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Abstract

The Satisfiability problem, or SAT, is the problem of deciding if there exists an assign-
ment that satisfies a given propositional formula. SAT was the first problem proven to
be NP-complete and is one of the most studied problems in Computer Science. On the
other hand, MaxSAT and MinSAT are optimization versions of SAT where the goal is
to find an assignment that maximizes or minimizes the number of satisfied clauses, re-
spectively. All these problems are significant because many practical problems can be
encoded as SAT, MaxSAT or MinSAT problems, and solved using a SAT, MaxSAT or
MinSAT solver. While SAT is used to solve decision problems, MaxSAT and MinSAT
are used to solve optimization problems.

The general objective of this PhD thesis is to advance the state of the art in solving
computationally difficult optimization problems by reducing them to MaxSAT and Min-
SAT. To achieve this objective, we have investigated new inference systems for MaxSAT
and MinSAT based on semantic tableaux, and suitable encodings for new MaxSAT ap-
plications.

Regarding inference systems, the thesis defines a complete tableau calculus for solv-
ing clausal MaxSAT, a complete tableau calculus for solving clausal MinSAT and a
complete tableau calculus for solving both clausal MaxSAT and clausal MinSAT. More-
over, the thesis proposes two different approaches to solving non-clausal MaxSAT and
non-clausal MinSAT: in the first approach, the thesis defines novel cost-preserving trans-
formations from non-clausal MaxSAT to clausal MaxSAT. Such transformations are
then extended to define cost-preserving transformations from non-clausal MinSAT to
clausal MinSAT. In the second approach, the thesis defines a genuine tableau calculus
for non-clausal MaxSAT and proves its soundness and completeness. It also describes
how the tableau calculus for non-clausal MaxSAT can be used to solve non-clausal Min-
SAT.

Regarding new MaxSAT applications, the thesis defines and empirically evaluates
MaxSAT encodings for the team composition problem in a classroom and proves that
this problem is NP-hard. The insights gained are useful for solving other challenging
optimization problems via their reduction to MaxSAT. In particular, the thesis shows
how to solve more complex team formation problems, using the synergistic team com-
position model as a case study.
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Chapter 1

Introduction

The Satisfiability problem, or SAT, is the problem of deciding if there exists an as-
signment that satisfies a given propositional formula. SAT is one of the most studied
problems in Computer Science, becoming central both in its practical and theoretical
aspects.

According to the theory of computational complexity, SAT was the first problem
proven to be NP-complete by Cook [71] and Levin [127]. A problem is said to be NP-
complete when any NP problem can be reduced to it and, unless P=NP, there is no
algorithm to solve it in polynomial time.

One important use of SAT has been theoretical. By knowing that SAT is NP-
complete, we can prove the NP-completeness of other problems. Since any NP problem
can be reduced to SAT, reducing SAT to a given new problem P demonstrates the NP-
completeness of P .

The irruption of novel SAT solving techniques has extended the importance of
SAT to the practical field. Although SAT has an exponential time complexity in the
worst case, modern SAT solvers have shown that many challenging real-world prob-
lems encoded as SAT instances can be solved in a reasonable amount of time. Be-
cause of this, SAT is currently a powerful generic approach to solving decision prob-
lems in relevant areas as automatic circuit design [67, 167], formal verification of hard-
ware and software [56, 57, 69, 70, 81, 115, 189, 190], scheduling [51, 89, 200], plan-
ning [117, 118, 181], bioinformatics [151, 152], cryptography [83], manufacturing [82]
and mathematical problems [98, 99, 120, 199].

On the other hand, MaxSAT is an optimization version of SAT whose objective is
to find an assignment that maximizes (minimizes) the number of satisfied (unsatisfied)
clauses in a given multiset of clauses. Another optimization version of SAT is MinSAT;
in this case, the objective is to minimize (maximize) the number of satisfied (unsatisfied)
clauses. Both optimization problems belong to the NP-hard complexity class. MaxSAT
and MinSAT are also complete for the class FPNP [175], which includes the set of
function problems computable in polynomial time using an NP oracle. The FPNP

class includes many practical optimization problems and, by completeness, all of them
can be compactly encoded to MaxSAT or MinSAT [78, 98].

We use the terms MaxSAT and MinSAT in a broad sense: we allow to distinguish
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between hard and soft clauses, and associate a weight to each soft clause that indicates
the penalty of its violation. These more general formulations of MaxSAT and Min-
SAT are technically known as Weighted Partial MaxSAT and Weighted Partial MinSAT,
respectively. An optimal Weighted Partial MaxSAT (MinSAT) solution is a truth assign-
ment that satisfies all the hard clauses and minimizes (maximizes) the sum of weights
of violated soft clauses.

Nowadays, MaxSAT and MinSAT are very competitive generic problem solving
approaches to solving combinatorial optimization problems [23, 148, 169]. Applica-
tions of MaxSAT and MinSAT have also increased in number, and include real-world
domains as diverse as bioinformatics [68, 90, 160], combinatorial testing [30, 197],
combinatorial auctions [148], circuit design and debugging [182], community detec-
tion in complex networks [111], diagnosis [74], FPGA routing [196], planning [202],
scheduling [60], team formation [158] and time tabling [9], among many others.

MaxSAT is much more developed than MinSAT, as witnessed by the annual MaxSAT
Evaluation [35, 47, 84] and the number of publications in top Artificial Intelligence jour-
nals and conferences. Especially in the case of MaxSAT, the scientific community has
made a remarkable effort to implement exact solvers, achieving dramatic improvements
in performance. Roughly speaking, we find three main groups of MaxSAT solvers:
branch-and-bound solvers, SAT-based solvers and solvers based on the Implicit Hitting
Set (IHS) approach. Although in this thesis we mostly concentrate on complete solvers,
there are also incomplete approaches for solving MaxSAT and MinSAT [126, 171].

Branch-and-bound MaxSAT solvers implement the branch-and-bound scheme and
incorporate good-quality lower bounds that detect inconsistent subsets of clauses by ap-
plying unit propagation. They also apply some inference rules at each node of the search
tree. Representative solvers of this group are MaxSatz [135, 138], MiniMaxSat [94],
Ahmaxsat [2] and Akmaxsat [122].

SAT-based MaxSAT algorithms proceed by reformulating the MaxSAT optimization
problem into a sequence of SAT decision problems. Each SAT instance of the sequence
encodes whether there exists an assignment to the MaxSAT instance with a cost less than
or equal to a certain k. SAT instances with a k less than the optimal cost are unsatisfi-
able, while the others are satisfiable. The SAT solver is executed in incremental mode
in order to keep the clauses learnt at each iteration over the sequence of SAT instances.
There are two main types of SAT-based MaxSAT solvers: model-guided and core-
guided. Model-guided solvers iteratively refine (decrease) the upper bound and guide
the search with satisfying assignments obtained from satisfiable SAT instances. Core-
guided solvers iteratively refine (increase) the lower bound and guide the search with
the unsatisfiable cores obtained from unsatisfiable SAT instances. Both have strengths
and weaknesses, also existing hybrid approaches. Representative solvers of this group
are msul1.2 [161, 162], WBO [153, 154], Open-WBO [166], WPM1 [21], PM2 [23],
WPM2 [22], WPM3 [29], Eva [172], SAT4J-Maxsat [54, 55], QMaxSat [121, 198] and
Pacose [84].

IHS-based MaxSAT solvers alternate two phases, the optimization and the proposi-
tional reasoning phases. The optimization reasoning is carried out by a minimum cost
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hitting set solver, usually a MIP solver, which is good for arithmetic reasoning. On
the other hand, the SAT solver is only used for propositional reasoning, checking the
satisfiability of subsets of the original problem which are returned by the MIP solver.
This separation allows specialization. The most representative solvers of this group are
LMHS [183] and MaxHS [46, 76, 77, 78, 79, 100].

In the case of MinSAT, there exist an implementation of a branch-and-bound Min-
SAT solver [148] and two SAT-based MinSAT solvers [97, 148].

1.1 Motivation and objectives
The success of MaxSAT and MinSAT is due to both the definition of suitable encodings
and the incorporation of powerful solving techniques in modern MaxSAT and MinSAT
solvers. Given the relevance of encodings and solving techniques, the general objective
of this thesis is to advance the state of the art of MaxSAT and MinSAT-based problem
solving by defining new encodings for challenging optimization problems and devising
new solving methods based on logic.

Regarding encodings, our objective is to investigate how to efficiently solve the
problem of creating teams in a classroom by defining suitable MaxSAT encodings and
then solving the resulting encodings with a modern MaxSAT solver. This problem had
not been solved using MaxSAT technology until we started the PhD thesis, and we
selected it because it is a computationally difficult problem with interesting applications
in the domain of education. We focused on MaxSAT because there are several extremely
competitive MaxSAT solvers, but the contributed encodings can be easily adapted to
MinSAT.

Regarding logic-based methods for MaxSAT and MinSAT, our objective is to inves-
tigate how tableau-based approaches can be extended to both MaxSAT and MinSAT.
Tableau calculi for MaxSAT and MinSAT had not been defined until we started the PhD
thesis, and the only logical approach defined for MaxSAT and MinSAT was based on
resolution [64, 132].

As in SAT, resolution-based methods are probably more powerful than tableau-based
methods for solving clausal MaxSAT and MinSAT, but present some limitations when
dealing with more expressive formalisms. The advantage of tableaux over resolution is
that tableaux allow one to solve directly non-clausal MaxSAT and MinSAT, can be nat-
urally extended to first-order logic and are more suitable for dealing with non-classical
logics in which it is not easy to define clausal forms.

Since we are interested in developing, for the first time in the SAT community,
solving methods for non-clausal MaxSAT and MinSAT, another objective of this PhD
thesis is to investigate clausal form transformations for arbitrary propositional MaxSAT
and MinSAT instances.

It is important to highlight that the inference systems defined for SAT cannot be
applied to MaxSAT and MinSAT. SAT inference rules preserve satisfiability but do not
preserve the minimum/maximum number of unsatisfied clauses and, therefore, are un-
sound in MaxSAT and MinSAT. This fact has opened new research directions in com-
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putational logic and proof complexity[62], and the challenge now is to find out if the
logical methods defined for MaxSAT and MinSAT can be used to improve SAT-based
problem solving in the near future.

1.2 Contributions
The main original contributions of this PhD thesis are the following ones:

• The first contribution is the definition of complete tableau calculi for MaxSAT
and MinSAT, as well as the definition of a complete calculus that is valid for both
MaxSAT and MinSAT. Moreover, the thesis also describes how the mentioned
calculi can be extended to deal with Weighted Partial MaxSAT and MinSAT in-
stances. These calculi constitute the first approach to solving MaxSAT and Min-
SAT with semantic tableaux in the literature.

• The second contribution is the definition of three different cost-preserving clausal
form transformations –called direct, improved and Tseitin-based transformations–
from non-clausal MaxSAT to clausal MaxSAT. These transformations reduce non-
clausal MaxSAT to clausal MaxSAT so that clausal MaxSAT solvers can be used
to solve the MaxSAT problem of multisets of propositional formulas that are not
necessarily in clausal form. The thesis also describes how the proposed transfor-
mations can be converted into cost-preserving transformations from non-clausal
MinSAT to clausal MinSAT.

• The third contribution is the definition of a genuine complete tableau calculus for
solving non-clausal MaxSAT. It is, to the best of our knowledge, the first inference
system defined for non-clausal MaxSAT. Moreover, the tableau calculus for non-
clausal MaxSAT can also be used to solve non-clausal MinSAT.

• The fourth contribution is the definition of the Team Composition Problem in a
Classroom (TCPC) as a challenging optimization problem for MaxSAT solving,
and the proof that TCPC is NP-hard. We define two MaxSAT encodings for TCPC
–called maximizing and minimizing encodings– and provide empirical evidence
that the minimizing encoding greatly outperforms the maximizing encoding. Us-
ing the synergistic team composition model as a case study, the thesis also shows
how to reduce more complex team formation problems to MaxSAT.

1.3 Publications
Some of the results presented in this thesis have already been published in journals
and conference proceedings. The list of publications can be divided into three groups:
publications on clausal tableau calculi for MaxSAT and MinSAT, publications on non-
clausal MaxSAT and publications on the team composition problem in a classroom.
The publications on clausal tableau calculi for MaxSAT and MinSAT are:
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• Chu Min Li, Felip Manyà, Joan Ramon Soler: A Clause Tableau Calculus for
MaxSAT. In Proceedings of IJCAI 2016, 766–772.

• Chu Min Li, Felip Manyà, Joan Ramon Soler: A Clause Tableau Calculus for
MinSAT. In Proceedings of CCIA 2016, 88–97.

• Josep Argelich, Chu Min Li, Felip Manyà, Joan Ramon Soler: Clause Branching
in MaxSAT and MinSAT. In Proceedings of CCIA 2018, 17–26.

• Josep Argelich, Chu Min Li, Felip Manyà, Joan Ramon Soler: Clause Tableaux
for Maximum and Minimum Satisfiability. Logic Journal of the IGPL 2020.

The publications on non-clausal MaxSAT are:

• Chu-Min Li, Felip Manyà, Joan Ramon Soler: Clausal Form Transformation in
MaxSAT. In Proceedings of ISMVL 2019, 132–137.

• Chu-Min Li, Felip Manyà, Joan Ramon Soler: A Tableau Calculus for Non-
Clausal Maximum Satisfiability. In Proceedings of TABLEAUX 2019, 58–73.

The publications on the team composition problem in a classroom are:

• Felip Manyà, Santiago Negrete, Carme Roig, Joan Ramon Soler: A MaxSAT-
based Approach to the Team Composition Problem in a Classroom. In: Au-
tonomous Agents and Multiagent Systems - AAMAS 2017 Workshops, Vision-
ary Papers. Springer LNCS 10643, 164–173.

• Felip Manyà, Santiago Negrete, Joan Ramon Soler: MaxSAT Instances of the
Team Composition Problem in a Classroom. In Proceedings of MaxSAT Evalu-
ation 2018.

• Felip Manyà, Santiago Negrete, Carme Roig, Joan Ramon Soler: Solving the
Team Composition Problem in a Classroom. Fundamenta Informaticae 2020
174(1): 83–101.

1.4 Outline of the thesis
This section describes the structure of the document and presents an overview of the
forthcoming chapters.

Chapter 2: Preliminaries

This chapter defines the MaxSAT and MinSAT problems and overviews the most rele-
vant algorithms and techniques used to solve them. It first describes the main solving
methods for exact MaxSAT: integer linear programming, MaxSAT resolution, branch-
and-bound MaxSAT solvers, SAT-based MaxSAT solvers and implicit hitting set-based
solvers. Then, it reviews some solving techniques for MinSAT and describes a branch-
and-bound MinSAT solver. Moreover, it devotes a section to the MaxSAT Evaluation.
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Chapter 3: Clausal Tableaux Calculi for MaxSAT and MinSAT

This chapter defines a tableau calculus for solving MaxSAT, a tableau calculus for solv-
ing MinSAT, and a tableau calculus for solving both MaxSAT and MinSAT. For each
calculus, a proof of soundness and completeness is provided. It holds that the minimum
number of contradictions derived among the branches of a completed MaxSAT tableau
for a multiset of clauses φ is the minimum number of unsatisfied clauses in φ, and the
maximum number of contradictions derived among the branches of a completed Min-
SAT tableau for a multiset of clauses φ′ is the maximum number of unsatisfied clauses in
φ′. It also describes how the new calculi can be extended to deal with Weighted Partial
MaxSAT and MinSAT instances.

Chapter 4: Solving Non-Clausal MaxSAT and Non-Clausal MinSAT

This chapter proposes two approaches to solving non-clausal MaxSAT and non-clausal
MinSAT: In the first approach, it defines three different cost-preserving clausal form
transformations –called direct, improved and Tseitin-based transformations– from non-
clausal MaxSAT/MinSAT to clausal MaxSAT/MinSAT. These transformations reduce
non-clausal MaxSAT/MinSAT to clausal MaxSAT/MinSAT so that clausal MaxSAT/Min-
SAT solvers can be used to solve the MaxSAT problem of multisets of propositional
formulas that are not necessarily in clausal form. In the second approach, it defines
a genuine tableau calculus for non-clausal MaxSAT, proves its soundness and com-
pleteness, and describes how it can be extended to deal with hard and soft formulas.
Moreover, it describes how the tableau calculus for non-clausal MaxSAT can be used to
solve non-clausal MinSAT.

Chapter 5: Solving the Team Composition Problem in a Classroom

This chapter defines the Team Composition Problem in a Classroom (TCPC), proves
that it is NP-hard, and defines two different MaxSAT models of the problem, called
maximizing and minimizing encodings. It also reports on the results of an empirical
investigation that shows that solving the TCPC as a MaxSAT problem is promising, and
provides evidence that the minimizing encoding outperforms the maximizing encoding.
Finally, it describes how the proposed approach can be extended to richer team forma-
tion problems, using the Synergistic Team Composition Model (STCM) problem as a
case study.

Chapter 6: Conclusions and Future Work

This chapter summarizes the main contributions of the thesis, and outlines a few re-
search directions that we plan to pursue in the future.



Chapter 2

Preliminaries

This chapter defines the MaxSAT and MinSAT problems and overviews the most rele-
vant algorithms and techniques used to solve them. It first describes the main solving
methods for exact MaxSAT: integer linear programming, MaxSAT resolution, branch-
and-bound MaxSAT solvers, SAT-based MaxSAT solvers and implicit hitting set-based
solvers. Then, it reviews some solving techniques for MinSAT and describes a branch-
and-bound MinSAT solver. Moreover, it devotes a section to the MaxSAT Evaluation.

Some parts of this chapter closely follow the chapter on MaxSAT in the Handbook
of Satisfiability [131]. The description of a MinSAT branch-and-bound solver closely
follows [148].

2.1 The MaxSAT and MinSAT problems
Given a set of propositional variables {x1, . . . , xn}, a literal is a variable xi or its nega-
tion ¬xi. A weighted clause is a pair (c, w), where c is a disjunction of literals and w,
its weight, is a positive integer or infinity. If its weight is infinity, it is a hard clause (we
omit infinity weights for simplicity); otherwise it is a soft clause.

A truth assignment assigns to each variable either 0 (false) or 1 (true). It satisfies
literal xi (¬xi) if xi evaluates to 1 (0); it satisfies weighted clause (c, w) if it satisfies a
literal of c; and it satisfies a multiset of clauses if it satisfies all its clauses. The weight
w is the penalty of violating clause c. When all clauses have the same weight, their
weights can be omitted.

The Weighted Partial MaxSAT problem, or WPMaxSAT, for a multiset of weighted
clauses φ is to find an assignment that satisfies all the hard clauses and minimizes (max-
imizes) the sum of the weights of the unsatisfied (satisfied) soft clauses. The most
common subproblems of WPMaxSAT are the following: Weighted MaxSAT (WMax-
SAT), which is WPMaxSAT without hard clauses; Partial MaxSAT (PMaxSAT), which
is WPMaxSAT when all the soft clauses have the same weight, and MaxSAT, which is
PMaxSAT without hard clauses.

The Weighted Partial MinSAT problem, or WPMinSAT, for a multiset of weighted
clauses φ is to find an assignment that satisfies all the hard clauses and maximizes (min-
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imizes) the sum of the weights of the unsatisfied (satisfied) soft clauses. The most
common subproblems of WPMinSAT are the following: Weighted MinSAT (WMin-
SAT), which is WPMinSAT without hard clauses; Partial MinSAT (PMinSAT), which
is WPMinSAT when all the soft clauses have the same weight, and MinSAT, which is
PMinSAT without hard clauses.

We defined SAT as the problem of deciding if there is an assignment that satisfies a
given propositional formula in conjunctive normal form (CNF). SAT can also be defined
as PMaxSAT/PMinSAT without soft clauses.

We represent MaxSAT and MinSAT instances as multisets of clauses. Repeated
clauses cannot be collapsed into one clause as in SAT, because then the maximum/min-
imum number of unsatisfied clauses might not be preserved. For example, the multi-
set of unit clauses {x1,¬x1, x1,¬x1} has a minimum of two unsatisfied clauses while
{x1,¬x1} has just one unsatisfied clause. In fact, the multiset {x1,¬x1, x1,¬x1}, of unit
clauses, is equivalent to the multiset of weighted clauses {(x1, 2), (¬x1, 2)}. Clauses
can be represented by the set of its literals as in SAT because repeated literals can be
collapsed into one literal without affecting the preservation of the number of unsatisfied
clauses.

A Weighted Partial MaxSAT instance is a multiset of weighted clauses

φ = {(h1,∞), . . . , (hk,∞), (c1, w1), . . . , (cm, wm)},

where the first k clauses are hard and the last m clauses are soft. For simplicity, in what
follows, we will write φ = {h1, . . . , hk, (c1, w1), . . . , (cm, wm)}, omitting the infinity
weights. A soft clause (c, w) is equivalent to having w copies of the clause (c, 1), and
{(c, w1), (c, w2)} is equivalent to (c, w1 + w2).

Let φ be a multiset of clauses and let l1, . . . , lr be literals that occur in φ. The
instantiation of l1, . . . , lr in φ, denoted by φl1|···|lr , is the multiset of clauses resulting of
eliminating from φ all the occurrences of ¬l1, . . . ,¬lr and removing all the clauses with
occurrences of l1, . . . , lr.

In MaxSAT/MinSAT, formulas are equivalent if they have the same amount of un-
satisfied clauses for every assignment. Similarly, we say two formulas φ1 and φ2 are
equivalent in Weighted MaxSAT if the sum of weights of the unsatisfied clauses is equal
for every assignment for both formulas.

2.2 Complete MaxSAT algorithms
This section presents an overview of the most important complete MaxSAT algorithms
and the solving techniques they implement. Section 2.2.1 defines the integer linear pro-
gramming formulation of MaxSAT. Section 2.2.2 defines the MaxSAT resolution rule
and explains how it can solve MaxSAT. Section 2.2.3 describes the branch-and-bound
schema for MaxSAT and some improvements, including good quality lower bounds.
Section 2.2.4 describes some representative SAT-based MaxSAT solvers. Section 2.2.5
describes two relevant implicit hitting set-based MaxSAT solvers. Section 2.2.6 gives
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a brief description of the MaxSAT Evaluation. Section 2.2.7 summarizes other remark-
able contributions to MaxSAT solving.

2.2.1 Integer linear programming formulation of MaxSAT

MaxSAT can be solved with a Mixed Integer Programming (MIP) solver as Gurobi [91]
or IBM CPLEX [72] if a proper Integer Linear Programming (ILP) formulation is pro-
vided as input.

Let φ = {(C1, w1), . . . , (Cm, wm)} be a Weighted MaxSAT instance over the propo-
sitional variables x1, . . . , xn. With each propositional variable xi, we associate a vari-
able yi ∈ {0, 1} such that yi = 1 if variable xi is true and yi = 0, otherwise. With each
clause Cj , we associate a variable zj ∈ {0, 1} such that zj = 1 if clause Cj is satisfied
and zj = 0, otherwise. Let I+

j be the set of indices of unnegated variables in clause Cj ,
and let I−j be the set of indices of negated variables in clause Cj . The ILP formulation
of the Weighted MaxSAT instance φ is defined as follows:

maxF (y, z) =
m∑
j=1

wjzj

subject to ∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ zj j = 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

Assume now that, with each clause Cj , we associate a variable zj ∈ {0, 1} such that
zj = 1 if clause Cj is unsatisfied and zj = 0, otherwise. Then, the ILP formulation of
the minimization version of Weighted MaxSAT for the instance φ is defined as follows:

minF (y, z) =
m∑
j=1

wjzj

subject to ∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) + zj ≥ 1 j = 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

Ansótegui and Gabàs [28] reported an extensive empirical investigation that indi-
cates that solving MaxSAT instances by translating them into ILP and applying a MIP
solver is competitive on crafted instances.
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2.2.2 MaxSAT resolution
The MaxSAT resolution rule [63, 64, 93] can be seen as an extension of the SAT resolu-
tion rule that preserves the number of unsatisfied clauses between the premises and the
conclusion. The SAT resolution rule is unsound for MaxSAT and MinSAT because it
only preserves satisfiability, but the MaxSAT resolution rule is sound for both MaxSAT
and MinSAT.

The MaxSAT resolution rule is defined as follows:

x ∨ a1 ∨ · · · ∨ as
x ∨ b1 ∨ · · · ∨ bt
a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt
x ∨ a1 ∨ · · · ∨ as ∨ b1

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
x ∨ b1 ∨ · · · ∨ bt ∨ a1

x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule concludes, apart from the conclusion where a variable has been
cut, some additional clauses that contain one of the premises as subclause. We say that
the rule cuts the variable x. The tautologies concluded by the rule are removed, and the
repeated literals in a clause are collapsed into one. Notice that an instance of MaxSAT
resolution not only depends on the two premises and the cut variable (like in resolution),
but also on the order of the literals in the premises. Notice also that, like in resolution,
this rule concludes a new clause not containing the variable x, except when this clause
is a tautology.

Bonet et al. [63, 64] proved the completeness of MaxSAT resolution: By saturating
successively w.r.t. all the variables, one derives as many empty clauses as the minimum
number of unsatisfied clauses in the MaxSAT input instance. Saturating w.r.t. a variable
amounts to apply the MaxSAT resolution rule to clauses containing that variable until
every possible application of the inference rule only introduces clauses containing that
variable (since tautologies are eliminated). Once a MaxSAT instance is saturated w.r.t.
a variable, all the clauses containing that variable are not considered to saturate w.r.t.
another variable. We refer to [64] for further technical details and the weighted version
of the rule.

We consider the multiset of clauses φ = {x1, x1∨x2, x1∨x3, x3} to illustrate how a
variable saturation algorithm works. We start by considering variable x1 and resolve the
first two clauses, obtaining {x2, x1 ∨ x2, x1 ∨ x3, x3}. We then resolve the second and
third clause and get a saturation of φw.r.t. x1: {x2, x2∨x3, x1∨x2∨x3, x1∨x2∨x3, x3}.
From now on, we only consider the clauses not containing x1: C1 = {x2, x2 ∨ x3, x3},
and ignore the clauses containing x1: {x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3}. We continue by
resolving the first two clauses of C1; we get {x3, x2 ∨ x3, x3}, which is a saturation of
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C1 w.r.t. x2. Hence, C2 = {x3, x3} is the resulting multiset of clauses not containing
x2 and ignore {x2 ∨ x3}, which is the multiset of clauses containing x2. Finally, we
resolve {x3, x3} and get the empty clause. Since all the variables have been saturated,
the minimum number of unsatisfied clauses in φ is 1.

The use of restrictions of MaxSAT resolution has not been limited to branch-and-
bound solvers. Narodytska and Bacchus [172] used MaxSAT resolution in SAT-based
MaxSAT solvers, avoiding the use of cardinality constraints and obtaining very compet-
itive results on industrial instances.

There exists no polynomial-size resolution proof of the Pigeon Hole Principle (PHP).
However, Ignatiev et al. [104] showed that there exist polynomial-size MaxSAT resolu-
tion proofs of PHP if PHP is encoded as a Partial MaxSAT instance using the dual rail
encoding. Indeed, the combination of the dual rail encoding and MaxSAT resolution
is a stronger proof system than either general resolution or conflict-driven clause learn-
ing [61]. We refer the reader to [62] for the latest proof complexity results related to
MaxSAT resolution.

MaxSAT resolution has been extended to the multiple-valued clausal forms known
as signed CNF formulas [50, 156, 157]. The defined signed MaxSAT resolution rules are
complete and provide a logical framework for Weighted Constraint Satisfaction Prob-
lems (WCSP) [25]. Besides, some restrictions of the rules enforce the defined local
consistency properties for WCSPs in a natural way [24, 26].

2.2.3 Branch-and-bound algorithms for MaxSAT
There are competitive exact MaxSAT solvers —as the ones developed by [3, 13, 15,
16, 33, 94, 122, 125, 138, 149, 150, 178, 180, 184, 194, 195, 201]— that implement
variants of the following Branch-and-Bound (BnB) scheme: Given a MaxSAT instance
φ, BnB explores the search tree that represents the space of all possible assignments
for φ in a depth-first manner. At every node, BnB compares the upper bound (UB),
which is the best solution found so far for a complete assignment, with the lower bound
(LB), which is the sum of the number of clauses which are unsatisfied by the current
partial assignment plus an underestimation of the number of clauses that will become
unsatisfied if the current partial assignment is completed. If LB ≥ UB, the algorithm
prunes the subtree below the current node and backtracks chronologically to a higher
level in the search tree. If LB < UB, the algorithm tries to find a better solution by
extending the current partial assignment by instantiating one more variable. The optimal
number of unsatisfied clauses in the input MaxSAT instance is the value that UB takes
after exploring the entire search tree.

Figure 2.1 shows the pseudo-code of a basic BnB MaxSAT solver. It uses the fol-
lowing notation:

• simplifyFormula(φ) is a procedure that transforms φ into an equivalent and sim-
pler instance by applying inference rules.

• #emptyClauses(φ) is a function that returns the number of empty clauses in φ.
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Algorithm 2.1: MaxSAT(φ, UB) : The MaxSAT branch-and-bound schema
Input: φ , UB . A CNF MaxSAT formula and an initial UB integer value

1 Function MaxSAT(φ : CNFformula, UB : upperbound):
2 φ ← simplifyFormula(φ)
3 if φ = ∅ ∨ φ only contains empty clauses then
4 return #emptyClauses(φ)

5 LB ← #emptyClauses(φ) + underestimation(φ)
6 if LB ≥ UB then
7 return UB
8 x ← selectV ariable(φ)
9 UB ← min(UB,MaxSAT (φ¬x, UB))

10 return min(UB,MaxSAT (φx, UB))

• LB is a lower bound of the minimum number of unsatisfied clauses in φ if the
current partial assignment is extended to a complete assignment. We assume that
its initial value is 0.

• underestimation(φ) is a function that returns an underestimation of the minimum
number of non-empty clauses in φ that will become unsatisfied if the current par-
tial assignment is extended to a complete assignment.

• UB is an upper bound of the number of unsatisfied clauses in an optimal solu-
tion. An elementary initial value for UB is the total number of clauses in the input
formula, or the number of clauses which are unsatisfied by an arbitrary interpreta-
tion. Nevertheless, most of the solvers take as initial upper bound the number of
unsatisfied clauses that can be detected by executing the input formula in a local
search solver during a short period of time.

• selectVariable(φ) is a function that returns a variable of φ following an heuristic.

• φx (φx̄) is the formula obtained by setting the variable x to true (false); i.e., by
applying the one-literal rule to φ using the literal x (x̄).

Modern MaxSAT solvers implement the basic algorithm augmented with powerful
inference techniques, good quality lower bounds, clever variable selection heuristics
and efficient data structures. Partial MaxSAT solvers are also augmented with learning
of hard clauses, and non-chronological backtracking.

Improving the lower bound with underestimations

The simplest method to compute a lower bound consists in just counting the number of
clauses which are unsatisfied by the current partial assignment [65]. One step forward is
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to incorporate an underestimation of the number of clauses that will become unsatisfied
if the current partial assignment is extended to a complete assignment. The most basic
method was defined by Wallace and Freuder [191]:

LB(φ) = #emptyClauses(φ) +
∑

x occurs in φ

min(ic(x), ic(x̄)),

where φ is the CNF formula associated with the current partial assignment, and ic(x)
(ic(x̄)) —inconsistency count of x (x̄)— is the number of unit clauses of φ that con-
tain x̄ (x). In other words, that underestimation is the number of disjoint inconsistent
subformulas in φ formed by a unit clause with a literal l and a unit clause with the
complementary of l.

Lower bounds dealing with longer clauses include the star rule and UP. In the star
rule [14, 184], the underestimation of the lower bound is the number of disjoint incon-
sistent subformulas of the form {l1, . . . , lk, l̄1 ∨ · · · ∨ l̄k}. When k = 1, the star rule is
equivalent to the inconsistency counts of Wallace and Freuder.

Given a multiset of clauses φ containing a unit clause {l}, the one-literal rule re-
moves from φ the clauses containing l and removes the occurrences of ¬l from the
clauses in which ¬l appears. The repeated application of the one-literal rule until there
is no unit clause is known as unit propagation. Unit propagation can be computed in
time linear in the size of the input instance.

In UP [136], the underestimation of the lower bound is the number of disjoint incon-
sistent subformulas that can be detected with unit propagation. UP works as follows:
It applies unit propagation until a contradiction is derived. Then, UP identifies, by in-
specting the implication graph, a subset of clauses from which a unit refutation can be
constructed, and tries to identify new contradictions from the remaining clauses. The
order in which unit clauses are propagated has a clear impact on the quality of the lower
bound [137].

UP can be enhanced with failed literal detection as follows: Given a MaxSAT in-
stance φ and a variable x occurring positively and negatively in φ, UP is applied to
both φ ∧ {x} and φ ∧ {x̄}. If UP derives a contradiction from φ ∧ {x} and another
contradiction from φ ∧ {x̄}, then the union of the two inconsistent subsets identified by
UP, once we have removed the unit clauses x and x̄, is an inconsistent subset of φ. UP
enhanced with failed literal detection does not need the occurrence of unit clauses in the
input formula for deriving a contradiction. While UP only identifies unit refutations, UP
enhanced with failed literal detection identifies non-unit refutations too. Since applying
failed literal detection to every variable is time-consuming, it is applied to a reduced
number of variables in practice [137].

MaxSAT solvers like ahmaxsat [3], MaxSatz [138], and MiniMaxSat [94] apply
either UP or UP enhanced with failed literal detection. Nowadays, UP-based lower
bounds are the prevailing approach to computing underestimations in BnB MaxSAT
solvers. This technique has also been applied to solve the maximum clique prob-
lem [112, 128, 129, 130, 146].

Darras et al. [75] developed a version of UP in which the computation of the lower
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bound is made more incremental by saving some of the small size disjoint inconsis-
tent subformulas detected by UP. They avoid to redetect the saved inconsistencies if
they remain in subsequent nodes of the proof tree, and are able to solve some types
of instances faster. Lin et al. [150] defined an improved version of UP that, besides
being incremental, guarantees that the lower bound computed at a node of the search
tree is not smaller than the lower bound computed at the parent of that node. Abramé
and Habet [5] proposed an improved implementation of UP in ahmaxsat that undoes
propagations in non-chronological order and can produce smaller inconsistent subsets.
Shen and Zhang [184] defined a lower bound, called LB4, which is similar to UP but
restricted to Max-2SAT instances and using a static variable ordering.

A variant of UP enhanced with failed literal detection was implemented in the solver
akmaxsat [122]. It can be the case that UP derives a contradiction from φ ∧ {l} but
not from φ ∧ {¬l}. In fact, this shows that ¬l follows from φ. If φ′ is the result of
applying UP to φ ∧ {¬l}, then the algorithms tries to find another failed literal l′ in φ′.
If UP derives a contradiction from both φ ∧ {l′} and φ ∧ {¬l′}, the algorithm stops and
identifies an inconsistent subset. If UP derives a contradiction from φ ∧ {l′} but not
from φ∧{¬l′}, the same process is repeated on the formula resulting of applying UP to
φ∧{¬l′} until an inconsistent subset is detected or no more failed literals can be found.

Improving the lower bound with inference

Another approach to improve the quality of the lower bound consists in applying infer-
ence rules that transform a MaxSAT instance φ into an equivalent but simpler MaxSAT
instance φ′. In the best case, inference rules produce new empty clauses in φ′ that allow
incrementing the lower bound. In contrast with the empty clauses derived when com-
puting underestimations, the empty clauses derived with inference rules do not have to
be recomputed at every node of the current subtree so that the lower bound computation
is more incremental.

Unfortunately, unit propagation, which is the most powerful inference technique
applied in DPLL-style SAT solvers, is unsound for MaxSAT as the next example shows:
The set of clauses {x1,¬x1∨x2,¬x1∨¬x2,¬x1∨x3,¬x1∨¬x3} has a minimum of one
unsatisfied clause (setting x1 to false), but two empty clauses are derived by applying
unit propagation.

The amount of inference enforced by existing BnB MaxSAT solvers at each node
of the proof tree is poor compared with the inference enforced by DPLL-style SAT
solvers. The simplest inference enforced, when branching on a literal l, consists in
applying the one-literal rule: The clauses containing l are removed from the instance
and the occurrences of ¬l are removed from the clauses in which ¬l appears, but the
existing unit clauses and the new unit clauses derived as a consequence of removing the
occurrences of ¬l are not propagated as in unit propagation. That inference is typically
enhanced with the MaxSAT inference rules described in the rest of this section.

First, we present simple inference rules that have proved to be useful in a number
of solvers [13, 15, 65, 184, 195], and then some more sophisticated inferences rules
which are implemented in solvers like ahmaxsat [3], akmaxsat [122], MaxSatz [138],
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and MiniMaxSat [94]. Some simple inference rules are:

• The pure literal rule [65]: If a literal only appears with either positive or negative
polarity in a MaxSAT instance, all the clauses containing that literal are removed.

• The dominating unit clause rule [173]: If the number of clauses (of any length) in
which a literal l appears is not greater than the number of unit clauses in which ¬l
appears, all the clauses containing l and all the occurrences of ¬l are removed.

• The complementary unit clause rule [173]: If a MaxSAT instance contains a unit
clause with the literal l and a unit clause with the literal ¬l, these two clauses are
replaced with one empty clause.

• The almost common clause rule [49]: If a MaxSAT instance contains a clause
x∨D and a clause ¬x∨D, where D is a disjunction of literals, then both clauses
are replaced with D. In practice, this rule is applied when D contains at most one
literal.

We present now refinements of the MaxSAT resolution rule that can be applied in
polynomial time and mitigate the impossibility of applying unit propagation in MaxSAT
solving. We start by presenting the star rule: If φ1={l1, l̄1∨ l̄2, l2}∪φ′, then φ2={2, l1∨
l2} ∪ φ′ is equivalent to φ1. This rule can also be presented as follows:

l1
¬l1 ∨ ¬l2

l2

 =⇒
{
l1 ∨ l2

}
(2.1)

Notice that the rule detects a contradiction from l1, l̄1∨ l̄2, l2 and, therefore, replaces
these clauses with an empty clause. In addition, the rule adds the clause l1∨ l2 to ensure
the equivalence between φ1 and φ2. For any assignment containing either l1 = 0, l2 = 1,
or l1 = 1, l2 = 0, or l1 = 1, l2 = 1, the number of unsatisfied clauses in {l1, l̄1 ∨ l̄2, l2}
is 1, but for any assignment containing l1 = 0, l2 = 0, the number of unsatisfied clauses
is 2. Notice that even when any assignment containing l1 = 0, l2 = 0 is not the best
assignment for the subset {l1, l̄1 ∨ l̄2, l2}, it can be the best for the whole formula. By
adding l1∨ l2, the rule ensures that the number of unsatisfied clauses in φ1 and φ2 is also
the same when l1 = 0, l2 = 0.

This rule can be generalized in such a way that it captures unit resolution refutations
in which clauses and resolvents are used exactly once:

l1
l̄1 ∨ l2
l̄2 ∨ l3
· · ·

l̄k ∨ lk+1

l̄k+1


=⇒


l1 ∨ l̄2
l2 ∨ l̄3
· · ·

lk ∨ l̄k+1


(2.2)
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The last two rules consume two unit clauses for deriving one contradiction. Next,
we define two inference rules that capture unit resolution refutations in which (i) exactly
one unit clause is consumed, and (ii) the unit clause is used twice in the derivation of the
empty clause. The second rule is a combination of the first rule with a linear derivation.


l1

l̄1 ∨ l2
l̄1 ∨ l3
l̄2 ∨ l̄3

 =⇒

 l1 ∨ l̄2 ∨ l̄3
l̄1 ∨ l2 ∨ l3

 (2.3)



l1
l̄1 ∨ l2
l̄2 ∨ l3
· · ·

l̄k ∨ lk+1

l̄k+1 ∨ lk+2

l̄k+1 ∨ lk+3

l̄k+2 ∨ l̄k+3


=⇒



l1 ∨ l̄2
l2 ∨ l̄3
· · ·

lk ∨ l̄k+1

lk+1 ∨ l̄k+2 ∨ l̄k+3

l̄k+1 ∨ lk+2 ∨ lk+3


(2.4)

MaxSatz implements the almost common clause rule, Rule 2.1, Rule 2.2, Rule 2.3
and Rule 2.4. Some of these rules are also applied in the solvers ahmaxsat and akmaxsat.
We refer the reader to [133, 134, 135] for an empirical analysis of different inference
rules.

The lower bound computation methods based on unit propagation represent the dif-
ferent derivations of unit clauses in a graph, called implication graph [138]. Looking
at that graph, solvers identify the clauses which are involved in the derivation of a con-
tradiction. In contemporary MaxSAT solvers, this graph is also used to decide whether
the clauses involved in a contradiction match with the premises of the above mentioned
inference rule.

Abramé and Habet [7] showed that, in some cases, it is better not to apply MaxSAT
resolution to certain inconsistent subsets of clauses because the transformations derived
do not allow to detect further inconsistent subsets. They also showed that, in other
cases, further inconsistent subsets could be detected if MaxSAT resolution is applied
locally [4].

Variable selection heuristics

Most of the exact MaxSAT solvers incorporate variable selection heuristics that take
into account the number of literal occurrences in such a way that each occurrence has
an associated weight that depends on the length of the clause that contains the literal.
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MaxSAT heuristics give priority to literals occurring in binary clauses instead of literals
occurring in unit clauses as SAT heuristics do.

Let us see as an example the variable selection heuristic of MaxSatz [138]: Let
neg1(x) (pos1(x)) be the number of unit clauses in which x is negative (positive),
neg2(x)(pos2(x)) be the number of binary clauses in which x is negative (positive),
and let neg3(x) (pos3(x)) be the number of clauses containing three or more literals in
which x is negative (positive). MaxSatz selects the variable x such that (neg1(x) +
4 ∗ neg2(x) + neg3(x))*(pos1(x) + 4 ∗ pos2(x) + pos3(x)) is the largest. Once
a variable x is selected, MaxSatz applies the following value selection heuristic: If
neg1(x) + 4 ∗ neg2(x) + neg3(x) < pos1(x) + 4 ∗ pos2(x) + pos3(x), set x to true;
otherwise, set x to false. The solver ahmaxsat [3] implements a variant of this variable
selection heuristic.

Earlier MaxSAT solvers, such as Lazy [15], MaxSolver [195], Max-DPLL [125],
AMP [13] and others, incorporate variants of the two-sided Jeroslow rule that give pri-
ority to variables often occurring in binary clauses.

Data structures

Data structures for SAT have been naturally adapted to MaxSAT. We can divide the
solvers into two classes: solvers like ahmaxsat, akmaxsat and MaxSatz representing
formulas with adjacency lists, and solvers like Lazy and MiniMaxSat which use data
structures with watched literals. Lazy data structures are particularly useful when there
is a big number of clauses; for example, in Partial MaxSAT solvers with clause learning.

2.2.4 SAT-based MaxSAT algorithms
SAT-based MaxSAT algorithms proceed by reformulating the MaxSAT optimization
problem into a sequence of SAT decision problems. Each SAT instance of the sequence
encodes whether there exists an assignment to the MaxSAT instance with a cost less
than or equal to a certain k. SAT instances with a k less than the optimal cost are un-
satisfiable, while the others are satisfiable. The SAT solver is executed in incremental
mode in order to keep the clauses learnt at each iteration over the sequence of SAT
instances. There are two main types of SAT-based MaxSAT solvers: model-guided
and core-guided. Model-guided MaxSAT solvers iteratively refine (decrease) the up-
per bound and guide the search with satisfying assignments obtained from satisfiable
SAT instances. Core-guided MaxSAT solvers iteratively refine (increase) the lower
bound and guide the search with the unsatisfiable cores obtained from unsatisfiable
SAT instances. Both have strengths and weaknesses, also existing hybrid approaches.
Representative solvers of this group are msul1.2 [161, 162], WBO [153, 154], Open-
WBO [166], WPM1 [21], PM2 [23], WPM2 [22], WPM3 [29], Eva [172], SAT4J-
Maxsat [54, 55], QMaxSat [121, 198] and Pacose [84].

The Fu and Malik algorithm [86] is among the first and most relevant SAT-based
Partial MaxSAT algorithms. It was implemented in the solver msul1.2 [161, 162] and
its correctness was proved in [21]. Algorithm 2.2 shows its pseudo-code. It calls a
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SAT solver (line 5) in an iterative manner, modifying the Partial MaxSAT instance φ =
{h1, . . . , hn, (s1, 1), . . . , (sm, 1)} in each iteration. If φ is satisfiable, the SAT solver
returns true (SAT). If φ is unsatisfiable, the SAT solver returns false (UNSAT) and an
unsatisfiable core φc, which is a set of soft clauses that is unsatisfiable when combined
with the hard clauses. Then, the algorithm modifies the working formula φ by adding
new variables, known as blocking variables (BV ), to each soft clause in the core φc.
The formula φ is also modified by the addition of hard clauses, corresponding to the
CNF encoding of a cardinality constraint stating that exactly one of the new blocking
variables must be true. At this point, at least one of the soft clauses in the core will
be unsatisfied. The counter of unsatisfied clauses, which provides a lower bound, is
increased by one. The algorithm stops when the SAT solver returns true (SAT).

Algorithm 2.2: FuMalik(φ): The Fu and Malik algorithm
Input: φ = {h1, . . . , hn, (s1, 1), . . . , (sm, 1)}

1 if ¬SAT ({hi ∈ φ}) then
2 return (∞, ∅) . Hard clauses can not be satisfied

3 cost = 0
4 while true do
5 (st, φc) = SAT ({hi ∈ φ} ∪ {si | (si, 1) ∈ φ})) . Removed weights
6 if st = SAT then
7 return (cost, φ)

8 BV = ∅ . Set of blocking variables
9 foreach si ∈ φc do

10 b = new_blocking_variable()
11 φ = φ \ {si} ∪ {(si ∨ b, 1)} . Blocking variable addition
12 BV = BV ∪ {b}

13 φ = φ ∪ CNF (
∑

b∈BV b = 1) . Cardinality constraint to hard clauses
14 cost = cost+ 1

The Fu and Malik algorithm has been extended to Weighted Partial MaxSAT in
solvers as WBO [153, 154] and WPM1 [21]. WBO uses a pseudo-Boolean solver in-
stead of a SAT solver and so the cardinality constraint

∑
b∈BV b = 1 does not need to

be encoded to CNF. WBO and WPM1 update the cost by adding the minimum weight
of the soft clauses in the core φc. Moreover, every soft clause in φc is replaced by two
copies: an extended one with an additional auxiliary variable and whose weight is set to
the minimum weight of the soft clauses in φc, and an unextended one whose weight is
set to the original weight minus the minimum weight in φc.

The Fu and Malik algorithm adds a blocking variable for each soft clause in a given
core. Depending on the instance, the number of blocking variables added might be large,
thus hampering the SAT solver performance in successive calls. The Partial MaxSAT
solver PM2 [23] deals with this problem by adding only one blocking variable to each
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soft clause in the input instance.
Algorithm 2.3 shows the pseudo-code of PM2. The set BV = {b1, . . . , bm} of

blocking variables are defined and added to the soft clauses of the original formula.
The working instance becomes φw = {h1, . . . , hn, s1 ∨ b1, . . . , sm ∨ bm}, where clause
weights are discarded. The list AL contains at-least constraints over blocking variables.
The list L contains the discovered cores, in the form of sets of indexes corresponding
to the soft clauses involved. Before starting to iterate the algorithm, the counter cost
of unsatisfied clauses is set to zero, this is the lower bound. The lists L and AL are
initialized to the empty set. At this point, we need to define the concept of cover: given
a set of cores L, we say that the set of indexes B is a cover of L if it is a minimal
non-empty set such that, for every A ∈ L, if A ∩B 6= ∅, then A ⊆ B.

A partition ofL in disjoint covers (SC(L)) is incrementally updated in each iteration
although, for simplicity reasons, the pseudo-code in Algorithm 2.3 shows that SC(L)
is re-calculated from scratch for each iteration. The list of at-most constraints AM
always contains a cardinality constraint for every cover B ∈ SC(L), stating that the
sum of the blocking variables of the cover must be at most equal to the number of cores
contained in the cover. The SAT solver calls in PM2 are carried out over the formula
φw ∪ CNF (AL ∪ AM). If the SAT solver returns true (SAT), the algorithm returns
cost as the optimal and terminates. Otherwise, a core φc is returned, from which hard
clauses can be removed.

Next, the set of indexes of the soft clauses in the new core (A) is appended to L.
Now, the number of cores in L, such that their soft clauses indexes are included in A, is
counted (including A) and stored in k. An at-least cardinality constraint, saying that the
number of indexed blocking variables in A that need to be one is at least k, is appended
to AL. Finally, the cost is incremented by one because of the new core found. The
algorithm continues iterating until the SAT solver returns true (SAT).

The WPM2 solver [22], which is the weighted version of PM2, deals with weighted
instances by using pseudo-Boolean constraints instead of cardinality constraints, thus
avoiding to maintain two copies of each soft clause that appears in a newly discovered
core. The WPM2 solver is also able to increase the lower bound by more than one
at each iteration by optimizing subproblems. This subproblem solving is known as
cover optimization [20]. In the 2015 MaxSAT Evaluation, the WPM3 solver [29] was
presented. WPM3 performs cover optimization for subproblems as WPM2. Moreover,
WPM3 is also inspired by Eva [172] and OLL [19], which take advantage of the so-
called MaxSAT reducibility by using different approaches. Given the Weighted Partial
MaxSAT formulas φ and φ′, we say φ is MaxSAT reducible to φ′ if, for any of the
assignments I : var(φ)→ {0, 1}, it holds that I(φ) = min{I ′(φ′) | I ′(x) = I(x) ∀x ∈
var(φ)}.

Model-based MaxSAT solvers as SAT4J-Maxsat [54, 55], QMaxSat [121] and Pa-
cose [84] start with a satisfiable formula where cost ≤

∑m
i=1wi, and decrease this value

until the SAT solver returns unsatisfiable. The latest model found is the solution and its
cost is the optimal.

QMaxSat [121] is a model-based Partial MaxSAT solver that uses an underlying
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Algorithm 2.3: PM2(φ): The pseudo-code of the PM2 algorithm
Input: φ = {h1, . . . , hn, (s1, 1), . . . , (sm, 1)}

1 if SAT ({hi ∈ φ}) = (UNSAT, _) then
2 return (∞, ∅) . Hard clauses are unsatisfiable

3 BV = {b1, . . . , bm} . Set of blocking variables
4 φw = {h1, . . . , hn} ∪ {s1 ∨ b1, . . . , sm ∨ bm}
5 cost = 0
6 L = ∅ . Set of cores
7 AL = ∅ . Set of at-least constraints
8 while true do
9 AM = ∅ . Set of at-most constraints

10 foreach B ∈ SC(L) do
11 k = |{A ∈ L | A ⊆ B}| . Num. of cores inside cover B
12 AM = AM ∪ {

∑
i∈B bi ≤ k}

13 (st, φc) = SAT (φw ∪ CNF (AL ∪ AM)) . SAT solver call
14 if st = SAT then
15 return (cost, φw ∪ CNF (AL ∪ AM))

16 A = {i ∈ {1, . . . ,m} | si ∨ bi ∈ φc ∧ bi ∈ BV } . φc soft c. indexes
17 L = L ∪ {A}
18 k = |{A′ ∈ L | A′ ⊆ A}| . Num. of cores contained in A including A
19 AL = AL ∪ {

∑
i∈A bi ≥ k}

20 cost = cost+ 1

SAT solver and cardinality constraints encoded as defined in [48]. There is a Weighted
Partial MaxSAT version of QMaxSat [198], which uses pseudo-Boolean instead of car-
dinality constraints. Pacose is based on the Weighted Partial QMaxSAT solver. SAT4J-
Maxsat is a model-based Weighted Partial MaxSAT solver that has the ability to use a
pseudo-Boolean solver instead of a SAT solver.

When the SAT or pseudo-Boolean solvers in QMaxSat, Pacose and SAT4J-Maxsat
find a model, the satisfying assignment is checked, and the upper bound is set to the sum
of weights of the soft clauses whose auxiliary blocking variable are true. At this point,
a pseudo-Boolean constraint is added to the working formula, stating that any future
model that the solver gets should fulfill that the cost value is strictly lower than the new
upper bound.

Finally, the msu4.0 [163], pwbo1.1 [165] and bincd [95] solvers follow the hybrid
approach. They search non-linearly for the optimal cost value, usually by a dichotomous
search, alternating phases in which the SAT solver reports satisfiable (giving an upper
bound) with others in which it reports unsatisfiable (giving a lower bound). They also
use a unique auxiliary variable. The efficiency of these solvers critically depends on the
SAT solver used and the encodings of the cardinality and pseudo-Boolean constraints.
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2.2.5 The implicit hitting set approach for MaxSAT
The Implicit Hitting Set (IHS) approach [77] provides one of the most effective ways
of solving MaxSAT. In fact, IHS-based solvers have been among the top-performing
solvers on Weighted MaxSAT instances since the 2016 MaxSAT Evaluation.

The main advantage of the IHS approach is that it clearly separates optimization and
propositional reasoning (core extraction). Optimization is carried out by a separate min-
imum cost hitting set solver, usually a MIP solver, which is good on arithmetic reason-
ing. Propositional reasoning is carried out by a SAT solver, which checks the satisfiabil-
ity of subsets of the original problem that are returned by the MIP solver. This separation
allows specialization, achieving remarkable performance improvements. The most rep-
resentative solvers implementing the IHS approach are LMHS [183] and MaxHS [46,
53, 76, 77, 78, 79, 100].

Before describing MaxHS, we recall that a core k for a MaxSAT instance φ is a
subset of soft clauses such that k∪hard(φ) is unsatisfiable, where hard(φ) is the set of
hard clauses of φ. Given a set of cores K, a hitting set hs of K is a set of soft clauses
such that hs∩k 6= ∅ for all k ∈ K. We say that hs is a minimum cost hitting set of K if
it is a hitting set whose cost is less than or equal to the cost of any other hitting set of K.

Algorithm 2.4 shows the basic schema of MaxHS. The algorithm starts with an
empty set of cores K. Each stage of the algorithm computes a minimum cost hitting
set {s1, . . . , sn} and calls a SAT solver to determine if the multiset of clauses φ, taking
off the soft clauses of the hitting set hs, is satisfiable. If φ is satisfiable, the SAT solver
returns (true, k) with k set to a satisfying assignment for φ \ hs, otherwise the SAT
solver returns (false, k) with k set to a core of φ \ hs. A satisfying assignment causes
the algorithm to terminate, while an unsatisfying assignment adds a new core to K.

Algorithm 2.4: MaxHS-basic(φ): The most basic version of the MaxHS algo-
rithm

Input: φ = {h1, . . . , hn, (s1, w1), . . . , (sm, wm)}

1 K = ∅
2 while true do
3 hs = FindMinCostHittingSet(K)
4 (sat, k) = SatSolver(φ \ hs)
5 if sat then
6 break
7 K = K ∪ {k}
8 return (φ \ hs, cost(hs))

The behaviour of Algorithm 2.4 is influenced by three factors: the time required by
the SAT solver to solve φ \ hs, the time required by the MIP solver to solve the mini-
mum cost hitting set problem, and the number of iterations in the loop. One of the most
important improvements to Algorithm 2.4 is the minimization of cores before they are
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added to K. Adding a non-minimized core avoids that the last returned hs is obtained
again. On the other hand, adding minimal cores to K, obtained by minimizing to an ir-
reducible core, avoids the last hs returned by the MIP solver, but also a potentially huge
amount of other cores that have not been returned yet. Minimization greatly reduces the
number of loop iterations, calls to the SAT solver, and also to the MIP solver.

The empirical investigation in [79] provides evidence that the SAT solving time is
typically negligible, and MaxHS performance is mainly affected by the solving time of
the MIP solver and the number of iterations carried out by the algorithm. An obvious
approach to reducing the time used by the MIP solver is the reduction of the number of
calls to it. A simple method to avoid calling the MIP solver is the use of non-optimal
approaches. These methods can provide approximate hitting sets hs, and if the later SAT
solver call over φ\hs returns false (unsatisfiable), they can be used instead of the optimal
hitting sets. Two approximate methods were introduced in [79]. The first method is
incremental and simply adds a clause to the newest minimal core of the current hitting
set. Although the added clause can be any clause in the new core, it is preferred the
clause that appears most frequently in the set of cores found so far. Thus, new cores
will intersect with less already known cores. The second method is the use of a standard
greedy algorithm for the hitting set problem [113], which ignores the current hitting set.
This method usually returns a better hitting set than the first method.

Algorithm 2.5 describes MaxHS as in [79]. A two-level approach is used: first, the
cheap incremental approximate method gives hitting sets until the SAT solver returns
true (satisfiable); then, nonOptLevel is assigned one. The greedy method becomes
responsible of the task of returning a hitting set for once. If the SAT solver returns false
(unsatisfiable), the returned core k is minimized and appended to K, and nonOptLevel
is assigned zero again (line 25), returning to the use of the cheap incremental method.
Otherwise, if the greedy procedure also fails giving a hitting set such that φ \ hs is
unsatisfiable, the inner while loop terminates and the algorithm iterates the outer loop.
The MIP solver is again used to get an optimal hitting set (line 3) and nonOptLevel is
assigned zero (line 9).

Another improvement to the basic Algorithm 2.4 was introduced in [78] . The SAT
solver first computes a set of disjoint cores, as in Algorithm 2.5 (line 1). This can only
be easily done before starting the main loop.

Other approaches to reduce the time invested by the MIP solver, described in [78],
include a method based on using non-core linear constraints to seed the MIP solver in
the preprocessing phase, thus limiting the number of possible values of hs that can be
obtained. Given the set S = {s1, . . . , sm} of soft clauses in φ, φbeq is a relaxation of
φ where the equivalence variables B = {b1, . . . , bm} are introduced and ¬bi ↔ si is
enforced for all i ∈ {1, . . . ,m}. In this setting, a non-core constraint for a MaxSAT
instance φ is a linear inequality constraint c, over equivalence auxiliary variables, such
that φbeq |= c. Now, the MIP solver no longer solves a pure minimal hitting set problem
because the seeded non-core constraints can contain negative b-variables. Algorithm 2.6
shows the non-core version of MaxHS.

There are some proposals to get non-core constraints in [78], and [79] recommends
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Algorithm 2.5: MaxHS-nonOPT(φ): MaxHS using approximate hitting sets
Input: φ = {h1, . . . , hn, (s1, w1), . . . , (sm, wm)}

1 K = DisjointCores(φ)
2 while true do
3 hs = FindMinCostHittingSet(K) . Get optimal solution
4 (sat, k) = SatSolver(φ \ hs)
5 if sat then
6 break
7 k = Minimize(k)
8 K = K ∪ {k}
9 nonOptLevel = 0

10 while true do
11 switch nonOptLevel do
12 case 0 do
13 hs = FindIncrementalHittingSet(K, k, hs)

14 case 1 do
15 hs = FindGreedyHittingSet(K)

16 if sat then
17 switch nonOptLevel do
18 case 0 do
19 nonOptLevel = 1

20 case 1 do
21 break

22 else
23 k = Minimize(k)
24 K = K ∪ {k}
25 nonOptLevel = 0

26 return (φ \ hs, cost(hs))

the use of Eq-Seeding among them because it was found to be the most effective overall.
Eq-Seeding exploits equivalence relations between the literals that appear in soft unit
clauses in the original MaxSAT instance φ and the corresponding b-variables. For each
clause c in φbeq, if each literal in c has an equivalent b-variable (with proper polarity),
a new constraint can be derived from c by replacing each original literal in c by its
equivalent b-variable. This constraint is a clause over the b-variables that can be added
to the MIP solver. Given that the negations of the b-variables in φbeq are equivalent to the
corresponding soft clauses, the Eq-Seeding condition is obviously met for the original
unit soft clauses of φ, but the constraint that could be added is already in φbeq. However,
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Algorithm 2.6: MaxHS-nO-seed(φ): MaxHS using approximate hitting sets
and non-core constraints seeding

Input: φ = {h1, . . . , hn, (s1, w1), . . . , (sm, wm)}

1 K = DisjointCores(φ)
2 N = NonCoreConstraints(φbeq)

3 obj = wt(ci) ∗ bi + · · ·+ wt(ck) ∗ bk
4 while true do
5 A = Optimize(K ∪N, obj) . Get optimal solution
6 (sat, k) = AssumptionSatSolver(φb, A)
7 . Next lines are identical to Algorithm 2.5

taking into account the equivalences between the negation of b-variables and the original
unit soft clauses, the literals in unit soft clauses of φ can be substituted in the non-unit
clauses by its equivalent b-literals in φbeq.

Let φ = {(x), (¬x), (x ∨ y), (¬y), (¬x ∨ z), (¬z ∨ y)}, a multiset of soft clauses
having weight one. Then φbeq = {(b1 ∨ x), (b2 ∨ ¬x), (b3 ∨ x ∨ y), (b4 ∨ ¬y), (b5 ∨
¬x ∨ z), (b6 ∨ ¬z ∨ y)} ∪ CNF (b1 ↔ x) ∪ CNF (b2 ↔ ¬x) ∪ CNF (b3 ↔ (x ∨
y)) ∪ CNF (b4 ↔ ¬y) ∪ CNF (b5 ↔ (¬x ∨ z)) ∪ CNF (b6 ↔ (¬z ∨ y)). It holds
that b1 ≡ ¬x, due to the soft unit clause (x) and its relaxation by b1. Similarly, b4 ≡ y.
Therefore, from the relaxed clause (b3 ∨ x ∨ y) ∈ φbeq, we obtain the b-variable hard
constraint (b3∨¬b1∨b4) by substituting the original literals by the equivalent b-variable
literals.

Other methods for the generation of non-core constraints, described in [78], include
Imp-Seeding and Imp+Rev-Seeding. The first method codifies in a unique linear in-
equality a set of implications from a b-literal to each of the other b-literals. Thus, a
linear inequality is added for each of the b-literals if some implication is found for it.
Given a b-literal bi that implies k other b-literals, the inequality−k×bi+b1

i+· · ·+bki ≥ 0
codifies all the implications in a compact manner. The second method includes the first,
but it also takes advantage of the set of b-literals that imply each of the other b-literals.
The reverse implication sets for the second method can be obtained without additional
effort from the implication sets of the first one. Thus, the Eq-Seeding method is used
alone or combined with Imp-Seeding or Imp+Rev-Seeding.

In recent years, MaxHS has significantly improved its performance. This improve-
ment is due to the reduced cost fixing technique of integer programming [46], the
speeding-up of the embedded assumption-based SAT solver [100] and the introduc-
tion of the abstract cores, which provides a compact representation for a potentially
exponential number of regular cores [53].
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2.2.6 The MaxSAT Evaluation
There is an annual international evaluation of MaxSAT solvers since 2006 [35, 36, 37].
This event has triggered a tremendous acceleration in the development of new solvers
and techniques for MaxSAT. The evaluation is divided into two main tracks, correspond-
ing to complete and incomplete solvers. In the following, we focus on the complete
track.

Until 2016, the MaxSAT Evaluation consisted of four tracks corresponding to the
following problems: Unweighted, Weighted, Partial and Weighted Partial MaxSAT.
Each of these tracks was divided into three groups corresponding to the following kinds
of instances: randomly generated, crafted and industrial instances.

The solvers that participated until 2014 can be classified into two main groups: BnB
and SAT-based MaxSAT solvers. Among the BnB solvers, we find: IncWMaxSatz [150],
WMaxSatz [135, 138], akmaxsat [122], akmaxsat_ls [122] and ahmaxsat [3]. Among
the SAT-based solvers, we find: PM2 [21], WPM1 [21], WPM2 [22], WPM3 [29],
Eva [172] , wbo 1.4a [153], wbo 1.4b [154], SAT4J-Maxsat [54, 55] and QMaxSAT [121].
A third group was introduced in 2015: IHS solvers, being MaxHS [46, 77, 78, 79, 100]
and LHMS [183] the first IHS solvers in the evaluation.

Since 2017, the MaxSAT Evaluation has two main tracks: the weighted track and
the unweighted track. The (un)weighted track combines the industrial and crafted
(un)weighted and (un)weighted partial MaxSAT categories from previous MaxSAT eval-
uations. Purely randomly generated instances are no longer evaluated.

Nine solvers competed in the 2020 MaxSAT Evaluation: EvalMaxSAT [45], MaxHS,
Pacose [176], QMaxSAT [198], UWrMaxSat [177], Open-WBO [166], smax [155],
Maxino [17] and RC2 [106]. All these solvers are essentially core-based, except for
QMAXSAT and Pacose, which are model-based solvers, and MaxHS, which is an IHS
solver. Table 2.1 classifies all solvers and indicates the three top-ranked solvers in the
weighted and unweighted tracks. The core-based approach is referred to as Unsat-based
(unsat-sat), while the model-based approach is referred to as Sat-Unsat. UWrMaxSat
is classified as Unsat-based, but also as Sat-Unsat, because the solver can switch its
behavior when convenient.

We reproduce now a summary of the information in [84] for the best ranked solvers
in the unweighted and weighted tracks. We exclude MaxHS, which is described in
Section 2.2.5.

• UWrMaxSat: It incrementally uses a MiniSat-like solver. In its main configura-
tion, UWrMaxSat [177] applies an unsatisfiability-core-based OLL procedure [19,
168], and uses the kp-minisatp sorter-based pseudo-Boolean constraint encod-
ing [116] to translate new cardinality constraints into CNF. It was developed on
top of the PB-solver kp-minisatp, to get access to the pseudo-Boolean encoding
with the same name.

• RC2: RC2 [106] is written in Python and based on the PySAT framework [105].
It is designed to serve as a simple example of how SAT-based problem solv-
ing algorithms can be implemented using PySAT while sacrificing just a little
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Table 2.1: The MSE-2020 complete solvers classification and (un)weighted ranking.

Solver Hitting Set Unsat-based Sat-Unsat Unweighted Weighted

EvalMaxSAT 3 2
MaxHS 3 1 2
Pacose 3

QMaxSAT 3

UWrMaxSAT 3 3 3 1
maxino 3

Open-WBO 3

smax 3

RC2 3 3

in terms of performance. In this sense, RC2 can be seen as a solver prototype
and can be made somewhat more efficient if implemented in a low-level lan-
guage. RC2 is written from scratch and implements the OLLITI (OLL-based)
MaxSAT algorithm [168, 170], originally implemented in the MSCG MaxSAT
solver [102, 170]. As PM2, WPM2 and WPM3, the RC2 solver deals with sub-
problems in the original instance. This is called core exhaustion in the RC2 con-
text.

• EvalMaxSAT: EvalMaxSAT is based on the OLL algorithm [168] originally im-
plemented in the MSCG MaxSAT solver [102, 170], and then reused in the RC2
solver [106]. The algorithm uses the mcqd library [119] to find a maximum clique
in the incompatibility graph of soft clauses, and uses this clique to add at-most-
one constraints between the soft clauses. The totalizer encoding [164] is used for
cardinality constraints. The implementation reuses the code from the PySAT’s
ITotalizer [105]. EvalMaxSAT performs core minimization and core exhaustion,
as exposed for RC2 [106].

All the solvers in the previous list are somehow based on the OLL procedure. They
use soft cardinality constraints [168], core minimization and exhaustion. The UWr-
MaxSat solver outperforms MaxHS on the complete weighted track. MaxHS dominated
the weighted track before appearing UWrMaxSat and RC2 in 2019.

2.2.7 Other contributions to MaxSAT solving
Other research topics in the literature that contain substantial contributions to the field
of MaxSAT solving include the definition of clause learning schemes in BnB solvers [8,
43] that are not yet competitive enough to solve industrial instances, the creation of
robust MaxSAT solutions [58], the definition of efficient encodings from MaxCSP to
MaxSAT [32], the extension of MaxSAT to many-valued logic [34] and the definition
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of MaxSAT formalisms that deal with blocks of soft clauses instead of individual soft
clauses [42, 96].

2.3 Complete MinSAT algorithms
Given the success of MaxSAT, the community has started to look into MinSAT. At first
sight, one could think that the solving techniques and encodings to be used in MinSAT
are very similar to the ones used in MaxSAT and, therefore, that there is no need of
investigating MinSAT from a problem solving perspective. However, most of the re-
search conducted so far indicates that they can be quite different, as well as that the
performance profile of MaxSAT and MinSAT is different for several optimization prob-
lems represented in these formalisms [41, 103, 148]. Moreover, MinSAT is meaningful
for both satisfiable and unsatisfiable instances, whereas MaxSAT is only meaningful for
unsatisfiable instances. A closely related problem has been analyzed in [107, 108].

The work on MinSAT solving can be divided into the following categories:

• Transformations between MinSAT and MaxSAT: Reductions from MinSAT to
Partial MaxSAT were defined in [139], but these reductions do not generalize to
Weighted Partial MinSAT. This drawback was overcome with the definition of the
natural encoding [123], which was improved in [203]. Reductions of Weighted
Partial MinSAT to Group MaxSAT were evaluated in [97].

• Encodings from Weighted MaxCSP to MinSAT: Efficient encodings were defined
in [40]. Using the MaxSAT direct encoding [32], we must add one clause for
every no-good, while using the MinSAT direct encoding [40], we must instead
add one clause for every good. This implies, for instance, that for representing
the constraint X = Y , we need a number of clauses linear in the domain size in
MinSAT, and a quadratic number of clauses in MaxSAT. We are in the opposite
situation if we want to represent the constraint X 6= Y , So, it seems that MaxSAT
and MinSAT could be complementary in some scenarios [40].

• Complete logical calculi: MaxSAT resolution is sound for MinSAT but the elim-
ination of variables must be defined differently to get completeness [132]. Af-
ter saturating a variable x, the clauses containing the variable x are ignored in
MaxSAT. However, in MinSAT, the resulting clauses of eliminating the occur-
rences of both x and ¬x must also be considered in the saturation of the next vari-
able. In this way, after saturating all the variables, the number of empty clauses
derived is equal to the maximum number of unsatisfied clauses.

• MinSAT solvers: The only existing BnB MinSAT solver, MinSatz [147, 148],
is based on MaxSatz and implements upper bounds that exploit clique parti-
tion algorithms and MaxSAT technology. There exist two SAT-based MinSAT
solvers [31, 97]. They differ with SAT-based MaxSAT solvers in the way of re-
laxing soft clauses. A local search MinSAT solver was described in [6].
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Section 2.3.1 describes the BnB MinSAT solver MinSatz. We focus on this solver
because it implements solving techniques that are not used in MaxSAT solving.

2.3.1 Branch-and-bound algorithms for MinSAT

We first present the MinSatz solver for Partial MinSAT, and explain how a good quality
upper bound (UB) can be computed. We then extend the solver, and especially its UB,
to Weighted Partial MinSAT.

MinSatz for Partial MinSAT

MinSatz implements the BnB scheme, and the search space is formed by a tree repre-
senting all the possible assignments. At every node, the solver starts by applying unit
propagation using only hard unit clauses (i.e., given an existing or newly derived hard
unit clause l, it satisfies and removes all the clauses containing the literal l, and removes
all the occurrences of ¬l; soft unit clauses are not propagated because the simplified in-
stance might have a different minimum number of satisfied clauses). If any hard clause
becomes empty, then the solver backtracks. Otherwise, it computes an upper bound of
the maximum number of soft clauses that will be unsatisfied (UB) if the current par-
tial assignment is extended to a complete assignment. UB is then compared with the
number of clauses unsatisfied by the best assignment found so far (LB), which is a
lower bound. If UB≤LB, a better solution cannot be found from the current node, and
the solver backtracks. Otherwise, a variable is selected and instantiated. This process
continues until all the search space has been explored, and the solver returns the best
solution found. Algorithm 2.7 shows the pseudo-code of the MinSatz solver.

Algorithm 2.7: MinSatz(φ, LB)
Input: φ , LB . A Partial MinSAT instance and the initial LB value (-1)

1 φ← hardUnitPropagation(φ);
2 if φ contains a hard empty clause then
3 return LB;

4 if φ={} or φ only contains empty clauses then
5 return max{#empty(φ), LB};

6 UB← #empty(φ)+overestimation(φ);
7 if (UB ≤ LB) then
8 return LB;

9 x← select(φ);
10 LB←MinSatz(φx, LB);
11 LB←MinSatz(φ¬x, LB);
12 return LB;
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To solve an instance φ, we should call Algorithm 2.7 with the following parameters:
MinSatz(φ, −1). If the algorithm returns −1, then the hard part of φ is unsatisfiable,
and there is no feasible solution. Function #empty(φ) returns the number of empty soft
clauses in φ, overestimation(φ) returns an overestimation of the maximum number of
soft clauses that will be unsatisfied if the current partial assignment is extended to a
complete assignment, and select(φ) implements the following variable selection heuris-
tic: let hard(l) (soft(l)) be the number of occurrences of literal l in hard (soft) clauses,
and let score(l) = 2× hard(l) + soft(l). Function select(φ) chooses a variable x with
the highest value of score(x)× score(¬x) + score(x) + score(¬x). The instance φx
(φ¬x) is φ in which all clauses containing x (¬x) are satisfied and removed, and the
literal ¬x (x) is removed from the remaining clauses. The MinSAT value for the input
instance φ, i.e., the minimum number of satisfied clauses of φ is #soft(φ)-MinSatz(φ,
−1), where #soft(φ) is the number of soft clauses in φ.

BnB MaxSAT solvers solve a MaxSAT instance by minimizing the number of un-
satisfied clauses, while MinSatz solves a MinSAT instance by maximizing the number
of unsatisfied clauses.

UB Computation for (Unweighted) Partial MinSAT

A decisive point to obtain fast MinSAT solvers is to equip them with good quality UBs.
In this section, we describe the UB computation methods introduced in [148], which are
based on first computing a clique partition in a graph that is built from the current Min-
SAT instance, and then improving the obtained UB with MaxSAT technology. We first
describe how UB is computed in the unweighted case and then describe three different
methods for computing UB in the weighted case.

Assume that we are in a node of the search space and, after applying unit propa-
gation using only hard unit clauses, we have an instance φ formed by the hard clauses
{h1, . . . , hk}, e empty soft clauses, and the not yet decided soft clauses {c1, . . . , cm}.
We start by building an undirected graph G = (V,E), where V contains an element for
every soft clause in {c1, . . . , cm}, say V = {v1, . . . , vm}. We add an edge between ver-
tex vi, corresponding to clause ci = {li1, . . . , lip}, and vertex vj , corresponding to clause
cj = {lj1, . . . , ljq}, if there exist a literal lia and a literal ljb such that lia=¬l

j
b , or the set

of clauses {¬li1, . . . ,¬lip,¬l
j
1, . . . ,¬ljq, h1, . . . , hk} may be declared to be unsatisfiable

using unit propagation. The idea behind the graphG, called the graph associated with φ,
is that the clauses associated with the two vertices of an edge cannot be simultaneously
unsatisfied. Indeed, in the former case, two literals in ci and cj are complementary and,
in the latter case, if ci and cj are both unsatisfied, then a hard clause is violated.

Once the graphG is built, an overestimation of the maximum number of soft clauses
that can be unsatisfied corresponds to a Maximum Independent Set (MIS) of G, where
there exists no edge between any two vertices of the independent set. We could then
compute an UB of the maximum number of soft clauses that can be unsatisfied by
computing an UB of the cardinality of a MIS of G. For this purpose, we create a
clique partition of G using the heuristic algorithm described in [187], and also used
in [145, 146]: Suppose that the vertices are sorted by increasing order of their degree
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and that the current partition is S1, S2, . . . , Sk (in this order, and being k = 0 at the
beginning). The algorithm inserts the first vertex v of the sequence of vertices into the
first Si such that v is connected to all the vertices already in Si. If such Si does not exist,
a new set Sk+1 is created and v is inserted in Sk+1. This process is repeated until there
are no more vertices left.

By construction of graphG, there is at most one unsatisfied clause in every clique. In
other words, at least all the clauses in a clique except one are satisfied by any complete
truth assignment satisfying all the hard clauses. Hence, the number of cliques in the
partition, say s, is an overestimation of the number of clauses that can be unsatisfied
if the current partial assignment is completed. Taking into account this fact, we define
UB= e + s. However, UB might not be tight enough. if G is not perfect, then UB is
not tight because the number of cliques in the partition of G is an upper bound of the
chromatic number χ(Ḡ) of the complementary graph of G (Ḡ), which is strictly larger
than the cardinality of a MIS of G. If G is perfect, then UB can be tight but it is not
guaranteed.

In order to improve UB, an approach adapted from [145, 146] can be used. We
derive a Partial MaxSAT instance ψ from the obtained clique partition of graph G: for
every edge (vi, vj) of the graph, we add the hard clause ¬vi ∨ ¬vj and, for every clique
{vi1 , . . . , vik}, we add the soft clause vi1 ∨ · · · ∨ vik . Hard clauses in ψ state that clauses
of the original MinSAT instance φ associated with adjacent vertices of G cannot be
simultaneously unsatisfied, while soft clauses in ψ state that at least one soft clause of φ
associated with the vertices of a clique of G is unsatisfied. It turns out that if an optimal
solution of the resulting Partial MaxSAT instance ψ has u unsatisfied soft clauses, then
we can decrement UB by u, because we can conclude that u cliques cannot contain
any unsatisfied soft clause in φ and should not be counted in the UB of the number of
unsatisfied soft clauses in φ. Observe that vik is true if clause cik in φ is unsatisfied, and
false if it is satisfied. Hence, if a soft clause vi1 ∨ · · · ∨ vik is violated, all the clauses of
φ associated with the clique {vi1 , . . . , vik} are satisfied; in other words, that clique does
not contain any unsatisfied clause.

Since solving Partial MaxSAT is NP-hard, in practice, u is underestimated by using
the technology developed for MaxSAT solvers. More precisely, lower bound UP en-
hanced with failed literal detection [136, 137] is applied to the derived Partial MaxSAT
instance ψ. In this MinSAT setting, UB is improved by decrementing the total number
of contradictions detected with UP enhanced with failed literal detection.

Example 2.1. Assume that we are in a node in which we have the hard clauses
¬x1 ∨ ¬x2, ¬x2 ∨ ¬x3, ¬x3 ∨ ¬x4, ¬x4 ∨ ¬x5, ¬x1 ∨ ¬x5, and the soft clauses
¬x1,¬x2,¬x3,¬x4,¬x5. Also assume that no clause has yet become empty. We build
the graph G associated with the instance, which is shown in Figure 2.1. The set of
vertices is {v1, v2, v3, v4, v5}, where vertex vi is associated with the soft clause ¬xi, for
1 ≤ i ≤ 5. The set of edges is {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v1, v5)}. Assume
that the algorithm finds the following clique partition of G: {{v1, v2}, {v3, v4}, {v5}}.
Then, at most 3 soft clauses among 5 soft clauses can be unsatisfied, and UB=3.

G is not perfect and, therefore, UB is not tight. A deeper analysis shows that only
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v1

v2

v4v3

v5

Figure 2.1: Graph associated with the MinSAT instance of Example 2.1

two clauses of the instance can be unsatisfied (instead of 3) so that UB might be im-
proved to 2.

Assume that every clique contains an unsatisfied clause under some complete as-
signment. Then, v5 should be unsatisfied, but v1 and v4 cannot be unsatisfied because v1

and v4 are connected to v5. So, the only possibility for the first and the second cliques to
have an unsatisfied clause is that v2 and v3 are both unsatisfied, but this is not possible
because v2 and v3 are connected. Hence, {{v1, v2}, {v3, v4}, {v5}} is a subset of cliques
in which not all cliques can have an unsatisfied clause. Therefore, we could decrement
UB by one. In order to detect such a situation, we derive the Partial MaxSAT instance
formed by the hard clauses:

¬v1 ∨ ¬v2 ¬v1 ∨ ¬v5 ¬v2 ∨ ¬v3

¬v3 ∨ ¬v4 ¬v4 ∨ ¬v5

and the soft clauses:
v1 ∨ v2 v3 ∨ v4 v5

Then, we apply UP enhanced with failed literal detection. Actually, we detect a
contradiction applying just UP to the above instance. It corresponds to the refutation
that can be constructed from {¬v1 ∨ ¬v5,¬v2 ∨ ¬v3,¬v4 ∨ ¬v5, v1 ∨ v2, v3 ∨ v4, v5}.
Since all the soft clauses are involved in the refutation, we cannot derive additional
contradictions. Therefore, we decrement UB by one and get UB=2.

Extending MinSatz and its UB to Weighted Partial MinSAT

In the weighted case, the objective is to find an assignment that satisfies all the hard
clauses and minimizes the sum of weights of satisfied soft clauses. To reach this ob-
jective, MinSatz finds an assignment that satisfies all the hard clauses and maximizes
the sum of weights of unsatisfied soft clauses. Now, in Algorithm 2.7, #empty(φ) re-
turns the sum of weights of all the empty soft clauses in φ, overestimation(φ) returns
an overestimation of the maximum sum of weights of the soft clauses that will be un-
satisfied if the current partial assignment is completed, soft(φ) is the total sum of the
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weights of the soft clauses in φ, and the MinSAT value for the input instance φ is
soft(φ)−MinSat(φ,−1).

The variable selection heuristic works as follows in the weighted case: Let hard(l)
be the number of occurrences of literal l in hard clauses, let soft(l) be the sum of
weights of the soft clauses containing literal l, let weight(l) be the mean of the weights
among all the soft clauses containing literal l, and let the score for the literal l be
score(l) = 2× weight(l)× hard(l) + soft(l). Select(φ) chooses a variable maximiz-
ing score(x)× score(¬x)× (weight(x)× weight(¬x)/2) + score(x) + score(¬x).

In the rest of the section, we explain how the computation method described above
for UB can be extended to the weighted case. We obtain three different methods and
refer to them as UB1, UB2 and UB3. In all of them, the graph associated with the
MinSAT instance is built as in the unweighted case. The difference lies in that now
the graph is weighted, and in how the clique partition is created and the weights are
operated.

We define the weight of a vertex ofG as the weight of the corresponding soft clause,
and the weight w of a clique {vi1 , . . . , vin} as the minimum weight among the weighted
soft clauses (ci1 , wi1), . . . , (cin , win) (i.e., w = min(wi1 , . . . , win)).

• Upper Bound UB1
UB1 creates a clique partition in the graph G associated with the current MinSAT
instance using the same heuristic algorithm as in the unweighted case. Let (vi, wi)
be a vertex in a clique of weight w. Then, it constructs a subgraph G′ induced by
those vertices vi of G such that wi − w > 0, and defines the weight of vi in G’ as
wi−w. G’ is in turn partitioned into cliques, and a subgraph of G’ is constructed
in the same way for finding further partitions. This process, whose pseudo-code
is shown in Algorithm 2.8, continues until the empty graph is obtained. Finally,
UB1 is computed taking into account the weights of all the obtained cliques:
UB1=

∑
clause ci is empty

wi +
∑

all cliquesw.

Algorithm 2.8: Partition(φ)
Input: φ . A Partial MinSAT instance

1 Construct a weighted graph G from φ;
2 P ← {};
3 repeat
4 Find a clique partition of G, and add the cliques into P ;
5 Construct G’ from the cliques and G;
6 G← G’;
7 until G becomes empty;
8 return P ;

Algorithm 2.8 returns a partition of G into cliques, in such a way that all vertices
in each clique have the same weight in order to compute a tight upper bound
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UB1. Observe that there are many ways to partition a weighted graph into cliques
in which all vertices have the same weight. Some of them could give a huge
number of cliques, especially when the vertex weights are very different and the
graph is large. The approach presented in Algorithm 2.8 does not necessarily give
the best upper bound. However, it guarantees that the number of vertices in G’
is at most |V | − s, where V is the set of vertices of G and s is the number of
cliques in its clique partition, because at least one vertex in each clique has the
same weight as the clique before the subtraction and cannot belong to G’, which
seems a reasonable approach in the implementation of a MinSAT solver.

As in the unweighted case, UP enhanced with failed literal detection is applied
to improve the upper bound. Now, for every clique {vi1 , . . . , vik}, we add the
weighted soft clause (vi1 ∨ · · · ∨ vik , w), being w the weight of the clique. Every
time we detect a subset of cliques in which not all cliques can have unsatisfied
clauses, we improve the upper bound by w, where w is the minimum weight
among all the cliques in the subset.

Example 2.2. Consider the MinSAT instance formed by the hard clauses ¬x1 ∨
¬x2, ¬x2 ∨ ¬x3, ¬x3 ∨ ¬x4, ¬x4 ∨ ¬x5, ¬x1 ∨ ¬x5, and the soft clauses (¬x1,
2), (¬x2, 3), (¬x3, 4), (¬x4, 5), (¬x5, 6). The graph associated with that instance
is shown in Figure 2.1. Algorithm 2.8 returns a weighted clique partition {{(v1,
v2), 2}, {(v3, v4), 4}, {(v5), 6}, {(v2), 1}, {(v4), 1}}, getting UB1=14. To im-
prove UB1, UP enhanced with failed literal detection is applied to the following
Weighted Partial MaxSAT instance:

¬v1 ∨ ¬v2 ¬v1 ∨ ¬v5 ¬v2 ∨ ¬v3

¬v3 ∨ ¬v4 ¬v4 ∨ ¬v5

(v1 ∨ v2, 2) (v3 ∨ v4, 4) (v2, 1)
(v4, 1) (v5, 6)

As a result, the unsatisfiable subset ¬v1 ∨ ¬v5,¬v2 ∨ ¬v3,¬v4 ∨ ¬v5, (v1 ∨
v2, 2), (v3 ∨ v4, 4), (v5, 6) is detected. We decrement UB1 by 2 because it is the
minimum among 2, 4, and 6. Therefore, UB1=12.

Notice that, depending on the order in which unit clauses were selected by UP
enhanced with failed literal detection, UB1 could instead detect the unsatisfiable
subset ¬v4 ∨¬v5, (v4, 1), (v5, 6). In this case, we could decrement UB1 just by 1.

• Upper Bound UB2

UB2 is an upper bound that builds a clique partition in an incremental way: it
starts by selecting a vertex v with minimum degree, breaking ties by selecting a
vertex with minimum weight. Then, it computes a maximal clique containing v,
and decrements the weight of every vertex of G in the computed clique by the
weight of the clique. It removes the vertices with weight zero (so, it removes
at least one vertex), and repeats this process until the empty graph is derived.
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The sum of the weights of all the computed cliques is UB2. Finally, UB2 is
improved by applying UP enhanced with failed literal detection to a Weighted
Partial MaxSAT instance as in UB1.

Example 2.3.

We consider the same MinSAT instance as in Example 2.2. In the first step, UB2
selects vertex v1 and finds the clique {v1, v2} with weight 2. Then, it removes
vertex v1 from the graph and the weight of vertex v2 is set to 1. In the second
step, UB2 selects vertex v2 and finds the clique {v2, v3} with weight 1. Then,
it removes vertex v2 from the graph and the weight of vertex v3 is set to 3. In
the third step, UB2 selects vertex v3 and finds the clique {v3, v4} with weight 3.
Then, it removes vertex v3 from the graph and the weight of vertex v4 is set to 2.
In the fourth step, UB2 selects vertex v4 and finds the clique {v4, v5} with weight
2. Then, it removes vertex v4 from the graph and the weight of vertex v5 is set
to 4. In the fifth step, UB2 selects vertex v5 and finds the clique {v5} with weight
4. Then, it removes vertex v5, gets the empty graph and UB2=12.

To improve UB2, UP enhanced with failed literal detection is applied to the fol-
lowing Weighted Partial MaxSAT instance:

¬v1 ∨ ¬v2 ¬v1 ∨ ¬v5 ¬v2 ∨ ¬v3

¬v3 ∨ ¬v4 ¬v4 ∨ ¬v5

(v1 ∨ v2, 2) (v2 ∨ v3, 1) (v3 ∨ v4, 3)
(v4 ∨ v5, 2) (v5, 4)

As a result, it is detected that the soft clauses (v1∨v2, 2), (v3∨v4, 3), (v5, 4), when
added to the hard clauses, are unsatisfiable. We decrement UB2 by 2 because it is
the minimum among 2, 3, and 4. Therefore, UB2=10. Notice that UB2 is tighter
than UB1 for the analyzed MinSAT instance. When we remove the soft clauses
(v1∨v2, 2), (v3∨v4, 3), (v5, 4), we cannot detect any other contradiction. Actually,
10 is the optimal UB value for the present MinSAT instance.

It is worth pointing out that UB2 applied to an unweighted graph is slower than
UB1 because UB2 computes a clique at a time while UB1 can compute several
cliques at a time.

• Upper Bound UB3

UB3 can be seen as an upper bound that improves UB2. It incrementally computes
a clique partition as UB2, and the difference lies in the fact that, in the subsets of
soft clauses detected by UP enhanced with failed literal detection, the weights of
cliques are taken into account, in the sense that the cliques with weight greater
than the minimum weight can be used to detect additional contradictions. Of
course, we must update the weights of cliques after detecting a contradiction.
We illustrate this improvement using another MinSAT instance because UB2 is
optimal for the instance in Example 2.2.
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Example 2.4.

Consider the MinSAT instance formed by the hard clauses ¬x1∨¬x2, ¬x2∨¬x3,
¬x3∨¬x4, ¬x4∨¬x5, ¬x1∨¬x5, ¬x5∨¬x6, ¬x6∨¬x7, ¬x7∨¬x8, ¬x8∨¬x9,
¬x5 ∨ ¬x9 and the soft clauses (¬x1, 2), (¬x2, 3), (¬x3, 4), (¬x4, 5), (¬x5, 9),
(¬x6, 3), (¬x7,1), (¬x8, 3), (¬x9, 3). The graph associated with that instance is
shown in Figure 2.2.

v1

v2

v4v3

v5

v6 v7

v8v9

Figure 2.2: Graph associated with the MinSAT instance of Example 2.4

In the first step, UB3 selects vertex v7 and finds the clique {v6, v7} with weight 1.
Then, it removes vertex v7 from the graph and the weight of vertex v6 is set to 2.
In the second step, UB3 selects vertex v6 and finds the clique {v5, v6} with weight
2. Then, it removes vertex v6 from the graph and the weight of vertex v5 is set to 7.
In the third step, UB3 selects vertex v8 and finds the clique {v8, v9}with weight 3.
Then, it removes vertices v8 and v9. In the fourth step, UB3 selects vertex v1 and
finds the clique {v1, v2} with weight 2. Then, it removes vertex v1 from the graph
and the weight of vertex v2 is set to 1. In the fifth step, UB3 selects vertex v2 and
finds the clique {v2, v3} with weight 1. Then, it removes vertex v2 from the graph
and the weight of vertex v3 is set to 3. In the sixth step, UB3 selects vertex v3 and
finds the clique {v3, v4} with weight 3. Then, it removes vertex v3 from the graph
and the weight of vertex v4 is set to 2. In the seventh step, UB3 selects vertex v4

and finds the clique {v4, v5} with weight 2. Then, it removes vertex v4 from the
graph and the weight of vertex v5 is set to 5. In the eighth step, UB3 selects vertex
v5 and finds the clique {v5} with weight 5. Then, it removes vertex v5, gets the
empty graph and UB3=19.

To improve UB3, UP enhanced with failed literal detection is applied to the fol-
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lowing Weighted Partial MaxSAT instance:

¬v1 ∨ ¬v2 ¬v1 ∨ ¬v5 ¬v2 ∨ ¬v3

¬v3 ∨ ¬v4 ¬v4 ∨ ¬v5 ¬v5 ∨ ¬v6

¬v5 ∨ ¬v9 ¬v6 ∨ ¬v7 ¬v7 ∨ ¬v8

¬v8 ∨ ¬v9

(v1 ∨ v2, 2) (v2 ∨ v3, 1) (v3 ∨ v4, 3)
(v4 ∨ v5, 2) (v5, 5) (v5 ∨ v6, 2)
(v6 ∨ v7, 1) (v8 ∨ v9, 3)

UB3 detects that the soft clauses (v1 ∨ v2, 2), (v3 ∨ v4, 3), (v5, 5), when added
to the hard clauses, are unsatisfiable. Now, it removes (v1 ∨ v2, 2), and replaces
(v3∨v4, 3) with (v3∨v4, 1) and replaces (v5, 5) with (v5, 3). Now, UB3 detects that
the soft clauses (v6∨v7, 1), (v8∨v9, 3), (v5, 3), when added to the hard clauses, are
unsatisfiable. It removes (v6∨v7, 1), and replaces (v8∨v9, 3) with (v8∨v9, 2) and
replaces (v5, 3) with (v5, 2). Since no additional contradictions can be detected,
UB3 = 16. Notice that UB2 = 17 for this instance because after detecting the
first contradiction the unit soft clause containing v5 is removed. UB2 does not
update the weights as UB3.

2.4 Concluding remarks
We have defined the MaxSAT and MinSAT problems and presented the most relevant
algorithms and techniques used to solve them. We have focused on exact MaxSAT and
MinSAT solving for two reasons: (i) all the contributions of this thesis were created for
exact solvers, and (ii) the research in the SAT community has mainly focused on exact
MaxSAT and MinSAT solving in the last decade.



Chapter 3

Clausal Tableau Calculi
for MaxSAT and MinSAT

This chapter defines a tableau calculus for solving MaxSAT, a tableau calculus for solv-
ing MinSAT, and a tableau calculus for solving both MaxSAT and MinSAT. For each
calculus, a proof of soundness and completeness is provided. It holds that the minimum
number of contradictions derived among the branches of a completed MaxSAT tableau
for a multiset of clauses φ is the minimum number of unsatisfied clauses in φ, and the
maximum number of contradictions derived among the branches of a completed Min-
SAT tableau for a multiset of clauses φ′ is the maximum number of unsatisfied clauses in
φ′. It also describes how the new calculi can be extended to deal with Weighted Partial
MaxSAT and MinSAT instances.

The presentation closely follows the paper published in the Logic Journal of the
IGPL [39]. It unifies results on clausal MaxSAT tableaux published in [140], results on
clausal MinSAT tableaux published in [141], and results on a tableau-based procedure
for MaxSAT and MinSAT published in [38].

3.1 Introduction
The current inference systems for SAT are unsound for solving MaxSAT and MinSAT.
They preserve satisfiability but do not preserve the minimum and/or the maximum num-
ber of unsatisfied clauses. Thus, to define complete inference systems for MaxSAT and
MinSAT, we first need to define cost-preserving inference rules and then show that their
correct application allows one to derive as many empty clauses as the minimum number
of unsatisfied clauses in the case of MaxSAT, and as the maximum number of unsatisfied
clauses in the case of MinSAT.

Resolution-style procedures, based on the MaxSAT resolution rule have been de-
fined for MaxSAT [63, 64] and MinSAT [132]. The difference between MaxSAT and
MinSAT lies in the way of eliminating variables. Moreover, refinements of the MaxSAT
resolution rule have been incorporated into BnB MaxSAT and MinSAT algorithms and
have produced important speedups (see e.g. [4, 7, 124, 135, 138, 148]).
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Even when resolution-based methods are competitive for solving clausal MaxSAT
and MinSAT, they present some limitations when dealing with more expressive for-
malisms. Thus, we decided to open a new research direction in MaxSAT and MinSAT
solving: the definition of complete tableau-like calculi for MaxSAT and MinSAT.

The advantages of tableaux over resolution are that tableaux allow one to solve di-
rectly non-clausal MaxSAT and MinSAT, can be naturally extended to first-order logic
and are more appropriate for dealing with non-classical logics in which it is not easy to
define clausal forms.

In this chapter, we first extend the clause tableau calculus for SAT [73, 92] to solve
both MaxSAT [140] and MinSAT [141]. An essential issue to address is how to derive
simpler subproblems so that the minimum/maximum number of unsatisfied clauses is
preserved. The proposed clause MaxSAT tableau calculus and the clause SAT tableau
calculus are quite similar, in that they use the same rules but applied differently. The
clause MinSAT tableau calculus has an inference rule that does not resemble the rules
of the SAT and MaxSAT calculi. It is worth noticing that a clause MinSAT tableau
calculus must be able to derive contradictions from satisfiable instances because they
can have interpretations that falsify some clauses.

From the insights gained after analyzing clause MaxSAT and MinSAT tableaux,
we propose a clause tableau calculus that is valid for both MaxSAT and MinSAT. It
adequately preserves the number of unsatisfied clauses in the generated subproblems.
The leaf nodes of a completed search tree contain a number of empty clauses ranging
between the minimum and the maximum number of unsatisfied clauses in the input
formula, and there is at least one branch with the minimum value and at least one branch
with the maximum value. This calculus also provides optimal MaxSAT and MinSAT
assignments by inspecting the optimal branches.

For the sake of clarity, we first present the tableau calculi for Unweighted MaxSAT
and MinSAT. We then explain how the proposed calculi can be extended to solve both
Weighted Partial MaxSAT and Weighted Partial MinSAT.

The rest of the chapter is organized as follows. Section 3.2 reviews how clause
tableaux are used to solve SAT. Section 3.3 defines a clause tableau calculus for MaxSAT
and proves its completeness. Section 3.4 defines a clause tableau calculus for MinSAT
and proves its completeness. Section 3.5 describes a clause tableau calculus that is valid
for both MaxSAT and MinSAT and proves its completeness. Section 3.6 concludes the
chapter.

3.2 Clause tableaux for SAT
It is common to view the tableau method for solving SAT as a proof by case distinction
that allows one to systematically generate subcases until elementary contradictions are
reached [85, 186]. In the context of SAT, a clause tableau is a tree with a finite number
of branches whose nodes are labelled with clauses, and a branch is a maximal path in
a tree with a finite number of nodes. A branch is closed if two nodes are labelled with
complementary unit clauses; otherwise, it is open. A clause tableau is closed iff all its
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Table 3.1: Expansion rules of a complete clause tableau calculus for SAT

C1

· · ·

Cm
Initial tableau rule

l1 ∨ l2 ∨ · · · ∨ ln
l1 l2 · · · ln

n-ary extension rule

l
¬l
2

2-rule

branches are closed.

Given a set of clauses φ = {C1, . . . , Cm}, we start by creating an initial tableau
with a single branch of m nodes, where each node is labelled with a clause of φ. This
process is known as the application of the initial tableau rule. Then, we select an open
branch B and a clause l1 ∨ . . . ∨ lr of φ with r ≥ 2 that has not yet been expanded
in B, and append r sibling nodes below B, labelling each node with a different unit
clause from {l1, . . . , lr}. This process of creating r new branches from B is known as
the application of the extension rule. If there are two complementary unit clauses in
a branch, we close it by applying the contradiction rule. In the following, closing a
branch amounts to deriving an empty clause. This process continues until either all the
branches are closed, or the application of the extension rule on a branch until saturation
leaves it open. The set of clauses φ is declared to be unsatisfiable in the first case, and
satisfiable in the second case. Table 3.1 shows the expansion rules of a complete clause
tableau calculus for SAT.

Example 3.1. To determine the satisfiability of φ = {x1,¬x1 ∨ x2,¬x1 ∨ ¬x2} with
clause tableaux we start by creating the initial tableau (T0):

x1

¬x1 ∨ x2

¬x1 ∨ ¬x2

(T0)

We then expand the second node (T1) and close the leftmost branch by applying the
contradiction rule to x1 and ¬x1, obtaining another clause tableau (T2):
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x1

¬x1 ∨ x2

¬x1 ∨ ¬x2

x2¬x1

x1

¬x1 ∨ x2

¬x1 ∨ ¬x2

x2¬x1

2

(T1) (T2)

Finally, we expand the third node on the rightmost branch (T3), and close the new
leftmost (T4) and rightmost branches (T5), obtaining a clause tableau proof of the unsat-
isfiability of φ:

x1

¬x1 ∨ x2

¬x1 ∨ ¬x2

x2

¬x2¬x1

¬x1

2

x1

¬x1 ∨ x2

¬x1 ∨ ¬x2

x2

¬x2¬x1

2

¬x1

2

x1

¬x1 ∨ x2

¬x1 ∨ ¬x2

x2

¬x2

2

¬x1

2

¬x1

2

(T3) (T4) (T5)

Formally, a clause tableau proof of the unsatisfiability of a set of clauses φ is a se-
quence of clause tableaux T0, . . . , Tn such that T0 is an initial tableau of φ, Tn is a closed
tableau, and Ti has been obtained by a single application of the extension or contradic-
tion rule on an open branch of Ti−1 for i = 1, . . . , n. In a proof of satisfiability, Tn must
have some open branch after applying the extension rule on it until saturation. Besides,
the literals occurring in the unit clauses of the open branch provide a satisfying assign-
ment of φ. It is common to say that Tn is a clause tableau proof because it collapses all
the sequence of tableaux. In Example 3.1, the sequence T0, T1, T2, T3, T4, T5 is a clause
tableau proof, although T5 alone is also considered to be a proof.

We say that a clause tableau is completed when all its branches are closed or it
contains an open branch in which it was not possible to detect a contradiction with the
expansion rules of Table 3.1.

From a semantic perspective, given a set of clauses φ and the completed clause
tableau T for φ, we have that φ is satisfiable iff there is a branch of T such that the
conjunction of all its literals is satisfiable. Alternatively, φ is unsatisfiable iff all the
branches of T are unsatisfiable.
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3.3 Clause tableaux for MaxSAT
The clause SAT tableau calculus is not valid for solving MaxSAT, but it can become
sound and complete by applying the expansion rules of Table 3.1 differently.

Firstly, the application of expansion rules in a branch cannot stop once a contra-
diction is detected. Since MaxSAT aims to derive all the possible contradictions, the
application of rules in a branch should continue until no more expansion rules can be
applied. Thus, a different notion of completed tableau is needed.

Secondly, the application of rules in SAT leads to accumulating the newly added
unit clauses in the branch so that satisfiability is preserved in at least one branch when
the input set of clauses is satisfiable. However, the addition of redundant clauses might
lead to wrong MaxSAT solutions. In clause MaxSAT tableaux, the goal should be to
keep the minimum number of unsatisfied clauses in at least one branch and not decrease
that number in the rest of branches. As we show below, the rules of Table 3.1 satisfy
that condition provided that we maintain active and inactive clauses. In other words,
once a clause has been used as a premise of a rule in a branch, it cannot be used again
in that branch and becomes inactive. For example, thanks to distinguishing between ac-
tive and inactive clauses, we will detect one contradiction in the multiset of unit clauses
{x1,¬x1,¬x1} and two in {x1, x1,¬x1,¬x1}. Without that, we could detect two con-
tradictions in the first case, obtaining a wrong answer. In fact, the inference rules of
MaxSAT can be seen as rewriting rules.

Definition 3.1. A clause MaxSAT tableau is a tree with a finite number of branches
whose nodes are labelled with clauses. A branch is a maximal path in a tree, and we
assume that branches have a finite number of nodes.

Definition 3.2. Let φ = {C1, . . . , Cm} be a multiset of clauses. A clause MaxSAT
tableau for φ is constructed by a sequence of applications of the following expansion
rules:

Initialize A tree with a single branch with m nodes such that each node is labelled with
a clause of φ is a clause MaxSAT tableau for φ. Such a tableau is called initial
tableau and its clauses are declared to be active.

Extension Given a clause MaxSAT tableau T for φ, a branch B of T , and a node of
B labelled with an active clause l1 ∨ · · · ∨ lr with r ≥ 2, the tableau obtained
by creating r sibling nodes below B and labelling each node with a different unit
clause from {l1, . . . , lr} is a clause MaxSAT tableau for φ. The clause l1∨ · · ·∨ lr
becomes inactive in the new branches, and the unit clauses l1, . . . , lr are declared
to be active.

Contradiction Given a clause MaxSAT tableau T for φ, a branch B of T , and two
nodes of B labelled with two active unit clauses l and ¬l, the tableau obtained by
appending a node labelled with an empty clause (2) below B is a clause MaxSAT
tableau for φ. The unit clauses l and ¬l become inactive inB and the added empty
clauses (2) is considered active.
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Definition 3.3. Let T be a clause MaxSAT tableau for a multiset of clauses φ, and let
B be a branch of T . Branch B is saturated when all its active clauses are unit or empty,
and the contradiction rule cannot be further applied on B. Tableau T is completed iff all
its branches are saturated. The cost of a saturated branch is the number of empty clauses
in it. The cost of a completed clause MaxSAT tableau is the minimum cost among all
its branches.

The notion of saturation is crucial in MaxSAT because it indicates that the applica-
tion of expansion rules has been completed. As we show below, the minimum number
of clauses that can be falsified in a multiset of clauses φ is k iff the cost of any completed
clause MaxSAT tableau for φ is k. Hence, the systematic construction of a completed
clause MaxSAT tableau for φ provides an exact method for MaxSAT, and each com-
pleted tableau is a proof.

¬x1

¬x2

¬x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

x2

2

x3

2

x3x2

x1

2

x3

2

x2

x1

2

x3

2

x3x2

2

x1

x3

2

x2

2

Figure 3.1: A completed clause MaxSAT tableau for φ = {¬x1,¬x2,¬x3, x1 ∨ x2, x1 ∨
x3, x2 ∨ x3} that proves that the minimum number of unsatisfied clauses in φ is 2.

Example 3.2. Let φ = {¬x1,¬x2,¬x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3} be a multiset of
clauses. Figure 3.1 shows a completed clause MaxSAT tableau T for φ, and Figure 3.2
shows the steps performed for saturating the leftmost branch of T .
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¬x1

¬x2

¬x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

¬x1

¬x2

¬x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

x2x1

¬x1

¬x2

¬x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

x2x1

2

¬x1

¬x2

¬x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

x2x1

2

x3x1

¬x1

¬x2

¬x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

x2x1

2

x3x1

x3x2

¬x1

¬x2

¬x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

x2x1

2

x3x1

x3x2

2

Figure 3.2: Steps performed for saturating the leftmost branch of the completed clause
MaxSAT tableau for φ = {¬x1,¬x2,¬x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3} from Example 3.2.
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In Figure 3.2, we first create an initial tableau. Secondly, we apply the extension
rule to clause x1∨x2, and declare it inactive in the newly created branches (in the figure
we write in bold the inactive clauses in the leftmost branch, which is the branch on
which we concentrate in this example). Thirdly, we apply the contradiction rule to ¬x1

and x1, and declare these clauses inactive in the leftmost branch. Fourthly, we apply
the extension rule to x1 ∨ x3, and declare it inactive in the newly created branches.
Fifthly, we apply the extension rule to x2∨x3, and declare it inactive. Sixthly, we apply
the contradiction rule to ¬x2 and x2, and declare these clauses inactive in the leftmost
branch. No more inference rules can be applied on the leftmost branch and therefore
the branch is saturated, having as active clauses {2,2, x1,¬x3}. A similar process is
repeated to create the rest of branches in Figure 3.1.

The saturated branches of the tableau of Figure 3.1 have cost 2 except for branches
3 and 6 (counting from left to right) that have cost 3. The active clauses in each branch
are: {2,2, x1,¬x3} for the first branch, {2,2, x1,¬x2} for the second, {2,2,2}
for the third, {2,2,¬x2, x3} for the fourth, {2,2, x2,¬x3} for the fifth, {2,2,2}
for the sixth, {2,2,¬x1, x2} for the seventh, and finally {2,2,¬x1, x3} for the eight.
Therefore, the minimum number of unsatisfied clauses in φ is 2.

3.3.1 Soundness and completeness of clause MaxSAT tableaux

We prove that the minimum number of clauses that can be falsified in a multiset of
clauses φ is m iff the cost of each completed clause MaxSAT tableau for φ is m.

Theorem 3.1. Soundness. Let φ be a multiset of clauses, and let T be a completed
clause MaxSAT tableau for φ of cost m. Then, the minimum number of clauses that can
be falsified in φ is m.

Proof. The clause MaxSAT tableau T was obtained by creating a sequence of clause
MaxSAT tableaux T0, . . . , Tn (n ≥ 0) such that T0 is an initial tableau for φ, Tn = T ,
and Ti was obtained by a single application of the extension or the contradiction rule
on a branch of Ti−1 for i = 1, . . . , n. Assume that I is an optimal assignment of φ that
falsifies k clauses, where k 6= m. By induction on n, we prove that the minimum number
of active clauses that I falsifies among the branches of T0, . . . , Tn (and in particular of
T) is k:

Basis: T0 has a single branch whose nodes are labelled with the clauses of φ, and
such clauses are declared to be active in that branch. So, I falsifies k active clauses in
T0, and k is the minimum number of active clauses that can be falsified in T0.

Inductive step: Assume that the minimum number of active clauses that I falsifies
among the branches of Ti−1 is k. We prove that the minimum number of active clauses
that I falsifies among the branches of Ti is also k.

Since Ti was constructed from Ti−1 by applying either the contradiction rule or the
extension rule on a branch B of Ti−1 and the rest of branches of Ti−1 remain unchanged
in Ti, we just need to prove that I satisfies the same number of active clauses in B and
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in at least one of the newly created branches, and does not decrease that number in the
rest of newly created branches. We distinguish two cases:

• The contradiction rule was applied on B: two complementary unit clauses in B
become inactive and an empty clause is added to the new branchB′. Since exactly
one of the newly inactive unit clauses was falsified by I and we added one empty
clause, I falsifies the same number of active clauses in B and B′.

• The extension rule was applied on B: If I satisfies the extended clause C of B,
then I satisfies the leaf node of at least one of the newly created branches, say B′.
The number of unsatisfied active clauses is preserved in B′ and does not decrease
in the rest of branches. If I falsifies C, then I falsifies the leaf nodes of all the
newly created branches, and the number of unsatisfied active clauses is preserved
in all these branches because C becomes inactive after the extension.

We proved that the minimum number of active clauses that I falsifies among the
branches of T0, . . . , Tn —and in particular of T— is k but this is in contradiction with
T being a completed MaxSAT tableau for φ that has cost m: Since T is completed, the
active clauses of any branch B of T with minimum cost is the union of a multiset with
m empty clauses and a multiset of unit clauses whose complementary unit clauses do
not occur in it. The multiset of unit clauses is clearly satisfiable, and so the minimum
number of active clauses that can be falsified in B is m (not k), and is at least m in the
rest of branches of T . Hence, the minimum number of clauses that can be falsified in φ
is m.

Theorem 3.2. Completeness. Let φ be a multiset of clauses whose minimum number
of clauses that can be falsified ism. Then, each completed clause MaxSAT tableau for φ
has cost m.

Proof. Each clause MaxSAT tableau for φ can be completed after a finite number of
steps. This follows from the fact that the number of applications of extension rules in
a branch is bound by the number of clauses in the input multiset, and the number of
applications of the contradiction rules is bounded by the number of literals occurring in
the input multiset.

Assume that there is a completed MaxSAT tableau T for φ that does not have cost
m. We distinguish two cases:

(i) T has a branch B that has cost k, where k < m. Then, the active clauses of B are
the union of a multiset with k empty clauses and a satisfiable multiset of unit clauses
(otherwise, B could not be saturated because the contradiction rule could be applied).
We define an assignment I of φ as follows: I(x) = 1 (I(x) = 0) if x (¬x) is an active
clause of B, and I(x′) = 0 if variable x′ does not occur in any active clause of B. We
next prove that I satisfies at least |φ| − k clauses of φ, or equivalently I falsifies at most
k clauses of φ. I is clearly an optimal assignment of B. If we undo all the applications
of the contradiction rule in B, we get a branch B′ whose active clauses form a multiset
of unit clauses φ′ that contains as many unit clauses as clauses are in φ, and each literal
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of each unit clause of φ′ was derived from a different clause of φ. Since the clause
of φ′ are unit and there are k complementary pairs of unit clauses, I satisfies |φ| − k
clauses of φ′, and at least |φ| − k clauses of φ. We have therefore an assignment of φ
that cannot falsify more than k clauses, but this is in contradiction with m being the
minimum number of clauses that can be falsified in φ because k < m.

(ii) T has no branch of cost m. This is in contradiction with m being the mini-
mum number of clauses that can be falsified in φ. Since the tableau rules preserve the
minimum number of unsatisfied clauses, T must have a saturated branch of cost m.

Hence, each completed clause MaxSAT tableau T for a multiset of clauses φ has
cost m if the minimum number of clauses that can be falsified in φ is m.

From the proof of Theorem 3.2, it follows that we can derive an optimal MaxSAT
assignment I from a saturated branch B of minimum cost. The optimal assignment I
sets a variable x to 1 (0) if B has a node labelled with the active clause x (¬x); the rest
of variables can be set to either 0 or 1.

3.3.2 Clause tableaux for WMaxSAT and WPMaxSAT

Many practical optimization problems admit more compact and natural MaxSAT en-
codings if they are encoded using weighted clauses instead of unweighted ones, as well
as considering hard and soft clauses. To keep the description as simple as possible, we
presented clause tableaux for Unweighted MaxSAT, but the proposed calculus can be
extended to solve both WMaxSAT and WPMaxSAT.

In the case of WMaxSAT, we should keep in mind that a weighted clause (c, w) is
equivalent to having w copies of the unweighted clause c. So, the application of the con-
tradiction rule to two unit clauses (l, w1), (¬l, w2) amounts to adding an active empty
clause with weight w = min(w1, w2) (i.e.; (2, w)), declare the clauses (l, w1), (¬l, w2)
to be inactive, and add the active clauses (l, w1 − w) and (¬l, w2 − w) in the newly
created branch. Clauses with weight 0 are not added. The application of the exten-
sion rule to a weighted clause (l1 ∨ · · · ∨ lr, w), amounts to appending r nodes be-
low the current branch, labelling each node with a different unit weighted clause from
{(l1, w), . . . , (lr, w)}. Finally, to get a complete calculus, we need to define a contrac-
tion rule: if a branch contains two active clauses (C,w1) and (C,w2), inactivate these
clauses and add the active clause (C,w1 + w2) in the newly created branch.

Example 3.3. Let φ = {(¬x1, 3), (¬x2, 2), (x1 ∨ x2, 2)} be a multiset of weighted
clauses. Figure 3.3 shows a completed clause WMaxSAT tableau T for φ. We first
apply the extension rule to (x1 ∨ x2, 2) and derive two new branches. In the leftmost
branch, the application of the contradiction rule to (¬x1, 3) and (x1, 2) yields (2, 2) and
(¬x1, 1). In the rightmost branch, the application of the contradiction rule to (¬x2, 2)
and (x2, 2) yields (2, 2). The two saturated branches of the tableau have cost 2. The
active clauses are: {(¬x2, 2), (2, 2), (¬x1, 1)} for the left branch and {(¬x1, 3), (2, 2)}
for the right branch. Therefore, the minimum sum of weights of unsatisfied clauses in φ
is 2.
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(¬x1, 3)

(¬x2, 2)

(x1 ∨ x2, 2)

(x2, 2)

(2, 2)

(x1, 2)

(2, 2)

(¬x1, 1)

Figure 3.3: A completed clause WMaxSAT tableau for the multiset of weighted clauses
φ = {(¬x1, 3), (¬x2, 2), (x1 ∨ x2, 2)} that proves that the minimum sum of weights of
unsatisfied clauses in φ is 2.

In the case of WPMaxSAT, we should add, to each hard clause, a weight greater
than the sum of weights of the input soft clauses, and proceed as in the WMaxSAT case.
Moreover, we should prune those branches in which a contradiction is detected between
hard clauses or clauses derived from hard clauses, because they correspond to unfeasible
solutions.

3.4 Clause tableaux for MinSAT

We showed, in the previous section, that the minimum number of empty clauses among
the branches of a completed clause MaxSAT tableau for a multiset of clauses φ is equal
to the number of clauses falsified by an optimal MaxSAT assignment of φ. Neverthe-
less, the maximum number of empty clauses among the branches of a completed clause
MaxSAT tableau for φ is not the maximum number of clauses that can be falsified in φ;
i.e., clause MaxSAT tableaux cannot solve MinSAT. This is so because the extension
rule is unsound for MinSAT in the sense that it does not preserve the maximum number
of clauses that can be falsified.

In the rest of the section, we first define a clause MinSAT tableau calculus that
incorporates a sound extension rule. We then prove the soundness and completeness of
the proposed calculus. Finally, we present how our results can be extended to deal with
WMinSAT and WPMinSAT instances. Note that, in MinSAT, we also need to derive
contradictions from satisfiable instances because the maximum number of clauses that
can be falsified in a satisfiable instance other than the empty multiset is always greater
than or equal to one.

Definition 3.4. A clause MinSAT tableau is a finite tree whose nodes are labelled with
multisets of clauses. A branch is a maximal path in a tree.
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Note that we now label the nodes of a tableau with multisets of clauses instead of
clauses. Also note that clause MinSAT tableaux do not need to declare clauses either as
active or inactive.

Given a multiset of clauses φ, where l1, . . . , lr are the literals occurring in φ, we re-
call that the instantiation of l1, . . . , lr in φ, denoted by φl1|···|lr , is the multiset of clauses
resulting of eliminating all the occurrences of ¬l1, . . . ,¬lr from φ and removing all the
clauses with occurrences of l1, . . . , lr.

Definition 3.5. Let φ be a multiset of clauses. A clause MinSAT tableau for φ is
constructed by a sequence of applications of the following rules:

Initialize A tree with a single branch with a single node labelled with the multiset of
clauses φ is a clause MinSAT tableau for φ. Such a tableau is called initial tableau.

Extension Given a clause MinSAT tableau T for φ, and a branch B of T whose leaf
node is labelled with a multiset φ′ = φ′′ ∪ {l1 ∨ · · · ∨ lr}, the tableau obtained
by appending a new left node below B labelled with the multiset φ′¬l1|···|¬lr and a
new right node below B labelled with the multiset φ′′ is a clause MinSAT tableau
for φ.

In the definition of the extension rule, note that φ′¬l1|···|¬lr = {2} ∪ φ′′¬l1|···|¬lr .

Definition 3.6. Let T be a clause MinSAT tableau for a multiset of clauses φ, and let
B be a branch of T . Branch B is saturated iff its leaf node is labelled with the empty
multiset or with a multiset of empty clauses. Tableau T is completed iff all its branches
are saturated. The cost of a saturated branch is the number of empty clauses in its leaf
node. The cost of a completed clause MinSAT tableau is the maximum cost among all
its branches.

Example 3.4. Let φ1 = {¬x1,¬x2, x1∨x2} and φ2 = {x1∨x2,¬x1∨x3,¬x2∨¬x3}
be multisets of clauses. Figures 3.4 and 3.5 show completed clause MinSAT tableaux
for φ1 and φ2, respectively. The leaf nodes of the branches of the tableau for φ1 have
at most cost 2, and of the tableau for φ2 have at most cost 1. Therefore, the maximum
number of clauses that can be falsified is 2 in φ1 and 1 in φ2. Note that φ2 is satisfiable.

3.4.1 Soundness and completeness of clause MinSAT tableaux
We first prove that the extension rule preserves the maximum number of unsatisfied
clauses among the branches of a clause MinSAT tableau and then the soundness and
completeness of the clause MinSAT tableau calculus.

Lemma 3.1. Let φ = φ′ ∪ {l1 ∨ · · · ∨ lr} be a multiset of clauses, and let minsat(ψ)
denote the maximum number of clauses that can be falsified in the multiset of clauses ψ.
It holds that minsat(φ) = max(minsat(φ′),minsat(φ¬l1|···|¬lr)).
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{¬x1,¬x2, x1 ∨ x2}

{¬x1,¬x2}

{¬x2}

∅{2}

{2,¬x2}

{2}{2,2}

{2}

Figure 3.4: Completed clause MinSAT tableau for φ1 = {¬x1,¬x2, x1 ∨ x2}.

{x1 ∨ x2,¬x1 ∨ x3,¬x2 ∨ ¬x3}

{¬x1 ∨ x3,¬x2 ∨ ¬x3}

{¬x2 ∨ ¬x3}

∅{2}

{2}

{2}

Figure 3.5: Completed clause MinSAT tableau for φ2 = {x1∨x2,¬x1∨x3,¬x2∨¬x3}.



50 Chapter 3 : Clausal Tableau Calculi for MaxSAT and MinSAT

Proof. We first prove the following pair of inequalities: minsat(φ) ≥ minsat(φ′) and
minsat(φ) ≥ minsat(φ¬l1|···|¬lr).

Since φ′ ⊂ φ and the maximum number of clauses that can be falsified in every
subset of φ cannot be greater than the maximum number of clauses that can be falsified
in φ, it holds that minsat(φ) ≥ minsat(φ′).

Assume that there is an optimal assignment I ′ of φ¬l1|···|¬lr that falsifies more clauses
than an optimal assignment I of φ. Then, we could extend I ′ by setting I ′(li) = 0 for
i = 1, . . . , r, and get an optimal assignment of φ that falsifies more clauses than I: If
we restore the occurrences of the literals l1, . . . , lr in the clauses of φ¬l1|···|¬lr in which
such literals were eliminated when ¬l1, . . . ,¬lr were instantiated in φ, we get a multiset
φ′′ such that φ′′ ⊆ φ. It holds that the number of clauses that I ′ falsifies in φ¬l1|···|¬lr and
φ′′ is the same because I ′ falsifies the added literals, but this is in contradiction with I
being optimal. Therefore, minsat(φ) ≥ minsat(φ¬l1|···|¬lr).

Taking into account the previous inequalities, we proceed to prove now the equality
minsat(φ) = max(minsat(φ′),minsat(φ¬l1|···|¬lr)). Let I be an optimal assignment
of φ. We distinguish two cases:
i) I satisfies l1 ∨ · · · ∨ lr. Then, I falsifies the same clauses in φ and φ′, and is also
an optimal assignment of φ′ because minsat(φ) ≥ minsat(φ′). Because it holds that
minsat(φ) = minsat(φ′), and also minsat(φ) ≥ minsat(φ¬l1|···|¬lr), it follows that
minsat(φ) = max(minsat(φ′),minsat(φ¬l1|···|¬lr)).
ii) I falsifies l1 ∨ · · · ∨ lr. Then, I sets l1, . . . , lr to 0 and I falsifies the same number
of clauses in φ and φ¬l1|···|¬lr . Since minsat(φ) ≥ minsat(φ¬l1|···|¬lr), it follows that I
is also an optimal assignment of φ¬l1|···|¬lr . Since minsat(φ) = minsat(φ¬l1|···|¬lr) and
minsat(φ) ≥ minsat(φ′), then minsat(φ) = max(minsat(φ′),minsat(φ¬l1|···|¬lr)).

Theorem 3.3. Soundness. Let φ be a multiset of clauses, and let T be a completed
clause MinSAT tableau for φ that has cost m. Then, the maximum number of clauses
that can be falsified in φ is m.

Proof. The clause MinSAT tableau T was obtained by creating a sequence of clause
MinSAT tableaux T0, . . . , Tn (n ≥ 0) such that T0 is an initial tableau for φ, Tn = T ,
and Ti was obtained by a single application of the extension rule on a leaf node of a
branch of Ti−1 for i = 1, . . . , n. Assume that I is an optimal assignment of φ that
falsifies k clauses, where k 6= m. By induction on n, we prove that the maximum
number of clauses that I falsifies among the leaf nodes of the branches of T0, . . . , Tn
(and in particular of T) is k:

Basis: T0 has a single branch with one node labelled with the clauses of φ. So, I
falsifies k clauses in T0, and k is the maximum number of clauses that can be falsified
in T0.

Inductive step: Assume that the maximum number of clauses that I falsifies among
the leaf nodes of the branches of Ti−1 is k. We prove that the maximum number of
clauses that I falsifies among the leaf nodes of the branches of Ti is also k.
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Ti was constructed from Ti−1 by applying the extension rule on a branch B of Ti−1.
If I falsifies k clauses of the leaf node of B, by Lemma 3.1, the maximum number of
clauses that I falsifies among the branches of Ti remains k. If I falsifies r clauses of the
leaf node of B, where r < k, then I falsifies k clauses of the leaf node of a branch B′ of
Ti (B′ 6= B and B′ is also a branch of Ti−1), and I cannot falsify more than k clauses in
the leaf nodes of any of the two branches derived from B because otherwise we could
define an assignment that falsifies more than k clauses of the leaf node of B.

We proved that the maximum number of clauses that I falsifies among the leaf nodes
of the branches of T0, . . . , Tn —and in particular of T— is k, but this is in contradiction
with T being a completed clause MinSAT tableau for φ that has cost m. Since T is
completed and has cost m, the leaf nodes are labelled with either a multiset of empty
clauses or the empty formula, and there is at least a branch B whose leaf node is a
multiset withm empty clauses. So, the maximum number of clauses that can be falsified
in the leaf node of B is m (and not k), and is at most m in the rest of leaf nodes of
branches of T . Hence, the maximum number of clauses that can be falsified in φ is
m.

Theorem 3.4. Completeness. Let φ be a multiset of clauses whose maximum number
of clauses that can be falsified in φ is m. Then, any completed clause MinSAT tableau
for φ has cost m.

Proof. Each clause MinSAT tableau T for φ can be completed after a finite number of
steps. This follows from the fact that the extension rule either eliminates one clause or
replaces one clause with an empty clause at each application of the rule. Moreover, the
instantiation of literals neither increases the number of clauses nor increases the number
of literals per clause. Thus, after a finite number of applications of the extension rule, T
is transformed into a completed clause MinSAT tableau.

Assume that there is a completed clause MinSAT tableau T for φ that does not have
cost m. We distinguish two cases:

(i) T has a branch B that has cost k, where k > m. Then, the leaf node of B has k
empty clauses, and each empty clause is derived from a clause of φ; let C1, . . . , Ck be
such clauses. We define an assignment I of φ as follows: I(x) = 1 (I(x) = 0) if ¬x
(x) occurs in {C1, . . . , Ck}; and I(x) = 0 if variable x does not occur in {C1, . . . , Ck}.
Note that {C1, . . . , Ck} only contain literals with both the same variable and polar-
ity because the corresponding literals with opposite polarity occur in clauses that were
eliminated. Assignment I falsifies at least k clauses of φ because each literal occurring
in {C1, . . . , Ck} is unsatisfied by I . Since k > m, this is in contradiction with m being
the maximum number of clauses that can be falsified in φ.

(ii) T has no branch of cost m. This is in contradiction with m being the maximum
number of clauses that can be falsified in φ. Since an optimal assignment falsifies m
clauses of the initial tableau and the leaf nodes of a completed clause MinSAT tableau
are labelled with either a multiset of empty clauses or the empty formula, by Lemma 3.1,
T must have a branch of cost m.
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From the proof of Theorem 3.4 it follows that, for building an optimal assignment
I from a completed tableau, we have to consider a branch with a maximum number of
empty clauses in its leaf node and identify the input clauses that became empty. Then,
for each one of such clauses, say l1 ∨ · · · ∨ lm, we define I(li) = 0 for i = 1, . . . ,m;
and the variables that do not appear in such clauses can be set to an arbitrary value. For
example, in the tableau for φ1 = {¬x1,¬x2, x1 ∨ x2} of Figure 3.4, the input clauses
that became empty in the branch with maximum cost are {¬x1,¬x2} and, therefore,
I(x1) = I(x2) = 1 is an optimal assignment of φ1.

3.4.2 Clause tableaux for WMinSAT and WPMinSAT
We presented clause tableaux for Unweighted MinSAT to keep the description as simple
as possible. We now describe how the clause MinSAT tableau calculus can be extended
to deal with WMinSAT and WPMinSAT instances.

In the case of WMinSAT, we use the same tableau rules but keeping the weights of
the clauses. Note that the extension rule either removes clauses or eliminates literals.
When a literal is eliminated from a clause, the shortened clause maintains the same
weight. In addition, we also could need to collapse several weighted clauses of the form
(C,w1), . . . , (C,wk) into a single weighted clause (C,w1 + · · ·+ wk).

Example 3.5. Let φ = {(x1, 1), (¬x2, 3), (x1 ∨¬x2, 5), (x1 ∨¬x3, 2), (x2 ∨ x3, 1)} be
a multiset of weighted clauses. Figure 3.6 shows a completed clause WMinSAT tableau
T for φ. The leaf nodes of the branches of T have at most cost 11. Therefore, the
maximum sum of the weights of the clauses that can be falsified in φ is 11.

In the case of WPMinSAT, we must first derive an equivalent WMinSAT instance
and then solve the derived instance as explained above. We will assume that there is an
assignment that satisfies all the hard clauses, since otherwise no feasible solution exists.

Given a WPMinSAT instance φ whose number of hard clauses is #hard and whose
sum of the weights of all its soft clauses is w, we derive a WMinSAT instance φ′ by
adding (i) all the soft clauses in φ, and (ii) the soft clauses (¬l1, w+1), (l1∨¬l2, w+1),
. . . , (l1 ∨ l2 ∨ · · · ∨ ¬lk, w + 1) for each hard clause h = l1 ∨ l2 ∨ · · · ∨ lk in φ.

Observe that an assignment I satisfies h iff I falsifies exactly one clause among
¬l1, l1 ∨ ¬l2, . . . , l1 ∨ l2 ∨ · · · ∨ ¬lk; or equivalently, I falsifies h iff I satisfies all these
clauses. Since the clauses derived from hard clauses have weight w+1 and we assumed
that the hard part of φ is satisfiable, every optimal solution of φ′ falsifies exactly one
clause derived from a hard clause and is also an optimal solution of φ. Besides, if the
maximum sum of the weights of the unsatisfied clauses in φ′ is m, then the maximum
sum of the weights of the unsatisfied clauses in φ ism−#hard×(w+1). The treatment
of hard clauses in MinSAT tableaux is not as in MaxSAT tableaux, where it is enough
to add the weight w+ 1 to each hard clause and solve the resulting WMaxSAT instance.
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{¬x1,¬x1,¬x2,¬x2, x1 ∨ x2}

{2,2,¬x1,¬x1}

{2,2}

{2,2,¬x2,¬x2}

{2,2}

Figure 3.7: Proof tree for {¬x1,¬x1,¬x2,¬x2, x1 ∨ x2} using SAT clause branching.

3.5 Clause tableaux for MaxSAT and MinSAT

After defining a clause tableau calculus for MaxSAT and another for MinSAT, a natural
question is whether there is a calculus that is valid for both MaxSAT and MinSAT.

In this section, we propose a tableau calculus for MaxSAT and MinSAT that pre-
serves the number of unsatisfied clauses in the generated subproblems adequately. The
leaf nodes of a completed tableau contain a number of empty clauses ranging between
the minimum and the maximum number of unsatisfied clauses in the input formula, and
there is at least one branch with the minimum value and at least one branch with the
maximum value. This scheme also generates optimal MaxSAT and MinSAT assign-
ments by inspecting the optimal branches.

A natural extension of clause tableaux is to perform some kind of local inference at
each node, as MinSAT tableaux do in one of the branches when assigning the variables
occurring in a select clause to force its violation. In SAT, assuming that the initial
tableau contains a single node with the input set of clauses, we can introduce local
inference by applying the following extension rule: If the leaf node of a branch B is
labelled with the set of clauses φ = φ′ ∪ {l1 ∨ · · · ∨ lk}, then append k sibling nodes
below B labelled with φl1 , . . . , φlk . Then, the input set of clauses is unsatisfiable iff the
empty clause has been derived in each branch. Actually, if the local inference applied
is unit propagation instead of the instantiation of literal li (i.e., φli), also known as unit
clause rule, we get the DPLL procedure [80] with clause branching [101].

Unfortunately, the outlined SAT approach is unsound for MaxSAT and MinSAT be-
cause it does not preserve neither the maximum nor the minimum number of unsatisfied
clause. For example, if we consider the multiset of clauses φ = {¬x1,¬x1,¬x2,¬x2, x1∨
x2}, the generated tableau has two leaf nodes with two empty clauses, as Figure 3.7
shows. Note that we first branch on x1 (labelling the node with φx1) and x2 (labelling
the node with φx2) and then instantiate¬x2 in the left branch and¬x1 in the right branch.
However, the MaxSAT solution of φ is one and the MinSAT solution is four. Also note
that branching on l1, . . . , lk is sound in MaxSAT tableaux, but becomes unsound when
local inference is added to each node.

The key point to integrate MaxSAT and MinSAT is to define an extension rule that
preserves both the maximum and the minimum number of unsatisfied clauses. This is
what we do in the clause MaxMinSAT tableau defined below.
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Definition 3.7. A clause MaxMinSAT tableau is a finite tree whose nodes are labelled
with multisets of clauses. A branch is a maximal path in a tree.

Given a multiset of clauses φ, where l1, . . . , lr are the literals occurring in φ, we
recall again, in this section, that the instantiation of l1, . . . , lr in φ, denoted by φl1|···|lr ,
is the multiset of clauses resulting of eliminating all the occurrences of ¬l1, . . . ,¬lr
from φ and removing all the clauses with occurrences of l1, . . . , lr.

Definition 3.8. Let φ be a multiset of clauses. A clause MaxMinSAT tableau for φ is
constructed by a sequence of applications of the following rules:

Initialize A tree with a single branch with a single node labelled with the multiset of
clauses φ is a clause MaxMinSAT tableau for φ. Such a tableau is called initial
tableau.

Extension Given a clause tableau T for φ, and a branch B of T whose leaf node is
labelled with a multiset φ = φ′∪{l1∨· · ·∨ lk}, the tableau obtained by appending
k+ 1 new left nodes below B labelled with the multisets φl1 , . . . , φlk , φ¬l1,...,¬lk is
a clause MaxMinSAT tableau for φ.

Definition 3.9. Let T be a clause MaxMinSAT tableau for a multiset of clauses φ, and
let B be a branch of T . Branch B is saturated iff its leaf node is labelled with the empty
multiset or with a multiset of empty clauses. Tableau T is completed iff all its branches
are saturated. The cost of a saturated branch is the number of empty clauses in its leaf
node. The MaxSAT cost of a completed clause MaxMinSAT tableau is the minimum
cost among all its branches, and the MinSAT cost of a completed clause MaxMinSAT
tableau is the maximum cost among all its branches.

We prove below that the branches with MaxSAT and MinSAT costs provide optimal
MaxSAT and MinSAT solutions, respectively.

Example 3.6. We consider again the multiset of clauses φ = {¬x1,¬x1,¬x2,¬x2, x1∨
x2} of Figure 3.7. Figure 3.8 displays a completed clause MaxMinSAT tableau for φ.
The MaxSAT cost of the tableau is 1 and the MinSAT cost is 4. Hence, the minimum
number of clauses that can be falsified in φ is 1 and the maximum number is 4.

The next two lemmas prove that the MaxMinSAT extension rule preserves both the
maximum and the minimum number of unsatisfied clauses. In other words, we prove
its soundness. Based on these results, we then prove the completeness of the clause
MaxMinSAT tableau calculus.

Lemma 3.2. MaxSAT clause branching. Let φ be a multiset of clauses, let l1∨· · ·∨ lk
be a clause of φ, and let maxsat(φ) be the minimum number of unsatisfied clauses in φ.
Then,

maxsat(φ) = min(maxsat(φl1), . . . , maxsat(φlk), maxsat(φ¬l1,...,¬lk)) (3.1)
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{¬x1,¬x1,¬x2,¬x2, x1 ∨ x2}

{2}{2,2,¬x1,¬x1}

{2,2,2,2}{2,2}

{2,2,¬x2,¬x2}

{2,2,2,2}{2,2}

Figure 3.8: A completed clause MaxMinSAT tableau for {¬x1,¬x1,¬x2,¬x2, x1∨x2}.

Proof. Let I be an optimal MaxSAT assignment. We prove that the minimum number
of unsatisfied clauses in φ is the same as the minimum number of unsatisfied clauses
in at least one of the multisets φl1 , . . . , φlk , φ¬l1,...,¬lk , and is not smaller in the rest of
multisets. We distinguish two cases:

1. I satisfies l1∨· · ·∨ lk: If I satisfies li, 1 ≤ i ≤ k, then maxsat(φ) = maxsat(φli)
because deleting the clauses containing li and removing the occurrences of ¬li
preserves the number of unsatisfied clauses between φ and φli for every assign-
ment. Since at least one literal li is satisfied by I , the minimum number of unsat-
isfied clauses is preserved in one of the derived multisets.

If I does not satisfy lj , 1 ≤ j ≤ k, then maxsat(φ) ≤ maxsat(φlj). Assume that
there exists an assignment I ′ of φlj that falsifies less than maxsat(φ) clauses. If
we extend I ′ by assigning I ′(lj) = true, we get an assignment of φ that falsifies
less than maxsat(φ) clauses. But this is in contradiction with I being optimal.
So, it holds that maxsat(φ) ≤ maxsat(φlj).

Finally, we have to prove that maxsat(φ) ≤ maxsat(φ¬l1,...,¬lk). Observe that
maxsat(φ¬l1,...,¬lk) = maxsat(. . . (maxsat(maxsat(φ¬l1)¬l2)...)¬lk). The literals
¬li, 1 ≤ i ≤ k, that are satisfied by I preserve the number of unsatisfied clauses,
and the literals ¬lj , 1 ≤ j ≤ k, that are not satisfied by I can increase the number
of unsatisfied clauses. Since I satisfies l1 ∨ · · · ∨ lk, I does not satisfy at least one
literal in {¬l1, . . . ,¬lk} and therefore maxsat(φ) ≤ maxsat(φ¬l1,...,¬lk).

The last two cases guarantee that the number of unsatisfied clauses does not de-
crease in any case.

2. I does not satisfy l1 ∨ · · · ∨ lk: In this case, I does not satisfy any literal in the
clause. As shown above, maxsat(φ) ≤ maxsat(φli) for every i, 1 ≤ i ≤ k. On
the other hand, maxsat(φ) = maxsat(φ¬l1,...,¬lk) because I satisfies ¬l1, . . . ,¬lk,
and deleting the clauses containing ¬lj and removing the occurrences of lj pre-
serves the number of unsatisfied clauses in this case.

Lemma 3.3. MinSAT clause branching. Let φ be a multiset of clauses, let l1∨· · ·∨ lk
be a clause of φ, and let minsat(φ) be the maximum number of unsatisfied clauses in φ.



Section 3.6 : Clause tableaux for MaxSAT and MinSAT 57

Then,

minsat(φ) = max(minsat(φl1), . . . , minsat(φlk), minsat(φ¬l1,...,¬lk)) (3.2)

Proof. Let I be an optimal MinSAT assignment. We can prove, using the arguments of
Lemma 3.2, that the maximum number of unsatisfied clauses in φ is the same as the max-
imum number of unsatisfied clauses in at least one of the multisets φl1 , . . . , φlk , φ¬l1,...,¬lk ,
and is not greater in the rest of multisets. We have to take into account the following
facts: (i) If I satisfies a literal li, 1 ≤ i ≤ k, then φli clearly preserves the number
of unsatisfied clauses and so minsat(φ) = minsat(φli). (ii) If I does not satisfy lj ,
1 ≤ j ≤ k, then minsat(φ) ≥ minsat(φlj): Assume that there exists an assignment I ′

of φlj that falsifies more than minsat(φ) clauses. If we extend I ′ by assigning I ′(lj) =
true, we get an assignment of φ that falsifies more than minsat(φ) clauses. But this is
in contradiction with I being optimal. So, it holds that minsat(φ) ≥ minsat(φlj).

Theorem 3.5. A completed clause MaxMinSAT tableau for a multiset of clauses φ
provides an optimal MaxSAT assignment and an optimal MinSAT assignment.

Proof. The root node of a completed MaxMinSAT tableau is labelled with the input
formula. Such a tableau is finite because each descendant has at least one variable less
than its parents: At least one less variable in the descendants labelled with φl1 , . . . , φlk ,
and at least k less variables in the descendants labelled with φ¬l1,...,¬lk . Thus, after a
finite number of steps, the leaves of a tableau contain either the empty formula or a
multiset of empty clauses. By Lemma 3.2, all the branches with the minimum number
of empty clauses correspond to optimal MaxSAT solutions. By Lemma 3.3, all the
branches with the maximum number of empty clauses correspond to optimal MinSAT
solutions. Besides, Lemma 3.2 and Lemma 3.3 guarantee that the cost of each branch
ranges between the maximum and minimum number of unsatisfied clauses in φ.

The clauses became empty because of the literals that were instantiated at each node,
which allowed to remove the complementary literals. Thus, in the optimal branches, the
assignments that set those literals to true and the rest of literals appearing in the input
formula to an arbitrary value are optimal assignments.

All the results of this section also hold if we replace the proposed extension rule
with the following rule: If the leaf node of a branch B is labelled with the multiset
φ = φ′ ∪ {l1 ∨ · · · ∨ lk}, then append k + 1 sibling nodes below B labelled with
φl1 , φ¬l1,l2 , . . . , φ¬l1,...,¬lk−1,lk and φ¬l1,...,¬lk . This result can be proved with the same
arguments of Lemmas 3.2 and 3.3.

The extension of our approach to Weighted MaxSAT/MinSAT and Weighted Par-
tial MaxSAT/MinSAT is as in BnB MaxSAT and MinSAT algorithms [7, 138, 148].
Roughly speaking, in Weighted MaxSAT/MinSAT, we just need to propagate weights
and, given a multiset of empty weighted clauses {(2, w1), . . . , (2, wk)}, we replace it
with {(2, w1 + · · · + wk)}. In Weighted Partial MaxSAT/MinSAT, we can apply the
same inference as in SAT in the hard part.
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3.6 Concluding remarks
We have defined three complete logical calculi for MaxSAT and MinSAT. The first one
is a tableau calculus for MaxSAT, the second one is a tableau calculus for MinSAT, and
the third one is a tableau calculus that is valid for both MaxSAT and MinSAT.

These results will be the starting point for defining a genuine calculus for non-clausal
MaxSAT in the next chapter. The contributions of this chapter have inspired a natural
deduction MaxSAT calculus [66].



Chapter 4

Solving Non-Clausal MaxSAT and
Non-Clausal MinSAT

This chapter proposes two approaches to solving non-clausal MaxSAT and non-clausal
MinSAT: In the first approach, it defines three different cost-preserving clausal form
transformations –called direct, improved and Tseitin-based transformations– from non-
clausal MaxSAT/MinSAT to clausal MaxSAT/MinSAT. These transformations reduce
non-clausal MaxSAT/MinSAT to clausal MaxSAT/MinSAT so that clausal MaxSAT/Min-
SAT solvers can be used to solve the MaxSAT problem of multisets of propositional
formulas that are not necessarily in clausal form. In the second approach, it defines
a genuine tableau calculus for non-clausal MaxSAT, proves its soundness and com-
pleteness, and describes how it can be extended to deal with hard and soft formulas.
Moreover, it describes how the tableau calculus for non-clausal MaxSAT can be used to
solve non-clausal MinSAT.

The presentation closely follows the work published in two conference papers [142,
143]. The cost-preserving clausal form transformations appeared first in [142], and the
tableau calculus for non-clausal MaxSAT appeared first in [143].

4.1 Introduction
We can distinguish between clausal MaxSAT/MinSAT and non-clausal MaxSAT/Min-
SAT. Clausal MaxSAT, known simply as MaxSAT, is to find an assignment that mini-
mizes the number of unsatisfied clauses in a given multiset of clauses, and non-clausal
MaxSAT is to find an assignment that minimizes the number of unsatisfied formulas
in a given multiset of propositional formulas that are not necessarily in clausal form.
Similarly, we distinguish between clausal MinSAT and non-clausal MinSAT.

MaxSAT and MinSAT solvers require the input to be a multiset of clauses and
return an assignment that minimizes/maximizes the number of unsatisfied clauses in
the input multiset. However, many problems in real-world applications are encoded as
MaxSAT/MinSAT instances consisting of a multiset of propositional formulas that are
not necessarily clauses. Such encodings cannot be solved with modern MaxSAT/Min-
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SAT solvers.
For solving a MaxSAT/MinSAT instance consisting of a multiset of propositional

formulas, we have two options:

• Transform the input propositional formula to clausal form using a cost-preserving
transformation and then solve the resulting instance with a clausal MaxSAT/Min-
SAT solver.

• Define a genuine MaxSAT/MinSAT proof procedure that directly deals with arbi-
trary propositional formulas.

In this chapter, we first define three different cost-preserving clausal form transfor-
mations –called direct, improved and Tseitin-based transformations– from non-clausal
MaxSAT/MinSAT to clausal MaxSAT/MinSAT. These transformations reduce non-clausal
MaxSAT/MinSAT to clausal MaxSAT/MinSAT so that clausal MaxSAT/MinSAT solvers
can be used to solve the MaxSAT/MinSAT problem of multisets of arbitrary proposi-
tional formulas. We then define a genuine tableau calculus for non-clausal MaxSAT,
prove its soundness and completeness, and describe how it can be extended to deal with
Weighted Partial MaxSAT instances. We also describe how the tableau calculus for
non-clausal MaxSAT can be used to solve non-clausal MinSAT.

Before presenting the contributions, we give some background definitions, in the
following three paragraphs, to make the chapter as self-contained as possible.

A propositional formula is an expression constructed from propositional variables
using the propositional connectives ∧,∨,→ and ¬ in accordance with the following
rules: i) each propositional variable is a propositional formula; and ii) if A and B are
propositional formulas, then so are (A ∧ B), (A ∨ B), (A → B), and (¬A). A non-
clausal MaxSAT/MinSAT instance is a multiset of propositional formulas.

A truth assignment is a mapping that assigns 0 (false) or 1 (true) to each proposi-
tional variable. A propositional formula is satisfied by an assignment if it is true under
the usual truth-functional interpretation of the connectives and the truth values assigned
to the variables. Given a non-clausal MaxSAT instance φ, non-clausal MaxSAT is the
problem of finding an assignment of φ that minimizes the number of unsatisfied formu-
las. Given a non-clausal MinSAT instance φ, non-clausal MinSAT is the problem of
finding an assignment of φ that maximizes the number of unsatisfied formulas.

A weighted formula is a pair (A,w), where A is a propositional formula and w, its
weight, is a positive number. Given a multiset φ composed of hard formulas and soft
weighted formulas, non-clausal Weighted Partial MaxSAT is the problem of finding an
assignment of φ that satisfies all the hard formulas and minimizes the sum of weights
of unsatisfied soft formulas. Non-clausal Weighted Partial MinSAT is the problem of
finding an assignment of φ that satisfies all the hard formulas and maximizes the sum of
weights of unsatisfied soft formulas.

The rest of the chapter is organized as follows. Section 4.2 defines the direct, im-
proved and Tseitin-based transformations and proves their correctness. Section 4.3 de-
fines a tableau calculus for non-clausal MaxSAT and proves its completeness. More-
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over, it describes how the tableau calculus for non-clausal MaxSAT can be used to solve
non-clausal MinSAT. Section 4.4 concludes the chapter.

4.2 Clausal form transformations
There are a number of algorithms that transform a set of arbitrary propositional formulas
into a satisfiability equivalent set of clauses [179, 188]. Thus, SAT solvers requiring the
input in clausal form can decide the satisfiability of a set of propositional formulas
by using those algorithms. Unfortunately, some clausal form transformations used in
SAT are not valid in MaxSAT and MinSAT. The reason is that they do not preserve the
minimum/maximum number of unsatisfied formulas in the input set of formulas. It is
therefore important to analyze if existing SAT clausal form transformations are valid
in MaxSAT/MinSAT, as well as to investigate how they can be adapted to deal with
MaxSAT/MinSAT instances when they are not valid.

In this section, we address the problem of deriving a multiset of clauses ψ from a
multiset of arbitrary propositional formulas φ so that the minimum/maximum number
of unsatisfied clauses in ψ is equal to the minimum/maximum number of unsatisfied
formulas in φ. Thus, by deriving such cost-preserving multisets, we provide a way of
solving the MaxSAT/MinSAT problem of a multiset of arbitrary propositional formulas
with MaxSAT/MinSAT solvers in which the input is required to be a multiset of clauses.

We define below three different MaxSAT/MinSAT clausal form transformations.
The first transformation, called direct transformation, adds an additional step to the
direct SAT clausal form transformation based on applying logical equivalences. The
second transformation, called improved transformation, is a variant of the first one that
has the advantage of producing more compact encodings. The third transformation,
called Tseitin-based transformation, avoids the combinatorial explosion of the other
transformations by introducing auxiliary variables to rename subformulas.

In the rest of the section, it is clear from the context when we refer to MaxSAT/Min-
SAT or non-clausal MaxSAT/MinSAT.

4.2.1 The direct MaxSAT/MinSAT clausal form transformation
For each formula in a multiset of propositional formulas φ, we can derive its conjunctive
normal form (CNF) with the procedure below, where the uppercase letters A, B and C
denote propositional formulas.

1. Remove all the occurrences of the implications using the following rules:

(A→ B) ; (¬A ∨B)

(A↔ B) ; (¬A ∨B) ∧ (A ∨ ¬B)

2. Reduce the scope of negation until negations appear only in front of literals using
the following rules:

¬¬A; A
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¬(A ∨B) ; (¬A ∧ ¬B)

¬(A ∧B) ; (¬A ∨ ¬B)

3. Derive a multiset of conjunctions of clauses using the following rules:

A ∨ (B ∧ C) ; (A ∨B) ∧ (A ∨ C)

(A ∧B) ∨ C ; (A ∨ C) ∧ (B ∨ C)

4. Remove clauses containing a literal and its complementary because they are tau-
tological.

In SAT, the conjunction of clauses obtained in step 4 is usually represented by a set
of clauses, where each clause is interchangeably represented by the disjunction of its
literals or the set of its literals. In this thesis, we refer to such a set of clauses as direct
SAT clausal form.

Example 4.1. Let φ = {(¬x1 ↔ x1) ∧ (¬x2 ↔ x2),¬x1 ∨ x2} be a multiset of
propositional formulas, containing the formula (¬x1 ↔ x1) ∧ (¬x2 ↔ x2) and the
formula ¬x1 ∨ x2, which is already in CNF. Applying the above procedure, we get that
the CNF of the first formula is x1 ∧ ¬x1 ∧ x2 ∧ ¬x2. Thus, the SAT clausal form of φ
is {{x1}, {¬x1}, {x2}, {¬x2}, {¬x1, x2}}, which is {x1,¬x1, x2,¬x2,¬x1 ∨ x2} when
clauses are represented by disjunctions of literals instead of sets of literals.

If we look at the resulting multiset of clauses of Example 4.1 as a MaxSAT instance,
then an exact MaxSAT solver will conclude that the minimum number of unsatisfied
clauses in the clausal form of φ is 2, because we can derive a contradiction from {x1}
and {¬x1}, and another from {x2} and {¬x2}. However, the minimum number of
unsatisfied propositional formulas in φ is 1. Hence, the described SAT clausal form
transformation is not valid in MaxSAT, because it preserves logical equivalence between
the input multiset of propositional formulas and the resulting multiset of clauses but
does not preserve the minimum number of unsatisfied formulas. In other words, it is not
cost-preserving.

To overcome this drawback, we add an additional step to the previous procedure.
We start by considering the CNF of each input formula as a conjunction of clauses
C1 ∧C2 ∧ · · · ∧Cm and then impose that exactly one contradiction can be derived when
at least one of such clauses is unsatisfied. To this end, we must derive a multiset of
clauses from C1 ∧ C2 ∧ · · · ∧ Cm by applying the following cost-preserving rules:

R1: A ∧B ; {A,¬A ∨B}.

R2: ¬(A ∨B) ; {¬A,A ∨ ¬B}.

R3: {A,B} ∨ C ; {A ∨ C,B ∨ C}.
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In the following, we refer to the multiset of clauses obtained by applying R1, R2 and
R3 as direct MaxSAT clausal form.

We now prove the correctness of these rules. Actually, we prove that the rules pre-
serve the number of unsatisfied formulas for each possible truth assignment. This im-
plies that the rules preserve both the maximum and minimum number of unsatisfied
formulas and, therefore, they are cost-preserving in the case of MaxSAT and in the case
of MinSAT. Hence, the direct MaxSAT clausal form is also a direct MinSAT clausal
form.

Proposition 4.1. Let A and B be propositional formulas. For every truth assignment
of A and B, the number of unsatisfied formulas in A ∧ B is equal to the number of
unsatisfied formulas in {A,¬A ∨B}.

Proof Assume that I is an assignment that unsatisfiesA∧B. Then, I unsatisfies exactly
one formula of {A,¬A ∨ B} because A and ¬A cannot be simultaneously unsatisfied
and {A,¬A∨B} is only satisfied when A and B evaluate to true. Assume now that I is
an assignment that unsatisfies {A,¬A ∨ B}. Then, either I unsatisfies A or I satisfies
A and unsatisfies B. In both cases, I unsatisfies A ∧B. 2

Proposition 4.2. Let A and B be propositional formulas. For every truth assignment
of A and B, the number of unsatisfied formulas in ¬(A ∨ B) is equal to the number of
unsatisfied formulas in {¬A,A ∨ ¬B}.

Proof Assume that I is an assignment that unsatisfies ¬(A ∨ B). Then, I unsatisfies
exactly one formula of {¬A,A ∨ ¬B} because A and ¬A cannot be simultaneously
unsatisfied and {¬A,A ∨ ¬B} is only satisfied when A and B evaluate to false.

Assume now that I is an assignment that unsatisfies {¬A,A ∨ ¬B}. Then, either I
satisfies A or I unsatisfies A and satisfies B. In both cases, I unsatisfies ¬(A ∨B). 2

Proposition 4.3. LetA,B andC be propositional formulas. For every truth assignment
of A,B and C, the number of unsatisfied formulas in {A,B}∨C is equal to the number
of unsatisfied formulas in {A ∨ C,B ∨ C}.

Proof The correctness of the rule follows from the fact that an assignment unsatisfies
a disjunction iff it unsatisfies each disjunct in the disjunction. 2

Example 4.2. Given the formula (x1 ∨ x2) ∧ (x3 ∨ x4), which is already in CNF, we
convert it to a cost-preserving multiset of clauses for MaxSAT and MinSAT as follows:

(x1 ∨ x2) ∧ (x3 ∨ x4) =R1

{x1 ∨ x2,¬(x1 ∨ x2) ∨ (x3 ∨ x4)} =R2

{x1 ∨ x2, {¬x1, x1 ∨ ¬x2} ∨ (x3 ∨ x4)} =R3

{x1 ∨ x2,¬x1 ∨ x3 ∨ x4, x1 ∨ ¬x2 ∨ x3 ∨ x4}

Note that the derived clausal form is larger than the direct SAT clausal form.
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4.2.2 The improved MaxSAT/MinSAT clausal form transformation
A way of improving the previous transformation is by introducing auxiliary variables in
the direct SAT clausal form. As a result, we obtain a more compact clausal form that is
a Partial MaxSAT/MinSAT instance.

Definition 4.1. Let φ = {A1, . . . , Am, . . . , An} be a multiset of propositional formu-
las such that A1, . . . , Am are not clauses and Am+1, . . . , An are clauses, let CF (Ai) =
{Ci

1, . . . , C
i
ri
} be the multiset of clauses of the direct SAT clausal form of Ai for i =

1, . . . ,m, and let yA1 , . . . , yAm be auxiliary propositional variables. The improved
MaxSAT clausal form of φ is the Partial MaxSAT instance that has as hard clauses
the multiset

m⋃
i=1

{Ci
1 ∨ ¬yAi , . . . , Ci

ri
∨ ¬yAi} (4.1)

and as soft clauses the multiset
m⋃
i=1

yAi ∪
n⋃

j=m+1

Aj . (4.2)

Example 4.3. Given the multiset of propositional formulas {x1 ∧ (¬x1 ∨ x2), (x3 ∨
x2)∧(¬x3∨x2),¬x1∨¬x2}, whose formulas are in CNF, we derive the Partial MaxSAT
instance that contains the following hard clauses:

x1 ∨ ¬y1

¬x1 ∨ x2 ∨ ¬y1

x3 ∨ x2 ∨ ¬y2

¬x3 ∨ x2 ∨ ¬y2

and the following soft clauses:
y1

y2

¬x1 ∨ ¬x2

Observe that the the minimum number of unsatisfied clauses in the derived clausal
form is 1, and coincides with the minimum number of unsatisfied formulas in the input
multiset.

The following proposition states that the minimum number of propositional formu-
las that can be unsatisfied in the input multiset is equal to the the minimum number of
soft clauses that can be unsatisfied in the resulting Partial MaxSAT instance.

Proposition 4.4. The improved MaxSAT clausal form transformation is cost-preserving.

Proof It follows from the fact that all the occurrences of the auxiliary variables yAi
in the hard part of the improved MaxSAT clausal form have negative polarity. Then,
when at least one clause of the direct SAT clausal form of the propositional formula Ai
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is unsatisfied, yAi must be set to false to satisfy the hard part and the unit soft clause yAi
becomes unsatisfied. In this way, an optimal assignment of the input multiset of propo-
sitional formulas unsatisfies Ai iff an optimal assignment of the improved MaxSAT
clausal form unsatisfies the unit clause yAi , which is the single soft clauses related to
Ai. 2

The improved MaxSAT clausal form transformation is not valid for MinSAT. Ex-
ample 4.3 provides a counterexample: the maximum number of unsatisfied clauses in
the derived instance is 3, but the maximum number of unsatisfied formulas in the input
multiset is 2. To overcome this problem, we need to define an improved MinSAT clausal
form.

Definition 4.2. Let φ = {A1, . . . , Am, . . . , An} be a multiset of propositional formu-
las such that A1, . . . , Am are not clauses and Am+1, . . . , An are clauses, let CF (Ai) =
{Ci

1, . . . , C
i
ri
} be the multiset of clauses of the direct SAT clausal form of Ai for i =

1, . . . ,m, and let yA11 , . . . , yA1r1
, . . . , yAm1 , . . . , yAmrm be auxiliary propositional vari-

ables. The improved MinSAT clausal form of φ is the Partial MinSAT instance that has
as hard clauses the multiset

m⋃
i=1

{¬Ci
1 ∨ yAi1 , . . . ,¬Ci

ri
∨ yAiri} (4.3)

and as soft clauses the multiset

m⋃
i=1

yAi1 ∪
m⋃
i=1

¬yAi1 ∨ yAi2 ∪ · · · ∪
m⋃
i=1

¬yAi1 ∨ ¬yAi2 · · · ∨ yAiri ∪
n⋃

j=m+1

Aj . (4.4)

The main differences between the improved MaxSAT and MinSAT clausal forms are
the following: (i) for each input formula Ai, we need as many auxiliary propositional
variables as clauses in the direct SAT clausal form of Ai; (ii) The clauses added in the
hard part are binary; (iii) when a variable yAij is unsatisfied, the clause Ci

j is unsatisfied;
and (iv) the soft clauses yAi1 ,¬yAi1 ∨ yAi2 , . . . ,¬yAi1 ∨ ¬yAi2 · · · ∨ yAiri guarantee that
exactly one of these soft clauses is unsatisfied when at least one clause in CF (Ai) =
{Ci

1, . . . , C
i
ri
} is unsatisfied.

Example 4.4. Given the multiset of propositional formulas {x1 ∧ (¬x1 ∨ x2), (x3 ∨
x2) ∧ (¬x3 ∨ x2),¬x1 ∨ ¬x2}, we derive the Partial MinSAT instance that contains the
following hard clauses:

¬x1 ∨ y11

x1 ∨ y12

¬x2 ∨ y12

¬x3 ∨ y21

¬x2 ∨ y21

x3 ∨ y22

¬x2 ∨ y22
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and the following soft clauses:
y11

¬y11 ∨ y12

y21

¬y21 ∨ y22

¬x1 ∨ ¬x2

Observe that the maximum number of unsatisfied clauses in the derived clausal form
is 2, and coincides with the maximum number of unsatisfied formulas in the input mul-
tiset.

The main problem of the two preceding transformations is that they can produce
multisets of clauses whose size is exponential in the size of the corresponding input
propositional formulas due to the application of the distributivity laws. To get a linear-
size transformation, we should use the transformation defined in the next section.

4.2.3 The Tseitin-style MaxSAT/MinSAT clausal form transforma-
tion

The way of obtaining a clausal form from a propositional formula A with the Tseitin
transformation [188] in SAT relies on adding an auxiliary variable yρ for each subfor-
mula ρ of A that is not a literal. Each auxiliary variable yρ renames a subformula ρ,
depending on its top-most connective, by adding one of the following equivalences:

• yρ ↔ yB ◦ yC if ρ = B ◦ C and ◦ ∈ {∧,∨,↔,→}

• yρ ↔ ¬yB if ρ = ¬B

where B and C are subformulas of ρ and yB (yC) is equal to B (C) if B (C) is a literal.
More precisely, given a propositional formula A that it is not a clause, the Tseitin

transformation derives the following clausal form:

{yA} ∪


⋃

ρ ∈ SF (A)
ρ 6∈ Lit(A)

Def(A, ρ)

 (4.5)

where yA is the auxiliary variable associated with A, SF (A) is the set of subformulas
of A, Lit(A) is the set of literals occurring in A, and Def(A, ρ) is the definition of
subformula ρ in A (see Definition 4.3).

Definition 4.3. Given a propositional formula A and a subformula ρ of A that is not a
literal, the definition of subformula ρ in A, denoted by Def(A, ρ), is defined as follows:

• If ρ = B ∧ C, then

Def(A, ρ) = {¬yρ ∨ yB,¬yρ ∨ yC , yρ ∨ ¬yB ∨ ¬yC}
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• If ρ = B ∨ C, then

Def(A, ρ) = {¬yρ ∨ yB ∨ yC , yρ ∨ ¬yB, yρ ∨ ¬yC}

• If ρ = B → C, then

Def(A, ρ) = {¬yρ ∨ ¬yB ∨ yC , yρ ∨ yB, yρ ∨ ¬yC}

• If ρ = B ↔ C, then

Def(A, ρ) = {yρ ∨ yB ∨ yC , yρ ∨ ¬yB ∨ ¬yC ,
¬yρ ∨ ¬yB ∨ yC ,¬yρ ∨ yB ∨ ¬yC}

• If ρ = ¬B, then
Def(A, ρ) = {¬yρ ∨ ¬yB, yρ ∨ yB}

Example 4.5. The Tseitin-style SAT clausal form transformation of the propositional
formula (¬x1 ↔ x1) ∧ (¬x2 ↔ x2) of Example 4.1 is as follows:

{y1,
¬y1 ∨ y2,¬y1 ∨ y3, y1 ∨ ¬y2 ∨ ¬y3,
¬y2 ∨ x1,¬y2 ∨ ¬x1,
¬y3 ∨ x2,¬y3 ∨ ¬x2}

where y1 denotes y(¬x1↔x1)∧(¬x2↔x2), y2 denotes y(¬x1↔x1) and y3 denotes y(¬x2↔x2).
Note that the second line corresponds to y1 ↔ y2 ∧ y3, the thirth line to y2 ↔ (¬x1 ↔
x1) and the fourth line to y3 ↔ (¬x2 ↔ x2). Also note that tautological clauses have
been removed.

The next definition provides a Tseitin-style clausal form transformation for MaxSAT.

Definition 4.4. Let φ = {A1, . . . , Am, . . . , An} be a multiset of propositional formulas
such that A1, . . . , Am are not clauses and Am+1, . . . , An are clauses, and let T (Ai) be
the multiset of clauses derived by applying Equation 4.5 for i = 1, . . . ,m. The Tseitin-
style MaxSAT clausal form transformation of φ is the Partial MaxSAT instance that has
as hard clauses the multiset

m⋃
i=1

(T (Ai) \ {yAi}) (4.6)

and as soft clauses the multiset
m⋃
i=1

yAi ∪
n⋃

j=m+1

Aj . (4.7)

Example 4.6. The Tseitin-style MaxSAT clausal form transformation of φ = {x1 ∧
x2, x3∧x4,¬x1∨¬x3,¬x2∨¬x4} is the Partial MaxSAT instance that has the following
hard clauses:
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¬y1 ∨ x1

¬y1 ∨ x2

y1 ∨ ¬x1 ∨ ¬x2

¬y2 ∨ x3

¬y2 ∨ x4

y2 ∨ ¬x3 ∨ ¬x4

and the following soft clauses:
y1

y2

¬x1 ∨ ¬x3

¬x2 ∨ ¬x4

Proposition 4.5. The Tseitin-style MaxSAT clausal form transformation is cost-
preserving.

Proof It follows from the fact that we can build a satisfying assignment of T (Ai) \
{yAi}. When the satisfaction of T (Ai) \ {yAi} forces yAi to be true, then Ai is satisfied;
and when it forces yAi to be false, then Ai is unsatisfied. Therefore, the minimum
number of unsatisfied soft clauses in the Tseitin-style MaxSAT clausal form is equal
to the minimum number of unsatisfied formulas in the input multiset of propositional
formulas. Note that the soft unit clause yAi is the single soft clause related to Ai and the
variable yAi does not appear in the Tseitin transformations of the rest of formulas of the
input multiset. 2

Interestingly, the Tseitin-style MaxSAT clausal form transformation is also a Tseitin-
style MinSAT clausal form transformation. A MaxSAT solver minimizes the variables
yAi that are false and, therefore, maximizes the number of formulas Ai that are satisfied.
A MinSAT solver maximizes the variables yAi that are false and, therefore, minimizes
the number of formulas Ai that are satisfied. This case is interesting because the same
encoding is valid for both MaxSAT and MinSAT.

4.2.4 Dealing with weights
If we associate a weight to each propositional formula, this weight can be easily incor-
porated into the clausal form transformations defined so far. In the case of the direct
MaxSAT/MinSAT clausal form transformation, we associate the weight of the formula
to each clause related to that formula; it works because at most one of such clauses can
be unsatisfied in the derived MaxSAT/MinSAT instance. In the case of the improved
clausal form transformations, for MaxSAT, we associate the weight of the formula Ai
to the soft unit clause yAi , which is the single soft clause related to Ai. For Min-
SAT, we associate the weight of the formula Ai to each one of the following clauses
yAi1 ,¬yAi1 ∨ yAi2 , . . . ,¬yAi1 ∨ ¬yAi2 · · · ∨ yAiri ; it works because at most one of such
clauses can be unsatisfied. In the case of the Tseitin-style MaxSAT/MinSAT clausal
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form transformations we associate the weight of the formula Ai to the soft unit clause
yAi , which is the single soft clause related to Ai.

If we consider hard formulas, we can add as hard clauses any SAT clausal form
transformation of the hard formulas. We do not need to use any MaxSAT/MinSAT
clausal form transformations because hard clauses are always satisfied in any optimal
solution.

Example 4.7. Given the multiset of propositional formulas φ = {x1∧(¬x1∨x2), (x3∨
x2) ∧ (¬x3 ∨ x2),¬x1 ∨ ¬x2} of Example 4.3, if we assign a weight of 3 to the first
formula of φ, a weight of 2 to the second formula and a weight of 5 to the third formula,
we get the improved MaxSAT clausal form consisting of the following hard clauses:

x1 ∨ ¬y1

¬x1 ∨ x2 ∨ ¬y1

x3 ∨ x2 ∨ ¬y2

¬x3 ∨ x2 ∨ ¬y2

and the following soft clauses:

(y1, 3)
(y2, 2)
(¬x1 ∨ ¬x2, 5)

Example 4.8. Given the multiset of propositional formulas φ = {x1∧x2, x3∧x4,¬x1∨
¬x3,¬x2 ∨ ¬x4} of Example 4.6, if we assign a weight of 2 to the first two formulas
and a weight of 5 to the last two formulas, and introduce the hard constraint x1 ↔ x4,
we get the Tseitin-style MaxSAT clausal form consisting of the following hard clauses:

¬y1 ∨ x1

¬y1 ∨ x2

y1 ∨ ¬x1 ∨ ¬x2

¬y2 ∨ x3

¬y2 ∨ x4

y2 ∨ ¬x3 ∨ ¬x4

y3

y3 ∨ x1 ∨ x4

y3 ∨ ¬x1 ∨ ¬x4

¬y3 ∨ ¬x1 ∨ x4

¬y3 ∨ x1 ∨ ¬x4

and the following soft clauses:

(y1, 2)
(y2, 2)
(¬x1 ∨ ¬x3, 5)
(¬x2 ∨ ¬x4, 5)
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α α1 α2

A ∧B A B

¬(A ∨B) ¬A ¬B

¬(A→ B) A ¬B

β β1 β2

A ∨B A B

¬(A ∧B) ¬A ¬B

A→ B ¬A B

Table 4.1: α-formulas and β-formulas.

4.3 Tableaux for Non-Clausal MaxSAT and MinSAT

In this section, we define a complete tableau calculus for non-clausal MaxSAT and
describe how this calculus can be used to solve non-clausal MinSAT.

Given a multiset of propositional formulas φ, we prove that the calculus is sound
in the sense that if the minimum number of contradictions derived among the branches
of a completed tableau for φ is m, then the minimum number of unsatisfied formulas
in φ is m. We also prove that it is complete in the sense that if the minimum number of
unsatisfied formulas in φ is m, then the minimum number of contradictions among the
branches of any completed tableau for φ is m. Moreover, we describe how to extend the
proposed calculus to deal with hard and weighted soft formulas. Finally, we describe
how to solve non-clausal MinSAT with non-clausal MaxSAT tableaux.

Before presenting tableaux for non-clausal MaxSAT, we provide a brief introduction
of tableaux for non-clausal SAT and show that they are unsound for MaxSAT.

4.3.1 Non-clausal SAT tableaux

One can group all propositional formulas of the form (A ◦ B) and ¬(A ◦ B), where A
and B denote propositional formulas and ◦ ∈ {∨,∧,→}, into two categories so that the
presentation and proofs are simplified. We have those that act conjunctively, which are
called α-formulas, and those that act disjunctively, which are called β-formulas. The
different formulas in each category are displayed in Table 4.1. To complete a taxonomy
of propositional formulas, excluding literals, we also need the propositional formulas of
the form ¬¬A. This notation is known as uniform notation [186].

Note that α is logically equivalent to α1∧α2, β is logically equivalent to β1∨β2 and
¬¬A is logically equivalent to A. These equivalences are used to reduce the problem of
finding a satisfying assignment of α to that of finding a satisfying assignment of both
α1 and α2, of β to that of finding a satisfying assignment of β1 or β2 and of ¬¬A to that
of finding a satisfying assignment of A. Thus, using the expansion rules of Table 4.2 we
obtain a complete tableau calculus for non-clausal SAT.

The tableau method is used to determine the satisfiability of a given set of proposi-
tional formulas [73, 92, 186]. It starts creating an initial tableau composed of a single
branch that has a node for each formula in the input set of formulas. Then, it applies the
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Table 4.2: Tableau expansion rules for SAT

α

α1

α2

α-rule

β

β1 β2

β-rule

¬¬A

A

¬-rule

l

¬l

2

2-rule

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

2

2

Figure 4.1: Counterexample that shows that the α-rule is unsound for non-clausal
MaxSAT. The input multiset is φ = {x1, x2,¬x1 ∧ ¬x2}.

expansion rules of Table 4.2 until a contradiction is derived in each branch (in this case,
the input set of formulas is unsatisfiable) or a branch is saturated without deriving a
contradiction (in this case, the input set of formulas is satisfiable). A branch is saturated
in a SAT tableau when all the possible applications of the expansion rules have been
applied in that branch.

We have seen in the previous chapter that, in clausal MaxSAT tableaux, the β- and
2-rule preserve the minimum number of unsatisfied clauses between a tableau and its
extension; in particular, the β-rule preserves that number in at least one branch and does
not decrease it in the rest of branches. So, once all branches have been saturated, the
minimum number of contradictions derived among the branches of a completed tableau
is the minimum number of unsatisfied clauses in the input multiset of clauses.

If we move to deal with arbitrary propositional formulas (i.e., non-clausal MaxSAT),
the first problem we encounter is that the α-rule does not preserve the minimum number
of unsatisfied formulas as the β-rule does for clauses. Assume that we want to solve the
non-clausal MaxSAT instance {x1, x2,¬x1 ∧¬x2}, whose single optimal assignment is
the one that sets x1 and x2 to true, and only falsifies ¬x1 ∧ ¬x2. If we apply the α-rule
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to ¬x1∧¬x2, we add two nodes, labelled with ¬x1 and ¬x2, to the initial tableau. Then,
we can derive two contradictions by applying the 2-rule to {x1,¬x1} and {x2,¬x2},
but the minimum number of formulas unsatisfied by the optimal assignment is just one.
Figure 4.1 displays the resulting tableau.

The previous counterexample shows that the α-rule is unsound in MaxSAT. So,
we need to define a new and sound α-rule as a first step towards getting a sound and
complete non-clausal MaxSAT calculus.

4.3.2 A non-clausal MaxSAT tableau calculus

We define a non-clausal MaxSAT tableau calculus and prove its soundness and com-
pleteness. In the rest of the section, unless otherwise stated, when we say tableau we
refer to a non-clausal MaxSAT tableau.

Definition 4.5. A tableau is a tree with a finite number of branches whose nodes are
labelled by either a propositional formula or a box (2). A box in a tableau denotes a
contradiction. A branch is a maximal path in a tree, and we assume that branches have
a finite number of nodes.

Definition 4.6. Let φ = {φ1, . . . , φm} be a multiset of propositional formulas. A
tableau for φ is constructed by a sequence of applications of the following rules:

Initialize A tree with a single branch with m nodes such that each node is labelled with
a formula of φ is a tableau for φ. Such a tableau is called initial tableau and its
formulas are declared active.

Given a tableau T for φ, a branch b of T , and a node of b labelled with an active formula
F ,

α-rule If F is of type α, the tableau obtained by appending a new left node below
b labelled with 2 and a new right branch with two nodes below b labelled
with α1 and α2 is a tableau for φ. Formula F becomes inactive in b and α1

and α2 are declared active.

β-rule If F is of type β, the tableau obtained by appending a new left node below
b labelled with β1 and a new right node below b labelled with β2 is a tableau
for φ. Formula F becomes inactive in b and β1 and β2 are declared active.

¬-rule If F is of type ¬¬A, the tableau obtained by appending a new node be-
low b labelled with A is a tableau for φ. Formula ¬¬A becomes inactive in b
and A is declared active.

2-rule Given a tableau T for φ, a branch b of T , and two nodes of b labelled with two
active complementary literals l and ¬l, the tableau obtained by appending a node
below b labelled with 2 is a tableau for φ. Literals l and ¬l become inactive in b.
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Table 4.3: Tableau expansion rules for non-clausal MaxSAT

α

2 α1

α2

α-rule

β

β1 β2

β-rule

¬¬A

A

¬-rule

l

¬l

2

2-rule

x1

x2

¬x1 ∧ ¬x2

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

2

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

2

2

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

2

2

2

Figure 4.2: A tableau for the non-clausal MaxSAT instance {x1, x2,¬x1 ∧ ¬x2}.

The expansion rules of the previous definition are summarized in Table 4.3. Note
that all the rules preserve the number of premises falsified by an assignment I in at least
one branch and do not decrease that number in the other branch (if any). In particular,
in the α-rule, we have that if I falsifies α, the left branch contains one contradiction and
α1 and α2 cannot be used to derive any other contradiction in that branch because they
are not expanded; moreover, I falsifies α1 or α2 (or both) on the right branch. On the
other hand, if I satisfies α, then I also satisfies α1 and α2 on the right branch.

Definition 4.7. Let T be a tableau for a multiset of propositional formulas φ. A
branch b of T is saturated when no further expansion rules can be applied on b, and T
is completed when all its branches are saturated. The cost of a saturated branch is the
number of boxes on the branch. The cost of a completed tableau is the minimum cost
among all its branches.

As we show below, the minimum number of formulas that can be unsatisfied in a
multiset of propositional formulas φ is k iff the cost of a completed tableau for φ is k.
Thus, the systematic construction of a completed tableau for φ provides an exact method
for non-clausal MaxSAT.

Example 4.9. We can determine the minimum number of unsatisfied formulas in
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the multiset φ = {x1, x2,¬x1 ∧ ¬x2} using the previous tableau calculus. Figure 4.2
displays how the tableau is constructed. We start by constructing the initial tableau
(the leftmost tableau) and then apply the α-rule to ¬x1 ∧ ¬x2, getting as a result the
second tableau in the figure. The leftmost branch is saturated and we apply the 2-rule
to {x1,¬x1} on the rightmost branch, getting as a result the third tableau. Finally, we
apply the 2-rule to {x2,¬x2} on the same branch and get the rightmost tableau in the
figure. Since the minimum number of boxes among the branches of the last tableau is
1, the minimum number of formulas that can be unsatisfied in φ is 1.

4.3.3 Soundness and completeness
We prove the soundness and completeness of the proposed tableau calculus for non-
clausal MaxSAT. We start by proving two propositions needed later.

Proposition 4.6. A tableau for a multiset of propositional formulas φ is completed in
a finite number of steps.

Proof. We start by creating an initial tableau and then apply rules in the newly created
branches until they are saturated. The α-, β- and ¬-rule reduce the number of con-
nectives. Since we began with a finite number of connectives, these rules can only be
applied a finite number of times. The 2-rule inactivates two literals and adds a box.
Since we began with a finite number of literals and boxes cannot be premises of any
expansion rule, this rule can only be applied a finite number of times. Hence, the con-
struction of any completed tableau terminates in a finite number of steps.

Proposition 4.7. An assignment I falsifies k premises of a α-, β-, ¬- and 2-rule iff
assignment I falsifies k conclusions in one branch of the conclusions of the rule and at
least k conclusions in the other branch (if any).

Proof. We prove the result for each rule:

• 2-rule: Any assignment I always falsifies one premise and satisfies the other.
Since the single conclusion is a box and denotes a contradiction, I falsifies the
same number of formulas in the premises and the conclusion.

• α-rule: If I falsifies the premise of the rule, then I falsifies at least one conclusion
in each branch. The left conclusion is a box and is falsified by any assignment,
and I falsifies α1 or α2 (o both) of the right conclusion. On the other direction, if
I falsifies at least one conclusion in each branch, then I falsifies α1 or α2 (o both)
and therefore I falsifies the premise α1 ∧ α2.

• β-rule: If I falsifies the premise of the rule, then I falsifies β1 and β2, and so the
left (β1) and right (β2) conclusions are falsified by I . On the other direction, if I
falsifies both conclusions, then I falsifies β1 ∨ β2.
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• The ¬-rule: Since any assignment I that falsifies ¬¬A also falsifies A, and vice
versa, I falsifies the premise iff I falsifies the conclusion.

Theorem 4.1. Soundness & completeness. The cost of a completed tableau for a
multiset of formulas φ is k iff the minimum number of unsatisfied formulas in φ is k.

Proof. (Soundness:) T was obtained by creating a sequence of tableaux T0, . . . , Tn
(n ≥ 0) such that T0 is an initial tableau for φ, Tn = T , and Ti was obtained by a
single application of the α-, β-, ¬- or 2-rule on an branch of Ti−1 for i = 1, . . . , n. By
Proposition 4.8, we know that such a sequence is finite. Since T has costm, Tn contains
one branch b with exactly m boxes and the rest of branches contain at least m boxes.
Moreover, the active formulas in the branches of Tn are non-complementary literals;
otherwise we could yet apply expansion rules and Tn could not be completed. The
assignment that sets to true each active literal in b, only falsifies the m boxes and there
cannot be any assignment satisfying less thanm formulas in a branch of Tn because each
branch contains at least m boxes. Therefore, the minimum number of active formulas
than can be unsatisfied among the branches of Tn is m.

Proposition 4.7 guarantees that the minimum number of unsatisfied active formulas
is preserved in the sequence of tableaux T0, . . . , Tn. Thus, the minimum number of
unsatisfied active formulas in T0 is also m. Since T0 is formed by a single branch that
only contains the formulas in φ and all these formulas are active, the minimum number
of formulas that can be unsatisfied in φ is m.

(Completeness:) Assume that there is a completed tableau T for φ that does not have
cost m. We distinguish two cases:

(i) T has a branch b of cost k, where k < m. Then, T has a branch with k boxes
and a satisfiable multiset of non-complementary literals because T is completed. This
implies that the minimum number of unsatisfied active formulas among the branches of
T is at most k. By Proposition 4.7, this also holds for T0, but this is in contradiction
with m being the minimum number of unsatisfied formulas in φ because k < m. Thus,
any branch of T has at least cost m.

(ii) T has no branch of cost m. This is in contradiction with m being the minimum
number of unsatisfied formulas in φ. Since the tableau rules preserve the minimum
number of unsatisfied formulas and the branches of any completed tableau only contain
active formulas that are boxes or non-complementary literals, T must have a saturated
branch with m boxes. Thus, T has a branch of cost m.

Hence, each completed tableau T for a multiset of formulas φ has cost m if the
minimum number of formulas that can be unsatisfied in φ is m.

4.3.4 Extension to hard and weighted formulas
We presented the tableau calculus for non-clausal Unweighted MaxSAT (i.e.; non-
clausal MaxSAT) for ease of presentation but tableaux can be extended to deal with
hard and soft formulas, and soft formulas can be weighted as well.
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In the case of non-clausal Partial MaxSAT, there are three basic observations:

• The hard literals of the initial tableau, as well as any other literal derived by the
application of an expansion rule to an input hard formula or a subformula derived
from a hard formula, always remain active. In the rest of the section, we will refer
to such literals as hard literals and to the subformulas derived from a hard formula
as hard subformulas.

• If the 2-rule is applied to two hard literals, then the current branch is pruned. This
means that we have found a contradiction among hard clauses. This corresponds
to an unfeasible solution.

• When the premise of the α-rule is a hard formula or subformula, the α-rule of
Table 4.2 can be used instead of the α-rule of Table 4.3. The calculus remains
sound and complete but branching is reduced. This is so because hard formulas
must be satisfied by any optimal assignment.

Example 4.10. Let φ = H∪ S be a non-clausal Partial MaxSAT instance, whereH is
the multiset of hard formulas and S is the multiset of soft formulas. Given the multiset of
propositional formulas {x1∧x2∧x3,¬x1,¬x2,¬x3}, we analyze the different tableaux
obtained when we vary the formulas declared as hard and soft.

The first tableau of Figure 4.3 displays a completed tableau when all the formulas
are soft; in this case φ = H ∪ S = ∅ ∪ {x1 ∧ x2 ∧ x3,¬x1,¬x2,¬x3}.

The second tableau displays a completed tableau when x1∧x2∧x3 is hard and the rest
of formulas are soft; in this case φ = H∪S = {x1∧x2∧x3}∪{¬x1,¬x2,¬x3}. Notice
that the input hard formulas and derived hard subformulas are in bold. We applied the
α-rule of Table 4.2 because the premise is hard.

The third tableau displays a completed tableau when ¬x1, ¬x2 and ¬x3 are hard,
and x1 ∧ x2 ∧ x3 is soft; in this case φ = H ∪ S = {¬x1,¬x2,¬x3} ∪ {x1 ∧ x2 ∧ x3}.
We applied the α-rule of Table 4.3 because the premise is soft.

The fourth tableau displays a completed tableau when x1∧x2∧x3 and ¬x1 are hard,
and ¬x2 and ¬x3 are soft; in this case φ = H∪S = {x1 ∧ x2 ∧ x3,¬x1}∪ {¬x2,¬x3}.
Notice that the single branch of the tableau is pruned as soon as the 2-rule has two hard
premises (¬x1 and x1). We use a filled box to denote that there is no feasible solution.

In the first case, the minimum number of unsatisfied soft formulas is 1. In the second
case, the minimum number of unsatisfied soft formulas among the assignments that
satisfy the hard formulas is 3. In the third case, the minimum number of unsatisfied soft
formulas among the assignments that satisfy the hard formulas is 1. In the fourth case,
there is no optimal solution because the subset of hard formulas is unsatisfiable.

Table 4.4 displays the expansion rules for weighted formulas. The α-, β- and ¬-rule
have just one premise and the weight associated with the premise is transferred to the
conclusions. The 2-rule has two premises and so the contradiction takes as weight the
minimum of the weights associated with the premises (min(w1, w2)). If the premises
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Figure 4.3: Examples of non-clausal Partial MaxSAT tableaux. Input hard formulas and
derived hard subformulas are in bold.
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Table 4.4: Tableau expansion rules for non-clausal Weighted MaxSAT

(α,w)

(2, w) (α1, w)

(α2, w)

α-rule

(β, w)

(β1, w) (β2, w)

β-rule

(¬¬A,w)

(A,w)

¬-rule

(l, w1)

(¬l, w2)

(2,min(w1, w2))

(l, w1 −min(w1, w2))

(¬l, w2 −min(w1, w2))

2-rule

have different weights, the remaining weight in the premise with the greatest weight can
be used to detect further contradictions. The compensation weight of the other premise
is 0, and formulas with weight 0 are removed. In the weighted case, when a branch has
repeated occurrences of a formula A, say (A,w1), . . . , (A,ws), such occurrences can be
replaced with the single formula (A,w1 + · · · + ws). Moreover, the cost of a saturated
weighted branch is the sum of weights of the boxes that appear in the branch, and the
cost of a completed weighted tableau is the minimum cost among all its branches.

The expansion rules of Table 4.4 provide a sound and complete calculus for non-
clausal Weighted MaxSAT. The correctness of such rules follows from the correctness
of the unweighted tableau rules and the fact that having a weighted formula (A,w) is
equivalent to having w copies of the unweighted formula A.

Example 4.11. Let φ = {(¬x1 → x2, 3), (x1 ∧ x3, 2), (¬x1, 5), (¬x1, 5), (¬x3, 2)} be
a non-clausal Weighted MaxSAT instance. Figure 4.4 displays a completed tableau for
φ. This tableau has been obtained by applying the expansion rules of Table 4.4. The
costs of the branches, from left to right, are 5, 7, 5 and 7. So, the minimum sum of
weights of unsatisfied formulas is 5.

Finally, we show how to solve non-clausal Weighted Partial MaxSAT instances with
tableaux. The first observation is that hard formulas can be considered as weighted
formulas with infinity weight, and this observation is important to understand the 2-rule
in Weighted Partial MaxSAT. Notice that the 2-rule is the only rule with two premises;
in the rest os cases, if the premise is hard, we proceed as in Partial MaxSAT, and if it
is soft, we proceed as in Weighted MaxSAT. If the two premises of the 2-rule are hard,
then the branch is pruned because we are in front of an unfeasible solution. If the two
premises are soft, then the 2-rule of Table 4.4 is applied. If there is a hard premise l and
a soft premise (¬l, w), then (2, w) is derived, (¬l, w) becomes inactive and l remains
active.

Example 4.12. Let φ = {(x1 ∧ x3, (¬x1 → x2, 3), (¬x1, 5), (¬x2, 1), (¬x3, 2)} be a
non-clausal Weighted Partial MaxSAT instance, where the first formula is hard and the
rest of formulas are soft. Figure 4.5 displays a completed tableau for φ. This tableau
has been obtained by applying the expansion rules for non-clausal Weighted Partial
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(x3, 2)

(2, 2)

(2, 2)

(2, 2)

Figure 4.4: Example of a non-clausal Weighted MaxSAT tableau.

MaxSAT explained above. The cost of the left branch is 10 and the cost of the right
branch is 8. Thus, the minimum sum of weights of unsatisfied soft formulas among the
assignments that satisfy the hard formula is 8.

4.3.5 A tableau approach for non-clausal MinSAT
We first give a proposition and then show how non-clausal tableaux for MaxSAT can be
used to solve non-clausal MinSAT.

Proposition 4.8.
Any optimal MaxSAT assignment of φ = {¬φ1, . . . ,¬φm} is an optimal MinSAT

assignment of φ′ = {φ1, . . . , φm}.
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x1 ∧ x3

(¬x1 → x2, 3)

(¬x1, 5)

(¬x2, 1)
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x3

(2, 5)

(2, 2)

(x2, 3)

(2, 1)

(x2, 2)

(x1, 3)

(2, 3)

Figure 4.5: Example of a non-clausal Weighted Partial MaxSAT tableau. Input hard
formulas and derived hard subformulas are in bold.

Proof. Let I be an optimal MaxSAT assignment of φ = {¬φ1, . . . ,¬φm} and let k
the number of formulas of φ that I unsatisfies. Then, I satisfies k formulas of φ′ =
{φ1, . . . , φm} because, for i = 1, . . . , n, an assignment satisfies φi iff it unsatisfies ¬φi.
Moreover, there is no assignment of φ′ that satisfies k′ formulas of φ′, where k′ < k,
because such an assignment should unsatisfy k′ formulas of φ and this is in contradiction
with the fact that I is an optimal MaxSAT assignment. Therefore, the minimum number
of clauses that can be satisfied in φ′ is k.

It follows from the previous proof that if an optimal MaxSAT assignment I of
φ = {¬φ1, . . . ,¬φm} unsatisfies k formulas, then I is an optimal MinSAT assignment
of φ′ = {φ1, . . . , φm} that satisfies k formulas. Therefore, the maximum number of
formulas that can be unsatisfied in φ′ is m− k.

To find an optimal MinSAT solution of φ′ = {φ1, . . . , φm}, we must build a com-
pleted non-clausal MaxSAT tableau of φ = {¬φ1, . . . ,¬φm}. If the cost of the non-
clausal MaxSAT tableau is k, the maximum number of formulas that can be unsatisfied
in φ′ is m− k.
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x1 ∨ x2

x3

¬x1 ∧ ¬x2 ∧ ¬x3

¬x1
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¬x2

¬x3
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x2

2

x1

2

2

2

x2x1

Figure 4.6: A tableau for the non-clausal MinSAT instance φ = {¬x1 ∧ ¬x2,¬x3, x1 ∨
x2,∨x2}.
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Example 4.13. Let φ = {¬x1 ∧ ¬x2,¬x3, x1 ∨ x2,∨x2} be a non-clausal MinSAT
instance. Figure 4.6 displays a completed non-clausal MaxSAT tableau for {x1 ∨
x2, x3,¬(x1 ∨ x2 ∨ x3)}. Since the cost of the non-clausal MaxSAT tableau is 1, the
maximum number of clauses that can be unsatisfied in φ is 3− 1 = 2.

If φ′ = {(φ1, w1), . . . , (φm, wm)} is a Weighted MinSAT instance, then we must
build a completed non-clausal MaxSAT tableau for

φ = {(¬φ1, w1), . . . , (¬φm, wm)}.

.
If φ′ = {h1, . . . , hn, (φ1, w1), . . . , (φm, wm)} is a Weighted Partial MinSAT in-

stance, then we must build a completed non-clausal MaxSAT tableau for

φ = {h1, . . . , hn, (¬φ1, w1), . . . , (¬φm, wm)}.

.

4.4 Concluding remarks
We have defined two methods for solving non-clausal MaxSAT and non-clausal Min-
SAT. First, we have defined the direct, improved and Tseitin-based transformations.
These transformations reduce non-clausal MaxSAT/MinSAT to clausal MaxSAT/Min-
SAT so that modern MaxSAT/MinSAT solvers can be used to solve the MaxSAT/Min-
SAT problem of multisets of arbitrary propositional formulas. Second, we have defined
a complete tableau calculus for non-clausal MaxSAT, which can be extended to deal
with hard and soft formulas. Moreover, we have described how the tableau calculus for
solving non-clausal MaxSAT can be used to solve non-clausal MinSAT.

The contributions of this chapter have inspired a tableau calculus for solving the
MaxSAT problem of any finitely-valued Łukasiewicz Logic [144].



Chapter 5

Solving the Team Composition
Problem in a Classroom

This chapter defines the Team Composition Problem in a Classroom (TCPC), proves
that it is NP-hard, and defines two different MaxSAT models of the problem, called
maximizing and minimizing encodings. It also reports on the results of an empirical
investigation that shows that solving the TCPC as a MaxSAT problem is promising, and
provides evidence that the minimizing encoding outperforms the maximizing encoding.
Finally, it describes how the proposed approach can be extended to richer team forma-
tion problems, using the Synergistic Team Composition Model (STCM) problem as a
case study.

The presentation closely follows the work published in [159]. A workshop version
of this paper with preliminary results appeared in [158].

5.1 Introduction
Given a classroom containing a fixed number of students and tables, which can be of dif-
ferent capacities, and a list of preferred classmates to sit with for each student, the Team
Composition Problem in a Classroom (TCPC) is the problem of finding an assignment
of students to tables so that the preferences of the students are maximally-satisfied.

We propose to solve the TCPC as a MaxSAT problem. More precisely, given a
TCPC instance φ, we first define a suitable MaxSAT encoding for φ, then find an op-
timal assignment for the resulting encoding with an off-the-shelf MaxSAT solver, and
finally derive an optimal solution for φ from the optimal assignment. It is a declarative
approach, because we define a model and an optimal solution is derived automatically.
Furthermore, the approach is highly efficient because we may take advantage of the
extremely efficient MaxSAT solvers which are publicly available.

One could think that designing an algorithm to work directly on the original problem
encoding should outperform approaches that require a translation via a generic interme-
diate formalism such as a CSP, SAT, SMT, MaxSAT, or MinSAT. However, this line of
reasoning ignores that generic solvers can benefit from many years of development by a
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broad research community. It is not easy to replicate this kind of effort in other domains.
The motivation behind this work is twofold. First, we aim to solve a problem posed

by the director of studies of a secondary school in the area of Barcelona, though similar
team formation problems are frequent in a wide range of situations and institutions.
Second, we introduce a new MaxSAT application that reinforces the idea that MaxSAT
is a competitive approach for solving challenging optimization problems. Moreover, we
provide new benchmarks for empirically evaluating MaxSAT solvers.

In this chapter, we first define the TCPC, prove that it is NP-hard, and define two
different MaxSAT models of the problem, called maximizing and minimizing encod-
ings. Then, we report on the results of an empirical investigation that shows that solving
the TCPC as a MaxSAT problem is promising, and provides evidence that the minimiz-
ing encoding outperforms the maximizing encoding. Finally, we describe how we could
take into account other factors relevant to the performance of a team such as personality,
expertise, competence, competitiveness, and human formation [12, 18]. To illustrate this
point, we describe how the Synergistic Team Composition Model (STCM) [18] problem
can be solved as a MaxSAT problem.

All the contributions of this chapter are presented for MaxSAT. Nevertheless, it
is worth pointing out that the maximizing and minimizing MaxSAT encodings of the
TCPC can be easily transformed into MinSAT encodings. We could then solve the
TCPC instances with a MinSAT solver.

The rest of the chapter is organized as follows. Section 5.2 defines the TCPC and
proves that it is NP-hard. Section 5.3 defines the maximizing and minimizing MaxSAT
encodings. Section 5.4 reports on the empirical investigation. Section 5.5 illustrates
how to solve the STCM problem with MaxSAT technology. Section 5.6 discuss some
related work. Section 5.7 concludes the chapter.

5.2 The team composition problem in a classroom
Depending on the activity to be performed in a classroom at a given moment, the distri-
bution of the students may need to be different. In the general case, we consider there is
a fixed number of students and there is a list of preferred classmates to sit with for each
student. Then, the goal is to partition students into teams, which may have different
sizes, so that the preferences of the students are maximally-satisfied.

The version of the TCPC that we use as a case study in this chapter has the following
constraints:

• The classroom has n students.

• The classroom has tables of 2 and 3 students with a combined capacity for n
students.

• Each student has provided a list of classmates she would prefer to sit with.

The objective is to find an assignment of students to tables so that the preferences of
students are maximally-satisfied. Notice that the first two constraints are hard whereas
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the last one is soft. We will say that a solution is fully-satisfied if, and only if, all the
students in the same table have the rest of the students of the table in their preference
list. We will say that a solution is maximally-satisfied if, and only if, the number of
students who have their preferences satisfied is maximized. Note that a fully-satisfied
solution is also a maximally-satisfied solution.

Proposition 5.1. Given n students, a classroom that has tables of 2 and 3 students with
a combined capacity for n students, and a list of preferred classmates to sit with for each
student, the problem of deciding if there is a fully-satisfied solution is NP-complete.

Proof. This problem belongs to NP: we can check, in polynomial time, whether or not
an assignment of students to tables is a fully-satisfied solution by inspecting the lists of
preferences of the students.

We now prove that this problem is NP-hard by reducing the Partition into Triangles
(PIT) problem to it. Assume that G = (V,E) is a graph, where V is the set of vertices
and verifies that |V | = 3q for some integer q, andE is the set of edges. The PIT problem
for G is to find a partition {V1, . . . , Vq} of V so that each Vi = {ui, vi.wi}, 1 ≤ i ≤ q,
contains exactly 3 vertices and the edges {ui, vi}, {ui, wi} and {vi, wi} belong to E.
This problem is NP-complete [88].

The PIT problem for G can be reduced to an instance of our problem by considering
a classroom with 3q students, 0 tables of 2 and q tables of 3, and establishing, for each
edge {u, v} of G, a preference of student u for student v and a preference of student v
for student u. Note that this reduction takes polynomial time. Then, the PIT problem
has a solution if, and only if, all the students in the classroom can be sat in such a way
that all the preferences of students are fully-satisfied.

Corollary 5.1. The TCPC is NP-hard.

Proof. This follows from the fact that every fully-satisfied solution is also a solution
that is maximally-satisfied.

We can find a fully-satisfied solution with a decision algorithm but need an opti-
mization algorithm to find a maximally-satisfied solution. Indeed, finding a maximally-
satisfied solution is in general harder than finding a fully-satisfied solution. For example,
if we assume that there are just tables of 2 students, finding a fully-satisfied solution can
be solved in polynomial time but finding a maximally-satisfied solution remains NP-
hard.

5.3 MaxSAT encodings for the TCPC
We present two different ways of encoding the TCPC in the Weighted Partial MaxSAT
formalism. In the first approach, the objective is to maximize the quality of the solution
and we refer to it as the maximizing encoding. In the second approach, the objective is
to minimize the quality loss and we refer to it as the minimizing encoding.
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5.3.1 The maximizing encoding
We first present how the TCPC can be represented as a Weighted Partial MaxSAT in-
stance using the maximizing encoding. To illustrate how to model the problem, we will
consider that the classroom has 28 students and there are 8 tables of 2 students and 4
tables of 3 students. This is a typical classroom distribution in some secondary schools.

First of all, we define the set of Boolean variables of the encoding:

{xij|1 ≤ i < j ≤ 28} ∪ {xijk|1 ≤ i < j < k ≤ 28} ∪ {yi|1 ≤ i ≤ 28}

These variables have the following intended meaning: xij is true iff students i and j
sit together in a table of 2; xijk is true iff students i, j and k sit together in a table of 3;
and yi is true if student i sits in a table of 2 and is false if student i sits in a table of 3.
Using these variables, we create a Weighted Partial MaxSAT instance that encodes the
constraints of the problem.

The encoding has the following hard clauses:

1. For each student i, where 1 ≤ i ≤ 28, the encoding contains a set of hard clauses
that encode the following cardinality constraint:

(a) If i = 1, then
28∑
j=2

x1j +
27∑
j=2

28∑
k=j+1

x1jk = 1

(b) If 2 ≤ i ≤ 27, then

i−1∑
j=1

xji +
28∑

j=i+1

xij +
i−1∑
k=2

k−1∑
j=1

xjki +
i−1∑
j=1

28∑
k=i+1

xjik +
27∑

j=i+1

28∑
k=j+1

xijk = 1

(c) If i = 28, then
27∑
j=1

xj28 +
26∑
j=1

27∑
k=j+1

xjk28 = 1

This cardinality constraint states that student i sits exactly in one table, and the
table is of 2 or 3 students.

2. For each variable xij , the encoding contains the hard clauses ¬xij ∨ yi and ¬xij ∨
yj . Note that (¬xij ∨ yi) ∧ (¬xij ∨ yj) is equivalent to xij → yi ∧ yj . This clause
states that if xij is true, then students i and j sit in a table of 2.

3. For each variable xijk, the encoding contains the hard clauses ¬xijk∨¬yi, ¬xijk∨
¬yj and ¬xijk ∨¬yk. Note that (¬xijk ∨¬yi)∧ (¬xijk ∨¬yj)∧ (¬xijk ∨¬yk) is
equivalent to xijk → ¬yi ∧ ¬yj ∧ ¬yk. This clause states that if xijk is true, then
students i, j and k sit in a table of 3.
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4. The encoding contains a set of hard clauses that encode the following cardinality
constraints:

∑28
i=1 yi = 16 and

∑28
i=1 ¬yi = 12. These cardinality constraints state

that there are 16 students sitting in tables of 2 and 12 students sitting in tables of 3.

In practice, it is sufficient to add either the constraint
∑28

i=1 yi = 16 or the con-
straint

∑28
i=1 ¬yi = 12 because if there are exactly 16 (12) variables yi, 1 ≤ i ≤

28, that evaluate to true (false), then the remaining 12 (16) variables must evaluate
to false.

The encoding of a cardinality constraint of the form x1 + . . . + xn = k has O(n)
clauses if one uses the encoding based on counters and defined in [185]. Other efficient
encodings of cardinality constraints are described and analyzed in [1, 59]. In our empir-
ical investigation, we encode the previous cardinality constraints using PBLib1, which
is a C++ tool for efficiently encoding pseudo-Boolean constraints to CNF.

Since we considered two types of tables, we just need one variable yi for each stu-
dent. If we consider n different types, then we need dlog2 ne variables for each student.
For example, for four different types, we need two variables (yi, y′i) and each type is rep-
resented by one of the following conjunctions: yi ∧ y′i, ¬yi ∧ y′i, yi ∧¬y′i and ¬yi ∧¬y′i.

The soft clauses of our encoding are the following weighted unit clauses:

1. For each variable xij , 1 ≤ i < j ≤ 28, the encoding contains the weighted unit
clause (xij, wij).

2. For each variable xijk, 1 ≤ i < j < k ≤ 28, the encoding contains the weighted
unit clause (xijk, wijk).

A key aspect of our encoding is how weights are assigned to the variables of the
form xij and xijk. First of all, we build a directed graph G = (V,E), where V contains
a vertex i for each student i in the classroom, and E contains an edge (i, j) if student i
wants to sit with student j. The weight associated with each student i in G, denoted by
w(i), is the out-degree of the vertex i ofG.2 The weight associated with the variable xij ,
denoted by wij , is 2(w(i)×w(j)), where w(i) and w(j) are the weights associated with
vertices i and j, respectively, in the subgraph of G induced by the set of vertices {i, j}
(i.e.; the weight of student i and j inG({i, j})). The weight associated with the variable
xijk, denoted by wijk, is 3(w(i)× w(j)× w(k)/8), where w(i), w(j) and w(k) are the
weights associated with vertices i, j and k, respectively, in G({i, j, k}). The value of
w(i)×w(j) ranges from 0 to 1 and the value of w(i)×w(j)×w(k) ranges from 0 to 8.
This explains the fact that w(i)× w(j)× w(k) is divided by 8. Moreover, we multiply
the weights by 2 in the tables of 2 and by 3 in the tables of 3. In this way, we maximize
the number of satisfied students. Note that if the weight assigned to xij is 2, there are
2 satisfied students if they sit together in a table of 2, whereas if the weight assigned to
xijk is 3, there are 3 satisfied students if they sit together in a table of 3. The weight wij
(wijk) associated with a table of 2 (3) indicates the quality of the assignment of students

1http://tools.computational-logic.org/content/pblib.php
2The out-degree of a vertex in a directed graph is the number of edges going out of the vertex.
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i and j (i, j and k) to a table of 2 (3). The bigger the weight, the better the assignment
of students to tables.3

In the maximizing encoding, if the weight associated with a variable is 0, then the
negation of this variable is added as a unit clause in the hard part. Moreover, an optimal
solution corresponds to a fully-satisfied solution if, and only if, all the satisfied soft
clauses of the form (xij, wij) and (xijk, wijk) have weight 2 and 3, respectively.

For fully-satisfied instances, if we add to the hard part the negation of xij (i.e.,
the unit hard clause ¬xij) for each variable xij whose associated weight is different
from 2 and the negation of xijk (i.e., the unit hard clause ¬xijk) for each variable xijk
whose associated weight is different from 3, then we do not need to add any soft clause.
Moreover, any satisfying assignment of the hard part allows us to derive a fully-satisfied
solution. This case can be solved either with a SAT solver or with a MaxSAT solver
fed with a MaxSAT instance that only contains hard clauses. Actually, finding a fully-
satisfied solution is a decision problem.

If there is no fully-satisfied solution, the problem becomes an optimization problem
and the objective is to find a solution that satisfies students as much as possible. Because
of that, in the general case, we add the clauses (xij, wij) and (xijk, wijk) such that wij 6=
0 and wijk 6= 0 in the soft part of the encoding. In this way, we provide a solution
that maximizes the number of satisfied students. In this case, we say that we have a
maximally-satisfied solution.

An optimal solution to the TCPC is obtained from a MaxSAT optimal interpretation
by assigning students i and j to the same table of 2 if, and only if, the literal xij is
satisfied by the optimal interpretation; and by assigning students i, j and k to the same
table of 3 if, and only if, the literal xijk is satisfied by the optimal interpretation.

If an optimal interpretation satisfies the soft clause (xij, wij), then this interpretation
falsifies all the soft clauses (xlm, wlm) and (xlmn, wlmn) such that l, m or n are equal to i
or j because of the cardinality constraint that states that every student sits exactly in one
table. A similar situation happens when the satisfied clause is of the form (xijk, wijk),
corresponding to a table of 3. Thus, the number of falsified soft clauses is usually
greater than the number of satisfied soft clauses, and the maximum sum of weights of
satisfied clauses indicates the maximum quality that can be reached taking into account
the preferences of the students.

5.3.2 The minimizing encoding

The minimizing encoding focus on minimizing the quality loss instead of maximizing
the quality of the solution as in the maximizing encoding. Thus, the challenge now is to
adequately represent the notion of quality loss in the TCPC and derive a more efficient
encoding.

The minimizing encoding is defined over the same set of Boolean variables and has
the hard constraints of the maximizing encoding. The soft clauses are derived from the

3Since most of the MaxSAT solvers deal with weights that are positive integers, in the experiments
we multiply the weights by 100 and take the integer part.



Section 5.3 : MaxSAT encodings for the TCPC 89

soft clauses of the maximizing encoding as follows:

1. each soft clause (xij, wij) is replaced with the soft clause (¬xij, wmax−wij), and

2. each soft clause (xijk, wijk) is replaced with the soft clause (¬xijk, w′max−wijk),

where wmax is the maximum weight that can be assigned to a table of 2 and w′max is the
maximum weight that can be assigned to a table of 3. In our encoding, wmax = 2 and
w′max = 3.

An optimal solution to the TCPC is obtained from a MaxSAT optimal interpretation
by assigning students i and j to the same table of 2 if, and only if, the literal ¬xij is
falsified by the optimal interpretation; and by assigning students i, j and k to the same
table of 3 if, and only if, the literal ¬xijk is falsified by the optimal interpretation. Note
that ¬xij and ¬xijk are falsified if, and only if, xij and xijk are satisfied. If an optimal
interpretation falsifies the soft clause (¬xij, w′ij), then it satisfies all the soft clauses
(¬xlm, w′lm) and (¬xlmn, w′lmn) such that l, m or n are equal to i or j because of the
cardinality constraint that states that every student sits exactly in one table. A similar
situation happens when the falsified clause is of the form (¬xijk, w′ijk).

In contrast to the maximizing encoding, the number of satisfied soft clauses in an
optimal solution of the minimizing encoding is usually greater than the number of fal-
sified soft clauses. This implies that the number of conflicts that a MaxSAT solver has
to identify for finding an optimal solution is greater in the maximizing encoding than
in the minimizing encoding and, as we will see in the experimental results, this has a
tremendous impact on the performance of the solver.

The weight of the soft clause (¬xij, wmax−wij) ((¬xijk, w′max−wijk)) indicates the
quality loss if students i and j (i, j and k) sit together in a table of 2 (3): the smaller the
weight, the better the assignment of students to tables. In fact, the weight wmax − wij
(w′max − wijk) is the penalty to be paid by students i and j (i, j and k) if they sit in
the same table. Thus, the minimum sum of weights of falsified clauses indicates the
minimum quality loss that can be reached taking into account the preferences of the
students.

If the minimum sum of weights of falsified clauses in an optimal solution is 0, then
this solution is fully-satisfied. Note that the clauses of the form (¬xij, 0) correspond to
tables of 2 in which students i and j prefer to sit together, and the clauses of the form
(¬xijk, 0) correspond to tables of 3 in which students i, j and k prefer to sit together. In
practice, the clauses (¬xij, 0) and (¬xijk, 0) can be removed from the soft part and the
encoding remains correct.

It is worth pointing out that the minimization approach proposed here can be ex-
tended to other combinatorial optimization problems. It is particularly useful when the
resulting MaxSAT encoding has subsets of soft unit clauses whose literals appear in hard
cardinality constraints. In this case, the encoding can considerably reduce the number
of conflicts needed to find an optimal solution. The main difficulty of the minimizing
encoding is to define a suitable weighting function that preserves the optimal solutions
between the maximizing and the minimizing encodings.
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Finally, it is worth mentioning that it is possible to define the previous MaxSAT
encodings of the TCPC using the set of propositional variables {xti|1 ≤ i ≤ 28, 1 ≤
t ≤ 12}, where the intended meaning of xti is that xti is true if, and only if, student i
sits at table t. However, all the experiments performed with encodings using this set of
variables did not outperform the experiments performed with the encodings proposed in
this section.

5.4 Experimental results
We conducted an experimental investigation to evaluate the proposed MaxSAT-based
approach to the TCPC on both fully-satisfied and maximally-satisfied instances, and
compared the performance of the maximizing and minimizing encodings on the selected
instances. In the experiments, in order to analyze the scaling behavior, we considered
different classroom capacities: the rows always have 2 tables of 2 and 1 table of 3, and
the number of rows ranges from 1 to 18. Hence, the number of students per classroom
ranges from 7 to 126. Besides, we assumed that each student gives a list of students
she would like to sit with. We generated the preferences at random, guaranteeing that
the generated instances have either fully-satisfied or maximally-satisfied solutions. We
generated 50 different TCPC instances for each classroom capacity, encoded them to
Weighted Partial MaxSAT, and solved the resulting maximizing and minimizing encod-
ings with the exact MaxSAT solver WPM3 [27] using a cutoff time of 900 seconds. All
the experiments were performed in a 3.60GHz Intel(R) i7-4790 with 8GB RAM.

We selected WPM3 because it was the best performing solver on our instances in
preliminary tests. WPM3 reformulates the MaxSAT optimization problem into a se-
quence of SAT decision problems and introduces Pseudo-Boolean (PB) constraints to
refine the lower bound after each execution of the SAT solver. To identify the most suit-
able PB constraints, WPM3 analyzes the unsatisfiable cores retrieved from the previous
SAT executions.

Table 5.1 compares the maximizing and minimizing encodings on fully-satisfied in-
stances. We observe that the minimizing encoding clearly outperforms the maximizing
encoding: the minimizing encoding needs a mean time of less than one second to solve
an instance, independently of the classroom capacity, but the maximizing encoding only
solves all the selected instances within the cutoff time if the number of students is less
than or equal to 49. The maximizing encoding only solves 43, 31 and 5 instances out of
50 when the number of students is 63, 77 and 84, respectively. It was not able to solve
any instance for more than 84 students.

Table 5.2 compares the maximizing and minimizing encodings on maximally-satisfied
instances. We observe that the minimizing encoding scales much better than the maxi-
mizing encoding, and also needs less time to solve an instance. While the minimizing
encoding solves all the instances with less than 98 students, the maximizing encoding
fails to solve some instances when there are 70 or more students. The different perfor-
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Table 5.1: Experimental results for fully-satisfied instances. Students: number of stu-
dents; Hard: mean number of hard clauses per instance; Variables: mean number of
variables per instance; Soft _Max: mean number of soft clauses per instance in the
maximizing encoding; Soft _Min: mean number of soft clauses per instance in the min-
imizing encoding; Time_Max: mean time, in seconds, needed to solve an instance with
the maximizing encoding; and Time_Min: mean time, in seconds, needed to solve an
instance with the minimizing encoding. The number of solved instances, within a cutoff
time of 900s, is shown in parentheses.

Students Hard Variables Soft_Max Soft_Min Time_Max Time_Min
7 246 117 21 11 0,01 (50) 0,01 (50)

14 1040 659 56 35 0,01 (50) 0,01 (50)
21 2594 1916 93 60 0,05 (50) 0,01 (50)
28 5214 4239 128 85 0,25 (50) 0,01 (50)
35 9127 7937 150 98 0,63 (50) 0,01 (50)
42 14934 13387 189 124 3,65 (50) 0,01 (50)
49 22772 20889 221 147 10 (50) 0,02 (50)
56 33069 30842 257 172 63 (49) 0,03 (50)
63 46079 43552 286 191 123 (43) 0,04 (50)
70 62232 59365 324 218 191 (31) 0,06 (50)
77 81833 78584 357 240 234 (25) 0,08 (50)
84 105200 101588 386 260 286 (20) 0,11 (50)
91 132775 128730 426 286 513 (10) 0,21 (50)
98 164741 160326 456 308 634 (5) 0,25 (50)

105 201629 196844 493 332 815 (2) 0,28 (50)
112 243565 238390 522 351 0 (0) 0,30 (50)
119 291154 285487 568 385 0 (0) 0,49 (50)
126 344370 338356 590 398 0 (0) 0,62 (50)
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Table 5.2: Experimental results for maximally-satisfied instances. Students: number of
students; Hard: mean number of hard clauses per instance; Variables: mean number
of variables per instance; Soft _Max: mean number of soft clauses per instance in the
maximizing encoding; Soft _Min: mean number of soft clauses per instance in the
minimizing encoding; Time_Max: mean time, in seconds, needed to solve an instance
with the maximizing encoding; and Time_Min: mean time, in seconds, needed to solve
an instance with the minimizing encoding. The number of solved instances, within a
cutoff time of 900s, is shown in parentheses.

Students Hard Variables Soft_Max Soft_Min Time_Max Time_Min
7 225 113 18 11 0,01 (50) 0,01(50)

14 956 640 44 30 0,01 (50) 0,01(50)
21 2416 1879 67 47 0,02 (50) 0,01 (50)
28 4953 4184 91 64 0,07 (50) 0,01 (50)
35 8911 7892 118 83 0,34 (50) 0,02 (50)
42 14632 13321 145 103 1,29 (50) 0,04 (50)
49 22421 20814 170 121 2,78 (50) 0,15 (50)
56 32692 30760 203 144 15 (50) 0,59 (50)
63 45645 43457 222 159 44 (50) 0,71 (50)
70 61734 59256 252 179 83 (47) 4,92 (50)
77 81198 78445 266 190 78 (45) 8,66 (50)
84 104574 101452 296 212 97 (35) 26 (50)
91 132063 128574 323 232 182 (22) 20 (50)
98 164001 160166 350 251 182 (19) 67 (48)

105 200797 196664 374 268 292 (18) 79 (44)
112 242692 238203 396 284 281 (14) 31 (38)
119 290160 285272 426 307 236 (6) 59 (37)
126 343404 338146 452 325 422 (4) 39 (30)
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mances of the maximizing and minimizing encodings are due to the number of conflicts
that WPM3 must detect to find an optimal solution. As said above, an optimal solution
of the maximizing encoding falsifies much more soft clauses and WPM3 usually has to
solve a larger sequence of SAT problems in this case.

WPM3 has an incomplete version that stops the solver after a prefixed time. This
option could be used to obtain good quality solutions when the complete version of
WPM3 used in the experiments fails to find an optimal solution. The incomplete version
often computes optimal solutions but it cannot certify that the solutions are optimal as
the exact WPM3 version does.

5.5 Reducing team formation to TCPC
The TCPC is a particular team formation problem that only considers the preferences
of the students to create teams. However, classroom team formation can involve more
sophisticated and sensible criteria based, for example, on Organisational Psychology
(OP). In this section, we show how a more involved OP-based problem, the Synergistic
Team Composition Model (STCM) [18], can be mapped into our framework.

The dominant OP approaches to finding good teams rely on individual competences
and personality traits. In the field of education, such competences refer to different
types of intelligences, which can be roughly judged by teachers in order to avoid an
invasive and expensive testing process. On the other hand, personality traits are usually
measured through subjective self-assessment tests.

A Post-Jungian personality test is based on the cognitive mode model developed by
the pioneering psychiatrist Carl Gustav Jung [114]. It has two pairs of complementary
variables that determine psychological functions: Sensing/Intuition (SN) and Think-
ing/Feeling (TF); and two pairs of complementary variables that determine psychologi-
cal attitudes: Perception/Judgment (PJ) and Extroversion/Introversion (EI). Psycholog-
ical functions and attitudes form a four-dimension vector p = (EI, SN, TF, PJ) ∈
[−1, 1]4 that characterizes a personality. In [192, 193], Wilde proposes balancing the
teams by incorporating individuals of different gender having diverse sensing/intuition
and thinking/feeling, at least one introvert person and at least one extrovert, thinking
and judging person.

For competences, we consider the Multiple Intelligences Theory [87]. In this theory,
each person has a competence profile given by an eight-dimension vector defined as
l = 〈vl, lm, sv, bk,mu, ie, ia, na〉 ∈ [0, 1]8, where each dimension represents a type of
intelligence. We consider the following intelligences: vl is verbal-linguistic intelligence,
lm is logical-mathematical intelligence, sv is spatial-visual intelligence, bk is bodily-
kinesthetic intelligence, mu is musical intelligence, ie is interpersonal intelligence, ia is
intrapersonal intelligence and na is naturalist intelligence.

The goal of our problem is to create teams for performing a given task taking into
account the personality and competences of individuals. A task τ requires a set of com-
petences (ci ∈ Cτ ), where each competence has an associated weight wi ∈ [0, 1] that
indicates its relevance for the task fulfillment and a desired level li ∈ [0, 1]. Further-
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more, any task has a parameter λ ∈ [0, 1] that balances the importance of the profi-
ciency uprof(k) and congeniality ucon(k) of team k, and is used to calculate the suitability
s(k) = λ · uprof(k) + (1 − λ) · ucon(k) of team k. Moreover, every task has a parameter
v ∈ [0, 1] that balances the importance of under-competence and over-competence for
the calculation of proficiency uprof(k), as we explain below.

A competent student set for a competence ci is defined as δ(ci) = {a ∈ k | ci ∈
{lai | lai > 0}}, where the zero is a typical arbitrary threshold. We define a responsibility
assignment as a correspondence between students and required competences such that
every competence is associated at least with a student in δ(ci). We note by Θk

τ the set
of competence assignments η for task τ and team k. The proficiency degree ηprof (k, τ)
for a team k and task τ given a responsibility assignment η is one minus the sum of
penalties associated to over-competence o(η) and under-competence u(η) of that team
performing the task. We define under-competence and over-competence as follows:

u(η) =
∑
i∈Iτ

wi ·
∑

a∈δ(ci) | min(la(ci)− li, 0) |
| {a ∈ δ(ci) | la(ci)− li ≤ 0} |

o(η) =
∑
i∈Iτ

wi ·
∑

a∈δ(ci) max(la(ci)− li, 0)

| {a ∈ δ(ci) | la(ci)− li ≥ 0} |

Proficiency is defined as uprof(k) = maxη∈Θkτ
(1− (v · u(η) + (1− v) · o(η)). Penal-

ties are added because over-competence causes boredom and under-competence causes
frustration. We note that students who are not responsible for a given competence for
the task can remain free of paying penalties for that competence. Competence assign-
ments can have different properties. In the education case, we are interested in inclusive
assignments, which are the ones where each team member is responsible of at least one
competence for the task.

Congeniality is defined as ucon(k) = uSNTF (k) + uETJ(k) + uI(k) + ugender(k),
where:

• uSNTF (k) = σSN(k) · σTF (k), the product of standard deviation for SN and TF
personality components of the members of team k.

• uETJ(k) = maxa∈kETJ [max((0, α,α,α) · p, 0), 0], where α ≈ 0.5287/3 and
kETJ = {a ∈ k | tfa > 0, eia > 0, pja > 0}. It is the importance of having a
strong ETJ individual.

• uI(k) = maxa∈kI [max((0,0,−β,0) ·p, 0), 0], where β = 3 ·α = 0.5287 and
kI = {a ∈ k | eia ≤ 0}. This is the importance of having a strong I (introvert)
individual.

• ugender(k) = γ · sin ((π · w(k))/(w(k) +m(k))) where γ = 0.1, w(k) stands for
the number of women and m(k) stands for the number of men in team k. This is
the importance of having a satisfactory gender balance.
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Example 5.1. Assume that we want to solve a task τ with two competences, (c1, l1 =
0.8, w1 = 0.5) and (c2, l2 = 0.6, w2 = 0.5), and an under-proficiency penalty of v =
0.6. In fact, the competences are the set of intelligences needed for task τ . We want to
find the inclusive assignment maximizing s(k) = λ ·uprof(k) +(1−λ) ·ucon(k), where we
consider λ = 0.5. To evaluate the suitability of a three-student team k = {S1, S2, S3},
we have:

• 〈S1, woman, 〈p(sn) = 0.4, p(tf) = −0.4, p(ei) = 0.5, p(pj) = −0.7〉, [l(c1) =
0.9, l(c2) = 0.5]〉

• 〈S2,man, 〈p(sn) = −0.7, p(tf) = 0.6, p(ei) = 0.8, p(pj) = 0.4〉, [l(c1) = 0.2, l(c2) =
0.8]〉

• 〈S3,man, 〈p(sn) = 0.8, p(tf) = −0.7, p(ei) = −0.4, p(pj) = −0.6〉, [l(c1) =
0.4, l(c2) = 0.6]〉

We want to assign students to task competences so that (1) each student is responsi-
ble for at least one competence (inclusive), (2) each competence is covered by at least
one student (assignment), and (3) The proficiency degree ηprof (k, τ) for a team k and
task τ given the assignment η is maximal in Θk

τ . For this example, we consider individ-
ual competences like an atomic task.

Table 5.3 shows every valid student assignment for both competences as well as its
under-proficiency and over-proficiency penalty sum with v = 0.6. An assignment for
both competences is not inclusive if some student has no competence assigned. The
maximization of uprof(k) = maxη∈Θkτ

(1 − (v · u(η) + (1 − v) · o(η)) involves the
minimization of the under-proficiency and over-proficiency penalty sum among the as-
signments. Table 5.4 shows every valid assignment η(k, τ) and, for the inclusive ones,
the cost(η(k, τ)) =

∑
i cost(η(k, ci)), or total cost for the assignment.

The former problem involving minimization of costs among assignments can be
efficiently solved using the minimum cost flow model [10]. The minimum cost flow
problem has a time complexity of O(m · log(n) · (m + n · log(n))) on a network with
n nodes and m arcs [174], where n = |k| + |I| (team size and competences number
in task τ ) and m =

∑
i |δ(ci)|. Furthermore, this problem of cost minimization among

assignments can be avoided if we consider as valid just the assignments where every
student is responsible for all the task competences.

We calculate now congeniality ucon(k) = uSNTF (k)+uETJ(k)+uI(k)+ugender(k),
where:

• uSNTF (k) = σSN(k) · σTF (k) ≈ 0.7767 · 0.6807 ≈ 0.5287.

• uETJ(k) = maxa∈kETJ [max((0, α,α,α) · p, 0), 0], where α ≈ 0.1762 and
kETJ = {S2}. Calculating we get uETJ(k) = 0.3172.

• uI(k) = maxa∈kI [max((0,0,−β,0) · p, 0), 0], where β = 0.5287 and kI =
{S3}. Thus, uI(k) = 0.2115.
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i η(k, ci) u(η(k, ci)) o(η(k, ci)) cost(η(k, ci))
S1 S2 S3

1 0 0 1 0,12 0 0,12
1 0 1 0 0,18 0 0,18
1 0 1 1 0,15 0 0,15
1 1 0 0 0 0,02 0,02
1 1 0 1 0,12 0,02 0,14
1 1 1 0 0,18 0,02 0,2
1 1 1 1 0,15 0,02 0,17
2 0 0 1 0 0 0
2 0 1 0 0 0,04 0,04
2 0 1 1 0 0,04 0,04
2 1 0 0 0,03 0 0,03
2 1 0 1 0,03 0 0,03
2 1 1 0 0,03 0,04 0,07
2 1 1 1 0,03 0,04 0,07

Table 5.3: For each competence ci and student assignment η(k, ci), under/over-
proficiency costs are calculated and added. Bold lines are base cases where only one
student is responsible; the rest of lines are calculated from these base lines. Only valid
assignments are shown, excluding the case S1 = S2 = S3 = 0.

η(k, c1)

η(k, c2) 1 2 3 4 5 6 7

1 Inc Inc Inc Inc Inc 0.2 0.17
2 Inc Inc Inc Inc 0.18 Inc 0.21
3 Inc Inc Inc 0.06 0.18 0.24 0.21
4 Inc Inc 0.18 Inc Inc Inc 0.2
5 Inc 0.21 0.18 Inc Inc 0.23 0.2
6 0.19 Inc 0.22 Inc 0.21 Inc 0.24
7 0.19 0.25 0.22 0.09 0.21 0.27 0.24

Table 5.4: Valid assignments η(k, τ) from η(k, c1) and η(k, c2) showing costs u(η) +
o(η). Inc stands for not inclusive. uprof(k, τ ) = 0.94 (1− 0.06).



Section 5.6 : Related work 97

• ugender(k) = γ · sin ((π · w(k))/(w(k) +m(k))) where γ = 0.1, w(k) stands
for the number of women and m(k) for the number of men in team k. Thus,
ugender(k) = 0.1 · sin

(
π
3

)
≈ 0.0183.

We calculate ucon(k) ≈ 0.5287 + 0.3172 + 0.2115 + 0.0183 ≈ 1.0757 and s(k) ≈
(0.5·0.94)+(0.5·1.0757) ≈ 1, 00785. We now multiply this number by 1000 and round
to the nearest integer as it is needed by the majority of optimizers. Then we will use a
final desirability degree s(k) = 1008. In summary, we can use the same encoding of
TCPC, adjusting the size of teams and number of members and replacing the weights in
soft clauses in such a way that every possible team has as weight its desirability degree.
If we had teams of different sizes, we should scale s(k) as we did in the TCPC case.

5.6 Related work
There are similarities between the TCPC and the classical matching theory problem
known as the Stable Roommate Problem (SRP). SRP is about finding a stable match-
ing for an even-sized set. A matching is a partition of the set into disjoint pairs of
roommates. We say a matching is stable if there are not two individuals who are not
roommates and both prefer each other to their roommate under the current matching.
TCPC and SRP try to match elements within a single set in groups of a given size (size
two for SRP).

Irving [109] described an algorithm to solve SRP with a time complexity of O(n2).
Nevertheless, this algorithm solves a decision problem. It determines whether a stable
matching exists, and if so, it returns that matching. We are not solving a decision prob-
lem but an optimization one. Furthermore, the TCPC is about matching elements in
groups of any given size or a combination of sizes. Standard SRP uses rooms of size
two but this problem becomes NP-complete for rooms of size three [110]. The NP-
completeness proof uses the partition into triangles problem as in the NP-completeness
proof of TCPC.

Note that the TCPC is about finding an optimal assignment given a certain criterion,
but matching theory algorithms deal with the notion of stability. An optimization ver-
sion of SRP has not always an optimal solution among the stable solutions, so that they
can miss optimality. We show below an example.

Given a totally ordered preference list of possible mates for each student, the desir-
ability of A to be with B in a team k is calculated as the size for k minus the position
in that list, starting by an index equal to one. Thus, the last position in the list has
a desirability of zero. We show this information in the graph of Figure 5.1 for four
students.

Table 5.5 shows desirability degrees for every possible partition of size two of the
graph. Partition suitability is calculated as the sum of arities for each node into the
subgraphs for each partition. We observe, for a standard SRP and a usual team suitability
degree calculation, by summing satisfactions, that neither stability implies optimality
nor optimality implies stability.
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Figure 5.1: Degree of individual convenience of students in a team.

Partition Desirability Calculation Optimal Stable
DA , BC (1 + 0) + (1 + 1) = 3 7 7

DB , AC (2 + 0) + (1 + 2) = 5 3 7

DC , AB (0 + 0) + (2 + 2) = 4 7 3

Table 5.5: Optimality and stability of size-two partitions of graph in Figure 5.1.

There are criteria for the evaluation of team suitability that are different from the
ones described in the previous section for STCM. Another psychological theory, pro-
posed by Belbin [52], insists on the importance of roles in team composition pro-
cesses [44]. Belbin exposes nine important roles that an individual can play in a team:
plant, resource investigator, coordinator, shaper, monitor evaluator, implementer, team-
worker, specialist and completer-finisher. According to Belbin’s theory, people play
such roles with three different performances: preferred team roles, manageable roles
and least preferred roles. An effective team needs to be role balanced, having at least
one individual playing any role with a given minimum performance, which can be pre-
ferred or manageable. Based exclusively on this theory, Alberola et al. [12] also pose
this problem as a multi-agent coalition structure generation problem, developing a tool
for practical use in an educational environment [11]. This tool uses Bayesian learning to
estimate the predominant roles for each student from the peer-evaluation history made
by their former teammates.

5.7 Concluding remarks

We have presented two different ways of solving the TCPC as a Weighted Partial MaxSAT
problem, proved that the TCPC is NP-hard, and conducted experiments to evaluate the
proposed approach using an exact MaxSAT solver. The experimental results show that
the minimizing encoding outperforms the maximizing encoding, and MaxSAT solving
is a good solving method for the TCPC.

The proposed MaxSAT approach has the following advantages: it is generic, and so
does not need a dedicated algorithm; it is declarative, and so is easier to understand the
way the problem is specified; it is flexible, and so different classroom configurations
and other team formation problems can be solved similarly; and it is efficient, and so
provides an optimal solution in a reasonable amount of time. Moreover, the idea of
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creating a minimizing MaxSAT encoding from a maximizing MaxSAT encoding is new,
and can be applied to many similar optimization problems.



Chapter 6

Conclusions and Future Work

This chapter summarizes the main contributions of the thesis and outlines a few research
directions that we plan to pursue in the future.

6.1 Conclusions
The scientific contributions of this PhD thesis advance the state of the art and open new
research directions in MaxSAT and MinSAT solving. The thesis proposes novel logic-
based methods for solving challenging optimization problems. Moreover, it reinforces
the idea that MaxSAT and MinSAT are competitive generic problem solving approaches
in a wide range of application domains.

The main original contributions of this PhD thesis can be summarized as follows:

• The definition of a complete tableau calculus for Weighted Partial MaxSAT.

• The definition of a complete tableau calculus for Weighted Partial MinSAT.

• The definition of a complete calculus that is valid for both Weighted Partial MaxSAT
and Weighted Partial MinSAT.

• The definition of the direct, improved and Tseitin-based transformations from
non-clausal MaxSAT to clausal MaxSAT, and its conversion into cost-preserving
transformations from non-clausal MinSAT to clausal MinSAT.

• The definition of a complete tableau calculus for solving non-clausal MaxSAT,
which can also be used to solve non-clausal MinSAT.

• The resolution of the team composition problem in a classroom as a MaxSAT
problem.

We believe that the inference systems defined in the thesis have contributed to
the creation of a robust logical framework for MaxSAT and MinSAT. Before starting
this thesis, to the best of our knowledge, there were no tableau-based approaches for
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MaxSAT and MinSAT and there was no approach for solving non-clausal MaxSAT and
non-clausal MinSAT.

We also believe that the proposed tableau calculi for MaxSAT and MinSAT could
be used in logic courses to illustrate the differences between decision and optimization
problems from a logic perspective. Semantic tableaux are very intuitive and could be
helpful to explain and understand basic concepts of model and proof theory in Boolean
optimization.

It seems clear that new logical approaches to MaxSAT and MinSAT will help to
improve MaxSAT and MinSAT solvers. The challenge is to find out if these logical
approaches can be used to devise novel solving methods for SAT and develop more
powerful SAT solvers.

Finally, we would like to highlight that the application of MaxSAT solving to the
area of team formation is promising. The usual constraints in team formation admit
efficient MaxSAT encodings, and the challenge is to select the right encoding for each
constraint. Moreover, the insights derived from the maximizing and minimizing encod-
ings can be used to encode other optimization problems.

6.2 Future work
There are several interesting research directions that are worth exploring in the future,
including the following ones:

• The definition of MaxSAT and MinSAT tableau calculi for first-order logic is a
natural extension of our work and opens a new research direction.

• The extension of MaxSAT and MinSAT tableau calculi to non-classical logics
would allow to solve optimization problems in richer formalisms and deal with
notions such as uncertainty and imprecision.

• The development of a robust and highly efficient MinSAT solver is crucial to
develop new MinSAT applications and test some of the ideas presented in the
thesis. It is also essential to better understand the duality between MaxSAT and
MinSAT from a practical perspective.

• The empirical comparison of the cost-preserving transformations defined in this
PhD thesis is important to identify situations in which a transformation is pre-
ferred over the others.

• The creation of a test bed of non-clausal MaxSAT and MinSAT instances is deci-
sive to advance the state of the art on non-clausal MaxSAT and MinSAT.

• The definition of cost-preserving transformations from signed formulas to signed
CNF formulas is needed to study non-clausal MaxSAT and MinSAT in many-
valued logics.



102 Chapter 6 : Conclusions and Future Work

• A deeper understanding of the differences between the solving techniques and
encodings of MaxSAT and MinSAT is significant to develop new techniques and
applications.

• The resolution of the TCPC problem with MinSAT solving and its experimental
comparison with the MaxSAT approach could help to improve the scalability of
the approach proposed for the TCPC.

• The definition of MaxSAT and MinSAT encodings of more complex team com-
position problems is key to consolidate MaxSAT and MinSAT as a competitive
alternative in the area of team formation.
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