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Abstract

Norms have been widely enacted in both human and agent societies to regu-
late the actions that individuals can perform. However, although legislators
may have ethics in mind when establishing norms, moral values are seldom
explicitly considered. This thesis advances the state of the art in normative
multi-agent systems by providing quantitative and qualitative methods for a
decision maker to select the norms to enact within a society that best align
with the moral values of such society. We call the problem of selecting these
norms, the value-aligned norm selection.

The quantitative approach to align norms and values is grounded on
the ethics literature. Specifically, from the study of the relations between
norms, actions and values in the literature, we formally define how actions
and values relate, through the so-called value judgement functions, and how
norms and values relate, through the so-called norm promotion functions.
We show that both functions provide the means to compute value alignment
for a set of norms, and also that our norm selection problem can be cast
as an optimisation problem: finding the set of norms that maximises value
alignment. Furthermore, we provide an encoding to solve the value-aligned
norm selection problem with off-the-shelf solvers. Finally, we illustrate our
approach with a case study and provide an empirical analysis on the hardness
of solving norm selection problems.

While utilitarian approaches are commonplace in multi-criteria decision
making, utilities may not always be available or easy to specify. In the case
of value-aligned norm selection, assessing numerically how a norm relates to
a value may not be easy for a decision maker. In more general terms, decision
makers can often be confronted with the need to select a subset of objects
from a set of candidate objects by just counting on qualitative preferences
regarding some criteria. In fact, this constitutes a family of problems, which
we formalise as dominant set selection problems. We propose two approaches
to solve the dominant set selection problem depending on how elements
relate to the criteria. Both approaches are based on transforming the criteria
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preferences to preferences over all possible sets of objects. We accomplish
so by: (i) grounding the preferences over criteria to preferences over the
objects themselves; and (ii) lifting these preferences to preferences over all
possible sets of objects. Since the value-aligned norm selection problem is
a particular instance of the dominant set selection problem, we can readily
adapt the proposed qualitative approaches to perform value-aligned norm
selection.

Our first qualitative approach supposes binary relations between ele-
ments and criteria. In the case of value-aligned norm selection, norms either
promote or do not promote values. This approach relies on combining lex-cel
(an existing method in the literature to ground preferences over criteria to
preferences over elements) with our novel anti-lex-cel (a function that lifts
preferences over elements to preferences over sets of these elements), which
we formally (and thoroughly) study. Furthermore, we provide a binary in-
teger program (BIP) encoding for the value-aligned norm selection problem
to solve it with optimisation libraries.

Building on the first approach, we consider labelled relations between ele-
ments and criteria. For example, in the case of value-aligned norm selection,
norms can promote or demote values with different degrees, we can capture
these degrees of promotion and demotion through labels. This calls for a
new decision making framework, which we formally introduce. Within such
framework, we introduce a new method to ground preferences over criteria
to preferences over single elements considering the labelled element-criterion
relations: multi-criteria lex-cel. The resolution of the value-aligned norm se-
lection problem in this case relies on the combination of multi-criteria lex-cel
and anti-lex-cel. Here, we also provide a binary integer program encoding to
solve the value-aligned norm selection problem. Furthermore, we formally
establish that the contributions of this second approach generalise recent
results in the social choice literature.

While we formalise both qualitative approaches in general, we thoroughly
illustrate their application to the case of value-aligned norm selection.



Resum

Les normes s’han utilitzat àmpliament en societats tant d’humans com
d’agents per regular les accions permeses als seus individus. Tanmateix, tot i
que els legisladors poden estar considerant aspectes ètics de forma intŕınseca
quan defineixen normes, aquests aspectes no són usualment considerats de
forma expĺıcita. Aquesta tesi avança l’estat de l’art en sistemes multiagent
normatius formalitzant mètodes quantitatius i qualitatius per seleccionar les
normes d’una societat que millor s’alinëın als valors morals d’aquesta soci-
etat. Anomanem selecció de normes alineades als valors morals al problema
de seleccionar aquestes normes.

La resolució quantitativa del problema de selecció de normes alineades
als valors morals està basada en la literatura d’ètica. Arran de l’estudi de les
relacions entre normes, accions i valors que es fa a la literatura, proposem
una definició formal de les relacions entre accions i valors a través de les
funcions de judici, i de les relacions entre normes i valors a través de les
funcions de promoció. Aquests dos tipus de funcions poden ser utilitzades
per computar quant d’alineat està un conjunt de normes amb els valors
morals. D’aquesta manera, podem traduir el nostre problema de selecció
de normes alineades als valors morals a un problema d’optimització: el de
trobar el conjunt de normes de màxim alineament amb els valors. A més a
més, definim una codificació del problema de selecció de normes alineades als
valors morals. Finalment, il·lustrem aquesta resolució amb un cas d’estudi
i fem una anàlisi emṕırica sobre la dificultat de resolució dels problemes de
selecció de normes alineades als valors morals.

Tot i que les resolucions basades en utilitats són comunes en la presa de
decisions, les utilitats no sempre són fàcils d’especificar. En el cas de la se-
lecció de normes alineades als valors morals, avaluar numèricament l’impacte
d’una norma sobre un valor pot no ser fàcil. En termes més generals, la se-
lecció d’un subconjunt d’elements d’un conjunt de candidats, sol estar guiada
per criteris de decisió. De fet, identifiquem aquesta famı́lia de problemes
que anomenem problemes de selecció del conjunt dominant. Proposem dues
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resolucions per a aquests problemes depenent en com s’especifiquen les rela-
cions entre els elements i els criteris de decisió. Les dues resolucions es basen
en transformar les preferències sobre criteris en preferències sobre conjunts
d’elements. Ho fem en dos passos: (i) transformem les preferències sobre
criteris en preferències sobre elements; i (ii) transformem les preferències so-
bre elements en preferències sobre conjunts d’aquests elements. Com que el
problema de selecció de normes alineades als valors morals és una instància
de la famı́lia de problemes de selecció del conjunt dominant, podem adaptar
aquestes resolucions per a la selecció de normes.

La primera resolució qualitativa suposa que existeixen relacions binàries
entre elements i criteris. En el cas de la selecció de normes alineades als
valors morals, les normes promocionen o no promocionen els valors. Aix́ı,
la resolució consisteix en combinar lex-cel (un mètode de la literatura que
transforma les preferències entre criteris a preferències entre elements) amb
l’anti-lex-cel (una nova funció per transformar les preferències sobre elements
a preferències sobre conjunts d’aquests elements). A més a més, definim una
codificació en programació en enters del problema de selecció de normes alin-
eades als valors morals, per poder resoldre el problema mitjançant llibreries
d’optimització.

Per millorar la primera resolució qualitativa, considerem etiquetes per
expressar relacions graduades (en lloc de binàries) entre els elements i els
criteris. Per exemple, en el cas de la selecció de normes alineades als valors
morals, considerem que les normes poden promoure o descoratjar els valors
en diferents graus. Per poder gestionar aquestes relacions més riques, for-
malitzem un nou entorn de presa de decisions. En aquest entorn, definim el
multi-criteria lex-cel, una nova funció per convertir les preferències sobre els
criteris en preferències sobre elements considerant les relacions etiquetades
entre elements i criteris. D’aquesta manera, la segona resolució qualitativa
del problema de selecció de normes alineades als valors morals consisteix a
combinar el multi-criteria lex-cel amb l’anti-lex-cel. Per aquesta segona res-
olució qualitativa també definim una codificació en programació en enters
del problema. A més, demostrem que les contribucions d’aquesta segona
resolució qualitativa generalitzen resultats recents de la literatura.

Tot i que formalitzem les dues resolucions qualitatives en termes gener-
als, és important remarcar que il·lustrem com s’han d’aplicar en el cas del
problema de selecció de normes alineades als valors morals.
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Chapter 1

Introduction

Norms have been extensively established in both human and agent societies
as a means to regulate societies [Boella et al., 2006; Sethi and Somanathan,
1996]. Within agent societies, problems such as norm synthesis [Shoham and
Tennenholtz, 1995; Ågotnes and Wooldridge, 2010], norm emergence [Grif-
fiths and Luck, 2010; Villatoro et al., 2011], norm learning [Savarimuthu
et al., 2013; Campos et al., 2013; Riveret et al., 2014], or norm adoption
[Castelfranchi, 1999] have been widely studied. One of the main research
questions in normative multi-agent systems (NorMASs) research is how to
engineer a normative system that regulates the actions the agents can per-
form in different situations. Thus, the literature in NorMASs has tackled
the engineering of normative systems driven by a variety of goals.

An important aspect when regulating multi-agent systems (MASs) is to
consider the fact that actions have ethical implications. Thus, along the
lines of the IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems [IEEE Standards Association, 2016], with a committee devoted to
“Embedding Values into Autonomous Intelligent Systems”, here we take
the stance that moral values must be a first-class criterion to consider when
deciding on the regulation of a society. Therefore, note that by carefully
selecting the norms to enact in a system, the system designer will ultimately
constrain agents’ ethical behaviour. This thesis aims at defining how to
compose normative regulations for multiagent systems taking into account
the moral values that norms promote and demote.

We structure this chapter as follows. First, in Section 1.1 we motivate our
research. Second, Section 1.2 introduces the research questions we address in
this thesis. Then, Section 1.3 outlines the contributions we provide to answer
these research questions. Section 1.4 details how the thesis is structured.

1



2 CHAPTER 1. INTRODUCTION

Finally, in Section 1.5 we list the publications derived from this thesis.

1.1 Motivation

To motivate the work in this thesis, here we look with more detail into the
general ideas that we have already discussed. We provide some examples to
motivate the need for ethics in AI. Specifically, we show how ethics should
also be taken into account when establishing regulations within a MAS.
Thus, selecting norms considering the values they promote and demote be-
comes a useful tool to address this problem.

With the progressive influence of AI in our daily lives, it has become
increasingly important to ensure that AI systems act in a way that is aligned
with human values. As discussed by [Russell, 2019], we should seek to
prevent that AI systems act in hostile ways towards humans. This quest to
ensure AI systems act in a way aligned with human moral values is called
the value alignment problem.

In multi-agent systems in particular, norms have been shown to be a
useful means to regulate agent behaviour [Azar, 2004]. With norms we
can regulate (permit, oblige, or prohibit) the actions that agents perform.
Therefore, we should have to consider the value alignment problem when
deciding on the norms to regulate a MAS. Namely, we have to enact norms
that are aligned with the values of the society. By designing a normative
system (the set of norms that regulate the MAS) while considering the moral
values of the society, we ensure that when agents follow the norms, their
actions will be aligned with these values.

There has been extensive study on the design of normative systems with
a plethora of goals. Some examples of such goals include: avoiding norm
conflicts [Kollingbaum et al., 2006; Vasconcelos et al., 2009], minimality and
simplicity [Fitoussi and Tennenholtz, 2000; Morales et al., 2014], liberality
[Morales et al., 2015b], compactness [Morales et al., 2015a], or stability
[Sethi and Somanathan, 1996; Morales et al., 2018]. Nonetheless, to the
best of our knowledge, the alignment of norms with moral values has never
been considered as a goal when designing normative systems. This thesis
is devoted to studying the problem of composing normative systems with
the aim that the resulting norms are those that best align with the moral
values of the society. We call this new problem value-aligned norm selection
(VANS), which is the main problem that we address in this thesis.

Importantly, a fundamental component of value-aligned norm selection is
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the formal representation of the moral values of the society. There has been
some proposals on how to represent moral values and their preferences in AI
[Bench-Capon and Atkinson, 2009; Luo et al., 2017; Serramia et al., 2018a].
The literature usually considers a set of moral values along with preferences
over these values in what is called a value system. While the formalisation of
this structure is enough for the purposes it has currently been applied to, we
think its formal definition fails to capture the richness presented in the ethics
literature. On the one hand, value systems (as defined in [Bench-Capon
and Atkinson, 2009; Luo et al., 2017]) consider values as mere elements
with no semantics. In the case of value alignment and norms, the ethics
literature has long been studying the relation between values, actions and
norms [Cooper, 1993; Hansson, 2018; Chisholm, 1963; von Wright, 1963;
Hansson, 2001; McNamara, 2011]. Thus, based on these relations, we can
better formalise value systems by providing semantics to values. On the
other hand, we have to account for value preferences. Indeed, as shown
in [Schwartz, 2012; Haerpfer et al., 2020] different societies have different
priorities over which values they prefer. Currently, value systems use total
orders to specify value preferences, but the reason for using this structure
and not another one has not been discussed. This thesis also aims at better
formalising value systems by giving semantics to moral values (taking into
account the aforementioned relations in the literature) and arguing about
the best way to represent value preferences.

Finally, we provide several examples to illustrate the usefulness of value-
aligned norm selection. For instance, the public civility game, initially in-
troduced in [Rodriguez-Soto et al., 2020]. This game provides a scenario
through which to explore moral dilemmas. In short, the game represents a
situation wherein two agents move daily from their initial positions (which
can be their homes) to their respective target destinations (their workplaces,
for instance). Along their journey, one of the two agents finds garbage on
the floor that prevents it from progressing. Each agent in the game can deal
with the garbage in different ways, like throwing the garbage aside or taking
the garbage to the bin. These actions have different implications. Thus for
example, throwing the garbage aside may hurt another agent, while taking
the garbage to the bin may distract the agent, meaning that it would be late
to work. Thus, depending on the society’s values and their preferences, we
could regulate this scenario differently. An individualist society would reg-
ulate for agents to be able to dispose of the garbage swiftly and to continue
their journey even if this causes an inconvenience to the other agents. On
the other hand, a collectivist society would regulate in favour of disposing
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of the garbage so that it does not hurt other agents, even if this impacts the
individual goals of the agent that encounters garbage.

In more particular terms, suppose the following three candidate norms
(pictured as blue circles in Figure 1.1):

• a norm permitting agents to throw the garbage aside;

• a norm obliging them to take the garbage to the bin; and

• a norm prohibiting them to hurt another agent when throwing garbage.

Additionally, we consider two moral values to decide which norms to enact
in this case, the values of civility and timeliness (shown as green squares in
Figure 1.1)).

Civility Timeliness

Permission 
Throw

Obligation
Bin

Prohibition
Hurt

Promotion
Demotion

Figure 1.1: Example norms for the public civility game and their relations with
the moral values of civility and timeliness.

As pictured in Figure 1.1, the candidate norms are related to moral values
by promotion and demotion relationships. Thus, for example, throwing the
garbage aside promotes timeliness (it is a fast way to deal with the problem),
but demotes civility (since it can hurt another agent). Conversely, taking the
garbage to the bin promotes civility (as it clears the path for other agents),
but demotes timeliness (as the agent is distracted and can arrive late at
its destination). Finally, prohibiting to hurt other agents when throwing
garbage aside promotes timeliness (as it allows to throw garbage aside when
nobody is there, thus disposing swiftly of the garbage) and neither promotes
nor demotes civility (it does not hurt anybody, but the path remains dirty).

Depending on the preferences of the society over these values, we should
enact different norms. A society that highly values civility will benefit from
the norm obliging agents to take the garbage to the bin. On the other hand,
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if timeliness is more important than civility (suppose for example the agents
are part of an emergency service), then disposing swiftly of the garbage might
be a more value-aligned norm. Note, though, that when selecting norms we
should also take into account their relations to avoid incompatibilities or
redundancies. For example, we should avoid selecting the norm permitting
to throw the garbage aside together with the norm obliging to take the
garbage to the bin because they are incompatible.

While the public civility game is only an illustratory example, it is im-
portant to stress the general idea we have motivated with it: by carefully
composing the norms governing a MAS, we can regulate agent behaviour
so that it becomes ethically aligned with the moral values of the society.
Figure 1.2 provides a general picture of the value-aligned norm selection
process identifying its input and output. Value-aligned norm selection con-
siders a set of candidate norms N , moral value criteria, and the relation of
promotion/demotion between the norms and the moral values. Then, this
process aims at selecting the subset of the candidate norms Ω ⊆ N that best
align with the moral values while maintaining soundness among the norms
(avoiding incompatibilities and redundancies). Importantly, composing a
value-aligned set of norms requires different approaches depending on the
available information to the decision maker. If the decision maker is able to
quantify or measure the value alignment of the norms we can approach this
task quantitatively. Nonetheless, the decision maker might not be able to
numerically assess the value alignment of norms, therefore, in that case, we
have to resort to a qualitative approach.

This thesis explores the value-aligned norm selection problem, in par-
ticular, how to formalise it and its components, as well as the different
approaches to solve it and their properties. In particular, we approach the
problem from two different perspectives, namely the quantitative and the
qualitative perspectives. To illustrate them, in later chapters we will revisit
the public civility game and other similar examples.

Value-aligned 
norm selection

Value-aligned
norms Ω ⊆ #

Promote
Demote

Values &
preferences

Candidate 
norms #

& relationships

Figure 1.2: The value-aligned norm selection process.



6 CHAPTER 1. INTRODUCTION

1.2 Research questions

The problem of value-aligned norm selection opens questions on two fronts.
The next two subsections are devoted to discussing research questions on i)
the definition of the value-aligned norm selection problem and its compo-
nents, and ii) on the proposed approaches for its resolution.

1.2.1 Norms, values and problem definition

As already discussed in the motivation, in the AI literature, moral values
are commonly represented together with their preferences in value systems
[Bench-Capon and Atkinson, 2009; Luo et al., 2017]. Nonetheless, the lit-
erature so far treats moral values as mere objects without any structure.
To fully exploit the computational treatment of value systems, we require a
more detailed formal definition that grounds value systems and its compo-
nents on the philosophical literature. Hence, to that end, we consider the
following research question:

Question Q1: How to formally define a value system? Due to the com-
plexity of this question we further divide it into two sub-questions:

• Question Q1.1: How do we formally define moral values based on
the philosophical literature?

• Question Q1.2: How do we represent the preferences over moral
values of a value system?

Provided that we have grounded the notion of value system, the next
front to address is the normative component of the problem. There is no
consensus on how norms for MAS should be defined. However, the litera-
ture in normative Multi-Agent Systems has provided a number of alterna-
tive norm definitions, see for example [Dignum, 1999; López y López et al.,
2002; Boella and van der Torre, 2004; Morales et al., 2015a]. Thus, we pose
the following research questions:

Question Q2: How do we define norms and their relations?

With a formalisation of the value system and the normative component
of the problem to decide about, we have to address how these two compo-
nents are related and how this relation is formalised. The relation between
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norms and values is one of the main subjects of research in ethics [Chisholm,
1963; von Wright, 1963; Hansson, 2001; McNamara, 2011]. Nonetheless, to
the best of our knowledge, this has not been addressed to the same degree
on the AI literature. Hence, we must tackle:

Question Q3: How are norms and values related?

With a clear idea of the definition of the structures of the problem and
their relations, the question that follows is to define the problem itself:

Question Q4: How do we define the value-aligned norm selection prob-
lem?

1.2.2 The value-aligned norm selection process

As motivated previously, value-aligned norm selection requires different ap-
proaches depending on the information available to the decision maker.
Thus, we explore a quantitative approach when the decision maker is able
to quantify the relations between norms and values. On the other hand, we
prospect a qualitative approach when such numerical information is not at
hand. Each of these approaches has its different research questions, we first
look into the ones pertaining to the quantitative approach.

Quantitative approach

The quantitative approach requires that the decision maker is able to nu-
merically assess the relation between each norm and value. Considering
both the value preferences together with these numerical assessments of the
relations between each norm and value, the approach relies on computing
how value-aligned each norm is with regards to all values. Thus, we pose
the following research question:

Question Q5: How do we assess the value alignment of a single norm
from its relation to each moral value, considering the value preferences?

Once we are able to assess the value alignment of a single norm, we have to
address assessing the value alignment of a set of norms. From there, solving
the value-aligned norm selection problem consists on finding the norm sys-
tem with maximum value alignment. Nonetheless, we also have to take into
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account the aforementioned norm relations, and ensure that the resulting
norm system is free of conflict or redundancy. Thus, we must also consider:

Question Q6: How do we solve the value-aligned norm selection prob-
lem? In other words, how do we compose a norm system with maximum
value alignment and taking into account norm relations to avoid norm con-
flicts or redundancy?

It is not obvious that solving the value-aligned norm selection problem is
tractable or what its computational cost is. Furthermore, we have to study
how different problem features affect its computational time. Note that,
number of norms, types and number of norm relations, number of values,
etc. are features that can impact differently the tractability of the problem.
Thus, in order to ensure that the problem can be solved in a reasonable time
and independently of the aforementioned features, we should study several
instances varying these features to ensure that in all cases the problem is
tractable. Hence, we propose to study:

Question Q7: Is solving the value-aligned norm selection problem com-
putationally feasible and, if so, what factors affect the time required to solve
it?

Qualitative approach

The decision maker may not be able to quantify the relationships between
norms and values. Instead, it might be simpler to express such relationships
qualitatively. This leads to further research questions:

Question Q8: How can we represent qualitatively the relations between
norms and values?

Then, the idea of the qualitative approach is to exploit the known value
preferences and cast them to norm preferences to afterwards use them to
select value-aligned norms. So, we should consider how this process should
be performed:

Question Q9: How do we solve the value-aligned norm selection problem
qualitatively? This leads to two sub-questions:

• Question Q9.1: How do we transform preferences over values to
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preferences over norms?

• Question Q9.2: How do we exploit preferences over norms to select
the most value-aligned norms?

Analogously to the questions posed when following a quantitative approach,
we are interested in studying these approaches theoretically as well as in
exploring their use in practice. Hence, we propose to address:

Question Q10: Are qualitative approaches computationally feasible?

Furthermore, a qualitative approach for value-aligned norm selection can
be useful for other similar decision making problems. Indeed, while we want
to select norms based on their relations with moral values, this setting is
not different to selecting elements based on their relation to given criteria.
For example, building employee teams based on their capabilities taking into
account some team-building criteria, building a diet based on the properties
of food and following some general dietary guidelines, etc. In that regard, it
seems a good idea to study whether it is possible to generalise the qualitative
approach. Thus, we ask:

Question Q11: How can we generalise the qualitative approach to value-
aligned norm selection to use it in other multi-criteria decision making prob-
lems?

1.3 Contributions

In relation to the research questions above, this thesis advances the state
of the art by providing several models of the value-aligned norm selection
problem and different approaches to solve it. The following subsections
discuss the contributions with regards to the different research questions
identified in Section 1.2.

1.3.1 Formalising the value-aligned norm selection prob-
lem

The first part of Chapter 3 is devoted to formalising the relations between
actions, norms and values. The aim there is to answer research question



10 CHAPTER 1. INTRODUCTION

Q1. In particular, to establish a definition of moral values and their pref-
erences. To that end, we study the relation between values and actions.
We have detected two approaches in the AI literature to define the rela-
tions between values and actions. Firstly, [Tielman et al., 2018] proposes a
straightforward view: the performance of actions promotes or demotes val-
ues in a measurable, commensurable, and comparable way. Other works see
value promotion/demotion through state transitions [van der Weide et al.,
2009; Bench-Capon, 2016; Luo et al., 2017]. While both of these approaches
seem different, in the end they are based on the same idea: they consider
value promotion/demotion happens through action performance (note that
a state transitions when actions are performed). Nonetheless, these frame-
works are not able to capture how not performing an action affects values.
Take for example a state in which an agent finds itself in front of an accident
with harmed people, and consider the value of solidarity. If the agent does
not perform any action, it is hard to think that the value of solidarity is
neither promoted nor demoted. In fact, in this case solidarity should be de-
moted. This is in line with the ethics literature, which considers that values
judge how good or bad actions are to perform or to not perform [Chisholm,
1963]. Thus, we exploit this idea and formalise the concept of moral value
through what we call a judgement function.

The other topic we address is that of preferences between values. Unlike
the value systems in [Bench-Capon and Atkinson, 2009; Luo et al., 2017],
which consider total orders (without an apparent reasoning), we define value
preferences as rankings [Barberà et al., 2004]. Rankings are less strict than
total orders since they allow for indifferently preferred values, while they still
satisfy totality, a fundamental property when we need to compare values be-
tween them. With that, we formalise value systems as a set of moral values
and a ranking over them. Thus, in terms of values and their preferences our
contribution is:

Contribution C1: Formal definition of value system grounded on the ethics
literature. Moral values judge how good or bad are actions whether they
are performed or not. Exploiting this idea, we provide:

• Contribution C1.1: A novel formal definition of moral value. This
definition provides semantics to moral values through the judgement
function relating values and actions.

• Contribution C1.2: A formalisation of value preferences as rankings.
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Chapter 3 addresses many of the research questions with regards to the
value-aligned norm selection problem. When it comes to question Q2, we
formally introduce a multi-agent system, and define actions and their con-
text. Then, the concept of normative domain is presented, which can be
regarded as the domain over which the process of composing a normative
system takes place. This concept is later simplified in Chapters 4 and 5
as the norm net. Within a normative domain, we identify the fundamental
relationships between norms. We characterise sound norm systems as those
without norm conflicts or redundancy. Value-aligned norm selection will aim
at finding a sound norm system that best aligns with a value system. Thus,
we propose:

Contribution C2: Formalisation of the normative domain, and its sim-
plified version, the norm net. Formalisation of sound norm systems, those
that are the target of value-aligned norm selection.

Next, we address the relation between norms and values. There has been
some research on this relation, especially with regards to environmentalism.
In that regard, [Stern et al., 1999] proposes the value-belief-norm theory.
This theory states that when individuals adhere to the values of a move-
ment, they believe their actions matter towards those values, which ulti-
mately leads to the activation of personal norms aligned with the values of
the movement. Similarly, in the paradigm of socio-hydrology, [Roobavannan
et al., 2018] also describe this forward loop where personal values activate
personal norms. Furthermore, they also consider a backwards loop, where
collective behaviour can spark change on personal norms. In more general
terms (outside the area of environmentalism), [Sierra et al., 2019] charac-
terises the value alignment of a norm considering the state transition paths
available once we apply the norm. We exploit our novel definition of moral
value to enter this discussion. Nevertheless, here we take a different stance,
since we profit from the value judgement functions from contribution C1.1.
As explained before, value judgement functions assess how good or bad is
the performance or non-performance of actions with respect to some value.
Since norms regulate actions, norms and values are also related. The relation
between a value and a norm depends on the relation between the value and
the norm’s action (its judgement) and the relation between the norm and
the action (how the norm regulates the action). Our notion of promotion
function is based on these two relations. Therefore, we offer the following
contribution to address research question Q3:
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Contribution C3: Definition of the promotion function relating norms
and values.

Finally, having formally defined all the components of the value-aligned norm
selection problem and how they relate, we are ready to formalise it. We for-
malise the value-aligned norm selection problem as the problem of finding
the sound norm system that best aligns with the value system. Hence, we
address question Q4 with the following contribution:

Contribution C4: Formal definition of the value-aligned norm selection
(VANS) problem.

1.3.2 Solving the value-aligned norm selection prob-
lem

As discussed by our research questions, we propose two different approaches
to solve the value-aligned norm selection problem, depending on the informa-
tion available to the decision maker. We develop quantitative and qualitative
approaches. They are detailed in what follows.

Quantitative reasoning

The quantitative approach assumes that the decision maker has enough do-
main knowledge to numerically assess how each norm promotes or demotes
each value. This approach to value-aligned norm selection follows the pro-
cess outlined in Figure 1.3. Thus, this approach aims at combining all
norm-value numerical assessments into an overall norm utility considering
also value preferences (i.e., the norm value-alignment utility in the centre
of Figure 1.3). The overall norm utility represents how much each norm is
aligned with values. Therefore, the higher the utility of a norm, the more
value-aligned the norm. Hence, the goal of this approach is to compose a
set of norms with maximum overall utility. Note though, that this is not
as straightforward as it seems, since we have to take into account norm
relations (incompatibilities between norms and redundancies).

Chapter 3 explains in detail the quantitative approach that we propose
to solve the value-aligned norm selection problem. This approach assesses
the promotion/demotion relation between norms and values numerically. In
this manner, it addresses research question Q5 with the following contribu-
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Figure 1.3: The quantitative approach to value-aligned norm selection.

tion:

Contribution C5: Definition of utility functions to compute the value-
alignment of a norm with respect to a value system.

Using these utility functions, we tackle the problem of composing the norm
system that maximises the overall norm utility while taking into account
norm relations. This is addressed by casting the VANS problem as an opti-
misation problem. Thus, we answer question Q6 with the following contri-
bution:

Contribution C6: An encoding of the value-aligned norm selection prob-
lem as a binary integer program (BIP).

Note that, although the BIP encoding allows us to solve the VANS problem,
it is not guaranteed that a solver will be able to solve a VANS problem in a
reasonable amount of time. Furthermore, the computational cost of solving
a VANS problem may vary depending on its structure. For example, a large
number of incompatibility relations between norms might make a problem
harder to solve. Hence, we should be aware if the problem’s features affect
the problem’s tractability.

In Chapter 3, we show that the VANS problem is NP-hard. Nonetheless,
we prove empirically that off-the-shelf commercial solvers are able to handle
large-scale VANS problem instances. Furthermore, we study the problem
features that affect solving times. We see that some configurations of norm
relations (e.g. a high number of incompatibility relations) make the problem
harder. Nonetheless, while in these cases solving times increase, in all cases
the problem can still be solved in a reasonable amount of time. Hence, with
regards to Q7, we contribute with:
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Contribution C7: Study of the VANS problem tractability and experi-
mental evaluation of the VANS problem features affecting solving times.

The quantitative approach relies on the assumption that the decision maker
is able to numerically quantify how norm promote/demote values. If this as-
sumption does not hold, we propose to perform value-aligned norm selection
through a qualitative approach.

Qualitative reasoning

Decision makers may not be able to numerically assert with precision the
relation between norms and values. Furthermore, the additivity of util-
ity functions prioritises quantity over quality, which may have unwanted
consequences for ethical reasoning. In these cases, we propose qualitative
approaches to solve the value-aligned norm selection problem.

Our qualitative approaches do not require the decision maker to provide
numerical assessment of the relation between norms and values. Instead,
we consider qualitative norm-value relations in two different levels of ex-
pressiveness. On the one hand, our first qualitative approach considers the
bare minimum information to build the relations between norms and values.
This is represented through binary promotion or no promotion relations
between norms and values. On the other hand, our second qualitative ap-
proach allows for more expressiveness since it considers different degrees of
norm-value promotion and demotion using labels. Independently of how the
relation between norms and values is specified, both qualitative approaches
follow the same idea. As pictured in Figure 1.4, the procedure consists on
transforming the preferences over values to preferences over norms taking
into account norm-value relations. We introduce a mechanism for inferring
preferences over norms so that these embody the norms’ value-alignment.
Hence, the more preferred a norm, the more it aligns with values. Once we
obtain the preferences over individual norms, our approach proceeds to lift
these preferences to preferences over sets of norms. Then, solving the VANS
problem amounts to selecting the more preferred sound norm system, that
is the most preferred set of norms in the ranking that satisfies soundness.

Chapters 4 and 5 describe the two qualitative approaches (considering
binary and graded norm-value relations respectively). With regards to ques-
tion Q8 each approach answers it differently, hence leading to different con-
tributions:
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Figure 1.4: The qualitative approach to value-aligned norm selection.

Contribution C8: A qualitative definition of the norm-value relation:

- Chapter 4 considers a binary promotion or no promotion relation, in
other words, each norm either promotes or does not promote each
value.

- Chapter 5 considers a graded relation that allows for different degrees
of norm promotion or demotion towards values.

Our proposed qualitative approaches transform preferences over values to
preferences over sets of norms. To accomplish that, we resort to composing
ranking functions, a novel approach that to the best of our knowledge has
not been previously studied in the literature. As already outlined in Figure
1.4, our approaches consist on two steps, namely preference grounding and
preference lifting. In particular our contributions to answer question Q9 are:

Contribution C9: We design a general process for tackling value-aligned
norm selection by counting on the composition of two transformations: pref-
erence grounding (from preferences over values to preferences over norms);
and preference lifting (from preferences over norms to preferences over sets
of norms).

• Contribution C9.1: Depending on how norm-value relations are de-
fined we use different functions to perform preference grounding:
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– In Chapter 4 we consider binary norm-value relations. To per-
form preference grounding we exploit a recently introduced family
of ranking functions called social rankings [Moretti and Öztürk,
2017]. In particular, we perform preference grounding through
an adaptation of the lex-cel function, a social ranking function
introduced in [Bernardi et al., 2019].

– In Chapter 5, norm-value relations are graded. Thus, we intro-
duce a novel category of ranking functions named multi-criteria
ranking functions. We show that this family generalises the fam-
ily of social ranking functions of [Moretti and Öztürk, 2017]. In
particular, we formalise a novel ranking function called MC lex-
cel, which we use to perform preference grounding. This function
is a generalisation of the lex-cel function of [Bernardi et al., 2019].

• Contribution C9.2: With regards to preference lifting, we introduce
the novel anti-lex-cel ranking function (a function that generalises that
of [Bossert et al., 1994]). Anti-lex-cel builds a ranking over all sets of
norms embodying value alignment. The solution to the VANS prob-
lem is the most preferred norm system in this ranking that satisfies
soundness.

Chapters 4 and 5 prove that the solution provided by these transformations
is indeed the solution of the VANS problem. Nonetheless, these transforma-
tions are computationally costly, which is a concern, as noted by research
question Q10. Indeed, building the ranking for all sets of norms requires to
compute preferences for 2|N | sets. Conversely, the use of a binary integer
programs has proved to be useful in the quantitative approach. Therefore,
we use a BIP to solve the problem here and avoid the computational cost of
building the whole norm system ranking. Thus, we propose:

Contribution C10: A BIP encoding of the problem to obtain the so-
lution of the qualitative approach avoiding the computational cost of the
grounding and lifting transformations. Importantly, we prove that this BIP
encoding produces the same solution obtained through the grounding and
lifting functions.

Much like with value-aligned norm selection, some actual-world decision
making problems require to select a (sub)set of elements despite decision
makers only counting on preferences over some decision criteria instead of
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the elements themselves. Examples of such problems are committee selec-
tion, coalition formation, product line composition, budget allocation, or
college admissions [Fishburn, 1992; Gale and Shapley, 1962; Roth and So-
tomayor, 1992]. Interestingly, we can think of many other similar set selec-
tion problems, such as selecting the team of players for a match (where we
prefer some types of players over others), personnel selection (where some
capabilities may be preferred over others), etc. Considering this last exam-
ple, picture the following situation. A school head master must decide on
which students to grant admission to. For that, the head master leverages
on the admission policy of the school, which, for instance, prioritises some
minorities, or fosters impoverished neighbourhoods. Such policies can be
cast as preferences over student selection criteria. Nonetheless, the head
master lacks of a straightforward manner to rank all possible sets of stu-
dents. Moreover, there is a further dimension of complexity: some sets may
not be eligible (e.g. because of limited budget, or unfulfilment of minority
quotas). And yet, despite only counting on preferences over criteria and
not sets, the head master must select the most preferred set of students.
While we can readily adapt utilitarian approaches in the literature to solve
these problems, decision makers may not have enough domain knowledge
to quantify how elements relate to the criteria. Thus, by generalising our
qualitative approach to solve the VANS problem we can adapt it to suit this
family of problems.

Hence, for research question Q11, Chapters 4 and 5 describe respectively
binary and graded qualitative approaches to select elements with regards to
some decision criteria. While ultimately both chapters explain how to apply
the described approaches to the value-aligned norm selection problem, they
previously define both the goals of the problem as well as the methodology to
solve it in a general context. Chapter 4 provides a definition of the dominant
set selection problem (DSSP), the generalisation of the VANS problem that
considers elements instead of norms and decision criteria instead of moral
values. The DSSP formalisation relies heavily on the notion of dominance.
Chapter 4 explains and formalises this concept assuming binary relations
between elements and criteria (i.e., elements either align with a criterion
or not). Conversely, Chapter 5 supposes a more complex relation between
elements and criteria, which counts on degrees of alignment or unalignment.

Thus, we answer research question Q11 with the following contribution:

Contribution C11: Formalisation of the dominant set selection problem
with two different degrees of expressiveness, namely considering binary and
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graded element-criteria relations. Resolution of both versions of the problem
by means of the novel composition of ranking functions generalising the pre-
vious contribution C9. We also provide a BIP encoding to solve the problem
avoiding the whole computation of the set ranking, thus generalising contri-
bution C10.

1.4 Dissertation outline

Following the concepts introduced in this chapter, the rest of this thesis is
structured as follows:

• Chapter 2 outlines the related work to this thesis and compares the
contributions of this work to similar proposals in the literature.

• Chapter 3 introduces a quantitative approach to value-aligned norm
selection. This approach assumes the decision maker can assess how
norms relate to values numerically. Then, value-alignment is treated
as a utility function and thus, the solution is the set of norms that
maximises this utility.

• Chapter 4 introduces a qualitative approach to value-aligned norm
selection. In this case, the decision maker does not have to numeri-
cally asses the relation between norms and values. Thus, this approach
transforms the preferences over values to preferences over norm sys-
tems in terms of value alignment, then the solution can be selected as
the most preferred norm system.

• Chapter 5 builds on the previous qualitative approach by allowing for
more expressiveness. While the qualitative approach in Chapter 4 only
counts on norms promoting or not promoting values, the approach in
this chapter allows for different degrees of norm promotion or demotion
specified through the use of labels.

• Chapter 6 is devoted to discuss the conclusions of the thesis, the
lessons learned along this work, and to provide future research paths.

After the conclusions we provide a List of Notation and Symbols, which
outlines the notation used within each chapter.
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1.5 Publications derived from this thesis

Some results in this thesis have been already published, as we detail in this
section. First, the following publications helped to ground the ethical con-
cepts of this work and provided a first attempt at the quantitative approach:

• Lopez-Sanchez, M., Serramia, M., Rodriguez-Aguilar, J. A., Morales,
J., and Wooldridge, M. (2017). Automating decision making to help
establish norm-based regulations. In Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent Systems (AAMAS’17),
pages 1613–1615. International Foundation for Autonomous Agents
and Multiagent Systems

• Serramia, M., López-Sánchez, M., Rodŕıguez-Aguilar, J. A., Morales,
J., Wooldridge, M., and Ansotegui, C. (2018a). Exploiting moral values
to choose the right norms. In Proceedings of the 1st Conference on
artificial intelligence, ethics and society (AIES’18), pages 1–7

• Serramia, M. (2018). Ethics in norm decision making. In Proceedings
of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES
’18, page 378–379, New York, NY, USA. Association for Computing
Machinery

We further explored the quantitative approach of Chapter 3 in:

• Serramia, M., Lopez-Sanchez, M., Rodriguez-Aguilar, J. A., Rodriguez,
M., Wooldridge, M., Morales, J., and Ansotegui, C. (2018b). Moral
values in norm decision making. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’18), pages 1294–1302. International Foundation for Autonomous
Agents and Multiagent Systems

As for the qualitative approach described in Chapter 4, we first explored
it in:

• Serramia, M., Lopez-Sanchez, M., and Rodriguez-Aguilar, J. A. (2020).
A qualitative approach to composing value-aligned norm systems. In
Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, pages 1233–1241
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Our paper [Serramia et al., 2020] was considered a premier paper of
AAMAS2020, hence we were invited to submit an extended journal version
to JAAMAS:

• (In press) Serramia, M., Lopez-Sanchez, M., Moretti, S., and Rodriguez-
Aguilar, J. A. (2021a). On the dominant set selection problem and its
application to value alignment. Autonomous Agents and Multi-Agent
Systems (JAAMAS)

Additionally, implementations to solve the value-aligned norm selection
problem quantitatively and qualitatively, and also the dominant set selection
problem, can be found in:

• Serramia, M., López-Sánchez, M., and Rodŕıguez-Aguilar, J. A. (2021d).
Algorithm to generate the BIP encoding of a VANS problem with
quantitative input. https://gitlab.iiia.csic.es/marcserr/vans-quant

• Serramia, M., López-Sánchez, M., and Rodŕıguez-Aguilar, J. A. (2021c).
Algorithm to generate the BIP encoding of a VANS problem with qual-
itative input. https://gitlab.iiia.csic.es/marcserr/vans-problem

• Serramia, M., López-Sánchez, M., and Rodŕıguez-Aguilar, J. A. (2021b).
Algorithm to generate the BIP encoding of a DSSP problem. https:
//gitlab.iiia.csic.es/marcserr/dssp

More applied publications derived from the work in this thesis:

• Serramia, M., Ganzer-Ripoll, J., López-Sánchez, M., Rodŕıguez-Aguilar,
J. A., Criado, N., Parsons, S., Escobar, P., and Fernández, M. (2019a).
Citizen support aggregation methods for participatory platforms. In
Sabater-Mir, J., Torra, V., Aguiló, I., and Hidalgo, M. G., editors, Arti-
ficial Intelligence Research and Development - Proceedings of the 22nd
International Conference of the Catalan Association for Artificial In-
telligence, CCIA 2019, Mallorca, Spain, 23-25 October 2019, volume
319 of Frontiers in Artificial Intelligence and Applications, pages 9–18,
Amsterdam. IOS Press

• Serramia, M., López-Sánchez, M., Rodŕıguez-Aguilar, J. A., and Es-
cobar, P. (2019b). Optimising participatory budget allocation: The
decidim use case. In Sabater-Mir, J., Torra, V., Aguiló, I., and Hi-
dalgo, M. G., editors, Artificial Intelligence Research and Development

https://gitlab.iiia.csic.es/marcserr/vans-quant
https://gitlab.iiia.csic.es/marcserr/vans-problem
https://gitlab.iiia.csic.es/marcserr/dssp
https://gitlab.iiia.csic.es/marcserr/dssp
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- Proceedings of the 22nd International Conference of the Catalan As-
sociation for Artificial Intelligence, CCIA 2019, Mallorca, Spain, 23-
25 October 2019, volume 319 of Frontiers in Artificial Intelligence and
Applications, pages 193–202. IOS Press

1.5.1 Publications under review

With regards to the graded qualitative approach described in Chapter 5, we
have submitted this journal paper:

• (Under review) Serramia, M., Lopez-Sanchez, M., Moretti, S., and
Rodriguez-Aguilar, J. A. (2021a). Building rankings to consider mul-
tiple decision-making criteria and its application to ethical reasoning.
Information sciences.

After attending the AAAI 2021 Spring Symposium on Implementing AI
Ethics, the organisers invited the attendees to submit an extended abstract
for a special issue of the Journal of Philosophy and Technology. We submit-
ted the following paper discussing the lessons learnt from the work in this
thesis:

• (Under review) Serramia, M., Lopez-Sanchez, M., and Rodriguez-
Aguilar, J. A. (2021f). Value-aligned AI: Lessons learnt from value-
aligned norm selection. Journal of Philosophy and Technology.



22 CHAPTER 1. INTRODUCTION



Chapter 2

Related work

As previously mentioned in the introduction, this thesis tries to answer re-
search questions from several areas. This chapter is devoted to briefly intro-
ducing the related work on each of these areas. Firstly, we will look into the
literature on values and value alignment to show that this literature has not
been conveniently exploited to formalise values in AI. The formalisation of
values will be paramount to found our quantitative method. Then, we dis-
cuss the literature in normative multi-agent systems to show that composing
norm systems with regards to their value alignment is a novel problem that
has not yet been thoroughly addressed. Finally, we also provide an insight
on the literature of social choice, rankings and preferences. This will be
useful to address one of the aims of this thesis, which is to explore the novel
methods that we propose for qualitative reasoning.

2.1 Moral values in AI

The AI research community has been increasingly active in the study of
moral agency. Thus, besides the work by Wallach and Allen on moral ma-
chines [Wallach and Allen, 2008] and that of Moniz-Pereira and Saptawijaya
on machine ethics [Pereira-Moniz and Saptawijaya, 2016], a number of re-
search papers focus on moral values. Just to mention a few, Murukannaiah
et al. [Murukannaiah et al., 2020] provide an excellent roadmap to guide re-
search on ethics and multi-agent systems. Ajmeri [Ajmeri, 2018] tackles the
question of engineering agents that can reason about values and act ethically.
Floridi and Sanders [Floridi and Sanders, 2004] use values as thresholds: an
agent is morally good if all its actions respect that threshold; and it is morally
evil if some action violates it. Kohler et al. [Kohler et al., 2014] include ar-
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tificial moral agents in multi-agent institutions to accomplish fair resource
allocation. Abel et al. [Abel et al., 2016] formalize the ethical learning and
decision-making problem as solving a partially observable Markov decision
process. Cointe et al. [Cointe et al., 2016] propose a judgement ability for
agents to be able to evaluate the rightness and/or goodness of both its own
behaviour and those of others. In [Cranefield et al., 2017] the authors select
agent plans by optimising (minimising) the sum of the current importance
of all values.

Considering the wider perspective of decision making support, we find
different ethical decision making systems aimed at aiding humans with ethi-
cal dilemmas. Thus, Ethos [Harris Jr et al., 2013] and Dax Cowart [Anderson
et al., 1996] correspond to two educational programs that challenge students
to solve ethical dilemmas. Alternatively, Truth-Teller [McLaren and Ashley,
1995] compares pairs of given cases (together with their corresponding rea-
sons), presenting ethical dilemmas about whether to tell the truth or not.
Finally, SIROCCO [McLaren, 2006] supports the decision maker with both
a list of ethical codes and practical cases that are relevant to the dilemma at
hand. Instead, our approach deals with ethical principles to automatically
provide the decision maker with a solution. Conversely, there are works,
such as the one by Pitt et al. [Pitt et al., 2014] or Petruzzi et al. [Petruzzi
et al., 2015] that operationalize ethical considerations in resource allocation
settings by proposing metrics on fairness and social capital respectively. In
fact, when it comes to fairness, there is a plethora of works in machine
learning considering it, see [Friedler et al., 2019] for a survey.

Argumentation constitutes another research area that has studied val-
ues. Some representative examples include the work of Bench-Capon et
al. [Bench-Capon and Atkinson, 2009; Atkinson et al., 2006] and Modgil
[Modgil, 2006], which use different “Value-based Argumentation Frame-
work” to decide if a statement is true or to evaluate the goodness of certain
actions. In terms of agents (moral agency), Bench-Capon extends agent
reasoning with values in [Bench-Capon, 2016]. Specifically, value promotion
or demotion is associated to changes in system states when agents perform
actions. In [Luo et al., 2017], this idea is further explored as authors in-
troduce agents with an opportunistic behaviour that take advantage of less
informed agents to reach those state transitions that further promote their
individual values. Although both approaches take into account the impact
of values and their preferences, these works consider decision making as an
individual process, while we take a system-wide perspective.

More related to this thesis, moral values have also been studied together
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with norms. Thus, Fan-Yun et al. [Sun et al., 2019] propose a regulation
enforcement mechanism based on ethical considerations. Kasenberg et al.
[Kasenberg et al., 2018] infer values (expressed as norms) by behaviour ob-
servation. Tielman et al. [Tielman et al., 2018] present a method to derive
norms from actions, values and domain. Mercuur et al. [Mercuur et al.,
2019] compare human behaviour with agents endowed with moral values
and norms, which are expressed with the “non-standard” deontic opera-
tor should. Finally, [Montes and Sierra, 2021] synthesise the parameters of
norms with value-alignment in mind.

Nevertheless, there is still room for advancing the state of the art in the
formalisation of value alignment. Particularly, we see that a clear formalisa-
tion of values is missing. Hence, for example, while [Luo et al., 2017; Bench-
Capon and Atkinson, 2009] consider moral values and some preferences over
those values, they could be further detailed. In order to formalise moral
values in the framework of normative multi-agent systems, we look into the
philosophy, psychology and sociology literature.

When it comes to the specification of values, the literature proposes var-
ious views. Firstly, [Timmons, 2012] consider moral values as ethical princi-
ples that guide the evaluation of actions. Alternatively, Hartman [Hartman,
1967] formalises goodness not related to actions but to the descriptive prop-
erties of entities. Thus, for example, a pen that cannot write is considered
as a bad pen. It is also worth mentioning those research works diving into
proscriptive systems [Janoff-Bulman et al., 2009], which are based on be-
havioural activation and positive outcomes – such as desirable states – as
opposed to prescriptive systems that are based on behavioural inhibition
and negative outcomes. Moreover, positive ethics [Lopez et al., 2012; Bod-
dington, 2017] also constitutes a good example of such ethical systems, since
it shifts the emphasis from following rules to aspire to the highest ethical
ideals. It does so by integrating values to improve decision making. Finally,
the communitarian approach [Etzioni and Etzioni, 2016] highlights those so-
cial moral values that the community seeks to foster but are beyond those
required by law (e.g. most communities expect parents to care for their
children far beyond what the law commands).

From a psychological or sociological perspective, Schwartz [Schwartz,
2012] provides an overview of ten basic moral values that are recognised
in cultures around the world. Cultural differences affect the prioritisation
assigned to these values. This has also been studied in the World Values
Survey [Haerpfer et al., 2020], which keeps track of the evolution and maps
the value priorisations of various cultures. In much the same way, we advo-



26 CHAPTER 2. RELATED WORK

cate for taking into consideration the relative priority of values when facing
complex decision making processes that involve several values. This perspec-
tive is also aligned with other contributions in the AI literature, which take
into account these preferences in specific domains, such as argumentation
[Luo et al., 2017; Bench-Capon and Atkinson, 2009], elderly care [Cranefield
et al., 2017], as well as in general settings, such as intelligent systems design
[Dignum, 2017].

Thus, in this work, we take inspiration from the literature to formalise
moral values (and their relative preferences). We provide a more thorough
study and formalisation in Section 3.2. Since our work focuses on actions,
norms and values, we look into the literature studying the relations be-
tween these three elements. Briefly, we take the point of view of [Timmons,
2012] and consider that moral values judge the goodness of actions. From
this, knowing that norms regulate actions, we can infer norm-value promo-
tion/demotion from the value judgement of the regulated action. Finally,
as discussed before, the sociology literature considers preferences between
values [Schwartz, 2012], something which has already been adopted in the
AI literature [Cranefield et al., 2017; Dignum, 2017; Luo et al., 2017; Bench-
Capon and Atkinson, 2009]. Thus, we formalise the value system as a struc-
ture containing moral values and preferences between them.

2.2 Normative multi-agent systems

Within societies, norms have long been used as a coordination mechanism
[Azar, 2004]. We refer to the set of norms enacted in a society as a norm
system.

Engineering norm systems has been thoroughly studied, thus the liter-
ature has proposed many methods to enact norm systems in a multi-agent
system. Some examples of these techniques are:

• Norm emergence: A bottom-up approach. Thus, in this case, agents
themselves build norms to regulate the situations they encounter, and
if these norms prove to be useful, they are propagated throughout the
multi-agent system. This method is studied in [Axelrod, 1986; Shoham
and Tennenholtz, 1997; Sen and Airiau, 2007; Savarimuthu et al., 2007;
Sugawara, 2011].

• Norm synthesis: A top-down approach. In this case, the system de-
signer or the policy-making authority provide the norms for the agents
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to follow. Example works using this method are [Shoham and Tennen-
holtz, 1995; Ågotnes et al., 2007; Morales et al., 2013; Morales et al.,
2015a].

• Norm programming: Norm engineering by programming the norms
of the multi-agent system with a norm-oriented language or environ-
ment. For example, [Arcos et al., 2005; Hubner et al., 2007; Garcia-
Camino et al., 2009; Sensoy et al., 2012; Dybalova et al., 2013].

Furthermore, these techniques have a further dimension, namely the time
at which norms are designed. We can classify some of the previously men-
tioned works into the following two groups:

• Off-line approaches: Formal approaches that engineer norms be-
fore the multi-agent system is initialised. For example, [Shoham and
Tennenholtz, 1995; Ågotnes et al., 2007].

• On-line approaches: Empirical approaches, in the sense that they
engineer the norms considering the feedback received from the multi-
agent system, while it is being run. For example, [Morales et al.,
2013; Morales et al., 2015a]

Apart from techniques to engineer norm systems, the literature has also
addressed engineering norm systems with several goals in mind. Some ex-
amples are:

• Avoiding conflicts: Norms may conflict with one another, for ex-
ample a norm prohibiting an action conflicts with a norm obliging the
same action. Conflicting norms are useless as agents are unable to
comply with one or the other, hence avoiding norm conflicts is a desir-
able goal when designing norm systems. Some works that tackle this
problem are [Kollingbaum et al., 2007; Vasconcelos et al., 2009].

• Minimality and simplicity: Minimality aims at designing norm
systems that do not overregulate or contain superfluous norms. On
the other hand, simplicity aims at engineering norms such that they
are computationally easy to process for the agents. These goals have
been studied in the works of [Fitoussi and Tennenholtz, 2000; Morales
et al., 2014].
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• Compactness: The compactness of a norm system refers to its size.
In terms of [Morales et al., 2015a], the overall number of predicates of
its norms. Note that, compactness is closely related to minimality and
simplicity as requiring minimality implies a small number of norms
and simplicity implies norms with a small number of predicates.

• Liberality: Composing norms systems aiming at respecting the au-
tonomy of the agents as much as possible [Morales et al., 2015b].

• Stability: The stability of a norm system refers to how this system
adapts to unforeseen situations. Thus, a norm system is stable when
agents cannot benefit from deviating from these norms [Sethi and So-
manathan, 1996; Morales et al., 2018].

Even though the literature has thoroughly studied norms in multi-agent
systems, along with methodologies to compose norm systems, and several
goals to consider when building these norm systems, moral values have tra-
ditionally not been considered. It has not been until recently that norms
have started to be related to moral values [Hansson, 2001]. Here, we un-
derstand moral values as the moral objectives worth striving for [van de
Poel and Royakkers, 2011]. In the previous section we have outlined some
works studying moral values in multi-agent systems. Recall, for example,
[Cranefield et al., 2017] where the authors select agent plans by optimising
(minimising) the sum of the current importance of all values. The current
importance of a value is computed as the salience of the value in a situa-
tion times the difference between the target amount of that value and the
current value state [Di Tosto and Dignum, 2012]. Another example is that
of [Montes and Sierra, 2021], which synthesises parametric norm systems
with value-alignment in mind. Both of these works are closely related to
this thesis (and the corresponding papers [Serramia et al., 2018a; Serramia
et al., 2018b; Serramia et al., 2020]), since here, likewise [Montes and Sierra,
2021], we work on value-aligned norms, and like [Cranefield et al., 2017] we
apply optimisation techniques to accomplish so.

Importantly, choosing norms that promote ethical behaviour (i.e., moral
values) naturally induces this ethical behaviour in the society. Moreover, if
different moral values can be promoted, then it seems reasonable to prioritise
those most preferred ones. Consider, for example, a government that enacts
norms limiting pollution. Then, we can easily guess that this government
prefers sustainability over other values such as development.
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However, the problem of selecting the regulatory norms that best align
with the ethical principles of a society (or, in other words, the most value-
aligned norm system) is not straightforward. In addition to the different
values and the preferences over them that a society may have, we must also
consider whether norms actually promote or demote those values as well as
the degree of promotion or demotion. Some literature in Philosophy dis-
cusses some of these aspects [Hansson, 2018]. Nonetheless, in the Artificial
Intelligence literature, while value promotion and demotion are commonly
considered, degrees of such relations are typically disregarded (e.g. [Luo
et al., 2017], [Bench-Capon and Atkinson, 2009], [Serramia et al., 2020]). In
fact, to the best of our knowledge such aspects have only been considered
in legal cases [Bench-Capon et al., 2013].

To summarise, composing value-aligned norm systems has started to be
studied recently, but still needs further research. In this thesis, we for-
malise and study off-line approaches to norm selection with the goal of
value-alignment.

2.3 Rankings for qualitative reasoning

A ranking of objects establishes how the objects compare to each other.
Thus, rankings are usually considered in many decision making problems,
such as committee selection, coalition formation, product line composition,
budget allocation, etc. [Fishburn, 1992]. For example, in college admissions
[Gale and Shapley, 1962]: considers each student has a ranking of the colleges
they prefer and each college has a ranking of the students they want admitted
and the paper aims at studying what they call stable and optimal student-
college assignments. Similarly, [Roth and Sotomayor, 1992] provides a more
detailed and thorough study of this problem.

It is then no surprise that rankings and ranking functions have been long
investigated in the social choice literature. Without aiming for completeness,
we highlight three different bodies of work.

• Firstly, from the seminal works on social choice and voting in [Arrow,
2012; Sen, 2017], some works as e.g. [Brandt et al., 2016] propose
voting mechanisms for aggregating rankings to obtain a ranking of
individual elements.

• Second, [Barberà et al., 2004] study functions that transform rank-
ings over individual elements into rankings over sets of these elements.
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Maxmin and minmax [Arlegi, 2003] or leximin and leximax [Pattanaik
and Peleg, 1984] constitute some examples of such functions.

• Thirdly, [Moretti and Öztürk, 2017] introduce the social ranking as a
mapping that transforms a ranking over sets of elements into a ranking
over the individual elements of these sets. Recently, social rankings
have attracted much attention and several functions have been pro-
posed: [Haret et al., 2018] base their social ranking function on the
ceteris paribus majority principle; [Khani et al., 2019] base their work
on the notion of marginal contribution; [Bernardi et al., 2019] on lex-
icographical preferences handled by the lex-cel ranking function; and
[Allouche et al., 2020] introduce two rankings based on the analysis of
majority graphs and minmax score.

Hence, the literature has explored ranked voting, ranking lifting (trans-
form rankings over elements to rankings over sets of the elements), and rank-
ing grounding (transform rankings over sets of elements to rankings over the
elements themselves). This allows to solve many decision making problems,
such as the ones discussed previously. Nonetheless, more often than not,
decision makers do not count directly on preferences over the individual el-
ements (or sets of these elements). Instead, they count on decision criteria
and preferences over these criteria. For example, when designing a diet, we
may consider different criteria over the food to choose –such as healthiness
or tastiness– and preferences over these criteria —e.g., healthiness preferred
over tastiness. Or in the case of personnel selection, if we count on a large
set of candidates we may not have a clear idea of the preferences over all the
candidates, but we may just know those criteria that are most important to
us and how the candidates relate to these criteria.

Unfortunately, to the best of our knowledge, the social choice literature
has not yet studied how to ground the preferences over criteria to preferences
over the candidate elements taking into account how the elements relate to
the criteria.

Additionally, while the literature previously cited introduces and studies
the properties of many types of ranking functions, studying compositions of
such functions and their properties remains an open problem.

Addressing both of these concerns can be useful for a myriad of problems.
For example, a function that is able to ground criteria preferences to element
preferences composed with a lifting function can transform preferences over
criteria to preferences over sets of elements. This can be useful for the diet
or personnel selection problem, where we are not deciding on an individual
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food or candidate but on a diet (set of foods) or a team (set of candidates).
This is also the case of value-aligned norm selection, note that we want to
select a set of norms, but we do not have preferences over the norms directly.
Instead, we have preferences over moral values (our decision criteria) and
we know how norms relate to the values.

2.4 Conclusions

In conclusion, and as argued in the introduction of this thesis, the literature
lacks some research in several areas which might be of interest.

Firstly, while ethics have started to become an important topic in AI,
we have seen that decision making applications have adopted moral values
as mere decision criteria elements. There is no formal notion of value, nor
of value system, grounded on the literature. This in turn means that we
cannot build upon these formalisations to better define concepts such as
the promotion or demotion of values. Some of the cited works may have
frameworks in which formalising values might not be straightforward. In
our case, though, the literature provides a clear relation between actions,
norms and values. Thus, we can profit from these relations to formalise
values and value systems.

Secondly, we have seen that the literature has extensively researched nor-
mative multi-agent systems in terms of goals and methodologies. Nonethe-
less, the goal of value-alignment has only started to be considered very re-
cently. Hence, composing norm systems with value-alignment in mind is still
an open problem.

Finally, with regards to the social choice and preferences literature, we
see that there has been extensive study on ranking transformations from
elements to sets of elements and from sets of elements to the elements them-
selves. Nonetheless, decision makers may not readily know neither of these
preferences. It may be the case that they have preferences over decision cri-
teria instead, knowing also how the elements relate to the criteria. On the
other hand, while the study of these ranking transformations individually is
quite thorough, the study of the composition of these functions has not been
looked into. As previously explained, both of these points can be useful for
many decision making problems, including value-aligned norm selection.
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Chapter 3

Quantitative value-aligned
norm selection

3.1 Introduction

As previously discussed, norms have been extensively established as a means
to regulate both human and agent societies [Boella et al., 2006; Sethi and
Somanathan, 1996]. Within agent societies, problems such as norm synthe-
sis [Shoham and Tennenholtz, 1995; Ågotnes and Wooldridge, 2010], norm
emergence [Griffiths and Luck, 2010; Villatoro et al., 2011], norm learning
[Savarimuthu et al., 2013; Campos et al., 2013; Riveret et al., 2014], or norm
adoption [Castelfranchi, 1999] have been widely studied. One of the main
questions in normative multi-agent systems (NorMASs) research is how to
engineer a normative system that regulates the actions the agents can per-
form in different situations. Furthermore, the literature in NorMASs has
tackled the engineering of normative systems driven by a variety of goals:
lack of conflicts [Kollingbaum et al., 2006; Vasconcelos et al., 2009], mini-
mality and simplicity [Fitoussi and Tennenholtz, 2000; Morales et al., 2014],
liberality [Morales et al., 2015b], compactness [Morales et al., 2015a], or
stability [Sethi and Somanathan, 1996; Morales et al., 2018].

An important aspect when regulating MASs is to consider the fact that
actions have ethical implications. Therefore, by carefully selecting the norms
to enact in a system, the system designer ultimately constrains agents’ ethi-
cal behaviour. Thus, along the lines of the IEEE Global Initiative on Ethics
of Autonomous and Intelligent Systems [IEEE Standards Association, 2016],
with a committee devoted to “Embedding Values into Autonomous Intelli-
gent Systems”, here we take the stance that moral values must be a first-class
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criterion to consider when deciding on the regulation of a society. However,
the ethical dimension of norms has started to be considered by MAS re-
search only very recently. The usual approach is to consider the existence of
a value system composed of moral values and a relationship between norms
and values, the so-called promotion/demotion function [Bench-Capon and
Atkinson, 2009; Atkinson et al., 2006; Luo et al., 2017; Lopez-Sanchez et al.,
2017; Serramia et al., 2018b]. This function tells whether a given norm
promotes (/demotes) a given value, and eventually the degree of promotion
(/demotion). Thus, a norm promotion function encodes the value alignment
of each norm, and hence it can be further employed to compute the value
alignment of a normative system (i.e., the set of norms enacted in the society
[Serramia et al., 2018b]). Although norm promotion functions are often used
in the MAS literature, they are seldom formally defined. An initial proposal
can be found in [Sierra et al., 2019]: Considering values as preferences over
states of the world, the authors then assess the value alignment of a norm
in terms of the preference increase for those state transitions affected by the
norm. Nonetheless, the ethics literature has long studied the relationship be-
tween norms and values. Indeed, in ethics, typically a norm is considered to
promote a moral value depending on how it regulates an action and how this
action is considered with respect to the moral value [Urmson, 1958; Hans-
son, 2018]. Therefore, the ethics literature counts on the means to set the
foundations for a mathematical definition of such promotion function, and,
ultimately, of value alignment for a norm system. It is worth noticing that
henceforth, we use the terms moral and ethical interchangeably (without dif-
ferentiation) as it is common practice in the philosophy literature [Frankena,
1973; Audi, 1999; Fieser and Dowden, 2021].

Input 
specification Input

- Candidate norms
- Value system

Value-aligned 
norm system

Value alignment 
computation
BIP encoding

BIP
Solving

Value-aligned norm 
selection

Figure 3.1: The value-aligned norm selection process.

Against this background, in this chapter we investigate the problem of
computing the norm system that is best aligned with a value system. As
Figure 3.1 shows, this endeavour assumes that a decision maker is tasked
with solving that problem that takes as input: (i) a set of candidate norms
that have been deemed beneficial for agent coordination, and (ii) a value
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system containing a collection of moral values together with preferences over
them. From these, value-aligned norm selection is defined as a two-stage
process. The first stage is devoted to specifying (building) the problem
at hand. For doing so: (i) we propose a methodology to mathematically
produce a norm promotion function upon which the value alignment of a
norm system can be computed; and (ii) we cast the decision maker’s problem
as an optimisation problem that can be encoded as a binary integer program
(BIP) [Lieberman and Hillier, 2005], and hence optimally solved by any
state of the art solver. In this way, we are able to automate the engineering
of value-aligned norm systems, namely, of regulations aligned with moral
values.

The contributions of this chapter are:

• We formally introduce the concept of normative domain, which can be
regarded as the domain over which norm reasoning takes place. Within
this domain, we identify the fundamental relationships between norms
that must be considered to compose a so-called sound norm system.

• We establish a formal relationship between actions and moral val-
ues. Thus, we introduce the so-called value judgement function as the
means to evaluate the “goodness” of actions in different situations with
respect to a given moral value. This allows us to formally characterise
moral values, hence grounding the informal definitions that typically
appear in the ethics and AI literature [Dignum, 2017]. In philosophical
terms, our notion of value judgement function follows a meta-ethical
approach: it is a mechanism for deciding whether actions are “good”
(supporting the value), or “bad” (detrimental to the value). Further-
more, we also formalise our notion of value system, which unlike the
value systems in [Serramia et al., 2018b; Luo et al., 2017; Bench-Capon
and Atkinson, 2009], also includes value judgement functions as a core
element.

• We establish a formal relationship between norms and moral values
based on the notion of value judgement. First, we propose a for-
mal, general characterisation of the properties that a norm promotion
function ought to satisfy. After that, we propose two particular norm
promotion functions.

• We show how to compute the value alignment of a set of norms with
a value system by means of a norm promotion function and the pref-
erences over moral values in the value system.
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• We introduce the so-called value-aligned norm selection problem (VANS)
as the optimisation problem of finding a sound norm system maximis-
ing value alignment. We also show how to encode the VANS problem
as an binary integer program (BIP).

• We analyse our approach. First, we provide a case study to investi-
gate the VANS problem in the realm of the so-called public civility
game to illustrate the different norm systems obtained when consider-
ing different value systems. Second, we conduct an empirical hardness
analysis to investigate the applicability of our approach. Overall, we
observe that the structure of norm relationships drives hardness. More
precisely, the density of conflicting norms (norms that are incompat-
ible) and general norms (that represent a collection of norms) among
the candidate norms drive hardness. However, we show that a state-
of-the-art solver like CPLEX [IBM, 1988] can solve medium hardness
problem instances with 5000 norms in around 50 seconds.

Although we treat the value-aligned norm selection problem from a the-
oretical point of view, the framework presented in this chapter has many
practical applications. For example, budget allocation in participatory sys-
tems [Serramia et al., 2019b] (where given a budget, proposals are accepted
or rejected based on their alignment with common moral values), moderation
of online communities through norms [Morales et al., 2015c], or value-driven
modelling of public policies [Perello-Moragues and Noriega, 2020].

We first framed the problem of selecting the set of norms to enact in a so-
ciety in [Lopez-Sanchez et al., 2017]. Nevertheless, selection in this work just
took into account norm relationships and deployment costs. Subsequently,
we advanced towards the consideration of moral values by reformulating the
problem as to “choosing the right norms to establish” in [Serramia et al.,
2018a; Serramia et al., 2018b]. Specifically, in [Serramia et al., 2018a] we
proposed moral values as additional (explicit) preference criteria and dis-
cussed how norms can be established in new-born or highly dynamic social
groups. Then, in [Serramia et al., 2018b] we cast this initial approach as
an optimisation problem and studied its empirical hardness. In this chapter
we build upon this background and extend it. Firstly, we discuss the philo-
sophical foundations of value-aligned norm selection. Secondly, we use this
philosophical basis to better formalise our theoretical approach and com-
putational methods to selecting value-aligned norm systems. Finally, we
provide a further detailed empirical study by considering a wider range of
decision scenarios and a more fine-grained analysis.
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The chapter is structured as follows. Initially, Section 3.2 delves into
the ethics and MAS literature to learn how norms and values relate at an
abstract level. Then, Section 3.3 introduces an illustrative case study we
employ along the chapter. Subsequently, Section 3.4 studies the fundamen-
tal relationships between norms, characterises norm systems and introduces
the notion of normative domain. From these basic concepts, Section 3.5
first defines the so-called value judgement function together with the value
system structure and, then, Section 3.6 specifies norm promotion functions,
which characterise how norms promote moral values. Thereafter, Section 3.7
defines the value-aligned norm selection problem and Section 3.8 describes
its encoding into a binary integer program. Next, Section 3.9 conducts an
empirical analysis to learn the solving times required to find value-aligned
norm systems. Finally, Section 3.10 draws conclusions and discusses some
limitations of our approach. Recall that, for the ease of readability, we have
included a List of Notation and Symbols.

3.2 On norms, values, and norm value align-

ment

As noted above, one of our core goals in this chapter is to formally define the
notion of norm value alignment, or in other words, what it means for a set
of norms to be aligned with certain moral values. However, this necessarily
requires considering the basic concepts of norms, actions, and values. Based
on the literature on ethics and multi-agent systems, the purpose of this
section is to analyse how these concepts are related so as to ground the
notion of value alignment.

The relationship between norms and actions has been long studied in the
literature. On the one hand, ethics is the branch of philosophy that reflects
on what is moral1, right or good [Frankena, 1973; Audi, 1999; Fieser and
Dowden, 2021] in order to know what we ought to do [Cooper, 1993] within
our society. On the other hand, norms have been widely studied in the multi-
agent systems (MAS) literature [Boella et al., 2006; Kollingbaum et al., 2006;
Morales et al., 2015b; Dignum, 1999] as a means to achieve coordination by
regulating which actions can be performed (permissions), which ones ought
to be performed (obligations), and which ones are forbidden (prohibitions).

1Morality here refers to the codes of conduct that, given some conditions, would be
adopted by all rational people [Gert and Gert, 2020] .
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The relationship between the norms enacted in a society and the values
that this very same society is aligned with has only recently been addressed
in the MAS literature [Wallach and Allen, 2008; Cointe et al., 2016; Tielman
et al., 2018; Kasenberg et al., 2018; Mercuur et al., 2019]. However, this
relationship is one of the main subjects of research in ethics [Chisholm,
1963; von Wright, 1963; Hansson, 2001; McNamara, 2011]. Within ethics,
moral values (also called ethical principles) express the moral objectives
worth striving for [van de Poel and Royakkers, 2011]2. Examples of values
include justice, happiness and autonomy [Audi, 1999]. Every ethical theory
considers one or more moral values that should guide our behaviour [Cooper,
1993]. From these considered values, an ethical theory can prescribe a series
of norms as means to realise them [van de Poel and Royakkers, 2011].

Moreover, since norms regulate actions, we need to judge actions ethi-
cally in order to determine which norms to prescribe. For that reason, it is
argued in [Cointe et al., 2016; Cooper, 1993; Hansson, 2018] that the central
theme that unites norms and values is the moral consideration (judgement)
of actions. Specifically, an action can be judged as being either good or bad
to perform (or skip) with respect to a given moral value [Chisholm, 1963].
This relationship between norms and values being influenced by actions im-
plies that, if a society considers an action to be good to perform from the
perspective of a given moral value, then, any norm permitting or obligating
such an action would be considered as a norm that promotes that value
[Cooper, 1993; Hansson, 2018]. Conversely, a norm prohibiting the same
action would demote that moral value. Classically, a norm is considered to
promote a moral value depending on how it regulates an action and how this
action is considered with respect to the moral value [Urmson, 1958; Hansson,
2018]: (i) Obligation (if the action is good to perform and bad to skip); (ii)
Permission (if the action is good to perform); (iii) Prohibition (if the action
is good to skip and bad to perform).

It is clear then that to assess the value alignment of a norm system we
must not only consider the relationship between norms and values, but also
the ethical dimension of the actions being regulated. Figure 3.2 depicts the
relationships that we have identified between norms, values and actions: (i)
Norms regulate actions; (ii) Moral values judge actions; and (iii) Norms pro-
mote/demote moral values. Figure 3.2 offers a very similar structure to the
diagrams in [Cooper, 1993; Hansson, 2018], which also show a relationship
between values, norms, and actions.

2Moral values are often very high ideals/imperatives that can seldom be achieved
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Norms

Values Actions

promote / demote

judge

regulate
[Section	6]

[Section	5]

[Section	4]

Figure 3.2: Relationship between norms, values and actions.

The formalisation of these relationships (regulation, judgement and pro-
motion/demotion) will provide the foundations for a mathematical defini-
tion of value alignment for a norm system. Thus, action regulations are
formalised in Section 3.4.2, action judgements are formalised in Section 3.5,
and finally value promotion is formalised in Section 3.6. Based on that, we
will finally introduce our notion of value alignment for a norm system in
Section 3.7.

3.3 Case study: the public civility problem

To illustrate the concepts that will be introduced along this chapter we
use the public civility game. Recall from Section 1.1, that this game was
initially introduced in [Rodriguez-Soto et al., 2020], and provides a scenario
through which to explore moral dilemmas. In short, the game represents a
situation wherein two agents move daily from their initial positions (which
can be their homes) to their respective target destinations (their workplaces,
for instance). Along their journey, one of the two agents finds garbage on
the floor that prevents it from progressing. Figure 3.3 represents the game
scenario. Each agent in the game can deal with the garbage only in one of
the following ways:

• By throwing the garbage aside to unblock his way. If the agent throws
the garbage at the location where the other agent is, it will hurt the
other agent.

• By taking the garbage to the bin. This option is safe for all agents.
However, it will impede the progress of the agent performing the ac-
tion.

perfectly, though this does not preclude from pursuing them.
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Figure 3.3: Possible ini-
tial state of a public ci-
vility game. The agent
on the left must deal
with a garbage obstacle
ahead.

This scenario can be regulated in different ways
depending on the society’s preferences. If the value
of civility is preferred to the value of timeliness, the
regulation will promote picking the garbage to bring
it to a bin. Alternatively, if timeliness is preferred,
the regulation should allow carelessly throwing the
garbage aside disregarding others.

In summary, depending on the norms govern-
ing the agents, an agent will perform in a way that
either promotes the value of civility, the value of
timeliness or some combination of the two; and the
selected norm system will depend on the value pref-
erences of the regulator. In the following sections
we will refer back to the public civility game to il-
lustrate how the preferences of the regulator (the
decision maker) in a value system lead to selecting
a different norm system.

3.4 Formalising normative domains and norm

systems

We first focus on formalising the domains of actions and norms. We call
these action domain and normative domain. As Figure 3.4 shows, norms
and actions are related through the regulation relation. We formalise the
normative domain based on a given action domain, thus its norms will reg-
ulate the actions in the action domain.

Norms

Values Actions

promote / demote

judge

regulate

Figure 3.4: Norms regulate actions.



3.4. NORMATIVE DOMAINS AND NORM SYSTEMS 41

3.4.1 Contextualised actions and action domains

First, we start by considering a multi-agent system composed of a set of
agents Ag; a set of actions the agents can perform A; a propositional lan-
guage L (with propositions in P and the logical operator “and”); and a set
of states S. Like [Morales et al., 2015b; Morales et al., 2015a], we consider
a state transition function that changes the state of the world when agents
perform actions. While agents can perform any action in A, only some of
the actions in A may be feasible to perform, depending on the state of the
multi-agent system. Thus, we refer to a context as a subset of the proposi-
tions of the language ϕ ⊆ P describing the conditions that must hold in the
state of the multi-agent system for these actions to be feasible. Propositions
in the context are connected with and semantics. Moreover, it is worth
noticing that, since we will ethically judge actions, it is important to also
consider the context where they are performed when doing so. For instance,
although smoking (action) is blameworthy to preserve public health (value),
the context where it takes place dictates how blameworthy it is: smoking in
a hospital is more blameworthy, in terms of public health, than smoking at
home. Due to the strong link between actions and contexts we consider them
together by means of contextualised actions. The norms that we consider in
this chapter will aim at regulating such contextualised actions.

Definition 1 (Action). Given a context ϕ ⊆ P and an action a ∈ A, we
call the tuple (ϕ, a) a contextualised action, we note a set of contextualised
actions as A ⊆ P × A.

Henceforth, since we always consider contextualised actions, we simply
call them actions and note them as a ∈ A.

Example 1. In the scenario of the public civility game, we consider a propo-
sitional language L with propositions P = {garbage in front, no agent nearby}
and actions A = {bring to bin, throw nearby}. Then, some possible (con-
textualised) actions are3: (i) bin = ({garbage in front}, bring to bin); (ii)
thr = ({garbage in front}, throw nearby); (iii) safe = ({garbage in front,
no agent nearby}, throw nearby). Thus, bin corresponds to the action of
bringing garbage to a bin if the agent finds garbage in front; thr represents
the action of throwing garbage nearby if the agent finds garbage in front; and
finally, safe is the action of throwing garbage nearby if the agent finds garbage
in front and knows there are no other agents nearby. As to action safe, no-
tice that our notation for the context {garbage in front, no agent nearby}

3We name these contextualised actions for easy referencing in subsequent examples.
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is interpreted under the “and” semantics: both predicates garbage in front
and no agent nearby must hold in the current state.

Actions are often related, in the sense that they may interact with each
other. For our purposes, we consider two types of interactions, namely ac-
tion incompatibility (referring to those actions that cannot be performed
simultaneously) and action generalisation (actions that include other, su-
perfluous actions). Action incompatibility is a binary relation Ri ⊆ A × A,
such that when (a, a′) ∈ Ri, we say that a and a′ are incompatible, that is
when both ϕ and ϕ′ apply, if the agent performs a, then a′ cannot be per-
formed. Note that, Ri is an irreflexive, symmetric, and intransitive relation.
The other relation, action generalisation, is a binary relation Rg ⊆ A × A,
where (a, a′) ∈ Rg means that a generalises a′ (e.g. when ϕ ⊆ ϕ′. We
consider generalisations to be atomic steps: if (a, a′) ∈ Rg, then @amid, such
that (a, amid), (amid, a′) ∈ Rg. With that in mind, Rg is irreflexive, anti-
symmetric, and intransitive. Notice that Rg defines direct generalisations
between two actions. Based on this relation, we can capture the notion of
indirect generalisation through the so-called ancestors and successors of an
action. Given two actions, a′,a ∈ A, we say that a is an ancestor of a′ (and
that a′ is a successor of a) if there is a subset of actions {a1, . . . , ap} ⊆ A
such that (a1, a2), . . . , (ap−1, ap) ∈ Rg, a

1 = a, and ap = a′. Henceforth,
given an action a ∈ A, we will note its ancestors as A(a) and its successors
as S(a). Contextualised actions and their relations form an action domain,
this structure represents the basis upon which we build norms to regulate
action performance, action relations will then dictate how norms are related.

Definition 2 (Action domain). An action domain is a tuple 〈A, R〉, where
A is a set of actions; and R = {Ri, Rg} is a set of action relations, where Ri

is a set of incompatibility relations and Rg a set of generalisation relations.

Example 2. We build an action domain following Example 1, firstly we
consider the set of actions A = {bin, thr, safe}. Secondly, in terms of action
relations, note that the actions of bringing the garbage to the bin and throw-
ing it nearby are incompatible because the agent has to do one or the other.
On the other hand, the action of throwing the garbage nearby generalises the
action of throwing it nearby if there is no agent nearby. Thus, the action
relations would be Ri = {(bin, thr), (bin, safe)} and Rg = {(thr, safe)}.

Throughout our work, we assume that the decision maker has sufficient
knowledge to compose the action domain correctly. In particular, note that
the generalisation relation should not have cycles.
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The action domain represents one of the three components in Figure
3.2 and the basis upon which we will build regulation. The next step is to
provide the normative component, which we call the normative domain.

3.4.2 The normative domain

Agents will typically have many actions to perform. We use norms to regu-
late which actions they must, should, or must not perform. Action relations
induce norm relations, in this section we define the structure containing
norms and their relations, the normative domain. Firstly, we tackle the norm
formalisation. Although norms have been extensively studied in the multi-
agent systems literature as a means to regulate agent behaviour, [Boella
et al., 2006; Dignum, 1999; Andrighetto et al., 2013], there is no consensus
on their formal definition. Here our notion of norm is based on a simplifi-
cation of the one in [Morales et al., 2015a]. Our notion of norm establishes
obligations, permissions, and/or prohibitions [Meyer and Wieringa, 1993] of
agent’s actions. Formally,

Definition 3 (Norm). Given an action domain 〈A, R〉, a norm is given
by an expression of the form θ(a), where a ∈ A is an action and θ ∈
{Obl, Per, Prh} is a deontic operator.4 We will let N denote the set of
norms.

Obligations and permissions allow the performance of actions, whereas
prohibitions forbid them. We capture this distinctive feature of norms by
means of the sign of the norm, that is the function sgn : N → {−1, 1}
defined as:

sgn(n) =

{
1 if θ ∈ {Obl, Per}
−1 if θ = Prh

(3.1)

Example 3. From the action domain in Example 2, we consider the follow-
ing norms: Per(thr), Obl(thr), Prh(thr), Per(safe), Obl(safe), Per(bin),
Obl(bin). Moreover, sgn(Per(thr)) = 1, sgn(Obl(thr)) = 1, and sgn(Prh(thr))
= −1.

Since the decision maker has knowledge of the action domain, we rely
on them to provide candidate norms to regulate a multi-agent system. We

4Note that, since a ∈ A contains both the action and the context ϕ ⊆ P our definition
of norm is equivalent to the usual definition 〈ϕ, θ(a)〉.
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assume that norms at hand are considered beneficial (for example, because
they align with the goal of the decision maker). We aim at selecting the
best norms out of these candidate norms. Note though that, since norms
regulate actions and actions are related, these relations actually extend to
norms. Norm relations have been previously studied in the literature. Thus,
for example, [Grossi and Dignum, 2005] studies the relation between ab-
stract and concrete norms, whereas [Kollingbaum et al., 2006; Vasconcelos
et al., 2009] focus on norm conflicts —and solve them based on first-order
unification and constraint solving techniques. Here, we induce norm rela-
tions from action relations, therefore we consider norm incompatibility and
norm generalisation.

Informally, we say that two norms are incompatible when they cannot be
enacted at once. For example, two norms that allow incompatible actions
are considered incompatible norms. Formally:

Definition 4. We say norms n = θ(a), n′ = θ′(a′) are incompatible iff
either:

• The actions are incompatible (a, a′) ∈ Ri and neither of them is for-
bidden, namely sgn(n) = sgn(n′) = 1, or

• Either an action is more general than the other ((a, a′) ∈ Rg) or they
are the same action (a = a′) and one action is forbidden and the other
is not, namely sgn(n) 6= sgn(n′).

We note as Ri the norm incompatibility relation.

As for norm generalisation, a norm generalises another if enacting the
general norm deems the other one redundant. This happens when two norms
both oblige, permit or prohibit actions that are one more general than the
other. Also, obliging an action deems the permission redundant, because
obliging an action implies permitting it. Thus, we formalise norm generali-
sation as:

Definition 5. We say that norm n = θ(a) generalises n′ = θ′(a′) iff either:

• (a, a′) ∈ Rg and θ = θ′ or θ = Obl and θ = Per.

• The norms regulate the same action a = a′, the first is an obligation
and the second a permission θ = Obl and θ = Per.

We note as Rg the norm generalisation relation. Abusing notation of
action’s ancestors and successors, we note the ancestors and successors of n
as A(n), S(n)
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Proposition 1. Ri is an irreflexive, symmetric, and intransitive relation
and Rg is an irreflexive, anti-symmetric, and intransitive relation.

Proof (Proposition 1). Immediate from the respective definitions.

Having formalised norms and their relations, we now formalise the struc-
ture representing them and which we will use to perform norm selection: the
normative domain.

Definition 6 (Normative domain). A normative domain is a tuple 〈D,N,R〉
such that:

• D is an action domain with well-defined action relations;

• N is a set of candidate norms regulating actions in D; and

• R = {Ri,Rg} is a set of norm relations over N .

Example 4. We build the normative domain with the action domain in
Example 2 and the set of candidate norms in Example 3 and the resulting
norm relations (applying Definitions 4 and 5) represented in Figure 3.5.

Incompatibility relation

Generalisation relation

!"#(%ℎ#) !"#(%&'") !"# ()*

)*+(%&'") +,- ()*+,-(%ℎ#)

!#ℎ(%ℎ#)

Figure 3.5: Example normative domain of the public civility game.
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3.4.3 Characterising norm systems

The goal of the process depicted in Figure 3.1 is to obtain a norm system.
Put simply, we will refer to any subset of the norms in a normative domain
as a norm system.

Definition 7 (Norm system). Given a normative domain 〈D,N,R〉, any
subset of the norms in the normative domain Ω ⊆ N is a norm system.

Since norm systems are just subsets of candidate norms, a norm system
can contain incompatible norms or redundant norms (due to generalisation
relationships). Thus, when selecting norms we desire that the resulting norm
system does not contain incompatible nor redundant norms.

Definition 8 (Compatible norm system). Given a normative domain 〈D,N,R〉,
we say that a norm system Ω ⊆ N is compatible iff for each ni, nj ∈ Ω,
(ni, nj) /∈ Ri.

Definition 9 (Non-redundant norm system). Given a normative domain
〈D,N,R〉, a norm system Ω ⊆ N is non-redundant iff for each ni, nj ∈ Ω,
nj /∈ A(ni) and nj /∈ S(ni), where A(ni) are the ancestors of ni and S(ni)
its successors.

Definition 10 (Sound norm system). Given a normative domain 〈D,N,R〉,
we say that a norm system Ω ⊆ N is sound iff it is both compatible and non-
redundant.

Example 5. The set {Per(thr), Per(bin), Prh(thr)} is a non-redundant
norm system, but it is not compatible because (Per(thr), Per(bin)), (Per(thr),
Prh(thr)) ∈ Ri . On the other hand, {Per(thr), Per(safe)} is a compatible
norm system but it is redundant because (Per(thr), Per(safe)) ∈ Rg. Fi-
nally, {Per(bin), Prh(thr)}, {Obl(bin), Prh(thr)}, {Per(thr), Obl(safe)}
and the singletons containing each one of the norms are all sound norm
systems in this normative domain.

To be more precise, the goal of the process in Figure 3.1 is to yield a
particular type of sound norm system, namely one that is aligned with the
moral values specified by the decision maker.

3.5 Value-based judgement of actions

As introduced in Section 3.2, ethics is the branch of philosophy that reflects
on what is moral1, right or good [Frankena, 1973; Audi, 1999; van de Poel
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and Royakkers, 2011]. The philosophical discipline of ethics is eminently
practical because we do not want to know what is good or bad out of mere
curiosity, but because we want to know what we ought to do [Cooper, 1993;
Wallach and Allen, 2008]. To answer that question, the field of normative
ethics is devoted to prescribe us what is the correct action to do at any
given situation [Fieser and Dowden, 2021]. Of course, we cannot provide
guidelines on how to do the good if we do not first define what is good to
begin with. This and other foundational problems are the subject of the
field of metaethics, which attempts to clarify the ethical methodology and
terminology [Beauchamp and Childress, 2009].

Within ethics, moral values (also called ethical principles) bridge nor-
mative ethics and metaethics. In the AI literature, values are seen as crite-
ria to discern which actions are right and which are wrong [Charisi et al.,
2017; Dignum, 2017]. Examples of values include justice, happiness and au-
tonomy. We formally characterise moral values following these informal def-
initions. As shown in Figure 3.6, values and actions are related. Specifically,
a value judges the extent to which the performance (or non-performance)
of actions is beneficial or detrimental. Thus, we formally characterise moral
values through their judgement of actions as follows.

Norms

Values Actions

promote / demote

judge

regulate

Figure 3.6: Values judge actions

Definition 11 (Moral value). We characterise a moral value through a pair
of value judgement functions v = 〈α+

v , α
−
v 〉. Given a set of actions A, each

of these functions takes an action and returns its evaluation α+
v , α

−
v : A →

[−1, 1]. Function α+
v evaluates the praiseworthiness of performing the ac-

tion, while α−v (a) evaluates the praiseworthiness of not performing the ac-
tion5. These evaluations are real numbers in the interval [−1, 1]: a positive
number means that the moral value is being promoted, whereas a negative

5Note that, α+
v (a) and α−

v (a) are independent so α−
v (a) is not necessarily equal to

−α+
v (a).
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one stands for demotion. We require that an action cannot be praisewor-
thy (or blameworthy) both to perform and to skip with respect to the same
moral value. Thus, for a moral value to be well-defined, its value judgement
functions have to satisfy:

α+
v (a) · α−v (a) ≤ 0,∀a ∈ A (3.2)

Value judgement functions allow us to quantify the moral praiseworthi-
ness of performing/skipping actions. Note that the condition in Equation
3.2 dictates that, if an action is praiseworthy to perform, then it must be
either blameworthy or neutral to skip. Similarly, if the action is blamewor-
thy to perform, it then must be praiseworthy or neutral to skip. Overall,
these value judgement functions within our characterisation of moral values
allows us to adhere to previous literature [Charisi et al., 2017; Dignum, 2017]
and use moral values as criteria for discerning right (praiseworthiness) from
wrong (blameworthiness).

Example 6. We judge the actions of the action domain in Example 2 with
respect to two values: civility Civ = 〈α+

civ, α
−
civ〉; and timeliness Tim =

〈α+
tim, α

−
tim〉. In terms of civility, the action of bringing garbage to a bin is

highly praiseworthy to perform, but neutral to skip since the garbage is not
the agent’s property. In terms of timeliness though, the action is slightly
blameworthy to perform as it will take time to go to the bin and slightly
praiseworthy to skip. Thus, the judgement functions of both moral values
for the action bin may, for instance, be as follows:

α+
civ(bin) = 1 α−civ(bin) = 0 α+

tim(bin) = −0.5 α−tim(bin) = 0.5

Regarding civility, throwing the garbage aside is blameworthy to perform
and praiseworthy to skip as there are chances of hitting other agents. On
the other hand, throwing the garbage aside saves time because it frees the
agent’s path towards the target. Thus, this action is highly praiseworthy to
perform and highly blameworthy to skip in terms of timeliness. Therefore,
the judgement functions for thr could be defined as:

α+
civ(thr) = −0.8 α−civ(thr) = 0.8 α+

tim(thr) = 1 α−tim(thr) = −1

Finally, we judge the safe action, which refers to throwing garbage nearby
(i.e., clearing the path of the agent that encountered it) when there are no
other agents nearby. In terms of civility, we consider safe to be praise-
worthy to perform and neutral to skip, as we do for bin. However, safe is
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slightly less praiseworthy than bin, since bin is the only action that actually
removes the garbage from the street. As for the timeliness moral value, safe
is much faster to perform than bin but still takes more time than thr, since
it requires checking that no agent is nearby. Thus, assuming it is slightly
praiseworthy to perform and slightly blameworthy to skip, we can define the
value judgement functions as follows:

α+
civ(safe) = 0.8 α−civ(safe) = 0 α+

tim(safe) = 0.5 α−tim(safe) = −0.5

Ethical reasoning typically involves not a single moral value, but multiple
moral values along with value preferences [Bench-Capon and Atkinson, 2009;
Luo et al., 2017; Serramia et al., 2018b] conforming a value system. Value
systems can be individual or shared by a society. In this work we will suppose
we know the society’s value system in order to select norms accordingly.
Recall that in Figure 3.1 we considered a value system as one of the two main
inputs of our value-aligned norm system engineering process. As depicted
in Figure 3.6, values judge actions via their judgement functions. As these
value judgement functions characterise moral values, they also implicitly
constitute an integral part of the value system, which is explicitly composed
by the values and their preferences.

Definition 12 (Value system). A value system is a tuple 〈V,�〉, where: V
stands for a non-empty set of moral values; and � is a ranking6 over the
moral values in V . If v � v′ we say that v is more preferred than v′, and if
also v′ � v we say that v and v′ are indifferently preferred, and note it as
v ∼ v′.

Notice that unlike our value system, the definitions in [Bench-Capon
and Atkinson, 2009] and [Serramia et al., 2018b] do not consider the link
between values and actions. Moreover, although [Luo et al., 2017] considers
the relation between actions and values, it does not quantify it. Furthermore,
in terms of the ordering structure used, we favour rankings as they are more
flexible than the total orders used in [Luo et al., 2017] and [Bench-Capon
and Atkinson, 2009], though they are stricter than the partial order used in
[Serramia et al., 2018b]. We do so because partial orders would require us
to make arbitrary assumptions when values are not related (in the order).

Example 7. The values of civility and timeliness, V = {Civ, T im}, to-
gether with the ranking Civ � Tim, constitute a value system.

6In particular, a ranking is irreflexive, transitive and total. Note that, being irreflexive
and transitive, this relation disallows the existence of cycles over preferences: @v1, . . . , vk,
s.t. v1 � · · · � vk � v1 and v1 � · · · � vk � v1.
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3.6 Promotion of moral values through norms

Once established the relation between actions and values, as well as our
formal definition of value system, we now focus on the relation between
norms and values. Recalling the relations triangle (see Figure 3.7), norms
promote values: we capture this relationship by means of the so-called norm
promotion function. Specifically, this norm promotion function evaluates
how much each norm promotes each value, taking into account the norm’s
deontic operator and the praiseworthiness of its regulated action. In this
section, we first characterise the properties the norm promotion function
ought to satisfy and then propose two alternative functions.

Norms

Values Actions

promote / demote

judge

regulate

Figure 3.7: Norms promote/demote values.

3.6.1 Characterising norm promotion

We require that a norm promotion function will satisfy the following key
properties:

• Deontic and judgement dependency: The promotion function
only depends on the deontic operator of the norm and the value judge-
ment of its regulated action with respect to the value.

• Deontic coherence: Norms that regulate the same action but have
different deontic operators should have coherent promotions. For ex-
ample, if permitting an action promotes a value, prohibiting the action
should demote it.

• Coherence (or correlation) with value judgements: Norm pro-
motion and value judgement must be aligned. This property is divided
into three cases:
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– Neutrality: If an action is neutral to a value, norms regulating
the action should also be neutral to the value.

– Praiseworthiness pursuit: If an action is praiseworthy to a
value, permitting or obliging the action should promote the value,
while prohibiting the action should demote the value.

– Blameworthiness avoidance: If an action is blameworthy to a
value, permitting or obliging the action should demote the value,
while prohibiting the action should promote the value.

Formally, we include these requirements in the promotion function defi-
nition:

Definition 13 (Promotion function). Let 〈D,N,R〉 be a normative domain
with candidate norms N over the actions in A, 〈V,�〉 a value system, and
π : V × N → [−1, 1], a function over pairs of values and norms. We say
that π is a promotion function if it satisfies the conditions below. If so, we
will say that π assigns a degree of promotion (when positive) or demotion
(when negative) from the norms in N to the values in V . Thus, π(v, n) is
the degree of promotion/demotion of n to v. A promotion function must
satisfy the following properties:

• Deontic and judgement dependency: The promotion function is
broken into three continuous cases πObl, πPer, and πPrh relating to the
three deontic operators. Furthermore, for each of these cases, given a
norm and a value, the promotion degree solely depends on the value
judgement over the action regulated by the norm. Hence, πθ : [−1, 1]×
[−1, 1] → [−1, 1], where: θ ∈ {Obl, Per, Prh}; [−1, 1] × [−1, 1] is the
domain of a vector containing both value judgements of the regulated
action (α+

v , α
−
v ); and the result is in [−1, 1], where -1 means total norm

demotion and 1 total norm promotion of v.

π(v, n) =


πObl(α+

v (a), α−v (a)) if θ = Obl,

πPer(α+
v (a), α−v (a)) if θ = Per,

πPrh(α+
v (a), α−v (a)) if θ = Prh,

• Deontic coherence: The promotion function should be coherent in
terms of deontic operators, that is, for a given action, if the norm per-
mitting it promotes (demotes) a value, then the norm obliging it should
also promote (demote) the value. On the other hand, if the norm oblig-
ing the action promotes (demotes) the value, then the norm prohibiting
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the action should demote (promote) it. The following conditions must
hold:

– The promotion degrees of a norm permitting an action and of a
norm obligating the very same action must have the same sign,
one of them be 0, or both of them be 0, namely π(v, Per(a)) ·
π(v,Obl(a)) ≥ 0.

– The promotion degree of a norm prohibiting an action and of a
norm obliging the very same action must have different signs, one
of them be 0, or both of them be 0 (i.e., their signs cannot be both
positive nor both negative), namely π(v,Obl(a)) · π(v, Prh(a)) ≤
0.

• Neutrality: If an action is neutral to a value, then the promotion of
a norm regulating the action to that value is neutral. Formally, given
n = θ(a) then if α+

v (a) = α−v (a) = 0 ⇒ π(v, n) = 0.

• Praiseworthiness pursuit: Consider a ∈ A, an action that is
praiseworthy to perform (α+

v (a) > 0). The promotion degree of norms
permitting or obliging the action must be positive, while it must be
negative for those norms prohibiting it. Formally, π(v, Prh(a)) ≤ 0;
π(v, Per(a)) ≥ 0 and π(v,Obl(a)) ≥ 0.

• Blameworthiness avoidance: Consider a ∈ A, an action that is
blameworthy to perform (α+

v (a) < 0). The promotion degree for a
norm prohibiting the action must be positive, while it must be neg-
ative for those norms permitting or obliging the action. Formally,
π(v, Prh(a)) ≥ 0; π(v, Per(a)) ≤ 0 and π(v,Obl(a)) ≤ 0. Notice that
in fact it is worse to oblige the action than to permit it, therefore we
also require π(v, Per(a)) ≥ π(v,Obl(a)) (we allow equality to encom-
pass the case of actions that are so damaging to the value that both
permitting or obliging them should have promotion -1).

3.6.2 Defining norm promotion functions

Considering the characterisation of the family of norm promotion functions
in Definition 13, this work proposes two example norm promotion functions.
A simple norm promotion function called base norm promotion function and
a more complex function called supererogatory norm promotion function.
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The base promotion function

First, our aim is to define a linear norm promotion function that can be
both readily used as a simple promotion function or can be used as the basis
to create other more complex promotion functions. The rationale behind its
design is that obligations will promote the value proportionally (increasing
linearly) to the praiseworthiness to perform – and blameworthiness to skip –
their regulated action. Conversely, the more blameworthy a regulated action
is to perform – and praiseworthy to skip –, the more a prohibition norm will
promote the corresponding value.

Finally, the promotion of permissions must be between that of obligations
and that of prohibitions whilst having the same sign as that of obligations
(due to deontic coherence). Therefore, we assess the promotion of permitting
an action as a fraction ε ∈ [0, 1] of the promotion of obliging it. Although
establishing this fraction remains a task of the decision maker, it is worth
noticing that ε values close to 1 will favour the selection of permission norms,
whereas ε values close to 0 will favour obligations. Thus, we define the base
promotion function as follows:

Definition 14 (Base promotion function). Given a normative domain with
a set of candidate norms N over the actions in A and a value v with value
judgement functions α+

v and α−v , we define πbase : V × N → [−1, 1], such
that for a value v ∈ V and a norm n = θ(a) ∈ N :

πbase(v, n) =


α+
v (a)−α−v (a)

2
if θ = Obl,

ε · α
+
v (a)−α−v (a)

2
if θ = Per,

−α+
v (a)+α−v (a)

2
if θ = Prh,

(3.3)

where ε ∈ [0, 1]. Note that ε ranges from ε = 0, meaning that permissions
always have 0 promotion (thus, they are disregarded), to ε = 1, meaning that
permissions have the same promotion as obligations.

Theorem 1. πbase is a promotion function.

Proof (Theorem 1). Deontic and judgement dependency holds as the func-
tion is defined in three cases as required and is defined in [−1, 1]. Deon-

tic coherence holds because, α+
v (a)−α−v (a)

2
· α+

v (a)−α−v (a)
2

≥ 0 always and ε ∈
[0, 1], hence in the case of an obligation and a permission π(v,Obl(a)) ·
π(v, Per(a)) = α+

v (a)−α−v (a)
2

· ε α+
v (a)−α−v (a)

2
≥ 0, and in the case of an obliga-

tion and a prohibition we have that sgn(α
+
v (a)−α−v (a)

2
) = − sgn(−α+

v (a)−α−v (a)
2

).
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Hence, it follows that π(v,Obl(a)) · π(v, Prh(a)) ≤ 0. Neutrality is sat-

isfied because, if α+
v (a) = α−v (a) = 0, then α+

v (a)−α−v (a)
2

= εα
+
v (a)−α−v (a)

2
=

−α+
v (a)−α−v (a)

2
= 0. When it comes to praiseworthiness pursuit, if α+

v (a) > 0,

due to Equation 3.2 we have α−v (a) ≤ 0, therefore α+
v (a)−α−v (a)

2
≥ εα

+
v (a)−α−v (a)

2
≥

0 and −α+
v (a)−α−v (a)

2
≤ 0, so praiseworthiness pursuit holds. Conversely, if

α+
v (a) < 0, then α−v (a) ≥ 0, and therefore 0 ≥ εα

+
v (a)−α−v (a)

2
≥ α+

v (a)−α−v (a)
2

,

and −α+
v (a)−α−v (a)

2
≥ 0, which proves blameworthiness avoidance.
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Figure 3.8: Base promotion function πbase for a fully praiseworthy action α+
v (a) =

1 and ε = 0.5. x-axis (from 0 to -1): blameworthiness to skip action α−v (a). y-axis:
value promotion degree of obligation, permission, and prohibition of the action.

Figure 3.8 shows an example of the base promotion function πbase for
an action that is totally praiseworthy to perform (α+

v (a) = 1) and ε =
0.5. The x-axis represents the range of possible blameworthiness of skipping
the action α−v (a) and goes from -1 in the left to 0 in the right (being a
praiseworthy action, positive values of α−v (a) cannot be considered due to Eq.
3.2). The three lines represent the promotion degrees (in the y-axis from -1 to
1) for the three possible norms regulating the action: obligation, permission
and prohibition. Note that, since the action is praiseworthy, prohibiting
it always results in a negative promotion, while permitting or obliging it
always implies a positive promotion. In particular, obliging this praiseworthy
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action has always greater promotion than permitting it independently of how
blameworthy it is to skip.

In addition to the 2D representation of the base norm promotion function
πbase in Figure 3.8, we can further inspect πbase in the 3D space. We do so
in Figure 3.9, which depicts Obligations, Permissions, and Prohibitions for
ε = 0.5. In each of these cases, πbase is a two-variable function depending
on possible different values of α+

v (a) and α−v (a). Because of the definition
of the moral value’s judgement functions (see Equation 3.2), the promotion
function is only defined when value judgements are of opposite sign or zero,
thus α+

v (a) · α−v (a) ≤ 0 must hold.
The surface in Figure 3.9a represents the promotion function for obliga-

tions. It is a plane that is positive for actions praiseworthy to perform and
blameworthy to skip, α+

v (a) > 0 and α−v (a) < 0. On the other hand, the
plane is negative for actions blameworthy to perform and praiseworthy to
skip, α+

v (a) < 0 and α−v (a) > 0. Note that in particular, given a value v and
a norm n = Obl(a):

• If α+
v (a) = 1 and α−v (a) = −1, then it has maximum promotion,

πbase(v, n) = 1

• If α+
v (a) = −1 and α−v (a) = 1 then it has maximum negative promotion

(or demotion), πbase(v, n) = −1.

• If α+
v (a) = 0 and α−v (a) = 0 then it is neutral to the value, πbase(v, n) =

0.

On the other hand, the surface in Figure 3.9c represents the promotion
degrees for prohibitions. Note that, the promotion takes the opposite value
than the promotion function does for obligations. Thus, given n = Prh(a),
n′ = Obl(a), then πbase(v, n) = −πbase(v, n′).

Finally, the surface in Figure 3.9b represents the promotion function
for permissions. Notice that the formula of this surface is the same as the
one for obligations, but scaled by ε ∈ [0, 1] (in this case ε = 0.5). Thus,
the promotion degree for a permission will be lower than for an obligation
when α+

v (a) > 0 and α−v (a) < 0, whereas it will be larger when α+
v (a) <

0 and α−v (a) > 0, as shown in the combined plot of all cases in Figure
3.9d. Note that, ε marks the upper bound of the promotion function when
evaluating permissions (and −ε the lower bound), that is, ∀n = Per(a) ∈ N ,
πbase(v, n) ∈ [−ε, ε]. Therefore, a smaller ε must be used in cases where the
decision maker prefers enforcing norms (obligations and prohibitions), while
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a larger ε must be used if the decision maker wants to set larger promotion
degrees for permissions.
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Figure 3.9: Plots of each of the cases of the base promotion function using ε = 0.5.
All axis represent values in [−1, 1], the arrow on all axis marks point 1.

The supererogatory promotion function

Consider a, a praiseworthy action to perform (α+
v (a) > 0), but not very

harmful to skip (α−v (a) close or equal to 0). The ethics literature refer to
these actions as supererogatory [Urmson, 1958; Chisholm, 1963; Montague,
1989; Horgan and Timmons, 2010; Hansson, 2013]. Using the base promo-
tion function, a norm obliging a would have larger (if ε 6= 1) or equal (if
ε = 1) promotion degree than a norm permitting it. Thus, using this base
promotion function may seem to imply that obliging this action is better
than permitting it. However, this is not desirable since, for example, al-
though taking care of a piece of garbage found on the street is a good thing
to do, we would hardly expect it to be compulsory. Indeed, as noted in
[Heyd, 2019], an ethical system would be impoverished if it just considered
obligations (duties).

Since deontic logic limits norms to obligations, permissions and prohi-
bitions, when considering supererogation, we advocate for regulating su-
pererogatory actions as permissions but associating them the semantics of
recommendations.

To further illustrate supererogation consider, for instance, the moral
value of solidarity. In this context, giving money to a charity represents
a paradigmatic example of a supererogatory action, since giving money to
a charity is highly praiseworthy but skipping it cannot be considered to be
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particularly harmful (it can be somehow considered as neutral whereas steal-
ing money from the charity would certainly be harmful). Therefore, since
we cannot be forced to give money to charities, we advocate for regulating
it as permission with the associated semantics of recommendation.

Overall, considering the nature of supererogation, we aim at ensuring
that permissions of supererogatory actions have larger promotion degrees
than those norms obliging them. Formally, we define a supererogatory pro-
motion function as follows.

Definition 15. In a normative domain, given a set of candidate norms N
over the actions in A and a value system 〈V,�〉, we say that a promotion
function π is supererogatory if the following conditions hold:

(C1) If a is praiseworthy to perform (α+
v (a) > 0) and neutral to skip (α−v (a) =

0), we consider it a supererogatory action and assign positive promo-
tion degree to a norm permitting it, but 0 promotion degree to a norm
obliging it (π(v, Per(a)) > π(v,Obl(a)) = 0).

(C2) For each action a that is praiseworthy to perform (α+
v (a) > 0) and

totally blameworthy to skip (α−v (a) = −1), the promotion degree of the
norm obliging it has to be greater than the promotion of the norm per-
mitting it, and both have to be positive (π(v,Obl(a)) > π(v, Per(a) >
0).

Suppose we have a value v and a praiseworthy action to perform a.
Hence, following Eq. 3.2 we know that α+

v (a) > 0 and α−v (a) ≤ 0. The
first condition (C1) in Definition 15 demands that if action a is totally
supererogatory (α−v (a) = 0), then a norm making it obligatory to do the
action has zero promotion value, whereas a norm permitting the action has
positive promotion value. The second condition (C2) in Definition 15 states
that if a is clearly not supererogatory (α−v (a) = −1), obliging to perform the
action has more promotion value than permitting it. Anyhow, both obliging
and permitting the action have positive promotion values. These conditions
ensure7 that the domain of α−v (a) can be split into supererogatory values and
non-supererogatory values. More precisely, there exists a threshold value
β ∈ [−1, 0] such that: (i) if α−v (a) ∈ [β, 0], action a is supererogatory, and;
(ii) if α−v (a) ∈ [−1, β), action a is not supererogatory.

7By applying Bolzano’s theorem considering the two conditions and the continuity of
πObl and πPer.
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Now, to handle supererogatory actions, we must give greater promotion
value to norms permitting them than to norms obliging them. This is cap-
tured by the supererogatory promotion function that we introduce next as
an extension of the base promotion function presented above.

Definition 16 (Supererogatory promotion function). Given a value system
〈V,�〉 and the base promotion function πbase with ε ∈ (0, 1)8, we define the
supererogatory promotion function πsup as:

πsup(v, n) =

{
−α−v (a) · πbase(v, n) if θ = Obl, α+

v (a) ≥ 0, and α−v (a) ≤ 0

πbase(v, n) otherwise

(3.4)

Note that πsup is based largely in πbase. In fact, for non-supererogatory
actions (α−v (a) closer to -1), the promotion value of πsup is similar or equal to
that obtained with πbase. The difference comes with supererogatory praise-
worthy actions (α+

v (a) ≥ 0, α−v (a) close to 0). In this case, the promotion of
a norm obliging it is close to zero, while a norm permitting the action will
have greater promotion.

Note that the change of preference between obligations and permissions

happens when εα
+
v (a)−α−v (a)

2
> −α−v (a)α

+
v (a)−α−v (a)

2
⇔ α−v (a) > −ε

Therefore, in the supererogatory promotion function ε not only allows us
to give more promotion degree to permissions, but also marks the boundary
of supererogation. When an action is less harmful to skip than −ε we will
consider it supererogatory and prefer the permission over the obligation.

Theorem 2. πsup is a supererogatory promotion function

Proof (Theorem 2). We first prove that πsup is a promotion function. We
have already proved πbase is a promotion function. For πsup, deontic and
judgement dependency holds as the function defines three cases (those of
πbase) depending on the deontic operator and is defined in [−1, 1]. Deontic co-
herence holds because it holds for πbase and in case α+

v (a) ≥ 0 and α−v (a) ≤ 0,
we have that −α−v (a) ≥ 0 and πbase(v,Obl(a)) · πbase(v, Per(a)) ≥ 0 be-
cause πbase is a promotion function, hence πsup(v,Obl(a)) ·πsup(v, Per(a)) =

8Note that although the base promotion function considers an ε ∈ [0, 1], here we
demand that ε ∈ (0, 1), because the supererogatory property does neither allow i) to
assign a promotion of 0 to a permission; ii) to assign the same promotion to the permission
and obligation of the same action.
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−α−v (a) · πbase(v,Obl(a)) · πbase(v, Per(a)) ≥ 0. Neutrality is satisfied be-
cause, if α+

v (a) = α−v (a) = 0, then −α−v (a) · πbase(v, n) = πbase(v, n) = 0. If
α+
v (a) > 0, we have πbase(v, n) ≥ 0 and α−v (a) ≤ 0, so −α−v (a) · πbase(v, n) ≥

0, therefore praiseworthiness pursuit holds. On the other hand, if α+
v (a) < 0,

then πsup(v, n) = πbase(v, n), which proves blameworthiness avoidance. Now
we prove that πsup satisfies the supererogatory property (see Definition 15).
Suppose a supererogatory action with α+

v (a) > 0 and α−v (a) = 0, then we
have πsup(v,Obl(a)) = −α−v (a) · πbase(v,Obl(a)) = 0 and πsup(v, Per(a)) =
πbase(v, Per(a)) > 0, because we have demanded an ε ∈ (0, 1) (see Definition
16), hence πsup(v, Per(a)) > πsup(v,Obl(a)) = 0 , which means that πsup
satisfies condition (C1). Now suppose α+

v (a) > 0 and α−v (a) = −1, in this
case πsup(v, n) = πbase(v, n) and since we are considering an ε ∈ (0, 1), we
have πsup(v,Obl(a)) > πsup(v, Per(a)) > 0, hence satisfying condition (C2).
Thus, πsup is supererogatory.
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Figure 3.10: Supererogatory promotion function πsup for a fully praiseworthy ac-
tion α+

v (a) = 1 and ε = 0.5. x-axis (from 0 to -1): blameworthiness to skip action
α−v (a). y-axis: value promotion degree of obligation, permission, and prohibition
of the action.

Figure 3.10 shows the plot of the supererogatory promotion function πsup
supposing an action that is totally praiseworthy to perform (α+

v (a) = 1) and
ε = 0.5. Likewise Figure 3.8, the x-axis represents the blameworthiness of
skipping the action α−v (a). The three plots represent the promotion degrees
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(in the y-axis from -1 to 1) for the three possible norms regulating the action,
namely: obligation (in blue), permission (in green) and prohibition (in red).
Note that, since the action is praiseworthy, prohibiting it has always negative
promotion, while permitting or obliging it has always positive promotion.
In particular, notice that when the action is supererogatory and therefore
is not very blameworthy to skip α−v (a) > −0.5 the permission has greater
promotion than the obligation. On the other hand, if the action is very
blameworthy to skip α−v (a) < −0.5, the obligation has greater promotion
than the permission.

In general, Figure 3.11 shows plots considering any possible α+
v (a) and

α−v (a) for obligations only (Figure 3.11a), obligations and permissions (Fig-
ure 3.11b) and all deontic operator cases (Figure 3.11c). Figure 3.11b shows
the intersection of the plots of πsup representing the permission and obli-
gation cases for ε = 0.5. Again, when α−v (a) > −0.5 (i.e., α−v (a) > −ε)
the permission has higher promotion degree than the obligation, and when
α−v (a) < −0.5 the obligation has higher promotion degree. Figure 3.11c
shows the 3D plots for the three cases of πsup, here you can see the intersec-
tion of the plots of πOblsup and πPersup from another point of view.
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Figure 3.11: Plots of different combinations of cases of the supererogatory pro-
motion function using ε = 0.5. All axis represent values in [−1, 1], the arrow on
all axis marks point 1.
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3.7 Computing value-aligned norm systems

At this point, we are ready to formally pose our central problem. Given a
set of candidate norms and a value system, recall that our goal, as outlined
in Figure 3.1, is to compute the most value-aligned sound norm system.

3.7.1 Computing value alignment

To reason about norm systems based on moral value preferences, we must be
able to compare them in terms of the moral values that they promote. The
key principle that we adopt for this is: the more preferred the moral values
promoted by a norm system and the higher the promotion degree, the more
value-aligned the norm system. Thus, a decision maker will opt for sound
norm systems that promote the most preferred moral values, and hence are
more aligned with the value system on hand.

Let 〈D,N,R〉 be a normative domain. In order to quantitatively com-
pute the value alignment of a norm system (out of the candidate norms N)
with a value system V S = 〈V,�〉, we will proceed as follows. First, we
obtain the relevance of each moral value in V S from the value ranking �.
The relevance of a value is a numerical utility to encompass how preferred
the value is (see the following paragraph). Second, we compute the value
alignment of any norm system using the norm promotion of its norms to the
values and the relevance of the promoted values.

To compute quantitative preferences over the moral values in V S, we
define a relevance function r : V → R that translates the qualitative pref-
erences expressed by � to value relevance. Specifically, we require that, for
v, v′ ∈ V , if v is more preferred than v′, then its relevance r(v) must be
greater than r(v′). Following the same reasoning, if v and v′ are indiffer-
ently preferred, then they have equal relevance r(v) = r(v′). Ultimately, by
setting a relevance for each moral value, we will be able to compare all the
moral values in V .

Thus, we consider the value equivalence classes in V/ ∼ and their quo-
tient order �. All the values in an equivalence class η ∈ V/ ∼ have the same
relevance. Furthermore, the more preferred the equivalence class the more
relevance their values have. Then, we can define the relevance of a value
as the relevance of its equivalence class as follows. Say that v is a value in
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equivalence class η. Then, we compute the relevance of v as:

r(v) = r(η) =
∑
η�η′

r(η′) + 1 = 2|η
′:η�η′| (3.5)

Example 8. The values in the value system of Example 7 would have the
following relevance (applying Equation 3.5): r(Tim) = 1 and r(Civ) =
1 + r(vtim) = 2.

By using value relevance we can calculate the value alignment of a norm
system by aggregating the relevance of the moral values each norm it pro-
motes/demotes, being the relevance of each moral value weighed by the
degree of promotion/demotion from the norm to the moral value. Formally:

Definition 17 (Value alignment). Given a norm system Ω ⊆ N , a value
system V S = 〈V,�〉, and a promotion function π, we define the value align-
ment of Ω as:

va(Ω) =
∑
n∈Ω

∑
v∈V

π(v, n) · r(v) (3.6)

The following example illustrates how to compute the value alignment
of some norm systems in our running example.

Example 9. Considering the value judgements of Example 6, and the su-
pererogatory promotion function πsup (with ε = 0.5), we obtain the following
norm promotions:

π(Civ, Per(safe)) = 0.2 π(Tim,Per(safe)) = 0.25 π(Civ, Per(bin)) = 0.25
π(Civ,Obl(safe)) = 0 π(Tim,Obl(safe)) = 0.25 π(Tim,Per(bin)) = −0.25
π(Civ, Per(thr)) = −0.4 π(Tim,Per(thr)) = 0.5 π(Civ,Obl(bin)) = 0
π(Civ,Obl(thr)) = −0.8 π(Tim,Obl(thr)) = 1 π(Tim,Obl(bin)) = −0.5
π(Civ, Prh(thr)) = 0.8 π(Tim,Prh(thr)) = −1

Considering these norm promotions and the values’ relevance of Example
8, we now assess the value alignment of the sound norm systems in Example
5:

va({Per(thr)}) = −0.3 va({Obl(thr)}) = −0.6
va({Per(safe)}) = 0.65 va({Obl(safe)}) = 0.25
va({Per(bin)}) = 0.25 va({Obl(bin)}) = −0.5
va({Prh(thr)}) = 0.6 va({Prh(thr), Obl(bin)}) = 0.1
va({Per(thr), Obl(safe)}) = −0.05 va({Prh(thr), P er(bin)}) = 0.85
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3.7.2 Problem formalisation

In Section 3.7.1 we learned how to compute the value alignment of a norm
system in terms of the values it promotes. Now we are ready to define the
so-called value-aligned norm selection problem as an optimisation problem
as follows:

Problem 1 (Value-aligned norm selection problem (VANS)). Given a nor-
mative domain 〈D,N,R〉, a value system 〈V,�〉, and a promotion function
π, the value-aligned norm selection problem is that of finding a sound norm
system Ω ⊆ N maximising value alignment. This amounts to solving:

max
Ω⊆N

(
va(Ω)

)
s.t. Ω is sound. (3.7)

Theorem 3. The value-aligned norm selection problem is NP-Hard.

Proof (Theorem 3). We prove the theorem by reduction of the maximum
independent set problem, a classic NP-Hard optimisation problem [Karp,
1972], to the value-aligned norm selection problem. Consider a graph G =
〈Vt, E〉, where Vt is a set of vertices and E is a set of (both directed and
undirected) edges connecting the vertices in Vt. We say a set of vertices
S ⊆ Vt is independent if no two vertices in S are connected through an edge
in E. Then, the maximum independent set problem amounts to finding the
independent set S of maximum cardinality. Here we focus on a simpler class
of the general value-aligned norm selection problem. Consider the VANS
problem consisting of a normative domain 〈D,N,R〉 such that R = {Ri, ∅}
only contains incompatibility relationships, and a value system 〈V,�〉 such
that all norms have the very same value alignment, namely va({n}) = k for
all n ∈ N . Now consider the graph G = (Vt, E), where each vertex in Vt
stands for a norm in N and each edge in E stands for an incompatibility
relationship in Ri. From this follows that finding the maximum independent
set of G amounts to solving the value-aligned norm selection problem for
the above-defined normative domain and value system. Indeed, note that
since we have supposed that all norms have the same value alignment, the
solution to the VANS problem is the largest set of norms that is sound,
which is exactly the maximum independent set of G (because we only have
incompatibility relations, which are represented by edges in G). Therefore,
in general, solving the value-aligned norm selection problem is at least NP-
Hard.
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3.8 A binary integer program to compute

value-aligned norm systems

Notice that solving the VANS problem amounts to solving the optimisa-
tion problem expressed in equation 3.7. Next, we show how to solve such
optimisation problem as a binary integer program. A binary integer pro-
gram (BIP) [Lieberman and Hillier, 2005] encodes an optimisation problem
in which the decision variables take values in {0, 1}. A VANS problem can
be encoded as a BIP where each decision variable represents a norm. Thus,
we would have the binary decision variables {x1, . . . , x|N |}9, where each xi
encodes the decision on whether a norm ni ∈ N is selected (taking value
1) or not (taking value 0). Thus, the VANS problem can be solved by the
following binary integer program:

max
xi∈{0,1}

|N |∑
i=1

xi · va({ni}) (3.8)

Subject to the following constraints:

• Incompatibility constraints preventing that two incompatible norms
are jointly selected to be part of a norm system. Thus, the following
constraints must hold:

xi + xj ≤ 1 for each (ni, nj) ∈ Ri. (3.9)

• Generalisation constraints ensuring that a norm cannot be simultane-
ously selected together with any of its ancestors, namely:

xi + xk ≤ 1 nk ∈ A(ni) 1 ≤ i ≤ |N | (3.10)

• Non-aligned norm constraints discarding those norms that are not
aligned with the moral values (in other words, norms with negative
or neutral value alignment):

xi = 0 ∀ni ∈ N , s.t. va({n}) ≤ 0 (3.11)

9While theoretically a VANS problem can be defined with a non-finite set of norms
N , in order to encode it as a BIP we require a finite number of decision variables, hence
N has to be finite.
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We also need constraints for decision variables xi ∈ {0, 1}. The BIP en-
coding of the VANS problem requires |N | binary decision variables; |Ri| +∑

n∈N |A(n)| pairwise constraints (Equations 3.9 and 3.10); and |{n : va(n) ≤
0, n ∈ N}| non-negativity constraints (Equation 3.11).

Notice that the specification above corresponds to a maximization prob-
lem whose constraints are all inequalities. Hence, it is in standard form and
it can be solved with state-of-the-art solvers such as CPLEX [IBM, 1988] or
Gurobi [Gurobi Optimization, 2010].

Example 10. Considering the normative domain of Example 4, the value
system in Example 7 and the value alignements of Example 9. The optimi-
sation function would be:

−0.3xPerthr − 0.6xOblthr + 0.6xPrhthr + 0.65xPersafe + 0.25xOblsafe + 0.25xPerbin − 0.5xOblbin

where variable xaθ ∈ {1, 0} represents norm θ(a). Some of the constraints
to consider in this case are: xPerthr + xOblthr < 1 (due to Equation 3.9), xPerthr +
xPersafe < 1 (due to Equation 3.10) or xOblthr = 0 (due to Equation 3.11). With
this optimisation formula and all the constraints the resulting most value-
aligned sound norm system is {Prh(thr), P er(bin)}. Note that, for this
small problem we could have found this solution manually, in fact in Exam-
ple 9 we have assessed the value alignment of all sound norm systems and
{Prh(thr), P er(bin)} has the maximum (0.85).

In [Serramia et al., 2021d], we provide the implementation of an algo-
rithm for encoding a VANS problem into a BIP and solve it subsequently,
more details about this implementation can be found in Appendix A.

3.8.1 Example: Analysing the public civility problem

Different value rankings may vary the selection of the most value-aligned
norm system. In previous examples we solved the public civility game for
the case that civility is preferred to timeliness (Civ � Tim). This section
explores how the solution changes for different value rankings (namely, that
timeliness is preferred to civility or that both are equally valued).

Timeliness preferred to civility

Considering the normative domain of Example 4, the norm promotions of
Example 9 and the value system in Example 7 but changing the ranking to
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Civ � Tim. The optimisation function would be:

0.6xPerthr + 1.2xOblthr − 1.2xPrhthr + 0.7xPersafe + 0.5xOblsafe − 0.25xPerbin − 1.0xOblbin

where variable xaθ ∈ {1, 0} represents norm θ(a). With this optimisation
formula and all the constraints the resulting most value-aligned sound norm
system is {Obl(thr)}.

Civility and timeliness equally valued

Considering the normative domain of Example 4, the norm promotions of
Example 9 and the value system in Example 7 but changing the ranking to
Civ ∼ Tim. The optimisation function would be:

0.1xPerthr + 0.2xOblthr − 0.2xPrhthr + 0.45xPersafe + 0.25xOblsafe + 0xPerbin − 0.5xOblbin

where variable xaθ ∈ {1, 0} represents norm θ(a). With this optimisation
formula and all the constraints the resulting most value-aligned sound norm
system this time is however {Per(safe)}.

Analysis

As we have seen on the running example as well as on this section, given
a normative domain, different value system’s preferences will yield different
solutions. In our running example we have considered that the value of ci-
vility is preferred over the timeliness of the agents. Thus, the resulting norm
system both allows the agents to clean the garbage they might encounter on
their path and prohibits to throw the garbage (as it may hurt another agent).
Importantly, note that even though civility is the most preferred value in
this case, the norm system does not oblige agents to clean the street, since
this is a supererogatory action. On the other hand, in this case study, we
have seen that when we prefer timeliness over civility, the resulting norm
system obliges agents to throw the garbage nearby anytime they find it. In
this case, cleaning the street is not a priority. Instead, the norm obliges
the agents to get rid of the garbage swiftly to arrive in time. Finally, if we
equally prefer both values, the resulting outcome is in between both previous
outcomes, since now the resulting norm system allows to throw the garbage
nearby after the agent has ensured that it is safe to do so (i.e. that it will
not harm another agent).
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3.9 Experimental evaluation

In this section we present an experimental evaluation to assess the hardness
of solving the VANS. Our goal is twofold. On the one hand, we aim at finding
the factors that make VANS problems hard to solve. On the other hand,
we want to investigate the scope of applicability (in terms of scalability) of
BIP solving for our problem instances. First, in Section 3.9.1 we describe
the methodology that we followed to run our experiments. Thereafter, we
analyse our results in Sections 3.9.2, 3.9.3, and summarise the results in
Section 3.9.4.

3.9.1 Experimental methodology

Our empirical analysis follows three stages: (1) generation of synthetic in-
stances of VANSs; (2) encoding of synthetic problem instances as BIPs fol-
lowing the methodology in sections 3.7 and 3.8; (3) solving the resulting
binary integer programs using a BIP solver. Next, we focus on the gener-
ation of synthetic problem instances of VANSs. For that, we follow these
steps (the necessary input parameters to generate a problem instance are
highlighted):

(1) Firstly, we generate a number of norms.

(2) We then generate norm relations. For each pair of norms we randomly
decide if they must be related or not based on a relation density param-
eter. If two norms are deemed to be related, we use the incompatibility
percentage to decide if the relation should be an incompatibility relation
or a generalisation relation. Note that the incompatibility percentage sets
the number of incompatible relations, while the remaining relations will be
generalisation relations.

(3) Afterwards, we generate the values (whose number is fixed to 10% of the
number of norms) and their preferences. Notice though that in [Serramia
et al., 2018b], we already observed that the number of values does not affect
solving times. For each i ∈ [1, |V |], we set vi and vi+1 as indifferently
preferred with a 20% fixed probability.

(4) Finally, we generate norm promotions. For each norm-value pair, we
decide whether the norm promotes/demotes the value considering a fixed
probability of 20%. If the norm is deemed to promote/demote the value,
the norm promotion is generated randomly from [−1, 1], otherwise is 0.

We provide an algorithm detailing how to generate VANS problems in
Appendix B. Figure 3.12 shows an example of a synthetically-generated
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VANS problem instance.

𝑛! 𝑛" 𝑛#

𝑛$ 𝑛%

X X X X X X

X X X

X X X Incompatibility
Generalisation

Figure 3.12: VANS problem instance for 5 norms, 3 values, 30% relation density,
50% incompatibility percentage. Edges represent norm relations. Norms’ colours
represent overall value alignment (w.r.t. all values): from green (most positive
alignment) to red (most negative alignment). Hence, if we order the norms in
terms of their value alignment we would have that va(n5) > va(n4) > va(n3) >
va(n2) > va(n1). The solution is: {n3, n5}.

At this point the normative domain and value system are fully generated,
thus the BIP can be built according to Section 3.8, and then solved using an
off-the-shelf commercial solver10. Next, we divide our analysis in two fronts,
namely how solving time is affected by: (1) norm relations; (2) the number
of norms. In [Serramia et al., 2018b] we concluded that the ratio of gen-
eralisation relations to incompatibility relations (there noted as exclusivity
relations) was a variable that greatly affected time. While here we define
the problem and norm relations differently, it is still similar enough to use
it as a lead for the empirical analysis.

3.9.2 Effect of norm relations on solving times

To study the sensitivity to norm relations, we specify the following genera-
tion parameters: number of norms, fixed to 500; relation density, from 1%
to 100% in steps of 1; and incompatibility percentage, also from 1% to 100%
in steps of 1. Specifically, we generate 10000 problem instances varying both
the relation density and the incompatibility percentage.

Figure 3.13 shows a scatter plot of the solving times for these 10000
problem instances. The x-axis represents the incompatibility percentage

10We used IBM ILOG CPLEX Interactive Optimizer 12.10.0.0 on an Ubuntu 16.04 box
with an Intel(R) Core(TM)i7-8700K CPU @ 3.70GHz, with 31GiB system memory, and
8th Gen CoreProcessor Host Bridge / DRAM R.
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Figure 3.13: Solving times of problem instances with different relation densities
and incompatibility percentages.

and the y-axis represents relation density. The colour of each dot in the plot
represents the solving time of a problem instance.

Firstly, we observe that the vast majority of problem instances were
solved in less than 1 second (indeed, most of these took less than 0.5 second).
Problem instances that took more than 1 second usually had much larger
solving times: in fact, all problem instances coloured in black took 10 seconds
or more. Secondly, in terms of relation density, we observe that: when
relation density is very close to 0 or 100%, problems are easy to solve either
because no checks have to be performed (when close to 0), or because not
many solutions (if any) are plausible (when close to 100%). Interestingly, the
problem instances become harder to solve with relation densities at around
10%. We think this is a consequence of these problem instances being at a
point where they have a number of constraints large enough so that many
checks have to be made, but not large enough to discard many possible
solutions. Thus, problem instances with less relation density become easier
because less checks have to be made, while problems with more relation
density also become easier because there are less possible solutions. Finally,
in line with the findings in [Serramia et al., 2018b], solving times increase
continuously with the percentage of incompatibilities over all relations.
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We classify problem instances in three sets: low hardness (in green),
medium hardness (in yellow or orange) and high hardness (in red or black).
For a fixed incompatibility percentage of 50%, low hardness problem in-
stances would happen between 100% and 75% relation density, medium
hardness between 75% and 25% and high hardness for percentages lower than
25%. We think this happens because generalisation relation constraints de-
pend on norm ancestors which creates interrelated generalisation networks.
Therefore, if a norm in the network is clearly beneficial, the other norms
are discarded immediately. Furthermore, incompatibility relations are more
dispersed, thus creating less interrelated networks. Thus, when a norm is
clearly beneficial fewer – incompatible – norms will be discarded.

3.9.3 Effect of the number of norms on solving time

Now we look at how norms affect solving times considering (previously de-
scribed) problem hardness. Specifically, we study four types of problem
instances: a scenario without norm relations that we use as baseline, and
the low, medium, and high hardness problems described above. For each of
these problem types we generate 400 instances. In particular we generate 10
instances for each number of norms ranging from 0 to 5000 norms in steps
of 500.

Figures 3.14 and 3.15 show the plots relating the number of norms (x-
axis) and the solving times in seconds (y-axis).
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Figure 3.14: Solving times for base, low and medium hardness
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Figure 3.15: Solving times for high hardness

Figure 3.14 shows solving times for baseline, easy and medium problems.
We observe that solving times increase as the number of norms increases.
Furthermore, for a fixed amount of norms, the solving time depends on
the hardness of the problem instance at hand. We can observe that base
and low-hardness problems are solved in less than 10 seconds even for 5000
norms. Medium problems have reasonable solving times of under a minute
for 5000. Finally, Figure 3.15 shows that the solving time for hard instances
exponentially grows with the number of norms11.

3.9.4 Summary of the empirical analysis

Overall, we have seen that solving times increase in three cases:

• When incompatibility relations significantly outnumber gen-
eralisation relations. When fixing the number of norms and consid-
ering different relation densities and incompatibility percentages, we
observe that the solving times for problems with larger percentages
of incompatibility relations are much larger (see Figure 3.13). This
is mainly due to the different relation structures generated by incom-
patibility and generalisation. On the one hand, generalisation forms

11Note that Figure 3.15 only shows results up to 3000 norms, since solving problem
instances with more norms required more than 1 hour, which is the maximum time set
for our solver.
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(ancestor) trees. Therefore, the selection of a norm will automatically
imply discarding all its sibling norms, and thus, reducing the solving
time. On the other hand, incompatibility relations are uniformly dis-
tributed. This implies that incompatible norms are disperse, so that
choosing a norm causes discarding few incompatible norms. Hence, for
a fixed number of relations, the larger the percentage of incompatibility
over generalisation, the longer the solving times.

• When there is low density of relations (around 10% of all
possible norm relations). Figure 3.13 also shows that problem
instances with low relation densities are larger. Relation densities close
to 0 do not require checking constraints. However, relation densities
at around 10% require to check a number of constraints that is large
enough to require quite some solving time but it is not large enough
for the solver to discard vast amounts of solutions.

• When increasing the number of norms considered. Quite triv-
ially, when all else is fixed, solving times increase as the number of
norms increases. This is shown in Figures 3.14 and 3.15. Of course,
increasing the number of norms of a problem also increases the num-
ber of possible solutions, hence solving problems with larger number
of norms takes longer.

While each of the points discussed above alone is enough to increase
solving times, problems combining many of them produce longer solving
times. This effect is noticeable when comparing figures 3.14 and 3.15. The
slope of the curve of solving times in Figure 3.15 is steeper than that of
the curves in figure 3.14, and also its curvature is more pronounced. This
is because the problem instances used to produce Figure 3.15 were hard
problems (with 50% incompatibility percentage and 25% relation density).
Hence, these problems are already hard with regards to the first two points
discussed above, but when increasing the number of norms, their solving
times increase even more.

3.10 Conclusions and limitations

This chapter provides both the theoretical foundations and practical mech-
anisms for the selection of norm systems that promote most preferred moral
values in a society. We do so by posing the so-called value-aligned norm se-
lection problem (VANS) grounded in two structures: the normative domain,
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defining norms and their relationships; and the value system, containing
prioritised sets of moral values. We connect these structures via the norm
promotion function, which is grounded on the praiseworthiness (or value
judgement) of actions and allows us to quantify the value alignment of norm
systems. Then solving the problem amounts to finding the sound norm sys-
tem (i.e., without conflicting nor redundant norms) that maximises value
alignment. In order to find the solution, we encode the VANS problem as
a binary integer program and solve it with a state-of-the-art solver. We
illustrate our proposal with a case study over the public civility game. Fi-
nally, we conduct empirical analysis and conclude that problems dealing
with thousands of candidate norms can be solved within reasonable times.

This amounts to the first seven contributions from Section 1.3, which in
turn answer the corresponding research questions in Section 1.2:

• Question Q1: How to formally define a value system? Grounded on the
Ethics literature, we formally define a moral value based on the judge-
ment of actions (contribution C1.1) and formalise value preferences as
rankings (C1.2).

• Question Q2: How do we define norms and their relations? As the
normative domain (C2).

• Question Q3: How are norms and values related? Through the pro-
motion function (C3).

• Question Q4: How do we define the value-aligned norm selection prob-
lem? As that of selecting the (sound) norm system that promotes the
most preferred moral values in the value system of the society (C4).

• Question Q5: How do we assess the value alignment of a single norm?
By means of the value alignment function, an utility function which
considers both norm-value promotion and value preferences (C5).

• Question Q6: How do we solve the value-aligned norm selection prob-
lem? By encoding it as a binary integer program (BIP) (C6).

• Question Q7: Is solving the value-aligned norm selection problem com-
putationally feasible? Yes (C7).

Nonetheless, the quantitative approach described in this chapter has
some limitations worth discussing.
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Firstly, the approach described in this chapter requires the decision
maker to numerically assess the relation between actions and values. In
other words, we assume that the value judgement functions are known to
the decision maker. This is a strong assumption that may not always hold.
Decision makers may only count on minimal domain knowledge, and there-
fore, may not be able to provide a numerical assessment.

Secondly, our utility approach is not excellence rewarding. It favours
quantity of norms over quality of norms. Thus, depending on the VANS
problem, the approach will favour the selection of a large set of mediocre
norms (those with low utility, namely low value alignment) instead of a
smaller set of excellent norms (those with high utility, namely high value
alignment). This may happen when the overall cumulative utility of the
mediocre norms is greater than the utility of the excellent norms, and the
mediocre norms cannot be jointly selected with the excellent ones. In this
case, the mediocre norms would be selected. This has undesirable con-
sequences for value-alignment, since this means that several norms slightly
value-aligned will be selected in front of a single strongly value-aligned norm.
Thus, for value-aligned norm selection, we prefer an approach that is excel-
lence rewarding, where even a single excellent norm will always be selected
in front of any arbitrary large number of mediocre norms.

In the next chapter, we tackle both of this shortcomings.



Chapter 4

Qualitative value-aligned norm
selection

4.1 Introduction

Some actual-world decision making problems require to select an array of
elements despite decision makers only counting on preferences over the ele-
ments’ features. Note that, in this chapter, we consider the elements’ fea-
tures as our decision criteria. As previously mentioned, some examples of
such problems are committee selection, coalition formation, product line
composition, budget allocation, or college admissions [Fishburn, 1992; Gale
and Shapley, 1962; Roth and Sotomayor, 1992]. Considering this last exam-
ple, picture the following situation. A school head master must decide on
which students to grant admission to. For that, the head master leverages
on the admission policy of the school, which, for instance, prioritises some
minorities, or fosters impoverished neighbourhoods. Such policies can be
cast as preferences over the students’ features. Nonetheless, the head mas-
ter lacks of a straightforward manner to rank all possible sets of students,
since these features somehow pose a multi-criteria problem. Moreover, there
is a further dimension of complexity: some sets may not be eligible (e.g.
because of limited budget, or unfulfilment of minority quotas). And yet,
despite only counting on preferences over features and not sets, the head
master must select the most preferred set of students. Interestingly, we can
think of many other, similar set selection problems, such as selecting the
team of players for a match (where we prefer some types of players over
others), personnel selection (where some capabilities may be preferred over
others), or the problem discussed in this thesis, that of selecting regulatory

75
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norms (where we prefer norms that are aligned with moral values), etc. The
goal of this chapter is to design the tools to help decision makers select the
“most preferred” set in this type of problem, which hereafter we will re-
fer to as dominant set selection problem (DSSP). Dominance characterises
maximal preference in a formal (and particular) way.

In more general terms, assuming that we have sets of objects representing
alternatives in a decision making process, the problem that we tackle is that
of finding the most preferred set of objects. This decision must be made
based on preference information over the features characterising the objects.
For instance, in our admission example, ethnic group, neighbourhood, and
studied subjects constitute some possible features. Furthermore, as noticed
above, when dealing with decisions, preferences are not the only aspect to
consider. Thus, we also require that the selected set does comply with some
feasibility constraints, be them structural –due to relationships between the
objects–, or inherent to the application domain.

In order to solve the dominant set selection problem, we propose to pro-
ceed as follows: (1) extract preferences over single objects based on pref-
erences over objects’ features; (2) rank all possible sets of objects; and (3)
select the most preferred and feasible set of objects. For that, we resort
to recent, seminal work in the realm of decision making and social choice
theory, namely social rankings [Moretti and Öztürk, 2017] and its solutions
[Bernardi et al., 2019; Haret et al., 2018; Khani et al., 2019; Allouche et al.,
2020]. By adapting lex-cel, a ranking method introduced in [Bernardi et al.,
2019], we are able to obtain a ranking over single objects from the feature
preferences. Ultimately, our goal is to rank all sets of objects considering
this element ranking, in other words, lifting the element ranking to a set
ranking. This lifting procedure is very similar to the ranking sets of objects
problem, which has been extensively studied in the social choice literature
[Barberà et al., 2004]. Example solutions to this problem are the maxmin
and minmax [Arlegi, 2003] or leximin and leximax [Pattanaik and Peleg,
1984] functions. Unfortunately, this problem considers a total order of ele-
ments instead of an element ranking. Hence, for the purpose of this chapter,
we cannot readily use any of these approaches. Instead, here we design a
novel ranking function, the so-called anti-lex-cel. This function receives as
an input a ranking over single objects (obtained through lex-cel), and builds
a ranking over all possible sets of these objects such that the most preferred
feasible set in the ranking is the solution to the dominant set selection prob-
lem. The combination of the lex-cel ranking described in [Bernardi et al.,
2019] with our novel anti-lex-cel ranking helps us produce our intended rank-
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ing over all possible sets of objects, and hence solve the core of the dominant
set selection problem.

From a pragmatic perspective, building a ranking over all sets of objects
turns out to be computationally costly. Hence, we show how to solve the
dominant set selection problem while avoiding the cost of explicitly building
a whole ranking. In particular, we show how to to encode it as a binary
integer program (BIP) so that it can be solved with the aid of off-the-shelf
solvers. Importantly, we prove that the proposed encoding adheres to the
ranking produced after lex-cel and anti-lex-cel, and that the solution to our
BIP is equivalent to that of the dominant set selection problem. We illus-
trate the application of our method to a value-alignment problem initially
introduced in [Serramia et al., 2018b] and subsequently investigated from
a qualitative perspective in [Serramia et al., 2020]. In particular, and as
discussed in previous chapters, given a collection of candidate norms, we in-
vestigate the selection of the (sub)set of norms, the so-called norm system1,
that is best aligned with the moral values2 in a value system. The dominant
set selection problem in this case is performed according to the following
principle: the more preferred the moral values promoted by a norm system,
the more preferred the norm system, or, in other words, the more dominant
with respect to value alignment. Here the decision maker must consider:
the preferences over moral values in the value system, the promotion rela-
tionship between norms and moral values (which can be interpreted as norm
features), and the feasibility conditions based on the relationships between
norms.

Notice that the approach of this chapter differs from the norm selec-
tion method proposed in Chapter 3 , which follows a quantitative approach
despite the decision maker counting on qualitative information (i.e. value
preferences). The approach in Chapter 3 forces the decision maker to quan-
tify the relations between norms and actions by defining value judgement
functions, which are then used to quantify the relation between norms and
values. We argue that defining judgement functions is hard to ascertain
and, as noted in [Santhanam, 2016], transforming qualitative information
(i.e. value preferences) into numerical data (i.e. numerical value alignment)
is prone to errors and biases (see the limitations discussed in Section 3.10).
In fact, this is a general claim that can be applied when solving the dominant
set selection problem. Therefore, in this chapter we opt for a qualitative ap-

1Norms provide the means to regulate the behaviour of individuals within a society,
and a norm system is a set of norms to enact in that society for regulatory purposes.

2Moral values can be described as principles that a society deems valuable.
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proach with the aim of keeping the decision making process as intuitive as
possible.

The contributions of this chapter are:

• Formalisation of a novel qualitative decision-making problem, the so-
called dominant set selection problem (DSSP).

• Formalisation and study of a novel preference lifting function called
anti-lex-cel. We provide an axiomatic characterisation of anti-lex-cel,
and we show that it generalises former results in the social choice
literature in [Bossert et al., 1994].

• Development of a novel method for solving the DSSP based on the
combination of the lex-cel ranking function in [Bernardi et al., 2019]
with our novel anti-lex-cel ranking function.

• A binary integer program (BIP) encoding that is proven to solve the
DSSP while avoiding the cost of explicitly building a whole ranking
over all possible sets of objects.

• An application of the general methodology explained in this chapter
to the value-aligned norm selection problem.

This chapter significantly extends our previous work in [Serramia et al.,
2020] in two main respects. First, here we present a general formalisation
and solving method for the DSSP, hence going beyond [Serramia et al., 2020],
which solely focused on composing value-aligned norm systems, namely on a
particular DSSP. Second, here we add with respect to [Serramia et al., 2020]
a thorough axiomatic characterisation of anti-lex-cel, a formal proof of its
uniqueness, and results that show the generality of anti-lex-cel with respect
to existing results in the social choice literature.

The chapter is structured as follows. Next, Section 4.2 motivates the
usefulness of the dominant set selection problem and provides an informal
definition. Then, in Section 4.3 we introduce some necessary background on
order theory to subsequently formalise the dominant set selection problem in
Section 4.4, where we also introduce a simple running example to illustrate
the technicalities along the chapter. Section 4.5 outlines the resolution of
the DSSP. We base the solution of the DSSP on two operators: lex-cel (in
Section 4.6) and anti-lex-cel (in Section 4.7). In Section 4.8 we detail their
use to solve the DSSP along with a BIP encoding to compute its solution
with the aid of state-of-the-art solvers. In more practical terms, Section 4.9
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we exploit the tools developed to solve DSSPs to show how to undertake
value-aligned norm selection. Section 4.9 also illustrates how value-aligned
norm selection depends on the actual preferences over the value system at
hand. Finally, Section 4.10 draws conclusions and discusses the limitations
of this approach. Recall that, for the ease of readability, we have included a
List of Notation and Symbols.

4.2 Problem motivation: Value-aligned norm

selection

As mentioned above, there is a number of problems that require to select the
most preferred set of objects considering preferences over their (qualitative)
features. Thus, we have discussed that a decision maker may need to choose:
students to award grants to; players to form teams; personnel to undertake
tasks; projects to be funded; or norms to be enacted.

In fact, that last example will help us to illustrate the characterisation of
the problem at hand. Specifically, we assume that there is a set of candidate
norms N and we aim to find the set of norms that better aligns with the
moral values of the society. Our paper [Serramia et al., 2020] introduces some
norm examples in an airport border context, where a norm “Permission to
cross the border” is aligned with the moral value of “freedom of movement”
whereas the norm “Obligation to show passport” is aligned with the value of
“security” and is incompatible with the previous norm (i.e., they cannot be
simultaneously enacted). Overall, to assess value-alignment we count on a
set of moral values, preferences among these values, and a function relating
norms to the values that they promote (i.e., specifying norms’ features). For
instance, consider: four norms {n1, . . . , n4}; three values {v1, v2, v3}, being
v1 more preferred than v2 and v3, which are indifferent between them; and a
feature function that specifies that norm n1 promotes the three values, and
that the remaining norms only promote one value each (n2 promotes v1, n3

promotes v2 and n4 promotes v3). Then, the principle we adhere to is: The
more preferred the values promoted by a norm, the more preferred the norm
and the more preferred the norms in a set the more value-aligned the set.
Thus, we consider {n2} aligns more with moral values than {n4} because n2

is preferred over n4 since it promotes a more preferred value. Furthermore,
when considering larger sets of these norms, value alignment only grows
larger. Following our example, set S1 = {n1, n2} is more value-aligned than
S2 = {n3, n4} because n1 alone is more preferred than any of the norms in
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S2, and adding n2 only strengthens the value alignment of S1. Additionally,
while the more preferred values have greater impact on assessing which set
is more aligned, whenever possible, we still will prefer to select additional
norms even if they promote less preferred values (e.g., we favour {n1, n2, n3}
over S1). Finally though, since not all norm sets are feasible (norms may be
incompatible or redundant between them), the decision maker counts on a
function to check if a norm set is feasible or not.

In these terms, the value-aligned norm selection problem consists on
finding a set of norms S ⊆ N , such that:

- S is feasible;

- S contains the most preferred norms possible (the norms that promote
the most preferred values): If we change any norm of S for a more
preferred one, the set becomes unfeasible.

- S is maximal, namely it is the largest feasible set: adding any further
norms to S makes it unfeasible.

We say this S dominates all other feasible sets and therefore we call the
problem of finding it dominant set selection problem (DSSP). As discussed
before many selection problems that count on preferences among the features
of the elements can be cast into a DSSP. For example, selecting players to
play in a match (where we prefer some types of players to others), awarding
research teams (where we prefer to award excellency teams over regular
teams), personnel selection (where some capabilities may be preferred over
others), etc.

In Section 4.4 we provide a general formalisation of the dominant set
selection problem that encompasses the particular case described above. Be-
fore that, we introduce some necessary background on order theory in the
following section.

4.3 Background

Let X be a set of objects. A binary relation � on X is said to be: reflexive,
if for each x ∈ X, x � x; transitive, if for each x, y, z ∈ X, (x � y and
y � z) ⇒ x � z; total, if for each x, y ∈ X, x � y or y � x; antisymmetric,
if for each x, y ∈ X, x � y and y � x ⇒ x = y. We can define preferences
among the elements of X by means of binary relations. Moreover, we can
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categorise the type of preferences depending on the properties they hold as
follows.

Definition 18 (Preorder, ranking, linear order and partial order). A pre-
order (or quasi-ordering) is a binary relation � that is reflexive and transi-
tive. A preorder that is also total is called total preorder or ranking. A total
preorder that is also antisymmetric is called a linear order. A preorder that
is antisymmetric but not total is called a partial order.

Note that neither preorders nor rankings are necessarily antisymmetric
relations. Thus, given a ranking (or a preorder) � if x, y ∈ X, such that
x � y and y � x, then we cannot conclude that x = y, instead we say these
two elements are indifferently preferred and note it as x ∼ y.

Example 11. Given a set X = {x1, x2, x3}, an example of ranking would
be: x1 � x2 ∼ x3 (with a ranking we know how all elements are related).

Notation 1. We note all possible rankings over X as R(X).

Using the indifference relation we can consider the quotient set X/∼,
which contains the equivalence classes of �. Thus, given the ranking x1 ∼
· · · ∼ xs � · · · � xr−k ∼ · · · ∼ xr, with x1, . . . , xs, . . . , xr−k, . . . , xr ∈ X,
then we can consider the quotient set X/∼ with quotient order �: Σ1 �
· · · � Σn, where Σ1 = {x1, . . . , xs}, . . . ,Σn = {xr−k, . . . , xr} ∈ X/∼ are
equivalence classes.

4.4 Formalising the dominant set selection

problem

The goal of this section is to formalise the dominant set selection problem.
Informally, and in short, this problem is that of finding a set S ∈ P(X) that
is both feasible and more preferred than any other set, and hence dominates
other sets. Notice that feasibility is an internal property of each set that
captures the compatibility of its elements. However, dominance refers to
a preference relation of each set with others that is not initially known
since the preferences at hand are those over the features of the elements
of a set S. In what follows, we start formally characterising the objects
in a dominant set selection problem. Thereafter, we show how to gradually
build our formal notion of dominance over sets from the preferences at hand,
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namely those over features of elements. Finally, we offer a formal definition
of the dominant set selection problem.

To start with, we go back to our value-alignment problem in Section 4.2,
from which we can generalise to identify the objects that formally charac-
terise the input of a dominant set selection problem as follows:

• a set of elements X;

• a set of features F ;

• a ranking �F over the features in F ;

• a function f : X → P(F ) that outputs the features of each element in
X; and

• a feasibility function φ : P(X) → {>,⊥}, which checks if a set S ∈
P(X) is feasible (φ(S) = > means that it is feasible, and φ(S) = ⊥
means that it is not).

At this point, it is important to remark that throughout this chapter we
consider that ∅ is not a set in P(X) (∅ /∈ P(X)). Therefore, we note as
P(X) the set containing the 2|X| − 1 different non-empty subsets of X.

Informally, solving the dominant set selection problem amounts to se-
lecting a feasible set S ∈ P(X) that is more preferred than any other set
and includes as many elements as possible. We will say that such set domi-
nates the other sets. To select such dominant set we must first formalise our
notion of dominance. First, we will only consider a single element and define
element dominance in: (i) a (equivalence) class of features; and (ii) a whole
ranking over features. Once we have established how element dominance
works, we will build upon it to define set dominance.

Given a ranking over features �F , we define element dominance within
the scope of an equivalence class of features as follows:

Definition 19. Given two elements x, y ∈ X with features in F , a ranking
over features �F , and a feature equivalence class Ψ ∈ F/∼F , we say that x
is Ψ-dominant over y if

|f(x) ∩Ψ| > |f(y) ∩Ψ|.

If |f(x) ∩Ψ| = |f(y) ∩Ψ|, we say that x and y are Ψ-indifferent.
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Back to our example in Section 4.2, the dominant set selection prob-
lem would be characterised by: X = {n1 . . . n4}; F = {v1, v2, v3}; f(n1) =
{v1, v2, v3}, f(n2) = {v1}, f(n3) = {v2}, f(n4) = {v3}; and v1 � v2 ∼ v3. In
the quotient order of F/∼F , this results in two feature equivalence classes:
Ψ1 = {v1} �F Ψ2 = {v2, v3}. With this in mind, n1 is Ψ1-dominant over n4

because n1 promotes v1 but n4 does not. n4 is Ψ2-dominant over n2 since
n4 promotes v3 and n2 does not promote any value in Ψ2. Finally n1 and n2

are Ψ1-indifferent as they both promote v1.

Next, we exploit the definition of element Ψ-dominance to define element
dominance considering all the features in F and their ranking �F . Formally:

Definition 20. Given two elements x, y ∈ X with features in F and a
ranking over features �F , we say that x is dominant over y if there is a
feature equivalence class Ψ ∈ F/∼F , such that:

- x is Ψ-dominant over y; and

- ∀Ψ′ ∈ F/∼F , such that Ψ′ �F Ψ, x and y are Ψ′-indifferent.

If neither x dominates y nor vice versa, we say that x and y are indif-
ferent.

Note that the first condition in Definition 20 implies that the dominant
element x has more of the features of Ψ than y (|f(x) ∩ Ψ| > |f(y) ∩ Ψ|).
As for the second condition, it demands that x and y are indifferent for any
other equivalence classes that are more preferred than Ψ. Hence, the most
preferred feature equivalence class for which x and y differ, is the class that
marks dominance between them.

Back to our example: n1 is dominant over n4 because n1 is Ψ1-dominant
over n4 and Ψ1 is the most preferred feature class; n1 is also dominant over
n2 because even though they are Ψ1-indifferent, n1 is Ψ2-dominant over n2.

With the definition of element dominance we now consider dominance
between sets in P(X). Given a set S = {x1, . . . , xt}, S ∈ P(X), we can
order its elements in a sequence (xσ(1), . . . , xσ(t)) according to dominance,
where σ is a permutation of the indexes, such that σ(i) is the index in
S of the i-th element in the sequence. According to such ordering, xσ(i)

is indifferent or dominated by xσ(1), . . . , xσ(i−1) while being indifferent or
dominating xσ(i+1), . . . , xσ(t). With this in mind we define set dominance as
follows.
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Definition 21. Given two sets S = {x1, . . . , xt} and S ′ = {x′1, . . . , x′r}
in P(X) and their orderings according to dominance (xσ(1), . . . , xσ(t)) and
(x′σ(1), . . . , x

′
σ(r)) respectively, we say that S is dominant over S ′ if ∃j ∈

{1,max(t, r)}, such that:

- xσ(j) dominates x′σ(j) or j > r; and

- xσ(i) and x′σ(i) are indifferent ∀i < j.

Notice that the notion of dominance that we propose rewards element
excellence in a set: the more preferred (excellent) the features of the elements
in a set, the more dominant the set. Therefore, a set containing a few
excellent elements (with regards to their features) will be preferred over
larger sets with mediocre elements (i.e. related to less preferred features).
This will be the case even if the mediocre elements in a larger set are related
to many more features.

Continuing with our example, the set S1 = {n1, n2} is dominant over
S2 = {n3, n4} because n1 is the most dominant element in S1, n3 is the most
dominant element in S2, and n1 is dominant over n3.

With the definition of set dominance we can now tackle the formalisation
of the dominant set selection problem. Formally:

Problem 2 (Dominant set selection problem). Given a set of elements X,
a set of features F , a ranking �F over F , a function f : X → P(F ) linking
the elements in X with their features, and a feasibility function φ : P(X)→
{>,⊥} that checks if a set S ∈ P(X) is feasible, then the dominant set
selection problem (DSSP) is that of finding a set S ∈ P(X) such that:

• S is feasible, that is, φ(S) = >; and

• no other feasible set dominates S , that is, if S ′ ∈ P(X), such that, S ′

is dominant over S ⇒ φ(S ′) = ⊥.

At this point, we remind the reader that our notion of dominance above is
meant to reward element excellence. Hence, dominant set selection problems
model decision problems for which element excellence is the main decision
criterion. This is the case in the examples mentioned in the introduction
(granting admissions, committee selection), other examples are awarding
prizes or scholarships. Of course, other decision criteria are possible. For
example, a decision maker could consider avoiding incompetence as the main
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decision criterion (in this case elements with more features would be pre-
ferred over elements with few more preferred features).

Indeed, it is worth stressing that the problem of how to aggregate differ-
ent attributes or variables is typically studied in the field of Multiple Criteria
Decision Making (MCDM), where it is relevant to ask to a decision maker
the question on whether the compensation of bad performances on some cri-
teria by good performances on other criteria is acceptable or not [Roy and
S lowiński, 2013]. As pointed out in [Bouyssou, 1986], the notion of com-
pensation in general boils down to that of ‘tradeoffs’ among criteria. For
instance, a possibility of compensation is provided by additive utility-based
approaches, but there are plenty of other methods offering different levels of
compensation, or using non-compensatory aggregation techniques (see, for
instance, the article [Roy and S lowiński, 2013] for a discussion about the
question guiding to the choice of an appropriate MCDM method and the
articles [Bouyssou, 1986; S lowiński et al., 2002] for an axiomatic analysis of
MCDM methods in situations with multicriteria non-compensatory prefer-
ences; see also [Greco et al., 2019] for an updated review of compensatory
and non-compensatory approaches). Therefore, although this issue is the
subject of considerable debate in the MCDM literature, here we define a
specific dominance notion that rewards element excellence, and argue that
its applicability is strongly dependent on the context.

Note also that the dominant set selection problem may have multiple
solutions when multiple sets satisfy the conditions of the problem and do not
dominate one another. However, it may also be worth mentioning that, by
construction, these solutions will always have the same number of elements
(see Section 4.5).

To illustrate the problem and its resolution we use the following problem
as a running example in the following sections.

Example 12. Consider four elements X = {x1, x2, x3, x4}, two features
F = {f1, f2}, the feature ranking f1 �F f2 and the feature function f(x1) =
f(x2) = {f1} and f(x3) = f(x4) = {f2}. In terms of feasibility, we know that
any set containing both x1 and x3, or both x2 and x4, is not feasible (e.g.
φ({x1, x2, x3}) = ⊥, φ({x3, x4}) = >). These elements conform an example
of dominant set selection problem.

The next section outlines how we actually proceed to solve the dominant
set selection problem.
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4.5 Solving the dominant set selection prob-

lem: an outline

As we anticipated in the introduction above, we tackle the dominant set
selection problem by splitting its resolution in three steps: (1) we extract
preferences over single objects based on their features and on the preferences
over the features; (2) we rank all possible sets of objects; and (3) we select
the most preferred feasible set of objects. Figure 4.1 shows the general
outline of the steps that we shall follow to solve the dominant set selection
problem: preference grounding, preference lifting, and feasibility check. First,
preference grounding is performed by grounding the preferences over objects’
features to obtain a ranking over the objects in X. Second, preference lifting
lifts this element ranking over the elements in X to a set ranking over P(X).
Notice that preference lifting must ensure that the output ranking embodies
dominance, thus meaning that a set dominates all its (strictly) less preferred
sets in the ranking. Third, the feasibility check step finds the feasible set
that is most preferred in the ranking over P(X). That set will be the set
that is dominant over all other feasible sets and, thus, it will constitute the
solution to our problem.

Ranking over the features
Ranking over !(#) Dominant set selection 

problem solutionFeasibility checkRanking over #

Set of elements #

Function linking elements 
to their features

Set of features (

Feasibility function

Grounding Lifting

Figure 4.1: Outline of the steps to solve the dominant set selection problem.

The main difficulty when solving the dominant set selection problem lies
on generating a ranking over all sets in P(X). Therefore, the next sections
(4.6, 4.7 and 4.8) focus on that goal. Sections 4.6 and 4.7 introduce two key
functions that will allow: (i) to transform a ranking over elements’ features
into a ranking over elements in X; and (ii) in turn this ranking over elements
into a ranking over sets in P(X).

At this point, we warn the reader that Section 4.6 must be taken as
background, since lex-cel was already introduced in [Bernardi et al., 2019],
whereas sections 4.7 and 4.8 contain novel contributions.
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4.6 The lex-cel ranking grounding function

The social ranking problem [Moretti and Öztürk, 2017] consists on trans-
forming a ranking over P(X) into a ranking over the elements of X . Thus, a
social ranking solution can be viewed as a function srs : R(P(X))→ R(X),
such that for a ranking �∈R(P(X)), srs(�) = �e is a ranking of X. In-
formally, we say that a social ranking solution grounds the preferences over
subsets to preferences over elements.

Several social ranking solutions have been proposed, such as: a ground-
ing function based on the ceteris paribus majority principle [Haret et al.,
2018]; a grounding function based on the notion of marginal contribution
[Khani et al., 2019]; two rankings based on the analysis of majority graphs
and minmax score [Allouche et al., 2020]; or the lex-cel ranking function
[Bernardi et al., 2019], which is based on lexicographical preferences. Here,
we adapt lex-cel to rank the elements in X based on their features in F .

In more detail, if we consider a ranking � over P(X), the transformation
performed by lex-cel proceeds as follows. First, consider the quotient set
P(X)/∼ (see Section 4.3) such that subsets related by indifference relations
fall on the same equivalence class Σi ∈ P(X)/∼. Since the equivalence
classes are not indifferent between them, we have a strict quotient order �
between them: Σ1 � · · · � Σ|P(X)/∼|.

We now define a function µ : X → N|P(X)/∼|, which for an element x ∈ X
returns its profile vector, a natural vector whose dimension is the number
of equivalence classes in the quotient set |P(X)/∼ |. The i-th component
of the profile vector for x stands for the number of times that x appears in
the subsets of equivalence class Σi. Notice that equivalence class Σi is the
class containing the i-th most preferred subsets of P(X) according to the
preorder �. For instance, if µ(x) = (cx1 , . . . , c

x
|P(X)/∼|), then cxi is the number

of times that x appears in the subsets of equivalence class Σi. Formally, we
define the profile vector for an element x ∈ X as:

µ(x) = (cx1 , . . . , c
x
|P(X)/∼|), where cxi = |{S ∈ Σi : x ∈ S}| (4.1)

Given any two elements x, y ∈ X, we can establish a preference between
them by comparing their profile vectors with the lexicographical order of
vectors. That is:

Definition 22. We define the lexicographical order of vectors ≥L such that
given two vectors c = (c1, . . . , cm), c′ = (c′1, . . . , c

′
m) ∈ Nm, we say that c >L c

′

iff ∃i, such that c1 = c′1; . . . ; ci−1 = c′i−1 and ci > c′i. On the other hand,
c =L c

′ ⇔ c = c′.
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We then define the lexicographical-exellence (lex-cel) grounded ranking
le(�) =�e between two elements by comparing their profile vectors. Given
x, y ∈ X, we say that: 

x �e y ⇔ µ(x) ≥L µ(y)

x �e y ⇔ µ(x) ≤L µ(y)

x ∼e y ⇔ µ(x) = µ(y)

(4.2)

In [Bernardi et al., 2019], the authors prove that grounding preferences
with lex-cel satisfies properties that make the grounding fair. In particular,
such properties are neutrality, coalitional anonymity, monotonicity and in-
dependence of the worst set. Next, we provide a short illustration of these
four properties.

First, neutrality ensures that the ranking resulting from applying lex-
cel does not depend on the elements’ names/identities. Specifically, this
property means that if we permute two elements x and y in a ranking �
over P(X), the grounded ranking should obey to the same permutation. So,
for instance, consider a ranking � over P(X), with X = {x, y, z} and such
that {x, y, z} � {x} � {y, z} � {x, y} � {y} � {x, z} � {z}. Suppose that
the grounded ranking specifies the relation x �e y on the ranking �. Then,
the grounded ranking should specify the relation y �′e x on the ranking �′
such that {x, y, z} �′ {y} �′ {x, z} �′ {x, y} �′ {x} �′ {y, z} �′ {z}, which
is obtained from � by permuting x and y.

The coalitional anonymity property extends the anonymity principle to
“non-informative” subsets of X: the relative ranking between two elements
should only depend on the sequence in which they separately occur along
the ranking over P(X). For instance, in the two rankings {x, y, z} � {x} �
{y, z} � {x, y} � {y} � {x, z} � {z} and {x, z} �′ {y, z} �′ {x, y, z} �′
{x, y} �′ {y} �′ {z} �′ {x}, if we focus on sets containing either x or
y (but not both), from left to right: first, we have that element x occurs
in the singleton set {x} in � and in the set {x, z} in �′, then element y
occurs in the set {y, z} in both rankings � and �′, y occurs in the set
{y} in both rankings � and �′, and finally, x occurs in the subset {x, z}
in � and in {x} in �′. Therefore, since x and y occur according to the
sequence x, y, y, x on both rankings � and �′, a grounded ranking satisfying
coalitional anonymity should specify the same relation between x and y on
� and �′ (i.e., x �e y ⇔ x �′e y ).

As shown in [Bernardi et al., 2019], neutrality and coalitional anonymity
together imply that if two elements x and y are such that µ(x) = µ(y), then
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they should be ranked indifferent in the grounded ranking.

A grounded ranking that satisfies monotonicity, breaks possible indif-
ference relations in a consistent way. This means that if on a ranking �
over P(X) a grounded ranking states that two elements x and y are indif-
ferent (i.e, x ∼e y), then, if we consider a new ranking �′ obtained from
� by improving the position of some subsets containing x but not y, we
should have that the grounded ranking ranks x strictly better than y on
�′ (i.e, x �′e y and x �′e y). For instance, suppose that on a ranking
{x, y, z} � {x} ∼ {y, z} � {x, y} � {y} ∼ {x, z} � {z} the grounded rank-
ing is such that x ∼e y. Now, if we improve the position of the subset {x, z},
so that we obtain the new ranking {x, y, z} �′ {x} ∼′ {y, z} �′ {x, y} �′
{x, z} �′ {y} �′ {z}, according to monotonicity we have a grounded ranking
such that x �′e y and x �′e y.

Finally, the property of independence of the worst subsets is aimed at
accounting higher ranked subsets over lower ranked ones. Thus, we say that
a grounded ranking is independent of the worst subsets if, once the grounded
ranking has stated that an element x is strictly better than y, any change in
the relative ranking of subsets in the worst indifference class of the ranking
over P(X) does not affect such an assertion. For instance, suppose that
on the ranking {x, y, z} � {x} � {y, z} � {x, y} � {y} ∼ {x, z} ∼ {z}
the grounded ranking states x �e y and x �e y, then it should state the
same for {x, y, z} �′ {x} �′ {y, z} �′ {x, y} �′ {y} �′ {x, z} �′ {z},
which is obtained from � by just modifying the relation among elements
of its last equivalence class {{y}, {x, z}, {z}}. So, giving more importance
to occurrences in higher ranked subsets, this property actually rewards the
‘excellence’ of elements in a ranking over P(X).

In [Bernardi et al., 2019], the authors not only prove that lex-cel satisfies
these (logically independent) axioms, but also that it is the only grounding
function that satisfies them.

Even though lex-cel is formally defined in [Bernardi et al., 2019] as a
function le : R(P(X))→ R(X), here we adapt it to handle the input of the
dominant set selection problem and thus perform the grounding process in
figure 4.1. Therefore, we redefine lex-cel as a function le : R(F ) → R(X).
Then, given a ranking of features f1 �F · · · �F f|F |, with quotient order
Ψ1 �F · · · �F Ψ|F/∼F | over F/∼F , and an element x ∈ X, the function µ,
would be defined as:

µ(x) = (|f(x) ∩Ψ1|, . . . , |f(x) ∩Ψ|F/∼F ||).
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Example 13. Following Example 12, note that we know that elements x1

and x2 have both the most preferred feature f1, while x3 and x4 have the least
preferred feature f2. With this in mind, their µ vectors would be: µ(x1) =
(1, 0), µ(x2) = (1, 0), µ(x3) = (0, 1), µ(x4) = (0, 1). Therefore, the grounded
ranking over X would be x1 ∼e x2 �e x3 ∼e x4.

4.7 The anti-lex-cel ranking lifting function

Thanks to lex-cel we can ground a ranking over features in F to a ranking
over the elements in X. As shown in Figure 4.1, the next step is to lift this
ranking over single elements to a ranking over sets of elements, namely over
P(X). This procedure is similar to that of the ranking sets of objects prob-
lem surveyed in [Barberà et al., 2004]. The ranking sets of objects problem
consists on building a ranking over sets from an ordering over individual el-
ements. Some solutions for the ranking sets of objects problem are maxmin
and minmax, as introduced in [Arlegi, 2003]. Maxmin assesses preferences
over sets by comparing only their most preferred element except when these
elements are the same, in which case it compares their least preferred ele-
ments. On the other hand, minmax does the inverse comparison. It assesses
preferences over sets based only on how their least preferred elements are
compared. If these elements are the same, the sets’ most preferred elements
are compared. Note that neither of these methods consider further elements
than the most and least preferred ones. This makes them unsuitable for
our purpose, since we want to take into account as many elements as possi-
ble. The leximin and leximax functions introduced in [Pattanaik and Peleg,
1984] represent alternative approaches. In summary, leximin and leximax
are based on comparing lexicographically sets. In the case of leximin, pref-
erences over sets depend on how their worst elements compare. If these
elements are the same, their second worst elements are compared, and so
on. If there is no difference, the larger set is preferred (the sets are indifferent
if both have the same size). Conversely, leximax compares sets depending
on how their best elements compare. If these elements are the same, their
second best elements are compared, and so on. If there is no difference,
the smaller set is preferred (the sets are indifferent if both have the same
size). Unfortunately, we cannot use any of the solutions of the ranking sets
of objects problem because they assume a total order of elements. Instead,
we have a more general assumption, since we suppose a ranking on elements.
Note that this is a crucial difference, since rankings allow for different ele-
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ments to be indifferently preferred, whereas total orders are antisymmetric,
meaning that an element cannot be equally preferred to another element.

Since, to the best of our knowledge, no lifting functions assuming element
rankings exist, in this section we formalise a novel one, which we call anti-
lex-cel. In Section, 4.7.1 we formally introduce anti-lex-cel. Thereafter, in
Section 4.7.2 we provide an axiomatic characterisation of anti-lex-cel and
we prove that it is the only lifting function satisfying such axioms. Finally,
Section 4.7.3 draws the relationship between lex-cel and anti-lex-cel while
Section 4.7.4 connects the results in this section with existing results in the
literature.

4.7.1 Formal definition

Anti-lex-cel can be viewed as a function ale : R(X)→ R(P(X)), such that
for a ranking �e∈ R(X), ale(�e) = � is a ranking over P(X). We formalise
anti-lex-cel in a very similar way to lex-cel, but reversing the process.

To perform anti-lex-cel we start with a ranking �e over the elements in
X. First, we consider the quotient set X/∼e. Each equivalence class in
X/∼e contains a set of indifferently preferred elements. Equivalence classes
in X/∼e are ordered by the quotient order �e. Hence, Ξ1 �e · · · �e Ξr,
where r = |X/∼e| and Ξi is the equivalence class containing the i-th most
preferred elements. We define a function η : P(X) → Nr to count the
appearances of the elements of a set in P(X) in each equivalence class.
Thus, given a set S ∈ P(X), η(S) is a vector of size r whose i-th component
stands for the number of elements in S that are found in the equivalence
class Ξi. Formally:

η(S) = (s1, . . . , sr), where si = |S ∩ Ξi| (4.3)

Note that, similarly to µ in Equation 4.1, η(S) is a vector whose elements
represent how preferred the elements in S are: the larger the first numbers
of the vector, the more preferred the elements in S are (in terms of �e),
and hence we can infer that the more preferred S is. This again means
that ranking sets of elements is equivalent to lexicographically ordering their
associated vectors as calculated by the η function. Thus, to compare two sets
S, S ′ ∈ P(X), we compare lexicographically η(S) and η(S ′) (see Definition
22). With those considerations, we are now ready to tackle the formulation
of the anti-lex-cel function ale. We define � as the ranking of sets in P(X)
such that given two sets S, S ′ ∈ P(X), it orders them according to the
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following rules: 
S � S ′ ⇔ η(S) ≥L η(S ′)

S � S ′ ⇔ η(S) ≤L η(S ′)

S ∼ S ′ ⇔ η(S) = η(S ′)

(4.4)

After that, we are ready to formally define the anti-lexicographic-excellence
ranking lifting function as follows:

Definition 23. Given a set of elements X and a ranking �e over the ele-
ments in X, the ranking lifting function ale : R(X) → R(P(X)) such that
ale(�e) = � is called anti lexicographic excellence (anti-lex-cel).

Example 14. Consider the element ranking x1 ∼e x2 �e x3 ∼e x4 over
X that we found in Example 13. We apply anti-lex-cel to this ranking by
computing the η vector for the sets in P(X). Since the quotient order is
Ξ1 � Ξ2, with Ξ1 = {x1, x2} and Ξ2 = {x3, x4}, we have that, for in-
stance, η({x1, x2, x3}) = (2, 1) and η({x3, x4}) = (0, 2). Then, by compar-
ing the η vectors of all sets we can build the following ranking over P(X):
{x1, x2, x3, x4} � {x1, x2, x3} ∼ {x1, x2, x4} � {x1, x2} � {x1, x3, x4} ∼
{x2, x3, x4} � {x1, x3} ∼ {x1, x4} ∼ {x2, x3} ∼ {x2, x4} � {x1} ∼ {x2} �
{x3, x4} � {x3} ∼ {x4}.

4.7.2 Axiomatic characterisation

We now introduce four properties for a ranking lifting function f : R(X)→
R(P(X)) and prove that they together axiomatically characterise ale and
that ale is the unique lifting function that satisfies them.

The first axiom is a coherence property saying that the ranking of single-
ton sets should be “aligned” with �e, where �e is a ranking of the elements
of X.

Axiom 1 (Simple Dominance). Given an element ranking �e∈ R(X), a
ranking lifting function f satisfies the simple dominance property iff

x �e y and x �e y ⇒ {x} � {y} and {x} � {y}

for all x, y ∈ X and with �= f(�e).

The second axiom is an anonymity property: permuting the names of
elements should not affect the ranking provided by a lifting function.
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Axiom 2 (Neutrality). Given an element ranking �e∈ R(X), let π be a
bijection on X and let �πe∈ R(X) be such that by

x �e x′ ⇔ π(x) �πe π(x′)

for all x, x′ ∈ X. A lifting function f satisfies the neutrality property iff

S � S ′ ⇔ π(S) �π π(S ′)

for all S, S ′ ∈ P(X) and where π(S) and π(S ′) are the images of S and S ′

through π and where �= f(�e) and �π= f(�πe ).

The next axiom says that if a set S is (weakly) preferred to another one
S ′, then adding new elements to the preferred one S makes this new set
(strictly) preferred to S ′.

Axiom 3 (Size Monotonicity). Given an element ranking �e∈ R(X), a
ranking lifting function f satisfies the size monotonicity property iff

S � S ′ ⇒ (S ∪ S̄) � S ′ and (S ∪ S̄) � S ′

for all S, S ′ ∈ P(X) and S̄ ⊆ (X \ S), S̄ 6= ∅, with �= f(�e).

The next axiom aims at rewarding the best elements preventing the
overestimation of dominated ones and states that a strict preference between
two sets S and S ′, i.e. S � S ′ and S � S ′, should not be affected by the
addition of new single element that are strictly worse (with respect to the
element ranking �e of X) to those already contained in the preferred set S.

Axiom 4 (Independence of the Worst Elements). Given an element ranking
�e∈ R(X), a ranking lifting function f satisfies the independence of the
worst elements property iff

S � S ′ and S � S ′ ⇒ S � (S ′ ∪ S̄ ′) and S � (S ′ ∪ S̄ ′)

for all S, S ′ ∈ P(X) and S̄ ′ ⊆ (X \S ′), S̄ ′ 6= ∅, such that x �e x′ and x �e x
′

for all x ∈ S and x′ ∈ S̄ ′ and with �= f(�e).

The following proposition establishes that anti-lex-cel satisfies the four
axioms above.

Proposition 2. The anti-lex-cel lifting function ale satisfies axioms 1, 2, 3
and 4.
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Proof (Proposition 2). Let �e be a ranking over the elements of X and
X/ ∼e its quotient order with equivalence classes Ξ1 �e . . . �e Ξr. Let
�= ale(�e).
Axiom 1:
Take x, y ∈ X such that x �e y and x �e y. Then, two elements i, j ∈
{1, . . . , r} exist such that i < j, x ∈ Ξi and y ∈ Ξj. So, η({x}) >L η({y})
and, by relation (4.4), we have {x} � {y} and {x} � {y}, which proves that
ale satisfies Axiom 1.
Axiom 2:
let π be a bijection on X and let �πe∈ R(X) be such that

x �e y ⇔ π(x) �πe π(y)

for all x, y ∈ X. Let X/ ∼πe be the quotient order of �πe with equivalence
classes Ξπ

1 �πe . . . �πe Ξπ
r . Notice that �e and �πe have precisely the same

number of equivalence classes. Moreover, for any x ∈ X there exists i ∈
{1, . . . , r} such that

x ∈ Ξi ⇔ π(x) ∈ Ξπ
i .

So, η(S) = η(π(S)) for any S ∈ P(X) and where π(S) is the image of S
through π. By relation (4.4), it follows that ale also satisfies Axiom 2.
Axiom 3:
Consider two sets S, S ′ ∈ P(X) such that S � S ′. Consider the case S ∼ S ′

(the case S � S ′ and S � S ′ is similar and left to the reader). By relation
(4.4) we have that η(S) = η(S ′). Now take another set S̄ ⊆ (X \ S),
S̄ 6= ∅. Consider the new set S ∪ S̄ which contains some elements not in
S. Then, η(S ∪ S̄) >L η(S) = η(S ′) and, by relation (4.4), it follows that
(S ∪ S̄) � S ′ and (S ∪ S̄) � S ′ which proves that ale satisfies Axiom 3.
Axiom 4:
Consider two sets S, S ′ ∈ P(X) such that S � S ′ and S � S ′. By relation
(4.4), it exists i ∈ {1, . . . , r} such that ηk(S) = ηk(S) for all k ∈ {1, . . . , i−1}
and ηi(S) > ηi(S

′) (being ηj(S), the j-th element of η(S)). Let S̄ ′ ⊆ (X\S ′),
S̄ ′ 6= ∅, be such that x �e x′ and x �e x

′ for all x ∈ S and x′ ∈ S̄ ′. Since
each element in S is strictly preferred to each element in S̄ ′, then ηk(S

′) =
ηk(S

′∪S̄ ′) for all k ∈ {1, . . . , i} and, consequently, η(S) >L η(S ′∪S̄ ′), which
finally proves the fact that ale also satisfies Axiom 4.

Having axiomatized anti-lex-cel, we can obtain a stronger result. Thus,
the following theorem tells us that in fact anti-lex-cel is the only lifting
function that satisfies these axioms.
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Theorem 4. Let f : R(X)→ R(P(X)) be a ranking lifting function. Then
f satisfies axioms 1, 2, 3 and 4 if and only if f is the anti-lex-cel lifting
function ale.

To prove the theorem we require the previous introduction of the follow-
ing auxiliary lemmas.

Lemma 1. Let f : R(X) → R(P(X)) be a ranking lifting function that
satisfies Axiom 2. Let S, S ′ ∈ P(X) and �e∈ R(X) be such that η(S) =
η(S ′). Then S ∼ S ′ (where ∼ is the symmetric part of relation �= f(�e)).

Proof (Lemma 1). Let �e be a ranking over the elements of X and X/ ∼e
its quotient order with equivalence classes Ξ1 �e . . . �e Ξr. Since η(S) =
η(S ′) = (s1, . . . , sr), with si = |S ∩ Ξi| = |S ′ ∩ Ξi| for all i ∈ {1, . . . , r},
we can define a bijection π on X such that the π(S ∩ Ξi) = S ′ ∩ Ξi and
π(S ′ ∩ Ξi) = S ∩ Ξi for all i ∈ {1, . . . , r}. So, π(S) = S ′ and π(S ′) = S.

Define a new ranking �πe∈ R(X) such that x �e y ⇔ π(y) �πe π(y) for
all x, y ∈ X. Then, by Axiom 2, we have that

S � S ′ ⇔ S ′ �π S.

On the other hand, �=�π, and we may conclude that S � S ′ ⇔ S ′ � S,
which precisely means that S ∼ S ′ for � is a total relation.

Lemma 2. Given an element ranking �e∈ R(X) and f : R(X)→ R(P(X))
a ranking lifting function that satisfies axioms 1 and 4. Then, the resulting
set ranking f(�e) =� is such that ∀x ∈ X, {x} � S and {x} � S for
every S ⊆ L(x), where L(x) = {x′ ∈ X|x �e x′ and x �e x

′}, is the set of
elements strictly less preferred than x.

Proof (Lemma 2). Given an element ranking �e∈ R(X), let �= f(�e) and
�∗= ale(�e). Let x ∈ X and L(x) = {x′ ∈ X|x �e x′ and x �e x

′}. Take
y ∈ L(x). By Axiom 1, we have that {x} � {y} and {x} � {y}. Now take
S̄ ′ ⊆ L(x) \ {y}. By Axiom 4, with {x} in the role of S, {y} in the role of
S ′, we have that {x} � {y} ∪ S̄ ′ and {x} � {y} ∪ S̄ ′. Since {y} ∪ S̄ ′ can be
whatever subset of L(x), we have proved the lemma.

With these auxiliar lemmas we can prove Theorem 4 as follows:

Proof (Theorem 4). We know from Proposition 2 that the anti-lex-cel lifting
function ale satisfies axioms 1, 2, 3 and 4.
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Conversely, suppose f satisfies axioms 1, 2, 3 and 4. Consider an ele-
ment ranking �e∈ R(X) having X/ ∼e as quotient order with equivalence
classes Ξ1 �e . . . �e Ξr. Let �= f(�e) and �∗= ale(�e). It has to be
proved that

Q �∗ Q′ ⇔ Q � Q′

for all Q,Q′ ∈ P(X).
We first prove the equivalence for the asymmetric parts, i.e.,

Q �∗ Q′ and Q �∗ Q′ ⇔ Q � Q′ and Q � Q′

for all Q,Q′ ∈ P(X).
(⇒)
Let Q �∗ Q′ and Q �∗ Q′. By relation (4.4), it exists i ∈ {1, . . . , r} such
that ηk(Q) = ηk(Q

′) for all k ∈ {1, . . . , i − 1} and ηi(Q) > ηi(Q
′) (being

ηj(Q), the j-th element of η(Q)). We distinguish two cases:

(i): ηk(Q
′) = 0 for all k ∈ {1, . . . , i}. Take an element x ∈ Ξi ∩ Q and

an element y ∈ Q′ ∩ Ξj where j ∈ {i + 1, . . . , r} is the smallest index
such that Q′ ∩ Ξj 6= ∅. Notice that j > i, so x �e y and x �e y for all
y ∈ Q′. Since f satisfies both Axiom 1 and 4, by Lemma 2 we have that
{x} � Q′ and {x} � Q′. Now, let Q̄ = Q \ {x}. Being Q = {x} ∪ Q̄,
and applying Axiom 3 on f with {x} in the role of S, Q′ in the role of
S ′ and Q̄ in the role of S̄, we finally have Q � Q′ and Q � Q′.

(ii): ηk(Q
′) 6= 0 for some k ∈ {1, . . . , i}. First, consider the two non-

empty sets T =
⋃
k∈{1,...,i}(Q∩Ξk) and T ′ =

⋃
k∈{1,...,i}(Q

′ ∩Ξk). Since

ηi(Q) = |Q∩Ξi| > |Q′∩Ξi| = ηi(Q
′) there must be at least ηi(Q)−ηi(Q′)

elements in Q ∩ Ξi but not in Q′ ∩ Ξi. Let I = {x ∈ Q ∩ Ξi \ Q′}
with |I| = ηi(Q) − ηi(Q′). Now, consider the two sets T \ I and T ′.
By construction, η(T \ I) = η(T ′). Then, since f satisfies Axiom 2,
by Lemma 1 we have that T \ I ∼ T ′. We are now ready to apply
Axiom 3 on f with T \ I in the role of S and T ′ in the role of S ′ and
T̄ = Q \ (T \ I) in the role of S̄. Then, being Q = (T \ I) ∪ T̄ , we
have Q � T ′ and Q � T ′. Finally, we use Axiom 4 on f with Q in the
role of S, T ′ in the role of S ′ and T̄ ′ = Q′ \ T ′ in the role of S̄ ′. So,
we have that Q � T ′ ∪ T̄ ′ and Q � T ′ ∪ T̄ ′. Being Q′ = T ′ ∪ T̄ ′, we
conclude that Q � Q′ and Q � Q′.

(⇐)
Let Q � Q′ and Q � Q′. First, suppose that Q ∼∗ Q′. Then, by relation



4.7. THE ANTI-LEX-CEL RANKING LIFTING FUNCTION 97

(4.4), we have that η(Q) = η(Q′). So, by Lemma 1, it must be Q ∼ Q′, which
yields a contradiction. On the other hand it cannot even be Q′ �∗ Q and
Q′ �∗ Q (otherwise we would have a contradiction by the other implication
proved earlier). So, by the fact that �∗ is a total relation, it must be Q �∗
Q′ and Q �∗ Q′, which concludes the proof of the equivalence between the
asymmetric parts of � and �∗.
We now prove the equivalence for the symmetric parts, i.e.,

Q ∼∗ Q′ ⇔ Q ∼ Q′

for all Q,Q′ ∈ P(X).
(⇒)
Let Q ∼∗ Q′. Then, by relation (4.4), we have that η(Q) = η(Q′) and by
Lemma 1 and the fact that � satisfies Axiom 2, it immediately follows that
Q ∼ Q′.
(⇐)
Let Q ∼ Q′. By the equivalence of the asymmetric part proved earlier, we
cannot have Q �∗ Q′ and Q �∗ Q′, or, Q′ �∗ Q and Q′ �∗ Q. So, since �∗
is a total relation, it must be Q ∼∗ Q′, which concludes the proof.

Finally, we look into another result. The following proposition proves
that axioms 1, 2, 3 and 4 are logically independent, so they all are necessary
to uniquely characterise ale.

Proposition 3. Exists a function f 6= ale satisfying any three of the axioms
1, 2, 3 and 4 and not fulfilling the remaining one.

Proof (Proposition 3). A ranking lifting function that does not satisfy sim-
ple dominance. Consider a ranking lifting function f sd : R(X)→ R(P(X))
with �= f sd(�e) such that S � T ⇔ η(S) ≥L η(T ) for all S, T ∈ P(X)
with |S| > 1 or |T | > 1, and {x} ∼ {y} for all x, y ∈ X. Similar to ale,
it is easy to verify along the lines of Proposition 2 that f sd satisfies axioms
2, 3 and 4. But of course f sd does not satisfies Axiom 1 (just take �e such
that x �e y and x �e y).

A ranking lifting function that does not satisfy neutrality. Let z ∈ X.
Consider a ranking lifting function fn : R(X)→ R(P(X)) with �= fn(�e)
such that S � T and S � T for all S, T ∈ P(X) with η(S) = η(T ) and
z ∈ S \ T , and S � T ⇔ η(S) ≥L η(T ) for all the remaining pairs of sets
S, T ∈ P(X). It easy to verify along the lines of Proposition 2 that fn sat-
isfies axioms 1, 3 and 4. But of course fn does not satisfies Axiom 2, for
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fn breaks some ties in ale if favour of the set containing element z.

A ranking lifting function that does not satisfy size monotonicity. Con-
sider a ranking lifting function f sm : R(X) → R(P(X)) with �= f sm(�e)
such that S � T ⇔ iS ≤ iT for all S, T ∈ P(X), where iS and iT are,
respectively, the smallest index such that ηiS(S) 6= 0 and ηiT (T ) 6= 0. One
can check that f sm satisfies Axioms 1, 2 and 4, but it does not fulfil Axiom
3. To see that f sm does not satisfy Axiom 3, consider X = {x1, x2, x3}
with the element ranking x1 �e x2 �e x3, which implies η({x1}) = (1, 0, 0),
η({x2}) = (0, 1, 0) and η({x3}) = (0, 0, 1). Then, {x1, x2} ∼ {x1, x3} (for
η1({x1, x2}) = η1({x1, x3}) = 1 6= 0), but it is not true that {x1, x2}∪{x3} �
{x1, x3} and {x1, x2}∪{x3} � {x1, x3} (for η1({x1, x2, x3}) = η1({x1, x3}) =
1 6= 0).

A ranking lifting function that does not satisfy independence of the worst
elements. Consider a ranking lifting function f iwe : R(X)→ R(P(X)) with
�= f iwe(�e) and such that S � T ⇔ |S| ≥ |T | for all S, T ∈ P(X) with
|S| > 1 or |T | > 1, and {x} � {y} ⇔ x �e y for all x, y ∈ X. One can
check that f iwe satisfies Axioms 1, 2 and 3, but it does not fulfil Axiom 4. To
see that f iwe does not satisfy Axiom 4, consider X = {x1, x2, x3, x4} and the
element ranking x1 ∼e x2 �e x3 ∼e x4 with quotient order Ξ1 = {x1, x2} �e
Ξ2 = {x3, x4}. We have that {x1, x2} � {x2} and {x1, x2} � {x2} (for
|{x1, x2}| = 2 and |{x2}| = 1) but it is not true that {x1, x2} � {x2}∪{x3, x4}
and {x1, x2} � {x2} ∪ {x3, x4} (for |{x2, x3, x4}| = 3).

4.7.3 On the relation between lex-cel and anti-lex-cel

As noticed above, the anti-lex-cel function is very similar to lex-cel, though
it realises the reverse process (from ranking over elements to ranking over
sets of elements). However, notice that, since le : R(P(X))→ R(X) is not
injective (it cannot be because |R(P(X))| > |R(X)|), there is no inverse
for lex-cel, and therefore, in general, anti-lex-cel is not the inverse of lex-
cel. Nonetheless, in what follows we characterise the conditions under which
anti-lex-cel becomes the inverse of a restriction of lex-cel.

Before establishing such formal result, we introduce an auxiliary result
that will prove useful for that purpose. The following lemma states that
we can build the profile vector for an element in a compositional, additive
manner. More precisely, we can obtain the µ and η profile vectors by adding
up the profile vectors restricted to each part in a partition of P(X). This
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property will help us prove the relation between lex-cel and anti-lex-cel in
the forthcoming Theorem 5.

Lemma 3. Given P1, . . . , Pk a partition of P(X):
µ(x) = µ|P1

(x) + · · ·+ µ|Pk
(x),∀x ∈ X

η(S) = η|P1
(S) + · · ·+ η|Pk

(S),∀S ∈ P(X)
where

• µ|Pj
(x) = (c1, . . . , cl), with ci = |{S ∈ Σi ∩ Pj : x ∈ S}|, stands for

the profile vector of element x restricted to partition Pj; and

• η|Pj
(S) = (s1, . . . , sr), with si = |({S}∩Pj)∩Ξi|, stands for the profile

vector of set S restricted to partition Pj.

Proof (Lemma 3). The proof is straightforward considering that µ and η
are vectors of cardinalities and cardinalities satisfy that if S ⊆ X, and
P1, . . . Pk ⊆ X is a partition of X, then |S ∩X| =

∑
i |S ∩ Pi|.

The following result tells us that given a ranking �e over the elements
of X, the composition of anti-lex-cel and lex-cel over it results in the very
same ranking �e.

Theorem 5. Given a ranking �e∈ R(X), le(ale(�e)) =�e.

Proof (Theorem 5). Suppose ale(�e) =� and le(ale(�e)) =�′e. First, note
that if �e is such that ∀x, y ∈ X, x ∼e y, then when applying ale to �e
we would have that ∀S ∈ P(X), η(S) = (|S|) which would mean that the
preference of a set only depends on its cardinality (not on its elements), and
when applying back le to the obtained set ranking we would have that ∀x, y ∈
X,µ(x) = µ(y) as all elements in X appear in the same number of sets of
a certain cardinality. Therefore, to prove the theorem we can consider that
x, y ∈ X, such that x �e y and x �e y and prove that x �′e y is not possible.
Now consider XY S = {S ∈ P(X), x, y ∈ S}, XS = {S ∈ P(X), x ∈ S, y /∈
S}, Y S = {S ∈ P(X), x /∈ S, y ∈ S} and RS = {S ∈ P(X), x, y /∈ S}, note
that these subsets form a partition of P(X) (P(X) = XY S∪XS∪Y S∪RS,
and XY S,XS, Y S,RS disjoint), thus when applying le (le(�) =�e) we
will have: µ(x) = µ|XY S (x) + µ|XS (x) + µ|Y S (x) + µ|RS (x) and µ(y) =
µ|XY S (y) + µ|XS (y) + µ|Y S (y) + µ|RS (y), and µ|XY S (x) = µ|XY S (y),
µ|RS (x) = µ|RS (y), and µ|Y S (x) = µ|XS (y) = (0, . . . , 0). Since, y �′e x,
we have that µ(y) ≥L µ(x) which considering the equalities above implies that
µ|Y S (y) ≥L µ|XS (x), since |Y S| = |XS|, this would mean that ∃S ∈ Y S,
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such that ∀S ′ ∈ XS, S � S ′ or alternatively η(S) ≥L η(S ′). But this is not
possible, consider S ′ = S \ {y} ∪ {x}, this set contains x, therefore S ′ ∈ XS
and since x �e y and x �e y, η(S ′) >L η(S), which proves the theorem.

Based on the theorem above, we can establish that anti-lex-cel is the in-
verse of lex-cel for a restricted family of rankings ILE = {�∈ R(P(X)),∃ �e∈
R(X)ale(�e) =�}.

Corollary 1. le|ILE is the inverse of ale.

Proof (Corollary 1). In Theorem 5 we have seen that le(ale(�e)) =�e,
which means that le|ILE (ale(�e)) =�e as we are only restricting the domain
of le, now due to this restriction le is injective and exhaustive, as is ale, so
they are inverses.

4.7.4 Related results from the literature

Next we investigate the relationship between anti-lex-cel and a related result
in the literature. In [Bossert et al., 1994], Bossert et al. study a particular
preorder on P(X) associated to a linear order on X. Therefore, analogously
to anti-lex-cel, [Bossert et al., 1994] studies a lifting of preferences from the
element level (the linear order) to the set level. Interestingly, in this section
we show that when fed with a linear order on X (which is a particular type of
ranking), the output of anti-lex-cel is precisely the preorder on P(X) studied
in [Bossert et al., 1994]. Hence, this shows the generality of anti-lex-cel.

Given an element ranking �e∈ R(X) that is also anti-symmetric (i.e.,
�e is a linear order), in [Bossert et al., 1994] the authors have introduced
the following properties for a preorder (a transitive and reflexive relation) �
of P(X) associated to �e (see also [Barberà et al., 2004] for a general review
of the related literature):

• Simple dominance (SD): for any x, y ∈ Y , x �e y and x �e y ⇒ {x} �
{y} and {x} � {y};

• Simple Monotonicity (SM): for any x, y ∈ X with x 6= y, {x, y} � {x}
and {x, y} � {x};

• Independence (IND): for any S, T ∈ P(X), for each x ∈ X \ (S ∪ T ),
S � T ⇔ S ∪ {x} � T ∪ {x};
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• Robustness for strict Preferences (RP): for any S, T ∈ P(X), for each
x ∈ X \ (S ∪ T )

S � T and S � T,
y �e x and y �e x ∀y ∈ S,
z �e x and z �e x ∀z ∈ T

 ⇒ S � T ∪ {x} and S � T ∪ {x}.

A particular preorder on P(X) associated to a linear order �e on X
has been studied in [Bossert et al., 1994]. To define it, we need some more
notations. Without loss of generality, it is assumed that the elements of any
set S = {x1, . . . , xs} ∈ P(X) are ordered in decreasing preference according
to �e, that is, x1 �e x2 �e . . . �e xs.

Let u�e : X → R>0 be a real-valued function such that for all x, y ∈ X,
u�e(x) ≥ u�e(y) ⇔ x �e y. For S = {x1, . . . , xs} ∈ P(X), let v(S) be an
|X|-dimensional vector such that

vu�e
(S) = (u�e(x1), . . . , u�e(xs), 0, . . . , 0),

so, the last |X| − |S| components of the vector are completed with zeros.
The relation �u�e

on P(X) is then defined as follows:

S �u�e
T ⇔ vu�e

(S) ≥L vu�e
(T ).

for all S, T ∈ P(X). The following result, which has been proved in [Bossert
et al., 1994], states that �u�e

is the unique preorder of P(X) that satisfies
the four properties.

Theorem 6. [Bossert et al., 1994] Let � be a preorder on P(X). � satisfies
SD, SM, IND and RP iff �=�u�e

.

We now prove that the total preorder �= ale(�e) also satisfies properties
SD, SM, IND and RP.

Proposition 4. Given a linear order �e∈ R(X), the ranking �= ale(�e)
satisfies SD, SM, IND and RP.

Proof (Proposition 4). From Proposition 2 we know that f satisfies axioms
1, 3 and 4.

From Axiom 1 on ale, we directly have that � satisfies SD. Since � is
total, we have {x} ∼ {x}.

Then, the proof that � satisfies SM follows by Axiom 3 on ale with {x}
in the role of both S and S ′ and S̄ = {y}.
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To prove IND, simply notice that for all S, T ∈ P(X), η(S) ≥L η(T )⇔
η(S ∪ {x}) ≥L η(T ∪ {x}) for all x ∈ X \ (S ∪ T ).

Finally, the proof that � satisfies RP follows by Axiom 4 on ale with T
in the role of S ′ and S̄ ′ = {x}.

To end this section, the following corollary formally establishes the re-
lationship between anti-lex-cel and the results by Bossert et al. in [Bossert
et al., 1994].

Corollary 2. Let �e be a linear order on X, then �=�u�e
where �= ale(�e

).

Proof (Corollary 2). The proof follows directly from Theorem 6 and Propo-
sition 4.

4.8 Solving the dominant set selection prob-

lem

With both lex-cel and anti-lex-cel , we can now address solving the domi-
nant set selection problem. As shown in Figure 4.1, we will build the solution
through three steps. In particular we will transform the input of the DSSP
into a ranking over X using lex-cel, then we use anti-lex-cel to obtain a rank-
ing over P(X). Thanks to the properties of ale, we prove that this ranking
embodies dominance as in Definition 21, meaning that a set is dominant over
its least preferred sets in the ranking. With this ranking and the feasibility
function, we can find the solution as the more preferred set in the ranking
that is feasible.

We start with the elements in X, the set of features F , their ranking
�F and the feature function f relating elements to their features. In Section
4.6, we have adapted the lex-cel function to ground the ranking �F to a
ranking over X such that le(�F ) =�e. Then, we apply anti-lex-cel to this
ranking, ale(�e) =�, to obtain a ranking over P(X). Thus, by composing
lex-cel and anti-lex-cel, we can define a function dom : R(F ) → R(P(X))
that transforms a ranking over the features in F to a ranking over the sets in
P(X) as dom(�F ) = ale(le(�F )). We show that the resulting ranking from
the dom function embodies dominance as stated by the following theorem.

Theorem 7. Let X be a set of elements, F a set of features, �F a ranking
over F , and a function f relating elements to their features. For any pair
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S, S ′ ∈ P(X), S is dominant over S ′ ⇔ S � S ′ (S � S ′ and S � S ′), where
dom(�F ) = ale(le(�F )) =�.

To show that � embodies dominance and therefore prove the theorem,
first we need an auxiliary lemma showing that �e embodies element domi-
nance.

Lemma 4. �e= le(�F ) embodies element dominance, that is ∀x, y ∈ X, x
is dominant over y ⇔ x �e y.

Proof (Lemma 4). To start we have a set of features F and a ranking over
them �F , which can be represented in general as: f 1

1 ∼F · · · ∼F f s1 �F
· · · �F f 1

k ∼F · · · ∼F f rk meaning that in F/∼F the quotient order is Ψ1 �F
· · · �F Ψk, with Ψi = {f 1

i , . . . f
q
i }(q depends on i, for Ψ1, q = s and for Ψk,

q = r).
With these considerations, suppose x �e y, by the definition of lex-cel,

this means that µ(x) >L µ(y), which by the definition of µ means that ∃Ψi,
such that x has a larger number of features in Ψi than y: |f(x) ∩ Ψi| >
|f(y) ∩ Ψi|, while ∀Ψj �F Ψi, x and y have the same number of features in
Ψj: |f(x) ∩ Ψj| = |f(y) ∩ Ψj|. This means that x is Ψi-dominant over y,
while for all Ψj �F Ψi, they are Ψj-indifferent, which is the definition of x
being dominant over y.

Now having proved that x �e y implies x dominant over y, we tackle the
other direction. Suppose x dominant over y, if x ≺e y we have seen that
would imply y dominant over x which contradicts our assumption, therefore
x �e y, but note that if x ∼e y, then proceeding as above we obtain |f(x) ∩
Ψi| = |f(y)∩Ψi|∀Ψi, which would mean that neither x dominates y nor vice
versa, contradicting our initial assumption. Therefore the only possibility is
that x �e y, proving the lemma.

Having seen that �e embodies element dominance, we can build upon
this result to prove the theorem stating that � embodies dominance.

Proof (Theorem 7). First, suppose S � S ′, then since ale(le(�F )) =� we
know that η(S) >L η(S ′), that is ∃Ξi ∈ X/∼e, such that |S ∩ Ξi| > |S ′ ∩ Ξi|
and ∀Ξj ∈ X/∼e,Ξj �e Ξi, |S ∩ Ξj| = |S ′ ∩ Ξj|, note though that these
equivalence classes are ordered with �e which we have seen in the lemma
that embodies element dominance, therefore for Ξ �e Ξ′, all elements of Ξ
are dominant over all elements of Ξ′, while the elements in the equivalence
class are indifferent between them. With this consideration and the previous
findings |S ∩ Ξi| > |S ′ ∩ Ξi| and ∀Ξj ∈ X/∼e,Ξj �e Ξi, |S ∩ Ξj| = |S ′ ∩ Ξj|
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means that S contains more elements in Ξi than S ′, while containing the
same number of elements for more preferred equivalence classes. Therefore,
considering S = {s1, . . . , s|S|}, S ′ = {s′1, . . . , s′|S′|} and the permutation σ

explained in Section 4.4 (and used in the definition of dominance), we have
that each sσ(1), . . . , sσ(r) is indifferent with its counterpart s′σ(1), . . . , s

′
σ(r) for

r =
∑

j<i |S ∩ Ξj| + |S ′ ∩ Ξi|, but sσ(r+1) dominates s′σ(r+1), because either

sσ(r+1) ∈ Ξi and s′σ(r+1) ∈ Ξl with l > i or r+1 > |S ′|, which is the definition
of S being dominant over S ′.

Now having proved that S � S ′ implies S dominant over S ′, we tackle the
other implication. Suppose S dominant over S ′, if S ≺ S ′ we have seen that
would imply S ′ dominant over S which contradicts our assumption, therefore
S � S ′, but note that if S ∼ S ′, then |S ∩ Ξ| = |S ′ ∩ Ξ|∀Ξ ∈ X/∼e and
therefore sσ(i) and s′σ(i) are in the same equivalence class ∀i, meaning that
sσ(i) and s′σ(i) are indifferent ∀i, which means that S and S ′ are indifferent
contradicting our assumption. Therefore the only possibility is that S � S ′,
which proves the theorem.

Corollary 3. Consider a dominant set selection problem with a set of ele-
ments X, a set of features F , a ranking �F over F , and a function f relating
elements to their features. Consider a set Spref ∈ P(X), φ(Spref ) = >, such
that ∀S ′ ∈ P(X) with S ′ � Spref and S ′ � Spref ⇒ φ(S ′) = ⊥. Then, Spref
is a solution to the dominant set selection problem.

Proof (Corollary 3). This result follows directly from Theorem 7.

With this result, note that to find the solution to the dominant set se-
lection problem, the only step left to do after building � is to check for
feasibility from the most preferred set in � to the least preferred set in �
until we find the most preferred one that is feasible.

Nonetheless, note that building the ranking dom(�F ) =� to solve the
dominant set selection problem turns out to be rather costly. It requires
to compute the η profile vector in Eq. 4.3 for every subset in P(X), with
cost O(2|X|), to subsequently order them following Eq. 4.4, which requires
O(2|X| · log(2|X|)) in the average case (O(22|X|) in the worst case). Therefore,
finding the solution has worse than exponential complexity on the number
of elements of X, hence hindering applicability.

With the intent of solving the DSSP through optimisation techniques,
we show an alternative way of comparing sets of P(X) avoiding the cost
of explicitly building �. In particular, we propose a function, the so-called
preference function p : P(X)→ N, which embodies the preferences in the �
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ranking while not needing to build it. Given a set S ∈ P(X), the larger its
value by the preference function, the more preferred it is in �. Importantly,
we prove that this function adheres to �, meaning that for all pairs of sets,
the ranking between each pair is maintained by the function’s output.

Let S ∈ P(X) be a set of elements. We define its profile vector as
η(S) = (cS1 , . . . , c

S
r ), where cSi = |S ∩ Ξi| and r = |X/∼e |. From that, we

compute the preference value of S as follows:

p(S) =
r∑
i=1

|S ∩ Ξi|(
r∑

j=i+1

p(Ξj) + 1), where p(Ξr) = |Ξr|. (4.5)

Recall that Ξr is the equivalence class containing the least preferred
elements of X. Notice that by applying equation 4.5, we can compute the
preference of each equivalence class Ξi: p(Ξi) = |Ξi|(

∑r
j=i+1 p(Ξj) + 1).

Hence, the preference of the classes in the quotient order Ξ1 �e · · · �e Ξr

can be recursively computed starting from Ξr. Note also that p(S) ≥ 0, and
p(S) ∈ N for any S.

The p preference function embodies the ranking � over sets in P(X), as
we now prove through the following theorem.

Theorem 8. Given two sets S, S ′ ∈ P(X), S � S ′ ⇔ p(S) ≥ p(S ′).

In order to prove the theorem, we firstly require some lemmas regarding
the properties of p.

Lemma 5. p(S) =
∑r

w=1 p(S ∩ Ξw)

Proof (Lemma 5). By applying equation 4.5 we obtain the preference of an
equivalence class Ξw as p(S ∩Ξw) =

∑r
i=1 |S ∩Ξw ∩Ξi|(

∑r
j=i+1 p(Ξj) + 1) =

|S∩Ξw|(
∑r

j=w+1 p(Ξj)+1), since all equivalence classes are disjoint, meaning
that |S ∩ Ξw ∩ Ξi| = |∅| = 0 when i 6= w and |S ∩ Ξw ∩ Ξi| = |S ∩ Ξw|, when
i = w. Now

∑r
w=1 p(S ∩Ξw) =

∑r
w=1

∑r
i=1 |S ∩Ξw ∩Ξi|(

∑r
j=i+1 p(Ξj) + 1)

=
∑r

w=1 |S ∩ Ξw|(
∑r

j=w+1 p(Ξj) + 1) = p(S).

Lemma 6. ∀w, p(Ξw) ≥ p(S ∩ Ξw)

Proof (Lemma 6). Since all equivalence classes are disjoint, from equation
4.5 we have that p(Ξw) = |Ξw|(

∑r
j=w+1 p(Ξj) + 1) and p(S ∩ Ξw) = |S ∩

Ξw|(
∑r

j=w+1 p(Ξj) + 1). Since |Ξw| ≥ |S ∩ Ξw|, then p(Ξw) ≥ p(S ∩ Ξw).

With these lemmas in mind, we now prove Theorem 8. In other words,
we prove that p embodies the � ranking.



106 CHAPTER 4. QUALITATIVE VANS

Proof (Theorem 8). We divide the proof into three steps. First we prove
two implications, and we subsequently show that these implications suffice to
prove the theorem.

S � S ′ ⇒ p(S) > p(S ′): Say that S � S ′. From Equation 4.4, we have that
S � S ′ ⇔ η(S) >L η(S ′). By using the definition of η in Equation 4.3 we
can write η(S) >L η(S ′) as (cS1 , . . . c

S
r ) >L (cS

′
1 , . . . c

S′
r ) (where cSi = |S ∩ Ξi|

and cS
′

i = |S ′ ∩ Ξi| ∀i). Now, by using the formalisation of the lexicographi-
cal order (see Definition 22), we have that (cS1 , . . . c

S
r ) >L (cS

′
1 , . . . c

S′
r ), which

implies that ∃k ∈ {1, . . . , r}, s.t. ∀t < k, cSt = cS
′

t and cSk > cS
′

k . In other
words, ∃k ∈ {1, . . . , r} s.t. |S∩Ξk| > |S ′∩Ξk| and ∀t < k, |S∩Ξt| = |S ′∩Ξt|
and therefore p(S ∩ Ξt) = p(S ′ ∩ Ξt).

Next we prove that p(S) > p(S ′). First, note that by considering Lemma
5, we have that p(S) =

∑k−1
i=1 p(S ∩ Ξi) +

∑r
i=k p(S ∩ Ξi) ≥

∑k−1
i=1 p(S ∩

Ξi) + p(S ∩ Ξk) and applying Lemma 5 and Lemma 6 we have that p(S ′) =∑k−1
i=1 p(S ′∩Ξi)+

∑r
i=k p(S ′∩Ξi) ≤

∑k−1
i=1 p(S ′∩Ξi)+p(S ′∩Ξk)+

∑r
i=k+1 p(Ξi).

Therefore, to prove that p(S) > p(S ′) it suffices to prove that
∑k−1

i=1 p(S ∩
Ξi) + p(S ∩ Ξk) >

∑k−1
i=1 p(S ′ ∩ Ξi) + p(S ′ ∩ Ξk) +

∑r
i=k+1 p(Ξi). This is

equivalent to show that p(S ∩ Ξk)− p(S ′ ∩ Ξk)−
∑r

i=k+1 p(Ξi) > 0.
Now, using Equation 4.5, p(S ∩ Ξk)− p(S ′ ∩ Ξk)−

∑r
i=k+1 p(Ξi) = |S ∩

Ξk|(
∑r

j=k+1 p(Ξj) + 1)−|S ′∩Ξk|(
∑r

j=k+1 p(Ξj) + 1)−
∑r

i=k+1 p(Ξi) = (|S ∩
Ξk| − |S ′ ∩ Ξk|)(

∑r
j=k+1 p(Ξj) + 1)−

∑r
i=k+1 p(Ξi).

As shown above, we know that |S ∩Ξk| > |S ′∩Ξk|. From that, and since
these sets’ cardinalities are natural numbers, we obtain the following lower
bound: |S∩Ξk|−|S ′∩Ξk| ≥ 1. Therefore, (|S∩Ξk|−|S ′∩Ξk|)(

∑r
j=k+1 p(Ξj)+

1)−
∑r

i=k+1 p(Ξi)) ≥
∑r

j=k+1 p(Ξj) + 1−
∑r

i=k+1 p(Ξi)) = 1 > 0.
Recall that we assumed that S � S ′. Since we have managed to prove

that S � S ′ implies that p(S∩Ξk)−p(S ′∩Ξk)−
∑r

i=k+1 p(Ξi) > 0, which in
turn implies that p(S) > p(S ′), then it is clear that S � S ′ ⇒ p(S) > p(S ′).

S � S ′ ⇐ p(S) > p(S ′): Suppose that p(S) > p(S ′). If S ≺ S ′, then we
have already shown above that p(S) < p(S ′), which contradicts our initial
assumption. If S ∼ S ′, then η(S) = η(S ′), which means that (cS1 , . . . , c

S
r ) =

(cS
′

1 , . . . , c
S′
r ), and therefore ∀i cSi = cS

′
i . This means that ∀i |S ∩ Ξi| =

|S ′ ∩ Ξi|, which implies that p(S) =
∑r

i=1 |S ∩ Ξi|(
∑r

j=i+1 p(Ξj) + 1) =∑r
i=1 |S ′ ∩ Ξi|(

∑r
j=i+1 p(Ξj) + 1) = p(S ′). The fact that p(S) = p(S ′) also

contradicts our initial assumption p(S) > p(S ′). Thus, we conclude that
p(S) > p(S ′) ⇒ S � S ′.
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S � S ′ ⇔ p(S) > p(S ′) suffices to prove the theorem: Note that we have proved
that S � S ′ ⇔ p(S) > p(S ′), then it trivially follows that S ≺ S ′ ⇔
p(S) < p(S ′). And these two cases imply that S ∼ S ′ ⇔ p(S) = p(S ′).
Finally, S � S ′ ⇔ p(S) > p(S ′) and S ∼ S ′ ⇔ p(S) = p(S ′) imply that
S � S ′ ⇔ p(S) ≥ p(S ′), which ends the proof of the theorem.

The preference function p together with the results in Theorems 7 and
8 are key to cast the dominant set selection problem as the optimisation
problem expressed by the following corollary.

Corollary 4. Consider a dominant set selection problem with a set of ele-
ments X, a set of features F , a ranking �F over F , and a function f relating
elements to their features. A feasible set Smax ∈ P(X) with maximum pref-
erence p (see Eq. 4.5):

Smax = arg max
S∈P(X), φ(S)=>

p(S) (4.6)

is a solution to the dominant set selection problem.

Proof (Corollary 4). This result follows directly from Theorems 7 and 8 and
Corollary 3.

Building the whole ranking or computing the preference of all possible
subsets is computationally costly. Nonetheless, in those cases in which the
feasibility function can be translated into linear or quadratic constraints
we can profit from the preference function p to encode the DSSP into a
binary integer program (BIP) and solve it with state of the art solvers.
Thus, hereafter we will assume that we can translate the feasibility func-
tion into a set of linear or quadratic constraints C. The first step to en-
code the dominant set selection problem is to build the objective func-
tion of the BIP. The challenge here is to compactly represent the sets of
P(X). Notice that for X = {x1, x2, x3}, the set S = {x1, x2} can be rep-
resented as {x1, x2,¬x3}, or as the binary vector (1, 1, 0). In general, any
S ∈ P(X) can be encoded as a vector (d1, . . . , d|X|), where di ∈ {0, 1} is
the decision variable for element xi ∈ X: if di = 1 means that xi is in
S, while di = 0 means xi is not in S. Using the (d1, . . . , d|X|) encoding
for sets and following equation 4.5, in general we can obtain the preference
of any set as

∑r
i=1(
∑

xw∈Ξi
dw)(

∑r
j=i+1 p(Ξj) + 1), making use of the fact

that |S ∩ Ξi| =
∑

xw∈Ξi
dw. Therefore, solving Problem 2 amounts to find-
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ing the assignment of variables (d1, . . . , d|X|) representing a feasible set with
maximum preference. For that, we propose to solve the following BIP:

max
r∑
i=1

(
∑
xw∈Ξi

dw)(
r∑

j=i+1

p(Ξj) + 1) (4.7)

We require that the selected set satisfies the constraints in C. Thus, we
consider these constraints in the encoding.

Observe that our BIP employs |X| binary decision variables (di ∈ {0, 1})
and avoids the expensive, explicit computation of the ranking. Instead, it
only requires to compute the preference of the equivalence classes Ξi (p(Ξi)).
Since our objective function is always linear, if the constraints in C are either
linear or quadratic, we can resort to off-the-shelf integer programming solvers
like CPLEX or Gurobi. If the constraints in C are linear we would have to
solve a typical BIP, whereas if they are quadratic we would have to solve
a Binary Integer Quadratically Constrained Program. Appendix C details
the algorithms to build the BIP and provides a link to an implementation.

In the next section we show the BIP that results when encoding the
value-aligned norm selection problem introduced in Section 4.2. There we
show an example of objective function together with a collection of linear
constraints.

4.9 Application: Value-aligned norm selec-

tion

Now we count on the tools to solve the dominant set selection problem.
Hereafter we will revisit the value-alignment problem described in Section
4.2 to exploit such tools for solving it, hence helping the decision maker.

Recall that in our value-alignment problem the decision maker is pre-
sented with a set of candidate norms N and a value system, which includes
moral values and their preferences. Each of the norms in N is linked to
some values, meaning that each norm promotes the values it is linked to.
The problem for the decision maker is to select the subset of norms in N
that better aligns with the values.

Prior to casting the problem faced by the decision maker as a particular
type of dominant set selection problem, we must formally characterise: (i)
the elements (norms); and (2) the features and preferences over features
(value system).
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First we start with the elements. For that, we base the definition of
norms and their relationships in a simplification of the normative domain
used in Chapter 3, which we call norm net. Hereafter we consider that norms
are meant to regulate a multi-agent system composed of a set of agents Ag,
with a finite set of actions A available to them.

Furthermore, we consider a propositional language L (with propositions
in P and the logical operator “and”); and a set of states St. Like [Morales
et al., 2015b; Morales et al., 2015a], we consider a state transition function
that changes the state of the world when agents perform actions.

Definition 24 (Norm). A norm is a pair 〈ϕ, θ(a)〉, where ϕ ⊆ P is a
precondition in the language L (a subset of predicates with the logical operator
“and”), a ∈ A is the regulated action, and θ ∈ {Obl, Per, Prh} is a deontic
operator.

Example 15. Say that a country has to decide the norms to apply to its
airport borders. The following norms are considered: n1 permits to cross the
border, n2 prohibits to scan the baggage, n3 obliges to show a passport, and
n4 obliges to scan the baggage. These norms can be represented formally as
follows: n1 as 〈∅,Per(cross)〉; n2 as 〈∅,Prh(scan-bag)〉; n3 as 〈∅,Obl(show-
passport)〉; and n4 as 〈∅,Obl(scan-bag)〉. Since we will use these norms in
following examples, for the sake of readability we will note them omitting
their precondition.

Given a set of norms N , relationships between norms may hold. Thus,
we identify norm exclusivity and generalisation as norm relations. Such
relationships are relations over norms, henceforth noted as Rx and Rg re-
spectively. Two norms n, n′ are mutually exclusive, noted as (n, n′) ∈ Rx,
when they cannot be enacted at once; and they have a direct generalisation
relation, noted as (n, n′) ∈ Rg, when n is more general than n′ and there is
no other nmid ∈ N , such that n is more general than nmid being nmid more
general than n′. We note A(n)/S(n) the ancestors/successors of n.

By putting together norms and their relations, we fully characterise the
normative dimension of our decision space.

Definition 25. A norm net is a structure 〈N,R〉, where N is a set of norms
and R = {Rx, Rg} is the set of exclusive, and generalisation relations.

Henceforth we shall refer to any subset Ω ⊆ N as a norm system. We are
interested in a particular type of norm systems: those that contain neither
conflicting nor redundant norms. Thus, we characterise norm systems that
avoid both conflicts and redundancy as sound norm systems.
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Definition 26. Given a norm net 〈N,R〉, a norm system Ω ⊆ N is sound
iff it is both conflict-free and non-redundant, that is a norm system Ω ⊆ N
is sound if for each ni, nj ∈ Ω, (ni, nj) /∈ Rx; nj /∈ A(ni); and ∀n ∈ N , such
that |S̄(n)| > 1, then S̄(n) * Ω, where S̄(n) are the direct successors of n
(S̄(n) = {n′ ∈ N, (n, n′) ∈ Rg}).

At this point, notice that sound norm systems represent feasible norm
systems. Therefore, when casting our value-alignment problem as a domi-
nant set selection problem, checking for feasibility would consist in checking
for soundness.

Example 16. Consider the norms in Example 15, note that we cannot
jointly allow to cross the border freely while obliging to show a passport,
therefore n1 and n3 are incompatible norms. On the other hand, we cannot
both oblige to scan a bag and prohibit it, making norms n2 and n4 incompat-
ible as well. Thus, the norm net for the norms in Example 15 is the one in
Figure 4.2

n4= Obl(scan-
bag)

n1=Per(cross)

x  x  x  x  Exclusivity Value promotion

vfm=“Free movement” vsaf=“Safety” 

n3= Obl(show-
passport)

n2=Prh(scan
-bag)

x  x  x  x  x

x  x  x  x  x

Figure 4.2: Example of candidate norms for border control along with their rela-
tions and their promotion of the free movement and safety values.

The features in this particular instance of a dominant set selection prob-
lem are values. Ethical reasoning typically involves a value system, that
contains a set of moral values, which are principles that the society deems
valuable. As noted in [Bench-Capon and Atkinson, 2009], within a value
system, some values are preferred to others, and such preferences over moral
values influence decision making. Therefore, the preferences over the moral
values of a value system, together with the values themselves, have been
identified as a core component for ethical reasoning in [Bench-Capon and
Atkinson, 2009; Luo et al., 2017; Serramia et al., 2018a]. Formally,
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Definition 27. A value system is a pair 〈V,�v〉, where V stands for a
non-empty set of values, and �v is a ranking over the moral values in V .

The definition of value system contains a ranking over moral values, and
hence this is the ranking over features.

As required by the dominant set selection problem, we define a function
linking the norms (elements) to their values (features). Thus:

Definition 28. Given a norm net 〈N,R〉 and a value system 〈V,�v〉, we
call value promotion function the function f : N → P(V ) that for each norm
returns the set of values the norm promotes f(n).

In norm selection, a norm that does not promote any value and a value
that is not promoted by any norm are irrelevant. Henceforth, we suppose
that all norms promote at least one value (∀n ∈ N, f(n) 6= ∅), and that all
values are promoted by at least one norm (∀v ∈ V , ∃n ∈ N , s.t. v ∈ f(n)).

Example 17. Following Example 16, we observe that n1 and n2 promote
free movement of people/goods (f(n1) = f(n2) = {vfm}), whereas the rest of
norms promote safety (f(n3) = f(n4) = {vsaf}), as depicted in Figure 4.2.

With the definitions of the various structures of norms and values we can
now define the problem faced by the decision maker that we want to solve.

Problem 3. Given a norm net 〈N,R〉, a value system 〈V,�v〉 and a value
promotion function f, we call value-aligned norm selection (VANS) problem,
the problem of finding the set of norms S ∈ P(N), such that S is a sound
norm system and any other norm system S ′, that dominates S is not sound.

The value-aligned norm selection problem is a particular instance of the
dominant set selection problem.

To solve the value-aligned norm selection problem, we proceed as detailed
in Section 4.8. First, we apply lex-cel to the value ranking (as we have done
in Example 13).

Once we obtain the ranking over N , we would just apply ale to obtain
the ranking over all possible norm systems (as done in Example 14).

With the ranking over all norm systems in P(N), it remains to check for
feasibility (in this case by checking for soundness).

Example 18. An example value-aligned norm selection problem would be
that where N are the norms in Example 15, with the relations R in Example
16 to assess feasibility and the value promotion function f defined in Example
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17, supposing the value system V = {vfm, vsaf}, with the value ranking (fea-
ture ranking) vfm �v vsaf . Note that this structure is completely equivalent
to the dominant set selection problem formulated in Example 12, therefore
in this case we already know the P(N) ranking as we have found it in Ex-
ample 14. Thus, the solution to this value-aligned norm selection problem is
{n1, n2} because it is the first sound (feasible) norm system in the ranking.
Note that all norm systems with 3 or 4 norms contain a pair of exclusive
norms and out of all the norm systems with 2 norms, {n1, n2} is the most
preferred one. In conclusion, we provided some norms to regulate an airport
and by preferring freedom of movement of people/goods over security we se-
lected the norms allowing to cross the border freely to both people and their
belongings.

Nonetheless, as explained previously, the exhaustive approach followed
above is computationally expensive. Instead, we can solve a VANS problem
as an optimisation problem by encoding it into a BIP, as explained in Section
4.8. Building the objective function for this encoding is straightforward from
Eq. 4.7. We must simply consider that there is one decision di variable for
each norm ni ∈ N . Moreover, we must add the following constraints to
ensure that the resulting solution is feasible (the resulting norm system is
sound):

- Mutually exclusive (incompatible) norms cannot be selected at once:

di + dj ≤ 1 for each (ni, nj) ∈ Rx (4.8)

- A norm cannot be simultaneously selected with any of its ancestors:

di + dk ≤ 1 for each nk ∈ A(ni) 1 ≤ i ≤ |N | (4.9)

- If a norm has more than one direct successor (we note S̄(n) = {n′ ∈
N, (n, n′) ∈ Rg}), these direct successors cannot be simultaneously
selected:

If |S̄(n)| > 1 then
∑

nj∈S̄(n)

dj < |S̄(n)| for each n ∈ N (4.10)

Algorithms to build the BIP for a VANS problem and a link to an im-
plementation can be found in appendix D.
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Example 19. Example 18, details a value-aligned norm selection problem
and how to build a norm system ranking for it. Next we provide the BIP
encoding for this example problem. First, we will build our objective function.
Since the element ranking is n1 ∼e n2 �e n3 ∼e n4 (see Example 13), the
quotient order is Ξ1 �e Ξ2, we first compute p(Ξ2) = |Ξ2| = 2, because
Ξ2 = {n3, n4} (we can also compute p(Ξ1) = |Ξ1| · (p(Ξ2) + 1) = 6, because
Ξ1 = {n1, n2}, though we do not need this number). Therefore, the objective
function (following Equation 4.7) which we want to maximise is 3d1 + 3d2 +
d3+d4. Since the norms of our running example have some relations between
them, as shown in Figure 4.2, we consider the following constraints regarding
exclusive norms: d1 + d3 ≤ 1, d2 + d4 ≤ 1. With this encoding the solution
to the BIP is {n1, n2} (the same we found in Example 18 using �).

Different value rankings may vary the selection of the value-aligned norm
system. In previous examples we solved the problem of norm selection in
an airport depicted in Figure 4.2 by considering the value ranking (feature
ranking) vfm �v vsaf . Subsequent Examples 20 and 21 explore how the
solution changes for alternative value rankings (vfm �v vsaf and vfm ∼v
vsaf ).

Example 20. Supposing vfm �v vsaf , when grounding these preferences
with lex-cel we obtain the norm ranking n3 ∼e n4 �e n1 ∼e n2. Then, lift-
ing this ranking with anti-lex-cel we obtain: {n1, n2, n3, n4} � {n1, n3, n4} ∼
{n2, n3, n4} � {n3, n4} � {n1, n2, n3} ∼ {n1, n2, n4} � {n1, n3} ∼ {n1, n4} ∼
{n2, n3} ∼ {n2, n4} � {n3} ∼ {n4} � {n1, n2} � {n1} ∼ {n2}. In this case
the solution is {n3, n4}, as it is the first sound (feasible) norm system in the
ranking (on one hand, all norm systems containing 4 or 3 norms include a
pair of exclusive norms and, on the other hand, out of all the norm systems
with 2 norms it is the most preferred one).

Example 21. If vfm ∼v vsaf , when grounding these preferences with lex-cel
we obtain the norm ranking n1 ∼e n2 ∼e n3 ∼e n4. And lifting this ranking
with anti-lex-cel we obtain: {n1, n2, n3, n4} � {n1, n2, n3} ∼ {n1, n2, n4} ∼
{n1, n3, n4} ∼ {n2, n3, n4} � {n1, n2} ∼ {n1, n3} ∼ {n1, n4} ∼ {n2, n3} ∼
{n2, n4} ∼ {n3, n4} � {n1} ∼ {n2} ∼ {n3} ∼ {n4}. In this case there
are multiple solutions, namely: {n1, n2}, {n1, n4}, {n2, n3}, and {n3, n4}, as
these are the most preferred sound (feasible) norm systems in the ranking (all
norm systems containing 4 or 3 norms include a pair of exclusive norms,
and the rest of norm systems with 2 norms are not sound). Notice that,
when considering the values indifferently preferred, the possible solutions
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contain both permissive and restrictive norms for travellers. This was not
the case in previous examples, as most permissive norms where selected when
preferring freedom of movement over security and most restrictive norms
when preferring security over freedom of movement.

4.10 Conclusions and limitations

This chapter describes tools to help decision makers select the most pre-
ferred set from a range of available options. We refer to this problem as
the dominant set selection problem (DSSP). We solve it by considering both
qualitative preference information over the features characterising the op-
tions and feasibility constraints.

Specifically, we propose to: first, ground the feature preferences to pref-
erences over single objects; second, lift the object ranking into a ranking of
all possible sets of options; and third, select the most preferred and feasible
set of options. This requires the combination of existing results in the social
choice literature, lex-cel [Bernardi et al., 2019], with our novel anti-lex-cel.
To the best of our knowledge, the composition of ranking functions to obtain
another ranking function (in our case we have composed le and ale to obtain
dom) has not been previously explored and may pose an easier approach in
those cases in which defining a ranking function directly is no easy task.

Moreover, we show how to encode the dominant set selection problem
as a binary integer program (BIP) so that it can be solved with the aid
of off-the-shelf solvers. We formally prove that solving the optimisation
problem defined by the BIP encoding of the DSSP, we obtain a solution to
the DSSP. Note that, for our set ranking we have found an encoding that
allows to find the most preferred feasible set in the ranking while avoiding
the computational cost of building it. We deem this strategy as promising
when dealing with similar qualitative problems.

Thus, the overall contributions of this chapter are two-fold. Firstly, the
formalisation of a novel qualitative decision-making problem: the dominant
set selection problem. Secondly, the resolution of this problem, which re-
quires the combination of methods from the literature as well as our novel
anti-lex-cel method. Regarding anti-lex-cel, we also characterise it axiomat-
ically, prove its uniqueness and show that it generalises former results in the
literature. Furthermore, we use binary integer programming to encode (and
solve) the problem. Finally, we illustrate our overall approach by means of
the so-called value-alignment norm-selection problem.
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This mostly amounts to the four contributions C8 - C11 from Section
1.3, which in turn answer the corresponding research questions in Section
1.2:

• Question Q8: How can we represent qualitatively the relations between
norms and values? Through binary relations representing promotion
or no promotion (contribution C8).

• Question Q9: How do we solve the value-aligned norm selection prob-
lem qualitatively? We obtain a ranking over norm systems by com-
posing lex-cel and anti-lex-cel to then select the most preferred sound
norm system in the ranking (C9).

• Question Q10: Are qualitative approaches computationally feasible?
Yes, we provide a BIP encoding which allows to solve the problem
avoiding the computational cost of building the norm system ranking
(C10).

• Question Q11: How can we generalise the qualitative approach to
value-aligned norm selection to use it in other multi-criteria decision
making problems? This chapter has introduced and solved the domi-
nant set selection problem, a general family of problems of which the
VANS problem is a particular instance (C11).

However, the work in this chapter counts on some limitations that are
worth discussing. First, the qualitative approach described in this chapter
does not allow to express different degrees of relation between an element
and features (or in general, criteria). Besides that, although we can express
positive relationships between elements and criteria, we cannot express neg-
ative relationships. Thus, in terms of value-aligned norm selection, in this
chapter we have assumed that norms relate to moral values through a binary
promotion or no promotion relation. In general though, norms may promote
or demote moral values in different degrees (as it is the case in the quan-
titative approach described in Chapter 3). Nonetheless, since lex-cel is not
able to handle more expressive element-criterion relations, it is necessary to
introduce a new grounding function that can consider them. We tackle all
these limitations in the following Chapter 5.
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Chapter 5

Graded qualitative
value-aligned norm selection

5.1 Introduction

In terms of expressiveness, the qualitative approach of Chapter 4 has two
important shortcomings: i) it cannot express that the relations between el-
ements and criteria might have different degrees; and, ii) it cannot express
negative relations between elements and criteria. Note that here the decision
maker considers criteria, which are more general than the notion of feature
employed in Chapter 4. Thus, in this chapter we overcome such shortcom-
ings by providing the means to express both positive and negative relations
with grades. Furthermore, we provide the means for decision makers to make
qualitative decisions about multiple options while considering such graded
relations between elements and criteria together with preferences over deci-
sion criteria. This major contribution is founded on the development of a
novel ranking function that, unlike lex-cel, can handle graded relations be-
tween elements and criteria to ground the ranking over criteria to a ranking
over elements.

As explained in Chapter 2, the social choice literature has studied several
ranking functions, such as transforming a ranking over elements to a ranking
over sets of elements (see [Barberà et al., 2004; Arlegi, 2003; Pattanaik and
Peleg, 1984]) or transforming a ranking over sets of elements to a ranking
over the elements themselves (see [Haret et al., 2018; Khani et al., 2019;
Bernardi et al., 2019; Allouche et al., 2020]). In Chapter 4, we employed
the lex-cel social ranking [Bernardi et al., 2019] to ground a ranking over
criteria to a ranking over elements while considering binary relations between

117
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elements and criteria. Unfortunately, none of the available ranking functions
in the literature can handle graded relations between elements and criteria.
Thus, this calls for the formalisation of a novel ranking function that is
able to handle them as we do in this chapter. In particular, we introduce
the so-called multi-criteria based ranking (MC ranking), a method to rank
individual elements based on: i) how they relate to a collection of criteria;
and ii) the preferences over these criteria. We introduce a particular MC
ranking which we call MC lex-cel. This ranking mimics lex-cel, but it is able
to handle graded relations between elements and criteria. Furthermore, it
satisfies the dominance property.

Importantly, and as mentioned above, thanks to MC lex-cel we can tackle
the solving of DSSPs with graded relations between elements and criteria
following the general scheme proposed in Chapter 4 (which is graphically
represented in Figure 4.1). In particular, we can transform the ranking over
criteria to a ranking over sets of elements by composing an MC ranking (e.g.
MC lex-cel) and a lifting function (e.g. anti-lex-cel). In the case of a VANS
problem, whose norms and values have graded relations, we can obtain a
ranking over all norm systems through the composition of MC lex-cel and
anti-lex-cel.

The contributions of this chapter are:

• A formal definition of a new type of rankings: multi-criteria based
rankings (MC rankings).

• A formal definition of dominance for MC rankings. This definition re-
quires a non-straightforward adaptation from the desirable dominance
property in social choice.

• A definition and study of the so-called multi-criteria lex-cel, a function
to create MC rankings embodying dominance.

• A formal analysis showing the generality of our contributions with
respect to recent results in the literature. Interestingly, MC rankings
generalise social rankings [Moretti and Öztürk, 2017], while multi-
criteria lex-cel generalises the lex-cel ranking function introduced in
[Bernardi et al., 2019].

• A case study posing an ethical decision making problem that illustrates
the use of MC rankings.
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This chapter is organised as follows. We first introduce necessary background
on order theory in Section 5.2, Section 5.3 formalises labels and label sys-
tems. Section 5.4 formalises MC rankings as well as the dominance property,
and Section 5.5 introduces MC lex-cel. Section 5.6 studies the relation of our
MC rankings and MC lex-cel with the social choice literature. Section 5.7
analyses a case study in ethical decision making, and Section 5.8 discusses
the conclusions of this chapter. Recall that, for the ease of readability, we
have included a List of Notation and Symbols.

5.2 Background: Recap of some concepts from

Chapter 4

This section recaps some concepts from Chapter 4 needed for the work in this
chapter. Note that the notation here may be different from that of Chapter
4, hence the reader might find useful the List of Notation and Symbols.

Let X be a set of objects. A binary relation � on X is said to be: reflex-
ive, if for each x ∈ X, x � x; transitive, if for each x, y, z ∈ X, (x � y and
y � z) ⇒ x � z; total, if for each x, y ∈ X, x � y or y � x; antisymmetric,
if for each x, y ∈ X, x � y and y � x ⇒ x = y. We can define preferences
among the elements of X by means of binary relations. Moreover, we can
categorise the type of preferences depending on the properties they hold as
follows.

Definition 29 (Preorder, ranking, linear order and partial order). A pre-
order (or quasi-ordering) is a binary relation � that is reflexive and transi-
tive. A preorder that is also total is called total preorder or ranking. A total
preorder that is also antisymmetric is called a linear order. A preorder that
is antisymmetric but not total is called a partial order.

We build a lexicographical order for two tuples by comparing them
element-wise from left to right. While the elements in both tuples are the
same, we move to the next position on the tuples. We traverse the tuples
until two elements differ (one is more preferred than the other). The more
preferred tuple is the one with the more preferred element. If all elements
are the same, the tuples are deemed equal. Formally:

Definition 30. Given two tuples t, t′, with t = (t1, . . . tq) and t′ = (t′1, . . . t
′
q),

we define the lexicographical order of tuples ≥lex as: t ≥lex t′ ⇔ if either
t = t′ or ∃i ∈ {1, . . . q} s.t. ti > t′i and ∀j < i, tj = t′j (note that t =lex t

′ ⇔
t = t′).
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The lexicographical order for tuples is used in the definition of the lex-
cel ranking [Bernardi et al., 2019]. Let X be a set of elements, and �S a
ranking over the power set P(X), then lex-cel builds an element ranking �e
by means of assigning a tuple to each element (noted θ(x)). To build this
tuple, consider the quotient set P(X)/∼S with quotient order Σ1 �S Σ2 �S
· · · �S Σq. Then, θ(x) is defined as:

θ(x) = (x1, . . . , xq) where xi = |S ∈ Σi : x ∈ S| (5.1)

Lex-cel ranks elements in X by comparing lexicographically their corre-
sponding θ tuples: x �e y ⇔ θ(x) ≥lex θ(y).

5.3 Relating elements to criteria

As explained in the introduction, in this chapter we consider that elements
relate to criteria with different degrees. Not only that, but these relations
can be positive (when an element aligns with a criterion), neutral, or negative
(when an element is detrimental to a criterion). To specify these relations,
with different degrees, we will use labels. Next, we introduce the notions of:
label system (the object that defines labels for relating elements and criteria
and their semantics), and labelling (a function to relate elements to criteria
through labels).

A label system contains a set of labels and an order over them to establish
their grading. Its labels must contain a neutral label between positive and
negative labels. Positive labels are those more preferred than the neutral
label, whereas negative labels are those less preferred than the neutral label.
In terms of label grading, the more preferred a positive label, the higher the
alignment degree between an element and a criterion it is meant to represent.
Conversely, the less preferred a negative label, the higher the detrimental
degree.

Definition 31 (Label system). A label system is a pair 〈L,>L〉, where L is
a set of labels, >L is a linear order over L. A label system includes a neutral
label1 l0 ∈ L. Labels more preferred than l0 are positive labels, whereas those
less preferred than l0 are negative labels.

Note that a label system does not need to have a negative label for
each positive label. In fact, it might only have positive labels. However,

1l0 is unique because >L is a linear order. Thus, if there were two neutral labels, one
would be necessarily preferred over the other.
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a label system with more labels of one type than of another one hinders
comparing labels. For example, given l2 >L l1 >L l0 >L l−1 , it is unclear
whether the positive counterpart of l−1 is l2 because both labels are the
most extreme ones, or if it is l1, because they are equally separated from
l0. To avoid these uncertainties, we focus on a particular type of label
systems: the so-called symmetric label systems, for which each positive label
has a negative counterpart. To ease their definition, we first introduce two
auxiliary functions, namely the sign and strength of a label, which also
provide a useful notation for the forthcoming sections.

Given a label system, the sign function signals if a label is positive (1),
negative (-1), or the neutral label (0).

sgn(l) =


1 if l >L l0

0 if l = l0

−1 if l0 >L l

(5.2)

The strength function characterises the label’s degree of preference in the
label system order. In particular, we consider that, given a label l, the more
labels between l and l0 in the label order, the larger its strength. Formally:

stg(l) =


|{l′ ∈ L, l ≥L l′ >L l0}| if l >L l0

0 if l = l0

|{l′ ∈ L, l0 >L l
′ ≥L l}| if l0 >L l

(5.3)

Definition 32 (Symmetric label system). A label system 〈L,>L〉 is sym-
metric if ∀l ∈ L, ∃l′ ∈ L, such that sgn(l) = −sgn(l′) and stg(l) = stg(l′).

Symmetric label systems have the same amount of positive and negative
labels. Note that, without loss of generality, any label system can be trans-
formed into a symmetric label system by simply adding “dummy” labels.
Hereafter, we only consider symmetric label systems. Also, we can uniquely
note each label in the label system as lsgn(l)·stg(l) (for example, we note l−2

the label of sign -1 and strength 2).

Example 22. An example symmetric label system is L = {l2, l1, l0, l−1, l−2}
with order l2 >L l1 >L l0 >L l−1 >L l−2. Note for example, that l−2 is the
label of sign sgn(l−2) = −1 and strength str(l−2) = 2.

Using a label system, a decision maker can relate an element with a
criterion by means of a labelling function.
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Definition 33. Given a set of elements X, a set of criteria C, and a label
system 〈L,>L〉, a labelling is a function λ : X ×C → L that assigns a label
in L to each pair of element in X and criterion in C, hence establishing the
relation between the element and the criterion. We note as L(X,C) the set
of all possible labellings over X and C.

If λ(x, c) = l, we say that element x is related to criterion c with degree
l. From equation 5.3, we also say that the strength of the relation is stg(l).

Example 23. Consider the set of elements X = {x1, . . . , x5} and a set of
criteria C = {c1, . . . , c4} and the label system of Example 22. An example
labelling would be:

λ x1 x2 x3 x4 x5
c1 l−2 l1 l1 l0 l0
c2 l2 l1 l0 l0 l0
c3 l0 l−1 l0 l−1 l2
c4 l0 l−1 l0 l−2 l0

5.4 Multi-criteria based rankings

As mentioned previously, we assume that the decision maker establishes a set
of criteria and knows the preferences over them. We have learnt in Section
5.3 how to relate elements with criteria. Our goal is to build a ranking
over the single elements in X from: (i) the relationships between elements
and criteria; and (ii) the preferences over criteria. We will call such ranking
a multi-criteria based ranking (MC ranking). In this section, we formally
define it, as well as the fundamental notion of dominance for MC rankings.

An MC ranking considers a set of elements X, a set of criteria C, a
ranking �C over the criteria, and a labelling λ relating elements to criteria,
and provides a ranking � over the single elements in X. Formally:

Definition 34. Given a set of elements X, a set of criteria C and a set of
labellings L(X,C), an MC ranking is a function mcr : L(X,C) ×R(C) →
R(X) that associates to any labelling λ ∈ L(X,C) relating elements with cri-
teria and any ranking �C∈ R(C) over criteria, another ranking mcr(λ,�C
) ∈ R(X) over the elements of X.

MC rankings call for the introduction of a novel notion of dominance be-
tween elements in X, as it is common in the literature (e.g. [Barberà et al.,
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2004] [Moretti and Öztürk, 2017]). Such notion of dominance must ensure
that the ranking on elements is strictly based on the ranking over criteria.
However, defining dominance for MC rankings is intricate due to the richness
of our labelling approach. Informally, our notion of dominance must require
that an MC ranking function ranks the elements in X taking into account:
the element-criterion relations, their associated labels, and the criteria pref-
erences. Thus, the more preferred a criterion with which an element relates
positively, the more preferred the element. Conversely, the more preferred
the criterion with which an element relates negatively, the less preferred
the element. The higher the degree of the labels on these positive/negative
relations the more/less preferred the element. Furthermore, the larger the
number of positive relations and the lower the number of negative relations
for an element, the more preferred the element in the ranking.

Our notion of dominance between two elements is founded on the domi-
nance within each equivalence class of criteria resulting from the ranking �C
over criteria. Thus, consider the quotient set of criteria C/∼C with equiv-
alence classes κ1, . . . , κr, and quotient order �C . Notice that the criteria
within each equivalence class κ ∈ C/∼C are equally preferred. Given an
equivalence class κ, our first aim is to establish whether an element x ∈ X is
κ-dominant (dominant within the scope of equivalence class κ) over another
element y ∈ X. An element will be κ-dominant over another if it relates
more strongly (and positively) with the criteria in κ than another one.

To define κ-dominance, we resort to an auxiliary function, the so-called
net alignment function. Given an element x and a strength s, the net align-
ment function aggregates the positive and negative relations of x with the
criteria in κ with strength s. Thus, the larger the net alignment, the more
positive relations of strength s relating x and κ, the lower the net alignment
the more negative relations of strength s relating x and κ. Formally, the
net alignment function (noted na) is defined as the difference between the
number of criteria positively and negatively related with x with strength s:

Definition 35. Consider a criteria equivalence class κ ∈ C/∼C and a
relation strength s 6= 0. We define the net alignment of strength s of element
x with class κ as:

na(x, κ, s) = |{c ∈ κ : λ(x, c) = ls}| − |{c ∈ κ : λ(x, c) = l−s}| (5.4)

Let smax = maxl∈L stg(l) be the maximum strength of the labels in the
label system. Then, κ-dominance is defined as:
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Definition 36. Given two elements x, y ∈ X, a set of criteria C, a rank-
ing over these criteria �C, a symmetric label system 〈L,>L〉 and a crite-
ria equivalence class κ ∈ C/∼C, we say that x is κ-dominant over y if
∃s ∈ {1, . . . , smax}, s.t. na(x, κ, s) > na(y, κ, s) and ∀s′ > s, we have
na(x, κ, s′) = na(y, κ, s′). If ∀s ∈ {1, . . . , smax}, na(x, κ, s) = na(y, κ, s), we
say x and y are κ-indifferent.

Example 24. Following Example 23, consider the criteria preferences c1 �C
c2 ∼C c3 ∼C c4. The quotient set is C/∼C= {κ1, κ2}, with κ1 = {c1} and
κ2 = {c2, c3, c4}, and quotient order κ1 �C κ2. Note that na(x1, κ1, 2) = −1,
while for the rest of elements in X, their net alignment of strength 2 with
κ1 is 0, which is greater than −1. Thus, we say that x2, x3, x4, and x5 are
κ1-dominant over x1.

Using the concept of κ-dominance, we define dominance considering all
equivalence classes in C/∼C (and their quotient order �C). We say that x
is dominant over y if for a given criteria equivalence class x is κ-dominant
over y, while for more preferred equivalence classes they are κ-indifferent.

Definition 37. Given two elements x, y ∈ X with criteria in C and a
ranking over criteria �C, we say that x is dominant over y if there is a
criteria equivalence class κ ∈ C/∼C, such that: (i) x is κ-dominant over
y; and (ii) ∀κ′ ∈ C/∼C, such that κ′ �C κ, x and y are κ′-indifferent. If
neither element dominates the other (they are κ-indifferent ∀κ ∈ C/∼C), we
say that they are indifferent.

Example 25. From κ-dominance in Example 23, we conclude that, x2, x3, x4

and x5 are dominant over x1,because they are κ1-dominant and κ1 is the most
preferred class.

5.5 Multi-criteria lex-cel

Next, we introduce multi-criteria lex-cel (MC lex-cel), an MC ranking func-
tion. For each element in X, MC lex-cel builds a tuple, the so-called multi-
criteria profile (MC profile), which summarises the relations between the
element and the criteria. Then, MC lex-cel ranks the elements in X by
comparing their MC profiles lexicographically. In Section 5.5.1, we describe
how to build MC profiles. Section 5.5.2 defines MC lex-cel and proves that
it embodies the dominance property in Definition 37.
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5.5.1 Building MC profiles for elements

We will build the MC profile of an element x ∈ X as a tuple µ(x) that
is meant to summarise the relations of that particular element with all the
criteria at hand.

Overall, we build an MC profile for an element through a nested process:
(1) we start considering criteria preferences, from more preferred to less
preferred; (2) thereafter, we delve into each equivalence class to consider the
strengths of relations, from stronger to weaker.

Formally, we build an MC profile by considering the quotient set C/∼C ,
where κ1, . . . , κq ∈ C/∼C are criteria equivalence classes with quotient order
κ1 �C · · · �C κq. Each κi contains the i-th most preferred criteria.

We compose the MC profile µ(x) of an element x, from its equivalence
class profiles µ(x, κ1), . . . , µ(x, κq). An equivalence class profile µ(x, κi) sum-
marises the relations between x and the equivalence class κi. We want to
ensure that criteria preferences are satisfied according to �C . Thus, we com-
pose the MC profile µ(x) by considering that the relationships with more
preferred criteria are positioned further on the left2 of µ(x) as follows:

µ(x) = (µ(x, κ1), . . . , µ(x, κq)) (5.5)

Within an equivalence class κ, all criteria are indifferently preferred.
Thus, what distinguishes the relations between x and κ here is their strength
and sign. Recall that for each strength s, the net alignment function na
aggregates the number of positive relations of strength s with the number of
negative relations of strength s. Hence, we build the equivalence class profile
of x for class κ out of the net alignments between x and κ for all non-zero3

strengths, namely from na(x, κ, 1), . . . , na(x, κ, smax). Since we prefer strong
relations over weak ones, the net alignments representing greater strengths,
are positioned further to the left2. Therefore, the equivalence class profile is
a tuple containing the net alignments of x and κ arranged from left to right
in descending order of strength:

µ(x, κ) = (na(x, κ, smax), . . . , na(x, κ, 1)), (5.6)

2Recall that the MC lex-cel function in Section 5.5.2 applies a lexicographical order
over µ(x), and thus left indicates greater preference.

3A strength zero relation (labelled l0) represents that the element is neutral to the
criterion. In other words, the element does not affect the criterion (the element neither
aligns with nor is detrimental to the criterion). Hence, we should not take into account
these relations in the MC profile.
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where, as for Definition 36, smax = maxl∈L stg(l) is the maximum strength
of the label system. For the sake of understanding, next we illustrate how
to build the MC profiles for the elements of our running example.

Example 26. Following our running example, note that the criteria pref-
erences c1 �C c2 ∼C c3 ∼C c4 imply that C/∼C= {κ1, κ2}, with κ1 = {c1},
κ2 = {c2, c3, c4}, and κ1 �C κ2. Thus, ∀x ∈ X, µ(x) = (µ(x, κ1), µ(x, κ2)).
Now, the label system that we have considered contains labels of strength 2,
1 (and 0). Hence, since the maximum strength is 2, µ(x, κ) = (na(x, κ, 2),
na(x, κ, 1)) for each element x. In particular, regarding x1, we have that
na(x1, κ1, 2) = −1, because there is one label l−2 relating x1 to κ1, whereas
na(x1, κ1, 1) = 0, because there are no labels of strength 1 relating x1 to
κ1. By applying equation 5.6 above, we have that µ(x1, κ1) = (−1, 0). On
the other hand, we have that na(x1, κ2, 2) = 1, because there is one label
l2 relating x1 to κ2, while na(x1, κ2, 1) = 0, because there are no labels of
strength 1 relating x1 to κ2. Again, by means of equation 5.6, we have that
µ(x1, κ2) = (1, 0). With these two equivalence class profiles, we can now
apply equation 5.5 to build the MC profile of x1 as µ(x1) = ((−1, 0), (1, 0)).
By following an analogous procedure, we obtain the MC profiles for the rest
of elements of X:
µ(x2) = ((0, 1), (0,−1)) µ(x3) = ((0, 1), (0, 0))
µ(x4) = ((0, 0), (−1,−1)) µ(x5) = ((0, 0), (1, 0))

5.5.2 The multi-criteria lex-cel ranking function

Since the MC profile of an element x ∈ X encodes its alignment with the
criteria in C, we propose to compare elements in X by comparing their MC
profiles by means of the lexicographical order. This is precisely what our
multi-criteria lex-cel function captures as follows:

x � y ⇔ µ(x) ≥lex µ(y).

Definition 38. Given a set of elements X, a set of criteria C and a set of
labellings L(X,C), the multi-criteria lex-cel (MC lex-cel) function mclex :
L(X,C) ×R(C) → R(X) associates to any labelling λ ∈ L(X,C) and any
ranking �C∈ R(C), another ranking �= mclex(λ,�C) ∈ R(X) such that
for any two elements x, y ∈ X:

x � y ⇔ µ(x) ≥lex µ(y), (5.7)

where >lex the lexicographical order in Definition 30.
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Notice that µ(x) >lex µ(y)⇔ ∃κ ∈ C/∼C , such that ∀κ′ �c κ µ(x, κ′) =
µ(y, κ′) and µ(x, κ) >lex µ(y, κ).

Example 27. After applying MC lex-cel to the MC profiles obtained in
Example 26, we obtain the following element ranking: x3 � x2 � x5 � x4 �
x1.

Our purpose now is to prove that MC lex-cel embodies dominance accord-
ing to Definition 37. Before that, we need an intermediary result showing
that the lexicographical ordering of criteria profile captures κ-dominance
within criteria equivalence classes.

Lemma 7. Consider two elements x, y ∈ X, and a criteria equivalence class
κ ∈ C/∼C, then µ(x, κ) >lex µ(y, κ)⇔ x κ-dominant over y. Otherwise, we
have that µ(x, κ) = µ(y, κ)⇔ x and y are κ-indifferent.

Proof (Lemma 7). Suppose that µ(x, κ) >lex µ(y, κ). Since µ(x, κ) =
(na(x, κ, smax), . . . , na(x, κ, 1)) and µ(y, κ) = (na(y, κ, smax), . . . , na(y, κ, 1)),
being µ(x, κ) lexicographically greater than µ(y, κ) means that ∃s ∈ {1, . . . , smax},
such that na(x, κ, s) > na(y, κ, s), and ∀s′ > s, na(x, κ, s′) = na(y, κ, s′).
Notice that this is precisely the definition of x κ-dominant over y (Defini-
tion 36). Now, if µ(x, κ) = µ(y, κ), then ∀s ∈ {1, . . . , smax}, na(x, κ, s) =
na(y, κ, s), which is the definition of x and y being κ-indifferent. Con-
sider now the other direction of the implication, and then suppose that
x is κ-dominant over y. In this case, neither µ(y, κ) >lex µ(x, κ) nor
µ(x, κ) = µ(y, κ) can be true because, by the already proved implication,
it would contradict our assumption. Therefore, the only possibility is that
µ(x, κ) >lex µ(y, κ). The same reasoning applies if we suppose y is κ-
dominant over x, or x and y are κ-indifferent.

With the help of Lemma 7, we are ready to prove that multi-criteria
lex-cel embodies dominance.

Theorem 9. MC lex-cel embodies dominance, that is, if mclex(�C) =�,
then for x, y ∈ X, we have that x � y ⇔ x is dominant over y.

Proof (Theorem 9). Suppose that x � y. Since � has been obtained through
MC lex-cel, we know that µ(x) >lex µ(y). This means that ∃κ ∈ C/∼C, such
that µ(x, κ) >lex µ(y, κ) and ∀κ′ �C κ, µ(x, κ′) = µ(y, κ′). Thanks to
Lemma 7, we have seen that this means that x is κ-dominant over y and
∀κ′ �C κ, x and y are κ′-indifferent, which is the definition of dominance
of x over y. Similarly, if µ(x) = µ(y), then ∀κ, µ(x, κ) = µ(y, κ), and thus
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x and y are κ-indifferent, meaning that they are indifferent. As to the other
direction of the proof, say that x is dominant over y. If µ(x) <lex µ(y), it
would imply that y is dominant over x, which contradicts our assumption.
Similarly, if µ(x) = µ(y), x and y should be indifferent, again contradicting
our assumption. Therefore, the only possibility is that µ(x) >lex µ(y). The
same reasoning applies if we suppose that y is dominant over x or x and y
are indifferent.

5.6 MC ranking and social ranking

In this section we explore the relation between our MC ranking and the social
ranking introduced in [Moretti and Öztürk, 2017]. We show that any social
ranking can be encoded as an MC ranking, but that is not true the other
way around. Therefore, the MC ranking is more general. Furthermore, we
also show that our MC lex-cel generalises the lex-cel social ranking solution
introduced in [Bernardi et al., 2019].

The social ranking [Moretti and Öztürk, 2017] considers a set of elements
X, and a ranking over coalitions of these elements, namely a ranking over
P(X). The purpose of a social ranking is to transform or ground this power
set ranking into a ranking over X. Formally:

Definition 39. A social ranking is a function sr : R(P(X)) → R(X),
which transforms a ranking over P(X) into a ranking over the elements of
X.

The goal of a social ranking and of an MC ranking is the same: to obtain
a ranking over X. Nonetheless, both rankings start from different points.
While a social ranking considers a ranking over the power set of X, an MC
ranking considers criteria, a ranking over criteria and a labelling relating
elements to criteria. Note though that it is possible to define a function
that transforms a social ranking into an MC ranking. Since the input of sr
is in R(P(X)) and the input of mcr is in R(C) × L(X,C) , we propose a
function t : R(P(X)) → R(C) × L(X,C) to transform a social ranking’s
input into an MC ranking’s input. Therefore, supposing X a set of elements
and �P a ranking over P(X), this transformation function is such that
t(�P ) = (λ,�C). We build function t as follows:

1. We transform the sets in P(X) into criteria: C = {cS,∀S ∈ P(X)}.

2. We obtain the ranking over criteria as a direct translation of the rank-
ing over sets: cS �C cS′ ⇔ S �P S ′.
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3. Finally, to define a labelling function, notice that a social ranking does
not consider gradings. However, we can consider one label to indicate
that an element aligns with criterion cS (the element appears in set
S), and another label to indicate that the element is neutral to this
criterion (the element does not appear in S). For that, we define labels
l1 and l0 respectively (along with the unused l−1 to make the label
system symmetric). Hence, we define the label system LS = 〈L,≥L〉,
with L = {l1, l0, l−1}, and order l1 ≥L l0 ≥L l−1. Then, we build a
labelling λ that specifies whether an element x is related to cS with
label l1 if x ∈ S, or with label l0 if x /∈ S:

λ(x, cS) =

{
l1, if x ∈ S
l0, if x /∈ S

(5.8)

The t function allows to transform any social ranking input into an MC
ranking input. In fact, in what follows we prove that MC rankings gener-
alise social rankings. Before that, we need an auxiliary result regarding the
properties of function t as shown by the following lemma.

Lemma 8. The t function is injective, but not exhaustive.

Proof (Lemma 8). Suppose that t is not injective. Thus, for a given power
set P(X), there are two different rankings �,�′∈ R(P(X)), such that t(�
) = t(�′). Since �,�′ are different rankings, ∃Y, Z ∈ P(X), such that
Z � Y , while Z �′ Y . Note though that in these cases when applying t, we
would have that cZ �C cY and cZ �′C cY , which contradicts the assumption
that t(�) = t(�′). Thus, t is injective. In terms of exhaustivity, t is not
exhaustive because labellings using labels other than l1 and l0 can never be
the image of a social ranking.

Thanks to lemma 8, we prove our first general result.

Theorem 10. MC rankings generalise social rankings. That is, given a set
of elements X, a power set P(X), a ranking over the power set �P , and
a social ranking sr : R(P(X)) → R(X), there exists an MC ranking mcr,
such that sr(�P ) = mcr(t(�P )), but the reverse does not hold in general.

Proof (Theorem 10). To prove the theorem we have to find a mcr function
such that sr(�P ) = mcr(t(�P )). Consider mcr = sr ◦ t−1. In this case, we
would have that mcr(t(�P )) = sr(t−1(t(�P ))) = sr(�P ). In the previous
lemma we have seen that t is injective but not exhaustive in general, meaning
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that in general it is not invertible. Note though that t is invertible when
restricted to the domain t(R(X)). In this case, since we start in this domain,
t−1 exists, meaning that mcr = sr ◦ t−1 is a valid function, which proves the
theorem.

This last theorem proves that all social rankings can be cast as an equiva-
lent MC ranking. Also, since t is not exhaustive there are many MC rankings
that cannot be cast as social rankings, meaning that the MC ranking is more
general. From this last result, an interesting question we have to address
is the relation between MC lex-cel and lex-cel (see Section 5.2). The next
theorem shows that MC lex-cel generalises lex-cel.

Theorem 11. MC lex-cel generalises lex-cel, that is, given a set X and a
ranking �P over P(X), mclex(t(�P )) = lex(�P ).

Proof (Theorem 11). Suppose that lex(�P ) =�e and mclex(t(�P )) =�′e.
We will see that given x, y ∈ X, x �e y ⇔ x �′e y. We start with x �e
y ⇒ x �′e y. First, suppose that x �e y (x �e y and x �e y). Then, from
the definition of lex-cel, we would have that θ(x) >lex θ(y). Now, suppose
that P(x)/∼P= {Σ1, . . .Σk} with quotient order Σ1 �P · · · �P Σk. Then,
θ(x) = (|S ∈ Σ1 : x ∈ S|, . . . , |S ∈ Σk : x ∈ S|) and θ(y) = (|S ∈ Σ1 :
y ∈ S|, . . . , |S ∈ Σk : y ∈ S|). Hence, θ(x) >lex θ(y) means that ∃ Σi

such that |S ∈ Σi : x ∈ S| > |S ∈ Σi : y ∈ S|, and ∀ Σj �P Σi ,
|S ∈ Σi : x ∈ S| = |S ∈ Σi : y ∈ S|. By applying t to �P , we obtain
that �C, such that any sets S, S ′ ∈ P(X) are transformed into criteria
cS, cS′ ∈ C, and �P is transformed into �C following S �P S ′ ⇔ cS �C cS′.
Hence, the image for t of each equivalence class Σi ∈ P(x)/∼P is a criterion
equivalence class κi ∈ C/∼C, and the quotient order then satisfies that
Σi �P Σj ⇔ κi �C κj. Recall that the labelling obtained by t is built
following λ(x, cS) = l1 ⇔ x ∈ S. Thus, |S ∈ Σi : x ∈ S| > |S ∈ Σi : y ∈ S|
implies that |c ∈ κi : λ(x, c) = l1| > |c ∈ κi : λ(y, c) = l1|. Similarly,
∀ Σj �P Σi , |S ∈ Σi : x ∈ S| = |S ∈ Σi : y ∈ S| implies that ∀κj �C κi,
|c ∈ κj : λ(x, c) = l1| = |c ∈ κj : λ(y, c) = l1|. Note that, in this case, since
the label system only contains l1, l0, and l−1, we have that smax = 1, and
hence ∀κ ∈ C/∼C, µ(x, κ) = (na(x, κ, 1)). Moreover, from the definition
of t, the labelling does not assign l−1. Therefore, we have that na(x, κ, 1) =
|c ∈ κ : λ(x, c) = l1|, and overall µ(x, κ) = (|c ∈ κ : λ(x, c) = l1|). Now,
we have that |c ∈ κi : λ(x, c) = l1| > |c ∈ κi : λ(y, c) = l1|, implying that
µ(x, κi) >lex µ(y, κi), and ∀κj �C κi, |c ∈ κj : λ(x, c) = l1| = |c ∈ κj :
λ(y, c) = l1|, which implies that µ(x, κj) = µ(y, κj). This is precisely the
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definition of µ(x) �lex µ(y), which means that x �′e y. Similarly, if x ∼e y,
θ(x) = θ(y). Therefore, ∀i, |S ∈ Σi : x ∈ S| = |S ∈ Σi : x ∈ S|. If we apply
t, this means that ∀i, |c ∈ κi : λ(x, c) = l1| = |c ∈ κi : λ(y, c) = l1|, and then
µ(x) = µ(y), hence following that x ∼′e y.

When it comes to the reverse implication, x �′e y ⇒ x �e y, suppose that
x �′e y. In this case, x �e y cannot happen because we have seen above that it
would imply that x �′e y, which is not true. Then, the only possibility is that
x �e y. We can follow the same reasoning to prove that x ≺′e y ⇒ x ≺e y
and x ∼′e y ⇒ x ∼e y.

5.7 Case study: value-aligned norm selection

The purpose of this section is to illustrate how MC-lexcel can be used to
perform value-aligned norm selection. Next, Section 5.7.1 introduces our
decision making problem. Thereafter, Section 5.7.2 discusses how to exploit
MC-lexcel to computationally solve the decision problem. Finally, in Sec-
tion 5.7.3 we discuss a case study in a healthcare context, concerned with
selecting norms related to hospital admission. Furthermore, we compare the
qualitative solving method detailed in Section 5.7.2 with previous methods.

5.7.1 The generalised value-aligned norm selection prob-
lem

Next we introduce our new formalisation of the value-aligned norm selection
problem considering graded promotion and demotion relationships between
norms and values, which we call generalised value-aligned norm selection
problem. Thus, we first introduce the formal objects required for the prob-
lem, namely: norms, value system, and relationships between norms and
values.

We define the core notion of our problem, the norm, as a simplifica-
tion of the one in [López y López et al., 2002]. We start by considering a
MAS (multi-agent system) with a set of agents Ag that can perform actions
in a finite set A. Furthermore, we consider a propositional language PL
(with propositions in P and the logical operator “and”), a set of states S,
and a state transition function that changes the state of the world when
agents perform actions (following the multi-agent system model introduced
in [Morales et al., 2015a; Morales et al., 2015b]). Then, a norm is composed
of a precondition ϕ ⊆ P (with an “and” semantic between propositions), an



132 CHAPTER 5. GRADED QUALITATIVE VANS

action in A, and a deontic operator θ to establish Obligations (Obl), Per-
missions (Per), and Prohibitions (Prh). With these definitions in place, we
define a norm as:

Definition 40 (Norm). A norm is a pair 〈ϕ, θ(a)〉, where ϕ is a precondition
in the language PL; a ∈ A is the regulated action, and θ ∈ {Obl, Per, Prh}
is a deontic operator.

Example 28. Within a healthcare context, we may have a norm permitting
hospital admission of incoming patients: 〈patient in, Per(admit)〉.

Let N be a set of candidate norms, norms in N might have relationships
between themselves [Serramia et al., 2018b]. We consider two types of such
norm relations, namely norm exclusivity and norm generalisation and note
them as Rx, and Rg respectively (we assume the decision maker has enough
domain knowledge to detect and provide these norm relations). On the one
hand, we say n, n′ are exclusive norms, noted as (n, n′) ∈ Rx, when we
cannot enact both of them at once. On the other hand, we say they have a
direct generalisation relation, noted (n, n′) ∈ Rg, meaning n is more general
than n′. With regards to generalisation relations, we note by S(n) and A(n),
the successors and ancestors of n respectively. Formally:

Definition 41. Given a norm n ∈ N , its ancestors are the norms that
(directly or indirectly) generalise it: A(n) = {n′ ∈ N : ∃n1, . . . , nk, and
(n′, n1), . . . , (nk, n) ∈ Rg}. Conversely, successors are the norms that are
(directly or indirectly) generalised by n: S(n) = {n′ ∈ N : ∃n1, . . . , nk, and
(n, n1), . . . , (nk, n

′) ∈ Rg}.

Norms and their relations form a structure called norm net.

Definition 42. Let N be a set of norms and R = {Rx, Rg} the set of norm
relations (exclusivity and generalisation), we call norm net the tuple 〈N,R〉.

Definition 43. We call norm system to any subset Ω ⊆ N .

Not all norm systems are of our interest, note that norm systems may
have conflicts (if they contain exclusive norms) or redundancy (if they con-
tain norms related through generalisation). Thus, we focus on sound norm
systems, i.e. those that are conflict-free and non-redundant [Serramia et al.,
2018b].

Definition 44. Let 〈N,R〉 be a norm net, then we sat a norm system Ω ⊆ N
is sound iff it is:
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• Conflict-free: ∀ni, nj ∈ Ω, (ni, nj) /∈ Rx

• Non-redundant: ∀n, n′ ∈ Ω, n /∈ A(n′); and ∀n, with |S̄(n)| > 1, then
S̄(n) * Ω.

Where S̄(n) = {n′ ∈ N, (n, n′) ∈ Rg} stands for the set of direct successors.

As decision criteria, we consider the value system, a structure formed by
moral values and their preferences. Therefore, we define the value system
as follows.

Definition 45. Let V be a non-empty set of moral values, and �v a ranking
over V , we call value system the tuple 〈V,�v〉.

Now we are ready to formalise how norms and values relate. For that, we
can leverage on the notion of label system 〈L,>l, λ〉, introduced by Definition
31, with each label corresponding to either a certain degree of promotion or
demotion, and with function λ : N ×V → L assigning a label to each norm-
value pair. We impose a neutral label l0 in L to express that a norm and a
value are unrelated. This label also sets the boundary between promoting
and demoting labels: labels more preferred than l0 are promoting labels,
while those less preferred than l0 are demoting labels. Notice that the sign
function in equation 5.2 signals if a label represents promotion (1), demotion
(-1), or if it is neutral (0). Moreover, the strength function in equation 5.3
characterises the degree of promotion/demotion of labels. Thus, given a label
l ∈ L, the more labels between l and l0, the larger its promotion/demotion
degree (i.e., the stronger l is).

Thanks to the objects formally introduced so far, we are ready to intro-
duce our decision-making problem, the so-called generalised value-aligned
norm selection problem (GVANS)4. The input of the GVANS problem is:
(i) a norm net 〈N,R〉; (ii) a value system 〈V,�v〉; and (iii) a symmetric
label system 〈L,>l, λ〉 that sets the relation between norms and values.
Solving a GVANS problem consists in composing the sound norm system
which best aligns with the value system, taking into account the degree
of promotion/demotion of norm-value relations as expressed by the label
system.

4The GVANS problem is a generalisation of the VANS problem introduced in Chapter
4, which disregarded demotions and promotion relations with different degrees.
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5.7.2 Solving the GVANS

When deciding on the most value-aligned norm system, we follow the propo-
sition: the more preferred the values promoted by a norm system, the more
preferred the norm system, or, in other words, the more value-aligned. To
obtain the most value-aligned norm system (i.e., to solve a GVANS problem)
we will proceed in two steps.

First, we can exploit MC-lexcel to obtain a ranking over individual norms
from a ranking over values in a value system. This is straightforward if we
consider that the values in V act like criteria (i.e. C = V ), and value
preferences are cast over the elements of the decision (i.e. the norms in N).
Importantly, our aim is to use the norm ranking to later select the set of
norms that best aligns with the value system. Since norms can both promote
and demote values, there might be norms that overall demote more preferred
values than those that they promote. We call these norms non-beneficial
norms. In contrast, beneficial norms are those that promote more preferred
values than those that they demote. A simple informal way to differentiate
beneficial and non-beneficial norms is to compare them with respect to a
neutral norm n0. We define n0 as an artificial norm that is neutral with
regards to all moral values in the value system. Thus, informally:

Definition 46. A beneficial norm is a norm that is more preferred than n0.
Norms less preferred than or indifferently preferred to n0 are non-beneficial
norms. We note by Nben ⊆ N the subset of beneficial norms in N .

When selecting a set of norms, we want to select only beneficial norms
and avoid non-beneficial norms. In other words, the solution to the GVANS
problem is a set of norms in Nben. With MC-lexcel we can obtain a ranking
that allows us to compare norms, but we must also know which norms are
beneficial and which are not. In line with previous Definition 46, we exploit
MC profiles to differentiate them. Thus, in the case of MC profiles:

Definition 47. We say that a norm n ∈ N is beneficial if µ(n) >lex µ(n0).
On the other hand, a norm is non-beneficial if µ(n0) ≥lex µ(n). Thus, in
this case, Nben = {n ∈ N : µ(n) >lex µ(n0)}.

Indeed, since we build the ranking from the MC profiles of norms, a
norm that is less preferred than n0 will be a norm whose MC-profile is worse
than that of a totally neutral norm. This is the case when an MC profile
contains more demotion labels than promotion labels, or contains demotion
labels associated to more preferred values. Thus, by applying MC-lexcel
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considering N ∪ {n0}, we obtain a ranking mclex(�v) =�n in which not
only we can compare norms, but also in which n0 partitions norms between
beneficial (when n �n n0) and non-beneficial (when n0 �n n) norms.

The next step is to use the norm ranking to compose the desired set
of value-aligned norms. Since only beneficial norms should be taken into
account to compose the norm set, we discard the non-beneficial norms here-
after. Hence, we now consider the ranking only over beneficial norms �benn
obtained from the MC ranking over all norms. We formalise this using the
following restriction:

Definition 48. The restriction function ben is a function ben : R(N) →
R(Nben), such that ∀ �n∈ R(N) and ∀n1, n2 ∈ Nben, ben(�n) =�benn is such
that �benn = {(n1, n2) ∈�n: n1, n2 ∈ Nben}.

Our final step consists in transforming the ranking over beneficial norms
into a ranking over norm systems. For that, we resort to the anti-lex-cel
operator introduced in Chapter 4. Let Nben be a set of beneficial norms, and
�benn a ranking over these norms, the anti-lex-cel function ale : R(Nben) →
R(P(Nben)) is a lifting function which generates a ranking over subsets of
beneficial norms, namely over the norm systems in P(Nben). Therefore, the
composition of MC-lexcel, the restriction to beneficial norms, and anti-lex-
cel, transforms preferences over values in a value system to preferences over
beneficial norm systems. We formally define this composition as follows:

Definition 49. We call nsr : R(V ) → R(P(Nben)) (nsr for norm system
ranking) the function nsr = ale ◦ ben ◦ mclex. Thus, for a value ranking
�v∈ R(V ), nsr(�v) = ale(ben(mclex(�v))) =� is a ranking over norm
systems (introduced in Definition 43) composed of beneficial norms.

The solution to the GVANS problem at hand will be the most preferred
sound norm system in the obtained norm system ranking. Unfortunately,
although we have managed to formally solve our problem, the cost of build-
ing a whole ranking over norm systems (elements in P(Nben)) turns out to
be rather costly. As discussed in Chapter 4 , building the ranking using anti-
lex-cel takes O(22|N |) in the worst case (and when all norms are beneficial).
Nonetheless, in Chapter 4 we show that it is possible to avoid to explicitly
build a whole ranking over norm systems by encoding it as a BIP (Binary
Integer Program). We can employ the very same approach here: firstly, we
apply MC-lexcel to obtain a norm ranking; secondly we restrict the norm
ranking to beneficial norms; then use this beneficial norm ranking to encode



136 CHAPTER 5. GRADED QUALITATIVE VANS

the GVANS problem as a BIP; and finally, we solve it with the aid of stan-
dard BIP solvers (e.g. CPLEX [IBM, 1988] or Gurobi[Gurobi Optimization,
2010]). We henceforth refer to this method as the qualitative approach
with graded value promotion and demotion. Next section illustrates
and compares it to previous approaches.

5.7.3 Comparing solving methods

Following Example 28 on healthcare, here we introduce a simple example
that illustrates the qualitative approach with graded value promo-
tion and demotion described in Section 5.7.2. Furthermore, we use it to
compare the approach of this chapter to those of previous chapters. On
the one hand, Chapter 3 proposes a numerical approach that first assigns
a numerical value alignment to each norm, and then selects norms by max-
imising their cumulative value alignment. Here, we show that considering
these numerical evaluations of norm value alignment may introduce biases
that the qualitative approach of this chapter avoids. On the other hand,
although the work presented in Chapter 4 is also qualitative, it has lim-
ited expressiveness, since it does not allow for demotion, nor for different
degrees of promotion/demotion. Overall, we show that, for specific cases,
these other methods in the literature fail to produce a norm system that is
most aligned with the given moral values.

Norm generalisation

Allow 
everybody 

(AE) 

Right to life 
(RTL)

Deny 
everybody 

(DE)

Deny the 
elderly
(DL)

Allow the 
young
(AY)

Austerity 
(AUS)≽

x  x

x  x
  x 

 x  
x  x

x  x  x  x  x  x

x  x  x Norm exclusivity Value promotion
Value demotion

Figure 5.1: Representation of the norms, norm relations, values, and value pro-
motion/demotion in our healthcare case study.

As previously mentioned, our case study focuses on selecting norms re-
lated to hospital admission. In particular, as Figure 5.1 shows, we consider
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four norms:

• AE = 〈patient in, Per(admit)〉: Allow admission to Everybody;

• DE = 〈patient in, Prh(admit)〉: Deny admission to Everybody;

• AY = 〈young patient in, Per(admit)〉: Allow admission to the Young;

• DL = 〈elder patient in, Prh(admit)〉: Deny admission to the eLderly.

Thus, N={AE, DE, AY, DL}. Furthermore, as shown in Figure 5.1, since
admission cannot be allowed and denied simultaneously, some of these norms
are exclusive: (AE, DE)∈ Rx, (AY, DE)∈ Rx, (AE, DL)∈ Rx. Moreover,
regulating the admission to everybody includes the young and the elders,
and hence, AE generalises AY and DE generalises DL.

As for values, in this setting, we consider two moral values V ={RTL,
AUS}: “Right To Life/medical care” (RTL) and “Austerity” (AUS), and a
preference of RTL �v AUS. Figure 5.1 depicts that norms allowing admission
promote RTL and demote AUS whereas the norms denying it behave con-
versely. However, to express promotion/demotion degrees we consider a label
system 〈L,>l, λ〉 with labels: high promotion (HP ), promotion (P ), neutral
(l0), demotion (D) and high demotion (HD) (L = {HP,P, l0, D,HD}) and
linear order HP >l P >l l0 >l D >l HD. Note that, e.g., stg(HP ) = 2
and sgn(HP ) = 1, whereas stg(HD) = 2, and sgn(HD) = −1. The λ
columns in Table 5.1 detail the λ function that completes our label system.
Overall, general norms that apply to everybody are strongly related to the
values. This is also the case for elders, since they are most likely to require
admission. Alternatively, we consider the relationship with youngsters to be
less strong, since they are less likely to require admission.

From here, we apply our qualitative approach with graded value promo-
tion and demotion to compute the norm ranking as AE �n AY �n n0 �n DL
�n DE. This is because µ(AE) = (HP,HD), µ(AY ) = (P,D), µ(DL) =
(HD,HP ), and µ(DE) = (HD,HP ). Note that DE and DL are non-
beneficial norms because they are less preferred than n0 (due to their demo-
tion of the most preferred value). Therefore, by restricting the ranking to
beneficial norms, we have that AE �benn AY. Next, we obtain the norm sys-
tem ranking {AE, AY} � {AE} � {AY}. However, {AE, AY} is not sound
(see Definition 44) because AE generalises AY and, hence, the method will
choose {AE} as the most value-aligned norm system to be enacted. Indeed,
considering that AE is the most general norm with the highest promotion
of RTL –the most preferred value–, {AE} stands for the expected solution.
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AE DE AY DL
λ Num B λ Num B λ Num B λ Num B

RTL HP 1 1 HD -1 0 P 0.7 1 HD -0.8 0
AUS HD -1 0 HP 1 1 D -0.2 0 HP 0.8 1

Table 5.1: Value-norm relationships for the three methods: λ (the method used in
this chapter); Num (Numerical approach in Chapter 3); and B (Binary approach
in Chapter 4).

Alternatively, when considering the quantitative approach in Chapter
3, the task of assigning numerical norm promotions turns out to be more
difficult. Num columns in Table 5.1 detail the numeric norm promotions we
use in this comparison. Extreme grades now become 1 and -1 respectively.
AY promotes RTL with 0.7 and demotes AUS with -0.2 because the young
are just a portion of the incomers and the cost of their medical care is
(relatively) low. DL demotes RTL with -0.8 and promotes AUS with 0.8
since most people at risk of dying are elders and they usually require most
expensive medical care.

Subsequently, the procedure in Chapter 3 computes the value alignment
of the available sound norm systems –note in this case the values’ relevance
are r(RTL) = 2 and r(AUS) = 1– as: va({AE}) = 1, va({DE}) = −1,
va({AY}) = 1.2, va({DL}) = −0, 8, and va({AY,DL}) = 0, 4. Hence,
the sound norm system with highest utility is {AY}. This means that the
quantitative utilitarian method selects a norm system that fails to regulate
admissions of elder people. This is so because AE strongly demotes the AUS
value, and this diminishes its numerical value alignment.

If we now consider the binary qualitative approach from Chapter
4, B columns in Table 5.1 are limited to represent promotion (1) and no
promotion (0). This method produces a norm ranking of AE ∼n AY �n DE
∼n DL. Notice that AE ∼nAY because both norms promote RTL and the
method is not expressive enough to capture different grades of promotion,
even though admitting everybody (AE) is clearly a better norm (i.e., it is
far more inclusive) than just admitting the young (AY). Consequently, this
norm ranking leads to the following ranking of sound norm systems: {AY,
DL} � {AE} ∼ {AY} � {DE} ∼ {DL}, where {AY, DL} supports both
RTL and AUS values. Hence, the binary qualitative method selects to enact
{AY, DL}, which fails to be aligned with the value system because denying
admission to elders (DL) demotes the most preferred value of right to life
(RTL). The reason for considering such an undesirable norm is a direct
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consequence of its failure to capture demotion. In fact, it only selects norms
based on their merits without considering their detrimental effects.

In conclusion, albeit its simplicity, this example illustrates how the method
of this chapter overcomes the shortages of the methods of Chapter 3 and
Chapter 4 in producing a norm system that is most aligned with the value
system at hand. In fact, [Serramia et al., 2020] already reported a flaw in
[Serramia et al., 2018b] that causes that a number of norms slightly promot-
ing least preferred values can end up having more utility –and thus being
chosen– than a single really useful norm if they are exclusive. Indeed, al-
though most preferred values should prevail, the quantitative method also
fails to capture the absolute preferences of the value system.

The advantages of the method in this chapter are two-fold. First, its
graded qualitative labels for promotion and demotion are much simpler to
define –and less prone to biases– than numerical degrees and also provide
far more expressiveness than just binary promotion. Second, its ranking
method captures the preferences of the value system into the selection of
the norm system to enact satisfying the dominance property, which means
that the resulting ranking is excellence-rewarding.

5.8 Conclusions

In this chapter we have tried to make headway in supporting decision makers
that are challenged with comparing, and ultimately ranking, elements with
regards to how such elements satisfy multiple criteria and how such criteria
are preferred by them. This calls for a new decision making framework,
which we have formally introduced here. Our framework is based on a novel
method for ranking single elements.

Ranking functions have been widely used to transform rankings. For
instance, the social ranking function transforms a ranking over sets of ele-
ments into a ranking over the elements themselves. The contributions of this
chapter advance the state of the art with a novel family of ranking functions
–multi-criteria (MC) rankings– and a function of this family –MC lex-cel– so
to transform complex preference (criteria) information into a neat and clear
ranking of individual elements. Furthermore, we have positioned our find-
ings with respect to the current literature, by showing that our MC ranking
generalises the social ranking and MC lex-cel generalises the lex-cel social
ranking function and embodies dominance.

Importantly, MC rankings can be used to solve DSSP with graded rela-
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tions between elements and criteria. Indeed, by composing an MC ranking
with a lifting function, we can transform preferences over criteria to prefer-
ences over sets of elements. Once this ranking is obtained, the DSSP can be
solved following the same procedure explained in Chapter 4. We have pic-
tured this application of MC rankings to support a decision maker to tackle
an ethical decision making problem. Specifically, we define the Generalised
Value-Aligned Norm Selection (GVANS) problem and solve it with a qual-
itative approach with graded value promotion and demotion. Overall, this
method overcomes the shortages of previous methods in producing a norm
system that is most aligned with the value system at hand.

Hence this chapter has addressed the remaining part of contributions C8
- C11 from Section 1.3, which in turn answer the corresponding research
questions in Section 1.2:

• Question Q8: How can we represent qualitatively the relations between
norms and values? Through graded positive/negative relations which
we capture through labels (remaining part of contribution C8).

• Question Q9: How do we solve the value-aligned norm selection prob-
lem qualitatively? We obtain a ranking over norm systems by compos-
ing MC lex-cel and anti-lex-cel to then select the most preferred sound
norm system in the ranking (remaining part of contribution C9).

• Question Q10: Are qualitative approaches computationally feasible?
Yes, once we know the ranking over norms, we can apply the BIP
encoding of Chapter 4 which allows to solve the problem avoiding the
computational cost of building the norm system ranking (C10).

• Question Q11: How can we generalise the qualitative approach to
value-aligned norm selection to use it in other multi-criteria decision
making problems? In this chapter we have re-formalised the domi-
nance property to encompass labelled relations between elements and
criteria. Thus, considering this new formalisation, the dominant set
selection problem definition of Chapter 4 remains (C11).



Chapter 6

Conclusions and future work

To finish the thesis, we outline some conclusions and future work. Firstly,
Section 6.1 draws conclusions with regards to the various contributions of
the thesis. Then, section 6.2 discusses the lessons learned along the work of
this thesis. Finally, Section 6.3 provides paths for future research.

6.1 Conclusions

With the advent and adoption of intelligent systems, the ethical implications
of their actions have become increasingly concerning. The value alignment
problem [Russell, 2019] addresses this concern. In this thesis we have for-
malised a particular instance of the value alignment problem, namely the
value-aligned norm selection problem (VANS). Moreover, we provide differ-
ent methods to compose norm systems whose norms align with the value
system of the society. In that regard we provide the following conclusions,
following the two main blocks of contributions presented in Section 1.3.

6.1.1 Formalisation of the value-aligned norm selec-
tion problem

With the increased awareness of ethical issues in the AI community, moral
values have started to be studied within the AI literature. In particular,
the introduction of value systems [Bench-Capon and Atkinson, 2009; Luo
et al., 2017; Serramia et al., 2018a] have allowed to implement moral value
criteria in decision making. Nonetheless, previous definitions of the value
system lacked the nuances discussed in the ethics literature, as well as a clear
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reasoning on their definition. This is particularly necessary for value-aligned
decision making problems dealing with actions or norms, since the relation
between these two elements and values has been thoroughly studied. Thus,
we propose a formalisation of value system that considers such relations.

Figure 6.1 provides a graphical summary of the study on norms, values,
and norm value alignment of Section 3.2. On the one hand, moral values
judge how good or bad are actions to perform or to not perform. Exploiting
this judgement of action performance and non-performance we have for-
malised moral values by providing them with such semantic through the
so-called judgement functions. This has allowed us to better formalise the
notion of value system as a set of moral values (composed of their action
judgement function), as well as preferences over these values in the form of
a ranking (which we have deemed the most appropriate way to represent
value preferences).

Norms

Values Actions

promote / demote

judge

regulate
[Section	6]

[Section	5]

[Section	4]

Figure 6.1: Relation between actions, norms and moral values.

Furthermore, since values judge actions that are regulated by norms, we
can also derive the promotion/demotion relation between values and norms.
Thus, we have formalised promotion functions relating a norm to a value
taking into account how the value judges the action regulated by the norm.

Besides being useful for tackling value-aligned norm selection, it is im-
portant to remark that our formalisation of value system can be useful for
other applications dealing with actions, norms and values, which can benefit
from the relations in Figure 6.1.

Focusing on the value-aligned norm selection problem, the aim is to select
the set of norms that best aligns with a value system. Note though, that
norms can be interrelated: they can be mutually exclusive (e.g., a norm
prohibiting an action is exclusive with a norm obliging it), or they can be
redundant (e.g., a norm may generalise another one by having a broader
scope). Thus, not all possible norm systems constitute a feasible solution as
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we want to avoid exclusive and redundant norms inside a norm system. We
say norm systems are sound when they are free of exclusive and redundant
norms. In this manner, the value-aligned norm selection problem can be
informally defined as the problem of finding the sound set of norms that best
aligns with the value system. Its formal definition though is not as simple
as it depends on how we represent relations between norms and values.

On the one hand, in Chapter 3 we consider that the decision maker can
numerically asses the relation between a norm and a value. In other words,
the decision maker is able to provide the judgement functions for the values.
Thus, we formalise the VANS problem using our definition of promotion
function (which depends on the value’s judgement functions). Hence, the
VANS problem is formalised as the problem of selecting the sound set of
norms that maximise value alignment utility, which depends on how norms
promote values, and the preferences over these values.

On the other hand, in Chapters 4 and 5 we have not defined the VANS
problem directly, but through a more general problem: the dominant set
selection problem. Informally, this problem consists on selecting a feasible
set of elements that best aligns with a set of criteria considering how ele-
ments relate to criteria and the preferences over these criteria. Unlike in
Chapter 3, in these chapters we assume that the decision maker is not able
to numerically asses how elements (in the case of VANS, norms) relate to
criteria (in the case of VANS, values). Chapter 4 supposes a set of elements
that relate to a set of criteria through a binary relation, hence an element
is either aligned or not with each criterion. On top of that, we consider
a function that allows us to check if a solution is feasible. With that in
mind, we formalised element dominance, and subsequently, set dominance.
These properties have allowed us to define the dominant set selection prob-
lem (DSSP). The DSSP aims at finding the feasible set of elements that is
not dominated by any other set (in other words, the set of elements that
dominates or is indifferent to all other feasible sets). In this case, the VANS
problem is a DSSP whose elements are norms, and whose criteria are values,
and the feasibility of its solution depends on the soundness of norm systems.

Chapter 5 also provides a formalisation of the DSSP with a more expres-
sive relation between elements and criteria. There, we capture the relations
through a label system, these labels allow the decision maker to express
different degrees of positive and negative relations between elements and
criteria. The number of labels is flexible, and therefore, the decision maker
can define labels depending on the granularity of their knowledge. This new
labelled relations require to re-formalise the property of element dominance.
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Nonetheless, the DSSP formalisation remains the same once considered such
re-formalisation.

6.1.2 Solving the value-aligned norm selection prob-
lem

When it comes to solving the VANS problem, we have proposed several ap-
proaches. In Chapter 3 we have introduced a quantitative approach to solve
the VANS problem. Conversely, Chapters 4 and 5 introduce qualitative ap-
proaches with different degrees of expressiveness. Here we detail the overall
conclusions of each of these approaches.

Quantitative reasoning

The quantitative approach of Chapter 3 relies on value alignment utility
functions based on the norm promotion function (which in turn is based
on the action judgement functions). These functions allow for the problem
to be encoded into a binary integer program. We show that this approach
allows to solve even large VANS problems in affordable computational times,
which vary depending on the structure of the problem.

Qualitative reasoning

Chapters 4 and 5 provide a solution to the general DSSP, their resolutions
can be applied to the VANS problem because the DSSP is a generalisation
of the VANS problem. To solve the DSSP, the approaches of both chapters
aim at transforming the criteria preferences to element preferences, and in
turn these element preferences to set preferences. In practice, this is done
through the composition of a preference grounding function and a lifting
function.

In Chapter 4, we adapted lex-cel to be used as our grounding function
and used anti-lex-cel as our lifting function. By composing these two func-
tions, we are able to transform the ranking over criteria to a ranking over
sets of elements. In more detail, first lex-cel transforms the ranking over
criteria to a ranking over elements considering how elements relate to the
criteria, then anti-lex-cel lifts the ranking over elements to a ranking over
sets of these elements. We proved that the most preferred feasible set in
the obtained ranking is a solution to the DSSP problem. This resolution
serves as a first approach to the composition of ranking functions to solve
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such problems from a qualitative perspective. Unfortunately, building this
ranking can be computationally costly, nonetheless we are able to encode
this problem into a binary integer program (BIP). This allows us to avoid
the computational cost of building the preferences over all sets. Importantly,
we prove that the BIP produces an equivalent solution to the one we would
obtain by building the preferences and selecting the most preferred feasible
set. As argued before, we show how this general framework can be used
for the particular problem of value-aligned norm selection. Nonetheless, it
is important to remark that besides value-aligned norm selection, we argue
that the dominant set selection problem characterises a family of problems
with similar characteristics (the goal is to select a set of elements, the de-
cisionmaker counts on some criteria and preferences over these criteria, and
we have relations between the elements and the criteria). For example, prob-
lems such as grant allocation or personnel selection can be seen as specific
instances of a DSSP. The resolution we provide in Chapter 4 can be applied
to any problem that can be formulated as a DSSP.

Due to the simple binary element-criterion relation, in Chapter 4 we
ground criteria preferences using ranking functions already available in the
literature. Nonetheless, in Chapter 5 we consider relations between elements
and criteria that are graded. Unfortunately, the literature has not discussed
grounding functions that are able to cope with the above-mentioned relations
between elements and criteria. Hence, in order to solve the DSSP in Chapter
5, we present a novel family of ranking functions called multi-criteria (MC)
rankings. MC rankings are functions that transform preferences over crite-
ria to preferences over elements considering the labelled relations between
elements and criteria. We formalise a particular MC ranking, called MC
lex-cel. MC lex-cel is a generalisation of lex-cel. We prove that MC lex-cel
satisfies element dominance. Thus, we compose MC lex-cel with anti-lex-cel
to solve the DSSP with labelled element-criterion relations. In particular,
we have shown how to apply the composition of MC lex-cel and anti-lex-
cel to solve the VANS problem with labelled relations between norms and
values. Nonetheless, as previously mentioned, the framework and resolution
provided in Chapter 5 can be useful for a wide range of problems.

6.2 Lessons learned

As previously discussed, Chapters 3, 4 and 5 propose different approaches
to value-aligned norm selection, namely a quantitative, and two qualitative
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approaches. A difference between these approaches is the different levels of
knowledge required from the decision maker to define their input. Recall
that, while our quantitative approach requires the decision maker to pro-
vide numerical assessments of how actions relate to values, our qualitative
approaches do not require such detailed information. Nonetheless, we have
also argued that our quantitative approach prefers quantity over quality of
norms: the larger the norm system, the better. Indeed, as explained in Sec-
tion 3.10, the quantitative approach might favour selecting a set of mediocre
(weakly-aligned) norms instead of a single excellent (strongly-aligned) norm.
We argued that this is due to utility additivity, the sum of lots of small
utilities adds up and surpasses a single very high utility. We argued that
when selecting value-aligned norms, our preference must be to select the
best norms, no matter if this means selecting a smaller set of norms. Thus,
we should favour quality, in terms of value alignment, over quantity. This is
addressed through our qualitative approaches, which satisfy the dominance
property. Nonetheless, note that this distinction between our quantitative
and qualitative approaches lays on a deeper difference between them. On
the one hand, the quantitative approach assigns utilities to norms individ-
ually. Thus, the utility of a norm is independent of the utilities of other
norms. On the other hand, our qualitative approach builds preferences over
norms. Thus, it evaluates the value-alignment of each norm not indepen-
dently, but in comparison with the other candidate norms. The selected set
of norms is derived from the individual utilities and from the preferences
over norms respectively. This causes that our qualitative approaches satisfy
both the dominance property while the quantitative approach is affected
by the additivity of utility. In the quantitative approach, since all norm
utilities are independent, we cannot demand any sense of dominance (in
other words, that an excellent norm always has better utility than any sum
of more mediocre norms). In the qualitative approaches though, since the
preferences over sets of norms are built from the comparison of the individual
norms, we can demand that the resulting ranking satisfies dominance.

In conclusion and in the larger picture, we have looked into two groups of
approaches to decision making, evaluative approaches (those that evaluate
elements individually), and comparative approaches (those that evaluate
elements in comparison). Both of these approaches can be useful to select a
single element. Nonetheless, in problems requiring to select more than one
element, evaluative approaches can have unforeseen consequences. When the
set of selected elements is required to satisfy some property (like dominance),
it is necessary to solve the problem through a comparative approach. In
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other words, comparative approaches allow the decision maker to have better
control over the type of solution obtained, whereas evaluative approaches do
not allow for this degree of control.

6.3 Future work

While this thesis provides a thorough and detailed study of value-aligned
norm selection, it is by no means a complete study on the subject. In fact,
by studying this problem we have found many paths for future research in
this and other topics. On the one hand, a possible path is to research the
assumptions made throughout this thesis (known moral value preferences,
norm-value relations). On the other hand, the methods presented in Chap-
ters 4 and 5 can be more broadly studied from the field of computational
social choice. We provide more detail on these future research paths in the
following subsections.

6.3.1 Enriching the expressiveness of actions, norms
and relations

Actions and norms

Enriching the action and norm language (/expressivity) would improve the
scope of applicability of our work. The way we have formalised actions
does not consider any particular type of structure or semantics for actions.
On the one hand, while we have assumed atomic actions, in reality actions
might have a more complex structure. For example, some actions might not
be discrete, and hence, we cannot represent actions such as, e.g., “move x
meters” where x is a real number. Recently, [Montes and Sierra, 2021] have
studied value-guided synthesis of parametric norms. Thus, a possible way
to include non-atomic actions could be the integration of their findings to
our norm selection optimisation. On the other hand, the definitions of norm
and normative framework have limited expressiveness. This hinders the
application of our work to complex scenarios requiring norms that include,
for instance, conditional and temporal aspects (such as in [Garcia-Camino
et al., 2005]), or punishments [Bou et al., 2006].
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Norm relations

We have to point out that the different approaches presented in this thesis
have been explained using different formalisations of the normative domain
or norm net. Our first approach, the quantitative approach in Chapter 3,
tried to fully formalise them and define properties that they should maintain.
Quickly, we detected that requiring these properties does not help to ensure
that the norm relations are well-defined, but instead it constrains the types of
relations that can be considered. In the following approaches the qualitative
ones in Chapters 4 and 5, we were less restrictive in their definition. These
differing definitions do not impact the correctness of the approach in terms
of value-alignment, they may only affect the constraints in the binary integer
programs. Nonetheless, further studying norm relations and unifying their
definitions in the normative domain or norm net remains an important task
to research.

6.3.2 Building the value system

This thesis assumes that the decision maker knows the society’s preferences
over values. Nonetheless, how to obtain these preferences remains an open
question. As for future research we propose two different strategies for ob-
taining value preferences and therefore building the value system of the
society.

Collective agreement

The first approach to build the value system is relying on the society to
agree over the preferences over moral value. For that end, we already count
on useful tools such as participatory platforms and online debates. Partic-
ipatory platforms have recently become popular tools for governments to
know the opinions of their citizens. Participatory portals are designed to
enable informed and reasoned decisions, where citizens can share their opin-
ions with their governments. Indeed, we can find several e-participation and
e-governance ICT systems such as Loomio [Loomio, 2012], or Consider.it
[Consider.it, 2010]. From these, we highlight Consul [Consul, 2015], which
has been adopted by 100 institutions in 33 different countries and has been
used by 90 million citizens. Additionally, some governments provide their
own participation portals. For instance, since its launching, the UK’s portal
[Petitions, 2015] has received more than 20000 petitions, some of them being
extremely popular (at the time of writing this article, the proposal “Revoke
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Article 50 and remain in the EU” received more than 6 million signatures).
France [Parlement & Citoyens, 2013] and New Zealand [New Zealand’s Min-
istry of Justice, 2015] are also making an attempt to close the gap between
their parliaments and their people. Furthermore, these attempts are done
at a local level, with city councils, such as Reykjavik [City of Reykjav́ık,
2012] and Barcelona [Decidim, 2016] being committed to enable participa-
tion, giving the citizens the chance to present and debate their ideas. These
portals could serve as the platform where citizens debate and agree on the
value system of the society. As for the debates themselves, [Klein, 2012]
introduces an argumentation structure that can be used for large-scale de-
liberation. We have also discussed online debates in [Serramia et al., 2019a].
There, users are able to post arguments in favour or against a statement, as
well as, vote other peoples’ arguments. Then, we propose functions to assess
the acceptance or rejection of the statement based on the arguments of the
debate and their votes. Either of these debate structures could be exploited
to argue on the value preferences of the society.

Learning of moral values

While ideal for building the true preferences of the society, the collective
agreement approach relies on the active participation of the society’s indi-
viduals. This can be problematic for at least two reasons. Obviously, the
individuals of the society may not care to make this effort. But also, it
may be the case that only particular groups of individuals are willing to
participate in the process, meaning that others may end underrepresented.
Conversely, we can opt for an automated approach that does not need for the
active participation of the individuals of the society. This could consist for
example in applying inverse reinforcement learning techniques [Abbeel and
Ng, 2004] for building individual’s value preferences by observing their be-
haviour. Recently there has been some work in this direction, [Liscio et al.,
2021b; Liscio et al., 2021a] identify context-specific values through the anal-
ysis of opinion corpora (with a hybrid approach of human annotators and
NLP techniques). While this approach allows to cover and represent all
individuals, it also has its shortcomings. A particular concern can be the
difference between an individual’s true value preferences and their portrayed
value preferences. In other words, there might be a difference between the
values somebody holds and those displayed in their actions. For example, a
person that has a precarious job may not agree in low remuneration but has
to take that job or otherwise they could not sustain themselves.
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Aggregating value systems

The learning of moral values would allow to learn the value system of indi-
viduals, but we could obtain the value system representing the whole society
through aggregation. Aggregating rankings is not a novel problem [Bran-
denburg et al., 2013] [Meena and Bharadwaj, 2020]. For example, when
considering several individual rankings, Kemeny’s rule [Kemeny, 1959] sees
these rankings into a geometrical space and aims at finding the ranking min-
imising the overall distance between the original rankings and itself. This
same idea is explained more formally in [Brandt et al., 2016] through the
use of Kendall’s tau distance [Kendall, 1938]. Nonetheless, note that the
problem of aggregating value systems cannot be reduced to just aggregating
their respective value rankings. Different people might have different con-
ceptions of what a particular value means. Thus, these different conceptions
should be taken into account when aggregating value systems.

6.3.3 Tools for decision makers

Our experimental framework provides the foundations to develop an interac-
tive tool to enable policy/decision makers and the community to collectively
specify the norms and values (the input) of the VANS problem. In this re-
gard, we could build explanations for why an individual norm or a set of
norms did not get selected. For example, for the approach of Chapter 3,
these explanations could be based on the utilities of a norm system and
could suggest changes in the settings (norm-value promotions or value pref-
erences) for which the norm/norm system would have been selected. Finding
these alternative settings could be addressed using optimisation techniques.
This interactivity could also be extended throughout the VANS problem res-
olution, thus treating it not as a single shot process, but implementing a de-
sign methodology where policy/decision makers and the community interact
along the decision making process to fine-tune the problem’s specification.

6.3.4 Deepening on multi-criteria rankings and the
composition of ranking functions

In Chapter 5 we have introduced a novel family of ranking functions called
MC rankings. Furthermore, in that chapter we also formalised MC lex-cel
as a function of this family. On the one hand, while our qualitative ap-
proach to solve the VANS problem relies on MC lex-cel, in reality, other MC
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rankings can be used. This inevitably means that the selected set of norms
would have different properties, since another MC ranking may not satisfy
dominance, for example. Studying other MC rankings remains a future path
of research. On the other hand, in Chapter 5 the family of MC rankings is
only briefly studied as the main goal is to apply it to the problem at hand.
Nonetheless, we think it may be interesting to further study MC rankings
from the computational social choice perspective. In particular, note that
as explained in Section 5.6, MC rankings generalise social rankings by con-
sidering labelled relations with elements. This means that the traditional
properties of ranking functions may not be directly translatable to MC rank-
ings and may not suffice to fully study them. Note that new properties on
the labelled criteria-element relation have to be introduced and formalised.

While we have applied MC lex-cel to the value-aligned norm selection
problem, this function can be further studied from the social choice perspec-
tive. In this sense, it would be interesting to provide an axiomatisation of
MC lex-cel, like it has been done for many social ranking solutions [Bernardi
et al., 2019; Haret et al., 2018; Khani et al., 2019]. As explained in the pre-
vious point, since MC rankings use labels, their properties will be greater in
number and complexity with regards to the classic social choice properties.
In this sense, this task seems quite daunting for two reasons. Firstly, because
properties for MC rankings are not yet known. And secondly, because a full
axiomatisation for MC lex-cel may require a greater number of axioms as
for what is normal in known axiomatisations, which also conveys difficulty
in proving that its axioms are independent.

Finally, and in a similar vein to previous points, the qualitative approach
introduced in Chapters 4 and 5 relies on the composition of a social rank-
ing function (lex-cel) or an MC ranking (MC lex-cel) with a lifting function
(anti-lex-cel), which opens two questions. Firstly, and as discussed before,
we have chosen specific functions to perform each of the steps of this compo-
sition, but others may be possible. While we have chosen the functions based
on their properties which we have deemed appropriate, other functions will
imply other properties, which is a question worth studying. But perhaps
more importantly, we see the composition of ranking functions as an impor-
tant topic worth researching. Note that, while the literature has thoroughly
studied many ranking functions individually, the compositions of these func-
tions have been disregarded, to the best of our knowledge. Thus, studying
formally the properties of these compositions remains an open question. As
we have remarked, we think these compositions can be useful to solve DSSPs
and other decision making problems.



152 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



List of Notation and Symbols

This list provides a relation of the notation of each chapter and their mean-
ing. Note that different chapters might use the same symbols to represent
different concepts.

Chapter 3

Ag A set of agents.
A A set of actions the agents can perform.
P A set of propositions.
L A propositional language with propositions in P and

the logical operator “and”.
S A set of states.
ϕ/ϕ′/ϕi A context, in other words, a subset of the propositions

of the language, hence ϕ ⊆ P .
(ϕ, a) A contextualised action, in other words, a pair of a

context and an action.
A A set of contextualised action, hence A ⊆ P × A.
a/a′/ai An action. This notation is used in two cases, to

represent an action a ∈ A or a contextualised action
a ∈ A. Most of Chapter 3, works on contextualised
actions, therefore they are referred simply as actions.

Ri The set of action incompatibility relations. These
are binary relations between actions: (a, a′) ∈ Ri ⊆
A×A, in this case a and a′ are incompatible actions.

Rg The set of action generalisation relations. These are
binary relations between actions: (a, a′) ∈ Rg ⊆ A×
A, in this case a generalises a′.

A(a) The ancestors of action a, namely the actions in A
that are more general than a.
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S(a) The successors of action a, namely the actions in A
that are more specific than a.

R The set of action relations, containing action incom-
patibility and action generalisation relations R =
{Ri, Rg}.

〈A, R〉 An action domain.
D An action domain.
θ A deontic operator, this can be θ ∈ {Obl, Per, Prh}

an obligation, a permission or a prohibition respec-
tively.

n/n′/ni A norm of the form n = θ(a). Hence, a norm is
formed of a deontic operator and a (contextualised)
action.

N A set of norms.
sgn The sign of a norm, see Equation 3.1.
Ri The set of norm incompatibility relations. These are

binary relations between norms: (n, n′) ∈ Ri ⊆ N ×
N , in this case n and n′ are incompatible actions.

Rg The set of norm generalisation relations. These are
binary relations between norms: (n, n′) ∈ Rg ⊆ N ×
N , in this case n generalises n′.

A(n) The ancestors of norm n, namely the norms in N that
are more general than n.

S(n) The successors of norm n, namely the norms in N
that are more specific than n.

R The set of norm relations, containing norm incom-
patibility and norm generalisation relations R =
{Ri,Rg}.

〈D,N,R〉 A normative domain.
Ω A norm system, namely a subset of norms Ω ⊆ N .
v/v′/vi A value.
V A set of values.
α+
v /α

−
v The action judgement functions of value v α+

v , α
−
v :

A → [−1, 1], α+
v judges the performance of actions,

while α−v judges the non-performance of an action.
� A ranking.
∼ The symmetric part of ranking �, hence x ∼ y ⇔

x � y, y � x.
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〈V,�〉 A value system.
V S A value system.
π A norm promotion function π : V × N →

[−1, 1].
πObl/πPer/πPrh The obligation, permission and prohibition

cases (respectively) of a norm promotion func-
tion.

ε A number in [0, 1].
πbase The base norm promotion function, see Equa-

tion 3.3.
πsup The supererogatory norm promotion function,

see Equation 3.4.
r The relevance function that transforms value

preferences into a numeric value relevance r :
V → R.

η A value equivalence class η ∈ V/ ∼.
va The function assessing the value alignment of

a norm system Ω, see Equation 3.6. A norm
system can be composed of a single norm, in
that case instead of noting va({n}), we use the
notation va(n).

xi A binary decision variable xi ∈ {0, 1}, this
marks if norm ni is selected (xi = 0) or not
(xi = 0).
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Chapter 4

General notation

X A set of elements.
x/x′/xi An element x/x′/xi ∈ X.
P(X) The power set of X.
S/S ′/Si A subset of elements of X, S/S ′/Si ∈ P(X).
� / �′
/�X

A generic ranking, where �/�′/�X is its antisymmet-
ric part and ∼/∼′/∼X its symmetric part. We also
use this notation for the ranking over P(X) obtained
through anti-lex-cel.

F A set of features.
R(X) All possible rankings over a set.
�F A ranking of features.
f A function that receives and element inX and returns

the set of its features.
φ The feasibility function that receives a set in S ∈

P (X) and returns > if the set is feasible and ⊥ if it
is not feasible.

Ψ/Ψ′/Ψi A feature equivalence class in F/∼F .
σ A permutation of indexes of the elements in a set S

with respect to a property (dominance). Thus, σ(i)
is the index of the i-th best element with regards to
the property.

srs A social ranking solution, that is a function srs :
R(P(X))→ R(X).

le The lex-cel (lexicographic excellence) function.
�e A general grounded ranking, that is a ranking over X,

obtained from a social ranking solution (a grounding)
srs (in particular a ranking obtained through lex-cel).

µ The function that builds the profile vector of lex-cel.
Σ/Σ′/Σi An equivalence class of P(X)/∼.
cxi The i-th element of µ(x). Thus, µ(x) = (cx1 , . . . c

x
k).

≥L The lexicographic order of vectors.
ale The anti-lex-cel function.
Ξ/Ξ′/Ξi An element equivalence class of X/∼e.
η The vector used by anti-lex-cel to build the ranking

over P(X).
cSi The i-th element of η(S). Thus, η(S) = (cS1 , . . . c

S
q ).
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dom A function that transforms a ranking over the fea-
tures in F to a ranking over the sets in P(X). This
function is the composition of lex-cel and anti-lex-cel
dom = ale ◦ le.

p The preference function that assigns a natural num-
ber to each set in P(X), with regards to the ranking
obtained trough dom.

Spref The feasible set in P(X) that is most preferred with
regards to the set ranking � obtained through dom.

Smax The feasible set of maximum preference p.
di The decision variable representing element xi ∈ X.

Value-aligned norm selection

A A set of actions.
Ag A set of agents.
P A set of propositions.
L A propositional language with propositions in P and

the logical operator “and”.
S A set of states.
ϕ A precondition of the form ϕ ⊆ P (with an “and”

semantic between propositions).
θ A deontic operator (prh/per/obl).
a An action a ∈ A.
n/n′/ni A norm.
N A set of norms.
v/v′/vi A moral value.
V A set of moral values.
�v A ranking over moral values in V .
R The set of norms relations, R = {Rx, Rg}.
Rx The set of exclusive relations, (n, n′) ∈ Rx if n and n′

are mutually exclusive norms.
Rg The set of generalisation relations, (n, n′) ∈ Rx if n

generalises n′.
A(n) The ancestors of n, the norms that generalise n.
S(n) The successors of n, the norms that are generalised

by n.
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S̄(n) The direct successors of n, the norms n′ such that
(n, n′) ∈ Rg.

di The decision variable representing norm ni ∈ N .
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Chapter 5

General notation

X A set of elements.
x/x′/xi An element x/x′/xi ∈ X.
P(X) The power set of X.
S A set in P(X).
�/�′/�X A generic ranking, where �/�′/�X is its antisym-

metric part and ∼/∼′/∼X its symmetric part. In
this chapter we use this notation for several rank-
ings. In Section 5.5 we use it to note the ranking
over X obtained through MC lex-cel (mclex). In
Section 5.7 we use this to note the ranking over
norm systems composed of beneficial norms ob-
tained through the norm system ranking function
(nsr).

R(X) All possible rankings over a set (in this case X).
≥lex The lexicographical order of tuples, see Definition

30.
le The lex-cel (lexicographic excellence) function.
�S A ranking over the power set P(X).
�e The ranking produced by applying lex-cel.
θ The function that builds the profile vector of lex-

cel.
Σ/Σ′/Σi An equivalence class of P(X)/∼S.
l/l′/li A label.
l0 The neutral label.
L A set of labels.
>L A linear order over the labels in L.
〈L,>L〉 A label system. We note the labels of a label sys-

tem as li, where i marks its position with respect
to the neutral label l0.

LS A label system.
sgn The sign function, see Equation 5.2.
stg The strength function, see Equation 5.3.
c/c′/ci A criterion.
C A set of criteria.
λ A labelling, in other words, a function λ : X×C →

L that given an element and a criterion returns the
label of their relation.
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L(X,C) All possible labelling functions over X and C.
�C A ranking over the criteria (C).
mcr An MC ranking function, hence mcr : L(X,C) ×

R(C)→ R(X).
κ/κ′/κi A criteria equivalence class, hence κ ∈ C/∼C .
s A label strength.
smax The maximum label strength of the label system.
na The net alignment function, see Equation 5.4.
µ MC profiles used for MC lex-cel, µ(x) is the MC

profile of x.
mclex The MC lex-cel function.
sr A social ranking function sr : R(P(X))→ R(X).
�P A ranking over P(X).
t The transformation function that transforms a so-

cial ranking’s input into an MC ranking’s input,
t : R(P(X))→ R(C)× L(X,C).

cS The criterion associated to S ∈ P(X) by the trans-
formation function t.

Value-aligned norm selection

Ag A set of agents.
A A set of actions.
a An action a ∈ A.
P A set of propositions.
PL A propositional language (with propositions in P

and the logical operator “and”).
S A set of states.
θ A deontic operator, this can be Prh/Per/Obl pro-

hibition, permission or obligation respectively.
ϕ A precondition ϕ ⊆ P (with an “and” semantic

between propositions).
n/n′/ni A norm of the form 〈ϕ, θ(a)〉.
N A set of norms.
R The set of norms relations, R = {Rx, Rg}.
Rx The set of exclusive relations, (n, n′) ∈ Rx if n and

n′ are mutually exclusive norms.
Rg The set of generalisation relations, (n, n′) ∈ Rx if

n generalises n′.
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A(n) The ancestors of n, the norms that generalise n.
S(n) The successors of n, the norms that are generalised

by n.
〈N,R〉 A norm net, composed of a set of norms and their

relations.
S̄(n) The direct successors of n, the norms n′ such that

(n, n′) ∈ Rg.
Ω A norm system Ω ⊆ N .
v/v′/vi A moral value.
V A set of moral values.
�v A ranking over the moral values in V .
〈V,�v〉 A value system.
n0 The neutral norm, an artificial norm that is neutral

to all values.
Nben The set of beneficial norms, the norms that are

more preferred than n0.
�n The ranking over norms obtained through MC lex-

cel.
ben A restriction function ben : R(N) → R(Nben), re-

stricting rankings over norms to rankings over ben-
eficial norms (Nben) only.

�benn The restriction of �n through ben.
ale The anti-lex-cel function.
nsr The norm system ranking function nsr : R(V )→

R(P(Nben)). This function is defined as the com-
position of mclex, ben and ale.

�/�′ The ranking over norm systems composed of ben-
eficial norms. �/�′ represents its antisymmetric
part and ∼/∼′ its symmetric part.
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Appendix A

Implementation to solve VANS
problems

In order to smooth the path for the applicability of our proposal, we have im-
plemented a tool to solve a VANS problem specified in a human-comprehensible
format. We have made the code publicly available at [Serramia et al., 2021d].
The repository contains two main python programs. The first one, VANS.py,
is devoted to encode a description of a VANS problem into a BIP. The second
program, BIPSolver.py, invokes CPLEX with the resulting BIP to provide
the final solution:

• Firstly, VANS.py takes as input a VANS problem specification (a text
file) containing the actions, values, action judgement, norms, value
preferences, exclusivity relations, and generalisation relations of the
problem at hand. VANS.py then produces, as output, a BIP file con-
taining the maximization formula in Equation 3.8, the constraints,
and the binary decision variables in a solver-readable format. The
BIP contains constraints for the exclusivity and generalisation rela-
tions following equations 3.9 and 3.10. VANS.py also automatically
includes constraints for non-aligned norms (having negative or neutral
value alignment) as in Equation 3.11.

• Secondly, BIPSolver.py takes as input the resulting BIP file and solves
the problem by invoking CPLEX. Its output is thus a solution file
containing the assignment of the binary decision variables, so that
only those norms that are assigned a value of 1 will be selected.
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Appendix B

VANS generation

Algorithm 1 details how to generate a VANS problem. It considers six pa-
rameter variables: num norms, the number of norms; num val, the number
of values (in our experiments this has been fixed to 10% of the number
of norms); rel density, the probability of two norms having a relation; in-
comp perc, the probability of a relation being an incompatibility relation
(otherwise, it is a generalisation relation); val perc, the probability of a
norm promoting/demoting a value (otherwise, the norm is unrelated, in our
experiments this has been fixed to 20%); and class prob, an equivalence class
probability. When generating a new value, class prob is the probability of
the value being more preferred than the last generated (otherwise, they are
equally preferred). This is used to determine the value equivalence classes
to compute relevance as in Eq. 3.5. In our experiments this probability
was fixed to 20%. The algorithm uses the functions: random bool(prob),
which returns True with probability prob (otherwise, it returns False); and
random(x, y), which returns a number in the interval [x, y]. Lines in the
algorithm come along with comments to make pseudo-code self explanatory.
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Algorithm 1 Generation of artificial VANS problem

1: procedure gen VANS(num norms, num val, rel density, incomp perc,
val perc, class prob)

2: for i ∈ [1, num norms] do
3: norms← ni . Generate the norms
4: end for
5: for i ∈ [1, num norms− 1] do
6: for j ∈ [i+ 1, num norms] do . For each pair of norms (n1, nj)
7: if random bool(rel density) then . Assign a relation with

probability rel density
8: if random bool(incomp perc) then . The relation is of

incompatibility with prob. incomp perc
9: incomp rel ← (ni, nj)

10: else . Otherwise, the relation is of generalisation (hence,
probability 1-incomp perc)

11: gen rel ← (ni, nj)
12: end if
13: end if
14: end for
15: end for
16: class← 1 . The equivalence class of the value, the greater the

number, the more preferred the class
17: for i ∈ [1, num val] do
18: values← vi . Generate the value
19: relevance[vi]← 2class . Assign relevance to the value
20: if random bool(class prob) then . Change class to a more

preferred one with probability class prob
21: class← class+ 1
22: end if
23: end for
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24: for n ∈ norms do
25: for v ∈ values do . For each pair of norm n and value v
26: if random bool(val perc) then . n promotes/demotes v (is

not neutral with v) with probability val perc
27: promotion(n, v)← random(−1, 1) . The promotion is

randomly selected from [-1, 1]
28: else . Otherwise, n and v are neutral
29: promotion(n, v)← 0 . Assign promotion 0
30: end if
31: end for
32: end for
33: end procedure
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Appendix C

DSSP algorithm and
implementation

Algorithm 3 encodes a DSSP into a BIP, and also writes this encoding into
a file that can be fed into a BIP solver. This algorithm receives as input:

• a non-empty list of elements X;

• a list F of feature equivalence classes in descending order of prefer-
ence (each equivalence class being a list of its indifferently preferred
features, hence the feature order f1 �F f2 ∼F f3 �F f4 would be
represented as as F = [[f1], [f2, f3], [f4]]);

• a mapping f relating elements to their features; and

• a list of constraints C (each constraint c ∈ C being a string).

The algorithm uses several auxiliary functions: sort(l, k) sorts a list l in
ascending order using as key a function k; write(s, file) writes a string s in
a separated line in the given file; str(num) converts a numeric value num
into a string; and get(l, i), which returns the element in position i in a list
l. Finally, given two strings s and s’, we represent string concatenation as
s+s′. Notice also that ”+” represents a string solely composed by character
'+'.

Algorithm 2 provides a function used in Algorithm 3 to compute profile
vectors according to the definition in Section 4.6. Algorithm 2 receives as
input an element x ∈ X, a list F of feature equivalence classes in descending
order of preference, and a mapping f relating elements to their features.
From that, it builds the profile of the element, µ(x) (as a list instead of a
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vector), following Eq. 4.1. The auxiliary function has feature in Algorithm
2 checks if an element has a given feature or not.

There is a publicly-available implementation of our DSSP encoder and
solver at https://gitlab.iiia.csic.es/marcserr/dssp.

Example 29 below shows an example of the BIP output by Algorithm 3.

Example 29. Suppose that a school wants to award three scholarships to
their best last year students. Eight candidate students are considered, for
which we assign decision variables X = {s1, s2, ..., s8} (where si = 1
means student si is awarded with a scholarship and si = 0 means that si is
not). The features that the school considers are: academic excellence (ax),
good behaviour (gb), having helped the staff (hl), and punctuality (p). Aca-
demic excellence is the most important feature to compete for a scholarship,
followed by good behaviour and helping staff members, which are indiffer-
ently preferred. Finally, punctuality is the least preferred feature. Hence,
the feature order is: ax � gb ∼ hl � p, meaning that F= [[ax], [gb, hl], [p]].
The features of each student are:

s1: ax, gb, hl s2: ax, gb, hl, p s3: gb, hl, p s4: ax, gb, p
s5: gb, hl, p s6: hl, p s7: ax, gb, p s8: gb, hl

Finally, in terms of constraints, since there are only three scholarships, we
have to consider a constraint that enforces that we have to exactly select
three students: s1+s2+s3+s4+s5+s6+s7+s8=3. Furthermore, suppose that
s1-s4 belong to one group, whereas s5-s8 belong to another group, and the
school wants to give at least one scholarship to each group. Thus, we have to
consider constraints ”s1+s2+s3+s4>=1” and ”s5+s6+s7+s8>=1”. Then,
the resulting BIP after applying Algorithm 3 would be :

Maximize
1s6 + 2s8 + 4s3 + 4s5 + 12s4 + 12s7 + 36s1 + 72s2
Subject To
s1+s2+s3+s4+s5+s6+s7+s8=3
s1+s2+s3+s4>=1
s5+s6+s7+s8>=1
Binaries
s1
s2
s3
s4

https://gitlab.iiia.csic.es/marcserr/dssp
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s5
s6
s7
s8
End

The solution to the BIP above is {s1, s2, s7}.

Algorithm 2 Compute profile vector µ (see Section 4.6)

1: procedure mu(x, F, f)
2: mu← An empty list . Initialise profile vector
3: for c ∈ F do . From most preferred to least preferred feature

equivalence class
4: num← 0 . Counter of features of x in class c
5: for f ∈ c do . For all features in the equivalence class
6: if has feature(x, f, f) then
7: num← num+ 1 . Increase feature counter
8: end if
9: end for

10: append(num, mu) . Append num at the end of profile vector
11: end for
12: return mu
13: end procedure
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Algorithm 3 Encoding a DSSP into a BIP

1: procedure Build BIP(X, F, f, C)
2: FILE bip . Create an empty BIP file
3: pref ← 1 . Initialise preference variable
4: toadd ← 1 . This variable

accumulates preferences while ”traversing” the same equivalence class,
and it is added to pref when changing to another equivalence class

5: i ← 1 . Initialise index
6: sort(X, mu(x, F, f)) . Lex-cel uses µ in Alg.2 to sort X from least

to most preferred
7: write(”Maximize”, bip) . Write objective function
8: objfunc ← str(pref)+get(X, i) . Initialise objective function to

”1x1”
9: while i ≤ |X| do

10: i← i+ 1 . Increase index i
11: if mu(get(X,i),F, f) = mu(get(X,i-1),F, f) then . xi ∼e xi−1 in

the same class
12: objfunc ← objfunc + ”+” + str(pref) + get(X, i) . eg:

objfunc=”1x1 + 1x2”
13: toadd ← toadd + pref
14: else . xi �e xi−1 in a more preferred equivalence class
15: pref ← pref + toadd
16: objfunc ← objfunc + ”+” + str(pref) + get(X, i) . eg.:

objfunc=”1x1 + 2x2”
17: toadd ← pref
18: end if
19: end while
20: write(objfunc, bip)
21: write(”Subject To”, bip) . Write constraints
22: for c ∈ C do
23: write(c, bip)
24: end for
25: write(”Binaries”, bip) . Write binary decision variables
26: for x ∈ X do
27: write(x, bip)
28: end for
29: write(”End”, bip)
30: end procedure



Appendix D

VANS algorithm and
implementation

Algorithm 4 encodes a VANS problem into a BIP. The input of the algorithm
contains: a non-empty set of norms N; a list of value equivalence classes
V (each equivalence class being a list of its indifferently preferred values);
a mapping relating norms to their promoted values f; a list of mutually
exclusive relations (the relations being binary tuples); and a generalisation
graph (implementing generalisation relations, being the parents of a norm,
more general norms). First, the algorithm builds the constraints on norms
discussed in Section 4.9 using Algorithm 5. Thereafter, it feeds N , V , f, and
the obtained constraints into Algorithm 3 in appendix C.

Algorithm 5 uses several auxiliary functions (some of them already used
in appendix C): append(x, list) appends x at the end of the list; get(l, i)
returns the element in position i of the list l; parents(n, G) returns a list of
all parents (direct or not) of n in the graph G; direct siblings(n, G) returns
a list of the direct siblings of n in G. Finally, given two strings s and s’, we
represent string concatenation as s + s’. Notice also that ”+” represents a
string solely composed by character '+'.

Example 30 below shows the BIP obtained after applying Algorithm 4
to Example 18.

Example 30. BIP file:
Maximize
3n1 + 3n2 + 1n3 + 1n4
Subject To
n1 + n3 <= 1
n2 + n4 <= 1
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Binaries
n1
n2
n3
n4
End

The solution to the BIP above is {n1, n2}.

There is a publicly-available implementation of our encoder for VANS
problems at https://gitlab.iiia.csic.es/marcserr/vans-problem.

Algorithm 4 Encoding a VANS into a BIP

procedure Vans BIP(N, V, f, Rx, G)
C ← vans constraints(N, Rx, Rg) . See Algorithm 5
Build BIP(N, V, f, C) . See Algorithm 3 in appendix C

end procedure

https://gitlab.iiia.csic.es/marcserr/vans-problem
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Algorithm 5 Building constraints for VANS from norm relations

procedure vans constraints(N, Rx, G)
C ← An empty list . Initialise constraints
for (n1, n2) ∈ Rx do . Loop over norm exclusivity relations

excon ← n1 + ” + ” + n2 + ” <= 1” . Exclusivity constraint as
in Eq. 4.8

append(excon, C)
end for
for n ∈ N do

for p ∈ parents(n, G) do . Look at all the parents of norm n
gencon ← n + ” + ” + p + ” <= 1” . Generate constraints

based on Eq. 4.9
append(gencon, C)

end for
if |direct siblings(n, G)| > 1 then

i ← 1
gencon ← get(direct siblings(n, G), i) . Generate constraints

based on Eq. 4.10
while i ≤ |direct siblings(n, G)| do

i ← i + 1
gencon ← gencon + ” + ” + get(direct siblings(n, G), i)

end while
gencon ← gencon + ” <= ” + str(|direct siblings(n, G)| - 1)
append(gencon, C)

end if
end for
return C

end procedure
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M. (2002). Constraining autonomy through norms. In AAMAS, pages
674–681. ACM.

[Luo et al., 2017] Luo, J., Meyer, J.-J., and Knobbout, M. (2017). Reason-
ing about opportunistic propensity in multi-agent systems. In AAMAS
2017 Workshops, Best Papers., pages 1–16.

[McLaren, 2006] McLaren, B. M. (2006). Computational models of ethical
reasoning: Challenges, initial steps, and future directions. IEEE intelli-
gent systems, 21(4):29–37.

[McLaren and Ashley, 1995] McLaren, B. M. and Ashley, K. D. (1995).
Case-based comparative evaluation in truth-teller. In the Proceedings
From the Seventeenth Annual Conference of the Cognitive Science So-
ciety.

https://www.loomio.org/


186 BIBLIOGRAPHY

[McNamara, 2011] McNamara, P. (2011). Praise, blame, obligation, and
dwe: Toward a framework for classical supererogation and kin. Journal
of Applied Logic, 9(2):153–170.

[Meena and Bharadwaj, 2020] Meena, R. and Bharadwaj, K. K. (2020). A
genetic algorithm approach for group recommender system based on par-
tial rankings. Journal of Intelligent Systems, 29(1):653–663.

[Mercuur et al., 2019] Mercuur, R., Dignum, V., Jonker, C., et al. (2019).
The value of values and norms in social simulation. Journal Artificial
Societies and Social Simulation, 22(1):1–9.

[Meyer and Wieringa, 1993] Meyer, J.-J. C. and Wieringa, R. J., editors
(1993). Deontic logic in computer science: normative system specification.
John Wiley and Sons Ltd., Chichester, UK.

[Modgil, 2006] Modgil, S. (2006). Value based argumentation in hierarchical
argumentation frameworks. In Proceedings of the 2006 Conference on
Computational Models of Argument: Proceedings of COMMA 2006, pages
297–308, Amsterdam, The Netherlands. IOS Press.

[Montague, 1989] Montague, P. (1989). Acts, agents, and supererogation.
American Philosophical Quarterly, 26(2):101–111.

[Montes and Sierra, 2021] Montes, n. and Sierra, C. (2021). Value-guided
synthesis of parametric normative systems. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Sys-
tems (AAMAS 2021), pages 907–915. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[Morales et al., 2015a] Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar,
J. A., Vasconcelos, W., and Wooldridge, M. (2015a). On-line auto-
mated synthesis of compact normative systems. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 10(1):2:1–2:33.

[Morales et al., 2013] Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar,
J. A., Wooldridge, M., and Vasconcelos, W. (2013). Automated synthesis
of normative systems. In AAMAS 2013, pages 483–490.

[Morales et al., 2014] Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar,
J. A., Wooldridge, M., and Vasconcelos, W. (2014). Minimality and
simplicity in the on-line automated synthesis of normative systems. In
AAMAS 2014, pages 109–116, Richland, SC. IFAAMAS.



BIBLIOGRAPHY 187

[Morales et al., 2015b] Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar,
J. A., Wooldridge, M., and Vasconcelos, W. (2015b). Synthesising liberal
normative systems. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’15, pages 433–
441.

[Morales et al., 2015c] Morales, J., Mendizábal, I., Sánchez-Pinsach, D.,
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