and estimates the remaining ones. In the 

case that the universe is overdimensioned, the physician possesses additional information but is required to classify 

using just one criterion, the result of the test in the given context. It is not possible to directly establish the dimension of 

the universe in each case. Thus, the membership functions are defined in terms of the additional information, that is, the 

context together with the range of normal values. 

 

It is supposed that sufficient data has been collected to approximate the probability density function p(x) which defines 

the behaviour of the random variable x (the result of the test).  

 

 

A probability density function (or probability distribution function) is a function p defined on an interval (a, b) and 

having the following properties.  

 

      (a) p(x)   0 for every x  

b 

      (b)   p(x) dx=1 

              
a 

As a practical example, consider a survey which finds the following probability distribution for the haemoglobin level 

level of adult males: 

 

Haemoglobin level (g/dL) 10-12 12-14 14-16 16-18 18-20 

probability 0.05 0.20 0.35 0.30 0.10 

 

We could represent this data as a histogram and plot a curve of the corresponding distribution. This curve would be the 

graph of the probability density function p. We note that the sum of the probabilities sum to 1 and the interval of values 

for haemoglobin level is defined from 10 to 20, where, as previously stated, normal values are considered to be between 

14 and 18 for males. 
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This allows the distance to measured between numbers with respect to a pseudo-Euclidean metric induced by the 

probability density [Beliakov94] 

                  y 

d(x,y) = |  (t) dt | 
                               

x 

A method for smoothing the margin of the crisp set, for example, ‘bigger than a’ is to associate its membership function 

with the normalised distance from the boundary, thus: 

                a 

  a (x): = 1 – d(x,a)      =  1   –     (t) dt 

         d(- ,a)             
x 

                                                                                     a 

                                            (t) dt 

                            
-  

         x 

            =     (t) dt 

       
-    

, for x  a      (2.74) 

                                            a 

           (t) dt 

       
-  

and 

 

 a (x): = 1  , for x  a 

 

where  a (x) denotes the membership function of the set ‘bigger than a’, where the quantifier ‘bigger’ is defined in the 

fuzzy form. It can be noted that the membership function of the crisp set ‘bigger than a’ is not modified in the interval x 

 a, where  (x) = 1.Furthermore, a physician would consider the result of the test normal if inside the normal range, 

thus keeping it possible for the physician to explain his or her decision. In a similar manner, the membership function of 

the fuzzy set ‘smaller than b’ can be defined as 1 for x  b and to decrease from 1 to 0 in proportion to the distance from 

b to x for x  b. This is formalised in the following two definitions. 

 

Definition 1: the membership function of the fuzzy set “bigger than a” is defined by the formula 

         x 

                   (t) dt             

 a (x): =      
-    = 

P( t  x )
                                    

, for x  a   (2.75) 

                                            a                                          P( t  a ) 

           (t) dt        

       
-  

and 

 

 a (x): = 1  , for x  a 

 

Definition 2: the membership function of the fuzzy set “smaller than b” is defined by the formula 

          

                   (t) dt             

 b (x): =       
x   = 

P( t  x )
                                    

, for x  b   (2.76) 

                                                                                     P( t  b ) 

           (t) dt        

         
b 
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and 

 

 b (x): = 1  , for x  b 

 
Returning to the consideration by the physician of what are normal values and what are abnormal values, a fuzzy 

definition is given for each. If the range of normal values is [a,b], for a  b, then the membership function of the fuzzy 

set ‘normal’ will be the intersection of the sets ‘bigger than a’ and ‘smaller than b’, and is obtained by applying the min  

operation: 

 

 [a,b] (x): = min(  a (x),  b (x)) 

 

The fuzzy set of abnormal values will be the union of the fuzzy sets ‘bigger than b’ and ‘smaller than a’. The 

membership functions of these sets,  b (x), and  a (x) , are constructed using definitions (1) and (2), and the 

membership function of the union is: 

 

 [a,b] (x): = max(  b (x),  a (x)) 

 

The resulting membership function is shown in Figure 31: on the x-axis of Figure 31, we see the two points ‘a’ and ‘b’ 

which represent the minimum and maximum ‘crisp’ limits of what are considered ‘normal’ values. Two fuzzy sets are 

defined by the membership curves: ‘bigger than a’ and ‘smaller than b’. The intersection of these two fuzzy sets will be 

the fuzzy set of ‘normal’, with their corresponding membership grades. The descending curve which starts at point b 

( =1), shows a gradual change from cases with a high membership to the ‘smaller than b’ fuzzy set, to cases with a low 

membership to the ‘smaller than b’ value fuzzy set, and therefore a high membership to the ‘greater than b’ fuzzy set. 

The same is evident for point ‘a’, where the ascending curve on the left indicates cases with an  increasingly higher 

membership to the ‘bigger than a’ fuzzy set.  

 

 
           
                                            
1 

        x  a  

                                    x  a                                x   b 

                                                             

 
 

                            x  a 

                                                                                                             x 

                                   

     a                                       b                                                     
 

Figure 31. Membership curves of the fuzzy sets corresponding to ‘bigger than a’ and ‘smaller than b’ values 

 

 

In medical tests, two characteristics which are typically used are sensitivity and specificity. These characteristics can be 

explained in terms of two groups of patients, one of which consists of those who have a given disease, and the other 

which consists of those who do not. The probabilities that the test result belongs to the interval [x, x + dx] are denoted 

by p+(x)dx and p-(x)dx, respectively. These are shown in Figure 32. Negative results are typically associated with small 

values of x while positive results have values bigger than a given threshold a. The sensitivity of the test is thus defined 

as the probability of the positive test result for patients having the disease. The specificity is thus defined as the 

probability of the negative test result for the patients without the disease. The positive or negative predictive value is the 

probability that a patient has or does not have the disease given a positive or negative result. When the threshold is 

fuzzified the sensitivity or specificity becomes the probability of a fuzzy event that the test result is positive or negative, 

respectively. 
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Sensitivity    =    +(x) + (x) dx             

                
-    

 

 

     

Specificity    =    -(x)  - (x) dx             

          
-    

 

where + (x) and  - (x) denote the membership functions of the fuzzy sets ‘bigger than a’ and ‘smaller than a’, 

respectively. 

 

 
          ,  

                                           crisp threshold 

1 
                                                fuzzy threshold 

 

           -                                            + 

 
 

 

 

                                  x 

     a                                                     

Figure 32. Plot of the probabilities that the test result belongs to the interval [x, x + dx], denoted by p+(x)dx and 

p-(x)dx, ‘have disease’ and ‘do not have disease’, respectively. 
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2.4  Factor analysis and attribute fusion 
 

In this section we consider the use of Hartigan’s ‘Joining Algorithm’ [Hartigan75] for factor analysis. This algorithm 

serves two objectives: the first is that of attribute reduction via the progressive unification of the attributes; the second 

objective is the identification of the most significant factors and those factors which have most inter-relation. In fact, the 

second objective is a prerequisite for the first. The details of implementation of this algorithm by Nettleton  are given in 

Section 3.2.2 of the thesis.  There are other 'joining algorithms’, as detailed in Hartigan’s book, and it is interesting to 

compare their functional differences, as we do later in Section 2.4. 

 

Preliminaries: A matrix of covariances {C( ,J), 1    N, 1  J  N}, where N is the initial number of variables to be 

processed, will be approximated by the product of loading matrices B, in which B has a simple tree structure. This 

implies that each column of B has constant non-zero elements (possibly one different constant in different columns) and 

that the clusters of variables defined by the non-zero elements in each column form a tree. This assumes that the data 

representation has been adequated to the form of representation which allows the C matrix to be defined. The 

prerequisite is the ability to calculate the C matrix: for non- numerical data an appropriate distance metric is required to 

calculate the covariances, and the B matrix is assigned initial default values (Step 1, below). 

 

A covariance matrix C is exactly equal to a product of loading matrices of this type, if and only if –C is an ultrametric, 

that is, if and only if for each three variables I,J,K, C(I,J)  min [C( ,K),C(J,K) . We observe that, if –C is an 

ultrametric for a scaling of the variables, it is not necessarily so for another scaling, and as a consequence a careful 

scaling of the variables may improve the ‘fit’ of the model. 

 

The algorithm proceeds to find the pair of variables with the biggest covariance and it joins them to construct a new 

factor, whose covariance with respect to each other variable will be the weighted mean of the covariances of the fused 

variables for that variable. Then, the next highest covariance will indicate the next pair to be fused. This gives the same 

result as the ‘standard distance and amalgamation’ procedure.  

 

During the execution of the algorithm, the clusters (or factors) are constructed: {1,2,.....,2N - 1}.  

The first N clusters are the original variables. The structure of the cluster is written in the vector JT, where JT(I) is the 

cluster constructed by the fusion of I to some other cluster. If clusters I and J are fused to form cluster K, then the 

loading in the Ith column of the loading matrix will be: 

 

 { C( , )  min[C( , ), C(J,J), C( ,J) }
1/2 . 

 

Step 1: Assign K, the number of clusters, to N. For each  (1    N) we define WT( ) = 1, JT( )=0. We define B( , ) =1 

(1    N) and B( ,J) = 0 for all others ,J (1    N, 1  J  2N 1). 

 

Step 2: Find the pair   J with JT( ) = JT(J) = 0, such that C( ,J) is a maximum. 

 

Step 3: Increment K by 1. Define JT( ) = K, JT(J) = K, C(K,K) = min[C( , ), C(J,J), C( ,J)  , WT(K) = WT( ) + WT(J). 

Define B[L, ) = [C( , )  C(K, K) 
1/2

 always such that B(L, ) = 1(1  L  N). Define B(L,J) = [C(J,J)  C(K, K)
1/2

 

always such that B(L, J) = 1(1  L  N). Define B(L,K) = 1 always such that B(L, ) or B(L,J) are non-zero (1  L  N). 

Assign JT(K) = 0. 

 

Step 4: For each L, JT(L) = 0, define C(L,K) = C(K,L) = [WT( ) C( ,L) + WT(J) C(J,L) /WT(K). If K < 2N  1, return 

to Step 2. 

 

 

Note 1. There will be 2N-1 clusters, or factors, following the calculations (some of them could have zero loadings and 

can be discounted). The loading matrix can be reduced to an N  N matrix in the following manner. We begin with the 

smallest clusters and go on to the biggest ones. If I and J are fused to form cluster K, we assume that DI, DJ, DK are the 

corresponding non-zero loadings. If and only if B(I,L)  0, we assign B(I,L) = DI
2
/(DI

2
+DJ

2
)

1/2
. Always in the case that 

B(J,L)  0, we assign B(I,L) = DJ
2
/(DI

2
+DJ

2
)

1/2
. We completely eliminate the column {B(J, L) , 1  L  N}. We 

substitute B(K,L)  0 by B(K,L) = [DK
2
 + DI

2
DJ

2
/(DI

2
+DJ

2
)

1/2
. During this procedure, we eliminate N 1 columns. The 

basis for eliminating is the colinearity of the columns I,J,K when I and J are fused to form K. 

 

Note 2. The algorithm may be initialised as a mean fusion algorithm, by using Euclidean distances when the variances 

are all equal to 1 (unity). If (I,J) is the correlation between variables I and J, D(I,J) =  [1 (I,J)  / 2M is the squared 
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Euclidean distance between the standardised variables. The distance between clusters of variables is defined as the 

mean distance on pairs of variables, one from each cluster. Then we obtain exactly the same fusion sequence over the 

distances, as the previous algorithm.  

 

The covariance between pairs of clusters is the mean covariance between the variables in the two clusters. It is natural 

to associate a factor to each cluster that is equal to the mean of all the variables in the cluster, given that the covariance 

between clusters is equal to the covariance of these two factors. Of course, those factors will be oblique. We obtain 

another convenient set of factors for a binary tree by the association of a factor with each division in two clusters – the 

difference of the averages of the variables in the two clusters. These factors are also oblique, while the columns of the 

loading matrix are orthogonal. 

 

Practical Example of execution of the Hartigan joining algorithm 

 

With reference to the four steps defined previously in the preliminary description of the Hartigan joining algorithm, we 

now run through the first iteration of execution of these steps using the data defined below in Table 9. The initial state 

of the data consists of a covariance matrix for the seven variables to be ‘joined’. 

 

Step 1: Assign K, the number of clusters, to 7. Define WT( ) = 1, JT( )=0. Define B( , ) =1 for 1    7 and B( ,J) = 0 

for all others ,J (1    7, 1  J  13). 

 

Step 2: The pair FM and FR have the highest covariance, thus I=4, J=5. 

 

Step 3: Increment K to 8. Define JT(4) = JT(5) = 8, C(8,8) = 0.846 [given that C(4,5) is less than C(4,4) or C(5,5) , 

WT(8) = 2. Define B(4,4) = [1  0.846 
1/2

 =   0.392, B(5,5) = [1  0.846
1/2

 = 0.392, B(4, 8) = B(5,8) = 1. JT(8) = 0. 

 

Step 4:  The following is defined:  

  C(1,8) = 1/2[C(1,4) + C(2,4)  = 1/2(0.305 + 0.301) = 0.303. 

 

 

In the same manner, the other covariances are defined with the new cluster or factor, by calculating the mean of the 

previous ones. Because K < 13, we return to Step 2, and so on …. 

 

Table 9. Example of applying the fusion algorithm to a simple dataset of measurements 

 

Initial state of data. 

 

1.HL 1000 

2.HB 402 1000 

3.FB 395 618 1000 

4.FM 305 135 289 1000 

5.FR 301 150 321 846 1000 

6.FT 339 206 363 797 759 1000 

7.HT 340 183 345 800 661 736 1000 

              HL HB FB FM FR FT HT 

 

Step 1. Fuse FR with FM 

 

HL  1000 

HB  402 1000 

FB  395 618 1000 

FMFR  303 142 305 846 

FT  339 206 363 778 1000 

HT  340 183 345 730 736 1000 

 

Step 2. Fuse FMFR with FT 

 

HL  1000 

HB  402 1000 
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FB  395 618 1000 

FMFRFT 315 163 778 

HT  340 183 345 732 1000 

 

Step 3. Fuse FMFRFT with HT 

 

HL  1000 

HB  402 1000 

FB  395 618 1000 

FMFRFTHT 321 168 328 732 

 

Step 4. Fuse HB with FB 

 

HL  1000 

FBHB  398 618 

FMFRFTHT 321 248 732 

 

Step 5. Fuse HBFB with HL 

 

HLFBHB 398 

FMFRFTHT 270 732 

 

Step 6. Fuse HLFBHB with FMFRFTHT 

 

HLFBHBFMFRFTHT 270 

 

The resulting tree of sequence of fusions will be: 

 

HL    FB    HB    FM    FR    FT    HT     

 

             4                1       

      5                                      2 

                                                      3 

                            6 

 

where the first fusion, FM with FR is denoted by ‘1’, the second fusion of FMFR with FT is denoted by ‘2’, and so on. 

The pairs with the highest covariances are fused. New covariances are considered to be the weighted means of the 

previous ones. 

 

 

Non-fuzzy distance metrics between cases. [Hartigan75  

 

In [Hartigan75], pp66, the interpretation of the ‘distance’ between variables of different scales and types is considered 

(we call this a non-fuzzy interpretation). The process becomes more complex when we introduce variables with distinct 

scales and types. 

 

(1) For two real variables measured using scales, an appropriate recalculation of scale results in a mean of 0 and 

variance of 1. It follows that the Euclidean distance is proportional to 1- the correlation. 

 

(2)   For two ordered variables, a feasible distance would be: 

 

 P(X < X* | Y < Y* , X  X*), 

 

where X, Y and X*, Y* are all taken from a random sample of both variables. 

 

(2) For two categorical variables, which may be ordinal or non-ordinal, P(I,J) is assigned the proportion of cases which 

have value I for the first variable, and value J for the second variable (supposing that I assumes values 1,2,….,M 

and J assumes values 1,2,….,N). The following is assigned: 
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 P( I, 0 ) = {1  J  N} P( I, J ) 

 P( 0, J ) = {1  I  M} P( I, J ). 

 

A similarity measure is: 

 

 {1  I  M, 1  J  N} P( I, J ) logP( I, J ) 

  {1  I  M } P( I, 0 ) logP( I, 0 ) 

   {1  J  N } P( 0, J ) logP( 0, J ) 

 

(3) For a categorical variable and a real variable, a natural similarity measure (invariant when subject to permutation of 

categories and linear transformation of the real variable) is the ratio of the “between category squared mean” to the 

“inside-category squared mean”. 

 

In [Hartigan75], pp64-65 , Hartigan details calculations on Euclidean and non-Euclidean distances between variables, 

and also details how to graphically represent (plot) distances to ‘detect’ clusters.  
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2.5  Clustering 
 
This section presents the main clustering methods applied in Sections 4.1 and 4.2 of the thesis, namely: Hartigan’s 

‘joining algorithm’ [Hartigan75], Kmeans [Dubes88], Fuzzy c-Means [Bezdek81], Kohonen SOM [Kohonen82]. We 

also summarise Ghosh’s [Ghosh95] fuzzy version of the Kohonen SOM. Another system which we review as one of the 

classification systems in the literature is Linneo+. 

 
LINNEO+ 

 

Linneo+ [Béjar94] uses as its starting point the Kmeans algorithm, thus giving it a basis in the traditional statistical 

field. Notwithstanding, the concept of distance is considered as a fuzzy similarity value, as in [Bezdek81]. The system 

is considered to be an agglomerate classification method based on the optimisation of a quality function of the obtained 

groups. A simplification of the algorithm is as follows: 

 

1. Establish the number of desired classes K. 

 

2. Choose  K initial objects which we wish to optimise, or produce movements of observations between classes. 

 

a) Assign each one of the observations to one of the K groups depending on a similarity function. 

 

b) Calculate the prototype of each one of the K groups as the mean of the values of all the assigned objects. 

 

c) Calculate the quality function. 

 

 

Search by  ‘hill-climbing’ method: 

 

This involves a function which establishes the similarity between the observations, the representatives of each group 

and the form of calculating the prototype of the groups. The function F chosen as the optimisation criteria, is the 

minimisation of the sum of the distances of the objects O1 to ONi of each group to their respective prototypes C1 to Ck.  

           k     Ni 

  F =      d (Oj , Ci )        (2.77) 

        
 i=1  

 
j=1 

 

The following datasets were used in [Béjar94] to test the algorithm: ‘marine sponges’, ‘mental illness’ and ‘water 

treatment’. 

 

The ‘classification step’ used by Linneo+ : 

 

In [Bejar94], the distance used for determining the similarity between two objects Oi and Oj, is the generalised 

hamming distance: 

 

                            n 

  d (Oi , Oj ) =     diff (Oik , Cjk )       (2.78) 

                        
k=1 

 

where diff (Oik , Cjk ) depends on the type of the attribute k as follows: if k is a qualitative attribute (ordinal or nominal 

categorical) the expression diff (Oik, Cjk) will be 0 if the values are equal and 1 if they are different. If k is a quantitative 

attribute (a number) the expression evaluates to the absolute value of the difference between the two values. If one of 

the values of k is missing or null, its value is assigned ½ , and if both values of k are missing or null, they are both 

assigned 0. 

 

 

The following types of distances are considered: Minkowski’s metric, Mahalonobis distance  
2
. (chi-squared) distance 

and the Cosine distance. The Cobweb system [Fisher87] is also contrasted. Cobweb is a concept formation system 

which incorporates metrics and heuristics to calculate terms of ‘predictability’ and ‘previsibility’. 
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Linneo+ uses a strategy of non supervised learning. A number of non-preestablished concepts are induced, in the case in 

which there is no ‘expert’ available who knows the concepts to be learned in advance. Linneo+ incorporates a 

methodology for non supervised learning for concept creation and the automatic construction of knowledge bases 

derived from sets of unclassified observations in ‘ill-structured’ domains.  

 

Some of the key areas of Linneo+ are: ‘incremental learning’, the introduction of information which describes the 

observations and which allows the qualification of the values assumed by the attributes. It also contains heuristics which 

mitigate the dependency of the results of the incremental algorithm on the order of input of the observations. Semantic 

information is expressed in a declarative form to achieve a semantic bias of the results. Some of the quality measures 

for a classification, used for benchmarking with other methods, are: mean distance between the class centres; Mean 

distance between the objects and the centres of their classes; attribute dispersion; mean attribute dispersion, and the 

number of attributes with zero dispersion. 
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Figure 33. Functional representation of Linneo 
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Hartigan’s clustering algorithms 

 
In [Hartigan75], Hartigan defines CLUSTER, which is a sublibrary of Fortran subroutines for cluster analysis and 

related line printer graphics. It includes routines for clustering variables and/or observations using algorithms such as 

direct joining and splitting, Fisher’s exact optimisation, single-link, K-means, minimum mutations, and routines for 

estimating missing values. 

 

The types of clustering algorithms used are: 

 

Sorting – an important variable is chosen somehow, and the observations are partitioned according to the values taken 

by this variable. Within each of the clusters of the partition, further partitioning takes place according to further 

important variables 

 
Switching – an initial partition of the observations is given, and new partitions are obtained by switching an observation 

from one cluster to another, with the algorithm terminating when no further switch improves some criterion. 

 

Joining – initially each observation is a cluster and the closest pair of clusters are joined to form a new cluster, 

continuing this step until a single cluster containing all the original observations is obtained. 

 

Splitting – initially all observations are one cluster and then a cluster is chosen according to some criterion and split into 

smaller clusters. 

 

Adding – a clustering structure (partition or tree) already exists, and each object is added to the closest cluster by some 

criterion in turn. 

 

Searching – search over a subset of all possible clusters for the optimal one. 

 

 

Fuzzy c-Means 
 
As a precursor to Fuzzy c-Means, we will first comment Kmeans [Dubes88], given that Fuzzy c-Means is based on this 

essentially simple algorithm. Kmeans is is a crisp algorithm which establishes a distance between the observations, in 

which a predefined number of observations are selected to be used as seeds for the cluster construction process. Each 

observation is assigned a cluster by an iterative algorithm in the closest cluster as defined by the distance between the 

object to be clustered and the mean value of all the clusters. The clustering stops after a predefined number of iterations, 

in which point the current clusters are settled as the result of the clustering.  We note that Kmeans is an algorithm which 

requires us to know a priori how many clusters we wish to cluster the data into. Hartigan and Wong later developed a 

supervised version of Kmeans [Hartigan79]. 

 

Fuzzy c-Means [Bezdek81] is a clustering algorithm which acts on cases described by numerical attributes. It is able to 

establish the best number of partitions for a given data set, by testing different numbers of partitions and using the 

cluster quality indicators to identify the best. It calculates the centres of the fuzzy clusters for the chosen number of 

clusters. It then calculates a membership grade for each case to each cluster, for each variable. From this information, 

by inspecting the calculated values, we can establish which variables are most significant for each cluster, and which 

are ambiguous. 

 

Fuzzy c-Means is later applied, towards the end of Section 4.1 of the thesis, to the Hospital Clinic ICU data in order to 

generate a fuzzy  clustering of the cases and of the variables and their inter-relationships, as indicated by the fuzzy 

cluster centres. This is contrasted with the analysis of the same data with statistical techniques such as principal 

components and the Hartigan ‘joining algorithm’, and AI techniques such as ID3, C4.5, feedforward neural nets and the 

Kohonen SOM.   

Fuzzy c-Means [Bezdek77] generalises the function Jw , sum of squared error within groups. It suggests many infinite 

families of clustering algorithms, which have been developed upon by different investigators.  
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Algorithm 
 

Clustering algorithms such as fuzzy c-Means are essentially ‘Picard Iteration’ for a set of given conditions.  

 

Step 1: Fix c , 2  c  n ; select any interior product metric norm for 
p
; and fix m, 1  m  . Initialise U

(0)
   Mfc . 

Then to iteration  l, l=0,1,2,.....,: 

 

Step 2: Calculate the centres for the c-fuzzy clusters { vi
 (l)

 } with U
(l)

 . 

 

Step 3: Actualise U
(l)

 using  {vi
 (l)

 }. 

 

Step 4: Compare U
(l)

 with U
(l+1)

 a convenient matrix type norm: if ||U
(l+1)

 - U
(l)

 ||  L the algorithm terminates: 

otherwise, return to Step 2. 

 

Calculation of cluster quality 
 

For the number of clusters defined as input parameter (‘kbegin’ and ‘kcease’) the algorithm evaluates each cluster, 

calculating the following: Fstop, 1-Fstop, Entropy and Payoff. Two of the objectives are: maximise the grade of 

partition, and minimise the entropy. If kbegin=2 and kcease=3, the algorithm executes for 2 partitions and for 3 

partitions, calculating the clusters, the centroids, and the quality indicators. The values for ‘Payoff’ can then be 

interpreted in order to identify the most favourable value of c. 

 

Description of the ‘Fuzzy c-Means’ parameters 
 

Fuzzy c-Means has the following algorithmic parameters: c , m , U
(0)

 , ||.||A  , L  .  

 

c : is the number of expected clusters. This can be fixed (for example to 2) and the algorithm will try to create c=2 

clusters/partitions in the data set. Or one can increment  c , in an iterative manner (c=1,2,......, n) and compare the 

quality of the results for each c . 

 

m : the bigger m is, the more ‘fuzzy’ the membership assignments will be. It is a grade of ‘fuzziness’, or a weight 

exponent which controls the grade of sharing of memberships between fuzzy type clusters in X. Typical values are 2, 

1.25,1 , etc. .. 

 

U
(0)

 : matrix which contains the membership functions, with their initial value assignments. 

 

||.||A : is a norm induced on 
p
  of internal product. 

p
  is a space of p-tuples of real numbers. For example, the 

following three norms can be defined: NE  , the Euclidean norm; ND , the Diagonal norm, and NM , the Mahalonobis 

norm. ND is typically used to compensate for distortions due to great differences between the variance of characteristics 

in samples in the directions of the co-ordinate axes. NE is typically used when the clusters in X have the general 

appearance of ‘spherical clouds’. 

 

L : is the umbral epsilon, typical value being 0.01, which works as a ‘cutoff’ criteria, among the cluster centroids. 

 

Norms 

 

By varying the norm for a distance based clustering criteria, we may infer geometric and statistical properties from the 

data. The norm is effectively one of the parameters of fuzzy c-Means which needs to be most adequately set, in order to 

generate fuzzy clusters as a result with a good cluster quality; that is, compactness, distinguishability between clusters, 

and interpretability in terms of the characteristics of the dataset. For example, in pattern recognition, two fuzzy clusters 

could be generated for two geometric shapes, one of which contains the points of a cross, and the other which contains 

the points of a circle. The three principal norms are used for different classes of characteristics in the data sets: 

 

NE : where the characteristics are statistically independent, and variable in the same measure for clusters with a 

hyperspherical form 

 

ND  : where the characteristics are statistically independent, and variable in unequal measures for clusters of a 

hyperellipsoid form 
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NM  : where the characteristics are statistically dependent, and variable in unequal measure for clusters of a 

hyperellipsoid form  

 

Typical output from Fuzzy c-Means 

 

Below we can see a typical output generated from a fuzzy c-Means run, for which the number of clusters has been 

defined as 3. In the first block we see the input data, which consists of two columns of 21 cases. The scalar matrix cc is 

then shown, which is used to apply the chosen norm, for example, Diagonal, Euclidean or Mahalonobis. In this case the 

norm is set to 2, which corresponds to Euclidean. The MM-Clusters block then shows the successive iterations, in this 

case  8, with the maximum error incurred in each iteration. The termination of the algorithm can be defined as a 

maximum number of iterations or a minimum error. In this case the error was progressively reduced in each iteration to 

reach a best value of 0.0011 in iteration 8. The state at termination is given in the indicators Fstop, Entropy and Payoff. 

The cluster centres (or prototypes) at termination are then given, there being 3, each located by an x,y coordinate. The 

block giving the membership functions is then listed. There are three membership functions, one for each cluster, and 

these functions are defined over the number of cases. That is, each case has three values assigned to it, being the fuzzy 

grade of membership to each of the three clusters. For example, case 14 (J=14), has a grade of membership of 0.0118 

with respect to cluster 1, G.O.M. of 0.9737 for cluster 2, and 0.0145 for cluster 3. It is clear that case 14 has a strong 

membership to cluster 2, and very weak memberships to clusters 1 and 3. 

 

 

 *** *** Begin Fuzzy C-Means Output *** *** 

               MM-Clusters 

 

INPUT DATA 

y[ 1][ 1]=     0.00  y[ 1][ 2]=    0.00   

y[ 2][ 1]=     0.00  y[ 2][ 2]=    3.00   

y[ 3][ 1]=     1.00  y[ 3][ 2]=    1.00   

y[ 4][ 1]=     1.00  y[ 4][ 2]=    2.00   

y[ 5][ 1]=     2.00  y[ 5][ 2]=    1.00   

y[ 6][ 1]=     2.00  y[ 6][ 2]=    2.00   

y[ 7][ 1]=     3.00  y[ 7][ 2]=    0.00   

y[ 8][ 1]=     3.00  y[ 8][ 2]=    3.00   

y[ 9][ 1]=   10.00  y[ 9][ 2]=    9.00   

y[10][ 1]=  10.00  y[10][ 2]= 10.00   

y[11][ 1]=  10.50  y[11][ 2]=   9.50   

y[12][ 1]=  11.00  y[12][ 2]=   9.00   

y[13][ 1]=  11.00  y[13][ 2]= 10.00   

y[14][ 1]=  18.00  y[14][ 2]=   0.00 

y[15][ 1]=  18.00  y[15][ 2]=   1.00   

y[16][ 1]=  18.00  y[16][ 2]=   2.00   

y[17][ 1]=  19.00  y[17][ 2]=   0.00   

y[18][ 1]=  19.00  y[18][ 2]=   2.00   

y[19][ 1]=  20.00  y[19][ 2]=   0.00 

y[20][ 1]=  20.00  y[20][ 2]=   1.00   

y[21][ 1]=  20.00  y[21][ 2]=   2.00   

 Number of cases =    21 MM-Clusters 

 

 

      Scalar matrix cc 

            0.1             0.1 

            0.0             0.0 

            0.0             0.0 

            0.3             0.3 
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                                 MM-Clusters 

 

Number of clusters =   3    icon =   2    exponent = 2.00 

Iteration =    1   Maximum Error =     0.6119   Number of clusters =   3 

Iteration =    2   Maximum Error =     0.3242   Number of clusters =   3 

Iteration =    3   Maximum Error =     0.2245   Number of clusters =   3 

Iteration =    4   Maximum Error =     0.3035   Number of clusters =   3 

Iteration =    5   Maximum Error =     0.3529   Number of clusters =   3 

Iteration =    6   Maximum Error =     0.1827   Number of clusters =   3 

Iteration =    7   Maximum Error =     0.0114   Number of clusters =   3 

Iteration =    8   Maximum Error =     0.0011   Number of Clusters =  3 

 

 

Fstop       1-Fstop     Entropy     Payoff      

 0.957       0.043         0.112          6.648 

 

 

 

     Cluster Centres v[i][j] 

 

V[1][1] =  10.4936  V[1][2] =   9.4918 

V[2][1] =  18.9947  V[2][2] =   0.9966 

V[3][1] =   1.4903  V[3][2] =   1.4886 

 

 

  Membership Functions 

 

J = 1    0.0223  J = 1    0.0244  J = 1    0.9533 

J = 2    0.0366  J = 2    0.0240  J = 2    0.9394 

J = 3    0.0031  J = 3    0.0031  J = 3    0.9938 

J = 4    0.0040  J = 4    0.0033  J = 4    0.9928 

J = 5    0.0034  J = 5    0.0035  J = 5    0.9931 

J = 6    0.0043  J = 6    0.0037  J = 6    0.9919 

J = 7    0.0256  J = 7    0.0341  J = 7    0.9403 

J = 8    0.0462  J = 8    0.0329  J = 8    0.9208 

J = 9    0.9925  J = 9    0.0035  J = 9    0.0040 

J = 10  0.9934  J = 10  0.0031  J = 10  0.0035 

J = 11  1.0000  J = 11  0.0000  J = 11  0.0000 

J = 12  0.9924  J = 12  0.0038  J = 12  0.0038 

J = 13  0.9933  J = 13  0.0033  J = 13  0.0033 

J = 14  0.0118  J = 14  0.9737  J = 14  0.0145 

J = 15  0.0034  J = 15  0.9930  J = 15  0.0036 

J = 16  0.0173  J = 16  0.9678  J = 16  0.0149 

J = 17  0.0087  J = 17  0.9814  J = 17  0.0100 

J = 18  0.0125  J = 18  0.9772  J = 18  0.0103 

J = 19  0.0108  J = 19  0.9775  J = 19  0.0117 

J = 20  0.0031  J = 20  0.9940  J = 20  0.0029 

J = 21  0.0153  J = 21  0.9727  J = 21  0.0120 

 

Number of Cases N =   21 

Number de Characteristics NDIM =    2 

‘Default’ Membership Limit EPS =  0.010 

Norm for this Test ICCN = 2 

Weight Exponent M = 2.00 
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No. of     Part.       Inferior     Entropy     Number of  

Clusters     Coeff.     Limit                 Iterations 

 (C)          (F)       (1-F)       (H)         (IT) 

  2      0.830     0.170       0.272       11 

  3      0.957     0.043       0.112        8 

 

 

  *** *** Normal Termination of Process *** *** 

 

 

Kohonen SOM (Self Organising Map) 

 
The algorithm designed by Teuvo Kohonen [Kohonen82] falls into the family of algorithms known as ‘self-organising 

maps’. It contains a matrix of nodes, which ‘compete’ to win weight and to attract the given input data. As a 

consequence, after successive iterations, some groups of nodes (clusters) will become more highly activated, while 

other nodes will become relatively disactivated. The nodes are interconnected in a typical neural architecture, and the 

information propagates from an input layer to a layer (or matrix) of classification nodes. In the basic version there are 

two node layers, one input and the other in which the classification is formed. The Kohonen architecture has 

demonstrated its applicability to a diversity of data domains, especially those with large volumes and many attributes. It 

behaves well in the presence of ‘noise’ and unknown values. 

 

Description of the functionality of the Kohonen self-organising map 

 

Kohonen made the observation that some nets of flat topology, consisting of interconnected and adaptive units, is able 

to modify its internal state to reflect the characteristics of a set of input signals. The Kohonen SOM is a set of 

processors which organise themselves in an autonomous manner, only requiring the original inputs and an algorithm to 

propagate changes in the net. The state of the net resides in the weights (coefficients) assigned to the interconnections 

between the units. It has two layers: layer one contains inputs nodes and layer two contains ‘output’ nodes. The 

modifiable weights interconnect the output nodes to the common input nodes, in an extensive manner. In other words, 

the point density function of the weight vectors tend to approximate to a probabilistic density function p(x) of the input 

vectors x, and the weight vectors tend to order themselves in agreement with their mutual similarity. 

 

Terminology 

 

The following summarises the terminology used in the explanation of the functionality of the Kohonen clustering 

model. 

 

 X =  {x0, x1, x2,...,xN-1} represents a set of N inputs in Rm such that each xi has m  

  dimensions (or characteristics). 

 

 m =  number of input nodes 

 

 c =  number of output nodes (clustering). 

 

 Wj is the vector [w0j , w1j,...,w(m-1)j T which corresponds to the output node j,  

where (0  j  c-1). 

 

 The output dij = (xi-Wj)T(xi-Wj) is the output node j when presented with input vector xi, 

 where Wj is the vector which contains the weights of the m input nodes up to output node j.  
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 Basic algorithm 

 

The global objective is to move the weights towards the cluster centres via the updating  of the weights by each input 

value.  

 

Step 1: initialise the weights Wj in a random fashion for all j and assign the size of the neighborhood (EN) to c/2. 

Assign all weight updates Wj to zero. The value of the learning rate (Lrate) is initialised to be between 0 and 1. 

 

Step 2: for each input xi, select the output node j*, (0  j*  c-1), such that dij* is a minimum. Actualise Wj, using the 

rule: 

 

  Wj=Wj+Lrate* Wj, 

  Wj= Wj+(xi-Wj), 

 

where j includes the output node j* and each of its NE neighbours to the right and left. Step 2 is repeated until there is 

no change in the weights. 

 

Step 3: check if NE=0. If this is so, the algorithm terminates, otherwise it reduces NE by 1 and returns to step 2. 

 

 

 

Fuzzy self-organising maps [Ghosh95  
 

The following details the modifications carried out by Ghosh in order to incorporate fuzzy techniques into the SOM, 

and the possible applicability of this approach to the work of the thesis. 

 

Ghosh, in his paper [Ghosh95] first gives a review of what is understood by the measurement of the fuzziness of a fuzzy 

set: expressing the average presence of ambiguity in deciding if an ‘element’ belongs to a determined set or not. Later, 

he describes SOM (self organising map) type multilayer nets.   

 

The final use to which Ghosh puts his system is for image processing. Thus, the way the NN processes and its 

understanding of fuzziness are orientated towards the interpretation of pixels by grade of lightness (1=totally dark, 

0=totally white, intermediate scale  0 < n < 1 indicates shades of grey). 

 

Motivation: one problem associated with image interpretation is the ‘noise’ present in the image, and Ghosh proposes 

that  incorporating a measure of fuzziness is a natural way of improving the result. 
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The intention is to extract homogeneous regions in the space, using a self-organising process, and only using an image 

representation corrupted by noise (it is not necessary to know the output classes a priori). In the networks organisation, 

under ideal conditions of an image without noise, the output status of the majority of the neurones in the output layer 

will be 0 or 1. Notwithstanding, due to the effect of noise, the output status of the neurones in the output layer will 

normally lie in [0,1] and therefore the status value will represent the grade of lightness (or darkness) of the 

corresponding pixel in the image.  

 

Thus, we could consider the status of the output in an output layer as the representation of a fuzzy set “light pixels 

(dark)”. The fuzzy measure of this set, in global terms, could be considered as the ‘error or instability of the complete 

system’, given that it reflects the deviation of the desired state of the net. Thus, when we have no a priori value for the 

output objective, we can take the grade of fuzziness as a measure of the error in the system, and back-propagate it to 

adjust the weights, such that the error in the system reduces with time and in the limiting case, becomes zero. 

 

We can take the measurement of error E as a function which measures the fuzziness: 

 

 E = g ( I ) ,          (2.79) 

 

where I is the measure of fuzziness of a fuzzy set. 

 

When the network stabilises, the output status of the neurones in the output layer will be 0 or 1. Neurones with an 

output of  0 compose one group and those with 1 will be the other group. The mathematical derivation of the update 

rules with different fuzzy measures follows four steps: (i) correction of weights for fuzzy index; (ii) correction of 

weights for entropy; (iii) correction of weights for Kosko’s entropy measure; (iv) correction of weights for correlation 

measure. Refer to paper [Ghosh95] for complete formulae. 
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2.6  Classification 
 

In this section we review some of the classification systems in the literature, namely: Klass, ID3 and C4.5. Special 

emphasis is given to C4.5, as this is used extensively later in Section 4.1 of the thesis for comparative benchmarking. 

C4.5 is discussed with consideration of possible improvements, its development, and the incorporation of fuzzy 

techniques into the rule induction process.  

 

KLASS 
 

Klass [Gibert94] is a parametric classification tool for ill-structured domains, which uses heuristics together with 

symbolic and qualitative information. It uses parametric criteria for distance aggregation metrics. In [Gibert94], three 

main application datasets are used for benchmarking, namely, ‘marine sponges’, ‘computers’ and ‘stars’. Comparison is 

made with standard statistical methods, such as SPSS and SPAD. 

 

Klass allows for the incorporation of partial and semantic information, performing a classification by reciprocal chained 

neighbours (of quadratic complexity). The end user can intervene in the rules and in the variables derived from 

observations. The system can work jointly with qualitative and quantitative variables. 

 

With respect to the distance between individuals, a family of mixed distances d
2

(  r, r) ( i , i’ ) is defined, together with a 

method for obtaining satisfactory values for the parameters ( r, r). 

 

An iterative work methodology is used to incorporate observational data and expert knowledge. Support tools are 

provided for interpretation of the classes, the objective being to achieve a satisfactory classification, in agreement with 

the objectives of the expert. 

 

Support for interpreting the classes includes the following: measure of the difference between two classes; measure of 

the quality of a classification; characterisation of a classification; detection of identifier variables (class prototype); 

explicative power; automatic rule generation. The rules are in a format which is compatible to allow their incorporation 

into the knowledge base for diagnostic purposes. 

 

Description of the  ID3 rule induction algorithm 
 

ID3 [Quinlan86] constructs classification decision trees using a ‘top-down’ induction method’, and is the predecessor to 

C4.5.  With reference to Figure 35, the most global concept is ‘length’, given that it appears highest in the tree, and 

‘weight’ is the most specific concept, given that it appears in the lowest part (terminal nodes, or leaves) of the tree. ID3 

adds the following information (in parenthesis in Figure 35) to each node: (n,m) where n is the number of individuals 

who correspond to the given branch or node, and m is the confidence measure for the given branch or tree. 
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ID3’s objective is to construct a reasonably good decision tree (although not necessarily the best possible one), without 

too much computation. The type of data set with which it works would have many attributes and where the test data set 

has many objects. There is no guarantee of finding the optimum solution (best tree). 

 

ID3 is an iterative algorithm. It randomly chooses a data subset from the training set (called the ‘window’) and it 

constructs a decision tree from it. This tree must correctly classify all the objects in the window. Then it tries to classify 

all the other objects in the complete training set using this tree. If the tree succeeds for these objects then it is correct for 

the complete data set, and the process terminates. Otherwise, a selection of the objects which were incorrectly classified 

are incorporated into the window, and the process is repeated. In this manner, the correct tree may be found after just a 

few iterations, for data sets with up to 30,000 objects, characterised by up to 50 attributes. The design of ID3 had an 

anecdotal component, given that Quinlan used a window on the subset instead of using the whole test data set, due to 

memory restrictions of the computers used at that time.   

 
 

The C4.5 Algorithm 

 
C4.5 [Quinlan93] is an induction algorithm  which, from subsets (windows) of cases extracted from the complete 

training set, generates rules and evaluates their goodness using criteria which measure the precision in classifying the 

cases. The main heuristics (see below) that are used are the information value which a rule provides (or tree branch) 

calculated by ‘info’ and the global improvement that a rule/branch causes (‘gain’). 

 

The algorithm is executed in successive iterations. In each iteration the window size is incremented in a given 

percentage (in proportion to the complete set). The objective is to obtain rules which correctly classify a successively 

greater number of cases in the complete dataset. The proposal is that it is easier to identify rules in a reduced size subset 

than in the complete dataset. Each iteration uses as its basis that which the previous iteration has achieved. 

 

In each iteration a submodel is executed against the remaining cases (those which are not in the window). The 

incorrectly classified cases are given precedence to be included in the next window (which will be x% bigger than the 

previous window). In this manner, the rules continually increase their precision on the complete dataset.  The inputs to 

C4.5 are the rows of cases with data for the selected attributes which must be representative. It is assumed that the 

distribution of cases and attribute values is well balanced. The output is a value which is related to all the inputs. 

Normally  (in supervised learning) the output is provided to the training version of the model. 

 

Induction of rules and decision trees; concept formation in the ID3 and C4.5 algorithms 

 

ID3 [Quinlan86] and C4.5 are induction algorithms which extract structure and classes from data. Both algorithms are 

attributable to Quinlan. ID3 exists since the year 1986 while C4.5 was came into being in 1993, and can be considered 

as ID3’s successor, the basic idea (windowing) of both algorithms being similar. In the case of ID3, the objective 

attribute is always a continuous value, while for C4.5, it is symbolic. C4.5 also constructs more compact trees than ID3. 

 

C4.5 incorporates the following advancements with respect to ID3: 

 

(a) instead of choosing training cases to form the window in a random fashion, C4.5 biases the selection 

to make the class distribution more uniform in the initial window.  

 

 (b) ID3 uses a fixed limit for the number of exceptions per cycle. C4.5 includes as a minimum, 50% of 

the exceptions in the next window; this results in a faster convergence towards the final tree.  

 

 (c) C4.5 terminated the construction of the tree if the precision is not improving, without having to 

classify all the classes.  

 

Description of C4.5 induction process 

 

C4.5 induces the structure of a data set in two possible forms: 

 

 (a) Tree type representation. 

 (b) Rule type representation. 
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As inputs it may receive symbolic or continuous values, although it can only associate the attributes to a symbolic 

objective (output), which could be, for example, a range, flag, category, and so on. 

 

It is more concise than ID3 and generates smaller trees. The objective attribute must be symbolic (not numeric), in 

contrast to ID3, which allows the objective attribute to be numerical. 

 

 

 

Tree type representation 

 

This program generates a classifier in the form of a decision tree. The structure could be: 

 

-      a leaf, indicating a class 

- a decision node, which specifies a test to be carried out on one value-attribute, with a branch and subtree for each 

possible result of the test.  

 

 

                                                                             | 

                            |                                                                       | 

                   salary increase in first year  2.5                      salary increase first year  2.5 

                                         |                                                                       | 

                               bad (11.3/2.8)                                              |                                                         | 

standard vacations    10            standard vacations  10               

                              |                                                         | 

                                                |                                                              |                                   good (21.2/1.3) 

           salary increase in first year   = 4         salary increase in first year   4  

                                                |                                                              | 

                                       bad (4.5/1.7)                                         good (3.0/1.1) 

    

Figure 36. Example of a decision tree generated by C4.5    

 

Interpretation of Figure 36: if the salary increase in the first year is greater than 2.5 and the standard number of days of 

vacation is less or equal to 10 and the salary increase in the first year is greater than 4, the employee class is ‘good’.  

The numbers in parenthesis indicate the number of training cases associated with each leaf, and the number of cases 

incorrectly classified by that leaf. 

 

C4.5 contains heuristic methods to simplify the generated decision trees, whose objective is to produce a more 

comprehensible structure, without losing precision on hidden cases. 

 

It is based on the classic method of ‘divide and conquer’ [Hunt75], although it introduces a series of improvements with 

respect to Hunt’s original method. The first improvement is in the evaluation of the tests/questions that are made to 

divide up the cases. Also, a ‘benefit criteria’ is introduced whose purpose is to quantify and maximise the information 

increase in the global system. For each candidate division, the ‘benefit’ is calculated and the best are chosen. 

 

 

Treatment of unknown values. 

 

For real data, it is easy that something like 30% of the cases have some value-attribute missing. An induction algorithm 

can incorporate heuristics to manage this type of data set. The calculation of ‘benefit’ can be modified in terms of the 

information content  (see previous section) in the following manner: 

 

 benefit(X)  = probability that A is known   (info(T) - infox(T))    (2.80) 

   + probability that A is not known  0 

   = F  (info(T) - infox(T)) 

 

where: 

 info(T) measures the mean information necessary to identify the class of a case T. 

 infox(T) measures the expected information requirement. It is the weighted sum with respect to  
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                            the subsets. 

 T = set of training cases. 

 benefit(X) measures the information obtained by partitioning T using  test X. 

 

Partition of the test data set. 

 

C4.5 has a probabilistic approach to partitioning. If we assign a case belonging to T (see previous section) with a known 

result Oi and a subset Ti, this indicates that the probability of the given case belonging to subset Ti is 1 and in all other 

subsets it is 0. 

 

When the result is unknown, we are only able to make a weaker probabilistic inference. For this reason a weight is 

associated to each case in each subset Ti, which represents the probability that the case belongs to each subset. 

 

 

 

Rule type representation. 

 

A classification model in a tree form may also be represented in the form of rules. When the tree reaches a given 

complexity, it may become difficult to interpret. The rule form is easier to understand, although it contains the same 

information as that of the tree.  

 

Example of a rule: 

 

 Rule 5: 

  salary increase in first year  2.5 

  standard vacations  10 

   class is good [93.0%  

 

Interpretation: if the salary increase in the first year is greater than 2.5 and the number of days of standard vacations is 

greater than 10, then the employee is a member of class ‘good’ with a probability of 93%. 

 

 

Definitions of the calculations and criteria used in generating a tree 

 

Once that T (the training data set) has been partitioned in accordance with the n results (outcomes) of a Test X, the 

forecast for the required information will be the weighted sum of the subsets: 

     n 

 infoX ( T )         =   |Ti | x info ( Ti )     (2.81) 

   
 i=1

  |T| 

 

 

 

 

The quantity 

 

 gain ( X ) = info ( T ) - infoX ( T )        (2.82) 

 

measures the information obtained by partitioning T in accordance with Test X. Therefore, the benefit criteria selects a 

test in order to maximise the information obtained. We may also interpret this result as the information mutually shared 

by Test X with the class. 

 

Split Info. 

             n 

 split info ( X )         =  -      |Ti | x  log2   |Ti |        (2.83) 

   
           i=1

      |T|                    |T|    

 

represents the potential  information generated by dividing T in n subsets. The information ‘gain’ measures the 

information which is relevant to the classification and which has arisen due to this same division. 
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Therefore, 

 

 gain ratio ( X )  = gain ( X ) / split info ( X )       (2.84) 

 

expresses the proportion of information generated by the most promising division (which improves the classification). 

 

 

 

Construction of the decision tree of cases Fp to Lp 

 

{Routine ‘TreeForm(Fp, Lp)’., [Quinlan93], pp136.} 

 

(a).  If all cases are in the same class, the tree is a leaf and it returns the labelled leaf for this class. 

 

(b). For each attribute, calculate the potential information contributed by a test on the attribute (based on the 

probabilities that each case has a particular value for the attribute) and the information ‘gain’ that would result from a 

test on the given attribute (based on the probabilities that each case with a given value for the attribute, has to be in a 

given class).  

 

(c) Based on these values, and depending on the current selection criteria, find the best attribute on which to branch. 

Note: this version only allows to divide on an attribute if it possesses two or more subsets with at least MINOBJS cases. 

 

(d) Check if  ‘branch and test’ is better than forming a leaf. 

 

 

Dependencies of Programs, C4.5 

 

The code of the suite of programs which composes  ‘C4.5’ consists of some 31 programs of  ‘C’ code, and some 5 

‘include’ files. The major components are: decision tree generator, production rules generator, decision tree translator, 

production rules translator. 

 

 

Discussion of possible areas of improvement for C4.5 
 

C4.5 is considered as one of the best existing algorithms for rule induction from data. Notwithstanding, Quinlan himself 

has indicated several areas for improvement, which not only apply to C4.5, but to rule and tree induction techniques in 

general. 

 

Limitations of C4.5 

 

Geometrical interpretation. 

 

The interpretation of the description space is geometrical, which is the basis for the ‘divide and conquer’ methodology. 

If there exist N attributes, this vector corresponds to a point in a Euclidean description space of N dimensions. If each 

case is described by a vector of 16 attributes, the description space will have 16 dimensions. 

 

The space becomes more complex when we also have to consider unknown values of attributes. 

 

Also, the resulting description space is not really Euclidean, because the distances and distance relations may alter if we 

reorder the discrete values along the axes. For example, when a mixture of numeric and symbolic values exist together 

(e.g. size, form: 10x10, square), the order of the values of ‘form’ will not possess any intrinsic significance.  

 

Non-rectangular regions 

 

The regions produced by a decision tree are hyperrectangles. Notwithstanding, it is possible that the regions of classes 

in the description space are not hyperrectangles. Thus, the decision tree approximates the regions with hyperrectangles. 
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One indication that the surfaces that delimit the regions are really not orthogonal hyperplanes, is when the percentage of 

incorrect classifications maintains constant while the tree size keeps increasing with the incorporation of more training 

cases. 

 

Quinlan advises that in this situation, an arithmetical combination of the attributes should be sought, to be included as a 

new attribute. The CART system calculates weights {wi} which maximise the value of a division under current 

criteria.[Utgoff91] employ this type of tests, calculating the weights by ‘hill-climbing’. 

 

   wi x Ai > Z          (2.85) 

  
 i 

This test is distinct to one which simply compares an attribute with a threshold.  

 

Ill-delimited regions 

 

Decision trees are constructed by successive refinement. This can give rise to ‘pathological’ cases as a consequence of 

the topology of the description space. For example, regions with a low density of points may occur, which results in a 

wide margin in which to place the delimiting surfaces. Also, given that the work of classification is a probabilistic one, 

the ‘objective’ regions may contain a substantial number of points that do not belong to the majority class. 

 

Region fragmentation 

 

From the geometrical point of view, a good classifier should divide the description space into a minimum of regions, 

each one with a high density of points, all of the same class. Ideally this would result in few classes, few regions per 

class, many cases relative to the volume of the regions and total accuracy for the training cases.  

 

Notwithstanding, in practise we may encounter ‘pathological’ situations in which the description space becomes highly 

fragmented, resulting in a proliferation of regions. Two examples of this are (i) the parity problem, in which the 

complexity of the concept of parity is the cause of the problem, and (ii) the presence of irrelevant attributes. 

 

In order to combat fragmentation, Quinlan advises that as well as eliminating irrelevant attributes, we can use new 

derived attributes, with an enhanced information value. 

 

Desirable improvements in C4.5
 

 

Continuous classes 

 

Two aspects which have to be considered in both continuous and discrete classes are (i) the need to define good criteria 

for ‘ranking’ possible tests in a decision node, and (ii) the need to decide when to prune a tree to avoid ‘overtraining’ or 

‘overfitting’. Notwithstanding, solutions for continuous and discrete classes tend to be quite different. C4.5 only works 

with discrete classes (as output), and Quinlan has carried out some experiments with a new version of C4.5 which can 

treat continuous classes in [Quinlan96]. 

 

Discrete ordered attributes 

 

If ordinal attributes are renamed in a descriptive manner, for example, assigning 1=low, 2=medium and 3=high, the 

descriptive symbols lose their significance of order (‘low’ less than ‘medium’). Nevertheless, the rules and tree become 

a lot more readable. It would be desirable that with a mapping or appropriate transformation, the algorithm recognises 

the name and its numeric value, for example that 1 is equal to ’low’. 
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Structured attributes 

 

Structured attributes imply a hierarchy of possible values for discrete attributes, instead of the ‘flat’ list which C4.5 

currently uses. For example: 

 

   colour 

      | 

  ____________________ 

  | | | | 

  red black green blue 

     | 

    ______________ 

    | | | 

    blue indigo violet 

    | 

 

Figure 37. Hierarchy of possible values for discrete attribute ‘colour’    

     

In this manner, we can define an attribute such as ‘colour’ in different levels of detail. One test could use the values in 

any level of the hierarchy, or as a combination of levels. 

 

Structured induction 

 

Structured induction implies tests based on attributes whose values themselves are determined by decision trees, thus 

allowing a recursive definition of subconcepts. Some of the benefits of implementing a structured induction are more 

compact trees and the reduction of the number of  training cases needed to construct a precise classifier, as 

demonstrated by [Shapiro87]. 

  

Incremental induction. 

 

C4.5 is an algorithm which generates as classifier from training cases. The concept of ‘partial’ training does not exist; 

that is, to be able to continue the training run at a later time, incorporating new data. If new data is identified, there 

currently exist two possible actions: (i) ignore the new data or (ii) throw away the previous classifier, add the new data 

to the training set, and train the new classifier.  

 

With respect to attempts at incremental induction, authors such as [Schlimmer86] and [Utgoff91] have proposed the 

following ideas: 

 

Utgoff’s method [Utgoff97] employs an algorithm which retains sufficient information in the tree nodes to allow their 

later modification in the light of new data. Utgoff’s algorithm has the property that the tree produced from the new data 

is the same as the tree produced from training from zero with all the training cases. 

 

A second method consists of an iterative resource constrained algorithm. It tries to find the best solution with the 

available resources, defined in terms of memory, time, and so on. If the training is interrupted and the resources are 

incremented it is able to resume from the point in which the process was interrupted. 

 

 

C5.0 – improvements with respect to C4.5 

 
In the year 2000 release of C5.0  by Quinlan, the following improvements are cited: 

 

(i) Rulesets which occupy less memory and train faster 

 

(ii) Decision trees: speed increase for training with same accuracy as C4.5 

 

(iii) Boosting: technique for generating and combining multiple classifiers in order to improve predictive accuracy. 

Claims to improve error rates on unseen cases 
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(iv) New functionality: in C4.5 all errors are treated as equal, while C5.0 allows a separate cost to be defined for 

each predicted/actual class pair. If this option is used C5.0 constructs classifiers to minimise expected 

misclassification costs  rather than error rates. 

 

(v) New data types: dates, case labels, ordered discrete values. In addition to missing values, C5.0 allows values 

to be noted as not applicable. New attributes can be defined as functions of other attributes. 

 

(vi) A cross-reference window enables cases to be linked to relevant parts of the classifier. 

 

Quinlan also had previously worked on improving the use of continuous attributes in C4.5, which is summarised in 

[Quinlan96]. 

 

 

Discussion of possible areas to incorporate fuzzy techniques to improve functionality of C4.5 
 

With reference to the previous section describing C4.5, three aspects are identified as candidates for the introduction of 

fuzzy techniques, in C4.5 in particular, and in induction algorithms in general. 

 

(i). Description space and geometric interpretation 

 

One of the problems with all induction algorithms is that in specific cases the hyperrectangles are approximations of 

non-rectangular regions. The grade of membership to one rectangle or another could benefit from a fuzzy interpretation. 

This solution would have similar applications in the case of the treatment of ill-defined and fragmented regions. 

 

(ii). ‘Intelligent’ nodes in the tree 

 

It is proposed that the tests to each node could assume fuzzy ranges, to complement the structures attributes and 

possibly to guide the structured induction process. Also, in the case of multiple possible tests in one node, the best test 

to be done in each situation could be selected in a fuzzy manner, first having confirmed that a fuzzy aspect exists in the 

given test. In the case of incremental induction, a use of fuzzy concepts is not proposed, as this is considered more of a 

programming and deterministic design problem. 

 

(iii). ‘Fuzzy attributes’ 

 

The third approach to include fuzzy concepts into decision tree induction, would be the case in which one or more 

inputs or outputs are defined in a fuzzy form. In this case, the induction algorithm should make use of the information 

provided by the similarity grade, membership grade, or grade of fuzziness, to help in the classification. It is necessary to 

specify some requirements for this approach to be useful and applicable: 

 

a) The attributes really are better expressed in the fuzzy form (the concept of the problem is ‘fuzzy’).  

 

b) The results of the current classification with the data set being processed is not satisfactory (e.g. after 

benchmarking with C4.5, ID3, neural net, Ward, Centroid, …) and we can demonstrate a significant 

improvement in the classification by incorporating fuzziness.  

 

c) The standard C4.5 algorithm (or any other existing induction algorithm) cannot adequately treat problems 

which include ‘fuzzy’ information (e.g. membership grades) as part of the data.  

 

 

Probabilistic interpretation of the tree generated by ID3 and C4.5 

 

A confidence factor (probability of success) can be seen associated with the branches and leaves (terminal nodes) of the 

tree generated by ID3. These factors are calculated internally. If a branch or a terminal node has a confidence factor of 

(0.75), this implies that the corresponding branch or node would be correct in 75 of each 100 cases presented to it. What 

is not explicitly indicated is where the 25 cases per 100 that are not correct, are destined. At first sight they could be in 

the most adjacent branches to the node/branch under consideration.  
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Also, the probabilistic significance of the incorrectly classified cases does not affect the determinism of the tree in its 

classification of cases (once it has been trained).  That is, the model always classifies the same cases in the same 

classes, in successive and equal executions. If we select the option (in Clementine) to generate the ‘C’ code 

representation (export) of the ID3 tree, it can be clearly seen that the structure is composed of a series of ‘case’  and 

‘switch’ constructors, which are totally deterministic: or they follow one path or another, depending on the values of the 

attributes in each case given as input. The confidence factors are not used to alter the path to be followed in the tree. 

 

Interpreting induction with a ‘fuzzy’ approach [Chang77  

 

[Chang77  gives a fuzzy definition  for a decision tree. It is assumed the tree already exists, and the problem is limited 

to that of the search and interpretation inside the tree. This contrasts with the ID3 and C4.5 approach in which a tree is 

constructed (induced) from zero from a test data set, and without separate complementary information. Nevertheless, 

the reasoning with respect to the fuzzy interpretation within the tree is interesting in the current context, that being a tree 

induction  in a fuzzy form which produces a fuzzy tree. 

 

Definition 1. A fuzzy decision function f  in node  is a unary function of real values in the form of a -tuple, with    

2, 

 

 f  :  0,1  ,           (2.86) 

 

where  is the input (e.g. a digitised drawing I,  or a voice spectrogram S) and the -tuples are the labels (decision 

values)  ( i ) of the outgoing branches  (  , i ), i=1,.... , where i is the ith son of node . A decision function of 

type 0-1 f  is a fuzzy decision function that may only assume integer values 0,1: 

 

 f  : {0,1}  ,           (2.87) 

 

with exactly one element of  -tuple equal to 1. 

 

Definition 2. A fuzzy decision tree Tr is a tree with root r such that each node  that is not a leaf, possesses a 

corresponding  -tuple decision function f   with  ordered sons 1 , ...,  . A fuzzy decision tree has fuzzy type 

decision functions, and a 0-1 decision tree has 0-1 decision functions. 

 

Definition 3. The decision path ( , ) is the path of a decision tree from node  until node . Node  has decision path  

(root, ). Decision path  ( ,  ,....,  ,  ) is the path from node  , via nodes , ...  , until reaching node .  

 

A complex decision represented by a decision tree is always composed of a number of simple decisions, each 

represented by a node in the tree. We assume that in practise, the time required to take a decision -tuple (that is, 

evaluate a decision function of type -tuple) is O( ). 

 

Definition 4. The value of decision V( ) of a decision path , is the product of the decision values (labels) of the 

branches which compose it. That is, 

 

 V( ) =               ( ).         (2.88) 

            
  path  

(“Product”  is a real number product in the ‘prob’ model or is the minimal function as defined in the ‘minimax’ 

model.  

 

It can be demonstrated that, given the same decision tree T with the same decision values, each of the criteria: 0-1, max-

min and fuzzy ‘prob’ may each reach a different decision. 
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Chapter 3.   Development Work 
 

Data Mining is a discipline which requires a series of steps, each one constructing a solid platform on which the 

following steps depend, and on which subsequently depends the quality and integrity of the whole data processing 

project. The first step of all is to know what data we have which enables us to describe something. We can conveniently 

think of data in terms of a file, which is normally defined in two dimensions: the downwise dimension is the number of 

cases we have, and the crosswise dimension is the number of variables we have to describe those cases. Normally the 

raw data is stored in a flat file or a database table, and it is usual that the variables which describe the data have different 

types. The first thing we normally do to the data, supposing that it has been generated by some process, or extracted 

randomly from a bigger data population, is to look at it, to explore it. Here is where we confront our first decision to be 

made about the data: in order to view data and give it meaning, we have to have previously decided the type of each of 

its variables. In statistics, types are often assigned more for the reason of facilitating the data processing, rather than 

trying to reflect the true nature of the data. For example, often a nominal variable, that is a categorical with no 

interpretable order between the values, is assigned values such as A, B and C, an example of which would be the 

variable ‘postal codes’.  On the other hand, a variable which does have an implicit ordering (ordinal), is assigned values 

such as 1, 2, 3 and 4, an example of which would be the variable ‘grade of experience’. If we later wish to compare 

variables of different types it is essential that we spend sufficient time in assigning the initial types, otherwise meaning 

is lost. The same applies to variables of the fuzzy type. First we must consider if a variable is better represented in the 

fuzzy form, rather than as ordinal, nominal or numeric. We must justify the decision. One simple guideline is to 

establish how the data has been originally captured or generated. If we have used a membership function to read off a 

grade of membership on the y-axis with respect to some value or label on the y-axis, then we may consider this value to 

pertain to a fuzzy type variable. If on the other hand, the value has been assigned by selecting one of three discrete 

possibilites, then we may reasonably consider this value to pertain to a categorical nominal or ordinal type variable. 

 

Once we have assigned a type to each variable and are reasonably sure that the given type is the best one for each given 

variable, then we can explore each individual variable. Depending on its type we can display it in different ways: 

numericals with a plot, categoricals with a frequency histogram or a pie chart. We can generate statistics for each 

variable, once again depending on its type: for numericals the maximum, minimum, mean, standard deviation, and so 

on; for a categorical, the mode, frequencies for each category, and so on. Variables of the same type can be analysed 

together and compared. Once we have terminated the exploration phase, which may involve some normalisations, 

elimination of missing values or adjustment of distributions, the next step would be a modelling phase. We can try to 

partition the dataset into clusters, or create a classificative or predictive model. The simplest algorithms which model 

data generally require the inputs variables to all be of the same type. Often a categorical variable (ordinal or nominal) is 

assigned values 1,2,3, and so on, and from then on is considered as numeric. On the other hand, we can discretize all the 

numeric variables, by defining numerical ranges and assigning categories to the corresponding ranges. More 

sophisticated algorithms are able to receive as input variables of different types. Some truly calculate distances in terms 

of those types, whereas others internally convert all the data to a unique form. 

 

At the heart of being able to explore and model a dataset described by variables of different types, is the ability to 

measure the difference, similarity and relation between individual variables of different types. It is easy to make value-

judgements between a person who is 35 years of age, and a person who is 75 years of age. It is also easy to make value-

judgements between a ‘small saloon’ car and a ‘large sportster’ car. But it is more difficult to make sense out of the 

comparison of a ‘blue small saloon’ car and a car which was manufactured 8 years ago. This difficulty does not arise 

because any of the data is invalid, nor are the types incorrectly assigned: it is due to the comparison between types. 

 

In Section 3.1 we will consider in detail the problems associated with data representation, data capture, and what may 

happen when we compare variables of different types. Section 3.1.2 presents a homogeneous representation which 

converts the data of any type of variable into grades of membership, thus allowing it to be processed by any algorithm 

as numerical input. Section 3.2.1 also continues with the theme of processing mixed data types, but this time from the 

point of view of a ‘data fusion’ process. This differs from 3.1 in that we are not just comparing variables of different 

types, but creating a new factor or variable which is a product in some way of two more elemental variables. This topic 

is associated with factor analysis and data reduction. Data reduction pretends to represent a dataset with a reduced 

number of highly descriptive factors, which are a result of ‘amalgamating’ two or more original variables. A simple 

example would be an insurance company customer database, in which the following three variables are defined: 

‘number of years as customer’, ‘insurance premium’ and ‘number of claims’. These three variables could be fused to 

form a ‘risk factor’ which indicates if the person is a good client or not, where a ‘good client’ for an insurance company 

would be someone who has been paying a premium for many years with a minimum of claims. In Section 3.1 we 

consider algorithms which generate ‘covariance’ matrices from variables. The information which the matrix tells us 

about the strength of relationship between variables tells us which ones to join together, and in which order. Of course, 

this again depends on having previously defined a way of representing the different types of variables in order to 
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process them together or make quantifiable comparisons between them. Being able to calculate a covariance matrix 

from two or more variables is fundamental in being able to ‘join’ those variables in a reduced number of factors, which 

is one of the areas of interest in the preparation of inputs to a data model. Notwithstanding, it is not always necessary to 

use a covariance matrix, for example in the case when we use a given model to reduce the number of factors. 

 

Section 3.1 deals with the comparison, representation and processing of data of different types. These areas are 

considered here because later in Section 4.1 we need to represent and  process real ICU and Apnea datasets, which 

consist of a mixture of binary, numeric, categorical ordinal, and nominal data types. We therefore contrast different 

approaches and study the behaviour of data when represented and compared in different ways. More specifically, 

Section 3.1.1 considers a unique algorithm approach whereas Section 3.1.3 considers separate algorithms for each data 

type combination. In Section 3.1.2 we define a homogeneous form of representing fuzzy variables [Nettleton99b], 

which is an extended version of the parametric method defined by Hathaway and Bezdek [Hathaway96].  

 

Section 3.1.4: one of the concurrent themes of the work is the inclusion in data exploration and modelling of data 

captured in the fuzzy form. If we have two such variables in the same dataset and we wish to compare them in some 

way, we require a method which functions in a fuzzy partition space, such as a fuzzy c-Means type algorithm. In the 

literature, there exist diverse methods to calculate a ‘fuzzy covariance matrix’, which thus serves to compare two fuzzy 

variables, although these tend to specific to certain problems, or very complex to implement. Given this scenario, it was 

decided to develop a way of calculating fuzzy covariances, derived from fuzzy c-Means, and extending the idea of 

Gustafson and Kessel who conceived a fuzzy covariance matrix, but one whose distance measure was between a 

variable and the fuzzy prototype of a fuzzy set.  

 

In Section 3.1.5 we consider how to best capture data in the fuzzy form, which involves defining a horizontal scale and 

which linguistic labels are placed. In the vertical dimension we have to design a membership curve for each fuzzy set, 

or linguistic label, which best fits the nature of the data. This involves the steepness of the curves, the extent of overlap 

and transition between curves, and so on. These issues have to be tackled because on them depends the quality of the 

data capture, and the data exploration and modelling which follows. 

 

Section 3.2 deals with the aggregation of  different types of data: Section 3.2.1 considers different fusion techniques for 

different data types; Section 3.2.2 details the implementation of Nettleton’s version of Hartigan’s ‘joining’ algorithm 

[Hartigan75] which successively reduces an initial set of variables to a reduced group of factors, which best describe the 

data. On the other hand, Section 3.2.3 focusses on aggregation using WOWA type operators. Aggregation is a 

fundamental part of the later work, which is applied to Apnea diagnosis. Also we have to solve problems with the data 

values, with respect to their relevance to a given output and their reliability. Another aspect is that of missing data, 

which often occurs in a greater or lesser percentage in real datasets. Aggregation operators provide a possible solution, 

especially the WOWA operator, which possesses two weighting vectors which can be used to parametrise the relevance 

of the variables and the reliability of the data values. One problem with using aggregation operators with weighting 

vectors, is the assignment of the weighting vector itself. We have developed and tested a genetic algorithm as the 

mechanism for learning the best weights for a given dataset. We also see how we have included a way of filtering 

missing values and incorporating this into the WOWA operator. One of the characteristics of the weight vectors of 

WOWA is that each vector is constant for all variables and data values. In the case of variables that is adequate because 

we can interpret each weight as representing the relevance of the corresponding variable. In the case of the data values, 

it would be more useful to have a weight vector, corresponding to the reliability of the data values, which varies for 

each variable. Thus we have modified WOWA so that it has a vector of vectors of reliability weights, one for each 

variable.  

 

We have just outlined the principal areas of investigation and the approaches which have been considered. In the 

following sections of this Chapter we will go into the detail, dividing the work into two corresponding sections.  

 

3.1 Representation, comparison  and processing of different types of data  
 

The type which a variable can assume is an initial consideration necessary before any exploration or modelling can be 

conducted on the data. Different representations are considered from a conceptual and symbolic viewpoint, and from 

basic statistical principles. We will see that similarity and dissimilarity can be approximated by densities and 

frequencies, depicted in a differing number of dimensions, and between variables of different natures. Also we consider 

different necessities from a processing point of view. 
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3.1.1  Representation and processing of different data types 
 

In this section we consider forms of representation for different variables types, using as an example, an Intensive Care 

Unit (ICU) hospital admissions dataset. This dataset is outlined in this Section and given in more detail in Section 4.1 of 

the thesis. We also discuss considerations for developing a common approach to representing, comparing and 

processing a dataset composed of a mixture of these different data types, with special emphasis on fuzzy attributes, that 

is those which include grade of membership values and are interpreted via a membership function. 

 

ICU Data 
 

The ICU data consists of one record for each patient, which registers the vital clinical data, such as blood pressure, heart 

rate, body temperature, together with the results of a blood and urine analysis. Output variables are the prognosis, which 

indicates survival or not, and the number of days of stay in the ICU and the general hospital. The data contains a variety 

of variables types: categorical nominal and ordinal, numerical, binary, and variables adequate for fuzzy representation, 

such as prognosis and length of stay in ICU/hospital. 

 

Data types 
 

Numerical variable: (e.g. temperature, blood pressure). In the case of numerical values, we can use Bezdek’s 

representation [Bezdek81] for the ‘Fuzzy c-Means Functionals’ algorithm, (fuzzy classification), which generalises a 

variance function between groups. This data type includes integer and floating point numbers. 

 

(Lexical) Ordinal Categorical Variable: (e.g. type of patient, previous health state). For this type of variable, an implicit 

ordering exists between the categories. For example, previous health state=1 indicates a superior state of health with 

respect to previous health state=2, and so on. 

 

Nominal Variable: (e.g. Conf_Inf {Y, N, unknown}, which indicates the confirmation of the presence of infection). 

These values are symbolic but it is not possible to establish any order among them. The ‘GOM model’ [Manton92] 

presents a fuzzy representation for this type of values. This data type is also known as ‘non-ordinal categorical’. 

 

(Binary) Nominal Variable: (e.g. respiratory failure {yes,no}, stay in ICU for 24 hours or more {yes,no}, Sex {M, F}). 

This type may be considered as a special case of nominal variables. In clinical records, there are often a great number of 

variables of this type, with a 1 or 0 response to questions about clinical conditions, concentration levels of different 

types in blood and urine, presence of different conditions, durations, and so on. [Bezdek81,pp86], defined a method 

especially for attributes which take binary values in medical data sets. Note that a variable such as ‘Sex’ may also be 

considered a special case of the Nominal Variable type (above) in which there are only two possible categorical values. 

This data type may also be considered as the ‘non-ordinal categorical’ data type. 

 

Fuzzy Variable: (e.g. duration of stay in hospital, risk of death, prognosis of recovery). For each variable, we have to 

establish if it is best represented in the fuzzy form, or if it really falls into one of the crisp data types previously listed. 

This type is characterised by each category having a grade of membership and each case being potentially assigned to 

one or more of the available categories. This data type may be fuzzy numerical, fuzzy ordinal categorical or fuzzy non-

ordinal categorical. In the case of ordinal values, the same representation and processing scheme is proposed as 

[Nettleton97] and [Aguilar91] in which fuzzy sets are represented by trapezoidal membership functions. 

 

 

The definition of a homogeneous representation and processing of all data types in the fuzzy form 

 
The search for a homogeneous representation and processing is motivated by the complexity of considering distinct 

methods for each different type combination of data. Some of the possible problems with this approach are: difficulties 

in representing numeric non-fuzzy data, different distance measures, and that generalisation may cause a loss in 

precision. As possible solutions to these problems, we could base our methods on existing algorithms, for example the 

Parmenidean Pairs of [Aguilar91] which were outlined in Section 1.2.4, or the parametric model of [Hathaway96] as 

extended in [Nettleton99b], and detailed later in this Section. Thus our objectives would be to refine existing solutions 

of representation and covariance calculation to build a good fusion algorithm, which works for any type of data. 
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Representation of Data: we will consider Crisp variables as a special case of Fuzzy variables. With reference to Tables 

10 and 11, consider the following, in which there are three cases (objects), and two attributes to describe them: colour 

and size. Attribute colour has three possible values: red, green and yellow; whereas attribute size has three possible 

values: width, length and height. In the crisp case of colour an object can be only one colour at a time. Therefore one 

colour will have value 1 and the other two colours will be at value 0. In the fuzzy case, which of course reflects more 

truly what occurs in reality, an object will very rarely be perfectly red, but may be, for example, be tinged with green 

and maybe yellow. Therefore Object 1 may have a red 'reading' of 0.8, a green reading of 0.02 and a yellow reading of 

0.18. These values are summarised in Table 10. There reading would have to be taken with a spectroscopic type 

instrument which permits discern the composition. 

 

Table 10. Membership values for different values of variable ‘colour’ and of corresponding values of variable 

‘size’ 

 

  Colour    Size 

  red green yellow  width length height 

case 1  0.8 0.02 0.18  3 5 2 

case 2  0.0 1.0 0.0  8 1 2 

case 3  0.0 0.0 1.0  3 4 5 

 

 

Note that the colour attribute in case 1 is fuzzy but in cases 2 and 3 it is crisp. The crisp version would simply consider 

the predominant colour in each case. Predominant could be defined, for example,  as having a percentage composition 

of more than 50%. 

 

In the case of attribute size things are not so simple. Size really is a hierarchical attribute, being composed of  three sub-

attributes. Each sub-attribute is a numerical value, which, for example, could be measured in centimetres. How would 

we represent the sub-attribute width as fuzzy? One possible method would be to agree (consensus) between the majority 

of human experts, as to a categorisation of this attribute in the given context. For example, it could be decided that three 

categories best represent and describe the nature of the numeric value of width: narrow, normal and wide. This could be 

established after a study of the characteristics of the distribution and tendencies of the values, with appropriate axes. 

Together with the assignment of the number of categories, a numerical range must be also defined  for each category.  

 

For example, all objects with a width between 1 and 3 (inclusive) are narrow; between 4 and 5 are normal; and between 

6 and 10 are wide. In the crisp case each object would fall into one and only one category with membership grade 1 and 

the other categories having membership grade 0. In the fuzzy case, we would define a membership function and would 

assign a corresponding membership grade for each category, to the object. 

 

One key consideration is how the data is originally captured. The data may be originally collected as fuzzy (for example 

the data input process would be to write a cross on a continuous scale with a number of labels (e.g. narrow, normal, 

wide) assigned along it at different points. Otherwise the data could be collected as crisp numerical or categorical. Even 

though it has not been captured as fuzzy, it can be given as input to fuzzy c-Means, for example, to calculate 

membership grades of the cases to the clusters. 

 

Looking for strength of relation between attributes – covariance: up to now, we have considered means to represent any 

type of data in a fuzzy form, with the objective of comparing strength of relation between attributes. We now consider a 

covariance type calculation which could produce a covariance matrix such as that of Table 11, calculated with the SPSS 

standard correlation function, with covariance option, for two sets of variable-attributes of Table 10. 

 

Table 11. Example covariance matrix for the variables-attributes ‘colour’=red and ‘size’ (width) of Table 10 

 

  Colour(red) size(width) 

Colour(red) 1.0  0.66 

Size(width) 0.66  1.0 

 

The covariance values in Table 11 indicate that there is little relation between colour=red and width (0.66), for these 

objects. A significant positive covariance between these variable-attributes would produce a covariance value such as  

1.33, for example. We note that covariance values may have a range outside [-1,1], whereas the correlation value is 

within [-1,1] Algorithms which process case data into covariance type values usually do so by a series of matrix and 

vector manipulations.  
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Fuzzy Representation 
 

In the case of a homogeneous fuzzy representation, each variable value in the fuzzy form may be compared with every 

other variable value, and thus establish their covariances. A prerequisite is that the fuzzy representation must be 

homogeneous. Consider the real problem of the admission of patients in a hospital ICU unit. There exist several 

variables for which a fuzzy representation fits in well with the decision making process made by the medical experts. 

For example, in the case of the variables ‘Type of patient’ and ‘Probable infection on admission to the ICU’, where the 

value which is assigned to each individual is determined via an intuitive process.  

 

One case which is difficult to categorise could have a grade of membership to each of the possible classes of 

approximately 0.50, and would correspond to some symptoms which are not characteristics of any of the available 

categories. This is a situation quite frequent in the medical domain. In [Bezdek81], an example is detailed of a set of 

107 data vectors with binary values, each with 11 attributes. The attributes are symptoms which are considered 

clinically relevant for patients who suffer from abdominal pain caused by one of (i) hernia hiatal or (ii) gallstones, with 

which a classification is obtained in the presence of ambiguous grades of membership.   

 

Taking into account that the fuzzy approach may provide a common platform to treat all variable types in a 

homogeneous manner, our proposal considers modifying the attribute fusion algorithm detailed in [Hartigan75] so that 

it can be applied to fuzzy variables matrices. In the following part of this section we see how to represent the fuzzy 

variables in the different cases. From this representation, we can use a fuzzy covariance calculation [Bezdek81] which 

lets us choose, in each step, which variables to fuse. 

 

The representation of ‘hospital admissions’ data 
 

In the case of the 'admissions' data set (see Section 4.1 and Annex 2 for description and details), we would use a fuzzy 

representation only for those attributes chosen by the medical experts. The following attributes were proposed: 'previous 

health state', 'type of patient', 'infection probable on admission to the ICU', and 'Increment of Creatinine > 124 Mol/l in 

last 24 hours associated with Oliguria'. We emphasise that in this case, the ICU dataset was captured in crisp form, and 

these proposals are as a result of data analysis (see Section 4.1) and conversations with the medical expert. 
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Figure 38a.  Representation of input variable 'Previous Health State’ 
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Figure 38b.  Representation of input variable 'Type of Patient' 
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Figure 38c.  Representation of input variable 'Infection probable on admission to the ICU' 
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Figure 38d.  Representation of input variable 'Increment of Creatinine > 124 Mol/l in last 24 hours associated 

with Oliguria' 

 

 

Scalar representation for questionnaire responses 
 

A questionnaire for data capture of admissions data would use continuous scales on which the doctor indicates with a 

cross (for example) in the place where s/he thought appropriate as the response to that question. For example:  

 

¿ Existence of coma or profound stupor in the moment of admission to the ICU ? 

 

 

No                     Some                                Significant                              Clear 

indication                   indication            indication                indication 

 

 

 

Figure 39. Example of a continuous scale with four linguistic labels 
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In the example of Figure 39 we can see a scale of four linguistic labels which the medical expert must assign himself 

(using his own terminology). The membership function decides if the distance along the scale is linear (equidistant 

between discrete points), logarithmic, or some other function. 

 

The main advantages of this approach is the greater precision and information value that this representation offers. The 

main disadvantages or problems to be resolved are: the need to define the linguistic labels (together with the expert); the 

necessity to find a best possible definition  for the membership function (a simplification would be to use a trapezoidal 

or triangular form); and that the definition depends on the subjectivity of the medical expert in each case. In practise, 

the method must result in crisp decisions as output. There exist many representations for fuzzy rules which produce 

crisp states as output from a fuzzy process, one of the most referenced being  [Takagi85]. 

 

 

The capture of crisp and fuzzy data 
 

For real data, it is vital to design and test different representation methods. In the case of the medical data, we have 

many binary variables for which a complex question requires a yes/no answer (a). There are also multiple choice 

responses to a question (b). Or we can have a question which requires a response indicated on a scale (c). For example: 

 

 

(a) Question (to the doctor):  Is it probable that the patient has had any infection prior to admission to the ICU?   

Yes __   No __ 

 

(b) Question (to the doctor):  What is your evaluation of the previous health state of the patient? 

1 __     2 __     3 __     4 __ 

 

(c) Increment of Creatinine > 124 Mol/l in the last 24 hours associated with Oliguria? 

              

No       Yes 

 

 

The capture of data in the fuzzy form is evident in example (c), while questions (a) and (b) require just one category and 

capture data in the ‘crisp’ form. The underlying membership function is crucial to the conversion of the input 

representation to a membership grade. This can be done jointly with the domain (medical) expert and verified with real 

test data, contrasting against the experts' opinion. To evaluate a membership function, we can use some cases with high 

membership to a class, and other cases which lie ambiguously between  one class and another. 

 

 

On the definition and successive refinement of membership functions - fuzzification 
 

Now we consider the interpretation of the input values with membership grades for each attribute and linguistic label or 

fuzzy category. There exist diverse methods for defining membership functions. We consider three methods, which 

permit a successive refinement of the membership functions and enable us to fine tune the interpretation of the input 

values. 

(i) Initially the membership functions for the fuzzy attributes may be decided in consensus with the medical domain 

experts. We could define simple triangular and trapezoidal functions, whose design issues include:  gradient of the 

slopes, overlap between linguistic labels, and the percentage of a label which is horizontal (100% membership). We 

only consider symmetrical trapezoids and triangular forms. 

(ii) Once we have reasonable values from (i) we can generate the linguistic labels using a 'parmenidean pairs' technique  

[Aguilar91 . For this method to work, we initially define the design criteria for a set of five trapezoidal linguistic labels 

(width, slope, overlap), and the membership functions are automatically generated from this initial definition.  

(iii) We may consider that the trapezoidal forms are really an approximation of a non-linear membership function. 

There exist automatic interpolation methods for eliciting such non-linear membership functions from the initial data. 

Such a method is Chen and Otto's method [Chen95 . Finally, we can bias the membership function and aggregate data 

values using a method such as Yager's OWA [Yager88  or Torra's WOWA (Weighted Ordered Weighted Average) 

[Torra97a  to convert a vector of input data, interpreted by a membership function, into just one aggregated value. 
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To summarise, we are considering methods (i) and (ii) to initially define and subsequently refine the membership 

functions. Each membership function is 'made to measure' for each input attribute, and a trial and error method is cycled 

until coherent results are obtained. The representation method is implemented as fuzzy rules which, given an input 

value, constitute membership functions which produce a membership grade of that value to the defined linguistic labels 

for the attribute. For crisp values, the rules simply give a membership grade of 1 or 0. As the membership grades may 

be considered as weights, the crisp values are not altered. For the fuzzy values it is of course essential that the data 

capture is of a fuzzy form. In the next section we see the data capture method used. 

 

3.1.2    An approach for the Homogeneous Fuzzy representation of variables of different types 
 

In order to process data of different types it is necessary to have a uniform representation for those types. One way of 

achieving this is by considering the crisp type as a special case of the fuzzy type. Using membership functions 

constructed from trapezoids, triangles or straight lines, we can then define any data type on the same axes, and save it in 

a common numerical format. In [Hathaway96 , Hathaway and Bezdek define a parametric representation method. This 

method allows us to represent the following types of variables: real, intervals, linguistic labels (triangular and 

trapezoidal), in a simple and natural manner. In [Nettleton97   a representation was detailed for fuzzy data using 

trapezoidal functions and parmenidean pairs. An example of a parmenidean pair for the variable ‘length of stay in 

hospital’ would be {short,long} from which we could generate the following five linguistic labels: {very short, short, 

medium, long, very long}. The parametric representation of [Hathaway96], as described in Section 2.2.4 of the thesis, 

has been extended by Nettleton to include parmenidean pairs (see Section 1.2.4 of the thesis), as can be seen in  Figure 

40c. 
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Figure 40a.  Representation of Real and Interval Fuzzy Variables 
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Figure 40b.  Representation of Triangular and Trapezoidal Fuzzy Variables with Symmetrical Form 
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Figure 40c.  Representation of 'Parmenidean Pair' Fuzzy Variables (the 3 intermediate labels can be represented 

with the Trapezoidal form) 

 

 



 113 

The representation is defined by a parametric form in which we can define any of the types of variables given in Figure 

40, using the definition ma(x: p1, p2, p3, p4, p5). The parameters which are not used in a given variable are duplicated in 

a symmetrical manner. Forms 39a(right) and 39b(left) have value assignments which allow us to distinguish the 

rectangular form from the triangular form. 
 
For example, a real number would be represented by (1.1, 1.1,1.1,1.1,1.1), an interval by (0.5,1.5,1.5,1.5,2.5), a fuzzy 

value with triangular form as (2.6, 2.6, 2.7, 2.8, 2.8) and a fuzzy value with trapezoidal form as (-0.1.0.1,0.2,0.3,0.5). 

These values form a matrix with which we can calculate covariances, correlations, and so on.  

 

In the following example of Figures 41a, 41b and Table 12, we use only three forms: the trapezoidal form of Figure 39b 

(right), and the two trapezoidal forms of Figure 40c, which are sufficient to construct membership functions for 

Parmenidean pair type fuzzy sets. 

 
         ma(x:i1, i1, i2, i3, i4)     ma(x:h1, h2, h3, h4, h5)   ma(x:j1, j2, j3, j4, j4) 

1                     

           

 

                                                   

0   

            i1      i2     i3     i4       j1     j2     j3      j4 

     h1     h2    h3     h4    h5       

Figure 41a.  Fuzzy sets represented by the data in Table 12. 
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Figure 41b.  Fuzzy set data points represented by the data in Table 12. 

 

With reference to Figure 41b, given the relative positions on the x-axis of the membership functions, adn following the 

rules described previously, we assign the following: ma(x:i1, i1, i2, i3, i4) = ma(x:0.1, 0.1, 0.2, 0.3, 0.4);  ma(x:h1, h2, h3, 

h4, h5) = ma(x:0.3, 0.4, 0.5, 0.6, 0.7); ma(x:j1, j2, j3, j4, j4) = ma(x:0.6, 0.7, 0.8, 0.9, 0.9). It is essential to note that a data 

reading may only have a non zero membership grade for a maximum of two fuzzy sets, which in the case of Figures 41a 

and 41b, limits the possibilities to left and centre, or centre and right. The permutations of these possibilities are given 

in Table 12. 
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Table 12. Fuzzy data test set for different combinations of the fuzzy sets depicted in Figures 41a and 41b. 

 

 Fuzzy label 1 (weights 

representing form of 

membership function) 

Fuzzy label 2 (weights 

representing form of 

membership function) 

Input 

(data 

value) 

outputs  

 w11 w12 w13 w14 w15 w21 w22 w23 w24 w25 i1 o1 o2 o3 Fuzzy label 1 Fuzzy label 2 Forms  

x1 0.3 0.4 0.5 0.6 0.7 0.6 0.7 0.8 0.9 0.9 0.50 0 1 0 ma(x:h1, h2, h3, 
h4, h5) 

ma(x:j1, j2, j3, 
j4, j4) 

 

Central 
trapezoid,  

right trapezoid 

x2 0.1 0.1 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.20 1 0 0 ma(x:i1, i1, i2, 
i3, i4) 

ma(x:h1, h2, h3, 
h4, h5) 

Left trapezoid, 
central 

trapezoid 

x3 0.3 0.4 0.5 0.6 0.7 0.6 0.7 0.8 0.9 0.9 0.80 0 0 1 ma(x:h1, h2, h3, 

h4, h5) 

ma(x:j1, j2, j3, 

j4, j4) 

Central 

trapezoid,  

right trapezoid 

x4 0.1 0.1 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.40 0 1 0 ma(x:i1, i1, i2, 

i3, i4) 

ma(x:h1, h2, h3, 

h4, h5) 

 

Left trapezoid, 

central 

trapezoid 

x5 0.3 0.4 0.5 0.6 0.7 0.6 0.7 0.8 0.9 0.9 0.60 0 1 0 ma(x:h1, h2, h3, 

h4, h5) 

ma(x:j1, j2, j3, 

j4, j4) 

Central 

trapezoid,  

right trapezoid 

x6 0.1 0.1 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.33 1 0 0 ma(x:i1, i1, i2, 

i3, i4) 

ma(x:h1, h2, h3, 

h4, h5) 

Left trapezoid, 

central 

trapezoid 

x7 0.3 0.4 0.5 0.6 0.7 0.6 0.7 0.8 0.9 0.9 0.63 0 1 0 ma(x:h1, h2, h3, 

h4, h5) 

ma(x:j1, j2, j3, 

j4, j4) 

 

Central 

trapezoid,  

right trapezoid 

x8 0.1 0.1 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.37 0 1 0 ma(x:i1, i1, i2, 

i3, i4) 

ma(x:h1, h2, h3, 

h4, h5) 

Left  trapezoid,  

Central 

trapezoid 

x9 0.3 0.4 0.5 0.6 0.7 0.6 0.7 0.8 0.9 0.9 0.67 0 0 1 ma(x:h1, h2, h3, 

h4, h5) 

ma(x:j1, j2, j3, 

j4, j4) 

Central 

trapezoid,  

right trapezoid 

 

The values in Table 12 are in a format which allows input of the representation of the fuzzy sets, together with the real 

data reading. Columns w11  to w25 represent the weights which define the forms of the two fuzzy sets for which the 

corresponding real reading, denoted by i1, has a non-zero membership grade, and o1 to o3 are the outputs. {w11, w12, w13, 

w14, w15} and { w21, w22, w23, w24, w25} represent the structure of the two membership functions for which i1 has a non-

zero membership grade. Overall, the objective has been to indicate the symmetric form and dimensions of the 

membership functions (trapezoidal, triangular and rectangular). The outputs {o1, o2, o3} indicate for each case, the fuzzy 

set for which it has the highest membership grade, and correspond to the fuzzy sets labelled ‘left’, ‘centre’ and ‘right’ as 

depicted in Figure 41b. Thus the mechanism may be considered a defuzzification technique which produces a ‘crisp’ 

output result, from fuzzy inputs.  

 
Processing – pattern matching  

 
The form of the data in Table 12, suggests that we have a pattern matching problem. This form of representation has the 

advantage that all the aspects of the fuzzy value can be reflected, while that one of its disadvantages is the number of 

data items needed. For one parmenidean pair {low, high} and intermediate labels {fairly-low,medium,fairly-high} we 

need 25 data values, five for each linguistic label. In each row of the example data in Table 12, we have two fuzzy sets, 

each with five data values, and each representing one linguistic label. This is because a data reading can only have a non 

zero membership grade to two fuzzy sets at a time. This data, if presented in a form which indicates its underlying 

structure, can be given to a neural network, which will identify the classes to which each case belongs, in a crisp 

manner. Although we are using a probabilistic algorithm to process the data, we say the result is crisp because each case 

can only belong to one cluster. 

 
3.1.3 Comparison between different data types 
 

Often in statistical analysis of data, too little time is spent on assigning types to variables which best relate to the nature 

of the data and therefore any subsequent analysis may be falsely based. This is even more so when we come to 

comparing different variable types. We discover that there are many ways to compare, for example, categorical with 

numerical variables. We can use point density diagrams, overlap, consideration of different borderline or extreme cases, 

and so on. The work in this section focuses on the definition of the calculations of correlation between different types of 

variables. We do this in order to make it possible to create a correlation matrix which would then be given as input to 
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the Hartigan fusion algorithm to ‘join’ the variables into a reduced number of factors. As an initial simplification, the 

ordinal and non ordinal categorical types have been considered as one type. The following algorithms have been coded 

and tested as 'C' programs: (A) Comparison of variables of type Integer or Float with variables of type Integer or Float; 

(B) Comparison of variables of type Non-Ordinal Categorical with variables of type Non-Ordinal Categorical. The 

tests with input data were validated by passing the same data through SPSS, in the first case with standard correlation, 

and in the second case with chi-squared. The results were exactly the same. 

 

The following algorithms were developed on paper and ‘dry-run’ through also on paper: (C) Comparison of variables of 

type Non-Ordinal Categorical with variables of type Integer or Float; (D) Comparison of variables of type Fuzzy 

Ordinal Categorical with variables of type No-Ordinal Categorical; (E) Comparison of variables of type Fuzzy Ordinal 

Categorical with variables of type Fuzzy No-Ordinal Categorical 

 

The following algorithms were not developed, but it is considered that they are a natural succession from the algorithms 

already defined: (F) Comparison of variables of type Fuzzy Ordinal Categorical with variables of type Fuzzy Ordinal 

Categorical  

 

We say that (E) will be a simple variant of  (D) and (C) , while (F) will be a variant of (D) . To introduce the difference 

between Ordinal and Non-Ordinal Categorical variables, one could calculate the additional information of the explicit 

and known order of the classes in Ordinal variables. 

 

The final results of all the correlations will have to be normalised (which is trivial) and calibrated (redistributed) to 

ensure homogeneous values which can be compared one with the other. One approach is to run benchmarks with data at 

extremes (max, min) and chosen intermediate points, and introduce coefficients or scaling factors when necessary to 

calibrate in each case. For example, if the correlations between Ordinal Categorical and Fuzzy Ordinal Categorical are 

more heavily weighted toward 1 (density at the 1 end of the scale), while the comparison of Integer or Float and Fuzzy 

Ordinal Categorical are more heavily weighted toward 0, then the latter would be seen to be penalised and less often 

chosen in the selection of fusion pairs, due to their lower mutual correlation values. A compensative value would 

‘calibrate’, in this sense, the distributions of the two variables. 

 

(A) Comparison of variables of type Integer or Float with variables of type Integer or Float 
 

This comparison involves a standard correlation of numeric variables, which has been implemented as a function in ‘C’ 

code. If we enter the data as seen in columns 3 and 4 of Table 13a, it will produce the correlation matrix as can be seen 

in Table 13b. The results were cross checked with SPSS (stats-correlate-bivariate-Pearson) cross product deviations & 

covariances) 

 

 

Table 13a. Corresponding values for categorical and categorical (ordinal) variables ‘sex’ and ‘diag’(nosis), and 

numerical variables ‘age’ and ‘fio2’ (clinical data) 

 

sex diag age fio2 

M   5 25 65                   Table 13b. Correlation matrix for variables ‘age’ and ‘fio2’ 

F 18 50 80        age     fio2 

F   5 23 75        age  1.000 -0.244 

M 50 40 85        fio2 -0.244  1.000 

F 18 73 60 

M 21 65 70 

F 30 48 60 

M 21 35 45 

M 21 39 55 
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(B) Comparison of variables of type Non-Ordinal Categorical with variables of type Non-Ordinal 

Categorical 
 

The method used consists of 3 steps, each step depending on the output of the previous step:  (i)  calculation of a 

Contingency Matrix;  (ii)  calculation of the Chi-Squared value; (iii) calculation of the Coefficient of Cramer. The 

functions corresponding to the 3 steps have been implemented in ‘C’ code. 

 

(i) We can use an independence test in a contingency table [Cuadras80], pp227. First we define the Chi-Square distance 

as: 

 

 

  
2
  = n         f

2
ij        1        (3.1) 

                 
 i,j

    fi fj      

 

where i indicates value i of the first variable, j indicates value j of the second variable, and n is the number of values or 

cases. f
2

ij  is the frequency of value i of the first variable, with respect to value j of the second variable, in the given 

dataset. For example, if value i of the variable ‘sex’  is ‘M’, and value j of the variable ‘diagnosis’ is 5, then the number 

of times when sex=’M’ and diagnosis=5 in the given dataset is f
2

ij . fi is the sum of the frequencies for each possible 

value of the first variable, and fj is the sum of the frequencies for each possible value of the second variable. f can be 

considered, in general, as the ‘contingency table’, of which an example is shown in Table 14. 

 

For example, ‘sex’ is a binary variable which we consider as categorical with 2 possible classes; and ‘diag’ which is 

also a categorical variable which, in the test data of Table 13a, can be seen to have 5 possible classes. The third column, 

‘age’, a numerical variable, is used in later examples. 

 

First we run through the cases seen in Table 13a, columns ‘sex’ and ‘diag’, to calculate the relative frequencies, which 

are shown in Table 14, and which are contained in the contingency matrix. In Table 14, the columns correspond to the 

different values of the variable 'diag'’which exist in the dataset, while the rows correspond to the different attribute-

values for the categorical variable 'sex’. The values in the table are the frequencies, or the number of cases which 

correspond to each value-attribute pair. For example, ‘diag’=21 and ‘sex’=M occurs 3 times in the dataset. 

 

Table 14. Relative frequencies for the cases of Table 13a. 

                                 variable ‘diag’    sum of occurrences for each 

  5 18 50 21 30  attribute-value of ‘sex’  

variable    M 1   0   1   3   0  5 

‘sex’    F 1   2   0   0   1  4 

   

  2   2   1   3   1 

 

(ii) In the next step we use can calculate the Chi-Square value, which has the following substeps: calculate the total 

number of cases, calculate the sum for each column, calculate the sum for each row, calculate the number of values for 

each attribute, then loop for all elements in the matrix. 

 

((0.1 + 0.2 + 0.6 + 0.125 + 0.5 + 0.25 ) - 1) = 9 x (1.775 -1) =  6.975 

     9 

(iii)  As the final step we calculate Cramer's Contingency Coefficient as:  

 

      6.975 / 9  = 0.3875 

                        2 

 

Observations:  

In practice Chi-Square may be regarded as a measure of fit as well as a test statistic. In this view, Chi-Square is a 

measure of overall fit of the model to the data. It measures the distance (difference, discrepancy, deviance) between the 

sample covariance (correlation) matrix and the fitted covariance (correlation) matrix. In the example (above), we may 

consider the first row of Table 14 (sex=’M’) as the sample covariance matrix, and the second row of Table 14 (sex=’F’) 

as the fitted covariance matrix. Thus we are looking for a fit (relation or distance) between the values of ‘diag’ for 

‘sex’=’M’ and the values of ‘diag’ for ‘sex’=’F’. Chi-Square is a badness-of-fit measure in the sense that a small Chi-

Square corresponds to good fit and a large Chi-Square to bad fit. Zero chi-square corresponds to perfect fit. Thus in the 
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example above, the Chi-Square value calculated in step (ii) is 6.975 / 9 = 0.775, which for the data in Table 14 shows a 

reasonably good fit, and shows a significant dependence between the values 

 

(C) Comparison of variables of type Non-Ordinal Categorical with variables of type Integer or Float 

  
In order to correlate this combination of variables types, we need to choose an algorithm which allows the comparison 

of real numbers with symbols (categories). There are two main possibilities for ‘mixed’ variables such as these: (i) use 

own method based on simple frequencies; (ii) choose standard algorithm from those available. Table 16 shows some 

values for two typical categorical and numeric variables.  

 

Processing the values of Table 13a, columns ‘sex’ and ‘age’, will produce a correlation matrix such as that of Table 15, 

given the low correlation between these two variables. 

 

Table 15. Results produced from correlation of ‘age’ with ‘sex’ 

  

  age   sex 

 age 1.0   0.3 

 sex 0.3   1.0 

   

As modus operandi, first of all we can study each category of the categorical variable in turn and then calculate the 

maximum, minimum and median of the numerical variable. In the case of sex, we can see the results of this in Tables 16 

and 17, as follows: 

 

Table 16. Example 1: values of the numeric variable ‘age’ for each of the categories of the categorical  

                 variable ‘sex’  

 

 sex=M  sex=F 

 25  23 

 35  48 

 39  50 

 40  73 

 65 

 

An example of a perfect correlation would be that all the cases of sex=M have age less or equal to 50 years and all the 

cases of sex=F have age greater than  50 years. 

 

Table 17. Basic statistics for the numeric variable ‘age’ for each category of the categorical variable ‘sex’   

  (ref.  Table 16, example 1) 

 

 max min mean range % overlap of total number total number % of points 

     ranges  of points  of points  in overlap 

         in overlap 

M 65 25 40.8 40 100%  5  5  100%   

F 73 23 48.5 50   80%  4  4    50% 

 

In Table 17, the mean of both categories is equal to 0.9, which is equal to the percentage of ranges which overlap. This 

implies that there is almost no distinction for M,F with respect to age. The correlation would be 1 - 0.9 = 0.1, which is a 

very small correlation. 
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            A                                                       B 

M                                                                                          

                                               

F                                                                                                              

                                              C                                                                     D 

 

 0 10 20 30 40 50 60 70 80 

     age  

 

Figure 42. Graphical representation of point density used to identify degree of overlap of values of 

the numerical variable ‘age’ with respect to the categories of the categorical variable ‘sex’ (ref. Table 

16, example 1) 

 

In Figure 42 we see the range of values for sex=M is from points A to B, whereas the range of values of sex=F is from 

C to D. The overlap of the two ranges is from points A to B, as indicated by the shaded area. The last column of Table 

17 indicates the calculated overlap percentage which takes into account density, for the selected data points. 

 

 

Now in Table 18 we consider a slightly different distribution to illustrate a greater correlation between the two 

variables, age and sex. 

 

Table 18. Example 2: values of the numeric variable ‘age’ for each of the categories of the categorical  

   variable ‘sex’ 

 

 sex=M  sex=F 

 25  45 

 35  50 

 45  55 

 48  75 

 50 

 

The basic statistics of the variable age with respect to the variable sex can be seen in Table 19. We see from the 

‘overlap’ value (column 5) that the correlation is much greater than for the values of Tables 16 and 17. 

 

Table 19. Basic statistics for the numeric variable ‘age’ for each category of the categorical variable ‘sex’  

                (ref. Table 18, example 2) 

 

 max min mean range % overlap of total number total number % of points 

     ranges  of points  of points  in overlap 

         in overlap 

M 50 25 40.6 25 20%  5   3  60% 

F 75 45 56.25 30 17%  4    2  50% 

 

In Table 19, the mean of both categories is equal to ((20+17)/2)/100 = 0.185, which is equal to the percentage of ranges 

which overlap. This implies that there is a much greater distinction for M,F with respect to age, than in the previous 

example of Table 17. The correlation would be 1 - 0.185 = 0.815. 

 

Nevertheless, this method still does not take into account the density of the points, that is, not only how much of the 

respective ranges overlap, but how many points overlap. In order to establish this, we could use a weighting factor such 

as the number that overlap divided by the total number of points. 

 

In Figure 43, we can see a graphical depiction range overlap and range point density. The range of values for sex=M is 

from points A to B, whereas the range of values of sex=F is from C to D. The overlap of the two ranges is from points C 

to B, as indicated by the shaded area. The last column of Table 19 indicates the calculated overlap percentage which 

takes into account density, for the selected data points. 
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Figure 43. Graphical representation of point density used to identify degree of overlap of values of 

the numerical variable ‘age’ with respect to the categories of the categorical variable ‘sex’ (ref. Table 

18, example 2) 

 

This implies that, although the overlap of Figure 43 is much smaller (5 compared to 25) than that of the data of  Figure 

42, it still possesses a mean of 55% of the cases (points), which indicates a greater “density”. Therefore this situation 

has to be reflected in the correlation calculation. 

 

The following three correlation calculation methods are proposed: 

 

(i)  We define the values of the cases in the overlap as {v1, v2, …, vn}, then the sum of the values in the overlap will  be     

                            n 

S  =       vi 
                          i=1 

If the number of points (cases)  in the overlap is Noverlap, the number of points (cases) outside the overlap is Nno overlap , 

and the % overlap is defined as Poverlap , then the correlation value C will be: 

 

C = (S / (Noverlap + Nno overlap ) ) * Poverlap 

 

If there is a very wide range, this would keep the values comparable. 

 

(ii)  Mean of the values in the overlap. That is, C = S / Noverlap . 

 

(iii)  Calculate a coefficient relating the relative size of the overlap with the number of cases in the overlap. If Poverlap is 

the % overlap, and Pcases is the % of cases in the overlap, then C = Poverlap  Pcases . 

 

For example:  

 

First attribute-value, sex=M. If the overlap is 20% and the % of cases in the overlap is 60%, then Poverlap = 0.20 

and Pcases = 0.60, which gives 0.20  0.60  = 0.12 

 

Second attribute-value, sex=F. If the overlap is 17% and the % of cases in the overlap is 50%, then Poverlap = 

0.17 and Pcases = 0.50, which gives 0.17  0.50  = 0.085 

 

 This produces a mean value (of the two attribute values) of  (0.12 + 0.085) = 0.205/2 = 0.1025 

 

We note that in order to compare ordinal variables we also need to incorporate the magnitude. 
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(D) Comparison of variables of type Fuzzy Ordinal Categorical with variables of type No-Ordinal 

Categorical 
 

In processes (A) to (C) all the variables types compared have been crisp (non-fuzzy). Namely, these are: numeric with 

numeric, categorical with categorical, and categorical with numeric. In process (D) we incorporate a fuzzy variable 

type, which is considered as a category with a range. 

 

For example, the ICU dataset variable ‘Mac_Cabe’ has 3 categories: we can ask what meaning would it have to 

compare or calculate the correlation between the fuzzy Mac_Cabe data, consisting of three membership grades per data 

item, and the crisp categorical variable ‘Sex’, as can be seen in Table 20.  

 

Table 20. Membership grades of values of categorical  ordinal variable ‘Mac_Cabe’ with respect to values of 

categorical (non-ordinal) variable ‘sex’ 

 

Mac_Cabe   Sex 

1 2 3   

0.1 0.2 0.9  M 

0.9 0.7 0.1  F 

0.2 0.8 0.2  F 

0.5 0.5 0.5  M 

0.7 0.5 0.1  F 

0.1 0.8 0.7  M 

0.1 0.1 0.2  F 

0.8 0.8 0.9  M 

0.1 0.9 0.1  M  

 

 

If we consider ‘Mac_Cabe’ as ‘crisp’, taking the category in each case as the one with the highest grade of membership, 

this results in the values shown by Table 21. 

 

Table 21. (Crisp) values of categorical  ordinal variable ‘Mac_Cabe’ with respect to values of categorical (non-

ordinal) variable ‘sex’ 

 

Mac_Cabe Sex 

3  M 

1  F 

2  F 

2  M 

1  F 

2  M 

3  F 

3  M 

2  M  

 

Use Chi-Squared, whose definition has been given previously as formula (3.1). 

 

 

 

But we are no longer dealing with simple frequencies. We could sum  the membership grades and divide by the number 

of cases. Then we will have M matrices where m = Nº of categories of the fuzzy value. Then one average matrix. But 

we have to take care not to lose any information. 
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Table 22. Confusion matrix for variables ‘Mac_Cabe’ and ‘sex’ 

 

       Sex 

  M F 

Mac_ 1* 

Cabe 2  

 3  

 

* =   membership grades   

          n umber of categories 

 

We are looking for consistency in the values. For example, if Mac_Cabe is {0.1,0.2,0.9} for sex='M' in one case, we 

would expect it to be similar in another. Therefore it needs to be within fuzzy ranges for categories? (only for numeric 

values). Therefore compute differences and calculate averages. The less the difference, the more the closeness 

(relation). Can also use for 2 fuzzy values and one fuzzy value with one numeric value.  

 

Table 23. Membership grades of values of categorical  ordinal variable ‘Mac_Cabe’ corresponding to value of 

categorical  variable ‘sex’ = ‘M’ 

 

Mac_Cabe   Sex='M' 

1 2 3   

0.1 0.2 0.9  M 

0.5 0.5 0.5  M 

0.1 0.8 0.7  M 

0.8 0.8 0.9  M 

0.1 0.9 0.1  M 

 

Table 24. Membership grades of values of categorical  ordinal variable ‘Mac_Cabe’ corresponding to value of 

categorical  variable ‘sex’ = ‘F’ 

  

Mac_Cabe   Sex='F' 

1 2 3   

0.9 0.7 0.1  F 

0.2 0.8 0.2  F 

0.7 0.5 0.1  F 

0.1 0.1 0.2  F 

 

 

(E) Comparison of variables of type Fuzzy Ordinal Categorical with variables of type Fuzzy Non-

Ordinal Categorical 

 
In this type of comparison we consider two test cases of ‘closeness’ and ‘farness’ of a ‘fuzzy ordinal categorical’ data 

type (Mac_Cabe) compared with a ‘non-ordinal categorical’ data type (Sex). In each case example values for the 

respective membership grades of each category of the first variable are compared with the membership grades of the 

first category of the second variable, as in Table 25 (below). Then the same respective grades of membership of each 

category of the first variable are compared with the membership grades of the second category of the second variable, 

as in Table 26. We note that the cases of the first variable are different in Table 25 and 26, given that they correspond to 

the crisp categories of the second variable. It follows that first the means of the columns of membership grades are 

calculated, followed by the standard deviations for each case and membership grade. Then the average standard 

deviation is calculated for each column, as can be seen in the last row of Table 25. This process is repeated for Table 

26. Next the average of the standard deviations is calculated for each of the categories of the second variable. This 

average is then multiplied by 2 and subtracted from one to give a correlation type value. 
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That is: 

 

The objective is to compare the membership grades  of each category of the first variable, v1, of type fuzzy ordinal 

categorical,  with the membership grades of each category of second variable, v2, of type fuzzy non-ordinal categorical, 

in order to produce a ‘correlation’ value between the two. 

 

Let ij be the mean of the membership grades of category i of v1, with respect to category j of v2. Let j be the mean of 

the membership grades of category j of v2. 

 

Then, the standard deviation of the membership grade   for each category  i and case k of v1will be 

 ik  ik   ij 

and the standard deviation of the membership grade   for each category  j and case k of v2 will be 

jk  jk   j 

 

The average standard deviation for each category i of v1 will be 

                               n 

 i      (   ik )  /  n 
                              

k=1 

The average standard deviation for category j of v2 will be 

                               n 

 j      (   jk)  /  n 
                              

k=1 

 

The average of the averages of the standard deviations for each respective category of the variables, where nc1 is the 

number of categories of v1 and nc2 is the number of categories of v2 , will be: 

      nc1                       nc2 

        (  (   i ) +  (   j)     )        (nc1 + nc2) 
                                

i=1                        j=1 

 

The resulting correlation will be: 

 

C = 1  (   2) 

 

The following tests are designed to validate the coherence of the mechanism: (i) test for numbers which have no 

correlation (random, nearly all different) and (ii) test for numbers which have a very close correlation (nearly all the 

same). For reasons of clarity, the standard deviations and averages are calculated below in a separate table for each 

attribute-value of v2, that is sex=’M’ and sex=’F’ 

 

(i) The case where the variables are considered as being  ‘close together’: 

 

In the case where the two variables can be considered ‘close’ to each other, we see in the first two columns of Table 25 

the membership grades for the variable Mac_Cabe of each case to the two possible categorical values of this variable. In 

the third column we see the membership grades for the first category of the variable ‘Sex’. It is clear that there is a 

relation between columns 1 and 3 in that all values of column 1 are high when all values of column 3 are low. Also all 

values of columns 2 and 3 are low, although to a lesser extent in the case of column 2. This is reflected in the mean 

standard deviations which are closer for columns 1 and 3.  
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Table 25. Mean and standard deviation of membership grades of the categorical variable ‘Mac_Cabe’ for ‘sex’ = 

‘M’, when there exists a ‘close’ correlation between the membership grades. 

 

 Mac_Cabe   Sex='M' 

 0.9  0.1  0.1 

 0.8  0.2  0.2 

 0.9  0.1  0.3 

 0.7  0.3  0.1 

 0.8  0.4  0.1 

 

Means  0.82   0.22  0.16 

 

Stddev  0.08   0.12  0.06 

  0.02   0.02  0.04 

  0.08   0.12  0.14 

  0.12   0.08  0.06 

  0.02   0.18               0.06 

 0.064   0.104  0.072   Average = 0.08 

 

In the case of Table 26, we see a similar situation as for Table 25, except that the magnitude of columns 1 and 2 are 

reversed. 

 

Table 26. Mean and standard deviation of membership grades of the categorical variable ‘Mac_Cabe’ for ‘sex’ = 

‘F’, when there exists a ‘close’ correlation between the membership grades. 

 

 

 Mac_Cabe   Sex='F' 

 0.1  0.8  0.1 

 0.2  0.8  0.3 

 0.2  0.9  0.2 

 0.1  0.9  0.1 

 

Means  0.15   0.85  0.175 

 

Stddev  0.05   0.05   0.075 

  0.05   0.05   0.125 

  0.05                0.05   0.025 

   0.05   0.05                0.075 

  0.05   0.05   0.075   Average = 0.0583rec 

 

The average of the averages of the standard deviations is (0.08 + 0.058)/2 = 0.069, multiplied by 2 gives  0.138. Finally, 

(1- 0.138) gives  0.862 . 

 

 

(ii) The case where the variables are considered as being  ‘far apart’: 

 

In the case where the two variables can be considered ‘far apart’ from each other, we see in the first two columns of 

Table 27 the membership grades for the variable Mac_Cabe of each case to the two possible categorical values of this 

variable. In the third column we see the membership grades for the first category of the variable ‘Sex’. It is clear that 

there is little relation between columns 1 and 3 given that there are random differences between the values of column 1 

and the values of column 3.  
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Table 27. Mean and standard deviation of membership grades of the categorical variable ‘Mac_Cabe’ for ‘sex’ = 

‘M’, when there exists a ‘far’ correlation between the membership grades. 

 

 Mac_Cabe   Sex='M' 

 0.9  0.1  0.9 

 0.1  0.9  0.1 

 0.9  0.9  0.1 

 0.9  0.1  0.9 

 0.1  0.9  0.1 

 

Means  0.58   0.58  0.42 

 

Stddev  0.32   0.48  0.48 

  0.48   0.32  0.32 

  0.32   0.32  0.32 

  0.432   0.48  0.48 

  0.48   0.32               0.32 

  0.384   0.384  0.382   Average = 0.384 

 

In the case of Table 28, we see a similar situation as for Table 27, except that the standard deviations are slightly 

greater. 

 

 

Table 28. Mean and standard deviation of membership grades of the categorical variable ‘Mac_Cabe’ for ‘sex’ = 

‘F’, when there exists a ‘far’ correlation between the membership grades. 

 

 Mac_Cabe   Sex='F' 

 0.9  0.1  0.9 

 0.1  0.9  0.1 

 0.9  0.1  0.9 

 0.1  0.9  0.1 

 

Means  0.5   0.5  0.5 

 

Stddev  0.4   0.4   0.4 

  0.4   0.4   0.4 

  0.4                0.4   0.4 

   0.4   0.4                0.4 

  0.4   0.4   0.4   Average = 0.4 

 

 

The average of the averages of the standard deviations is (0.384 + 0.400)/2 = 0.392, multiplied by 2 gives  0.784. 

Finally, (1- 0.784) gives  0.216. 

 

 

 

 

If we summarise cases (i) and (ii), we see that the ‘close together’ case produced a value of  0.862 and that of ‘far apart’ 

a value of  0.216. This is by virtue of simply averaging the average of the standard deviations of the membership grades 

of each of the categories of the two variables, and subtracting this from 1. It allows us to obtain a quantitative 

aggregated measure for the correlation between a fuzzy ordinal categorical variable and a fuzzy non-ordinal categorical 

variable. 
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(F) Comparison of variables of type Fuzzy Ordinal Categorical with variables of type Fuzzy Ordinal 

Categorical  
 

In this case we consider that both variables are fuzzy and have categories which are orderable. In the example below, 

for reasons of manageability and clarity, we have assigned 5 fuzzy categories to the variable, although the number could 

be increased or decreased depending on the nature of the variable and the application. 

 

 

Table 29. Membership grades for values of fuzzy ordinal categorical variable ‘Mac_Cabe’ with respect to the 

membership grades of the also fuzzy ordinal categorical variable previous health state, ‘P_H_Stat’ .   

 

 Mac_Cabe    P_H_Stat                                    

 1 2 3  1 2 3 4 

 0.1 0.2 0.9  0.8 0.1 0.6 0.0 

 0.9 0.7 0.1  0.9 0.1 0.1 0.0 

 0.2 0.8 0.2  0.5 0.5 0.3 0.0 

 0.5 0.5 0.5  0.1 0.9 0.9 0.1 

 0.7 0.5 0.1  0.8 0.7 0.2 0.1 

 0.1 0.8 0.7  0.6 0.5 0.1 0.0 

 0.1 0.1 0.2  0.1 0.8 0.8 0.1 

 0.8 0.8 0.9  0.8 0.1 0.5 0.1 

 0.1 0.9 0.1  0.9 0.4 0.2 0.0 

  

Now look for correspondences: if {0.1, 0.2, 0.9} for {0.8, 0.1, 0.6, 0.0}, then if another {0.1,0.2,0.9}, P_H_Stat should 

be around {0.8, 0.1, 0.6, 0.0}. This needs a lot of comparisons. 

 

One approach would be to convert the second variable to 'crisp' leaving the first variable as fuzzy, and apply process 

(D). Then convert the first variable to crisp leaving the second variable as fuzzy and apply process (D). Finally, take the 

average of the two covariance calculations. 

 

Alternatively, the proximity of each value to all other values could be calculated, which would result in a distance with 

which we could calculate the respective mean, standard deviation, and average. 

 

 

 

Table 30. Example membership values for ‘Mac_Cabe’ and ‘P_H_Stat’ categories 

 

Example: Mac_Cabe  P_H_Stat 

  1 2 3 1 2 3 4 

  0.1 0.2 0.9 0.8 0.1 0.6 0.0 

 

Needs a 3x4 array to hold distances: 

 

Table 31. Distances (differences) between membership values for ‘Mac_Cabe’ and ‘P_H_Stat’ from Table 30. 

 

  0.8 0.1      0.6 0.0 

 0.1 0.7 0.0 0.5 0.1 

 0.2 0.6 0.1 0.4 0.2 

 0.9 0.1 0.8 0.3 0.9   

 

If we add up all the differences in Table 31, then we have a  sort of ‘distance’ between the two variables.  
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Figure 44. Trapezoidal and Triangular membership functions for fuzzy categorical variable 

‘Mac_Cabe’ 
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Figure 45. Trapezoidal and Triangular membership functions for fuzzy categorical variable ‘P_H_Stat’ 

 

 

3.1.4 Fuzzy covariances – Nettleton’s fuzzy covariance calculation 

 
If  the data we wish to explore and model contains two or more variables of fuzzy type, then we need to be able to 

calculate distances between those variables, their correlation and covariance with respect to each other, and their 

relative similitude and disimilitude. In order to compare one fuzzy variable with another fuzzy variable, we need a 

method which calculates distances in a fuzzy c-partition space. With reference to [Bezdek81] and [Gustafson90], we 

consider these approaches as a basis for developing a covariance calculation between two variables which are defined in 

the fuzzy form. We do this because we are interested in first capturing data for, say, two fuzzy variables A and B, each 

of which whose data values consist of grades of membership to two or more fuzzy sets. We then wish to be able to 

quantify the relation between A and B as a covariance type value. This is interesting because there are very few general 

and simple methods for calculating covariances between fuzzy variables in the literature. Also, we wish to use the 

technique on real data, such as the ICU dataset, and compare results to a crisp calculation, in order to observe possible 

improvements in diagnostic precision and in explicative value in medical terms, of the resulting identification of the 

strength (or weakness) of relationship between variables. We note that given that the data is input to a fuzzy c-Means 

type algorithm, it can be captured as crisp, and the fuzzy measure will be the calculated distance of the cases of a 

variable to the prototype in each fuzzy set. 
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(a)  Considerations for representing and comparing variables in the fuzzy form 
 

The representation of variables in the fuzzy form, and their comparison, gives rise to certain aspects which requiere 

consideration, and which are discussed as follows. 

 

(i) Does it have meaning to represent variables in the fuzzy form when they are neither deterministic or probabilistic? 

For example, if the measurement of variable has an error factor (more or less x) due to the limits of precision and 

calibration of a machine, we could use the normal distribution of the error to construct a membership grade for the crisp 

value. 

 

Consider an ordinal categorical variable such as ‘duration of stay in hospital’, whose possible values are, ‘short’, 

‘medium’ and ‘long’. There is no exact definition, not even by consensus of the medical experts. That is, it is different 

for distinct permutations of circumstances, medical conditions, hospitals, patient histories, and so on. Therefore, this 

variable is a candidate for an interpretation by grades of membership, for example, {short: 0.5}, {medium: 0.3}, {long: 

0.0}. This may result useful for doctors with planning responsibilities for  evaluating the assignment of resources and 

for the estimation of the individual patient needs. 

 

It may have no meaning to represent a variable in the fuzzy form when their form of measurement/reading is totally 

precise in all cases, that is, within the permitted error range (tolerance) assigned to that variable - its margin of variation 

is therefore not significant. 

 

(ii) The representation of a variable in the fuzzy form depends on its type. If it is numerical, we can establish a normal 

distribution and divide the resulting plot in ranges. If it is of a qualitative ordinal type, we can establish ranges based on 

its quantitative value, ideally advised by an expert in the data domain. If the variable is of a qualitative nominal type, we 

may establish a measure based on the number of cases which coincide with each value. 

 

(iii) The covariance between two fuzzy variables (X and Y): fuzzy c-Means establishes a fuzzy prototype for each fuzzy 

set. Then it calculates the distance of each case from the prototype in a given cluster and so on for all clusters. It is first 

necessary to convert the cases of X and Y in values which are comparable, for example, via some process similar to 

normalisation. 

 

If we have a sample of n pairs of membership grades of two fuzzy variables X and Y 

 

  X: x1 x2 ... xn 

  Y: y1 y2 ... yn 

 

If       x = 1/n xi,   y = 1/n yi,  the fuzzy covariance of the sample will be  

       n 

  Sxy = 1/n    (xi - x)(yi - y)        (3.2) 

     
 i =1 

 

being 

 

           n 

  Sxy = 1/n     xi yi  -  x   y        (3.3) 

     
 i =1 

In the fuzzy context, we could interpret x and y as cluster centre vi (see later in this section). 
 

 

Thus  we make use of the output of fuzzy c-Means (the membership grades) and in calculating the covariances it is not 

necessary to consider the type of the variable. This is because the pre-processing of the variables will have produced a 

input file in the standard form for input to fuzzy c-Means. 

 

Thus, we interpret covariance in this context as the variation of the grade of membership of two variables in a set. The 

original data, given as input to fuzzy c-Means, could consist of two columns, one for each variable and one row for each 

case. Fuzzy c-Means produces as output two columns of data, the columns corresponding to the grade of membership of 

each variable, and the rows to the grades of membership of each case. 
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Now we consider the grades of membership for the calculation of covariance (above) using the standard covariance 

formula, which gives us the ‘distance’ between the grades of membership of each variable: intuitively, this is the 

distance between the weighted sum of the variation of the distance of each variable from the fuzzy prototype of each 

class. 

 

(iv) Once we have the fuzzy covariances calculated, as explained in (iii,above), we may now proceed to apply the 

Hartigan fusion algorithm to them. Remember that we are looking for pairs of maximum covariances and fusing 

(joining) them to form one pair of variables as indicated in each iteration. 

 

What problem could we have in using the standard fusion algorithm? Are we overlooking anything with respect to the 

interpretation of the ‘fuzzy covariances’? Is it true that the highest fuzzy covariance indicates the two variables with the 

greatest interrelation, in each iteration?  

 

If the fuzzy covariance  between two variables is a maximum, then this indicates that the two variables in question have 

the smallest variation in their grades of membership to the same fuzzy cluster centre (fuzzy prototype) , as can be seen 

in Figure 46 (below). 

 

      

            c                       X 

                             a 

                                               b 

              d        x            e 

                                

 

Figure 46. Variables a and b have the highest fuzzy covariances 

 

Of the five variables {a, b, c, d, e} illustrated within the fuzzy set X, ‘a’ and ‘b’ have the smallest mutual variation 

between their respective distances from the cluster centre (or fuzzy prototype) ‘x’. 

 

(v) The fusion algorithm gives us three results for a fused pair of variables: 

 

 (a) The modified covariance of the new variable with respect to the remaining variables. 

 (b) The two variables selected to be joined are identified by a symbolic identifier. 

 (c) A loading matrix B gives the coefficients and factors necessary to ‘go back’ to the data, and fuse the data 

for each variable. This information indicates the fractional proportions which each original variable contributes to the 

new factor, in a similar manner to ‘principal components’. 

 

If the variables are fuzzy, we can interpret the new fuzzy variable produced by the fusion as a consensus between the 

two original fuzzy variables. What problem could arise from this? One possible consequence would be that we lose the 

original meaning of the data. For example, if variable A is '‘grade of risk of death’ and variable B is ‘duration of stay in 

hospital’, we could ask what meaning would the resulting variable have? If variables A and B really do have the highest 

correlation between their respective grades of membership of all pairs, we could say that we have established that the 

most significant  is between precisely these two variables. 

 

We must not forget that it is the fuzzy cluster centre, or prototype, which we are using as a reference point and for 

comparison. Fuzzy c-Means generates 1 or more fuzzy sets (‘c’ parameter) which are essentially abstract clusters. Later, 

the investigator may establish that fuzzy sets ‘X’, ‘Y’ and ‘Z’ have grouped the cases by ‘duration of stay in days’, and 

correspond, respectively to cases of ‘short’, ‘medium’ and ‘long’ duration of stay. 

 

(vi) In order to formalise the fuzzy variable C, which is the fusion of two fuzzy variables A and B, it is necessary to 

return to the steps used to calculate the covariance of the two fuzzy variables. In [Bezdek81], a calculation is given for a 

fuzzy covariance matrix and the interpretation of the distances from the centroid, but the covariance is understood as 

that between a variable and the centroid, as opposed to that between two variables: 
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The 'fuzzy scatter matrix' of cluster ui  in this case is: 

 

                 n 

  Sfi  =     (uik )
m
(xk - vi)(xk - vi)

T       
(3.4)  

            
k=1 

 

for the ni  points in ‘crisp’ cluster ui  that has centroid vi . Thus, if U  Mc , the number (xk - vi)
T 

Ci
-1

 (xk - vi) will be the 

squared Mahalonobis distance between xk  ui  , and its sample mean will be (sub) vi , where Ci
-1

 is the inverse of the 

sample matrix of covariances of the points in ui. This may be interpreted as the squared fuzzy Mahalonobis distance 

between xk and the fuzzy cluster centre vi. The memberships are distributed to minimise the ‘global volume of fuzzy 

dispersion’ of c fuzzy clusters. As modus operandi  to find an optimum solution, different norms can be applied, for 

example, the Euclidean (NE) or Diagonal (ND), once the Mahalonobis (NM) has been tried.  We could also carry out a 

‘benchmarking’ with ‘crisp’ partitions to establish what improvement (if any) is caused by using a fuzzy interpretation 

of the data being processed. One quality (or goodness) criteria we could use would be ‘clustering error’, or the 

percentage of cases classified incorrectly with respect to the historical data. 

 

 

(b)  Nettleton’s fuzzy covariance calculation 
 

A ‘fuzzy covariance algorithm’ has been developed which allows for a covariance calculation  between variables 

represented in the fuzzy form. As a basis, the Gustafson and Kessel fuzzy covariance algorithm has been used 

[Gustafson79]. This algorithm calculates a distance between values, that is points, and in order to calculate a distance 

between variables, it was adapted, as described in my papers [Nettleton98b][Nettleton99b], and in the following section. 

 
Calculating fuzzy covariances 
 

In the literature there are few examples of general purpose 'fuzzy covariance' algorithms, such as that of Gustafson and 

Kessel [Gustafson79 . This algorithm, however, computes covariances of variables with cluster centres, and not 

variables with other variables. In the following, an extension of  this is described which allows for the calculation of  

'fuzzy covariances' between variables. In the literature, there are also examples of fuzzy covariance algorithms designed 

for specific problems, such as [Nakamori97  and [Babuska96 . Even so there is still a need for more work on generic 

variable-variable fuzzy covariance algorithms. 

In this section we describe some new methods for calculating generic 'fuzzy covariances'.  All methods use the fuzzy 

c-partitions generated by fuzzy c-Means, which is allowed to run to termination before the methods process the 

resulting data matrices and vectors. 

Method 1 produces fuzzy covariances from a self-contained algorithm. Methods 2 to 4 create a data matrix (j 

variables by k cases) of different weighted aspects of the c-partitions (cluster centres, membership grades, data values, 

norm coefficients), which is then passed to a standard covariance algorithm to calculate the covariances. For Methods 2, 

3 and 4, the resulting C matrix is used to calculate the covariances between the variables and the membership grades. 

The process is repeated for each cluster i. 

 

 

(i)  Variation of Gustafson's Method - Method 1 

 

A variant of Gustafson and Kessel's algorithm [Gustafson79  is used to generate a fuzzy covariance matrix, using a 

fuzzy c-Means type algorithm. This algorithm was first defined and benchmarked with other methods and standard data 

sets in [Nettleton98b . 

If ui is the matrix of membership grades of n cases to cluster i; uik is the membership grade of case k to cluster i; xk 

is the vector of characteristics (data) of case k; vi is the centroid of cluster i; m is a weighting factor which defines a 

grade of fuzziness; ( xk - vi )( xk - vi ) is a distance similar to that of Mahalonobis. 

We measure the grade of relation of a variable V1 with the centroid of a cluster C1, and then measure the grade of 

relation of a second variable V2 to the centroid of the same cluster C1. The distance is the difference between the grade 

of relation of V1  to C1 and the grade of relation of V2 to C1, that is, d(V1, C1)  d(V2, C1).  It follows that the calculation 

of the fuzzy covariances between variables in each cluster i is calculated with the following formula: 
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        n               

Cfi   =         (uik)
m

    ||d(V1, C1)  d(V2, C1)||        (3.5) 
                       j=1  k=1                   q=1    

where  

 d(V1, C1)  =  ( xjk - vi )( xjk - vi ) 

and 

 d(V2, C1)
   

=  ( xqk - vi )( xqk - vi )  

 

 being the number of variables (dimensions), and n the number of cases. 

 

(ii)  Method 2 

 

This method measures the relation between the membership grades and the data values of the objects (cases). If uik  is 

the membership grade of case k to cluster i, and ykj is the value of the jth variable of case k. Then Ckj is the product for 

the kth case of variable j, and Ckq  is the product for the  kth case of variable q. The first column of Ckj (variable 1) is 

loaded with the membership grades for the current cluster uik. The subsequent columns of Ckj are loaded with the 

corresponding data values in ykj . 
 

 Ckj  = uik  , j = 1 

and 

 Ckj  = ykj-1   , j = 2,        (3.6) 

 

where  is the number of variables. The resulting matrix C has dimension n by  +1. 

 

(iii)  Method 3 

 

This method measures the relation between the distances of the objects from the cluster centres, weighted by the norm 

coefficients. In method 3, ykj and Ckj have the same meanings as in method 2. We introduce vij , which is the centre of 

cluster i for variable j, and ccjq , which is the calculated norm for variable j and case q. The norm has been fixed for all 

tests as the euclidean norm. 

        

 Ckj   =   ( ykj - vij  )      ccjq   ( ykq - viq )       (3.7) 
        q=1    

where  is the number of variables. The resulting matrix C has dimensions n, the number of cases, by . 

 

 

(iv)  Method 4 

 

This method measures the relation between the sum of squares of the distances of the objects from the cluster centres, 

weighted by the norm coefficients and the corresponding membership grades. Method 4 makes the same calculation as 

method 3, and then does the following: 

 

 C’kj   = Ckj   (uik)
m         

(3.8) 

 

where m is a weighting factor which defines a grade of fuzziness, as in Method 1. The resulting matrix C is given as 

input to a standard covariance algorithm to calculate the covariances between the variables and the membership grades. 

The process is repeated for each cluster i. 

 

Summary of Methods (i) to (iv) 

 

Method (i) generates fuzzy covariances directly, whereas methods (ii) to (iv) allow us to study the different components 

and weights which intervene in fuzzy c-Means, and evaluate the strength of relation between them, using a standard 

covariance algorithm. These methods are tested and benchmarked against other algorithms in Section 4.2. 
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3.1.5 Improving questionnaires for Sleep Apnea diagnosis 

 
With the objective of improving the questionnaire as a diagnostic screening tool, we have designed a study where the 

patient was given a general sleep questionnaire, which permits a double evaluation in a scalar and a categorical form for 

each question, in order to see if the scalar form extracts a greater information from the patient and thus produces a 

greater correlation with the AHI (apnea hypopnea index, see Section 1.2.9). 

 

A total of 71 patients have so far been processed with this method, chosen at random in the Sleep Pathologies Center 

(Salamanca), and studied with respect to diverse problems: insomnia, somnolence, snoring, apneas, body movement 

during sleep, nocturnal choking, etc. … These patients were administered the questionnaire and were given a complete 

night-time polysomnogram, or a supervised night-time cardio-respiratory polygram, in the Sleep Unit. The following 

variables were recorded: oral-nasal airflow, snoring, thoracic and abdominal respiratory effort, body position, actimetry, 

electrocardiogram, pulse and oxygen saturation in haemoglobin. The AHI has determined for all patients, and this value 

was used to compare the predictive accuracy of the different types of questionnaire.  

 
INHERENT PROBLEMS OF STANDARD QUESTIONNAIRES AND PROPOSED SOLUTIONS 

 

The purpose of the questionnaire is to provide an information profile of the patient which allows a pre-diagnosis of 

his/her condition. This acts as a ‘screening’ which avoids patients entering into the sleep centre for expensive and time 

consuming testing, when they have a low probability of suffering from Apnea Syndrome, or have some other pathology. 

 

The questionnaire consists of two main sections: the first records clinical data, with 15 key clinical variables: age, sex, 

presence of a partner, profession, work hours, education level, weight, height, neck circumference, BMI (body mass 

index), blood pressure, alcohol intake, cigarette intake, auto-evaluation of most important symptoms, other illnesses; the 

second section consists of  41 questions to which the patient responds on a five point scale {never, rarely, sometimes, 

frequently, always}. The questions are divided in 3 subsections: 15 general sleep questions, 16 respiratory related 

questions and 9 somnolence related questions. Based on this information, the doctor then gives a clinical evaluation: 

healthy; simple snorer; doubtful; typical apnea; other illness. We interpret this as: typical apnea; no apnea, with the 

corresponding grade of membership. Refer to Annex 3 for the complete scalar version of the questionnaire used. 

 

One of the fundamental problems with the questionnaire responses is that in the general sleep and respiratory related 

questions, there are several key questions which rely on the bed partner as a witness. Of course if there is no bed 

partner, or the bed partner does not know, this eliminates some key information for the diagnosis. To improve this 

situation, in the case of there being a bed partner, we propose that s/he fills in the same questions separately in a 

different questionnaire. The responses can then be cross checked for contradictions and inconsistencies between the bed 

partner and the patient. 

 

Another aspect is that the general public may respond incorrectly, untruthfully, or simply not understand the questions 

correctly. There are several standard techniques used in general questionnaire design which can help to identify 

inconsistencies or contradictions. One of the techniques consists of asking the same question several times but phrased 

in a different manner, throughout the questionnaire. Also we can ask a question and later its inverse, in a non-obvious 

manner, to detect contradictions. From this information we can derive a reliability index for the whole questionnaire for 

a given patient and/or a reliability grade for each individual question response. 

 

Each patient filled in two versions of the questionnaire -  one with categorical responses and the second with fuzzy 

scalar responses. Each patient was previously briefed as to how to fill in the questionnaires. In practice, the patients 

were from all types of backgrounds, educational and cultural levels. Sometimes there were errors in how the patient 

responded to the categorical and scalar response representations. One typical error is that the patient responds to the 

scalar representation as if it were categorical, placing a cross exactly on the label point in each case. Thus there was no 

ponderance of a grade of membership by the patient. The lesson we have learnt from this is to dedicate more time to 

explaining to each patient the importance of  thinking about the scalar response in order that they can appreciate our 

objectives in doing this. For example, the added subtlety of placing a cross on the scale, for example, two thirds of the 

way between frequently and always, but closest to always. Of course, as the subjects are from the general public, this is 

not an easy task. 

 

Finally we have a problem of data – having sufficient cases with which to test our method. Take into account that for 

many machine learning techniques for each N input variables we need N*10 cases. The data should also represent a 

homogeneous group of the population, such as professional males between 45 and 65 years of age with medium 

education level, living in the same geographical area, without secondary ailments. This is not our case, but instead we 
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have real data with which any clinic has to deal with every day, and our objective is that our data processing methods 

give useful and acceptable results from it. 

 

Some questions in the questionnaire can only be responded by a partner by observing the patient while sleeping. The 

following  give some examples of this type of question, together with other questions to be answered by the patient 

him/herself. 

 

 

Examples of questions put to partner and patient 
 

TO PATIENT 

G11  DO YOU KNOW OR HAVE YOU BEEN TOLD THAT YOU MOVE YOUR LEGS A LOT WHILE 

YOU ARE SLEEPING? 

1- never      2- rarely        3- sometimes                4-  often            5- always 

 

TO PARTNER 

G11  DOES YOUR PARTNER MOVE HIS/HER LEGS A LOT WHILE S/HE IS SLEEPING? 

1- never      2- rarely        3- sometimes                4-  often            5- always 

 

TO PARTNER 

R1  DO YOUR PARTNER SNORE WHILE S/HE SLEEPS? 

1- never      2- rarely        3- sometimes                4-  often            5- always 

TO PARTNER 

R2  DOES YOUR PARTNERS SNORING WAKE YOU UP OR CAN IT BE HEARD FROM ANOTHER 

ROOM? 

1- never      2- rarely        3- sometimes                4-  often            5- always 

 

TO PARTNER 

R7  DOES YOUR PARTNER “STOP BREATHING” WHEN S/HE IS ASLEEP ? 

1- never      2- rarely        3- sometimes                4-  often            5- always 

 

TO PARTNER 

R8  HAVE YOU WOKEN YOUR PARTNER BECAUSE YOU THOUGHT THAT S/HE HAD STOPPED 

BREATHING? 

1- never      2- rarely        3- sometimes                4-  often            5- always 

 

 

Examples of questions asked more than once in a different manner 
 

R5  HAVE YOU NOTICED AN INCREASE IN YOUR SNORING RECENTLY? 

1- no     2- <6months         3- 6-12 months                   4-  > 1 year 

 

R17  HOW LONG HAS YOUR SNORING STAYED THE SAME? 

1- no     2- <6months         3- 6-12 months                   4-  > 1 year 

 

 

(a) Fuzzy Data Representation – Apnea questionnaire screening 
 

Questionnaire screening was used as an example of comparing a crisp data representation approach with a fuzzy data 

representation approach. Also this problem allowed applying a complete fuzzy data representation process to a real 

problem: from deciding which questions to include, in what order, the form of the questions (way of asking them), the 

number and nature of the linguistic labels, the nature and form of the underlying membership functions. Data capture, 

and data processing were the two following areas which had to be addressed. Data processing was using WOWA, 

modified to enable the processing of missing data, and learning the weights using genetic algorithms. 
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Representing the linguistic labels questionnaire responses in the fuzzy form 
 

Now we consider how to represent linguistic labels as fuzzy sets: first as simple trapezoids and then as curves which 

give a smoother transition between one label and the next.  

 

Parmenidean Pairs: in general, the basic representation for parmenidean pairs is based on the use of  fuzzy partitions 

with a trapezoidal membership function, as discussed previously in Section 1.2.4 . 

 

From linear to non-linear membership functions 
 

Trapezoids formed by straight lines are really approximations of real membership functions. Thus we can get closer to 

having a natural representation (best fit) for the linguistic labels by generating a curve in place of a straight line for the 

ascending and descending gradients. To achieve this, we could use an appropriate function to generate the points for the 

desired form of the curve. In some cases we may wish to strengthen a transition with hedges like "very" or "extremely" 

or weaken it with, for example, "slightly". We can perform strengthening by, for example, a sigmoid-like function, such 

as Zadeh’s S-Function. 
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Figure 47.  Zadeh’s s-function can be used to customise membership transition  

 

For linear and non-linear membership gradients, we assume a symmetrical relation between the descending membership 

value for the preceding fuzzy set and the ascending membership grade for the following fuzzy set (which sum to 1), as 

can be seen in Figure 47. 

 

Construction of membership curves – some considerations 
 

In Figure 48, we see a geometric construction,  three segments of a membership function: segment 1 we will call the 

concave segment which goes from the bottom left hand corner to point 3; segment 2 we will call the linear segment 

which goes from point 3 to point 5; and segment 3 will be the convex segment which goes from point 5 to the upper 

right hand corner. As can be seen, there are seven interpolation points. The curve construction function of Microsoft 

Excel then uses splines to approximate the curve to the points. The points are located simply on midpoints and 

intersections of successively divided quadrants and diagonals. The curve in the upper right quadrant is a rotated and 

inverted mirror image of the curve in the lower left quadrant, the overall curve being therefore symmetrical. If we go 

down and right on point 2 we will make the gradient steeper and make the incoming ‘hedge’ into the corresponding 

fuzzy set occur more rapidly. Correspondingly, if we push points 1, 2 and 3 upwards a little we will make the gradient 

shallower and make the ‘hedge’ less intense. Of course, care is necessary, in the case of manual manipulation, to avoid 

inflexions which would create situations such as a second concave segment in the upper right quadrant. 
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Figure 48. Construction of a membership curve 

 

Membership curves generally tend to have the form as in Figure 48, with first a lower concave segment, followed by an 

upper convex segment. The concave segment in Figure 48 covers 50% of the x-axis, that is the total curve length on the 

x-axis. This can be reduced to 25%, for example, leaving 75% for the upper convex segment. This would result in an 

overall bell shaped appearance. What would not be usual, would be if the upper right segment was also concave. We 

can ask the question, why is this not done? In general, the transition from one state to another, where the states are 

ordered, naturally has a convex phase followed by a concave phase which avoids ‘glitches’. 

 

Example of fuzzy representation of a questionnaire response 

 
For each question we design a membership function which can be overlaid on each scale to read off the grade of  

membership to each linguistic label. 

 

S5. Do you fall asleep while driving on the motorway? 
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  never       rarely      some-      freq-      always 

            times       uently    

Figure 49. Example of representation for a critical question 

 

In Figure 49 we see that the curves are formed by Zadeh’s s-function. We can manipulate this type of curve as detailed 

previously, in order to strengthen or weaken a linguistic label. The patient draws a cross on the continuous scale (e.g. 

S5) to indicate his/her response to the question. In the questionnaire, this question would appear as: 
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S5. Do you fall asleep while driving on the motorway? 

______________________________________________ 

|         |                 |           |          | 

never         rarely         sometimes        frequently         always 

 

The fuzzy response would be stored as a quintuple, with a membership grade for each linguistic label. For example the 

response to S5 (above) could be stored as: {0:0.0, 1:0.3; 2:0.7; 3:0.0; 4:0.0}. This indicates that only linguistic labels 

‘rarely’ and ‘sometimes’ have non-zero membership values, being 0.3 and 0.7 respectively. We can simply take the 

linguistic label with the highest membership grade, which in this case is ‘sometimes’. Note that we can convert to 

categorical if we so desire, and that way we have both crisp and fuzzy data capture. 

The membership grades of the responses can be read or by writing a computer programme which finds the 

corresponding point on the y-axis, for the point indicated by the response on the x-axis. Other wise, we can overlay a 

transparent sheet on each response line and read off the membership grade on the y-axis. Each sheet would have been 

drawn or created by a statistical package. We have chosen at present the latter method, which avoids dedicating time to 

programming and enables us to tailor one sheet of membership functions for each question. 

 

In Figure 50 we see alternative forms of membership function to the symmetrical and equal forms of Figure 49. In 

Figure 50 the lower horizontal scale ‘label’ has four possible fuzzy sets: ‘none’, ‘slight’, ‘moderate’ and ‘high’, which 

refer to the incidence of apnea in the patient. The horizontal scale ‘index’ is simply an equidistant scale of zero to 1.0. 

Finally, the horizontal scale ‘RDI’ is the real RDI value derived from the clinical test. Thus the plot can be used to read 

off the corresponding membership grade on the vertical axis. The fuzzy sets correspond to the linguistic labels whose 

ranges are defined on the first horizontal axis ‘labels’. Alternatively, or additionally, the RDI can be converted to a 

value between 0 and 1 on the linear horizontal scale ‘Index’. The curves in Figure 50 have a meticulous design with 

respect to the clinical ‘weight’ which each linguistic label has. For example, the label ‘none’ occupies only 5% of the 

length of the horizontal axis, and has the steepest fall-off (also called ‘hedge’ or ‘quantifier’) of all the linguistic labels. 

On the other hand, the label ‘high’ has the least steep hedge and occupies approximately 50% of the horizontal scale. 

We also see that the label ‘moderate is symmetrical whereas ‘slight’ is not. This is because of ‘slights’  interaction on 

the left hand side with ‘none’.  The two design criteria which involve medical expert judgement are (i) the amount of 

the scale which the linguistic label occupies and (ii) the steepness of fall-off on the left and right hand sides. The first 

criteria depends on the clinical range for which the incidence is defined; thus in clinical terms, apnea incidence is 

considered to be ‘high’ when the RDI is approximately 45 upwards. The second criteria depends on the fuzziness of the 

change from one label to the next. For example, the distinction of classification between patients who are ‘none’ and 

patients who are ‘slight’ is crisper than the distinction of classification between patients who are ‘moderate’ and those 

who are ‘high’. The curves in Figure 50 were defined with the curve  creation utility of Microsoft Word 97, which has 

the same automatic interpolation mechanism as Microsoft Excel 97. Once a basic curve is defined, it can be 

manipulated by inflexion points or by adding knots. 
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Figure 50. Example of non-symmetrical membership curves to represent output variable 

 

 

 

 

 



 137 

3.2 Aggregation of data of different types 
 

Data fusion may be considered a preprocessing technique which converts two or more inputs into just one output which 

serves as input to a subsequent data processing step. In Section 3.2.1 we look at diverse data fusion schemes in the 

literature, some of which use heterogenous representation formats as a solution, whereas others use generalised distance 

metrics, or different methods for each different type of data. 

 

Section 3.2.2 details the implementation of Nettleton’s version of the Hartigan ‘joining’ algorithm, which is applied 

later on real ICU data In Section 4.1, and other test data in 4.2, and the results compared with those of other factor 

analysis and variable aggregation methods.  

 

Data fusion can also be considered as aggregation: in Section 3.2.3, we are interested in finding a data modelling 

method, which allows the inclusion of meta-data such as reliability and relevance information about the data. It also has 

to be able to give acceptable results with small datasets, because the real domains we use in Section 4 are of this nature. 

Also it must also be relatively easy to include enhancements, such as missing data processing and machine learning for 

meta-data assignment. In this section we consider methods of grouping input variables and data values. In Section 3.2.3 

we consider aggregation operators, especially WOWA, which allow the inclusion of ‘meta-data’ as input to ‘bias’ the 

data values, on the one hand, and the variables, on the other hand.   

 

3.2.1   Mixed Data Types - Data Fusion 
 

Data fusion can have different interpretations: on the one hand we can aggregate data values from different data sources 

to give a global consensus on an output state or diagnosis; on the other hand, we can ‘join’ the variables themselves 

based on similarities and data characteristics, into a reduced number of factors. In the latter case for example, we could 

create a new variable C as a function of two variables, A and B; for example C = ((A 0.15)/A + (B 0.85)/B). We join 

A and B, given that we have previously defined a relationship between these two variables, which furthermore has the 

proportional contributions as indicated in the previous formula, that is 15% of A and 85% of B. 

 

We now consider different ways of processing and representing data in order to treat mixed data types in one algorithm. 

The state of the art has evaluated with respect to processing techniques which try to resolve the problem. It has been 

found to be an area in which no perfect or definitive solution exists, neither from the traditional statistics field, or from 

the artificial intelligence field. One of the problems in mixed data type processing is to calculate a distance measure 

between any two types of data; for example, the distance between the ordinal categorical attribute “duration of stay in 

hospital” (short, medium, …) and the numerical attribute “age” (23, 45, …). One possible approach is to convert all 

data to one type, for example, categorical or numeric or continuous, and use an appropriate technique to process that 

data type. Another approach is to maintain the original data types and devise an algorithm which can create a distance 

measure in terms of each data type. A third approach would be to use grades of membership, in which all the types exist 

as before, but also have a fuzzy interpretation. This latter approach, of fuzzy representation for all data types, has been 

considered in the thesis as one of the simplest to implement[Hathway96][Nettleton99b]. One of the existing systems 

which addressed the problem of crisp mixed data type processing is Klass [Gibert94], which has a unified distance 

measure calculation for categorical and numeric data. Traditional statistics has diverse techniques which separately 

address different data types: for numeric types there is Pearson-product-moment; for categorical data there is the 

Wilcoxon test, Box-Jenkins, and so on. 

 

In Figure 51 (below) we see a depiction of the two types of algorithm, crisp or fuzzy, which we could use, together with 

the four different groups of data types we may encounter. The inner boxes, such as that representing ‘numeric and 

continuous data types’ are the most specific, whereas the outer boxes, such as that representing ‘fuzzy and crisp mixed 

data types’, generalise and contain the data types defined within their scope. When we refer to a ‘crisp’ fusion algorithm 

we mean an algorithm which ‘joins’ variables a factor reduction process, and where the decisions of which variables de 

‘fuse’ and in which order are crisp. On the other hand, a ‘fuzzy’ fusion algorithm will use fuzzy decisions or a fuzzy 

distance measure to decide which variables to join and in which order. We are therefore referring to the mechanism of 

the algorithm itself. In contrast, the data types indicate the form of representation of the data itself, which may be any of 

the crisp data types given (below) or the fuzzy data type. 

 

Four crisp data types are considered: integer, that is, whole numbers, {1,2,3, …N}; continuous or floating point 

numbers, that is {0.45, 1.71, 21.02, …}; categorical ordinal, with attribute-categories such as, {‘low’, ‘medium’, 

‘high’}; and  categorical non-ordinal, with attribute-categories such as, {‘blue’, ‘red’, ‘green’, ‘male’, ‘female’, …}. A 

fuzzy data type, on the other hand, is typically a categorical ordinal or non-ordinal type, for which a data item may 
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belong to more than one of the attribute-categories, and the data value is accompanied by one or more grades of 

membership to the corresponding categories. 

 

By ‘mixed data type’, we understand a dataset in which data of different types coexist, that is,  integer, continuous 

categorical ordinal and categorical non-ordinal, but excluding the fuzzy type. Our objective is to be able to process data 

of  ‘mixed types’ and the fuzzy type in a unified manner. Of course, we may also consider the crisp data types as a 

special case of the fuzzy data type, in which the membership grade is 1.0 for one and only one category, and 0.0 for the 

remaining categories. Thus the depiction in Figure 51, that the fuzzy data type generalises the crisp data types. 

 

Crisp fusion algorithm    Fuzzy fusion algorithm 

[Hartigan76]       [Hartigan76] with fuzzy distances[Nakamori97][Dubois80] 

 

 

Integer and    Crisp mixed   Integer and          Crisp mixed 

continuous      data types  continuous            data types 

data types       [Kaufman90]  data types                  [Béjar94] 

      [Gustafson79]           [Gibert94] 

     [Bezdek81] 

Fuzzy and     Fuzzy and  [Watada94] 

continuous    crisp mixed 

data types     data types 

[Babuska96] [Girard96]  Fuzzy and            Fuzzy and 

[Fujimoto95]    continuous          crisp mixed 

data types           data types 

                     [Hathaway96][Babuska96] 

                     [Fujimoto95][Nettleton99b] 

 

 

 

 

Figure 51. Relation between crisp and fuzzy data fusion algorithms,  and different types of data 

 

 

In the following sections, for each data type combination,  we outline a candidate technique to implement the algorithm 

and treat the data. 

 

(1.1)  Crisp fusion algorithm with (crisp) integer and continuous data: we can use the standard Hartigan algorithm. 

The data is numerical and we can calculate a standard correlation matrix to give as input to the fusion algorithm. 

 

(1.2) Crisp fusion algorithm using (crisp) mixed data types: mixed data types in this context means the processing in 

the same step of continuous, integer, categorical nominal and categorical ordinal data. We can use the standard Hartigan 

algorithm to process, but we need to pre-process the different types of data with different measures to achieve a 

similarity, correlation or distance measure between variables. Examples of such measures are: Chi-Squared for nominal-

categorical and binary variable types; Kendall or Spearman for ordinal-categorical variable types; correlation for 

numeric and continuous variables.  These techniques propose solutions for the comparison between pairs of variables of 

the same type. Another problem is to compare pairs of variables of different types. This may mean the comparison of a 

categorical variable with a numerical continuous variable. There actually exist various solutions, for example, the 

Similarity Measure of Linneo [Béjar94], the Mixed Metric of Klass [Gibert94], [Girard96 , and so on. Finally we 

achieve a matrix of values which represent the similarity or affinity measures between all pair permutations of the 

variables under consideration. This matrix would then be given as input to the standard fusion algorithm. 

 

(1.3) Crisp fusion using fuzzy and (crisp) continuous data: As in (1.1), we may use the standard Hartigan fusion 

algorithm. The Data is the same as in (1.1) with the added complexity of having to include and compare the continuous 

data types with the 'fuzzy data type'. The method to compare, for example, a continuous variable with a fuzzy variable 

could be to consider in the distance algorithm that the crisp data is a special case of fuzzy data with values {1,0}, or the 

max-min of the fuzzy range defined. The objective would be to calculate a distance/similarity matrix which would be 

given as input to the standard fusion algorithm. Later in this section, we consider where does the fuzzy data come from, 

and how it is defined. [Bilgiç97  is one of the authors who considers these type of  problems. When can an attribute be 
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processed as ‘fuzzy’? An attribute can be processed as fuzzy when it can be represented by a membership function, 

which has been previously established and calculated.  

 

(1.4)  Crisp fusion using fuzzy and (crisp) mixed data types: again we can use the standard Hartigan fusion algorithm. 

The data is the same as in (1.2) with the added complexity of having to include and compare all the data types 

mentioned in (1.2) with the 'fuzzy data type'. The method to compare, for example, a categorical variable with a fuzzy 

variable could be that of [Girard96 . The objective would be to calculate a distance/similarity matrix which would be 

given as input to the standard fusion algorithm.  

  

(1.5) Fuzzy fusion with (crisp) integer and continuous data: in this case we have the same data as in (1.1), but this 

time we have the fuzzy version of the fusion algorithm. This algorithm needs as input, a matrix of Fuzzy Covariances. 

There are various references in the literature of how to calculate a fuzzy covariance matrix 

[Bezdek81 [Gustafson79 [Watada94 . In Section 3.1.4 we enter into more detail with respect to fuzzy covariance and 

fuzzy covariance matrices. Once the matrix is calculated, it can be given as input to the fuzzy fusion algorithm, which is 

a modified version of the standard fusion algorithm, which can treat fuzzy input covariances. The selection of pairs from 

the correlation matrix for fusion introduces the aspect of fuzzy distance and its calculation. The method (of ranges) 

detailed by [Nakamori97  or the distances of [Dubois80  could be incorporated as solutions. (see later sections for 

details). 

 

(1.6)  Fuzzy fusion using (crisp) mixed data types: we have the same fuzzy fusion algorithm as in (1.5), but with crisp 

mixed data as in (1.2). We have to calculate the pair similarity measures using the different techniques depending on the 

type of the variable as in (1.2).  

 

(1.7)  Fuzzy fusion using fuzzy and (crisp) continuous data types: same problems apply as in (1.5) with the added 

requirement (as in 1.3) of comparing fuzzy types with continuous variables. There may be an intermediate step of 

elicitation of membership functions as in [Babuska96  and [Fujimoto95 .  

 

(1.8)  Fuzzy fusion using fuzzy and (crisp) mixed data types: same problems apply as in (1.6) with the added 

requirement (as in 1.3) of comparing fuzzy types with categorical, ordinal, integer and continuous variables.  

 

   

Problems being solved 

 

(i) Comparison between fuzzy and (crisp) mixed data: we could use a unified scheme where fuzzy data is described by a 

grade of membership value in the range [0,1  ,  while crisp data is defined by a grade of membership value restricted to 

the values 0 or 1 {0,1}. We could then proceed to compare variables in terms of their respective grade of membership 

values. 

 

(ii) Allows inclusion of information in fuzzy form in crisp fusion algorithm: deciding which to join next is a fuzzy 

decision, but which needs a crisp result. One approach would be to build and update fuzzy rules which supply the 

mechanism to make these decisions. 

 

(iii) Comparison between different types of crisp data in the same matrix : (binary, nominal, ordinal, interval, ratio). 

[Kaufman90 , p32-37 , describes an approach in which all data types are combined into one dissimilarity matrix. 
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Recent work in data fusion and representation and of possible approaches for the present work: fuzzy 

covariances, chi-squared measure, membership functions (mainly for linguistic variables) and distance 

measures. 
 

Until recently, data fusion has not been a topic widely covered by authors as a specific theme. Since 2000 there exists 

an ‘International Fusion Journal’, and an ‘International Fusion Conference’ since 1998. [Cross95  deals with the 

problem of representation and establishes a definition for a fuzzy object. It is argued that one could consider that an 

object is a fuzzy object if it has a membership degree in the interval [0,1  for a class. A fuzzy linguistic object is an 

object that has at least one attribute whose value is a fuzzy set. A fuzzy object is any object that contains a possibility 

distribution for an attribute value. [Wangc96  creates (induction) membership functions and fuzzy rules for input 

values, whereas [López97] defines a language for the definition of fuzzy systems.  

 

With respect to fuzzy covariance and fuzzy correlation matrices, [Nakamori97] considers factor analysis for fuzzy data. 

The correlation coefficients between measures are directly defined as interval fuzzy numbers. The fuzzy correlation 

matrix holds the relative fuzziness of correlation coefficients. [Watada94] considers fuzzy principal component analysis 

for fuzzy data, the variables being described as follows: 

 

 Di  = [xi1, x i2, ...., x ip         (3.9) 

 xij =[x
l
ij, x

c
ij, x

u
ij  

 

where xij is a fuzzy number with x
l
ij,  x

c
ij and x

u
ij  which are the lower boundary, upper boundary and centre of attribute 

xij , respectively. Using fuzzy data , fuzzy variance- covariance matrix V = [V
l
, V

c
, V

u
  can be calculated.  

 

[Babuska96] considers fuzzy modelling and similarity analysis applied to ecological data, in which triangular 

membership functions and matrix are defined as an initial approximation. Then  fuzzy c-Means is used to establish the 

membership functions which best fit the data. Setnes refers to [Gustafson79], and the Takagi-Sugeno Model 

[Takagi85].  

 

 

3.2.2 Implementation – Nettleton’s version of Hartigan’s ‘joining’ algorithm 
 

The following describes the implementation by Nettleton of the fusion algorithm, and the artificial test data used to 

verify its functionality. In Sections 4.1 and 4.2 of the thesis, this algorithm is executed with real application (ICU) data 

and other test data, and is contrasted with diverse variable grouping and factor reduction techniques. The crisp 

(standard) version of the algorithm is first described, followed by the consideration of enabling it to process different 

data types and incorporate fuzzy techniques into the distance measure and mechanism. 

 

The code of Hartigan’s ‘joining algorithm’ is given at the end of the book [Hartigan75], in Fortran. This code was 

rewritten in ‘C’ and tested in its original form. As next step it was modified to enable joint treatment of discrete and 

continuous attributes. Also, the final post-processing phase could be implemented as the generation of a two 

dimensional plot of the two final resulting attributes which would represent the fusion of all the other attributes. 

 

‘Crisp’ fusion algorithm – input data and processed output data: The following is the output of the fusion 

algorithm for ‘crisp’ attributes. The algorithm has been coded in ‘C’ from the description given in [Hartigan75]. 
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Table 32. C matrix of covariance coefficients used by Hartigan joining algorithm to fuse variables 

 

Original variables 
HL    1.000  0.402  0.395  0.305  0.301  0.339  0.340  0.303  

HB    0.402  1.000  0.618  0.135  0.150  0.206  0.183  0.143  

FB  0.395  0.618  1.000  0.289  0.321  0.363  0.345  0.305  

FM    0.305  0.135  0.289  1.000  0.846  0.797  0.800  0.000  

FR   0.301  0.150  0.321  0.846  1.000  0.759  0.661  0.000  

FT    0.339  0.206  0.363  0.797  0.759  1.000  0.736  0.778  

HT    0.340  0.183  0.345  0.800  0.661  0.736  1.000  0.731  

Fused variables  
FMFR             0.303  0.143  0.305  0.846  

FTFMFR           0.315  0.164  0.324  0.778  

HTFTFMFR       0.321  0.169  0.329  0.732  

HBFB             0.399  0.618  

HLHBFB           0.399  

 

 

Observations with respect to the algorithm:[Hartigan75] 

 

1) The last fusion is not carried out (to leave just one factor), as indicated in Hartigan’s description. 

 

2) The covariances of the other variables are not reduced or modified during the process. 

 

3) The final state of the loading matrix ‘B’ is different to the values given by Hartigan. 

 

Differences of the state of the B and C matrices with respect to Hartigan’s joining algorithm 

[Hartigan75]: The algorithm has been implemented in ‘C’ exactly the same as the specification at the end of 

Chapter 17 in Hartigan’s book [Hartigan75]. Nevertheless, it did not initially choose the same variables to be 

joined as the example given in the book, with the same data. By changing the inner loop of step 2 from ‘1 to N’ 

to ‘1 to K’, it did give the same results. In the book, the author changes the order of the variables in the matrix 

in two different pages, and it could be that the form of representing the results is descriptive and is not equal to 

the state of the matrices. One improvement would be to place the final output in a ‘results’ matrix to show 

them in a clearer and simpler form. 

 

4) The algorithm, in each iteration, chooses the correct pair of variables to fuse (join), and the covariances of the new 

factors (variables) correspond to those given by Hartigan.  It is understood that the correct pair of variables to join at 

each step is the pair whose variables have the highest mutual covariances.  

 

Observation: this is the key aspect which is required to function correctly for the Hartigan joining algorithm. 

We have considered that the observations given in points 1 to 3 are due to the ‘intuitive’ description used in the 

textbook, or due to dependences of implementation. 

 

Form of calculating the loading matrix B, and use of the matrix and coefficients for a posterior factorial analysis 

of the attributes, and recalculation of the data from the original variables Ref. [Hartigan75],  pp324 

 

We assume that: 

 

A is a data matrix of 2 dimensions M by N. 

 

 F is a matrix of factors of 2 dimensions M by K. 

 

 B is a loading matrix of 2 dimensions N by K. 

 

The arrays F and B are factors of row and column, respectively, of matrix A. 
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Then: 

 

 the Kth Cluster is a sub matrix S of A. 

 

 F(I,K) = 1 if row I of A is in S; otherwise, F(I,K) = 0. 

 

 B(J,K) = S(J,K) if variable (column) J is in S; otherwise B(J,K) = 0. 

 

 A = FB = {1  K  L} C(K), where C(K) = 0  (the Kth cluster). 

 

Once the fusion and the B matrix have been calculated, we can quantify the set of factors, being the difference between 

the means of the variables in the pairs of clusters joined during the fusion [Hartigan75], pp322. 

 

 F(8)  = [V(4) - V(5)
1/2 

 

 F(9)  = [1/2V(4) + 1/2V(5) - V(6)
2/3 

 

 F(10) = [1/3V(4) + 1/3V(5) + 1/3V(6) - V(7)
3/4 

 

 F(11)  = [V(2) - V(3)
1/2 

 

 F(12)  = [1/2V(2) + 1/2V(3) - V(1)
2/3 

 

 F(13)  = [1/3(V(1) + V(2) + V(3)) - 1/4(V(4) + V(5) + V(6) + V(7))
12/7 

 

 F(14)  =[V(1) + V(2) + V(3) + V(4) + V(5) + V(6) + V(7)
1/7 

 

The constants 1/2, etc, ... guarantee that the sum of the squares of the coefficients is equal to unity. Now we can define 

the original variables in terms of the new factors which have been generated: 

 

 V(1)  = - 2/3 F(12) - 1/3 12/7 F(13) + 1/7 F(14)
 

 

 V(2)  = 1/2 F(11) - 1/2 2/3 F(12) + 1/3 12/7 F(13) + 1/7 F(14)
 

 

 V(3) = - 1/2 F(11) - 1/2 2/3 F(12) + 1/3 12/7 F(13) + 1/7 F(14) 

  

 V(4)  =  1/2 F(8) + 1/2 2/3 F(9) + 1/3 3/4 F(10) - 1/4 12/7 F(13) + 1/7 F(14)
 

 

 V(5)  =  - 1/2 F(8) + 1/2 2/3 F(9) + 1/3 3/4 F(10) - 1/4 12/7 F(13) + 1/7 F(14)
 

 

 V(6)  = - 2/3 F(9) + 1/3 3/4 F(10) - 1/4 12/7 F(13) + 1/7 F(14)
 

 

 V(7)  = - 3/4 F(10) - 1/4 12/7 F(13) + 1/7 F(14) 

 

It is assumed that V(1) to V(7) are the original variables. The constants depend on the number of variables and on the 

proportions which each of the original variable contributes to the new factors. The original variables can be found  in 

the vector JT. 

 

F(8) to F(14) are the new variables (factors). The constants are derived from the formulas for V(1) to V(7), and the 

values of each factor correspond to their relative position in the ‘loading matrix B. For example, in the formula: 

 

 V(1)  = - 2/3 F(12) - 1/3 12/7 F(13) + 1/7 F(14) 

 

F(12) would assume the value of the matrix element B[1,12-7 , which has the value 0.598. We must refer to the B 

matrix, once reduced, following Hartigan’s comments [Hartigan75], pp320. 
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Table 33. Values in the B matrix after executing Nettleton’s version of the fusion algorithm 

 

 HL  0.475  0.000  0.000  0.000  0.000  0.000  0.000  

 HB  0.000  0.618  0.000  0.000  0.000  0.000  0.469  

 FB  0.000  0.000  0.000  0.000  0.000  0.000  0.469  

 FM  0.000  0.000  0.214  0.214  0.214  1.000  0.000  

 FR  0.000  0.000  0.214  0.214  0.214  1.000  0.000  

 FT  0.000  0.000  0.000  1.000  1.000  1.000  0.000  

 HT  0.000  0.000  0.000  0.000  0.000  1.000  0.000  

 

 

And the formulas of the original variables will be: 
 

 V(1)  =  0.475 F(8)
 

 V(2)  =  0.618 F(9) + 0.469 F(14)
 

 V(3) =   0.469 F(14) 

 V(4)  =   0.214 F(10) +  0.214 F(11) +  0.214 F(12) + 1.000 F(13) 

 V(5)  =    0.214 F(10) +  0.214 F(11) +  0.214 F(12) + 1.000 F(13) 

 V(6)  =   1.000 F(11) +  1.000 F(12) + 1.000 F(13)
 

 V(7)  =  1.000 F(13) 

 

 

Use of the B (loading) matrix: we assume that the elements of the B matrix, once the algorithm has terminated, are the 

coefficients of the equations of each variable, which are multiplied by the factors found in the C matrix. Thus, B0 will 

be the identity matrix, in which all elements are assigned to zero except those in the descending diagonal which are 

assigned to 1. The value of each function is defined by a unitary covariance matrix. If we create a new variable Vnew 

from three existing variables, with factors F1, F2 and F3, then 

 

 Vnew =B(1,1) F1 + B(1,2) F2 + B(1,3) F3. 

 

 

Qualitative values: the fusion algorithm does not have to consider qualitative values, given that we assume that the 

covariances of these values are already calculated and the fusion algorithm receives as input a covariance matrix, the 

same as in the case of the quantitative values. 

 

For example, consider the qualitative attributes, colour and texture. As a simple similarity measure, each case is 

exhaustively compared with every other case, and a frequency table is built for the number of occurrences of category-

pairs. For example, the category-pair colour=blue and texture=smooth could occur 35 times in a total of 100 cases, and 

the total of unique category-pairs could be 45 out of 100. The frequency table would therefore be used as a basis for 

calculating a similarity value which would measure the incidence of coinciding pairs for colour and texture. 

 

 

Example similarity measure 

 

                            n 

  d (Oi , Oj ) =     dif (Oik , Cjk )       (3.10) 

                        
k=1 

 

In the case of qualitative (symbolic) values, the expression dif (Oik, Cjk) will be 1 if the values are equal and 0 if they 

are distinct. If the values are quantitative (numeric) the expression will evaluate to the absolute value of the difference 

between the two values. 

 

Types of distance: three examples of distances which depend on the type of the attributes being compared, are: (i) the 

Minkowski metric; (ii) the Mahalonobis distance; and  (iii) the 
2 

(chi-squared) distance. The similarity measure (i) is 

used by the ‘Linneo+’ system [Béjar94], and the distance of 
2
 is used by ‘Klass’ [Gibert94]. 
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Using fuzzy techniques in the fusion algorithm 

 

The fusion algorithm is susceptible to the introduction of fuzzy concepts, for example, in the aspect of distance 

calculations. The distances could be converted from Euclidean to fuzzy. The selection of the pairs of attributes to join 

and in which order, is a central aspect of the joining process. 

 

Motivation: We assert that there are sets of attributes for which the best representation is in the fuzzy form. For 

example, in the medical domain we have the attribute ‘grade of recovery possible’. This implies that a fuzzy treatment 

would give better results for prognostic and diagnostic models, once the original attributes have been fused (joined) in 

‘super-attributes’. 

 

Distances: In the case of the distances, we must emphasise that we consider distance not between cases, but between 

attributes, and the clusters are clusters of attributes, formed by the fusion process. 

 

Crisp version: we may initialise the algorithm as an averaging fusion algorithm, by using Euclidean distances when the 

variances are all equal to 1 (unity). If (I,J) is the correlation between variables I and J, D(I,J) =  [1 (I,J)  / 2M is the 

square of the Euclidean distance between the standardised variables. The distance between clusters of variables is 

defined as the mean distance over pairs of variables, one for each cluster. Then we obtain exactly the same sequence of 

fusions over the distances, as in the previous algorithm. 

 

Fuzzy version: one approach would be to use the fuzzy version of  the Fuzzy c-Means ‘Least Square Functionals’ 

algorithm as a starting point.  The definition of this algorithm has been given previously in Section 2.2.7 of the thesis. 

 

 

Interpretation of attributes: the fusion algorithm looks for attributes with the highest covariance, and it generates a 

new attribute from the mean of the covariance of the original pair. When the joining algorithm makes the decision to 

join two attributes, it would join all the attributes with their respective grades of membership to each cluster. We could 

define a threshold below which we could not include an attribute in the process. This would imply that a given attribute 

could be referenced in more than one cluster, with different grades of membership. We could then select the cluster with 

the highest sum of grades of membership (of all the attributes in the cluster), or that with the highest sum of grades of 

membership for one or more attributes of greatest interest. The first sum could be interpreted as a ‘coherence factor’ for 

the cluster.  
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3.2.3   Aggregation using the WOWA operator 

 
We now detail the work which has been based around the WOWA aggregation operator, and the family of operators to 

which it belongs, such as OWA, WM. As mentioned previously, we have chosen an algorithm which is adequate for 

small datasets, and which enables us to include reliability and relevance information as part of the data processing, in 

the form of weighting vectors. We have considered enhancements to the algorithm such as the learning of a weight 

vector using machine learning techniques, processing of missing data, and allowing a weight vector for each variable 

instead of just one static weight vector. The last enhancement may be important when we have very different variable 

types and data distributions within the same data set. 

 

Discussion and comparison of aggregation methods 
 

[Torra98c] gives a summary and comparison of integration methods for numerical information, from more specific 

operators such as WM and OWA, to generalised operators such as the Fuzzy integral. For non-numerical data, such as 

categorical values, we assume an appropriate representation method in a numerical form. This also applies to fuzzy data 

values, in which membership grades would be represented appropriately in order to process them as numerical data. The 

first group of operators are the arithmetic mean, the weighted mean and the OWA operator. The WM and OWA are a 

lineal combination of the values according to a vector of weights. In contrast to these operators, an operator which 

allows the consideration of fuzzy measures is the Choquet integral.[Torra98c] states that the WM, OWA and WOWA 

aggregation operators are Choquet integral for particular fuzzy measures. Another group of aggregation operators not 

related to the previous, are the weighted min and weighted max. Their difference lies in the weights: at least one of the 

weights must be one, and the addition of the weights can be greater than one. The Sugeno integral generalises the 

weighted Min and weighted Max in the same way that the Choquet integral generalises the OWA and the WM. Finally, 

the fuzzy integral can be considered a generalisation of the Choquet integral and the Sugeno integral. The fuzzy integral 

is defined over a tuple known as a t-conorm system for integration, and an operation -  , based on one of the elements of 

this tuple. See Section 2.3.1 for definitions of the Choquet, Sugeno and fuzzy integrals. 

 

In the work on the Apnea  applications, and the data capture and processing using the patient questionnaire, we decided 

to use WOWA as the mechanism which would create a model from the data and produce a diagnosis for each patient. 

We chose WOWA for several reasons, the first being that it provided two weighting vectors which we could interpret as 

‘relevance’ and reliability’ for the variables and data values, respectively. It also has a robust interpolation mechanism, 

a Bernstein Polynomial, which maintains the original characteristics of the curves which the weights represent, that is, 

points of inflexion, and concave or convex segments. WOWA also provides a simpler solution than Choquet or Sugeno 

integrals, given that WOWA requires 2  n parameters, whereas Choquet requires 2
n

2 parameters. WOWA requires 2 

vectors each of n parameters, where n  the number of elements to aggregated. The Choquet integral requires 2
n

2 

parameters, given that a fuzzy measure is a function of P(X)  [0,1]. Thus, for large values of n, the measure requires 

many parameters and the interpretation is complex. Given that the number of examples in the Apnea data application, as 

described in Sections 4.3 and 4.4, is relatively small (less than 200 cases), WOWA is favourable for learning the 

parameters (or weights) given the smaller number to be learnt. For example, 10 variables gives 2
10

=1024 parameters, 

whereas 20 variables results in 2
20

 = 1048576 parameters ! Thus for  200 cases, as with the Apnea application, it is 

more reasonable to learn 2 20=40 parameters rather than 1048574 ! 

 

The WOWA aggregation operator is therefore apt for processing small data sets (less than 200 cases) with a wide 

dimensionality of problem (between 10 and 20 variables). It also has an advantage with respect to typical ‘data mining’ 

algorithms such as neural networks and rule induction, which tend to require greater volumes of data (cases) in order to 

be able to produce a reasonable model of the data and therefore give a decent predictive or classificative precision. We 

can also have control over the process by being able to use different interpolation functions, and by varying the weights 

in the two weighting vectors. The small number of cases and wide dimensionality of problem also makes the WOWA 

more appropriate for this application in comparison to the Choquet Integral. 
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Figure 52. Scheme of different aspects of aggregation and corresponding authors 

 

 

In Figure 52 we see the different aspects which go into an aggregation operator, including the different aggregation 

operators themselves. We have already detailed these different methods in Section 2.3; here we summarise that in the 

thesis we have chosen to use the WOWA operator [Torra97a], because  its two weighting vectors are ideal for our 

application of Apnea screening, in order to represent the ‘relevance’ and ‘reliability’ meta-data. We have also tested 

results against the Weighted Mean and OWA [Yager88] aggregation operators. The interpolation method as based on 

that of [Chen95], given that is the method used by WOWA to construct the bias curves from the weights. For the 

construction of membership functions and the definition of quantifiers, we have used Zadeh’s s-function [Zadeh73]. For 

the manual and automated assignment of weights we have been influenced by [O’Hagan88] and [Marichal99]. In the 

case of automated assignment, an original method using genetic algorithms for learning has been developed, as detailed 

in [Nettleton01b]. 

 

Two Approaches for Learning the Weights 
 

Our approach to learning weights is based on using a set of examples. We assume that each consists on a set of values 

to aggregate and the corresponding outcome. Let the set of examples be the ones in Table 34. This is, a set of M 

examples, each one with N input values (the dimension of the aggregation operator is, therefore, N). In this table, a
i
j 

corresponds to the value supplied by the j-th source in the i-th example; and m
i
 corresponds to the outcome of the i-th 

example. 

 

Table 34.  Data examples 

a
1

1 a
1

2 a
1
3 ... a

1
N | m

1
 

a
2

1 a
2

2 a
2
3 ... a

2
N | m

2
 

... 

a
M

1 a
M

2 a
M

3 ... a
M

N | m
M
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The goal of our approach is to learn the weights that when used in conjunction with the aggregation operator returns m
j
 

(or a similar value if no exact solution exists) when the input vector is (a
i
1  a

i
2  a

i
3  ...  a

i
N). We compare two approaches, 

one based on the Active Set Methods and the other based on Genetic Algorithms. We review them below. In both cases, 

what we need is a way to determine what a good solution is. This is equivalent to define a measure of the goodness of a 

solution. In our case, this will be done through the accumulation, for each example (a
i
1  a

i
2  a

i
3  ...  a

i
N | m

j
), of the 

distance between the ideal outcome m
j
 and the outcome given by the aggregation operator. The distance for each 

example is computed through the squared difference. Therefore, in our case, the more suitable weighting vectors are the 

ones that minimises this expression:  

 

D(p) = a1
j
, ...,aN

j
 - mj 2

j=1

M

                              (3.11) 

 
Together with this objective function, a set of restrictions have to be considered when the aggregation function  is 

either the weighted mean, the OWA operator or the WOWA operator. This restriction is that the parameters (the 

weights) have to define a weighting vector. This is, weights have to add to one and be positive. Therefore the general 

problem can be formalised in the following way:  

Minimize a1
j
, ...,aN

j
 - mj 2

j=1

M

 
such that 

 
pi

i=1

N

 = 1
    

wi

i=1

N

 = 1
 

 pi  0 for all i                wi  0 for all i   

Where in the case of  being the weighted mean, only restrictions over p apply; in the case of being the OWA operator 

only those over w and in the case of being the WOWA both apply.  

 

(i) Active Set Method based approach 
 

The problem formulated in this way is a typical optimisation problem and there exist different techniques to tackle with 

it. In the particular case of using a weighted mean or a OWA operator, the problem reduces to a quadratic program and 

there exist several algorithms that solve the problem with accuracy (see, for example, [Luenberger73], [Gill81]). For 

example, the ones based on active set methods.  

Active set methods rely on the simplicity of computing the solution of quadratic problems with linear equality 

constraints. Based on this, algorithms iterate so that in each step inequality constraints are split into two groups: one 

with the ones that will be treated as active and considered as equality constraints; and another with the ones that are 

ignored. Then, the algorithm moves to an improved point moving on the surface defined by the set of active constraints. 

At this point constraints can be added to and removed from the active set. This process is repeated until the minimum is 

reached. A detailed analysis of such method applied to the learning of weighting vectors for the weighted mean and the 

OWA operator is presented in [Torra99b].  

The application of these methods to the example introduced by [Filev98] for the OWA operator resulted to a good 

solution. In Table 35 the data matrix corresponding to this example is given. Using the active set method approach the 

resulting weighting vector for the OWA operator was: 

  

w = (0.1031, 0.0, 0.2293, 0.6676) 

 

while the solution in [Filev98] after 150 iterations (based on the use of the gradient technique) was: 

 

w = (0.08, 0.11, 0.14, 0.67) 

 

after 150 iterations. The error using active set methods was: 0.001256, while with the gradient technique due to the slow 

convergence was: 0.002156.  
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Table 35.  Data matrix H and solution vector d (taken from [Filev98]) 

 
0.4 0.1 0.3 0.8 | 0.24 

0.1 0.7 0.4 0.1 | 0.16 
1.0 0.0 0.3 0.5 | 0.15 
0.2 0.2 0.1 0.4 | 0.17 

0.6 0.3 0.2 0.1 | 0.18 

 

 

(ii) Genetic Algorithm based approach 
 

An evolutive procedure is a probabilistic algorithm which maintains a population of individuals P(t) = {x1
t
,....xn

t
} for 

iteration t . Each individual represents a potential solution to the problem being considered, and is normally 

implemented as a data structure S. Each solution xi
t 

is evaluated to give a measure of its ‘aptitude’. Then, a new 

population is formed (iteration t + 1) by selection of the most apt individuals (selection step). Some members of the 

new population undergo transformations (modification step) using ‘genetic’ operators, which form new solutions. There 

are unary transformations mi (mutation type) which create new individuals by a small change in just one individual (mi 

: S  S), and transformations of a higher order cj  (crossover type), which create new individuals by the combination of 

parts of various (two or more) individuals (cj : S , ... , S  S). After a given number of generations the program 

converges – with the objective that the best individual represents a solution close to the optimum.  

Within the extensive literature in this field, we can highlight the following: two key authors for parameter 

optimisation problems are [Rechenberg73], [Schwefel81]; Fogel’s evolutionary programming [Fogel66] is a technique 

for searching through a space of small finite-state machines; Glover’s scatter search techniques [Glover97] maintain a 

population of reference points and generate offspring by weighted linear combinations. A matrix representation for the 

chromosome was introduced by Vignaux [Vignaux91], and [Koza90], [Michalewicz92] are examples of specific genetic 

operators to accommodate the problem to be solved. The incorporation of problem specific knowledge has been tackled 

by authors such as [Antonisse87], [Forrest85], [Fox91].  

We can use genetic algorithm techniques to learn the weighting factors for aggregation operators such as WM, 

OWA and WOWA from historical data. In the case of WOWA, we could also look for interpolation functions which 

give best results, with an adequate parametric representation for the function in the chromosome. A genetic algorithm 

has as input a set of input cases and their respective outcomes (examples), a set of modifiable values (in this case the 

weighting factors),  a set of constraints (in this case the sum of the weighting factors must be equal to 1), and an 

objective function, which we have defined as the minimum difference between the predicted outcome m
j
’ and the real 

outcome m
j
. We wish to find the weighting factors which best approximate the input and output data, while minimising 

the objective function.  

 

Figure 53. The Basic Structure of the Evaluation routine 

 

Procedure evaluate 

begin 

 for all (genetic) individuals do 

 begin 

            read weights  and  from current individual i’s chromosome 

     total_distance  0 

     for all data cases do 

             begin 

                      read (data input row j) 

         real_output  read (real_output for this case) 

                      wowa_output  wowa (weights, data)  

      local_distance  real_output – wowa_output 

         total_distance  total_distance + (local_distance)
2
 

      end 

      individual(i).aptitud  total_distance 

 end 

end 

 

The routine in Figure 53 simply goes through all the individuals in the current population and assigns a ‘fitness’ score to 

each. The fitness score for each individual is calculated by executing the function which calculates the output (in this 

case the WOWA aggregator) for each of the data cases (1..j) and with the w and p weight  vectors contained in the 

chromosome of individual i.  
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The chromosome consists of a single vector data structure which holds the w weights and the p weights. Another 

approach would have been to separate the w and p weights into two separate vectors, and maintain them as separate 

populations. This gives the possibility of converging more rapidly because the different weight types are not mixed by 

the crossover and mutation operations. 

 

Struct chromosome 

{ 

     int gene_vector[1..num_weights]; 

} 

 

In the case of WOWA, gene_vector holds the w and p weights and num_weights is equal to the number of  variables  

2. Likewise, in the case of OWA, gene_vector holds the w weights and num_weights is equal to the number of  

variables. Finally, in the case of WM, gene_vector holds the p weights and num_weights is also equal to the number of  

variables. 

 

If we normalise the  and  values, we guarantee that consistent WOWA’s are generated: 

 

'i = i /  i 

 

'i = i /  i 

 

In Table 36 the data matrix used to learn the weights for the WOWA operator using the GA method is given. Using the 

GA method approach the resulting weighting vectors for the WOWA operator was:  

 

w = (0.47, 0.05, 0.11, 0.37) 

p=(0.15, 0.19, 0.35, 0.31) 

 

This was obtained using crossover in 1 point, with random and uniform mutation. The population was 150, the possible 

gene values ranging between 1 and 10; the crossover rate at 0.85 and the mutation rate at 0.01. The best aptitude was 

0.000, run over 100 generations and best individual found after 3 generations. 

If we increase the range of possible gene values to be between 1 and 100, and increase the population to 300, the 

following result was found, also with best aptitude 0.000, and taking 9 generations to reach it. 

 

w = (0.07, 0.42, 0.07, 0.44) 

p=(0.01, 0.51, 0.31, 0.17) 

 

while the solution for the w and p vectors given in [Torra97a] was: 

 

w=(0.13, 0.37, 0.37, 0.13) 

p=(0.25, 0.25, 0.25, 0.25) 

 

Table 36.  Data matrix H and solution vector d (taken from [Torra97a]) 
0.7 0.6 0.4 0.3 | 0.50 

0.9 0.7 0.5 0.3 | 0.60 

 

 

 

The data matrix used to learn the weights for the OWA operator using the GA method is that of Table 35. Using the GA 

method approach the resulting weighting vectors for the OWA operator was:  

 

w = (0.07, 0.07, 0.33, 0.53) 

 

This was obtained using crossover in 1 point, with random and uniform mutation. The population was 150, the possible 

gene values ranging between 1 and 10; the crossover rate at 0.85 and the mutation rate at 0.01. The best aptitude was 

0.067, run over 100 generations and best individual found after 9 generations. 
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If we increase the range of possible gene values to be between 1 and 100, and increase the population to 350, the 

following result was found, with best aptitude 0.061, and convergence in 27 generations: 

 

w = (0.09, 0.01, 0.31, 0.59) 

 

In Table 37 the data matrix used to learn the weights for the WM operator using the GA method is given. Using the GA 

method approach the resulting weighting vectors for the WM operator was:  

 

p = (0.08, 0.21, 0.29, 0.38, 0.04) 

 

This was obtained using crossover in 1 point, with random and uniform mutation. The population was 150, the possible 

gene values ranging between 1 and 10; the crossover rate at 0.85 and the mutation rate at 0.01. The best aptitude was 

0.031, run over 100 generations and best individual found after 7 generations. 

If we increase the range of possible gene values to be between 1 and 100, and increase the population to 300, the 

following result was found, with best aptitude 0.004, and convergence in 18 generations: 

 

p = (0.1, 0.2, 0.3, 0.4, 0.0) 

 

The values of the resulting p vector are identical to those given in [Torra99b]. 

 

Table 37.  Data matrix H and solution vector d (taken from [Torra99b]) 
0.3 0.4 0.5 0.1 0.2 | 0.30 
0.2 0.1 0.4 0.1 0.5 | 0.20 

0.2 0.5 0.8 0.0 0.1 | 0.36 
1.0 0.5 0.3 0.6 0.7 | 0.53 
0.2 0.1 0.1 0.1 0.1 | 0.11 

0.7 0.7 0.7 0.7 0.7 | 0.70 
0.4 0.8 0.2 0.8 0.6 | 0.58 
0.3 0.2 0.1 0.4 0.3 | 0.26 

0.6 0.8 0.7 0.2 0.5 | 0.51 
0.1 0.5 0.2 0.6 0.4 | 0.41 

 

The weighted mean was the only operator which showed a significant improvement in the best solution found by 

varying the parameters to the GA. In the case of WOWA and OWA, diverse combinations were tried for mutation rate 

and crossover rate, but without improvement of the best solution found. Notwithstanding, by changing the population 

size and allowable values for the gene, we were able to find different weight values for the best solutions with the same 

aptitude. 

We also tried a mutation function with Gaussian distribution instead of random and uniform, and a crossover 

function with 2 point crossover instead of 1. In the case of the WM, this reached the same precision as the previous 

solution  (best aptitude 0.004) with the same weights. In the case of OWA, the solutions found were slightly worse (best 

aptitude 0.068 compared to 0.061). The 2 point crossover can be used to preserve order of subgroups within the 

chromosome, when this is significant to the solution to the problem, as in the TSP (Travelling Salesman 

Problem)[Lawler85], [Michalewicz96], or in this case, where the weights are ordered with respect to the data values. 

We think the lack of improvement for  OWA in this case was due to the insufficient length of the chromosome. 

Although the type of problem is appropriate to show an improvement with this method, the total number of genes was 

insufficient to create significant subchains of genes within the chromosomes. 

 

Reformulation for examples with a different number  of variables 
 

In order to use an aggregation operator to process data with missing values, we have several options open to us. The 

first option may be to fill in the missing values with a new value. This could be a flag which indicates that the value is 

missing, or it could be the mean of the rest of the values for that variable in the case of numeric values, or the mode in 

the case of categorical values. This method works better when there are a large number of cases and thus the mean and 

mode values are good approximations. In our case, we wish to work with a small number of cases and we cannot 

guarantee that the mean and mode will be accurate. Thus we choose to eliminate the missing values (not the whole 

case). If  the cases have N variables, and for case j, two variables are missing, then we eliminate those variables for case 

j and we pass the p and a vectors with N - 2 variables to the WOWA operator. The w vector remains unchanged, and 

we pass N of its weights to WOWA. This is because the p and a vectors must have the same length: for each a value 

there must exist a corresponding p weight. In contrast, the w vector is not directly related to the p and the a vectors, as it 

is used to construct the quantifier function. The different lengths of the a and p vectors with respect to the w vector 

make it necessary to maintain two length counters and pass these to WOWA to be used in the appropriate points of the 

function code. Of course, the aggregation operator performs the aggregation based only on the  N - 2 variables received 
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as its input. Thus, a reformulation of the aggregation operator is needed so that it can be applied to a number of 

variables less than N. This approach has its cost/benefit: on the one hand, we have the possible benefit due to a 

reduction in noise due to erroneous substitute values. On the other hand we have the possible cost due to information 

loss due to the absence to the omitted variables’ value. The final decision on whether to choose one option or the other 

depends on the application and the nature of the data being processed, as well as the number of cases.  

 

In the case of the WM, the reformulation is as follows: 

 

D(p) =

ai
j pi

i I
j

pi

i I
j

- mj

2

j=1

M

            (3.12) 

 

where Ij is a subset of 1,..., N} with the index variables of example j. In the reformulation, we divide by  pi in order 

to re-normalise the weights and assure that their sum is equal to 1. The approach for the OWA is similar and we have 

not detailed it here. In the case of the WOWA, the reformulation is as follows: 

 

D(p) = W*

ps(j)
j i:j I

j

pi

i Ij

 - W*

ps(j)
j<i:j I

j

pi

i Ij

) ai
j

i I
j

   - mj

2

j=1

M

        (3.13) 

 

where Ij is a subset of 1,..., N} with the index variables of example j. In the reformulation, we divide by pi in the 

same manner as for WM and OWA, and the ordering ( j i p (j)) is now restricted to the subset i  Ij . 

 

Table 38.  Data matrix H and solution vector d , with missing values indicated by ‘M’ 
0.7 0.6 0.4  M  | 0.50 
0.9 0.7 0.5 0.3 | 0.60 

 

In Table 38 the data matrix with one missing value is given. A new version of WOWA, modified to process missing 

values as described above,  was executed with this data set and with the same parameters used in the previous tests. This 

resulted in a best aptitude of 0.001, with convergence in 6 generations. The weight vectors were as follows: 

 

p = (0.17, 0.39, 0.34, 0.11) 

w = (0.02, 0.41, 0.29, 0.29) 

 

If we increase the number of missing values to two, that is, in Table 38 we also make the value corresponding to row 2, 

column 4 equal to ‘M’, and rerun the WOWA modified to process missing values, the best aptitude is also 0.001, but 

convergence is slower in 26 generations. If we increase the number of missing values to four, that is, in Table 38 we 

also make row 2, column 4 and row 1 column 1 equal to ‘M’, and rerun the modified WOWA, the best aptitude is 

0.009, achieved at the maximum (cut-off) of 100 generations. Finally, if we increase the number of missing values to 

six, that is, in Table 38 we also make row 1, column 2 and row 2, column 3 equal to ‘M’, and rerun the modified 

WOWA, we see a significant degradation in the performance: best aptitude is 0.300 achieved in 100 generations; the 

output values are 0.50 and 0.90 for rows 1 and 2, respectively; the weight vectors in this last case settle to the following: 

 

p = (0.42, 0.04, 0.12, 0.42) 

w = (0.05, 0.36, 0.41, 0.19) 

 

In conclusion, we see that with the data set of Table 38, there is a robust handling of missing values, in which there is 

only a significant degradation in the overall precision when there exists a high percentage of missing values. We have to 

take into account that the data in Table 38 is a small artificial data set and it is relatively easy for the aggregation to find 

good alternative solutions for the different subsets of the values. 
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Advantages and Inconveniences of the two approaches 
 

Both active set methods and genetic algorithms have been applied to learn the weights for the WM, OWA and WOWA 

aggregation operators. The  GA learning method has been used with medium size real problems, as detailed in Sections 

4.3 and 4.4 of the thesis, and was selected in preference to ASM, due to the advantages which GA has for the specific 

aggregation operator used (WOWA) and the application (medium size data sets for Apnea diagnosis). Notwithstanding, 

the two approaches are complementary, and we comment this in the following section, for several criteria of 

appropriateness. First we consider the WM and OWA operators, and then the WOWA. 

 

Quality of solution found: ASM based methods are appropriate for learning the weights for the WM and the OWA 

operators given that for these operators the minimisation problem is a quadratic one and almost exact solutions can be 

found. For quadratic problems the formulation of the problem and their resolution is simple. For the WM and OWA 

operators, genetic algorithms are not so appropriate because the best solution they find is usually a sub-optimal one. 

Thus ASMs are more precise for these operators. Computational cost: the computation costs in terms of memory and 

CPU usage are larger in the case of the GA based approach than in the case of the ASM. This is due to the fact that 

genetic algorithms need to compute the fitness function for each of the individuals in each of the populations and this is 

calculated applying the aggregation function to each example. Instead, the costs of the ASM are mainly proportional to 

the number of variables and not to the number of examples. This is so because ASM only uses the examples once - in 

the initial step - to compute a N*N matrix (where N is, as above, the number of examples) and the iterative method uses 

this matrix but not the initial examples. According to this, the greatest difference between the costs is when the set of 

examples is large and the number of variables is small. In relation to the implementation, neither ASM based methods 

nor GA based ones are difficult to implement. Ease of implementation: in order to implement ASM, a general ASM 

algorithm is required which allows the selection or removal of active constraints (described in [Torra99b]) and the 

solution of linear equations. The implementation of GA has to follow the indications given in Section 3.2.3. According 

to the better approximation, the computational cost and the implementation difficulties, it seems that when the 

aggregation operator is either WM or OWA then ASM based methods are more recommendable. 

 

WOWA operator:  in the case of the WOWA operator, in contrast to WM and OWA, the complexity of ASMs 

increases because the function to minimise is not quadratic. This is due to the existence of the interpolation function w
*
 

(built from the weighting vector w - one of the weighting vectors to learn) and due to the fact that this function is 

applied to additions of some of the p's (the other weighting vector to learn). Although there exist some optimisation 

techniques to find approximate solutions for non quadratic problems, for example [Luenberger73], their implementation 

is a difficult and non trivial task. In this case, the complexity of genetic algorithms does not increase and the main 

change is to use the WOWA operator in the fitness function instead of using the OWA or WM. Thus, genetic 

algorithms can be used to obtain sub-optimal solutions with sufficient precision more easily. Besides of these 

advantages, the genetic algorithm approach is also suitable because it can find several sub-optimal solutions. This is 

particularly adequate because initially we do not know whether the distance for the WOWA operator will be convex or 

not (this is not the case for the WM and OWA where D(p) is convex).  

 

Missing values: the use of genetic algorithms presents an additional advantage for either the WM, OWA or WOWA 

operators. This is the case when data files include missing values or the number of variables is different in each 

example. In this section an alternative definition of the distance function has  been presented, which takes this fact into 

account. Using this function is relatively simple using genetic algorithms, given that only the fitness function has to be 

adapted, and the rest of the program does not have to be modified. However, this is not so easy for the ASM based 

approach because the resulting distance is in this case more complex due to the missing values. Therefore, when the 

number of variables is not the same for all the examples, GA’s provide a simpler solution to learn the weights. 

 
Thus, GA’s and ASM represent two different approaches to learning the weight values used by the WM, OWA and 

WOWA aggregation operators. Each approach has its advantages and disadvantages, some of which are summarised 

above, and the methods provide viable options when considering alternatives for learning weights, whose choice is 

influenced by the nature of the data sets being processing, the observed results and the desired precision and 

repeatability of the outcome. 
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Different ‘w’ (reliability) weight vector for each variable 
 

This has two aspects: (i) allowing only a limited number of forms for the ‘w’ weights; (ii) the second part is the 

definition of a ‘w’ vector for each variable and  a ‘p’ value for each variable as before. The default WOWA operator has 

one ‘w’ vector and one ‘p’ vector which remain constant during the processing of a given data set. In the modified 

version, the data set can be thought of in two dimensions as a matrix which has a ‘w’ vector associated with each 

column (variable), and a ‘p’ vector associated with each row. The ‘w’ and ‘p’ vectors are interpreted as the concepts of 

‘reliability’ and ‘relevance’, respectively, as before.  

 

Assignment of  weights: the  weight vectors depend on the characteristic curve assigned to each variable. Which 

characteristic curve to assign to each variable is decided by the medical expert. A ‘bias’ vector is used to hold the values 

which indicate which of the five possible characteristic curves is assigned to each variable. For example a bias vector, 

bias[i], i=1..N, where N=5 (the number of variables). The bias vector could have the following assignment: 

bias[1]=’M’, bias[2]=’E’, bias[3]=’H’, bias[4]=’M’, bias[5]=’E’. Thus, the content of bias[2], for example, indicates 

which characteristic curve is to be assigned to variable 2, which in this case will be the ‘E’ curve, which gives an even 

bias to all values. The characteristic curves are allowed five fixed possible forms: even bias (E) is assigned as {0.2, 0.2, 

0.2, 0.2, 0.2}; low values bias (L) is assigned as{0.3,0.3,0.2,0.1,0.1}; high values bias (H) is assigned 

as{0.1,0.1,0.2,0.3,0.3}; high&low values bias (O) is assigned as{0.3,0.15,0.1,0.15,0.3}; middle values bias (M) is 

assigned as{0.1,0.25,0.3,0.25,0.1}. The index values which are stored in the bias vector can therefore be one of the 

values, ‘E’,’L’,’H’,’O’,’M’. This still allows for a great number of possible permutations of the values in the bias 

vector. The values assigned to the ‘w’ vector are then interpolated by the quantifier as in standard WOWA.  

 

We assume that the biases (M,H,L,E,O) have been previously assigned for each variable to biases[i], i=1...N. We recall 

that with the ‘w’ vector we are assigning a ‘reliability’ weight, thus in the example above we are saying that extreme 

values for the variable i are not so reliable (in the given degree/scale) and their influence is diminished. On the other 

hand, midrange values are considered relatively more reliable and their influence is relatively potentiated.  

 

                                                                 Bias vector M         H        L          M       O 

 

 

            Corresponding ‘w’ vector values      0.1  0.3  0.5  0.3  0.1 

            for ‘M’ bias                           Interpolated 

                                                                                                                                           characteristic curve 

 

Figure 54. Bias vector as index for characteristic ‘reliability’ curves  for each variable 

 

 

Use of the reliability vector  

 

In Figures 55a to 55e we can see each of the characteristic curves defined by the E, L, H, O and M vectors whose 

weight values were defined in the previous section. These vectors represent the  vector which can be used to 

strengthen some responses while diminishing others, as we see in Figures 55a to 55e. For example, in Figure 55b, a 

response of ‘never’ will be strengthened to affect the (aggregated) outcome more than a response of ‘always’, which 

will have its contribution to the (aggregated) outcome diminished. 

 

Note that we distinguish this weighting effect for the response reliability from the membership grade of the responses as 

detailed previously. We can say that the membership grade is reflecting the qualitative information provided by the 

patient, whereas the  weighting of the responses reflects the medical experts knowledge of  what responses are most 

expected for each question. 
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Figure 55a. Even bias vector (E) 
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Figure 55b. Low bias vector (L) 
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Figure 55c. High bias vector (H)  
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Figure 55d. High & Low bias vector (O) 
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Figure 55e. Middle bias vector (M) 



 155 

With reference to the description of the assignment of the values to the ‘w’ vector, each variable may have assigned one 

of five possible characteristic curves,  as indicated in the ‘bias’ vector.  Each characteristic curve is stored in a separate 

vector, as five value points. It is from the value points of the characteristic curves, that WOWA uses the interpolation 

method of Chen and Otto [Chen95], to create a continuous function curve which is used to weight all the values of each 

variable. 

 

Summary of the adaptations to the WOWA aggregation operator 
 

The following adaptations were made to the WOWA aggregation operator: (i) reformulation for examples with a 

different number of variables in order to enable processing of missing values; (ii) calculation and input of membership 

grades; (iii) interpolation function for each variable. The learning of the ‘p’ weights using the genetic algorithm did not 

require modifications to the WOWA code itself, given that the weights are assigned to/from the p and w parameters of 

WOWA. In contrast to the standard WOWA operator, which executes the interpolation of the values in the w-vector 

only once, the modified version of WOWA must execute the interpolation each time it encounters a new variable and its 

corresponding cases. The following is a description of this version of WOWA, called AWOWA. 

 
AWOWA aggregates a row of values into one value, using two weighting vectors p and w. p is called the relevance 

vector, with one value for each value, and w is called the reliability vector, also with one value for each variable. A 

third vector, a, is the data vector with data for one case for each function call to AWOWA. AWOWA is called thus: 

AWOWA(p,w,a). 

 

(i) Reformulation for examples with a different number of variables in order to enable processing of missing 

values:  

 

let Nv be the number of variables including those with missing values; let Nmv be the new number of variables 

once those with missing values have been identified and eliminated. For each variable vi, each of its values is 

tested to see if it is null (or a value which indicates that it is unassigned). For each variable vi which has 

missing values, its cell in the a,w and p vectors is removed and the remaining cells moved one place to the left 

(that is, the vectors are compacted). 

 

(ii) Calculation and input of membership grades:  

 

for each fuzzy type variable, a single value, fvi is calculated. Let n be the number of fuzzy variables, m be the 

number of fuzzy labels (the same for all variables), li be the ordinal numeric value of the linguistic label {1,2,3, 

….}, and i be the grade of membership corresponding to each linguistic label. Thus, for each fuzzy variable: 

 

                               n 

fvi =      lij  ij 
                             j=1 

 

(iii) For all variables vj, j=1,n, define an interpolation function for each variable:  

 

assign ‘w’ vector weights, for each fuzzy variable fvj .  For each element i, 

 

wji = biasi 

where bias is the selected characteristic function for this variable. 

 

(iv) The function SetQ does the interpolation of w and places it in an appropriate structure, w*.  

 

w is a vector with n points to be  interpolated, where n is the number of variables.   

 

w* = SetQw 

 

(v) The function OrderA places the ‘a’ data values in ascending order and moves the corresponding ‘p’ values to 

the same positions.   

 

OrderAp, a 

 

 

 



 156 

(vi) Weight the interpolation of w which has been placed in w*, by vector p, the second weight vector:  

 

this produces a new weighting vector   which will act on the data values in step (vii) below. For each row of 

values j for each case, calculate the new weighting vector, using a monotone increasing function which is 

represented by w*: 

                             n                                      n 

j  =    w* (   p (j) ) – w* (   p (j) ) 
                                             j i                                    j i 

 

(vii) In the last step, the function  calculates the scalar product of the two vectors,  and a, this being the final 

output value for the current case, and where a is the vector of data points. 

 

AWOWA  = , a 

 

 

Note: In order to input the membership grades into WOWA, we aggregate the non-zero membership grades using 

weighted mean (WM) into just one numeric value, as detailed in step (ii) above. This value is normalised and given as 

input data to WOWA. For the membership values of different variables to be comparable, we should use the same 

membership function for all variables. 

 

 

Application of the adapted WOWA to Apnea diagnosis 
 

The following gives the implementation details for the techniques described in this section to the real application of 

Apnea diagnosis. The results of application to the real data sets are given in Sections 4.3 and 4.4.  

 

Learning the ‘relevance’ weights from historical case data using an evolutive program (genetic algorithms) 

 

Objective Function 

If Op is the diagnosis predicted by the aggregation function WOWA, and Or is the normalized AHI value (apnea 

hypopnea index, see Section 1.4.7), that is the real diagnosis, then the objective is to minimize the square of the sum of 

the differences between the Op and the Or for all patient cases, as defined in formula (3.14) below. The square is used in 

order that the negative and positive errors do not compensate each other.  

 

 Min  (Op - Or)
2
           (3.14) 

 

We now outline how a genetic algorithm technique is used to learn the p (relevance) weighting factors from historical 

data values. A genetic algorithm has a set of input and output data (examples), a set of modifiable values (in this case 

the weighting factors),  a set of constraints (in this case the sum of the weighting factors must be equal to 1), and an 

objective function, which in our case is to minimize the difference between the predicted diagnosis and the real 

diagnosis.  We wish to find the weighting factors which best approximate the input and output data, while minimizing 

the objective function. 

 

Example: 

 

Input (data): I = {5, 6, 4, 6, 1, 5, 2, 5, 2, 2, 1, 2, 2, 5, 9, 7, 2, 2, 8}, one value for each variable. 

 

Input (relevance weights to be learned): initial values of p = {0.90, 0.20, 0.85, 0.25, 0.50, 0.90, 0.62, 0.90, 0.63, 0.68, 

0.55, 0.67, 0.61, 0.93, 0.74, 0.63, 0.64, 0.27, 0.94}, one value for each variable. 

 

Output: Op = [0,1] (predicted diagnosis value) Or = [0,1] (real diagnosis value) 

 

and,  Or = AHI  / max (AHI) 

 

Set of Constraints 

(i) Values of   between 0 and 1, with precision of 2 decimal points; (ii) sum of   values equal to 1; (iii) values of  

must be normalized.  
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The ‘evaluate’ procedure, as detailed previously in Figure 53, simply goes through all the individuals in the current 

population and assigns a ‘fitness’ score to each. The fitness score for each individual is calculated by executing the 

function which calculates the diagnosis (WOWA aggregator) for each of the patient cases (1..j) and with the  weight  

vector contained in the chromosome of individual i.  

 

To diagnose a patient, WOWA is called thus: 

       n 

       (Ai, V , V j),  

      
j=1 

where Ai is the data vector for patient i , V  is the variable weight vector for all variables, and V j is the data value 

vector for variable j. 

 

 

Manual assignment of the ‘relevance’ and ‘reliability’ weights 

 

The relevance and reliability weights are assigned on the one hand by the medical expert, based on current clinical 

literature in the Apnea diagnosis field, on his own knowledge and experience, and taking into account the type of 

patients (the mix) which exists in the Salamanca Sleep Clinic with whom we collaborated for the study. In the previous 

section we have seen a method for ‘automatically’ generating the relevance weights by applying a ‘genetic’ learning 

algorithm to historical case data. In Section 4.4 the results of diagnosis using the WOWA aggregation operator with 

‘automatically’ assigned ‘relevance’ weights is compared for precision with the results of diagnosis using the WOWA 

aggregation operator with ‘relevance’ weights assigned ‘manually’ by the medical expert.  

 

In the case of the demographic and clinical data variables, such as age, sex, height, weight, neck circumference, it is 

easier for the medical expert to evaluate their reliability and relevance. In the case of alcohol and tobacco consumption, 

this depends on the truthfulness and accuracy of the patient. Blood test results could be used as corroborative evidence 

to the verbal responses. Also, relevance and reliability estimates in the clinical literature can be used. The questionnaire 

questions themselves, by their nature, can be classified by relevance and reliability. On the other hand, they again 

depend on the truthfulness and accuracy of the patient. Some questions will be more susceptible to untruthfulness or 

inaccuracy than others. As a data post-processing phase, inconsistencies can be identified in responses, and an overall 

judgment of the reliability of a patient’s questionnaire can be made, which may ‘dampen’ or ‘potentiate’ the general 

reliability values. 

 
Statistical assignment of the ‘relevance’ and ‘reliability’ weights 

 

We have discussed manual weight assignment by the medical expert, as well as automated weight assignment by 

directly learning the weights from the data, using a genetic algorithm. In Section 4.3.2, a third method for assigning the 

weights is attempted, which uses diverse clustering and classification/prediction methods to establish a ranking for 

relevance. In this sense we understand relevance as the degree of correlation of an input variable, such as ‘neck 

circumference’, with the output value, such as ‘apnea diagnosis’. A ‘by-product’ of the clustering and 

classification/prediction models is the identification of the most significant variables for a data model. This analysis is 

one of the principal areas of the data exploration phase of any data mining project. Of course, we can save a lot of time 

if a ‘domain expert’ gives us guidance in choosing an initial subset of candidate variables, based on experience and 

intuition.  Contrastable clustering methods, such as K-means, Kohonen SOM and Condorcet can give different rankings 

of significance. This is also true for classification/prediction methods such as Logistic Regression, Linear Regression, 

C4.5 Rule Induction and a BackPropagation Neural Network. If we poll the methods we should see a general consensus 

on the ranking of the variables. If the degree of consensus is quantified as an index in some way, we could say that the 

greater the value of the index, the greater the consensus, and the greater the reliability (of its relevance). Conversely, the 

smaller the value of the consensus index, the lesser the reliability.  Thus we can obtain  a value for relevance and a 

value for reliability, for each of the variables, by purely statistical means. 

 



 158 

Chapter 4.  Application and Results 
 

This Chapter details the application of the methods and algorithms described in Chapters 2 and 3, to artificial and real 

data sets, with emphasis on some real medical domain problems. The real domains included are: ICU prognosis and 

Apnea syndrome screening. This allows us to establish their behavior as data exploration and modelling tools, and also 

allows us to evaluate and contrast the results with other methods from the statistics and data mining literature.  

 

In Section 4.1 there is an extensive analysis of a real hospital ICU dataset, using statistical, data mining and 

experimental techniques, the latter developed by the author. The techniques include the use of the Hartigan ‘joining 

algorithm’ with crisp and fuzzy covariances as input, and the use of fuzzy c-Means to cluster data and give indications 

of relation between variables and the cluster centres. In Section 4.2 we apply four variants of the fuzzy covariance 

algorithm [Nettleton98b] to artificial datasets to generate a fuzzy covariance matrix given as input to the Hartigan 

‘joining algorithm’. The objective is to identify and rank the most significant variables in each dataset. The benchmark 

results are compared with C4.5 and a Neural Network applied to the same data. In Section 4.3 diverse clustering and 

classification techniques are used to establish the reliability and relevance of the variables in a dataset of Apnea cases 

from the Hospital Clinic of Barcelona. OWA and WOWA aggregation techniques are then applied to the same Apnea 

case dataset, the input data being captured by questionnaire in a crisp form, and the output being a binary valued 

diagnosis.  There is also a comparison of the results of using weights and variables assigned by the medical expert, with 

the results using weights and variables assigned by statistical and machine learning methods. Finally, in Section 4.4 we 

apply the WOWA aggregation operator to diagnose Apnea cases using a dataset collected by the Hospital of the 

Santisima Trinitat, Salamanca. In this case, the data was captured in both crisp (categorical) and fuzzy (continuous 

scale) form, using a specially designed questionnaire.  

 

4.1 Icu prognosis data - Hospital Parc Tauli 

 
In this section of work, we analyse a data set of real ‘hospital admissions’ ICU (Intensive Care Unit) data prepared for 

statistical studies of diagnosis and prognosis. A complete inventory of the variables is given in Annex 2. The data set is 

complex, given the number of variables, but the quality, in statistical terms, is good; that is, a representative distribution 

of the cases is covered, there are few unknown or erroneous values, and so on. There are some 1100 cases, with 100 

variables for each case. The first 17 variables are vital signs and other general data about the patient. The rest of the 

variables are derived from a urine sample, a blood sample, observation and initial diagnosis. The first 24 hours of 

admission of the patient to the ICU are the most critical, and the situation of the patient at the end of this period is 

detailed by a series of variables in the dataset. Given that the ICU is a critical unit in the hospital, with a concentration 

of expensive and limited resources, it is very important to be able to prioritise admissions and anticipate their needs, in 

the short and medium term. 

 

The objective of the work in this section with respect to the ICU dataset is to find both most significant features and 

factors which relate the input variables to three output variables: ‘duration_icu’, ‘duration_hos’, and ‘vital_state_icu’. 

‘duration_icu’ is the number of days which a patient stays in the ICU unit. ‘duration_hos’ is the number of days which a 

patient stays in the general hospital from time of admission to release from the hospital. This includes the time spent in 

the ICU unit. The third output variable, ‘vital_state_icu’ indicates the vital state of the patient on leaving the ICU unit, 

which can be ‘alive’ or ‘mortality’. ‘duration_icu’ and ‘duration_hos’ are important for several reasons: first, the 

prognosis of the patient, as the recuperation time indicates possible complications or additional needs for hospital 

resources. The duration variables are also important for hospital planning, in order to evaluate the possible load on the 

hospital’s capacity to attend patients, while maintaining a minimum quality of service. ‘vital_state_icu’ is a direct 

prognosis of the survival of the patient, in which the first 24 hours is a critical time period. As the first Data Mining 

phase, which is the exploration step, we wish to discover factors and features which show tendencies and relations 

between the 100 or so input variables and a given output variable. In the modelling phase which follows we try different 

modelling techniques to create models which allows us to predict these variables, using as input the best factors and 

features identified in the exploration phase. Common Data Mining algorithms are first tried on the data: C4.5, ID3, 

Kohonen SOM, feedforward neural nets, and statistical correlation. Then we try specific techniques which have been 

considered in the thesis: Hartigan ‘joining’ algorithm, fuzzy covariances and fuzzy c-Means. We compare these less 

conventional techniques with the standard algorithms and evaluate the hypothesis that a fuzzy approach can 

complement or improve data exploration and modelling in the case of the ICU data. 

 

One of the key areas of analysis of the data is that of factor selection, or data reduction, in which subsets of variables are 

identified which have the greatest relation to a given output variable, for example, ‘duration of stay in ICU’, or ‘vital 

state’. We distinguish ‘factor selection’ from ‘feature selection’ in that ‘features’ are characteristics of the data, such as 

‘increase in mortality for renal failure cases when FIO2 = 1. On the other hand, ‘factors’ are inputs to the data model, 
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specific variables, such as FIO2 . Some variables are more easily identifiable, such as ‘Age’, ‘Sex’ and ‘Blood 

Pressure’, while others are clinical technical indicators, such as ‘FIO2’, a binary flag which indicates if the level of FIO2 

(Fractional Inspired Oxygen as measured by a Pulsoximeter) has  been greater than 0.50 during the first 24 hours, or 

‘Mech_Ven’, a numerical value which indicates the number of hours of mechanical ventilation during the first 24 hours. 

 
With respect to the selection of ‘reduced sets’ of ‘most significant inputs’, we try to identify and select a manageable 

number of variables, which will then be used as inputs to classificative and clustering models, and further data 

exploration. For example, if the total number of variables is 100, such as in the ICU dataset, we would consider a 

manageable number of variables for the subset to be between 10 and 20. In practise, for the ICU data, we have chosen 

15 or 17, first by ranking on a ‘significance factor’, which may vary depending on the modelling/analysis method 

employed, and of course, the criteria used. Then we try to identify a cut-off point, beyond which the variables’ 

significance drops quickly or indeed our confidence in a given variable diminishes. In the case of selection of variables 

by a medical expert, this may also vary the number chosen as a minimal set, depending on the criteria, output variable, 

distribution and characteristics of the cases in the dataset, and so on. 

 

As a study of the field, different techniques were tried for clustering and classifying data with different data types. 

Among the techniques tested for clustering were Kohonen Neural Nets, Hartigan Joining algorithm and fuzzy c-Means. 

For classification/prediction the following techniques were tried: feed-forward neural networks and tree induction, 

represented by ID3 and C4.5. The first objective of these tests is to determine that the quality of classification and 

prediction with the given data can be improved by fuzzy processing and representation techniques. A second objective 

is to explore the given data set and thus better understand  its interrelations and nature. Thus it will create a basis for 

formulating a working methodology for developing new algorithms. 
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4.1.1 Data Exploration 
 

The following section represents the first phase of a Data Mining project, that is, the exploration of the data in order to 

establish distributions, data quality, and a general understanding of the data set, using simple statistical and graphics 

display tools. Refer to  Annex 2 for a complete list of ICU variables. 

 

Table 39. Selected variables with possible values and the distribution of those values within the dataset 

 

Variable Description Possible values % 

Distribution 

COMA_ADM Presence of coma or profound stupor at time of 

admission to ICU 

0 76.27 

1 23.73 

TIPO_ADM Type of Patient {1=Emergency Surgery, 

2=Planned Surgery,3=Without Surgery} 

3 54.68 

2 29.74 

1 15.07 

0 0.51 

MALIG Malign Neoplasm part of actual problem? 0 82.38 

1 17.62 

ICU_SER Service at the time of admission to the ICU. 

{0=Medical, 1=Surgery} 

0 50.2 

1 49.8 

LINES Number of lines at 24 hours after admission 4 16.5 

5 15.89 

3 15.78 

2 14.26 

6 13.44 

7 8.55 

1 6.25 

8 3.46 

0 2.44 

9 1.63 

10 1.53 

A_R_FAIL Acute renal failure 0 87.98 

1 12.02 

P_H_STAT Previous health state 1 49.29 

2 32.79 

3 16.09 

4 1.83 

COPD Chronic pathologies {1=yes, 0=no} 0 84.42 

1 15.58 

OSF Number of organ systems failing, calculated by 

computer program 

0 49.59 

1 28.62 

2 13.85 

3 4.07 

4 3.46 

5 0.31 

6 0.10 
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Figure 56. Distribution of the variable ‘body temperature’  

 

We see from Figure 56 that ‘body temperature’ has a very distinctive profile and range for the human body. The 

physician knows that when the values go outside this range it indicates a possibly life-threatening situation for the 

patient. 

 

 

 

 

Figure 57. Distribution of the variable ‘blood urea’ 
 

In Figure 57 we see the characteristic distribution for the variable ‘blood urea’, in which the x-axis indicates the 

concentration of urea in the blood. It peaks between 6 and 10 units and rapidly drops off after 20 units.
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Figure 58. Distribution of the variable ‘a_fio2’ 

 

In Figure 58 we see the distribution of the variable ‘a_fio2’, which has a roughly normal distribution between the values 

of 0.2 and 0.6, and a concentration of cases at the extreme point 1. 

 

 

 

 

Figure 59. Distribution of the variable ‘duration_ICU’ in days 

 

In Figure 59, we see a characteristic distribution for the variable ‘duration_icu’, which measures the time in days in 

which a patient is in the ICU. We see a heavy weighting for short stay, that is 5 days or less, whereas the frequency for 

length of stay practically reduces to zero after 40 days. ‘duration_icu’ is one of the variables for which we try to create 

predictive models, and relate the other (input) variables to it. 
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Figure 60. Distribution of the variable ‘duration_hospital’ in days 
 

In Figure 60, we see the characteristic distribution for the variable ‘duration_hos’, which measures the time in days in 

which a patient is in the Hospital. We see a peak at 10 days, and the distribution tailing off until 50 days, where it stays 

constant until reducing to zero at 90 days. ‘duration_hos’ is another of the variables for which we try to create 

predictive models, and relate the other (input) variables to it. 

 

 
 

Figure 61. Distribution of the variable ‘vital_state_icu’ 

 

Figure 61 (above) shows, for the variable ‘vital_state_icu’, the proportion of cases of mortality with respect to the 

proportion of cases of survival, in the ICU environment. The ratio of survival to mortality is approximately 3 to 1. 
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Figure 62. Distribution of the variables ‘renal failure’ and ‘vital_state_icu’ 

 

In Figure 62 we see an example of ‘overlay’, which is a common technique in the data exploration, in order to identify 

relationships between pairs of variables. Figure 62 is a histogram of the binary variable ‘renal_failure’ on the x-axis, 

plotted against the number of cases on the y-axis. The proportion of cases corresponding to the two possible values of 

the variable ‘dead_icu’ is ‘overlayed’ (indicated by different colours) for each respective variable-value of the variable 

‘renal_f’. In Figure 62 we see that for the cases represented by the left bar, for which there is no renal failure, the 

mortality rate is about 15%. Contrastingly, as shown in the right bar when renal failure occurs, the mortality rate is 

greater than 50%. As it is important to contrast the initial ‘findings’ with clinical knowledge, this result was confirmed 

as valid by the medical expert. 
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The following statistics (below) have been generated for some of the most significant numerical variables of the ICU 

dataset. From these statistics, we can see that the data represents a difficult problem to model, given that even between 

the variables which have been selected as the most representative of the problem, there is a poor statistical correlation. 

As a possible way forward with this type of dataset, we could think that a good model would not use the variables in 

their present form as input, but would requiere the creation of derived factors which are composed of two or more basic 

variables. Another way forward would be to identify homogeneous clusters (set of cases) in the data, for which higher 

correlation exists between variables: for example, patients with renal failure, could be a cluster for which a model can 

be created, and for which a higher correlation exists between the inputs and the proposed output, for example, 

‘duration_icu’. 

 

Statistics for field : BODY_TEMP 

    Minimum             =          0 

    Maximum             = 42 

    Occurrences         =        982 

    Mean                 =         36.889 

    Standard Deviation  =          2.6645 

    Correlation (Pearson Product-Moment) for field : 

        A_FIO2            =  0.129 (Low positive correlation) 

        DURATION_ICU    =  0.077 (Low positive correlation) 

        B_UREA            =  0.070 (Low positive correlation) 

        DURATION_HOS   =  0.053 (Low positive correlation) 

 

Statistics for field : B_UREA 

    Minimum             =          0 

    Maximum             =         97 

    Occurrences         =        982 

    Mean                 =         10.081 

    Standard Deviation  =         10.138 

    Correlation (Pearson Product-Moment) for field : 

        A_FIO2            =  0.157 (Low positive correlation) 

        DURACION_ICU    =  0.157 (Low positive correlation) 

        T_CORPORAL       =  0.070 (Low positive correlation) 

        DURACION_HOS  =  0.050 (Low positive correlation) 

  

Statistics for field : A_FIO2 

    Minimum             =          0 

    Maximum             =          1 

    Occurrences         =        982 

    Mean                 =     0.44379 

    Standard Deviation  =          0.24205 

    Correlation (Pearson Product-Moment) for field : 

        DURATION_ICU    =  0.169 (Low positive correlation) 

        B_UREA            =  0.157 (Low positive correlation) 

        BODY_TEMP   =  0.129 (Low positive correlation) 

        DURATION_HOS   =  0.022 (Low positive correlation) 

 

Statistics for field : DURATION_ICU 

    Minimum             =          1 

    Maximum             =        115 

    Occurrences         =        982 

    Mean                    =          9.1792 

    Standard Deviation  =       11.740 

    Correlation (Pearson Product-Moment) for field : 

        DURATION_HOS   =  0.580 (Medium positive correlation) 

        A_FIO2            =  0.169 (Low positive correlation) 

        B_UREA            =  0.157 (Low positive correlation) 

        BODY_TEMP  =  0.077 (Low positive correlation) 
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Statistics for field : DURATION_HOS 

    Minimum             =         1 

    Maximum             =       153 

    Occurrences         =       982 

    Mean                 =        21.845 

    Standard Deviation  =        19.559 

    Correlation (Pearson Product-Moment) for field : 

        DURATION_ICU    =  0.580 (Medium positive correlation) 

        BODY_TEMP       =  0.053 (Low positive correlation) 

        B_UREA            =  0.050 (Low positive correlation) 

        A_FIO2            =  0.022 (Low positive correlation) 
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4.1.2   Benchmarking of C4.5 algorithm on the ICU dataset. 
 

In test group A, all 100 variables are used as input, the output is the binary value ‘vital state icu’, which may assume 

values ‘0’ (alive) or ‘1’ (not alive). The algorithm used to create the predictive model in test group A is C4.5. Within 

test group A, subgroup A1 uses the original data distribution with respect to the output variable {0’s: 77.51% of the 

training set; 1’s: 22.39%}. On the other hand, subgroup A.2 has its distribution altered (by replicating the cases whose 

outcome is ‘1’) with respect to the output variable {0’s: 50% of the training set; 1’s: 50%}. 

 

In test group B, a reduced set of 15 variables was used, chosen by the medical expert and by statistical correlation 

analysis. The output variable is again ‘vital state icu’ considered as a binary value ‘1’ or ‘0’, and the modelling 

algorithm is C4.5. 

 

4.1.2.1  Test group A: using all 100 variables as input; ‘vital_state_icu’ as output; C4.5 as modelling algorithm 

 

Test subgroup A.1 The following group of tests used  C4.5 to classify the cases in terms of the variable 

‘vital_state_icu’, which can assume two values: 0=survival of patient, 1=non survival of patient. The ‘basic mode’ of 

C4.5 was used, in which ‘windowing’ and ‘pruning’ options have default values. The distribution of cases is: {0’s: 

77.51% of the training set; 1’s: 22.39%}. In this group of tests, all 100 available descriptive variables were used as 

input. 

 

Table 40. Prediction results for different training set percentages 

 

% Train      Precision (%correctly classified)         

  {0,1}  0  1 

10  81  95  25 

20  84  93  42 

30  87  96  52 

40  86  94  52 

50  82  88  55 

60  83  91  54 

70  83  92  49 

80  83  92  51 

90  82  91  56 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63.  Prediction results for different training set percentages 

 

Figure 63 shows a plot of the data given in Table 40. It shows that there is not a great influence of the percentage of 

training cases with respect to the total number of cases, on the precision. Each training set is extracted from the 

complete data set by random case selection, and is then validated for quality, that is, the random distribution of cases in 

general and the distribution profiles (seen in histograms) of values of key variables. We also carry out the elimination of 
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any outliers (extreme values) which could distort the training set. The complete dataset had been previously treated to 

filter out erroneous data and missing values. We take into account that, for 1000 cases, a 10% sample, well chosen and 

representatively distributed, allows C4.5 a good generalisation to the other 90% of the cases. Notwithstanding, the 

precision with  ‘vital_state_icu’ = 1 stays consistently below 60% precision (y-axis of Figure 63) and reaches a peak 

with 30% of the dataset used for training (x-axis of Figure 63) 

 

 

Test subgroup A.2 This group of tests was carried out with the same conditions as those of A.1, with the exception that 

a ‘boost’ function was used to equal the number of example cases (0’s and 1’s), in order to prediction ‘vital_state_icu’ 

{0,1}.  

 

 

 

 

 

Table 41. Prediction results for different training set percentages using ‘boost’ 

 

% Train      Precision (%correctly classified) 

  {0,1}  0  1 

10  81  95  33 

20  84  93  52 

20*  83  91  56 

30*  81  88  57 

 

*expert mode: with windowing and pruning activated.  

 

In Table 41 we can see the improvement in precision for ‘vital_state_icu’=1, with a smaller percentage of training 

cases, due to the use of a ‘boost’ function. The ‘boost’ function ensures an even distribution of the values of the 

classification variable , in this case ‘vital_state_icu’, in the training set. In the original dataset  77% of the cases have 

‘vital_state_icu’=0, while only 23% of the cases have ‘vital_state_icu’=1. This avoids the induction algorithm giving a 

proportional bias to ‘vital_state_icu’=0, the ‘boost’ replicates the cases where ‘vital_state_icu’=1 until they occupy 50% 

of the training dataset. The other alternative would be to proportionately reduce the cases where ‘vital_state:icu’=0, but 

this solution is not so good because it may result in information loss of the cases eliminated, whereas if we duplicate the 

cases which have the lesser proportion, we will not lose any cases. 

 

 

4.1.2.2 Test group B: using reduced set of 15 variables as input; ‘vital_state_icu’ as output; C4.5 as modelling 

algorithm 

 

For this group of tests, the C4.5 algorithm was used in  ‘simple mode’, that is with default windowing and pruning 

assignments. We again predict the ‘vital_state_icu’ variable which can assume the values {0,1}. Distinct from test 

group A is that a reduced set of variables was used as input to train the model. The 15 reduced variables were chosen by 

a joint selection by the medical expert and by statistical correlation analysis. 

 

Table 42. Prediction results for different training set percentages using reduced variables as inputs 

 

% Train     Precision (%Correctly classified) 

  {0,1}  0  1 

10  83  92  54 

20  88  97  56 

30  87  94  63 

40  85  93  56 

50  85  90  65 

60  84  94  51 

70  86  93  56 

80  84  91  58 

90  85  96  54 
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Figure 64 . Prediction results for different training set percentages using reduced variable set as inputs 

 

Figure 64 shows a plot of the data given in Table 42. In a similar manner to the test Group A, it shows that there is not a 

great influence of the percentage of training cases with respect to the total number of cases, on the precision. We 

observe that the precision for {0}  and {0,1} is fairly constant while the precision for {1} has two slight peaks for 

training set size equal to 30% and 50%, the latter providing the best result for {1}. 

 

 

4.1.2.3   Classification tests for the variable ‘duration_icu’ 

 

In the following tests, we contrast the selection of an input variable set and definition of category ranges by automatic 

means (statistical and data mining) (Steps (i) and (ii)), with the selection of the input variable set by a medical expert 

(Step (iii)). In Step (i), a neural network was first trained to select a reduced set of input variables, using a ‘sensitivity 

analysis’ which weights the inputs with respect to their internal activation level in the neural network, and with respect 

to the output layer. Then a categorisation for ‘short stay’, ‘medium stay’ and ‘long stay’ was derived from the 

distribution histogram of the variable ‘duration_icu’. This was used by the C4.5 algorithm to train a rules model for the 

data. The rules can be seen below, together with respective observations and initial conclusions. 

 

As a second step (ii) , the high values outliers were eliminated from the dataset, where the cutoff was defined at 32.35 

days, assigned by visual and statistical inspection of the values for  ‘duration_icu’. The C4.5 model was retrained for 

this data. This showed an improvement in accuracy for all 3 categories. 

 

In step (iii) , a new input set of variables was used, selected by a medical expert, and the ranges for the categories 

(‘short’, ‘medium’ and ‘long’), were redefined, for the same data, and the C4.5 retrained. This resulted in a significant 

improvement for the ‘long’ category, but no improvement for ‘short’ and ‘medium’. 

 

Steps (i) to (iii) illustrate a typical ‘data mining’ methodology to develop models for complex data, which has a directed 

but also ‘trial and error’ nature. 

 

 

Step (i) – Initial test using 3 value categorisation 

 
In this first step we categorise  ‘duration_icu’ into 3 possible output values; then a  neural network is used to select a 

reduced set of variables as input. Finally these inputs are fed into a C4.5 algorithm to create a predictive model. 

 

The variable ‘duration_icu’ is categorised as follows: short is assigned to cases whose duration in the ICU is 10 days or 

less; medium is assigned to those cases whose duration is greater than 10 days and less or equal to 20 days; long is 

assigned to those cases whose duration is greater than 20 days. These ranges were initially assigned with the consensus 
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of the medical expert and by graphical and statistical inspection of the distribution of the variable, and by further 

inspection were then refined from 10 to 9.19, and from 20 to 20.42, respectively, for the range limits. 

 

In Table 43 we see the precise distribution within the data set of the assigned ranges for each label category. 

 

Table 43. Distribution by occurrences of label values (classes) in the data and their ranges (derived from a 

distribution histogram of the variable ‘duration_icu’) 

 

Category %of cases which correspond Category Range (days of stay in ICU) 

to the category in the dataset  

short    74%   <     9.19 

medium   14%   >=   9.19        <20.42 

long   12%   >=   20.42 

 

A predictive model was generated using a dynamic neural network, that is one which varies its architecture dynamically 

during the training to find that which has the best predictive success. The neural network, as a byproduct, performs a 

‘sensitivity analysis’ which, based on the activation strength of the input neurons, calculates their relevance to the 

overall predictive result, and presents this in the form of a ‘ranking’. In Table 44 we can see the precision of the 

resulting model. 

 

Table 44. Results statistics for a neural network using all inputs,  NN architecture of 116-2-2-1 and a total of 757 

test cases (70% of total dataset) 

 

    Correct. 

Results:  short  82% (452 cases) 

  medium   55% (72 cases) 

  long  0%. 

   

Global precision: 69% correct. 

 

In Table 45 we see the result of the ‘sensitivity analysis’ which has produced a ‘ranking’ of the inputs in terms of their 

relative strength of contribution to the predictive result. For example, we see that the variable ‘MECH_VEN’ has been 

identified as that which most contributes to the output, with a relative strength of 0.070. On the other hand, the variable 

‘MAP’ is that which contributes least to the output, with a relative strength of 0.0124. Observe that we have cut off the 

list at 27 variables, from a total of 100. The remaining 73 variables would be discarded, and only the 27 most significant 

used for the reduced inputs model. 

 

Table 45. Results of ‘Sensitivity Analysis’: significance ranking of variables relative to ‘duration_icu’ 

represented as a qualitative variable (relative strength of first 27 variables are given) 

 

Ranking  Variable  Relative Strength  Ranking  Variable  Relative Strength 

1  MECH_VEN 0.070   16  H_RATE 0.0149 

2  PAO2  0.030   17  S_SODIUM 0.0145 

3  B_UREA 0.027   18  WBC  0.0141 

4  HEMA_F 0.023   19  SBP_ADM 0.0138 

5  CONF_INF 0.022   20  CERE_DIS 0.0136 

6  C_REN_F 0.021   21  S_CREA 0.0135 

7  ARTER_PH 0.020   22  SEX  0.0133 

8  S_HCO3 0.018   23  SHOCK  0.0132 

9  OSF  0.016   24  A_RES_R 0.0131 

10  BODY_T 0.016   25  1TYPE_ADM 0.0129 

11  PROB_INF 0.016   26  SBP  0.0127 

12  S_GLUCOS 0.016   27  MAP  0.0124 

13  S_H_RATE 0.0159    

14  PEEP  0.0157 

15  AGE  0.0154 
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In Table 46 we see the results for the NN model retrained only with the 15 most significant inputs listed in Table 45. 

We observe that, compared with results of the model using all 100 inputs as given in Table 41, there is no improvement 

in predictive accuracy. This may be due to the training time, an excess of overall inputs, or an inadequate definition of 

the input variables and their types. Alternatively, this may indicate some problem with the data set itself, such as lack of 

generalization between train and test sets. 

 

Table 46.  Results statistics for NN retrained with reduced inputs (architecture 36-2-2-1) 

 

    Correct. 

Results:  short  82% (450 cases) 

  medium  50% (66 cases) 

  long  0%. 

 

Global precision: 68% success. 

 

 

Once we have the reduced set of variables, we can now use the C4.5 algorithm to create a predictive model using them 

as input, in order to predict the variable ‘duration_icu’ as 3 categories 

 

In Table 47 we see the results of the predictive model, trained using the C4.5 in basic mode, which implies using only 

automatic and default parameter settings (off) for windowing, pruning, and so on. We observe a reasonable global 

precision but a poor result for ‘medium’ and ‘long’ categories. 

 

Table 47. Results statistics of training using C4.5 algorithm in basic mode (automatic/default parameter settings) 

 

   Correct 

 global:   66% 

 

 short:  82% 

 medium: 29% 

 long:  14% 

 

In Table 48 we see the results of the predictive model, trained using the C4.5 in expert mode, which implies activating 

windowing, pruning and significance test options. We observe a worsening of the results for ‘medium’ and ‘long’ 

categories, and the ‘short’ category probably being used as ‘default’. 

 

Table 48. Results statistics of training using C4.5 in expert mode with windowing, pruning and significance test 

 

   Correct 

 global:   66% 

 

 short:  89% 

 medium: 11% 

 long:    9% 

With reference to the rules (below), and Tables 43 to 48, we observe that among the rules which have been generated, 

there are some ‘nuggets’ which are precise and also correspond to a significant number of cases (as % of the training 

set, which was approx. 300 cases). For example, rules 1 and 2 for ‘short’ are good, that is they have a high precision 

(0.926 and 0.907, respectively), and have a significant number of cases assigned from the training set (17 and 185, 

respectively). Also we would identify rule 1 for ‘medium’ as (relatively) one of the most precise and significant. In the 

‘long’ category, it is more difficult to find good rules. 

 
Below we see the predictive rules generated by C4.5 for the variable ‘duration_icu’ defined as 3 categories: ‘short’, 

‘medium’ and ‘long’. 

 
Rules for ‘medium’: 

    Rule #1 for medium: 

        if   PROB_INF == 1 

        and  MECH_VEN > 21 
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        and  BODY_T <= 37.6 

        and  S_GLUCOS > 9.4 

        and  PAO2 <= 186 

        then -> medium (13, 0.809) 

 

    Rule #2 for medium: 

        if   AGE <= 62 

        and  HEMA_F == 1 

        and  MECH_VEN <= 21 

        then -> medium (7, 0.512) 

 

Rules for long: 

    Rule #1 for long: 

        if   MECH_VEN > 21 

        and  PAO2 > 186 

        and  PAO2 <= 235 

        then -> long (7, 0.82) 

 

    Rule #2 for long: 

        if   WBC > 14.1 

        and  S_SODIUM <= 121 

        then -> long (3, 0.63) 

 

    Rule #3 for long: 

        if   H_RATE <= 74 

        and  MECH_VEN > 21 

        and  BODY_T > 37.6 

        then -> long (3, 0.63) 

 

    Rule #4 for long: 

        if   AGE <= 35 

        and  MECH_VEN > 21 

        and  BODY_T > 38.1 

        then -> long (9, 0.61) 

 

    Rule #5 for long: 

        if   MECH_VEN > 21 

        and  B_UREA > 27.9 

        then -> long (4, 0.546) 

 

    Rule #6 for long: 

        if   MECH_VEN > 21 

        and  PACO2 <= 25 

        then -> long (5, 0.373) 

 

Rules for short: 

    Rule #1 for short: 

        if   PACO2 <= 19 

        then -> short (17, 0.926) 

 

    Rule #2 for short: 

        if   C_REN_F == 0 

        and  HEMA_F == 0 

        and  MECH_VEN <= 21 

        and  S_SODIUM > 121 

        then -> short (185, 0.907) 

 

Default : -> short 
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Although the global precision of the model represented by the above rules is not high, there exist subgroups (individual 

rules with high precision) with a good quality. This implies that C4.5 has found common relations between the variables 

for these cases, and the resulting knowledge can be used (incorporated into a knowledge base, for example) after further 

verification testing of the rules on different data samples. For those cases for which there is an imprecise classification, 

that is, those which are not included in any specific rule, they typically fall into the ‘default’ class defined at the end of 

the rule set, which is set to ‘short’. There are several possible reasons for this: 

 

(a) There really does not exist a grouping between them, in terms of the variables presented to the modelling 

algorithm.  

 

 (b) A fuzzy relation exists with grades of membership to the (correct) crisp class and also to the assigned class.  

In these cases, a ‘crisp’ method would attempt to interpret this ambiguity by placing a certain percentage of the 

cases in another class. For example, it may correctly classify 50% of the cases in ‘medium’, place 5% of the 

cases in ‘long’ and the remaining cases would be placed in ‘short’ (the default), although these percentages 

cannot be directly interpreted as global grades of membership. 

 

 
Step (ii) – reduction of dataset to eliminate outliers 

 

In step (ii) we simplify the problem, only considering the part of the distribution less than 32.35, which is where we find 

the greatest concentration of cases (85%). This process step is also known as the elimination of ‘outliers’, in this case 

the very high values. 

 

Table 49.  Results statistics for rules generated for distribution of  variable ‘duration_icu’ < 32.35 days 

 

 Qualitative categorisation 

 For duration of stay in icu:  short   < 9.19 days 

      medium  >= 9.19   and  < 20.42 

      long  >= 20.42 and  < 32.35 

 

 Results:      categorisation 

       of C4.5 model (predicted) 

 

  (real)                  short     medium   long 

  categorisation  short  96.26 3.74  0 

      

     medium  47.82 52.17  0 

 

     long  68.18 18.18  13.63 

 

We observe from Table 49 that the precision has improved for all categories, especially ‘medium’, and the model 

continues assigning the default value as ‘short’. The most difficult category to predict continues to be ‘long’.  Below we 

observe that C4.5 has extracted 2 good rules for ‘short’, 3 rules for ‘medium’ and only one for ‘long’. The best rules are 

clearly for the ‘short’ category, with the reservation that this is used as the default, while the remaining rules require 

improvement. 

 

Rules for long: 

    Rule #1 for long: 

        if   PEEP == 1 

        and  S_H_RATE <= 135 

        then -> long (3, 0.63) 

 

Rules for medium: 

    Rule #1 for medium: 

        if   B_UREA <= 8.6 

        and  HEMA_F == 1 

        and  MECH_VEN <= 22 

        then -> medium (4, 0.707) 
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    Rule #2 for medium: 

        if   SHOCK == 0 

        and  MECH_VEN > 22 

        and  WBC > 19 

        then -> medium (13, 0.587) 

 

    Rule #3 for medium: 

        if   MECH_VEN > 22 

        and  PEEP == 0 

        and  S_HCO3 > 23 

        and  ARTER_PH <= 7.53 

        then -> medium (20, 0.471) 

 

Rules for short: 

    Rule #1 for short: 

        if   AGE <= 76 

        and  WBC <= 19 

        and  S_HCO3 <= 23 

        and  A_RES_R <= 31 

        and  PAO2 <= 278 

        and  ARTER_PH <= 7.52 

        then -> short (98, 0.926) 

 

    Rule #2 for short: 

        if   C_REN_F == 0 

        and  HEMA_F == 0 

        and  MECH_VEN <= 22 

        then -> short (136, 0.905) 

 

Default : -> short 

 

 

Step (iii) – assignment of input variables and category ranges by medical expert. 

 

In this step we compare the results achieved by models which use inputs selected by statistical and data mining 

methods, to those achieved by a model whose inputs are chosen by a medical expert. We will see that this set of input 

variables achived a significantly better accuracy for ‘long duration’ cases, than the models in steps (i) and (ii). 70% of 

the total set was used for training and 30% for testing. 

 

The 34 variables selected by the medical expert from the initial 100 variables were the following: 

 

AGE   ON_MECH  AIDS 

COMA_ADM  SEP_SHOK  TERA_CH 

CPR   FAIL_CARD  INT_VENT 

C_REN_F  CERE_DIS  CREA_INC 

PROB_INF  A_R_FAIL  RES_F 

COMA_24H  LIMIT   CARD_F (OSF FIRST DAY) 

SHOCK   CIRRHOS  RENAL_F 

URINE   PEEP   HEMA_F 

CONF_INF  VEN_CPAP  NEURO_F 

FIO2   GCS_SAPS  HEPA_F 

MECH_VEN  CARD_F (CHS)  OSF 

  HEMA_MAL 

 

The ranges defined for ‘duration_icu’ by the medical expert were the following: 

 

0-4 days: short stay 

5-14 days: medium stay 

>14 days: long stay 
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Table 50.  Results statistics for C4.5 retrained with  inputs defined by expert 

 

    Correct. 

Results:  short  51% (56 cases) 

  medium  33% (130 cases) 

  long  85%. (499 cases) 

 

Global precision: 63,25% success. 

 

From Table 50 we see that the category which has best accuracy is the ‘long duration’ category. This is different from 

previous results in this section, in which the ‘short duration’ category had the best accuracy. We conclude that the 

difference has been caused by the different choice of input variables, all other things being equal. We may also say that 

there can exist distinct models with different input variable sets, which predict well for different duration categories. 

 

The decision tree generated was the following: 

 

 

   OSF 

   <2.5 

 

 GCS_SAPS  HEPA_F 

                    <3.5                       =1 

 

Short (0-4) MECH_VEN Medium (5-14) Short (0-4) 

73%                      <17.5 50%  57% 

 

       PROB_INF         Long (>14) 

       =1                    70% 

 

          COMA_ADM                                        AGE 

          =1                                              <50.5 

 

Medium (5-14) Long (>14)      CREA_INC MECH_VEN 

67%  67%  =1  <14.5 

 

  Long (>14)     Medium (5-14)  CARD_F    Medium (5-14) 

87%           57%  =0       79% 

 

 

       Long (>14)     Medium (5-14) 

                    57%              54% 

 

Figure 65 . Decision tree induced by C4.5 for variables selected by medical expert. 

 

In Figure 65, we observe that the induction algorithm, as part of the induction process, has discarded the majority of the 

34 input variables, and has only used the following 9: OSF, GCS_SAPS, HEPA_F, MECH_VEN, PROB_INF, 

COMA_ADM, AGE, CREA_INC, CARD_F. In Figure 65, the corresponding ranges are indicated between 

parentheses, for example, Medium (5-14), indicates a stay of between 5 and 14 days. The precision of the leaf node 

(decision) is indicated by the corresponding percentage, for example, Long (>14) 57%, indicates a precision of 57% for 

the long category and the corresponding branch stem of the decision tree. 
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4.1.3   Benchmarking of ID3 algorithm on the ICU dataset. 
 

This section consists of four groups of tests (i) to (iv), using the ID3 algorithm for data modelling. In test group (i) all 

100 variables as used as input, and, in contrast to test groups used in Section 4.1.2, two output variables are tried, 

‘duration_hosp’, which is the duration of stay in days of the patient in the hospital, and ‘duration_icu’, which is the 

duration of stay in days of the patient in the ICU unit. Both variables are defined as numerical integers. The modelling 

algorithm used is ID3. In test group (ii) a reduced set of 15 selected variables is used as input. In test group (ii) the 

results of ID3 are compared with a model trained using C4.5, with the same data, but predicting ‘duration_ICU’ as a 

categorical value. In test group (iv), we try to predict variable ‘b_urea’ as a continuous value using ID3. 

 

(i) The following subgroup of tests use ID3 in default mode (default windowing and pruning) to predict the variable 

‘duration_ICU’, using all 100 variables as input. 

 

 

Table 51. Results of variation of training set size on error rate  - prediction of ‘duration_ICU’ using all variables 

as input 

Error. 

% Train Min Max Mean Absolute Standard  Linear  Ocurr.   

    Mean  Deviation Correlation          Test 

10 -23 111 2.06 7.16  12.71  0.09  983 

20 -45 110 1.19 7.08  12.85  0.25  875 

30 -74 108 0.41 6.47  12.33  0.43  768 

40 -75 109 1.76 6.62  12.31  0.38  652 

50 -75 109 0.79 7.01  14.04  0.32  545 

60 -58 60 1.26 6.46  12.1  0.46  423 

70 -60 45 0.49 6.46  11.45  0.50  322 

80 -74 59        -1.26 6.84  12.51  0.40  205 

90 -61 59        -0.9 7.45  13.41  0.31  101 

 

Training with Neural Network. 

30 -11 108 1.01 6.75  11.75  0.32  768 
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Figure 66. Results of variation of training set size on error rate  - prediction of ‘duration_ICU’ using all 

variables as input 

 

 

From Table 51 and Figure 66, we can see that with the ICU data, progressive increase of the training set size with 

respect to the total dataset has little effect on the overall precision. We see a local minimum at 30%, and the x-axis is 

intersected (zero error) at 74%. In Table 52 we also see the result of executing a neural network with the same inputs 

and data in the case of test percentage equal to 30%. The result is slightly worse than ID3 (6.75 compared to 6.47) for 

the absolute mean of the error, and in the case of linear correlation (0.32 compared with 0.43). For standard deviation, 

the NN shows a reduction relative to ID3, being 11.75 compared to 12.33 for ID3. This could indicate that the NN is 

achieving a greater ‘smoothing’ effect on the error, although the aggregate error is slightly greater. This could be 

convenient if what we wish is a more stable model whose error can be maintained between two predefined upper and 

lower limits.  
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(ii) The following subgroup of tests uses ID3 in default mode (default windowing and pruning) to prediction the 

variable ‘duration_icu’ with a reduced set of 15 input variables, selected by statistical methods (correlation analysis, 

tree pruning, …) and medical expert advice. 

 

Table 52. Results of variation of training set size on error rate  - prediction of ‘duration_ICU’ using reduced set 

of variables as input 

Error. 

% Train Min Max Mean Absolute Standard  Linear  Ocurr.   

    Mean  Deviation Correlation Test 

10 -46 110 1.47 7.45  13.05  0.10  983 

20 -44 93 0.35 7.66  13.33  0.22  872 

30 -76 94 0.97 7.09  13.01  0.32  768 

40 -46 108 1.08 6.53  12.32  0.42  652 

50 -60 109 0.13 6.93  12.83  0.42  545 

60 -45 95.4 1.40 6.42  12.15  0.41  423 

70 -62 49        -0.36 6.8  11.9  0.46  322 

80 -38 47        -0.29 5.79    9.86  0.52  205   

90 -28 40        -1.22 5.85    9.51  0.60  101 

 

Test with Neural Network. 

30 -25 103 1.59 5.76  10.292  0.55  768 

 

 

 

 

Figure 67. Variation of training set size of error rate  - prediction of ‘duration_ICU’ using reduced set of 

variables as input 

 

 

From Table 52 and Figure 67, we can see that with the ICU data, progressive increase of the training set size with 

respect to the total dataset, as in the case of test subgroup (i), has little effect on the overall precision. We see a local 

minimum this time at 50%, and the x-axis is intersected (zero error) at 67%. In Table 52 we also see the result of 

executing a neural network with the same inputs and data in the case of test percentage equal to 30%. In contrast  to test 

subgroup (i), in which all the 100 variables were used as input, the result for the reduced variables as input is slightly 

better than ID3 (5.76 compared to 7.09) for the absolute mean of the error, and in the case of linear correlation (0.55 

compared with 0.32). For standard deviation, the NN also shows a reduction relative to ID3, being 10.29 compared to 

13.01 for ID3. This could indicate that the NN is benefiting from the reduction in ‘noise’ due to the reduced number of 

variables. Compared with test subgroup (i), (ii) also shows an overall improvement in terms of  absolute mean of the 
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error, standard deviation and linear correlation. This again would be expected due to the increased quality of 

information input to the model (less inputs and greater correlation of each input to the output).  
 

(iii) Comparison between ID3 and C4.5 algorithms: having tried to predict ‘duration_icu’ as an integer variable 

(duration in days), we now try to discretise it and predict it as a categorical ordinal variable. We say that it is categorical 

ordinal, because although it is defined in terms of three symbolic categories, these categories can be ordered with 

respect to each other, from shortest to longest.  

 

The categorisation of the variable ‘duration_icu’ followed the same process as in Section 4.1.2.3. (step(i)), in which ‘0’ 

indicates ‘short stay’, which is less than 10 days duration in the ICU, ‘1’ indicates ‘medium stay’, which is defined as 

between 10 and 20 days duration in the ICU, and ‘2’ indicates ‘long stay’, which is defined as  more than 20 days 

duration in the ICU. 

 

The following are the results of training a model using the  C4.5 algorithm, with windowing and pruning activated. 

 

{0,1} correct  78% 

 incorrect  22% 

 

{0} correct  89% 

 incorrect 11% 

 

{1} correct  38% 

 incorrect 62% 

 

{2} correct  41% 

 incorrect 59% 

 

The results show a good precision for ‘short stay’, and inadequate precisions for ‘medium stay’ and ‘long stay’. We 

note that the majority of the cases are less than 10 days duration, and thus the other categories have a relative lack of 

example cases (although we ‘balance’ the sample we still lack the diversity of the real data). 

 

 

The same data was presented to ID3 as in the previous test with C4.5, with the exception that the categorical variable 

was interpreted as an integer variable, with values {0,1,2}. This is possible because the categorical variable is ordinal, 

and therefore it has meaning to predict it as a numeric integer result. 

 

Statistics for the Error Rate of the ID3 model 

 

Min              -2 

Max   2 

Mean   0.14 

Absolute Mean  0.24 

Standard Deviation 0.564 

Linear Correlation 0.588 

Occurrences  761 

 

In this case, we can see a reasonable correlation, relative to previous tests (i) and (ii), and to the C4.5 test. The best 

neural network model gave a correlation of 0.55, compared to this model’s 0.59. Notwithstanding, as a percentage of 

the max value, the absolute mean of the error (12% compared to 5.6% for the NN), and the standard deviation of the 

error (28.2% compared to 9.9% for the NN) are inferior results. 
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(iv) Composition and error rate of a data subset 
In this section we ran ID3 with the same input variables as in Section 4.1.2.3 step (iii), that is, selected by a medical 

expert rather than by statistical analysis and data mining. Once run, we saved the output value (DUR_HOS), and the  

error (real DUR_HOS – predicted DUR_HOS) and then we selected a subset of  the data , by choosing criteria which 

seem ‘interesting’, such as (see Figure 68), a very high incidence of tubing/ventilar (INT_VENT), mechanical 

ventilation (ON_MECH, VEN_CPAP, MEC_VEN). 

Figure 68. Graphical representation of distributions of input variables, output variable, and error in the selected 

data subset. 

 

 

As we see from AGE, the subset also corresponds to a specific age group, from 61 to 70 years.   

Figure 68 has the variables ordered by the ‘chi-squared’ value of the variables values in this data subset, compared with 

the variables values in the complete dataset. Thus a greater the difference between the distribution in this data subset 

and the  distribution in the complete dataset will produce a greater chi-squared value. In Figure 68, after the output 

variable (DUR_HOS) and the error, we see the variable with the highest chi-squared ranking is INT_VENT, with a chi-

square value of 0.791, followed by ON_MECH with 0.777, VEN_CPAP with 0.753, MECH_VEN with 0.251, AGE 

with 0.173, and so on. In order to rank all the variables with the same chi-square ranking, the numerical variables, such 

as MECH_VEN and AGE have been categorised by calculating quantiles. In the Figure 68 we see two types of 

graphical representation of the variables, histogram for the numerical variables and Pie Chart for the categorical 

variables. In the case of the histograms, the distribution of that variable for the total population is seen in grey, whereas 

the distribution for this subset of data is shown in red. Thus we can see, for example, in the case of ‘organ systems 

failing’ (OSF), that  the distribution for this subset is weighted towards a lower number of OSF, with respect to the 

distribution of the whole dataset. 

In the case of the Pie Charts, the inner area is the distribution of the categories of the given variables with respect to this 

subset, whereas the outer ring is the distribution in the complete dataset. Thus we can see, for example that the 

categorical variables INT_VENT, ON_MECH and VEN_CPAP have an incidence of approximately 50% in the 

complete dataset, whereas in this subset their incidence is greater than 95%. Another interesting categorical variable is 

DIAG (diagnostic code) which has a high incidence of diagnostic codes 43 (Surgery GI due to Neoplasm) and 34 

(Craniotomy due to neoplasm). 

Given that we are studying the results of the predictive model for DUR_HOS, we are especially interested in the 

distribution of the predicted value for DUR_HOS which can be seen above as the first variable top-left, and the error 

distribution, which is the variable next to it, and which represents the difference between the real DUR_HOS and the 

predicted value (DUR_HOS - $DUR_HOS). 
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In the Figure 69 below we see a ‘zoom’ from the previous Figure 68 on the histogram of the values for the predicted 

variable DUR_HOS. We see shaded the distribution of the values for the whole dataset, and in red we see the 

distribution for the values for this sub-dataset. We observe that there is a tendency for longer duration cases, with a peak 

between 60 and 65 days.  

 

 

Figure 69. Histogram of the distribution of the output variable DUR_HOS (duration of stay in hospital) for the 

selected data subset 

 

In Figure 70 below we see a ‘zoom’ from the previous Figure 68 on the histogram of the values for the error variable. 

As before, we see shaded the distribution of the values for the whole dataset, and in red we see the distribution for the 

values for this sub-dataset. We observe that there are deviations from the distribution of the complete dataset, between 

3.25 and 0.0 days, between 16.25 and 19.50 days, and between –29.25 and –22.75 days. 

 

 

 

Figure 70. Histogram of the distribution of the error (real duration in hospital – predicted duration in hospital) 

for the selected data subset 
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4.1.4   Clustering with Kohonen Neural Net algorithm 
 

The objective of applying this algorithm to the data is to try to establish ‘homogeneous groupings’ of the data, each of 

which could be trained as a separate model, and to look for trends between clusters and variables which can help in the 

definition of significant factors. We can also compare the results of this unsupervised learning method, with the 

supervised learning as represented by C4.5 and ID3. 

 

In Figure 71 (below) we can see that the Kohonen SOM clustering algorithm has achieved a reasonable clustering of 

cases, in the sense that it has been able to distinguish the clusters in terms of the variable ‘vital_state_icu’. The cases 

shown in red are the fatalities. We can see that some clusters have no fatalities (i), whereas others have a majority of 

fatalities (ii) and some have a mixture of fatalities and non-fatalities (iii). We could say that for case (iii) where the 

fatalities and non-fatalities are mixed, the clustering has failed to distinguish. Nevertheless, each generated cluster 

would have to be studied individually to see the characteristics and distributions of the other input variables in that 

cluster.  

 

 

 

Figure 71. Clustering with reduced variable set (without duration_hos, duration_icu or vital_state_icu as inputs) 

and ‘overlay’ of variable ‘vital_state_icu’ 
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Figure 72. Clustering with reduced variables (without duration_hos, duration_icu or vital_state_icu as inputs) 

and overlay of  ‘duration_icu’ as a discrete variable 

 
In Figure 72, we see that, although the Kohonen SOM has created some clusters all blue (‘short stay’) and other  

clusters with a high presence of red (‘medium stay’) and green (‘long stay’), it has not been able to clearly distinguish 

the medium and long stay cases. Notwithstanding, the relative frequencies have to be studied of each ‘duration_icu’ 

value in each cluster to identify more subtle differences, for example the cluster with the highest ratio of ‘long stay’ 

relative to ‘medium stay’. Note that Figures 71 and 72 are of the same clustering result, but with ‘overlay’ of different 

variables. 

 
The data set of Table 53 (below), illustrates a cluster in the Kohonen SOM output shown in Figures 71 and 72, which 

contains a mixture of values for ‘duration_icu’ (qualitative version) and ‘vital_state_icu’. That is to say, a cluster which 

has not been able to distinguish these variables. The typical methodology with this sub-dataset would be to study each 

variable to look for underlying traits, to which end an induction model could be trained, for example, only using the 

cases in this cluster. The induced rules and tree could then reveal underlying structure and relationships between the 

variables and the data. From simple inspection, we can see, for example, that previous health state ‘p_h_state’ is always 

equal to ‘1’,with the exception of just one case. There is also a constancy of values for variables ‘osf’, ‘type_admis’, 

and ’a_r_failure’. Before reaching false conclusions, the distribution of these variables must also be established in the 

complete dataset (for example, ‘osf’ may be equal to ‘1’ in the complete dataset, therefore it loses its significance in this 

cluster. Also the reverse may be true, a variable which is fairly constant in the complete dataset, or in other clusters, has 

a high variability in this cluster: for example, ‘lines’. 
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Table 53. Cases corresponding to Cluster {6,4} (top rightmost cluster) of the Kohonen plot, with ‘overlays’ of 

variables ‘duration_icu’ and ‘vital_state_icu’ 

 
coma    type    malig    icu   lines     a_r_          body_      b_          p_h_   copd      a_       osf   vital_        dur_     dur_        stay 
admis   admis               ser               failure       temp         urea      state                  fio2            state_        icu       hos 

              icu 

  0            3          0       1         4        0                 38.0       4.0     1            0         1.0   1     0                  33         51    2 
  0            3          0       0         1        0                 38.0     19.0    1            0         0.5   1     0                    5         14    0 

  0            3          0       0         3        0                 40.0       5.0    1            0         0.5   1     0                    6         21   0 

  0            2          1       1         7        0                 39.0     11.0    1            0         0.8   1     0                  57         90    2 
  0            3          0       0         1        0                 37.0       6.0    1            1         0.3   1     0                    5         13   0    

  0            3          0       0         3        0                 39.0       5.0    1            0        0.21  1     0                    5         13    0 

  0            3          0       1         6        0                 37.0       2.0    1            0         0.3   1     0                    3           8   0 
  0            3          0       1         4        0                 36.7       3.0    1            0         0.3   1     0                    5         21    0 

  0            3          0       1         6        0                 38.9       3.8    1            0         0.3   1     0                  12         17    1 

  0            3          0       1         6        0                 37.0       3.0    1            1         0.4   1     0                    5         13    0 
  0            3          0       1         6        0                 39.5       9.8   1            0         0.3   1     0                    7         16    0 

  0            3          0       1         3        0                 37.3       1.7    1            0         0.6   1     0                    7         13    0 

  0            3          0       1         4        0                 36.4       5.7   1            0         0.5   1     0                  10         16    1 
  0            3          0       1         4        0                 37.3     13.7   1            1         0.4   1     0                    4         15    0 

  0            3          0       1         4        0                 37.5       7.0   1            1         0.5   1     0                    9         24    0 

  0            3          0       1         6        0                 38.1       7.5    1            1         0.7   1     0                    4         21    0 
  0            3          0       1         3        0                 39.2       9.7   1            1         1.0   1     1                  28         28    2 

  1            3          1       0         6        0                 37.1       6.8   1            0         0.4   1     0                    6         13    0 

  1            3          0       1         3        0                 35.8       6.7    1            0         0.2   1     0                    7          7    0 
  1            3          0       1         3        0                 38.3       6.5   1            0         0.3   1     0                    6         11    0                      

  0            3          0       1         4        0                 35.7       6.0    1            0         0.4   1     0                  13         51    1 

  1            3          0       1         6        0                 37.9       3.7    1            0         0.5   1     0                    7         16    0 
  0            3          0       1         3        1                 39.5     14.9    1            1         0.6   1     0                    4         10    0                      

  0            3          1       1         2        0                 37.5     11.0    1            0         0.5   1     0                  14         14    1 
  0            3          0       1         7        0                 37.6       5.0    1            0         1.0   1     1                  22         22   2 

  0            3          0       1         3        0                 37.0     18.7    1            0         0.3   1     0                    3           9    0 

  1            3          0       1         6        0                 37.4       4.8    1            0         0.5   1     0                    7          21    0 
  0            3          0       1         3        0                 39.5       2.5    1            0         0.5   1     0                    6          21    0 

  0            3          0       1         5        0                 36.5       7.0    1            1         0.4   1     0                  29          48    2 

  0            3          0       1         5        0                 37.1       3.5    1            0         0.2   1     0                  11          16    1 

  1            3          0       1         5        0                 38.5       5.0    1            0         0.5   1     0                  18          19    1 

  0            3          0       1         4        0                 37.0       4.3    1            0         0.8   1     0                    8          11    0 

  0            3          1       1         8        0                 35.0     11.7    1            0         0.6   1     0                    1          11    0 
  0            3          0       0         4        0                 37.0     14.0    1            0         0.5   1     1                    4            4    0 

  1            3          0       0         0        0                 36.5       9.5    1            0         0.4   1     0                    2            2    0 

  0            3          0       1         6        0                 37.7       5.2    1            0         0.6   1     0                    6            9    0 
  0            3          0       1         5        1                 35.0     14.2    1            0         0.5   1     0                    9            9    0 

  0            3          0       1         4        1                 38.6     43.0    1            0         0.4   1     0                    9          92    0 

  1            3          0       0         5        0                 34.8       8.5    1            0         0.5   1     0                  16          24    1 
  0            3          0       0         6        0                 38.6       8.0    1            0         1.0   1     1                  22          22    2 

  0            3          0       0         3        1                 38.0     23.0    1            0         0.5   1     1                  21          21    2 

  0            3          0       0         3        0                 37.6       3.6    1            0        0.35  1     0                    6          20    0 
  1            3          0       0         5        0                 37.8       6.0    1            0         0.4   1     0                    9            9    0 

  1            3          0       0         5        0                 38.1       7.9    1            0        0.35  1     1                    4            4    0 

  1            3          0       1         5        0                 37.2     17.8    1            0         0.5   1     0                  59          59    2 
  1            3          0       1         3        0                 38.2       5.9    1            0         0.4   1     0                    5          41    0 

  0            3          0       1         3        0                 37.0     22.0    1            0         0.3   1     0                    4            4    0 

  0            3          0       1         3        0                 38.7       9.0    1            0         0.5   1     0                    7          13    0 

  1            3          0       1         5        0                 35.0       6.0    1            0         0.5   1     1                    4            4    0 

  1            3          0       1         5        0                 39.0       4.3    1            0         0.5   1     1                    4            4    0 

  0            3          0       1         3        0                 37.1       5.0    1            1         0.3   1     0                    3          15    0 
  1            3          0       1         8        0                 38.7     12.0    1            0         1.0   1     0                  38          55    2 

  1            3          0       1         8        0                 36.5       9.8    1            1         0.4   1     0                  23          41    2 

  1            3          1       1         6        0                 38.0       3.3    1            0         0.3   1     0                  15          31    1 
  0            3          0       1         7        0                 39.2     10.9    4            0         0.6   1     0                  12          27    1 

  0            3          0       1         4        1                 37.5     41.7    1            0         0.6   1     0                    9          21    0 

  0            3          0       1         4        1                 36.0     36.0    1            0         0.6   1     0                  19          42    1 
  1            3          0       1         5        0                 40.0     11.0    1            0         0.6   1     1                  11          11    1 

  1            1          0       1         2        0                 35.8       9.0    1            1         1.0   1     0                   5           12    0 

  0            3          0       1         2        0                 36.8       5.0    1            0         0.4   1     1                   5             5    0 
  1            3          0       1         1        0                 38.0       5.0    1            0         0.8   1     1                  11          11    1 

  1            3          0       1         2        0                 36.0     10.0    1            0         0.3   1     1                  58          58    2 

  0            3          0       1         5        1                 38.4     18.0    1            0         0.4   1     0                  14          28    1 
  0            3          0       1         6        0                 36.0     10.0    1            0         0.4   1     1                    6            6    0 

  1            3          0       1         7        0                 35.5     10.0    1            0         0.5   1     1                  11          11    1 

  0            3          0       1         5        0                 36.2       3.0    1            0         0.6   1     1                    4            4    0 
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4.1.5   Application of Hartigan’s ‘joining algorithm’ to the ICU data, using ‘crisp’ and ‘fuzzy’ 

covariances as input 
 

Having benchmarked the C4.5, ID3 and NN algorithms against the ICU data, we now progress to test the combination 

of the Hartigan Joining  Algorithm using as input first a ‘crisp’ covariance matrix, as detailed in (ii) and a ‘fuzzy’ 

covariance matrix as detailed in (iii) to indicate the grade of relation between the variables. 

 

The fusion process starts with the generation of a covariance matrix, as detailed in (i). The following cases have been 

tested: standard covariances generated by SPSS from numerical data; and ‘fuzzy’ covariances generated by the 

modified version of Gustafson’s algorithm [Gustafson79]. 

 

(i) Summary and comparison of fuzzy and crisp covariance results 

 

In Tables 54 and 55 we see the fuzzy and crisp covariances, respectively, of some of the variables which describe the 

patients. We observe that while some of the correlations between variables maintain their respective order, such as the 

pairs: {acute renal failure, probable infection}, {acute renal failure, vital state}, {acute renal failure, coma24hrs}), 

others do not: {acute, renal, failure, cardiac failure},{vital state, probable infection}. We conclude that the fuzzy 

covariances, although derived from the same data, produce different results. The topology of the fuzzy partitions, 

membership grade values of the cases, and distance metrics norms are some of the factors which distinguish fuzzy and 

crisp covariances. We conclude that the fuzzy covariances provide an alternative method for grouping clinical variables, 

forming groups which make clinical sense and which were not formed by the crisp covariances. 

       The 'fuzzy covariances' of the 17 variables detailed previously were calculated using the algorithm described in 

Section 2.2.6 and Section 3.1.4 of the thesis. Part of the resulting matrix is shown in Table 54. We note that the fuzzy 

covariance of each variable with itself (the diagonal) produced a large positive number in each case, which has been 

assigned to ‘1’ to improve clarity and given that it is not subsequently used in the factor analysis or the fusion process. 

              

 

Table 54.  Fuzzy Covariance Matrix produced for some of the 'Admissions' variables 

 

 Acute 

renal 

failure 

Cardiac 

failure 
Probable 

infection 
Vital 

state 

Coma  

24hrs 

Acute renal 

failure 
1* 14.867 1.432 1.286 1.807 

Cardiac 

failure 
14.867 1 1.437 1.289 1.800 

Probable 

Infection 
1.432 1.437 1 12.531 0.799 

Vital state 1.286 1.289 12.531 1 0.751 

Coma 

24hrs 
1.807 1.800 0.799 0.751 1 

* The value 1 has been assigned to the diagonal and it is not used in the fusion process. 
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The 'crisp covariances' of the 17 variables detailed previously were calculated using the standard covariance function of 

SPSS. Part of the resulting matrix is shown in Table 55. 

 

 

Table 55.  Crisp Covariance Matrix produced for some of the 'Admissions' variables 

 

 Acute 

renal 

failure 

Cardiac 

failure 
Probable 

infection 
Vital 

state 

Coma  

24hrs 

Acute renal 

failure 
1 0.203 0.106 0.346 0.111 

Cardiac 

failure 
0.203 1 0.201 0.324 0.208 

Probable 

Infection 
0.106 0.201 1 0.079 -0.122 

Vital state 0.346 0.324 0.079 1 0.269 

Coma 

24hrs 
0.111 0.208 -0.122 0.269 1 

 
 

 

(ii) Application of Hartigan’s ‘joining algorithm’ to the ICU Data, using ‘crisp’ covariances as input 

 

The dataset was analysed in SPSS and the crisp covariances calculated for all 17 variables and a representative sample 

of 100 cases of 'hospital admissions'. It was necessary to convert the binary values to numeric in order for SPSS to 

process them; this conversion may have some statistical implications which could be evaluated at a later date. SPSS 

produced a correlation matrix from the raw data, and this was given as input to the fusion algorithm. We used the  SPSS 

option: 'Statistics->Correlate->Bivariate' with a ‘two-tailed Pearson Correlation Coefficient'. This generated a 

correlation matrix with dimension 17 x 17 (17 being the number of variables). The variables are summarised in Table 

56 (below). 

 

Table 56. Variables given as input to Hartigan’s ‘joining algorithm’ 

 

Short Name Name  Data Type Description 

(as used in  

Figure 73) 

OS  OSF  Numeric  Number of organ systems failing, calculated by 

       computer program. 

PH  P_H_STAT Categorical Previous Health State. {1,2,3,4} 

DI  DEAD_ICU Binary  Vital State ICU {0=alive, 1=dead} 

DH  DUR_HOS Numeric  Calculated duration in the hospital from the moment of 

       admission to the ICU. 

AR  A_R_FAIL Binary  Grave renal failure. 

BU  B_UREA Numeric  Concentration of Urea in the blood. 

CA  CARD_F Binary  Cardiovascular failure. 

CO  COMA_24H Binary  In coma or deep shock at 24 hours after admission. 

CR  CREA_INC Binary  Creatinine  2.0mg/dl (176.8 Mol/l) during first 24 

       hours.   

FI  FIO2  Binary  FIO2  0.50 during the first 24 hours 

IN  IN24HRS Binary  Stay in the ICU of 24 hours or more. 

NE  NEURO_F Binary  Neurological failure (excluding sedation) 

PR  PROB_INF Binary  Probable infection in the moment of admission to the 

      ICU. 

RE  RENAL_F Binary  Renal failure. 

RF  RES_F  Binary  Respiratory failure {1=yes, 0=no} 

SE  SEXO  Binary  {1=male, 0=female} 

TY  TYPE_ADM Categorical Type of patient {1=Emergency surgery,2=planned 

       surgery,3=without surgery} 
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SE    IN    DH    PR    DI    FI    CA    OS    RF    TY    CO    NE    PH    BU    CR    AR    RE 
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             11 
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     14 

 

Figure 73.  Tree of  fusions produced by Hartigan’s ‘joining algorithm’ with crisp covariances 

 

The numbers in Figure 73 indicate the number of the new factor created and the order in which it has been created. We 

observe that the 17 original variables have been ‘fused’ into 3 new ‘components’, represented by the numbers 14, 10 

and 12, respectively. Note that the first fusion is 1 on the extreme right hand side (AR and RE), followed by 2 (CO and 

NE), and so on. Now we can analyse the manner in which ‘fusion’ has grouped the variables, comparing it to ID3, C4.5, 

Neural Net, SPSS and the fuzzy fusion (see next section). The detailed sequence, with comments,  of fusions for the 17 

pre-selected variables, is the following: 

 

Joining Sequence, ‘crisp covariances’: with reference to Table 56 and Figure 73, the input data was all considered as 

numeric; the binary values being defined as 1 or 0. It was given to SPSS which calculated the covariances between 

variables. This produced a  matrix which was given to the Hartigan algorithm, which produced the following order of 

fusions: 

 

The first fusion produced was between 'Acute Renal Failure' and 'Renal Failure'. That there is a high 

correlation between these two variables is very reasonable as both refer to renal failure. We will call this factor 

one. 

 

The second fusion produced was between ' In coma or deep shock at 24 hours after admission' and 

'Neurological failure (excluding sedation)'. We will call this factor two. 

 

The third fusion produced was between 'Respiratory Failure' and 'Number of Organ Systems failing'. We will 

call this factor three. 

 

 

With these first three fusions, the algorithm has already identified the base of the three factors that it has identified 

among these 17 variables. It proceeds to join the other variables to these three bases, forming an 'inverted pyramid' 

structure. 

 

The fourth fusion returns to factor one and joins on 'Creatinine  2.0mg/dl (176.8 Mol/l) during first 24 hours'. 

It was confirmed by the medical expert that Creatinine level is associated with renal failure, because if the 

kidney fails, the Creatinine level may go up from its normal value of approximately 1mg/dl, to 9 or 10mg/dl, 

which would be a pathological level. This is due to the accumulation of Creatinine in the blood, because it is 

the correct functioning of the kidney which normally keeps it at a stable level. 

 

The fifth fusion goes to factor three and joins on  'Cardiovascular Failure'. This seems to follow the tendency of 

this factor to identify organ system failures. 

 

The sixth fusion stays with factor three and joins ' FIO2  0.50 during the first 24 hours'. It will have to be 

checked with a medical expert if FIO2  level is associated with organ system failure in general, or 

cardiovascular or respiratory failure in particular. 

 

The seventh fusion goes back to factor one and joins 'Concentration of Urea in the blood'. It will have to be 

checked with a medical expert if Urea concentration is associated with renal failure and Creatinine level. 
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The eighth and ninth fusions go to factor three and join 'Vital State ICU' and 'Probable infection in the moment 

of admission to the ICU', respectively. This seems to follow the tendency of this factor to identify global states. 

 

The tenth fusion goes to factor two and joins 'Type of patient'. With this fusion, factor two is complete (the 

algorithm does not consider it again for joining. 

 

The eleventh fusion is to factor three, joining 'Calculated duration in the hospital from the moment of 

admission to the ICU'. This seems to follow the tendency of this factor to identify global states. 

 

The twelfth fusion is to factor one and joins 'Previous Health State'. With this fusion, factor one is complete 

(the algorithm does not consider it again for joining. 

 

The last two fusions, thirteen and fourteen, are to factor three, and join 'Stay in the ICU of 24 hours or more' 

and 'Sex', respectively. Again, factor three has grouped 'general states' and with these two fusions, factor three 

is complete, there are no more variables and the algorithm terminates. 

 

 

It could be that the last variables joined are added onto factor three because there is nowhere else to join them. To avoid 

this, a  'significance threshold’ could be incorporated,  below which the variable is discarded. 

 

We observe that three factors have been built, one significantly more complex than the other two. 

 

Factor one seems to be specifically for renal cases. Factor two seems to group neurological cases. Factor three 

appears to identify global states or temporal data. 

 

The following summarises the composition of the factors by variables. 

 

Factor One 

'Acute Renal Failure' + 'Renal Failure' + 'Creatinine level' + 'Concentration of Urea in blood' +  'Previous Health State'. 

 

Factor Two 

'In coma or deep shock at 24 hours after admission' + 'Neurological failure' + 'Type of patient'. 

 

Factor Three 

'Respiratory Failure' + 'Number of Organ Systems Failing' + 'Cardiovascular Failure' + 'FIO2 level' + 'Vital State ICU' + 

'Probable infection in admission to ICU' + 'Duration in hospital from moment of admission to ICU' +  'Stay in ICU  24 

hours' + 'Sex'. 

 

 

 

Observations: one possible test for the joining sequences and placement would be to create one or two artificial 

random variables, with no real association with the data, and to see what the algorithm does with them. We have to take 

into account that the categorical and binary data has been considered as numeric, so that SPSS could calculate the 

covariances. Using respective algorithms to calculate covariances, respecting the types of the variables, one could study 

the changes in covariance and thus the changes in fusion order and grouping. In the same manner, we have to take into 

account that the fuzzy data has been considered as crisp. Using a fuzzy covariance calculation, we can study the 

changes in covariance and thus the changes in fusion order and grouping. The more we respect the natural form of the 

data, and we do not lose this information, the more precise will be the fusion order and grouping and more truly the real 

underlying nature of the data will be reflected. 
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(iii) Application of Hartigan’s ‘joining algorithm’ to the ICU Data, using ‘fuzzy’ covariances as input 

 

The fuzzy covariances of the 17 pre-selected variables were calculated using the algorithm as detailed in Section 2.2.6 

and Section 3.1.4 of the thesis. The resulting matrix (see Table 54) was presented as input to Hartigan’s fusion 

algorithm. The fusion process with 'fuzzy covariances' produced four factors, one more than with 'crisp covariances'. 

The initial variables chosen for factor one were 'Acute Renal Failure' and 'Cardiac Failure'. The initial variables chosen 

for factor two were 'Probable infection at the moment of admission to the ICU' and 'Vital state on leaving the ICU'. The 

initial variables chosen for factor three were 'Coma or profound sleep at 24 hours' and 'Renal Failure' and the initial 

variables chosen for fact or four were 'Creatinine  2.0mg/dl (176.8 Mol/l) during the first 24 hours' and 'Previous 

health state'. 

 

The four final factors were: 

Factor 1:  'Neurologic Failure' + 'Coma 24 hours' + 'Renal Failure'. 

Factor 2: 'Sex'+'FIO2 level' + 'Probable Infection' + 'Vital State'. 

Factor 3: 'Blood Urea' + 'Patient Type' + 'Number of Organ Systems Failing' + 'Stay 24 hours' + 'Increment Creatinine' + 

'Previous Health State'. 

Factor 4: 'Duration of stay in hospital in days' + 'Respiratory Failure' + 'Acute Renal Failure' + 'Cardiac Failure'. 

 

In contrast to the 'crisp fusion', the 'fuzzy fusion' has placed organ failure states in Factors 1 and 4. 'Renal Failure' and 

'Acute Renal Failure' are separated, while the crisp fusion grouped them. 'Hospital stay in days' has been associated 

with some of the organ system failures, the same as in the crisp factor. 

 
 

4.1.6   Applying Fuzzy c-Means to the ICU data 
 

The ICU data was prepared for input to fuzzy c-Means: 100 cases were used selected as a homogeneous random subset 

of the complete ICU dataset. The same subset of 17 variables was used as previously: 

 

Variable 1: Sex 

Variable 2: Type of Admission 

Variable 3: Probable infection on admission to ICU 

Variable 4: Coma at 24 hours after admission to ICU 

Variable 5: Fio2 

Variable 6: Crea_Inc 

Variable 7: A_R_Fail 

Variable 8: B_Urea 

Variable 9:  Previous health state 

Variable 10: Respiratory Failure 

Variable 11: Cardiac Failure 

Variable 12: Renal Failure 

Variable 13: Neurological Failure 

Variable 14: OSF 

Variable 15: Dead_ICU 

Variable 16: Dur_Hos 

Variable 17: In24hrs 

 

The fuzzy c-Means processing was as follows, for number of clusters equal to three: 

 

Number of clusters = 3, icon=1, exponent=2 

Iteration=1, maximum error=0.7459 

Iteration=2, maximum error=0.2889 

Iteration=3, maximum error=0.4464 

Iteration=4, maximum error=0.3979 

Iteration=5, maximum error=0.3378 

 

Fstop  1-Fstop      Entropy      Payoff 

0.661  0.339  0.590  7862.106 



 190 

 

Table 57. Fuzzy c-Means: cluster centres v[i][j] 

 

Variable Cluster 1 , v[1][n] Cluster 2, v[2][n] Cluster 3, v[3][n] 

Sex, v[n][1] 0.5746 0.5472 0.6094 

Type of Admission, v[n][2] 2.2262 2.3164 2.4549 

Probable infection on admission to ICU, 

v[n][3] 

0.3532 0.2440 0.1812 

Coma at 24 hours after admission to 

ICU, v[n][4] 

0.1906 0.1138 0.0247 

Fio2, v[n][5] 0.5819 0.3664 0.4309 

Crea_Inc, v[n][6] 0.0891 0.0991 0.0953 

A_R_Fail, v[n][7] 0.0793 0.0758 0.0766 

B_Urea, v[n][8] 8.4657 8.4195 9.3603 

Previous health state, v[n][9] 1.4922 1.8166 1.5818 

Respiratory Failure, v[n][10] 0.1847 0.2932 0.3140 

Cardiac Failure, v[n][11] 0.1716 0.2961 0.1189 

Renal Failure, v[n][12] 0.1007 0.1299 0.1237 

Neurological Failure, v[n][13] 0.1440 0.1807 0.1457 

Number of Organ Systems Failing, 

v[n][14] 

0.6950 0.9481 0.7870 

Dead_ICU, v[n][15] 0.0319 0.3414 0.1281 

Dur_Hos, v[n][16] 45.3572 9.2625 22.3206 

In24hrs, v[n][17] 0.9981 0.8266 0.9276 

 

If we compare the proximity of the cluster centres between variables in Table 57 (above), we see, for example, a 

relation between ‘Respiratory Failure’, ‘Cardiac Failure’, ‘Renal Failure’ and ‘Neurological Failure’, given the relative 

proximity of the cluster centres for these variables for clusters 1, 2 and 3. Another identifiable proximity is ‘Sex’, ‘Fio2’  

and ‘Number of Organ Systems Failing’. 

 

 

Table 58. Fuzzy c-Means: membership grades for selected cases 

 

Case number in 

dataset 

Membership grade 

cluster 1 

Membership grade 

cluster 2 

Membership grade 

cluster 3 

Cluster assigned 

1 0.0311 0.6656 0.3033 2 / 3 

2 0.1308 0.5071 0.3621 2 / 3 

3 0.0030 0.9748 0.0221 2 

4 0.0243 0.2285 0.7472 3 

5 0.0108 0.9220 0.0672 2 

11 0.0440 0.0892 0.8668 3 

16 0.7593 0.0884 0.1523 1 

20 0.7588 0.0886 0.1526 1 

41 0.4679 0.1118 0.4203 1 / 3 

74 0.4667 0.1008 0.4325 1 / 3 

 

In Table 58 (above) we see the membership grades for selected cases to each of the three clusters generated by fuzzy c-

Means. In the fifth column we see the prevalent cluster assignment, given to the cluster with a clearly higher 

membership grade than the remaining two clusters. If there is no clear winner, this is indicated by a split on two 

clusters. Ideally, all cases should be clearly assigned to just one cluster. If this is not the case, this may indicate the ‘c’ 

value, the number of expected clusters, is not optimum for fuzzy c-Means, that is, the data fits best in 2, 4 or more 

clusters and not 3. Alternatively it can indicate a problem with the data quality or selection of input variables or data 

cases. Also, it may indicate the need for a better selection of the other fuzzy c-Means parameters: m : the bigger m is, 

the more ‘fuzzy’ the membership assignments will be. The norm ||.||A  may be assigned one of: NE  , the Euclidean 

norm; ND , the Diagonal norm, and NM , the Mahalonobis norm; L , the epsilon threshold, which works as a ‘cutoff’ 

criteria, among the cluster centroids. 
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Notwithstanding, we think due to the fact we are processing real clinical data with a certain complexity, that an 

assignment of 73% of the cases to individual clusters, is quite reasonable. From Table 59 (below) we can see that this is 

the case, with 22% ambiguously assigned between clusters 2 and 3, and 5% assigned between clusters 1 and 3. 

 

 

Table 59. Frequencies of memberships to clusters, for total of 100 cases 

 

Cluster 1 Cluster 2 Cluster 3 Clusters 1, 3 Clusters 2, 3 Clusters 1, 2 

9 45 19 5 22 0 

 

 

 

Visualisation of fuzzy clusters:  with reference to Figure 74, in order to obtain a graphic visualisation of the 

membership grades, we calculate the principal components of the membership grades as in [Kaufman90]. This was 

done with the data previously processed by Fuzzy c-Means, and previously commented with reference to Tables 57 to 

59. The number of principal components is equal to the number of fuzzy clusters less 1, which in this example is 2. If 

we apply this method to one hundred admission cases we obtain the plot given in Figure 74, in which the closer to the 

origin is the point (case), the more complications the patient has.  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

Figure 74.  Principal Components of the Membership Grades of 100 patients in three fuzzy clusters 

 

In Figure 74 we can see three tendencies, reaching the extreme points of (2.8,1.7), (0.25,-1.3) and (-1.8,1.5) which 

correspond to clusters C1, C2 and C3, respectively. The two principal components are calculated from the membership 

grades generated by fuzzy c-Means. 

 

We can conclude that the groupings have a reasonable correspondence to the factors,  ‘length of stay’, ‘number of organ 

systems failing’ and characteristics which give positive (in general). 

 

4.1.7   Summary of the results of the experiments of classification, prediction and factor 

selection for the ‘hospital admissions’ dataset 
 

A series of test have been conducted in Section 4.1.2 to predict ‘duration_icu’ and ‘duration_hos’ as a categorical value 

using the hospital admissions dataset and the C4.5 algorithm. Then, in Section 4.1.3 we tried predicting ‘duration_icu’ 

and ‘duration_hos’ as a continuous value, using the same data as in 4.1.2, but this time with the ID3 algorithm. If we 

convert the continuous value of the predicted variable to discrete (three categories: short, medium and long) the results 

showed an improvement for the ‘short’ and ‘medium’ categories.  

 

In the case of the ICU dataset, the data quality is guaranteed, given that it is a set which was collected by various 

hospitals in order to carry out statistical studies on ICU patients. Notwithstanding, the data is, in principal, focussed on 

relating the input variables to the output variable ‘dead_icu’, that is, a survival prognosis. Thus, relating the input 

variables to ‘duration_hos’ and ‘duration_icu’  were objectives assigned by the author, in consultation with the medical 

expert. 
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In terms of the models produced we can summarise the following: a good precision is found for ‘duration_hos’ for the 

category ‘short stay’ (< 10 days): C4.5 gives 89% and the neural net gives 82%. In the case of the objective variable 

‘vital_state’, which is a variable which should have an accurate prediction for this data, C4.5 achieved a maximum of 

96% for ‘alive’ and 63% for ‘dead’, which is a good precision por positive cases and a reasonable precision for negative 

cases. 

 

We highlight we results of Sections 4.1.2.3 (iii) and Section 4.1.3 (iv), in which a different set of input variables was 

used, selected exclusively by the medical expert. This gave the best precision for long duration cases (85%), which is a  

distinct result to the other C4.5, ID3 and NN models, which gave the best precision for short duration. The other 

category precisions were 51% for ‘short’  and 33% for medium. This implies that there exist models with distinct input 

sets for predicting different length of stay categories. 

 

One of the principal objectives of Sec 4.1 is to explore the relations between the variables, which is what is done with 

‘Hartigan’. C-Means and Kohonen. In the case of c-Means and Hartigan we do not create predictive models, but they 

are used to explore the data, thus in this aspect we cannot directly compare if C4.5, ID3 and NN perform better. 

We also use the modelling algorithms in to identify the most significant variables with respect to ‘prognosis’ and 

‘duration of stay’. We use C4.5 and ID3 to explore the variables and discover precise rules which represent data 

subsets. This was achieved, and specific rules were identified and commented in section 4.1.2.3. Variables which 

appear in the first parts of the rules are, for example, ‘age’, ‘mech_ven’, ‘c_ren_f’ and ‘OSF’, which together have 

medical meaning. There are given rules which have a high precision (that is, greater than 65%) which have a significant 

number of corresponding cases. 

 

The tests with Kohonen (4.1.4), c-Means (4.1.6) and Hartigan (4.1.5) are consistent when compared and with C4.5/ID3 

in that they confirm the complexity in the relations between the variables of this dataset. We can also interpret a ‘fuzzy’ 

aspect, represented by the cases which have not been distinguished in a categorical form. 

 

The results confirm that it is difficult to predict ‘length of stay’ of a patient from a given set of a priori variables.  

 

In data mining projects it may occur that no algorithm gives a global good result at first, even though we have good data 

quality, correct variable selection, correct variable definition and representation, etc. In this case a common technique is 

to carry out a homogeneous segmentation, or partitioning, of the dataset, using an unsupervised clustering algorithm, 

such as Kohonen or Condorcet. This would be followed by training a model for each homogeneous segment. We could 

also try a supervised or predefined classification. In the case of the ICU data, a supervised classification could be: 

trauma patients, craneal trauma patients, with previous clinical history, age (paediatrics, adults, gereatrics), and so on. 

On trying this approach, no  improvement was immediately found by created models from segments created by the 

unsupervised methods, or by dividing by diagnostic code. 

 

Even so, carrying out segmentation methods would have limited comparitive use, given that the results are not directly 

comparable with those of c-Means or Hartigan. These latter methods should act on the whole dataset, without previous 

segmentation. In this manner the results are not pre-conditioned by the segmentation itself. Also, even if we do carry 

out a segmentation, it cannot be guaranteed to give a better result. 

 

If we compare the use of the Hartigan ‘joining algorithm’ with crisp and fuzzy covariances to group variables, with 

other methods, we observe that SPSS Factor Analysis also found 3 factors, and Fuzzy c-Means gave lowest entropy for 

2 clusters although 3 clusters had a reasonably low entropy. It has to be added that Fuzzy c-Means looks for clusters 

based on object grouping, rather than variable grouping. 

 

If we compare the variable groupings with those of C4.5 as seen in the rule sets previously seen in Section 4.1, we note 

that in the Hartigan/fuzzy covariance groupings the clinical nature is evident. C4.5 on the other hand, groups variables 

in rules to produce an optimum statistical result, but the clinical justification for the groupings is sometimes not so clear.  
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4.2 Comparison of fuzzy covariance methods using artificial datasets 
 

In this section of work we use contrasting techniques to evaluate and explore the significance and interaction between 

input variables. We can divide the work into two principal approaches: (i) generate fuzzy and crisp covariances which 

are used to 'fuse' variables using Hartigan's joining algorithm[Hartigan75 ; (ii) execute algorithms such as C4.5, SPSS 

factor analysis, SPSS covariance analysis, and a neural network, directly on the input datasets to establish the 

significance and relations between variables. In both approaches factors are derived which can represent the data in a 

reduced dimensionality. 

 

                       Crisp Data Representation 

 

 

      Generate Fuzzy          Generate Crisp 

        Covariances           Covariances 
 

 

 

         Fusion Algorithm (Hartigan) 
 

Figure 75.  Processing Sequence 

 

Four variants of the fuzzy covariance algorithm [Nettleton98b] are applied to artificial datasets to generate a fuzzy 

covariance matrix which is then given as input to the Hartigan ‘joining algorithm’. The four variants have been 

previously detailed in Section 3.1.4 of the thesis. The objective is to identify and rank the most significant variables in 

each dataset. The benchmark results are compared with C4.5 and a Neural Network applied to the same data.  

 
4.2.1   Test Algorithms 
 

The following details the configurations of the test algorithms used to process the three test datasets. Fuzzy c-Means 

was used to generate the initial fuzzy c-partitions. The resulting membership grades, cluster and Euclidean norm 

coefficients were given to SPSS and methods 1 to 4, and processed as described in the previous section. The neural 

network and C4.5 were given the raw datasets to process. 

 

Methods 1 to 4 Fuzzy c-Means Covariance: methods 1 to 4 as detailed in Section 3.1.4 ‘Fuzzy covariances – 

Nettleton’s fuzzy covariance calculation’ of the thesis, were implemented  in 'C' language and were executed after fuzzy 

c-Means had generated the fuzzy c-partitions, for 2, 3 and 4 clusters. 

 

SPSS - Classical Statistics: SPSS was used to represent classical statistical techniques which contrast and cross-check 

the machine learning algorithms. On each of the three test data sets the following functions were performed: 

-  Principal component factor analysis, giving the number of factors found and a  factor score coefficient matrix. 

-  Correlation matrix of the input variables. 

-  Kmeans cluster analysis 

-  Hierarchical cluster analysis using squared Euclidean distance as the interval;  cluster method was between-

groups-linkage and a dendral diagram representation was generated. 

 

Feed-Forward Neural Network: a standard 3 layer Feed-forward NN was used to generate an input strength ranking 

for the input variables which is then used to corroborate the results given by other methods. 

 

C4.5 Rule Induction: standard C4.5 used to generate a pruned rule base of the input variables. The higher level the 

variable in the rule base, the more general it is, and the lower down the more specific. We identify where C4.5 has 

placed the variables in the rules and which it has pruned using its information heuristics. This information is cross 

checked with that of other algorithms. 

 

Hartigan Fusion Algorithm: as previously detailed in Sections 2.4 and 3.2.2 of the thesis. It is contrasted against the 

factor and hierarchical analysis realised by SPSS. Also the fusion is executed with crisp and fuzzy covariances and the 

differences studied. 
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4.2.2   Test Data 
 

In this section we present the three test datasets processed by the different test methods: Iris plant dataset; Hathaway 

and Bezdek dataset; and an artificial dataset. 

 

Iris Plant Dataset: created by R.A. Fisher, Iris is one of the best known datasets in the pattern recognition literature. 

The data set contains 3 classes of 50 instances each, where each class refers to a type of Iris plant. One class is linearly 

separable from the other two; the latter are not linearly separable from each other. The predicted variable is the class of 

Iris plant. The number of instances is 150, and there are four numeric predictive variables and the class. 

 

Hathaway and Bezdek Dataset: the data used is the Hathaway and Bezdek´s test data detailed in [Hathaway96 . The 

data is prepared for input to a supervised learning algorithm. There are six inputs  i1  to i6 and  c1 is the output (class). 

 

Artificial Dataset: an artificial dataset has been created with four inputs i1  to i4 and one output c1,  such that the first 

two variables have a high mutual correlation; the third variable has a medium correlation with variables 1 and 2; and the 

fourth variable has very little correlation with the other three variables. Column c1 has a crisp class definition for each 

object. 

 

 

4.2.3   Results 
 

In this section we first present the results of the fuzzy covariance calculations for each method, followed by the results 

of the aggregation and input selection algorithms. At the end of each subsection there is a cross-reference summary of 

all methods and datasets. 

 

(i)   Results of  Fuzzy Covariance Calculations 

 

In general there is an agreement between the methods; while the covariance values may vary, the ordering of the 

variables is constant. It is also interesting to observe the differences in the values to look for tendencies, related to the 

different combinations of input values (cluster centres, membership grades, norm coefficients, ...). As commented in 

Section 4.1.5 (i), we observe from Tables 60 and 61 that some of the correlations between variables do not maintain 

their respective order. We once again conclude that the fuzzy covariances, although derived from the same data, 

produce different results. The topology of the fuzzy partitions, membership grade values of the cases, and distance 

metrics norms are some of the factors which distinguish fuzzy and crisp covariances. With reference to Table 62, we see 

that the fuzzy covariance (methods 2 to 4) do produce much more similar results to the crisp covariances. We remember 

from Section 3.1.4 that: method 1 is based on the grade of relationship of a variable to the centroid; method 2 is based 

on the relation between membership grades and data values; method 3 is based on the distances of the objects between 

cluster centres, weighted by the norm coefficient; and method 4 is the relation between the sum of squares of the 

distances of the objects to the cluster centres, weighted by the norm coefficient and the membership grade. Each 

method, in sequence, could be considered as an enhancement of the previous method. Thus from Table 62 we conclude 

that the form of calculation of the fuzzy covariance is determinant in the degree of convergence with the crisp 

covariances and other methods. 

 

Table 60. Fuzzy covariance matrix produced by method 1 using Iris dataset as input 

 

 sepal-l    sepal-w     petal-l    petal-w 

sepal-l 1.000* 232.351 160.968 301.107 

sepal-w 232.351 1.000 -71.384 68.756 

petal-l 160.968 -71.384 1.000 140.139 

petal-w 301.107 68.756 140.139 1.000 
        * The value 1 has been assigned to the diagonal and is not used in the fusion process 

 

The diagonal values which represent the fuzzy covariance of each variable with itself, have been assigned as previously 

commented in Section 4.1.5 (i). 



 195 

 

Table 61. Crisp covariance matrix produced by SPSS using Iris dataset as input 

 

 sepal-l    sepal-w     petal-l    petal-w 

sepal-l 1.000 -0.1094 0.8718 0.8180 

sepal-w -0.1094 1.000 -0.4205 -0.3565 

petal-l 0.8718 -0.4205 1.000 0.9628 

petal-w 0.8180 -0.3565 0.9628 1.000 

 

 

With reference to Table 62 (below) we can see that methods 2, 3, 4 and SPSS covariance are coinciding for all three 

datasets. Method 1 does not coincide with the other methods. 

 

Table 62. Summary of covariance results: pairs of variables with first and second highest ranking covariances 

 

Data 

Set 

Covariance 

pairs 

method1 method2 methods  

3 & 4 

SPSS  

Covars 

Iris  * 1st** v1 , v4 v4 , v3 v4 , v3 v4 , v3 

 2nd v1 , v2 v1 , v3 v1 , v2 v1 , v3 

Bezdek 1st v1 , v3 v3 , v6 v3 , v6 v3 , v6 

 2nd v1 , v6 v4 , v5 v4 , v5 v4 , v5 

Artificial 1st v2 , v3 v1 , v2 v1 , v2 v1 , v2 

 2nd v1 , v3 v1 , v3 v1, v3 v1 , v3 

 

*v1=sepal-length, v2=sepal-width, v3=petal-length,  v4=petal-width 

**1st=pair of covariances with highest covariance value. 2nd=pair of covariances with second highest covariance value. 

 

(ii)   Results of  Aggregation and Input Selection using Iris dataset 

 

The results of this section create new variables from existing ones, and select the most relevant variables from the 

inputs. We consider the terms 'fusion' and 'aggregation' as synonymous, meaning the joining of two variables or factors 

to produce a new variable, whose output is defined as a function of the values of the two original variables. 

Notwithstanding, we consider that 'aggregation'  can be applied to variable grouping as well as data grouping of just one 

variable, whereas fusion usually applies only to variable grouping. The order of selection of the variables by the 

different algorithms is as important as the final grouping.  

 

Hartigan Joining Algorithm with input matrix of Fuzzy and Crisp Covariances: methods 3, 4 (Fuzzy) and SPSS 

Correlation (Crisp) all joined v3 and v4 to form v5 and then joined v1 with v5 to form v6, while method 1 differed in that 

it first joined v1 and v4 to form v5 and then joined v2 with v5 to form v6. This is summarised in Table 64. 

 

SPSS Factor Analysis - Factor Score Coefficient Matrix - Principal Components: one factor was found by this 

method. The scores for each variable are as follows: sepal-length:  0.30618 , sepal-width:  -0.15436, petal-length: 

0.34069, petal-width: 0.33152. This result indicates that petal-length is the most significant variable, followed by petal-

width and sepal-length, which is summarised in Table 64.  

 

C4.5 Heuristics - Simplified Decision Tree: below we can see that C4.5 has discarded sepal-length and sepal width 

and was able to classify 60 test cases with 2 errors cases using the remaining two variables. Default pruning of 25% was 

used, with 90 training and 60 test cases. It is clear that petal-length is the most significant variable in general terms, 

followed by petal-length. 

 

petal-length  1.9 : Iris-setosa (30.0/1.4) 

petal-length  1.9 : 

|   petal-width  1.7 : Iris-virginica (28.0/2.6) 

|   petal-width  1.7 : 

|   |   petal-length  5.2 : Iris-versicolor (30.0/2.6) 

|   |   petal-length  5.2 : Iris-virginica (2.0/1.0) 
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Feedforward Neural Network - Input Strength: a standard feedforward NN was run until a satisfactory model was 

obtained. The post-process option which shows the relative contribution strengths of each input relative to the output 

was run. The results were: sepal-length = 4.51, sepal-width = 5.13, petal-length = 9.98, petal-width = 11.06. This 

indicates that petal-width is the most significant variable, followed by petal-length and sepal-width. 

 

 

(iii) Results of Aggregation and Input Selection using Hathaway and Bezdek Data 

 
Hartigan Joining Algorithm with input matrix of Fuzzy and Crisp Covariances: methods 3 and 4 (Fuzzy) first 

joined v3 and v6 to form v7 and then joined v4 with v5 to form v8. SPSS (Crisp) formed v7 and v8 in the same manner as 

Methods 3 and 4 (above), although it differed in creating an additional factor v9 formed by joining v2 and v8 . Method 1 

had a distinct joining sequence to the other methods, as can be seen in the following diagram: 

 

Variable    Joining Sequence 

v2 

v5 

v1 

v3 

v4 

v6 

 

Figure 76. Joining Sequence produced for Hathaway & Bezdek data using covariance output matrix of method 1 

 

 

SPSS Factor Analysis:  using Principal Components to generate a Factor Score Coefficient Matrix, the results given in 

Table 63 (below) were produced. Principal Components has  generated three factors from the six original input 

variables. We observe that, for example, in the case of factor C1, v3 is the variable which contributes most to the overall 

composition of the factor, followed closely by v6 and then v5. 

 

Table 63. The three factors  found by the SPSS factor analysis method 

 

 C1  C2  C3 

v1: -0.29997   -0.11792     0.46278 

v2:  0.01023      0.44865   -0.60755 

v3:  0.35867    -0.21981   -0.02728 

v4:   0.13552      0.44220      0.36592 

v5:  0.19956      0.30961      0.51865 

v6:   0.33946    -0.24402      0.00509 

 

C4.5 Heuristics - Decision Tree: C4.5 discarded all variables except variable 1 and was able to classify 3 test cases 

(one from each possible class) with 0 errors. Default pruning of 25% was used, with 6 training and 3 test cases. Given 

that C4.5 has used only one input variable, v1, it is possible that the algorithm has been unable to find a reasonable 

structure from the input variables and has created a ‘default’ in which to categorise the data cases. 

 

Feedforward Neural Network - Input Strength: A standard feedforward NN was run until a satisfactory model was 

obtained, with the option selected which calculates the relative activations of the neurons in the input layer. This post-

process option effectively shows the relative contribution strengths of each input relative to the output. The results 

were: v1=5.46, v2=4.29, v3=2.22, v4=7.53, v5=1.88, v6=3.12. This indicates that v4 is the highest contributor, followed 

by v1 and then v2. In percentage terms, this would mean that v4 contributes 30,7% to the output layer of the model. This 

is calculated by dividing the input strength of v4, that is, 7.53, by the sum of all the input strengths v1 to v6, that is, 24.5. 



 197 

 

(iv) Summary of results of aggregation and input selection (ii) and (iii) 

 

With reference to Table 64 (below) we can see that methods 3, 4 and SPSS covariance are coinciding for all three 

datasets. C4.5 is coinciding with method 1 and SPSS principal components is coinciding to a lesser degree with the 

neural network. 

 

Table 64. Joining order and significance ranking of input variables 

 

Data 

Set 

Hartigan 

with 

output of 

methods  

3 & 4 

Hartigan 

with 

output of 

SPSS Cov 

Hartigan 

with 

output of 

method1 

SPSS 

principal 

componen

ts 

C4.5  

Rule 

Induction 

Neural 

Net- 

work 

Iris  * 

 

v3 , v4 , v1 v3 , v4 , v1 v3 , v4 , v1 v3 , v4 , v1 v3 , v4 v4 , v3 , v2 

Bezdek 

 

v3 , v6 , v4 , 

v5 

v3 , v6 , v4 , 

v5 , v2 

v3 , v1 , v5 , 

v2 

v5 , v1 v2 , 

v4 

v1 v4 , v1 , v2 , 

v6  

Artificial 

 

v1 , v2 , v3  v1 , v2 , v3 v1 , v4 v3 , 

v2  

v3 , v4 , v1 , 

v2 

v1  v2 , v1 , v4 , 

v3 

 

*v1=sepal-length, v2=sepal-width, v3=petal-length, v4=petal-width 

 

 

4.2.4   Summary of Section 4.2 
 

Section 4.2 has considered the calculation of statistics such as covariances in a c-Means type fuzzy environment. Also, 

fusion using fuzzy covariances has been demonstrated. This section of work is limited to crisp data input and the 

formation of fuzzy partitions from it. As an extension, a method of fuzzy representation of the data at input time has 

been detailed in [Nettleton98a]. Other areas of interest are: the use of  OWA operators, fuzzy data capture and 

representation, and studies of c-Means variants such as mixed c-Means[Pal97]  and fuzzy symbolic c-Means[El-

Sonbaty98]. With respect to the fuzzy covariance methods, methods 2, 3 and 4 give similar results to the crisp 

covariances, C4.5 and Neural Network. On the other hand, method 1 gives different variables as the most significant 

and the resulting covariances also have a different ordering. We conclude that method 1 requires the additional 

weighting and factors in the distance calculations, which are present in methods 2 to 4. 
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4.3 Apnea questionnaire data (Hospital Clinic, Barcelona) 
 

In this section we apply the WOWA aggregation operator to diagnose Apnea cases using a dataset collected from 

patients at the Hospital Clinic of Barcelona. In this case, the data was captured in crisp (categorical) form, using a 

standard Apnea screening questionnaire. 

 

In Section 4.3.1 the variable selection and weight assignment is assigned by medical expert judgement. Also, differently 

to the method described later in Section 4.3.2, the ‘w’ reliability weights are assigned by vectors of 5 values which  are 

then interpolated to give 5 characteristic bias curves. Refer to Section 3.2.3 of the thesis, and Figures 55a to 55e, for a 

description of the characteristic curve definitions.  A small number of Apnea cases are selected as input, which 

represent strongly negative, strongly positive, positive and borderline patients. 

 

In Section 4.3.2 we see a diversity of statistical and machine learning methods based first in clustering and second in 

classification, to establish relevance and reliability weights for variables in a dataset. For comparison, weights are 

secondly assigned by the medical expert, and thirdly by a mixture of expert assignment with statistical inspection. The 

resulting weights in each case are assigned to the WOWA aggregation operator to produce a diagnosis for each case, 

and the results are discussed. The weights are assigned directly as in the standard WOWA, that is one relevance weight 

and one reliability weight per variable. The data set processed in this section includes all the available Apnea cases as 

input, with a total of 150 cases. 

 

In Sections 4.3.1 and 4.3.2, we also note that in each method, a different set of most significant variables was chosen, 

by the different statistical and machine learning methods, by medical expert judgement, and by a combination of 

statistics, machine learning and expert judgement. In all of Section 4.3, which deals with the data provided by the 

Hospital Clinic of Barcelona, the data capture method has been crisp. We will later see how this contrasts with a fuzzy 

data capture of  Section 4.4. 

 

 

4.3.1 Test of Apnea diagnosis using WOWA and weights assigned by medical expert  
 

In this section the OWA and WOWA aggregation techniques are applied to selected  Apnea cases from the Hospital 

Clinic of Barcelona, the data being captured in a crisp form, and the output being a binary valued diagnosis. Both the 

OWA and the WOWA operators use reliability and relevance vectors for input variable weighting which are initially 

assigned by a medical expert.  

 

(i) Objectives and problem definition 

 

We summarise the results of applying the  OWA and WOWA aggregation operators, and principal components methods 

to predict Apnea cases. We modified the WOWA functionality by  fixing the ‘w’ weights to five characteristic curves, 

which define the weighting bias on the data values, which corresponds to the reliability of the values. Refer to Section 

3.2.3 of the thesis, Figures 55a to 55e, for a description of the characteristic curve definitions. 

In interpreting the aggregation results for all aggregation techniques, we need to define a threshold which indicates 

where 'do not admit' ends and 'admit' starts. We establish this by running known cases through and noting the values 

generated as output. We need a spectrum of cases, from a strongly positive case, to a strongly negative case, and a 

spectrum of intermediate cases ordered by degree of evidence of the apnea syndrome. This is measured clinically in 

terms of < 10 apneas / hour and >= 10 apneas / hour, so it is possible to assign a numeric quotient to the grade of  

incidence of apnea. 
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Table 65. Discriminant variables: example minimum set with weighting factors for aggregation 
 

variable description relia-

bility* 

rele-

vance* 

age age in years E 0.5 

sex sex 1 or 2 E 0.7 

weight weight in Kg M 0.7 

IMC body mass index in Kg/m
2
 M 0.7 

Neck circum-

ference 

Neck circumference in cm. E 1 

alcohol Alcohol intake M 0.5 

HTA Arterial hypertension mmHg E 0.7 

R1 Do you snore when sleeping or have you been told that you do? H 0.9 

R2 Does your snoring wake your partner or can it be heard from 

another room? 

H 0.9 

R11 Do you have head-ache when you wake up in the morning? M 0.9 

R13 Do you feel as if you haven’t rested when you get up in the 

mornings? 

M 0.9 

S3 Do you fall asleep when at the cinema, theatre, or other spectacle? M 1 

S4 Do you sleep in meetings or in public places? M 1 

S5 Do you fall asleep while driving on the motorway? M 1 

S6 Do you fall asleep against your will during the daytime? M 1 

*the values of these columns are then converted proportionately to normalised values so that  = 1 and  = 1, as in Table 67 (below) 

 
 

 

 

Table 66.    vector: each variable has a  weight which indicates its reliability.  = 1 

 
                           Question Response Variable  

 R1 R2 R11 R13 S3 S4 S5 S6 

 vector 0.15 0.15 0.15 0.15 0.09 0.11 0.09 0.11 

 

In Table 67 (below) we can see five values defined for each variable. From these value points, WOWA uses an 

interpolation method, such as that of Chen and Otto [Chen95], to create a continuous function curve which can be used 

to weight all the values of each variable. 

 

 

Table 67.   vector: each variable has a vector which weights the ordered data responses for that variable, in 

terms of their relevance.  = 1 

 
                             vector 

Variable 1 2 3 4 5 Weighting Bias on: 

          R1 0.20 0.20 0.20 0.20 0.20 Even 

          R2 0.30 0.30 0.20 0.10 0.10 Low values 

          R11 0.10 0.10 0.20 0.30 0.30 High values 

          R13 0.30 0.15 0.10 0.15 0.30 High & Low 

          S3 0.10 0.25 0.30 0.25 0.10 Middle values 

          S4 0.20 0.20 0.20 0.20 0.20 Even 

          S5 0.30 0.30 0.20 0.10 0.10 Low values 

          S6 0.10 0.10 0.20 0.30 0.30 High values 
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(ii) Summary of results for Section 4.3.1 

 

In Table 68 (below) we run the method using four theoretical test cases and 3 aggregation methods. Rows 1 to 3 are 

positive cases (admit), case 2 being borderline: from which we derive the % success rate of correct diagnosis of patients 

who have apnea syndrome; and row 4 is a strongly negative case (do not admit): from which we derive the % success 

rate of correct diagnosis of patients who do not have apnea syndrome.   

The case data is not only weighted by the  and  vectors, but also by the membership grade associated with the 

linguistic label of each question response.  

We see that WOWA agrees with OWA and principal components for cases 1 and 3, and does not agree for the 

borderline case (2) and the strongly negative case (4). Principal components and OWA give positive outcomes for all 

four cases, thus having a good precision for positive diagnosis and low precision for negative diagnosis (high sensibility 

and low specificity as commented  previously in Section 1.2.9 of the thesis) which is a typical result for standard 

statistical techniques used in the literature [Hoffstein93]. On the other hand, WOWA successfully diagnosed both the 

borderline case (row 2) and the negative case (row 4).
 

 

Table 68. Input responses for 8 questions with corresponding outcomes from aggregation methods  

 

 
                           Input                                                                                                                Outcomes 

                           Projection of crisp responses (0=never to 4=always) on normalised scale  

 R1 R2 R11 R13 S3 S4 S5 S6 Wowa Owa Principal 
Components 

Data vector for 

Patient P1 

 

0.60* 

 

0.60 

 

0.60 0.60 0.60 0.60 0.40 0.40 0.53 

 
admit 

0.84 

 
admit 

1.15284 

 
admit 

Data vector for 

Patient P2 

 

0.60 0.60 0.60 0.60 0.40 0.40 0.20 0.20 0.48 

 

do not admit 

0.84 

 

admit 

1.15317 

 

admit 

Data vector for 
Patient P3 

 

0.80 0.60 0.60 0.80 0.60 0.60 0.60 0.60 0.56 
 

admit 

0.89 
 

admit 

1.15412 
 

admit 

Data vector for 

Patient P4 

 

0.40 0.40 0.60 0.60 0.40 0.40 0.20 0.20 0.45 

 
do not admit 

0.84 

 
admit 

1.15391 

 
admit 

*NB: these values are not membership grades, but are numeric equivalents of the crisp linguistic labels, that is, 1/5=0.2=never, 2/5=0.4=rarely, 

3/5=0.6=sometimes, 4/5=0.8=often, 5/5=1.0=always, with some readjustment depending on the projection and on the resulting distribution. 
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4.3.2 Evaluating reliability and relevance for WOWA aggregation of sleep Apnea case data  
 

In the following we use diverse clustering and classification techniques to establish the relevance and reliability of each 

variable, which is then given to the WOWA aggregation operator to generate an aggregated value for each patient with 

high correlation to the apnea diagnosis. This is also compared with expert medical assignment of the weights, and with 

mixed assignment, that is, expert assignment together with statistical inspection.  

 

We describes the data used, the objectives and the method of diagnosis using WOWA operators and the problem of 

assigning the relevance and reliability weights. This is followed by details of the application of four unsupervised 

clustering techniques to identify variables used to partition the data. In the next step, supervised modelling techniques 

are used to generate a ranking of variables in order of significance to the diagnosis output. WOWA aggregation results 

are detailed using the reliability and relevance weights derived in the previous two parts,  and the section terminates 

with a discussion of some conclusions of the approach and the results of its application to apnea diagnosis. 

 

 

Clinical data         Questionnaire 

(age, weight,         responses 

arterial pressure, …) 

 

 

Multiple data analysis techniques to establish relevance  

and reliability of each variable 

 

 

WOWA aggregation produces a value for each patient 

 

 

 

 

                          Patient Diagnosis [ ] 

 

 

Figure 77a.  Data processing of the apnea data input variables to produce a diagnosis 

 

In Figure 77a (above) we see the data processing scheme used to establish the relevance and reliability weights, and 

using the WOWA aggregation operator to produce a diagnosis as the end result.  

 

 

 

                           Clustering Methods 

 

 

Kmeans         Kohonen           Condorcet            Cross  Product 

             Covariances (Pearson)                                        

 

 

 

                Polling (voting) 

 

                     Partitions related to key variables 

 

Figure 77b. Clustering Techniques determine relation of key variables to clusters 

 

In Figure 77b (above) we see the four clustering techniques used in this section: Kohonen Net, Kmeans, Condorcet and 

Cross Product Covariances (Pearson). The techniques have been chosen so as to contrast the results given by 

significantly different approaches. The same data input to each method, which produces a clustering which upon 

inspection indicates the variables which best explain the grouping of the data. For example, if two clusters were 

produced by a method and in one cluster all the cases correspond to ‘age’ less than 45 years, and in the other cluster all 

the cases correspond to ‘age’ greater or equal to 45 years. Thus we could conclude that for this method, ‘age’ has been a 
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determinant variable in partitioning the dataset. In this manner, each method may indicate the same or different key 

variables used for partitioning, and thus there is a posterior ‘polling’ phase which simply conducts a ‘vote’ on  the 

results of all the methods to rank the variables in frequency of  appearance as key variables. For example, if  we have 

four methods and  three say that ‘age’ is the highest ranking key variable, and one says that ‘weight’ is the highest 

ranking key variable, then ‘age’ will be voted as more significant than ‘weight’ by simple majority (3 to 1). In the case 

of a ‘tie’, we would place both variables with an equal ranking, although, as can be seen in the results as shown in Table 

69, with the given variables, there were no cases of ‘ties’. 

 

 

                                                         Modelling Methods 

 

 

   Logistic  Linear             C4.5  Rule   Backprop. Neural 

   Regression     Regression      Induction   Network 

          

 

 

 

  Polling (voting) 

 

         Ranking of variables 

 

Figure 77c. Contrasting methods are polled to determine a ranking of relevance and reliability of the variables 

with respect to apnea diagnosis 

 

In Figure 77c (above) we see the four classification techniques used in this section: C4.5 rule induction, back-

propagation neural network, logistical and linear regression. The techniques have been chosen so as to contrast the 

results given by significantly different approaches. The procedure of executing the methods and polling the results is the 

same as that for the clustering methods explained for Figure 77b. Each modelling method produces an output which 

allows a ranking of significance of input variables with respect to the output, and the results are later shown in Table 70. 

 
Apnea patient data: consists of the collected data of the standard sleep patient questionnaire, for 154 patients, captured 

over a 1 year period. The data set contains 68,2% positive outcomes and 31.8% negative outcomes. The questionnaire 

consists of two main sections: the first records clinical data (age, weight, blood pressure, etc. ..); the second section 

consists of  41 questions to which the patient responds. The questions are divided in 3 subsections: 15 general sleep 

questions {s1...s15}, 16 respiratory related questions {r1…r16} and 9 somnolence related questions{s1…s9}. Based on 

this information, the doctor then gives a clinical evaluation: healthy; simple snorer; doubtful; typical apnea; other 

illness. We simplify this to: typical apnea; no apnea. 
 

Establishing reliability and relevance for WOWA aggregation: we consider applying diverse data analysis 

techniques to the variables which have been collected for apnea patients. We wish to establish, for each variable, its 

relevance with respect to the apnea diagnosis, and its reliability. The four clustering techniques used are: Kohonen Net, 

Kmeans, Condorcet and Cross Product Covariances (Pearson). These two values will be the two weights in the WOWA 

vectors. Also we wish to establish the most significant variables with respect to apnea diagnosis. The four classification 

techniques used are: C4.5 rule induction, backpropagation neural network, logistical and linear regression. The 

techniques have been chosen so as to contrast the results given by significantly different approaches. 

 

 

WOWA Aggregation in the context of Apnea diagnosis: in [Nettleton99e], Nettleton evaluated different aggregation 

methods for diagnosing sleep apnea. The following aggregation methods were considered: Ordered Weighted Average 

(OWA) [Yager93], Weighted Ordered Weighted Average (WOWA) [Torra97a] and Principal Components. OWA uses 

a vector in which, for each variable, a value is assigned which indicates its relevance. In WOWA a second vector is 

incorporated whose values indicate the reliability of each variable. In this section we extend the previous work, 

calculating the weights from statistical analysis of the data. 

 

Relevance and Reliability in the context of Apnea diagnosis: relevance is a standard data analysis objective for 

which we can apply diverse algorithms and interpret the results. Relevance is more straightforward to establish in 

statistical data analysis, than reliability. Reliability is influenced by different aspects. There are data aspects, such as 

%missing and %erroneous. Then there are application dependant aspects which, in the case of the questionnaire 

responses can be the truthfulness with which the patient responds (it may be that if the patient goes to sleep at the wheel 
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of a car, s/he does not wish to make that known, and thus tends to give a higher negative response rate to this question 

{s5}, than it really should have). 

 
(i)    Unsupervised Clustering and Statistical Techniques  

 
With reference to Table 69 (below) we can see that in methods 1, 2 and 3, partner has influenced partitioning. Kohonen 

and Kmeans tend to have biased the ‘g’ responses while Condorcet has used the ‘s’ responses more for partitioning. 

There is not a clear consensus between the different clustering and statistical techniques. Methods 1, 2 and 4 used 

numerical representation of all the data, while method 3 used a categorical representation with ChiSquared for the 

significance tests. Kohonen net: Various architectures of net were tried: input layers of 41 neurones (questionnaire 

responses only), 27 (clinical data only), and 68 (questionnaire responses and clinical data). Kmeans: Standard SPSS 

Kmeans was used for 2 clusters, maximum iterations set to 100, convergence at 0.02. Condorcet – mixed data type 

clustering: A proprietary IBM algorithm based on the Condorcet [IBM96] distance criteria was used to generate 9 

segments. All data was prepared as categorical and a chisquared measure was used to rank the variables in each 

segment and between segments. Cross product covariances (Pearson): A standard SPSS numeric covariance was used 

with the Pearson Product Moment option, to generate covariances between all the variables, defined as numeric. 

 

 

Table 69. Clustering and statistical techniques applied to the apnea cases and the identification of key variables 

which distinguish the resulting partitions 

 

 Kohonen (1) Kmeans (2) Condorcet (3) Cross product 

covariances 

(Pearson) (4) 

Most significant 

variables 

 

partner, weight, 

g1, r1, g4, s5 

 

 

(2 and 6 clusters) 

partner, sex, g4, r6, 

g13, g5, s5 

 

 

(2 clusters) 

hta, s5, s2, s1, s6, 

r13, partner, g6, g7 

 

 

(9 clusters) 

neck, weight, age, 

alcohol 

 

 
 

(ii)   Supervised classification and statistical models 

 
We contrast four techniques, each using a different algorithmic basis, with the objective of realising a consensus for the 

variables being evaluated. With reference to Table 70 (below) we can see that methods 1, 2 and 3 have identified waist 

as a significant variable, while methods 1, 3 and 4 have identified g1 as significant. Other identified variables are r2, 

partner, weight and s10. C4.5 rule induction: Quinlan’s standard C4.5 algorithm was used, with 25% pruning, no 

external test set, and no grouping. Backpropagation neural network: The neural network training phase generates a 

sensitivity analysis which provides a ranking of the variables with respect to the output (in this case, the diagnosis 

yes/no). Logistic regression: Standard SPSS logistic regression was used with 3 test models. Overall precision’s were: 

89,66%, 88% and 75%. Linear regression: One SPSS linear regression was generated. The R
2
 value was 0.31309, the 

standard error was 0.51035. 

 

 

Table 70. Significance ranking of input variables for different methods 

 

 Logistic regression 

(1) 

Linear regression 

(2) 

C4.5 rule induction 

(3) 

Back propagation 

neural network (4) 

Most significant 

variables 

 

neck, g1, partner, 

s9, s8, s7, s6, s10, 

waist, r12, r2, r5, 

r6, g2, g6 

g8, partner, waist, 

hip, weight 

r3, r2, waist, age, 

weight, g1 

sex, r15, g10, g1, 

r9, r1,hta,tabacco, 

height, alcohol, 

weight, r3, r8, s7, 

g5, s10, r2, r5 
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(iii) WOWA Aggregation using the weights established in Steps (i) and (ii) 

 

The resulting consensus from all data analysis methods (Tables 69 and 70) indicated the following 9 most significant 

variables and their corresponding reliability and relevance weights: {partner(0.90, 0.70), weight(0.93, 0.7), neck(0.95, 

0.92), g1(0.65, 0.68), s5(0.45, 0.95), sex(1.0, 0.7), r15(0.65, 0.60), hta(0.95, 0.67), r5(0.55, 0.90)}. Question g1 is: 

“how many hours do you normally sleep?”; question s5 is “do you fall asleep while driving on the motorway?”; 

question r15 is “do you have lapses of memory or loss of concentration” and question r5 is “have you noticed an 

increase in the intensity of your snoring recently?”. Executing the WOWA aggregation with the above input weighting 

vectors and the 154 patients case data rows, produced the results of Table 71. In Table 71 the output aggregated value 

produced by WOWA has been correlated with the binary value which represents the apnea diagnosis. 

 

One part of the reliability weight can be calculated in terms of the consistency between methods for each variable. For 

example, the variable ‘hta’ (arterial hypertension) may be chosen as one of the 9 most significant variables by all 8 

methods, for which we assign it a reliability quotient of 1.0, while ‘partner’ appears in the top 9 variables for 4 out of 

the 8 methods, for which we assign it a reliability quotient of 0.5. This value is pondered by the percentage of missing 

values in the original data for each variable, and, in the case of the questionnaire responses, the possibility that the 

patient does not respond correctly or truly to a given question. We limited the number of variables to 9 given that, by 

statistical inspection, from the tenth variable on it was though that the choices of variable were no longer sufficiently 

reliable to include. This is also explained given that different methods vary in the number of variables which are clearly 

identified, with a minimum of 5 variables in the case of linear regression, and up to 18 by the backprop. neural network, 

as can be seen in Tables 69 and 70. 

 

(iv) Weights assigned by medical expert and statistical analysis 

 

 Nettleton, in [Nettleton99b] defined, jointly with the medical expert, a most significant sub-set of 15 variables for 

apnea diagnosis. This was: {age(1.0, 0.5), sex(1.0, 0.7), weight(1.0, 0.7), imc(1.0, 0.7), neck circumference(1.0, 1.0), 

alcohol(0.7, 0.5), hta(1.0, 0.7), r1(0.7, 0.9), r2(0.7, 0.9), r11(0.7, 0.9), r13(0.7, 0.9), s3(0.4, 1.0), s4(0.5, 1.0), s5(0.4, 

1.0), s6(0.4, 1.0)} with figures in brackets being the respective reliability and relevance weights, also assigned by the 

medical expert. This is the same set of variables and weights which is used in Section 4.3.1. The above reliability and 

relevance values have to be prepared for input to WOWA so that they sum to 1 for each case. The values are reduced 

proportionately to achieve this. The normalised value is converted into the relevance and reliability weights for WOWA 

which respectively sum to 1 for all variables, that is ,  = 1,  = 1, where  is reliability and  is relevance. 

 

(v) Summary of results – Section 4.3.2 

 

With reference to Table 71 (below), which summarises the results of Section 4.3.1, in which we have evaluated 

assignment by statistical/machine learning methods, medical expert assignment alone and mixed assignment (expert and 

statistical/machine learning) methods. Overall, in Table 71 we can see a favourable  result for diagnosis of positive 

cases and a good result for negative cases, in comparison with the methods used in the literature[Hoffstein93][Katz90]. 

It can be seen in Table 71 that the best results are given by the method in which the weights are assigned by statistical 

and machine learning methods, but are then revised by the medical expert. 

 

Table 71. Correlation of WOWA with Apnea Diagnosis for three different weight assignment methods for 

reliability and relevance 

 

Weight 

assignment 

method 

Expert 

assignment 

of weights 

Data 

analysis 

assignment 

of weights 

Expert + 

data 

analysis 

assignment 

Diagnosis 

of positive 

cases 

0,75 0,78 0,81 

Diagnosis 

of negative 

cases 

0,65 0,61 0,67 

 

 



 205 

 

4.3.3 Summary of Section 4.3 
 

The work in this section has been jointly developed with medical and data analysis expertise, and an area has been 

chosen for which there is real room for improvement, due to the lack of precision of existing screening methods 

(especially for negative case prediction), and the high cost and resource requirements for sleep centre testing. Two 

fundamental aspects have been considered from a data analysis point of view: representation of the data and 

aggregation. With respect to aggregation, three contrasting methods have been proposed for aggregating the data values: 

Principal Components, OWA and WOWA.  

 

We have described a method for establishing the relevance and reliability weights needed by the WOWA aggregation 

operator, applying them to complex data of a real medical problem. With the WOWA aggregation method to apnea 

diagnosis we can include relevance and reliability information in a more precise manner, to improve the success rate for 

correct diagnosis. The approach described in this section is previously untried in the literature of Apnea diagnosis, 

which has tended to focus on multiple linear regression and logistic regression models (see Tables 1 and 2, Section 

1.2.9 of the thesis). The aggregation techniques have been tested on a real crisp Apnea case data set 

[Nettleton99c][Nettleton99e] in collaboration with the Hospital Clinic of Barcelona.  

 

This work of Section 4.3.1 is summarised in [Nettleton99c] and has demonstrated a good precision for both positive and 

negative cases. The work of Section 4.3.2 is summarised in [Nettleton99e], where the data was again captured by crisp 

(categorical) question responses but this time processed by fuzzy aggregation algorithms, WM, OWA and WOWA. 

With reference to Section 4.3.1, Table 68, we observe and conclude that WOWA was the only method which correctly 

diagnosed the negative case (row 4) and the borderline case (row 2). 

 

The next step on from the work in this section involves the evaluation of the aggregation of questionnaire responses 

captured on a fuzzy (continuous scale), as a opposed to the crisp (categorical) representation. This is detailed in the 

following Section 4.4, in which a specially designed questionnaire is completed by patients, and processed with the 

methods which have been described in this section. 
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4.4  Apnea questionnaire data (Hospital of the Santisima Trinitat, Salamanca) 
 

In this section we apply the WOWA aggregation operator to diagnose Apnea cases using a dataset collected from 

patients at the Hospital of the Santisima Trinitat, Salamanca. In this case, the data was captured in both crisp 

(categorical) and fuzzy (continuous scale) form, using a specially designed questionnaire. The patients fill in two 

questionnaires, one in the fuzzy/continuous form and a second questionnaire with identical questions but represented in 

crisp/categorical form. This will enable us to compare the diagnosis using crisp and fuzzy representation methods. The 

work gives a novel approach for questionnaire data capture and processing where linguistic labels and subjective / 

uncertain inputs play an important role, and enables expert knowledge and statistical knowledge to be incorporated into 

the data processing. 

 

The complete variable set was the same as that collected in Section 4.3 for the data of the Hospital Clinic, but the 

selected variables were slightly different, due to the criteria of a different medical expert and the use of different 

statistical techniques. Different types of weight assignment were tried: statistical analysis, medical expert assignment, 

statistical analysis and medical expert assignment. Also, the WOWA precision for diagnosing positive and negative 

cases was benchmarked against ID3 tree induction and a feedforward neural network.   The data processing differs from 

the crisp Apnea data of Section 4.3, given that we also incorporate membership grade values as part of the input data. 

We summarise the results of applying WOWA, Neural Nets and tree induction to predict Apnea cases, using data from 

questionnaire responses collected in both scalar (continuous) and discrete (categorical) form. 

 

 

 

   Categorical                  ‘relevance’ weights                

   questionnaire     assigned by expert      Aggregation of 

   data                                     all data values  

                      of one case                       Diagnosis  

                                 in one output 

            value (WOWA) 

                     ‘relevance’ weights 

   Scalar                  learned by genetic 

   questionnaire                algorithm 

   data using         

   membership 

   function 
 

 

Figure 78. General data processing scheme 

 

With reference to Figure 78, the data processing scheme allows us to compare categorical and scalar questionnaires for 

diagnostic accuracy, and compare  results when the ‘relevance’ weights are assigned by the medical expert (based on 

personal knowledge and the literature) or learned by the genetic algorithm. The ‘reliability’ weights are always assigned 

by the medical expert (based on personal experience and a knowledge of the specific case data captured in his Clinic). 

This is because it was considered that ‘reliability’ would be more difficult to learn statistically, whereas ‘relevance’ is 

more akin to correlation analysis. Note that the scalar questionnaire makes use of a manually defined membership 

function to interpret the patient’s response. The ‘reliability’ and ‘relevance’ values, on the other hand, are automatically 

interpolated into curves as part of the aggregation operator itself. 

 

4.4.1   Test data – selected variables 
 

The questionnaire is designed to detect diverse sleep pathologies. Thus the medical expert has selected a subset of  

variables with highest correlation specifically with Apnea diagnosis. Statistical details of these variables are given in 

Tables 72(a) to 72(c) below. In Table 72(a) we see in column 1 the variable names, starting with the clinical data: age, 

sex, neck circumference, body mass index, and somnolence indicator. These are followed by the selected questionnaire 

responses: G3 is a general question, while R1 to R12 are respiratory related questions, and  S4 to S10 are somnolence 

related questions. The variables and the questionnaire responses have been  detailed in length in Section 3.4 of the 

thesis. We observe that the numerical variables such as ‘age’ and ‘neck circumference’ have been categorised by the 
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definition of discrete bands. These bands have been  defined by medical expert assignment. We see that the 

questionnaire response variable have been defined with five fuzzy linguistic labels. The membership curve to interpret 

the membership grade and boundaries for each label, has been defined previously in Section 3.1.5 of the thesis. 

 

 

Table 72(a). Selected variables for apnea diagnosis and meta-data (reliability and relevance) assigned by medical 

expert 

 

Variable Relevance Reliability 

(bias on 

expected 

values) 

Categorisation Observations 

Age 0.65 3 (M) 1 “0-20”; 2 

“21-40”; 3 “41-

60”; 4 “61-80”;  

5 “>80” 

Sleep apnea is more frequent as age advances. 

They are very unusual in children. 

Sex 0.60 1(E) 1 “MALE”; 2 

“FEMALE” 

Apneas are more frequent among males (3-4:1) 

Neck 

Circumf-

erence 

(cm) 

0.87 4(M) 1 “<30”; 2 “30-

35”; 3 “36-41”; 

4 “42-48”; 5 

“>48” 

The neck circumference is an important 

predictive factor. The thicker the neck, the 

greater probability of apneas. 

BMI 

(Body 

Mass 

Index) 

0.8 3(M) 1 “<22”; 2 “23-

26”; 3 “27-30”; 

4 “31-34”; 5 

“>35” 

The BMI has a similar significance to that of the 

Neck Circumference, but is slightly less relevant. 

A greater BMI implies greater probability of 

apneas 

Somno-

lence 

0.8 2(L) 1 “YES”; 

2”NO” 

Somnolence is a good indicator for sleep apnea. 

To evaluate the degree, we tend to use the 

apnea/hypopnea index per hour. The AHI 

correlates with the indexes and scales of 

excessive somnolence. Thus, the absence of 

somnolence practically discounts an elevated 

AHI, that is, above 30 per hour. 

G3 0.6 H 1 “never”;  

2 “rarely”; 3 

”sometimes”; 4 

“often”; 5 

“always” 

High response values indicate greater probability 

of apneas. 

R1 0.75 E Idem Idem 

R2 0.90 H Idem Idem 

R6 0.85 H Idem Idem 

R7 0.95 H Idem Idem 

R8 0.85 H Idem Idem 

R9 0.63 H Idem Idem 

R10 0.80 H Idem Idem 

R12 0.70 H Idem Idem 

S4 0.75 H Idem Idem 

S5 0.90 H Idem Idem 

S7 0.85 H Idem Idem 

S9 0.85 H Idem Idem 

S10 0.85 H Idem Idem 

 

 

In Table 72(b) below we see all the selected questionnaire responses used as input. These have been selected by medical 

expert knowledge and statistical analysis from the total of 40 questions asked to the patient in the questionnaire. There 

is 1 general question, 8 respiratory related questions and 5 somnolence related questions. The reliability weights play a 

key part here:  although, given that as we have preselected these variables, they all have a relatively high relevance 

weight, some of the questions may not be answered truthfully, for example, S5, S9 or S10. Questions R1, R2, R7 and 
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R8 depend on a witness, which is usually the bed partner. In the absence of a witness, the reliability of the responses to 

these questions drops sharply. 

 

 

Table 72(b). Description of selected questionnaire questions 

 

Variable/ 

Question 
Description 

G3 Are you accustomed to taking a nap during the day? 

R1 Do you sleep while asleep or have you been told that you do? 

R2 Does your snoring wake up your partner or can it be heard from another room?  

R6 Do you wake up at night with a sensation of choking? 

 

R7 Have you been told that you “stop breathing” when you are asleep? 

R8 Has your partner woken you for fear that you have stopped breathing ? 

R9 How many times do you get up to go to the toilet at night? 

 

R10 Do you sweat a lot at night? 

R12 Do you wake up with a dry mouth? 

S4 Do you fall asleep in meetings or in public places? 

 

S5 Do you fall asleep when driving on the motorway? 

 

S7 Do you fall asleep while eating? 

S9 Do you fall asleep when driving you stop at a traffic light? 

 

S10 Do you fall asleep in your workplace while doing your normal work activities? 

 

 

In Table 72(c) below we see the 7 clinical data variables used as input. These variables have been preselected by the 

medical expert from a total of 15 variables (see Annex 3 of the thesis for a complete detail of all the variables). We 

observe that the mean age is 53 years, and the patients are predominantly male. The AHI index is the clinical index 

which indicates if the patient has Apnea or not. We categorised this as a binary variable, using the cut-off point of AHI 

10 for positive cases, as indicated in the literature and by our medical expert. 

 

Table 72(c). Basic Statistics of the Clinical Variables 

 

Variable Minimum Maximum Mean Frequencies for  

Categorical Variables 

Age 22 86 52.94  

Sex    50 male, 21 female 

Neck 

Circumference 

(cm) 

34 50 39.52  

BMI (Body 

Mass Index) 

19 43 25.46  

Somnolence    40=NO, 28=YES,  

3=UNKNOWN 

AHI Index 

(output) 

0 85 19  

Flag 1/0 (AHI 

10) (output) 

   39 Positive cases;  

32 Negative cases 
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4.4.2   Questionnaire responses – comparison of categorical and scalar representation of questions 
 

In this section we evaluate the responses to the with the categorical form, and the responses to the questions with the 

scalar form. We compare the response frequencies to identify tendencies, differences, and improvements, if any, of the 

scalar form over the categorical form. With reference to Table 73 (below), we observe from  the ‘Sca’ columns that in 

general, the fact that a person tends to think of a response in a scalar form rather than categorical, depends more on the 

question than the linguistic label (never, rarely, …). Notwithstanding, if we study subgroups of questions (G, R, S) we 

can see signs of greater frequencies for the ‘Sca’ responses ‘frequently/always’ (R), and  ‘never/rarely’(S). In Table 73 

we can also see clear tendencies for specific questions, such as S9 with a higher frequency on responses ‘never’ and 

‘rarely’, and R12 for the preference for higher range values ‘sometimes’, ‘frequently’ and ‘always’. We can also see an 

inversion of the tendency for responses to ‘never’ and ‘rarely’ when we compare categorical and scalar response 

frequencies (totals at bottom of respective columns). 

 

Table 73. Summary of frequencies of categorical responses to each question (Cat) and the number of scalar 

questions responded as scalar (as opposed to a categorical response) (Sca) 

 

 never 

 

rarely Some-times Freq-

uently 

always (M)issin

g 

TOTALS 

 Cat Sca Cat Sca Cat Sca Cat Sca Cat Sca Cat Cat Sca 

G3 13 8 16 14 20 12 10 13 20 7 1 71 54 

R1 4 0 2 1 9 4 27 16 9 13 0 71 34 

R2 12 3 4 7 14 10 23 17 14 11 2 71 48 

R6 39 9 4 15 18 10 6 7 18 3 1 71 44 

R7 37 7 2 13 15 9 9 6 15 3 5 71 38 

R8 42 9 7 13 8 6 5 6 8 4 4 71 38 

R9 20 16 26 25 10 14 12 6 10 1 3 71 62 

R10 11 6 21 18 16 18 16 9 16 3 1 71 54 

R12 14 5 7 10 18 14 23 19 18 10 0 71 58 

S4 49 11 3 12 11 2 8 5 11 4 0 71 34 

S5 41 11 5 13 8 4 7 4 8 2 10* 71 34 

S7 61 13 6 15 0 2 3 2 0 2 1 71 34 

S9 54 10 6 13 2 3 1 0 2 0 8* 71 26 

S10 48 7 7 11 9 7 3 7 9 4 3 71 36 

TOTALS 445 115 116 180 158 115 153 117 158 67 39 994 594 

*mainly omitted by people who indicated that they do not drive a car. 

 

From Table 74 (below), we can see, that although the patient can respond to all the questions in a scalar form if s/he 

wishes, only 31% are pondered as scalar, and only 15% have a high uncertainty response (membership grade > 0.09 for 

any one category). As part of the understanding of this finding, we have to take into account, that although each patient 

was explained how to fill in the two different types of questionnaire, and an explanatory section was included at the 

beginning of the questionnaire, there were, upon inspection, approximately 35% of patients who had filled in the scalar 

questionnaire totally with categorical responses, that is, placing a cross on the scale but exactly on the category 

boundary. On the other hand, there are people who when required to think introspectively in more intuitive terms, go for 

the categorical way of thinking as a preference. We could go as far as to say that this could reflect the type of 

personality – more deterministic or more reflexive thinking on the part of the patient. 
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Table 74. Frequency table of preference of scalar response with respect to categorical response 

 

 Number of 

categorical 

responses 

Number of 

scalar 

responses 

Number of 

scalar 

responses with 

high 

uncertainty 

% of responses 

with high 

uncertainty 

Number of 

responses with 

value missing 

(scalar/cat) 

G1 44 27 12 44 0 

R1 54 17 8 47 0 

R2 45 24 12 50 2 

R6 49 22 11 50 0 

R7 50 19 9 47 2 

R8 48 19 12 63 4 

R9 39 31 21 68 1 

R10 44 27 14 52 0 

R12 42 29 15 52 0 

S4 54 17 6 35 0 

S5 44 17 11 65 10* 

S7 54 17 4 23 0 

S9 48 13 3 23 10* 

S10 49 18 8 44 4 

TOTALS 664 297 146  33 

*mainly omitted by people who indicated that they do not drive a car. 

 

 

4.4.3 Learning and assignment of the weights 

 
As commented previously, the relevance weights were assigned by two different methods: (i) learning by a genetic 

algorithm,  and (ii) by the medical expert. The weights assigned by the medical expert  can be seen in columns 2 and 3 

of Table 72(a). In the case of the reliability weights, these were always assigned by the medical expert, and represent 

‘characteristic’ curves, as previously explained in Section 3.2.3 of the thesis. The following details the values of the 

relevance weights learned from the categorical and the fuzzy data, respectively, and makes some observations with 

respect to the differences and resulting values. 

 

The details of the execution of the genetic algorithm are as follows: the GA was run for 200 generations each dataset; a 

population size of 25 was used (the number of chromosomes) and the number of genes per chromosome was 19, which 

is, of course, equal to the number of weights and the number of corresponding variables. The crossover rate was set to 

0.85 and the mutation rate was set to 0.01. 

 

Diverse tests were run with different population sizes, generations, crossover rate and mutation rate, but the best found 

were those above, taking into account the memory and processing power restrictions of the PC which ran the tests. A 

test was also run to divide the chromosome en different sections, depending on the type of variable. Four subdivisions 

were tried: ‘clinical data variables’, and one for each questionnaire responses type, G, R or S. Crossover was only then 

allowed within each of these subsections, the objective being to keep the weight values of homogeneous variables 

together. In practise, no significant improvement was found by subdividing the chromosome in this manner, and the 

results published used a simple undivided chromosome structure. 
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Table 75. Weight values assigned by medical expert and by learning with genetic algorithm 

 

 

 

 

 

 

Assignment 

method 

 

Weight assignments of variables 

Age Sex N 

e 

c 

k 

B 

M 

I 

S 

o 

m 

n 

G3 R1 R2 R6 R7 R8 R9 R10 R12 S4 S5 S7 S9 S10 

Medical 

expert 

0.65 0.60 0.87 0.80 0.80 0.60 0.75 0.90 0.85 0.95 0.85 0.63 0.80 0.70 0.75 0.90 0.85 0.85 0.85 

Genetic 

algorithm 

learns from  

fuzzy data 

0.05 0.47 0.05 0.05 0.42 0.42 0.16 0.47 0.05 0.37 0.21 0.21 0.16 0.37 0.32 0.47 0.16 0.11 0.16 

Genetic 

algorithm 

learns from 

crisp data 

0.11 0.47 0.05 0.05 0.47 0.21 0.16 0.21 0.16 0.37 0.11 0.21 0.26 0.16 0.37 0.21 0.42 0.32 0.47 

 

 

Table 76. Agreement between different weight assignments 

 

 Learned from 

categorical data 

Learned from fuzzy 

data 

Assigned by medical 

expert 

Learned from 

categorical data 

19* 10 7 

Learned from fuzzy 

data 

10 19 7 

Assigned by medical 

expert 

7 7 19 

*number of variables assigned by one method whose weights are ‘of the order of’ the weights of the  

  corresponding variables assigned by the other method.  

 

From Tables 75 and 76 we can see that there is a significant difference in the assignment of the weights between 

methods and data types. There is less difference between crisp and fuzzy data types for genetic learning, but a greater 

difference between the learning methods and the medical expert. In particular, variables which are considered relevant 

by the medical expert, such as ‘Neck’ and ‘BMI’, are not considered relevant by the learning method. The medical 

expert assigned 0.87 and 0.80 to ‘Neck’ and ‘BMI’, respectively, whereas the learning method with crisp data assigned 

0.05 to both variables, and the learning method with fuzzy data also assigned 0.05 to both variables. 

 

On the other hand, there was an agreement by all methods for the variables, ‘Age’, ‘Somnolence’,   ‘R7’, ‘R9’and ‘S4’. 

We take into account that the medical expert defined the weights within a restricted range, which was from 0.60 to 0.95, 

whereas the values of the learned weights ranged from 0.05 to 0.47. Thus we consider the minimum learned value of 

0.05 equivalent to the minimum expert value of 0.60, and the maximum learned value of 0.47 as equivalent to the 

maximum expert value of 0.95. Also note that in order to input the weights to WOWA, they were normalised so that 

their sum was equal to 1. We can conclude that the GA learning process is not very precise for individual clinical 

variables, but tries to find an overall reasonable result. This agrees in general with the characteristics of GA’s, in that a 

GA can find a reasonable result quickly, such as an overall diagnosis. One the other hand, a GA finds it more difficult to 

achieve a high precision, or specific sub-solutions such as those represented by the individual relevance weights of the 

variables. 
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4.4.4 Results: diagnosis using aggregation function  
 

The data and the meta-information is given as input to the aggregation operator which ‘fuses’ all its inputs together in 

one single diagnosis output per patient. We have tried four variations: (i) scalar question representation; (ii) categorical 

question representation; (iii) ‘relevance’ weight assignment by medical expert; (iv) ‘relevance’ weights learned by 

genetic algorithm. From the complete Apnea dataset of 71 cases, 41 were randomly sampled for the training set and 30 

were randomly sampled for the test set. The resulting diagnostic accuracy of permutations of these techniques executed 

against the test set is given  for positive, negative and all cases in Table 77. 

 

Table 77. Diagnostic accuracy on test dataset for positive, negative and all cases 

 

 Positive Cases Negative cases All cases 

Categorical question 

representation / weights** 

assigned by medical expert 

0.735* 0.462 0.498 

Categorical question 

representation / weights** 

learned by genetic algorithm 

0.645 0.374 0.530 

Scalar question representation / 

weights** assigned by medical 

expert 

0.625 0.433 0.598 

Scalar question representation / 

weights** learned by genetic 

algorithm  

0.601 0.459 0.550 

*correlation coefficients of predicted AHI with real AHI values. 

**relevance weights 

 

With reference to Table 77, we observe a typical result with greater accuracy for positive cases and lesser accuracy for 

the negative cases, with the expert fixed weights giving slightly better results than the genetically learned results. The 

results compare favourably with the literature[Hoffstein93][Young94][Ward97] for pure questionnaire based diagnosis 

of sleep apnea syndrome which tends to be in the order of 55% to 65% accuracy, and pure clinical data based diagnosis 

which is in the order of  70% to 90%. We think that, giving the genetic algorithm more evolutive time (we used only 15 

generations) and a bigger population (we used 80 individuals) would give a better result for the learned weights. 

 

 

4.4.5   Comparison of predictive accuracy of diagnosis using WOWA aggregation against other 

predictive modelling methods 
 

In order to compare the method with other artificial intelligence predictive techniques we executed a neural network and 

a tree induction algorithm (ID3) against the same data, to predict the degree of apnea-hypopnea (AHI).  The neural 

network was a standard feed-forward net with 3 layers, and the rule induction was run with unlimited tree depth and 

minimum of 5% of cases to form a branch. As previously, we divided the data into a random sampled 58% training set 

(41 cases) and 42% test set (31 cases). The results of executing against the test set are resumed in Table 78, in which we 

see that WOWA aggregation performs better than neural nets and tree induction overall and for positive cases. For 

negative cases, WOWA performs worse than tree induction and slightly better than neural nets. In general neural nets 

and tree induction techniques require larger data volumes in order to build models, whereas the weighted aggregation 

approach should produce reasonable results with much fewer cases.  

 

Table 78. Comparison of the predictive accuracy of Neural Net, ID3 Tree Induction and WOWA  algorithms 

with the Apnea test dataset 

 

 Neural Net Tree Induction WOWA 

All cases (test)  0.540* 0.548 0.598 

Positive cases 0.600 0.523 0.735 

Negative cases  0.450 0.625 0.462 

*correlation coefficients of predicted AHI value and real AHI value 
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4.4.6   Summary of Section 4.4 
 

From the questionnaire responses we can see interesting tendencies emerging of the way in which patients respond to 

the questions, depending on the type of the question, and the strength of the response required. In some cases a question 

can provoke more of a scalar response (‘shades of grey’)  while in other cases the question provokes a more ‘black or 

white’ response from the patient. With respect to the diagnostic accuracy, we can see a promising result, achieved with 

few cases and a wide dimensionality of problem ( 19 variables). We have also been able to include three types of meta-

data as part of the processing, thus adding insight which may improve the end result. From the point of view of ‘medical 

informatics’, we have learnt that careful selection of an adequate medical application is fundamental; one criteria for 

choosing an application is that is must allow real scope for improvement with respect to existing methods. Also, 

collaboration with medical experts has as a prerequisite, the need for sufficient availability of their time for initial 

definition of the meta-data, selection of variables and later analysis of the feedback of the results. The data quality and 

how representative a sample is, are also key aspects, together with the challenge of obtaining and capturing real case 

data in situ from the hospital environment. 
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 Chapter 5.    Conclusions 

 
In this work we have reviewed some of the problems which exist for the representation of real data, we have considered 

the selection of key descriptive variables, and the aggregation and modelling of variables and data. Throughout the text 

of the thesis, we have contrasted the major issues and authors, current approaches, theoretic and practical historical 

background, the authors original development work and the application and results of that work. 

 

We have developed and refined a collection of methods and tools which can be applied to the different steps of the Data 

Mining process,  consisting of tools for data exploration and analysis on the one hand, and data modelling, classification 

and prediction, on the other hand.  

 

In Chapter 1 we saw an initial summary of some of the current approaches and methods, and the limitations of those 

approaches. One of the first problems considered was that of the representation of the data. In the current literature, a 

diversity of different conceptual representations are evident, as well as  many variants of data processing algorithms 

based on neural networks, rule induction, genetic algorithms, and so on. 

 

Chapter 3 has developed several themes: the consideration of basic principles of the nature of data, data representation 

and processing approaches general in concept but specific in their application to two clinical datasets: ICU Prognosis 

and Apnea Screening. The considerations developed with respect to how to compare variables of different data types, 

leads on to the work on ‘fuzzy covariance’, which in turn leads on to the consideration of aggregation operators with 

three types of meta-data: ‘relevance’, ‘reliability’ and ‘grade of membership’. In the field of data representation we have 

considered from first principles the nature of data, the different types it can have, and possible ways of comparing 

different types and processing it. We have refined methods for defining membership functions for data capture, and 

specially designed a questionnaire using these methods. 

 

In Section 4.1, the ICU data is processed first by standard statistical and AI techniques, then by Fuzzy c-Means and 

finally Hartigan’s joining algorithm using a new way of calculating fuzzy covariances. The results have permitted a 

richness of comparison between fuzzy and crisp forms of processing. The Hartigan method using fuzzy covariances 

extracted 4 factors, whereas the Hartigan method with crisp covariances extracted 3 factors. It was found that it was 

easier to find clinical meaning in these factors, rather than in the rules generated by exhaustive processing of the same 

data with C4.5. Also the processing of the data with fuzzy c-Means, and using principal components to process the 

membership grades and visualise the clusters in a two dimensional space, identified 3 clinically interpretable groupings 

of cases. 

 

Section 4.2 presented the benchmarking of a set of  four novel fuzzy covariance algorithms with artificial test datasets. 

We note that in the literature there are very few general algorithms which allow the calculation of fuzzy covariances 

between variables defined in the fuzzy form. The majority of algorithms are very application specific, as detailed in 

Chapters 1 and 2, and the few general ones are very complex. The first method proposed in Section 4.2, which measures 

the fuzzy grade of relation between variables and the cluster centre, gave comparable results to C4.5, for ranking of 

variables by relevance. The third method proposed in Section 4.2, measures the relation between distances of objects 

from the cluster centre, weighted by the norm coefficients, and the fourth method proposed measures the relation 

between the sum of squares of the distances of objects from the cluster centre, weighted by the norm coefficients and 

the membership grades. We found that the ranking of variables for relevance by the third and fourth methods coincided 

with SPSS covariances for all datasets. 

 

The work on Apnea diagnosis provides an alternative approach to data processing for a small number of cases, 

including meta-data about the data. The fuzzy data capture techniques also provides a powerful tool when combined 

with the questionnaire screening method. In the case of Section 4.3, we found that Apnea diagnosis by WOWA 

aggregation using weight assignment by medical expert and data analyst, gave the best results: 0.81 correlation for 

positive cases and 0.67 correlation for negative cases, which is favourable to results found in the medical informatics 

literature. Tests with the ‘bias’ characteristic curve modification to WOWA, showed that WOWA gave the best results, 

when compared to OWA and Principal Components; for one borderline case, two positive cases and one negative case, 

WOWA was the only method to get all the diagnoses correct. 

 

The final work in Section 4.4, gave best overall results for the Scalar Questionnaire method and weight assignment by 

the expert (as opposed to Categorical questionnaire method and weight assignment by statistical or genetic learning 

methods). This resulted in an overall correlation of the diagnosis of 0.598, which is favourable when compared to 

results in the medical informatics literature. When WOWA was compared to neural networks and tree induction, run on 

the same data, it gave the best overall result (positive and negative cases), being 0.598 for WOWA, compared to 0.54 

for neural network and 0.548 for tree induction.  
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We can say, in conclusion,  that our methods possess an advantage with respect to standard ‘data mining’ tools, because 

they make use of a natural way of representing the data, some mechanism for giving additional information to the 

processing algorithm (such as the reliability and relevance weights), and an algorithm which allows a non-deterministic 

grouping and distance measure, for classification or clustering, prognosis or diagnosis.  

 

In the context of data mining, we have laid a promising and novel foundation for a data analysis and data representation 

toolkit which offers additional insight and dimensionality to the data. In our data mining toolkit, which would requiere 

the integration of the various algorithms in a single user interface, we have tools for data representation, data 

exploration, and data modelling. Variable selection is a major part of the first stages of data mining. We have used a 

new fuzzy covariance calculation together with Hartigan’s joining algorithm to define a ranking of variables in terms of 

their relevance; also this method allows us to identify interrelations between the variables. We have been able to 

compare results of analysis of a complex ICU dataset using diverse standard data mining methods, and comparing this 

to results of applying fuzzy c-Means and Hartigan’s Joining algorithm. 

 

In the field of data aggregation, we have carried out new developments to the WOWA aggregation operator. A novel 

weights learning method has been applied, using genetic algorithms. A modification has been made to allow WOWA to 

process data effectively with missing values. We have used WOWA for a previously untried application, that of Apnea 

diagnosis, being especially apt for data processing with a small number of cases. Finally, we have compared WOWA 

with other aggregation methods, WM and OWA, and compared the genetic algorithm approach with other learning 

techniques such as ASM (Active Set Methods). We concluded that ASM based methods are appropriate for learning the 

weights for the WM and the OWA operators because in this case the minimisation problem is a quadratic one and 

almost exact solutions can be found. This is not the case when weights are learned for the WOWA operator. In this 

case, the complexity of ASMs increases because the function to minimise is not quadratic. This is due to the existence 

of the interpolation function w
*
 (built from the weighting vector w - one of the weighting vectors to learn) and due to 

the fact that this function is applied to additions of some of the p's (the other weighting vector to learn). The use of 

genetic algorithms presents an additional advantage for either the WM, OWA or WOWA operators. This is the case 

when data files include missing values or the number of variables is different in each example. 

 

As possible future lines of work, the unification of these algorithms and methods into a single application would be the 

theme for a future project. Also, with reference to the Apnea diagnosis project in collaboration with the Hospital of the 

Santisima Trinitat, Salamanca,  a process of collecting new cases to double the size of the train and test data sets has 

been proposed. This would allow us to look more closely at the reasons for weaker performance in the negative cases of 

the apnea data. 

 

We hope that the information which is summarised in the work will serve as a new reference for those who need to 

analyse clinical data. Also, the diagnosis methods, questionnaire design and data capture create new alternatives for 

those who wish to use questionnaires for Apnea screening. We have been able to offer improvement for questionnaire 

screening by the quantification of reliability and relevance information, together with a way of capturing the natural 

fuzziness of the responses. 
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Annex 1.1. Bibliographic revision of publications in the field by the author:  

1996 - 2001 
 

Since 1996 I have published 8 papers in specialised academic journals and conferences on specific technical aspects of 

data processing and representation, with special emphasis in the medical data domain, for diagnosis and prognosis. I 

have also published 4 papers in journals and conferences on more general data mining themes. In chronological order, 

the publications are a reasonable representation of the evolution of my work from the initial mixed data types studies in 

1996-1997, to the WOWA studies from 1998-2001. There has been a constant theme throughout, of the use of medical 

patient data from diagnosis and prognosis, first in ICU survival analysis and later in Apnea patient screening. I have 

considered a complementary aspect, that of being up to date in the latest commercial data mining tools in the field, 

which have been used for cross checking results and benchmarking data quality in several papers. 
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Annex 2.  Detail of all the variables of the ‘Hospital Admissions’ ICU data set used in Section 

4.1 of the thesis 
 

 

Notes: With respect to the abbreviations, MPM, SAPS and APACHE: they are a set of indices, obtained by 

calculation from the values of the variables which are included in each of them, and which are habitually 

used by the specialist doctors in ‘Intensive Medicine’ to evaluate the seriousness of the patients state. In the 

case of MAP, this is a measure of the average arterial pressure, and is defined in units of measure mm Hg. 
 

 

           Table A2.1.  Attribute-Values for the data set ‘Hospital Admissions’ 
 

VARIABLE EXAM

PLE  

VALU

E 

VARIABLE 

TYPE 

UNITS ALLOWA

BLE 

VALUES 

DESCRIPTION 

PATIENT DEMOGRAPHIC INFORMATION 
 

AGE 74 Numerical 

NN 

  Age in years 

SEX 1 Binary  {0,1} {1:male, 0:female} 

     MPM AT TIME OF ADMISSION 

 

COMA_ADM 0 Binary  {0,1} Presence of coma or profound stupor at time 

of admission to ICU 

INTOXICATI

ON 

0 Binary  {0,1} If COMA_ADM=1, is this due to a drug 

overdose? 

TIPO_ADM 3 Categorical 

No-Ord 

 {1,2,3} Type of Patient {1=Emergency Surgery, 

2=Planned Surgery,3=Without Surgery} 

CPR 0 Binary  {0,1} CRP previous to admission to the ICU 

(within 24 hours). 

MALIG 0 Binary  {0,1} Malign Neoplasm part of actual problem? 

METASTAT 0 Binary  {0,1} If MALIG=1, ¿is it a MetaStatic? 

PREV_ICU 0 Binary  {0,1} Previous admission to ICU (in last 6 months) 

. 

TASA_H 80 Numerical 

NNN 

Beats/ 

minute 

 Pulse at the time of admission to the ICU 

SBP_ADM 115 NNN mm Hg  Systolic blood pressure at the time of 

admission 

C_REN_F 0 Binary  {0,1} History of renal failure?  

ICU_SER 1 Binary  {0,1} Service at the time of admission to the ICU. 

{0=Medical, 1=Surgery} 

PROB_INF 0 Binary  {0,1} Probable infection at the time of admission to 

the ICU 

MPM 24 hours after admission 

 

COMA_24H 0 Binary  {0,1} In coma or profound stupor at 24 hours after 

admission 

PRO_TIME 0 Binary  {0,1} 'Protrombin'  time > 3 seconds above standard 

or  < 25% 

SHOCK 0 Binary  {0,1} Probable shock during the first 24 hours  

ORINA 0 Binary  {0,1} Urine output < 150ml in any 8 hour period 

CONF_INF 0 Binary  {0,1} Confirmed infection at 24 hours after 

admission 

PO2 0 Binary  {0,1} PO2 < 60mmHg (o < 7.98kPa) during first 24 

hours). 

FIO2 0 Binary  {0,1} FIO2 > 0.50 during the first 24 hours. 
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CREATIN 0 Binary  {0,1} Creatinine > 2.0mg/dl (176.8 Mol/l) during 

the first 24 hours. 

MECH_VEN 0 Numerical 

NN 

Hours  Hours of mechanical ventilation during first 

24 hours. 

SER_24H 1 Binary  {0,1} Service at 24 hours {0=Médico, 1=Cirugía} 

LINES 1 

Numerical 

NN   Number of lines at 24 hours after admission 

MPM 91: 

ADDITIONAL ADMISSION VARIABLES 

 

INT_CRAN 0 Binary  {0,1} Effect on the inter cranial mass 

ON_MECH 0 Binary  {0,1} Receives mechanical ventilation 

SEP_SHOK 0 Binary  {0,1} Septic Shock 

GI_SANGRE 0 Binary  {0,1} Acute bleeding GI 

DIS_CARD 1 Binary  {0,1} Cardiac Disrrythmias 

ENF_CARD 1 Binary  {0,1} Isquimic coronary pathology 

FALLO_CAR

D 

0 Binary  {0,1} Cardiac Failure 

CERE_DIS 0 Binary  {0,1} Cerebral vascular pathology 

A_R_FAIL 0 Binary  {0,1} Acute renal failure 

LIMIT 0 Binary  {0,1} Restriction on patient care by order of patient 

or family 

CIRRHOS 0 Binary  {0,1} Cirrhosis. 

MPM 91: 

ADDITIONAL VARIABLES AT 24 HOURS 

 

EMERSURG 0 Binary  {0,1} Emergency surgery during the first 24 hours. 

LIMIT24H 0 Binary  {0,1} Restriction on patient care during the first 24 

hours.. 

PH_7P2 0 Binary  {0,1} pH 7.2 during the first 24 hours. 

PEEP 0 Binary  {0,1} PEEP > 10cm during the first 24 hours. 

PLATELET 0 Binary  {0,1} Platelets < 50,000 o "low" during the first 24 

hours. 

CONT_VAS 0 Binary  {0,1} Therapy with medicines. Continuous IV 

vasoactive during the first 24 hours. 

SAPS 
 

TASA_S_H 180 Numerical 

NNN 

Beats 

/minute 

 Pulse (heart pulsation rate) 

PSS 120 Numerical 

NNN 

mmHg  Systolic blood pressure 

TEMP_CORP. 35.8 Numerical 

FFF.F o FF.F 

ºF or ºC  Body temperature 

TASA_RES 24 Numerical 

NN 

  If VEN_CPAP=0, measure rate of 

spontaneous respiration 

VEN_CPAP 0 Binary  {1,0} Mechanical ventilation or CPAP {1=yes, 

0=no} 

SALIDA_UR 1.8 Numerical 

FF.F 

Litres in 

24 hours 

 Urine output 

B_UREA 3.7 Numerical 

NNN o 

FFF.F 

mMol/l 

or mg/dl 

 Blood urine concentration  

HEMATOCR 41 Numerical 

NN 

%  Hematocrit 

WBC 8.4 Numerical 

FFF.F 

FFF.F  WBC(10
3
/mm

3
) 

S_GLUCOS 7.8 Numerical 

FFF.F o FF.F 

mMol/l 

or g/l 

 Glucose in Serum 
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S_POT 4.4  Numerical 

FF.F 

mMol/l   Potassium in Serum 

S_SODIUM 135  Numerical 

NNN 

mMol/l  Sodium en Serum 

S_HCO3 23 Numerical 

NN 

mMol/l  Standard Serum of HCO3 

SEDADO 0 Binary  {0,1} Glasgow Coma Scale. Is the patient sedated ? 

{1=yes, 0=no} 

GCS_SAPS 15 Numerical 

NN 

  If SEDATED=1, estimated GCS. If 

SEDATED=0, actual GCS  

CHRONIC HEALTH STATE 
 

P_H_STAT 1 Categorical  {1,2,3,4} Previous health state 

MAC_CABE 1 Categorical  {1,2,3} MacCabe {1=without illness or nonmortal, 

2=eventually mortal (<5años), 3=rapidly 

mortal (< 1 año). 

COPD 0 Binary  {0,1} Chronic pathologies {1=yes, 0=no} 

INSULINA 0 Binary  {0,1} Diabetes dependent on Insulin 

F_CARD 0 Binary  {0,1} Cardiac Failure 

HEMA_MAL 0 Binary  {0,1} Immune system compromised: 

haematological malignancy. {1=yes, 0=no} 

 SIDA 0 Binary  {0,1} SIDA 

TERA_CH 0 Binary  {0,1} Chemotherapy 

NSAID 0 Binary  {0,1} NSAID 

ESTEROIDES 0 Binary  {0,1} Steroids (long term or high consumption) 

DIAG 1 Categorical  {0,1,2,3,...5

1} 

Principal Diagnostic Category consequence 

of admission to the ICU (see Table A2.2 for 

possible categories) 

APACHE II 
 

MAP 10 Numerical 

NNN 

mmHg  MAP 

A_RES_R 90 Numerical 

NNN 

  Respiration rate (with or without ventilation) 

A_FIO2 24  Numerical 

F.FF 

  Oxygenation: FiO2 

PAO2 0.2 Numerical 

NNN 

mmHg  Oxygenation: PaCO2 

PACO2 79 Numerical 

NNN 

mmHg  Oxygenation: PaO2 

A_ADO2 38 Numerical?   A-aDo2 calculated by computer 

PH_ARTER 0 Numerical 

F.FF 

  Arterial pH 

INT_VENT 1 Binary  {0,1} Tubing/ventilator 

S_CREA 0 Numerical 

FF.F o FFF.F 

mg/dl or 

Mol/l 

 Serum creatinine 

S_BILI 0.2 Numerical 

FF.FF o 

FFFF.F 

mg/dl or 

Mol/l 

 Serum bilirubin (total) 

S_ALBU 0 Numerical 

FF.F o 

FFFF.F 

g/l or 

Mol/l 

 Serum albumin. 

S_BUN 4 ?   Serum BUN calculated by computer 

CREA_INC 1 Binary  {0,1} Creatinine increment > 124 Mol/l in last 24 

hours associated with Oligury {1=yes, 0=no} 

O.S.F. FIRST DAY 
 

RES_F 0 Binary  {0,1} Respiratory failure{1=yes, 0=no} 
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CARD_F 0 Binary  {0,1} Cardiovascular failure 

RENAL_F 1 Binary  {0,1} Renal failure 

HEMA_F 0 Binary  {0,1} Haematological failure 

NEURO_F 0 Binary  {0,1} Neurological failure (excluding sedation) 

HEPA_F 0 Binary  {0,1} Hepatic failure 

OSF 0 Numerical   Number of organ systems failing, calculated 

by computer program 

OUTPUT VARIABLES 

 

D_ADM 3/5/91 Date 

MM/DD/YY 

  Date of admission to the ICU. 

DIA_ICU 3/5/91 Date 

MM/DD/YY 

  Date of departure from the ICU 

DEAD_ICU 0 Binary  {0,1} Vital state ICU {0=alive, 1=dead} 

DUR_ICU 33 Numerical 

NNN 

  Calculated duration of stay in the ICU 

DUR_HOS 6 Numerical 

NNN 

  Calculated duration of stay in the hospital 

from the time of admission to the ICU 

DEAD_HOS 0 Binary  {0,1} Vital state Hospital {0=alive, 1=dead} 

SAL_HOS 1/3/91 Date 

MM/DD/YY 

  Date of departure from hospital 

ADDITIONAL VARIABLES: 

NOT PRESENT IN ORIGINAL DATA COLLECTION FORMS 
 

INCLUDE 1 Binary  {0,1} Fulfils criteria for inclusion in analysis (is 

not coronary care, burns or coronary 

surgery, with minimum age of 18 years 

{0=no, 1=yes} 

IN24HRS 1 Binary  {0,1} Duration of stay in ICU 24 hours or more 

{0=no, 1=yes}   

1TYPE_ADM 1 ?    

2TYPE_ADM 0  ?    

3TYPE_ADM 0  ?    
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Table A2.2. Principal Diagnostic Categories Motive for Admission to the ICU 
(this is the value for the categorical variable, DIAG) 

 

CODE 

 

CATEGORY DESCRIPTION 

 PATIENT WITHOUT 

SURGERY: 

Respiratory failure or 

insufficiency of: 

 

1  Asthma/Allergy 

2  COPD 

3  Pulmonary Edema (nocardiogenic) 

4  Post respiratory stoppage 

5  Inhalation/Poisoning/Toxic 

6  Pulmonary Embolus 

7  Infection 

8  Neoplasm 

 Cardiovascular failure or 

insufficiency of: 

 

9  Hypertension 

10  Rhythmic disturbance  

11  Congestive coronary arrest 

12  Shock/hypovolemia haemorrhage 

13  Pathology of the coronary artery 

14  Sepsis 

15  Post cardiac arrest  

16  Cardiogenic Shock 

17  Desecando thoracic aneurysm/ abdominal 

 Trauma:  

18  Multiple trauma 

19  Head trauma 

 Neurological:  

20  Attack disorder 

21  ICH/SDH/SAH 

 Others:  

22  Drug overdose. 

23  Diabetic Ketoacidosis 

24  Bleeding GI 

 If not one of the above 

specified groups, which main 

vital organ system was the 

principal reason for 

admission?  

 

25  Metabolic/Renal 

26  Respiratory 

27  Neurological 

28  Cardiovascular 

29  Gastrointestinal 

 POSTOPERATIVE 

PATIENTS 

 

30  Multiple Trauma 

31  Admission due to a chronic cardiovascular pathology 

32  Peripheral vascular surgery 

33  Coronary valve surgery  

34  Craniotomy due to neoplasm 

35  Renal Surgery due to neoplasm 

36  Renal Transplant 

37  Head trauma 

38  Thoracic Surgery due to neoplasm 

39  Craniotomy due to ICH/SDH/SAH 



 233 

40  Laminectomy /other surgery of the spinal cord 

41  Shock due to haemorrhage 

42  Bleeding GI  

43  Surgery GI due to Neoplasm 

44  Respiratory Insufficiency after surgery 

45  Perforation GI/obstruction 

 If not one of the above, which 

principal system of vital 

organs was the cause of 

admission to the ICU? 

 

46  Neurological 

47  Cardiovascular 

48  Respiratory 

49  Gastrointestinal  

50  Metabolic/Renal 

51  Others (specify) 
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Annex 3. Apnea Screening Questionnaire used in Sections 4.3 and 4.4 of the thesis 
 

 

CLINICAL QUESTIONNAIRE  
RESPIRATORY ALTERATIONS DURING SLEEP 
 

 

Nº HISTORIAL:_________________________      DATE:  _____/_____/_____ 

 

 

SURNAME:______________________________________   NAME:__________________ 

 

 

AGE:_______________    TELEPHONE: ______________________ 

 

 

 

 

 

INTERVIEW CONDUCTED IN PRESENCE OF ROOM PARTNER 

 

 1 – Yes  2 – No  

 

PROFESSION: ______________________________________ 

 

WORK HOURS:   1-Morning     2- Afternoon     3- Night     4- Rotative     5- Retired/does not work 

EDUCATION LEVEL:   1- Elemental     2- Medium    3- Higher 

 

- WEIGHT (kg):_____________HEIGHT(m):___________NECK DIAMETER (cm):__________ 

- BWI (Kg/m2):____________ ARTERIAL TENSION (mmHg):____________ 

 

ALCOHOL INTAKE (gr/día):____________________ TOBACCO (Packs/year):__________ 

 

 

 

 

WHAT IS YOUR MOST IMPORTANT DISCOMFORT OR SYMPTOM 

 

1 – Snoring 2-Somnolence during the day 3- Choking at night  

4 – Other discomforts 

 (specify):_____________________________________________________ 

 

ILLNESSES or PREVIOUS BACKGROUND OF INTEREST 

 

1. Arterial hypertension: 1-Yes ; 2-No 2. Cardiopathic ischemia: 1-Yes ; 2-No 

Others: 

________________________________________________________________________________________________

________________________________________________________________________ 
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INSTRUCTIONS FOR COMPLETING THE QUESTIONNAIRE 
 

 

 

YOU WILL FIND THREE TYPES OF QUESTION IN THE FOLLOWING SECTIONS OF THE 

QUESTIONNAIRE: 

 

 

 

In the first example you simply place a number after the question, for example, the number of hours which you 

normally sleep (8). 

 

G1  HOW MANY HOURS DO YOU NORMALLY SLEEP? 8 

 

 

 

In the second example there are four possible categories and you must indicate only ONE of these categories. In this 

case it is  3-sometimes. 

 

G2  DO YOU TAKE TRANQUILIZER TABLETS IN ORDER TO SLEEP? 

 1- never  2 - rarely 3 - sometimes 4 – frequently 

 

 

 

 

In the third example there are five possible categories placed above the continuous line. You may place a cross in any 

position along the line in the place which most corresponds to your opinion. In this example, a point has been marked 

between ‘rarely’ and ‘sometimes’, but closest to ‘sometimes’. 

 

G10  HAVE YOU NOTED A SENSATION OF PARALYSIS AT THE START OF SLEEP OR ON WAKING 

UP? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

 

 

 

 

FOR THE QUESTIONNAIRE TO BE OF USE TO DIAGNOSE YOUR CASE, WE ASK YOU TO BE 

HONEST AND FRANK IN RESPONDING TO THE QUESTIONS. THE QUESTIONNAIRE WILL BE 

MAINTAINED IN STRICT CONFIDENCE  



 236 

 

GENERAL SLEEP QUESTIONS 
 

G1  HOW MANY HOURS DO YOU NORMALLY SLEEP? 

 

G2  DO YOU TAKE TRANQUILIZER TABLETS IN ORDER TO SLEEP?  
____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G3  ARE YOU USED TO TAKING AN AFTERNOON NAP? 
____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G4  APPROXIMATE DURATION OF THE NAP (in minutes): 

 

G5  HAVE YOU GAINED WEIGHT RECENTLY? 

____________________________________________________________________________ 

!              !           |             | 

No         < 5Kg      5-10Kg       >10Kg 

 

G6  SINCE WHEN HAVE YOU GAINED WEIGHT? (ONLY REPLY IF YOU HAVE GAINED 

WEIGHT). 

____________________________________________________________________________ 

!              !           |             | 

< 6 months  6 months - 1 year                 1 - 2 years  > 2 years 

 

G7  WHEN YOU ARE SLEEPING, DO YOU HAVE NIGHTMARES THAT SEEM AS IF THEY ARE 

REAL? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G8  HAVE YOU EVER HAD THIS TYPE OF NIGHTMARE WHILE AWAKE? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G9  HAVE YOU NOTED, ON ANY OCASIÓN, THAT DURING A STRONG EMOTION (ANGER, 

LAUGHTER) YOU HAVE LOST STRENGTH, IF ONLY IN PART OF THE  BODY, AND EVEN 

FALLEN ON THE FLOOR AS A RESULT ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G10  HAVE YOU NOTED A SENSATION OF PARALYSIS AT THE START OF SLEEP OR ON WAKING 

UP ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G11  DO YOU KNOW OR HAVE YOU BEEN TOLD THAT YOU MOVE YOUR LEGS A LOT WHILE 

YOU ARE SLEEPING ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 
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G12  DURING THE DAY WHEN YOU SIT DOWN, DO YOU NOTE A PAIN IN THE CALF OF THE LEG 

WHICH GETS BETTER WHEN YOU WALK ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G13  ARE YOU FRANKLY DEPRESSED ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G14  DO YOU HAVE PROBLEMS OF  INSOMNIA? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

G15  WHAT TYPE OF INSOMNIA PROBLEMS DO YOU HAVE ? (ONLY RESPOND IF YOU HAVE 

INSOMNIA) 

    1- difficulty in  2- waking up in the      3- getting up too early   4- others 

        getting to sleep     middle of the night 

 

 

QUESTIONS RELATED TO RESPIRATORY ILLNESSES DURING SLEEP 
 

 

R1  DO YOU SNORE WHILE YOU SLEEP OR HAVE YOU BEEN TOLD THAT YOU DO? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R2  DOES YOUR SNORING WAKE UP YOUR PARTNER OR CAN IT BE HEARD FROM ANOTHER 

ROOM? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R3  HAS SNORING SOMETIMES CAUSED PROBLEMS WITH THE NEIGHBORS OR WHEN YOUR 

HAVE SLEPT AWAY FROM HOME ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R4  WHEN DID YOU BEGIN SNORING ? 

____________________________________________________________________________ 

!              !           |             | 

< 1 year       1 - 3 years     4 - 9 years     > 10 years 

 

R5  HAVE YOU RECENTLY NOTICED AN INCREASE IN THE INTENSITY OF YOUR SNORING?  

____________________________________________________________________________ 

!              !           |             | 

no       < 6 months     6 - 12 months      > 1 year 
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R6  DO YOU WAKE UP AT NIGHT WITH A SENSATION OF CHOKING? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R7  HAVE YOU BEEN TOLD THAT YOU “STOP BREATHING” WHEN YOU ARE ASLEEP ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R8  HAS YOUR BEDROOM PARTNER EVER WOKEN YOU UP FOR FEAR THAT YOU HAVE 

STOPPED BREATHING ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R9  HOW MANY TIMES DO YOU GET UP TO URINATE AT NIGHT ? 

____________________________________________________________________________ 

!              !           |             | 

never         rarely              sometimes             often                always 

 

R10  DO YOU SWEAT A LOT AT NIGHT ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R11  DO YOU HAVE A HEADACHE WHEN YOU GET UP IN THE MORNING ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R12  DO YOU WAKE UP WITH A DRY MOUTH ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R13  WHEN YOU GET UP IN THE MORNING DO YOU HAVE THE SENSATION OF NOT HAVING 

RESTED ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R14  DO YOU FIND IT VERY DIFFICULT TO GET UP IN THE MORNING AND DO YOU HAVE THE 

SENSATION FOR A WHILE OF NUMBNESS ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R15  HAVE YOU LOST YOUR MEMORIA OR ABILITY TO CONCENTRATE ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

R16  DO YOU HAVE PROBLEMS OF SEXUAL IMPOTENCE ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 
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QUESTIONS RELATED TO DAYTIME SLEEPINESS 
 

 

S1  DO YOU SLEEP WHILE WATCHING THE TELEVISION ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S2  DO YOU SLEEP WHILE YOU ARE READING ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S3  DO YOU SLEEP WHEN YOU ARE IN THE CINEMA, THEATRE, OR AT OTHER SPECTACLES ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S4  DO YOU FALL ASLEEP IN MEETINGS OR IN PUBLIC PLACES ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S5   DO YOU FALL ASLEEP WHEN DRIVING ON THE MOTORWAY ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S6  DO YOU SLEEP DURING THE DAYTIME AGAINST YOUR WILL ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S7  DO YOU FALL ASLEEP WHILE EATING ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S8  DO YOU FALL ASLEEP WHILE SPEAKING WITH ANOTHER PERSON ?  

(In person or by telephone) 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S9  DO YOU FALL ASLEEP WHILE DRIVING WHEN YOU HAVE STOPPED AT A TRAFFIC LIGHT 

? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 

 

S10  DO YOU FALL ASLEEP IN YOUR WORKPLACE WHILE CARRYING OUT YOUR NORMAL 

WORK ACTIVITIES ? 

____________________________________________________________________________ 

!            !                      |                 |            | 

never         rarely              sometimes             often                always 
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