
Developing Efficient Routing

Algorithms for Sustainable City

Logistics

A dissertation presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

by

Mehmet Anıl Akbay

Supervisor:

Dr. Christian Blum

Tutor:

Dr. Felip Manyà

Institut d’Investigació en Intel.ligència Artificial, CSIC

Programa de Doctorat en Informàtica

Universitat Autònoma de Barcelona

February, 2025

ABSTRACT

Route planning for vehicles in freight distribution has long been a primary
objective in logistics. Researchers and practitioners have devoted considerable
effort to developing models and solution methods to optimize routes for a fleet of
vehicles transporting goods from supply points to demand points. However, the
global environmental crisis, mainly caused by rapid industrialization, population
growth, and urbanization, has underscored the need for sustainable solutions
for logistic operations. Rising concerns over environmental pollution, noise,
traffic congestion, and population growth, especially in large cities, highlight the
necessity to consider social and environmental issues alongside economic and
operational efficiency in the design of logistics systems.

In this line, this thesis addresses the critical need for sustainability in urban
logistics by exploring advanced solutions that integrate electric vehicles (EVs)
and multi-echelon distribution systems into Vehicle Routing Problems. Situated
at the intersection of combinatorial optimization and sustainable urban logistics,
this work focuses on both algorithmic advancements and the development of
comprehensive routing models.

The algorithmic contributions primarily involve enhancing and applying the
Construct, Merge, Solve & Adapt (CMSA) algorithm, particularly by developing a
self-adaptive variant known as Adapt-CMSA. This algorithm variant addresses
the issue of parameter sensitivity in metaheuristics, where performance often
heavily depends on specific parameter settings. Adapt-CMSA aims to reduce
this sensitivity, ensuring robust performance across various problem sizes and
complexities without the need for parameter re-tuning. Its effectiveness is
first shown in the context of the Minimum Positive Influence Dominating Set

Problem, where it outperformed the standard CMSA by dynamically adjusting
its parameters, thereby enhancing efficiency and scalability.

From a practical standpoint, this thesis tackles the formulation of complex
routing problems that mirror real-world scenarios in sustainable urban logistics.
It introduces models for the Electric Vehicle Routing Problems and Two-Echelon

Electric Vehicle Routing Problems, integrating critical constraints such as time
windows, simultaneous pickup and deliveries, and partial recharging strategies.
Additionally, the thesis goes beyond traditional objective functions considering
distance minimization. In particular, we consider energy-minimization that
is affected by several factors such as vehicle speed and load. By effectively
employing a range of heuristic and metaheuristic approaches, the thesis provides

i

practical solutions to complex variants of the addressed problems.

Keywords: Sustainable Logistics, Electric Vehicle Routing, Two-Echelon Freight

Distribution, Time Windows, Simultaneous Pickup & Delivery, Partial Recharging,
Minimum Dominating Set, Minimum Positive Influence Dominating Set, CPLEX,
Variable Neighborhood Search, Construct Merge Solve & Adapt, Ant Colony

Optimization.

ii

RESUMEN

La planificación de rutas para vehículos en la distribución de mercancías ha
sido durante mucho tiempo un objetivo primordial en logística. Investigadores
y profesionales han dedicado considerables esfuerzos a desarrollar modelos
y métodos de resolución para optimizar rutas para flotas de vehículos que
transportan bienes desde puntos de suministro a puntos de demanda. Sin
embargo, la crisis ambiental global, profundizada por la rápida industrialización,
el crecimiento de la población y la urbanización, ha subrayado la necesidad
de soluciones sostenibles para tales operaciones logísticas. Las crecientes
preocupaciones sobre la contaminación ambiental, el ruido, la congestión
ocasionada por el tráfico y el crecimiento de la población, especialmente en las
grandes ciudades, destacan la necesidad de considerar los problemas sociales
y ambientales junto con la eficiencia económica y operativa en el diseño de los
sistemas logísticos.

En esta línea, esta tesis aborda la necesidad crítica de sostenibilidad en
la logística urbana explorando soluciones avanzadas que integran vehículos
eléctricos (EVs) y sistemas de distribución de múltiples niveles en los Problemas

de Enrutamiento de Vehículos. Situado en la intersección de la optimización

combinatoria y la logística urbana sostenible, este trabajo se centra tanto en los avances
algorítmicos como en el desarrollo de modelos de enrutamiento integrales.

Las contribuciones algorítmicas involucran principalmente la mejora y
aplicación del algoritmo Construir, Fusionar, Resolver y Adaptar (CMSA),
particularmente desarrollando una variante auto-adaptativa conocida como
Adapt-CMSA. Esta variante aborda el desafío de la sensibilidad a los parámetros
en las metaheurísticas, donde el rendimiento a menudo depende en gran
medida de configuraciones de parámetros específicos. Adapt-CMSA tiene
como objetivo reducir esta sensibilidad, asegurando un rendimiento robusto en
diversos tamaños y complejidades de problemas sin la necesidad de reajustar
los parámetros. Su efectividad fue particularmente evidente cuando se aplicó
al Problema de Conjunto Dominante de Influencia Positiva Mínima, donde superó
al CMSA estándar al ajustar dinámicamente sus parámetros, mejorando así la
eficiencia y la escalabilidad.

Desde un punto de vista práctico, esta tesis aborda la formulación de
problemas complejos de enrutamiento que reflejan escenarios del mundo real
en la logística urbana sostenible. Introduce modelos para los Problemas de

Enrutamiento de Vehículos Eléctricos y Problemas de Enrutamiento de Vehículos

Eléctricos de Dos Niveles, integrando restricciones críticas como ventanas de

iii

tiempo, recogidas y entregas simultáneas, y estrategias de recarga parcial.
Además, la tesis va más allá de las funciones objetivo tradicionales de
minimización de distancias al considerar también la minimización de energía,
afectada por varios factores como la velocidad del vehículo y su carga. Al
emplear efectivamente una gama de enfoques heurísticos y metaheurísticos, la
tesis proporciona soluciones prácticas a variantes complejas de los problemas
abordados.

iv

RESUM

La planificació de rutes per a vehicles en la distribució de mercaderies ha
estat durant molt de temps un objectiu primordial en logística. Investigadors
i professionals han dedicat considerables esforços a desenvolupar models i
mètodes de resolució per a optimitzar rutes per a flotes de vehicles que
transporten béns des de punts de subministrament a punts de demanda.
No obstant això, la crisi ambiental global, profunditzada per la ràpida
industrialització, el creixement de la població i la urbanització, han subratllat la
necessitat de solucions sostenibles per a les operacions logístiques. Les creixents
preocupacions sobre la contaminació ambiental, el soroll, la congestió deguda al
trànsit i el creixement de la població, especialment en les grans ciutats, destaquen
la necessitat de considerar els problemes socials i ambientals juntament amb
l’eficiència econòmica i operativa en el disseny dels sistemes logístics.

En aquesta línia, aquesta tesi aborda la necessitat crítica de sostenibilitat en
la logística urbana explorant solucions avançades que integren vehicles elèctrics
(EVs) i sistemes de distribució de múltiples nivells en els Problemes d’Enrutament

de Vehicles. Situat a la intersecció de la optimització combinatòria i la logística

urbana sostenible, aquest treball se centra tant en els avenços algorísmics com en
el desenvolupament de models d’enrutament integrals.

Les contribucions algorísmiques involucren principalment la millora i
aplicació de l’algorisme Construir, Fusionar, Resoldre i Adaptar (CMSA),
particularment desenvolupant una variant auto-adaptativa coneguda com
Adapt-CMSA. Aquesta variant aborda el repte de la sensibilitat als paràmetres
en les metaheurístiques, on el rendiment sovint depèn en gran mesura de
configuracions de paràmetres específics. Adapt-CMSA té com a objectiu reduir-ne
aquesta sensibilitat, assegurant-ne un rendiment robust en diverses mides i
complexitats de problemes sense la necessitat de reajustar-ne els paràmetres. La
seva efectivitat va ser particularment evident en ser aplicat al Problema del Conjunt

Dominant de Influència Positiva Mínima, on va superar el CMSA estàndard en ajustar
dinàmicament els seus paràmetres, millorant-ne així l’eficiència i l’escalabilitat.

Des d’un punt de vista pràctic, aquesta tesi aborda la formulació de
problemes complexos d’enrutament que reflecteixen escenaris del món real en
la logística urbana sostenible. Introdueix models per als Problemes d’Enrutament

de Vehicles Elèctrics i Problemes d’Enrutament de Vehicles Elèctrics de Dos Nivells,
integrant restriccions crítiques com ara finestres de temps, recollides i entregues
simultànies, i estratègies de recàrrega parcial. A més, la tesi va més enllà de les
funcions objectiu tradicionals de minimització de distàncies en considerar també

v

la minimització d’energia, afectada per diversos factors com ara la velocitat del
vehicle i la seva càrrega. En emprar de manera efectiva una gamma d’enfocs
heurístics i metaheurístics, la tesi proporciona solucions pràctiques a variants
complexes dels problemes abordats.

vi

ACKNOWLEDGEMENT

As I reach the end of my PhD journey, I am filled with immense happiness and
gratitude. This period has undoubtedly been both challenging and rewarding,
and I am thrilled to have reached this milestone.

Doing a PhD is like fighting a battle against oneself. The challenges in the field
are immense, but the realization that the true struggle is within brings profound
insight. The journey was like climbing a very steep mountain; I felt the pain in
my muscles, but the hope of reaching the beautiful scene at the top was one of
the things that kept me going. However, this hope is not always sufficient to keep
you on this challenging track. External support and motivation are essential, and
I believe I have had plenty of it.

Firstly, I would like to express my heartfelt gratitude to my supervisor, Dr.
Christian Blum. I always think that the most crucial aspect of a successful PhD
is having a good supervisor, not only in terms of research skills but also on a
personal level. In this regard, I consider myself extremely fortunate to have such
a great guide and support beside me on this journey. Dr. Blum is an outstanding
researcher, a fact that goes without saying, but he is also an exceptional person.
He has been consistently supportive and helpful, not only with my PhD studies
but also with my personal issues. Whenever I needed something, he was there,
and I cannot adequately express how much value he has contributed to my life.

I also want to extend my sincere thanks to my tutor, Dr. Felip Manya. His
positivity and support have been invaluable, always motivating me, which is one
of the core necessities during the PhD process.

I am deeply grateful to my Master’s supervisor, Assoc. Prof. Can Berk
Kalayci, with whom I began my research journey. It was through him that I had
the opportunity to meet Dr. Blum, which became a significant turning point in
my academic career. I am very thankful for this pivotal moment and all the things
I have learned from him.

I would like to thank the Republic of Turkiye Ministry of National Education
for providing YLYS funding, which made this journey possible.

I am also grateful to the Spanish Ministry of Science and
Innovation, which funded all the research in this thesis through project
MCIN/AEI/10.13039/501100011033 (Grants PID2022-136787NB-I00 and
TED2021-129319B-I00).

The Artificial Intelligence Research Institute (IIIA-CSIC) provided an
outstanding working environment during my PhD studies. I am thankful for
the physical resources and the friendly atmosphere. Sharing my time and the

vii

atmosphere with my colleagues in the first and second-floor offices, along with
all visiting PhD students and researchers, has been a wonderful experience.

I want to thank my family—my mother, father, and siblings—for their
unwavering support. Their encouragement and belief in me have been a constant
source of strength.

Finally, I wish to express my profound appreciation to my wife and daughter.
Without them, my life would be incomplete. They are the most precious treasures
of my life, illuminating my path with their unwavering love and support. Their
presence constantly reminds me of how fortunate I am, even when I fail to see it.
I am grateful for their patience and emotional support during this journey and,
most importantly, for transforming my grayscale world into a vibrant, blooming
garden of joy.

Thank you all.

viii

CONTENTS

ABSTRACT . i

ACKNOWLEDGEMENT . vii

LIST OF FIGURES . xiii

LIST OF TABLES .xviii

LIST OF ALGORITHMS . xx

1 INTRODUCTION 1

1.1 Background and Motivation . 1

1.2 Overview of Vehicle Routing Problems 7

1.2.1 The Electric Vehicle Routing Problems 9

1.2.2 Two-Echelon Vehicle Routing Problems 11

1.2.3 Two-Echelon Electric Vehicle Routing Problems 12

1.3 Solution Approaches . 14

1.3.1 Exact Solution Approaches . 15

1.3.2 Construction Heuristics . 18

1.3.3 Metaheuristics . 20

1.4 CMSA: Construct-Merge-Solve-Adapt 26

1.5 Thesis Contributions . 28

1.6 The Organization of This Thesis . 31

1.7 Publications Derived from this Thesis 33

2 CMSA: GENERAL DESCRIPTION OF THE ALGORITHMIC

FRAMEWORK 35

2.1 Introduction . 35

2.2 CMSA: The Baseline Algorithm . 35

2.2.1 Standard CMSA . 35

ix

2.3 Self-Adaptive CMSA . 37

3 APPLICATION of ADAPT-CMSA TO THE MINIMUM

POSITIVE INFLUENCE DOMINATING SET PROBLEM 43

3.1 Introduction . 43

3.2 The Minimum Positive Influence Dominating Set Problem 43

3.2.1 ILP Model for the MPIDS . 44

3.3 Application to the MPIDS problem . 45

3.4 Experimental Evaluation . 47

3.4.1 Experiments regarding scale-free networks 47

3.4.2 Experiments regarding instances from the literature 53

3.5 Conclusions . 58

4 ADAPT-CMSA FOR THE EVRP-TW-SPD AND PARTIAL

BATTERY CHARGING 61

4.1 Introduction . 61

4.2 Problem Description and Mathematical Model 63

4.3 Set-Covering Based ILP Model of the EVRP-TW-SPD 66

4.4 Application of standard Adapt-CMSA to the EVRP-TW-SPD 66

4.5 The Adapt-Cmsa-Std Algorithm . 67

4.5.1 Probabilistic Solution Construction 70

4.6 The Adapt-Cmsa-SetCov Algorithm . 74

4.7 Computational Experiments . 75

4.7.1 Generation of the problem instances for EVRP-SPD-TW 75

4.7.2 Parameter Tuning . 77

4.7.3 Numerical Results . 78

4.7.4 Performance Difference Between the two EVRP-TW-SPD ILP

Models . 85

4.8 Analyzing Algorithm Behaviour Using STNWeb 87

4.9 Application of Adapt-Cmsa-SetCov to the EVRP-SPD 89

4.10 Conclusions and Future Research Directions 94

x

5 APPLICATION TO THE TWO-ECHELON ELECTRIC VEHICLE

ROUTING PROBLEM WITH SIMULTANEOUS PICKUP AND

DELIVERIES 97

5.1 Introduction . 97

5.1.1 Problem Description . 98

5.2 Adapt-CMSA for the 2E-EVRP-SPD . 101

5.2.1 Solution Representation . 101

5.2.2 Set Covering Based Model . 102

5.2.3 The Adapt-CMSA Algorithm 104

5.3 Experimental Evaluation . 109

5.3.1 Problem Instances . 110

5.3.2 Parameter Tuning . 110

5.3.3 Computational Results . 111

5.4 Discussion and Conclusions . 116

6 APPLICATION OF VARIABLE NEIGHBORHOOD SEARCH

TO THE TWO-ECHELON ELECTRIC VEHICLE ROUTING

PROBLEM WITH TIME WINDOWS 117

6.1 Introduction . 117

6.1.1 Problem Description and Mathematical Model 118

6.2 Solution Approach . 125

6.2.1 Solution Representation and Extended Objective Function . . 125

6.2.2 Initial Solution Construction . 127

6.2.3 Variable Neighborhood Search for the 2E-EVRP-TW 131

6.3 Experimental Evaluation . 139

6.3.1 Generation of 2E-EVRP-TW Instances 139

6.3.2 Parameter Tuning . 141

6.3.3 Numerical Results . 143

6.4 Conclusions . 154

xi

7 THE ELECTRIC VEHICLE ROUTING PROBLEM WITH

ROAD JUNCTIONS AND ROAD TYPES: AN ANT COLONY

OPTIMIZATION APPROACH 157

7.1 Introduction . 157

7.2 Problem Description . 157

7.2.1 Calculation of the Energy Consumption 158

7.2.2 Problem Formulation . 159

7.3 The Solution Approach for the EVRP-RJ-RT 161

7.3.1 Solution Representation & Evaluation 161

7.3.2 Preprocessing . 162

7.3.3 Postprocessing . 163

7.3.4 A Construction Heuristic Based on the Clarke-Wright Savings

Algorithm . 163

7.3.5 The Ant Colony Optimization Algorithm 165

7.4 Experimental Evaluation . 168

7.4.1 Problem Instances . 168

7.4.2 Parameter Tuning . 169

7.4.3 Computational Results . 169

7.5 Conclusion . 176

8 CONCLUSIONS AND OUTLOOK 177

8.1 Conclusions . 177

8.2 Outlook . 181

REFERENCES . 183

xii

List of Figures

1.1 Global CO2 Emission by Sector Over Time [48]. 2

1.2 Percentage Contribution of Various Sectors to EU-27 Emissions.

The emission types represented on the y-axis include Black Carbon

(BC), a component of fine particulate matter contributing to

climate change; Carbon Monoxide (CO), a colorless and toxic air

pollutant; Ammonia (NH3), primarily from agricultural processes;

Non-Methane Volatile Organic Compounds (NMVOCs), which

contribute to ozone formation; Nitrogen Oxides (NOx), involved

in the formation of smog and acid rain; Particulate Matter

with diameters of 2.5 micrometers and smaller (PM2.5) and 10

micrometers and smaller (PM10), affecting respiratory health;

Sulfur Dioxide (SO2), a precursor to acid rain; and Methane (CH4),

a potent greenhouse gas [63]. 3

1.3 The Sustainable Development Goals and their relevance to

sustainable logistics [180]. 4

1.4 CO2 emissions reductions in the transport sector in the Sustainable

Development Scenario relative to the Stated Policies Scenario [98]. . 5

1.5 Illustration of a Capacitated Vehicle Routing Problem. Icons by

Icons8 (icons8.com). 8

1.6 Illustration of an Electric Vehicle Routing Problem. Icons by Icons8

(icons8.com). 10

1.7 Illustration of a Capacitated 2-Echelon Vehicle Routing Problem.

Icons by Icons8 (icons8.com). 12

1.8 Illustration of a Two-Echelon Electric Vehicle Routing Problem.

Icons by Icons8 (icons8.com). 13

xiii

1.9 CMSA Framework . 27

2.1 Graphical abstract of CMSA for binary optimization problems. . . . 38

2.2 Graphical abstract of Adapt-CMSA for binary optimization problems. 41

3.1 An illustrative example of the MPIDS problem. Red vertices form

part of the solution. 45

3.2 Graphical abstract of CMSA for MPIDS 48

3.3 Graphical abstract of Adapt-CMSA for MPIDS 49

3.4 Average improvement of Adapt-CMSA over standard CMSA (in

percent) . 52

4.1 Illustration of an EVRP instance and its solution. (a) presents a

map showing the locations of a depot, twelve customers, and six

charging stations based on Cartesian coordinates. Gray dashed

lines indicate a fully connected graph connecting each pair of

nodes. (b) shows a valid solution to the given instance on the

same map, with four distinct tours represented by arrows with

different colors. All routes begin and end at the depot, passing

through various customers and charging stations. 65

4.2 Graphical abstract of Adapt-Cmsa-Std for EVRP-TW-SPD 71

4.3 Graphical abstract of Adapt-Cmsa-SetCov for EVRP-TW-SPD 76

4.4 Critical difference (CD) plots concerning the results for large

instances. The results in (a) consider all instances together, while

the subsequent plots display the results for subsets of the set of

large instances: (b) clustered instances; (c) random instances; (d)

random-clustered instances; (e) instances r1*, c1* and rc1*; (f)

instances r2*, c2* and rc2*. 85

4.5 Radar charts concerning the comparison of the two ILP models for

the EVRP-TW-SPD problem applied to a small problem instance

with 15 customers (see (a) and (b)), and to a large problem instance

with 100 customers (see (c) and (d)). 86

4.6 Example of an STN graphic produced by STNWeb. 87

xiv

4.7 STN graphics concerning the EVRP-TW-SPD. (a) and (b) show 10

runs of Adapt-Cmsa-Std and Adapt-Cmsa-SetCov for instancec201.

While (a) shows the complete STN, (b) shows the same STN after

search space partitioning. 89

4.8 STN graphics concerning the EVRP-TW-SPD. (a) and (b) show

10 runs of Adapt-Cmsa-Std and Adapt-Cmsa-SetCov for instance

rc106. While (a) shows the complete STN, (b) shows the same STN

after search space partitioning. 89

4.9 Critical difference (CD) plot concerning the results for the large

EVRP-SPD instances with 100 customers. 94

5.1 Illustration of a 2E-EVRP instance and its solution. (a)

presents a map showing the locations of a depot, four satellites,

twelve customers, and six charging stations based on Cartesian

coordinates. Gray dashed lines indicate a fully connected graph

within each of the two echelons, with no direct connections

between the depot and the customers or charging stations. (b)

shows a valid solution to the given instance on the same map, with

two distinct tours in the first echelon and 4 different tours in the

second echelon represented by arrows with different colors. First

echelon routes begin and end at the central warehouse passing

through satellites while the second echelon routes begin and end

at the satellites, passing through various customers and charging

stations. 102

6.1 An illustration of the indirect time windows arising for a satellite

depending on the customers it must serve. Note that time windows

are indicated in green color. 127

6.2 An illustration of the cyclic exchange operator with ζ = 3. Note

that the route at the top and the route at the bottom are the same

in order to show the cyclic nature of the move. 135

xv

6.3 An illustration of the charging station insertion operator. In the

battery-infeasible route, the electric vehicle runs out of battery

before reaching node v4. 138

6.4 An illustration of local search operators. (a) The exchange(1,1)

operator, (b) The shift(1,0) operator, (c) The relocation operator,

(d) The swap operator, (e) The two-opt operator, (f) CS_relocation

operator, (g) CS_reinsertion operator. 139

6.5 Illustration of the locations of the central warehouse and the

satellite(s) in different cases. Blue dots refer to customers and

red triangles are charging stations. (a) Small instance with 10

customers, (b) Small instance with 15 customers, (c) Large instance

(100 customers). 140

6.6 Critical difference plots concerning the results for large instances.

The graphic in (a) considers all large instances, while the other

graphics consider subsets of the set of large instances. (a) All

large instances; (b) clustered instances; (c) random instances;

(d) random-clustered instances; (e) instances R1*; C1* and RC1*;

(f) instances R2*, C2* and RC2*. 154

7.1 Overview of example instances and corresponding solutions.

Panels (a) and (b) compare a base EVRP instance with a depot,

fifteen customers, and four charging stations on a fully connected

graph, to its extended version for EVRP-RJ-RT with twenty road

junctions and a non-connected graph, highlighting road types

with speed limits: highways (80-100 km/h), urban roads (55-70

km/h), and city streets (30-50 km/h). Panels (c) and (d) illustrate

the solutions obtained from the Clarke-Wright Savings Heuristic

and the ACO algorithm, respectively, with the former resulting

in energy consumption of 112.36 kWh and the latter 99.97 kWh,

showcasing the routes on the same map with four unique routes

marked by different colored arrows. 170

xvi

7.2 Comparative analysis of the Clarke-Wright Savings Heuristic and

the ACO algorithms across various instance groups, such as n5/c,

n5/r, and n5/rc. Here, "n5" denotes the number of neighbors

of each node (road network density), while "c", "r", and "rc"

indicate the spatial distribution of the nodes. For each instance

group, paired boxplots show the distribution of both the best (a)

and average (b) energy consumption results obtained by the two

algorithms. 175

8.1 Example instance of EVRP-RJ-RT generated using preliminary

version of the instance generator. 184

xvii

List of Tables

3.1 Numerical results for small to medium size instances. 54

3.2 Numerical results for large SNAP networks. 55

3.3 Improvement of CMSA after specific tuning for small and medium

size instances. 57

3.4 Results of CMSA after specific tuning for the large SNAP networks. 58

4.1 Parameters, their domains, and the chosen values as determined

by irace. 77

4.2 Computational results for small-sized instances with 5 customers. . 78

4.3 Computational results for small-sized instances with 10 customers. 79

4.4 Computational results for small-sized instances with 15 customers. 79

4.5 Computational results for large-sized clustered instances. 82

4.6 Computational results for large-sized random instances. 83

4.7 Computational results for large-sized random clustered instances. . 84

4.8 Comparison for small-sized EVRP-SPD instances with 5 customers. 92

4.9 Comparison for small-sized EVRP-SPD instances with 10 customers. 92

4.10 Comparison for small-sized EVRP-SPD instances with 15 customers. 93

4.11 Comparison for large-sized EVRP-SPD instances with 100 customers. 94

5.1 Sets and notations . 98

5.2 Cases for tour merging w.r.t. nodes i and j 108

5.3 Parameters, their domains, and the chosen values as determined

by irace. 110

5.4 Computational results for small-sized instances - Set2. 112

5.5 Computational results for small-sized instances - Set3. 112

5.6 Computational results for medium-sized instances - Set2. 112

5.7 Computational results for medium-sized instances - Set3. 112

5.8 Computational results for medium-sized instances - Set6a. 114

xviii

5.9 Computational results for large-sized instances - Set5. 115

6.1 Notations and Sets . 120

6.2 Problem Data . 121

6.3 Decision Variables . 121

6.4 Cases for tour merging w.r.t. nodes i and j 129

6.5 VNS parameters, their domains, and values determined by irace. . 142

6.6 Parameters of the Clarke-Wright savings heuristic, their domains,

and values determined by irace. 143

6.7 Computational results for small-sized instances with 5 customers. . 145

6.8 Computational results for small-sized instances with 10 customers. 146

6.9 Computational results for small-sized instances with 15 customers. 147

6.10 Computational results for large-sized clustered instances. 150

6.11 Computational results for large-sized random instances. 151

6.12 Computational results for large-sized random-clustered instances. . 152

7.1 Cases for tour merging w.r.t. nodes i and j 164

7.2 Weight settings for solutions based on cf and bs_update. 167

7.3 Parameters, their domains, and the chosen values as determined

by irace. 171

7.4 Comparison of ACO and Clarke-Wright for sparse EVRP-RJ-RT

instances. 172

7.5 Comparison of ACO and Clarke-Wright for medium-density

EVRP-RJ-RT instances. 173

7.6 Comparison of ACO and Clarke-Wright for high-density

EVRP-RJ-RT instances. 174

xix

xx

List of Algorithms

2.1 Pseudo-code of standard CMSA . 36

2.2 Pseudo-code of self-adaptive CMSA: Adapt-CMSA 39

3.1 Solution construction procedure (CMSA and Adapt-CMSA) 47

4.1 Pseudo-code of Adapt-CMSA for the EVRP-TW-SPD 68

5.1 Adapt-CMSA for the 2E-EVRP-SPD 105

6.1 Modified Clarke-Wright Savings Heuristic for the 2E-EVRP-TW . . 130

6.2 VNS for the 2E-EVRP-TW . 133

6.3 Variable Neighborhood Decent (VND) 134

7.1 Ant Colony Optimization for the EVRP-RJ-RT 166

xxi

xxii

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Environmental pollution, an inevitable consequence of rapid industrialization
and population growth, has become a critical global challenge. This escalating
crisis is largely attributed to the uncontrolled exploitation of natural resources
and the consequent release of pollutants into the environment. These activities,
coupled with the expansion of urban areas and the industrial sector, have caused
a significant deterioration of air, water, and soil.

One of the most concerning issues of this environmental degradation is air
pollution, which is directly linked to the extensive use of fossil fuels across various
sectors such as energy production, transportation, and manufacturing industries.
The increasing presence of air pollutants not only deteriorates environmental
quality but also poses severe health risks. Prolonged exposure to poor air quality
has been associated with various health problems, from respiratory illnesses [85]
to cardiovascular diseases [136], impacting the well-being and productivity of
populations.

Beside the individual effects of air pollutants, there is also a significant global
effect due to greenhouse gases such as carbon dioxide (CO2), methane (CH4), and
nitrous oxide (N2O). Emitted through human activities across various sectors,
these gases escalate the crisis to a global level, contributing to global climate
change and intensifying environmental and health challenges worldwide.

In a concerning development, 2022 witnessed a record high in greenhouse gas
emissions, with no indication of a downward trend, see Figure 1.1. The World
Meteorological Organization reported that the global average concentration
of CO2 reached levels 50% higher than those in the pre-industrial era [190].
Furthermore, the International Energy Agency’s 2023 report indicated that global
energy-related CO2 emissions increased by 0.9% or 321 Mt in 2022, totaling over
36.8 Gt [97]. This rise indicates the urgency of the ongoing challenges in reducing
emissions from energy combustion and industrial processes.

2 Chapter 1 Introduction

Fig. 1.1 Global CO2 Emission by Sector Over Time [48].

The logistics sector, due to its vital role in the global economy, is one of
the primary contributors to environmental pollution, especially in greenhouse
gas emissions, see Figure 1.2. Logistic activities encompass various modes
of transportation, such as air, marine, and road transport. According to
the International Energy Agency, the transport sector was responsible for
approximately 23% of global energy-related CO2 emissions in 2015, with road
transport alone accounting for 72% of these emissions. Aviation and maritime
transport also contributed significantly, with 10% and 9.6% of the sector’s
emissions, respectively [97].

Recognizing environmental issues as complex and layered, spanning from
local to the global impacts of pollution and greenhouse gas emissions,
underscores the critical need for comprehensive solutions. Within this
framework, sustainability has emerged as a pivotal concept. As the World
Commission on Environment and Development outlines, sustainability entails
the cautious use of resources to fulfil current needs without threatening the
capacity of future generations to meet theirs [188]. This holistic approach reduces
pollution, preserves biodiversity, and promotes social equity [77]. With a clear
understanding of the need for eco-friendly practices across different sectors,
the logistics industry, notable for its significant environmental footprint, is no
exception in adopting sustainable strategies to lessen its adverse environmental
effects [125]. This commitment is further supported by the United Nations

Sustainable Development Goals (SDGs) which provide a global framework that
includes targets specifically relevant to sustainable logistics practices (see
Figure 1.3). These goals underscore the necessity of integrating environmental
considerations with socio-economic development, highlighting areas such as
responsible consumption and production, climate action, and decent work

Section 1.1 Background and Motivation 3

Fig. 1.2 Percentage Contribution of Various Sectors to EU-27 Emissions. The
emission types represented on the y-axis include Black Carbon (BC), a component
of fine particulate matter contributing to climate change; Carbon Monoxide
(CO), a colorless and toxic air pollutant; Ammonia (NH3), primarily from
agricultural processes; Non-Methane Volatile Organic Compounds (NMVOCs),
which contribute to ozone formation; Nitrogen Oxides (NOx), involved in
the formation of smog and acid rain; Particulate Matter with diameters of
2.5 micrometers and smaller (PM2.5) and 10 micrometers and smaller (PM10),
affecting respiratory health; Sulfur Dioxide (SO2), a precursor to acid rain; and
Methane (CH4), a potent greenhouse gas [63].

conditions and economic growth, which are directly applicable to the logistics
sector [180].

As a critical aspect of this sustainability movement, sustainable logistics
specifically targets the environmental impact of logistics activities [33]. It aims
to minimize the ecological footprint of the logistics sector by implementing
energy-efficient strategies, reducing waste, and promoting the use of renewable
resources [132]. Beyond environmental considerations, sustainable logistics
also encompasses social and economic aspects, such as ensuring fair working
conditions and promoting local economies [33]. The ultimate goal of sustainable
logistics is to strike a balance between meeting the demands of consumers,
businesses, and the environment, ensuring that logistic activities contribute to
long-term environmental, social, and economic well-being [132].

Sustainable city logistics, on the other hand, a more focused area within
sustainable logistics, concentrates on urban areas where the environmental
impact of transportation is particularly significant [175]. As urban populations

4 Chapter 1 Introduction

Fig. 1.3 The Sustainable Development Goals and their relevance to sustainable
logistics [180].

continue to grow and the demand for goods and services in cities increases,
the need for efficient and sustainable transportation solutions becomes even
more critical [47]. In this line, sustainable city logistics aims to optimize
the flow of goods and people within cities while minimizing the adverse
effects on the environment, such as air pollution, noise pollution, and traffic
congestion [175]. This can be achieved through various strategies, including
the use of environmentally friendly vehicles, promoting multi-modal transport,
implementing smart traffic management systems, and adopting multi-echelon
distribution systems [47].

Two key approaches have been increasingly recognized in both theoretical
and practical aspects of sustainable city logistics: firstly, the adoption
of environmentally friendly vehicles, and secondly, the implementation of
multi-echelon distribution systems, supplemented by strategic restrictions such
as limited service times and reverse logistics practices.

Environmentally friendly vehicles, including electric vehicles (EVs), hybrid
vehicles, and those utilizing alternative fuels, play a crucial role in reducing
exhaust gas emissions, thereby contributing to the sustainability goals set by
governments and international organizations [125].

Figure 1.4 underlines the pivotal role of electrification in the transport sector’s
contribution to CO2 emissions reduction in the Sustainable Development Scenario.
It demonstrates that the shift towards electrification, including the use of EVs,
represents the most significant share of emission reductions compared to other
actions such as demand avoidance, hydrogen usage, bioenergy, and other
renewables. This underscores the importance of accelerating the adoption of
EVs within the logistics sector. These vehicles not only offer long-term financial
benefits through reduced maintenance and fuel costs but also assist logistics

Section 1.1 Background and Motivation 5

Fig. 1.4 CO2 emissions reductions in the transport sector in the Sustainable
Development Scenario relative to the Stated Policies Scenario [98].

companies in adhering to environmental regulations, fulfilling corporate social
responsibility, and enhancing their public image [125]. However, challenges
such as limited driving range, higher initial costs, restricted availability, and
battery disposal issues remain key considerations in the broader adoption of
these vehicles.

Complementing the adoption of environmentally friendly vehicles,
multi-echelon distribution systems emerge as another essential component of
sustainable city logistics, offering innovative strategies to address the complexities
of urban freight movement. This logistic approach involves transporting
goods through a series of stages, each utilizing various transportation modes
and facilities strategically designed to enhance efficiency while reducing
environmental impact. In this system, the supply chain is segmented into
multiple ’echelons’ or stages. At each stage, goods are consolidated at designated
facilities, often referred to as intermodal transshipment hubs or ’satellites,’ before
being transferred to different vehicles for the next phase of delivery [127].

The significance of multi-echelon distribution in city logistics is profound.
Segmenting the transportation process allows for a more effective consolidation
of goods. This segmentation leads to substantial benefits such as diminished
traffic congestion, lower air pollution levels, and reduced transportation costs,
thereby aligning closely with the objectives of city logistics which prioritize the
minimization of social, economic, and environmental impacts [127]. A critical
aspect of this approach is its capability to decrease the presence of large trucks in
urban centers, opting instead for smaller, eco-friendly vehicles for final delivery
stages. Such a shift not only boosts the efficiency of goods movement but also
markedly improves urban air quality and mitigates traffic congestion [127].

6 Chapter 1 Introduction

Nevertheless, the implementation of multi-echelon distribution systems
entails its own set of challenges. It demands meticulous strategic planning,
effective coordination among diverse stakeholders, and the establishment of
suitable infrastructures like urban consolidation centers (UCCs). These UCCs
serve as central hubs where goods from various sources are aggregated before
their distribution across the city, thereby reducing the number of delivery vehicles
and enhancing the overall efficacy of urban freight operations [45]. The success
of these systems hinges on optimal transportation planning and management,
necessitating advanced decision-making tools and technologies. The deployment
of Intelligent Transportation Systems (ITS) and sophisticated fleet management
practices becomes crucial for the control and synchronization of logistics activities
within these systems [45].

Another sustainable logistics practice is the implementation of restrictions,
such as limited service time for customers (time windows) and reverse logistics
practices. Time windows impose constraints on when deliveries can be made,
which can lead to more efficient route planning, reduced congestion, and lower
emissions [175]. This practice also encourages better use of transportation
resources and contributes to improved air quality in urban areas. However, time
window restrictions can also pose challenges for logistics companies, as they must
balance customer needs with the constraints imposed by local authorities.

Reverse logistics practices, which involve the collection, transportation, and
processing of used, damaged, or obsolete products and materials, can also
contribute to sustainable city logistics [157]. By facilitating the recycling,
refurbishment, or disposal of products, reverse logistics helps reduce waste,
conserve resources, and minimize the environmental impact of logistics activities.
Moreover, it can provide economic benefits for companies by recovering value
from returned products and reducing disposal costs. However, implementing
reverse logistics practices can be complex and resource-intensive, requiring
substantial investments in infrastructure, technology, and personnel [157].

In conclusion, sustainable city logistics encompasses a range of practices,
including the use of environmentally friendly vehicles, multi-echelon distribution
systems, time window restrictions, and reverse logistics practices. By adopting
these strategies, logistics companies can reduce their environmental impact,
enhance their sustainability performance, and contribute to a cleaner, greener
urban environment.

Considering the urgent need to address environmental pollution and the
significant role of road transport activities in contributing to this issue, it
is essential to explore sustainable solutions within logistics. The concept of

Section 1.2 Overview of Vehicle Routing Problems 7

sustainable city logistics is vital in this context, as it focuses on minimizing the
environmental impact of transportation activities in urban areas. This thesis seeks
to investigate electric vehicle routing problems and two-echelon electric vehicle
routing problems as key components of sustainable city logistics, providing
innovative ways to achieve a cleaner, greener future. By addressing variations
of these problems, the thesis takes into account real-life constraints, such as time
windows, simultaneous pickups and deliveries, partial battery charging and
realistic transportation networks considering road junctions and road segments
with different speed limitations for vehicles. The aim of this study is not only to
contribute valuable insights to the field of sustainable logistics but also to develop
solution approaches that can effectively solve the addressed problems.

1.2 Overview of Vehicle Routing Problems

The Vehicle Routing Problem (VRP) introduced by Dantzig and Ramser [50]
represents a fundamental challenge in operations research and logistics. The
problem involves determining the most efficient routes for a fleet of vehicles
originating from a central depot or multiple distribution centers to a network
of demand points or customers. The objective is generally minimizing travel
distances, time, and overall logistical costs.

The VRP extends the principles of the well-known Traveling Salesman
Problem (TSP). While the TSP seeks the shortest route for a single vehicle to
visit each customer exactly once before returning to the origin, the VRP adds
layers of complexity with multiple vehicles, often subject to loading capacity
limits. This requires not just the determination of a singular optimal route but
an entire set of efficient routes for the whole fleet. Figure 1.5 illustrates a typical
VRP setup, including a central depot, customer locations, and routes for a fleet
of vehicles.

Following the foundational work by Dantzig and Ramser [50], the field of
VRPs has expanded significantly to include a variety of scenarios, reflecting the
diverse challenges faced in real-world logistics and distribution systems. This
evolution has led to the introduction of numerous VRP variants, each designed
to address specific constraints and requirements in logistics planning.

Models such as the VRP with time windows (VRPTW) [173], the VRP
with time limit (VRPTL) [177] and the Time-dependent VRP(TDVRP) [126]
ensure that deliveries and services are scheduled within feasible time
frames, accommodating the dynamic nature of traffic conditions and customer
availability.

8 Chapter 1 Introduction

Fig. 1.5 Illustration of a Capacitated Vehicle Routing Problem. Icons by Icons8
(icons8.com).

Furthermore, the domain of VRPs has extended to involve various demand
scenarios, notably through the Pickup and Delivery Problem (PDP) [165].
This category includes the VRP with backhauls (VRPB) [81], where deliveries
are followed by pickups; the VRP with Clustered Backhauls (VRPCB) [145],
emphasizing the geographical clustering of pickup points; and the VRP with
simultaneous pickups and deliveries (VRPSPD) [179] where pickup and delivery
requests are met simultaneously. Researchers have also worked on models like
the Split-delivery VRP (SDVRP) [58, 59] and the VRP with divisable deliveries
(VRPDD) [139], which allows customer demands to be fulfilled through multiple
deliveries, thereby increasing the flexibility and efficiency of vehicle utilization.

The exploration of VRPs has not stopped at time and demand scenarios. The
field also embraces models catering to diverse operational complexities. The
Heterogeneous VRP (HVRP) [82] considers vehicles of varying capacities, while
the Multi-depot VRP (MDVRP) [36] addresses organizations operating from
multiple depots. The Periodic VRP (PVRP) [70] extends the planning horizon
to include recurring customer visits. Addressing uncertainties, the Stochastic
VRP (SVRP) [76] models randomness in demand, customer presence, and travel
times, further subcategorized into variants like the VRP with stochastic demand
(VRPSD) [23] and the VRP with stochastic travel times (VRPSTS) [114]. The Open
VRP (OVRP) [162] introduces flexibility by allowing vehicles to end their routes
without returning to the depot. Other specialized variants, such as the Green
VRP (G-VRP) [62], the Dynamic VRP (DVRP) [115], and the Multi-compartment

Section 1.2 Overview of Vehicle Routing Problems 9

VRP (MC-VRP) [42], highlight the field’s adaptability to environmental concerns,
real-time information changes, and specific cargo handling needs.

As the importance of sustainable systems and operations increases, the VRP
literature is naturally moving towards the emergence of specialized VRP variants
such as the Electric Vehicle Routing Problem (EVRP) [43], the Two Echelon Vehicle
Routing Problem (2E-VRP) [147], and the Two Echelon Electric Vehicle Routing
Problem (2E-EVRP) [29]. The following sections will present the integration of
electric vehicles into routing strategies, the complexities of multi-tier distribution
systems, and the synergy between these advanced approaches, highlighting the
field’s progression towards sustainable and efficient logistics solutions.

1.2.1 The Electric Vehicle Routing Problems

The Electric Vehicle Routing Problem (EVRP) is a variant of the classic VRPs
that consider using EVs for goods or service delivery. As mentioned before,
EVs have gained popularity in logistics and transportation due to the growing
concern for reducing greenhouse gas emissions and promoting environmental
sustainability [116].

The EVRP seeks the most effective routing strategies for delivering goods or
services using EVs from a central warehouse to a network of customers. The
primary objective remains to minimize total costs, such as travel distance, time
and operational costs, as in the case of conventional VRPs. However, energy
efficiency is also sometimes considered to be an objective due to the nature
of the problem. Another crucial aspect of the EVRP involves managing the
limited range of vehicles and strategically planning for recharging at available
stations. En-route charging requirements of EVs add a layer of complexity to
route planning, as it necessitates not only efficient routing to demand points but
also timely and effective battery recharging plans.

Figure 1.6 illustrates an EVRP network, showing a central depot, various
customer locations, charging stations, and the planned routes of electric vehicles.
In this model, electric vehicles must consider both customer demands and the
availability of charging stations along their routes. An EV departs from the depot
with a fully charged battery. As it travels through demand points, its battery
is consumed depending on various factors such as the distance travelled, load
and speed. Therefore, it has to visit charging stations to charge the battery when
needed.

The route optimization of rechargeable vehicles was first considered by
Conrad and Filiozzi [43]. They presented a mathematical formulation of the
problem, aiming to minimize the number of vehicles and the total cost related

10 Chapter 1 Introduction

Fig. 1.6 Illustration of an Electric Vehicle Routing Problem. Icons by Icons8
(icons8.com).

to the traveled distance, the service time, and the vehicle recharging cost. After
this pioneering work, several researchers presented EVRP variations together
with different algorithmic solutions. Erdoğan et al. [62] formulated a green
vehicle routing problem in terms of a mixed-integer programming model and
proposed two contraction heuristics along with a customized improvement
technique to solve large-sized problem instances. Schneider et al. [166] extended
the EVRP by including time window constraints into the model. Moreover,
they proposed a metaheuristic algorithm based on variable neighborhood search
(VNS) and tabu search (TS). Felipe et al. [66] extended the green vehicle routing
problem introduced by [62], considering several real-life assumptions such as
partial recharging and multiple charging technologies with different charging
speeds and costs. They developed a mathematical model and proposed several
heuristic solution methods for problem instances of realistic size. In addition,
Keskin and Çatay [104] introduced an EVRP with time windows and partial
recharging. They proposed an adaptive large neighborhood search (ALNS) based
solution approach and analyzed if the partial recharging of batteries improved
the obtained solutions when compared to the full charging option. Furthermore,
they also considered a fast charging option in [105] and proposed two different
mathematical models as well as a matheuristic. Moreover, Montoya et al. [138]
introduced a new model that takes into account the non-linear charging time of
batteries. They reported that the time spent for charging batteries is non-linear,
and ignoring this fact may cause the generation of infeasible and/or costly

Section 1.2 Overview of Vehicle Routing Problems 11

solutions. Keskin et al. [106] considered also the fact that an EV might have to
wait in a queue when visiting a charging station. They proposed a two-stage
simulation-based heuristic using an LNS algorithm. Sadati and Çatay [160]
recently introduced a multi-depot green vehicle routing problem and developed
a mixed-integer linear programming model. They proposed a solution method
based on VNS and TS and reported on the computational properties of the
algorithm. Duman et al. [60] proposed exact and heuristic algorithms based on
branch-and-price-and-cut and on column generation to solve the EVRP with TWs.
Huerta-Rojo et al. [95] proposed an algorithm named ACOLS, a combination of
ant colony optimization and local search, for the EVRP with time windows and
partial recharging.

1.2.2 Two-Echelon Vehicle Routing Problems

Driven by an increasing focus on sustainable city logistics, the Two-Echelon
Vehicle Routing Problem (2E-VRP) emerges as an extension of traditional VRPs.
This variant is particularly relevant in the context of increasing urbanization and
environmental awareness, as it introduces a multi-echelon distribution system
designed to address the challenges of urban delivery networks [45, 147].

The 2E-VRP model structures the distribution process into two distinct levels.
The first level — in other words, echelon — involves transporting goods from
a central warehouse to intermediate transhipment facilities, known as satellites,
typically located on the outskirts of urban areas. These satellites act as pivotal
nodes for the collection and redistribution of goods. The transition of goods
from the warehouse to satellites is generally handled by large trucks suitable for
long-distance hauls and capable of carrying significant loads.

The second echelon shifts the focus to urban distribution challenges. At this
stage, smaller vehicles, better suited to navigate city environments, take over to
deliver goods from satellites to final customers within city centers. This phase
is specifically designed to accommodate the constraints of city logistics, such as
restricted entry points and narrow roads, while minimizing the environmental
and social impact of delivery operations.

Figure 1.7 shows a typical 2E-VRP setup, illustrating the interaction between
the central warehouse, satellite locations, and customer delivery points. Similar
to the other variants of VRPs, the primary goal is to optimize transportation costs
in both echelons while respecting the problem-related constraints.

After Crainic et al. [46] introduced the concept of two echelons in the
context of the 2E-VRP as a new concept to the literature, this line of research
developed into one of the most popular ones in the context of urban freight

12 Chapter 1 Introduction

Fig. 1.7 Illustration of a Capacitated 2-Echelon Vehicle Routing Problem. Icons
by Icons8 (icons8.com).

transportation [75]. The idea of developing sustainable cities and transportation
systems further increases the interest in this field of research. Perboli et al. [147]
proposed a mathematical model and math-based heuristics for the 2E-VRP.
Various researchers proposed exact solution approaches such as branch-and-cut
(see [100, 122]) and branch-and-price methods (see [51, 129]) as well as
dynamic programming [14] to solve various extensions of the 2E-VRP. However,
with growing instance size and problem complexity, researchers focused on
approximate techniques to solve these problems. Grangier et al. [84] proposed
a heuristic based on LNS for the 2E-VRP with time window and satellite
synchronization constraints. Wang et al. [185] developed a matheuristic based
on VNS and integer programming. Moreover, Belgin et al. [20] formulated
the 2E-VRP with simultaneous pickup and delivery constraints as a two-index
mixed-integer programming model and developed a hybrid metaheuristic
combining variable neighborhood descent (VND) and local search.

1.2.3 Two-Echelon Electric Vehicle Routing Problems

The Two-Echelon Electric Vehicle Routing Problem (2E-EVRP) integrates the
concepts of the 2E-VRP and the EVRP, as discussed in Sections 1.2.2 and 1.2.1
respectively. This hybrid model addresses the complexity of urban logistics
by distributing goods through a two-tiered system that optimally utilizes both
traditional large trucks and environmentally friendly EVs, each serving a specific
logistical purpose.

Section 1.2 Overview of Vehicle Routing Problems 13

Fig. 1.8 Illustration of a Two-Echelon Electric Vehicle Routing Problem. Icons by
Icons8 (icons8.com).

In the first echelon of the 2E-EVRP, goods are transported from a central
warehouse to satellites using large conventional trucks. Transitioning to the
second echelon, EVs, with their zero direct emissions and low noise levels,
are deployed for the final delivery phase, bringing goods from the satellites to
customers within urban areas. This approach aligns with the growing emphasis
on reducing the environmental footprint of logistic activities especially in urban
areas.

Figure 1.8 provides a visual representation of the 2E-EVRP setup that includes
a central warehouse, satellites, charging stations and customers. It illustrates the
flow of goods from the central warehouse to the satellites and then to the final
customers, demonstrating the interplay between the conventional trucks in the
first echelon and the EVs in the second echelon.

The 2E-EVRP introduces several unique challenges. In the first echelon,
careful planning is essential for the efficient allocation of customers to satellites
and the coordination of deliveries from the warehouse to these depots. The
second echelon presents additional complexities, including the limited range of
EVs, the necessity of accessible charging stations, and additional operational
considerations like time windows for deliveries.

The objective of the 2E-EVRP is to minimize the total cost of the distribution
process across both echelons. This includes a focus on factors such as
travel distances, fleet costs, operational expenses, and, importantly, energy
consumption. This holistic approach ensures that the distribution system is

14 Chapter 1 Introduction

not only operationally efficient but also minimizes its environmental impact,
adhering to the principles of sustainable urban logistics.

The 2E-EVRP is regarded as a combination of two initially independent
research lines: the one on EVRPs and the one on 2E-VRPs; see [43] and [46]. Works
on EVRPS include [11, 113], while [172] is a recent example for work on 2E-VRPs.
On the other hand, the related literature on 2E-EVRPs is still rather scarce. Jie
et al. [101] were among the first to propose a 2E-EVRP with battery-swapping
stations (BSS). A hybrid algorithm that combines column generation and LNS
is proposed to solve the addressed problem. Breunig et al. [29] proposed a
metaheuristic approach based on LNS and an exact mathematical programming
algorithm that employs decomposition and pricing techniques to solve 2E-EVRP.
Moreover, Cao et al. [32] investigated the design of a two-echelon reverse
logistics network to collect recyclable waste utilizing a mixed fleet of electric
and conventional vehicles. Instead of a single integrated mathematical model,
the authors formulated the addressed problem as two distinct models, one
for each echelon. Furthermore, Wu and Zhang [191] developed a branch and
price algorithm to solve a 2E-EVRP. They tested the proposed solution approach
on small and medium-sized instances containing up to 20 customers and two
charging stations. Recently, Wang and Zhou [181] introduced a 2E-EVRP with
time windows and battery-swapping stations. They developed a MILP model
that minimizes transportation, handling, and fixed costs for the vehicles used in
the first and second echelons, in addition to battery-swapping costs. However,
the time spent on battery swapping is not considered.

1.3 Solution Approaches

Addressing EVRPs and 2E-VRPs presents significant challenges due to their
complexity, including factors like vehicle capacity, customer demand, limited
driving ranges of vehicles and en-route charging needs, and managing logistics
across multiple distribution levels. The diversity of problem objectives and
several constraints arising from real-life logistics scenarios further require tailored
solution strategies.

This section provides an overview of various solution methods that have been
used to solve VRPs in the past, ranging from exact algorithms to approximate
techniques such as heuristics and metaheuristics.

Section 1.3 Solution Approaches 15

1.3.1 Exact Solution Approaches

Exact solution approaches for VRPs are designed to identify an optimal
solution by explicitly or implicitly exploring the complete space of valid
solution. These methods are founded on mathematical rigor and incorporate
advanced algorithmic techniques, including Branch-and-Bound, Branch-and-Cut,
Branch-and-Price, and Dynamic Programming. Although these strategies ensure
the identification of a best possible solution, their computational demand may
render them impractical for larger or more complex VRP variants, such as the
EVRP and the 2E-VRP.

Another technique, Mixed Integer Linear Programming (MILP), involves the
addressed problem to be modeled with a linear objective function and linear
constraints on both continuous and integer variables. This approach is widely
favored for its applicability in constructing valid mathematical representations of
combinatorial optimization problems. The advancement of computational tools,
such as IBM ILOG CPLEX [8, 96] and Gurobi [87] has significantly enhanced the
feasibility of solving problems formulated through MILP models.

Despite the precision these exact methods offer, their intensive computational
requirements may limit their applicability to larger instances of complex
or extensive VRP scenarios. The subsequent sections will present various
exact solution approaches, detailing their methodologies, applications, and the
challenges they face, especially in the context of complex routing problems.

1.3.1.1 Branch-and-Bound (B&B) Algorithms

The Branch-and-Bound (B&B) algorithm is a pivotal method in discrete
optimization, especially suited for tackling integer and mixed-integer
programming problems. B&B methodically explores the solution space through
a tree of sub-problems, each node representing a part of the overall problem.
This exploration is guided by two key processes: ’branching’, which divides the
problem into narrower sub-problems, and ’bounding’, which establishes upper
and lower limits for these sub-problems to eliminate unlikely candidates for
optimal solutions.

The algorithm’s effectiveness hinges on three core components: the search

strategy, which determines the order in which subproblems in the tree are
explored; the branching strategy, which determines the partitioning of the solution
space; and the pruning rules, which help eliminate sub-optimal search areas.

Although B&B is theoretically capable of identifying optimal solutions,
its computational demand escalates with the problem’s complexity, posing a

16 Chapter 1 Introduction

significant challenge for large-scale instances of EVRPs and 2E-VRPs. The
algorithm’s computational feasibility often becomes strained as the number
of sub-problems grows exponentially with the size of problem instances.
Applications of B&B to VRPs can be found in [40, 179]

1.3.1.2 Branch-and-Cut (B&C) Algorithms

The Branch-and-Cut (B&C) method enhances the B&B by incorporating a "cutting"
phase, which enhances the search process for finding optimal solutions in Integer
Linear Programming (ILP) problems. Key to B&C’s strategy is the generation
of "cuts" or additional constraints, which are integrated to eliminate non-viable
portions of the search space, focusing the search on feasible and promising areas.
These cuts, derived from a polyhedral study of the problem’s feasible region,
specifically target and exclude fractional solutions from the linear programming
relaxation of sub-problems, thereby tightening the LP relaxation and streamlining
the path to the optimal solution [137].

However, implementing B&C is quite complex and computationally
demanding. Generating effective cuts requires in-depth knowledge of the
problem’s polyhedral aspects and sophisticated algorithms for identifying
impactful cuts. This complexity, combined with the significant computational
resources needed, especially for large-scale VRP instances, limits B&C’s
practicality in certain scenarios.

Despite these challenges, B&C has demonstrated notable success in some
applications, such as solving the two-echelon capacitated vehicle routing problem
with grouping constraints more efficiently than general-purpose solvers like
CPLEX [122]. Additionally, it has been used to address the GVRP by combining
it with simulated annealing heuristics to achieve optimal solutions within
reasonable time frames [199].

1.3.1.3 Branch-and-Price (B&P) Algorithms

The Branch-and-Price (B&P) method is a combination of B&B with column
generation techniques. It starts by addressing a restricted version of the original
problem, focusing on a manageable subset of variables, or columns. In VRP
contexts, each of these variables often represents a potential vehicle route, with
the initial set comprising a limited selection of feasible routes [164].

The strength of B&P lies in its dynamic column generation during the
bounding process. New variables are systematically added based on their
potential to enhance the current solution. This is achieved through the resolution

Section 1.3 Solution Approaches 17

of a pricing problem, which seeks out routes with negative reduced costs,
indicative of their ability to improve the incumbent solution. When fractional
solutions arise, B&P branches to create sub-problems [65].

Unlike B&B and B&C, B&P introduces new variables only as necessary,
thereby managing the problem’s scale and complexity more effectively.
This selective variable inclusion keeps the overall problem size manageable,
enhancing computational performance. However, the method requires accurate
management of both the pricing problem for route generation and the master
problem for adjusting dual variables. The challenge is maintaining a balance in
the number of generated columns, introducing neither too many nor too few at
each stage. [133].

In recent VRP applications, B&P has demonstrated significant adaptability
and efficiency. It has been successfully employed in solving complex EVRP and
2E-EVRP variants. By leveraging parallel column generation, B&P algorithms
have shown a remarkable ability to handle the computational demands of these
problems, often outperforming competing solvers in specific instances [34, 191].
Additionally, in addressing the EVRP with time windows, the combination of
B&P with cutting-plane techniques has been instrumental for solving large-scale
instances that were previously unresolved [60].

1.3.1.4 Dynamic Programming (DP)

Dynamic Programming (DP) is a cornerstone technique in operations research,
particularly distinguished for its applicability to complex decision-making
problems that exhibit overlapping sub-problems and a recursive structure [21].
The essence of DP lies in its systematic approach to problem-solving: it
decomposes a large problem into smaller, manageable sub-problems, solves each
of these once, stores the results, and reuses these solutions to address overarching
problems.

Despite its efficiency across various combinatorial optimization problems, DP
has limitations, particularly when applied to complex and large-scale problems
such as EVRPs. These limitations primarily arise from the exponential increase
in computational and storage demands associated with the rising dimensionality
of the problem. Such growth can make DP impractical for large EVRP instances.

Within the context of EVRPs, DP is generally employed to identify the optimal
strategy for EV charging station visits. Hiermann et al. [92] demonstrate this
application through the use of a bi-directional labeling algorithm to address the
Elementary Shortest Path Problem with Time Windows and Recharging Stations.
This methodological approach is also echoed in the works of Roberti et al. [155]

18 Chapter 1 Introduction

and Desaulniers et al. [53], further underscoring the adaptability of DP in EVRP
solutions. Additionally, Küçükoğlu et al. [112] illustrate how DP can be integrated
within a hybrid simulated annealing and tabu search framework to efficiently
generate charging operation plans

1.3.2 Construction Heuristics

Construction heuristics are simple, easy-to-implement algorithms for generating
feasible (although not necessarily optimal) solutions to VRPs. They are typically
used as a first step to obtain an initial solution, which can then be refined using
local search or other optimization techniques.

Construction heuristics offer a more practical approach to solving VRPs,
especially when dealing with large datasets or intricate constraints characteristic
of EVRPs and 2E-VRPs. These heuristics build a solution incrementally, starting
from an initially empty solution and gradually adding elements to it. Techniques
such as the Greedy Heuristic, the Clarke-Wright Savings Algorithm, and the
Sweep Algorithm and Insertion Heuristics are typical examples [173]. While
they generally do not guarantee an optimal solution, construction heuristics are
valued for their simplicity, speed, and ability to provide good quality solutions
within a reasonable timeframe. This subsection explores various construction
heuristics, their strategic application in VRP variants, and how they balance
solution quality with computational efficiency.

1.3.2.1 Greedy Heuristic (Nearest Neighbor Algorithm)

This heuristic is a simple approach where the idea is to serve the closest unvisited
customer next. Starting from the depot, the algorithm selects the nearest unvisited
customer, adds it to the current route, and repeats this process, within loading
capacity limits, until all customers are visited. A vehicle can usually only serve
a subset of the customers due to capacity constraints. When the vehicle reaches
its capacity or cannot accommodate any additional load, it returns to the depot
to complete its tour. The process continues with the vehicle starting a new tour
from the depot, targeting the next set of unvisited customers, until all customers
have been served. The solution construction process concludes when the vehicle
returns to the depot and no unvisited customer remains [159]. This approach
is straightforward and easy to implement, but it tends to generate suboptimal
solutions, especially for larger problems, as it does not consider the overall route
configuration and may lead to routes that are considerably longer than necessary.

Section 1.3 Solution Approaches 19

1.3.2.2 Clarke-Wright Savings Algorithm

Proposed by Clarke and Wright in 1964 [41], this algorithm calculates the
"savings" for each pair of customers, which is defined as the cost saved by
serving both customers on the same route rather than on separate routes. The
algorithm then merges routes in decreasing order of savings, subject to capacity
and other constraints. The Clarke-Wright Savings Algorithm is one of the most
well-known heuristics for VRPs, but it tends to perform better on problems with
rather symmetric costs.

1.3.2.3 Sweep Algorithm

Developed by Gillett and Miller [78], this heuristic is based on the geometric
interpretation of the problem. It first orders the customers according to the angle
they make with respect to the depot and a fixed axis. Then it "sweeps" a line
around the depot, starting a new route whenever adding the next customer would
exceed the vehicle’s capacity. The Sweep Algorithm is intuitive and particularly
useful when customers are dispersed in a circular manner around the depot, but
it may perform poorly for other types of customer distributions [173].

1.3.2.4 Insertion Heuristics

These algorithms start with initial routes containing single customers and
iteratively insert the unvisited customers into the routes where they cause the
smallest increase in cost. Different versions exist, such as cheapest insertion
(which minimizes the cost increase), farthest insertion (which inserts the farthest
unvisited customer), and nearest insertion (which inserts the nearest unvisited
customer). Insertion heuristics are more flexible than the Greedy and Savings
algorithms and can perform well for various problem types, but they generally
still lead to sub-optimal solutions and may not perform well for larger problem
instances.

1.3.2.5 Randomized Heuristics

These algorithms combine deterministic construction rules with random choice,
aiming to explore different parts of the solution space and avoid the basin of
attraction of local optima. They often involve constructing multiple solutions
and choosing the best one. Examples include randomized greedy algorithms
[154], which select the next customer to serve with a probability that depends
on the solution quality, and randomized insertion algorithms, which randomly
select the next customer to insert. Randomized heuristics can often find good

20 Chapter 1 Introduction

solutions to complex problems, but they require careful tuning of their degree of
randomness.

1.3.2.6 Two-Phase Heuristics

These algorithms, such as those proposed in [18], first partition the customers
into clusters (phase one) and then determine the visiting order within each cluster
(phase two). The Route-First-Cluster-Second heuristic constructs routes first and
then assigns them to vehicles, while the Cluster-First-Route-Second heuristic first
clusters the customers and then creates a route for each cluster. Two-phase
heuristics can be quite effective, especially for larger problem instances, but their
performance is usually sensitive to the method used to partition the customers
and sequence the visits.

1.3.3 Metaheuristics

Metaheuristics [142] represent a sophisticated class of solution approaches,
particularly effective for large-scale instances of complex VRPs such ass the
EVRP and 2E-VRP. These methods are designed to explore the solution space
extensively, employing strategies to escape from local optima. Techniques under
this umbrella include Simulated Annealing, Tabu Search, Genetic Algorithms,
and Ant Colony Optimization, each with unique mechanisms to balance the
exploration and exploitation of the search process. Metaheuristics are favored
for their flexibility and effectiveness in finding high-quality solutions to complex
problems where exact methods are infeasible, and simple heuristics may fall short.
This subsection delves into various metaheuristic techniques, analyzing their
suitability for different VRP scenarios and highlighting their role in advancing
the field of route optimization.

1.3.3.1 Simulated Annealing

Simulated Annealing (SA), introduced by Kirkpatrick et al. [107], is a metaheuristic
inspired by the annealing process in metallurgy. This process involves heating
and controlled cooling of materials to minimize structural defects. In the context
of combinatorial optimization problems, SA starts with an initial feasible solution,
often generated heuristically, and explores the solution space through random
moves (local search operators). Its defining feature is the probabilistic acceptance
of solutions with inferior objective function values compared to the current
solution, based on a ’temperature’ parameter. This parameter is initialized
with a high value facilitating the occasional acceptance of sub-optimal solutions,

Section 1.3 Solution Approaches 21

and gradually decreases over time. This reduction diminishes the likelihood of
accepting solutions worse than the current one. This mechanism allows SA to
escape from local optima, enabling a comprehensive exploration of the solution
space.

A critical aspect of implementing SA in VRPs is the calibration of the
temperature parameter. Precise calibration is essential, as rapid cooling can lead
to premature convergence to sub-optimal solutions, while slow cooling might
require excessive computational time.

SA has been widely applied in the context of combinatorial optimization
problems, including various VRP variants [111]. However, within the scope of
EVRPs and their variants, SA is often hybridized with other metaheuristics [121,
146, 166].

1.3.3.2 Tabu Search

Tabu Search (TS) [79] is another example of a formidable metaheuristic framework
for addressing complex optimization problems. This method is distinguished
from conventional heuristic approaches through its innovative use of memory
structures to enhance problem-solving efficiency. More specifically, TS explores
the solution space employing a tabu list to maintain a short-term memory of
attributes of previously evaluated solutions. This mechanism prevents cyclic
exploration and assists in overcoming local optima by prohibiting the algorithm
from revisiting recently seen solutions.

Central to TS’s methodology are two pivotal strategies: intensification,
achieved by always moving to the best non-tabu neighbor of the current solution,
and diversification, achieved by determining a suitable tabu list length [80].

One of the most notable strengths of TS is its adaptibility, allowing it to tackle
complex and dynamic problem landscapes effectively. This adaptability makes
TS particularly suitable for VRPs, where the solution space is often rugged with
a huge number of local optima. However, the success of TS is heavily reliant
on the careful configuration of its memory structures and strategic elements.
Determining the optimal length of the tabu list and the right balance between
intensification and diversification can be challenging and typically necessitates
empirical fine-tuning.

The literature includes publications that present both standalone [1, 186]
and hybrid implementations of TS. For example, hybrid approaches incorporate
methods like Large Neighborhood Search with TS for solving variants of the
EVRP [163].

22 Chapter 1 Introduction

1.3.3.3 Variable Neighborhood Search

Introduced by Hansen and Mladenović, [89] Variable Neighborhood Search (VNS)
is –like TS– a trajectory-based metaheuristic approach. VNS is grounded in the
principle that a local optimum concerning one neighborhood structure is not
necessarily a local optimum for another one. It operates on the premise that
the global optimum is a local optimum relating to all possible neighborhood
structures. Therefore, unlike other local search algorithms, VNS employs
multiple neighborhood structures rather than relying on a single one to avoid
getting stuck in local optima.

The search process starts with an initial solution and iteratively explores
neighborhoods of increasing distance to escape from local optima. This involves
two main phases: local search and shaking. The local search phase intensifies the
focus on promising areas of the search space, while the shaking phase expands the
search to include more diverse and distant neighborhoods. This approach allows
VNS to dynamically adapt its search strategy, balancing between intensification
and diversification [88].

The algorithm’s success largely depends on the strategic definition and
adaptation of neighborhood structures, which can be intricate and specific to
the problem at hand. The literature on VRP underscores VNS’s adaptability and
its capability to address large-scale and dynamic problems, making it a preferred
method for these types of problems [99]. Furthermore, in EVRPs, VNS stands
out as one of the most frequently utilized solution approaches [113].

1.3.3.4 Large Neighborhood Search

Large Neighborhood Search (LNS) [171] is a powerful metaheuristic that is
particularly good at dealing with optimization problems for which large
neighborhoods can be defined.

One of the most successful LNS variants in the VRP field is the one based on the
partial destruction of the incumbent solution. Its key components are the utilized
destruction and repair mechanisms. The process begins with an initial solution,
possibly obtained through a heuristic approach. Then, the destruction phase
involves systematically removing a part of the solution. For example, in VRPs,
this could involve removing a group of customers from their planned routes or
getting rid of entire routes. The subsequent repair phase involves reconstructing
the destroyed solution by employing heuristics or exact methods. This iterative
process enables LNS to explore broader solution landscapes, avoiding being stuck
in local optima [148, 149].

Section 1.3 Solution Approaches 23

LNS and its variants such as Adaptive LNS (ALNS) [158], are highly effective
and adaptable metaheuristics that are well-suited for addressing complex
optimization problems. Their application to VRPs shows their tremendous
capacity for tailored problem-solving. LNS and ALNS have become very popular
and successful metaheuristics in the field of many combinatorial optimization
problems including EVRPs [128].

1.3.3.5 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are inspired by the principles of natural evolution
and genetics [12]. EAs operate on a population of potential solutions, with
the quality of each solution evaluated using a fitness function. The algorithms
evolve the population over generations, using operators inspired by biological
mechanisms such as selection, crossover (recombination), and mutation. The
goal is to evolve solutions of increasing quality over time, ideally converging
towards a global optimum or, at the very least, a high-quality solution.

Genetic algorithms (GAs) are the most renowned under the broader umbrella
of EAs. Introduced by Holland in the early 1970s, GAs have since been widely
applied to solve complex optimization problems, including VRPs [94]. GAs
explicitly borrow concepts from biological genetics, operating on ’chromosomes’
that represent solutions and ’genes’ that represent solution components. The
algorithm uses mechanisms such as ’crossover’ (combining genes from two parent
solutions to create offspring) and ’mutation’ (randomly altering gene values) to
explore the search space.

Several studies have been conducted on the use of GAs for VRPs. Notable
among them is the work of [150], who proposed a GA with a specific crossover
operator for VRPs with time windows. Moreover, some of the applications of
GAs to EVRPs can be found in the following studies [102, 170, 198]

1.3.3.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO), inspired by the social behavior of birds and
fish, represents a swarm intelligence metaheuristic in the realm of optimization
algorithms [103]. PSO involves a swarm of particles navigating through the
solution space. Each particle embodies a potential solution characterized by
its position and a velocity. These particles adjust their trajectories based on
individual and collective experiences, effectively sharing information to guide
their search. The standard PSO algorithm combines elements of both the particle’s
best-known position and the global best among the swarm, with a degree of

24 Chapter 1 Introduction

randomness to maintain diversity [13].
Like all other metaheuristic algorithms, PSO does not require gradient

information. Its way of working is designed to avoid being trapped in local
optima, making it highly effective for problems with complex landscapes.
Moreover, its flexibility allows for easy adaptation to different types of
optimization problems. However, PSO can face challenges, particularly in
high-dimensional spaces where it may struggle with premature convergence or
fail to explore the search space adequately. This limitation necessitates careful
tuning of parameters and potentially hybridizing PSO with other algorithms to
enhance its exploration capabilities [73].

Despite its origins in continuous optimization, PSO has been adapted for
discrete problems such as VRPs in several studies [37, 196, 197]. Typically, these
adaptations involve treating the search space as continuous and then discretizing
the solutions, translating real-value positions into integer values to obtain routes.
However, this approach only partially captures the unique aspects of the discrete
nature of VRPs. To address this gap, Gong et al. [83] developed a discrete variant
of PSO specifically for the VRP with time windows.

1.3.3.7 Ant Colony Optimization

Ant Colony Optimization (ACO) is a swarm intelligence algorithm inspired
by the short path-finding behavior of ants. When searching for food, ants
use pheromone trails to locate the short paths between food sources and
their nest. ACO algorithms use this concept of stigmergic communication
to discover efficient solutions in a decentralized approach by altering the
environment [24, 57].

In ACO, each "ant" produces a potential solution within the problem space,
marking its path with pheromone signals that guide subsequent ants towards
promising solutions. ACO learns iteratively by updating the pheromone levels
based on the solution’s quality. By adopting a probabilistic construction of
solutions, guided by both pheromone levels and heuristic information, ACO
balances the exploration of new areas and the exploitation of known paths
effectively [24].

Some of the successful implementations of ACO to EVRPs can be found in the
following papers [130, 131, 195].

Section 1.3 Solution Approaches 25

1.3.3.8 Hybrid Approaches

The development of optimization techniques has witnessed an exponential
growth over recent decades, marked by an ever-increasing importance of heuristic
and metaheuristic approaches. These methods range from single-solution-based
algorithms to Swarm Intelligence and Evolutionary Algorithms. In addition, in
the last 20 years, a notable shift has been observed towards hybrid metaheuristics,
which integrate various algorithmic strategies to exploit the synergistic benefits
of different approaches. This evolution is grounded in recognising the fact
that no single optimization strategy can universally outperform others across
all problem domains, as underscored by the No Free Lunch theorems [189].
Hybrid metaheuristics, therefore, aim to combine diverse algorithmic elements
to enhance solution quality and efficiency [153].

Hybrid metaheuristics can be broadly categorized into two types:
those involving the exchange of algorithmic components among different
metaheuristics and those integrating metaheuristics with operations research
(OR) or soft-computing and artificial intelligence (AI) techniques. The latter aims
to leverage the strengths of classical methods in conjunction with metaheuristic
strategies [26].

Within the EVRP domain [192], several studies exemplify the first category’s
approach. Schneider et al. [166] developed a hybrid metaheuristic that combines
VNS and TS algorithms with a dynamic punishment mechanism for the
EVRP-TW. Similarly, Schneider et al. [167] introduced an Adaptive VNS that
merges VNS with an Adaptive LNS for the VRP with intermediate stops. Felipe
et al. [66] solved the EVRP model with partial recharges by combining SA
and iterated local search (ILS) algorithms. Hiermann et al. [92] addressed
large-scale instances of EVRP-TW and recharging stations by combining adaptive
large-scale neighborhood search with ILS. Keskin and Çatay [104] utilized the
solution acceptance mechanism of simulated annealing within the Adaptive
LNS framework for EVRP with partial recharges. Shao et al. [170] enhanced
local search effectiveness in a hybrid GA by incorporating GA with local search
strategies, crossover, mutation, and neighborhood-based gene modifications.
Hiermann et al. [93] refined this approach with a hybrid genetic algorithm (HGA)
for routing optimization, emphasizing local search for solution intensification
and large neighborhood search as a mutation operator . Cortés-Murcia et al. [44]
employed a hybrid approach that leverages VNS and ILS techniques for solving
the EVRP-TW with partial recharges and satellite customers. Wang et al. [187]
integrated the Clarke-Wright Savings Algorithm, the Sweep Algorithm, and the
Multi-Objective PSO to solve the multi-depot green VRP.

26 Chapter 1 Introduction

Concerning the second category, combining metaheuristics and exact
algorithms—known as matheuristics—have shown promise. This approach
hybridizes exact solution algorithms with metaheuristics or employs exact
optimization solvers within metaheuristic frameworks, merging the robustness
of mathematical programming with the efficiency of metaheuristic algorithms.
Froger et al. [71] developed a two-stage matheuristic for solving the EVRP with
a nonlinear charging function and capacitated stations, starting with a pool of
routes generated by ILS and then assembling these routes using a B&B algorithm.
Çatay and Keskin [105] combined ALNS with an exact method for the EVRP-TW
and fast recharges. Bruglieri et al. [30] proposed a three-phase matheuristic for
the Time-effective EVRP with partial recharges, utilizing Mixed Integer Linear
Programs in the first two phases to generate feasible solutions, followed by a VNS
local Branching (VNSB) algorithm.

1.4 CMSA: Construct-Merge-Solve-Adapt

Despite the remarkable advancements in exact solution techniques such as DP
and mathematical programming—think of popular, high-performing tools such
as CPLEX1 and Gurobi2—solving complex combinatorial optimization problems
using pure exact techniques still may require overly long computation times,
especially when considering large-sized problem instances. In those cases in
which exact techniques and general-purpose solvers fail to deliver good enough
solutions within a reasonable computation time, approximate techniques are
used to obtain such solutions in much lower computation times. To take
advantage of exact solvers, also in the context of large-sized problem instances,
recent years have seen a sharp increase in the number of hybrid algorithms that
combine approximate techniques and exact methods and tools. As explained
in the previous section in detail, the resulting algorithms are often called hybrid

metaheuristics or matheuristics [67]. One of the recent hybrid algorithms in this
direction is “Construct, Merge, Solve & Adapt” (CMSA) [27].

At its core, the CMSA algorithm operates on the principle of reducing
the original problem instance to smaller, more manageable sub-instances that
potentially contain high-quality solutions to the original problem instance. This
reduction enables the application of exact mathematical programming solvers to
these sub-instances with a significantly reduced computational effort. In this line,
CMSA consists of four main steps. Initially, a set of solutions is probabilistically

1https://www.ibm.com/analytics/cplex-optimizer
2http://www.gurobi.com/

https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/

Section 1.4 CMSA: Construct-Merge-Solve-Adapt 27

constructed using, for example, heuristic methods. Next, components of these
solutions are then merged to form a sub-instance. In other words, the search space
is reduced before the exact solver is applied. Then, the exact solver is applied to
possibly find a best solution to the current sub-instance. Finally, the sub-instance
is adapted based on this solution, ensuring the algorithm’s iterative refinement,
leveraging feedback from the solver’s output to inform future iterations, and
progressively enhancing the solution quality. The algorithm then proceeds with
the subsequent iteration until the stopping condition is met.

The CMSA algorithm has demonstrated its versatility and effectiveness across
a multitude of combinatorial optimization problems. Notable applications
include, but are not limited to, the maximum happy vertices problem [118],
cooperative route planning for air-ground robots [10], and the strategic refueling
and maintenance planning for nuclear power plants [61]. These implementations
show CMSA’s adaptability to various contexts, from logistics and transportation
to energy management and software testing, underlining its utility in solving
real-world problems with complex constraints and requirements.

CONSTRUCT

MERGE

SOLVE

ADAPT

Fig. 1.9 CMSA Framework

Recent studies have further expanded the applicability of CMSA, addressing
challenges such as taxi sharing optimization [22] and the multidimensional
multi-way number partitioning problem [55]. These improvements show how
the CMSA algorithm continues to evolve and adjust to work well across different

28 Chapter 1 Introduction

types of problems, confirming its importance as a key method in the range of
hybrid metaheuristic strategies.

1.5 Thesis Contributions

This thesis is established at the intersection of two pivotal research areas within
the field of combinatorial optimization, explicitly focusing on the algorithmic
advancement of the solution approaches and the development of comprehensive
routing models for sustainable urban logistics. These dual research pathways
significantly contribute to both the theoretical framework and the practical
applications of the algorithms for the route optimization of logistics distribution,
particularly in contexts that prioritize environmental sustainability.

The algorithmic contributions primarily involve enhancing and applying the
CMSA algorithm, particularly through the development of a self-adaptive variant
known as Adapt-CMSA. This variant was developed in response to the recognized
challenge of parameter sensitivity in metaheuristics, where performance for
specific instances strongly depends on parameter settings. The introduction of
Adapt-CMSA aims to reduce this sensitivity, ensuring robust performance across
various problem sizes and complexities without the need for specific parameter
re-tuning. This adaptation is crucial as it allows for a more consistent application
across different scenarios, which was particularly evident in its application to the
Minimum Positive Influence Dominating Set problem, where it outperformed
the standard CMSA by adjusting its parameters dynamically, thereby enhancing
efficiency and scalability.

From the modelling and application perspective, the thesis addresses the
formulation of complex routing problems that reflect real-world scenarios in
sustainable urban logistics. It introduces models for EVRPs and 2E-EVRPs,
integrating critical constraints such as time windows, simultaneous pickups
and deliveries, and scenarios allowing partial battery charging. Additionally,
the thesis goes beyond traditional distance minimization objective functions
to the one considering energy-minimization. Primarily employing CMSA and
Adapt-CMSA, along with a range of heuristic and metaheuristic approaches like
constructive heuristics, VNS, and ACO, the thesis effectively addresses and solves
the addressed complex EVRP and 2E-EVRP variants.

In this line, the key contributions can be summarized as follows:

• The first major contribution of this work is the development of Adapt-CMSA.
This advancement was inspired by our initial application of standard CMSA
to the Minimum Positive Influence Dominating Set (MPIDS) problem—an

Section 1.5 Thesis Contributions 29

NP-hard yet comparatively simpler problem than EVRPs and 2E-EVRPs.
This initial study allowed for an in-depth analysis of CMSA’s performance
and behavior on a simpler combinatorial optimization problem. The
experimental analysis revealed that while standard CMSA outperformed
existing metaheuristics and was competitive with CPLEX for small to
medium-sized instances, its performance degraded on the largest problem
instances. In these cases, even the generated sub-instances were too large
for the ILP solver to solve efficiently within the allocated time. This
highlights a critical limitation in scalability and parameter sensitivity. This
observation led to the conceptualization of Adapt-CMSA, designed to
dynamically adjust its parameters, thus reducing the need for extensive
parameter tuning across different problem sizes. The development of
Adapt-CMSA directly addressed these scalability issues, demonstrating
enhanced performance and robustness compared to the standard version.
In the experimental study on the MPIDS problem, Adapt-CMSA not only
alleviated the limitations observed with standard CMSA but also showed
remarkable adaptability to various instance sizes without requiring specific
parameter adjustments. This feature makes it particularly suitable for more
complex routing problems such as EVRPs and 2E-EVRPs, as evidenced
by its subsequent applications across different variants of these problems
throughout the thesis.

• Our second major contribution involves the application of Adapt-CMSA to
the Electric Vehicle Routing Problem with Time Windows, Simultaneous Pickup

and Delivery, and Partial Battery Charging (EVRP-TW-SPD-PR). Two distinct
versions of Adapt-CMSA have been introduced. Both versions differ from
each other in terms of the solution and sub-instance representation and
in terms of the ILP model used for solving the sub-instances. The first
version, referred to as Adapt-Cmsa-Std, employs an assignment-type ILP
model, which represents solutions as lists of edges between nodes. This
model often struggles to provide good lower bounds [9]. The computational
experiments also showed that it may fail to find feasible solutions within
reasonable computation times, even for smaller sub-instances. In response
to these limitations, we introduced a second variant of Adapt-CMSA,
utilizing a set-covering ILP model (Adapt-Cmsa-SetCov). This model
represents solutions as sets of valid vehicle tours, aiming to select the
most promising tours from a set of feasible tours to cover all customer
demands. Furthermore, both variants made use of two construction
heuristics based on the Clarke-Wright Savings algorithm and the sequential

30 Chapter 1 Introduction

insertion algorithm to generate solutions. Comparative analyses showed
that Adapt-Cmsa-SetCov consistently outperforms Adapt-Cmsa-Std in
terms of best and average solution quality. To validate the robustness
of our approach, Adapt-Cmsa-SetCov was also benchmarked against
various VNS variants from existing literature on a reduced version of the
addressed problem, the EVRP-SPD. The results demonstrated the superior
performance of Adapt-Cmsa-SetCov across all evaluated problem instances.

• The third major contribution addresses the Two-Echelon Electric Vehicle

Routing Problem with Simultaneous Pickup and Delivery (2E-EVRP-SPD). This
problem introduces a novel challenge by integrating simultaneous pickup
and delivery operations within the two-echelon distribution framework,
a complexity yet to be fully explored in the existing literature. The
problem is formulated both by an assignment-type MILP model and a
set-covering-based MILP model. Given its complexity, traditional solvers
like CPLEX struggle even for smaller instances. To tackle this, Adapt-CMSA,
which utilizes the set-covering-based MILP model for solving sub-instances,
was employed to solve the addressed problem. Probabilistic versions of
two construction heuristics based on Clarke-Wright Savings and sequential
insertion algorithms were also implemented.

• The fourth key contribution centres on the application area of
the Two-Echelon Electric Vehicle Routing Problem with Time Windows

(2E-EVRP-TW). This contribution entails the development of two distinct
versions of VNS. A node-based three-index MILP model was initially
formulated to precisely define the problem. Despite the ability of
CPLEX to handle smaller instances, the complexity of larger scenarios
necessitated a more robust and efficient solution approach. The proposed
VNS algorithms utilize an initial solution generation method based
on the Clarke-Wright Savings Algorithm adapted to the 2E-EVRP-TW’s
problem-depended characteristics. Extensive neighbourhood search
techniques also complemented this approach. In addition to the classical
shaking and local search operators, the algorithm utilizes LNS operators
known as “destroy and repair”, resp. “removal and insertion”, to enhance
the performance of VNS. Additionally, to support the empirical evaluation,
new problem-specific benchmark sets were generated, addressing the gap
in available resources for this complex problem.

• The final significant contribution of this thesis is the development and
analysis of the Electric Vehicle Routing Problem with Road Junctions and Road

Section 1.6 The Organization of This Thesis 31

Types (EVRP-RJ-RT). This novel problem variant extends the traditional
scope of EVRPs by incorporating real-world complexities in the logistics
network, such as varied road types and additional road junctions that
impact electric vehicles’ routing and energy consumption. Recognizing
the environmental impact of road transport, this study not only enhances
the realism of routing models but also contributes directly to sustainable
urban logistics by optimizing the energy consumption of electric vehicles.

To effectively tackle this complex problem, we have formulated the
EVRP-RJ-RT as a Mixed Integer Nonlinear Programming (MINLP) model,
accommodating unique constraints that reflect the complexity of urban
traffic and road layouts. To solve the EVRP-RJ-RT, two heuristic approaches
were utilized. Initially, a modified Clarke-Wright Savings method was
employed to construct initial feasible routes efficiently. Following this, an
Ant Colony Optimization algorithm based on the MAX-MIN Ant System
was applied to refine these solutions and explore the solution space more
thoroughly. This metaheuristic approach not only demonstrated substantial
improvements in solution quality over basic heuristics but also showed
promise in handling the nonlinear aspects of the problem related to energy
consumption and route feasibility in complex urban settings. Additionally,
we have developed a set of new problem instances specifically designed to
test the efficiency of the proposed solution approaches.

1.6 The Organization of This Thesis

This thesis report is organized as follows:

• Chapter 1 provides the foundational background and sets the stage for
the ensuing discussion. It begins with a detailed overview of VRPs,
emphasizing the distinctive challenges and characteristics of EVRPs and
2E-VRPs, as well as their amalgamation into the 2E-EVRPs. The chapter then
outlines a range of existing solution approaches for VRPs, including exact
solution methodologies and various heuristic and metaheuristic strategies,
culminating in a discussion on hybrid approaches. This exposition lays the
groundwork for understanding the complexities and nuances of the VRPs
tackled in this thesis.

• Chapter 2 describes the algorithmic framework of CMSA and its
self-adaptive variant, Adapt-CMSA, contextualized by means of binary
integer linear programming (ILP) models of CO problems. This chapter

32 Chapter 1 Introduction

establishes a foundational understanding of the algorithmic strategies
employed in later chapters, providing a general description of the methods
and their application to combinatorial optimization problems modelled as
binary ILPs, a category encompassing numerous NP-hard problems.

• Chapter 3 shows the application of CMSA and Adapt-CMSA to the
Minimum Positive Influence Dominating Set (MPIDS) problem, offering
insights into the comparative advantages of Adapt-CMSA over standard
CMSA. This chapter also reflects on the broader applicability of
Adapt-CMSA in various problem contexts, supported by a detailed
experimental analysis.

• Chapter 4 focuses on applying Adapt-CMSA to the Electric Vehicle
Routing Problem with Time Windows, Simultaneous Pickup and Delivery,
and Partial Battery Charging (EVRP-TW-SPD-PR), a complex problem
variant incorporating real-world constraints. The chapter discusses the
development of two Adapt-CMSA variants, their performance comparison,
and the challenges of solving such intricate problems with conventional
methods.

• Chapter 5 extends the application of Adapt-CMSA to the Two-Echelon
Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery
(2E-EVRP-SPD), a problem characterized by its multi-tier distribution
network. The chapter provides a comprehensive analysis of Adapt-CMSA’s
effectiveness in this context, juxtaposing it against both exact and heuristic
solution methods.

• Chapter 6 explores the application of a VNS algorithm to the Two-Echelon
Electric Vehicle Routing Problem with Time Windows (2E-EVRP-TW),
presenting an innovative approach to a complex routing problem. The
chapter offers insights into the algorithm’s effectiveness and its comparative
performance against other solution methods.

• Chapter 7 introduces an enhanced EVRP model (EVRP-RJ-RT),
incorporating real-world complexities like road junctions and road types.
The chapter details the application of construction heuristics and ACO to
tackle this advanced model, highlighting the efficacy of these methods in
managing the added layers of complexity.

• Chapter 8 concludes the thesis with a comprehensive summary of the
findings and contributions, followed by an outlook section that sketches

Section 1.7 Publications Derived from this Thesis 33

the potential future directions and applications of the research presented.
This chapter provides a holistic view of the thesis, tying together the various
strands of research and suggesting pathways for further exploration in the
field.

1.7 Publications Derived from this Thesis

Most of the results presented in this thesis have already been published, as
indicated in the list below.

1. Mehmet Anıl Akbay and Christian Blum. Application of CMSA to the
Minimum Positive Influence Dominating Set Problem. In Proceedings of the

23rd International Conference of the Catalan Association for Artificial Intelligence,

CCIA-2021, IOS Press, Artificial Intelligence Research and Development,
pages 17–26, 2021. (https://doi.org/10.3233/FAIA210112).

2. Mehmet Anıl Akbay, Albert López Serrano, and Christian Blum. A
Self-Adaptive Variant of CMSA: Application to the Minimum Positive
Influence Dominating Set Problem. In International Journal of Computational

Intelligence Systems, vol 15, number 1, pages 1–13, 2022. (https://doi.or
g/10.1007/s44196-022-00098-1). [Impact Factor 2022: 2.9 (JCR)]

3. Mehmet Anıl Akbay, Can B. Kalayci, Christian Blum, and Olcay Polat.
Variable Neighborhood Search for the Two-Echelon Electric Vehicle Routing
Problem with Time Windows. Applied Sciences, vol 12, number 3, pages 1014,
2022. (https://doi.org/10.3390/app12031014). [Impact Factor 2022: 2.7
(JCR)]

4. Mehmet Anıl Akbay, Can B. Kalayci, Christian Blum. Application of CMSA
to the Electric Vehicle Routing Problem with Time Windows, Simultaneous
Pickup and Deliveries, and Partial Vehicle Charging. In Proceedings of

the Metaheuristics International Conference, Lecture Notes in Computer Science,
pages 1–16, 2022. (https://doi.org/10.1007/978-3-031-26504-4_1).

5. Mehmet Anıl Akbay, Can B. Kalayci, Christian Blum. Application
of Adapt-CMSA to the Two-Echelon Electric Vehicle Routing Problem
with Simultaneous Pickup and Deliveries. Proceedings of EvoCOP 2023

– 23rd European Conference on Evolutionary Computation in Combinatorial

Optimization (Part of EvoSTAR), Lecture Notes in Computer Science, pages
16-33, 2023. (https://doi.org/10.1007/978-3-031-30035-6_2). [CORE
B conference]

https://doi.org/10.3233/FAIA210112
https://doi.org/10.1007/s44196-022-00098-1
https://doi.org/10.1007/s44196-022-00098-1
https://doi.org/10.3390/app12031014
https://doi.org/10.1007/978-3-031-26504-4_1
https://doi.org/10.1007/978-3-031-30035-6_2

34 Chapter 1 Introduction

6. Mehmet Anıl Akbay, Can B. Kalayci, Christian Blum. Application of
Adapt-CMSA to the Electric Vehicle Routing Problem with Simultaneous
Pickup and Deliveries. Extended Abstract of EUROCAST 2024 – 19th

International Conference on Computer Aided Systems Theory, pages 16-18, 2024.
[Conference website: https://eurocast2024.fulp.ulpgc.es/]

7. Mehmet Anıl Akbay, Can B. Kalayci, Christian Blum. Application of
Adapt-CMSA to the Electric Vehicle Routing Problem with Simultaneous
Pickup and Deliveries. Selected to be included in Proceedings of the 19th

International Conference on Computer Aided Systems Theory, Lecture Notes in

Computer Science. [Conference website: https://eurocast2024.fulp.ul
pgc.es/]

8. Mehmet Anıl Akbay, Christian Blum, Michella Saliba. The Electric Vehicle
Problem with Road Junctions and Road Types: An Ant Colony Optimization
Approach Proceedings of GECCO 2024 – The Genetic and Evolutionary

Computation Conference. (https://doi.org/10.1145/3638529.3653997).
[CORE A conference]

9. Mehmet Anıl Akbay and Christian Blum. Two Examples for the Usefulness
of STNWeb for Analyzing Optimization Algorithm Behavior. In Proceedings

of the Metaheuristics International Conference, Lecture Notes in Computer Science,
2024. (https://doi.org/10.1007/978-3-031-62922-8_25).

10. (2nd. Reviewing Round) Mehmet Anıl Akbay, Christian Blum, Can B.
Kalayci. CMSA Based on Set Covering Models for Packing and Routing
Problem. Submitted to Annals of Operations Research. [Impact Factor 2022:
4.8 (JCR)]

https://eurocast2024.fulp.ulpgc.es/
https://eurocast2024.fulp.ulpgc.es/
https://eurocast2024.fulp.ulpgc.es/
https://doi.org/10.1145/3638529.3653997
https://doi.org/10.1007/978-3-031-62922-8_25

35

CHAPTER 2

CMSA: GENERAL DESCRIPTION OF THE ALGORITHMIC

FRAMEWORK

2.1 Introduction

This chapter provides a general description of the algorithmic framework of
CMSA and the self-adaptive variant of CMSA developed in this thesis, henceforth
labeled Adapt-CMSA. The description in this chapter is provided in the context
of CO problems that can be modeled in terms of binary ILPs. For the description
of both CMSA variants, we assume to be tackling a CO problem which can be
modeled in terms of an ILP where f() is the objective function to be minimized,
and xi ∈ {0, 1} (i = 1, . . . , n) is the set of binary decision variables used to
model the objective function and the constraints of the problem. Note that many
NP-hard CO problems fall into this category of problems. Examples include the
well-known traveling salesman problem (TSP) and the quadratic assignment
problem (QAP), just to name two emblematic problems.

2.2 CMSA: The Baseline Algorithm

In the general case as described above, we introduce a solution component
c0i and a solution component c1i for each binary variable xi, i = 1, . . . , n.
Hereby, c0i corresponds to xi = 0, while c1i corresponds to xi = 1. Moreover,
C = {c01, . . . , c0n, c11, . . . , c1n} is the complete set of 2n solution components. Any
candidate solution S is a subset of C with |s| = n. In addition, it is required that
S contains exactly one of the two components c0i and c1i for each i = 1, . . . , n.
Finally, a candidate solution S is a valid solution if it fulfils all the constraints of
the tackled problem.

2.2.1 Standard CMSA

36 Chapter 2 General Description

Algorithm 2.1 Pseudo-code of standard CMSA
1: input 1: input graph G and the set of solution components C
2: input 2: values for CMSA parameters na, agemax, and tILP
3: input 3: values for solution construction parameters drate, lsize
4: Sbsf := GenerateGreedySolution(C)
5: C ′ := Sbsf

6: age[c] := 0 for all c ∈ C
7: while CPU time limit not reached do

8: for i := 1, . . . , na do

9: S := ProbabilisticSolutionConstruction(C, lsize, drate)
10: for all c ∈ S and c /∈ C ′

do

11: age[c] := 0
12: C ′ := C ′ ∪ {c}
13: end for

14: end for

15: S ′
opt := SolveSubinstance(C ′, tILP)

16: if f(S ′
opt) < f(Sbsf) then Sbsf := S ′

opt end if

17: Adapt(C ′, S ′
opt, agemax)

18: end while

19: output: Sbsf

Algorithm 2.1 provides the pseudo-code of a standard CMSA for binary
optimization problems. Note that all functions in the pseudo-code are indicated
with a special font as, for example, in GenerateGreedySolution(C). This function
is used to initialize the best-so-far solution Sbsf with the solution generated by
a greedy algorithm. This is done at the start of the algorithm. Moreover, the
sub-instance C ′, which is solved by an ILP solver at each iteration, is initialized
to Sbsf . Note that, alternatively, Sbsf might be initialized to null and C ′ to the
empty set. Each solution component c ∈ C maintains a so-called age value age[c].
These age values are all initialized to zero. Note that the purpose of the age
value of a solution component c is to count the number of consecutive CMSA
iterations for which c forms part ofC ′, without being included in the ILP-solution
to the reduced problem instance generated on the basis of C ′. At each iteration,
CMSA iterates through four algorithmic steps. In the construct step, na valid
solutions to the tackled problem are probabilistically constructed in function
ProbabilisticSolutionConstruction(C, lsize, drate). In the merge step, those solution
components that (1) are found in at least one of the constructed solutions from
the construct step, and (2) do currently not form part of C ′, are added to C ′ and
their age value is set to zero. Next, the solve step first generates a reduced problem
instance on the basis of C ′, which is done by adding—for all i = 1, . . . , n—the
following constraints to the original ILP model of the tackled problem:

Section 2.3 Self-Adaptive CMSA 37

1. If c0i ∈ C ′ and c1i /∈ C ′: add constraint xi = 0 to the ILP model

2. If c0i /∈ C ′ and c1i ∈ C ′: add constraint xi = 1 to the ILP model

Note that, the more of these constraints are added to the original ILP, the smaller
is the search space of the resulting sub-instance. Afterwards the extended ILP
is solved in function SolveSubinstance(C ′, tILP), for example, by the application
of an ILP solver with a CPU time limit of tILP seconds. Note that a variable xi
is only free in the extended ILP, if both solution components c0i and c1i form
part of C ′. Note also that the output of function SolveSubinstance(C ′, tILP)
is—due to the computation time limit—not necessarily an optimal solution to
the extended ILP. In those cases in which f(S ′

opt) < f(Sbsf), the output of function
SolveSubinstance(C ′, tILP) is set as Sbsf . Finally, in the adapt step, sub-instance C ′

is adapted in function Adapt(C ′, S ′
opt, agemax) depending both on S ′

opt and on the
age values of the solution components. This is done by increasing the age values
of all components in C ′ \ S ′

opt by one, and by re-initialising the age values of all
components in S ′

opt to zero. The final action in the adapt step consists in removing
all those components fromC ′ whose age value has reached the maximum allowed
age of agemax. This is done in order to prevent components that never appear in
S ′
opt to slow down the ILP solver in subsequent iterations. Figure 2.1 graphically

summarizes the algorithm structure and components.

2.3 Self-Adaptive CMSA

Overly high sensitivity to changes in parameter values is a recognized problem
in research on metaheuristics [176]. A metaheuristic is generally said to be
parameter sensitive if (1) the algorithm performance for specific instances or
instance groups strongly depends on the parameter values and if (2) the required
parameter values for different instances or instance groups are rather different
from each other. Unfortunately, such high sensitivity to parameter values
was observed in some applications of CMSA in the literature, including the
preliminary application to the NP-hard CO problem known as the minimum

positive influence dominating set (MPIDS) problem [2]. Therefore, a self-adaptive
variant of CMSA, named Adapt-CMSA, is developed with the aim of obtaining
an algorithm less sensitive to parameter values. The obtained results from
the experiments conducted in Chapter 3 demonstrate that Adapt-CMSA has
several advantages over standard CMSA in the context of the MPIDS problem.
Firstly, Adapt-CMSA does not require specific parameter tuning for subsets of the
considered benchmark set. After a single parameter tuning session, Adapt-CMSA

38 Chapter 2 General Description

F
i
g
.
2
.
1

G
ra

ph
ic

al
ab

st
ra

ct
of

C
M

SA
fo

rb
in

ar
y

op
tim

iz
at

io
n

pr
ob

le
m

s.
In

iti
al

ly
,i

n
th

e
"C

on
st

ru
ct

"
ph

as
e,

th
re

e
ex

am
pl

e
so

lu
tio

ns
(S

1
,S

2
,S

3
)a

re
ge

ne
ra

te
d

pr
ob

ab
ili

st
ic

al
ly

.
Th

es
e

so
lu

tio
ns

ar
e

co
m

bi
ne

d
in

to
a

su
b-

in
st

an
ce

in
th

e
"M

er
ge

"p
ha

se
,b

as
ed

on
tw

o
co

m
po

ne
nt

s
pe

r
va

ria
bl

e
(c

0 i
,c

1 i
)w

ith
so

-c
al

le
d

ag
e

va
lu

es
.

N
ot

e
th

at
so

lu
tio

n
co

m
po

ne
nt

s
in

cl
ud

ed
in

th
e

su
b-

in
st

an
ce

ar
e

in
di

ca
te

d
by

✓
,w

hi
le

ex
cl

ud
ed

co
m

po
ne

nt
sa

re
m

ar
ke

d
w

ith
✗

.T
he

"S
ol

ve
"p

ha
se

co
ns

tr
uc

ts
an

Ex
te

nd
ed

IL
P

m
od

el
ba

se
d

on
th

es
ol

ut
io

n
co

m
po

ne
nt

si
n

th
es

ub
-in

st
an

ce
(v

ar
ia

bl
es

co
rr

es
po

nd
in

g
to

th
es

ol
ut

io
n

co
m

po
ne

nt
sm

ar
ke

d
re

d
ar

e
fix

ed
to

va
lu

e
ze

ro
w

hi
le

th
e

on
es

m
ar

ke
d

w
ith

gr
ee

n
ar

e
fix

ed
to

va
lu

e
on

e)
.S

′ o
p
t

is
th

en
de

te
rm

in
ed

us
in

g
an

IL
P

so
lv

er
w

ith
in

a
co

m
pu

ta
tio

na
lt

im
e

lim
it.

In
th

e
fin

al
"A

da
pt

"p
ha

se
,a

ge
va

lu
es

of
so

lu
tio

n
co

m
po

ne
nt

si
n
C

′ \
S
′ o
p
t

ar
e

in
cr

ea
se

d,
w

hi
le

th
os

e
in

S
′ o
p
t

re
se

tt
o

ze
ro

.C
om

po
ne

nt
sr

ea
ch

in
g

ag
e m

a
x

ar
e

re
m

ov
ed

fr
om

th
e

su
b-

in
st

an
ce

,s
ee

lin
es

co
lo

re
d

re
d.

Section 2.3 Self-Adaptive CMSA 39

Algorithm 2.2 Pseudo-code of self-adaptive CMSA: Adapt-CMSA
1: input 1: input graph G and the set of solution components C
2: input 2: values for CMSA parameter tprop, tILP
3: input 3: values for solution construction parameters αLB, αUB, αred

4: Sbsf := GenerateGreedySolution(C)
5: na := 1; αbsf := αUB; C ′ := Sbsf

6: while CPU time limit not reached do

7: for i := 1, . . . , na do

8: s := ProbabilisticSolutionConstruction(C, Sbsf , αbsf)
9: C ′ := C ′ ∪ s

10: end for

11: (S ′
opt, tsolve) := SolveSubinstance(C ′, tILP) {This function returns two objects:

(1) the obtained solution (S ′
opt), (2) the required computation time (tsolve)}

12: if tsolve < tprop · tILP and αbsf > αLB
then αbsf := αbsf − αred end if

13: if f(S ′
opt) < f(Sbsf) then

14: Sbsf := S ′
opt

15: na := 1
16: else

17: if f(S ′
opt) > f(Sbsf) then

18: if na = 1 then αbsf := min{αbsf +
αred

10
, αUB} else na = 1 end if

19: else

20: na := na + 1
21: end if

22: end if

23: C ′ := Sbsf

24: end while

25: output: Sbsf

performs well across the entire benchmark set, containing instances of varying
sizes. Secondly, Adapt-CMSA significantly outperforms standard CMSA in the
context of large networks, where even specialized tuning does not enable CMSA
to compete with Adapt-CMSA. We expect a similar advantage of Adapt-CMSA
over standard CMSA in most applications where standard CMSA shows high
parameter sensitivity.

The pseudo-code of self-adaptive CMSA (Adapt-CMSA) is provided in
Algorithm 2.2. The first noticeable difference to standard CMSA is the absence of
the age values. This is because Adapt-CMSA works with a fixed maximum
age of one, that is, after each iteration all solution components apart from
those that form part of the best-so-far solution Sbsf are removed from the
sub-instance C ′ (see line 23). Another difference can bee seen in function
ProbabilisticSolutionConstruction(C, Sbsf , αbsf) for the probabilistic generation of
solutions at each algorithm iteration (see line 8). Note that this latter function
receives, apart from the set of all possible solution components (C), the currently

40 Chapter 2 General Description

best-so-far solution Sbsf and a parameter αbsf (where 0 ≤ αbsf < 1) as input.
This parameter biases the construction of new solutions towards the best-so-far
solution Sbsf . More specifically, the higher the value of αbsf , the higher will be the
similarity of the solutions constructed in ProbabilisticSolutionConstruction(C, Sbsf ,
αbsf) to Sbsf .

The dynamic change of the value of αbsf is one of the aspects that is handled
in a self-adaptive way in Adapt-CMSA. First of all, Adapt-CMSA requires a lower
bound αLB and an upper bound αUB for the value of αbsf as input. Moreover, the
step size αred for the reduction of αbsf must also be given as input. Adapt-CMSA
starts with setting αbsf to the highest possible value αUB; see line 5.1 In case
the resulting ILP can be solved in a computation time tsolve which is below a
proportion tprop of the maximally possible computation time tILP, the value of αbsf

is reduced by αred; see line 12. The rationale behind this step is the following one.
In case the resulting ILP can be solved easily, the search space of the ILP is too small
due to a rather low number of free variables. In order to have more free variables
in the ILP, the solutions constructed in ProbabilisticSolutionConstruction(C, Sbsf ,
αbsf) should be more different to Sbsf , which can be achieved by reducing the
value of αbsf .

The second aspect, which is handled in a self-adaptive way in Adapt-CMSA,
is the number of solution constructions per iteration (na); see lines 13-22. The
algorithm starts with a value ofna = 1; see line 5. Moreover, in case the solution of
the reduced ILP (S ′

opt) improves over the best-so-far solution Sbsf , na is set back to
one; see line 15. If, however, the solution of the reduced ILP (S ′

opt) is strictly worse
than the best-so-far solution Sbsf , the corresponding sub-instance was clearly too
large and/or complex in order to be solved by the ILP solver within tILP seconds.
In this case, if na = 1 the value of αbsf is slightly increased (by αred

10
); resp. na

is set back to one, otherwise. In the remaining case (f(S ′
opt) = f(Sbsf)), na is

incremented by one; see line 20. This is done because the sub-instance did not
contain a better solution than Sbsf . At the same time, the sub-instance was solved
within the allowed computation time of tILP seconds, which means that the size
of the sub-instance should be increased.

Finally, note that functions SolveSubinstance(C ′, tILP) are exactly the same in
both version of CMSA (standard CMSA and Adapt-CMSA).

The Figure 2.2 graphically summarizes the algorithm structure and
components of the Adapt-CMSA and highlights its difference from the standard
CMSA.

1Remember that this means that solutions constructed in this way will be more similar to Sbsf

than with lower values of αbsf .

Section 2.3 Self-Adaptive CMSA 41

F
i
g
.
2
.
2

G
ra

ph
ic

al
ab

st
ra

ct
of

A
da

pt
-C

M
SA

fo
rb

in
ar

y
op

tim
iz

at
io

n
pr

ob
le

m
s.

Th
is

di
ag

ra
m

hi
gh

lig
ht

s
th

e
ad

ap
tiv

e
so

lu
tio

n
co

ns
tr

uc
tio

n,
w

he
re

va
ria

bl
e

al
go

rit
hm

pa
ra

m
et

er
s

ad
ju

st
dy

na
m

ic
al

ly
ba

se
d

on
pr

ob
le

m
co

m
pl

ex
ity

an
d

pe
rf

or
m

an
ce

of
th

e
IL

P
so

lv
er

.
In

th
e

"C
on

st
ru

ct
"p

ha
se

,n
a

so
lu

tio
ns

(S
1
,S

2
,S

3
,.
..
,S

n
a
)a

re
ge

ne
ra

te
d

pr
ob

ab
ili

st
ic

al
ly

,i
nfl

ue
nc

ed
by

th
e

pa
ra

m
et

er
α
b
sf

to
bi

as
so

lu
tio

ns
to

w
ar

ds
th

e
be

st
-s

o-
fa

rs
ol

ut
io

n
S
b
sf

.T
he

pr
oc

es
so

fc
re

at
in

g
th

e
su

b-
in

st
an

ce
,e

xt
en

di
ng

th
eI

LP
m

od
el

,a
nd

so
lv

in
g

it
al

ig
ns

w
ith

th
eS

ta
nd

ar
d

C
M

SA
ap

pr
oa

ch
.A

fte
rd

er
iv

in
g
S
′ o
p
t,

th
ep

ar
am

et
er

s
α
b
sf

an
d
n
a

ar
e

up
da

te
d

ba
se

d
on

th
e

so
lv

er
’s

ou
tp

ut
.T

he
"A

da
pt

"p
ha

se
re

m
ov

es
so

lu
tio

n
co

m
po

ne
nt

se
xc

ep
tf

or
th

os
e

in
S
b
sf

.

42 Chapter 2 General Description

43

CHAPTER 3

APPLICATION of ADAPT-CMSA TO THE MINIMUM

POSITIVE INFLUENCE DOMINATING SET PROBLEM

3.1 Introduction

This chapter demonstrates the application of CMSA and Adapt-CMSA to the
so-called Minimum Positive Influence Dominating Set (MPIDS) problem [182, 183].
The content shown in this chapter was also presented in our papers [2, 4] that
were published in the proceedings of CCIA 2021: The International Conference

of the Catalan Association for Artificial Intelligence (https://doi.org/10.323
3/FAIA210112) and in the International Journal of Computational Intelligence
Systems (https://doi.org/10.1007/s44196-022-00098-1). The obtained
results show that Adapt-CMSA has several advantages over standard CMSA in
the context of the MPIDS problem. First, Adapt-CMSA does not require specific
parameter tuning for subsets of the considered benchmark set. After applying
parameter tuning once, Adapt-CMSA works very well for the whole benchmark
set containing instances of very different sizes. Second, Adapt-CMSA clearly
outperforms standard CMSA in the context of large networks for which even
a specialized tuning does not enable CMSA to compete with Adapt-CMSA. We
would expect a similar advantage of Adapt-CMSA over standard CMSA in most
applications in which standard CMSA shows a high parameter sensitivity.

3.2 The Minimum Positive Influence Dominating Set Problem

The MPIDS problem is an NP-hard combinatorial optimization problem with
applications in the context of social networks. Each vertex in such a network
represents an individual—that is, a person—and edges indicate relationships,
respectively interactions, between those individuals. The background of the
MPIDS problem is that information propagated in social networks can have a
significant, either positive or negative, impact on the respective parts of society.
From social norms theory, it is known that the behavior of individuals can be

https://doi.org/10.3233/FAIA210112
https://doi.org/10.3233/FAIA210112
https://doi.org/10.1007/s44196-022-00098-1

44 Chapter 3 Application to the MPIDS Problem

affected by the perception of others’ thoughts and behaviors [69]. This makes
it possible to exploit the relationships among people in social networks in
order to obtain great benefits for both the economy and society. The aim of the
MPIDS problem is to identify a small subset of influential individuals (or key
individuals) in order to accelerate the spread of positive influence in a social
network [86, 123]. Alternative applications of the MPIDS problem can be found
in e-learning software [184], online business [151], drinking, smoking, and other
drug-related problems [182].

From an algorithmic point of view, the efforts of the research community
initially focused on the development of well-working greedy heuristics [28,
38, 64, 144, 152, 183]. In fact, until 2021, the best available approach was
a greedy method from [28]. The development of successful metaheuristic
approaches seemed much harder. This is shown by the results of the first two
metaheuristics—an ILP-based memetic algorithm [119] and an algorithm based
on swarm intelligence [120]—whose results are inferior to the greedy approach
from [28]. The first metaheuristic that was able to improve over [28] is the iterated
carousel approach from [169]. Finally, the currently best metaheuristic is the
following one: a negative learning ant colony optimization approach from [168].

3.2.1 ILP Model for the MPIDS

In technical terms, the MPIDS problem can be described as follows. Given a
simple,1 connected, undirected graph G = (V,E), the problem requires finding
a subset s∗ of V of minimum cardinality such that the following two conditions
are fulfilled:

1. s∗ is a dominating set ofG. Remember that a subset s ⊆ V of the vertices of
an undirected graph G is called a dominating set, if and only if each vertex
v ∈ V forms either part of s or has at least one neighbor that forms part of s.

2. At least half of the neighbors of each vertex v ∈ V form part of s∗.

Note that the MPIDS problem can easily be stated in terms of an ILP. The
1A simple graph does neither contain self-loops nor parallel edges

Section 3.3 Application to the MPIDS problem 45

v1

v2 v3

v4

v5

v6

v7 v8v9

v10

(a) A simple connected
undirected graph

v1

v2 v3

v4

v5

v6

v7 v8v9

v10

(b) A dominating set

v1

v2 v3

v4

v5

v6

v7 v8v9

v10

(c) A positive influence
dominating set

Fig. 3.1 An illustrative example of the MPIDS problem. Red vertices form part of
the solution.

model is based on a binary variable xi for each vertex vi ∈ V .

Minimize

n∑
i=1

xi (3.1)

Subject to

∑
vj∈N(vi)

xj ≥
⌈
deg(vi)

2

⌉
∀vi ∈ V (3.2)

xi ∈ {0, 1} (3.3)

Hereby, N(vi) is the neighborhood of vi in input graph G, and deg(vi) is the
degree of vertex vi, where deg(vi) := |N(vi)|. Equation (3.2) ensures that a feasible
solution contains at least half of the neighbors of each vertex vi ∈ V .

In the context of the CMSA algorithms outlined in the next section, a valid
solution s ∈ V is represented as a set S of solution components that contains
component c1i for each vi ∈ s and component c0i for each vi ∈ V \ s. Moreover, the
objective function value of a CMSA-solution S is defined via its corresponding
set solution s, that is, f(S) := |s|. Note that s := V is a trivial solution to the
problem.

3.3 Application to the MPIDS problem

This section outlines the application of CMSA and Adapt-CMSA to the MPIDS
problem by highlighting the core differences of both approaches.

First of all, the only problem-dependent part of both standard
CMSA and Adapt-CMSA is the construction of feasible solutions.

46 Chapter 3 Application to the MPIDS Problem

At each iteration of the algorithm, solutions are constructed in
ProbabilisticSolutionConstruction(C, lsize, drate) in the case of CMSA, respectively in
function ProbabilisticSolutionConstruction(C, Sbsf , αbsf) in the case of Adapt-CMSA.
Both functions make use of the solution construction mechanism of the greedy
procedure from [28]. They only differ in the way in which this procedure is
made probabilistic. For the following discussion, remember that a vertex v ∈ V
is called covered with respect to a (partial) solution s if and only if at least half of
its neighbors form part of s. In the opposite case, v is labeled as uncovered.

The solution construction mechanism utilized by both functions is shown in
Algorithm 3.1. First, each solution s to be constructed is initialized by a set
spar ⊂ V of nodes that must form part of an optimal solution; see line 3. Note
that spar is obtained by the application of a pre-processing procedure described
in [28]. Then, at each step of the solution construction mechanism, the following
is done. First, the set of all uncovered vertices with respect to (partial) solution s
is determined; see line 5. This set is labeled U . Second, a node v ∈ U such that
deg(v) ≤ deg(v′) for all v′ ∈ U is selected (line 6). Third, nodes from N(v) \ s are
iteratively added to s while |N(v) ∩ s| <

⌈
deg(v)

2

⌉
; see lines 7-10. Hereby, exactly

one vertex from N(v) \ s is selected by function ChooseFrom(N(v) \ s) at each
entry of the while loop.

In standard CMSA, function ChooseFrom(N(v)\ s) is implemented as follows.
At first, a candidate list L is created. This list includes all vertices v′ ∈ N(v) \ s.
Each vertex v′ in L is characterised by its cover degree cov_deg(v′), which is the
number of uncovered adjacent vertices of v′. Note that vertices in L are sorted
according to a non-increasing cover degree value. Then, a uniform random
number r is generated from the interval [0, 1]. If r ≤ drate (where drate is the
so-called determinism rate) the vertex with the highest cover degree is selected
and added to s. Otherwise, a vertex is selected randomly from the restricted
candidate list which contains the first lsize vertices of L. Hereby, lsize is the size of
the restricted candidate list. All vertices in the restricted candidate list have an
equal probability 1

lsize
of being selected.

In contrast, in Adapt-CMSA, function ChooseFrom(N(v) \ s) is implemented
in the following way. First, each vertex vi ∈ N(v)\s such that c1i ∈ Sbsf—that is, vi
forms part of the best-so-far solution—obtains a value q(vi) := (cov_deg(vi) + 1) ·
αbsf , while all other vertices vj ∈ N(v) \ s receive a value q(vj) := (cov_deg(vj) +
1) · (1− αbsf). A vertex v̂ is then chosen from N(v) \ s according to the following
probabilities:

p(v′) :=
q(v′)∑

v′′∈N(v)\s q(v
′′)
∀ v′ ∈ N(v) \ s (3.4)

Section 3.4 Experimental Evaluation 47

Algorithm 3.1 Solution construction procedure (CMSA and Adapt-CMSA)
1: CMSA input: solution construction parameters drate, lsize
2: Adapt-CMSA input: solution construction parameter αbsf

3: s := spar {spar ⊂ V is obtained from a pre-processing procedure}
4: while s is not a valid solution do

5: Let U ⊆ V be the set of uncovered vertices
6: Choose v ∈ U such that deg(v) ≤ deg(v′) for all v′ ∈ U
7: while |N(v) ∩ s| <

⌈
deg(v)

2

⌉
do

8: v̂ := ChooseFrom(N(v) \ s)
9: s := s ∪ {v̂}

10: end while

11: end while

12: output: CMSA-solution S corresponding to the constructed solution s

In other words, the higher the value of parameter αbsf ∈ [0, 1], the stronger the
bias towards the best-so-far solution Sbsf . This bias does not exist in standard
CMSA.

Figures 3.2 and 3.3 illustrate the general framework of both standard CMSA
and Adapt-CMSA, respectively.

3.4 Experimental Evaluation

All experiments reported in the following were performed on a cluster of
machines with Intel® Xeon® 5670 CPUs with 12 cores of 2.933 GHz and a
minimum of 32 GB RAM. Note that CPLEX version 20.1 was used in one-threaded
mode both in a standalone manner and within CMSA and Adapt-CMSA for
solving the respective sub-instances. Two sets of experiments were performed.
A comprehensive experimentation in the context of a new set of 800 scale-free
networks is described in Section 3.4.1. The second set of experiments makes use
of small, medium, and large problem instances that were already used in the
related literature; see Section 3.4.2.

3.4.1 Experiments regarding scale-free networks

In order to be able to compare CMSA and Adapt-CMSA on a controlled set
of benchmark instances with different features, we generated the following
set of 800 scale-free networks by using the igraph software package [49]. An
undirected network is said to be scale-free—or, equivalently, to follow a power
law distribution—if the statistical distribution of the degrees of its nodes is as

48 Chapter 3 Application to the MPIDS Problem

F
i
g
.
3
.
2

G
ra

ph
ic

al
ab

st
ra

ct
of

C
M

SA
fo

rM
PI

D
S

In
th

e
co

ns
tr

uc
ts

te
p,

th
re

e
ex

am
pl

e
so

lu
tio

ns
ar

e
ge

ne
ra

te
d

pr
ob

ab
ili

st
ic

al
ly

fo
rt

he
M

PI
D

S
pr

ob
le

m
,w

ith
ea

ch
no

de
in

cl
ud

ed
in

th
e

re
sp

ec
tiv

e
so

lu
tio

n
co

lo
re

d
or

an
ge

.I
n

th
em

er
ge

ph
as

e,
a

su
b-

in
st

an
ce

is
cr

ea
te

d
by

co
m

bi
ni

ng
th

es
es

ol
ut

io
ns

,c
at

eg
or

iz
in

g
no

de
si

nt
o

th
re

eg
ro

up
sb

as
ed

on
tw

o
so

lu
tio

n
co

m
po

ne
nt

sp
er

no
de

(c
0 i
,c

1 i
)w

ith
co

rr
es

po
nd

in
g

ag
e

va
lu

es
.N

ot
e

th
at

so
lu

tio
n

co
m

po
ne

nt
si

nc
lu

de
d

in
th

e
su

b-
in

st
an

ce
ar

e
in

di
ca

te
d

by
✓

,w
hi

le
ex

cl
ud

ed
co

m
po

ne
nt

sa
re

m
ar

ke
d

w
ith

✗
.C

on
se

qu
en

tly
,e

ac
h

no
de

is
ca

te
go

riz
ed

in
to

on
e

of
th

re
e

gr
ou

ps
:n

od
es

al
w

ay
s

in
cl

ud
ed

in
th

os
e

so
lu

tio
ns

cr
ea

te
d

in
th

e
co

ns
tr

uc
tp

ha
se

,n
od

es
ne

ve
r

in
cl

ud
ed

in
th

es
e

so
lu

tio
ns

,a
nd

th
e

re
st

.
Th

is
ca

te
go

riz
at

io
n

re
su

lts
in

fo
rm

ul
at

in
g

an
ex

te
nd

ed
IL

P
m

od
el

by
fix

in
g

th
e

va
ria

bl
e

va
lu

es
to

1
fo

r
th

e
fir

st
gr

ou
p

(m
ar

ke
d

in
gr

ee
n)

an
d

to
0

fo
r

th
e

se
co

nd
gr

ou
p

(m
ar

ke
d

in
re

d)
in

th
e

so
lv

e
ph

as
e.

Th
e

ex
te

nd
ed

IL
P

m
od

el
is

th
en

so
lv

ed
w

ith
in

a
co

m
pu

ta
tio

na
lt

im
e

lim
it

to
de

te
rm

in
e
S
′ o
p
t.

Fi
na

lly
,i

n
th

e
"A

da
pt

"p
ha

se
,t

he
ag

e
va

lu
es

of
so

lu
tio

n
co

m
po

ne
nt

s
in

C
′
\
S
′ o
p
t

ar
e

in
cr

ea
se

d
(h

ig
hl

ig
ht

ed
in

or
an

ge
),

w
hi

le
th

os
e

in
S
′ o
p
t

ar
e

re
se

tt
o

ze
ro

.
C

om
po

ne
nt

sr
ea

ch
in

g
ag

e m
a
x
,s

et
to

5
in

th
is

ex
am

pl
e,

ar
e

su
bs

eq
ue

nt
ly

re
m

ov
ed

fr
om

th
e

su
b-

in
st

an
ce

(c
ol

or
ed

re
d)

.

Section 3.4 Experimental Evaluation 49

F
i
g
.
3
.
3

G
ra

ph
ic

al
ab

st
ra

ct
of

A
da

pt
-C

M
SA

fo
rM

PI
D

S
Si

m
ila

r
to

th
e

St
an

da
rd

C
M

SA
,t

hr
ee

ex
am

pl
e

so
lu

tio
ns

ar
e

ge
ne

ra
te

d
pr

ob
ab

ili
st

ic
al

ly
in

th
e

"C
on

st
ru

ct
"p

ha
se

,w
ith

se
le

ct
ed

no
de

s
in

ea
ch

so
lu

tio
n

hi
gh

lig
ht

ed
in

or
an

ge
.I

n
th

es
ub

se
qu

en
t"

M
er

ge
"p

ha
se

,s
ol

ut
io

n
co

m
po

ne
nt

sf
ro

m
th

es
ee

xa
m

pl
es

ar
ec

om
bi

ne
d

to
fo

rm
as

ub
-in

st
an

ce
.

N
ot

e
th

at
no

ag
e

va
lu

e
is

re
qu

ire
d

si
nc

e
ag

e m
a
x

is
se

tt
o

1
fo

rA
da

pt
-C

M
SA

.T
he

cr
ea

tio
n

of
th

e
ex

te
nd

ed
IL

P
m

od
el

fo
llo

w
st

he
sa

m
e

pr
in

ci
pl

e
as

in
st

an
da

rd
C

M
SA

:n
od

es
no

ti
nc

lu
de

d
in

an
y

so
lu

tio
n

du
rin

g
th

e
"C

on
st

ru
ct

"p
ha

se
(m

ar
ke

d
in

re
d)

ar
e

ex
cl

ud
ed

fr
om

th
e

m
od

el
by

fix
in

g
th

e
co

rr
es

po
nd

in
g

va
ria

bl
e

to
0,

w
hi

le
no

de
si

nc
lu

de
d

in
al

ls
ol

ut
io

ns
(m

ar
ke

d
in

gr
ee

n)
ar

e
m

an
da

to
ril

y
in

cl
ud

ed
in

S
′ o
p
t

by
fix

in
g

th
e

va
ria

bl
e

to
1.

Th
is

m
od

el
is

th
en

so
lv

ed
by

an
IL

P
so

lv
er

w
ith

in
a

re
st

ric
te

d
tim

e
lim

it
to

ob
ta

in
S
′ o
p
t,

w
ith

gr
ee

n
no

de
si

nd
ic

at
in

g
th

os
e

in
cl

ud
ed

in
S
′ o
p
t.

Fi
na

lly
,i

n
th

e
"A

da
pt

"p
ha

se
,t

he
su

b-
in

st
an

ce
is

m
od

ifi
ed

by
re

ta
in

in
g

on
ly

th
e

no
de

s
in

S
′ o
p
t

an
d

re
m

ov
in

g
al

lo
th

er
s

(w
ith

re
m

ov
ed

no
de

s
m

ar
ke

d
in

re
d)

.

50 Chapter 3 Application to the MPIDS Problem

follows:
P (k) ∼ k−λ , (3.5)

where P (k) is the probability that a given node has exactly k neighbours.
Specifically, we used the random power-law graph generator function called
igraph_static_power_law_game to generate networks differing in the following
parameters:

• Number of nodes, |V | ∈ {1.000, 10.000, 50.000, 100.000, 250.000, 500.000,
750.000, 1.000.000}.

• Number of edges: l ∈ {5, 10, 20, 30}, where l · |V | is the number of edges

• Exponent for the power law exponential distribution, λ ∈ {2,
2.25, 2.5, 2.75, 3}. Note that parameter λ establishes the pace at which the
probability of having highly connected nodes decreases.

Note that five networks were generated for all combinations of the number of
nodes, the number of edges, and the exponent for the power law exponential
distribution. This makes a total of 800 networks. Neither of the generated
networks has self-loops or multiple edges between a pair of nodes. Note that,
following the suggestion in the igraph package, the finite_size_correction
mechanism [39] for the generation of the networks was used. Our reason
for choosing power-law, scale-free networks for the comparison between
CMSA and Adapt-CMSA is that they are generally accepted models for social
networks [15, 72].2

For the purpose of parameter tuning, we separately generated one graph for
each combination of |V | ∈ {50.000, 100.000, 500.000, 1.000.000}, l ∈ {5, 30} and
λ ∈ {2, 3}. That is, 16 graphs were used for parameter tuning purposes. In
particular, we used the scientific tuning software irace [124] for fine-tuning the
parameters of CMSA and Adapt-CMSA. The parameters of CMSA (together with
their domains allowed for tuning) are the following ones:

1. Number of solution constructions per iteration, na ∈ {1, 2, . . . , 19, 20}.

2. Upper limit for the age values, agemax ∈ {1, 2, . . . , 9, 10}.

3. Time limit for CPLEX per call, tILP ∈ {1, 2, . . . , 49, 50} CPU seconds.
2Note that, due to the size and the number of the generated graphs, this instance set is very

large and consumes a large amount of memory (more than 17 GB). It can be obtained by contacting
the author of this thesis.

Section 3.4 Experimental Evaluation 51

4. Determinism rate for solution construction, drate ∈ [0.0, 0.99].

5. Length of the restricted candidate list, lsize ∈ {2, 3, . . . , 9, 10}.

The parameters of Adapt-CMSA, together with their domains, are the following
ones:

1. Time limit for CPLEX per call, tILP ∈ {1, 2, . . . , 49, 50} CPU seconds.

2. Lower bound for the bias towards the best-so-far solution, αLB ∈ [0.6, 0.99].

3. Upper bound for the bias towards the best-so-far solution, αUB ∈ [0.6, 0.99].

4. Step size for the reduction of this bias, αred ∈ [0.01, 0.1].

5. Parameter used for determining when to reduce the bias, tprop ∈ [0.1, 0.8].

Note that in the case of numerical parameters, the precision of irace was fixed to
two positions behind the comma. Both for the tuning of CMSA and Adapt-CMSA
irace was applied with a budget of 3.000 algorithm applications. The time limit
for each problem instance was set to |V |/100 CPU seconds. The outcome of the
tuning runs can be summarised as follows:

• CMSA parameter values: na = 1, agemax = 1, tILP = 38, drate = 0.53,
lsize = 2.

• Adapt-CMSA parameter values: tILP = 44, αLB = 0.85, αUB = 0.97, αred =

0.05, tprop = 0.13.

Note that both parameter settings indicate that we are dealing with very large
graphs. In the case of CMSA, for example, na = 1 and agemax = 1 are set in
this restrictive way because, otherwise, the size of the sub-instances would be
too large to be solved by CPLEX. Similarly, the parameters of Adapt-CMSA are
characterised by a strong bias towards the best-so-far solution in order to keep
the sub-instance as small as possible, while still being able to find improving
solutions.

With the final parameter settings as provided above, both CMSA and
Adapt-CMSA were applied exactly once to each of the 800 problem instances.
The computation time limit was the same as the one chosen for tuning, that is,
|V |/100 CPU seconds. The results are shown in a summarised way in the graphic
of Figure 3.4. The graphic is composed of 4 × 8 = 24 sub-graphics for each
combination of |V | = n (rows) and l (columns). Each sub-graphic shows—for

52 Chapter 3 Application to the MPIDS Problem

l=5 l=10 l=20 l=30
n

=
1

0
0

0
n

=
1

0
0

0
0

n
=

5
0

0
0

0
n

=
1

0
0

0
0

0
n

=
2

5
0

0
0

0
n

=
5

0
0

0
0

0
n

=
7

5
0

0
0

0
n

=
1

0
0

0
0

0
0

2 2.25 2.5 2.75 3 2 2.25 2.5 2.75 3 2 2.25 2.5 2.75 3 2 2.25 2.5 2.75 3

-4

0

4

8

-4

0

4

8

-4

0

4

8

-4

0

4

8

-4

0

4

8

-4

0

4

8

-4

0

4

8

-4

0

4

8

Im
p
ro

ve
m

e
n
t
o
f
A

d
a
p
t-

C
M

S
A

 o
ve

r
C

M
S

A
 (

%
)

Fig. 3.4 Average improvement of Adapt-CMSA over standard CMSA (in percent)

all five values of λ—the average improvement of Adapt-CMSA over CMSA (in
percent). Note that those cases in which Adapt-CMSA improves over CMSA are
additionally marked by bars in blue color, while bars in red color indicate the
cases in which CMSA is better than Adapt-CMSA.

The following observations can be made. First, for smaller graphs (up to
50.000 nodes) not much difference between the two algorithms can be observed.
However, starting from 100.000 nodes, Adapt-CMSA clearly outperforms CMSA.
This holds especially with a growing number of nodes and a growing number
of edges. Interestingly, for the smallest values of λ—that is, for λ ∈ {2, 2.25} in
the case of l = 5, respectively for λ = 2 in the case of of the remaining values
of l—CMSA often seems to have a slight advantage over Adapt-CMSA. In other
words, the advantage of Adapt-CMSA over CMSA is higher for graphs with less

Section 3.4 Experimental Evaluation 53

nodes with high degrees. Nevertheless, these results provide a strong indication
for the general superiority of Adapt-CMSA over CMSA.

3.4.2 Experiments regarding instances from the literature

In our second set of experiments, we compare CMSA and Adapt-CMSA to
the standalone application of CPLEX and to the best metaheuristic from the
literature [169] (ICG). This is done in the context of 17 social networks that are
partially used in the related literature on the MPIDS problem. These networks
are of small and medium size, and contain between 34 and 36.692 nodes and
between 788 and 198.050 edges. In addition, CPLEX and both CMSA variants
were applied to 10 larger social networks from the SNAP library that contain
between 37.700 and 1.134.890 nodes and between 2.289.003 and 3.387.388 edges
(https://snap.stanford.edu/data/).

While CPLEX was applied exactly once to each of these 27 problem instances,
both CMSA and Adapt-CMSA were applied 10 times to each instance. A
computation time limit of 2 hours was given to each CPLEX run. On the
contrary, much less time was given to the CMSA variants. In the case of the 17
small/medium size problem instances we allowed a computation time of |V |/10
CPU seconds for each run. A relatively shorter computation time of |V |/100
CPU seconds was allowed for the application to the large instances from the
SNAP library. The main reason for this difference is that |V |/100 seconds would
have been a very short computation time for most of the small and medium size
instances.

In a first experiment we applied both CMSA and Adapt-CMSA with the
parameter values from the previous section to all 27 instances. The obtained
results are shown in numerical form in Table 3.1 (small/medium size instances)
and Table 3.2 (large instances). These tables have the following structure. The first
column contains the instance name, and the second column provides information
about the quality of the best solutions known to date. Columns with heading
’q’ report on the quality of the best solutions found by the four approaches,
and columns with heading ’avg’ provide the respective average solution quality.
Furthermore, columns with heading ’t(s)’ indicate the average computation times
of CMSA and Adapt-CMSA to find the best solutions in each run. Note that
the information about average computation times was not provided in [169] for
ICG. The authors, however, state that they chose a computation time limit of
|V | · 30/1000, because this assured convergence of their algorithm in the case of
all considered problem instances. In other words, ICG would not profit from a

https://snap.stanford.edu/data/

54 Chapter 3 Application to the MPIDS Problem

T
a
b

l
e

3
.
1

N
um

er
ic

al
re

su
lts

fo
rs

m
al

lt
o

m
ed

iu
m

si
ze

in
st

an
ce

s.

N
et

w
or

k
be

st
C

PL
EX

IC
G

C
M

SA
A

da
pt

-C
M

SA
kn

ow
n

q
ga

p
(%

)
q

av
g

q
av

g
t(
s)

q
av

g
t(
s)

K
a
r
a
t
e

15
1
5

0.
00

n.
a.

n.
a.

1
5

15
.0

0
0.

00
4

1
5

15
.0

0
0.

00
4

D
o
l
p
h
i
n
s

30
3
0

0.
00

3
0

30
.0

3
0

30
.0

0
0.

02
3
0

30
.0

0
0.

02
F
o
o
t
b
a
l
l

63
6
3

0.
00

64
64

.0
6
3

63
.7

0
3.

06
6
3

63
.8

0
3.

07
J
a
z
z

79
7
9

0.
00

n.
a.

n.
a.

7
9

79
.0

0
1.

66
7
9

79
.0

0
0.

23
C
A
-
A
s
t
r
o
P
h

67
36

a
67

40
0.

30
68

08
68

12
.9

5
67

51
67

53
.6

0
13

11
.3

2
6
7
3
8

67
39

.4
0

13
29

.0
3

C
A
-
G
r
Q
c

25
87

2
5
8
7

0.
00

2
5
8
7

25
87

.5
0

2
5
8
7

25
87

.0
0

19
.0

8
2
5
8
7

25
87

.0
0

1.
87

C
A
-
H
e
p
P
h

47
18

4
7
1
8

0.
01

47
43

47
46

.8
5

47
26

47
27

.5
0

60
4.

52
4
7
1
8

47
18

.2
0

48
2.

04
C
A
-
H
e
p
T
h

44
71

4
4
7
1

0.
00

44
81

44
83

.1
0

44
74

44
74

.7
0

30
6.

65
4
4
7
1

44
71

.0
0

17
.6

0
C
A
-
C
o
n
d
M
a
t

95
84

9
5
8
4

0.
06

96
25

96
27

.8
5

95
93

95
95

.0
0

17
73

.0
6

95
85

95
86

.2
0

10
48

.0
8

E
m
a
i
l
-
E
n
r
o
n

11
68

2
1
1
6
8
2

0.
00

11
73

7
11

74
0.

65
11

69
2

11
69

3.
40

18
15

.3
4

1
1
6
8
2

11
68

2.
80

69
0.

15
n
c
s
t
r
l
w
g
2

29
94

2
9
9
4

0.
00

n.
a.

n.
a.

29
95

29
95

.0
0

20
.9

2
2
9
9
4

29
94

.2
0

21
3.

07
a
c
t
o
r
s
-
d
a
t
a

30
92

3
0
9
2

0.
24

n.
a.

n.
a.

30
99

31
00

.9
0

76
3.

51
30

93
30

93
.7

0
59

7.
38

e
g
o
-
f
a
c
e
b
o
o
k

19
73

1
9
7
3

0.
00

1
9
7
3

19
73

.2
5

19
75

19
75

.0
0

5.
55

3
1
9
7
3

19
73

.0
0

95
.4

2
s
o
c
f
b
-
B
r
a
n
d
e
i
s
9
9

13
97

a
1
4
0
0

1.
41

14
43

14
45

.0
5

14
27

14
28

.9
0

32
4.

00
14

14
14

16
.3

0
34

0.
99

s
o
c
f
b
-
n
i
p
s
-
e
g
o

13
98

1
3
9
8

0.
00

n.
a.

n.
a.

1
3
9
8

13
98

.0
0

0.
04

1
3
9
8

13
98

.0
0

0.
03

s
o
c
f
b
-
M
i
c
h
6
7

13
27

a
1
3
2
9

1.
56

n.
a.

n.
a.

13
42

13
44

.6
0

24
1.

66
13

40
13

42
.7

0
28

8.
82

s
o
c
-
g
p
l
u
s

82
44

8
2
4
4

0.
00

n.
a.

n.
a.

82
50

82
51

.2
0

95
6.

37
8
2
4
4

82
44

.0
0

2.
42

5
a
v
e
r
a
g
e

3
5
5
2
.
8
8

35
58

.5
9

35
59

.5
6

35
54

.3
5

35
54

.9
6

a
:t

he
se

be
st

-k
no

w
n

re
su

lts
w

er
e

ob
ta

in
ed

by
[2

](
C
A
-
A
s
t
r
o
P
h
)a

nd
[1

68
](
s
o
c
f
b
-
B
r
a
n
d
e
i
s
9
9
,s
o
c
f
b
-
M
i
c
h
6
7
)

Section 3.4 Experimental Evaluation 55

T
a
b

l
e

3
.
2

N
um

er
ic

al
re

su
lts

fo
rl

ar
ge

SN
A

P
ne

tw
or

ks
.

N
et

w
or

k
Be

st
C

PL
EX

C
M

SA
A

da
pt

-C
M

SA
kn

ow
n

q
ga

p
(%

)
q

av
g

t(
s)

q
av

g
t(
s)

m
u
s
a
e
_
g
i
t

97
52

9
7
5
2

0.
00

97
93

97
96

.9
0

35
6.

24
97

57
97

58
.0

0
36

1.
02

l
o
c
-
g
o
w
a
l
l
a
_
e
d
g
e
s

67
61

7
6
7
6
1
7

0.
07

67
72

3
67

72
7.

90
19

02
.1

8
67

69
0

67
69

5.
20

19
15

.4
3

g
e
m
s
e
c
_
f
a
c
e
b
o
o
k
_
a
r
t
i
s
t

15
19

4
1
5
1
9
4

1.
20

15
31

9
15

33
0.

70
49

4.
05

15
25

6
15

25
9.

50
48

4.
12

d
e
e
z
e
r
_
H
R

22
69

9
54

57
3

95
.6

8
22

56
7

22
60

5.
10

54
1.

96
2
2
3
3
8

22
35

4.
50

52
3.

39
c
o
m
-
y
o
u
t
u
b
e

35
12

81
3
5
1
2
8
1

0.
00

35
19

60
35

19
72

.5
0

11
13

4.
93

35
14

22
35

14
31

.2
0

11
05

3.
78

c
o
m
-
d
b
l
p

12
04

92
1
2
0
4
9
2

0.
08

12
06

40
12

06
47

.0
0

30
82

.4
3

12
05

66
12

05
76

.3
0

30
86

.4
6

A
m
a
z
o
n
0
3
0
2

13
03

78
26

21
11

97
.5

0
12

89
13

12
89

39
.8

0
26

06
.6

4
1
2
8
5
8
7

12
86

24
.4

0
26

05
.3

4
A
m
a
z
o
n
0
3
1
2

18
08

53
40

07
27

95
.4

1
18

31
13

18
31

13
.0

0
1.

27
1
7
4
4
9
5

17
48

32
.5

0
39

94
.7

7
A
m
a
z
o
n
0
5
0
5

18
31

14
41

02
36

95
.1

9
18

53
10

18
53

10
.0

0
1.

32
1
7
6
8
8
2

17
71

75
.9

0
41

00
.2

5
A
m
a
z
o
n
0
6
0
1

17
99

64
40

33
94

96
.9

4
18

22
79

18
22

79
.0

0
1.

40
5

1
7
3
5
0
9

17
39

29
.1

0
40

30
.0

6
a
v
e
r
a
g
e

20
95

37
.7

0
12

67
61

.7
0

1
2
4
0
5
0
.
2
0

56 Chapter 3 Application to the MPIDS Problem

higher computation time limit. Finally, the gap (in percent) between the solution
obtained by CPLEX and the best lower bound is indicated in the column with
heading ’gap(%)’. Note that when the gap is zero, CPLEX was able to prove
optimality. The best result for each instance is shown in bold font. Furthermore,
in case the best solution known so far was improved, the respective result is
underlined. Finally, in those cases in which none of the algorithms was able to
reach the currently best known solution, we provide at the bottom of the table an
indication of the algorithm that obtained the respective best known solution.

The following observations can be made. First, CPLEX performs strongly
for small and medium size instances. Apart from instance CA-AstroPh, CPLEX
obtains all best known solutions. Only in six out of 17 cases, CPLEX is not
able to prove optimality of these results. The performance of Adapt-CMSA
is very similar to the one of CPLEX. In one case (instance CA-AstroPh)
Adapt-CMSA outperforms CPLEX both in terms of best-performance and
in average-performance. On the downside, in four other cases (instances
CA-CondMat, actors-data, socfb-Brandeis99 and socfbMich67) the results
of Adapt-CMSA fall slightly short of those of CPLEX. On the other side,
Adapt-CMSA clearly outperforms CMSA, which (with the parameter setting
for scale-free networks) only matches the results of Adapt-CMSA for six out of
17 problem instances. Finally, note that both CMSA and Adapt-CMSA clearly
outperform the most recent metaheuristic from the related literature (ICG).
Concerning the large instances from the SNAP library—see Table 3.2—we can
state that the standalone application of CPLEX clearly starts to fail with a
growing problem instance size. In fact, in five out of 10 cases—see the ones
with an optimality gap of more than 95%—CPLEX is only able to provide the
trivial solution that simply contains all network nodes. In addition, it can also
be observed that the standard CMSA approach fails for instances Amazon0312,
Amazon0505 and Amazon0601. In these three cases, standard CMSA is not
able to improve over the initial solutions provided by the greedy approach.
Adapt-CMSA, on the other side, works very well also for these large-size SNAP
networks. In fact, Adapt-CMSA is able to obtain new best known solutions in
five out of 10 cases. Moreover, in those five cases in which CPLEX still works
fine, the results of Adapt-CMSA are only slightly worse than those of CPLEX.
Therefore, a first conclusion of this work is that Adapt-CMSA appears to be a
CMSA variant that does not require to be specifically tuned for subsets of the
considered benchmark set. It shows a high performance over the whole range of
benchmark instances with one single parameter value set.

Section 3.4 Experimental Evaluation 57

Table 3.3 Improvement of CMSA after specific tuning for small and medium size
instances.

Network best CMSA CMSA (special tuning)
known q avg t(s) q avg t(s)

Karate 15 15 15.00 0.004 15 15.00 0.01
Dolphins 30 30 30.00 0.02 30 30.00 0.03
Football 63 63 63.70 3.06 63 63.70 4.81
Jazz 79 79 79.00 1.66 79 79.00 0.36
CA-AstroPh 6736 6751 6753.60 1311.32 6736 6737.30 1181.44
CA-GrQc 2587 2587 2587.00 19.08 2587 2587.00 1.57
CA-HepPh 4718 4726 4727.50 604.52 4718 4718.10 332.57
CA-HepTh 4471 4474 4474.70 306.65 4471 4471.00 14.08
CA-CondMat 9584 9593 9595.00 1773.06 9584 9584.10 1001.96
Email-Enron 11682 11692 11693.40 1815.34 11682 11682.00 1471.90
ncstrlwg2 2994 2995 2995.00 20.92 2994 2994.00 26.65
actors-data 3092 3099 3100.90 763.51 3091 3092.30 521.21
ego-facebook 1973 1975 1975.00 5.553 1973 1973.00 25.26
socfb-Brandeis99 1397 1427 1428.90 324.00 1406 1407.90 215.55
socfb-nips-ego 1398 1398 1398.00 0.04 1398 1398.00 0.04
socfb-Mich67 1327 1342 1344.60 241.66 1335 1338.30 198.67
soc-gplus 8244 8250 8251.20 956.37 8244 8244.20 808.90
average 3558.59 3559.56 3553.29 3553.82

In a second experiment, we aimed at studying the change of performance
of standard CMSA when specifically tuned for small and medium size problem
instances on one side, and for large SNAP network on the other side. Again,
we used irace for the purpose or parameter tuning. For small and medium size
instances, the budget given to irace consisted of 1000 algorithm applications, and
instances CA-AstroPh and socfb-Brandeis99 were used for tuning. The same
budget was used for the tuning run concerning large SNAP networks. In this
case, instances Amazon0505 and Amazon0601 were used for tuning. The outcome
of these two tuning experiments was the following one:

• Small/med. size instances: na = 1, agemax = 3, tILP = 16, drate = 0.09,
lsize = 8.

• Large SNAP networks: na = 1, agemax = 1, tILP = 39, drate = 0.95, lsize = 10.

Clearly, the parameter settings for small and medium size instances result in
much larger sub-instance sizes than those for large SNAP networks. With these
new parameter settings we repeated the experiments of CMSA. The results, in
comparison to the CMSA results obtained with the previous parameter values,
are shown in Tables 3.3 and 3.4.

The new CMSA results improve substantially in the case of small and medium
size problem instances (Table 3.3). In fact, CMSA is now able to generate for 14

58 Chapter 3 Application to the MPIDS Problem

Table 3.4 Results of CMSA after specific tuning for the large SNAP networks.

Network Best CMSA CMSA (special tuning)
known q avg t(s) q avg t(s)

musae_git 9752 9793 9796.90 356.24 9890 9896.40 359.88
loc-gowalla_edges 67617 67723 67727.90 1902.18 67993 68008.30 1957.53
gemsec_facebook_artist 15194 15319 15330.70 494.05 15511 15526.70 498.52
deezer_HR 22699 22567 22605.10 541.96 22727 22744.50 538.43
com-youtube 351281 351960 351972.50 11134.93 352225 352245.80 11246.08
com-dblp 120492 120640 120647.00 3082.43 120970 120977.20 3131.91
Amazon0302 130378 128913 128939.80 2606.64 130386 130422.20 2600.53
Amazon0312 180853 183113 183113.00 1.27 180438 181974.30 2372.35
Amazon0505 183114 185310 185310.00 1.32 182160 183670.60 1527.61
Amazon0601 179964 182279 182279.00 1.405 179584 181282.40 2197.99
average 126761.70 126772.19 126188.40 126674.84

out of 17 problem instances the best known solutions. In one case—see instance
actors-data—CMSA is even able to generate a new best known solution of value
3091. With the specialised parameter setting, CMSA is now even able to perform
slightly better, on average, than Adapt-CMSA (compare to Table 3.1). The results
for large SNAP instances, however, show that specialized tuning does not help
in this case. Even though the results of CMSA improve over the original ones
from Table 3.2 in the case of those problem instances that were used for tuning
(Amazon0505 and Amazon0601), they become worse for seven out of 10 problem
instances. Moreover, even in those cases in which CMSA is able to improve with
a specialised parameter setting, the results are still clearly inferior to those of
Adapt-CMSA.

3.5 Conclusions

One of the occasional disadvantages of CMSA is the need for repeated parameter
tuning for subsets of the considered benchmark set. For dealing with this
problem, we proposed in this thesis a self-adaptive variant of CMSA, called
Adapt-CMSA, that adjusts its parameters on the fly in order to be able to
solve problem instances of very different sizes without the need of re-tuning.
Experiments were performed in this chapter in the context of the minimum
positive influence dominating set (MPIDS) problem.

Based on the obtained results we can say that Adapt-CMSA has several
advantages over standard CMSA in the context of the MPIDS problem. First,
Adapt-CMSA does not need to be specifically tuned for subsets of the considered
benchmark set. After one single tuning run, Adapt-CMSA works very well
for the whole benchmark set, which contains instances of very different sizes.
Second, Adapt-CMSA clearly outperforms standard CMSA in the context of large

Section 3.5 Conclusions 59

networks for which even a specialised tuning does not enable CMSA to compete
with Adapt-CMSA.

60 Chapter 3 Application to the MPIDS Problem

61

CHAPTER 4

ADAPT-CMSA FOR THE EVRP-TW-SPD AND PARTIAL

BATTERY CHARGING

4.1 Introduction

Once demonstrated the advantages of Adapt-CMSA over CMSA in the context of
a simple-to-express problem in Chapter 3, this chapter presents the application
of Adapt-CMSA to the Electric Vehicle Routing Problem with Time Windows,

Simultaneous Pickup and Delivery and Partial Battery Charging (EVRP-TW-SPD).
The content shown in this chapter was also presented in our paper [5] that was
published in the proceedings of MIC 2022: 14th. Metaheuristics International

Conference (https://doi.org/10.1007/978-3-031-26504-4_1). Further
developments and applications of Adapt-CMSA were detailed in additional
works. Notably, an extended abstract discussing the application of Adapt-CMSA
to the Electric Vehicle Routing Problem with Simultaneous Pickup and Deliveries
was presented at EUROCAST 2024 – 19th International Conference on Computer

Aided Systems Theory (https://eurocast2024.fulp.ulpgc.es/). Additionally,
the research on Adapt-CMSA based on Set Covering Models for Packing and
Routing Problems is currently submitted to the Annals of Operations Research
journal and is under review (2nd round).

The tackled problem first of all considers time window (TW) constraints
for the delivery of goods to customers. Note that time windows can be used
to control the visiting times of the customers, which might be regulated by
local jurisdictions, but also by the customers themselves. It also considers
simultaneous pickup and delivery (SPD) constraints regarding customer
deliveries. When dealing with SPD constraints in the context of vehicle routing
problems, it is important to note that each customer’s demand may consist of two
distinct requirements: (1) delivering goods to the demand point, known as the
"delivery demand", and (2) collecting goods from the demand point, known as the
"pickup demand". It is necessary to satisfy both demands simultaneously when a
vehicle visits a particular customer. This practice is commonly associated with

https://doi.org/10.1007/978-3-031-26504-4_1
https://eurocast2024.fulp.ulpgc.es/

62 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

reverse logistics. Finally, in conventional EVRP models, electric vehicle batteries
are assumed to be fully charged upon visiting a charging station. However, in
this chapter we make use of a more realistic scenario by allowing for partial
recharging. This departure from the conventional approach is noteworthy, as
it better reflects the real-world operational conditions of electric vehicles, as
opposed to the less realistic expectation of complete charging.

Through the formulation of the addressed problem as a mixed integer linear
programming (MILP) model, suitable for solution by general-purpose solvers
like CPLEX or Gurobi, our computational experiments highlight the increasing
complexity when considering TW and SPD constraints, in conjunction with the
limited driving range of electric vehicles. The complexity encountered, even
when solving small-sized instances to optimality, presents significant challenges
for CPLEX 20.1, often resulting in valid solutions with considerable optimality
gaps. This shows the need for more effective algorithms, such as Adapt-CMSA,
capable of deriving good-quality solutions across both small and large problem
instances.

Building on the findings from the computational experiments detailed in
the previous chapter, the effectiveness of Adapt-CMSA in handling complex
problems becomes increasingly apparent. Remember that, unlike standard
CMSA, Adapt-CMSA does not require specific parameter tuning for different
subsets of the considered benchmark set. Once the parameter tuning is applied,
Adapt-CMSA demonstrates robust performance across the entire benchmark set,
which contains instances of varying sizes. Furthermore, as in the previous
application of Adapt-CMSA in the context of MPIDS, Adapt-CMSA significantly
outperforms standard CMSA, especially in the context of large networks where
even specialised tuning fails to make CMSA competitive with Adapt-CMSA. This
suggests that Adapt-CMSA’s advantage over standard CMSA might extend to
most applications where standard CMSA exhibits high parameter sensitivity.

In this line, in order to tackle large-sized problem instances two variants
of Adapt-CMSA have developed. The first variant, henceforth denoted
by Adapt-Cmsa-Std, utilizes a matrix form representation for solutions and
sub-instances considered by the algorithm. Moreover, the MILP formulation from
Section 4.2 is used to solve sub-instances. On the contrary, in the second variant,
henceforth denoted by Adapt-Cmsa-SetCov, each generated solution and each
considered sub-instance is represented by a set of vehicle routes. Furthermore, a
set-covering-based MILP model is utilized to derive a solution to the sub-instance.
The performances of both approaches are compared in the context of problem

Section 4.2 Problem Description and Mathematical Model 63

instances of different types and sizes from the literature.

4.2 Problem Description and Mathematical Model

This section provides a technical description of the EVRP-TW-SPD under the
assumption of partial recharging (PR) along with its corresponding MILP
formulation. The presented model is an extension of the model for the
EVRP-TW-PR proposed by [104], which—in turn—is a modified variant of the
model for the EVRP-TW proposed in [166]. In particular, we extended the model
further in order to consider SPD constraints. We adopt the same notation as in
the previous works to maintain consistency with the existing literature. In this
context, the problem involves a set of N customers, denoted by V = {1, . . . , N},
and a set of charging stations, denoted by F . To allow for multiple visits to
any charging station, we defined a set F ′ that contains multiple copies of each
charging station from F . The depot is represented by nodes 0 and N + 1, where
node 0 is the starting point and node N + 1 is the ending point for each route.
Note that both 0 and N + 1 refer to the same depot. The set V ′

= V ∪ F ′ contains
all customers and dummy charging stations, with the sub-indexes 0, N + 1, or
both, indicating the inclusion of the respective instances of the depot. Based on
the above notations, we define the following sets:

1. F ′
0 := F

′ ∪ {0}

2. V ′
0 := V

′ ∪ {0}

3. V ′
N+1 := V

′ ∪ {N + 1}

4. V ′
0,N+1 := V

′ ∪ {0} ∪ {N + 1}

Following established sets and notations, the EVRP-TW-SPD can be defined on a
complete, directed graph G(V

′
0,N+1, A). A = {(i, j)|i, j ∈ V ′

0,N+1, i ̸= j} is the set
of arcs where each arc has a corresponding distance dij and travel time tij . The
energy consumed per unit distance traveled by an electric vehicle is denoted by
a constant h. A fleet of electric vehicles with identical loading capacity C and
battery capacity Q is stationed at a depot to satisfy delivery demand qi > 0 and
pickup demand pi > 0 of customers simultaneously. Each vertex i ∈ V

′
0,N+1 is

only allowed to be visited within a time window [ei, li] that is defined by the
earliest and latest possible visiting times allowed. Moreover, each customer i ∈ V
has a service time si, which refers to the time an electric vehicle spends visiting
a customer. When an EV visits a charging station, its battery is charged with a
constant charging rate of g > 0.

64 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

The following decision variables are used to formulate the MILP model of
the problem. The binary decision variable xij takes a value of 1 if the arc
(i, j) is included in the route and 0 otherwise. The starting time of the service
for each customer visited by the electric vehicle is monitored by the decision
variable τi. Moreover, to keep track of the battery’s state of charge upon arrival
and departure at each vertex i ∈ V

′
0,N+1, the decision variables yi and Yi are

employed, respectively. Furthermore, the remaining cargo to be delivered to the
customers of the route and the amount of cargo already collected (picked up)
at the previously visited customers are represented by the variables uij and vij ,
respectively. Therefore, the MILP model, henceforth denoted as ILPEVRP

std , can be
presented as follows.

Min

∑
i∈V ′

0 ,j∈V
′
N+1

dijxij +
∑

j∈V ′
N+1

Mx0j (4.1)

∑
j∈V ′

N+1,i ̸=j

xij = 1 ∀i ∈ V (4.2)

∑
j∈V ′

N+1,i ̸=j

xij ≤ 1 ∀i ∈ F
′ (4.3)

∑
i∈V ′

0 ,i ̸=j

xij −
∑

i∈V ′
N+1,i ̸=j

xji = 0 ∀j ∈ V
′ (4.4)

τi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ V0, j ∈ V
′
N+1, i ̸= j (4.5)

τi + tijxij + g(Yi − yi)

− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F
′
,∀j ∈ V

′
N+1, i ̸= j (4.6)

ej ≤ τj ≤ lj ∀j ∈ V
′
0,N+1 (4.7)

0 ≤ u0j ≤ C ∀j ∈ V
′
N+1 (4.8)

v0j = 0 ∀j ∈ V
′
N+1 (4.9)∑

i∈V ′
0 ,i ̸=j

uij −
∑

i∈V ′
N+1,i ̸=j

uji = qj ∀j ∈ V
′ (4.10)

∑
i∈V ′

N+1,i ̸=j

vji −
∑

i∈V ′
0 ,i ̸=j

vij = pj ∀j ∈ V
′ (4.11)

uij + vij ≤ Cxij ∀i ∈ V
′
0 , j ∈ V

′
N+1, i ̸= j (4.12)

0 ≤ yj ≤ yi − (hdij)xij +Q(1− xij) ∀i ∈ V,∀j ∈ V
′
N+1, i ̸= j (4.13)

0 ≤ yj ≤ Yi − (hdij)xij +Q(1− xij) ∀i ∈ F
′
0,∀j ∈ V

′
N+1, i ̸= j (4.14)

yi ≤ Yi ≤ Q ∀i ∈ F
′
0 (4.15)

xij ∈ {0, 1} ∀i ∈ V
′
0 , j ∈ V

′
N+1, i ̸= j (4.16)

Section 4.3 Problem Description and Mathematical Model 65

(a) EVRP Instance (b) Solution

Fig. 4.1 Illustration of an EVRP instance and its solution. (a) presents a map
showing the locations of a depot, twelve customers, and six charging stations
based on Cartesian coordinates. Gray dashed lines indicate a fully connected
graph connecting each pair of nodes. (b) shows a valid solution to the given
instance on the same map, with four distinct tours represented by arrows with
different colors. All routes begin and end at the depot, passing through various
customers and charging stations.

The distance-based objective function from [104] is extended in order to
prioritize solutions that utilize fewer vehicles, even if the total distance traveled
in such cases is greater than in other solutions. This is done by introducing an
additional cost parameter M > 0 per vehicle utilized. Note that the number
of vehicles used in a solution corresponds to the variables on outgoing arcs of
the depot (0) that have a value of 1. In this line, the objective function (4.1)
minimizes the total travel and vehicle cost. Constraints (4.2) ensure that each
customer is visited by an electric vehicle, while constraints (4.3) allow vehicles to
visit a charging station only when required. Constraints (4.4) guarantee that each
vehicle that visits a particular node must also depart from the corresponding
node. The arrival and departure times are calculated using constraints (4.5) and
(4.6), which consider the service and battery charging times. Constraints (4.7)
permit vehicles to visit each node within the corresponding time windows. At
the same time, constraints (4.5)–(4.7) prevent sub-tours. Constraints (4.8)–(4.12)
ensure that the delivery and pickup demands of customers are simultaneously
met. Finally, constraints (4.13)–(4.15) are related to the battery state of charge.
For an example instance together with a solution, see Figure 4.1.

66 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

4.3 Set-Covering Based ILP Model of the EVRP-TW-SPD

Assignment-type ILP models such as the one presented above for the
EVRP-TW-SPD generally do not allow to derive good lower bounds (see, for
example, [9]). In addition, experiments reported in [5] showed that finding any
feasible solution to the corresponding model within reasonable execution times
for CPLEX becomes difficult, even in the context of small-sized sub-instances of
the original problem instances.

The EVRP-TW-SPD can be modeled in terms of a set-covering-based ILP in
the following way. Let T be the set of all possible (and feasible) tours, where a
tour is defined as the trip of one single vehicle returning to the depot from which
it originally left. Each tour Tr ∈ T is evaluated by the total distance traveled dr,
that is, the sum of the distances of all arcs on the tour. Finally, let Ti ⊂ T be the set
of tours that serve customer i ∈ V . With these definitions, the set-covering-based
ILP model for the EVRP-TW-SPD, henceforth denoted as ILPEVRP

setcov , can be stated
as follows.

min

∑
Tr∈T

drxr +M
∑
Tr∈T

xr

s.t.

∑
Tr∈Ti

xr ≥ 1 ∀ i ∈ V

xr ∈ {0, 1} ∀ Tr ∈ T

(4.17)

(4.18)

(4.19)

The objective function minimizes the total travel and vehicle costs and constraints
(4.18) ensure that each customer is visited at least once. Note that the
set-covering-based formulation is generally used as a post-optimization method
in the VRP literature [156]. In contrast to this, our results will show that CMSA
provides a suitable algorithmic framework for iteratively applying heuristics and
exact components.

4.4 Application of standard Adapt-CMSA to the

EVRP-TW-SPD

We first develop an Adapt-CMSA version based on the assignment-type
ILP model—that is, model ILPEVRP

std —to the EVRP-TW-SPD. This version
of Adapt-CMSA is henceforth labeled Adapt-Cmsa-Std. In the context of
Adapt-Cmsa-Std, the complete set of solution components consists of a
component cij for each arc aij from A = {(i, j)|i, j ∈ V

′
0,N+1, i ̸= j}. Consider

the following example. The vector I comprises all the node indexes for a small

Section 4.5 The Adapt-Cmsa-Std Algorithm 67

problem instance involving three charging stations and five customers. Nodes
indexed with 0 and 6 denote the depot.

I = (0,︸︷︷︸
depot

1, 2, 3, 4, 5,︸ ︷︷ ︸
customers

6,︸ ︷︷ ︸
depot

7, 8, 9︸ ︷︷ ︸
charging stations

)

Now consider a solution consisting of two tours T1 and T2, where T1 =<0 9
1 4 6> and T2 =<0 2 8 3 7 5 6>. In the context of Adapt-Cmsa-Std,
this solution is represented by S = {c0,9, c9,1, c1,4, c4,6, c0,2, c2,8, c8,3, c3,7, c7,5, c5,6},
that is, a solution S in Adapt-Cmsa-Std is kept in terms of the list of solution
components representing the arcs used in any of the tours of S.

4.5 The Adapt-Cmsa-Std Algorithm

The pseudo-code presented in Algorithm 4.1 is common to Adapt-Cmsa-Std
and Adapt-Cmsa-SetCov. It describes the general algorithmic framework of
Adapt-CMSA for the EVRP-TW-SPD. First, a feasible solution is generated by
calling function GenerateGreedySolution() to initialize the best-so-far solution
Sbsf . More precisely, this function applies an insertion heuristic which is further
explained in Section 4.5.1. Following that, in lines 4 and 5, parameters αbsf , na,
and lsize are given initial values. How these variables are managed within the
algorithm will be explained below.

During each iteration of Adapt-Cmsa-Std, a sub-instance C ′ of the original
problem instance is created. Similar to the solution representation, a sub-instance
is also a set of solution components, that is, C ′ ⊆ C, where C ′ is initialized to the
best solution found so far (Sbsf) at the beginning of each iteration. Subsequently,
a probabilistic solution construction process shown in lines 8–12 probabilistically
generates na solutions using function ProbabilisticSolutionConstruction(Sbsf , αbsf ,
lsize). This function takes two additional parameters apart fromSbsf . These are the
parameter αbsf (0 ≤ αbsf < 1), which biases the creation of new solutions towards
the best-so-far solution, and the parameter lsize, which determines the number
of options considered at each solution construction step. Remember that higher
values of αbsf lead to an increase of similarity between the constructed solutions
and Sbsf . On the contrary, a higher value of lsize results in the construction of more
diverse solutions and, consequently, contributes to forming a larger sub-instance.

After constructing a solution S by calling the above-mentioned function in
line 9 of Algorithm 4.1, each tour of S undergoes a local search process, as
indicated in line 10. This local search procedure applies well-known intra-route

68 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

Algorithm 4.1 Pseudo-code of Adapt-CMSA for the EVRP-TW-SPD
1: input 1: values for CMSA parameters tprop, tILP
2: input 2: values for solution construction parameters αLB, αUB, αred

3: Sbsf := GenerateGreedySolution()
4: αbsf := αUB

5: Initialize(na, lsize)
6: while CPU time limit not reached do

7: C ′ := Sbsf

8: for i := 1, . . . , na do

9: S := ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize)
10: LocalSearch1(S)
11: for all c ∈ S and c /∈ C ′

do C ′ := C ′ ∪ {c} end for

12: end for

13: (S ′
opt, tsolve) := SolveSubinstance(C ′, tILP) {This function returns two objects:

(1) the obtained solution (S ′
opt), (2) the required computation time (tsolve)}

14: LocalSearch2(S ′
opt)

15: if tsolve < tprop · tILP and αbsf > αLB
then αbsf := αbsf − αred end if

16: if f(S ′
opt) < f(Sbsf) then

17: Sbsf := S ′
opt

18: Initialize(na, lsize)
19: else

20: if f(S ′
opt) > f(Sbsf) then

21: if na = ninit
then αbsf := min{αbsf +

αred

10
, αUB} else Initialize(na, lsize) end

if

22: else

23: Increment(na, lsize)
24: end if

25: end if

26: end while

27: output: Sbsf

operators such as relocation, swap, and two_opt in sequential order. Moreover, the
best-improvement strategy is adopted in the context of the applied operators.
The so-called relocation operator sequentially extracts each node from its existing
position within a route and repositions it at an alternative location inside the same
route. On the other hand, the swap operator works by interchanging the positions
of a pair of selected nodes belonging to the same route. Lastly, the two_opt

neighborhood explores every feasible combination of choosing two non-adjacent
nodes in the same route and then reverses the arrangement of the nodes situated
between the chosen pair of nodes.

Upon the application of local search, the so-called merge step is executed in
line 11 in the same way as in any other CMSA algorithm. After probabilistically
constructing na solutions and forming the sub-instance C ′, the sub-instance is

Section 4.5 The Adapt-Cmsa-Std Algorithm 69

solved by first generating a corresponding ILP model based on model ILPEVRP
std

and then solving the model with a CPU time limit of tILP seconds with CPLEX in
function SolveSubinstance(C ′, tILP). In order to generate this model, the following
constraints are added to ILPEVRP

std :

xij = 0 for all cij ∈ C \ C ′ (4.20)

In other words, if an arc aij has not been used in any of the solutions that
were merged into C ′, using this arc is forbidden by fixing the value of xij to
zero. It is important to note that incorporating more constraints into the original
ILP reduces the search space of the resulting ILP model, thereby facilitating
CPLEX’s ability to generate a high-quality solution or even the optimal one for the
corresponding sub-instance. However, note that—due to the employed CPU time
limit for each application of CPLEX—the output of function SolveSubinstance(C ′,
tILP), denoted as S ′

opt, is not necessarily an optimal solution to the sub-instance.
In any case, S ′

opt is subject to the application of a local search method different
from the one described before. In particular, this local search procedure utilizes
inter-tour neighborhoods such as exchange (1,1) and shift (1,0). The exchange (1,1)

neighborhood investigates all potential two-customer swaps not part of the same
tour, whereas the shift (1,0) neighborhood examines every option for removing
a customer from its existing tour and placing it at any possible location in other
tours. As is done within LocalSearch1(S), operators used by LocalSearch2(S)
employ the best-improvement search strategy.

The self-adaptive nature of Adapt-Cmsa-Std can be found in the dynamical
adjustment of the values of parameters αbsf , na, and lsize. In other words, for
this application of Adapt-CMSA an additional parameter, lsize is handled in a
dynamic way. As already explained in Chapter 2, the value of the dynamic
parameter αbsf is bounded from below by αLB and from above by αUB. Both
αLB and αUB are input parameters of the algorithm. Moreover, the value of a
step size parameter αred is employed for systematically reducing the αbsf ’s value,
if needed. Initially, the value of αbsf is set to the highest possible value, αUB, as
shown in line 4.1 If the resulting ILP is solved within a computation time tsolve that
is below a proportion tprop of the maximum possible computation time tILP—that
is, if tsolve ≤ tprop · tILP—αbsf ’s value is reduced by αred, as seen in line 15. The
reasoning behind this step is as follows. If the resulting ILP can be easily solved to
optimality for the respective sub-instance, the search space is too small, owing to

1Remember that solutions constructed with a high value of αbsf will be rather similar to the
best-so-far solution Sbsf .

70 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

a relatively low number of free variables. To increase the number of free variables
in the ILP, solutions produced in ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize)
should differ more from Sbsf , which is achievable by lowering the value of αbsf .

The adjustment of parameters na and lsize follows a similar scheme as the one
described above. Their initial values are set as follows: na := ninit and lsize = linitsize,
which is done in the Initialize(na, lsize) function. This function can be called under
three distinct circumstances: (1) at the beginning of the algorithm (line 5), (2)
when solution S ′

opt is strictly better than Sbsf (line 18), and (3) when solution S ′
opt

is strictly worse than Sbsf while na concurrently exceeds ninit (line 21). On the
other hand, when S ′

opt and the Sbsf have the same objective function value, the
algorithm has the capacity to create larger sub-instances, leading to an increase
in the values of the three parameters in Increment(na, lsize) function. Specifically,
na is increased by ninc, and lsize is increased by lincsize.

Figure 4.2 graphically summarizes the structure and components of
Adapt-Cmsa-Std for EVRP-TW-SPD.

4.5.1 Probabilistic Solution Construction

The call of function ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize) invokes the
execution of one of two heuristics: either (1) a version of the Clarke-Wright
Savings Algorithm [41], or (2) a variant of the insertion algorithm. The choice
of a heuristic is done uniformly at random. Both heuristics exclusively generate
feasible solutions. In the following, both construction algorithms and their
variants are described in detail.

Probabilistic Clarke-Wright Savings Algorithm. Similar to the original
Clarke-Wright approach, our algorithm variant begins by generating a set of
direct routes, denoted as R = {(0 i (N + 1)) | i ∈ V }. Next, the algorithm
initializes a savings listL consisting of pairs of nodes (i, j), where i and j represent
customers and charging stations. The savings value σij for each pair is computed
using the following equation:

σij := d0i + d0j − λdij + µ|d0i − d0j| (4.21)

Here, λ and µ are the so-called route shape and asymmetry scaling parameters,
respectively. The route shape parameter λ prioritizes the selection of nodes
based on their distance from each other [193]; parameter µ, on the other hand,
scales the asymmetry between nodes i and j [143]. Well-working values for these

Section 4.5 The Adapt-Cmsa-Std Algorithm 71

F
i
g
.
4
.
2

G
ra

ph
ic

al
ab

st
ra

ct
of

A
da

pt
-C

m
sa

-S
td

fo
rE

V
RP

-T
W

-S
PD

Th
is

gr
ap

hi
ca

l
ab

st
ra

ct
ill

us
tr

at
es

th
e

A
da

pt
-C

m
sa

-S
td

fo
r

EV
RP

-T
W

-S
PD

.
Fo

ur
ex

am
pl

e
so

lu
tio

ns
ar

e
pr

ob
ab

ili
st

ic
al

ly
ge

ne
ra

te
d

in
th

e
"C

on
st

ru
ct

"
st

ep
,e

ac
h

sh
ow

n
on

a
m

ap
an

d
co

rr
es

po
nd

in
g

bi
na

ry
m

at
ric

es
.

N
ot

e
th

at
th

e
co

lo
ur

fu
lc

el
ls

in
th

es
e

m
at

ric
es

in
di

ca
te

ed
ge

s
in

vo
lv

ed
in

th
e

re
sp

ec
tiv

e
so

lu
tio

n
(x

ij
=

1)
,w

hi
le

w
hi

te
ce

lls
de

no
te

un
se

le
ct

ed
ed

ge
s(
x
ij
=

0)
.D

ur
in

g
th

e
"M

er
ge

"s
te

p,
so

lu
tio

n
co

m
po

ne
nt

s
of

th
es

e
so

lu
tio

ns
ar

e
co

m
bi

ne
d

to
fo

rm
a

su
b-

in
st

an
ce

,i
llu

st
ra

te
d

by
a

tw
o-

di
m

en
si

on
al

bi
na

ry
m

at
rix

w
he

re
w

hi
te

ce
lls

re
pr

es
en

t
ed

ge
s

th
at

ar
e

pa
rt

of
at

le
as

to
ne

so
lu

tio
n,

an
d

gr
ey

ce
lls

in
di

ca
te

th
os

e
th

at
ne

ve
r

ap
pe

ar
ed

in
an

y
so

lu
tio

n.
Su

bs
eq

ue
nt

ly
,i

n
th

e
"S

ol
ve

"s
te

p,
th

e
su

b-
in

st
an

ce
is

so
lv

ed
us

in
g

an
as

si
gn

m
en

t-t
yp

e
M

IL
P

m
od

el
by

an
IL

P
so

lv
er

to
yi

el
d
S
′ o
p
t.

Fi
na

lly
,t

he
"A

da
pt

"s
te

p
up

da
te

st
he

su
b-

in
st

an
ce

ba
se

d
on

S
′ o
p
t,

re
ta

in
in

g
on

ly
th

e
ed

ge
sp

re
se

nt
in

S
′ o
p
t

in
th

e
su

b-
in

st
an

ce
.

72 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

parameters are identified through a parameter tuning procedure described in
Section 4.7.2. It is important to note that L only includes pairs of nodes (i, j)

that satisfy two conditions: (1) i and j are part of two different tours, and (2)
both i and j must be adjacent to the depot in the tour of which they form part.
Moreover, solution construction will not only be influenced by the savings values
of node pairs (i, j) but also by the fact whether or not arc aij appears in the current
best-so-far solution Sbsf . For this purpose, an additional value, qij , is calculated
for each entry (i, j) ∈ L:

qij :=

(σij + 1) · αbsf if cij ∈ Sbsf

(σij + 1) · (1− αbsf) otherwise
(4.22)

The algorithm performs the following sequence of steps until the savings list L is
empty.

1. After computing qij for all entries in L, the list is sorted in non-increasing
order with respect to the qij values, and a reduced list Lr is created,
containing the first lsize elements of L.

2. Next, an entry (i, j) is chosen from Lr with respect to the following
probabilities:

p(ij) :=
qij∑

(i′,j′) ∈Lr
qi′j′

∀ (i, j) ∈ Lr (4.23)

Note that the higher the value of αbsf , where 0 ≤ αLB ≤ αbsf ≤ αUB ≤ 1,
the higher the probability of selecting arcs that are part of the best-so-far
solution Sbsf .

3. Then, the chosen tours corresponding to nodes i and j are merged. The
merging process is determined by one of the following four possible cases,
depending on the direct connection of nodes i and j to the depot:

(a) Case 1:

• T1 :< 0 i . . . N + 1 >, T2 :< 0 j . . . N + 1 >

• Merging: Reverse T1, rev(T1), and concatenate with T2
• Result: Tm :< 0 . . . i j . . . N + 1 >

(b) Case 2:

• T1 :< 0 i . . . N + 1 >, T2 :< 0 . . . j N + 1 >

• Merging: Reverse both T1 and T2, rev(T1), rev(T2), and concatenate
• Result: Tm :< 0 . . . i j . . . N + 1 >

Section 4.5 The Adapt-Cmsa-Std Algorithm 73

(c) Case 3:

• T1 :< 0 . . . i N + 1 >, T2 :< 0 j . . . N + 1 >

• Merging: Concatenate T1 and T2
• Result: Tm :< 0 . . . i j . . . N + 1 >

(d) Case 4:

• T1 :< 0 . . . i N + 1 >, T2 :< 0 . . . j N + 1 >

• Merging: Reverse T2, rev(T2), and concatenate with T1
• Result: Tm :< 0 . . . i j . . . N + 1 >

Depending on the positions of nodes i and j in the tour, it may be required
to reverse one or both of the tours selected to ensure a direct connection
from i to j. In such a case, the reversed form of tour T1 is represented by
rev(T1). Subsequently, the feasibility of the merged tour Tm is checked in
terms of vehicle loading capacity and time windows. If the obtained route
violates vehicle capacity and/or time window constraints, it is deemed
infeasible and eliminated from the savings list. A new candidate is then
chosen following the procedure already outlined above. In the event that
the merged tour is not feasible due to battery constraints, a charging station
is inserted into the tour. Determining the optimal charging station location
involves identifying the first node in the tour to which the electric vehicle
has arrived with a negative battery level. Then, a charging station is
inserted between this node and the previous node. After determining
the insertion position, the charging station that results in the minimum
amount of increase in the overall tour distance is selected and placed into
the predetermined position. If the tour remains infeasible, then the same
procedure is applied to the previous arcs. In those cases in which the
infeasibility persists even after attempting to insert charging stations, the
merged tour is discarded, and the associated nodes are taken out of the
savings list. Then, the next candidate, pair of nodes, is selected from the
savings list following the procedure described above. The tour merging
process is repeatedly executed until the saving list is exhausted. Once the
merging phase is complete, some of the previously added charging stations
may no longer be necessary. Therefore, redundant charging stations are
first identified and then removed from the constructed tours.

4. Finally, the savings list L is updated as described above.

As a last step, the final set of tours is converted into its corresponding set of

74 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

solution components.

Probabilistic Insertion Algorithm. Our second constructive heuristic
operates by inserting customers into available tours in a sequential manner until
all customers are visited. The first customer to be inserted into the tour is chosen
based on the distance from the depot or the latest possible visiting time. In
particular, the initial tour is established by inserting the customer with either
the greatest distance from the depot or the earliest deadline. We then produce
a cost list that outlines all possible insertion points for each unvisited customer,
along with the associated costs. To determine the cost of inserting a customer
at a particular point, we use the following equation, which calculates the cost of
inserting customer i between nodes j and k

c(j, i, k) = dji + dik − djk (4.24)

Then, qjik is calculated for each entry (j, i, k) ∈ L as follows:

qjik :=

(c(j, i, k) + 1) · (1− αbsf)(1− αbsf) if cji ∈ Sbsf and cik ∈ Sbsf

(c(j, i, k) + 1) · (αbsf)
2 if cji /∈ Sbsf and cik /∈ Sbsf

(c(j, i, k) + 1) · αbsf(1− αbsf) otherwise
(4.25)

Subsequently, the selection of an entry (j, i, k) from the generated list is carried
out based on the probabilities calculated using Eq. (4.25). If the capacity of the
vehicle permits, the customer is added to the corresponding location in the tour.
In addition, if the insertion is infeasible in terms of battery restrictions, a charging
station is inserted into the tour using the process described in the Clarke-Wright
Savings Algorithm. In situations where the insertion of a customer results in
the vehicle exceeding its load capacity or battery capacity (even after charging
station insertion) or causes a time window violation, a new tour is initiated, which
includes only the respective customer.

After inserting all of the customers and a complete solution is derived, the
obtained set of tours is transformed into the corresponding set S of solution
components.

4.6 The Adapt-Cmsa-SetCov Algorithm

The ILP model for solving sub-instances in this variant of Adapt-CMSA is model
ILPEVRP

setcov from Section 4.3. In this case, the complete set of solution components

Section 4.7 Computational Experiments 75

C consists of a component cr for each valid tour Tr ∈ T (see Section 4.3), that is,
C := {cr | Tr ∈ T }. Any subset S ⊂ C such that each customer i ∈ V is served by
exactly one tour of S is a valid solution to the EVRP-TW-SPD problem instance.

The probabilistic solution construction process in Adapt-Cmsa-SetCov works
in exactly the same way as in Adapt-Cmsa-Std. Just that the solutions returned
consist of solution components that directly correspond to tours (instead of arcs
as in the case of Adapt-Cmsa-Std).

Another difference is—as mentioned above—the ILP model used to solve
sub-instances. In fact, given a sub-instance C ′, the corresponding ILP model
is obtained by replacing each occurrence of T with C ′, that is, the model only
considers those tours as eligible tours that appear sub-instance C ′. However,
before returning the solution, it is checked for duplicate occurrences of customers,
that is, all redundant customers are initially identified. Afterward, the benefit of
removing each redundant customer, which is directly related to the distance of
the respective customer with the adjacent nodes, is computed. Subsequently,
redundant customers, beginning with the one with the greatest benefit, are
removed until each customer appears in a single tour only.

Figure 4.3 illustrates the details of Adapt-Cmsa-SetCov for EVRP-TW-SPD.

4.7 Computational Experiments

The experiments were conducted on the same machines as the ones for the
MPIDS problem, that is, on a cluster of machines equipped with Intel® Xeon®

5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of RAM. Moreover,
sub-instances in both Adapt-CMSA variants were solved using CPLEX version
20.1 in one-threaded mode. Furthermore, the ILP models representing complete
problem instances were solved using CPLEX version 20.1 in standalone mode.

4.7.1 Generation of the problem instances for EVRP-SPD-TW

The algorithm’s performance was evaluated utilizing the EVRP-TW problem
instances derived by [166] from the classical VRPTW instances by [173]. This
dataset includes a total of 92 instances, consisting of 36 small-sized instances and
56 large-sized instances. Small-sized instances include 5, 10, and 15 customers,
while large-sized instances contain 100 customers and 21 charging stations.
These instances are organized into three distinct groups based on the spatial
distribution of customer locations: clustered instances (marked by the prefix "c"),
randomly distributed instances (prefix "r"), and a hybrid of random and clustered
distributions (prefix "rc"). Each group further contains two sub-classes (type 1,

76 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

F
i
g
.
4
.
3

G
ra

ph
ic

al
ab

st
ra

ct
of

A
da

pt
-C

m
sa

-S
et

Co
v

fo
rE

V
RP

-T
W

-S
PD

Si
m

ila
rt

o
th

e
A

da
pt

-C
m

sa
-S

td
,f

ou
re

xa
m

pl
e

so
lu

tio
ns

ar
e

pr
ob

ab
ili

st
ic

al
ly

ge
ne

ra
te

d
in

th
e

"C
on

st
ru

ct
"s

te
p.

A
no

tic
ea

bl
e

di
ffe

re
nc

e
is

th
at

in
th

is
va

ria
nt

,s
ol

ut
io

n
co

m
po

ne
nt

s
ar

e
co

m
pl

et
e

to
ur

s
un

de
rt

ak
en

by
ea

ch
ve

hi
cl

e.
Th

us
,e

ac
h

so
lu

tio
n

is
re

pr
es

en
te

d
as

a
se

to
fr

ou
te

s
in

st
ea

d
of

a
se

to
fe

dg
es

.
D

ur
in

g
th

e
"M

er
ge

"s
te

p,
co

m
po

ne
nt

s
fr

om
th

es
e

so
lu

tio
ns

ar
e

co
m

bi
ne

d
to

fo
rm

a
su

b-
in

st
an

ce
,w

hi
ch

in
cl

ud
es

al
lr

ou
te

s
fr

om
th

e
ge

ne
ra

te
d

so
lu

tio
ns

.
In

th
e

"S
ol

ve
"s

te
p,

a
se

tc
ov

er
in

g-
ba

se
d

IL
P

m
od

el
is

em
pl

oy
ed

to
se

le
ct

th
e

m
os

tp
ro

m
is

in
g

se
to

fr
ou

te
s

su
ch

th
at

ev
er

y
cu

st
om

er
is

co
ve

re
d

by
at

le
as

to
ne

of
th

e
se

le
ct

ed
ro

ut
es

.A
fte

rd
er

iv
in

g
S
′ o
p
t,

th
e

"A
da

pt
"s

te
p

up
da

te
st

he
su

b-
in

st
an

ce
by

re
m

ov
in

g
ro

ut
es

th
at

ar
e

no
tp

ar
to

fS
′ o
p
t.

Section 4.7 Computational Experiments 77

Table 4.1 Parameters, their domains, and the chosen values as determined by
irace.

Parameter Domain Adapt-Cmsa- Adapt-Cmsa- Description

Std SetCov

λ [1, 2] 1.99 1.38 route shape parameter (C&W alg.)
µ [0, 1] 0.23 0.58 asymmetry scaling (C&W alg.)
linitsize {3, 5, 10, 15, 20, 50, 100, 200} 100 10 initial list size value
lincsize {3, 5, 10, 15, 20, 50, 100, 200} 15 20 list size increment
ninit {1, 3, 5, 10, 50, 100, 200, 300, 500} 1 10 initial nr. of constructed solutions
ninc {1, 3, 5, 10, 50, 100, 200, 300, 400} 1 50 increment for the nr. of constr. solutions
tILP {5, 7, 10, 15, 20, 25, 30, 35, 40} 40 20 CPLEX time limit (seconds)
αLB [0.6, 0.99] 0.92 0.75 lower bound for αbsf

αUB [0.6, 0.99] 0.98 0.86 upper bound for αbsf

αred [0.01, 0.1] 0.07 0.07 step size reduction for αbsf

tprop [0.1, 0.8] 0.17 0.23 control parameter for bias reduction

respectively type 2) which differentiate instances based on factors such as time
windows, vehicle load, and battery capacity.

Schneider’s modifications primarily involved integrating charging stations
and adjusting battery capacities to ensure instance feasibility. Specifically,
one charging station was positioned at the depot, with the remaining stations
distributed randomly, yet in such a way that every customer could be reached
using at most two charging stations. The battery capacity was determined as
the maximum of (1) the need to travel 60% of the average route length of the
best-known solution and (2) twice the battery capacity required to traverse the
longest arc from a customer to a charging station. These changes also caused
the creation of new time windows, as the original ones from Solomon became
infeasible due to added constraints related to charging times.

Since Schneider’s instances only provided a single demand type per customer,
we adapted these to fit the requirements of our EVRP-SPD-TW model. This
adaptation involved separating the combined delivery and pickup demands. We
applied the method described by [161] to calculate a ratio ρi = min{xi

yi
, yi
xi
} using

the Cartesian coordinates (xi, yi) of each customer i ∈ V . The delivery demand qi
was then computed by multiplying the original demand δi by ρi, and the pickup
demand pi was obtained by subtracting qi from δi. These modified instances
are available at: https://github.com/manilakbay/EVRP-TW-SPD-Instances,
accessed on (25/04/2024).

4.7.2 Parameter Tuning

We employed the scientific tuning software irace [124] to derive well-working
parameter values for Adapt-Cmsa-Std and Adapt-Cmsa-SetCov. The tuning
process was conducted using six instances, namely r107, r205, rc101, rc104,
rc105, and rc205. The budget of irace—that is, the number of algorithm runs

https://github.com/manilakbay/EVRP-TW-SPD-Instances

78 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

Table 4.2 Computational results for small-sized instances with 5 customers.

Instance CPLEX Adapt-Cmsa-Std Adapt-Cmsa-SetCov
name m best time gap(%) m best avg. time m best avg. time
c101C5 2 2257.75 0.61 0 2 2257.75 2257.75 0.03 2 2257.75 2257.75 0.017
c103C5 1 1175.37 0.58 0 1 1175.37 1175.37 0.77 1 1175.37 1175.37 0.975
c206C5 1 1242.56 0.82 0 1 1242.56 1242.56 0.04 1 1242.56 1242.56 0.006
c208C5 1 1158.48 0.12 0 1 1158.48 1158.48 0.01 1 1158.48 1158.48 0.001
r104C5 2 2136.69 0.03 0 2 2136.69 2136.69 0.10 2 2136.69 2136.69 0.011
r105C5 2 2156.08 0.04 0 2 2156.08 2156.08 0.01 2 2156.08 2156.08 0.001
r202C5 1 1128.78 0.08 0 1 1128.78 1128.78 12.81 1 1128.78 1128.78 0.001
r203C5 1 1179.06 0.04 0 1 1179.06 1179.06 0.32 1 1179.06 1179.06 0.068
rc105C5 2 2233.77 3.10 0 2 2233.77 2233.77 0.13 2 2233.77 2233.77 0.061
rc108C5 2 2253.93 0.27 0 2 2253.93 2253.93 0.01 2 2253.93 2253.93 0.003
rc204C5 1 1176.39 0.36 0 1 1176.39 1176.39 0.10 1 1176.39 1176.39 0.015
rc208C5 1 1167.98 0.17 0 1 1167.98 1167.98 0.74 1 1167.98 1167.98 0.037
average 1.42 1605.57 0.52 1.42 1605.57 1605.57 1.25 1.42 1605.57 1605.57 0.100

allowed for tuning—was set to 2500, and the time limit per instance was fixed
to 900 CPU seconds. Moreover, the precision of irace was fixed to two positions
behind the comma for numerical parameters. Table 4.1 presents a summary of the
parameters, their domains, and the final values selected for the experimentation.

It is worth highlighting that the obtained values for ninit and ninc are
significantly smaller in the context of Adapt-Cmsa-Std when compared to those
for Adapt-Cmsa-SetCov. One possible explanation for this observation is that
the ILP model used within Adapt-Cmsa-Std makes it difficult for the algorithm
to be successful. It seems as if the sub-instances are required to be as small as
possible so that valid solutions can be generated by CPLEX when solving these
sub-instances in a restricted time. This explanation is also supported by the
obtained values for tILP. The limit for the running time of CPLEX for solving the
ILP models of each iteration is about twice as high in the case of Adapt-Cmsa-Std.
Contrary to this, the value of the linitsize parameter determined for Adapt-Cmsa-Std
is much higher than that determined for Adapt-Cmsa-SetCov. Higher linitsize may
be considered as a diversification mechanism, as compensation for dealing with
small sub-instances.

4.7.3 Numerical Results

In this section, we provide a detailed experimental evaluation of the proposed
algorithms and study their performance in various scenarios. To gain a better
understanding of how they perform in different situations, we tested them
on small-sized instances with 5, 10, and 15 customers, as well as larger-sized
instances with 100 customers. The numerical results for the small-sized instances
can be found in Tables 4.2–4.4, while the results for the larger-sized instances are
presented in Tables 4.5–4.7.

To assess the effectiveness of the algorithms in handling small problem

Section 4.7 Computational Experiments 79

Table 4.3 Computational results for small-sized instances with 10 customers.

Instance CPLEX Adapt-Cmsa-Std Adapt-Cmsa-SetCov
name m best time gap(%) m best avg. time m best avg. time
c101C10 3 3388.25 109.23 0 3 3388.25 3388.25 0.40 3 3388.25 3388.554 0.464
c104C10 2 2273.93 3.08 0 2 2273.93 2273.93 0.68 2 2273.93 2273.93 41.311
c202C10 1 1304.06 9.02 0 1 1304.06 1304.06 0.64 1 1304.06 1304.06 0.142
c205C10 2 2228.28 0.12 0 2 2228.28 2228.28 15.40 2 2228.28 2228.28 0.047
r102C10 3 3249.19 0.80 0 3 3249.19 3249.19 25.93 3 3249.19 3249.19 0.012
r103C10 2 2206.12 24.90 0 2 2206.12 2206.12 7.50 2 2206.12 2206.12 31.325
r201C10 1 1241.51 87.11 0 1 1241.51 1241.51 32.32 1 1241.51 1241.51 22.727
r203C10 1 1218.21 2.23 0 1 1218.21 1218.21 20.02 1 1218.21 1218.21 38.672
rc102C10 4 4423.51 0.21 0 4 4423.51 4423.51 0.34 4 4423.51 4423.51 0.020
rc108C10 3 3345.93 5.29 0 3 3345.93 3345.93 20.80 3 3345.93 3345.93 0.019
rc201C10 1 1412.86* 32393.00 16.64 1 1412.86 1412.86 2.80 1 1412.86 1412.86 1.325
rc205C10 2 2325.98 0.18 0 2 2325.98 2325.98 0.19 2 2325.98 2325.98 0.635
average 2.08 2384.82 2719.60 2.08 2384.82 2384.82 10.59 2.08 2384.82 2384.84 11.392

*The result for the CPU time limit of 9 hours.

Table 4.4 Computational results for small-sized instances with 15 customers.

Instance CPLEX Adapt-Cmsa-Std Adapt-Cmsa-SetCov
name m best time gap(%) m best avg. time m best avg. time
c103C15 3 3348.46 7183.45 7.3 3 3348.46 3348.47 68.59 3 3348.46 3348.46 5.348
c106C15 3 3275.13 1.28 0 3 3275.13 3275.13 6.49 3 3275.13 3275.13 46.034
c202C15 2 2383.62 62.26 0 2 2383.62 2383.62 18.12 2 2383.62 2393.392 7.497
c208C15 2 2300.55 4.62 0 2 2300.55 2300.55 1.55 2 2300.55 2300.55 12.231
r102C15 5 5412.78 7183.67 20.6 5 5412.78 5412.78 2.59 5 5412.78 5412.78 0.121
r105C15 4 4336.15 7.60 0 4 4336.15 4336.15 1.47 4 4336.15 4336.15 1.219
r202C15 2 2361.51 7181.88 27.3 2 2358.00 2364.90 32.32 1 1507.32 1677.456 64.285
r209C15 1 1313.24 4396.03 0 1 1313.24 1313.24 17.41 1 1313.24 1313.24 15.623
rc103C15 4 4397.67 349.61 0 4 4397.67 4397.67 0.34 4 4397.67 4397.67 0.302
rc108C15 3 3370.25 1170.76 0 3 3370.25 3370.25 58.85 3 3370.25 3370.25 0.335
rc202C15 2 2394.39 859.43 0 2 2394.39 2394.39 0.68 2 2394.39 2394.39 27.978
rc204C15 1 1403.38 7183.65 28.7 1 1382.22 1385.72 68.09 1 1382.22 1382.546 71.869
average 2.67 3024.76 2965.35 2.67 3022.71 3023.57 23.04 2.58 2951.82 2966.83 21.070

instances, we compared Adapt-Cmsa-Std and Adapt-Cmsa-SetCov with the
application of CPLEX to the full-size instances. However, since CPLEX cannot
handle larger problem instances, we used our probabilistic Clarke-Wright Savings
Algorithm (pC&W) and our probabilistic sequential insertion algorithm (pSI)
as benchmarks for those scenarios. We ensured that the parameters for
both algorithms were set in the same way as for their application within
Adapt-Cmsa-Std. Finally, we imposed a computation time limit of 150 CPU
seconds for small problem instances and 900 CPU seconds for larger problem
instances. Each algorithm was applied 10 times to each problem instance. Note
also that, to compute objective function values, we set the cost of each vehicle
used in a solution to 1000, that is, M = 1000.

The first column of each result table presents the instance names, while the
columns with heading ’m’ show the number of vehicles used in the respective
solutions. For algorithms Adapt-Cmsa-Std, Adapt-Cmsa-SetCov, pC&W, and pSI,
the columns labeled ’best’ display the best objective function values among the
solutions obtained after ten runs. Additionally, columns with the heading ’avg.’

80 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

show the average objective function values over the best solutions of each of the
10 runs. Moreover, the ’time’ columns show the computation time (in seconds)
of CPLEX and the average computation times of both Adapt-CMSA variants to
generate the best solutions in each run. The time limit for CPLEX was set to
two hours. The ’gap(%)’ columns provide the percentage difference between the
optimal solutions obtained and the best lower bounds achieved by CPLEX. It
is worth noting that if the gap value is zero, CPLEX has found an optimal solution.

Based on the obtained results, the following observations can be made. For
small-sized problem instances, CPLEX optimally solved 31 instances. However,
for the remaining 5 instances (rc201C10, c103C15, r102C15, r202C15, rc204C15),
it only provided feasible solutions. It is worth noting that these solutions
were the best found within 2 hours of computation time, except for rc201C10,
which required 9 hours of running time to derive the presented solution. On
the other hand, both versions of Adapt-CMSA found optimal solutions, as
proven by CPLEX. In the case of the r202C15 instance, Adapt-Cmsa-Std and
Adapt-Cmsa-SetCov were even able to improve over the solution obtained by
CPLEX by 0.15% and 36.17%, respectively. Furthermore, Adapt-Cmsa-Std and
Adapt-Cmsa-SetCov could improve the solution obtained by CPLEX by 1.51%
in the case of the rc204C15 instance. Moreover, both variants of Adapt-CMSA
require considerably less computation time than CPLEX. More specifically, while
CPLEX found its best solutions on average in 2965.35 seconds, Adapt-Cmsa-Std
was able to do so in 23.04 seconds, and Adapt-Cmsa-SetCov was able to do so in
just 21.07 seconds.

The numerical results for the large-sized instances demonstrate that both
variants of Adapt-CMSA are superior to pC&W and pSI in terms of both
best-performance and average-performance. Although the average computation
time required by Adapt-Cmsa-Std and Adapt-Cmsa-SetCov was higher than that
required by pC&W and pSI, this was because pC&W and pSI were not able
to improve their best-found solutions any further, after some time, while the
Adapt-CMSA algorithms were still able to explore the search space in order find
even better solutions. It is also worth noting that solutions found by both versions
of Adapt-CMSA utilize fewer vehicles than those found by pC&W and pSI.

In addition, the following observations can be made concerning the
comparison of the performances of Adapt-Cmsa-Std and Adapt-Cmsa-SetCov.
First, Adapt-Cmsa-SetCov significantly outperforms Adapt-Cmsa-Std in the
case of random and random-clustered instances; see below for statistical
tests. However, from the results presented in Table 4.5, it seems difficult

Section 4.7 Computational Experiments 81

to come to a definite conclusion in the context of clustered-type instances.
Adapt-Cmsa-SetCov seems to provide a slightly better performance both in
terms of best and average results. However, in order to back this claim up in
a scientifically well-founded way, we also present critical difference (CD) plots as
a statistical tool for assisting in the evaluation of the obtained results. In particular,
we used the scmamp tool [31] in order to generate the CD plots. In these plots, each
algorithm variant is positioned along the horizontal axis according to its average
ranking for the considered subset of problem instances. Algorithm variants
whose performances fall below the critical difference threshold, computed with
a significance level of 0.05, are considered statistically equivalent, as indicated
by the horizontal bars connecting their respective markers. According to
Figure 4.4, there is not a significant difference between the performance of
Adapt-Cmsa-SetCov and Adapt-Cmsa-Std on clustered instances, while both
outperform the probabilistic implementations of the construction heuristics.

In summary, both variants of Adapt-CMSA show a very satisfactory
performance both in the context of small and large problem instances. Moreover,
Adapt-Cmsa-SetCov shows superiority over Adapt-Cmsa-Std, particularly in the
context of random and random-clustered instances. These claims are backed up
in a statistical way by means of the graphics in Figure 4.4. However, we also
observed that the performance of Adapt-Cmsa-SetCov decreases in the context
of instances with a long scheduling horizon (C2* R2* and RC2*), see Figure 4.4f.
Solutions for those instances include fewer routes and hence more customers per
route when compared to the solutions for the instances with short scheduling
horizons (C1* R1* and RC1*).

82
C

h
a
p
t
e
r

4
A

d
a
p
t
-
C

M
S
A

f
o
r

E
V

R
P

-
T

W
-
S
P

D

Table 4.5 Computational results for large-sized clustered instances.

Instance pC&W pSI Adapt-Cmsa-Std Adapt-Cmsa-SetCov
name m best avg. time m best avg. time m best avg. time m best avg. time
c101 21 22854.30 23028.50 406.70 13 14788.00 15574.68 513.05 12 13043.40 13043.42 385.13 12 13057.80 13063.54 292.56
c102 19 20764.20 21008.31 350.05 13 14664.70 15366.11 397.20 11 12056.80 12920.23 560.77 11 12073.10 12944.34 468.81
c103 16 17548.30 17622.53 483.74 12 13641.10 14363.90 491.02 11 12004.70 12026.90 452.13 10 11134.90 11917.80 718.09
c104 13 14388.30 14428.41 500.50 11 12404.70 13195.66 415.63 10 10872.80 11353.78 629.96 10 10870.70 10876.49 608.43
c105 19 20679.90 21608.72 588.59 13 14622.90 14928.32 346.88 11 12023.80 12341.60 562.10 11 12034.10 12068.86 582.74
c106 18 19797.20 20626.70 386.43 13 14713.90 14770.94 349.02 11 12013.10 12438.06 652.00 11 12025.70 12059.29 434.80
c107 18 19842.00 20594.06 459.03 12 13685.10 14631.25 339.14 11 12006.40 12023.97 538.41 11 12026.70 12046.38 393.01
c108 16 17589.20 18105.10 402.57 13 14617.00 14693.32 472.70 11 11994.70 12016.10 579.51 10 11025.80 11822.60 556.58
c109 14 15520.10 16415.00 454.81 12 13534.10 13628.65 353.78 10 11042.20 11885.30 714.89 10 10941.00 11180.77 746.17
c201 10 11333.60 12051.53 448.41 5 6081.90 6184.08 506.19 4 4629.95 4629.95 37.59 4 4678.37 4703.43 390.96
c202 8 9256.17 9509.34 490.70 5 6136.20 6232.74 526.69 4 4629.95 4629.95 273.58 4 4664.26 4706.94 394.84
c203 7 8188.19 8245.88 308.89 5 6247.22 6352.57 573.05 4 4632.27 4690.06 740.49 4 4641.45 4734.31 497.60
c204 5 6159.23 6200.12 416.22 4 5314.79 5354.18 556.74 4 4633.08 4665.78 801.76 4 4660.64 4737.07 716.94
c205 8 9209.37 9472.50 412.12 5 6161.46 6277.49 527.66 4 4629.95 4629.95 76.87 4 4629.95 4629.95 125.43
c206 6 7234.69 7989.99 460.46 5 6269.37 6305.64 405.68 4 4629.95 4629.95 213.28 4 4629.95 4629.95 203.04
c207 7 8062.15 8134.61 397.72 5 6278.60 6329.67 486.32 4 4629.95 4629.95 255.85 4 4629.95 4635.27 260.34
c208 6 7167.66 7674.06 341.68 5 6225.26 6282.06 458.79 4 4629.95 4629.95 284.78 4 4629.95 4629.95 261.72
average 12.41 13858.50 14277.37 429.92 8.88 10316.84 10615.96 454.09 7.65 8476.64 8657.94 456.42 7.53 8373.78 8552.17 450.12

S
e
c
t
i
o
n

4
.7

C
o
m

p
u
t
a
t
i
o
n
a
l
E

x
p
e
r
i
m

e
n
t
s

83

Table 4.6 Computational results for large-sized random instances.

Instance pC&W pSI Adapt-Cmsa-Std Adapt-Cmsa-SetCov
name m best avg. time m best avg. time m best avg. time m best avg. time
r101 28 30091.80 30543.42 586.01 21 23068.50 23707.34 389.94 18 19633.80 19939.79 653.66 18 19640.60 19661.15 678.64
r102 23 24946.40 25955.63 227.18 19 20905.90 21536.14 310.36 17 18470.80 19292.16 707.40 16 17474.10 17696.35 798.71
r103 19 20733.40 20958.09 397.28 17 18714.90 18773.25 410.8 15 16296.50 17050.75 711.23 14 15280.30 15306.17 639.83
r104 15 16457.60 16490.35 401.43 15 16583.40 16615.25 447.08 13 14141.10 14255.53 616.85 12 13084.30 13111.31 766.15
r105 23 24903.20 25040.80 398.35 17 18882.40 19784.06 727.33 15 16389.20 17212.83 680.24 14 15471.30 16346.10 611.98
r106 20 21799.00 22295.65 407.22 16 17824.50 18599.83 545.85 15 16292.00 16836.67 701.75 14 15314.80 15441.68 746.22
r107 16 17579.50 18458.44 459.73 15 16617.60 16678.79 278.26 13 14168.90 15016.67 680.99 12 13140.10 13669.50 783.82
r108 14 15467.70 15979.98 445.48 14 15514.90 15546.85 479.26 12 13079.80 13531.30 667.03 11 12073.70 12998.17 742.49
r109 18 19684.40 19907.84 575.13 16 17690.00 17740.59 445.28 14 15237.30 15674.51 759.64 13 14220.80 14468.12 744.57
r110 15 16512.80 17014.28 514.35 15 16540.20 16610.01 532.43 13 14170.20 14905.73 528.09 12 13114.30 13544.76 770.70
r111 15 16528.30 17349.54 433.79 15 16595.30 16859.04 387.64 12 13144.20 14584.19 696.71 12 13148.80 13965.98 716.12
r112 14 15452.40 15476.60 456.40 14 15498.00 16239.69 417.67 12 13155.60 14053.56 471.58 12 13044.10 13078.65 850.31
r201 16 17540.00 17576.79 600.20 4 5786.71 5823.23 570.9 4 5192.33 5216.92 720.44 4 5276.75 5363.04 187.38
r202 10 11394.70 12692.40 369.71 4 5504.61 5585.48 447.33 3 4250.70 5020.88 688.65 3 4193.33 4940.22 876.26
r203 8 9207.85 9229.98 442.55 3 4390.30 4539.07 530.06 3 3942.74 4352.52 868.05 3 3985.02 4060.18 822.50
r204 4 5031.33 5064.99 522.23 3 4194.11 4252.43 341.83 3 3820.72 3854.31 787.19 3 3793.76 3827.81 876.38
r205 11 12426.50 13326.29 473.80 3 4584.97 4620.48 306.67 3 4055.28 4124.64 731.94 3 4065.06 4126.45 360.47
r206 9 10252.10 10691.23 418.76 3 4419.12 4513.97 591.64 3 3978.10 4065.05 756.40 3 3991.44 4047.16 784.07
r207 6 7124.47 7663.63 329.29 3 4245.71 4329.11 466.8 3 3878.91 3910.07 659.85 3 3881.97 3918.29 878.20
r208 3 4104.27 4912.11 398.70 3 4185.27 4226.41 427.82 3 3791.27 3829.39 849.73 3 3732.80 3776.20 895.79
r209 8 9304.02 9864.70 498.81 3 4413.41 4456.23 554.27 3 3975.64 4015.90 665.83 3 3933.55 3977.24 765.83
r210 7 8234.21 9104.97 500.99 3 4415.78 4450.61 463.92 3 3920.37 3984.78 755.82 3 3926.79 3961.42 740.36
r211 6 7083.79 7224.86 548.55 3 4204.05 4262.28 408.61 3 3814.42 3893.38 825.95 3 3824.47 3857.62 799.45
average 13.39 14863.47 15340.11 452.43 9.96 11512.16 11728.27 455.73 8.83 9947.82 10374.85 703.70 8.43 9548.35 9788.85 732.01

84
C

h
a
p
t
e
r

4
A

d
a
p
t
-
C

M
S
A

f
o
r

E
V

R
P

-
T

W
-
S
P

D

Table 4.7 Computational results for large-sized random clustered instances.

Instance pC&W pSI Adapt-Cmsa-Std Adapt-Cmsa-SetCov
name m best avg. time m best avg. time m best avg. time m best avg. time
rc101 24 26367.50 26696.36 347.88 20 22358.30 22413.20 522.92 16 17667.70 18513.67 718.11 16 17696.20 17741.63 629.24
rc102 21 23187.80 24083.73 599.41 19 21221.00 21295.40 493.34 16 17576.80 17909.78 558.28 15 16558.20 16628.46 601.70
rc103 18 19909.70 20476.46 470.41 17 19012.30 19070.74 397.58 14 15366.90 16245.06 764.45 13 14358.20 14999.16 691.74
rc104 15 16733.40 16778.44 399.26 15 16853.80 16937.69 511.23 13 14270.50 14315.17 637.05 12 13222.50 13261.65 698.43
rc105 19 21037.60 21959.83 386.88 18 20123.80 20307.09 568.26 15 16500.90 16933.42 652.30 14 15470.70 15820.90 639.84
rc106 19 20969.80 21133.97 553.93 18 20083.80 20127.15 443.43 14 15432.50 16069.05 632.16 13 14448.30 15249.17 578.17
rc107 16 17764.50 17918.18 499.62 15 16903.20 17878.81 442.24 13 14313.40 14437.31 769.62 12 13276.50 13386.51 738.62
rc108 15 16743.00 16781.76 475.26 15 16891.30 17165.01 468.15 12 13226.00 13891.71 620.56 12 13184.70 13214.50 717.49
rc201 15 16895.90 18148.54 319.12 5 7137.50 7191.55 359.46 4 5504.77 5819.06 703.93 4 5617.75 5786.48 322.85
rc202 12 13635.30 13899.58 476.49 4 5871.98 5941.11 495.09 4 5324.64 5442.41 593.36 4 5436.63 5541.80 196.92
rc203 8 9387.70 10210.36 494.81 4 5677.24 5708.69 452.79 4 5109.88 5177.69 644.21 4 5086.44 5159.15 757.20
rc204 5 6211.87 6441.15 433.68 4 5471.72 5545.00 540.05 3 4036.49 4525.03 745.44 3 3962.88 4252.28 899.13
rc205 12 13603.40 13790.39 408.58 4 5776.53 5943.19 470.09 4 5260.14 5338.50 607.45 4 5285.41 5375.54 314.93
rc206 11 12707.00 13467.00 534.29 4 5805.89 5847.72 586.12 4 5234.55 5289.90 670.19 4 5210.57 5275.72 562.86
rc207 8 9394.32 9782.01 394.18 4 5624.55 5648.26 567.96 3 4150.60 4930.81 694.79 3 4197.81 4650.01 864.38
rc208 6 7218.95 7299.79 520.74 3 4482.34 5381.34 428.75 3 3977.50 4046.09 762.57 3 3920.17 4002.79 750.41
average 14.00 15735.48 16179.22 457.16 10.56 12455.95 12650.12 484.22 8.88 10184.58 10555.29 673.40 8.50 9808.31 10021.61 622.74

Section 4.7 Computational Experiments 85

1 2 3 4

(a)

1 2 3 4

(b)

1 2 3 4

(c)

1 2 3 4

(d)

1 2 3 4

(e)

1 2 3 4

(f)

Fig. 4.4 Critical difference (CD) plots concerning the results for large instances.
The results in (a) consider all instances together, while the subsequent plots
display the results for subsets of the set of large instances: (b) clustered instances;
(c) random instances; (d) random-clustered instances; (e) instances r1*, c1* and
rc1*; (f) instances r2*, c2* and rc2*.

4.7.4 Performance Difference Between the two EVRP-TW-SPD ILP Models

Finally, we want to show why Adapt-Cmsa-SetCov outperforms Adapt-Cmsa-Std.
For this purpose, we again generate sub-instances of different sizes, translate
them both into models ILPEVRP

std and ILPEVRP
setcov , and solve them with CPLEX.

This was done for the small problem instance r202C15 with 15 customers and
for the large problem instance c101 with 100 customers. In particular, we
generated 10 sub-instances by probabilistically constructing 100, respectively
500, solutions (small problem instance) and 50, respectively 100, solutions (large
problem instance) and by merging their solution components in order to obtain
sub-instances. Figure 4.5 shows radar charts that present the obtained results
in the four different cases. Each radar plot provides four different measures,
averaged over 10 sub-instances: (1) the number of variables in the models of the
sub-instances (top), (2) the relative MIP gap after termination of CPLEX (right),
(3) the computation time required by CPLEX (bottom), and (4) the absolute
improvement when comparing the result of solving the sub-instance with the

86 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

6600

100

20

 100

vars

improve-
ment

time

gap

(a) Instance r202C15 (15 customers), 100
solutions

6600

100

20

 100

vars

improve-
ment

time

gap

(b) Instance r202C15 (15 customers), 500
solutions

128100

800

20

 100

vars

improve-
ment

time

gap

(c) Instance c101 (100 customers), 50
solutions

128100

800

20

 100

vars

improve-
ment

time

gap

(d) Instance c101 (100 customers), 100
solutions

Fig. 4.5 Radar charts concerning the comparison of the two ILP models for the
EVRP-TW-SPD problem applied to a small problem instance with 15 customers
(see (a) and (b)), and to a large problem instance with 100 customers (see (c) and
(d)).

best individual solution that was used to generate the sub-instance. The time
limit for CPLEX was set to 20 CPU seconds in all cases. Note that a model is
promising if the improvement is large, and the number of variables, the relative
MIP gap and the required time are low. The radar charts concerning the large
problem instance (see Figures 4.5c and 4.5d) indicate that this is the case for model
ILPEVRP

setcov , while the opposite is actually the case for model ILPEVRP
std . Especially

the case of the small problem instance considering the lower number of solution
constructions (see Figure 4.5a) indicates that sub-instances must not be too small.
Otherwise, there might not many improvements to be found in the context of
model ILPEVRP

setcov .

Section 4.8 Analyzing Algorithm Behaviour Using STNWeb 87

Start

End

Best

LNS

CMSA

Shared

Fig. 4.6 Example of an STN graphic produced by STNWeb.

4.8 Analyzing Algorithm Behaviour Using STNWeb

This section presents an analysis of the algorithmic behaviour of
Adapt-Cmsa-Std and Adapt-Cmsa-SetCov using Search Trajectory Networks

(STNs) [140]. STNs are visualizations of graph objects resulting from repeated
applications of optimization algorithms such as metaheuristics [135] to instances
of optimization problems. Their purpose is to provide researchers with a tool that
allows them to gain a deeper understanding of algorithm behavior. A web-based
tool, called STNWeb, for the generation of STN graphics, was presented in [35].

Before delving into the analysis of our algorithm variants we first introduce
the essential components of STN graphics. Figure 4.6 provides an example of
an STN graphic, demonstrating the performance of two different optimization
algorithms for one instance of an optimization problem.

The graphic displays the trajectories resulting from 10 runs of each algorithm.
Each dot (node) of the STN represents, in general terms, a chunk of the search
space containing at least one solution. The graphical elements in such an STN
have the following meaning:

1. Different algorithms’ trajectories are depicted in distinct colors, detailed in
the legend.

2. Starting points of trajectories are marked with yellow squares.
3. Trajectory endpoints are represented as dark grey triangles, respectively by

red dots. While red dots indicate endpoints corresponding to best-found
solutions, dark grey triangles correspond to endpoints of worse quality.

4. Pale grey dots represent solutions (resp. chunks of the search space) shared

88 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

across trajectories of at least two different algorithms.
5. Vertex or dot size indicates the number of algorithm trajectories passing

through the vertex: larger vertices indicate more traversing algorithm
trajectories.

The graphic in Figure 4.6 shows that five trajectories of LNS (pink trajectories),
as well as five trajectories of CMSA (green trajectories), are attracted by the same
area of the search space (marked by pale grey vertices). In contrast, trajectory
endpoints are rarely shared by different trajectories. This happens only in the
case of LNS (see the large dark grey triangle).

Remember that both Adapt-Cmsa-Std and Adapt-Cmsa-SetCov were applied
10 times for 900 CPU seconds to all problem instances. First, we present our
findings on a specific problem instance called c201, which is an instance with
100 customers in which customer locations are clustered. STNWeb was used to
produce the two STN graphics shown in Figure 4.7. The one in Figure 4.7a shows
the original algorithm trajectories, that is, every node corresponds to a solution
to the problem. In contrast, the second one (from Figure 4.7b) presents the same
STN after search space partitioning. The graphic in Figure 4.7a shows that all
10 runs of Adapt-Cmsa-Std find the best-found solution (large red dot). Further,
even though the trajectories of Adapt-Cmsa-SetCov show some overlap, each one
of them ends up in solutions of worse quality. Moreover, it is not clear whether or
not they end up close to the best-found solution (red dot). The STN after search
space partitioning (Figure 4.7b), in contrast, clearly shows that all 10 trajectories
of Adapt-Cmsa-SetCov are also attracted by the same area of the search space
as the 10 trajectories of Adapt-Cmsa-Std. However, the algorithm does not quite
succeed in finding the best solution in that area.

The second example, consisting of the complete STN in Figure 4.8a and
the STN after search space partitioning in Figure 4.8b, shows the case of a
random-clustered instance (rc106) for which Adapt-Cmsa-SetCov works better
than Adapt-Cmsa-Std. While the complete STN does not show any trajectory
overlaps, the STN after search space partitioning clearly shows that the
Adapt-Cmsa-SetCov trajectories end up in the same area of the search space, while
the Adapt-Cmsa-Std trajectories have some overlaps with the Adapt-Cmsa-SetCov
trajectories, especially in early, resp. intermediate stages, of the search process.
However, they simply stop earlier, before reaching the area with the best solutions.

Section 4.9 Application of Adapt-Cmsa-SetCov to the EVRP-SPD 89

(a) Complete STN (b) STN after partitioning

Fig. 4.7 STN graphics concerning the EVRP-TW-SPD. (a) and (b) show 10 runs of
Adapt-Cmsa-Std and Adapt-Cmsa-SetCov for instance c201. While (a) shows the
complete STN, (b) shows the same STN after search space partitioning.

(a) Complete STN (b) STN after partitioning

Fig. 4.8 STN graphics concerning the EVRP-TW-SPD. (a) and (b) show 10 runs
of Adapt-Cmsa-Std and Adapt-Cmsa-SetCov for instance rc106. While (a) shows
the complete STN, (b) shows the same STN after search space partitioning.

4.9 Application of Adapt-Cmsa-SetCov to the EVRP-SPD

In an attempt to compare our algorithm with recent work from the related
literature, the performance of Adapt-Cmsa-SetCov is tested against 12 different
variants of variable neighborhood search (VNS) algorithms from [194]. The
EVRP problem considered in [194], denoted by EVRP-SPD, is a reduced version
of the EVRP-TW-SPD. In particular, the two problems differ in the following
aspects: (1) the objective function of the EVRP-SPD minimizes the total distance

90 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

traveled by the electric vehicles; (2) TW constraints are not considered in the
EVRP-SPD; and (3) the batteries of the electric vehicles are fully charged when
they visit a charging station. Considering these differences, the MILP model of
the EVRP-SPD is formulated as follows. Note that this MILP model, which is a
two-index model, is equivalent to the three-index model presented in [194].

Min

∑
i∈V ′

0 ,j∈V
′
N+1

dijxij (4.26)

∑
j∈V ′

N+1,i ̸=j

xij = 1 ∀i ∈ V (4.27)

∑
j∈V ′

N+1,i ̸=j

xij ≤ 1 ∀i ∈ F
′ (4.28)

∑
i∈V ′

0 ,i ̸=j

xij −
∑

i∈V ′
N+1,i ̸=j

xji = 0 ∀j ∈ V
′ (4.29)

τi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ V0, j ∈ V
′
N+1, i ̸= j (4.30)

τi + tijxij + g(Q− yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F
′
,∀j ∈ V

′
N+1, i ̸= j (4.31)

0 ≤ u0j ≤ C ∀j ∈ V
′
N+1 (4.32)

v0j = 0 ∀j ∈ V
′
N+1 (4.33)∑

i∈V ′
0 ,i ̸=j

uij −
∑

i∈V ′
N+1,i ̸=j

uji = qj ∀j ∈ V
′ (4.34)

∑
i∈V ′

N+1,i ̸=j

vji −
∑

i∈V ′
0 ,i ̸=j

vij = pj ∀j ∈ V
′ (4.35)

uij + vij ≤ Cxij ∀i ∈ V
′
0 , j ∈ V

′
N+1, i ̸= j (4.36)

0 ≤ yj ≤ yi − (hdij)xij +Q(1− xij) ∀i ∈ V,∀j ∈ V
′
N+1, i ̸= j (4.37)

0 ≤ yj ≤ Yi − (hdij)xij +Q(1− xij) ∀i ∈ F
′
0,∀j ∈ V

′
N+1, i ̸= j (4.38)

yi ≤ Yi ≤ Q ∀i ∈ F
′
0 (4.39)

xij ∈ {0, 1} ∀i ∈ V
′
0 , j ∈ V

′
N+1, i ̸= j (4.40)

The objective function (Eq. 4.26) minimizes the total distance traveled.
Constraints (4.27) and (4.28) control the connectivity of customers and charging
stations, while constraints (4.29) are flow balance constraints. Constraints (4.30)
and (4.31) calculate arrival and departure times considering service and battery
charging times. Note that constraint (4.31) enforces vehicles to be charged up
to the full battery level when they visit a charging station, rather than allowing
partial recharging. Constraints (4.32)-(4.36) guarantee that the delivery and

Section 4.9 Application of Adapt-Cmsa-SetCov to the EVRP-SPD 91

pickup demands of customers are satisfied simultaneously. Finally, constraints
(4.37)-(4.39) calculate the battery states.

Since Adapt-Cmsa-SetCov was developed for an extended (more complex)
version of the problem, the application, resp. adaptation, to the EVRP-SPD
is rather straightforward. Since the reduced problem does not contain TW
constraints, the feasibility check of each solution is made only on the basis of
the load capacity and battery constraints. Additionally, as also described in
the mathematical formulation of the problem, electric vehicles are assumed to
become fully charged when they visit a charging station. In fact, note that the
battery charging time is only relevant for the TW constraints. Therefore, the
removal of the TW constraint turns the battery charging time into an irrelevant
aspect.

We apply Adapt-Cmsa-SetCov to the same EVRP-SPD problem instances as
those used in [194]. They were derived from the EVRP-TW instances introduced
by [166]. In order to modify them to the EVRP-SPD, first, the TW data was
removed. Then, the original demands were split into a delivery and a pickup
demand using precisely the same procedure as explained in Section 4.7.1. In total,
this resulted in 36 small-sized problem instances with 5, 10, and 15 customers,
respectively, and in 34 large-sized problem instances with 100 customers.

Adapt-Cmsa-SetCov was applied six times (in order to be comparable to
the original publication [194]) to all problem instances. Moreover, we applied
CPLEX exactly once to the two-index MILP outlined above. The computation
time limit was set to 2 CPU hours for CPLEX and to 2400 CPU seconds for
Adapt-Cmsa-SetCov, which is the same time limit as for the VNS variants
from [194]. Note also that, for the application of Adapt-Cmsa-SetCov, in order
to avoid another costly parameter tuning process, we used the same parameter
values as for the application to the EVRP-TW-SPD.

Tables 4.8–4.10 and Table 4.11 present comparative results on small and
large-sized EVRP-SPD problem instances, respectively. Hereby, Tables 4.8–4.10
contain results obtained by solving the two different MILP models of the problem
for small-sized instances. These results are provided in the columns with
heading ’CPLEX1’ and ’CPLEX2’. More specifically, results in column ’CPLEX1’
(three-index model) were taken from [194], while results in column ’CPLEX2’
were obtained by solving the two-index MILP model presented in this study.
Moreover, column ’VNS’ presents the best results among all VNS variants.

92 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

Table 4.8 Comparison for small-sized EVRP-SPD instances with 5 customers.

Instance CPLEX1 CPLEX2 VNS Adapt-Cmsa-SetCov
name best time gap(%) best time gap(%) best time best avg. time
c101C5 208.90 1.35 0 208.90 0.30 0 208.90 0.02 208.90 208.90 0.0003
c103C5 154.50 1.20 0 154.50 0.21 0 154.50 0.11 154.50 154.50 0.0002
c206C5 201.55 1.92 0 201.55 0.27 0 201.55 0.02 201.55 201.55 0.0004
c208C5 158.48 1.34 0 158.48 0.15 0 158.48 0.05 158.48 158.48 0.0004
r104C5 136.69 1.75 0 136.69 0.14 0 136.69 0.00 136.69 136.69 0.0008
r105C5 139.48 1.23 0 139.48 0.10 0 139.48 0.00 139.48 139.48 0.0003
r202C5 128.78 1.29 0 128.78 0.10 0 128.78 0.23 128.78 128.78 0.0003
r203C5 179.06 1.37 0 179.06 0.10 0 179.06 0.03 179.06 179.06 0.0003
rc105C5 208.43 1.89 0 208.43 1.70 0 208.43 0.13 208.43 208.43 0.001
rc108C5 211.53 1.36 0 211.53 0.10 0 211.53 0.16 211.53 211.53 0.0006
rc204C5 176.39 2.54 0 176.39 0.33 0 176.39 0.20 176.39 176.39 0.0377
rc208C5 167.98 2.29 0 167.98 0.11 0 167.98 0.02 167.98 167.98 0.0003
average 172.65 1.63 172.65 0.30 172.65 0.08 172.65 172.65 0.0036

Table 4.9 Comparison for small-sized EVRP-SPD instances with 10 customers.

Instance CPLEX1 CPLEX2 VNS Adapt-Cmsa-SetCov
name best time gap(%) best time gap(%) best time best avg. time
c101C10 260.01 4.85 0 260.01 12.46 0 260.01 3.13 260.01 260.01 0.0057
c104C10 239.13 3.39 0 239.13 0.56 0 239.13 1.53 239.13 239.13 0.0032
c202C10 214.96 4.12 0 214.96 2.12 0 214.96 3.05 214.96 214.96 0.0038
c205C10 224.78 4.45 0 224.78 2.10 0 224.78 0.36 224.78 224.78 0.9274
r102C10 220.97 19.01 0 220.97 5.10 0 220.97 0.72 220.97 220.97 14.4919
r103C10 160.41 10.35 0 160.41 5.24 0 160.41 2.55 160.41 160.41 0.0012
r201C10 183.11 2.36 0 183.11 5.20 0 183.11 2.30 183.11 183.11 0.0049
r203C10 214.90 5.43 0 214.90 1.62 0 214.90 1.86 214.90 214.90 0.0044
rc102C10 346.70 4.03 0 346.70 2.11 0 346.70 1.65 346.70 346.70 0.0063
rc108C10 317.96 6.00 0 317.96 7.11 0 317.96 3.30 317.96 317.96 0.0029
rc201C10 246.99 5.26 0 246.99 10.61 0 246.99 9.78 246.99 246.99 0.0029
rc205C10 306.82 4.14 0 306.82 1.47 0 306.82 0.79 306.82 306.82 0.0039
average 244.73 6.12 244.73 4.64 244.73 2.59 244.73 244.73 1.29

Table 4.11, on the other hand, compares the performance of Adapt-Cmsa-SetCov
with Reduced VNS and General VNS, which are reported to provide the best
performance for large-sized problem instances. Note also that the VNS results
given in these tables are taken from the respective publication.

The tables displaying the results are organized as follows. In the first column,
the names of the problem instances are listed. The ’best’ columns indicate the
objective function values of the best solutions obtained from six independent
runs. Additionally, columns with the heading ’avg.’ show the average objective
function values of the best solutions found from the six runs. It is important to
note that these objective function values represent the total distance traveled by
the vehicles used in the respective solutions. The remaining columns with the
heading ’time’ display the computation time (measured in seconds) of CPLEX, as
well as the average computation times of VNS and Adapt-Cmsa-SetCov to obtain
the best solutions in each run.

One can make the following observations. CPLEX managed to optimally
solve every small-sized problem instance (with 5, 10 and 15 customers), with

Section 4.9 Application of Adapt-Cmsa-SetCov to the EVRP-SPD 93

Table 4.10 Comparison for small-sized EVRP-SPD instances with 15 customers.

Instance CPLEX1 CPLEX2 VNS Adapt-Cmsa-SetCov
name best time gap(%) best time gap(%) best time best avg. time
c103C15 255.68 30.81 0 255.68 14.88 0 255.68 20.29 255.68 255.68 67.0909
c106C15 223.84 142.65 0 223.84 15.62 0 223.84 6.36 223.84 223.84 0.0214
c202C15 314.62 373.20 0 314.62 35.95 0 314.62 40.32 314.62 314.62 0.0345
c208C15 262.50 244.40 0 262.50 22.41 0 262.50 2.84 262.50 262.50 70.4837
r102C15 258.59 681.12 0 258.59 110.70 0 258.59 23.27 258.59 258.59 0.0846
r105C15 231.96 119.88 0 231.96 15.31 0 231.96 10.78 231.96 231.96 8.3377
r202C15 275.04 64.31 0 275.04 177.24 0 275.04 13.64 275.04 275.04 0.021
r209C15 239.70 49.60 0 239.70 6.15 0 239.70 9.22 239.70 239.70 3.8396
rc103C15 291.07 52.73 0 291.07 11.31 0 291.07 9.73 291.07 291.07 0.0462
rc108C15 330.01 1197.23 0 330.01 50.98 0 330.01 5.76 330.01 330.01 0.0137
rc202C15 295.60 87.00 0 295.60 22.05 0 295.60 50.44 295.60 295.60 0.0302
rc204C15 285.13 29.20 0 285.13 57.57 0 285.13 14.64 285.13 285.13 0.3149
average 271.98 256.01 271.98 45.01 271.98 17.27 271.98 271.98 12.53

both the MILP model from [194] and the one presented in this chapter. However,
CPLEX2 showed this performance with considerably less computation time than
CPLEX1. More specifically, CPLEX1 and CPLEX2 found their best solutions
on average in 87.94 and 16.65 seconds, respectively. It can be deduced that
our formulation is more efficient than the one employed in [194]. However,
a definite conclusion can only be reached by solving both models under the
same computational conditions. Concerning the heuristic approaches, VNS
and Adapt-Cmsa-SetCov were able to find all the optimal solutions provided
by CPLEX. However, Adapt-Cmsa-SetCov presented this performance requiring
less computation time than VNS. More specifically, VNS could derive its best
solutions on average in 6.65 seconds, while Adapt-Cmsa-SetCov could do so in
just 4.61 seconds.

Regarding the large-sized EVRP-SPD instances, Adapt-Cmsa-SetCov
significantly outperforms the best VNS variants in terms of best and average
results. Note that these variants are reported as the top two variants among
all VNS variants tested in the respective publication. In addition to the
results presented in Table 4.11, the superiority of Adapt-Cmsa-SetCov over
Reduced-VNS and General-VNS is also seen in the CD plot of Figure 4.9.
Note also that Adapt-Cmsa-SetCov showed this performance using considerably
less computation time than both VNS variants. It is remarkable that this
performance is obtained without having Adapt-Cmsa-SetCov specifically tuned
for the EVRP-SPD.

94 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

Table 4.11 Comparison for large-sized EVRP-SPD instances with 100 customers.

Instance Reduced VNS - Cyclic General VNS - Cyclic Adapt-Cmsa-SetCov
name best avg. time best avg. time best avg. time
c101 734.89 775.05 2185 718.96 753.76 2402.7 693.50 695.25 1079.17
c201 567.14 606.36 2067 563.09 598.29 2244.5 576.52 578.86 1142.17
c204 585.63 613.19 2405 579.59 609.54 2356.9 576.52 577.45 1613.66
c206 569.2 606.71 2288 597.46 619.09 2155.3 576.52 579.95 1259.32
c207 567.76 606.47 2513 599.72 620.50 1793.2 576.79 584.72 1588.23
r101 823.51 884.72 2305 843.74 866.86 2395.3 762.73 770.90 831.77
r104 880.77 923.77 1222 888.24 918.66 2334.8 758.26 773.21 679.35
r106 864.58 899.18 1812 886.88 915.67 2290.6 766.06 775.98 773.49
r107 856.46 907.39 2347 864.49 927.58 2363.4 755.29 771.88 1059.22
r108 842.01 887.50 2291 857.77 885.94 2188.1 760.38 771.47 860.67
r109 865.47 895.36 2272 854.32 901.75 1848.1 752.02 764.97 1350.00
r110 880.77 922.45 1235 857.25 911.79 1834.6 759.76 771.24 864.63
r111 879.5 904.20 1596 862 905.00 2333.7 761.32 775.02 724.47
r112 876.19 903.22 1637 854.32 892.78 1924.6 761.28 776.42 729.53
r201 690.73 719.61 2133 713.9 736.72 1687.4 650.73 653.18 1107.97
r202 690.38 707.28 2247 711.74 740.64 1791.3 643.27 650.63 1055.45
r203 708.41 719.08 1964 713.9 740.60 2239.7 646.45 652.14 891.73
r204 698.59 707.81 1477 708.64 730.32 2282.2 643.85 649.09 990.88
r205 690.35 711.13 2425 704.02 730.47 2378.9 645.79 651.43 818.71
r206 694.54 717.43 2099 692.95 723.98 2205.3 650.64 653.66 813.30
r207 701.66 710.63 1020 701.42 722.25 2265.3 643.26 648.80 1159.51
r208 687.23 706.42 2283 714.12 742.15 2210.4 644.39 649.03 696.90
r209 696.17 718.88 2141 692.95 725.09 2178.9 647.80 654.40 1121.36
r210 708.41 720.19 1991 713.9 739.96 2166.8 645.93 653.84 1167.71
r211 701.66 710.63 1031 700.53 720.87 2208 644.02 649.45 1160.24
rc101 887.66 935.90 2404 885.96 920.75 1812.1 832.30 843.94 724.21
rc201 682.65 726.47 1767 698.37 722.56 1658.4 651.88 655.83 931.56
rc202 703.03 712.23 2187 710.3 726.25 2100.2 649.68 653.99 1045.01
rc203 685.09 728.94 2305 698.37 730.03 2358.5 651.68 656.76 991.55
rc204 723.14 734.23 2341 731.65 762.60 2168.8 649.42 655.57 977.83
rc205 715.51 739.29 1828 721.6 753.78 2437.4 649.68 656.75 1249.43
rc206 691.17 718.47 2402 735.66 767.70 1682.5 646.39 654.16 587.07
rc207 685.09 727.85 2309 707.51 732.01 2024.8 652.64 656.07 1384.80
rc208 721.41 752.14 2100 743.13 774.94 2438.8 652.08 656.02 957.69
average 734.02 763.53 2018.5 742.01 772.67 2140.04 675.19 682.53 1015.05

1 2 3

Fig. 4.9 Critical difference (CD) plot concerning the results for the large EVRP-SPD
instances with 100 customers.

4.10 Conclusions and Future Research Directions

In this chapter, we presented the application of different Adapt-CMSA variants to
the electric vehicle routing problem with time windows and simultaneous pickup
and delivery. This problem has the property that it can be modeled by means

Section 4.10 Conclusions and Future Research Directions 95

of an assignment-type integer linear program and also by a set-covering-based
integer linear program. Both models were used for solving sub-instances at
each iteration of the presented CMSA algorithms. The results have shown that
the CMSA variant using the set-covering-based model generally significantly
outperforms the CMSA variant using the standard assignment-type models. In
fact, CMSA algorithm seems an ideal algorithmic framework in order to take
profit of set-covering-based models for solving optimization problems that can
be modeled in this way. This is because CMSA algorithms are less sophisticated
and easier to implement in comparison to column generation approaches [68]. In
addition, CMSA algorithms have the ability to explore search spaces, in contrast
to simpler heuristic methods from the literature that were devised to take profit
from set-covering-based models.

In order to further evaluate the performance of the proposed approach,
Adapt-Cmsa-SetCov was also compared with several variable neighborhood
search algorithm variants from the literature on the electric vehicle routing
problem with simultaneous pickup and deliveries. Numerical results showed
that Adapt-Cmsa-SetCov outperformed those variable neighborhood search
variants from the literature on all problem instances. In the future, we aim
to develop more efficient solution construction methods and MILP models to be
employed within Adapt-CMSA. Moreover, the analysis of the algorithm will be
deepened on a wider set of benchmark instances.

96 Chapter 4 Adapt-CMSA for EVRP-TW-SPD

97

CHAPTER 5

APPLICATION TO THE TWO-ECHELON ELECTRIC

VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS

PICKUP AND DELIVERIES

5.1 Introduction

This chapter describes the application of Adapt-CMSA to the Two-Echelon Electric

Vehicle Routing Problem with Simltaneus Pickup and Delivery (2E-EVRP-SPD). The
content shown in this chapter was also presented in [6] published in the
proceedings of EVOCOP 2023:European Conference on Evolutionary Computation

in Combinatorial Optimization (Part of EvoStar) (https://doi.org/10.1007/978-3
-031-30035-6_22).

First, the addressed problem is formulated as a mixed integer linear program
(MILP). Any general-purpose MILP solver, such as CPLEX1 or Gurobi2, may
be used to solve this model. However, due to the multi-tier structure of the
distribution network, the limited driving range of electric vehicles, and the
SPD constraints, the 2E-EVRP-SPD problem is rather complex. In fact, our
computational experiments show that CPLEX struggled to solve even small-sized
problems to optimality. In most cases, CPLEX was only able to derive valid
solutions with large optimality gaps. Therefore, we developed an Adapt-CMSA,
which was already generally introduced in Chapter 2 and applied to the
EVRP-TW-SPD in Chapter 4, for being able to solve large-sized problem instances.

In the context of problem instances too large for the application of CPLEX, our
algorithm is compared to probabilistic versions of two well-known constructive
heuristics. The numerical results show that our algorithm outperforms CPLEX in
the context of rather small problem instances. Moreover, it is shown to outperform
the heuristic algorithms when larger problem instances are concerned.

1https://www.ibm.com/analytics/cplex-optimizer
2http://www.gurobi.com/

https://doi.org/10.1007/978-3-031-30035-6_22
https://doi.org/10.1007/978-3-031-30035-6_22
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/

98 Chapter 5 Application to the MPIDS Problem

Table 5.1 Sets and notations

nd, ns , nr , nc : Number of central warehouses, satellites, charging stations and customers, respectively
ND : Set of central warehouses, ND = {nd1 , ..., ndnd

}
N

′
D : Set of dummy central warehouses corresponding to ND, N ′

D = {n′

d1
, ..., n

′

dnd
}

NS : Set of satellites, NS = {ns1 , ..., nsns
}

N
′
S : Set of dummy satellites corresponding to NS , N ′

S = {n′
s1
, ..., s

′
sns
}

NR : Set of charging stations, NR = {nr1 , ..., nrnr
}

NC : Set of customers, NC = {nc1 , ..., ncnc
}

NDS : Set of central warehouses and satellites, NDS = ND ∪NS

NSD : Set of satellites and dummy central warehouses, NSD = NS ∪N
′
D

NDSD : Complete set of nodes in the first echelon, NDSD = ND ∪NS ∪N
′
D

NRC : Set of charging stations and customers, NRC = NR ∪NC

NSRC : Set of satellites, charging stations and customers, NSRC = NS ∪NR ∪NC

NRCS : Set charging stations, customers and dummy satellites, NRCS = NR ∪NC ∪N
′
S

NSRCS : Complete set of nodes in the second echelon, NSRCS = NS ∪NR ∪NC ∪N
′
S

5.1.1 Problem Description

In the following, we provide a technical description together with a MILP model
of the 2E-EVRP-SPD. For this purpose, the sets and notations from Table 5.1
are required. The 2E-EVRP-SPD can be defined on a complete, directed graph
G(N,A) that is formed by the following subsets of nodes: the set of central
warehouses (also called depots) (ND), the set of satellites (NS), the set of
charging stations (NR), and the set of customers (NC). Note that NS and NR

also include multiple copies of each satellite and charging station to allow
multiple visits to any of the satellites and charging stations. The set of arcs
on the other hand (A) includes (1) arcs that connect central warehouses and
satellites A1 = {(i, j) | i ̸= j and i, j ∈ NDSD} and (2) arcs that connect satellites,
customers and charging stations A2 = {(l,m) | l ̸= m and l,m ∈ NSRCS}. Each
arc (i, j) ∈ A1 is associated with a distance d1ij and each arc (l,m) ∈ A2 is associated
with a distance d2lm.

Two different fleets of vehicles, each one homogeneous in itself, serve in the
first and second echelons in order to meet customer demands. A fleet of large
trucks with internal combustion engines are located in a central warehouse and
transfer products between the central warehouses and the satellites, while a
fleet of electric vehicles is present at the satellites and transfer products between
satellites and customers (demand points). In the first echelon, a truck with a
loading capacity ofQ1 starts its tour from a central warehouse, visits one or more
satellites, and returns to the central warehouse from which the tour started. Not
all satellites have to be visited by large trucks unless there is a demand for pickup
and/or delivery. Furthermore, a satellite can be visited by multiple large vehicles
if the delivery or pickup demand of the satellite exceeds the vehicle capacity. In
the second echelon, on the other hand, each customer with a delivery demand

Section 5.1 Introduction 99

D2
i > 0 or a pickup demand P 2

i > 0 (or both) must be served by an electric
vehicle with a loading capacity of Q2. An electric vehicle starts its tour with a
fully charged battery (B) and the vehicle’s battery is consumed in proportion to
the distance travelled. The constant h represents the battery consumption rate of
an electric vehicle per unit distance travelled. If a charging station is visited, the
electric vehicle’s battery is fully charged up to level B with a constant charging
rate of g > 0.

Our MILP model contains the following binary decision variables. A decision
variable xij takes value 1 if arc (i, j) ∈ A1 is traversed, and 0 otherwise. Moreover,
a decision variable yij takes value 1 if arc (i, j) ∈ A2 is traversed, and 0 otherwise.
Next, decision variables BSCai and BSCdi record the battery state of charge on
arrival, respectively departure, at (from) vertex i ∈ NSRCS . Furthermore, for each
arc (i, j) ∈ A1, variable u1ij denotes the remaining cargo to be delivered to satellites
of the route, while v1ij denotes the amount of cargo already collected (picked up)
at already visited satellites. Similarly, for each arc (i, j) ∈ A2, variable u2ij denotes
the remaining cargo for the route, while v2ij denotes the amount of cargo already
collected at visited customers. Since the demand of each satellite depends on
the customers serviced through it, decision variables D1

i and P 1
i are introduced

to calculate, respectively, the delivery and pickup demands of satellites. Finally,
variable zij takes value 1 if customer (i) is serviced from satellite (j), and 0
otherwise. The MILP model can then be stated as follows.

Min

∑
i∈NDS

∑
j∈NDSD

d1ij · xij +
∑

l∈NSRC

∑
m∈NSRCS

d2lm · ylm

+
∑

j∈NDSD

x0j · clv +
∑
i∈NS

∑
j∈NSRCS

yij · cev (5.1)

∑
j∈NSD

xij ≤ 1 ∀i ∈ NS (5.2)

∑
i∈NDS ,i ̸=j

xij −
∑

i∈NSD,i ̸=j

xji = 0 ∀j ∈ NS (5.3)

∑
i∈NDS ,i ̸=j

u1ij −
∑

i∈NSD,i ̸=j

u1ji = D1
j ∀j ∈ NS (5.4)

∑
i∈NDS ,i ̸=j

v1ij −
∑

i∈NSD,i ̸=j

v1ji = P 1
j ∀j ∈ NS (5.5)

0 ≤ u1ij ≤ Q1 ∀i ∈ ND, j ∈ NDS (5.6)

v1ij = 0 ∀i ∈ ND, j ∈ NSD (5.7)

u1ij + v1ij ≤ Q1 ∗ xij ∀i ∈ ND, j ∈ NDS , i ̸= j (5.8)

100 Chapter 5 Application to the MPIDS Problem

∑
l∈NC

zli ∗D2
l = D1

i ∀i ∈ NS (5.9)

∑
l∈NC

zli ∗ P 2
l = P 1

i ∀i ∈ NS (5.10)

∑
j∈NRCS ,i ̸=j

yij = 1 ∀i ∈ NC (5.11)

∑
j∈NRCS ,i ̸=j

yij ≤ 1 ∀i ∈ NR (5.12)

∑
i∈NSRC ,i ̸=j

yij −
∑

i∈NRCS ,i ̸=j

yji = 0 ∀j ∈ NRC (5.13)

∑
i∈NS

zli = 1 ∀l ∈ NRC (5.14)

yli ≤ zli ∀i ∈ NS , l ∈ NRC (5.15)

yil ≤ zli ∀i ∈ NS , l ∈ NRC (5.16)

ylm + zli +
∑

s∈NS ,i ̸=s

zms ≤ 2 ∀l,m ∈ NRC , l ̸= m,∀i ∈ NS (5.17)

∑
i∈NSRC ,i ̸=j

u2ij −
∑

i∈NRCS ,i ̸=j

u2ji = D2
j ∀j ∈ NRC (5.18)

∑
i∈NSRC ,i ̸=j

v2ji −
∑

i∈NRCS ,i ̸=j

v2ij = D2
j ∀j ∈ NRC (5.19)

0 ≤ u2ij ≤ Q2 ∀i ∈ NS , j ∈ NRCS (5.20)

v2ij = 0 ∀i ∈ NS , j ∈ NRCS (5.21)

u2ij + v2ij ≤ Q2 ∗ yij ∀i ∈ NRCS , j ∈ NSRC (5.22)

0 ≤ BSCaj ≤ BSCai − (hdij)yij +B(1− yij) ∀i ∈ NC ,∀j ∈ NRCS , i ̸= j (5.23)

0 ≤ BSCaj ≤ BSCdi − (hdij)yij +B(1− yij) ∀i ∈ NSR,∀j ∈ NRCS , i ̸= j (5.24)

BSCai ≤ BSCdi ≤ B ∀i ∈ NSR (5.25)

xij ∈ 0, 1 ∀i ∈ NSRC , j ∈ NRCS , l ̸= m (5.26)

ylm ∈ 0, 1 ∀l ∈ NSRC ,m ∈ NRCS , l ̸= m (5.27)

In this problem, solutions using fewer vehicles—that is, with fewer
routes—are preferred over others, even if the total distance travelled is higher
than in other routes. Therefore, the objective function does not only consider
the travelled distance but adds also an extra cost clv for each large vehicle
used in the first echelon and cev for each electric vehicle used in the second
echelon. Note, in this context, that the number of large vehicles used in a
solution is equal to the number of variables on outgoing arcs of a central
warehouse with a value of 1. Moreover, the number of electric vehicles used
in a solution is equal to the number of variables on outgoing arcs of satellites
that have a value of 1. In this way, the objective function (5.1) minimizes

Section 5.2 Adapt-CMSA for the 2E-EVRP-SPD 101

the sum of the total distance travelled and the vehicle costs. Constraints (5.2)
control the connectivity of satellites and constraints (5.3) guarantee the balance
of flow in the first echelon nodes. Constraints (5.4)-(5.8) guarantee that the
delivery and pickup demands of satellites are satisfied simultaneously by
the large vehicles serving in the first echelon. Constraints (5.9) and (5.10)
determine each satellite’s delivery and pickup demand to be the total delivery
and pickup demands of those customers served by the relevant satellite.
Constraints (5.11) and (5.12) control the connectivity of customers and charging
stations. Constraints (5.13) ensure the balance of flow for the second echelon
nodes. Constraints (5.14) guarantee that a customer receives service from only
one satellite. Constraints (5.15)-(5.17) ensure that a tour started from a satellite
ends at the same satellite. Constraints (5.18)-(5.22) guarantee that the delivery
and pickup demands of customers are satisfied simultaneously by the electric
vehicles serving in the second echelon. Finally, constraints (5.23)-5.25) are battery
state constraints.

5.2 Adapt-CMSA for the 2E-EVRP-SPD

In this section, we will describe the Adapt-CMSA algorithm that we designed for
the application to the 2E-EVRP-SPD. However, before describing the algorithm
we first explain the solution representation.

5.2.1 Solution Representation

Any solution S = (R1, R2) produced by the algorithm consists of two sets of
routes, R1 and R2, where R1 contains the routes of large vehicles in the first
echelon and R2 contains the routes of the electric vehicles in the second echelon.
Each route t1 ∈ R1 starts from a central warehouse, visits one or more satellites
and returns to the same central warehouse. Each route t2 ∈ R2 starts from a
satellite, visits a number of locations v ∈ NRC and returns to the same satellite.
As an example, let vector I contain the complete set of node indexes of an example
problem instance with one central warehouse, two satellites, three charging
stations and five customers.

I = (0,︸︷︷︸
central warehouse

1, 2,︸ ︷︷ ︸
satellites

3, 4, 5,︸ ︷︷ ︸
charging stations

6, 7, 8, 9, 10,︸ ︷︷ ︸
customers

)

102 Chapter 5 Application to the MPIDS Problem

(a) EVRP Instance (b) Solution

Fig. 5.1 Illustration of a 2E-EVRP instance and its solution. (a) presents a map
showing the locations of a depot, four satellites, twelve customers, and six
charging stations based on Cartesian coordinates. Gray dashed lines indicate a
fully connected graph within each of the two echelons, with no direct connections
between the depot and the customers or charging stations. (b) shows a valid
solution to the given instance on the same map, with two distinct tours in the
first echelon and 4 different tours in the second echelon represented by arrows
with different colors. First echelon routes begin and end at the central warehouse
passing through satellites while the second echelon routes begin and end at the
satellites, passing through various customers and charging stations.

A solution S that contains one route in the first echelon (t11) and two routes in
the second echelon (t21 and t22) is represented as follows:

S = (R1, R2) where

{ }
R1 = t11 = {0 1 2 0}

R2 =
t21 = {1 7 3 6 1}

t22 = {2 9 8 5 10 2}

An extended version of the example instance and a valid solution is visually
illustrated in Figure 5.1.

5.2.2 Set Covering Based Model

As described in Section 5.2.1, any solution produced by the algorithm is kept
in the form of two sets of routes. Similarly, a sub-instance C = (C1, C2) in the

Section 5.2 Adapt-CMSA for the 2E-EVRP-SPD 103

context of our Adapt-CMSA algorithm consist of two sets, C1 and C2, containing
those routes that were previously generated by the probabilistic application of
solution construction heuristics. For solving such a sub-instance, in this study, we
make use of the following set-covering-based MILP model. Note that the other
option would have been to use the MILP model outlined in the previous section,
with those arc variables fixed to zero whose corresponding arcs do not form part
of any of the solutions that were merged into the sub-instance.

Given a sub-instance C = (C1, C2), each route rk ∈ Ck is associated with a
distance, resp. cost, value dkr . Moreover, ld2sr and lp2sr represent the total delivery
and pickup loads of the route r ∈ C2 served from satellite s ∈ NS . As described
in Section 5.1.1,D1

s and P 1
s refer to delivery and pickup demands of the respective

satellite. Parameter a1sr is set to value one if satellite s is traversed by route r, and
0 otherwise. Moreover, parameter a2ir is set to value one if customer i is visited by
route r, and 0 otherwise. The binary decision variable xkr takes value one if the
route in the k-th echelon is selected, value zero otherwise. Moreover, dpsr and
ppsr refer to the amount of goods delivered to the satellite s by the route r. The
set-covering-based model can then be stated as follows.

Min

∑
r∈C1

d1r ∗ x1r +
∑
r∈C2

d2r ∗ x2r +
∑
r∈C1

clv ∗ x1r +
∑
r∈C2

cev ∗ x2r (5.28)

s.t.

∑
r∈C2

ld2sr = D1
s ∀s ∈ Ns (5.29)

∑
r∈C2

lp2sr = P 1
s ∀s ∈ Ns (5.30)

∑
r∈C1

pdsr ∗ a1sr = D1
s ∀s ∈ Ns (5.31)

∑
r∈C1

ppsr ∗ a1sr = P 1
s ∀s ∈ Ns (5.32)

∑
s∈NS

pdsr ≤ Q1 ∗ x1r ∀r ∈ C1 (5.33)

∑
r∈C1

ppsr ≤ Q1 ∗ x1r ∀r ∈ C1 (5.34)

∑
r∈C2

a2ir ∗ x2r >= 1 ∀i ∈ V (5.35)

x1r1 , x
2
r2 ∈ 0, 1 ∀r1 ∈ C1, r2 ∈ C2, k ∈ {1, 2} (5.36)

pdsr, ppsr ≥ 0 ∀s ∈ NS , r ∈ C1 (5.37)

The objective function minimizes the sum of the total distance travelled and
vehicle costs. Constraints (5.29) and (5.30) determine each satellite’s delivery and
pickup demands. Constraints (5.31) and (5.32) ensure that partial deliveries are

104 Chapter 5 Application to the MPIDS Problem

allowed in the first echelon in case the delivery or pickup demand of the relevant
satellite exceeds the capacity of a large vehicle. Constraints (5.33) and (5.34)
guarantee that the total delivery and pickup load in large vehicles can not
exceed the vehicle capacity. Constraint (5.35) ensures that each customer must be
visited at least once. Finally, constraints (5.36) and (5.37) control variable domains.

5.2.3 The Adapt-CMSA Algorithm

Algorithm 5.1 shows the pseudo-code of our Adapt-CMSA algorithm for the
2E-EVRP-SPD. First, the best-so-far solution Sbsf is initialized as an empty
solution. Then, parameters αbsf , na and lsize are initialized in lines 4 and 5.
The handling of these parameters was already described in previous chapters.
However in order for this chapter be self-contained, they will be described in
detail again below.

At each iteration, Adapt-CMSA builds a sub-instanceC of the original problem
instance as follows. First, C is initialized to the best-so-far solution Sbsf . Then,
a number of na solutions are probabilistically constructed in lines 8–12. The
function for the construction of a solution, ProbabilisticSolutionConstruction(Sbsf ,
αbsf , lsize), receives—apart from the best-so-far-solution Sbsf—two parameters
as input. Here, parameter αbsf (where 0 ≤ αbsf < 1) is used to bias the
construction of new solutions towards the best-so-far solution Sbsf . More
specifically, the similarity between the constructed solutions andSbsf will increase
with a growing value of αbsf . Parameter lsize controls the number of considered
options at each solution construction step. A higher value of lsize results in
more diverse solutions which, in turn, leads to a larger sub-instance. After
the construction of a solution S (line 9), a local search is applied to each route
t2 ∈ R2, see line 10. Well-known intra-route operators such as, relocation, swap

and two_opt are sequentially utilized to improve each route. Each operator uses
the best-improvement strategy. The relocation operator removes each customer
from its current position and inserts it into a different position in the same route.
The swap neighbourhood considers changing the positions of two selected nodes
of the same route. Finally, the two_opt neighbourhood considers all possibilities
of selecting two non-consecutive nodes in the same route and reversing the node
sequence between the two selected nodes.

After the application of local search, the so-called merge step is performed in
function Merge(C, S). In particular, every route from S1 is added to C1 and every
route from S2 is added to C2. After probabilistically constructing na solutions
and merging them to form the sub-instance C, the sub-instance is solved with

Section 5.2 Adapt-CMSA for the 2E-EVRP-SPD 105

Algorithm 5.1 Adapt-CMSA for the 2E-EVRP-SPD
1: input 1: values for CMSA parameters tprop, tILP
2: input 2: values for solution construction parameters αLB, αUB, αred

3: Sbsf := ∅
4: αbsf := αUB

5: Initialize(na, lsize)
6: while CPU time limit not reached do

7: C := Sbsf

8: for i := 1, . . . , na do

9: S := ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize)
10: LocalSearch1(S)
11: C := Merge(C, S)
12: end for

13: (S ′
opt, tsolve) := SolveSubinstance(C, tILP) {This function returns two objects:

(1) the obtained solution (S ′
opt), (2) the required computation time (tsolve)}

14: RemoveDuplicates(S ′
opt)

15: LocalSearch2(S ′
opt)

16: if tsolve < tprop · tILP and αbsf > αLB
then αbsf := αbsf − αred end if

17: if f(S ′
opt) < f(Sbsf) then

18: Sbsf := S ′
opt

19: Initialize(na, lsize)
20: else

21: if f(S ′
opt) > f(Sbsf) then

22: if na = ninit
then αbsf := min{αbsf +

αred

10
, αUB} else Initialize(na, lsize) end

if

23: else

24: Increment(na, lsize)
25: end if

26: end if

27: end while

28: output: Sbsf

CPLEX, which is precisely done in function SolveSubinstance(C, tILP); see line 13.
Hereby, tILP is the CPU time limit for the application of CPLEX, which is applied
to the set-covering model from Section 5.2.2. Note that the output S ′

opt of function
SolveSubinstance(C, tILP) is—due to the computation time limit—not necessarily
an optimal solution to the sub-instance. Since the set-covering-based model
potentially allows customers to be visited more than once, S ′

opt may contain
some of the customers in multiple routes. In that case, redundant customers
are removed using function RemoveDuplicates(S ′

opt), see line 14. This function
first determines all redundant customers and calculates the distance between the
respective customer and the two adjacent nodes. Then, it removes all redundant
customers starting from the one with the highest distance value until all customers

106 Chapter 5 Application to the MPIDS Problem

only appear in exactly one route. Subsequently, a local search procedure is applied
to S ′

opt using inter-route neighbourhood operators exchange (1,1) and shift (1,0).
The exchange (1,1) neighbourhood considers all exchanges of two customers not
in the same route. The shift (1,0) neighbourhood looks at all possibilities of
removing a customer from its current route and inserting it at any position in the
other routes. Both operators are applied based on the best-improvement strategy.

The self-adaptive aspect of Adapt-CMSA is to be found in the dynamic change
of parameters αbsf , na and lsize. In the first place, we will describe the adaptation
of parameter αbsf . First of all, Adapt-CMSA requires a lower bound αLB and an
upper bound αUB for the value of αbsf as input. In addition, the step size αred for
the reduction of αbsf must also be given as input. Adapt-CMSA starts by setting
αbsf to the highest possible value αUB; see line 4.3 In case the resulting MILP can
be solved in a computation time tsolve which is below a proportion tprop of the
maximally possible computation time tILP, the value of αbsf is reduced by αred;
see line 22. The rationale behind this step is as follows. In case the resulting
MILP can easily be solved to optimality, the search space is too small, caused by
a rather low number of routes in C1 and C2. In order to increase the size of the
MILP, the solutions constructed in ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize,
drate, hrate) should be more different to Sbsf , which can be achieved by reducing
the value of αbsf .

The adaptation of parameters na and lsize is done in a similar way and with a
similar purpose. These parameters are set to their initial values, that is, na := ninit

and lsize := linitsize in function Initialize(na, lsize), which is called at three different
occasions: (1) at the start of the algorithm (line 5), (2) whenever solution S ′

opt is
strictly better than Sbsf (line 19), and (3) whenever solution S ′

opt is strictly worse
than Sbsf and, at the same time, na > ninit (line 22). On the other side, in those
cases in which S ′

opt and Sbsf are of the same quality, the algorithm can afford to
generate larger sub-instances and therefore, the values of the two parameters are
incremented in function Increment(na, lsize). More specifically, na is incremented
by one and lsize is incremented by lincsize.

5.2.3.1 Solution Construction

When function ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize) is called, one of
two heuristics is randomly selected for solution construction. The first one is
our version of the Clarke-Wright Savings Algorithm [41], while the second one
is our insertion algorithm. In the following, both construction algorithms are

3Remember that solutions constructed with a high value of αbsf will be rather similar to Sbsf .

Section 5.2 Adapt-CMSA for the 2E-EVRP-SPD 107

described in detail.

1. Probabilistic Clarke-Wright Savings Algorithm. Our probabilistic version
of the Clarke-Wright savings algorithm starts by assigning each customer either
to the nearest satellite or to the satellite to which it is assigned in Sbsf . After the
assignment, set N s

C ⊆ NC contains all customers assigned to satellite s, for all s ∈
NS . Then, the following Clarke-Wright savings procedure is applied concerning
each satellite s ∈ NS . First, a set of direct routes R2 = {(s − i − s) | i ∈ N s

C}
is created. Subsequently, a savings list L that contains all possible pairs (i, j) of
nodes (customers and charging stations) together with their respective savings
value σij is generated. Hereby, σij is calculated as follows:

σij := d2si + d2sj − λd2ij + µ|d2si − d2sj| (5.38)

The so-called route shape parameter λ adjusts the selection priority based on the
distance between nodes i and j [193], while µ is used to scale the asymmetry
between nodes i and j [143]. Note that well-working values for these parameters
are obtained by parameter tuning which is presented in Section 5.3.2. Note also
that the savings list L contains, at all times, only those entries (i, j) such that (1)
node i and node j belong to different routes, and (2) both i and j are directly
connected to the satellite of their route. For executing the Clarke-Wright Savings
Algorithm, the following list of steps is iterated until the savings list L is empty.

1. First, based on the current savings values of the entries in L, a new value qij
is calculated for each entry (i, j) ∈ L as follows:

qij :=

(σij + 1) · αbsf if Sbsf
ij = 1

(σij + 1) · (1− αbsf) otherwise
(5.39)

Here, Sbsf
ij = 1 if node i and node j are successively visited in at least one

route of Sbsf , and 0 otherwise. The savings list L is then sorted according to
non-increasing values of qij . Finally, a reduced saving list Lr that contains
the first (maximally) lsize elements of the whole savings list is created.

2. Next, an entry (i, j) is chosen from Lr with respect to the following
probabilities:

p(ij) :=
qij∑

(i′,j′) ∈Lr
qi′j′

∀ (i, j) ∈ Lr (5.40)

Note that, the higher the value of parameter αbsf ∈ [0, 1], the stronger is
the bias towards choosing arcs—that is, transitions from a customer i to a

108 Chapter 5 Application to the MPIDS Problem

Table 5.2 Cases for tour merging w.r.t. nodes i and j

Case Tours Merging Procedure Result

1
t21 : {s i . . . s} Reverse t21, rev(t21) t2m : {s . . . i j . . . s}
t22 : {s j . . . s} Concatenate with t22

2
t21 : {s i . . . s} Reverse both t21 and t22 t2m : {s . . . i j . . . s}
t22 : {s . . . j s} rev(t21), rev(t22)

3
t21 : {s . . . i s} Concatenate t21 and t22 t2m : {s . . . i j . . . s}
t22 : {s j . . . s}

4
t21 : {s . . . i s} Reverse t22, rev(t22) t2m : {s . . . i j . . . s}
t22 : {s . . . j s} Concatenate with t21

customer j—that appear in the best-so-far solution Sbsf .

3. Then, the two routes corresponding to nodes i and j are merged. The four
possible cases for merging two routes are shown in 5.2.

Based on the way in which nodes i and j are directly connected to a satellite,
one or both of the routes must be reversed in order to be able to connect
nodes i and j. In this context, note that the reversed version of a route
t21 is denoted by rev(t21). If the merged route t2m is infeasible in terms of
vehicle capacity, the merged route is eliminated and the respective pair
of nodes is removed from the savings list. A new candidate is selected
following the procedure in the previous step. If the merged route is
battery infeasible, a charging station is inserted into the infeasible route.
The corresponding procedure determines the first customer in the route
at which the vehicle arrives with a negative battery level and inserts the
charging station between this customer and the previous customer. For
this purpose, the charging station that least increases the route distance
is selected and inserted between the respective nodes. If this insertion is
not feasible, the previous arcs are considered instead in the same manner.
In those cases in which the route is still infeasible after charging station
insertion, it is eliminated, and the respective pair of nodes are removed
from the savings list. A new candidate is selected following the procedure
described in the previous step. This procedure is repeated while the savings
list is not empty. After merging, some of the charging stations that were
previously added to the routes may become redundant. Those charging
stations are removed from the merged route.

4. The savings list L must be updated as described above.

After constructing the routes in the second echelon, the same procedure is

Section 5.3 Experimental Evaluation 109

applied to construct routes for the large vehicles in the first echelon. The first
difference in the procedure for first echelon routes is that all aspects related to
batteries and charging stations are not considered. Second, a satellite is allowed
to be visited by multiple large vehicles in case the demand exceeds the vehicle’s
loading capacity.

2. Probabilistic Insertion Algorithm. This heuristic constructs a solution by
sequentially inserting each customer into the available routes until no unvisited
customer remains. Similar to the Clarke-Wright Savings Algorithm, the algorithm
first constructs the routes for the second echelon. The first route is initialized
by inserting a randomly chosen customer between the satellite that is nearest
to this customer. Then, a cost list L formed by all unvisited customers and all
possible insertion positions together with their respective cost values is generated.
The insertion cost of customer i between nodes j and k is calculated using the
following equation: c(j, i, k) = d2ji + d2ik − d2jk. Then, qjik is calculated for each
entry (j, i, k) ∈ L as follows:

qjik :=

(c(j, i, k) + 1) · (1− αbsf)(1− αbsf) if Sbsf

ji = 1 and Sbsf
ik = 1

(c(j, i, k) + 1) · (αbsf)
2 if Sbsf

ji = 0 and Sbsf
ik = 0

(c(j, i, k) + 1) · αbsf(1− αbsf) otherwise
(5.41)

Next, an entry (j, i, k) is chosen from Lr with respect to the probabilities
calculated using Eq. (5.41). The customer is inserted into the respective position
if the vehicle capacity allows for this. Moreover, in case of battery infeasibility,
a charging station is inserted into the route as explained above during the
description of the Clarke-Wright Savings Algorithm. If the insertion leads to
infeasibility in terms of vehicle load capacity, a new tour is initialized with the
respective customer and the nearest satellite.

5.3 Experimental Evaluation

All experiments were performed on a cluster of machines with Intel® Xeon®

5670 CPUs with 12 cores of 2.933 GHz and a minimum of 32 GB RAM. CPLEX
version 20.1 was used in one-threaded mode within Adapt-CMSA for solving the
respective sub-instances and in standalone mode for solving the MILP models
representing the complete problem instances.

110 Chapter 5 Application to the MPIDS Problem

Table 5.3 Parameters, their domains, and the chosen values as determined by
irace.

Parameter Domain Value Description

λ [1, 2] 1.67 route shape parameter (Clarke-Wright)
µ [0, 1] 0.32 asymmetry scaling (Clarke-Wright)
linitsize {3, 5, 10, 15, 20} 15 initial list size value
lincsize {1, 3, 5, 10, 20} 20 list size increment
ninit {100, 200, 300, 500, 1000} 1000 initial nr. of constructed solutions
ninc {50, 100, 200, 300, 400, 500} 100 increment for the nr. of constructed solutions
tILP {5, 10, 15, 20, 25} 20 CPLEX time limit (seconds)
αLB [0.6, 0.99] 0.77 lower bound for αbsf

αUB [0.6, 0.99] 0.8 upper bound for αbsf

αred [0.01, 0.1] 0.02 step size reduction for αbsf

tprop [0.1, 0.8] 0.79 control parameter for bias reduction

5.3.1 Problem Instances

A subset of the 2E-EVRP problem instances introduced by [29] was utilized
to assess the performance of the proposed algorithm. These instances were
originally derived from the 2EVRP instances known as Set2 and Set3 from [147],
Set5 from [91], and Set6 from [14]. To maintain consistency with existing
literature, the instance names have been retained. The characteristics of these
instances are presented in the first three columns of each results table. Since
the original problem instances only come with delivery demands, we had to
modify them by adding pickup demands. For this purpose, the delivery
demand of each customer was separated into delivery and pickup demands
using the approach from [161]. The resulting instances are provided at https:
//github.com/manilakbay/2E-EVRP-SPD.

5.3.2 Parameter Tuning

In order to find well-working parameter values for Adapt-CMSA we utilized the
scientific tuning software irace [124]. Instances 100-5-1, 100-5- 2b, 100-10-1,
100-10-2b, 200-10-1, and 200-10-2b were used for the tuning process. Note
that in the case of numerical parameters, the precision of irace was fixed to two
positions behind the comma. irace was applied with a budget of 2000 algorithm
applications. The time limit for each problem instance was set to 900 CPU seconds.
A summary of the parameters, their domains, and values selected for the final
experiments are provided in Table 5.3.

https://github.com/manilakbay/2E-EVRP-SPD
https://github.com/manilakbay/2E-EVRP-SPD

Section 5.3 Experimental Evaluation 111

5.3.3 Computational Results

In the context of small problem instances, we compare the performance of
Adapt-CMSA with the standalone application of CPLEX. As CPLEX is not
applicable in a standalone manner to the large-size problem instances, we
compare Adapt-CMSA with our probabilistic Clarke-Wright Savings Algorithm
(pC&W) and our probabilistic sequential insertion algorithm (pSI). The
parameters of both algorithms were set in the same way as for their application
within Adapt-CMSA. Moreover, the same computation time limit was used
as for Adapt-CMSA, that is, both algorithms were repeatedly applied until
a computation time limit of 150 CPU seconds (small problem instances),
respectively 900 CPU seconds (large problem instances), was reached. Moreover,
Adapt-CMSA, pC&W and pSI were applied 10 times to each problem instance.
In order to make a fair comparison, after each application of pC&W and pSI,
LocalSearch1() and LocalSearch2() are sequentially applied in order to improve
the generated solutions. Finally, note that we fixed the cost of each large vehicle
used in a solution to 1500 and the cost of each electric vehicle used in a solution
to 1000.

The structure of the result tables is as follows. Instance names are given in
the first column. The subsequent block of three columns indicates the number of
satellites, the number of charging stations and the number of customers. Columns
‘nlv’ and ‘nev’ provide the number of large, respectively electric, vehicles utilized
by the respective solutions. In the case of Adapt-CMSA, pC&W and pSI these
numbers refer to the best solution found within 10 independent runs. In the case
of Adapt-CMSA, pC&W, and pSI, columns ‘best’ show the distance values of the
best solutions found in 10 runs, while additional columns with the heading ‘avg.’
provide the average distance values of the best solutions of each of the 10 runs.
Next, columns with the heading ’time’ show the computation time (in seconds)
of CPLEX and the average computation times of Adapt-CMSA to find the best
solutions in each run. Note that the time limit for CPLEX was set to 12 hours.
Finally, columns ‘gap(%)’ provide the gap (in percentage) between the best-found
solutions and the best lower bounds found by CPLEX. Note that, in case the gap
value is zero, CPLEX has found an optimal solution.

The computational results highlight several key observations regarding the
performance of CPLEX and Adapt-CMSA across different instance sizes. First,
for the small-sized instances as detailed in Tables 5.4 and 5.5, CPLEX provided
feasible solutions for only nine out of twelve cases and failed to prove optimality
within a 12-hour computation limit. For the remaining three instances, CPLEX
could not even find a feasible solution. Adapt-CMSA could not only find the

112 Chapter 5 Application to the MPIDS Problem

Table 5.4 Computational results for small-sized instances - Set2.

Instances Characteristics CPLEX Adapt-CMSA
name ns nr nc nlv nev best time gap(%) nlv nev best avg. time

n22-k4-s6-17 2 4 21 2 3 5174 43076.7 12.8 2 3 5174 5174.0 2.1
n22-k4-s8-14 2 4 21 2 3 4870 7465.1 15.4 2 3 4870 4870.0 1.9
n22-k4-s9-19 2 4 21 2 3 4750 43070.1 8.2 2 3 4750 4750.0 3.1
n22-k4-s10-14 2 4 21 2 3 5442 43075.3 19.9 2 3 5442 5442.0 5.9
n22-k4-s11-12 2 4 21 2 3 5357 43019.9 34.8 2 3 5290 5318.8 9.9
n22-k4-s12-16 2 4 21 2 3 3691 43074.0 8.4 2 3 3691 3695.7 3.4
average - - - 2 3 4880.7 37130.2 16.6 2 3 4869.5 4875.1 4.4

Table 5.5 Computational results for small-sized instances - Set3.

Instances Characteristics CPLEX Adapt-CMSA
name ns nr nc nlv nev best time gap(%) nlv nev best avg. time

n22-k4-s13-14 2 4 21 2 4 5658 42996.9 17.0139 2 3 5918 5918.0 10.29
n22-k4-s13-16 2 4 21 2 3 - - - 2 3 6584 6584.0 5.39
n22-k4-s13-17 2 4 21 2 3 5325 43073 12.4332 2 3 5325 5360.0 34.73
n22-k4-s14-19 2 4 21 2 3 - - - 2 3 6167 6168.3 12.47
n22-k4-s17-19 2 4 21 2 3 - - - 2 3 6517 6517.0 35.19
n22-k4-s19-21 2 4 21 2 3 5505 43071.1 18.3625 2 3 5505 5505.0 1.84
average - - - - - - - - - 3 6002.7 6008.7 16.65

Table 5.6 Computational results for medium-sized instances - Set2.

Instances Characteristics CPLEX Adapt-CMSA
name ns nr nc nlv nev best time gap(%) nlv nev best avg. time

n33-k4-s1-9 2 4 21 2 3 7506 19749.5 10.2 2 3 7479 7499.7 76.5
n33-k4-s2-13 2 4 21 2 3 7358 43058.1 12.2 2 3 7358 7365.9 68.7
n33-k4-s3-17 2 4 21 - - - - - 2 3 7538 7567.8 42.4
n33-k4-s4-5 2 4 21 - - - - - 2 3 7947 8122.5 14.9
n33-k4-s7-25 2 4 21 2 3 7880 43054.2 9.3 2 3 7880 7887.8 15.2
n33-k4-s14-22 2 4 21 - - - - - 2 3 8173 8173.0 17.7
average - - - - - - - - 2 3 7729.2 7769.5 39.2

Table 5.7 Computational results for medium-sized instances - Set3.

Instances Characteristics CPLEX Adapt-CMSA
name ns nr nc nlv nev best time gap(%) nlv nev best avg. time

n33-k4-s16-22 2 4 21 2 3 7057 43076.6 15.0971 2 3 6828 6843.9 23.90
n33-k4-s16-24 2 4 21 - - - - - 2 3 6996 7031.6 29.02
n33-k4-s19-26 2 4 21 2 3 7015 43084.7 30.9287 2 3 6926 7002.5 12.96
n33-k4-s22-26 2 4 21 2 3 6953 43077.6 13.3979 2 3 6840 6958.1 40.44
n33-k4-s24-28 2 4 21 2 3 8676 14158.1 23.6482 2 3 6744 6864.4 22.44
n33-k4-s25-28 2 4 21 2 3 7436 10677.8 17.2142 2 3 6928 6928.0 5.48
average - - - - - 7427.4 30814.96 20.06 - - 6877.0 6938.1 22.37

same results provided by CPLEX in seven of these instances but also improved
the solutions obtained by CPLEX, respectively was able to provide a solution
in those cases in which CPLEX failed to provide one. In the medium-sized
instances, detailed in Tables 5.6 and 5.7, CPLEX managed to find feasible solutions
for eight out of twelve instances without proving optimality within the same

Section 5.3 Experimental Evaluation 113

time constraints. Here, Adapt-CMSA was able to match CPLEX’s results in
two cases and surpassed CPLEX’s performance in the remaining instances by
either improving solutions or finding solutions in cases where CPLEX failed.
Moreover, the average computation time required for Adapt-CMSA to find the
best solution in each run is considerably lower than the time required for CPLEX.
More specifically, while CPLEX found its best solutions on average in almost
12 hours, Adapt-CMSA was able to do this on average in approx. 10 seconds
for the small-sized instances. Concerning the larger scenarios in Set6a of the
medium and large-sized instances, as shown in Tables 5.8 and 5.9, Adapt-CMSA
significantly outperforms both pC&W and pSI, both in terms of best performance
and average performance. Note that, even though pC&W provides better distance
values than Adapt-CMSA, this was achieved using more electric vehicles than the
solution found by Adapt-CMSA.

114
C

h
a
p
t
e
r

5
A

p
p
l
i
c
a
t
i
o
n

t
o

t
h
e

M
P

I
D

S
P

r
o
b
l
e
m

Table 5.8 Computational results for medium-sized instances - Set6a.

Instances Characteristics pC&W pIns Adapt-CMSA
name ns nr nc nlv nev best avg. time nlv nev best avg. time nlv nev best avg. time
A-n51-4 4 5 50 1 6 7700 7757.6 46.02 1 3 7418 7599.9 64.02 1 3 7043 7366.9 41.44
A-n51-5 5 6 50 1 5 8314 8411.7 13.45 1 3 7716 7913.2 100.91 1 3 7619 7684.6 48.80
A-n51-6 6 7 50 1 6 7955 7983 52.77 1 3 7132 7375.5 90.66 1 3 7033 7071.3 45.83
A-n76-4 4 7 75 2 9 10430 10553.1 139.71 2 8 9911 10361.7 54.90 2 6 9447 9794.8 126.71
A-n76-5 5 7 75 2 10 11330 11465.9 139.92 2 8 10506 11012.4 50.44 2 6 10265 10625.7 140.46
A-n76-6 6 7 75 2 9 10898 10992.5 100.85 2 8 9699 9978.7 85.08 2 6 9263 9538.5 118.29
B-n51-4 4 5 50 1 6 7344 7392.6 44.48 1 3 6662 7028.5 49.79 1 3 6311 6480.1 62.59
B-n51-5 5 6 50 1 5 8032 8054 11.12 1 3 7107 7367.9 84.30 1 3 7020 7085.2 64.94
B-n51-6 6 7 50 1 6 7490 7511.3 3.89 1 3 6610 6805.4 61.42 1 3 6302 6375.8 63.06
B-n76-4 4 7 75 2 9 10473 10563.7 104.10 2 8 9968 10216.3 61.75 2 7 9650 9814.2 129.49
B-n76-5 5 7 75 2 10 9803 10044.2 106.37 2 9 9285 9727.7 72.60 2 7 8910 9114 121.78
B-n76-6 6 7 75 2 9 9295 9388.9 78.18 2 8 8394 8851.2 82.52 2 6 8008 8292.5 140.11
C-n51-4 4 5 50 1 5 9327 9518.7 9.24 1 3 7980 8426.9 82.68 1 3 7317 7624.9 65.36
C-n51-5 5 6 50 1 5 9663 9719.6 0.28 1 3 8829 9018.6 50.39 1 3 8319 8519.9 56.46
C-n51-6 6 7 50 1 6 8724 8851.2 28.27 1 3 7747 8165.5 69.09 1 3 7233 7448.1 77.55
C-n76-4 4 7 75 2 7 12842 13074.5 119.72 2 8 11921 12173.4 83.04 2 6 10862 11378.5 159.41
C-n76-5 5 7 75 2 9 14632 14931.3 128.82 2 8 12502 12809.5 77.33 2 6 11333 11640.8 144.47
C-n76-6 6 7 75 2 9 12808 13042.6 78.68 2 8 11596 12228 95.27 2 6 10813 11448.5 128.38
average - - - - - 9836.7 9958.7 66.99 - - 8943.5 9281.1 73.12 - - 8486.0 8739.1 96.39

S
e
c
t
i
o
n

5
.3

E
x
p
e
r
i
m

e
n
t
a
l
E

v
a
l
u
a
t
i
o
n

115

Table 5.9 Computational results for large-sized instances - Set5.

Instances Characteristics pC&W pIns Adapt-CMSA
name ns nr nc nlv nev best avg. time nlv nev best avg. time nlv nev best avg. time
100-5-1 5 10 100 2 15 13402 13742.7 375.2 2 20 13895 14482.2 552.6 2 13 12428 13050.5 446.5
100-5-1b 5 10 100 2 8 10083 10592.4 534.6 2 9 10278 11024.3 472.2 2 6 9419 9727.6 336.8
100-5-2 5 10 100 2 17 8277 8663.4 582.2 2 20 8729 9153.4 426.5 2 16 7982 8161.3 639.1
100-5-2b 5 10 100 2 8 7173 7352.9 612.1 2 9 7076 7425.2 360.4 2 7 6689 7198.1 494.7
100-5-3 5 10 100 3 15 9480 9610.0 601.7 2 19 9422 10227.3 390.1 2 13 8487 9018.3 674.4
100-5-3b 5 10 100 2 15 8901 9607.7 419.3 2 20 9385 9942.1 367.5 2 13 8581 8984.0 512.1
100-10-1 10 11 100 2 20 9936 10038.1 632.6 2 22 10188 10631.0 421.8 2 16 9767 10176.8 364.4
100-10-1b 10 11 100 2 9 9268 9344.9 456.0 2 10 9252 9593.9 547.9 2 7 8745 9013.6 502.9
100-10-2 10 11 100 2 18 8491 8610.5 560.5 2 20 9218 9380.2 461.3 2 15 8036 8450.4 476.0
100-10-2b 10 11 100 2 9 7769 8000.9 587.6 2 9 7907 8365.5 419.4 2 7 7106 7335.7 377.7
100-10-3 10 11 100 2 18 8620 8734.0 641.3 2 19 9163 9419.2 269.7 2 13 8803 9038.8 354.1
100-10-3b 10 11 100 2 11 7821 7828.6 276.3 2 8 8189 8433.4 661.6 2 7 7501 7713.9 559.0
200-10-1 10 20 200 2 36 13674 14020.8 612.2 2 46 14458 14902.1 396.3 2 31 13622 14013.9 771.8
200-10-1b 10 20 200 2 18 11356 11699.2 354.8 2 21 11661 12086.5 485.1 2 14 10977 11529.5 777.2
200-10-2 10 20 200 2 34 10718 11037.1 625.9 2 48 12151 12296.5 316.8 2 31 10816 11452.6 698.0
200-10-2b 10 20 200 2 17 8773 8922.9 683.6 2 22 9574 9992.5 478.0 2 15 9110 9501.6 745.9
200-10-3 10 20 200 2 33 14494 14689.4 441.2 2 46 15357 15836.1 299.7 2 29 13869 14247.3 840.9
200-10-3b 10 20 200 2 18 10922 11170.3 472.1 2 22 11357 11785.8 479.5 2 13 9943 10301.8 770.0
average - - - 2.1 17.7 9953.2 10203.7 526.1 2.0 21.7 10403.3 10832.1 433.7 2.0 14.8 9548.9 9939.8 574.5

116 Chapter 5 Application to the MPIDS Problem

5.4 Discussion and Conclusions

This chapter described the application of Adapt-CMSA to the two-echelon
electric vehicle routing problem with simultaneous pickup and deliveries.
At each iteration, the algorithm first creates a sub-instance of the considered
problem instance by merging the best-so-far solution with a number of
solutions probabilistically generated using two different solution construction
mechanisms, a Clarke-Wright Savings Heuristic, and an insertion heuristic.
The resulting sub-instance is then solved by the application of the MILP solver
CPLEX. Preliminary computational experiments showed that making use of the
classical MILP model for the purpose of solving sub-instances was not feasible.
Therefore, a set-covering-based model was used and solved with CPLEX.
Computational experiments were performed on 12 small- and medium-sized
problem instances and on 18 large-sized instances. The proposed approach was
evaluated and compared to CPLEX in the context of the small- and medium-sized
problem instances, and to probabilistic versions of the Clarke-Wright Savings
Heuristic and the insertion heuristic for large-sized instances. Numerical results
indicated that Adapt-CMSA exhibits superior performance for problem instances
of all size ranges. In the future, we aim to deepen the analysis of the algorithm
on a wider set of instances.

117

CHAPTER 6

APPLICATION OF VARIABLE NEIGHBORHOOD SEARCH

TO THE TWO-ECHELON ELECTRIC VEHICLE ROUTING

PROBLEM WITH TIME WINDOWS

6.1 Introduction

This chapter demonstrates the application of a Variable Neighborhood Search
Algorithm to the Two-Echelon Electric Vehicle Routing Problem with Time Windows

(2E-EVRP-TW). The content shown in this chapter was also presented in our
paper [3] that was published in the Applied Science Journal (https://doi.org/
10.3390/app12031014).

First, we define the 2E-EVRP-TW problem by means of a three-index
node-based mixed-integer linear programming (MILP) model. Any
general-purpose MILP solver, such as CPLEX or Gurobi, may be used to solve
this model. However, due to the multi-tier structure of the distribution network,
the limited driving range of electric vehicles, and the time window constraints,
the 2E-EVRP-TW problem is rather complex. In fact, our computational
experiments show that CPLEX is only able to solve small-sized problem instances
to optimality. Therefore, we also developed a variable neighborhood search
(VNS) approach to solve the problem1 In addition, we developed an initial
solution generation method based on Clarke-Wright Savings Algorithm [41],
considering 2E-EVRP-TW assumptions and characteristics. The VNS approach
makes use of this heuristic to obtain an initial solution.

As described in Section 1.3.3.3, VNS provides a powerful search framework by
systematically changing neighborhood structures (shaking) to avoid getting stuck
in local optima and by intensifying the search in the vicinity of the incumbent
solution by applying local search. In addition to the classical shaking and local
search operators, we also utilize large neighborhood search (LNS) operators
known as “destroy and repair”, resp. “removal and insertion”, to enhance the

1Note that this work was chronologically done before all the works on CMSA and Adapt-CMSA.

 https://doi.org/10.3390/app12031014
 https://doi.org/10.3390/app12031014

118 Chapter 6 Application to the 2E-EVRP-TW

performance of VNS. In this context, note that, since (1) the problem dimension
of the first echelon is much smaller than that of the second echelon and (2) the first
echelon does not involve any constraint, it can easily be solved using a savings
heuristic. Therefore, whenever the solution for the second echelon changes, the
first echelon tours are generated again by utilizing our Clarke-Wright Savings
Heuristic.

Finally, a last contribution concerns the generation of new problem-specific
benchmark sets. This was necessary due to the lack of an available benchmark
set for the 2E-EVRP-TW problem.

6.1.1 Problem Description and Mathematical Model

Given is a directed graph G = (N,A) in which the set of nodes (N) is composed
of the following four subsets: the set of central warehouses (ND), the set of
satellites (NS), the set of charging stations (NR), and the set of customers
(NC). The set of arcs (A) includes (1) arcs that connect central warehouses and
satellitesA1 = {(i, j)|i ̸= j and i, j ∈ ND ∪NS} and (2) arcs that connect satellites,
customers and charging stations A2 = {(l,m)|l ̸= m and l,m ∈ NS ∪ NR ∪ NC}.
In other words, A1 contains the arcs of the first echelon, and A2 contains the
arcs of the second echelon. Traveling along an arc (i, j ∈ A1), (l,m ∈ A2), has
a cost/distance of d1ij , d2lm. Each customer i ∈ NC has a demand D2i and a
time window that indicates the earliest possible visiting time twei and the latest
possible visiting time twli. Two different fleets of vehicles, each one homogeneous
in itself, serve in the first and second echelons in order to meet customer demands.
A fleet of large trucks V 1with internal combustion engines are located in a central
warehouse and carry products from the central warehouses to the satellites, while
a fleet of electric vehicles V 2 are present at the satellites and distribute products
to customers (demand points). In the first echelon, a truck k ∈ V 1 starts its tour
from a central warehouse, visits one or more satellites, and returns to the central
warehouse from which the tour started. The total amount of deliveries may not
exceed the load capacityQ1k of vehicle k. In the second echelon, an electric vehicle
e ∈ V 2 starts its tour from a satellite, visits one or more customers and charging
stations if necessary, and returns to the satellite from which the tour started. The
total amount of deliveries cannot exceed the load capacity Q2e of electric vehicle
e. A customer can only be served by one electric vehicle. An electric vehicle
starts its tour with a fully charged battery (battery level BCe) and the vehicle’s
battery is consumed in proportion to the distance traveled. If a charging station
is visited, the electric vehicle’s battery is fully charged up to level BCe with a
constant charging speed.

Section 6.1 Introduction 119

Note that an electric vehicle may need to visit a charging station multiple times.
Therefore, set NR includes charging stations as well as copies of each charging
station in order to allow multiple visits to any charging station. The idea of using
such dummy vertices was introduced for the first time in [16] in order to permit
multiple visits to intermediate satellites. Moreover, this approach was adopted
in [62] for a green vehicle routing problem. Determining the number of copies of
each charging station (ψ) is, however, not a trivial task. An insufficient number of
copies may prevent finding an optimal solution due to not allowing a sufficient
number of multiple visits of the same charging station. On the other hand, an
unnecessarily large number of copies of each charging station would increase the
model size, resulting in longer running times of the MILP solvers. As a result of
preliminary experiments on various instance sets, we set ψ to 3.

We developed a three-index node-based integer programming model for
2E-EVRP-TW. Including the vehicles as a third index ensures that the model
may be used for instances that contain heterogeneous fleets with different vehicle
characteristics. In the following, we first introduce the notations, sets and problem
data used by the MILP model. Subsequently, the model is outlined in terms of
the decision variables, the objective function and the constraints.

120 Chapter 6 Application to the 2E-EVRP-TW

Table 6.1 Notations and Sets

Symbol Description

nd Number of central warehouses
ns Number of satellites
ncs Number of charging stations
ψ Number of copies of each charging station
nc Number of customers
nv1 Number of available vehicles in the first echelon
nv2 Number of available electric vehicles
ND Set of central warehouses (node indices: 1, . . . , nd)
NS Set of satellites (node indices: nd + 1, . . . , nd + ns)
NR Set of charging stations and their copies (node indices: nd+ns+1, . . . , nd+

ns + ncs · ψ)
NC Set of customers (node indices: nd+ns+ncs ·ψ+1, . . . , nd+ns+ncs+nc)
NDS Set of central warehouses and satellites (node indices: 1, . . . , nd + ns)
NRC Set of charging stations and customers (node indices: nd+ns+1, . . . , nd+

ns + ncs · ψ + nc)
NSRC Set of satellites, charging stations, and customers (node indices: nd +

1, . . . , nd + ns + ncs · ψ + nc)
N Set of all nodes including warehouses, satellites, charging stations, and

customers (node indices: 1, . . . , nd + ns + ncs · ψ + nc)
V 1 Set of large vehicles serving in the first echelon (|V 1| = nv1)
V 2 Set of electric vehicles (|V 2| = nv2)

Section 6.1 Introduction 121

Table 6.2 Problem Data

Symbol Description

d1ij Distance between node i and node j, (i, j ∈ NDS)

d2lm Distance between node l and node m, (l,m ∈ NSRC)

Q1k Loading capacity of large vehicle k ∈ V 1

Q2e Loading capacity of electric vehicle e ∈ V 2

M A large constant number
BCe Battery capacity of electric vehicle e ∈ V 2

ge Charging rate of electric vehicle e ∈ V 2

D2i Demand of customer i, (∀i ∈ NC)

si Service time of customer i, (∀i ∈ NC)

twei Earliest visiting time of customer i, (∀i ∈ NC)

twli Latest visiting time of customer i, (∀i ∈ NC)

Table 6.3 Decision Variables

Symbol Description

xkij

1 if vehicle k visits node j after node i in the first echelon,

0 otherwise, ∀k ∈ V 1,∀i, j ∈ NDS

yelm

1 if vehicle e visits node m after node l in the second echelon,

0 otherwise, ∀e ∈ V 2,∀l,m ∈ NSRC

zli

1 if customer l gets service from satellite i,

0 otherwise
U1kij Amount of product in vehicle k traveling from node i to node j (first

echelon), ∈ {0, . . . , Q1k}
U2elm Amount of product in vehicle e traveling from node l to node m (second

echelon), ∈ {0, . . . , Q2e}
BSCale Battery level of electric vehicle e at arrival to node l, ∈ [0, BCe]

BSCdle Battery level of electric vehicle e when departing from node l, ∈ [0, BCe]

D1j Demand of satellite j, ∈ {0, . . . ,
∑

i∈NC
D2i}

w1ki Visiting time of node i by vehicle k (first echelon), ∈ [0, twli]

w2el Visiting time of node l by vehicle e (second echelon), ∈ [twel, twll]

122 Chapter 6 Application to the 2E-EVRP-TW

MILP model

Min

∑
k∈V 1

∑
i∈NDS

∑
j∈NDS

d1ij · xkij +
∑
e∈V 2

∑
l∈NSRC

∑
m∈NSRC

d2lm · yelm (6.1)

s.t.

∑
k∈V 1

∑
i∈NDS

xkij = 1 ∀j ∈ NS (6.2)

∑
i∈NDS

xkij −
∑

i∈NDS

xkji = 0 ∀k ∈ V 1, ∀j ∈ NDS (6.3)

∑
j∈NS

xkij ≤ 1 ∀i ∈ ND,∀k ∈ V 1 (6.4)

∑
i∈NS

∑
j∈ND

xkij ≤ 1 ∀k ∈ V 1 (6.5)

xkij = 0 ∀k ∈ V 1, ∀i, j ∈ ND (6.6)∑
k∈V 1

∑
i∈NDS

U1kij −
∑
k∈V 1

∑
i∈NDS

U1kji ≤ D1j ∀j ∈ NS (6.7)

U1kji = 0 ∀i ∈ ND, ∀j ∈ NS ,∀k ∈ V 1 (6.8)

U1kij ≤ Q1k ·
∑
k∈V 1

xkij ∀i, j ∈ NDS ,∀k ∈ V 1 (6.9)

D1i =
∑
l∈NC

zli ·D2l ∀i ∈ NS (6.10)

∑
e∈V 2

∑
l∈NSRC

yelm = 1 ∀m ∈ NC (6.11)

∑
l∈NSRC

yelm −
∑

l∈NSRC

yeml = 0 ∀e ∈ V 2,∀m ∈ NSRC (6.12)

∑
m∈NRC

yelm ≤ 1 ∀e ∈ V 2, ∀l ∈ NS (6.13)

∑
m∈NRC

yeml ≤ 1 ∀e ∈ V 2, ∀l ∈ NS (6.14)

∑
i∈NS

zli = 1 ∀l ∈ NC (6.15)

∑
e∈V 2

yeli ≤ zli ∀i ∈ NS , ∀l ∈ NC (6.16)∑
e∈V 2

yeil ≤ zli ∀i ∈ NS , ∀l ∈ NC (6.17)∑
i∈NS

∑
j∈NRC

yeij ≤ 1 ∀e ∈ V 2 (6.18)

yelm + zli +
∑

s∈NS ,s ̸=i

zms ≤ 2 ∀e ∈ V 2,∀l ∈ NC ,

∀m ∈ NC , l ̸= m,∀i ∈ NS (6.19)∑
e∈V 2

∑
l∈NSRC

U2elm −
∑
e∈V 2

∑
l∈NSRC

U2eml ≤ D2m ∀m ∈ NRC (6.20)

Section 6.1 Introduction 123

U2eij = 0 ∀i ∈ NRC ,∀j ∈ NS ,∀e ∈ V 2 (6.21)

U2elm ≤ Q2v ·
∑
e∈V 2

yelm ∀l,m ∈ NSRC ,∀e ∈ V 2 (6.22)

xkii = 0 ∀i ∈ NDS ,∀k ∈ V 1 (6.23)

yell = 0 ∀l ∈ NSRC ,∀e ∈ V 2 (6.24)

BSCale ≥ 0 ∀l ∈ NSRC ,∀e ∈ V 2 (6.25)

BSCale = BCe ∀l ∈ NS ,∀e ∈ V 2 (6.26)

BSCame ≤BSCale − (h · d2lm) · yelm
+BCe · (1− yelm)

∀l ∈ NC , ∀m ∈ NSRC ,

l ̸= m,∀e ∈ V 2

(6.27)

BSCame ≤BSCdle − (h · d2lm) · yelm
+BCe · (1− yelm)

∀l ∈ NSRC , ∀m ∈ NSRC ,

l ̸= m,∀e ∈ V 2

(6.28)

BSCale ≤ BSCdle ∀l ∈ NSRC ,∀e ∈ V 2 (6.29)

BSCdle ≤ BCe ∀l ∈ NSRC ,∀e ∈ V 2 (6.30)

BSCale = BSCdle ∀i ∈ NC ,∀e ∈ V 2 (6.31)

BSCdle = BCe ∀l ∈ NR,∀e ∈ V 2 (6.32)∑
l∈NSRC

U2elm =
∑

l∈NSRC

U2elm ∀m ∈ N
′
R,∀e ∈ V 2 (6.33)

w1ki = 0 ∀i ∈ ND,∀k ∈ V 1 (6.34)

w1kj ≥ w1ki + d1ij + si −M ∗ (1− xkij) ∀i ∈ NDS ,∀j ∈ N
′
S ,∀k ∈ V 1 (6.35)

w2ej ≥ w1ki + d1ij + si −M ∗ (1− xkij)
∀i ∈ NDS ,∀j ∈ N

′
S ,∀e ∈ V 2,

∀k ∈ V 1
(6.36)

w2ej ≥w2ki + d2ij + si

−M · (2− yeij −
∑

h∈NDS

xkhi)

∀i ∈ N
′
S ,∀j ∈ NSRC ,

∀e ∈ V 2, ∀k ∈ V 1

(6.37)

w2em ≥w2el + d2lm + sl

−M · (1− yelm)

∀l,m ∈ NRC , ∀e ∈ V 2 (6.38)

w2em+d2lm · yelm + gv · (BCe −BSCale)

− (M + gv ·BCe) · (1− yelm) ≤ w2em

∀l ∈ N
′
R, ∀m ∈ NSRC ,

l ̸= m,∀e ∈ V 2

(6.39)

w1ki ≥ twei ∀i ∈ NDS ,∀k ∈ V 1 (6.40)

w2el ≥ twel ∀l ∈ NSRC ,∀e ∈ V 2 (6.41)

w1ki ≤ twli ∀i ∈ NDS ,∀k ∈ V 1 (6.42)

w2el ≤ twll ∀l ∈ NSRC ,∀e ∈ V 2 (6.43)

The objective function 6.1 minimizes the total distance traveled by all utilized
vehicles in both echelons. Constraint 6.2 guarantees that each satellite will be
visited by a truck. Constraints 6.3 and 6.12 ensure the balance of flow for

124 Chapter 6 Application to the 2E-EVRP-TW

the satellites and customers, respectively. Constraints 6.4 and 6.5 ensure that
vehicles in the first echelon are used only if needed. Constraint 6.6 does not
allow direct transportation between central warehouses if there is more than
one warehouse. Constraints 6.7 and 6.20 guarantee that the demand of each
satellite and customer is met by the vehicles serving in the relevant echelon,
respectively. Constraints 6.8 and 6.21 ensure that no product remains in the
vehicle when returning to the central warehouse in the first echelon and to the
satellite in the second echelon, respectively. Constraints 6.9 and 6.22 indicate
that the vehicle capacity cannot be violated. Constraint 6.10 determines each
satellite’s demand to be the total demand of those customers served by the
relevant satellite. Constraint 6.11 guarantees that each customer is visited only
once. Constraints 6.13 and 6.14 ensure that vehicles in the second echelon are
only used when they are needed. Constraint 6.15 ensures that each customer
is served by only one satellite. Constraints 6.16, 6.17, and 6.19 ensure that each
electric vehicle completes its tour at the same satellite from which it started the
tour. Constraint 6.18 guarantees that each electric vehicle can provide service
through only one satellite. Constraints 6.23 and 6.24 prevent returning to the
node from which a vehicle just departed. Constraints 6.25–6.32 are battery
state constraints. Constraint 6.33 states that the load of a vehicle is the same
when arriving and departing from a charging station. Constraints 6.34–6.39
calculate arrival and departure times considering service and battery charging
times. Moreover, constraints 6.40–6.43 restrict the visiting time of each customer
with respect to the time windows.

The classical VRP is NP-Hard [117]. The multi-tier distribution structure
(two echelons) and additional limitations such as the driving range of electric
vehicles and customers’ time windows further increase the complexity. As
the computation time required to solve such complex problems to optimality
increases dramatically with a growing instance size, most approaches from the
related literature for similar problems are approximate techniques, especially
in the context of large-sized problem instances. In this chapter, we propose
an approach based on VNS to solve the 2E-EVRP-TW. Algorithm 6.2 presents
the general structure of the proposed algorithm. It starts with the application
of a modified version of the Clarke-Wright Savings Algorithm to obtain an
initial solution quickly and efficiently. Subsequently, shaking and local search
procedures are applied to improve the initial solution. However, before
describing the proposed algorithm, we first explain how a solution S is
represented, and subsequently we outline an extended objective function used to
handle infeasible solutions.

Section 6.2 Solution Approach 125

6.2 Solution Approach

In the following, we first provide the representation of solutions and the
description of an extended objective function for dealing with infeasible solutions.
Then, an extended Clarke-Wright Algorithm is provided, followed by the
description of the VNS procedure.

6.2.1 Solution Representation and Extended Objective Function

In our implementation, a solution S is represented by two sets of routes: R1

and R2. Each route τ1 ∈ R1 starts from a central warehouse, visits one or
more satellites from NS , and returns to the same central warehouse. Each route
τ2 ∈ R2 starts from a satellite s ∈ NS , visits a sequence of locations/nodes
v ∈ NRC , and returns to the same satellite. An exemplary solution for a
2E-EVRP-TW instance with a single central warehouse, two satellites, three
charging stations and five customers is shown below. The vector I includes the
complete set of node indexes of the example problem instance. Moreover, the
solution S contains one route in the first echelon (τ11) and two routes in the
second echelon (τ21 and τ22).

I = (0,︸︷︷︸
central warehouse

1, 2,︸ ︷︷ ︸
satellites

3, 4, 5,︸ ︷︷ ︸
charging stations

6, 7, 8, 9, 10,︸ ︷︷ ︸
customers

)

S = (R1, R2) where

{ }
R1 = τ11 = {0 1 2 0}

R2 =
τ21 = {1 7 3 9 1}

τ22 = {2 10 4 8 6 2}

The usefulness of allowing the algorithm to visit unfeasible solutions during
the search process has already been recognized in the metaheuristics community,
especially in the field of evolutionary computation [134]. In this work, we do this
in a similar way as in [166] in the context of the EVRP. In particular, the extended
objective function that evaluates both feasible and unfeasible solutions by means
of penalty values for capacity, battery, and time windows violations is defined as
follows:

fext(S) = f(S) + ωcPcap(S) + ωbPbat(S) + ωtwPtw(S) (6.44)

Here, f(S) refers to the objective function of the 2E-EVRP-TW problem, that

126 Chapter 6 Application to the 2E-EVRP-TW

is, the sum of the distances traveled by all utilized vehicles from the first and the
second echelon. Furthermore, Pcap(S), Pbat(S) and Ptw(S) denote the capacity,
battery and time windows violations in solution S. In this context, the function
for calculating the capacity violations of a solution S with m routes in the first
echelon and n routes in the second echelon is defined as follows:

Pcap(S) =
m∑
i=1

max
{(∑

j∈τ1i

D1j
)
−Q1, 0

}
+

n∑
k=1

max
{(∑

l∈τ2k

D2l
)
−Q2, 0

}
(6.45)

In words, if the total demand of the satellites (resp. the customers) on a route
exceeds the vehicle capacity, the capacity violation of the route is determined as
the difference between the vehicle capacity and the total demand of the route.
Otherwise, it is set to zero. Note that, in an abuse of notation, j ∈ τ1i refers to a
satellite j visited by route τ1i and l ∈ τ2k refers to a customer l visited by route
τ2k.

Next, the total battery violation of a solution S, Pbat(S), is calculated using
Equations (6.46)-(6.47):

Pbat(S) =
n∑

k=1

Pbat(τ2k) ,where (6.46)

Pbat(τ2k) =
∑
l∈τ2k

∣∣min{BSCale, 0}
∣∣ (6.47)

That is, this function sums (for all second echelon routes τ2k) the battery level
violations of the electric vehicles at the arrival to all nodes l ∈ τ2k. Hereby,
the term node refers to customers and charging stations. Finally, similar to the
approach used to calculate Pbat, Ptw is calculated using Equations (6.48)-(6.49):

Ptw(S) =
n∑

k=1

Ptw(τ2k) ,where (6.48)

Ptw(τ2k) =
∑
l∈τ2k

max
{
w2ei − twli, 0

}
(6.49)

These three penalty terms are added as a weighted sum to the original
objective function value (see Equation 6.44). The corresponding three weights
are denoted by ωc, ωb and ωtw. At the start of the VNS algorithm, all three weights
are set to an initial value pinit. Then, they are dynamically updated between
pmin and pmax. More specifically, if any of three terms (capacity, battery, and
time windows violations) are greater than zero for piter successive iterations, the
respective penalty weight is increased by p+ > 0. On the other hand, if the
respective solution is feasible in terms of any of three constraint violation types,

Section 6.2 Solution Approach 127

the respective weight is decreased by means of a division by p− > 1.

6.2.2 Initial Solution Construction

The VRP literature offers numerous heuristic approaches in order to construct
initial solutions to different VRP variants. The Clarke-Wright Savings Algorithm
is one of the most commonly used methods because of its simplicity, performance,
and ease of adaptation to different problem variants. This chapter proposes a
savings-based initial solution construction algorithm that considers the multi-tier
transportation structure and additional constraints (capacity, battery, and time
windows) of the 2E-EVRP-TW. Algorithm 6.1 provides a high-level pseudo-code
of this procedure.

First, each customer is assigned to the nearest satellite. After this assignment,
setN s

C ⊆ NC contains all customers assigned to satellite s, for all s ∈ NS . Note that,
with this assignment, an indirect time window arises for each satellite based on
the customer’s time windows. Assume, for example, that goods are transported
from central warehouse 0 to satellite s, and then from satellite s to customers i and
j, that is, i, j ∈ N s

C . As illustrated in Figure 6.1, the electric vehicle must depart
from satellite s before a certain time in order to be able to visit customers within
their time windows. Therefore, the large truck in the first echelon must deliver
goods to satellite s no later than twls := min{twlv − d2sv | v ∈ N s

C} such that the
electric vehicle is able to visit customer i and j before twli and twlj , respectively.

𝑡𝑤𝑙𝑖𝑡𝑤𝑒𝑖

𝑑2𝑠𝑖

𝑡𝑤𝑙𝑠= 𝑡𝑤𝑙𝑖- 𝑑2𝑠𝑖

𝑡𝑖𝑚𝑒

Satellite - 𝒔

Central Warehouse - 𝟎

Customer - 𝒊

𝑑10𝑠

Customer - 𝒋

𝑑2𝑠𝑗

𝑡𝑤𝑙𝑗𝑡𝑤𝑒𝑗

Fig. 6.1 An illustration of the indirect time windows arising for a satellite
depending on the customers it must serve. Note that time windows are indicated
in green color.

After calculating time windows for each satellite, first, the routes for the large
vehicles in the first echelon and, second, the routes for the electric vehicles in the
second echelon are constructed using the savings heuristic. In the following, we
explain the steps for constructing the routes for the electric vehicles in the second
echelon. In particular, for each satellite s ∈ NS the following steps are applied:

128 Chapter 6 Application to the 2E-EVRP-TW

1. A set of direct routes R2 = {(s i s) | i ∈ N s
C} is created. However, note

that not all of these single-customer tours are necessarily battery feasible. If
this occurs, a charging station with the minimum insertion cost is inserted
into the route. To achieve this, first, for each charging station r ∈ NR the
cost Cinsert(r) of inserting r between satellite s and customer i is calculated
as Cinsert(r) = d2sr + d2ri − d2si. Then, a charging station r′ ∈ NR such that
Cinsert(r

′) ≤ Cinsert(r) for all r ∈ NR is inserted into the infeasible route.
Only one charging station is allowed to be inserted to fix infeasibility. In
the unique case that the battery infeasibility cannot be eliminated despite
charging station insertion, the relevant tour is removed, and the customer
in the tour is added to the initially empty list of unvisited customers Lu.

2. Subsequently, a savings list formed by all possible pairs of nodes (customers
and charging stations) together with their respective savings values is
generated. A pair of nodes (i, j ∈ NRC | i ̸= j) must fulfill the following
conditions to be included in the savings list: (1) node i and node j must
belong to different routes, and (2) both i and j must be directly connected
to the satellite in the route to which they belong. With regard to the
calculation of the savings value s2ij for two nodes i and j, the literature
offers various enhancements and extensions. In this study, we have utilized
the formulation introduced by [7]:

s2ij = d2si + d2sj − λd2ij + µ|d2si − d2sj|+ γ
D2i +D2j

D
(6.50)

Note that, according to this formula, both the distances between nodes, as
well as the customer demands have an influence on the route construction
process. More precisely, the first four terms of Equation (6.50) are based
on the distances between nodes, while the last term ((D2i+D2j)

D
) takes into

account the customer demands. Hereby, D2i and D2j refer to the demands
of customers i and j, while D indicates the average demand of customers
in N s

C \ Lu. As a result, tours that include customers with higher demands
are prioritized during tour merging operations and vehicle capacities are
used more effectively. Finally, note that the so-called route shape parameter

λ adjusts the selection priority based on the distance between customers
i and j [193], while µ is used to scale the asymmetry between customers
i and j [143]. Parameter γ weights the demand information. Note that
well-working values for these parameters are obtained by parameter tuning
which is presented in Section 6.3.2. Finally, the savings list is sorted

Section 6.2 Solution Approach 129

Table 6.4 Cases for tour merging w.r.t. nodes i and j

Case Tours Merging Procedure Result

1
τ21 : {s i . . . s} Reverse τ21, rev(τ21)

τ2m : {s . . . i j . . . s}
τ22 : {s j . . . s} Concatenate with τ22

2
τ21 : {s i . . . s} Reverse both τ21 and τ22

τ2m : {s . . . i j . . . s}
τ22 : {s . . . j s} rev(τ21), rev(τ22)

3
τ21 : {s . . . i s} Concatenate τ21 and τ22

τ2m : {s . . . i j . . . s}
τ22 : {s j . . . s}

4
τ21 : {s . . . i s} Reverse τ22, rev(τ22)

τ2m : {s . . . i j . . . s}
τ22 : {s . . . j s} Concatenate with τ21

according to non-increasing savings values.

3. At each iteration, the two routes that contain a pair of nodes (i, j) with the
highest savings value s2ij are selected from R (e.g., τ21, τ22). Then, the
chosen routes are merged by connecting nodes i and j. All of the merging
scenarios are shown in Table 6.4.

Based on the way in which nodes i and j are connected to the respective
satellite, one or both of the routes must be reversed in order to be able
to connect nodes i and j. In this context, note that the reversed version
of a tour τ21 is denoted by rev(τ21). If the merged route is infeasible in
terms of vehicle capacity or time windows, the route is eliminated, and
merging continues considering the pair of nodes with the next-highest
savings value. If the merged route is battery infeasible, a charging station
r with a lowest insertion cost is inserted between node i and j (e.g.,
{s . . . i r j . . . s}). In these cases in which the route is still infeasible
after charging station insertion, it is eliminated, and merging continues with
the next pair of customers from the savings list. This procedure is repeated
while the savings list is not empty. After merging, some of the charging
stations that were previously added to the routes may become redundant.
These charging stations are removed from the merged route.

4. Update the savings list as described in step 2 and repeat step 3 until no
further pairs of tours can be merged.

5. Finally, the customers in Lu (the list of unvisited customers) are inserted
into the constructed tours using the greedy insertion operator, which is
described in detail in Section 6.2.3.3 .

130 Chapter 6 Application to the 2E-EVRP-TW

Algorithm 6.1 Modified Clarke-Wright Savings Heuristic for the 2E-EVRP-TW
1: Assign customers to the nearest satellite
2: Determine the latest possible visiting time (twls) for each satellite s ∈ NS

3: Construct first echelon routes using the savings heuristic
4: for each satellite s do

5: Create back-and-forth tours for each customer i ∈ N s
C (s− i− s)

6: if the created tour is infeasible in terms of the battery constraints then

7: Insert a charging station using the greedy CS insertion operator (see
Section 6.2.3.3)

8: if the tour is still infeasible then

9: Discard the tour and add the customer to the unvisited customer list
Lu

10: end if

11: end if

12: Generate the savings list and sort it in descending order based on the
savings values

13: while savings list is not empty do

14: Merge the two tours with the greatest savings value
15: if vehicle capacity or time window constraints are violated then

16: Discard the tour and remove the corresponding pair of customers from
the savings list

17: else

18: if the merged tour is infeasible in terms of the battery constraint then

19: Insert a charging station with a minimum insertion cost
20: if the tour is still infeasible then

21: Discard the tour and remove the pair of customers from the
savings list

22: else

23: Accept the merged tour and update the saving list
24: end if

25: else

26: Accept the merged tour and update the saving list
27: end if

28: end if

29: end while

30: Insert all customers from Lu into the constructed tours using the greedy

customer insertion operator (see Section 6.2.3.3)
31: end for

Section 6.2 Solution Approach 131

Finally, note that the same procedure is applied to construct routes for the
large vehicles in the first echelon. In this case, all aspects related to batteries and
charging stations are removed from the heuristic procedure.

6.2.3 Variable Neighborhood Search for the 2E-EVRP-TW

The initial solution constructed by our version of the Clarke-Wright savings
heuristic from above is used as input for a variable neighborhood search (VNS)
approach outlined in Section 1.3.3.3.

Algorithm 6.2 presents a pseudo-code of our implementation of VNS for
the 2E-EVRP-TW. The proposed algorithm starts by taking an initial solution
Sinit as input. Then, the neighborhood structures used for shaking N shake

k , (k =

1, . . . , kmax) and the ones used for local search N local
h , (h = 1, . . . , hmax) are

determined. These neighborhood structures will be explained in detail in
following sections. However, note that, in addition to rather standard inter-route
and intra-route operators, our VNS also makes use of so-called destroy-and-repair
operators for the shaking step. Operators such as these ones were mostly
introduced in the context of approaches based on large neighborhood search
(and very large neighborhood search) algorithms and have shown to be highly
useful for exploring large search spaces [148]. In particular, the reconstruction of a
partially destroyed solution using various reinsertion operators has the potential
to produce solutions that may have been difficult to reach otherwise. Concerning
the specific case of VRP problems, removing rather large components of a solution
and reinserting them into other positions of the solution may help reduce the
number of routes and the number of vehicles, respectively.

After obtaining the initial solution Sinit, both the current solution Scur and
the best-so-far solution Sbsf are initialized to Sinit. At each main iteration of
VNS, the shaking neighborhoods are randomly ordered. This order is then used
until the current neighborhood utilized for shaking (indicated by k) is the kmax-th
neighborhood. Next, a random solution Sshake is chosen from the current shaking
neighborhood k. In case this neighborhood is a removal/destroy operator, the
partially destroyed solution must subsequently be repaired with an insertion
operator; see lines 15–17 of Algorithm 6.2. After re-constructing the first echelon
tours of Sshake using our Clarke-Wright Savings Algorithm (line 18), local search
is applied to Sshake. For this purpose we applied the variable neighborhood
descent (VND) method shown in Algorithm 6.3. In the VND phase, a set of
local search operators are applied to Sshake in a predefined and fixed order. In
this context, note that after each application of a shaking and/or a local search
operator, the first echelon routes must be reconstructed since satellite demands

132 Chapter 6 Application to the 2E-EVRP-TW

may have changed.
In a basic VNS, only improved solutions are accepted. However, in the context

of problems with many unfeasible solutions, this may cause the algorithm to
get stuck during the search process. Therefore, we have adopted the method
introduced by [90] for the solution acceptance decisions (lines 20–29). Based
on this method, while improved solutions are always accepted, non-improving
solutions are accepted with a certain probability paccept. At each iteration, function
ClcAcceptanceProbability(fext(Scur), fext(Slocal), T) calculates paccept as follows:

paccept =
e(−(fext(Slocal)−fext(Scur)))

T
(6.51)

Here, fext(Scur) and fext(Slocal) are values of the extended fitness function of
the current solution and of the solution after local search, respectively. Lastly,
T refers to the actual temperature value. At the beginning, T is initialized to
an initial temperature Tinit which is decreased by t− at each main iteration of
VNS (see line 30). In this way, while a non-improving solution is more likely to
be accepted early during the search, the probability of accepting non-improving
solutions will decrease with a growing iteration number. However, in case no
improved solution was found during iter_nimax iterations, T is reset to Tinit in
order to enhance diversification.

Section 6.2 Solution Approach 133

Algorithm 6.2 VNS for the 2E-EVRP-TW
1: input: an initial solution Sinit

2: Sshake : Solution obtained after shaking
3: Slocal : Locally optimal solution after VND
4: Scur : Current solution
5: Sbsf : Best-so-far solution
6: iter_ni : The number of non-improving solutions
7: iter_nimax : The maximum iteration limit for non-improving solutions
8: Determine set of neighborhood structures for shaking
{N shake

k | k = 1, . . . , kmax} and local search {N local
h | h = 1, . . . , hmax}

9: Scur, Sbsf ← Sinit

10: while the computational time limit is not reached do

11: Create π of the shaking neighborhoods N shake
k

12: Set k ← 1

13: while k ≤ kmax do

14: Apply shaking: Choose Sshake from N shake
π(k) (Scur), the π(k)th shaking

neighborhood of Scur

15: if N shake
π(k) is a removal/destroy operator then Repair Sshake end if

16: Re-construct first echelon tours using Clarke-Wright Savings Algorithm
17: Apply local search: Slocal ← VND(Sshake)
18: paccept ← ClcAcceptanceProbability(fext(Scur), fext(Slocal), T)
19: ρ← rand()
20: if fext(Slocal) < fext(Sbsf) then Sbsf ← Slocal end if

21: if fext(Slocal) < fext(Scur) or ρ < paccept then

22: Scur ← Slocal, k ← 1

23: else

24: k ← k + 1, iter_ni← iter_ni+ 1

25: end if

26: Decrease T by t−

27: if iter_ni = iter_nimax then

28: T ← Tinit

29: iter_ni← 0

30: end if

31: end while

32: end while

Both shaking and local search operators are only applied to the second echelon
routes. After obtaining the second echelon tours, the first echelon tours can easily

134 Chapter 6 Application to the 2E-EVRP-TW

be constructed by saving heuristics; see lines 15 and 19.

Algorithm 6.3 Variable Neighborhood Decent (VND)
1: input: Sshake

2: SV ND : Solution obtained after applying a local search operator
3: Set h← 1

4: while h ≤ hmax do

5: Generate SV ND from the hth local search neighborhood of Sshake (SV ND :

N local
h (Sshake))

6: if fext(SV ND) < fext(Sshake) then

7: Sshake ← SV ND

8: h← 1

9: else

10: h← h+ 1

11: end if

12: end while

13: output: Sshake

The following four sections will provide a detailed description of standard
shaking operators, removal/destroy operators, repair operators, and local search
neighborhoods, respectively.

6.2.3.1 Standard Shaking Operators

Random cyclic exchange: This operator was originally introduced by [178]. It
transfers a node sequence (consisting of customers and/or charging stations)
from one route to another in a cyclic way. This operator is quite advantageous
for many sequence-based combinatorial optimization problems as it enables the
generation of a large variety of moves with a single operator.

The cyclic exchange operator we have applied takes two parameters as input:
(1) the number of routes (ζ) to be involved in the cyclic move, and (2) the maximum
number of nodes (θmax) to be transferred from one route to another. First, the
operator randomly selects ζ routes. Then, a random integer number θ from the
interval [1,θmax] is independently determined for each route involved in the cyclic
move. This value refers to the route-specific length of the node sequence to be
transferred. Finally, θ consecutive nodes are randomly selected from each route
and transferred to the next route in the cyclic move. If ζ is greater than the
total number of routes existing in a solution, then ζ is set to the total number of
routes. Similarly, if θ is greater than the total number of nodes in a route, then θ is

Section 6.2 Solution Approach 135

𝝉𝟏

𝝉𝟐

𝝉𝟑

𝝉𝟏

S S𝑣1 𝑣2 𝑣3 𝑣4

S S𝑣5 𝑣6 𝑣7 𝑣8

S S𝑣9 𝑣10 𝑣11 𝑣12

S S𝑣1 𝑣2 𝑣3 𝑣4

𝜃 = 2

𝜃 = 1

𝜃 = 2

𝝉𝟏

𝝉𝟐

𝝉𝟑

𝝉𝟏

S S𝑣1 𝑣2 𝑣3 𝑣4

S S𝑣5 𝑣6 𝑣7 𝑣8

S S𝑣9 𝑣10 𝑣11 𝑣12

S S𝑣1 𝑣2 𝑣3 𝑣4

𝜃 = 2

𝜃 = 1

𝜃 = 2

Fig. 6.2 An illustration of the cyclic exchange operator with ζ = 3. Note that the
route at the top and the route at the bottom are the same in order to show the
cyclic nature of the move.

readjusted. The optimal values for both parameters are determined by parameter
tuning (see Section 6.3.2). Figure 6.2 illustrates a cyclic exchange move with three
routes.

Random sequence relocation: This operator selects a node sequence from one
route and transfers it to another route. The origin and destination routes, the
node sequence to be relocated, and the insertion position in the destination route
are determined randomly. Parameter maxn limits the number of nodes to be
transferred. The optimal value for maxn is determined by parameter tuning
(Section 6.3.2).

6.2.3.2 Removal/Destroy Operators

One of the most critical aspects of a destroy operators is deciding on the number
of nodes in the solution to be removed. Limiting the amount of destruction
too much may cause a poor exploration performance of the algorithm. On
the contrary, repairing a largely destroyed solution can be time-consuming
and may result in a poor quality solution depending on the utilized repair
procedure [148]. Therefore, we used a random removal rate between a
lower and an upper bound to determine how many nodes (or routes) will be
removed from the current solution. Well-working upper and lower bounds are
decided via parameter tuning (Section 6.3.2) and fixed for each group of instances.

Random customer removal: First, a random number ρ is drawn from the interval
[rr1Lb, rr1Ub]. This number is the fraction of customers to be removed from
the solution, henceforth called the removal rate. Note that rr1Lb and rr1Ub are
the lower and upper bounds for the removal rate. Finally, a randomly chosen
number of max{1, ⌊ρ ∗ nc⌋ } randomly chosen customers are removed from the
current solution and added to a removal list Lr.

136 Chapter 6 Application to the 2E-EVRP-TW

Random route removal: Similar to the random customer removal operator
above, a random number ρ is drawn from the interval [rr2Lb, rr2Ub]. This
number is the fraction of routes to be removed from the solution. Assume
that solution S has n routes in the second echelon. After drawing number ρ,
a number of max{1, ⌊ρ ∗ n⌋ } randomly chosen routes are removed from the
current solution and all customers from these routes are added to a removal listLr.

Close satellite: This operator closes a randomly chosen satellite and adds all
the customers served through this satellite to a removal list Lr.

6.2.3.3 Repair Operators

A partially destroyed solution may either be repaired using an exact or a
heuristic approach. Although exact approaches guarantee the optimal insertion
of removed customers or routes, they are much more time consuming than
heuristic approaches, especially when a rather large part of the solution is
destroyed. Moreover, too much optimality in the repair operator may limit the
diversification capabilities of the search. Therefore, we have applied greedy
and best-insertion strategies for repairing partially destroyed solutions; see
also [52, 158]. In the following, partially destroyed solutions are labelled Sd.

Greedy customer insertion: This operator reinserts each customer from Lr

into the partially destroyed solution Sd according to the last-in-first-out (LIFO)
principle. Henceforth, NSd

denotes the set of nodes (customers and charging
stations) that still form part of the partially destroyed solution Sd. Let v ∈ Lr be
the customer that is to be re-inserted into Sd. First, for each pair i, j ∈ NSd

such
that i and j are consecutive nodes in one of the routes of Sd, the insertion cost δvij
is calculated as follows:

δvij = d2iv + d2vj − d2ij (6.52)

Then, customer v is inserted at the position with the lowest insertion cost.
Suppose that the obtained route after insertion is infeasible in terms of vehicle
capacity or time windows constraints. In this case, customer v is inserted at the
next-cheapest position in terms of the insertion cost, and so on. If no feasible
insertion position can be found, the customer is finally inserted at the initially
best position, ignoring the infeasibility. In case of battery infeasibility, a charging
station is added to the route. These procedures are applied until no customer
remains in Lr.

Section 6.2 Solution Approach 137

Greedy customer insertion with noise: This operator is a special version of the
greedy customer insertion operator described above. It utilizes the following
modified cost function with a noise parameter for calculating the insertion cost
of a customer v:

δnoisevij = δvij + dmax + α + β (6.53)

Here, dmax refers to the maximum distance between all nodes in NSRC , and α

refers to the noise parameter set to 0.1 ([52, 108–110]). Finally, β is a uniform
random number generated independently for the calculation of each cost value
from the interval [−1, 1].

Best customer insertion: Instead of re-inserting customers from Lr in the LIFO
order, this operator aims to find the best insertion position for all customers.
Each time, the insertion costs of all remaining customers from Lr are calculated
using Equation (6.52). Then, the customer with the best insertion cost is inserted
into the best possible position. This operator is much more time consuming
than the greedy customer insertion operator. It may, however, lead to better
results. Infeasible insertions are handled in the same way as the greedy customer
insertion operator.

Greedy CS insertion: In the case of battery infeasibility, this operator
inserts a charging station with the lowest insertion cost at the point at which
infeasibility occurs. Figure 6.3 illustrates the insertion of a charging station
to a battery-infeasible route. Assuming that the electric vehicle runs out of
battery before reaching node v4, the operator first tries to insert a charging station
r∗ := argmax{d23r + d2r4 − d234 | r ∈ NR} between nodes v3 and v4. In case the
battery level is not high enough to reach the charging station that is to be inserted,
a possible insertion is tried before node v3, etc.

138 Chapter 6 Application to the 2E-EVRP-TW

S S𝑣1 𝑣2 𝑣3 𝑣4

S 𝑣1 𝑣2 𝑣3 S𝑣4

Fig. 6.3 An illustration of the charging station insertion operator. In the
battery-infeasible route, the electric vehicle runs out of battery before reaching
node v4.

6.2.3.4 Local Search Neighborhoods

For the local search phase (that is, for the application within VND), the algorithm
makes use of three inter-route operators (exchange(1,1), shift(1,0), and swap)
and three intra-route operators (relocation, two_opt, and CS_reinsertion). In all
these neighborhoods—except for CS_reinsertion—we use the first-improvement
strategy, that is, a neighborhood exploration stops once the first improving
solution is found. Infeasible moves are also allowed but they are penalized.
Figure 6.4 graphically illustrates these local search neighborhoods.

The exchange (1,1) neighborhood considers all exchanges of each customer with
every other customer not in the same route. The shift (1,0) neighborhood looks
at all possibilities of removing a customer from its current route and inserting
it at any position in the rest of the routes. Next, the relocation operator removes
each customer from its current position and inserts it into another position in
the same route. The swap neighborhood considers changing the positions of
two selected nodes of the same route. The two_opt neighborhood considers
all possibilities of selecting two non-consecutive nodes in the same route and
reversing the node sequence between the two selected nodes. Note that there
must be at least three nodes between the two selected nodes in order not to
repeat moves already considered in the swap operator. The CS_relocation operator
removes the current charging stations of a route and reinserts them in different
positions in the same route in order to find the best positions for the charging
stations. Unlike CS_relocation, the CS_reinsertion operator removes the current
charging stations from a route. Instead of reinserting the removed ones, the
greedy charging station insertion operator from the previous section is applied
to repair the route. Thus, charging stations different from the removed ones may
be inserted into the route.

Section 6.3 Experimental Evaluation 139

1:

2:

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑣6 𝑣7 𝑣8 𝑣9 𝑣10

𝑣7 𝑣2 𝑣3 𝑣4 𝑣5

𝑣6 𝑣1 𝑣8 𝑣9 𝑣10

𝑠 𝑠

𝑠 𝑠

𝑠 𝑠

𝑠 𝑠

1:

2:

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑣6 𝑣7 𝑣8 𝑣9 𝑣10

𝑠 𝑠

𝑠 𝑠

𝑣2 𝑣3 𝑣4 𝑣5

𝑣6 𝑣7 𝑣8 𝑣9 𝑣10𝑣1

𝑠

𝑠

𝑠

𝑠

(a) (b)

1:

2:

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑣2 𝑣3 𝑣1 𝑣4 𝑣5

𝑠 𝑠

𝑠 𝑠

1:

2:

0 0

0 0

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑣4 𝑣2 𝑣1 𝑣5𝑣3

(c) (d)

1:

2:

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑣1 𝑣4 𝑣3 𝑣2 𝑣5

𝑠 𝑠

𝑠 𝑠

1:

2:

𝑟1

𝑟1

𝑠 𝑠

𝑠 𝑠

𝑣1 𝑣2 𝑣3 𝑣4

𝑣1 𝑣2 𝑣3 𝑣4

(e) (f)

1:

2:

𝑟1

𝑟3

𝑠 𝑠

𝑠 𝑠

𝑣1 𝑣2 𝑣3 𝑣4

𝑣1 𝑣2 𝑣3 𝑣4

(g)

Fig. 6.4 An illustration of local search operators. (a) The exchange(1,1) operator,
(b) The shift(1,0) operator, (c) The relocation operator, (d) The swap operator, (e)
The two-opt operator, (f) CS_relocation operator, (g) CS_reinsertion operator.

6.3 Experimental Evaluation

In addition to our Clarke-Wright Savings Heuristic and VNS we also tried to
solve all problem instances with the MILP solver CPLEX. All experiments were
performed on a cluster of machines with Intel® Xeon® 5670 CPUs with 12 cores
of 2.933 GHz and a minimum of 32 GB RAM. Note that CPLEX version 12.10 was
used in one-threaded mode.

6.3.1 Generation of 2E-EVRP-TW Instances

Due to a lack of available benchmark sets for the 2E-EVRP-TW, we generated new
problem-specific instance sets by extending the benchmark sets provided in [166].
These instances were proposed for the electric vehicle routing problem with time

140 Chapter 6 Application to the 2E-EVRP-TW

(a) (b) (c)

Fig. 6.5 Illustration of the locations of the central warehouse and the satellite(s)
in different cases. Blue dots refer to customers and red triangles are charging
stations. (a) Small instance with 10 customers, (b) Small instance with 15
customers, (c) Large instance (100 customers).

windows and consist of 36 small and 56 large instances. Small instances are
composed of 5, 10, or 15 customers with a varying number of charging stations
(between 2 and 5), while the large ones include 100 customers and 21 charging
stations. We have extended these instance sets following the methodology
proposed in [84]. In particular, first, the number of satellites to be added to
each instance was determined. Then, the locations of those satellites and the one
of a single central warehouse was specified.

Concerning the number of satellites, we decided to use one single satellite in
the case of small instances with at most 10 customers, two satellites in the case of
15 customers, and eight satellites for the large instances. Note that the customers
of each instance are scattered over the intersections of a 100 × 100 grid. The
location of the single central warehouse was determined for each instance to be
outside this area, at (50, 150). The single satellite in the case of instances with
at most 10 customers was placed at (50, 75), while the two satellites in the case
of instances with 15 customers were places at (50, 25) and (50, 75). Finally, the
eight satellites for all remaining instances were placed at (25, 25), (25, 50), (25, 75),
(50, 25), (50, 75), (75, 25), (75, 50) and (75, 75). Figure 6.5 shows examples of all
three cases.

In addition, we updated the customers’ time windows by adding the distance
between the location of the central warehouse in the original instance set and the
new central warehouse as an offset value. Lastly, we modified the capacities of

Section 6.3 Experimental Evaluation 141

the electric vehicles and large trucks, considering the fact that instances labeled
with C2, R2, and RC2 are more capacity constrained as compared to those labeled
C1, R1, and RC1. In particular, we have fixed the capacity ratio between large
trucks and electric vehicles to 4/0.5 for instances of the first type, and to 2/0.25

for instances of the second type. All benchmark instances generated in this
study and the executable of the proposed algorithm are available at https:
//github.com/manilakbay/2E-EVRP-TW, accessed on (01/05/2024) .

6.3.2 Parameter Tuning

In order to determine well-working parameter values for our algorithms we have
utilized the scientific tuning software irace [124]. Tables 6.5 and 6.6 summarize
the parameters that are subject to tuning for our Clarke-Wright savings heuristic
and for the VNS together with the considered value domains.

Due to large differences in instance size, we decided to tune our VNS algorithm
(including the parameters of the Clarke-Wright savings heuristic) separately for
small and for large problem instances. In the first case (small instances), instances
C101_C10, R102_C10, RC102_C10, C103_C15, R102_C15 and RC103_C15 were used
for tuning. In the case of the large instances, instances C101_21, C201_21, R101_21,
R201_21, RC101_21 and RC201_21 were used. For each of the two tuning runs,
the budget of irace was fixed to 2000 algorithm runs. In the context of small
instances, the computation time limit of each run was fixed to 150 CPU seconds,
while it was fixed to 900 CPU seconds in the case of the large problem instances.
Tables 6.5 and 6.6 show the obtained parameter value settings for the two cases.
It is worth noting, for example, that well-working ranges for the removal rates (in
the context of the removal/destroy operators) are considerably smaller in the case
of the large instances when compared to those for small instances. One reason
for this may be that repairing a largely destroyed solution is time consuming and
may lead to a rather bad quality solution. On the other hand, a high removal rate
may be considered as a perturbation mechanism that helps to escape from local
minima in the context of small instances.

https://github.com/manilakbay/2E-EVRP-TW
https://github.com/manilakbay/2E-EVRP-TW

142
C

h
a
p
t
e
r

6
A

p
p
l
i
c
a
t
i
o
n

t
o

t
h
e

2
E

-
E

V
R

P
-
T

W

Table 6.5 VNS parameters, their domains, and values determined by irace.

Parameter Description Domain Small Instances Large Instances

rr1Lb Customer removal rate lower bound {0.0, . . . , 1.0} 0.1 0.3
rr1Ub Customer removal rate upper bound {0.0, . . . , 1.0} 0.7 0.4
rr2Lb Route removal rate lower bound {0.0, . . . , 1.0} 0.1 0.4
rr2Ub Route removal rate upper bound {0.0, . . . , 1.0} 0.6 0.4
pinit Initial penalty value {10, 15, 20} 15 20
pmin Minimum penalty value {0.5, 1, 3, 5} 5 0.5
pmax Maximum penalty value {25, 30, 35, 40} 40 35
piter Iteration count parameter for penalty procedure {1, 2, 3} 1 2
p+ Augmentation parameter for penalty {3, 5, 7, 9} 9 5
p− Reduction parameter for penalty {1.0, . . . , 2.0} 1.6 1.4
T init Initial temperature {50, 100, 150, 200} 200 100
t− Update parameter for the temperature {1.0, . . . , 2.0} 1.3 2
iter_nimax Max non-improving iterations {100, . . . , 10, 000} 1000 100
ζ Routes in cyclic exchange {1, 2, 3, 4} 2 4
θmax Nodes in cyclic exchange {1, 2, 3, 4} 4 2

Section 6.3 Experimental Evaluation 143

Table 6.6 Parameters of the Clarke-Wright savings heuristic, their domains, and
values determined by irace.

Param. Description Domain Small Ins. Large Ins.

λ Route redesign parameter {0.0, . . . , 1.0} 1.3 1.1
µ Asymmetry of information {0.0, . . . , 1.0} 0.3 0.1
γ Assignment priority {1.0, . . . , 2.0} 0.9 0.6

6.3.3 Numerical Results

In the following we provide a detailed comparison of the following methods.
First, we applied both CPLEX (version 12.10) and our Clarke-Wright Savings
Heuristic to all problem instances. Hereby, CPLEX was given a time limit of 2 h
of CPU time for each problem instance. Next we also applied two versions of VNS.
The full version of VNS is henceforth denoted by VNSfull. In contrast, VNSred is
a reduced version of VNS that only utilizes classical inter-route and intra-route
shaking operators. A comparison of these two variants is interesting, because
it shows how much the destroy and repair operators add to the performance of
VNS. Note that both versions of VNS were applied with a computation time limit
of 150 CPU seconds in the case of small problem instances, and 900 CPU seconds
for large problem instances. Moreover, both versions of VNS were applied 10
times to each problem instance.

Tables 6.7–6.9 show the numerical results for small problem instances with
5, 10, and 15 customers, respectively. The structure of these tables is as follows.
Instance names are given in the first column, and the maximum number of
vehicles in the first and second echelons are provided in the second and third
columns, respectively. These numbers are only necessary for the application of
CPLEX. After the first three table columns, there are four blocks of columns,
presenting the results of our four approaches. The first three columns of each
block (with headings ‘n’, ‘m’, and ‘dist’) are the same for all four approaches.
Hereby, columns ‘n’ and ‘m’ provide the number vehicles utilized by the
respective solutions in the first echelon and the second echelon, respectively.
In the case of VNSfull and VNSred these numbers refer to the best solution found
within 10 independent runs. Column ‘dist’ provides the objective function values
of the solutions generated by the four approaches. In the case of VNSfull and
VNSred, ‘dist’ shows the objective function value of the best solution found in 10
runs, while an additional column with the heading ‘avg’ provides the average
objective function value of the best solutions of each of the 10 runs. Next, columns

144 Chapter 6 Application to the 2E-EVRP-TW

with heading ‘t(s)’ show the computation time of CPLEX, our Clarke-Wright
Savings Heuristic and the average computation times of VNSfull and VNSred to
find the best solutions in each run. Finally, column ‘gap(%)’ provides the gap (in
percent) between the best solution and the best lower bound found by CPLEX.
Note that, in the case where the gap value is zero, CPLEX has found an optimal
solution.

S
e
c
t
i
o
n

6
.3

E
x
p
e
r
i
m

e
n
t
a
l
E

v
a
l
u
a
t
i
o
n

145

Table 6.7 Computational results for small-sized instances with 5 customers.

Instances CPLEX Clarke-Wright Savings Heuristic VNSred VNSfull

Name nv1 nv2 m n Dist Gap(%) t(s) m n Dist t(s) m n Dist Avg t(s) m n Dist Avg t(s)

C101_C5 1 2 1 2 385.49 0 1.67 1 3 442.19 0.00021 1 2 385.49 385.49 0.989 1 3 385.49 385.49 12.509
C103_C5 1 1 1 1 341.33 0 0.09 1 2 360.94 0.00011 1 1 341.33 341.33 0.006 1 1 341.33 341.33 0.502
C206_C5 1 1 1 1 417.31 0 5.97 1 3 480.9 0.00017 1 1 417.31 417.31 0.001 1 1 417.31 417.31 0.001
C208_C5 1 1 1 1 381.91 0 0.31 1 1 383.07 0.00011 1 1 381.91 381.91 0.001 1 1 381.91 381.91 0.001
R104_C5 1 2 1 2 317.02 0 1.61 1 1 317.78 0.00012 1 1 317.02 317.02 0.001 1 1 317.02 317.02 0.001
R105_C5 1 3 1 2 453.74 0 9.57 1 1 677.61 0.00014 1 2 453.74 495.16 0.000 1 2 453.74 453.74 29.693
R202_C5 1 1 1 1 347.82 0 0.21 1 1 348.29 0.00010 1 1 347.82 347.82 0.001 1 1 347.82 347.82 0.001
R203_C5 1 1 1 1 371.31 0 0.21 1 1 387.92 0.00016 1 1 386.48 386.48 0.001 1 1 371.31 371.31 7.203
RC105_C5 1 3 1 3 432.64 0 28.84 1 3 496.72 0.00015 1 2 432.64 435.77 0.404 1 2 432.64 437.34 21.488
RC108_C5 1 2 1 2 460.89 0 24.24 1 2 702.23 0.00016 1 2 460.89 460.89 0.008 1 2 460.89 460.89 3.281
RC204_C5 1 1 1 1 332.86 0 0.64 1 1 649.44 0.00015 1 1 332.86 332.86 0.018 1 1 332.86 332.86 0.015
RC208_C5 1 1 1 1 327.30 0 0.37 1 1 331.77 0.00010 1 1 331.77 331.77 0.000 1 1 327.30 327.30 15.193
average - - 380.80 - 6.15 - - 464.905 0.00014 - - 382.44 386.15 0.119 - - 380.80 381.19 7.491

146
C

h
a
p
t
e
r

6
A

p
p
l
i
c
a
t
i
o
n

t
o

t
h
e

2
E

-
E

V
R

P
-
T

W

Table 6.8 Computational results for small-sized instances with 10 customers.

Instances CPLEX Clarke-Wright Savings Heuristic VNSred VNSfull

Name nv1 nv2 m n Dist Gap(%) t(s) m n Dist t(s) m n Dist Avg t(s) m n Dist Avg t(s)

C101_C10 1 4 1 4 538.31 0 3021.74 1 5 568.85 0.00017 1 3 538.31 538.74 0.568 1 4 538.31 538.31 13.233
C104_C10 1 3 1 2 484.32 0 5309.78 1 4 663.74 0.00024 1 2 484.32 484.32 0.979 1 2 484.32 484.32 7.119
C202_C10 1 3 1 2 425.53 0 152.011 1 5 625.02 0.00021 1 2 425.53 425.53 0.030 1 2 425.53 425.53 2.018
C205_C10 1 3 1 3 415.48 0 157.97 1 3 435.37 0.00024 1 2 415.48 419.64 0.005 1 3 415.48 415.48 1.006
R102_C10 1 4 1 3 505.50 0 6150.84 1 4 648.65 0.00019 1 3 505.50 505.50 2.477 1 3 505.50 524.59 22.556
R103_C10 1 3 1 2 436.08 9.27 6318.99 1 3 613.76 0.00024 1 2 436.08 436.08 2.396 1 2 436.08 437.51 3.600
R201_C10 1 2 1 2 460.71 0 2686.75 1 4 730.95 0.00017 1 2 460.71 460.71 2.838 1 2 460.71 460.71 16.455
R203_C10 1 2 1 1 436.51 0 2192.71 1 1 437.75 0.00021 1 1 436.51 436.51 0.002 1 1 436.51 436.51 0.002
RC102_C10 1 5 1 4 618.75 16.85 7079.09 1 5 684.93 0.00026 1 4 618.75 618.75 41.620 1 4 618.75 618.75 11.025
RC108_C10 1 4 1 4 637.23 24.28 6739.84 1 4 721.2 0.00020 1 3 559.88 559.88 0.097 1 3 559.88 559.88 0.016
RC201_C10 1 4 1 3 495.54 0 969.86 1 4 634.13 0.00021 1 2 495.54 497.04 0.004 1 3 495.54 495.54 2.528
RC205_C10 1 3 1 3 576.17 0 462.62 1 3 702.34 0.00025 1 2 576.17 577.76 0.130 1 3 576.17 576.17 15.366

average - - 502.51 - 3436.85 - - 622.22 0.00022 - - 496.06 496.70 4.262 - - 496.06 497.77 7.910

S
e
c
t
i
o
n

6
.3

E
x
p
e
r
i
m

e
n
t
a
l
E

v
a
l
u
a
t
i
o
n

147

Table 6.9 Computational results for small-sized instances with 15 customers.

Instances CPLEX Clarke-Wright Savings Heuristic VNSred VNSfull

Name nv1 nv2 m n Dist Gap(%) t(s) m n Dist t(s) m n Dist Avg t(s) m n Dist Avg t(s)

C103_C15 1 5 - - - - - 1 6 690.99 0.00036 1 3 575.18 582.02 4.925 1 4 575.18 575.18 0.623
C106_C15 1 4 1 3 500.32 13.37 7182.91 1 6 681.31 0.00022 1 3 516.60 524.10 2.100 1 3 516.60 516.60 1.027
C202_C15 1 5 1 4 714.81 32.23 7183.04 1 6 729.87 0.00034 1 4 617.24 618.66 29.966 1 3 550.32 550.32 12.454
C208_C15 1 3 1 2 550.02 15.56 7182.95 1 4 737.61 0.00023 1 2 619.73 619.73 6.976 1 2 550.02 550.02 22.000
R102_C15 1 7 - - - - - 1 9 950.25 0.00026 1 5 716.56 716.56 9.523 1 5 716.56 716.56 12.056
R105_C15 1 5 - - - - - 1 8 777.77 0.00038 1 4 607.96 607.96 30.850 1 4 607.96 607.96 25.605
R202_C15 1 3 1 3 719.61 35.36 7198.17 1 6 990.37 0.00043 1 2 593.69 597.79 8.033 1 3 593.69 593.69 60.988
R209_C15 1 3 1 2 475.10 10.09 7182.43 1 5 711.09 0.00024 1 2 475.10 519.46 0.712 1 1 475.10 482.30 77.386
RC103_C15 1 5 - - - - - 1 7 745.82 0.00035 1 4 616.32 622.10 1.565 1 5 616.32 616.32 1.803
RC108_C15 1 5 - - - - - 1 7 716.22 0.00026 1 5 603.87 603.87 0.214 1 5 603.87 615.11 0.033
RC202_C15 1 3 1 3 552.70 16.06 7182.65 1 5 697.24 0.00033 1 3 601.86 601.86 2.395 1 2 552.70 587.11 11.600
RC204_C15 1 3 1 2 485.34 13.93 7183.03 1 3 604.05 0.00035 1 2 551.56 551.56 0.670 1 2 485.34 485.34 15.566

average - - - - - - - 752.72 0.00031 - - 591.31 597.14 8.161 - - 570.30 574.71 20.095

148 Chapter 6 Application to the 2E-EVRP-TW

The following observations can be made: First, apart from instances
R103_C10, RC102_C10, and RC108_C10, CPLEX was able to solve the mathematical
model—within 2 h of CPU time—for all instances with five and ten customers
to optimality. For two of the remaining three cases, CPLEX was able to provide
feasible solutions of the same quality as VNSfull and VNSred, without being able to
prove optimality. However, for the instances with 15 customers, the performance
of CPLEX heavily starts to degrade. The reason for the rapidly decreasing
performance of CPLEX is that the size and complexity of the MILP model sharply
increase based on the instance size. For instance, the average number of variables
and constraints of the MILP model for the instances containing five customers
is 986 and 2235, respectively. These values increase to 4008 and 9363 for the
instances with 10 customers and to 13125 and 31482 for the instances with 15
customers. In this latter case, CPLEX could only provide valid solutions (without
being able to prove optimality) in seven out of 12 instances. Nevertheless, for one
instance (C106_15), CPLEX produced a better solution than both VNS variants.

Both VNS variants performed comparably on small problem instances with
5 and 10 customers. They were able to find solutions with the same objective
function values as those of CPLEX. However, the performance of the two VNS
variants starts to differ on the instances with 15 customers. While VNSfull provides
results at least as good as CPLEX for all instances except for C106_C15, VNSred

only does so in seven out of 12 cases. Considering those instances for which
CPLEX was able to obtain a solution, both VNS variants improved the solution
quality of CPLEX, on average, by 0.55% (VNSred) and 6.86% (VNSfull). In fact,
VNSfull outperforms VNSred both in terms of best-performance (column ‘dist’) and
in terms of average-performance (column ‘avg’). Note also that the running times
of both VNSfull and VNSred are in the order of seconds. While the superiority of
both VNSfull and VNSred over CPLEX in terms of CPU time is more significant
for the instances with 10 and 15 customers, see Tables 6.8 and 6.9, only VNSred

provides better CPU times for the instances with 5 customers. Finally, note that
the results of the Clarke-Wright Savings Heuristic are, in the context of these
small problem instances, approx. 20% worse than the best results obtained. This
is, however, achieved in very low computation times of a fraction of a second,
which shows that our Clarke-Wright Savings Heuristic is a good candidate for
producing the initial solutions of VNS.

Next, we analyze the results of the four approaches when applied to the
large problem instances of our benchmark set. These results are shown in
Tables 6.10–6.12. The structure of these tables is slightly different to the one of the
previous result tables. First, results of CPLEX are not provided, because CPLEX

Section 6.3 Experimental Evaluation 149

was not able to generate a single valid solution within 2 h of computation time.
Second, the additional column with heading ‘imp(%)’ provides the improvement
(in percent) of the VNS variants over the results of the Clarke-Wright Savings
Heuristic. In addition to the tables we also provide critical difference (CD) plots [31]
as a statistical tool for assisting the interpretation of the obtained results. First,
the Friedman test was used to compare the three approaches simultaneously. As
a consequence of the rejection of the hypothesis that the techniques perform
equally, the corresponding pairwise comparisons were performed using the
Nemenyi post hoc test [74]. The obtained results are graphically shown by
means of the above-mentioned CD plots in Figure 6.6. Note that each considered
algorithm variant is placed on the horizontal axis according to its average ranking
for the considered subset of problem instances. The performances of those
algorithm variants that are below the critical difference threshold (computed
with a significance level of 0.05) are considered as statistically equivalent; see the
horizontal bars joining the markers of the respective algorithm variants.

The following observations can be made. For the large clustered
instances (Table 6.10) and large random instances (Table 6.11), VNSfull

significantly outperforms VNSred, both in terms of best-performance and
average-performance. This is also shown in Figure 6.6b Figure 6.6c. However,
the opposite is generally the case in the context of random-clustered instances,
as shown in Figure 6.6d. This means that the removal/destroy operators have a
rather negative impact on the performance of VNS in these cases. This is most
probably due to their elevated computation time requirements. Nevertheless,
Figure 6.6d also shows that this difference is not statistically significant. Moreover,
the superiority of VNSfull over VNSred is much more pronounced in the context
of instances with a long scheduling horizon (R2* C2* and RC2*) compared to the
instances with a short scheduling horizon (R1* C1* and RC1*); see Figure 6.6e
and Figure 6.6f. Finally, when considering all large instances together, VNSfull

significantly outperforms VNSred (see also Figure 6.6a).
When comparing the algorithms in terms of the average computation times

required to find the best solutions of a run, it can be seen that VNSred was able
to provide solutions in lower CPU times than VNSfull. We can infer that destroy
and repair type operators help to produce better solutions; however, repairing a
destroyed solution prolongs the computation time.

150
C

h
a
p
t
e
r

6
A

p
p
l
i
c
a
t
i
o
n

t
o

t
h
e

2
E

-
E

V
R

P
-
T

W

Table 6.10 Computational results for large-sized clustered instances.

Instances Clarke-Wright Savings Heuristic VNSred VNSfull

Name nk nv m n Dist t(s) m n Dist Avg Imp(%) t(s) m n Dist Avg Imp(%) t(s)

C101_C21 3 25 3 39 1941.16 0.005 3 20 1513.91 1562.77 19.49 499.70 3 20 1494.18 1538.74 20.73 579.98
C102_C21 3 28 3 33 1822.02 0.005 3 21 1501.66 1506.95 17.29 537.57 3 19 1447.86 1487.11 18.38 572.03
C103_C21 3 26 3 29 1702.89 0.005 3 20 1447.98 1463.34 14.07 509.37 3 19 1399.25 1425.80 16.27 656.63
C104_C21 3 31 3 24 1580.07 0.005 3 20 1435.04 1446.17 8.47 405.19 3 19 1400.52 1439.76 8.88 540.97
C105_C21 4 43 3 36 1877.85 0.005 3 20 1522.97 1541.60 17.91 359.00 3 20 1493.69 1521.13 19.00 466.13
C106_C21 4 37 3 35 1791.74 0.004 3 20 1474.74 1491.70 16.75 361.26 3 20 1429.75 1476.85 17.57 536.93
C107_C21 4 41 3 34 1838.83 0.005 3 20 1499.81 1513.36 17.70 400.85 3 20 1485.7 1513.18 17.71 582.44
C108_C21 3 33 3 29 1687.15 0.005 3 20 1461.25 1476.72 12.47 483.00 3 20 1450.96 1489.63 11.71 523.87
C109_C21 4 31 3 26 1619.19 0.005 3 20 1447.36 1456.90 10.02 326.59 3 20 1409.97 1455.93 10.08 673.76
C201_C21 3 20 2 35 1794.83 0.004 2 11 1251.62 1276.42 28.88 422.74 2 12 1208.76 1233.87 31.25 545.02
C202_C21 4 20 2 31 1672.52 0.005 2 12 1228.61 1260.08 24.66 532.72 2 12 1187.87 1232.74 26.29 703.08
C203_C21 3 19 2 27 1554.96 0.005 2 12 1197.45 1223.16 21.34 356.27 2 11 1201.4 1216.36 21.78 767.58
C204_C21 4 18 2 22 1411.07 0.005 2 12 1178.14 1191.92 15.53 464.31 2 11 1161.07 1181.40 16.28 577.96
C205_C21 4 20 2 21 1470.73 0.005 2 12 1226.48 1249.59 15.04 460.15 2 12 1205.23 1223.94 16.78 664.39
C206_C21 3 19 2 19 1399.11 0.005 2 12 1202.52 1222.94 12.59 519.78 2 11 1182.63 1198.54 14.34 556.03
C207_C21 3 19 2 20 1406.55 0.005 2 12 1195.1 1211.55 13.86 262.84 2 11 1173.7 1188.92 15.47 562.88
C208_C21 3 17 2 19 1393.28 0.005 2 12 1193.01 1221.40 12.34 429.15 2 11 1169.69 1188.85 14.67 652.98
average 1644.94 0.005 1351.63 1371.56 16.38 431.21 1323.66 1353.69 17.48 597.80

S
e
c
t
i
o
n

6
.3

E
x
p
e
r
i
m

e
n
t
a
l
E

v
a
l
u
a
t
i
o
n

151

Table 6.11 Computational results for large-sized random instances.

Instances Clarke-Wright Savings Heuristic VNSred VNSfull

Name nk nv m n Dist t(s) m n Dist avg Imp(%) t(s) m n Dist Avg Imp(%) t(s)

R101_C21 4 34 4 46 2546.45 0.006 4 25 2164.26 2187.39 14.10 573.91 4 26 2179.75 2306.91 9.41 589.70
R102_C21 3 32 4 37 2365.85 0.006 3 21 1840.45 1894.10 19.94 583.85 3 24 1843.45 2025.31 14.39 300.08
R103_C21 3 23 3 32 1974.87 0.006 3 19 1696.36 1754.36 11.17 657.28 3 19 1729.91 1829.33 7.37 350.64
R104_C21 2 20 3 23 1784.94 0.006 2 17 1473.50 1641.42 8.04 770.40 2 17 1470.20 1628.00 8.79 535.30
R105_C21 3 25 3 39 2216.4 0.005 3 23 1842.34 1898.80 14.33 539.41 3 22 1909.13 1975.78 10.86 463.62
R106_C21 3 28 3 32 2055.43 0.006 3 20 1737.88 1870.36 9.00 345.95 3 21 1723.88 1887.34 8.18 153.16
R107_C21 2 23 2 30 1725.89 0.007 2 18 1518.95 1671.82 3.13 287.01 2 18 1490.01 1670.00 3.24 323.49
R108_C21 2 21 2 23 1603.11 0.006 2 18 1454.99 1553.47 3.10 322.44 2 18 1449.13 1569.62 2.09 184.32
R109_C21 2 24 3 29 1947.31 0.006 2 18 1547.52 1694.54 12.98 356.45 2 19 1529.71 1683.81 13.53 386.16
R110_C21 2 23 2 26 1650.24 0.006 2 17 1451.04 1486.15 9.94 597.54 2 17 1470.57 1513.50 8.29 660.80
R111_C21 2 24 3 26 1805.69 0.006 2 18 1487.83 1572.49 12.91 579.21 2 17 1522.49 1593.35 11.76 483.22
R112_C21 2 23 2 20 1460.99 0.006 2 20 1457.06 1457.06 0.27 0.00 2 17 1413.86 1452.74 0.56 64.47
R201_C21 1 14 2 34 1912.59 0.006 1 12 1238.92 1265.99 33.81 486.39 1 9 1218.88 1252.17 34.53 639.80
R202_C21 1 12 2 29 1760.69 0.006 1 9 1158.64 1170.28 33.53 626.39 1 9 1135.84 1166.67 33.74 564.04
R203_C21 1 14 2 22 1587.76 0.007 1 8 1064.16 1093.38 31.14 513.09 1 7 1067.89 1096.69 30.93 542.58
R204_C21 1 9 2 17 1408.95 0.006 1 7 962.16 994.44 29.42 534.08 1 6 965.62 977.19 30.64 591.03
R205_C21 1 14 1 27 1522.45 0.006 1 9 1136.47 1167.99 23.28 711.65 1 7 1134.35 1155.14 24.13 452.03
R206_C21 1 12 1 23 1445.78 0.006 1 8 1106.23 1137.05 21.35 789.19 1 7 1092.55 1117.88 22.68 512.81
R207_C21 1 13 1 17 1334.95 0.006 1 7 1034.45 1072.21 19.68 588.03 1 7 1025.08 1055.93 20.90 512.99
R208_C21 1 12 1 16 1232.96 0.006 1 7 991.25 1018.02 17.43 484.88 1 7 970.31 996.20 19.20 519.00
R209_C21 1 15 1 23 1400.02 0.006 1 8 1078.55 1106.82 20.94 597.86 1 7 1078.00 1089.28 22.20 597.67
R210_C21 1 12 1 19 1350.21 0.006 1 8 1059.31 1090.53 19.23 515.34 1 7 1045.64 1068.65 20.85 480.40
R211_C21 1 9 1 18 1291.64 0.006 1 7 1030.77 1053.79 18.41 524.60 1 6 999.26 1034.15 19.93 421.96
average 1712.40 0.006 1371.00 1428.37 16.83 521.08 1368.07 1441.11 16.44 449.10

152
C

h
a
p
t
e
r

6
A

p
p
l
i
c
a
t
i
o
n

t
o

t
h
e

2
E

-
E

V
R

P
-
T

W

Table 6.12 Computational results for large-sized random-clustered instances.

Instances Clarke-Wright Savings Heuristic VNSred VNSfull

Name nk nv m n Dist t(s) m n Dist Avg Imp(%) t(s) m n Dist Avg Imp(%) t(s)

RC101_C21 3 28 4 38 2467.62 0.004 4 23 2044.99 2274.23 7.84 294.29 3 22 1907.52 2106.42 14.64 605.26
RC102_C21 3 29 4 36 2385.73 0.005 4 22 2004.78 2035.60 14.68 516.43 3 21 1834.97 2047.79 14.16 397.12
RC103_C21 3 28 4 29 2189.24 0.004 3 20 1747.98 1933.49 11.68 393.23 3 20 1728.17 1846.23 15.67 470.22
RC104_C21 2 26 2 26 1710.42 0.004 2 19 1644.36 1686.88 1.38 322.00 2 19 1645.35 1688.65 1.27 372.96
RC105_C21 3 23 5 33 2482.3 0.005 3 20 1789.64 1821.53 26.62 471.32 3 20 1802.85 1936.87 21.97 506.77
RC106_C21 3 23 3 33 2142.63 0.005 3 20 1760.23 1797.62 16.10 584.16 3 19 1750.61 1807.42 15.64 450.61
RC107_C21 3 24 3 28 1901.16 0.004 3 19 1687.90 1713.75 9.86 493.35 3 19 1686.76 1719.83 9.54 681.21
RC108_C21 3 25 2 26 1737.71 0.005 3 19 1672.75 1676.55 3.52 440.79 3 18 1622.76 1655.21 4.75 760.71
RC201_C21 1 15 1 35 1809.28 0.004 1 14 1313.01 1341.92 25.83 682.08 1 11 1318.73 1358.75 24.90 282.60
RC202_C21 1 13 1 30 1636.91 0.005 1 12 1218.40 1246.29 23.86 691.50 1 10 1200.59 1230.97 24.80 531.87
RC203_C21 1 11 1 22 1401.03 0.005 1 10 1119.62 1140.74 18.58 589.31 1 8 1103.43 1138.82 18.72 624.78
RC204_C21 1 14 1 16 1267.87 0.004 1 9 1045.72 1077.93 14.98 462.65 1 8 1040.09 1054.96 16.79 470.14
RC205_C21 1 17 1 25 1553.79 0.004 1 11 1223.37 1253.27 19.34 368.42 1 9 1217.43 1245.16 19.86 356.82
RC206_C21 1 16 1 25 1536.28 0.004 1 10 1216.70 1235.36 19.59 495.64 1 9 1193.11 1216.17 20.84 610.81
RC207_C21 1 12 1 21 1424.02 0.004 1 9 1116.30 1133.88 20.38 532.73 1 8 1106.60 1146.08 19.52 442.03
RC208_C21 1 14 1 14 1253.98 0.005 1 9 1038.25 1081.38 13.76 535.70 1 8 1049.42 1067.86 14.84 516.79

average 1806.25 0.004 1477.75 1528.15 15.50 492.10 1450.52 1516.70 16.12 505.04

Section 6.3 Experimental Evaluation 153

Finally, VNSred and VNSfull produced comparable results for small problem
instances in terms of the number of utilized vehicles. In contrast, the increased
effectiveness of VNSfull is shown in the context of large problem instances. Even
though making use of a lower number of vehicles usually means that a better
solution is obtained, note that a smaller fleet size does not always guarantee a
better solution. For some of the instances (i.e., C103_C15, R202_C15), even though
VNSred provides solutions with a lower fleet size than VNSfull, the solutions of
VNSfull are better. The reason for this is that the objective function only minimizes
the traveled distance.

It is also worth noting that the average improvement rate with respect to
the solutions of the Clarke-Wright savings heuristic for large clustered problem
instances is lower than in the context of the random and random-clustered
instances. One reason for this is possibly the assignment of each customer to the
nearest satellite in the initial solution construction phase, which provides most
probably a better customer-satellite assignment than in the context of random
instances.

154 Chapter 6 Application to the 2E-EVRP-TW

1 2 3 1 2 3

(a) (b)
1 2 3 1 2 3

(c) (d)
1 2 3

1 2 3

(e) (f)

Fig. 6.6 Critical difference plots concerning the results for large instances. The
graphic in (a) considers all large instances, while the other graphics consider
subsets of the set of large instances. (a) All large instances; (b) clustered instances;
(c) random instances; (d) random-clustered instances; (e) instances R1*; C1* and
RC1*; (f) instances R2*, C2* and RC2*.

6.4 Conclusions

This chapter presented the two-echelon electric vehicle routing problem with
time windows as a valuable concept for sustainable city logistics. A three-index
node-based mixed-integer programming model was developed and solved
using CPLEX for small instances. In addition, we proposed a variable
neighborhood search metaheuristic making use of a wide range of classical and
large neighborhood search operators. Moreover, our algorithm allows visiting
unfeasible solutions, which is achieved by means of an extended objective

Section 6.4 Conclusions 155

function for the evaluation of both feasible and unfeasible solutions. The
local search step of our variable neighborhood search approach uses a variable
neighborhood descent algorithm. Experimental tests were performed using
new problem-specific instance sets generated based on available data sets from
the literature. While CPLEX was able to solve the proposed mathematical
model only for small problem instances with 5 and 10 customers, it started
to struggle deriving even feasible solutions for larger instances. Our variable
neighborhood search approach was able to find optimal or near-optimal solutions
faster than CPLEX for all small problem instances. Moreover, numerical
results showed that destroy-and-repair-type operators generally increased the
algorithm’s performance.

Continuing from the advances made in this chapter, several opportunities
for further exploration remain. A promising direction for future work is the
application of the Adapt-CMSA algorithm to the 2E-EVRP-TW comparing the
performance of Adapt-CMSA with the variable neighborhood search approach.

156 Chapter 6 Application to the 2E-EVRP-TW

157

CHAPTER 7

THE ELECTRIC VEHICLE ROUTING PROBLEM WITH ROAD

JUNCTIONS AND ROAD TYPES: AN ANT COLONY

OPTIMIZATION APPROACH

7.1 Introduction

This chapter introduces an enhanced EVRP model termed EVRP with Road

Junctions and Road Types (EVRP-RJ-RT) that captures real-world complexities, such
as road junctions and road type constraints. Additionally, our model utilizes an
energy consumption-based objective function, offering a more realistic portrayal
of the challenges electric vehicles face during logistics distribution. We have also
expanded on existing problem instances from previous studies, tailoring them to
our specific problem.

To handle the complexity of our advanced EVRP model, we have employed
a construction heuristic which is a variant of the well-known Clark-Wright
Savings algorithm. Additionally, we have implemented a more advanced
metaheuristic—Ant Colony Optimization—on the basis of the well-known
MAX-MIN Ant system [174]. The results presented in this chapter were
previously published in the proceedings of GECCO 2024 – The Genetic and
Evolutionary Computation Conference (https://doi.org/10.1145/3638529.36
53997). Furthermore, it’s worth mentioning that the initial version of the problem
definition was developed in the Master’s thesis of Michela Saliba, co-directed by
the author of this thesis.

7.2 Problem Description

This section presents a detailed technical description of the new EVRP-RJ-RT
problem. Our model shifts the focus from traditional distance-based objectives
to an energy minimization framework, aligning with the real-world demands of
electric vehicle logistics. In the following sections, we will outline the energy
consumption calculations and the mathematical formulation of the problem in

https://doi.org/10.1145/3638529.3653997
https://doi.org/10.1145/3638529.3653997

158 Chapter 7 EVRP-RJ

detail.

7.2.1 Calculation of the Energy Consumption

The energy consumption of electric vehicles (EVs) is a critical factor for routing
decisions. Our methodology for calculating energy consumption is adapted from
the work presented in [19]. We begin by determining the total tractive power
demand (PT) of an EV, measured in watts (W), using the following equation [17]:

PT =M · a · v +M · g · v · sin(θ)

+ 0.5 · Cd · Af · ρ · v3 +M · g · Cr · cos(θ) · v (7.1)

where M represents the total mass of the vehicle, combining both the curb
weight (w) and the weight of the cargo (m), in kilograms (kg). The variable v
denotes the vehicle’s speed in meters per second (m/sec), a is the acceleration
(m/sec2), g stands for the gravitational constant (9.81 m/sec2), and θ is the road
grade angle. The constants include the vehicle’s frontal surface area (Af in m2),
air density (ρ in kg/m3), rolling resistance coefficient (Cr), and drag coefficient
(Cd).

We assume all parameters in Eq. 7.1, except for speed and vehicle load, to be
constant. However, speed and load may vary from one edge, resp. road segment,
to another. For a vehicle traveling at an average speed of vij on a road segment
between nodes i and j with distance dij , and with a cargo loadmj upon arrival at
node j, the total mechanical energy required,Eij , can be approximated as follows:

Eij ≈ PT · dij
vij
≈ [αij · (w +mj) + β · v2ij] · dij (7.2)

where the coefficient αij = a + g · sin(θij) + g · Cr · cos(θij) reflects the
road segment specific resistance factor set to 0.0981, while β = 0.5 · Cd · A · ρ,
encapsulates the vehicle-specific aerodynamic and rolling resistance factor, which
is a vehicle-related constant set to 2.11 [195]. This approximation provides the
energy requirement in joules (J), which can then be converted into kilowatt-hours
(kWh).

In this chapter, we relate the battery capacity stated for each problem
instance directly with the mechanical energy, simplifying our calculations by
not distinguishing between mechanical and battery electric energy. Thus, Eij is
directly used to calculate the energy consumption and to formulate the objective
function.

Section 7.2 Problem Description 159

7.2.2 Problem Formulation

The EVRP-RJ-RT involves a set of n customers indexed by V = {1, . . . , n},
alongside a set of charging stations F , and road junctions J . To accommodate
multiple visits, we introduce sets of dummy nodes for charging stations, F ′ , and
road junctions, J ′ . We use indexes 0 and n + 1 to denote a single depot, which
acts as the starting and destination points, respectively. In case an index set is
sub-indexed by 0, n + 1, or both, the respective instances of the depot are added
to the set. If, for example, V ′ is sub-indexed with 0 (that is, V ′

0), this means that 0
is added to V ′ .

Using the sets and notations defined above, the problem is defined on a
directed graphG(V ′

0,n+1, A) which is not fully connected. Hereby, V ′
= V ∪F ′∪J ′

includes all customers, dummy charging stations, and dummy road junctions.
The set of arcs is defined as

A = {(i, j) | i, j ∈ V ′

0,n+1, i ̸= j and (i, j) is an existing road segment}. (7.3)

Moreover, each arc has an associated distance dij and a road type implying specific
speed limits, where vubij is the speed upper bound and vlbij is the speed lower bound.

To more conveniently model the connectivity within the network, we
introduce the set N (i), which represents the neighborhood of a given node i.
This neighborhood consists of all nodes that are directly connected to node i. The
set is formally defined as follows:

N (i) = {j ∈ V | (i, j) ∈ A} (7.4)

This means that a node j is in the neighborhood N (i) of node i if and only if
there exists a direct connection between i and j in the network, as represented by
the arc (i, j) in set A.

To address specific subsets of the network, we further define subscripted
versions of N (i) based on predefined node sets, such as V ′

0,N+1. For example:

NV
′
0,N+1

(i) = {j ∈ V ′

0,N+1 | (i, j) ∈ A} (7.5)

This definition signifies that NV
′
0,N+1

(i) includes those nodes from V
′
0,N+1 to

which node i has a direct connection. Thus, j ∈ NV
′
0,N+1

(i) if and only if (i, j) is
an element of set A, indicating a direct arc between nodes i and j.

A fleet of electric vehicles with identical loading capacity C and battery
capacity Q is based at the depot. Customer demands qi are met upon vehicle
arrival, with a service time si. Furthermore, when the vehicle stops at a charging

160 Chapter 7 EVRP-RJ

station, its battery is charged with a constant charging rate of g > 0 up to full
battery level. Note that the completion time of each vehicle tour is restricted by
a predefined time limit Tmax.

Our model incorporates the following decision variables: xij , a binary variable
indicating the inclusion of arc (i, j) in the solution; vij , representing the vehicle’s
travel speed between nodes i and j; mj , denoting the cargo load and yj is the
remaining battery level upon arrival at node j; fj , specifying the vehicle’s arrival
time at node j; and Eij , reflecting the energy expenditure between nodes i and
j. Additionally, tij is introduced as the time required to travel from node i

to node j, calculated as tij =
dij
vij

. Due to the nonlinear relationship among
these variables, particularly in the context of energy consumption calculations,
our model is formulated as a Mixed Integer Nonlinear Programming (MINLP)
model, as follows:

Min

∑
i∈V ′

0 ,j∈NV
′
n+1

(i)

Eijxij +
∑

j∈N
V
′
n+1

(0)

x0j K (7.6)

∑
j∈N

V
′
n+1

(i)

xij = 1 ∀i ∈ V (7.7)

∑
j∈N

V
′
n+1

(i)

xij ≤ 1 ∀i ∈ F
′ ∪ J

′ (7.8)

∑
i∈N

V
′
0
(j)

xij −
∑

i∈N
V
′
n+1

(j)

xji = 0 ∀j ∈ V
′ (7.9)

0 ≤ f0 ≤ Tmax (7.10)

fi + (tij + si)xij − Tmax(1− xij) ≤ fj ∀i ∈ V
′
0 , j ∈ NV

′
n+1

(i) (7.11)

fi + tijxij + g(Q− yi)

− (Tmax + gQ)(1− xij) ≤ fj ∀i ∈ F
′
, j ∈ N

V
′
n+1

(i) (7.12)

t0j ≤ fj ≤ Tmax − (t0j + sj) ∀j ∈ V
′ (7.13)

vlbij ≤ vij ≤ vubij ∀i ∈ V
′
0 , j ∈ NV

′
n+1

(i) (7.14)

0 ≤ m0 ≤ C (7.15)

0 ≤ mj ≤ mi − qixij + C(1− xij) ∀i ∈ V
′
0 , j ∈ NV

′
n+1

(i) (7.16)

0 ≤ yj ≤ yi − Eij +Q(1− xij) ∀i ∈ V, j ∈ N
V

′
n+1

(i) (7.17)

0 ≤ yj ≤ Q− Eij +Q(1− xij) ∀i ∈ F
′
0, j ∈ NV

′
n+1

(i) (7.18)

xij ∈ {0, 1} ∀i ∈ V
′
0 , j ∈ NV

′
n+1

(i) (7.19)

Section 7.3 The Solution Approach for the EVRP-RJ-RT 161

The problem addressed in this study gives priority to solutions that utilize
fewer vehicles, even if this may lead to higher energy consumption. To reflect
this preference in the objective function, we introduce an additional cost factor
K > 0 for each vehicle used. Practically, the number of vehicles in a solution is
represented by the sum of variables on outgoing arcs from the depot (node 0) that
have a value of 1. Therefore, the objective is to minimize the function described
in (Eq. 7.6). Constraints (7.7) and (7.8) manage the network’s connectivity,
ensuring that each customer is visited exactly once and that charging stations
and road junctions are visited only as needed. Constraints (7.9) balance the
flow by equating the number of incoming arcs to outgoing arcs at each node.
Constraints (7.10-7.12) determine the arrival times at each node, taking into
account service times at customer locations, battery charging durations, and
travel times. Constraint (7.13) limits the tour compilation time. Constraint (7.14)
forces the vehicle’s speed to be between the lower and upper-speed limit of the
traveled edge (resp. road segment). Constraints (7.15) and constraints (7.16)
guarantee that customers’ demands are satisfied. Finally, constraints (7.17)-(7.18)
calculate the battery states.

7.3 The Solution Approach for the EVRP-RJ-RT

This section outlines the solution approach for the EVRP-RJ-RT, which is
structured into three distinct phases: preprocessing, the main algorithm,
and postprocessing. Initially, the preprocessing phase establishes the most
energy-efficient paths between all pairs of nodes. Building on this, the main
algorithms generate preliminary solutions, which are then refined during the
postprocessing phase to possibly reduce energy spending. Before delving into
the details of each phase, we first present how a solution is represented and
evaluated within our approach.

7.3.1 Solution Representation & Evaluation

Any solution S produced by the algorithm is a collection of feasible tours, where
each tour represents a complete route that starts and ends at the depot for a single
vehicle.

To illustrate, consider a small problem instance represented by the vector I,
which includes the indices of five customers, three charging stations, and five
road junctions. The depot is denoted by indices 0 and 6.

162 Chapter 7 EVRP-RJ

I =

(
depot︷︸︸︷
0 ,

customers︷ ︸︸ ︷
1, 2, 3, 4, 5,

depot︷︸︸︷
6 ,

charging
stations︷ ︸︸ ︷
7, 8, 9 ,

road
junctions︷ ︸︸ ︷

10, 11, 12, 13, 14

)
Given the above instance, a solution S consisting of two tours T1 and T2, where

T1 = ⟨0 9 12 1 13 4 10 6⟩ and T2 = ⟨0 2 8 10 3 7 14, 5 6⟩, is
represented as follows:

S =

 T1 = ⟨0 9 12 1 13 4 10 6⟩,

T2 = ⟨0 2 8 10 3 7 14 5 6⟩

Our algorithm only considers feasible solutions, adhering to all constraints.
The evaluation of these solutions makes use of two criteria, in a lexicographic
order. The first priority is minimizing the number of electric vehicles utilized,
which corresponds to the number of tours in the solution. The second objective
is the minimization of the total energy consumption of all tours combined.

7.3.2 Preprocessing

In many conventional EVRPs from the existing literature, a problem instance
consists of a fully connected graph. However, in the problem addressed in this
study, the graph is generally not fully connected. Some node pairs might be
directly connected by road segments, while for others a connecting path—in
which intermediate nodes are road junctions—can be found. Note that charging
stations and customers cannot serve as intermediate connection nodes. Each
edge or road segment in the graph is associated with a specific road type, which
imposes speed limitations (both minimum and maximum). Given that a vehicle’s
energy consumption is influenced by the travel speed and load and that the travel
speed on a specific edge must adhere to its respective speed limitations, it is
crucial to identify the most energy-efficient paths connecting each node pair.

For this purpose, we introduce a preprocessing step before the execution
of the main algorithm. The main goal of this phase is to determine the most
energy-efficient paths between pairs of nodes. To achieve this, we employ
Dĳkstra’s algorithm, a well-established shortest-path algorithm [54]. Note that
for the execution of the Dĳkstra algorithm, the maximally allowed speed on each
edge is considered. After this preprocessing phase, we obtain a complete set of
paths P containing the most energy-efficient paths between all node pairs in the
EVRP graph.

Section 7.3 The Solution Approach for the EVRP-RJ-RT 163

7.3.3 Postprocessing

After generating a valid solution within one of our main algorithms, there
might remain a potential for reducing its energy consumption. This is because
our algorithmic approaches—in an attempt to reduce the complexity of the
problem—consider the maximum allowed speed on each traveled edge, resp. road
segment. Note that this approach does not always yield the most energy-efficient
routes.

Our postprocessing step aims to address this issue by considering the
possibility of reducing travel speed to further reduce energy consumption.
However, this poses a challenge: while lower speeds are more energy-efficient,
they also extend the tour completion time, potentially violating time constraints.

The process begins by determining the slack time, which is the difference
between the time limit and the actual time taken. A positive slack time indicates
room for speed reduction. We then rank the route’s edges in descending order
based on their current speeds, targeting edges traversed with a higher speed first
for potential reductions.

We systematically reduce the speed for each edge in a predefined step,
recalculating the route’s duration after each adjustment. This reduction continues
until the slack time is exhausted, the edge’s speed hits its minimum limit, or
the route’s duration reaches the time limit. This process ensures we remain
within time constraints while aiming for the most energy-efficient route. This
speed adjustment is applied to all routes of all solutions produced by the main
algorithms.

7.3.4 A Construction Heuristic Based on the Clarke-Wright Savings Algorithm

Initially, a set of routes R is created, defined as R = {(p0i pi(n+1)) | i ∈
V, p0i, pi(n+1) ∈ P}. For each customer i, this set concatenates the two most
energy-efficient paths from P : p0i, the path from the depot (0) to customer i; and
pi(n+1), the path from customer i back to the depot. Subsequently, a savings list L
is generated for each pair of nodes (i, j) ∈ V ′ under three conditions: (1) i and j

are part of two different tours, (2) both i and j must be the starting or, respectively,
the endpoints of their respective tours, and (3) the total load carried in the tours
to which i and j belong must not exceed the vehicle capacity. Each entry in the
list is associated with a savings value σij , calculated using the following equation:

σij := E0i + E0j − Eij , (7.20)

164 Chapter 7 EVRP-RJ

Table 7.1 Cases for tour merging w.r.t. nodes i and j

Case Tours Merging Procedure Result

1
T1 : {0 i . . . n+ 1} Reverse T1, rev(T1)

Tm : {0 . . . pij . . . n+ 1}
T2 : {0 j . . . n+ 1} Concatenate with T2

2
T1 : {0 i . . . n+ 1} Reverse both T1 and T2

Tm : {0 . . . pij . . . n+ 1}
T2 : {0 . . . j n+ 1} rev(T1), rev(T2)

3
T1 : {0 . . . i n+ 1} Concatenate T1 and T2

Tm : {0 . . . pij . . . n+ 1}
T2 : {0 j . . . n+ 1}

4
T1 : {0 . . . i n+ 1} Reverse T2, rev(T2)

Tm : {0 . . . pij . . . n+ 1}
T2 : {0 . . . j n+ 1} Concatenate with T1

where E0i, E0j and Eij depend on the current vehicle load and it is assumed that
the vehicle travels at the maximum allowed speed. Note that the entries in the
savings listL are kept sorted in descending order based on their σij . After creating
the initial tours and the savings list L, the algorithm executes the following steps
until no more entry remains in L:

1. The top most entry (i, j) is chosen from L. Then, the tours corresponding
to nodes i and j are merged considering the most energy-efficient path
between i and j, that is, pij ∈ P .

The merging process is determined by one of the four possible cases shown
in Table 7.1, depending on the positions of nodes i and j in the tour. It may
be required to reverse one or both of the tours selected to ensure a direct
connection from i to j. In such a case, the reversed tour T1 is denoted by
rev(T1).

2. Following the merging process, the feasibility of the merged tour Tm is
checked in terms of battery capacity and the time limit. Routes that violate
time limit constraints are discarded, and the respective entry is removed
from the savings list. On the other hand, battery-infeasible tours are
attempted to be repaired by inserting a charging station into the tour. This
procedure initially identifies the first node in the tour where the electric
vehicle arrives with a depleted battery. Then, the charging station, which
minimizes the increase in overall energy consumption, is inserted between
this node and its predecessor. If the tour remains infeasible, then the same
procedure is repeated for the previous arcs. Suppose infeasibility persists
after multiple charging station insertions. In that case, the merged tour is
discarded, its associated nodes are removed from the savings list, and the
next node pair is selected from the top of L.

Section 7.3 The Solution Approach for the EVRP-RJ-RT 165

3. Finally, the savings list L is updated as described above.

7.3.5 The Ant Colony Optimization Algorithm

The second algorithmic approach we employ to address the problem is Ant
Colony Optimization (ACO) [56]. ACO is a swarm intelligence technique that
mimics the foraging behavior of real ants to find optimal or near-optimal
solutions to complex problems. In our implementation, we specifically
utilize the MAX-MIN Ant System (MMAS) implemented in the hyper-cube
framework [25]. The core principle of ACO revolves around constructing
solutions probabilistically, guided by a pheromone model. This model represents
the accumulated knowledge or experience of the ant colony. As ants traverse the
solution space, they deposit and react to pheromone trails, which influence the
solution construction and are updated based on the quality of the solutions
found. Algorithm 7.1 shows the general framework of our implementation. The
subsequent sections delve deeper into the specific components and mechanisms
of the algorithm.

7.3.5.1 Solution Construction

The solution construction phase commences with an empty solution and a set
of unvisited customers U . First, a route is initialized with the depot as starting
point. At each step, the route is augmented by inserting a new node j which is
chosen from the candidate list of the current node i, which is defined as:

Ni = {j | j ∈ U ∪ F
′ ∪ {n+ 1}, and pij ̸= ∅}

.
A node j is added to the route only if it remains feasible in terms of loading,

battery, and time limit constraints. If the insertion is not feasible, j is excluded
fromNi, prompting the selection of an alternative candidate. IfNi is exhausted or
if j = n+ 1, we kick-start a new route. It is pivotal to note that when introducing
the next node, we always opt for the most energy-efficient connection between
nodes i and j, as explained in previous sections.

The probability of selecting a candidate node is calculated using the following
formula:

P (j|i) =
ταij · η

β
j∑

j∈Ni
ταij · η

β
j

(7.21)

Here, τij ∈ T denotes the pheromone value between the current node i and
j. Moreover, ηj stands for heuristic information. The parameters α and β are

166 Chapter 7 EVRP-RJ

Algorithm 7.1 Ant Colony Optimization for the EVRP-RJ-RT
1: input: a problem instance G(V ′

0,n+1, A)
2: Sbsf := ∅, Srb := ∅, cf := 0, bs_update := false
3: P :=Preprocessing(G)
4: InitializePheromones(T)
5: while termination condition not met do

6: Sib := ∅
7: for k := 1, . . . , na do

8: Sk := ConstructSolution(T ,P)
9: Postprocessing(Sk)

10: if f(Sk) < f(Sib) then Sib := Sk

11: end for

12: if f(Sib) < f(Srb) then Srb := Sib

13: if f(Sib) < f(Sbsf) then Sbsf := Sib

14: UpdatePheromones(cf , bs_update, Sib,Srb,Sbsf)
15: cf := ComputeConvergenceFactor(T)
16: if cf > 0.999 then

17: if bs_update = true then

18: Srb := ∅, and bs_update := false
19: InitializePheromones(T)
20: else

21: bs_update := true
22: end if

23: end if

24: end while

25: output: Sbsf , the best solution found by the algorithm

used to weigh the relative importance of the pheromone value and heuristic
information, respectively. Well-working values of α and β are determined by
parameter tuning. The heuristic information is calculated using Eq. 7.22.

ηij =

1

Eij · (Yi)
, ifj ∈ F ′

1

Eij

· 1

(Q− Yi)
, otherwise

(7.22)

Again, remember that Eij depends on the current vehicle load. Moreover, the
maximum allowed speed is assumed. This piece-wise function calculates the
desirability of the next nodes based on the node type and the battery level of the
vehicle when departing from node i (denoted by Yi). As a result, as the battery
level decreases, it is more likely to choose a charging station [95].

The actual selection of a candidate node follows a two-step approach. First, a
random number r from the interval [0,1] is generated. If r is less than or equal

Section 7.3 The Solution Approach for the EVRP-RJ-RT 167

Table 7.2 Weight settings for solutions based on cf and bs_update.

bs_update = False bs_update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = True
κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbs 0 0 0 0 1

to drate, the option with the highest probability is chosen. Otherwise, the roulette
wheel selection method determines the next node.

The procedure continues until U is depleted. After creating a valid solution,
the post-processing procedure described in Section 7.3.3 is applied to possibly
reduce the energy consumption.

7.3.5.2 Pheromone Update

The pheromone update mechanism in our algorithm employs the same
methodology as in any other MMAS algorithm applied in the hypercube
framework. The first part of this mechanism updates each pheromone value
τij ∈ T based on three key solutions kept during each algorithm’s iteration:

• Sib: best solution identified in the current iteration.

• Srb: best solution since the last restart.

• Sbsf : best solution discovered since the algorithm’s start.

In general, these three solutions play a crucial role in the pheromone update.
At the start of the algorithm, Srb and Sbsf are set to ∅. Moreover, we define
f(∅) := ∞. In addition, the pheromone levels τij in T are initialized to 0.5 in
function InitializePheromones(T).

The solutions Sib, Srb, and Sbsf are utilized as follows. Each solution is
associated with a weight, namely κib, κrb, and κbs. These weights are determined
based on the convergence factor cf and a boolean variable bs_update. The table
below presents the standard weight settings based on cf and bs_update; see also
Algorithm 7.1.

With the solution weights established, each pheromone value is updated using
the following equation:

τi := τi + ϕ · (ξi − τi)

Here, ϕ is the learning rate, and the weighted average of solutions ξi is computed
as:

168 Chapter 7 EVRP-RJ

ξi := κib ·∆(Sib, i, j) + κrb ·∆(Srb, i, j) + κbs ·∆(Sbsf , i, j)

The function ∆(S, i, j) returns 1 if nodes i and j are consecutive nodes (in this
order) in some tour of S, and 0 otherwise.

After the pheromone update, values exceeding τmax = 0.999 are reset to τmax,
and those falling below τmin = 0.001 are adjusted to τmin. This adjustment ensures
the algorithm avoids a state of complete convergence.

The convergence factor cf is computed consistently across all MMAS
algorithms in the hypercube framework:

cf := 2

(∑
τ∈T max{τmax − τ, τ − τmin}
|T | · (τmax − τmin)

− 0.5

)
This formulation implies that cf is zero when all pheromones are at 0.5.

Conversely, when all pheromones are either τmin or τmax, cf is one. For all other
scenarios, cf lies between 0 and 1.

7.4 Experimental Evaluation

All experiments were performed on a cluster of machines with Intel® Xeon® 5670
CPUs with 12 cores of 2.933 GHz and a minimum of 32 GB RAM.

7.4.1 Problem Instances

To test the proposed algorithms, we generated a set of problem instances based
on the EVRP-TW instances introduced by Schneider et al. [166]. These instances
span a range of scenarios with 5 to 100 customers and include a predetermined
number of charging stations. The spatial distribution of customers is categorized
by the prefixes “c” for clustered, “r” for random, and “rc” for a mix of both.

In the process of adapting these instances to the EVRP-RJ-RT, we preserved the
original depot, customer locations, and charging stations. We then expanded the
road network with additional nodes to symbolize road junctions. In particular,
we chose the number of added road junctions to be equal to the number of original
nodes (depot, customers, and charging stations). The coordinates for these new
nodes were generated randomly within the bounds set by the extremities of the
original node’s coordinates. To obtain road networks of different densities, we
generated two distinct variations of each instance, characterized by the minimum
number of neighboring nodes to which each node is connected (5 and 15). In the
case of the 5-neighbors model, each node is linked to its five closest neighbors,
ensuring that at least two of these are the nearest road junctions, with the rest

Section 7.4 Experimental Evaluation 169

being chosen from the closest nodes. The connectivity information is stored
as a matrix in the problem instance files. Additionally, this connection matrix
provides information about the road type of each edge (1, 2, or 3), representing
highways, main roads, and urban roads, respectively. These distinctions help
simulate different speed constraints similar to real-world speed limits. The
resulting instances are provided upon request.

To further align the instances more closely with real-world conditions, we
implemented the following adjustment [146]:

• Customer demands were adjusted to fall between 50-450 kg.

• The vehicle’s loading capacity was set at 3650 kg.

• The curb weight of the vehicle was defined as 6350 kg.

• The recharging rate was fixed to 0.0545 - indicating the hours required to
charge 1 kWh of energy.

• The battery capacity was standardized at 110 kWh.

• Tmax limited to 8 hours.

Figures 7.1a and 7.1b illustrate an example of both original and modified
problem instances, respectively.

7.4.2 Parameter Tuning

We employed the scientific tuning software irace [124] to determine the optimal
parameter values for ACO. The tuning process was executed using six instances,
namely r101_21_n15, r201_21_n15, r103_21_n10, rc201_21_n10, rc201_21_n15,
and rc103_21_n5. The budget of irace was set to 2500 algorithm runs, and each
problem instance was subjected to a time limit of 2400 CPU seconds. The precision
of irace was set to two decimal places for numerical parameters. Parameter tuning
results are provided in Table 7.3.

7.4.3 Computational Results

This section presents comparative results of the Clarke-Wright Savings algorithm
and the ACO algorithm. As they are the most interesting ones, we only present
results for large-sized EVRP-RJ-RT problem instances with 100 customers. Given
its deterministic nature, the Clarke-Wright Savings algorithm was applied once
to each instance. On the other hand, the ACO algorithm was run 10 times for

170 Chapter 7 EVRP-RJ

(a) EVRP instance (b) Extended EVRP-RJ-RT instance

(c) Clarke-Wright solution (d) ACO solution

Fig. 7.1 Overview of example instances and corresponding solutions. Panels
(a) and (b) compare a base EVRP instance with a depot, fifteen customers, and
four charging stations on a fully connected graph, to its extended version for
EVRP-RJ-RT with twenty road junctions and a non-connected graph, highlighting
road types with speed limits: highways (80-100 km/h), urban roads (55-70 km/h),
and city streets (30-50 km/h). Panels (c) and (d) illustrate the solutions obtained
from the Clarke-Wright Savings Heuristic and the ACO algorithm, respectively,
with the former resulting in energy consumption of 112.36 kWh and the latter
99.97 kWh, showcasing the routes on the same map with four unique routes
marked by different colored arrows.

each instance to account for solution variability. The computational time limit
was set to 2400 CPU seconds for each execution of ACO.

Section 7.4 Experimental Evaluation 171

Table 7.3 Parameters, their domains, and the chosen values as determined by
irace.

Parameter Domain Value Description

α [1, 3] 1.66 Relative importance of the pheromone
β [1, 3] 1.91 Relative importance of the heuristic information
drate [0.01, 0.99] 0.62 Determinism rate
ϕ [0.01, 0.99] 0.42 Learning rate
na {2, 5, 10, 20, 50, 100, 200} 10 Number of generated solution

The numerical results are provided in Tables 7.4-7.6. Each table deals with
a specific group of instances. More specifically, Table 7.4 covers instances with
a neighborhood size of 5—that is, instances with sparser road networks—while
Table 7.5 and Table 7.6 deal with instances generated with a neighborhood size
of 10 and 15, respectively. The structure of these tables is straightforward. The
left-most column lists the instance names. A subsequent multi-column, labeled
"C&W," outlines the results obtained with the Clarke-Wright Savings algorithm,
detailing the number of electric vehicles used, the energy consumed, and the
computation time. Another multi-column (labeled "ACO") provides insights into
the ACO algorithm’s outcomes. Here, the ’ev’ column specifies the number of
electric vehicles in the best solution among 10 runs. The columns "best energy"
and "avg. energy" show the energy consumption of the best solution and average
energy consumption values across the 10 runs, respectively. "best imp. %" and
"avg. imp. %" columns provide the percentage improvements of ACO over C&W,
both concerning the best solution found and concerning the average over the
best solutions from 10 runs. Finally, the "time" column reveals the average CPU
time required to find the best solution in each ACO run. Figures 7.1c and 7.1d
illustrate example solutions derived by the Clarke-Wright Savings Heuristic and
ACO, respectively.

From our analysis, it is evident that ACO outperforms the Clarke-Wright
Savings Heuristic not only concerning the best solution found over 10 runs but
also concerning the averages of the energy consumption and the number of
electric vehicles used over 10 runs. The performance gap is more pronounced in
sparse road networks (Table 7.4) than in denser ones (Tables 7.5 and 7.6). The
reason is that with an increased number of road junctions and, consequently,
more routing options, Clarke-Wright tends to yield better solutions.

The boxplots presented in Figure 7.2 provide a detailed comparative analysis
of the performance between the Clarke-Wright Savings Heuristic and ACO across
various instance groups. These graphics again illustrate that the ACO algorithm
outperforms the Clarke-Wright Savings Algorithm in terms of both best and

172 Chapter 7 EVRP-RJ

Table 7.4 Comparison of ACO and Clarke-Wright for sparse EVRP-RJ-RT
instances.

Instance C&W ACO
name ev best time ev best avg. best imp. % avg. imp. % time

c101_21_n5 27 582.76 0.68 26 524.16 540.48 10.06 7.25 2099.28
c102_21_n5 26 627.36 1.38 26 530.49 543.85 15.44 13.31 2278.22
c103_21_n5 26 547.97 0.67 26 488.95 501.24 10.77 8.53 2074.05
c104_21_n5 27 567.22 0.73 26 503.66 520.89 11.21 8.17 2001.83
c201_21_n5 27 587.48 0.70 26 546.44 551.89 6.99 6.06 2205.59
c202_21_n5 27 592.33 0.79 27 542.20 549.66 8.46 7.20 2098.54
c204_21_n5 28 572.85 1.23 26 544.87 561.51 4.88 1.98 2070.88
r101_21_n5 5 331.16 0.69 5 267.21 282.63 19.31 14.65 2099.08
r102_21_n5 5 333.41 0.62 5 278.43 290.95 16.49 12.73 2169.35
r103_21_n5 5 287.32 0.57 5 258.76 268.60 9.94 6.52 2069.87
r104_21_n5 5 330.87 0.67 5 247.07 266.47 25.33 19.46 2277.53
r201_21_n5 5 301.41 0.65 5 244.68 254.87 18.82 15.44 2236.51
r203_21_n5 5 311.59 0.67 5 244.39 256.35 21.57 17.73 2293.71
r204_21_n5 5 312.35 0.61 5 250.39 259.02 19.84 17.07 1958.23
rc101_21_n5 5 312.55 0.58 5 257.81 276.20 17.51 11.63 2021.72
rc102_21_n5 5 329.64 0.67 5 256.92 275.82 22.06 16.33 1919.27
rc103_21_n5 5 293.90 0.58 5 266.16 276.97 9.44 5.76 1758.45
rc104_21_n5 6 328.90 0.43 5 292.46 308.37 11.08 6.24 2174.22
rc202_21_n5 6 318.44 0.61 5 276.21 286.28 13.26 10.10 2260.67
rc203_21_n5 6 296.86 0.42 5 260.58 280.19 12.22 5.62 1814.73
rc204_21_n5 5 338.59 0.60 5 264.43 275.64 21.90 18.59 2209.32

Average 12.43 405.00 0.69 12.05 349.82 363.23 14.60 10.97 2099.57

average energy consumption across all instance groups.

Section 7.4 Experimental Evaluation 173

Table 7.5 Comparison of ACO and Clarke-Wright for medium-density
EVRP-RJ-RT instances.

Instance C&W ACO
name ev best time ev best avg. best imp. % avg. imp. % time

c101_21_n10 26 522.42 0.59 26 485.93 491.54 6.98 5.91 2275.73
c102_21_n10 26 558.36 0.60 26 514.19 517.42 7.91 7.33 2250.59
c104_21_n10 27 529.46 0.58 26 492.06 494.58 7.06 6.59 2229.82
c201_21_n10 26 543.67 0.59 26 531.03 559.66 2.32 -2.94 2221.20
c202_21_n10 26 572.58 0.61 26 544.47 545.21 4.91 4.78 2231.86
c203_21_n10 26 527.16 0.62 26 524.69 535.16 0.47 -1.52 2150.51
c204_21_n10 26 567.04 0.65 26 532.86 541.20 6.03 4.56 2236.61
r101_21_n10 5 298.91 0.48 5 263.80 270.84 11.75 9.39 2215.93
r103_21_n10 5 279.91 0.52 5 236.88 248.43 15.37 11.25 2112.57
r104_21_n10 5 282.53 0.50 5 248.72 269.11 11.97 4.75 2068.15
r201_21_n10 5 298.75 0.51 5 250.97 262.55 15.99 12.12 2020.13
r202_21_n10 5 266.49 0.53 5 247.83 263.37 7.00 1.17 2118.18
r203_21_n10 5 303.00 0.51 5 245.07 259.54 19.12 14.34 2260.36
r204_21_n10 5 300.07 0.50 5 245.59 259.19 18.16 13.62 2225.41
rc102_21_n10 5 301.40 0.58 5 258.04 267.82 14.39 11.14 2114.35
rc103_21_n10 5 297.07 0.54 5 245.43 261.52 17.38 11.97 2082.76
rc104_21_n10 5 291.39 0.50 5 247.61 270.00 15.02 7.34 2179.50
rc201_21_n10 5 272.30 0.49 5 244.94 252.88 10.05 7.13 1996.98
rc202_21_n10 5 279.43 0.49 5 253.44 263.65 9.30 5.65 2064.93
rc203_21_n10 5 300.81 0.49 5 240.99 250.94 19.89 16.58 2233.38
rc204_21_n10 5 273.96 0.51 5 241.63 265.46 11.80 3.10 2182.55

Average 12.05 374.61 0.54 12.00 337.91 350.00 11.09 7.35 2165.31

174 Chapter 7 EVRP-RJ

Table 7.6 Comparison of ACO and Clarke-Wright for high-density EVRP-RJ-RT
instances.

Instance C&W ACO
name ev best time ev best avg. best imp. % avg. imp. % time

c101_21_n15 26 517.12 0.55 26 484.16 488.11 6.37 5.61 2260.81
c102_21_n15 26 508.07 0.56 26 480.21 487.34 5.48 4.08 2141.38
c103_21_n15 26 516.42 0.55 26 474.93 477.25 8.03 7.58 2165.13
c104_21_n15 26 506.60 0.55 26 474.61 479.81 6.31 5.29 2245.11
c202_21_n15 26 553.27 0.55 26 524.08 550.07 5.28 0.58 2165.83
c203_21_n15 27 560.28 0.58 26 530.08 553.74 5.39 1.17 2108.68
c204_21_n15 26 562.90 0.59 26 531.81 553.47 5.52 1.68 2205.35
r101_21_n15 5 283.53 0.46 5 241.53 248.86 14.81 12.23 2099.71
r102_21_n15 5 295.29 0.46 5 241.21 261.71 18.31 11.37 2162.46
r103_21_n15 5 314.42 0.46 5 244.26 266.03 22.31 15.39 2211.48
r201_21_n15 5 270.14 0.47 5 239.51 260.76 11.34 3.47 2262.17
r202_21_n15 5 292.38 0.48 5 253.44 268.56 13.32 8.15 2200.11
r203_21_n15 5 306.57 0.46 5 240.26 250.67 21.63 18.23 2124.56
r204_21_n15 5 297.87 0.46 5 247.99 262.55 16.75 11.86 2285.87
rc101_21_n15 5 294.37 0.48 5 256.53 277.64 12.85 5.68 2266.00
rc102_21_n15 5 304.61 0.50 5 254.52 266.28 16.44 12.58 2141.76
rc104_21_n15 5 300.31 0.46 5 253.86 272.38 15.47 9.30 2023.89
rc201_21_n15 5 262.27 0.46 5 244.16 251.99 6.91 3.92 1815.69
rc202_21_n15 5 267.71 0.48 5 240.79 246.67 10.06 7.86 1972.90
rc203_21_n15 5 280.32 0.48 5 246.35 256.12 12.12 8.63 2099.69
rc204_21_n15 5 284.34 0.46 5 248.09 266.11 12.75 6.41 1972.19

Average 12.05 370.42 0.50 12.00 331.07 345.05 11.78 7.67 2139.56

Section 7.4 Experimental Evaluation 175

n5/c

500
520
540
560
580
600
620

n5/r
240

260

280

300

320

n5/rc
260

280

300

320

340

n10/c

500

520

540

560

n10/r
240
250
260
270
280
290
300

n10/rc
240
250
260
270
280
290
300

n15/c

480

500

520

540

560

n15/r
240

260

280

300

n15/rc
240
250
260
270
280
290
300

C&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACO

(a) Best Energy Consumption

n5/c
500
520
540
560
580
600
620

n5/r

260

280

300

320

n5/rc

280
290
300
310
320
330
340

n10/c

500

520

540

560

n10/r
250
260
270
280
290
300

n10/rc
250

260

270

280

290

300

n15/c
480

500

520

540

560

n15/r
250
260
270
280
290
300
310

n15/rc
250
260
270
280
290
300

C&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACOC&W Savings ACO

(b) Average Energy Consumption

Fig. 7.2 Comparative analysis of the Clarke-Wright Savings Heuristic and the
ACO algorithms across various instance groups, such as n5/c, n5/r, and n5/rc.
Here, "n5" denotes the number of neighbors of each node (road network density),
while "c", "r", and "rc" indicate the spatial distribution of the nodes. For each
instance group, paired boxplots show the distribution of both the best (a) and
average (b) energy consumption results obtained by the two algorithms.

176 Chapter 7 EVRP-RJ

7.5 Conclusion

This chapter introduced an advanced extension of the Electric Vehicle Routing
Problem (EVRP) which we labeled the EVRP with Road Junctions and Road
Types (EVRP-RJ-RT). This problem variant moves the research on EVRPs closer
to considering the complexities of real-world urban logistics. Our approach
expands the conventional EVRP framework by incorporating road junctions and
various road types with unique speed constraints, such as highways, urban roads,
and city streets. This not only increases the model’s complexity in comparison
to existing EVRP variants but also makes it more realistic by reflecting the actual
transportation networks of urban areas. A distinctive feature of our approach
is the treatment of speed as a decision variable, which introduces an additional
layer of complexity to the problem.

We have formulated the problem as a Mixed Integer Non-Linear Programming
Model (MINLP) that utilizes an objective function and battery constraints that
accurately reflect the energy consumption of electric vehicles, considering load,
speed, and distance traveled. To address the computational challenges posed
by this enhanced EVRP, we have proposed a construction heuristic based on the
Clark & Wright Savings algorithm and an Ant Colony Optimization algorithm
based on the MAX-MIN Ant System. Our results demonstrate the effectiveness
of these methods in producing energy-efficient routing plans for electric vehicles
in realistic scenarios.

177

CHAPTER 8

CONCLUSIONS AND OUTLOOK

8.1 Conclusions

Grounded in the pressing need to mitigate environmental pollution—a direct
consequence of uncontrolled industrialization and urban expansion—this thesis
delves into the domain of sustainable logistics with an emphasis on the urban
landscape. The motivation for this thesis is to be found in the critical challenge
of air pollution, exacerbated by the extensive use of fossil fuels within the
transportation sector. This has not only compromised environmental quality
but also posed severe health risks, highlighting the urgent need for sustainable
transportation solutions.

This work has contributed to both the theoretical and practical aspects of
urban logistics optimization through an extensive exploration of Electric Vehicle
Routing Problems (EVRP), Two-Echelon Vehicle Routing Problems (2E-VRP), and
their novel integration into the Two-Echelon Electric Vehicle Routing Problem
(2E-EVRP). By considering environmentally friendly vehicles, such as electric
vehicles (EVs), and implementing strategic multi-echelon distribution systems,
this thesis points out pivotal strategies for enhancing sustainability within the
logistics sector. The application of advanced optimization techniques and the
development of novel solution approaches such as the self-adaptive version
of the Construct, Merge, Solve, and Adapt (CMSA) algorithm, Adapt-CMSA,
and Variable Neighborhood Search offer practical solutions to complex logistics
challenges.

The findings from this study underscore the potential of integrating EVs into
urban logistics systems and highlight the benefits of multi-echelon distribution
models in reducing traffic congestion, air pollution, and overall carbon footprint.
The exploration of EVRPs with additional real-world constraints, such as time
windows, simultaneous pickups and deliveries, partial battery charging, and the
consideration of road junctions and types, has advanced our understanding of
sustainable city logistics.

178 Chapter 8 Conclusions and Outlook

• Chapter 2 presented a variant of the hybrid metaheuristic CMSA called
Adapt-CMSA. This algorithm variant was introduced in this thesis to
mitigate some potential disadvantages of the standard CMSA algorithm,
including a rather high sensitivity to parameter value settings, which may
cause a need for specific parameter tuning applications in the context of
diverse problem instance sets.

• Chapter 3 presented the comparison of standard CMSA with the newly
developed Adapt-CMSA variant in the context of the Minimum Positive
Influence Dominating Set Problem (MPIDS). The MPIDS was chosen for
this purpose due to its relative simplicity compared to complex vehicle
routing problems. Indeed, the results of CMSA obtained for the MPIDS
problem showed that, despite its superiority over other greedy algorithms
and metaheuristics from the literature on many small and large instances,
its performance starts to decrease considerably in the context of large
instances. Adapt-CMSA, on the contrary, due to a dynamical adjustment
of its parameters during run-time, was shown to be able to solve problem
instances of all sizes without further tuning efficiently. Our experiments
focused on the MPIDS problem revealed Adapt-CMSA’s superiority over
standard CMSA.

• Chapter 4 explored Adapt-CMSA’s application to Electric Vehicle Routing
Problems with Time Windows, Simultaneous Pickup and Delivery, and
Partial Recharging. Initially, the problem is formulated as Mixed-Integer
Linear Programming (MILP), enabling its solution using any ILP solver.
To address the problem, we developed two Adapt-CMSA variants. The
first variant, named Adapt-Cmsa-Std, employs two-dimensional binary
matrices for solution and sub-instance representation, with standard
assignment-type MILP formulations utilized for solving sub-instances.
Computational experiments revealed that assignment-type MILP models
generally do not provide good lower bounds, leading to difficulties for
the ILP solver in solving even small-sized sub-instances within restricted
time constraints. Consequently, we introduced a second algorithm variant,
Adapt-Cmsa-SetCov. In this approach, solutions and sub-instances are
considered as combinations of routes, meaning solution components
are the routes themselves. To solve a sub-instance, we utilized a
set-covering-based formulation, which is based on the routes generated
during the construction step and then selecting the most promising
combination of routes so that each customer is visited in one of the

Section 8.1 Conclusions 179

selected routes. The results convincingly demonstrated that CMSA variants
employing set-covering-based models significantly outperform those using
standard assignment-type models. In our view, CMSA algorithms present
an ideal framework for leveraging set-covering-based models to solve
optimization problems that can be modeled in this manner. This is
attributed to the fact that CMSA algorithms are less sophisticated and
easier to implement when compared for example, to column generation
approaches. Moreover, CMSA algorithms are capable of exploring search
spaces, unlike simpler heuristic methods from the literature designed to
benefit from set-covering-based models.

• In Chapter 5, we addressed the Two-Echelon Electric Vehicle Routing
Problem with Simultaneous Pickups and Deliveries (2E-EVRP-SPD),
which reflects an integration of sustainable logistics practices through a
two-echelon framework and the use of electric vehicles. In this problem,
we consider that large trucks with internal combustion engines transport
products from central warehouses to satellites in the surroundings of cities.
Subsequently, smaller electric vehicles distribute goods from these satellites
to customers located in the cities. Moreover, as the name of the problem
already indicates, it also considers simultaneous pickup and delivery (SPD)
constraints for the delivery of goods to customers. When SPD constraints are
considered, each customer may have two different demands: (1) the goods
to be delivered to the demand point (delivery demand), and (2) the goods
to be collected from the demand point (pickup demand). So, once a vehicle
visits a certain customer, both demands must be met simultaneously. This
approach usually arises as a reverse logistics practice. However, despite
the importance of reverse logistics in terms of sustainability, the number of
publications on EVRP-SPD variants is rather limited.

First, the addressed problem was formulated as a mixed integer linear
program (MILP). Any general-purpose MILP solver may be used to solve
this model. However, due to the multi-tier structure of the distribution
network, the limited driving range of electric vehicles, and the SPD
constraints, the 2E-EVRP-SPD problem is rather complex. In fact, our
computational experiments showed that CPLEX struggled to solve even
small-sized problems to optimality. In fact, in most cases, CPLEX was only
able to derive valid solutions with large optimality gaps. Therefore, two
probabilistic construction heuristics based on a Clarke-Wright Savings and
a Sequential insertion algorithm were implemented. Moreover, in line with

180 Chapter 8 Conclusions and Outlook

the findings presented in Chapter 4, we developed an Adapt-CMSA variant
in which a set-covering-based approached is used to solve the sub-instances.
The proposed hybrid approach performed better than both CPLEX and the
two construction heuristics.

• Chapter 6 considered another variant of the Two-Echelon Electric
Vehicle Routing Problem (2E-EVRP), this time incorporating time window
constraints instead of SPD constraints. The chapter first technically
described the problem by means of modelling it through a three-index
node-based MILP model. The multi-tier distribution network, combined
with the limited driving range of electric vehicles and the specific
demands of time window constraints, presents a complex challenge. Our
computational findings revealed that the MILP solver CPLEX was only able
to optimally solve problems of smaller size. To address larger instances, we
introduced a Variable Neighborhood Search (VNS) approach, enhanced by
an initial solution generation technique inspired by Clarke-Wright Savings
algorithm, tailored to the unique requirements of the 2E-EVRP-TW.

The developed VNS approach utilized a wide range of both classical
and large neighborhood search operators. Moreover, the algorithm also
allows for the exploration of not only feasible but also unfeasible solutions
through an augmented objective function. Our approach employed a
variable neighborhood descent algorithm during the local search phase,
with a notable distinction between two VNS variants: the comprehensive
version, which incorporates destroy and repair mechanisms alongside
standard routing operators, and a simplified version focusing solely on
standard inter-route and intra-route shaking operators. This comparative
analysis underscored the significant value added by the destroy and repair
mechanisms in enhancing VNS performance.

The results obtained by applying our VNS algorithm to the instances
were promising, consistently outperforming CPLEX in speed and
efficiency for all small-sized instances. Moreover, the inclusion of
destroy-and-repair operators markedly improved the algorithm’s overall
effectiveness, showcasing its potential in solving complex routing problems.

• Finally, Chapter 7 introduced the Electric Vehicle Routing Problem
with Road Junctions and Road Types (EVRP-RJ-RT), an extension that
significantly narrows the gap between theoretical EVRP models and
the intricacies of real-world urban logistics. This model integrates
road junctions and diverse road types, each with unique speed

Section 8.2 Outlook 181

constraints—including highways, urban roads, and city streets—thereby
elevating the complexity and realism of the model to more accurately mirror
the transportation networks found in urban environments. A novel aspect
of our model is the consideration of speed as a decision variable, adding
an extra dimension of complexity by directly affecting energy consumption
based on load, speed, and distance.

We formulated this problem as a Mixed Integer Non-Linear Programming
(MINLP) model, incorporating an objective function alongside battery
constraints that closely simulate the energy expenditure of electric vehicles
under varying conditions. To tackle the computational challenges inherent
in this more sophisticated EVRP variant, we introduce a construction
heuristic inspired by the Clarke-Wright Savings algorithm, coupled with
an Ant Colony Optimization (ACO) technique derived from the MAX-MIN
Ant System. These methods have proven to be effective in devising
energy-efficient routing plans that are viable in practical urban settings,
highlighting their potential to significantly improve the sustainability and
efficiency of urban logistics involving electric vehicles.

This thesis has made a range of contributions to the field of sustainable logistics
by thoroughly examining and addressing the complexities of electric vehicle
routing in urban contexts. The presented work employs a multi-faceted approach
that integrates environmental considerations with advanced optimization
techniques to reduce pollution and greenhouse gas emissions while providing
scalable and efficient solutions for urban logistics systems. The thesis shows
the innovative application of the newly developed Adapt-CMSA algorithm,
along with the exploration of novel problem formulations such as the 2E-EVRP
with simultaneous pickups and deliveries and the inclusion of real-world
constraints like road junctions and types. The findings presented across
the chapters provide valuable insights into the adoption of electric vehicles
and multi-echelon distribution systems, demonstrating their effectiveness in
minimizing environmental impact while maintaining operational efficiency.

8.2 Outlook

As mentioned in the previous section, this thesis has paved the way for
a comprehensive exploration of sustainable logistics within urban contexts,
employing advanced optimization techniques to address the complexities of
electric vehicle routing. While these are numerous contributions to be found
in this work, there are also several avenues for further research and development,

182 Chapter 8 Conclusions and Outlook

particularly from an algorithmic perspective. The outlook for future work is
discussed below, focusing on improvements regarding algorithmic approaches,
and the development of realistic datasets.

From the algorithmic perspective, the CMSA algorithm stands as a cornerstone
in this thesis. It is grounded on the idea of the generation of sub-instances of
the original problem instance that contain high-quality solutions. It employs a
systematic approach to generating sub-instances of original problem instances
and solving these sub-instances using an exact method or solver. In this line,
three primary areas for improvement can be mentioned:

• Creation of High-Quality Sub-Instances: The quality of sub-instances,
key to the CMSA’s efficiency, depends significantly on the construct step’s
ability to generate useful solutions. While a direct correlation between the
construct step’s output and the solve step’s solution quality is anticipated,
a more nuanced understanding reveals that the combinations of solution
components may yield high-quality sub-instances irrespective of individual
solution quality. This indicates the potential for employing diverse solution
construction mechanisms to foster a rich variety of sub-instances, potentially
enhancing search space exploration. However, achieving a balance between
diversity and coherence in sub-instance composition is crucial. It may
not always be the case that having a very diverse sub-instance includes
high-quality solutions. Here, the most crucial issue is merging the
most complementary solution components. And this may not always be
directly related to the quality of the solutions generated in the construct
step. Advanced machine learning techniques could play a pivotal role
here, guiding the solution construction process by analyzing patterns and
qualities of previously successful sub-instances, thereby optimizing the
selection and combination of solution components.

• Efficient Management of Sub-Instance Size: As sub-instances grow in
size, the performance of exact solvers like CPLEX may diminish due
to increased computational complexity. The Adapt-CMSA attempts to
mitigate this by adjusting solution similarity parameters, yet this approach
can inadvertently limit diversity and exploration capabilities. An alternative
strategy might involve refining the sub-instance through selective exclusion
of components unlikely to contribute to high-quality solutions, based on
compatibility and utility rather than individual merit. In this way, the
diversity of sub-instances can also be maintained. Incorporating techniques
such as machine learning for dynamic refinement could enhance the solver’s

183

efficiency without compromising the algorithm’s exploratory depth.

• Enhanced Problem Formulation: As mentioned above, the transition
from assignment-type MILP models to set-covering models significantly
improved solver performance within this thesis. This suggests that
exploring alternative, more efficient modeling techniques could further
leverage solver capabilities, potentially offering more scalable and accurate
solutions to complex routing problems. Furthermore, employing more
sophisticated exact solution approaches would undoubtedly result in
solving sub-instances more efficiently.

In addition to the algorithmic enhancements, another future research line is
the generation of realistic datasets. A critical aspect of validating and testing
the proposed methodologies involves employing datasets that closely mirror
real-world scenarios. Future research should focus on creating or augmenting
datasets to include authentic road networks and geographic locations. This
entails not just the physical layout but also the dynamic elements such as traffic
patterns, varying road conditions, and logistical constraints, thereby ensuring
that solution methodologies are tested against the multifaceted challenges present
in actual urban logistics scenarios.

To this end, the author is currently in the process of developing a generator
for realistic EVRP-RJ-RT instances based on geographical information extracted
from OpenStreetMap [141]. An example instance generated by the preliminary
version of this generator is presented in Figure 8.1.

184

Fig. 8.1 Example instance of EVRP-RJ-RT generated using preliminary version of
the instance generator.

185

References

[1] Rami Abousleiman and Osamah Rawashdeh. Tabu search based solution
to the electric vehicle energy efficient routing problem. In 2014 IEEE

Transportation Electrification Conference and Expo (ITEC), pages 1–6. IEEE,
2014.

[2] Mehmet Anıl Akbay and Christian Blum. Application of CMSA to
the minimum positive influence dominating set problem. In Artificial

Intelligence Research and Development, pages 17–26. IOS Press, 2021.

[3] Mehmet Anıl Akbay, Can Berk Kalayci, Christian Blum, and Olcay Polat.
Variable neighborhood search for the two-echelon electric vehicle routing
problem with time windows. Applied Sciences, 12(3):1014, 2022.

[4] Mehmet Anıl Akbay, Albert López Serrano, and Christian Blum. A
self-adaptive variant of CMSA: Application to the minimum positive
influence dominating set problem. International Journal of Computational

Intelligence Systems, 15(1):1–13, 2022.

[5] Mehmet Anıl Akbay, Can Berk Kalayci, and Christian Blum. Application
of CMSA to the electric vehicle routing problem with time windows,
simultaneous pickup and deliveries, and partial vehicle charging. In
Metaheuristics. MIC 2022, volume 13838 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2023. doi: 10.1007/978-3-031-26504-4_1.

[6] Mehmet Anıl Akbay, Can Berk Kalayci, and Christian Blum. Application
of Adapt-CMSA to the two-echelon electric vehicle routing problem
with simultaneous pickup and deliveries. In Evolutionary Computation in

Combinatorial Optimization. EvoCOP 2023, volume 13987 of Lecture Notes in

Computer Science, pages 16–33. Springer, 2023. doi: 10.1007/978-3-031-300
35-6_2.

[7] İ. Kuban Altınel and Temel Öncan. A new enhancement of the clarke and
wright savings heuristic for the capacitated vehicle routing problem. Journal

of the Operational Research Society, 56(8):954–961, 2005.

186

[8] Rimmi Anand, Divya Aggarwal, and Vĳay Kumar. A comparative analysis
of optimization solvers. Journal of Statistics and Management Systems, 20(4):
623–635, 2017.

[9] Enrico Angelelli and Renata Mansini. The vehicle routing problem with
time windows and simultaneous pick-up and delivery. In Quantitative

approaches to distribution logistics and supply chain management, pages 249–267.
Springer, 2002.

[10] Divansh Arora, Parikshit Maini, Pedro Pinacho-Davidson, and Christian
Blum. Route planning for cooperative air-ground robots with fuel
constraints: An approach based on CMSA. In Proceedings of GECCO 2019

– Genetic and Evolutionary Computation Conference, page 207–214, New York,
NY, USA, 2019. Association for Computing Machinery.

[11] Mohammad Asghari and S. Mohammad J. Mirzapour Al-e-hashem. Green
vehicle routing problem: A state-of-the-art review. International Journal of

Production Economics, 231:107899, 2021.

[12] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Evolutionary

computation 1: Basic algorithms and operators. CRC press, 2018.

[13] Qinghai Bai. Analysis of particle swarm optimization algorithm. Computer

and Information Science, 3(1):180, 2010.

[14] Roberto Baldacci, Aristide Mingozzi, Roberto Roberti, and Roberto Wolfler
Calvo. An exact algorithm for the two-echelon capacitated vehicle routing
problem. Operations Research, 61(2):298–314, 2013.

[15] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[16] Jonathan F. Bard, Liu Huang, Moshe Dror, and Patrick Jaillet. A branch
and cut algorithm for the VRP with satellite facilities. IIE Transactions, 30
(9):821–834, 1998.

[17] Matthew Barth, Theodore Younglove, and George Scora. Development
of a heavy-duty diesel modal emissions and fuel consumption model.
California PATH Research Report UCB-ITS-PRR-2005-1, California PATH
Program, Institute of Transportation Studies, University of California,
Berkeley, January 2005.

187

[18] John E. Beasley. Route first—cluster second methods for vehicle routing.
Omega, 11(4):403–408, 1983.

[19] Tolga Bektaş and Gilbert Laporte. The pollution-routing problem.
Transportation Research Part B: Methodological, 45(8):1232–1250, 2011.

[20] Onder Belgin, Ismail Karaoglan, and Fulya Altiparmak. Two-echelon
vehicle routing problem with simultaneous pickup and delivery:
Mathematical model and heuristic approach. Computers & Industrial

Engineering, 115:1–16, 2018.

[21] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[22] Houssem Eddine Ben-Smida, José-Francisco Chicano-García, and Saoussen
Krichen. Construct, merge, solve and adapt for taxi sharing. RIUMA

(Repositorio Institucional de la Universidad de Malaga), 2019. URL https:
//hdl.handle.net/10630/18106.

[23] Dimitris J. Bertsimas. A vehicle routing problem with stochastic demand.
Operations Research, 40(3):574–585, 1992.

[24] Christian Blum. Ant colony optimization: Introduction and recent trends.
Physics of Life Reviews, 2(4):353–373, 2005.

[25] Christian Blum and Marco Dorigo. The hyper-cube framework for ant
colony optimization. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (cybernetics), 34(2):1161–1172, 2004.

[26] Christian Blum, Jakob Puchinger, Günther R. Raidl, Andrea Roli, et al. A
brief survey on hybrid metaheuristics. Proceedings of BIOMA, pages 3–18,
2010.

[27] Christian Blum, Pedro Pinacho Davidson, Manuel López-Ibáñez, and
José A. Lozano. Construct, merge, solve & adapt: A new general algorithm
for combinatorial optimization. Computers & Operations Research, 68:75–88,
2016.

[28] Salim Bouamama and Christian Blum. An improved greedy heuristic for
the minimum positive influence dominating set problem in social networks.
Algorithms, 14(3):79, 2021.

[29] Ulrich Breunig, Roberto Baldacci, Richard F. Hartl, and Thibaut Vidal.
The electric two-echelon vehicle routing problem. Computers & Operations

Research, 103:198–210, 2019.

https://hdl.handle.net/10630/18106
https://hdl.handle.net/10630/18106

188

[30] Maurizio Bruglieri, Simona Mancini, Ferdinando Pezzella, Ornella
Pisacane, and Stefano Suraci. A three-phase matheuristic for the
time-effective electric vehicle routing problem with partial recharges.
Electronic Notes in Discrete Mathematics, 58:95–102, 2017.

[31] B. Calvo and G. Santafé. scmamp: Statistical comparison of multiple
algorithms in multiple problems. The R Journal, 8(1), 2016.

[32] Siqi Cao, Wenzhu Liao, and Yuqi Huang. Heterogeneous fleet recyclables
collection routing optimization in a two-echelon collaborative reverse
logistics network from circular economic and environmental perspective.
Science of the Total Environment, 758:144062, 2021.

[33] Craig R. Carter and Dale S. Rogers. A framework of sustainable supply
chain management: moving toward new theory. International Journal of

Physical Distribution & Logistics Management, 38(5):360–387, 2008.

[34] Alberto Ceselli, Ángel Felipe, M Teresa Ortuño, Giovanni Righini, and
Gregorio Tirado. A branch-and-cut-and-price algorithm for the electric
vehicle routing problem with multiple technologies. In Operations Research

Forum, volume 2, pages 1–33. Springer, 2021.

[35] Camilo Chacón Sartori, Christian Blum, and Gabriela Ochoa. STNWeb:
A new visualization tool for analyzing optimization algorithms. Software

Impacts, 17:100558, 2023.

[36] I. Ming Chao, Bruce L. Golden, and Edward Wasil. A new heuristic for
the multi-depot vehicle routing problem that improves upon best-known
solutions. American Journal of Mathematical and Management Sciences, 13(3-4):
371–406, 1993.

[37] Wei-Neng Chen, Jun Zhang, Henry S.H. Chung, Wen-Liang Zhong,
Wei-Gang Wu, and Yu-hui Shi. A novel set-based particle swarm
optimization method for discrete optimization problems. IEEE Transactions

on Evolutionary Computation, 14(2):278–300, 2009.

[38] Weidong Chen, Hao Zhong, Lidong Wu, and Ding-Zhu Du. A general
greedy approximation algorithm for finding minimum positive influence
dominating sets in social networks. Journal of Combinatorial Optimization,
pages 1–20, 2021.

189

[39] Young Sul Cho, Jin Seop Kim, Juyong Park, Byungnam Kahng, and Doochul
Kim. Percolation transitions in scale-free networks under the achlioptas
process. Physical Review Letters, 103(13):135702, 2009.

[40] Nicos Christofides and Samuel Eilon. An algorithm for the
vehicle-dispatching problem. Journal of the Operational Research Society, 20:
309–318, 1969.

[41] Geoff Clarke and John W. Wright. Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research, 12(4):568–581,
1964.

[42] Leandro C. Coelho and Gilbert Laporte. Classification, models and exact
algorithms for multi-compartment delivery problems. European Journal of

Operational Research, 242(3):854–864, 2015.

[43] Ryan G. Conrad and Miguel Andres Figliozzi. The recharging vehicle
routing problem. In Proceedings of the 2011 industrial engineering research

conference, page 8. IISE Norcross, GA, 2011.

[44] David L. Cortés-Murcia, Caroline Prodhon, and H. Murat Afsar. The electric
vehicle routing problem with time windows, partial recharges and satellite
customers. Transportation Research Part E: Logistics and Transportation Review,
130:184–206, 2019.

[45] Teodor Gabriel Crainic, Nicoletta Ricciardi, and Giovanni Storchi.
Advanced freight transportation systems for congested urban areas.
Transportation Research Part C: Emerging Technologies, 12(2):119–137, 2004.

[46] Teodor Gabriel Crainic, Nicoletta Ricciardi, and Giovanni Storchi. Models
for evaluating and planning city logistics systems. Transportation Science, 43
(4):432–454, 2009.

[47] Teodor Gabriel Crainic, Guido Perboli, and Mariangela Rosano. Simulation
of intermodal freight transportation systems: a taxonomy. European Journal

of Operational Research, 270(2):401–418, 2018.

[48] Monica Crippa, Diego Guizzardi, Manjola Banja, Efisio Solazzo, Marilena
Muntean, Edwin Schaaf, Federico Pagani, Fabio Monforti-Ferrario, JGJ
Olivier, Roberta Quadrelli, et al. Co2 emissions of all world countries.
JRC Science for Policy Report, European Commission, EUR, 31182, 2022.

190

[49] Gabor Csardi and Tamas Nepusz. The igraph software package for complex
network research. Interjournal, Complex Systems, 1695(5):1–9, 2006.

[50] George B. Dantzig and John H. Ramser. The truck dispatching problem.
Management Science, 6(1):80–91, 1959.

[51] Nico Dellaert, Fardin Dashty Saridarq, Tom Van Woensel, and
Teodor Gabriel Crainic. Branch-and-price–based algorithms for the
two-echelon vehicle routing problem with time windows. Transportation

Science, 53(2):463–479, 2019.

[52] Emrah Demir, Tolga Bektaş, and Gilbert Laporte. An adaptive large
neighborhood search heuristic for the pollution-routing problem. European

Journal of Operational Research, 223(2):346–359, 2012.

[53] Guy Desaulniers, Fausto Errico, Stefan Irnich, and Michael Schneider.
Exact algorithms for electric vehicle-routing problems with time windows.
Operations Research, 64(6):1388–1405, 2016.

[54] Edsger W. Dĳkstra. A note on two problems in connexion with graphs. In
Edsger Wybe Dĳkstra: His Life, Work, and Legacy, pages 287–290. 2022.

[55] Marko Djukanović, Aleksandar Kartelj, and Christian Blum. Self-adaptive
CMSA for solving the multidimensional multi-way number partitioning
problem. Expert Systems with Applications, page 120762, 2023.

[56] Marco Dorigo and Thomas Stützle. Ant colony optimization. MIT press, 2004.

[57] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Positive feedback
as a search strategy. Technical Report 91-016, Dipartimento di Elettronica,
Politecnico di Milano, Milan, Italy, 1991.

[58] Moshe Dror and Pierre Trudeau. Savings by split delivery routing.
Transportation Science, 23(2):141–145, 1989.

[59] Moshe Dror and Pierre Trudeau. Split delivery routing. Naval Research

Logistics (NRL), 37(3):383–402, 1990.

[60] Ece Naz Duman, Duygu Taş, and Bülent Çatay. Branch-and-price-and-cut
methods for the electric vehicle routing problem with time windows.
International Journal of Production Research, 60(17):5332–5353, 2022.

191

[61] Nicolas Dupin and El-Ghazali Talbi. Matheuristics to optimize refueling
and maintenance planning of nuclear power plants. Journal of Heuristics, 27
(1):63–105, 2021.

[62] Sevgi Erdoğan and Elise Miller-Hooks. A green vehicle routing problem.
Transportation Research Part E: Logistics and Transportation Review, 48(1):
100–114, 2012.

[63] European Environment Agency. Contribution to eu-27 emissions, 2023.
URL https://www.eea.europa.eu/data-and-maps/daviz/contributi
on-to-eu-27-emissions/#tab-googlechartid_googlechartid_chart

_112. Accessed April 10, 2024.

[64] Mai Fei and Chen Weidong. An improved algorithm for finding minimum
positive influence dominating sets in social networks. Journal of South China

Normal University, 48(3):59–63, 2016.

[65] Dominique Feillet. A tutorial on column generation and branch-and-price
for vehicle routing problems. 4OR, 8(4):407–424, 2010.

[66] Ángel Felipe, M. Teresa Ortuño, Giovanni Righini, and Gregorio Tirado.
A heuristic approach for the green vehicle routing problem with multiple
technologies and partial recharges. Transportation Research Part E: Logistics

and Transportation Review, 71:111–128, 2014.

[67] Martina Fischetti and Matteo Fischetti. Matheuristics, pages 121–153.
Springer International Publishing, 2018.

[68] Lester Randolph Jr. Ford and Delbert R. Fulkerson. A suggested
computation for maximal multi-commodity network flows. Management

Science, 5(1):97–101, 1958.

[69] Angela K. Fournier, Erin Hall, Patricia Ricke, and Brittany Storey. Alcohol
and the social network: Online social networking sites and college students’
perceived drinking norms. Psychology of Popular Media Culture, 2(2):86, 2013.

[70] Peter M. Francis, Karen R. Smilowitz, and Michal Tzur. The period vehicle
routing problem and its extensions. the Vehicle Routing Problem: Latest

Advances and New Challenges, pages 73–102, 2008.

[71] Aurélien Froger, Jorge E. Mendoza, Ola Jabali, and Gilbert Laporte. A

matheuristic for the electric vehicle routing problem with capacitated charging

https://www.eea.europa.eu/data-and-maps/daviz/contribution-to-eu-27-emissions/#tab-googlechartid_googlechartid_chart_112
https://www.eea.europa.eu/data-and-maps/daviz/contribution-to-eu-27-emissions/#tab-googlechartid_googlechartid_chart_112
https://www.eea.europa.eu/data-and-maps/daviz/contribution-to-eu-27-emissions/#tab-googlechartid_googlechartid_chart_112

192

stations. PhD thesis, Centre interuniversitaire de recherche sur les reseaux
d’entreprise, la logistique et le transport (CIRRELT), 2017.

[72] Piotr Fronczak. Scale-free nature of social networks. In Reda Alhajj and
Jon Rokne, editors, Encyclopedia of Social Network Analysis and Mining, pages
2300–2309. Springer New York, 2018.

[73] Ahmed G. Gad. Particle swarm optimization algorithm and its applications:
a systematic review. Archives of Computational Methods in Engineering, 29(5):
2531–2561, 2022.

[74] S. García and F. Herrera. An extension on “statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons. Journal

of Machine Learning Research, 9:2677 – 2694, 2008.

[75] Sotiris P. Gayialis, Grigorios D. Konstantakopoulos, and Ilias P.
Tatsiopoulos. Vehicle routing problem for urban freight transportation:
A review of the recent literature. Operational Research in the Digital Era–ict

Challenges, pages 89–104, 2019.

[76] Michel Gendreau, Gilbert Laporte, and René Séguin. Stochastic vehicle
routing. European Journal of Operational Research, 88(1):3–12, 1996.

[77] Robert B. Gibson. Sustainability assessment: basic components of a
practical approach. Impact Assessment and Project Appraisal, 24(3):170–182,
2006.

[78] Billy E. Gillett and Leland R. Miller. A heuristic algorithm for the
vehicle-dispatch problem. Operations Research, 22(2):340–349, 1974.

[79] Fred Glover. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5):533–549, 1986.

[80] Fred Glover and Manuel Laguna. Tabu search. Springer, 1998.

[81] Marc Goetschalckx and Charlotte Jacobs-Blecha. The vehicle routing
problem with backhauls. European Journal of Operational Research, 42(1):
39–51, 1989.

[82] Bruce Golden, Arjang Assad, Larry Levy, and Filip Gheysens. The fleet
size and mix vehicle routing problem. Computers & Operations Research, 11
(1):49–66, 1984.

193

[83] Yue-Jiao Gong, Jun Zhang, Ou Liu, Rui-Zhang Huang, Henry Shu-Hung
Chung, and Yu-Hui Shi. Optimizing the vehicle routing problem with
time windows: A discrete particle swarm optimization approach. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (applications and

Reviews), 42(2):254–267, 2011.

[84] Philippe Grangier, Michel Gendreau, Fabien Lehuédé, and Louis-Martin
Rousseau. An adaptive large neighborhood search for the two-echelon
multiple-trip vehicle routing problem with satellite synchronization.
European Journal of Operational Research, 254(1):80–91, 2016.

[85] Wei-Jie Guan, Xue-Yan Zheng, Kian Fan Chung, and Nan-Shan Zhong.
Impact of air pollution on the burden of chronic respiratory diseases in
china: time for urgent action. The Lancet, 388(10054):1939–1951, 2016.

[86] Dilek Günneç, Subramanian Raghavan, and Rui Zhang. Least-cost
influence maximization on social networks. INFORMS Journal on

Computing, 32(2):289–302, 2020.

[87] LLC Gurobi Optimization. Gurobi optimizer reference manual. http:
//www.gurobi.com , 2020. Accessed : 2020-02-06.

[88] Pierre Hansen and Nenad Mladenovic. A tutorial on variable neighborhood
search. Les Cahiers Du GERAD, 711:2440, 2003.

[89] Pierre Hansen, Nenad Mladenović, Jack Brimberg, and José A. Moreno
Pérez. Variable neighborhood search. Springer, 2019.

[90] Vera C. Hemmelmayr, Karl F. Doerner, and Richard F. Hartl. A variable
neighborhood search heuristic for periodic routing problems. European

Journal of Operational Research, 195(3):791–802, 2009.

[91] Vera C. Hemmelmayr, Jean-François Cordeau, and Teodor Gabriel Crainic.
An adaptive large neighborhood search heuristic for two-echelon vehicle
routing problems arising in city logistics. Computers & Operations Research,
39(12):3215–3228, 2012.

[92] Gerhard Hiermann, Jakob Puchinger, Stefan Ropke, and Richard F. Hartl.
The electric fleet size and mix vehicle routing problem with time windows
and recharging stations. European Journal of Operational Research, 252(3):
995–1018, 2016.

http://www.gurobi.com
http://www.gurobi.com

194

[93] Gerhard Hiermann, Richard F. Hartl, Jakob Puchinger, and Thibaut Vidal.
Routing a mix of conventional, plug-in hybrid, and electric vehicles.
European Journal of Operational Research, 272(1):235–248, 2019.

[94] John H. Holland. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

[95] Andrés Huerta-Rojo, Elizabeth Montero, and Nicolás Rojas-Morales. An
ant-based approach to solve the electric vehicle routing problem with time
windows and partial recharges. In 2021 40th International Conference of the

Chilean Computer Science Society (SCCC), pages 1–8. IEEE, 2021.

[96] IBM. ILOG CPLEX optimization studio documentation. http://www-01.
ibm.com/software/commerce/optimization/cplex-optimizer, 2020.
Accessed : 2024-02-16.

[97] International Energy Agency (IEA). CO2 Emissions in 2022. https://ww
w.iea.org/reports/co2-emissions-in-2022, 2023. License: CC BY 4.0.

[98] International Energy Agency (IEA). Global energy sector co2 emissions
reductions by measure in the sustainable development scenario relative to
the stated policies scenario, 2023. URL https://www.iea.org/data-and
-statistics/charts/global-energy-sector-co2-emissions-reducti

ons-by-measure-in-the-sustainable-development-scenario-relat

ive-to-the-stated-policies-scenario. License: CC BY 4.0.

[99] Bassem Jarboui, Houda Derbel, Saïd Hanafi, and Nenad Mladenović.
Variable neighborhood search for location routing. Computers & Operations

Research, 40(1):47–57, 2013.

[100] Mads Jepsen, Simon Spoorendonk, and Stefan Ropke. A branch-and-cut
algorithm for the symmetric two-echelon capacitated vehicle routing
problem. Transportation Science, 47(1):23–37, 2013.

[101] Wanchen Jie, Jun Yang, Min Zhang, and Yongxi Huang. The two-echelon
capacitated electric vehicle routing problem with battery swapping
stations: Formulation and efficient methodology. European Journal of

Operational Research, 272(3):879–904, 2019.

[102] Sašo Karakatič. Optimizing nonlinear charging times of electric vehicle
routing with genetic algorithm. Expert Systems with Applications, 164:114039,
2021.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
https://www.iea.org/reports/co2-emissions-in-2022
https://www.iea.org/reports/co2-emissions-in-2022
https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-reductions-by-measure-in-the-sustainable-development-scenario-relative-to-the-stated-policies-scenario
https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-reductions-by-measure-in-the-sustainable-development-scenario-relative-to-the-stated-policies-scenario
https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-reductions-by-measure-in-the-sustainable-development-scenario-relative-to-the-stated-policies-scenario
https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-reductions-by-measure-in-the-sustainable-development-scenario-relative-to-the-stated-policies-scenario

195

[103] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, volume 4,
pages 1942–1948. IEEE, 1995.

[104] Merve Keskin and Bülent Çatay. Partial recharge strategies for the electric
vehicle routing problem with time windows. Transportation Research Part C:

Emerging Technologies, 65:111–127, 2016.

[105] Merve Keskin and Bülent Çatay. A matheuristic method for the electric
vehicle routing problem with time windows and fast chargers. Computers

& Operations Research, 100:172–188, 2018.

[106] Merve Keskin, Bülent Çatay, and Gilbert Laporte. A simulation-based
heuristic for the electric vehicle routing problem with time windows and
stochastic waiting times at recharging stations. Computers & Operations

Research, 125:105060, 2021.

[107] Scott Kirkpatrick, C. Daniel Gelatt Jr., and Mario P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, 1983.

[108] Çağrı Koç, Tolga Bektaş, Ola Jabali, and Gilbert Laporte. A hybrid
evolutionary algorithm for heterogeneous fleet vehicle routing problems
with time windows. Computers & Operations Research, 64:11–27, 2015.

[109] Çağrı Koç, Tolga Bektaş, Ola Jabali, and Gilbert Laporte. The fleet size
and mix location-routing problem with time windows: Formulations and
a heuristic algorithm. European Journal of Operational Research, 248(1):33–51,
2016.

[110] Çağrı Koç, Ola Jabali, Jorge E Mendoza, and Gilbert Laporte. The
electric vehicle routing problem with shared charging stations. International

Transactions in Operational Research, 26(4):1211–1243, 2019.

[111] Christos Koulamas, S. R. Antony, and R. Jaen. A survey of simulated
annealing applications to operations research problems. Omega, 22(1):
41–56, 1994.

[112] İlker Küçükoğlu, Reginald Dewil, and Dirk Cattrysse. Hybrid simulated
annealing and tabu search method for the electric travelling salesman
problem with time windows and mixed charging rates. Expert Systems

with Applications, 134:279–303, 2019.

196

[113] Ilker Kucukoglu, Reginald Dewil, and Dirk Cattrysse. The electric vehicle
routing problem and its variations: A literature review. Computers &

Industrial Engineering, 161:107650, 2021.

[114] Gilbert Laporte, Francois Louveaux, and Hélène Mercure. The vehicle
routing problem with stochastic travel times. Transportation Science, 26(3):
161–170, 1992.

[115] Allan Larsen and O. B. Madsen. The dynamic vehicle routing problem.
PhD thesis, Institute of Mathematical Modelling, Technical University of
Denmark, 2000.

[116] Christine Lellis. These 21 companies are switching to electric vehicle fleets,
2021. https://www.perillon.com/blog/21-companies-switching-to-e
lectric-vehicle-fleets.

[117] Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of vehicle routing
and scheduling problems. Networks, 11(2):221–227, 1981.

[118] Rhyd Lewis, Dhananjay Thiruvady, and Kerri Morgan. Finding happiness:
an analysis of the maximum happy vertices problem. Computers &

Operations Research, 103:265–276, 2019.

[119] Geng Lin, Jian Guan, and Huibin Feng. An ILP based memetic algorithm
for finding minimum positive influence dominating sets in social networks.
Physica A: Statistical Mechanics and Its Applications, 500:199–209, 2018.

[120] Geng Lin, Jinyan Luo, Haiping Xu, and Meiqin Xu. A hybrid swarm
intelligence-based algorithm for finding minimum positive influence
dominating sets. In Yong Liu, Lipo Wang, Liang Zhao, and Zhengtao
Yu, editors, Proceedings of ICNC-FSKD 2019 – Advances in Natural

Computation, Fuzzy Systems and Knowledge Discovery, pages 506–511.
Springer International Publishing, 2020.

[121] Qixing Liu, Peng Xu, Yuhu Wu, and Tielong Shen. A hybrid genetic
algorithm for the electric vehicle routing problem with time windows.
Control Theory and Technology, 20(2):279–286, 2022.

[122] Tian Liu, Zhixing Luo, Hu Qin, and Andrew Lim. A branch-and-cut
algorithm for the two-echelon capacitated vehicle routing problem with
grouping constraints. European Journal of Operational Research, 266(2):
487–497, 2018.

https://www.perillon.com/blog/21-companies-switching-to-electric-vehicle-fleets
https://www.perillon.com/blog/21-companies-switching-to-electric-vehicle-fleets

197

[123] Cheng Long and Raymond Chi-Wing Wong. Minimizing seed set for viral
marketing. In 2011 IEEE 11th International Conference on Data Mining, pages
427–436. IEEE press, 2011.

[124] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Mauro Birattari, and Thomas Stützle. The irace package: Iterated racing
for automatic algorithm configuration. Operations Research Perspectives, 3:
43–58, 2016.

[125] Cathy Macharis, Sandra Melo, Johan Woxenius, and Tom Van Lier.
Sustainable logistics. Emerald Group Publishing, 2014.

[126] Chryssi Malandraki and Mark S. Daskin. Time dependent vehicle
routing problems: Formulations, properties and heuristic algorithms.
Transportation Science, 26(3):185–200, 1992.

[127] Simona Mancini. Multi-echelon distribution systems in city logistics.
European Transport/Trasporti Europei, 54:1–24, 2013.

[128] Setyo Tri Windras Mara, Rachmadi Norcahyo, Panca Jodiawan, Luluk
Lusiantoro, and Achmad Pratama Rifai. A survey of adaptive large
neighborhood search algorithms and applications. Computers & Operations

Research, 146:105903, 2022.

[129] Guillaume Marques, Ruslan Sadykov, Jean-Christophe Deschamps, and
Rémy Dupas. An improved branch-cut-and-price algorithm for the
two-echelon capacitated vehicle routing problem. Computers & Operations

Research, 114:104833, 2020.

[130] Michalis Mavrovouniotis, Georgios Ellinas, and Marios Polycarpou. Ant
colony optimization for the electric vehicle routing problem. In 2018 IEEE

Symposium series on computational intelligence (SSCI), pages 1234–1241. IEEE,
2018.

[131] Michalis Mavrovouniotis, Changhe Li, Georgios Ellinas, and Marios
Polycarpou. Parallel ant colony optimization for the electric vehicle routing
problem. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 1660–1667. IEEE, 2019.

[132] Alan McKinnon. Decarbonizing logistics: Distributing goods in a low carbon

world. Kogan Page Publishers, 2018.

198

[133] Anuj Mehrotra and Michael A. Trick. A branch-and-price approach for
graph multi-coloring. Extending the Horizons: Advances in Computing,

Optimization, and Decision Technologies, pages 15–29, 2007.

[134] Zbigniew Michalewicz. A survey of constraint handling techniques in
evolutionary computation methods. In John R. McDonnell and Robert G.
Reynolds, editors, Evolutionary Programming IV: Proceedings of the Fourth

Annual Conference on Evolutionary Programming, volume 4, pages 135–155,
1995.

[135] Gendreau Michel and Jean-Yves Potvin, editors. Handbook of Metaheuristics,
volume 272 of Series in Operations Research & Management Science. Springer
Nature Switzerland, 3rd edition, 2019.

[136] Nicholas L. Mills, Ken Donaldson, Paddy W. Hadoke, Nicholas A.
Boon, William MacNee, Flemming R. Cassee, Thomas Sandström, Anders
Blomberg, and David E. Newby. Adverse cardiovascular effects of air
pollution. Nature Clinical Practice Cardiovascular Medicine, 6(1):36–44, 2009.

[137] John E. Mitchell. Branch-and-cut algorithms for combinatorial optimization
problems. volume 1, pages 65–77. Oxford, UK, 2002.

[138] Alejandro Montoya, Christelle Guéret, Jorge E. Mendoza, and Juan G.
Villegas. The electric vehicle routing problem with nonlinear charging
function. Transportation Research Part B: Methodological, 103:87–110, 2017.

[139] Gábor Nagy, Niaz A. Wassan, M. Grazia Speranza, and Claudia Archetti.
The vehicle routing problem with divisible deliveries and pickups.
Transportation Science, 49(2):271–294, 2015.

[140] Gabriela Ochoa, Katherine M. Malan, and Christian Blum. Search
trajectory networks: A tool for analysing and visualising the behaviour
of metaheuristics. Applied Soft Computing, 109:107492, 2021.

[141] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org, 2017.

[142] Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography.
Annals of Operations research, 63:511–623, 1996.

[143] Heinrich Paessens. The savings algorithm for the vehicle routing problem.
European Journal of Operational Research, 34(3):336–344, 1988.

 https://www.openstreetmap.org

199

[144] Jiehui Pan and Tian-Ming Bu. A fast greedy algorithm for finding minimum
positive influence dominating sets in social networks. In IEEE INFOCOM

2019-IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), pages 360–364. IEEE, 2019.

[145] Sophie N. Parragh, Karl F. Doerner, and Richard F. Hartl. A survey on
pickup and delivery problems. Part II: Transportation Between Pickup and

Delivery Locations, Journal Für Betriebswirtschaft, 2007.

[146] Samuel Pelletier, Ola Jabali, and Gilbert Laporte. The electric vehicle routing
problem with energy consumption uncertainty. Transportation Research Part

B: Methodological, 126:225–255, 2019.

[147] Guido Perboli, Roberto Tadei, and Daniele Vigo. The two-echelon
capacitated vehicle routing problem: Models and math-based heuristics.
Transportation Science, 45(3):364–380, 2011.

[148] David Pisinger and Stefan Ropke. Large neighborhood search. In Handbook

of metaheuristics, pages 399–419. Springer, 2010.

[149] David Pisinger and Stefan Ropke. Large Neighborhood Search, pages 99–127.
Springer International Publishing, 2019.

[150] Christian Prins. A simple and effective evolutionary algorithm for the
vehicle routing problem. Computers & Operations Research, 31(12):1985–2002,
2004.

[151] Amir Afrasiabi Rad and Morad Benyoucef. Towards detecting influential
users in social networks. In International Conference on E-Technologies, pages
227–240. Springer, 2011.

[152] Hassan Raei, Nasser Yazdani, and Masoud Asadpour. A new algorithm
for positive influence dominating set in social networks. In 2012 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining,
pages 253–257. IEEE, 2012.

[153] Günther R. Raidl. A unified view on hybrid metaheuristics. In International

workshop on hybrid metaheuristics, pages 1–12. Springer, 2006.

[154] Mauricio G. C. Resende and Celso C. Ribeiro. A GRASP with path-relinking
for private virtual circuit routing. Networks: An International Journal, 41(2):
104–114, 2003.

200

[155] Roberto Roberti and Min Wen. The electric traveling salesman problem with
time windows. Transportation Research Part E: Logistics and Transportation

Review, 89:32–52, 2016.

[156] Yves Rochat and Éric D. Taillard. Probabilistic diversification and
intensification in local search for vehicle routing. Journal of Heuristics, 1
(1):147–167, 1995.

[157] Dale S. Rogers and Ronald S. Tibben-Lembke. Going backwards: reverse

logistics trends and practices. Center for Logistics Management, University
of Nevada, Reno, Reverse Logistics Executive Council, 1999.

[158] Stefan Ropke and David Pisinger. An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time windows.
Transportation Science, 40(4):455–472, 2006.

[159] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. An
analysis of several heuristics for the traveling salesman problem. SIAM

Journal on Computing, 6(3):563–581, 1977.

[160] Mir Ehsan Hesam Sadati and Bülent Çatay. A hybrid variable neighborhood
search approach for the multi-depot green vehicle routing problem.
Transportation Research Part E: Logistics and Transportation Review, 149:102293,
2021.

[161] Saïd Salhi and Gábor Nagy. A cluster insertion heuristic for single and
multiple depot vehicle routing problems with backhauling. Journal of the

Operational Research Society, 50(10):1034–1042, 1999.

[162] Dimitrios Sariklis and Susan Powell. A heuristic method for the open
vehicle routing problem. Journal of the Operational Research Society, 51:
564–573, 2000.

[163] Ons Sassi, Wahiba Ramdane Cherif-Khettaf, and Ammar Oulamara.
Iterated tabu search for the mix fleet vehicle routing problem with
heterogenous electric vehicles. In Modelling, Computation and Optimization

in Information Systems and Management Sciences: Proceedings of the 3rd

International Conference on Modelling, Computation and Optimization in

Information Systems and Management Sciences-MCO 2015-Part I, pages 57–68.
Springer, 2015.

[164] Martin Savelsbergh. A branch-and-price algorithm for the generalized
assignment problem. Operations Research, 45(6):831–841, 1997.

201

[165] Martin Savelsbergh and Marc Sol. The general pickup and delivery
problem. Transportation Science, 29(1):17–29, 1995.

[166] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric
vehicle-routing problem with time windows and recharging stations.
Transportation Science, 48(4):500–520, 2014.

[167] Michael Schneider, Andreas Stenger, and Julian Hof. An adaptive VNS
algorithm for vehicle routing problems with intermediate stops. OR

Spectrum, 37(2):353–387, 2015.

[168] Albert López Serrano, Teddy Nurcahyadi, Salim Bouamama, and Christian
Blum. Negative learning ant colony optimization for the minimum
positive influence dominating set problem. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, GECCO ’21, page
1974–1977, New York, NY, USA, 2021. Association for Computing
Machinery.

[169] Yunfan Shan, Qinma Kang, Ran Xiao, Yiran Chen, and Yunfan Kang. An
iterated carousel greedy algorithm for finding minimum positive influence
dominating sets in social networks. IEEE Transactions on Computational

Social Systems, 9(3):830–838, 2021.

[170] Sai Shao, Wei Guan, and Jun Bi. Electric vehicle-routing problem with
charging demands and energy consumption. IET Intelligent Transport

Systems, 12(3):202–212, 2018.

[171] Paul Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In International conference on principles and

practice of constraint programming, pages 417–431. Springer, 1998.

[172] Natasja Sluĳk, Alexandre M. Florio, Joris Kinable, Nico Dellaert, and Tom
Van Woensel. Two-echelon vehicle routing problems: A literature review.
European Journal of Operational Research, 304(3):865–886, 2023.

[173] Marius M Solomon. Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research, 35(2):254–265,
1987.

[174] Thomas Stützle and Holger H. Hoos. MAX–MIN ant system. Future

Generation Computer Systems, 16(8):889–914, 2000.

202

[175] Eiichi Taniguchi. City logistics. Infrastructure Planning Review, 18:1–16,
2001.

[176] Vasileios A. Tatsis and Konstantinos E. Parsopoulos. Dynamic parameter
adaptation in metaheuristics using gradient approximation and line search.
Applied Soft Computing, 74:368–384, 2019.

[177] Sam R. Thangiah, Ibrahim H. Osman, Rajini Vinayagamoorthy, and Tong
Sun. Algorithms for the vehicle routing problems with time deadlines.
American Journal of Mathematical and Management Sciences, 13(3-4):323–355,
1993.

[178] Paul Michael Thompson and James B. Orlin. The theory of cyclic transfers.
1989.

[179] Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

[180] United Nations. Sustainable development goals, 2023. URL https://sdgs
.un.org/goals. Accessed April 10, 2024.

[181] Dan Wang and Hong Zhou. A two-echelon electric vehicle routing problem
with time windows and battery swapping stations. Applied Sciences, 11(22):
10779, 2021.

[182] Feng Wang, Erika Camacho, and Kuai Xu. Positive influence dominating
set in online social networks. In International Conference on Combinatorial

Optimization and Applications, pages 313–321. Springer, 2009.

[183] Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu, Wonjun Lee, Yan Shi,
and Shan Shan. On positive influence dominating sets in social networks.
Theoretical Computer Science, 412(3):265–269, 2011.

[184] Guangyuan Wang. Domination problems in social networks. PhD thesis,
University of Southern Queensland, 2014.

[185] Kangzhou Wang, Yeming Shao, and Weihua Zhou. Matheuristic for
a two-echelon capacitated vehicle routing problem with environmental
considerations in city logistics service. Transportation Research Part D:

Transport and Environment, 57:262–276, 2017.

[186] Qing Wang, Shuai Peng, and Shuan Liu. Optimization of electric vehicle
routing problem using tabu search. In 2020 Chinese control and decision

conference (CCDC), pages 2220–2224. IEEE, 2020.

https://sdgs.un.org/goals
https://sdgs.un.org/goals

203

[187] Yong Wang, Kevin Assogba, Jianxin Fan, Maozeng Xu, Yong Liu, and
Haizhong Wang. Multi-depot green vehicle routing problem with
shared transportation resource: Integration of time-dependent speed and
piecewise penalty cost. Journal of Cleaner Production, 232:12–29, 2019.

[188] Special Working Session WCED. World commission on environment and
development. Our Common Future, 17(1):1–91, 1987.

[189] David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,
1997.

[190] World Meteorological Organization. Record high greenhouse gas
concentrations with no signs of peaking. https://news.un.org/en/s
tory/2023/11/1143607, 2023. Accessed: 01.05.2024.

[191] Zhiguo Wu and Juliang Zhang. A branch-and-price algorithm for
two-echelon electric vehicle routing problem. Complex & Intelligent Systems,
9(3):2475–2490, 2023.

[192] Yiyong Xiao, Yue Zhang, Ikou Kaku, Rui Kang, and Xing Pan. Electric
vehicle routing problem: A systematic review and a new comprehensive
model with nonlinear energy recharging and consumption. Renewable and

Sustainable Energy Reviews, 151:111567, 2021.

[193] P.C. Yellow. A computational modification to the savings method of vehicle
scheduling. Journal of the Operational Research Society, 21(2):281–283, 1970.

[194] Yusuf Yilmaz and Can B Kalayci. Variable neighborhood search algorithms
to solve the electric vehicle routing problem with simultaneous pickup and
delivery. Mathematics, 10(17):3108, 2022.

[195] Shuai Zhang, Yuvraj Gajpal, S.S. Appadoo, and M.M.S. Abdulkader.
Electric vehicle routing problem with recharging stations for minimizing
energy consumption. International Journal of Production Economics, 203:
404–413, 2018.

[196] Yan Wei Zhao, B. Wu, W.L. Wang, Ying Li Ma, W.A. Wang, and
H. Sun. Particle swarm optimization for vehicle routing problem with
time windows. In Materials Science Forum, volume 471, pages 801–805.
Trans Tech Publ, 2004.

https://news.un.org/en/story/2023/11/1143607
https://news.un.org/en/story/2023/11/1143607

204

[197] Qing Zhu, Limin Qian, Yingchun Li, and Shanjun Zhu. An improved
particle swarm optimization algorithm for vehicle routing problem with
time windows. In 2006 IEEE International Conference on Evolutionary

Computation, pages 1386–1390. IEEE, 2006.

[198] Yanfei Zhu, Kwang Y Lee, and Yonghua Wang. Adaptive elitist genetic
algorithm with improved neighbor routing initialization for electric vehicle
routing problems. IEEE Access, 9:16661–16671, 2021.

[199] Çağrı Koç and Ismail Karaoglan. The green vehicle routing problem: A
heuristic based exact solution approach. Applied Soft Computing, 39:154–164,
2016. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2015.10.064.

	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	INTRODUCTION
	Background and Motivation
	Overview of Vehicle Routing Problems
	The Electric Vehicle Routing Problems
	Two-Echelon Vehicle Routing Problems
	Two-Echelon Electric Vehicle Routing Problems

	Solution Approaches
	Exact Solution Approaches
	Branch-and-Bound (B&B) Algorithms
	Branch-and-Cut (B&C) Algorithms
	Branch-and-Price (B&P) Algorithms
	Dynamic Programming (DP)

	Construction Heuristics
	Greedy Heuristic (Nearest Neighbor Algorithm)
	Clarke-Wright Savings Algorithm
	Sweep Algorithm
	Insertion Heuristics
	Randomized Heuristics
	Two-Phase Heuristics

	Metaheuristics
	Simulated Annealing
	Tabu Search
	Variable Neighborhood Search
	Large Neighborhood Search
	Evolutionary Algorithms
	Particle Swarm Optimization
	Ant Colony Optimization
	Hybrid Approaches

	CMSA: Construct-Merge-Solve-Adapt
	Thesis Contributions
	The Organization of This Thesis
	Publications Derived from this Thesis

	CMSA: GENERAL DESCRIPTION OF THE ALGORITHMIC FRAMEWORK
	Introduction
	CMSA: The Baseline Algorithm
	Standard CMSA

	Self-Adaptive CMSA

	APPLICATION of ADAPT-CMSA TO THE MINIMUM POSITIVE INFLUENCE DOMINATING SET PROBLEM
	Introduction
	The Minimum Positive Influence Dominating Set Problem
	ILP Model for the MPIDS

	Application to the MPIDS problem
	Experimental Evaluation
	Experiments regarding scale-free networks
	Experiments regarding instances from the literature

	Conclusions

	ADAPT-CMSA FOR THE EVRP-TW-SPD AND PARTIAL BATTERY CHARGING
	Introduction
	Problem Description and Mathematical Model
	Set-Covering Based ILP Model of the EVRP-TW-SPD
	Application of standard Adapt-CMSA to the EVRP-TW-SPD
	The Adapt-Cmsa-Std Algorithm
	Probabilistic Solution Construction

	The Adapt-Cmsa-SetCov Algorithm
	Computational Experiments
	Generation of the problem instances for EVRP-SPD-TW
	Parameter Tuning
	Numerical Results
	Performance Difference Between the two EVRP-TW-SPD ILP Models

	Analyzing Algorithm Behaviour Using STNWeb
	Application of Adapt-Cmsa-SetCov to the EVRP-SPD
	Conclusions and Future Research Directions

	APPLICATION TO THE TWO-ECHELON ELECTRIC VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS PICKUP AND DELIVERIES
	Introduction
	Problem Description

	Adapt-CMSA for the 2E-EVRP-SPD
	Solution Representation
	Set Covering Based Model
	The Adapt-CMSA Algorithm
	Solution Construction

	Experimental Evaluation
	Problem Instances
	Parameter Tuning
	Computational Results

	Discussion and Conclusions

	APPLICATION OF VARIABLE NEIGHBORHOOD SEARCH TO THE TWO-ECHELON ELECTRIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS
	Introduction
	Problem Description and Mathematical Model

	Solution Approach
	Solution Representation and Extended Objective Function
	Initial Solution Construction
	Variable Neighborhood Search for the 2E-EVRP-TW
	Standard Shaking Operators
	Removal/Destroy Operators
	Repair Operators
	Local Search Neighborhoods

	Experimental Evaluation
	Generation of 2E-EVRP-TW Instances
	Parameter Tuning
	Numerical Results

	Conclusions

	THE ELECTRIC VEHICLE ROUTING PROBLEM WITH ROAD JUNCTIONS AND ROAD TYPES: AN ANT COLONY OPTIMIZATION APPROACH
	Introduction
	Problem Description
	Calculation of the Energy Consumption
	Problem Formulation

	The Solution Approach for the EVRP-RJ-RT
	Solution Representation & Evaluation
	Preprocessing
	Postprocessing
	A Construction Heuristic Based on the Clarke-Wright Savings Algorithm
	The Ant Colony Optimization Algorithm
	Solution Construction
	Pheromone Update

	Experimental Evaluation
	Problem Instances
	Parameter Tuning
	Computational Results

	Conclusion

	CONCLUSIONS AND OUTLOOK
	Conclusions
	Outlook
	 REFERENCES

