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Abstract

Deciding which are the best treatments is a complex task when patients suffer multiple
impairments and when a multidisciplinary team is involved in the intervention. There is
always more than a unique treatment option and the results sometimes can be viewed
in a short period or only be capable to be measured when the treatment is finished. In
this context, the design of effective Clinical Decision Support Systems (CDSS) to help
clinicians to select most appropriate interventions is still a challenge.

The amount of available data is not always the same for all patients, especially in early
treatment stages, hindering the inference in CDSS. To improve the capabilities of CDSS,
different components are proposed within a CDSS framework for long-term treatments.
A first component is focused on improving the quality of the inferences in missing data
scenarios. The Dynamic Multiple Imputation (DMI) algorithm is presented as an effective
methodology for data enhancement in CDSS. DMI is capable to adapt to different scenarios
with a low or high percentage of missing data. Several experiments conducted reveal
that DMI is competitive with regression problems. A second component is devoted to
weigh confidence measures, given the uncertainty associated to missing information, by
incorporating Mutual Information measures in confidence existing estimators. A third
component, based on a community detection algorithm, is proposed to find relationships
between clinical decisions that are not explicit. Finally, to illustrate the applicability
of different proposed components, two real clinical use cases with chronic patients are
presented. The first in the hospital context and the other in the home context.
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Chapter 1

Introduction

The development of Decision Support Systems (DSS) has a large tradition in the �eld
of Arti�cial Intelligence, specially in the clinical domain [9, 39, 48]. The design of DSS
has tackled by a variety solutions ranging from probabilistic models [40, 54], possibilistic
models [7, 22], machine learning [69], or case-based reasoning [43, 38].

Nevertheless, the intrinsic complexity to clinical problems has limited the development of
e�ective decision support systems [8]. The main reason behind such limitation is that the
integration of Clinical Decision Support Systems (CDSS) into healthcare processes requires
a detailed and complete understanding of the whole clinical processes involved (e.g. the
decisions to be taken, the appropriate time to take a decision, or how the di�erent clinical
decisions interact among each other) [50]. An additional challenge for CDSS is the limited
amount of available data in early treatment stages. Missing data may be originated by
di�erent reasons: errors during data entry; information considered as irrelevant; lack of
time or resources, etc [65]. Unfortunately, these di�erent reasons are usually not explicitly
reported and bias CDSS in di�erent ways.

In recent years the design of CDSS have resurged as consequence of the massive digitization
of clinical data performed by health care centers and hospitals that migrated all their
daily activity into structured databases called Electronic Health Records (EHR). The
aim of the EHR has changed during the last decade, evolving from simple patient data
records to the integration of health data from multiple sources, ensuring security and
interoperability capabilities and using internationally recognized standards [23]. Current
trends in EHR are the design of more intuitive interfaces, reduction of data duplication,
and gradual incorporation of clinical decision support systems to assist professionals when
solving di�erent clinical tasks.

Although CDSS may tackle di�erent tasks, the most common use of CDSS is focused on
diagnosis [48]. Also called description systems, the main goal of diagnosis is to identify the
patient disease through knowledge models usually acquired from data. However, diagnosis
is not the only clinical task (see Figure 1.1). Prognosis is also a key element in which
experts estimate the future scenarios that patients can achieve depending on whether
some clinical treatments/interventions are or aren't performed. The third main clinical
task is prescription. Prescription is focused on selecting the most appropriate treatments
taking into account diagnoses and prognoses.
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Figure 1.1: Problem description.

A CDSS is designed as a system that receives a set of input variables that are exploited
to produce outcome variables. Historically, the working hypothesis of CDSS is to work in
a \one-shot" mode. That is, input is received at the same time and then the outcome can
be established from this input. Nowadays, the focus moved to systems able to operate in
long processes, such as complex clinical treatments, where hypotheses and conclusions are
periodically/incrementally determined/reviewed.

Often there is more than a unique treatment option and some of the treatments provide
short-term results (few days) whereas other treatments focus on long-term e�ects (some
months) [27]. This implies that the e�ects of some treatments are not observed until a long
time later. Moreover, when patients are subjected to multiple interventions at the same
time, part of them may interfere, either positively or negatively, with other interventions.
Additionally, over the weeks, new, initially hidden problems might arise.

The clinical environment usually involves multiple professionals (such as doctors, phys-
iotherapists, psychologists, neuropsychologists, occupational therapists) and each one of
them identi�es and treats the patients' problems from their own perspectives. When in-
terventions are assigned to di�erent professionals, interactions among interventions may
remain undetected. Usually, the resulting information from the multiple parallel applied
treatments is fragmented into di�erent sources of data silos.

1.1 Current Facilitators and Barriers for CDSS

Clinicians base their decisions taking into account the available information related to a
patient. When more data becomes available, treatments are reviewed and/or reformulated.
However, sometimes a certain level of uncertainty arises from the patient's individual
response capability to treatments [8]. Although there are guidelines and protocols to
orient clinical decisions, personalized medicine aims to maximize treatment e�ectiveness.

Personalized medicine is based on the fact that each individual has di�erent needs and
can evolve di�erently [8]. Nevertheless, it also shall maintain the delicate balance between
o�ering the same treatment opportunities to all patients (equity) and ensuring that each
patient is receiving the most adequate and cost e�ective treatment (resource optimization).

2



Figure 1.2: Ideal Planning versus planning reality.

FACILITATORS BARRIERS
Measurable patient improvements System rarely used
Financial incentives Clinical Workow changes
User-friendly design Usability issues
Relevant recommendations Lack of reliability
Large data volume Lack of relevant information

Incremental information
Integration into clinical workows Practice-based medicine customization

Clinical workow stage

Table 1.1: CDSS barriers and facilitators.

The ideal planning in practice-base medicine is reformulated time to time to adjust it to
the current resource availability, organization factors or expected therapy response (see
the adapted Figure 1.2 from [51]).

Although CDSS are generally focused to guide the clinicians, nowadays there is a common
consent that patients should play an active role in the decisions related to treatments
to be applied. This patients' empowerment requires to consider the patients' needs and
preferences while most of the CDSS are designed to maximize the result, ignoring patient
preferences. Incorporating patient preferences, may lead to deal with situations in which
patients feel more comfortable with interventions with lower bene�ts.

Some facilitators to implement a CDSS (see Table 1.1) are measurable patient improve-
ments, �nancial incentives, a user-friendly design, relevant recommendations, huge data
volume, and their integration with clinical workows [50]. Most commonly, the facilitators
are oriented to cost-e�ectiveness, i.e. to maximize the use of limited resources to achieve
the highest improvement in patients. However, as it was shown previously, not all the
healthcare workow stages have enough precise and relevant information to facilitate the
incorporation of CDSS. Additionally, while the lack of reliability and comprehensibility
of existing CDSS raise concerns among clinicians, at the same time CDSS may reveal
de�ciencies in the clinical workow requiring organizational changes [13, 52].

Due to the potential of CDSS in terms of cost-e�ectiveness, CDSS awaken the interest
of healthcare managers, providers and stakeholders. In the paradigm of e�ciency and
better management of resources, there is a clinical need to de�ne a more personalized and
e�cient medicine for patients with multiple-impairments incorporating capabilities such
as (1) dealing with partial and incremental information; (2) improved con�dence measures
when only partial information available; and (3) the identi�cation of unknown interactions
when preforming multiple treatments at the same time.

3



1.2 Motivation

This research started thanks to the opportunity that Hospital Guttmann provided me
to dive into the complexity of decisions clinicians have to deal with regarding the neuro-
rehabilitation of patients. Patients at neuro-rehabilitation units are long stay patients
where a team of multi-disciplinary experts work together to maximize the recovery of
people that su�er a chronic condition. Speci�cally, the aim of this research started from
the analysis that current CDSS still have room for improvement in the context of long
healthcare processes.

For instance, in the �rst hospitalization days, clinicians can only partially evaluate pa-
tients. This constraint may represent a problem for CDSS because they work under the
hypothesis that main relevant information is given. But usually, only through additional
assessments, which are performed over several days, a more precise characterization of the
patient may be achieved. To deal with this problem, some CDSS generate multiple models
from partial views of historical data. But these independent models may produce incon-
sistencies, changing the predictions every time new data is incorporated. Additionally,
because CDSS tend to be used as \one shoot" systems, the revision of previous outcomes
or the analysis of the impact of new knowledge may not be adequately addressed.

An important issue in CDSS outcomes is the capability to incorporate explanations and
con�dence measures over these outcomes. In the clinical context, more important than the
solution is the capability to provide trust. There exists a vast literature regarding con�-
dence measures. However, the way missing information should a�ect con�dence measures
is still unclear.

In the context of patients with multiple impairments, multiple experts perform several
interventions at the same time, focusing on multiple therapeutic goals, and determined
by multiple diagnoses. Due to each intervention is usually related to di�erent therapeutic
goals, and each therapeutic goal may contribute to solve, to a di�erent extent, several
impairments, in some cases it is di�cult to precise the clinical evidence of a speci�c treat-
ment. If we add the fact that, over time, new interventions are incorporated, the volume
of information generated for a given patient becomes overwhelming. Thus, providing
computational tools to support clinical decisions is still a challenge.

Interventions are performed by patients following a set of activities that clinicians super-
vise. However, some of these activities do not take into account patient preferences. Actual
societies are oriented to empower patients by giving them a more active role. Including
patient preferences and abilities in treatments have been shown as a powerful strategy to
improve patient adherence and patient recovery.

1.3 Contributions

The main goal of this research is the development and application of AI techniques, and
especially machine learning algorithms, to the design of Clinical Decision Support Systems
for long healthcare processes. Additionally, the aim of this research is the evaluation of
proposed solutions in real long term clinical healthcare processes: the Institut Guttmann
and MST-Project. Concretely, the contributions are:
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� De�ne a general architecture of Clinical Decision Support System (CDSS) for long
term healthcare processes.

� Propose data enhancement techniques. How the system can anticipate the data that
is not already available? How can prediction accuracy be improved?

� Propose con�dence measures to support CDSS. How con�dent is a CDSS about
performed predictions taking into account the known/unknown part of the problem?

� Propose tools to assess treatments for patients with multiple impairments. How
can a CDSS �nd non-explicit relationships between patient problems and treatment
goals in multi-impairment scenarios?

� Propose solutions to transfer our contributions for long-term healthcare processes to
two speci�c use cases (Institut Guttmann, MST-project).

1.4 Document structure

The document, including this introductory chapter, is composed of seven chapters with
the following structure. In Chapter 2 healthcare stages are described showing that a
clinical process is sometimes not viewed as a long-term treatment. The lack of clinical
decision support systems to guide experts in the entire healthcare process is highlighted.
A literature review is performed showing how CDSS systems have been implemented
historically. Finally, a proposal for a CDSS framework aimed at long-term treatments is
presented.

Chapter 3 is devoted to data enhancement in scenarios with partial information. Clinical
domains are very representative examples of these scenarios with a signi�cant amount of
missing information. The �rst part of the chapter describes existing proposals to address
this issue, focusing on imputation techniques. We will show that there is still room for im-
provement in changing environments where the percentage of missing information may be
very diverse. We propose a new imputation methodology, Dynamic Multiple Imputation,
and report experiments conducted both in regression and classi�cation problems. The aim
behind our proposal was to design an algorithm able to adapt to di�erent percentages of
missing data.

Chapter 4 describes existing con�dence measures and discusses the necessity of extending
them to handle partial information. Since current con�dence measures usually do not take
into account what information is available, we propose a new solution, based on mutual
information measures, to mitigate this issue. The proposed solution was evaluated and
performed experiments are reported.

Chapter 5 focuses on �nding non-explicit relationships between di�erent data taxonomies.
In the context of multi-impaired patients several diagnoses have to be treated. In turn,
these multiple diagnoses generate several therapeutic goals. Finally, therapeutic goals
generate several interventions that are performed at the same time. But the relationships
between diagnoses and therapeutic goals and the relationships between therapeutic goals
and interventions are \n to m" relations and usually not explicitly reported in patient
health records. In Chapter 5, we propose a new methodology to explore and analyze these
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implicit relationships. Moreover, we present a tool to support the analysis of a new patient
starting the rehabilitation program.

Chapter 6 introduces two real clinical use cases. The �rst use case applied to Institut
Guttmann, a hospital for patient rehabilitation. This use case illustrates how the di�er-
ent proposed solutions can contribute in a hospital environment with patients expending
several months in rehabilitation. The second use case is oriented to illustrate the clinical
decision support in a home-based environment. In the Music Supported Therapy (MST)
project, funded by \La Marato de TV3", a group of chronic patients who su�ered a stroke
follow a home-based treatment therapy of 30 sessions during ten weeks.

Concluding the document, the last Chapter summarizes the di�erent proposals, high-
lighting the contributions. With the purpose of continuous improvement, possible future
research lines are also presented to try to cover issues aroused during this research.
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Chapter 2

Clinical Decision Support System
for long-term treatments

Clinical Decision Support Systems (CDSS) have a large research trajectory in AI. How-
ever, the heterogeneity of proposed solutions di�cults their generalization in a common
taxonomy or framework. With the aim of providing a general taxonomy to describe and
compare CDSS, some authors de�ned a framework to classify Clinical Decision Support
Systems [71]. Their framework characterizes CDSS in 24 di�erent taxonomy axes grouped
into 5 main categories: (1) the clinical context and tasks that a CDSS is tackling; (2) the
knowledge and data sources exploited; (3) the methods and algorithms incorporated; (4)
the kind of delivery of the outcome of the CDSS; and (5) their integration into the clinical
workow.

The clinical context refers to the speci�c task a CDSS deals with and most of them
are devoted to diagnosis and prognosis problems, although, prescription and prevention
problems are gaining popularity in recent years. Another general characteristic of CDSSs
is that they are designed as a \one shoot" system. In such systems, every new input is
managed independently of the previous ones, without detecting continuity or performing
any revision of the outcome previously generated by the CDSS. The one shoot approach
has promoted highly specialized CDSS but also CDSS with a narrow scope. While these
systems are appropriate for some specialized clinical problems, they are not suitable for
dealing with chronic patients and/or patients subjected to long-term treatments where
detecting continuity or performing any revision is mandatory.

The knowledge and data sources exploited by a CDSS are a key issue. Electronic Health
Records (EHR), potentially, may provide extended information regarding a speci�c pa-
tient, but the heterogeneity of information sources (text, images, taxonomies, ...) is usu-
ally a stopper to e�ectively exploit them. Also privacy issues may additionally restrict the
available information. Moreover, in real clinical scenarios, the time and order in which
information is available may di�er signi�cantly from one patient to another.

Together with data sources, inference methods and algorithms incorporated into CDSS
determine the �nal capabilities and outcomes. As it has been introduced before, the
heterogeneity of methods proposed is as diverse as the amount of AI sub-�elds. Although
maybe more important than the inference methods, the diversity of processes involved

7



Figure 2.1: Typical clinical workow.

in clinical decisions and their inter-relations described as clinical protocols and clinical
guidelines, determines the roles of CDSS.

2.1 Healthcare workow

Clinical decisions and actions are all inter-related and they can be framed in a common
workow process guided by established clinical protocols (see Figure 2.1). Each stage
of this workow involves di�erent tasks and professionals. Usually, the healthcare pro-
cess starts with a diagnosis task. In turn, diagnosis requires that the main information
from a given patient has to be acquired. This initial patient information is organized
as an electronic health record and can be conceptualized as a set of variables de�ning
a patient pro�le. From this pro�le, clinicians diagnose patients' problems from present
symptoms [9]. Correctly diagnosing a disease is key to clinical decisions, but it can be
overwhelming as time is often crucial to mitigating the risks and repercussions associated
with diseases. For instance, stroke is one of the clearest examples where rapid diagnosis
is of utmost importance to minimize loss of blood supply to the brain and its possible
outcomes. Another example is cancer, where an early-stage diagnosis can dramatically
increase the chances of survival.

Once patients have a diagnosis, the next stage focuses on treating the problem [9]. There
are three main clinical actions: determine the group of possible treatments, assess the
suitability of each treatment (known as a prognosis task) and prescribe the most accurate
and appropriate treatment customized for the speci�c patient pro�le. Typically, the initial
stage of treatment is performed in hospitals where patients are closely monitored in terms
of medication, food, and vital signs. The controlled environment of hospitals guarantees
that the patient is following the treatments and, at the same time, the e�ects of the
treatments are also monitored. Once patients are stable and the intensive treatment
�nishes, patients return home but some of them will continue to visit the hospital regularly
to perform part of their therapy. This sub-stage is known as \outpatient". It is also worth
pointing out that not all diseases or hospitals include this sub-stage and the transition
between hospital and home treatment can be emotionally demanding.

Finally, patients' performance is periodically monitored to assess that they are improving
as expected. In this stage, patients are screened few months after the initial diagnose
to assess their health condition. As a close supervision of the patients no longer exists,
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professionals cannot be certain that all patients follow the recommendations given and the
way patients are able to perform them. This lack of information related to the environ-
mental context of the patient is sometimes a problem for clinicians to determine what are
the best actions or recommendations.

Currently, one of the key clinical stages is prevention. It is clear that preventing diseases
before they appear is the winning strategy but, at the same time, one of the most di�cult
tasks to carry out. Therefore, preventive care focuses on the decisions that should be
taken to minimize the risk of future illnesses [9]. However, despite prevention is one
of the most important healthcare stages because it reduces the number of people with
health problems, it is not well covered. Usually, few people perform regular revisions,
even if they have severe antecedents of clinical problems. For the majority of people,
this periodic revision tends to be voluntary. Analogously, the follow up stage also is very
important but not well covered in some cases [9].

Clinical decisions are based on evidence medicine that guide the experts to make decisions
throughout healthcare process. According to [70], there are three main types of evidence-
based medicine: literature-based evidence, practice-based evidence, and patient-directed
evidence.

Literature-based evidence is based on the exploitation of results reported in litera-
ture. Departing from clinical trials and results described in literature, new treatments
are proposed and discussed. Moreover, some publications are devoted to analyze the lim-
itations of previous publications (sensitive to a type of population, problems that do not
reect certain speci�c aspects, ...) [70]. Although new treatments are regularly proposed,
the di�culties to update actual clinical treatments are daunting as the volume of related
publications is huge but the time that clinicians have to read them is extremely limited
[70]. Furthermore, automatizing the analysis of the literature is a hard task because the
content is mainly described in natural language, which makes di�cult the implementation
of speci�c algorithms [70].

Practice-based evidence is also based on literature. Despite the fact that literature-
based decisions are the most important for evidence-based medicine, there exists a gap
with practice-based medicine [70]. Therefore, real clinical environments always require
to adjust treatments. The ideal treatments described in literature are adjusted to the
environmental context, such as the availability of materials, resources, or the previous
experience of clinicians. Additionally, time is an important variable, as some studies in
literature are conducted with a concrete window treatment. Nevertheless, the experience
accumulated in a given hospital may allow to personalize treatments according to speci�c
patient conditions.

Finally, patient-directed evidence is based on the di�erences resulting from each per-
son (patient) preferences and expectations. Although some researches argue that this
approach could also be understood as evidence-based medicine, nowadays there is a com-
mon agreement that patients should be involved in clinical decisions due to their active
role in their health care guarantees a maximal adherence to treatments. In this context,
patients gain more autonomy to decide between di�erent treatment options, although they
still consider clinicians as experts [70].

Historically, the �rst CDSS adopted followed the literature-based evidence approach, i.e.,
�nding and providing new medical evidence to the experts by providing, into the daily
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practice, tools to exploit knowledge described in literature. Usually, this type of CDSS
does not exploit the information acquired in daily practice and tends to be a \One-shot"
decision support. Furthermore, these systems focus on a speci�c health task or clinical
action rather than on trying to guide clinicians in the entire healthcare process. Covering
such process should require the design of multiple and independent \One-shot" CDSS
which might produce inconsistencies between them if applied at the same time, such
as, changing predictions every time new information is available. The alternative is to
design a unique CDSS covering all the inter-related decisions regarding the di�erent health
processes and stages. In this regard, current trends are oriented to apply CDSS in a mixed
patient/practice-based medicine approach trying to consider the entire healthcare process.

Regardless of the evidence-medicine approach, clinical domain always has to deal with
many uncertainties as not all the data required to take a decision may be available when
needed. Specially in initial healthcare stages, when the patient pro�le can be only estab-
lished on a partial view as test results and the issuance of corresponding reports takes
time, although patients shall be treated from the �rst day that they arrive to a hospital or
health center. Decision making in this stage is also particularly important both in terms
of patient recovery and hospital resource allocation. Over the weeks, the patient pro�le
is complemented based on the �rst completed reports providing additional information
about the real status of the patient. Such data in some cases will deviate from the initial
impression of the patient's situation and his/her expected recovery plan. The challenge
for the whole team of professionals involved in the healthcare process is to prioritize and
organize the patient's interventions over time, since not all problems may be treated at
the same time.

The temporal order in which the di�erent data may be available vary from one patient
to another. Furthermore, the importance of certain information depends on the problem
type (i.e. di�erent characteristics may be relevant for assessing di�erent diagnoses) and
on timing (not all characteristics may be available at the same time, and some of them
may be interrelated or resulting from others) [4]. Thus, reasoning with partial knowledge
becomes mandatory as there is the need to take decisions before all the data is available.

Moreover, predicting the same outcome at various temporal moments using di�erent avail-
able information can lead to prediction contradictions. Imagine a patient who has been
prescribed a set of interventions and, as per the clinicians feedback, the patient does not
improve as expected. At this point, a clinician may suspect that the patient is su�ering
from stress and may consult a psychologist to con�rm her hypothesis. After several tests
administrated by the psychologist, the results are incorporated into the patient's pro�le.
At this point, the clinician has more information about the patient's condition and may
modify the interventions taking into account the patient's stress levels. That is, minimizing
the number of activities and giving more importance to rest in therapy. This change might
have an impact on the previously planned interventions by increasing performance of the
outcome (as the patient has less stress) or by decreasing it (because the patient performs
less activities). Therefore, determining causality between interventions and feedback is a
key factor in long term treatments, where the revision process is continuous.

The �rst CDSS come from the expert systems, where a rule-based system performed
inferences like an expert clinician in front of a patient [9]. The main idea was to identify
the relation of problems with solutions. For instance, if a patient if found to have a
set of symptoms/conditions then a solution is proposed. One approximation explored to
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Figure 2.2: Clinical Decision Support System.

implement CDSS was using Case Based Reasoning (CBR). CBR is based on the hypothesis
that \similar problems have similar solutions" [2, 1, 17]. The analogy in clinical problems
is that \similar patients have similar solutions". However, determining the appropriate
similarity measures is not always an easy task. In the CBR community, a strategy to
address partial information is with Conversational CBR systems[4] Conversational CBR
assume that the data is incomplete and provides a component able to select a question to
ask the experts regarding some information that is not yet available. Once question are
answered, they tare included into the case library. In [60] a distributed approximation is
proposed for clinical prognosis. Proposing a cooperative coordination mechanism, di�erent
agents try to make �rst an individual prognosis and results are sent to a coordinating agent.
The coordinating agent constructs a consensual solution. The integration of a CBR system
into a health care organization was explored in [5].

2.2 Proposal

In previous Section it we have shown that clinical decisions are taken in the context of a
several processes, following standard protocols, and that can be represented as a workow.
Moreover, decisions are inuenced by previous ones and by the continuous evaluation of
patients. With the aim of proposing a general framework for CDSS, Figure 2.1 is extended
to introduce a general architecture for CDSS (see Figure 2.2). The proposal distinguishes
two layers: the data layer and the decision layer. In the data layer, the top layer, the
di�erent data components stored in EHRs are detailed. The decision layer, bottom layer,
makes explicit the processes and data sources involved.

As it was introduced previously, the clinical decision workow starts with a patient assess-
ment. By collecting initial information, such as, demographic data, physical exploration,
or clinical tests, a �rst initial Diagnosis of the patient is performed. The outcome of this
diagnosis will be named as thePatient Pro�le .
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Then, from patient information and patient pro�le, clinicians perform an estimation (a
Prognosis) of patient recovery. For some diagnoses the prognosis may be the return to a
healthy condition while for others the prognosis may be limited to reach a better chronic
condition. The outcome of the prognosis will be called asTherapeutic Goals as they
establish the target for clinical interventions. Analyzing the information gathered in the
patient pro�le, and the estimated patient complexity, a set of therapeutic goals (e.g. walk
100 meters without help) may be determined.

Once the therapeutic goals have been established, the next stage in the clinical decision
workow is to Prescribe the most appropriate Interventions. Interventions may vary from
chemical treatments (drugs) to a diversity of physical and psychological activities (physical
rehabilitation, brain training, ...). In the context of patients with complex impairments
and necessities, the key issue of a multi-disciplinary team of professionals is to prioritize
and schedule these di�erent interventions.

Normally, each intervention is detailed in a clinical protocol. Clinical protocols are a
catalog of guidelines explaining, step by step, the actions and activities to be followed
giving a speci�c patient condition. They de�ne the ow of activities and the conditions
or requirements (patient achievements) to switch from one activity to the following. In-
terventions are subjected to revision because not all patients respond, evolve, or restore
their functionalities in the same way. As a consequence, aMonitoring phase is needed to
periodically review the evolution of the interventions. Therefore, the monitoring phase is
nothing else than a continuous assessment of the performance of the di�erent activities
the patients are involved. When a patient achieves a therapeutic goal associated with a
speci�c activity, the activity is replaced by another one to ful�ll next therapeutic goals.
However, when patients are subjected to multiple interventions at the same time, some
of them may interfere, either positively or negatively, with other interventions. Moreover,
due to each activity is usually assigned to a di�erent professional, these interactions might
remain undetected for a long period of time. Additionally, over the weeks, new, initially
hidden problems might also arise.

The proposal of this research does not intend to design a new CDSS. Instead, it aims to
provide a layer with several components to help CDSS. As well as CDSS support clinicians,
our proposal focuses on supporting CDSS with new capabilities (see Figure 2.3), with the
aim to approximate them to the real clinical environment. Speci�cally, the �rst proposal
is to introduce data enhancement techniques to deal with missing data values, providing
the CDSS's capability to predict independently of the available variables (see Chapter 3).
Next, an improvement of con�dence measures is proposed by assessing the possible impact
of missing data (see Chapter 4).

A common problem related with patients with multiple-impairments is that the relations
between diagnoses, therapeutic goals and interventions are di�cult to analyze. The intro-
duction of community detection techniques is proposed in the prescription phase to support
clinicians when deciding which are the best interventions. Speci�cally, such techniques al-
low the analysis of non-explicit relationships between patient problems and therapeutic
goals (see Chapter 5).

Moreover, to solve the lack of patient traceability, supervising techniques have been in-
troduced to anticipate future available scenarios taking into account the past results in
Section 2.4. Since the treatment process is an extensive process where patients evolve over
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Figure 2.3: Our proposal to enhance CDSS.

time and the interaction between patients and clinicians constantly generates data, the
current and past results are reviewed to assess whether diagnoses and prognoses are chang-
ing after certain period and why. Also, those systems highly sensitives to the available
information tend to be weak as their frequent changes in predictions results may generate
confusion to clinicians.

To sum up, several components will be proposed to provide more capabilities to CDSS
with the aim to improve the treatment results. Speci�cally, adding capabilities such as the
possibility to improve predictions in the context of incomplete data, by adding con�dence
measures to diagnoses and supporting the prescription of interventions by analyzing not
explicit relationships between clinical data.

2.3 Datasets

To evaluate the algorithms proposed in this dissertation, the focus is placed on two types
of problems: regression problems and classi�cation problems where classes are unbal-
anced. Speci�cally, experiments have been performed on three types of domains: datasets
available at public repositories, clinical data available at eICU research database and clin-
ical data from Innobrain and Play&Sing projects, not publicly available. These last two
datasets are described in Chapter 6 being real use cases that have motivated this research.

Publicly available datasets were selected with no missing values. To allow the assessment
and comparison of the di�erent algorithms, di�erent percentages of missing values were
simulated from the complete data.
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Dataset Features # Categorical Instances Source
AutoPrice 15 0 159 OpenML
Bodyfat 14 0 252 OpenML
Boston 10 0 442 SkLearn
California 8 0 20640 SkLearn
CPS 85 wages 10 7 534 OpenML
CPU small 12 1 8192 OpenML
Diabetes 10 0 442 SkLearn
ICU 19 0 200 OpenML
Plasma retinol 13 3 315 OpenML
Wine Quality 11 0 6497 OpenML

Table 2.1: Properties of regression datasets.

2.3.1 Regression Datasets

Several regression datasets from OpenML [80], Sklearn [59] and UCI [21] will be used to
evaluate the methods proposed in this research. The complete list of regression datasets is
summarized in 2.1. All the datasets have no missing value and all of them is composed of, at
least, 100 instances. The number of categorical features is also reported because existing
literature have shown that imputation in categorical features maps to a classi�cation
problem.

2.3.2 Unbalanced Classi�cation Datasets

An immense volume of diagnosis problems consist of determining whether a problem is
present or not (e.g. presence of cancer). These classi�cation problems have two possible
class solutions. Fortunately, the frequency of instances with the problem being present is
signi�cantly lower than instances without problem. This fact produces what is known as
unbalanced datasets.

To evaluate the sensitivity and con�dence of proposed methods several publicly available
unbalanced classi�cation datasets were selected (see Table 2.2). In terms of the class dis-
tribution, Table 2.2 shows that all the two-class datasets are exaggeratedly unbalanced.
For instance, in the Online intention dataset, there are 85% of instances from the dom-
inant class and only 15% from the minority class. Intuitively, a classi�cation algorithm
determining most instances as from the dominant class, will achieve high accuracy results
because in terms of probability there are more instances in the dominant class. In this
context, classi�cation algorithms tend to be more biased towards such class. Thus, the
real challenge is to determine the minority class being the class that is less frequent, but
where an error in this class has a greater impact on patients.

2.3.3 eICU Collaborative Research Database

The eICU Collaborative Research Database is a large multi-center critical care database
made available by Philips Healthcare in partnership with the MIT Laboratory for Com-
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Dataset Features Instances Dominant class Minority class
blood-transfusion 4 748 570 (76%) 178 (24%)
contraceptive 8 1473 1364 (93%) 109 (7%)
online-intention 17 12330 10422 (85%) 1908 (15%)
phoneme 5 5404 3818 (71%) 1586 (29%)
pima-diabetes 8 768 500 (65%) 268 (35%)

Table 2.2: Properties of classi�cation datasets.

Dataset Features Instances Problem type
eicu mortality 1000 10 1000 Classi�cation
eicu mortality 10000 10 10000 Classi�cation
eicu los 9 1000 Regression
eicu ner 4 2000 Non explicit relationships

Table 2.3: Datasets generated from eICU database.

putational Physiology. The eICU Collaborative Research Database has data from a com-
bination of many critical care units from the United States. The data in the collaborative
database covers patients admitted to critical care units in 2014 and 2015 [61].

From eICU four datasets have been selected: two classi�cation problems with unbalanced
classes, one regression problem, and one dataset with non-explicit relationships (see Ta-
ble 2.3). Speci�cally, for the classi�cation problem, two random datasets with di�erent
sizes (1000 and 10000) were generated. The classi�cation problem aims to classify cor-
rectly if a patient in the hospital will survive or not, being the mortality the classi�cation
variable. Mortality has two di�erent labels: alive or expired. Mortality labels were trans-
formed into 0 and 1 values, 0 for alive and 1 for expired. The variables used to train the
classi�cation problem are the age, gender, admission weight, admit source, motor, verbal,
eyes, apache score and the acute physiology score from the tablesapachepatientresult
and apachepredvar . Since missing values are arti�cially generated and then compared in
experiments, only patients without missing data were considered.

Regarding the regression problem, a random dataset with 1000 patients has been generated
with the purpose of determining the length of stay (LOS) at the hospital. The LOS is a
very frequent regression problem in clinical domains as it is used to compute the patient's
cost and resource e�ciency. Input variables for the regression problem are the same
variables selected for the classi�cation problem extended by an additional variable. The
new variable included is related to the discharge location.

The last dataset extracted from the eICU database was generated by combining patient
diagnoses (patient pro�les) with therapeutic goals clinicians assigned to 2000 di�erent
patients. The explicit relation between each speci�c patient diagnosis and each speci�c
therapeutic goal is not provided in eICU. Thus, this is a clear example of non-explicit
relationships between two types of clinical decisions.
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Figure 2.4: Design of monitoring dashboard.

2.4 CDSS Warnings on Monitoring phase

The monitoring phase is a continuous process where professionals revise the evolution of
patients and decide how to adjust their interventions based on the intervention's perfor-
mance. Our aim was to incorporate noti�cations (either positive or negative) when an
unexpected behavior occurs. For instance, if a patient is improving faster than expected,
the system noti�es such unexpected behavior. Alternatively, if a patient is performing
less than expected, the system also noti�es to experts of an unexpected performance that
probably will require a revision of the interventions.

Speci�cally, the monitoring system estimates four patient conditions:

� Expected : the patient is behaving as expected.

� Better than expected : the patient is progressing faster than expected.

� Worse than expected : the performance of the patient points to a slow progress
or to a stagnation.

� Unexpected : the performance of the patient is not the appropriate.

Note that the monitoring phase implies that the CDSS system will be periodically re-
evaluating each patient. The normal re-evaluation of patients should be performed once
a week, being the minimum time period established by professionals to assess signi�cant
changes.

After a week, all patients may be re-evaluated incorporating new information resulting
from latest interventions or any clinical test results. The monitoring of patients is per-
formed by a CBR system and starts by retrieving most similar patients. After the retrieval
step, two situations may occur: either the rank of the retrieved cases remains unchanged
with respect of the previous week or new cases are appearing at the top of the list (new
nearest neighbors). If the �rst scenario, no alarm (noti�cation) is thrown. If a change
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Figure 2.5: Initial neighborhood for the retrieval step of problem p.

occurs, the CBR reuse stage compares the prediction performed with these new cases with
the previous prediction.

Figure 2.6: Possible new retrieval scenarios generated after one week of treatment for
patient p.

An example is introduced to illustrate the generation of alarms using Figure 2.5 and
Figure 2.6, where shapes represent the patient complexity class and colors the patient
evolution. In the initial prediction for problem p (Figure 2.5), the CDSS retrieved 5
neighbors (n1,n2,n3,n4,n5). According to the neighborhood, for the complexity class (5
circles and 1 rhombus), the problemp was categorized as circle. Additionally, since the
predicted evolution of the majority of neighbors is orange (n1, n5, n3 have this color), the
estimated evolution was orange. Figure 2.6 shows four possible future scenarios as an evo-
lution of the initial retrieved scenario (Figure 2.5). Expectedscenario is a scenario where,
although the neighbors changed, the estimated evolution remains unchanged.Better than
expected is a scenario where neighbors changed and, accordingly to the new neighbors,
the estimation for the evolution has improved (it changed from orange to green).Worse
than expectedis the opposite scenario. Neighbors have changed and, with them, the new
estimation has worsened from orange to red. Finally, theUnexpectedscenario illustrates
a radical change in the neighborhood. The problem is not only a change of neighbors but
a change in the class of the neighbors, i.e. a scenario where the complexity class of the
neighbors is di�erent.

Note that, the information related to each problem increases over the weeks, therefore,
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the CDSS system has to deal with partial and incomplete data as the full patient picture
will only be available at the end of the hospitalisation process.

2.4.1 Experiments

As described previously, unbalanced datasets are usually composed by two classes in which
one of the classes has a large volume of examples. This uncompensated size within the
classes produces that classi�cation algorithms tend to skew to the dominant class, penal-
izing the minority class with less accuracy. In some domains, such as clinical problems,
classi�cation tasks are performed each time a new information comes or changes over
time. Moreover, despite a classi�cation algorithm may by skewed to the dominant class,
new features may modify previous results changing the opinion concerning the previous
classi�cation class.

Dominant class -> Minority class
Minority class -> Dominant class

In two-class unbalanced datasets, there are two possible directions to modify previous
classi�cations. The �rst direction is, given a new information, a classi�cation change
from dominant class to minority class. This opinion change has a huge impact because
it implies evidence of the presence of a problem. The impact is similar when the change
happens in the opposite direction, from minority class to dominant class, as it may involve
a radical change in treatments. For instance, in the mortality unbalanced dataset, any
classi�cation change from dominant to minority class may require the prescription of more
aggressive treatments while a change from minority to dominant class means a signi�cant
improvement of the patient.

Figure 2.7 illustrates the behavior on the blood-transfusion-service-center dataset. This
dataset has two classes with 570 (dominant) and 178 (minority) instances. As percentage,
76% and 24%. This means that 3/4 of the instances in blood-transfusion-service-center
dataset belong to the dominant class. The three series in Figure 2.7 show the accuracy
to the minority class (green line), classi�cation changes to the dominant class (blue line),
and classi�cation changes to the minority class (orange line). For instance, when problems
have two features, around 20% of them previously categorized as dominant class become
classi�ed to the minority class (orange line). On the opposite direction, the change from
minority class to dominant class only occurs in 5%, i.e. 9 instances. These results re-
ect that changes from dominant to minority class are more frequent than changes from
minority to dominant class.

Exploring these classi�cation changes over all the two-class datasets, the mean and std
results are showed in Table 2.4. Results con�rm the stated above: the most frequent
opinion change is in the direction from dominant class to minority class. Taking into
account that the accuracy of the minority class is in general low, the utility of generating
noti�cations/alarms is clearly high.
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Figure 2.7: Changing the classi�cation result when more data is available.

MINOR-MAJOR MAJOR-MINOR accuracy
blood-transfusion-service-center 0:03� 0:02 0:09� 0:09 0:24� 0:08
contraceptive 0:02� 0:01 0:06� 0:03 0:1 � 0:03
phoneme 0:09� 0:05 0:16� 0:134 0:63� 0:14
pima-diabetes 0:13� 0:05 0:19� 0:08 0:47� 0:07
mortality eicu 1000 0:0 � 0:01 0:08� 0:03 0:11� 0:04
mortality eicu 10000 0:02� 0:01 0:08� 0:03 0:13� 0:04

Table 2.4: Mean and std results to opinion changes in two-class classi�cation problems.
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Chapter 3

Inference with Partial Information

With or without missing data, the main goal of any system is to provide valid and e�cient
inferences given a dataset [67]. However, many data algorithms were designed to work with
complete datasets, i.e. where all feature values are known [67]. Some authors justify to
skip datasets with missing values, arguing that the control over the data in the dataset is
lost, introducing uncertainty in the inferences [6]. Nevertheless, in some domains, such as
clinical problems, where resources are limited or information may experience some delays,
reasoning with partial information becomes mandatory.

3.1 Inference and Missing data

Missing data is a common scienti�c issue present in multiple domains such as mortal-
ity [77], climate [68], DNA microarrays [75], ovarian cancer [16], etc. For instance, more
than 40 % of datasets from UCI Machine Learning Repository [57], widely used for com-
parison of machine learning algorithms contain missing data. The causes behind a missing
information are diverse and usually not reported (e.g. con�dential information removed,
non-response items, participants that left a study) [64]. In clinical domains the reasons
behind missing information may indicate that a given information was considered non
essential but this implicit hypothesis may not be the real cause.

Missing data can be produced by a de�cient sensor, which may lose the signal in some
periods. Missing data even may be caused because the methodology used to collect the
data changes (e.g. by recollecting new variables and skipping to recollect others). Addi-
tionally, missing data may have the origin on the combination of several similar but not
identical data sets [20].

On top of that, missing values may be generated by anitem nonresponsewhere the entire
data collection procedures fail or by aunit response where partial data is available [67].
For instance, in survey studies, some participants may refuse to answer some questions,
answering that they don't know something, or skip questions that are addressed to another
type of participants. Errors can ever be caused by an interviewer error [3]. Moreover, it
may be possible that, depending on the answer on a speci�c question, some subset of
following questions may become irrelevant [67].
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3.1.1 Characterization of missing data

A classi�cation of the missing mechanisms was presented by Rubin [65] in 1986 and is still
applied to characterize the type of missing values [67]:

� Missing at Random (MAR): The missing data depends only on the observed
data.

P(RjX ) = P(RjX o)

� Missing Completely at Random (MCAR): The missing data does not depend
on either the known values or the missing data.

P(RjX ) = P(R)

� Not missing at Random (NMAR): The missing data is not random and depends
only on the missing values.

P(RjX ) = P(RjX m )

whereX denotes the complete data,X o denotes the observed data,X m denotes the missing
data, and R denotes theprobability of the distribution of the missingness[67]. Note, that
for a statistician, random suggests a probabilistic process rather than deterministic. Thus,
R is treated as a set of random variables having a joint probability distribution [67].

In MAR, R is the same when we have the complete data and the observable data [67]. In
the opposite case of NMAR, the complete data has the same probability of the distribution
of R in the missing data. For MCAR, the probability of R does not either depend on the
observable and missing data [67].

Sometimes MAR and NMAR mechanisms are impossible to verify as they depend on the
unobserved data [76] which is normally controlled only by the data providers [64]. When
missingness is beyond the researcher's control, its distribution is unknown [67]. Due to
this cause, some authors design experiments modifying the real dataset creating new ones
following MAR and NMAR mechanisms [81]. On the opposite side, another alternative
is to make some assumptions about the missing mechanisms and then apply the di�erent
missing data treatments based on the assumptions [24].

Frequently the di�erent missing mechanisms are confused or are not correctly understood.
For instance, people very similar in terms of demographics and medical history may have
missing values in the Body Mass Indicator (BMI). It is easy to imagine that BMI is more
likely to be registered in overweight patients [67]. Thus, non reportedBMI will have a
lower distribution with respect to the reported data [10].

A similar explanation may be behind missing blood pressure. Blood pressure in elderly or
in people with cardiovascular issues tend to be more frequently registered than in healthy
young people. Consequently, people with missing blood pressure are likely to have a lower
blood pressure on average than those with recorded blood pressure recorded, i.e. blood
pressure is not randomly missing [10].

Finally, for the MCAR case, randomness exists at the highest level and any missing data
treatment method can be employed without risk of including bias on the data [67, 34]. An
example of a completely random process could be a coin ip [34], if it's not a trick coin.
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3.1.2 Strategies to deal with missing data

Several strategies have been proposed to deal with missing data. Some of them try to
maximize the number of examples while other try to maximize the number of features.
The di�erent strategies may be grouped into four categories:

� Deletion of Instances : Deletion of instances is a common strategy to discard cases
that contain missing feature values. Its fundamental virtue is its simplicity when a
bit portion of instances has missing data [67]. Otherwise, should not be used [20].
Case deletion is only valid under MCAR, where the whole dataset is representative
of the incomplete instances [67].

There are two main strategies for case deletion:listwise deletion that omits all
instances that have missing values on any of the variables; andpairwise deletion
that generates di�erent sub-sets without missing information.

Listwise deletion usually works reasonably well if values are MCAR and the dataset
is huge [3]. The advantage of pairwise deletion is that it uses all known information.
However, pairwise deletion may introduce arti�cial correlations.

� Substitution of Instances : Substitution of instances is a common strategy when
additional instances are available. However, this approach is usually not feasible
either because the cost of acquiring new data or because data providers are not the
same that data analysts [6].

� Reduce-feature models : Reduce-Feature (RF) models generate data models that
exploit only the features that are known for a given new problem. For each com-
bination of missing features, a di�erent model is pre-computed for prediction [66].
The strategy proposed by di�erent authors is to use ensemble classi�ers [66, 28, 74]
An alternative strategy is to compute online the model when a new problem has to
be solved. However, this alternative has a huge computational cost.

� Imputation : Imputation is a process where the missing data is �lled by values
generated from observed data [65]. There are three main types of imputation pro-
cesses [66]:Predictive or Data-driven value imputation that uses a model to estimate
missing data generating a complete dataset [66];Model or Distribution-based impu-
tation that estimates the parameters able to mimic the data distribution assuming
that the data can be generated by a model governed by unknown parameters [25];
and Unique-value imputation that replaces unknown data by an arbitrary unique
value. The Predictive value imputation methods are the most used [74]. Imputation
methods have demonstrated some ability to �t to unanticipated properties of the
data such as interactions, non-linearities and complex distributions [53].

A �gure representing the di�erent strategies is summarized in Figure 3.1 in which the
impact on resultant data is shown. Instance Deletion penalizes small datasets. Reduce-
feature models penalizes the features producing that important features may disappear.
Case substitution is costly as it requires to add new instances. Finally, imputation meth-
ods are one of the most popular approaches because resultant data keeps the number of
instances and features.
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Figure 3.1: Strategies to deal with missing data.

3.2 Imputation

There are two main methodologies to exploit imputation methods: single imputation and
multiple imputation . Single imputation is a methodology that assigns values locally, i.e.
taking into account each missing value individually. Some authors suggest that single
imputation tends to underestimate the standard errors and to overestimate the level of
precision because it tends to not add some uncertainty in the missing values inputted
because it omits possible di�erences between multiple imputations [3]. In the same line,
other authors report that it is very complicated to represent any uncertainty facing the
problem locally because one imputed value cannot itself represent any uncertainty about
the value it imputes [65]. Some authors remark that imputed values should maintain the
data structure, including the missing data uncertainty [78]. To cover these issues about
uncertainty, the Multiple Imputation strategy was de�ned [65].

Multiple Imputation analyses several versions of the dataset with di�erent imputation
strategies. Additionally, it also incorporates an adjustment of standard errors and other
statistics to add some uncertainty in the imputation process [6]. The ability to estimate
the uncertainty of a parameter estimation in missing data when merging the results of the
analysis of multiple imputed datasets is called "Rubin's rules" [35]. Adding the uncertainty
by the standard error correction to the estimated values makes multiple imputations a
powerful methodology [35].

Additionally to adding uncertainty, the basic idea behind multiple imputation is to de�ne
several imputation models and to execute them in several repetitions. Each repetition
has a certain random component to obtain a di�erent version of the complete dataset.
Then, each missing value is replaced by a list of simulated values [67]. Finally, the dataset
repetitions are analyzed and combined to provide a unique complete dataset [65]. During
this analysis part, the di�erence between the estimation of the assigned missing values and
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Figure 3.2: Missing scenarios.

the variance are computed. Each estimated parameter is simply the mean of the estimated
replications. The standard error incorporates the uncertainty by adding to the mean of
the error the variance between the solutions [3].

As some authors report, multiple imputation may propagate the uncertainty about the
missing values via some stochastic mechanism, i.e, by adding a randomly generated resid-
ual to the regression prediction [53]. Moreover, multiple imputation theory suggests that
three to �ve complete imputed datasets are enough to obtain desired results [35].

Independently of the imputation methodology selected, di�erent methods from statistics
and machine learning �elds have been proposed to estimate unknown feature values. In the
next section, we �rst describe the di�erent imputation scenarios. Then, Section 3.2.2 intro-
duces the di�erent imputation methods proposed. Finally, in Section 3.2.3 the strengths
and weaknesses of existing imputation methods are summarized.

3.2.1 Imputation Scenarios

Imputation methods have been applied to several scenarios. Historically, imputation meth-
ods were used as a pre-processing stage in datasets with missing data. In this �rst scenario,
before applying machine learning algorithms, all missing values are estimated (see scenario
(a) in Figure 3.2). In scenario (a) it does not matter if the missing values are in the train
or in the test data because imputation is performed on all data. In this scenario, missing
values are in all the data (train and test). A second possible scenario (see scenario (b)
in Figure 3.2) is to perform imputation only in the training set. This second scenario
generates an imputation model from training data. Then, the imputation model is used
to estimate missing values from test data. Nonetheless, scenario (b) requires the test set
to have the same missing features as the training set. This assumption may only work in
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environments where missing values are known in advance, i.e. can be determined in train-
ing. Finally, in the third scenario (see scenario (c) in Figure 3.2) training data is complete
and missing information is only present in test set. In this last scenario, training data is
exploited to impute missing information in test data. The counterpart is that imputation
models can only be generated when a test problem is known because di�erent problems
may have di�erent features with missing information.

3.2.2 Imputation methods

Existing proposals of imputation methods have been organized in two di�erent groups:
those based on statistics and those based on Machine Learning.

Statistical methods

The zero imputation method assigns zero to each missing value [15]. It is a quick and
useful method when computing similarities. Applying zero imputation, instances sharing
many missing features will be considered as similar.

Nevertheless, one of the most used imputation methods in themean imputation . The
mean imputation assigns to each missing feature value the mean of observable feature
values [6]. However, the mean is a global measure and may not be representative for all
instances. Several extensions of the mean imputation have been proposed to allow the
calculation of local means.

The �rst extension is the mean imputation by subgroups. Mean imputation by subgroups
selects an additional feature to divide the dataset in di�erent subsets given the value
of this additional feature. For instance, imagine that income feature has missing values.
Teenagers are very likely to earn less than adults because they depend on their parents and
are still students. Thus, instead of assigning a global mean for the income feature, the age
feature might be used to divide the dataset in two subgroups. Then, if the missing income
value corresponds to a teenager instance, then the value assigned will be the mean of all
teenager's incomes [3]. This method attenuates the variance and preserves more variance
than giving everyone with a missing value the overall mean [3]. A second extension of
the mean imputation is the use of clustering techniques, such as k-medoid clustering, to
determine cluster prototypes. Then, mean imputation is calculated for each prototype [11].

Although the mean strategy is very popular, some authors suggest that mean imputa-
tion may accurately predict missing data but distort the estimated variances and corre-
lations [67]. Additionally, some authors comment that people who are in the middle of
distribution in most of the questions tend to be the most likely to answer them. People
at the extremes most often refuse to answer questions. For instance, people su�ering de-
pression tend to skip items that seem to measure depression i.e \Have you ever feel sad?"
or \How often do you go with your friends?" [3]. Then, it would make no sense of substi-
tuting a mean value for these cases [3]. Moreover, not all features have the same number
of missing values. This fact can produce inconsistent biases when there is great inequality
because it attenuates variances [3]. The mean imputation may assign a value that does
not exist in the observable features. To avoid this situation, median imputation is also
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proposed. Finally, some authors suggest that mean imputation provides improvements
only when is used for a substantial (50%) amount of missing data [24].

The mode imputation method is another imputation strategy that imputes the most
appeared value in the observable data [6]. This method may be used either in continuous
features and in categorical features because, as a di�erence between the mean and median
methods, the value used in the mode strategy is an existing value.

Imputation methods based onregression have been extensively used. Depending on the
type of the feature, di�erent regression algorithm can be used [16]: Linear Regression for
continuous data; Logistic Regression for binary data; or Polytomous Logistic Regression
for categorical data.

Machine Learning methods

Expectation Maximization (EM) was proposed as an imputation method. Expectation
Maximization may �nd a model of unknown parameters describing missing data. Using a
maximum likelihood method, values are imputed iteratively until some stopping criterion is
obeyed. Parameters are re-estimated at each step using the observed and �lled data. This
approach injects some uncertainty adding some random error between the iterations [19, 3].

More re�ned EM versions have been proposed.Regularized EM [68] performs an iterative
analysis of ridge regression (linear regression) between missing features and known features
to regularize the EM algorithm. In Structural equation modeling [3] all the observable
information is used to generate the maximum likelihood estimation of parameters instead
of imputing directly values. Patter-mixture models [67] classify cases by their missingness
and describe the observed data within each missingness group trying to characterize the
missigness.Likelihood-based Hybridsolutions [75] induce imputation models for each new
combination of missing features. To reduce the computational cost, previously induced
models are stored. Another clustering approach isClass Center Based Missing Value
Imputation (CCMVI). CCMVI measures the class center and standard deviation in each
solution class to calculate imputation values [76].

Bayesian methods have also been used as imputation methods [41]. Bayesian meth-
ods cluster data to obtain the probability distribution of cluster classes instead of giving
directly a value for the missing data. For instance, Na•�ve Bayes (NB) may be used by
considering the solution feature to divide the dataset into training and test sets. Training
set includes all the instances with observable data. Then, the probabilities are computed
and used to impute values to missing data in testing set. [25] presents a framework that
combines Na•�ve Bayes, Hold deck and boosting for imputing missing values. First a mean
pre-imputation is performed to obtain an initial dataset. Then, Na•�ve Bayes and hold deck
are used to re�ne the imputation. Next, boosting is used to generate several modi�cations
of the imputed dataset and a voting scheme is incorporated at the end.

Decision trees is another ML algorithm exploited to impute missing values using the
C4.5 supervised algorithm. Imputation with decision trees follow a probabilistic approach
with train and test data based on an information-based measure, usually gain ratio, as
a splitting criterion. Several partitions are obtained with the splitting criterion until a
stopping rule is obeyed [41]. Some authors suggest that using decision trees the bias may
increase because decision trees ignore redundant features [66].
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K-Nearest Neighbors (KNN) constitutes an alternative to calculate imputation values
locally. The known features of a problem are used to �nd k-closest training instances
by computing a similarity measure. From k-closest instances, the mean values of each
unknown feature in the problem are calculated. Extensions of the basic KNN algorithm
have been considered for imputation [20]: computing distances and thennormalizing to
compensate missing values; establishing the distance for a missing feature as theaverage
for this feature; considering the distance for a missing feature aszero; or randomly selecting
the value from a nearest neighbour. Some results suggest that normalization and average
may provide good results although depends a lot on the data characteristics [20]. Other
results suggest that KNN outperforms the Reduce-Feature and Mean-Mode methods in
several datasets [6]. Other authors extended KNN approach taking into account the
importance of features using Mutual Information [34, 57]. In [34] Mutual Information is
exploited to obtain the feature weights by measuring the correlations between imputed
features and the target class. In [57] aGrey Relation Analysis is proposed to measure the
similarity between cases taking into account mutual information.

In general, KNN is a good option even when data has a high percentage of missing informa-
tion [20]. Furthermore, the imputation process is independent of the classi�cation/predic-
tion process allowing to add more variables after the imputation process [6]. Nonetheless,
one of the major problems of KNN is the computation cost of the similarity calculus [6].

The basic idea of usingEnsemble Classi�ers for imputation is to cover several com-
binations of missing features [74] by building multiple classi�ers. For instance, Cage-
MetaCombiner [28] de�nes a meta ensemble architecture that generates a set of datasets
with di�erent possible data partitions considering di�erent number of features. Then, it
removes all the instances having missing values at each generated dataset and some clas-
si�ers are built usually using part of the dataset. In [74] feature selection is used to select
the most relevant features with the aim to reduce the number of instances with missing
information.

Multivariate Imputation by Chained Equations (MICE) uses di�erent regression methods
to estimate missing values[79]. Each missing value is replaced by a random value in the
same feature. Then, a regressor is used for each missing feature using the known features.
As multiple imputations, several repetitions are performed to obtain several datasets.
Finally, the average of all datasets is performed to obtain a unique dataset solution [74].
For each type of missing feature a di�erent regressor is used. MICE requires a lot of
computational e�ort as it involves several regressors [74].

Neural Networks have also been used as imputation methods.Group Method of Data
Handling [82] (GMDH) builds a multi layer network structure to identify the data relation-
ship between input and output. Extreme Learning Machines combines Gaussian Mixture
models to generate multiple imputations with extreme learning machines (NN) to generate
a complete dataset. Auto-Encoders have been used to impute values by exploiting their
capabilities to generate missing data [15]. One point to remark in NN approaches is that
missing feature values appear only in the training set [15].
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Proposal MV > 50% Train data Test data All data
RF (Luego et al [46])
NB (Farhangfar et al [24]) X
NN (Zhu et al [82]) X
Ensemble (Folino et al [28]) X X
RF (Saar-Tsechansky et al [66]) X
KNN (Batista et al [6]) X X
NN (Sovilj et al [72]) X
Clustering (Tsai et al [76]) X

Table 3.1: Summary of state of the art proposals.

3.2.3 Discussion

As described in previous Section, there is an extensive catalog of strategies and algorithms
to deal with missing values. Table 3.1 summarizes most recent proposals. Only two of
them deal with missing data higher than 50% (see column \MV > 50%"). Di�erent
approaches have as hypothesis that missing information may appear either in the training
set, in the test set or in both sets. This characteristic is important as it determines the
type of problem domains each proposal is addressing. For instance, dealing with missing
data only in the training set is a hypothesis which usually does not correspond to clinical
problems. As Table 3.1 reports, only one approach deals with the scenario where missing
information is focused on the test data. Table 3.2 summarizes the most common baselines
used to compare imputation methods. Note that Reduce-Feature (RF) strategy, Mean
imputation, and KNN-based imputation are those most commonly used.

Batista et al [6] proposes a KNN approach for imputation. Using di�erent missing rates
from 0% to 60%, KNN is compared with Reduce-Feature and Mean imputation methods.
Authors highlight that in some datasets KNN does not work well due to it depends largely
on the relationship between the unknown and known feature values and on whether these
features are correlated. Another aspect to consider, and reported in [6], is that strategies
work di�erently depending on which missing feature is involved and on the percentage
of instances with missing data. [6] compares di�erent imputation strategies with two
prediction models (C4.5, CN2), a classi�er based on decision-trees and a classi�er based
on rules, achieving di�erent results. This relationship is also explored in [46] using Multiple
imputation to check how the relationship between each input attribute and the target class
is maintained using di�erent imputation methods. Results show that the performance of
MI changes depending on the imputation method used [46]. Both results suggest that
it might be necessary to use di�erent imputation methods for each feature with missing
data.

Saar-Tsechansky and Provos [66] reports that imputation methods achieve di�erent per-
formances depending on the classi�er algorithm that is used. Luengo et al [46] analyzes
the impact of several imputation methods using di�erent classi�cation algorithms. Re-
ported results suggest that no single imputation method may reach highest performance
for all classi�ers. However, they remark that imputation methods are a better option than
Reduce-Feature and Instance-Deletion strategies.

Saar-Tsechansky and Provos [66] suggest that performance of Reduce-Feature (RF) strat-
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Proposal Beselines
RF (Luego et al [46]) RF, Mean, KNN
NB (Farhangfar et al [24]) Mean, NB, Regression
NN (Zhu et al [82]) Clustering, Regression
Ensemble (Folino et al [28]) Boosting
RF (Saar-Tsechansky et al [66]) Mean, DTree
KNN (Batista et al [6]) RF, Mean
NN (Sovilj et al [72])
Clustering (Tsai et al [76]) Mean, KNN

Table 3.2: Imputation methods Compared.

egy is superior to Decision-Tree and Mean imputation methods. Although, the results are
in the opposite direction to the results reported in [6, 46], it seems that in some domains
RF is a good option as it does not introduce additional noise. Nevertheless, RF impu-
tation models can only be generated when missing features are known. [66] proposes an
hybrid version of RF, where the trade-o� between computational/memory cost is debated
and reports that increasing the size of the training set improves the accuracy percentage.
Additionally, Luengo et al [46] report that the Mean imputation method seems to only
work with less than 50% of missing data.

The relationship between the imputation accuracy and noise level is analyzed in [82]. Ac-
cording to [82], a low noise level sometimes even improves the results when using some
imputation methods. However, a high level of noise level causes a deterioration in im-
putation results. [82] proposes an imputation method and demonstrates that is a good
option in noisy environments. As a counter part, the proposed method does not perform
the imputation methods when noise level is low. Nonetheless, authors considered a high-
noise scenario with only 20% of missing data, which is not a su�cient noise level some
real domains. Finally, most of reported results in the literature do not prove how their
proposals deal with a high level of missing data (i.e. higher than the 50%).

3.3 Dynamic Multiple Imputation

As discussed in previous Section, there is more than a unique winning method to �ll
unknown features. The most appropriate method depends (1) on the characteristics of
each domain; (2) on the subset of features known for each incoming problem; and (3)
on the importance of the features with respect to the task to be solved. Guided by our
clinical problems, and following [66] approach, our focus is on problems where missing
values occur only in problems to be solved (test instances in ML terminology). A new
multiple imputation methodology is proposed, Dynamic Multiple Imputation (DMI), that
for each new problem so be solved estimates the best model for each unknown feature
from a collection of imputation methods.

DMI performs multiple imputation feature by feature in two stages. In a �rst stage, given
a partially described problem, for each feature with a missing value a speci�c imputation
method is selected from the dataset (training set using ML terminology, case base using
CBR terminology) following a cross-fold evaluation strategy. In a second stage, applying
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Figure 3.3: DMI methodology.

each selected method over the dataset, imputation models are generated and missing
values are imputed. Figure 3.3 summarizesDMI stages and Algorithm 1 introduces the
pseudo-code whereD[X ] represents the projection of a dataset over features X.

Determining the most promising imputation method

Given a problem p with a set of observable featuresX o and a set of missing features
X m , the �rst DMI step is to determine the most promising imputation method for each
missing feature. The approach to determine most promising imputation methods is to
exploit historical data, using a cross-fold methodology. That is, accuracy of all imputation
methods is evaluated in each fold (ten times) using Mean Squared Error (MSE). With MSE
the di�erence between imputed (predicted) values and true values are measured. For each
feature, the imputation method with lowest MSE is selected.

Notice that in this step only historical data is used to select imputation methods. Current
problem p is only needed to determine the subset of features, i.e. observable features, to
be used to learn imputation models. See Algorithm 2 for a detailed pseudo-code.

Feature Imputation

After the list of most promising imputation methods have been selected, the second step
in DMI is to use the whole historical data to learn imputation models and to apply them
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Algorithm 1: DMI main loop

1 Input:
2 p as a problem with featuresX = X o [ X m ,
3 D as the Historical Data, and
4 M as the set of imputation methods
5 foreach f i in X m do
6 mi = DMI Selection(D [X o]; D [f i ]; M )
7 p[f i ]  DMI Imputation (D [X o]; D [f i ]; mi ; X o)
8 end
9 return p

Algorithm 2: DMI Selection

1 Input:
2 D as training data,
3 T as the target feature, and
4 M a the set of imputation methods
5 errors = f mi : 0 for mi in M g
6 foreach X test; y test in gen 10 folds(D , T) do
7 X training = D n X test
8 y training = T n y test
9 foreach mi in M do

10 mi :f it (X training; y training )
11 y predict = mi :predict(X test)
12 errors [mi ]+ = MSE (y predict; y test)
13 end
14 end
15 return mi such that errors [mi ] is minimal

Algorithm 3: DMI Imputation

1 Input:
2 D as training data,
3 T as the target feature,
4 mi as the imputation method, and
5 X o as the observable features of problemp
6 mi :f it (D; T )
7 v = mi :predict(X o)
8 return v

to the current problem p. Note that, to maximize the representativeness of historical
instances, imputation models are built again in this stage.
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FMean KNNMean KNNReg BRidge
f0 0.053352 0.047619 0.047619 0.043694
f3 0.063590 0.065331 0.065331 0.063775
f4 0.144901 0.004733 0.004733 0.024320
f5 0.036989 0.007242 0.007242 0.016550
f6 0.082051 0.034044 0.034044 0.046386
f8 0.053163 0.011019 0.011019 0.038916
f9 0.063716 0.005548 0.005548 0.024491
f10 0.056983 0.012174 0.012174 0.025812
f11 0.018542 0.014026 0.014026 0.016006
f12 0.039835 0.019055 0.019055 0.024810

Table 3.3: Example of MSE results from one DMISelection fold execution.

3.4 Illustration Example

To illustrate the DMI algorithm, the Boston dataset will be used (see Section 2.3 for a
detailed description):

Giving the Boston dataset defined by a group of 13 features:
[f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12]

Suppose that at a specific time the system only has a partial view of a problem
with observable features:

[f1,f2,f7]

Thus, the rest of feature values are missing:
[f0,f3,f4,f5,f6,f8,f9,f10,f11,f12]

Following this example, DMI algorithm is executed to determine which is the best im-
putation method for each unknown value. Instead of using the same method for all the
features, DMI tries to estimate which is the best method for each feature from a list of
possible imputation methods. In this context, the list of possible imputation methods is:

Imputation methods: ['FMean', 'KNNMean', 'KNNReg', 'BRidge']

This illustrative example will show the comparative between the imputation methods in
four di�erent scenarios: 1) if all the features are available, 2) if the Reduce-Feature strategy
is used, which does not consider the unknown information, 3) if the the same imputation
method is used for all the features, and 4) if DMI is applied.

Table 3.3 shows the results of an internal DMI iteration fold. Only using the training
data, the system evaluates individually each feature with the list of possible imputation
methods. The algorithm works in the way that every unknown value is grouped with
the known values to estimate this concrete missing value. For instance, [f0] + [f1,f2,f7],
[f3] + [f1,f2,f7], [f4] + [f1,f2,f7] over all the possible imputation methods. Results are
expressed as MSE, i.e by the di�erence between the real and the imputed values. The
methods achieving better results for each feature are highlighted. Less error means that
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the imputed value is closest to the real value.

For instance, in this example, DMI proposal is to use the following con�guration to impute
the missing values:

Estimated methods: {f0:'BRidge', f3:'FMean', f4:'KNNMean', f5:'KNNMean',
f6:'KNNMean', f8:'KNNMean', f9:'KNNMean', f10:'KNNMean', f11:'KNNReg',
f12:'KNNMean'}

As the list shows, not all the features obtain the best results with the same imputed
method. In this concrete case, KNNMean is the most popular choice. Also, it is important
to remark that treating each feature with the most convenient method guarantees better
results. Once the algorithm �nds the list of the imputation methods, then each method
is applied to generate values for the missing data.

The last step is to evaluate how it works the problem with the imputed values. Results
reported in Table 3.4 suggest that our method is better than Reduce Feature. Additionally,
as was mentioned before, in this case, it seems that the KNNMean and KNNReg work
similarly.

Method MSE
RF 65.969 %
FMean 69.529 %
KNNMean 52.103 %
KNNReg 52.103 %
BRidge 66.947 %
DMI 50.597 %

Table 3.4: Total MSE errors.

Finally, Figure 3.4 shows, as bar plots, errors for all the possible alternatives. The algo-
rithm is better than the Reduce-Feature which is the solution that discards the missing
features. Moreover, although the DMI works better than the Reduce-Feature, results sug-
gest that there is also a gap between the algorithm's respect to the best case (when all the
features are known). The best case, when all the information is available (without missing
data) is represented as a dotted black line called 'all'.

Figure 3.4: Adding f12 to the group of f1, f2, f3.

33



3.5 Experimental Settings

The DMI methodology was evaluated in regression and classi�cation datasets introduced in
Section 2.3. Speci�cally, the proposal was evaluated in ten regression datasets from public
repositories, on a regression problem from eICU database, on �ve unbalanced datasets
from public repositories, and two unbalanced problems from eICU database.

The imputation methodology has been compared with widely used baselines in the lit-
erature: Reduce-Feature (RF) model, Mean imputation, K-NN imputation, and MICE
(a regression-based methodology). The measures selected to compare the errors were the
mean squared error for regression datasets and the sensitivity for classi�cation datasets.

Mean Squared Error (MSE) : Measure the di�erence between the predicted value and
the correct value.

MSE =
1
n

nX

i =1

(Yi � Ŷi )

Sensitivity : Measures the percentage of true positives.

Sensitivity =
TP

TP + FP

where TP are true positives andFP false positives.

The aim of the experiments is to compare the imputation methodologies with several
percentages of missing values. For each dataset combinations of known features have been
generated, starting with only one known feature and increasing the number of known
features to all features minus one. At each step 50 di�erent sets of known features have
been randomly generated (see Figure 3.5).

Figure 3.5: Experimental setup.

For instance, given a dataset with 9 features, the options at step 2 (two known features)
are exempli�ed in Figure 3.6. As Figure 3.6 shows, combinations areX o : [f 1; f 2] and
X m : [f 3; f 4; f 5; f 6; f 7; f 8; f 9], X o : [f 8; f 9] and X m : [f 3; f 4; f 5; f 6; f 7; f 1; f 2] ... For a given
number of known features, although the level of noise (missing values) is the same, because
the features a�ected are di�erent, the impact on the solution will vary.

For each generated combination of known features a 10 cross-fold validation has been con-
ducted to evaluate the performance of each imputation strategy. Note that training subsets
contained the information regarding all features. Only test instances were presented to
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Figure 3.6: Possible level 2 combinations.

RF Mean KNNMean MICE DMI
Auto price 18.55 36.13 16.33 22.15 12.08
Bodyfat 35.41 34.63 27.54 31.16 25.00
Boston 37.86 47.92 27.82 35.96 26.89
California 53.01 70.88 45.87 56.13 38.04
CPS 85 wages 42.39 26.76 43.75 15.80 26.54
CPU small 41.90 47.79 30.29 41.95 27.27
Diabetes 38.93 61.03 38.62 50.00 31.71
LOS eICU 45.39 61.21 48.33 53.71 47.93
ICU 55.62 54.06 48.31 48.28 49.86
Plasma retinol 44.52 49.51 45.05 45.68 44.28
Wine quality 45.52 57.93 45.23 54.73 41.18

Av. Rank 3,27 4,55 2,45 3,27 1.36

Table 3.5: MSE for Regression datasets.

each imputation strategy with the appropriate combination of known features. After the
imputation stage, training subsets were used by a KNN inference (either a classi�er or a
regressor) to determine the outcome value for test instances.

3.6 Results

3.6.1 Regression datasets

Results reported in Table 3.5 shows MSE errors each imputation method reaches in re-
gression problems (lower values better results). The last row reports the average rank, i.e
the average position, of each method across all datasets. DMI achieves the lowest MSE,
i.e best rank, in eight of the datasets, the second rank in two datasets, and the third rank
in one dataset. Thus, DMI is clearly competitive.

Focusing on scenarios with high percentage of missing information (see Table 3.6), we can
con�rm that DMI is very competitive. Speci�cally, DMI achieves lowest MSE in most of
the datasets when missing information is between 100 and 75 percent and when missing
information is between 75 and 50 percent.
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RF Mean KNNMean MICE DMI
blood-transfusion-service-center 0.23 0.36 0.22 0.26 0.26
contraceptive 0.09 0.03 0.07 0.06 0.06
phoneme 0.6 0.41 0.52 0.48 0.51
pima-diabetes 0.46 0.28 0.41 0.34 0.37
mortality eicu 1000 0.1 0.05 0.07 0.07 0.06
mortality eicu 10000 0.12 0.06 0.11 0.1 0.1
Av. Rank 1.6 4.2 2.6 2.8 3

Table 3.8: Sensitivity in Unbalanced domains.

In medium and low percentage of missing information (see Table 3.7), DMI is also the best
competitive approach. Notice that where RF is quite competitive is in the range between
25% to 50% of missing information. The range reported in the literature.

3.6.2 Unbalanced problems

DMI has been also tested on classi�cation problems. Experiments have been focused
on assessing the sensitivity, i.e. accuracy of the minority class. Results from Table 3.8
shows that, as literature pointed, RF is the best strategy in most of the datasets. An
explanation of this result is that the classi�cation methods tested are not able to reach
high sensitivity scores. This behavior a�ects a lot when, additionally, the percentage of
missing information is important. Thus, further research has to be conducted to try to
improve these results that are a�ecting all imputation methods.
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Chapter 4

Con�dence measures with partial
information

Con�dence measures intend to assess the certainty on the solution provided by an AI
system. In the context of CBR, con�dences are estimated from the set ofk neighbors se-
lected to calculate the solutions. There is no unique and best way to estimate con�dences.
Existing literature [14, 18, 37] propose di�erent con�dence measures that exploit di�erent
properties such as the similarities between a problem and its neighbors and/or the diver-
sity of solutions assigned to these neighbors. For instance, in a classi�cation domain if
the solution for almost all neighbors is the same, con�dence values will tend to be high.
Contrarily, if similarities are low con�dence values will tend to decrease.

The working principle of existing proposals is that problems to be solved are either com-
pletely described or has, at most, only a few unknown features. Therefore, these particular
hypotheses may become false in clinical domains, specially at early stages of a patient
treatment. To improve the reliability of con�dence measures in such stages, two di�erent
strategies have been proposed.

4.1 Con�dence measures

Before introducing the proposed solutions, the third most common con�dence measures
in the CBR community are presented: the Classical Con�dence; the First versus Second
Con�dence; and the Distance Based Con�dence.

The Classical Con�dence (CC) measure analyzes the diversity of solutions proposed by
the nearest neighbors (NN ). Speci�cally, the con�dence on a given solution is calculated
as the percentage of retrieved cases with this solution. Beings the solution with higher
support and NN s the subset of nearest neighbors with solutions:

CC(p) =
jNN sj

k
(4.1)

To illustrate this measure, Figure 4.1 is used. The new problem is represented as a green
circle while neighbors are represented by randomly allocated geometric shapes depending
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Figure 4.1: Illustration example for exemplifying con�dence measures.

on their class type. Given a new problemp and k = 3, the closest neighbors top are n1,
n2, and n3. As the dominant class (shape) for these neighbors is a circle, the solution
proposed forp will be circle class. Regarding con�dence, usingCC, the con�dence will be
2/3 as the dominant class appears two times with respect to the total neighbors.

The First versus Second Con�dence(FSC) measure is an extension of theCC measure
and is usually selected when there are more than two solution classes. Speci�cally,FSC
calculates the di�erence between the most popular solution and the second most popular
solution. Being s1 the solution with higher support, NN s1 the subset of nearest neighbors
with solution s1, s2 the solution with the second higher support, andNN s2 the subset of
nearest neighbors with solutions2:

FSC(p) =
jNN s1 j � j NN s2 j
jNN s1 j + jNN s2 j

(4.2)

For instance, following with Figure 4.1, p has three neighbors (n1, n2, n3). The NN s1

(dominant solution) has two neighbors represented by circles whileNN s2 has one neighbor
represented by a rhombus. Therefore, FSC is computed as (2 - 1) / (2 + 1) = 1/3.

The Distance Based Con�dence(DBC ) measure calculates con�dences by comparing sim-
ilarities to neighbors of the two solutions with higher support. The reasoning behindDBC
is that, although the proposed solution is the solution with higher support, the distances
among nearest neighbors shall interfere and, therefore, have to be taken into account when
calculating the con�dence of the solution. Beings1 the solution with higher support for a
problem p, NN s1 the subset of nearest neighbors with solutions1, s2 the solution with the
second higher support, andNN s2 the subset of nearest neighbors with solutions2, DBC
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is calculated as follows:

DBC (p) =

X

i 2 NN s1

Sim(NN i ) �
X

j 2 NN s2

Sim(NN j )

X

i 2 NN s1

Sim(NN i ) +
X

j 2 NN s2

Sim(NN j )
(4.3)

wheneverDBC (p) > 0. Otherwise DBC (p) = 0 :

Using a reference the example on Figure 4.1, the similarities betweenp and n1, n2, n3 are,
respectively, 0.8, 0.7, and 0.4 . Then,DBC (p) = ((0 :8 + 0:7) � (0:4))=((0:8 + 0:7) � (0:4)),
i.e. 0:58.

4.2 Mutual Information Based Con�dence

The problem with SoA con�dence measures is that they do not distinguish between cases
when only few information is available and when all the relevant information is present. In
the clinical domain this distinction is critical as in early stages of treatment the information
available regarding a patient is most probably partial or incomplete.

To overcome this issue, we propose to introduce a� factor capturing the uncertainty
generated when only partial information is available. Given a new problem, the application
of the � factor to any SoA con�dence measure it will adjust the con�dence in the proposed
solution by an estimation of the uncertainty introduced by features with missing values in
this problem.

As it was explored in previous chapter, the impact of a speci�c missing feature value
depends on the contribution of this speci�c feature in the estimation of the solution. We
propose to useMutual Information [63] as a measure to estimate the contribution of
features. Mutual Information is a measurement used to rank features by importance in
feature selection.

Although mutual information measures individually the importance of each input feature
with respect to the target feature, we can exploit this information to design a global
estimation. The intuition behind the proposed measure is that the risk of a prediction
failure increases proportionally to the signi�cance of unknown information. A normalized
mutual information measure has been used, i.e. each feature has associated a mutual
information score between 0 and 1, and the sum of all values is 1. Normalized mutual
information is calculated by dividing each individual mutual information score by the sum
of total scores. Then, we can de�ne� as follows:

� =
X

j 2 X o

MI j (4.4)

where MI is the list of normalized mutual information scores, andX o the list of known
features.

To illustrate the impact of � in a speci�c inference, lets take two examples from the
mortality eicu 1000 dataset. Figure 4.2 summarizes the list ofMI for this dataset. In a
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Figure 4.2: Mutual Information of features in dataset mortality eicu 1000.

�rst hypothetical problem, only features f 2 and f 7 are available with a classical con�dence
of CC = 0 :8. Given that MI for f 2 and f 7 are, respectively, 0.02 and 0.11, we will
obtain a � = 0 :13. Then, the con�dence of the solution will be adjusted obtaining a
�nal con�dence �CC = 0 :13 � 0:8 = 0:104. Analogously, if in another problem the two
known features aref 8 and f 9, the � factor to be applied to the con�dence will vary to
0:31+0:32 = 0:64. Again, the con�dence of the solution will be adjusted, obtaining a �nal
con�dence �CC = 0 :64� 0:8 = 0:512.

4.3 Experimental setup

Classi�cation datasets introduced in Section 2.3 have been used to evaluate the contribu-
tion of � factor in unbalanced classi�cation. Speci�cally, we have conducted experiments
in �ve publically available classi�cation datasets and on two di�erent samples of mortality
information from eICU database.

Experiments have been performed to evaluate the improvement in the con�dence quality
of three state of the art con�dence measures: Classical Con�dence (CC), First versus
Second Con�dence (FSC), and Distance-Based Con�dence (DBC). To assess the quality
of a con�dence, the Brier Score [12] was used. The Brier Score is an error measure
that calculates the relation between the con�dence and the accuracy. Speci�cally, the
hypothesis behind the Brier Score is that whenever the predicted class is correct, the
con�dence should be close to 1 and whenever the prediction is incorrect the con�dence
should tend to 0. In particular, the Brier Score is calculated as:

BS =
1
N

�
NX

t=1

(pred � conf )2 (4.5)

wherepred is 1 if the predicted value is correct and 0 otherwise andconf is the con�dence
measure.
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CC � CC FSC � FSC DBC � DBC
blood-transfusion-service-center 0.52 0.30 0.44 0.29 0.42 0.29
contraceptive 0.70 0.30 0.59 0.26 0.54 0.25
online intention 0.56 0.24 0.48 0.24 0.47 0.26
phoneme 0.25 0.25 0.28 0.30 0.38 0.39
pima-diabetes 0.35 0.28 0.34 0.32 0.43 0.39
mortality eicu 1000 0.74 0.32 0.68 0.30 0.67 0.31
mortality eicu 10000 0.71 0.31 0.64 0.29 0.60 0.29

Table 4.1: Brier score of the minority class.

Analogously to experiments conducted with Dynamic Multiple Imputation, the aim of the
experiments was to evaluate the error in con�dence with several percentages of missing
values. Like in previous Chapter (see Section 3.5), for each dataset combinations of known
features have been randomly generated and a 10 cross-fold validation have been performed.

Finally, we evaluated the contribution of � factor when Dynamic Multiple Imputation
(DMI) is performed before classi�cation. That is, DMI was applied to unknown features
and � factor was calculated taking into account only real known features.

4.4 Results

Table 4.1 reports the di�erent Brier scores of con�dence measures allowing to compare
original con�dences with respect to the same measure corrected by the proposal. Such
proposal is indicated as a� prior the con�dence is modi�ed (for instance, � CC is the
modi�ed version of CC).

In general, in all datasets, proposed� versions obtained better results with respect to
their corresponding SoA con�dence measures. There is no clear dominant� con�dence
measure, although, there is one dataset in which the proposal has not accomplished any
improvement on the Brier score. In the phoneme dataset, results are quite similar between
the SoA and � versions. This suggests that this concrete dataset's characteristics do not
�t with the proposal's property. Future research will need to explore which are the reasons
that in the phoneme dataset it does not work well.

Additionally, we conducted some experiments applying Dynamic Multiple Imputation
(DMI). The application of DMI produces changes in neighbors and in classi�cation deci-
sions. Thus, con�dence values will also change. As expected from experiments conducted
in previous chapter, con�dences present worst Brier results when DMI is applied. However,
the introduction of the � factor allows to improve con�dences.
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CC � CC FSC � FSC DBC � DBC
blood-transfusion-service-center 0.56 0.36 0.56 0.38 0.52 0.36
contraceptive 0.88 0.35 0.81 0.32 0.84 0.33
phoneme 0.47 0.26 0.56 0.35 0.48 0.29
pima-diabetes 0.57 0.29 0.48 0.28 0.5 0.27
mortality eicu 1000 0.89 0.39 0.83 0.37 0.86 0.37
mortality eicu 10000 0.85 0.36 0.77 0.33 0.8 0.34

Table 4.2: Brier score of the minority class when applying DMI.
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Chapter 5

Decision Support for non explicit
relationships

In health domains, deciding which are the most appropriate interventions is not an easy
task when patients simultaneously present several impairments, multiple diagnoses, and
require complex interdisciplinary approaches. When interventions are guided by a variety
of therapeutic goals, not all the goals may be addressed at the same time. Clinicians have
to prioritize some therapeutic goals over others, a�ecting the schedule of interventions.
However, the relationship between patient impairments, therapeutic goals and interven-
tions is entwined and usually not explicitly reported in EHR. Thus, in the context of
patients with multiple-impairments, it is still a challenge to design a CDSS to assist in the
task of analyzing these relationships and on proposing the most appropriate personalized
interventions.

An interesting characteristic of clinical data, is that it is usually organized in taxonomies.
For instance, diseases are represented using ICD (either ICD-9 or the latest ICD-10), and
ICF (International Classi�cation of Functioning, disability and health) is also a widely
established taxonomy promoted by the WHO. As it will be shown in the proposal, this
hierarchical characterization of the knowledge brings the opportunity to incorporate an ad-
ditional perspective when analyzing the relationships between patient impairments, ther-
apeutic goals and interventions.

The relationships between patient pro�les, therapeutic goals, and interventions can be
modeled as graphs. The collection of techniques proposed in the literature to study groups
in graphs is known as community detection [29]. Community detection techniques can be
oriented to data properties (nodes), to network structures (edges) or to a mix of them
(nodes and edges). Two main algorithms are widely used: the Girvan and Newman (GN)
algorithm and the Clique Percolation Method (CPM) algorithm. GN is orientated to
�nd communities based on a hierarchical strategy [32] by using metrics to measure the
modularity of the communities and can deal with weighted graphs [55]. CPM searches
overlaps between communities in complex networks [56]. CPM is not the most suitable
algorithm for our problem due its poor performance on dense graphs.
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5.1 Community detection algorithms

The Girvan-Newman (GN) algorithm is a community detection algorithm to detect com-
munities in graphs [32]. The algorithm follows an iterative strategy removing at each step
an edge of the graph, focusing on the edges that are most \between" communities. In the
basic GN algorithm, edge centrality is calculated using the betweenness of an edge, i.e.
calculating the number of shortest paths between pairs of other edges that pass through
it. Edge centrality can be determined using di�erent measures.

The GN algorithm iteratively (1) calculates the centrality for all edges in the network
and (2) removes the edge with the highest rank until no edges remain. Each time an
edge is removed from the network, the remaining connected sub-networks are considered
as communities. Thus, storing the resulting communities in a hierarchical structure, the
strongest node communities are obtained in the leafs and, traversing the tree bottom-up,
at each level nodes are merged in weaker related communities.

5.2 Community Detection to highlight non explicit relations

The proposed methodology is based on graph methods and decomposed in three main
stages: a pre-processing stage where data is represented as multiple co-occurrence graphs;
a second stage where from each co-occurrence graph and using GN algorithm communities
are determined; and a third stage where inter-relations between hierarchies of communities
are established. Finally, and not less important, multiple ways to present the results to
the clinicians are explored.

5.2.1 Graph pre-processing

The �rst process is the construction of the co-occurrence graphs. A di�erent co-occurrence
graph for each feature of interest is constructed. That is, a �rst graph capturing informa-
tion related to patient pro�les, a second graph catching information related to therapeutic
goals, and a third graph grouping patient interventions.

For each feature of interest, a set of representative variables that will constitute the nodes of
the graph have to be selected �rst. As it will be shown later in the experiments, a decision
whether to include all features (variables) or only those that meet speci�c properties (e.g.
a minimum and maximum occurrence) will may be taken. A weight is assigned to each
node representing the occurrence of the variable in the set of patients. Then, an edge
between two nodes of the graph is established if at least for a given patient both variables
represented by the nodes are present. Finally, edges are weighted by representing the
occurrences of two variables (two nodes) in the set of patients.

For instance, the graph of co-occurrences for patient pro�les is built as follows: (1) the im-
pairments in patient pro�les are modeled as the nodes of the graph; (2) nodes are weighted
by the number of patients with each impairment; (3) edges between graph nodes model a
co-occurrence between two impairments in patient pro�les; (4) edges are weighted by the
number of patients with a speci�c joint impairment (see Algorithm 4 and Figure 5.1).
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Figure 5.1: Graph construction process.

An analogous procedure is performed for therapeutic goals: (1) therapeutic goals are
modeled as the nodes of the graph; (2) nodes are weighted by the number of patients with
a speci�c therapeutic goal; (3) edges between graph nodes model a co-occurrence between
two speci�c therapeutic goals, i.e. two goals shared by the same patient; (4) edges are
weighted by the number of patients with joint goals (see Algorithm 4 and Figure 5.1).

In some clinical domains, depending on patient characteristics and on the methodology to
determine therapeutic goals, highly sparse or highly dense graphs may be generated. For
instance, if patient pro�les are very homogeneous, it may cause patients with very similar
therapeutic goals. On the other hand, in the scenario of highly detailed patient pro�les,
therapeutic goals may tend to be very speci�c, generating unique goals for each patient.

These extremes are easy to identify and report numerically and graphically. Since the
nodes and edges are weighted taking into account their occurrence in patients, occurrences
may be expressed as percentages. Then, one of the possible solutions is to have lower and
upper �lters. For instance, 20% and 80% respectively. Consequently, graph elements with
a weight lower than 20% or greater than 80% may be reported and removed. In clinical
domains theses elements represent either relations univocally determined (e.g. a goal only
related to an speci�c impairment) or preventive actions that are prescribed to all patients
(e.g. heparin prescription). The normalization formula used for edges is the following:

wn
i;j =

wi;j

min (wi ; wj )
� 100 (5.1)

where given two nodesi and j with weights wi and wj ; and wi;j the absolute weight of
the edge betweeni and j .
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Algorithm 4: Graph construction process

1 Input:
2 P as a set of patients,
3 itemList as a set of features
4 Graph = [ ]
5 foreach patient in P do

// Creating the nodes
6 foreach item in itemList do
7 node= create node(item )
8 if node is not in Graph then
9 Graph:addNode(node)

10 else
11 Graph:nodes[node]:count + +
12 end
13 end

// Creating the edges
14 combinationPairs = generate combinations(itemList )
15 foreach c1, c2 in combinationPairs do
16 edge= create node(c1; c2)
17 if edgeis not in Graph then
18 Graph:addEdge(edge)
19 else
20 Graph:edges[edge]:count + +
21 end
22 end
23 end
24 return Graph

5.2.2 Detection of Communities

Once the pre-processing step is completed and co-occurence graphs are build, the next
step is to hierarchically cluster each graph according to co-occurrences. For instance, to
establish the relationships among patient impairments.

To determine the hierarchical relationships in a co-occurrence graph Girvan and Newman
(GN) algorithm is used. As it has been presented before, GN algorithm perfectly �ts
the goal. The analysis of each resulted hierarchy provides three main clues: (1) items
belonging to the same community that are also part of the same domain taxonomy; (2)
item communities where items come from di�erent domain taxonomy regions; and (3)
clustering degree of items by analyzing their position in the hierarchy of communities (see
Figure 5.2).

The analysis of communities is exploited in two perspectives. First, an aggregated view
presents those items that are strengthened although they are not part of the same domain
group and, conversely, those items belonging to the same domain group and that are less
correlated than expected. The second perspective is the patient perspective. Comparing
a speci�c patient with the hierarchies of communities, it may be determined if a patient
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Figure 5.2: Clustering the graphs.

is more or less distant from prototypical patients.

5.2.3 Inter-relations between communities

Finally, given two hierarchical communities discovered in the previous step, the aim of
the last analysis step is to study the relationships between them (see Figure 5.3). The
main focus of this stage is to bring out non explicit relations between two features of
interest. For instance, to �nd the relationships among groups of impairments with groups
of therapeutic goals.

The �nal aim in this stage is to improve clinical strategies by increasing the evidences
associated to the treatments. For instance, showing which sets of treatments are most
successful for speci�c sets of patient impairments and linked to which speci�c therapeutic
goals.

To analyze the inter-relations between the two hierarchical communities, several mea-
sures have to be de�ned. First, the percentage of patients sharing the same communities
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Figure 5.3: Relationship between communities.

are measured, based on an inclusion measure, and normalized by community cardinal-
ities. Thus, given a source communityCS

i , a target community CT
j , and the function

patientsW ith returning the patients sharing a community, the proposed measure is the
following:

I i;j =
jpatientsW ith (CS

i ) \ patientsW ith (CT
j )j

jpatientsW ith (CS
I ) [ patientsW ith (CT

j )j
(5.2)

To assess the inclusion taking into account the directionality, just one of the elements in
the denominator has to be removed. That is, to measure the agreement with respect of
the source community only the denominatorpatientsW ith (CS

i ) should be considered.

An example of inter-relationship I i;j may be calculated by the fraction of patients sharing
both communities of impairments and therapeutic goals with respect of patients sharing
either impairments or therapeutic goals.

5.2.4 Decision Support Tools

One of the key aspects to consider is how to present the results so that they are useful
and intelligible for clinicians. With the idea to simplify the interpretation of the results,
several visualizations have been explored. First, a graphical tool has been designed to
summarize and explore hierarchical relations between communities and, at the same time
to stress the inter-relations between communities of di�erent features of interests (e.g.
between impairments and therapeutic goals). Figure 5.4 illustrates an example of the
proposed tool. Communities discovered from the analysis of patient pro�les are plotted on
the left vertical axis while communities discovered from the analysis of therapeutic goals
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Figure 5.4: Graphical summary of community inter-relations.

are plotted on the top horizontal axis. In the center area of the �gure, the relationship is
showed, where dark blue colors mean more relationship.

When a new patient enters with a list of impairments, then the impairments are highlighted
in the left axis as Figure 5.5 shows. In this example, the patient has impairments in f1,
f6 and f7. To determine which are the best targets to assign, their rows are highlighted
allowing to identify which are the most relevant therapeutic goals. In this patient, the
group composed by g2, g5, g7 presents more relationship with f1. Regarding f6 and f7,
the highest relationships are with g2 and g5. Thus, the system will propose the two
alternatives for this patient: to assign g2,g5,g7 together or to assign g2 and g5 without
g7.

But in problems where the number of variables (nodes) is huge, previously to exploit this
detailed view, we propose to use a summary view of the total relationships (see Figure 5.7)
where hierarchical representations of communities are removed.

5.3 Experiments

We conducted two types of experiments to evaluate the proposed methodology. First, we
performed experiments using a random sample of 2000 patients extracted from the eICU
database. Speci�cally, we exploited as patient pro�les the information related to patient
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Figure 5.5: Graphical summary of community inter-relations with a concrete patient.

diagnoses and the therapeutic goals clinicians assigned to the patients. The results of
these experiments are reported below. Next, we performed experiments using clinical
data from Guttmann Neuro-rehabilitation EHR. These second experiments are reported
in Chapter 6 where Guttmann's use case is introduced and explained.

5.3.1 Graph pre-processing

In a �rst stage we generated the co-occurrence graphs of patient pro�les and therapeutic
goals. Diagnoses in eICU dataset are codi�ed using ICD-9 (International Classi�cation of
Diseases), a standard hierarchical classi�cation of diseases. This codi�cation allowed us to
explore the relationships between types of diseases besides of exploring the relationships
between speci�c diseases. The sample of 2000 patients includes 1046 di�erent diagnoses.

Therapeutic goals are de�ned in a customized hierarchical structure. The number of
therapeutic goals is lower than the number of diagnoses. Speci�cally, the sample of 2000
patients includes 83 di�erent therapeutic goals.

To build the co-occurrence graphs we used the Networkx 2.4 library [36], a speci�c library
for graph creation and manipulation. Without any �ltering process, from the 2000 patients
we obtained a graph for patient pro�les (PP graph) composed of 1046 nodes and 3908
edges. Figure 5.6 shows the relationship between nodes and edges. The majority of the
nodes (diseases) have an occurrence lower than 20%, i.e. it is a non condensed graph. In

52



Figure 5.6: Graph diagnose properties.

other words, there is a huge volume of diseases that are not shared for many the patients.
There are two possible interpretations: or the diseases are very detailed or the diversity
of patient impairments is huge.

Regarding the graph of therapeutic goals (TG graph), without any �lter, the graph is
composed of 83 nodes and 3182 edges. Here the number of edges with respect to the
number of nodes is huge producing a highly connected graph. Two reasons are behind
of this graph structure. First, the number of therapeutic goals is low (83 goals over 1000
diagnoses). Next, the number of therapeutic goals per patient is lower generating a graph
with similar edges than the PP graph.

5.3.2 Community detection and Inter-relations between communities

To determine the communities inside every graph, the Girvan-Newmann algorithm im-
plementation from the Networkx 2.4 library was used [36]. For PP graph, a hierarchy of
2085 communities was generated. Regarding TG graph, a hierarchy of 62 communities
was generated.

Finally, from two obtained community groups, the last step is to �nd the inter-relations
between the communities of diagnoses and communities of therapeutic goals. Figure 5.7
summarizes graphically the inter-relations between the two types of communities. The
�gure shows the results without any �lter. However, one point that should be remarked is
the fact that there is a huge white zone on the image top. In other words, this white zone
from around 500 impairments con�rms that there are a lot of impairments that histori-
cally have never been assigned any goal. Specially, with the huge volume of impairments
and goals, a useful strategy that could be performed is to �lter this white zone. Another
important point to remark is that Figure 5.7 shows the relationship of the complete his-
torical data. However, an important goal is when a new patient enters the system and
the CDSS needs to propose which are the most relevant goals for this patient. Given a
concrete patient, a zoom in Figure 5.7 is mandatory.

Figure 5.8 shows the visualization of a concrete patient. Only the rows where the pa-
tient has an impairment are showed in the �gure. Although the global vision of all the
possibilities between impairments and goals is lost, for a clinical expert starting with a
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Figure 5.7: EICU communities.

simpler visualization may help to focus on speci�c patient issues. For instance, in this
concrete patient, communities of therapeutic goalsgc0, gc1, gc2, gc4, and gc9 could be
then presented to the experts. Then, highlighting which speci�c therapeutic goals below
to several communities, experts may decide which are the �nal goals to prescribe.

Figure 5.8: eICU communities for a speci�c patient.
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Chapter 6

Use cases

This PhD has been developed in the context of two di�erent clinical problems. The �rst
part of the research in collaboration with the \Institut Guttmann Hospital de Neuroreha-
bilitaci�o". The second part of the research in the context of the Play&Sign project funded
by the foundation \la Marat�o de TV3" and collaborating with IDIBELL (the project
coordinators) and the \Hospital de l'Esperan�ca" .

6.1 Institut Guttmann Hospital de Neurorehabilitaci�o

The �rst use case is related to the Institut Guttmann Hospital de Neurorehabilitaci�o The
Institut Guttmann is a hospital specialized in the spinal cord, traumatic brain injury,
stroke, and minority illnesses such as polio or Guilliam Barr�e injuries. It is a hospital
focused on neurorehabilitation. The importance of neurorehabilitation has increased in
the last years as a consequence of new society demands not only based on mortality or
morbidity conditions, but also on improving the quality of life and chronic conditions of
the population [73].

Neurorehabilitation is a complex process where patients, concurrently presenting diverse
impairments and several diagnoses, receive multiple and complex treatments. High com-
plexity patients, like patients who have su�ered a traumatic brain injury, stroke, or spinal
cord injury need long periods to regain or readjust to their loss of functioning in cognitive
and physical abilities. These multiple impairments need to be treated by multidisciplinary
teams composed by di�erent professionals, such as rehabilitation doctors, nurses, phys-
iotherapists, occupational therapists, neuropsychologists, and social workers. Patients in
neurorehabilitation units typically spend from three to six months.

6.1.1 Clinical context

Within the clinical workow presented in Section 2.1 (see also Figure 2.1), the Institut
Guttmann helps patients when acute problems are stabilized and the mortality risk is
reduced in intensive care units, a previous stage. Patients are survivors but they carry
clinical sequelae that must be mitigated or solved.
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Figure 6.1: Clinical workow at the Institut Guttmann.

Patients arrive at Institut Guttmann with the problem ethology diagnosed, e.g. an stroke
diagnosis and a set of associated diagnoses. Moreover, information related to how the prob-
lem occurred is also collected as some additional physiological problems may be present.

In terms of the clinical workow, the Institut Guttmann focuses specially on the treatment
and the follow up stages (see Figure 6.1). Moreover, the treatment is separated in two
phases: hospitalization and outpatient.

Hospitalization

During hospitalization patients spend all the days at the hospital, including sleeping. A
hospitalization day is organized through an agenda of activities where several professionals
have assigned di�erent hours to work with the patient. It is considered an intensive treat-
ment because patients perform activities all day. However, sometimes there are patients
who are not able to perform some activities and spend more hours in the hospital room.
The hospitalization period is critical to achieve the best recovery, i.e. to establish the
foundations of the future quality of life. However, as it was mentioned previously, not all
the patients follow the same progression and the continuous adaptation of treatments to
the patient progress is not an easy task in the context of a multi-disciplinary intervention.

Outpatient

The outpatient is a phase where patients conduct their everyday lives at their home and
only attend the hospital some regular hours a week. Outpatient is considered a transition
phase where the intensity of neurorehabilitation treatments is periodically decreasing.
Sometimes, some treatments that started in the hospitalization phase continue in the
outpatient phase. However, many of them are new treatments and oriented to aspects
related to personal autonomy and life in the community.

Follow up

Finally, there is a point where patients �nish the clinical treatment phase and where the
contact with the hospital becomes more sporadic. Then, all new acquired abilities are
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performed autonomously by patients and their relatives. Institut Guttmann has a patient
follow-up program to monitor their evolution over the years.

6.1.2 Knowledge and data sources exploited

One of the major initial e�orts before starting the design of any Clinical Decision Support
System is to identify the data resources and its availability throughout the clinical pro-
cess. Specially, because not all information is available in the early stages of the patient
treatment.

The data used to perform the experiments was gathered from EHR of the Institut Guttmann
from 2007-2016. A sample of 1960 patients that su�ered an Acquired Brain Injury caused
either by a Traumatic Brain Injury (TBI) or a Stroke have been collected. From the 1960
patients, 792 are patients that su�ered a Traumatic Brain Injury and 1168 a Stroke. From
EHR di�erent types of information have been extracted.

Demographic and Clinical data

The �rst data collected from the patient is related to the personal and social context.
Examples of this data are gender, age, level of studies, type of work, and social support.
This information allows to establish the personal and social context of the patient. The
second type of information is related to existing diagnoses (e.g. general and speci�c etiolo-
gies) and to physiological and neuropsychological assessments performed from a battery
of tests, such as the Fugl-Meyer Assessment of Motor Recovery (FMA), the Functional
Independence Measure (FIM), the Stroop Color and Word Test (SCWT), or the Wechsler
Adult Intelligence Scale (WAIS).

Patient Pro�le

The WHO has been working during the last years in the de�nition of an International
Classi�cation of Functioning, Disability and Health (ICF) to describe in a holistic vision
the patients. At Institut Guttmann, ICF is used as the core element to describe patient
pro�les. ICF introduces di�erent core-sets for di�erent etiologies which are organized as
taxonomies. At a �rst level of the taxonomy there are the four main chapters: Function
chapter, Activity and Participation chapter, Structure chapter, and Environmental chapter
(see Table 6.1 for an example). The second level of each taxonomy de�nes the scopes of
intervention. Finally, taxonomy leafs contain speci�c items.

The chapter on Function factors groups items such asOrientation , Attention , or Higher-
level cognitive functions. The chapter on Activity and Participation factors contains items
such asSpeaking, Walking, Toileting , Dressing, Eating, Family relationships, Remunerative
employment, or Recreation and leisure factors. The chapter on Structure factors includes
items such asStructure of the brain or upper extremity indicators. Finally, the chapter
on Environmental factors includes items such asProducts and technology for personal
use in daily living, Products and technology for personal indoor and outdoor mobility and
transportation , or Health services, systems and policies.
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Chapter ID ICF name

Function

b114 Orientation
b140 Attention

functions
b164 Higher-

level
cognitive
functions

b167 Mental
functions of
language

Activity
and

Participation

d330 Speaking
d450 Walking
d510 Washing

oneself
d530 Toileting
d540 Dressing
d550 Eating

Structure s110 Structure of
brain

Environmental

Table 6.1: Example of the ICF taxonomy.

ICF Patient Pro�les (ICF-PP) contain around 30 items from ICF brief coreset versions
for TBI and Stroke. Values of ICF items range from 0 to 4, where 0 indicates normality
and 4 complete impairment. We will consider that a patient has an impaired item when
its value is 3 o 4.

Therapeutic Goals

Therapeutic Goals (TG), are goals that professionals assign to patients to establish the
priorities in the Neurorehabilitation process. Speci�cally, the Institut Guttmann has a list
of possible goals to achieve during the treatment process organized in a taxonomy. The
�rst level of the taxonomy describes the areas of intervention such as Nursery, Functional
Rehabilitation, speech therapy, or Neurophysiology. At a second level, therapeutic goals
are grouped in intervention concepts such asBladder/Bowel removal, Skin care, Sanitary
Educational, Joint Balance, Bipedestation, Transfers, Dressing, Patient Psychological In-
tervention, Familiar Psychological Intervention. Finally, at a third level, the concrete
goals are described by a name and an id such asVesicular sphincter control (1024), Bed-
chair-bed (1235), Establishing cooperation pact (1659)(see Table 6.2 for an example).

At Institut Guttmann there is an initial joint meeting where all experts involved in the
neurorehabilitation of a speci�c patient reach a consensus regarding the list of initial
therapeutic goals. The initial list of therapeutic goals incorporates, implicitly, the long-
term prognosis. Afterwards, the goals are periodically revised taking into account the
progress and the patient opinion. Patients are specially empowered to perform an active
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Goal Group ID Goal name
Bladder
/Bowel
removal

1024 Vesicular sphincter control
1039 Anal sphincter control
1041 WC evacuation (3 person)

Skin cure 1051 Shower (3 person)
Sanitary

Educational
1066 Prevention urinary system
1067 Prevention digestive system

Joint Balance

1214 Upper right extremities
1215 Upper left extremities
1216 Lower right extremities
1217 Lower left extremities

Bipedestation 1218 Autonomous

Transfers
1235 Bed - Chair - Bed
1240 Chair - WC/Shower- Chair
1245 Chair - Car - Chair

Dressing
1269 Upper body Autonomous
1274 Lower body Autonomous

Patient Psy.Int. 1605 Sustained Attention

Familiar
Psycho-
logical

Intervention

1659 Establishing coop. pact
1662 Knowing how to act
1665 Aim planning
1666 Training technical aids
1667 Training rehab. activities
1670 Establish priorities

Table 6.2: Example of a portion of the taxonomy of therapeutic goals.
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role in short-term goals.

In the data used to perform experiments and the proof of concept, 292 therapeutic goals
were represented. Patients have a mean of 25 therapeutic goals. Those with less thera-
peutic goals have usually 15 goals and there are some that may reach 40 goals.

Interventions

Interventions are all the prescriptions and activities patients perform during the rehabil-
itation process. Some of them are pharmacological while others focuses on physical or
cognitive aspects.

Based on the patient pro�le and therapeutic goals, experts prescribe a set of interventions.
For instance, if the patient presents problems to walk, one goal will be to walk 100 meters
without help (without crutches). In this context, one intervention will be to gain more
muscle power on a�ected legs. Then, the expert may typically prescribe two-week sessions
of one hour with the static bicycle.

Interventions are periodically assessed to determine the progress of the patient. The way
the progress is reported may vary from a direct data acquisition from clinical facilities
to a textual description incorporated into the EHR. The exploitation of the information
generated during the activities performed by the patients is a key issue as it provides
measures of the patient progress and also of the possible positive or negative interactions
between di�erent parallel interventions. Incorporating CDSS in this stage may become a
high contribution for current clinical trend of personalized medicine.

6.1.3 Data enhancement

As mentioned previously, missing data is common in clinical domains. In the context
of Institut Guttmann use case, missing data is specially frequent in early stages of the
treatment. The �rst reason is that many patients begin the rehabilitation process when
their clinical condition is still critical. Some of them require some weeks to be able to
perform speci�c tests. The second reason is that some results may require clinical cultures
that take several days. Moreover, since many of them are specialized assessments that
require a patient e�ort, the prioritization of them may vary patient to patient.

An experiment has been conducted to determine if the dynamic imputation of some missing
items in a speci�c questionnaire may improve the prediction of the global score. Speci�-
cally, the Functional Independence Measure (FIM) is used to prove this. This evaluation
scale is composed of 18 items, which evaluate aspects of the physical, psychological and
social function of the individual. FIM is administered by physiotherapists. FIM is used to
assess a patient's level of disability as well as the change in patient's condition in response
to rehabilitation [44].

Experiments have been conducted as described in Section 3.5. That is, randomly selecting
di�erent combinations of known features and performing a cross-fold validation. As Fig-
ure 6.2 shows, depending on the number of known features the imputation method with
lowest MSE varies. RF strategy, i.e. no imputation, is more competitive when the number
of known features is high enough (from 10 to 12 known features). However, when the
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Figure 6.2: FIM with several imputation strategies.

number of known features is low, imputation methods reach lower errors. Globally, the
most competitive measures are MICE and DMI (see Table 6.3). Taking into account that,
as expected, RF is the most competitive strategy when the number of known features is
high, MICE and DMI become even more competitive when the number of known features
is low.

RF Mean KNNMean MICE DMI
45.6 47.37 46.56 44.77 44.85

Table 6.3: MSE when imputing missing features for FIM score.

6.1.4 Discovering Non-explicit relationships

Proposed community detection techniques have been applied to discover non-explicit rela-
tionships between patient pro�les and therapeutic goals. That is, between ICF items and
therapeutic goals (TG). As it was described in Chapter 5, the proposed methodology is
based on graph methods and three main stages: a pre-processing stage, the identi�cation
of intra-communities, and the identi�cation of inter-relations.

Pre-processing

The process started with the construction of the co-occurrence graphs from the information
gathered from 1960 patients. As for ICF-PP graph, it was initially composed of 18 nodes,
i.e. 18 ICF items, and 120 edges (see Table 6.4). After removing ICF items either common
in most patients or anecdotal, the resulting graph holded 11 nodes. Next, reporting
and removing the edges with highest weights, i.e. those ICF items clearly co-related,
the remaining number of edges was 39 and none of the nodes was removed. Table 6.1
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Name Nodes Edges Average Degree Density

ICF-PP 11 (18) 39 (120) 7.09 (11.78) 0.70 (0.78)

TG 23 (292) 28 (30587) 2.52 (209.50) 0.11 (0.72)

Table 6.4: Statistics of co-occurrence graphs.

summarizes the resulting ICF sub-taxonomy considered by the ICF-PP graph and co-
occurrences are shown in the graph on the left in Figure 6.3. Colors in nodes represent
the di�erent ICF chapters.

Regarding the TG graph, it was initially composed of 292 nodes, i.e. 292 therapeutic
goals, and 30587 edges (see Table 6.4). When reporting and removing anecdotal goals,
the number of nodes dropped to 50. Speci�cally, the pre-processing over TG showed that
there were around 100 TGs with an occurrence lower than 10% and another 100 with an
occurrence lower than 20%. This result showed that the core of therapeutic goals is lower
than expected. Finally, after reporting and removing common goals and highly weighted
edges, the resulting number of nodes dropped to 23. Table 6.2 summarizes the resulting
TG sub-taxonomy considered by the TG graph and co-occurrences are shown in the graph
to the right in Figure 6.3. Colors in nodes represent di�erent groups of therapeutic goals.

Figure 6.3: Co-occurence graphs for Guttmann's use case.

Community detection

From the two co-ocurrence graphs shown in Figure 6.3, the GN algorithm has been applied.
GN algorithm provides a hierarchical structure of communities where leafs are individual
items and tree nodes de�ne the communities of the items included in the sub-tree. Lower
nodes in the tree model imply stronger communities. In turn, as far as two items are
connected in the tree, less co-related are these two items.
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Figure 6.4: Communities for ICF Pro�le.

Note that leafs and tree nodes are vertically aligned to make explicit the result of the
GN algorithm. For instance, the strongest community arisen from the GN algorithm in
the ICF-PP graph (see Figure 6.4) is the community composed byToileting (d530), and
Attention functions (b140) items. Next, the second strongest community is composed by
Speaking(d330), and Eating (d550) items. Then, the Walking (d450) item is added into
the �rst community.

The hierarchy of ICF-PP communities was initially surprising. The arisen community
joining Toileting and Attention was not expected as they are related to di�erent domains
(physical and cognitive, respectively). Nonetheless, the Toileting process needs abundant
patient attention. The later inclusion of the Walking item into the community is coherent
as it is a function that is necessary for the toileting process and also in other daily activities.
Following the generalization of this community, Dressing (d540), and Structure of brain
(s110) were added.

The second main branch in ICF-PP communities starts with Speaking(d330), and Eating
(d550) items, two concepts that are related with the mouse/neck. NextWashing oneself
(d510) joins the community. This strong connection was not expected as this item is
apparently closer to Toileting (d530). Finally, Mental functions of language(b167), which
it is an indicator closely related to the Speaking and Eating is added. Interestingly,High-
level cognitive functions (b164) item is only included in the most general community.

Regarding the communities generated from the TG graph, it is organized as a wide and
shallow tree structure. The reason behind this organization of communities is that ther-
apeutic goals are less clustered and less co-related. The GN algorithm starts by creating
small communities of 2-3 indicators. Most of these small communities never join other
communities. These small communities are clearly related to the same intervention con-
cepts. For instance, the community composed ofPrevention urinary system (1066) and
Prevention digestive system(1067) is related to educational aspects or the two communi-
ties related to the extremities. Interestingly, these two communities of goals are clustered
by the body size (left and right). That is, the �rst community groups Lower right extrem-
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