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Abstract

Online communities establish norms to regulate interactions between agents (community members)
with diverse backgrounds and views. A normative system that intends to regulate community
members’ behavior faces the challenge of continuously learning what constitutes a norm violation
as communities’ views evolve (e.g., change in what characterizes a violation, emergence of new
violation classes). To address this challenge, we propose a Machine Learning (ML) approach
that supports normative systems to continuously learn what constitutes a norm violation from
interactions and community members’ feedback. Our solution uses examples of actions labeled as
violations in a multi-scenario context, where actions are formalized as a set of features (tabular
data) or as text sentences. This thesis focuses on low-resource or newly created online communities,
domains characterized by limited available training data. To learn in this context, our proposal
incorporates data from different sources (communities) to improve the performance of ML models
in a new target community.

In addition to identifying norm violations, we argue that normative systems must be capable of
explaining the different views manifested in the communities, providing information on which ele-
ments of an action contribute to a norm violation. Thus, our solution employs ML interpretability
to provide information on how such views change within a specific domain (over time) or across
different communities. We believe this constitutes a key contribution of our work, which helps
describe how detrimental behavior evolves.

The main contribution of this thesis is integrating incremental learning in three frameworks:
FeDAL, LaMAL, and CAL. FeDAL is an ensemble of neural networks built to handle tabular
data with class distribution imbalance. LaMAL employs a Pre-Trained Language Model (PLM)
to allow handling text data in binary and multi-label classification tasks. CAL combines adapters
with a PLM, permitting the incorporation of text data from different sources and hence allowing
us to handle the emergence of new violation classes. Regarding interpretability, FeDAL uses the
LIME algorithm to explain the relevant features contributing to violation detection in the ensemble
of classifiers. LaMAL and CAL use the Integrated Gradients (IG) algorithm, specifically built to
understand the inner workings of transformer-based models (in our case, PLMs) by identifying the
relevant words for violation detection. We evaluate these frameworks with a small set of data from
the Wikipedia article editing task, where the norm that we address is the prohibition of vandal-
ism. Results show that FeDAL, LaMAL, and CAL can detect norm violations with imbalanced
data and changing community views while successfully explaining the different ML models’ output.
Moreover, CAL’s results indicate that incorporating data from different communities enhances the
model’s performance in a new target community with limited labeled data.

Finally, we conduct a user study to assess whether different interpretability layouts can influence
user views when evaluating sentences containing hate speech. While our statistical analysis indi-
cates that none of the interpretability layouts significantly influence participants’ views regarding
the classification of hate speech, our qualitative analysis provides valuable insights into the im-
pact of incorporating ML interpretability in our solution. Specifically, by better understanding
how an ML model classifies norm violations, users can react and provide relevant feedback when
they notice a disagreement with the model’s outputs. As such, interpretability can be viewed as
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a tool to trigger a model’s update when necessary. Moreover, interpretability data can provide
valuable information for engineers when evaluating the ML model’s behavior beyond traditional
performance metrics.

Keywords: norm violation, concept drift, ensemble learning, incremental learning, interpretability
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Resum

Les comunitats en ĺınia estableixen normes per regular les interaccions entre agents (membres de
la comunitat) amb antecedents i punts de vista diversos. Un sistema normatiu que pretén regular
el comportament dels membres de la comunitat s’enfronta al repte d’aprendre de manera cont́ınua
què constitueix una violació de la norma a mesura que les opinions de les comunitats evolucionen
(per exemple, canvis en el que caracteritza una violació, emergència de noves classes de violacions).
Per abordar aquest repte, proposem un enfocament basat en l’aprenentatge automàtic que dona
suport als sistemes normatius per aprendre de manera cont́ınua de les interaccions i les reaccions
dels membres de la comunitat. La nostra solució utilitza exemples d’accions etiquetades com a
violacions en un context de múltiples escenaris, permetent que les accions es formalitzin com un
conjunt de caracteŕıstiques (dades tabulars) o com a frases de text. Aquesta tesi se centra en
comunitats en ĺınia amb pocs recursos o de nova creació, àmbits on l’aprenentatge es produeix en
un context amb poques dades disponibles. Com a tal, la nostra solució pot incorporar dades de
diferents fonts (comunitats) per millorar el rendiment dels models d’aprenentatge automàtic en
una nova comunitat dest́ı.

A més de la identificació de violacions de normes, argumentem que els sistemes normatius han
d’explicar les diferents perspectives que es manifesten a les comunitats, incloent-hi evidències
sobre els elements rellevants d’una acció que s’associen a violacions de normes, i com poden diferir
a la llum del caràcter evolutiu de les interaccions en ĺınia. Analitzar els canvis de perspectiva
de les comunitats dins d’un domini espećıfic o entre diferents comunitats és una contribució clau
del nostre treball, ja que descriu com canvia el comportament perjudicial al llarg del temps i en
diferents dominis.

La principal contribució d’aquesta tesi és la integració de l’aprenentatge incremental en tres marcs:
FeDAL, LaMAL i CAL. FeDAL és un conjunt de xarxes neuronals dissenyat per gestionar dades
tabulars amb desequilibri en la distribució de classes. LaMAL utilitza un model de llenguatge
preentrenat per gestionar dades de text en tasques de classificació binària i multietiqueta. CAL
combina adaptadors amb un model de llenguatge preentrenat per gestionar dades de text i in-
corpora informació de diferents fonts per millorar el rendiment en una comunitat dest́ı. Per a
la interpretabilitat, FeDAL utilitza l’algorisme LIME, proporcionant explicacions per a les car-
acteŕıstiques rellevants en un conjunt de classificadors. LaMAL i CAL utilitzen l’algorisme de
Gradients Integrats, dissenyat espećıficament per comprendre el funcionament intern dels models
basats en transformadors (en el nostre cas, models de llenguatge preentrenats). Avaluem aquests
marcs en un petit conjunt de dades d’interacció de la tasca d’edició d’articles de la Viquipèdia, on la
norma prohibeix el vandalisme. Els resultats mostren que FeDAL, LaMAL i CAL poden detectar
violacions de normes amb dades desequilibrades i canvis en les perspectives de la comunitat, alhora
que expliquen la sortida dels diferents models d’aprenentatge automàtic. A més, els resultats de
CAL indiquen que la incorporació de dades de diferents comunitats millora el rendiment del model
en una nova comunitat dest́ı.

Finalment, realitzem un estudi d’usuaris per avaluar si diferents dissenys d’interpretabilitat poden
influir en les valoracions dels usuaris en apreciar frases que contenen expressions d’odi. Tot i que
el nostre anàlisi estad́ıstic indica que cap dels dissenys d’interpretabilitat influeix significativament
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en les opinions dels participants sobre la classificació de les expressions d’odi, el nostre anàlisi
qualitatiu proporciona informació valuosa sobre l’impacte de la incorporació de la interpretabili-
tat d’aprenentatge automàtic en la nostra solució. Concretament, en comprendre de manera més
precisa com un model d’aprenentatge automàtic identifica violacions de normes, els usuaris poden
proporcionar informació rellevant quan noten discrepàncies amb les sortides del model. Per tant,
aquesta informació es pot considerar com una eina per desencadenar una actualització del model
quan sigui necessari. A més, les dades d’interpretabilitat poden oferir informació valuosa als en-
ginyers en avaluar el comportament del model d’aprenentatge automàtic més enllà de les mètriques
de rendiment tradicionals.

Paraules clau: violació de normes, deriva de concepte, mètode de conjunt, aprenentatge incre-
mental, interpretabilitat
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Resumen

Las comunidades en ĺınea establecen normas para regular las interacciones entre agentes (los miem-
bros de una comunidad) con oŕıgenes y puntos de vista diferentes. Un sistema normativo que tiene
como objetivo regular el compartimento de dichos miembros se enfrenta al desaf́ıo de adaptarse
continuamente para identificar lo que constituye una violación de las normas establecidas, al mismo
tiempo que las perspectivas de la comunidad evolucionan, como por ejemplo, los cambios en las
caracteŕısticas de una violación, o el surgimiento de nuevas clases de violación. Para abordar este
desaf́ıo, la presente tesis propone una solución que emplea técnicas de aprendizaje automático para
equipar a los sistemas normativos a aprender de manera continua a partir de las interacciones y
las reacciones de los miembros. Nuestra propuesta utiliza ejemplos de acciones etiquetadas como
violaciones en un contexto que abarca múltiples tipos de datos, lo que posibilita formalizar esas ac-
ciones como un conjunto de caracteŕısticas (dados tabulares) o como sentencias en formato textual.
Esta tesis se centra espećıficamente en comunidades en ĺınea que cuentan con pocos recursos o que
han sido creadas recientemente, dominios en los que el aprendizaje se desarrolla en un contexto con
dados limitados. En este sentido, nuestra solución se presenta como una metodoloǵıa que puede
incorporar datos de diferentes fuentes (comunidades) para mejorar el rendimiento de los modelos
de aprendizaje automático en una nueva comunidad.

Además de identificar violaciones de normas, argumentamos que los sistemas normativos deben
explicar los diversos puntos de vista manifestados en las comunidades, incluyendo evidencia sobre
los elementos relevantes de una acción que se asocian con violaciones de normas, y cómo pueden
diferir a la luz de la naturaleza evolutiva de las interacciones en ĺınea. El análisis de las trans-
formaciones en las perspectivas de las comunidades, tanto considerando una comunidad espećıfica
o entre diferentes comunidades, constituye una contribución clave de nuestro trabajo. Este en-
forque permite describir cómo se modifica el comportamiento perjudicial a lo largo del tiempo y
en distintos dominios.

La principal contribución de esta tesis es la integración del aprendizaje incremental en tres mar-
cos: FeDAL, LaMAL y CAL. FeDAL consiste en un conjunto de redes neuronales creadas para
abordar el desequilibrio en la distribución de clases en datos tabulares. LaMAL emplea un mod-
elo de lenguaje preentrenado para abordar tareas de clasificación binaria y de etiquetas mútiples
considerando datos de texto. CAL combina adaptadores con un modelo de lenguaje preentrenado
para abordar tareas con datos de texto, incorporando datos de diferentes fuentes con el fin de
mejorar el rendimiento en una comunidad destino. Con respecto a la interpretabilidad, FeDAL
utiliza el algoritmo LIME, el cual proporciona explicaciones para las caracteŕısticas relevantes en un
conjunto de clasificadores. LaMAL y CAL utilizan el algoritmo de Gradientes Integrados, creado
espećıficamente para comprender el funcionamiento interno de los modelos basados en transfor-
madores (en nuestro caso, modelos de lenguaje preentrenados). Evaluamos estos marcos en un
pequeño conjunto de datos de interacción relacionados con la tarea de edición de art́ıculos en
Wikipedia, donde la norma proh́ıbe el vandalismo. Los resultados indican que FeDAL, LaMAL y
CAL pueden detectar violaciones de normas en presencia de desequilibrios en la distribución de
clases y cambios en las perspectivas de la comunidad, al mismo tiempo que explican las decisiones
de los diferentes modelos de aprendizaje automático. Adicionalmente, los resultados de CAL sug-
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ieren que la inclusión de datos de diferentes comunidades mejora la performance del modelo en
una nueva comunidad destino con dados limitados.

Finalmente, llevamos a cabo un estudio de usuarios para evaluar el posible impacto de diferentes
diseños de interpretabilidad cuando los usuarios evalúan oraciones que contienen expresiones de
odio. A pesar de que nuestro análisis estad́ıstico no revela influencias significativas de ninguno de
los diseños de interpretabilidad en las opiniones de los participantes con respecto a la clasificación
de las expresiones de odio, nuestro análisis cualitativo aporta información valiosa acerca de cómo
la incorporación de la interpretabilidad del aprendizaje automático afecta nuestra solución. Es-
pećıficamente, al comprender de manera más precisa cómo un modelo de aprendizaje automático
identifica violaciones de normas, los usuarios pueden proporcionar información relevante cuando
notan un discrepancias con las salidas del modelo. Por lo tanto, esta información puede consider-
arse como una herramienta para desencadenar una actualización del modelo cuando sea necesario.
Además, los datos de interpretabilidad pueden ofrecer información valiosa para los ingenieros al
evaluar el comportamiento del modelo de aprendizaje automático más allá de las métricas de
rendimiento tradicionales.

Palabras clave: violación de normas, deriva de concepto, método de conjunto, aprendizaje incre-
mental, interpretabilidad
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Chapter 1

Introduction

Online communities represent dynamic social domains where community members (agents) with
diverse backgrounds and points of view interact. These interactions occur in a context where
normative systems can be used to establish norms (Jones & Sergot, 1994), aiming at specifying and
regulating the relevant behavior of agents (human or software) as they engage in online activities.
To illustrate the importance of these norms, consider the use case of article editing in Wikipedia,
an online platform where diverse people connect in an open environment and their contributions
are visible to the entire world (Wikipedia, 2023). In this instance, norms dictate how community
members must add or edit content, ensuring the maintenance of articles following a consistent
format that respects some predefined requirements. These requirements include adopting a proper
writing style, avoiding editing wars, and not expressing hate speech.1 Adherence to these norms
intends to promote inclusivity2 and coherence within the community while violating behavior leads
to exclusion and harm of agents (McLean & Griffiths, 2019; Shmargad et al., 2022).

As an online community defines its relevant norms, the first main challenge tackled in this thesis
is to detect violations as interactions unfold. Notably, for many of these norms, what constitutes a
violation changes over time and across communities. Consequently, we address this challenge while
adapting to the evolving community views on what constitutes violating behavior, i.e., how a com-
munity understands the elements of an action that characterize detrimental interactions (Allison
et al., 2019). This evolution represents the shift in communities’ views leading to the prohibition of
previously accepted actions, like the prohibition of certain terminologies, or the emergence of new
violation classes, such as identifying a new hate speech target. For instance, what is considered
hate speech may change rapidly as new members are incorporated and interactions unfold. Con-
sider the “N-Word” (Rahman, 2012). It may be viewed differently as more African Americans join
the community and begin to salute each other using this term. We argue that a normative system
deployed to govern these interactions must adapt to the current view of the community. To ac-
complish that, normative systems may employ Machine Learning (ML) models that continuously
learn what constitutes norm violations. This process becomes particularly complex considering
low-resource (or newly created) online communities, where learning norm violations occur in a
context with limited labeled data since we aim to learn as soon as new community views start
emerging (Huang et al., 2022).

The normative systems’ ability to continuously learn what constitutes a norm violation is essen-
tial because of the community-specific nature of behaviors like discrimination, hate speech, and
cyberbullying. Thus, constantly identifying these behaviors is critical for the success of online

1Disclaimer: This thesis presents content (offensive language) that may disturb some audiences.
2Inclusivity refers to creating an environment where people are integrated by acknowledging and respecting their

diverse characteristics (Arora & Patro, 2021). In our case, this includes promoting an online environment that
actively prohibits discrimination based on gender, ethnicity, race, or other individual or group attributes.
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communities. In this scenario, the manifestation of such negative behavior tends to vary across
online communities and over time, and this behavior causes significant harm to individuals and
negatively impacts the community experience in online platforms as a whole (Gray, 2018; Risch &
Krestel, 2020). It is important to note that not only online communities stand to benefit from this
research, as the challenges we tackle are also of interest to fields in which detecting misbehavior
can prevent infractions, e.g., credit card fraud, personal information leakage, and network infiltra-
tion. For example, credit card transaction fraud may vary due to seasonal behavior patterns and
different fraud strategies (Lebichot et al., 2021).

Interesting approaches to identify norm violation in online communities have already been pro-
posed, with applications to Wikipedia (Anand & Eswari, 2019; Freitas dos Santos et al., 2022b;
West & Lee, 2011), software engineering communities (Cheriyan et al., 2017, 2021), Reddit (Chan-
drasekharan et al., 2019) and other communities (Karim et al., 2021; Mollas et al., 2022; Xiang
et al., 2021). However, these approaches can not continuously update the system used to classify
an action as a norm violation. Consequently, they can not handle the evolution of the community’s
view about what constitutes such violations. We address this limitation by proposing an approach
that handles the interactions of an online community as a stream of actions with an imbalanced
class distribution and the presence of concept drift (q.v. Section 2.2). We argue that we should ac-
commodate for imbalanced class distribution because violating behavior is usually not as common
as non-violating behavior, resulting in an imbalance in the training data, i.e., the stream of actions.
Moreover, we should accommodate for concept drift, which represents changes in community views
of what constitutes a norm violation. The novelty of this work is addressing the dynamic nature
of norm violations in online communities by incorporating community members’ feedback as the
ground truth to the learning mechanism, which allows the learning mechanism to continuously
adapt to changes in norm-violating behavior over time and across communities.

The second challenge addressed in this thesis is to learn what constitutes norm violations using
different types of data input. Specifically, actions are represented by text data, such as the text
of a Wikipedia edit, or formalized as a set of features, such as those representing the frequency of
profane words in a Wikipedia edit.3 Table 1.1 highlights sample classification tasks where the data
type specifying online actions may vary depending on the studied domain. While some tasks require
a set of features to describe an action (e.g., fraud discovery, misbehaving detection), others must
handle the raw text data (e.g., hate speech detection, adversarial attacks) describing the action
due to the complexity of defining action features in these cases. For instance, fraud discovery and
misbehaving detection formalize an action as a set of features like user engagement and user-user
interaction. Identifying deception writing styles might require mapping the input to linguistic-
based features. These tasks usually benefit from tabular-related approaches. However, cases like
hate speech detection, tackling the spread of fake news over social media, and adversarial attacks
need solutions that handle natural language sentences directly. Given that different domains might
have different types of data available (text and tabular), the main contribution of this thesis is
to build a multi-scenario approach to continuously learn to detect norm violations for tabular
and text-based domains since these cover a variety of classification tasks. Concretely, this thesis
evaluates our multi-scenario approach within the context of learning norm violations in Wikipedia
article edits. In this use case, the action of editing an article can be represented by the text of the
edit or by a set of features defined by Wikipedia to describe that edit.

The third challenge of this thesis is to design interpretable learning models. We argue that norma-
tive systems can benefit from interpretability tools so that community members understand the
different community views and their evolution. This implies that our proposed solution must be ca-
pable of presenting evidence on the relevant elements of an action (words in text data or features in
tabular data) associated with detecting norm violation and how these elements may change in light
of the evolving nature of what constitutes norm violation in online interactions. Interpretability is
essential in our work because it equips our proposal with the means to address four requirements

3This type is also known as tabular data.
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Set of Features
Fraud discover (Anowar & Sadaoui, 2021; Lebichot et al., 2021)
Misbehaving detection (Islam et al., 2022; T. C. Li et al., 2017)
Identify deception writing styles (Afroz et al., 2012; Shojaee et al., 2013)
Fake reviews detection (Barbado et al., 2019; Mohawesh et al., 2021)
Identify authors of violations (Peng et al., 2016; Skopik & Pahi, 2020)

Text
Hate speech detection (Cheriyan et al., 2021; Risch & Krestel, 2020)
Fake news detection (Kaliyar et al., 2021; Mridha et al., 2021; Szczepański et al., 2021)
Adversarial attacks (Hossam et al., 2021)
Identify AI-generated reviews (Adelani et al., 2020; Mitrović et al., 2023)
Style change detection (Strøm, 2021; Zangerle et al., 2020)

Table 1.1: Examples of classification tasks that benefit from solutions that handle tabular (set of
features) and/or text datasets. Specifically, we focus on violating behavior in online interactions.

in our domain. First, it enables our system to adhere to the transparency principle of responsible
artificial intelligence (Arrieta et al., 2020), enhancing community members’ comprehension of what
the ML model learns about what the community considers as non-acceptable behavior. Second, it
enables engineers to debug the model and better comprehend the relevant elements of an action
that the ML model prioritizes. The aim is to prevent drawbacks associated with black-box models,
like attributing relevance to elements of an action that the community does not consider relevant to
violating behavior. Third, it allows the analysis of how community views change over time or across
communities. A better understanding of how detrimental behavior evolves is a key contribution of
our work. Fourth, it sets the stage for a future proactive, collective, and potentially collaborative
feedback elicitation process. When community members think their views are not aligned with
what the model presents as the community’s view, this process allows them to provide additional
feedback collectively. This feedback will be on actions that community members believe the model
has wrongly classified (violation or non-violation), aiming to correct the model’s output. More-
over, in cases where there is a strong discrepancy between different members’ views, a deliberation
process enables members to argue among themselves (informed by interpretability results) about
the aspects of the model’s output that affect the disagreement. Then, the community members
can collaboratively agree on the feedback to improve the model’s performance.

The literature presents various applications of interpretability for ML models. Ribeiro et al. (2016)
and Sundararajan et al. (2017) describe the two interpretability algorithms explored in this thesis
(q.v. Section 2.5), which enable our solution to identify relevant elements of an action that in-
fluence the output of ML models. Moreover, studies on agents generating explanations for norm
violations (Agrawal et al., 2022), and explainability in sentiment analysis, online review, and age
prediction (Arora et al., 2022; Chu et al., 2020; Schuff et al., 2022) demonstrate how interpretabil-
ity can enhance agents’ interactions in different contexts. Notably, these approaches differ from
our solution, as they do not address how detrimental behavior in online communities changes over
time and across domains. Our solution accomplishes that by continuously explaining the output
of models that detect norm violations.

Finally, the remainder of this chapter presents the contributions of this thesis (q.v. Section 1.1),
followed by a description of its structure (q.v. Section 1.2).
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1.1 Contributions

This thesis proposes a multi-scenario approach to continuously learn what constitutes a norm vio-
lation from past interactions and user feedback. The multi-scenario context involves learning norm
violations from tabular and text data. In other words, we achieve our goal by using examples of
behavior labeled as violations, formalized as a set of features, or collected as text sentences (such
as the examples in Table 1.1). Section 1.1.1 presents our main contribution, the three ML frame-
works (FeDAL, LaMAL, and CAL) that compose our multi-scenario approach for learning what
constitutes norm violations. Section 1.1.2 presents this thesis’ second contribution and the impact
of our work in normative systems. Specifically, it highlights how normative systems can continu-
ously learn what constitutes a norm violation from users’ feedback by employing the proposed ML
frameworks. Our third contribution demonstrates the effectiveness of our work through a real-life
use case, which is the editing of Wikipedia articles (q.v. Section 1.1.3). Next, Section 1.1.4 shows
our contribution regarding the interpretability of ML models, focusing on understanding the words
in a text or the set of features usually associated with norm violation detection. Subsequently,
Section 1.1.5 presents our fifth contribution, a user study assessing the impact of different inter-
pretability layouts on users’ evaluations of sentences labeled as hate speech. Lastly, we provide
links to our code and data resources to facilitate transparency, reproducibility, collaboration, and
promotion of good research practices, constituting our final major contribution (q.v. Section 1.1.6).

1.1.1 Machine Learning Frameworks

To create our multi-scenario approach, we employ incremental learning in three frameworks:
Feedback-Driven Adaptive Learning (FeDAL) (q.v. Chapter 3), Language Model Adaptive Learn-
ing (LaMAL) (q.v. Chapter 4), and Cross-Community Adapter Learning (CAL) (q.v. Chapter 5).
These frameworks are responsible for the continuous learning process of norm violations within
normative systems, considering different challenges in norm violation detection that each frame-
work addresses. The conceptual framework in Figure 1.1 illustrates the relationship between the
components of our solution. Specifically, we present this conceptual view using four sections: “Data
Scenario,” “Learning Techniques,” “ML Model,” and “Interpretability.”

The “Data Scenario” section presents the two types of data input handled by our multi-scenario
approach. Specifically, “Text” refers to actions formalized as textual data, while “Set of Features”
refers to actions formalized in a tabular format. In this context, a single data point corresponds
to an individual action executed within a community, such as a single article editing in Wikipedia.
In contrast, an imbalanced data block contains a collection of actions, such as all article edits in
Wikipedia that occurred on a given day. The inherent imbalance in this data block is attributed
to addressing the challenge of norm violation detection. In this case, violating behavior does not
happen as often as regular behavior. Consequently, these blocks contain different amounts of
instances for each class.

The “Learning Techniques” section presents that our frameworks (FeDAL, LaMAL, and CAL) are
equipped to train ML models using imbalanced data blocks by employing the mini-batch learning
approach for both text and tabular scenarios (q.v. Section 2.3.2). However, only FeDAL can train
ML models using a single data point by employing the online learning approach. This distinction
occurs due to the variations in size and complexity of ML models used to solve text and tabular
classification tasks. Concretely, FeDAL needs only to implement an ensemble of Feed-Forward
Neural Networks (FNNs) to solve tabular classification tasks (“ML Model” section), which requires
a less complex ML model and handles class distribution imbalance within tabular scenarios. Thus,
FeDAL can implement mini-batch and online learning, where the first offers more stability in
the training process and better performance. In contrast, online learning is important when the
community requires updating the ML model as soon as a single data point is made available.
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Figure 1.1: A conceptual framework of our multi-scenario approach. In the ensemble, N indicates
the number of classifiers. FNN refers to a Feed-forward Neural Network model.

Regarding text classification tasks, LaMAL and CAL require employing transformer-based models
(“ML Model” section), specifically the Pre-Trained Language Models (PLMs) (q.v. Section 2.4).
PLMs allow LaMAL and CAL to process text sentences directly and reduce the amount of work
in the featurization step (creating a set of features). Moreover, they do not require an ensemble of
classifiers. Instead, they can handle imbalanced data blocks by encoding language structures due
to their size and undersampling of the majority class, i.e., the class representing the instances (e.g.,
violation, regular) that happen more often. In this thesis, another advantage in text classification
tasks is identifying specific violation classes due to sufficiently informative content, i.e., the presence
of words that are usually associated with different violations, like the “N-Word” (Rahman, 2012)
that can be used to manifest racism. Thus, in addition to solving binary classification tasks (only
identifying violation or regular behavior), LaMAL and CAL can solve multi-label classification
tasks (identifying more than one violation class that happens simultaneously).

The “ML Model” section also depicts a significant difference between the architectures of LaMAL
and CAL. LaMAL integrates a classification head with the transformer layers, while CAL adopts an
adapter-based approach (q.v. Section 2.4).4 This architectural difference is important because CAL
can handle the emergence of new violation classes by dynamically creating adapters as interactions
unfold. In contrast, the classification head in LaMAL requires the predefinition of violation classes
when it is initially created. Moreover, CAL equips our multi-scenario approach with the ability to
incorporate data from different sources (communities) to improve the performance of ML models in

4Adapters are neural networks with a small proportion of the number of parameters present in the full PLM.
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a new target community with limited labeled data. This ability is crucial for low-resource or newly
created online communities, where data formalizing interactions between community members is
scarce.

Lastly, the “Interpretability” section shows that FeDAL adopts the Local Interpretable Model-
Agnostic Explanations (LIME) algorithm as the interpretability tool (q.v. Section 2.5.1). This
choice is supported by LIME’s model-agnostic nature, which allows us to obtain the explanation for
the relevant features when using an ensemble of FNN. This approach also ensures the generation of
explanations suitable for human understanding. In contrast, LaMAL and CAL adopt the Integrated
Gradients (IG) algorithm to obtain the explanation for the relevant words when using transformer-
based models (q.v. Section 2.5.2). IG is specifically built to understand the inner workings of
transformer-based models, allowing our frameworks to obtain the words with the highest influence
on the classification output. Like LIME, IG generates explanations that are simple enough for
human understanding.

Next, we provide more details on each of the three frameworks.

FeDAL

Feedback-Driven Adaptive Learning (FeDAL) is an ensemble (q.v. Section 2.1) of Feed-forward
Neural Networks (FNNs) equipped with an incremental learning approach (q.v. Chapter 3). FeDAL
is specifically built to handle class distribution imbalance within tabular tasks. Additionally,
FeDAL incorporates a replication by oversampling approach, which limits the ensemble size, re-
straining the computational power required to process incoming data points. By combining multi-
ple ML models through a voting scheme, FeDAL can learn in a context with imbalanced datasets
while obtaining superior performance compared to single components, as the different models in
the ensemble compensate for the errors of a single model (we present an ablation study with this
conclusion in Section 3.6.3).

To accommodate incremental learning, the FeDAL algorithm employs Stochastic Gradient Descent
(SGD) to facilitate parameter updates as new interactions unfold (q.v. Section 2.3.2), effectively
allowing the incorporation of new community views on norm violation. Moreover, with the SGD
implementation, FeDAL avoids executing redundant computations, which makes this option more
efficient when compared to batch learning (empirical results in Section 3.6).

In practice, to handle tabular datasets, FeDAL represents an action as a set of features described by
the tuple (X, y), in which X is the set of features of an action and y ∈ 0, 1 is its class label, with 0
denoting regular behavior and 1 denoting norm violation. As such, this component allows FeDAL
to provide community members with the features that contribute the most to the ML model’s
decision, which is obtained through the LIME algorithm (q.v. Section 2.5.1). In this scenario,
we learn norm violations by formalizing an action (an article edit considering the Wikipedia use
case) as a set of features provided by the community, e.g., number of profane words, occurrences
of alphanumeric characters, etc. (complete set of features in Section 3.5).

To evaluate the performance of our framework within the Wikipedia use case, we present the
experiments that describe the implementation of incremental learning techniques to train the base
classifiers, namely mini-batch learning and online learning (q.v. Section 3.5). Specifically, we
compare these techniques against batch learning, aiming to understand where they differ and the
drawbacks present in each approach. Moreover, we describe experiments to identify the features
of an action that influence norm violation detection, using LIME as the interpretability tool.

Our results indicate that FeDAL can continuously learn to detect norm violations in an online
community (Wikipedia article editing task) with imbalanced class distribution (only around 7% of
the data correspond to edits with violation) and in the presence of concept drift (changes in the
community view) (q.v. Section 3.6). The ablation study results also indicate how the ensemble
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outperforms a single model approach and the advantages of replication by oversampling. Lastly,
interpretability analysis describes features that contribute to the detection of norm violations.

Resulting Publications:

• Ensemble and Incremental Learning for Norm Violation Detection. In International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS).

• Is This a Violation? Learning and Understanding Norm Violations in Online Communities.
Artificial Intelligence (AIJ).

LaMAL

Language Model Adaptive Learning (LaMAL) incorporates PLMs into an incremental learning
approach (q.v. Chapter 4). The advantage of incorporating PLMs into LaMAL is that it equips
our framework with a powerful language representation to tackle Natural Language Processing
(NLP) tasks. Concretely, this integration enables our framework to process text sentences directly
and reduce the amount of work in the featurization step (creating a set of features). In contrast to
FeDAL’s incorporation of FNNs, PLMs do not require an ensemble of classifiers. Instead, they can
handle imbalanced datasets by encoding language structures due to their size and undersampling
of the majority class. Furthermore, to learn specific classification tasks, like detecting hate speech,
PLMs allow for superior performance by fine-tuning only the classification head, a Neural Network
(NN) integrated on top of the pre-trained layers of the model.

Our multi-scenario approach incorporates LaMAL to solve binary (regular or violation) and multi-
label (several violation classes) text classification tasks. As our real-life use case describes, a single
action may comprise multiple violation classes. Thus, unlike FeDAL, LaMAL can identify specific
violation classes due to sufficiently informative text content, i.e., the presence of words in a text
sentence that manifests different violations. In conjunction with FeDAL, this capability enables
our solution to effectively adapt to the various domains in online communities and their different
data types, namely tabular and text data types (q.v. Table 1.1).

In addition to learning norm violations, LaMAL can provide information on the words that indicate
violating behavior as perceived by ML models. To accomplish that, LaMAL incorporates IG to
explain the behavior of PLMs. IG provides information on the relevant words related to norm
violation, determining their relevance across different violation classes. Specifically, for binary
classification tasks, IG presents the words that contribute the most to the ML model decision of
classifying an article edit as a violation. For multi-label classification tasks, IG presents each word
as relevant to 0 (neutral word), 1, or more violation classes.

Our experiments evaluate the article edits in Wikipedia by comparing two PLMs, namely Distil-
BERT (Sanh et al., 2019) and RoBERTa (Y. Liu et al., 2019) (q.v. Section 4.3). In the context of
the multi-label scenario, the dataset contains six different violation classes. Results show how the
architecture of each PLM impacts the understanding of violating behavior, with different relevant
words obtained from DistilBERT and RoBERTa (q.v. Section 4.4). Furthermore, our findings in-
dicate that LaMAL can continuously learn to detect violations considering binary and multi-label
text classification.

Resulting Publications:

• A Multi-scenario Approach to Continuously Learn and Understand Norm Violations. Au-
tonomous Agents and Multiagent Systems (JAAMAS).
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CAL

Cross-Community Adapter Learning (CAL) incorporates PLMs and adapters into an incremental
learning framework (q.v. Chapter 5). CAL equips our multi-scenario approach with the ability to
incorporate data from different sources (communities) to improve the performance of ML models
in a new target community with limited labeled data. This ability is crucial for low-resource or
newly created online communities, where data formalizing interactions between agents (community
members) is scarce. Specifically, our solution uses data from three different communities as the
initial step to define violating behavior in the article editing task, as different violation classes in
our context contain only a few instances (q.v. Section 5.2).

Compared to LaMAL, incorporating adapters into our framework provides the following advan-
tages. First, each adapter is created for a specific violation class, facilitating an efficient fine-tuning
process that updates the new community’s views exclusively on selected violation classes (q.v. Algo-
rithm 5.1). In contrast, LaMAL updates the PLM without selectively updating model parameters
based on specific violation classes. Second, CAL can dynamically create adapters as new violation
classes emerge. This is particularly important for cases where a community did not initially define
all potential violation classes that may occur during interactions between community members.
Consequently, CAL can effectively identify new violation classes based on feedback, such as identi-
fying a new hate speech target. In contrast, LaMAL requires predefined violation classes when the
model is initially created. Third, it allows CAL to tackle catastrophic forgetting due to interfer-
ence between different violation classes,5 which might be an issue in fine-tuning a complete PLM,
such as LaMAL’s fine-tuning process. Lastly, since adapters are smaller than the full PLM, CAL’s
training process is faster and more efficient. Specifically, the continuous update of smaller neural
networks allows for greater robustness to handle over-fitting and reduced sensitivity to changes in
learning rates. In this context, while we continuously update the adapter weights on our target
data, the transformer layers are used only for language representation, keeping the original PLM
parameters frozen. Differently, LaMAL updates the PLM.

In addition to continuously learning norm violations, CAL employs the IG algorithm to analyze
the distinct views manifested in online communities, i.e., the different terms community members
employ to express violating behavior. Consequently, CAL represents the first proposal of an inter-
pretable adapter framework designed to learn and understand the differences in norm violations
between communities. This ability to analyze the communities’ view changes within a specific
domain or across different communities is a key contribution of our solution as it describes how
detrimental behavior changes over time and across domains.

Our experiments use DistilBERT with an adapter and data from three communities as the initial
training step (q.v. Section 5.2). Our results indicate that CAL can continuously learn norm viola-
tions, adapt to evolving communities’ views, and explain the differences in norm-violating behavior
for different communities based on community members’ feedback (q.v. Section 5.3).

Resulting Publications:

• Cross-community Adapter Learning (CAL) to Understand the Evolving Meanings of Norm
Violation. In International Joint Conference on Artificial Intelligence (IJCAI).

1.1.2 Normative Systems Continuously Learn From Users’ Feedback

Figure 1.2 illustrates our contribution to normative systems by introducing a workflow for continu-
ously learning what constitutes norm violations in online communities. Specifically, this workflow

5Catastrophic forgetting refers to the loss of knowledge acquired from previous classification tasks when learning
new information (Pfeiffer et al., 2020). In our context, preventing the loss of information about a violation class
when training with data from a different violation class.
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Figure 1.2: The workflow describing the continuous learning process for normative systems.

enables normative systems to adapt to the evolving community members’ views using their feed-
back as the ground truth. This adaptive ability concretely implements our vision that a system’s
understanding of norm violation should reflect the understanding of its users (in our case, commu-
nity members).

In online community domains, a continuous learning process becomes particularly crucial since
online interactions dynamically change as people interact and new members are incorporated into
the community. In this context, our workflow allows normative systems to address two key chal-
lenges related to changes in norms: 1) the evolving community view of what constitutes a norm
violation, such as the shift in communities’ views leading to the prohibition of previously accepted
terminology; and 2) the emergence of new violation classes, such as identifying a new hate speech
target. To tackle these challenges, we employ incremental learning to continuously process in-
coming interactions as a data stream while discarding previous data that may contain outdated
information about what constitutes norm violations (q.v. Section 2.3.2). In this thesis, incorporat-
ing incremental learning involves mini-batch and online learning. While mini-batch builds small
data blocks to train ML models, online learning updates a model’s parameters as soon as a new
interaction instance is made available (Hoi et al., 2021).

Next, to illustrate the implementation of our workflow in normative systems, we detail the steps as
depicted in Figure 1.2. The initial step, Step 0, involves continuously training ML models.6 The
training process starts by using data blocks or single data points, and upon completion of the first
training iteration, the model is prepared to detect norm violations. Subsequently, the system starts
monitoring every new action performed in the community (Step 1). In Step 2, the system can map
the action to a set of features defined by the community or directly handle text input. In the
latter scenario, text-processing steps such as correcting words, addressing grammatical errors, and

6Specifically, in our approach, the ensemble (FeDAL) and the transformer-based (LaMAL and CAL) classifiers.
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removing non-alpha-numeric characters might be performed. Step 3 presents the two distinct paths
that the system may execute. Should the action be detected as a norm violation (Condition 1),
the system must execute a sequence of steps to ensure that the violation is not forwarded to the
entire community. These steps include: 1) rejecting the action (i.e., the action is not executed);
2) informing the user about the violation and its blocking; 3) providing the reasons for violation
detection, including the specific features or words associated with the violating behavior, allowing
for community feedback and the opportunity for correction of our system. Community feedback
can then be used to continuously train the base model (back to Step 0).

In contrast, if the executed action is not detected as a norm violation (Condition 2), the action
is forwarded to the community. In this case, community members can still provide feedback due
to the possibility of incorrect classification by our model. Besides, the feedback incorporates new
community views to update what constitutes norm violations through continuous model training
(back to Step 0).

Resulting Publications:

• A Multi-scenario Approach to Continuously Learn and Understand Norm Violations. Au-
tonomous Agents and Multiagent Systems (JAAMAS).

1.1.3 A Real-Life Use Case With Wikipedia’s Article Edits

To demonstrate the impact of our multi-scenario approach in a real-life online community, we
explore the article edit task in Wikipedia (Wikipedia, 2023). This use case is relevant because it
allows us to evaluate our solution considering three key challenges in low-resource (or newly created)
online communities: 1) learning using a limited labeled dataset;7 2) learning changes in community
members’ views on what constitutes norm violations; and 3) learning using the formalization
of violation instances across different data types.8 Experiments addressing these challenges are
described in Sections 3.5, 4.3, and 5.2. The findings indicate that our multi-scenario approach can
learn to identify norm violations in online communities while considering these challenges.

Furthermore, our contribution to real-life use cases extends beyond the use of Wikipedia data.
Specifically, our multi-scenario approach integrates cross-community learning, which involves us-
ing data from a source community as an initial training step in a target (new) community. Including
this ability in our solution not only demonstrates the adaptability of normative systems to different
views within a single community but also shows its adaptability across diverse online community
domains. We conduct experiments in Section 5.2 exploring three different communities and demon-
strate that our multi-scenario approach can learn to identify norm violations while incorporating
data from different sources.

To understand our use case, we describe the details of Wikipedia’s norms. These norms include
the requirement to use proper writing style, refrain from removing content, avoid editing wars,
and not engage in hate speech. Given the diverse backgrounds of individuals interacting and
contributing to Wikipedia, misunderstandings about what constitutes a norm violation might
emerge. In this thesis, the actions we focus on are those performed by the community members
(the Wikipedia users), which are the attempts to edit articles. The norm we assess says: “Do
not engage in vandalism behavior” (which we refer to as the “no vandalism” norm). Wikipedia
provides data on what edits are marked as either regular or violating the “no vandalism” norm,
where the Amazon Mechanical Turk (MTurk) is responsible for the annotation process. At least
three people (Mechanical Turks) evaluate every article edit, deciding whether the edit violates the
“no vandalism” norm or not.

7Although Wikipedia is known for its extensive content repository, the labeled dataset used in this thesis has a
limited size, comprising approximately 30.000 article edits labeled either as violation or not.

8Text sentences and tabular (set of features), due to their relevance in various violation detection tasks (refer to
Table 1.1 for an overview of tasks in which these data types are relevant).
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In addition to the MTurk annotation, the author of this thesis further annotates each violation
instance, categorizing these into six different hate speech classes. In this part of the labeling
process, we focus only on violations of the “no hate speech” norm, as this represents a complex
and particularly harmful violation within online interactions.9 The six violation classes are: Swear,
Insult and Ableism, Sexual Harassment, Racism, LGBTQIA+ Attack, and Misogyny. It is worth
mentioning that a single article edit could exhibit multiple violation classes simultaneously. For
instance, an article edit can contain text that shows swearing terms and expresses hatred towards
the LGBTQIA+ community. Next, we compile a sample of Wikipedia article edits considered hate
speech. “[INDIVIDUAL’s NAME]” is used to anonymize real people’s identities.

1. ...he was the mother fuckin dom...

2. ...this is wiki not a forum for retards...

3. ...the big lipped,hairbraned,egotistical dirty “N-Word”.

4. [INDIVIDUAL’s NAME] also sucks dick for features.

5. [INDIVIDUAL’s NAME] was a super mega bitch and she kill the...

Resulting Publications:

• Learning for Detecting Norm Violation in Online Communities. In Coordination, Orga-
nizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XIV:
International Workshop, COINE.

• A Multi-scenario Approach to Continuously Learn and Understand Norm Violations. Journal
of Autonomous Agents and Multiagent Systems (JAAMAS).

1.1.4 Black-Box Model Interpretability

In addition to its continuous learning of what constitutes norm violations, our multi-scenario
approach must provide insights into the decision-making process of ML models (e.g., an ensemble
of FNNs, the PLMs). Therefore, we incorporate interpretability to obtain explanations about a
model’s inner workings. Here, we are interested in understanding the words in a text or the set of
features usually associated with a norm violation. Concretely, incorporating interpretability allows
us to:

• Analyze how detrimental behavior evolves over time within a single community (q.v. Sec-
tion 3.6). Specifically, interpretability allows us to understand the differences in an ML
model’s assignment of relevance values to features before and after introducing changes in
community views while interactions unfold;

• Compare different learning approaches (q.v. Section 3.6). Specifically, interpretability allows
us to understand the impact of batch, mini-batch, and online learning when updating the
parameters of the ensemble of FNNs with the FeDAL framework. By employing different
learning approaches, we may obtain different relevance values for the same norm violation;

• Compare two PLMs (q.v. Section 4.4). Specifically, interpretability allows us to understand
the impact of different architectures when updating the parameters of the base PLMs, Dis-
tilBERT and RoBERTa, that compose the LaMAL framework (q.v. Section 4.3);

9Future work shall focus on creating more annotation classes for other norms, such as those related to using a
proper writing style.
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• Analyze how detrimental behavior changes across communities (q.v. Section 5.3). Specifically,
interpretability allows us to understand the diverse views manifested in online communities
when employing cross-community learning with the CAL framework.

We use different interpretability algorithms depending on the framework. Specifically, FeDAL uses
the LIME tool to explain the ML model’s behavior (q.v. Section 2.5.1), and since LaMAL and
CAL use PLMs to solve violation detection tasks, they employ the IG algorithm to explain their
model behaviors (q.v. Section 2.5.2).

Resulting Publications:

• Is This a Violation? Learning and Understanding Norm Violations in Online Communities.
Artificial Intelligence (AIJ).

• A Multi-scenario Approach to Continuously Learn and Understand Norm Violations. Journal
of Autonomous Agents and Multiagent Systems (JAAMAS).

• Cross-community Adapter Learning (CAL) to Understand the Evolving Meanings of Norm
Violation. In International Joint Conference on Artificial Intelligence (IJCAI).

1.1.5 User Study

We conduct a user study to assess the impact of interpretability and whether different inter-
pretability layouts can influence users’ views when evaluating sentences containing hate speech,
i.e., sentences that violate the norm prohibiting hate speech (q.v. Chapter 6). This study aims to
provide empirical evidence regarding the effective use of ML model interpretability and to investi-
gate how presenting interpretability information using different layouts can help mitigate violating
behavior online. Specifically, we consider three interpretability layouts, which are different manners
to present the words that contribute to the ML model’s output:

• Local interpretability (q.v. Figure 6.1a) - it presents the impact of individual words (relevance
score) on identifying norm violations in a specific text sentence.

• List with the sum of relevance scores (q.v. Figure 6.1b) - it lists the sum of relevance scores
for the words present in the entire dataset used during training. This layout provides an
overview of general words relevant to identifying norm violations.

• A combination of both - it describes local and the sum of relevance scores together.

Our user study (an online questionnaire) asks participants how their views change when presented
with interpretability results from each of the three layouts. We compare these layouts against a
baseline condition where participants only interact with a text. Their task is to evaluate a sentence
containing hate speech. To assess the impact of interpretability, we design a questionnaire for
each layout, consisting of 20 tuples, each with two questions. The questionnaire first presents
a sentence without interpretability data. Next, participants re-evaluate the same sentence, this
time with interpretability information. Concretely, each sentence is evaluated twice, once without
interpretability data and once with it.10 The participant must choose whether they agree or
disagree with classifying a given sentence using the 7-point Likert scale.

10For a comprehensive insight into the questionnaires, Annex E provides additional examples of the different
layouts.

12



The study comprises both within-subject and between-subject analyses (q.v. Section 6.2).11 To
obtain the estimate of the participants’ confidence rating while evaluating a text sentence as hate
speech, we employ the Generalized Additive Model (GAM) (q.v. Section 2.6).12 Furthermore, we
include a qualitative evaluation where participants’ comments complement our understanding of
the statistical findings (q.v. Section 6.2.3).

In conclusion, our statistical analysis indicates that none of the interpretability layouts significantly
influence participants’ views regarding the classification of hate speech, specifically violations con-
taining misogynistic and racist content. Despite this outcome, our findings contribute to a current
discussion in the literature, providing empirical evidence on the limited impact of ML interpretabil-
ity in the human decision-making process. Based on participants’ comments, the qualitative anal-
ysis provides two key insights to comprehend why interpretability layouts do not significantly
influence participants’ views. First, the participants’ familiarity with detecting hate speech, in-
cluding the presence of explicit hate speech words, appears to diminish the significant influence
of interpretability information on their decisions. Second, the alignment between the ML model’s
output and participants’ views, where interpretability results identified relevant words similar to
those already considered by the participants, further diminishes the influence of interpretability
layouts. However, our qualitative analysis also highlights the positive aspects of incorporating
interpretability into our solution. First, interpretability enhances people’s understanding of words
relevant to the ML model’s output, effectively enabling them to provide corrective feedback in cases
of discrepancies. This is especially important in contexts where new instances of hate speech may
emerge over time within a single community or with the inclusion of data from diverse communi-
ties (cross-community learning). Second, interpretability layouts provide insights into evaluating
the ML model’s behavior beyond traditional performance metrics (e.g., recall, F1-score, and pre-
cision), especially in scenarios where understanding the rationale behind an ML model’s decision
is essential for optimal implementation.

Resulting Publications:

• Can Interpretability Layouts Influence Users’ Views of Violating Sentences? To submit
(2024).

1.1.6 Code and Data

In this link: https://bitbucket.org/thiago-phd/, we make our open-source code for the three frame-
works available, including the data used for training and validation. Additionally, we have the code
used for the statistical analysis and data of the user study. The goals of this initiative are: 1) to
facilitate transparency and reproducibility. This allows other researchers to ensure the frame-
works correctly implement the described algorithms. Additionally, data access enables replication
of experiments, offering reliance on our findings; 2) to enable collaboration within the academic
community. Researchers can use these resources to build on top of the methodologies present in
this thesis, advancing their own investigations; and 3) to promote good research practices in the
community, advocating for ethical and responsible research conduct.

11Within-subject refers to assessing whether the information of a given interpretability layout influences the
participant’s classification. This involves using the same participant group. Between-subject refers to assessing
whether one of the interpretability layouts has a more significant impact on the participant’s classification ratings
than another, which uses different participant groups.

12GAM enables us to capture the relationship between variables using nonlinear functions to model the response
data. Concretely, this allows us to estimate the participants’ confidence in classifying a sentence as hate speech.
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1.2 Thesis Structure

The remainder of this thesis opens with Chapter 2, which presents the relevant literature that
our proposal builds upon, followed by introducing our three different learning mechanisms in
Chapters 3–5. A user experiment assessing the impact of interpretability is presented in Chapter 6.
A study of the state of the art and its comparison with our proposal is presented in Chapter 7,
before concluding with Chapter 8. Each of these chapters is presented in more detail next.

Chapter 2 delves into the background literature, presenting the base concepts upon which this thesis
is built. First, we introduce the ensemble strategy to deal with the imbalanced nature of the dataset
(q.v. Section 2.1). Then, we describe concept drift to accommodate for changes in community
views about what constitutes norm violation, including the emergence of new violation classes that
forms a sub-type of concept drift (q.v. Section 2.2). Third, we describe the training approaches
to continuously learning norm violations (q.v. Section 2.3). Fourth, we introduce the Pre-Trained
Language Model (PLM) and the adapters to tackle text classification tasks (q.v. Section 2.4). Then,
we present our two interpretability tools, the Local Interpretable Model-Agnostic Explanations
(LIME) and Integrated Gradients (IG) (q.v. Section 2.5). Lastly, in Section 2.6, we present the
Generalized Additive Model (GAM) that helps us analyze the user study results.

In Chapter 3, we present the Feedback-Driven Adaptive Learning (FeDAL) framework, which
combines ensemble with incremental learning approaches to continuously learn norm violations
from tabular data. We start by presenting three different algorithms investigated in FeDAL,
followed by a computational complexity analysis. We then describe the experiments and discuss
their results.

The Language Model Adaptive Learning (LaMAL) framework is introduced in Chapter 4, which is
the second component of our multi-scenario approach responsible for continuously learning norm
violations by handling text datasets. We present LaMAL’s ability to solve binary (regular or
violation) and multi-label (several violation classes) text classification tasks. Then, we describe
the experiments and discuss their results.

Chapter 5 presents the Cross-Community Adapter Learning (CAL) framework, which combines
PLMs and adapters to learn norm violations by incorporating data from different sources (commu-
nities) to improve the performance of ML models in a new target community. Then, we describe
the experiments, focusing on our analysis of the differences in norm violations across communities
using interpretability results.

In Chapter 6, we introduce our user study that investigates the influence of interpretability on
participants’ behavior. We describe the online questionnaires, which enable participants to engage
with interpretability layouts. Lastly, we present the statistical and qualitative analysis results and
discuss the findings of our investigation.

The literature review is provided in Chapter 7. Specifically, we cite literature focusing on detecting
detrimental behavior in online communities using ML. We also analyze literature that deals with
incremental and ensemble learning in an environment with concept drift and imbalanced datasets.
Then, we describe the literature on cross-community learning, where works leverage the perfor-
mance of a model using data from diverse sources, including solutions that employ PLMs and
adapters. We also present literature addressing interpretability in tabular and text classification
scenarios, demonstrating how interpretability is employed in different use cases. Lastly, we discuss
literature focusing on conducting experiments exploring how users interact with interpretability
information.

Finally, in Chapter 8, we provide the conclusions of our research, including directions for future
work.
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Chapter 2

Background

This chapter presents the base concepts upon which this thesis is built. First, we introduce the
ensemble strategy to deal with the imbalanced nature of the dataset (q.v. Section 2.1). Then, we
delve into concept drift, specifically targeting changes in the community members’ view about norm
violation (q.v. Section 2.2). Additionally, we describe the emergence of new violation classes as a
sub-type of concept drift. Third, we describe the learning approaches to detecting norm violation:
batch and incremental learning (q.v. Section 2.3). Batch Learning is interesting for cases where the
domain does not require updating the trained model, and the complexity of keeping and managing
an entire dataset does not cause disruptions. In contrast, incremental learning is most useful
when we desire to continuously train machine learning models without needing to manage the
complexities of large datasets. Fourth, we introduce the Pre-Trained Language Model (PLM), the
transformer-based model which is responsible for handling text sentences (q.v. Section 2.4). In this
section, we also present adapters, which detect specific violation classes and handle the emergence
of these classes as interactions unfold. Subsequently, we detail Local Interpretable Model-Agnostic
Explanations (LIME) and Integrated Gradients (IG), the interpretability tools explored in this
work (q.v. Section 2.5). These tools enable our solution to promote transparency by facilitating
human comprehension of a model’s inner workings when it detects a norm violation. Lastly, in
Section 2.6, we present the Generalized Additive Model (GAM) used to analyze the user study
results.

It is worth mentioning that the different background sections refer to specific frameworks of our
multi-scenario approach. For instance, only the Feedback-Driven Adaptive Learning (FeDAL)
framework incorporates ensemble learning to detect norm-violating behavior (q.v. Chapter 3).
Concept drift is present in all scenarios since this is the challenge inherent to the learning task
in a dynamic online community. Experiments with FeDAL include the use of both batch and
incremental learning techniques. Differently, for text datasets, the experiments exclusively include
mini-batch learning. This is imperative in our work since training with the complete dataset
(or one instance at a time) is detrimental to the computational performance of the transformer-
based approaches. PLMs are employed by the Language Model Adaptive Learning (LaMAL)
(q.v. Chapter 4) and the Cross-Community Adapter Learning (CAL) (q.v. Chapter 5) frameworks.
Moreover, only CAL, viewed as an evolution of LaMAL, incorporates adapters to address the
emergence of new violation classes.

This thesis addresses tabular and text datasets, and the work is evaluated within the Wikipedia use
case (q.v. Section 1.1.3). As such, it is crucial to define what composes these datasets. Specifically,
we evaluate the article editing task. In this context, an action is the editing of an article by a
community member, and it can be formalized either as a set of features or as direct textual input.
With our multi-scenario approach, we can continuously learn to detect norm-violating behavior
with different action formalizations. FeDAL works with the tabular dataset (set of features),
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while LaMAL and CAL work with text sentence input. Thus, regarding interpretability, FeDAL
incorporates LIME, a model agnostic tool that can provide explanations for the relevant features
in an ensemble of classifiers. LaMAL and CAL incorporate IG, specifically built to understand the
inner workings of transformer-based models (in our case, PLMs) by obtaining the relevant words
of a text sentence that contribute to a model’s output.

2.1 Ensemble Learning

Dealing with the detection of norm-violating behavior usually leads to cases of imbalanced datasets.
This happens because regular (or expected) behavior is more common than violations. Thus, so-
lutions that deal with domains in these settings must be equipped to handle class distribution
imbalance. Otherwise, they tend to be biased towards the class that describes regular behav-
ior. To tackle this issue, we use ensemble learning, which can be defined as the generation and
combination of different ML models (e.g., Feed-Forward Neural Network (FNN), Random Forest,
and Logistic Regression) to solve a predictive task (Sagi & Rokach, 2018). The main idea of this
technique is that by combining multiple ML models using a voting scheme, the errors of a single
model will be compensated by the others, resulting in superior performance compared to single
components (Dong et al., 2020; Galar et al., 2011).

Various classification systems have been developed employing ensemble learning techniques. Dong
et al. (2020) highlight some important ones, such as Bagging (Lenka et al., 2022; Roshan & Asadi,
2020; B. Wang & Pineau, 2016; Q. Wang et al., 2017), AdaBoost (Abayomi-Alli et al., 2022;
Taherkhani et al., 2020; W. Wang & Sun, 2021), Random Forest (Abayomi-Alli et al., 2022; de
Freitas Barbosa et al., 2021; Kavzoglu & Teke, 2022), and Gradient Boosting (Babajide Mustapha
& Saeed, 2016; Bentéjac et al., 2021; Cahyana et al., 2019; Taha & Malebary, 2020). Among
these approaches, Bagging is an interesting method to address the imbalanced dataset challenge
investigated in this work, especially when enhanced with data sampling techniques (Galar et al.,
2011), as it presents relevant performance in similar (Alam et al., 2021; Hakak et al., 2021; S.
Liu et al., 2017; Tang et al., 2019) and diverse use cases (Sagi & Rokach, 2018), including fault
diagnosis (Jia et al., 2020; Wu et al., 2018; T. Zhang et al., 2022) and medical domains (Ahishakiye
et al., 2020; Cahyana et al., 2019; de Freitas Barbosa et al., 2021; N. Liu et al., 2020; Suri et al.,
2022).

FeDAL employs Bagging to detect norm violations by training ensemble members using different
balanced subsets extracted from the imbalanced data (q.v. Figure 2.1). For instance, consider
a binary classification task with an imbalanced dataset D, it is possible to divide D into two
subsets, a majority class subset M and a minority class subset P (the number of instances in
these sets is represented by |M | and |P |, respectively). In this context, the main goal is to train
an ensemble E with a number N of balanced datasets BD = {B1, ..., BN}. Each Bi ∈ BD is a
dataset with a similar class distribution and N = |M |/|P |. In this manner, because the number
of instances in P ⊆ D is smaller than the number of instances in M ⊆ D, subsets in BD are
created to have size 2 × |P | by taking |P | non-overlapping instances from M and replicating all
instances of P in each subset. To limit the size of E and restrain the computational power needed
to process income data points, FeDAL enhances ensemble learning by employing two data sampling
techniques, undersample and oversample. The first decreases the number of majority instances,
while the second increases the number of minority class instances by replication (Mohammed et al.,
2020) or by generating new instances with methods like SMOTE (Chawla et al., 2002).1 However,
FeDAL only applies data sampling techniques after reaching a threshold (i.e., pre-defined ensemble
size) since we aim to avoid discarding relevant information or adding more complexity to the
dataset (Galar et al., 2011; S. Liu et al., 2017). Lastly, our bagging approach combines the outputs
of the individual models through majority voting to decide on the final classification output.

1In Section 3.6.3, we compare oversampling by replication with SMOTE using the FeDAL framework.
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Figure 2.1: Bagging Learning to handle imbalanced datasets.

Within FeDAL’s context, we explore three training approaches to build a model that adopts bagging
learning: batch, mini-batch, and online learning (q.v. Section 3.5). However, we incorporate some
important modifications into our online setting (where training happens one instance at a time),
such as the one presented by S. Wang et al. (2015), where the resampling strategy also counts with
the addition of weight adjustment over time. S. Wang et al. (2015) propose Oversampling-based
Online Learning (WEOB1) and Undersampling-based Online Learning (WEOB2). WEOB1 and
WEOB2 work to adjust the learning bias from M to P by using ensemble and resampling instances
from these subsets. Like the bagging strategy for batch and mini-batch, online bagging creates
different classifiers and then trains each classifier C ∈ E a K number of times by considering
only the current data point. K is defined by the Poisson(λ = 1) distribution. As data becomes
available, the λ parameter is calculated dynamically according to the imbalance ratio. Thus, if
there is a new instance in P , then K increases. However, if there is a new instance in M , then K
decreases.

2.2 Concept Drift

In addition to an imbalanced dataset, concept drift is another characteristic when dealing with
norm violation detection. In this thesis, concept drift is defined as the change in the community
members’ view concerning what elements of an action (e.g., a set of features or words of a sentence)
indicate the presence of norm-violating behavior. Essentially, it is how community members see
changes in regular or violating behavior over time and across communities.

In practice, it is possible to identify the change in community behavior by observing the joint
distribution Ct(X, y) over time (J. Lu et al., 2018; H. Wang & Abraham, 2015), where x ∈ X
is a feature value, y ∈ {0, 1} is the associated class label that denotes regular or norm-violation
behavior, and t is the current timestamp. Then, to compare two moments in time and detect a
possible concept drift, we refer to the following: Ct(X, y) ̸= Cu(X, y), where u is a timestamp in
the past. To better understand concept drift, let us take as an example the use case of Wikipedia
article edits and the definition present in (Gama et al., 2014) that categorizes concept drift in three
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different ways: change in the prior probability of classes c(y), which is a change in the ratio between
norm violation and regular behavior, i.e., the number of instances of one class increases, while the
number of instances of the other class decreases or stays the same; change in the class conditional
probabilities c(X|y), which is a change in how norm violation and regular behavior are defined,
i.e., the way an acceptable action must be performed in the community changes over time, such as
having the community expecting a more formal writing style lately; and change in the posterior
probabilities of classes c(y|X), which is a change in what is considered a norm violation. This
concept drift differs from the above since it occurs without changing how actions are performed
(like adopting a more formal writing style). Concretely, only the action’s label (violation or not)
changes. For example, a term previously prohibited in the community may now be acceptable.
The latter is the kind of data that leads to real concept drift, which is the type of concept drift
that interests us in this work. Furthermore, we highlight that the different types of concept drift
can occur simultaneously (Gama et al., 2014).

In addition to the three types of concept drift described earlier, another important aspect of concept
drift in our study is the emergence of new violation classes. As online communities evolve, novel
norm violations that were previously not encountered or recognized may arise. This phenomenon
introduces the challenge of not only detecting but also categorizing these new violation classes. In
this context, the definition present in (Forman, 2006) assists us in defining this type of concept
drift. Therefore, the emergence of new violation classes is denoted as “virtual concept drift” since
it represents a shift in the definition of norm violations within the community.

In this thesis, the new violations are composed of undefined sub-classes, and their creation derives
from community members’ feedback. To illustrate this phenomenon, consider article editing in
Wikipedia (q.v. Section 1.1.5). In addition to the binary categorization (regular and violation
classes), the emergence of new violation classes serves to precisely identify the norm-violating be-
havior present in the community, which embraces the following classes: Swear, Insult and Ableism,
Sexual Harassment, Racism, LGBTQIA+ Attack, and Misogyny.

As new violation classes emerge, the existing detection framework may not effectively identify and
distinguish these classes from established definitions of violation and regular behavior. Hence, the
system must be adaptive and flexible enough to incorporate and learn from these new violation
classes. Specifically, with LaMAL and CAL, we explore the detection of different sub-classes of
violation, in addition to the binary categorization of actions as either violation or regular. CAL
is especially useful in this context since, due to the adapter architecture (q.v. Section 2.4), it can
dynamically handle the emergence of new violation classes.

In summary, in addition to monitoring the traditional types of concept drift, the ability to handle
the emergence of new violation classes is important to maintain the relevance and efficacy of norm
violation detection systems in online communities. The adaptive nature of our multi-scenario
approach (FeDAL, LaMAL, and CAL) enables our solution to address this challenge, remaining
robust to the evolving definitions of what constitutes a norm violation.

2.3 Training Techniques

The presence of concept drift and the streaming characteristics of the data in online community
domains prompt different ways to train an ML model. Here, we investigate two training approaches,
batch and incremental learning (mini-batch and online learning). We argue that, by continuously
updating the base ML model as data is made available, incremental learning approaches are the
most suitable to be deployed in a system supporting an online community. However, batch learning
can also be used to learn in this setting by creating new ML models when additional data is made
available. For instance, a new set of actions is executed in the community, and our ML model must
learn from this new information. In this case, batch learning creates new models to be trained
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with the most recent data. Additionally, it sets weights for the latest data points to update the
parameters of these new ML models, giving them more importance than past information.

2.3.1 Batch Learning

Batch learning deals with the entire dataset (new and past data are combined). In batch learning,
it is not possible to update the trained models. To incorporate new knowledge, a complete training
process from the beginning is necessary (Hastie et al., 2009), which is the main drawback of this
technique when the problem requires handling non-stationary domains. Another disadvantage is
the need to maintain and treat an entire dataset, increasing the system’s cost and complexity
(especially when different entities and organizations regulate data treatment) (Lebichot et al.,
2021). Although batch learning presents these important disadvantages, it also offers interesting
benefits, such as the computation of the statistical values and the stability properties during
the training procedure. The algorithm calculates the statistical values (i.e., mean and standard
deviation) by using the entire dataset available for training and applying it to the pre-processing
phase, which could be a standardization process as FeDAL applies in Algorithm 3.4. Then, data
availability avoids fluctuations due to changes in the training dataset, making the algorithm more
stable (as also detailed in Section 3.6).

To further clarify how batch learning works, let us assume that the base algorithm used to find
the parameters of the ML model is Gradient Descent. Variations of this algorithm exist for the
incremental and batch learning cases. Considering Batch Gradient Descent, the algorithm handles
the entire dataset D. Then, it proceeds to get the gradient values for each data point X ∈ D
with respect to the cost function, calculates the mean values, and then updates the algorithm
parameters (Ruder, 2016). For ML models, these parameters are the weights and the coefficients.
One complete iteration over the entire dataset is one epoch of the batch learning process, which
can be summarized in the following equation:

θ ← θ − η · ∇θJ(θ) (2.1)

θ represents the model’s parameters. η is the learning rate, and it determines the step size the
algorithm must take to reach a local minimum. J(θ) is the objective function to minimize, and
∇θ represents the gradient with relation to the parameters (Ruder, 2016). Since this process con-
siders D at a certain point in time, it does not embrace the update of the model. To incorporate
new knowledge, it is necessary to start the training process from the beginning, leading to redun-
dant computations (gradient values for similar instances are recalculated for each update of the
parameters).

2.3.2 Incremental Learning

Incremental learning is the approach responsible for dealing with the drawbacks present in batch
learning. This technique incrementally learns as new data arrives sequentially, which is particularly
interesting in online communities since the ML model must be constantly updated as people interact
and changes in norm understanding emerge. In this work, we are concerned with mini-batch
and online learning. Mini-batch learning creates data blocks B with the data that arrives over
time and uses it to continuously train ML models. Since we only deal with the most recent
instances composing the current data block, the process is neither as costly nor as complex as
batch learning (Lebichot et al., 2021; Z. Li et al., 2020). Online learning can be seen as a special
case of mini-batch learning, in which the batch size is 1. In this scenario, it is possible to update
the ML model as soon as data is made available, discarding the need to store this data point and
avoiding the complexities of data treatment. The difference between these two approaches is that
in mini-batch learning, we use chunks of data, while in online learning, we use one single data
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point to update the base ML model. It is important to highlight that online learning algorithms
have poor stability compared to mini-batch algorithms (Z. Li et al., 2020).

As in the batch learning case, Gradient Descent can be used to update the model’s parameters
for incremental learning, although some changes are necessary. Online learning uses Stochastic
Gradient Descent (SGD), considering only one data point at each time step to update the ML
model’s parameters.

Since SGD updates the parameter values as new instances arrive, this approach is suitable for
learning incrementally. Additionally, it does not execute redundant computations, which makes
this option more efficient when compared to batch learning. The following equation describes how
SGD works:

θ ← θ − η · ∇θJ(θ;x(i); y(i)) (2.2)

The difference from Equation 2.1 is that SGD relies on updating the parameter values for each
new instance (i) in the dataset, which is represented by its features (x(i)) and label (y(i)).

Trying to combine the best of SGD and batch learning, Mini-Batch Gradient Descent updates the
model’s parameters after each data block B is completed (the number of instances in each data
block is defined by n). The equation for Mini-Batch Gradient Decent is:

θ ← θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n)) (2.3)

The mini-batch implementation addresses the drawbacks of batch learning and SGD. First, it allows
the model’s parameters to be updated while reducing the variance (SGD instability), leading to
more stable convergence, as described in Section 3.6. Second, it also optimizes vectorizations and
matrix operations (batch learning complex computation), enhancing the computation process of
the gradient (Ruder, 2016). These advantages make mini-batch learning the most suitable training
technique for FeDAL (q.v. Section 3.6), LaMAL (q.v. Section 4.4) and CAL (q.v. Section 5.3).
Especially for LaMAL and CAL, mini-batch learning improves computational efficiency during the
training process of the PLMs investigated in this work.

2.4 Pre-Trained Language Model (PLM)

The first component of our multi-scenario approach, FeDAL (q.v. Chapter 3), focuses on solv-
ing tabular classification problems. However, we aim to broaden our approach’s scope to a more
generic solution by incorporating the ability to solve tasks in text classification scenarios. Different
approaches to learning patterns from natural language sentences have been proposed in the liter-
ature, ranging from probabilistic classifiers using TF-IDF (Joachims, 1996; Yun-tao et al., 2005)
and Recurrent Neural Network (Schuster & Paliwal, 1997) to transformer-based models, used in
this work.

Recently, transformer models have been the primary approach for addressing Natural Language
Processing (NLP) tasks, surpassing previous methods and consistently achieving the highest per-
formances across various contexts (Kenton & Toutanova, 2019; Min et al., 2023; Vaswani et al.,
2017). One of the advantages of the transformer is its ability to process text data by reducing
the amount of work needed in the featurization step (Qiu et al., 2020). Figure 2.2 presents the
transformer layer architecture and the advances incorporated, such as the addition of the attention
mechanisms and the use of fully connected Feed-Forward Neural Network (FNN) layers, assembled
in a parallelized way to improve computational performance (Wolf et al., 2020).

The multi-head attention mechanism enables the transformer model to learn the relationship be-
tween different words in a text sequence by calculating an attention score. Consider the sentence,
“Wikipedia is important to society since it is a relevant source of information.” This mechanism
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Figure 2.2: The transformer layer, as proposed by Vaswani et al. (2017).

iteratively calculates the attention score between all words in the sentence, thus obtaining the de-
pendency relationship between them (Vaswani et al., 2017). In this instance, “Wikipedia” and “it”
present a high attention score since they are related and represent the same concept. Meanwhile,
the words “society” and “it” receive a low attention score. Besides, the attention mechanism adds
context to sentences (Vaswani et al., 2017), enabling the model to differentiate the meaning of
words, like the notions of “bank” as a financial institution and “bank” of a river. To leverage this
mechanism, transformer-based models employ a multi-head strategy, with several attention heads
computed in parallel. Here, words are encoded as embeddings in a vector space (input embedding)
and are combined with the positional encoding, which inserts information about the word’s position
in a sentence and allows the model to handle long-range texts (Vaswani et al., 2017). Equation 2.4
formalizes how attention is calculated.

Attention(Q,K, V )← softmax(
Q⊙KT

√
dk

)⊙ V (2.4)

Q, K, and V are matrices that represent every word in a sentence and ⊙ is the dot product. These
matrices receive the same input and differ only in their learned weights, acquired by training in a
large-scale dataset. dk is used as a scaling factor and encodes the dimension of interest between Q
and the transpose of K (Vaswani et al., 2017). Finally, the softmax value is combined with V to
obtain the final attention score.

To improve training efficiency, the transformer normalizes the output of the intermediate sub-
layers (multi-head attention and feed-forward) (Ba et al., 2016; J. Xu et al., 2019). It does that
by calculating the distribution statistics (mean and standard deviation) from the addition of the
output of the sub-layers, forwarding the normalized values to the next step. Equation 2.5 formalizes
this process.
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LayerNorm(x)← g

σ
⊙ (x− µ) + b (2.5)

g and b are the gain and bias parameters, respectively. They have the same dimension as the
output of the previous layers and are dynamic terms learned iteratively during the training process
(large-scale datasets). σ is the standard deviation and µ the mean. x is the previous layer’s output.

Since the transformer incorporates a point-wise network, each normalized node of the attention
layer is forwarded through the FNN. At this step, the transformer applies two linear transforma-
tions, using the ReLU (Equation 2.6) activation function (Vaswani et al., 2017). To formalize the
complete step, we present Equation 2.7.

ReLU(z)← max(0, z) (2.6)

FFN(x)← ReLU(x×W1 + b1)×W2 + b2 (2.7)

ReLU (q.v. Equation 2.6) executes a non-linear operation that aims to calculate the final value
given by a previous NN layer (z). In Equation 2.7, x represents the output of the attention layer,
W1 represents the weights of the first linear transformation, and W2 the second. b1 and b2 are the
bias terms added to both steps.

The architecture described above is the basic block for building a PLM, a large Deep Neural Net-
work (DNN) used to solve complex NLP tasks. To create a PLM, multiple transformer layers are
stacked and initially trained on large-scale datasets (Wolf et al., 2020). Different implementations
yield state-of-the-art results, e.g., BERT (Kenton & Toutanova, 2019), which has around 110 mil-
lion trainable parameters, RoBERTa (Y. Liu et al., 2019), around 125 million trainable parameters,
and DistilBERT (Sanh et al., 2019), 66 million trainable parameters. Since we are dealing with
large DNNs, it would be impossible to train these models from scratch to handle each task. Thus,
PLMs take advantage of the fine-tuning paradigm to adapt to specific tasks (Elazar et al., 2021).

The fine-tuning process requires using previously trained implementations and incorporating a
new FNN layer on top of it, referred to as the classification head. Here, we are interested in
the text classification of norm-violating behavior, i.e., given a text as input, the model predicts
whether the text violates some community norm. In this scenario, the transformer layers are used
for language representation. These layers can be applied to any domain since they were trained
in large-scale datasets. On the other hand, the classification head is responsible for the output.
Thus, it is explicitly trained only for the task at hand, considering a given domain dataset and the
community requirements, such as the number of output nodes (binary or multi-label classification
tasks) and the number of instances used for training.

Concretely, our experiments with LaMAL (q.v. Section 4.3) and CAL (q.v. Section 5.2) explore
two different PLMs. The first is RoBERTa, built on top of BERT to improve its implementation
by changing the architecture design and training on a larger dataset, obtaining better performance
for different NLP tasks (Y. Liu et al., 2019). The second is DistilBERT, which is also built on
top of BERT, but it aims to create a smaller, faster, and cheaper model (Sanh et al., 2019).
Section 4.4 presents the results of RoBERTa and DistilBERT applied to hate speech detection in
Wikipedia article edits using the LaMAL framework. Furthermore, Section 5.3 presents the results
of DistilBERT applied to the same domain using the CAL framework, including the adoption of
the adapter architecture.

Adapter

As described above, PLMs take advantage of the fine-tuning paradigm, which uses previously
trained implementations and only updates its parameters for a specific text classification task.
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However, it is worth reiterating that this approach still requires updating a considerable amount
of weights derived from the large number of parameters present in PLMs. To tackle this issue, we
adopt a fine-tuning strategy that incorporates adapters between the transformer layers of a PLM.
These adapters are neural networks with a small proportion (usually 3%) of the number of param-
eters present in the full model, resulting in a faster and more efficient training process (Houlsby
et al., 2019).

In this context, while we continuously update the adapter weights on our target data, the trans-
former layers are used only for language representation, keeping the original PLM parameters
frozen. Equation 2.8 (Pfeiffer et al., 2020) and Figure 2.3 describe how the adapter is combined
with a PLM.

Φn ← argmin
Φ

Ln(Dn,Θ,Φn) (2.8)

In Equation 2.8, n ∈ {1..., N}, where N is the number of text classification tasks to be solved. Φn

represents an adapter for task n. Θ is the base PLM (shared by all adapters). Dn is the training
data for the specific classification task, and Ln is the loss function we seek to minimize, which
can differ depending on the task. For example, we could use categorical cross-entropy to handle
multi-class classification tasks while using binary cross-entropy for the binary case.

For a comprehensive description of the adapter architecture, Figure 2.3 illustrates the adapter
integration between the layers of a PLM. The left portion of the figure portrays the transformer
layer proposed by Vaswani et al. (2017) and depicted in Figure 2.2, but introducing the adapter
after the feed-forward component. The right portion of the figure portrays the adapter composition,
specifying the bottleneck architecture that limits the number of parameters (Houlsby et al., 2019).
In this configuration, the feed-forward down-project component projects the original d-dimensional
features into a reduced dimensionality, denoted as m. Next, the adapter applies a nonlinearity
function, followed by the up-project component, which restores the dimensionality to d. In total,
adapters add 2md + d + m parameters per layer, including biases. By adopting m << d, the
adapter limits the number of parameters added per task. In practice, this configuration employs
around 0.5% - 8% of the parameters of the original model.

In conclusion, we summarize the advantages of adapter-based fine-tuning in three parts. First,
it presents impressive results for domains where data is scarce, such as low-resource tasks and
communities, and cross-lingual tasks (R. He et al., 2021). This is especially relevant for CAL,
as we aim to learn what constitutes norm violations from a limited set of labeled data. Second,
it tackles catastrophic forgetting due to interference between different text classification tasks,2

which might be an issue in fine-tuning a complete PLM, such as LaMAL’s fine-tuning process.
CAL accomplishes that by dynamically creating individual adapters as the community requires
solving new classification tasks (i.e., identifying new violation classes). Third, the continuous
update of smaller neural networks allows for greater robustness to handle over-fitting and reduced
sensitivity to changes in learning rates (R. He et al., 2021).

2Catastrophic forgetting refers to the loss of knowledge acquired from previous classification tasks when learning
new information (Pfeiffer et al., 2020). In our context, preventing the loss of information about the detection of
a violation class when training with data from a different violation class within the same community or across
communities.
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Figure 2.3: The adapter interaction with the transformer layers, as proposed by Houlsby et al.
(2019). The right portion of the figure depicts the adapter’s bottleneck architecture.

2.5 Interpretability

The base concepts introduced in previous sections are relevant to our challenge of detecting norm
violations in online communities. However, we argue that normative systems must also provide ex-
planations to include evidence on the relevant elements of an action associated with violations and
how they may differ in light of the evolving nature of online interactions. Thus, our main reasons
for implementing this ability in our multi-scenario approach are to allow for model debugging and
to enable community members to understand the reasons for classifying certain actions as viola-
tions, with the ultimate goal of providing adherence to the transparency principle of responsible
artificial intelligence (Arrieta et al., 2020; Barredo Arrieta et al., 2020). Moreover, the literature
usually focuses on two interpretability techniques to explain how an ML model works. First is
local interpretability, which involves identifying the words (or features) that contributed to the
model’s output regarding a specific action. Second is global interpretability, providing a broader
understanding of the model’s inner workings. We focus here on local interpretability methods since
we primarily want to inform community members about specific norm violations.3 Thus, to fulfill
these goals, we integrate two interpretability tools into our multi-scenario approach, the Local In-
terpretable Model-Agnostic Explanations (LIME) and the Integrated Gradients (IG) algorithms.
LIME is used by FeDAL since it is a model agnostic tool that can provide explanations for the

3We also investigate using a list of the words that contribute the most to detecting norm violations, such as those
in Appendix C. However, we clarify that these lists do not represent global interpretability. Instead, they represent
the sum of the values obtained through local interpretability.
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relevant features in an ensemble of classifiers. IG is used by the transformer-based models, LaMAL
and CAL, since it is specifically built to understand the inner workings of such models by obtaining
the relevant words.

Since LIME and IG serve to obtain the relevant features or words associated with norm-violating
behavior, our multi-scenario approach aims to follow a two-step process to provide this informa-
tion to community members. First, the system conveys the reasons for a model’s output to the
community member executing an action. Sections 3.6, 4.4 and 5.3 and Appendix B showcase how
this information is presented. Second, we prepare our approach to provide interpretability data
to other community members in a future feedback elicitation process (although we do not handle
this in the current work, we highlight its importance for future research), focusing on discussing
the reasons behind a violation and gathering the evolving community views. This is especially
important when there is a discrepancy between different members’ views. A deliberation process
will enable members to discuss among themselves (informed by interpretability results) the aspects
of the model’s output that affect the disagreement.

2.5.1 Local Interpretable Model-Agnostic Explanations (LIME)

In the context of this thesis, specifically with FeDAL, an action is represented by a set of features.
Each feature describes one aspect of the action that a user executes in an online community, e.g.,
the number of profane words in an article edit, the percentage of alphabetic text added, and the
size of the article edit. We adopt this approach to allow our framework to adapt to different
application domains since modeling an action as a set of features allows the framework to deal
with different classification tasks, such as identifying fake online reviews and credit card fraud.
For instance, we could map the action of participating in an online meeting by features such as
the amount of time present, the volume of messages exchanged, and the rate of interaction with
other participants. The proposed approach can use these features in online communities to explain
which aspects of an action indicate norm violation.

The features of an action can provide valuable information about the aspects that may contribute
to norm-violation detection. To this end, we adopt a tool that can explain a model’s prediction,
the Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016). Here, LIME
is responsible for helping to explain the output of three different training algorithms implemented
by FeDAL, mini-batch (q.v. Section 3.1), online learning (q.v. Section 3.2), and batch (q.v. Sec-
tion 3.3).

To achieve its goal, LIME learns an interpretable model around the data points of interest (the
instances to explain). LIME focuses on presenting a locally faithful explanation. To do that, it
perturbs the instance to be explained, creates a dataset with these perturbed data points randomly
generated following the underlying data distribution, and reviews how the model’s output changes
due to this perturbation. Specifically, LIME works following the equation below:

ξ(x)← min
g∈G
L(f, g, πx) + Ω(g) (2.9)

ξ(x) represents the explanation found by LIME, defined as a model g ∈ G, where G is the class
of possible models that humans could interpret, such as decision trees or linear regression. The
interpretable model should be easily understandable to humans, either in a visual or a textual for-
mat. f is the ML model being explained. While πx is the proximity measure, and πx(z) represents
the distance between the data point and an instance (z) generated around x (the original instance
being explained) by perturbation. Then, L(f, g, πx) is the fidelity function that summarizes how
unfaithful g is when approximating f in πx (Ribeiro et al., 2016). Concretely, to obtain the local
behavior of f , LIME minimizes the fidelity function by drawing random samples around x with
the weight defined by πx. Lastly, Ω(g) quantifies the complexity of the explanation, where the aim

25



is for the explanation to be simple enough for human understanding. In this context, Ribeiro et al.
(2016) describe different options for Ω(g) depending on the specific model g chosen. For instance,
Ω(g) can be defined as the tree depth in the case of the decision tree algorithm or as the number
of non-zero weights in a linear model.

2.5.2 Integrated Gradients (IG)

Unlike our tabular scenario, text-related tasks do not need a featurization process (encode text
sentences into a set of features). Instead, it is possible to manipulate the text directly (Arrieta
et al., 2020; De-Arteaga et al., 2019; Niu et al., n.d.; Räuker et al., 2023). Thus, to explain models
that handle text sentences, LaMAL and CAL incorporate the Integrated Gradients (IG) algorithm
to understand the parts of a text most relevant to the model’s output (Sundararajan et al., 2017).
IG enables our frameworks to gain insights into the inner workings of transformer-based models by
debugging and extracting rules from a Deep Neural Network (DNN) (Sundararajan et al., 2017).

Specifically, IG calculates a word’s contribution to detecting norm violations by a backward pass
through the model, propagating its relevance from the output to the input (Lyu et al., 2022). The
central assumption of this algorithm is that the tokens with the highest gradient values present
the most substantial influence on the classification output.

Following the formalization in (Lyu et al., 2022; Sundararajan et al., 2017) and considering an
NLP task, let x be the sentence formed by a set of tokens xi, i ∈ 1, 2, ...n and x̄ the baseline input

represented by a zero embedding vector. ∂M(x)
∂xi

is the gradient for token i and M is our transformer-
based model. Theoretically, to obtain the integrated gradients, IG considers a straight-line path
from the baseline x̄ to the input x, computing the gradients at all points of the path (Sundararajan
et al., 2017). Thus, the integrated gradients come from the accumulation of these individual points.
Equation 2.10 formalizes the integral calculation.

IntGrads(xi)← (xi − x̄i)⊙
∫ 1

α=0

∂M × (x̄ + α× (x− x̄))

∂xi
× dα (2.10)

However, to efficiently compute the integrated gradients, IG approximates IntGrad(xi) by the Rie-
mann sum method (Equation 2.11), which defines a set of finite points (m) along the straight-line
path. r(xi) is the calculated relevance score and m is chosen empirically. Experiments in (Sun-
dararajan et al., 2017) suggest around 20-300 points along the path.

r(xi)← (xi − x̄i)⊙
m∑

k=1

∂M(x̄ + k
m × (x− x̄))

∂xi
× 1

m
(2.11)

2.6 Generalized Additive Model (GAM)

As discussed in the previous section (q.v. Section 2.5), one of our goals is to enable community
members to understand why a model classifies an action as a violation by integrating interpretabil-
ity into our solution. As such, we argue that it is essential to evaluate whether the interpretability
tool employed in our work affects people’s views on what behavior constitutes a norm violation.
To address this challenge, we conduct a user study to investigate the potential influence of in-
terpretability on an individual’s understanding of norm-violating behavior, aiming at reducing
detrimental behavior in online community domains.

In our user study, participants must evaluate text sentences containing hate speech (q.v. Chapter 6).
The IG algorithm generates the questionnaire’s interpretability data. The output from the IG
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algorithm can be used to present information to community members in three different manners,
which we refer to as interpretability layouts and depict in Figure 6.1. These layouts are:

• Local interpretability: it describes the impact of individual words (relevance score) on iden-
tifying norm violations in a specific text sentence.

• List with the sum of relevance scores: it describes the impact of words considering all text
sentences in our dataset. The sum of relevance scores is not a global interpretation of our
model but rather a summary of local interpretations. Specifically, this list is obtained by
summing the relevance score (local interpretability) of each word’s occurrence in that dataset.

• Combination of both: it describes local and the sum of relevance scores together.

Concretely, we investigate how these layouts influence an individual’s view when they evaluate a
text sentence as a specific class of hate speech (considering the Wikipedia domain described in
Section 1.1.3). Participants answer a questionnaire that directly inquires how their views change
when presented with a baseline (no interpretability information) and information generated by the
different interpretability layouts.

The analysis of response data in our study requires the consideration of four factors that may influ-
ence participants’ views: the interpretability layout, the demographic information, the participants,
and the sentences being evaluated. Following this requirement, we adopt the Generalized Addi-
tive Model (GAM) that enables us to explore the relationship between distinct variables by using
nonlinear functions to model the response data (Fahrmeir et al., 2013). Specifically, Equation 2.12
describes the additive characteristic present in GAMs that is important to our work (Baayen &
Linke, 2020). This equation serves to handle ordinal responses, outlined as participants’ answers
on the Likert scale (ytarget), along with random effects corresponding to individual participants
(xpart) and text sentences (xsent), as well as fixed effects associated with demographic aspects
(xdem) and interpretability layouts (xint). Additionally, β0 represents the intercept,4 while βint

and βdem refer to the weight for the interpretability layouts and demographic factors, respectively.
αpart and αsent address the weights for the random effects, considering participant-specific and
sentence-specific effects, respectively.

ytarget ← β0 + βint × xint + βdem × xdem + αpart × xpart + αsent × xsent (2.12)

In summary, by capturing the relationship between these variables with a GAM, we can estimate
participants’ confidence about norm violation, discovering whether any of these factors influence
participants’ views.

Theoretically, following the formalization of Hastie and Tibshirani (1987) that is described in
Equation 2.13, GAMs comprise a sum of smooth functions that can embody linear effects and
variables, including continuous and categorical. This composition effectively allows GAMs to
capture nonlinear relationships, such as nonlinear co-variate effects, overcoming the assumption of
linearity in the data.

E(Y |X1, X2, ..., Xp)← s0 +

p∑
j=1

sj(Xj) (2.13)

Y is the dependent variable (i.e., our prediction goal), and E(Y |X1, X2, ..., Xp) represents the
function that connects the expected value to the predictor variables X1, ..., Xp. s0 is a constant

4The intercept is a term used in the model to represent the estimated value of the dependent variable (ytarget)
when the values of the independent variables (xint, xdem, xpart, xsent) are 0 (Baayen & Linke, 2020; J. D. Davis,
2007).
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term, and the Backfitting algorithm estimates it.5 The terms s1(X1), ..., s1(Xp) denote smooth,
nonparametric functions (Larsen, 2015).6 Moreover, several smoothers exist in the literature. In
this work, GAMs use the smoothing splines (Baayen & Linke, 2020) following the implementation
in the R programming language (R Core Team, 2023).7 The individual variables are separated by
the “+” operator, indicating the additive characteristic of the model.

Another critical aspect of GAM is evaluating its cost when identifying data patterns. This compu-
tational cost is calculated using Equation 2.14 that expresses the trade-off between the likelihood
term and the wiggliness (Baayen & Linke, 2020):

Cf =

n∑
i=1

(yi − f(xi))
2

︸ ︷︷ ︸
Likelihood

+λ×
∫
f ′′(x)2 × dx︸ ︷︷ ︸

Wiggliness

(2.14)

The likelihood term aims to keep fidelity to the observed data while minimizing the summed square
errors (Baayen & Linke, 2020), whereas the wiggliness calculates the curve’s complexity, measuring
the fluctuations in its shape. This last component maintains the model as simple as possible (less
wiggly). Consequently, a good balance between these two terms is important for a good fit. yi
denotes observed values, while f(xi) denotes predicted values. The smoothing parameter (λ)
controls this balance, indicating the penalization associated with a specific degree of wiggliness, a
value dependent upon the response data (answers from participants). In practice, this penalization
operates to avoid overfitting. The integral over the square of the second derivative of function f(x)
is the effective measure of the wiggliness.

Lastly, to mitigate the potential influence of outlier participants with considerably divergent views
on norm violations, we rely on GAMs’ ability to manage response data rated on the Likert scale
while maintaining robustness against the perturbing impact of outliers in deriving conclusions.
GAMs accomplish this by assuming that outliers exhibit distinct behavior, connecting the associ-
ated uncertainty with wide confidence intervals (Baayen & Linke, 2020).

5The Backfiting algorithm is an iterative procedure to estimate the nonlinear effects of a GAM, enabling the
model to handle the nonlinear relationship between the predictor variables and the dependent variable(Banks &
Fienberg, 2003; Hastie & Tibshirani, 1987).

6It is worth mentioning that nonparametric functions, as opposed to their parametric counterparts, derive their
shape exclusively from empirical data without reliance on a limited set of predefined parameters (Larsen, 2015).

7R is an Open Source programming language designed for statistical computing. It is important in our context
because it provides extensive data analysis and presentation tools (R Core Team, 2023).
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Chapter 3

FeDAL: The Ensemble Machine
Learning Framework

This chapter introduces the Feedback-Driven Adaptive Learning (FeDAL) framework,1 which is the
first framework that composes our multi-scenario approach to continuously learn what constitutes
a norm violation from past interactions and user feedback in online communities. We achieve this
goal by using examples of behaviors depicted as violations, gathered either as text sentences or
formalized with a set of features. Since the formalization of interactions may vary depending on
the type of violation-detection task, it is essential to handle different types of datasets in online
communities. For instance, while some violation-detection tasks only require a set of features
to describe an action (e.g., fraud discovering, misbehaving recognition, and identifying deception
writing styles), others must handle the raw text input as it takes place due to the complexity of the
task (e.g., detect specific hate speech class, style change detection, and identifying AI-generated
reviews). Consequently, our emphasis lies on an approach that can be employed in multi-scenario
contexts, particularly in tabular and text-based domains, since these cover a variety of use cases,
including the detection of violations in Wikipedia article editing (q.v. Section 1.1.3).

FeDAL learns from past interactions and user feedback, constantly adapting the definition of what
constitutes a norm violation based on the evolving understanding of that norm with respect to
the community members. In this context, a community member’s action is represented as a set
of features that FeDAL uses to define norm violations, such as the number of profane words,
occurrences of alphanumeric characters, and edit size (details of the complete set of features are
given in Section 3.5). Specifically, FeDAL learns to detect norm violations by integrating ensemble
(q.v. Section 2.1) and two learning techniques (q.v. Section 2.3): 1) incremental learning; and
2) batch learning. We evaluate both techniques to identify their drawbacks and determine the
scenarios in which one technique outperforms the other (q.v. Section 3.6).

The motivation behind ensemble learning is that detecting norm violations usually implies working
with imbalanced datasets since violating behavior occurs less frequently than regular (or expected)
behavior. Thus, adopting an approach capable of handling class distribution imbalance is crucial.
Moreover, in FeDAL, we leverage ensemble learning by employing data sampling techniques, namely
oversampling and undersampling. These techniques limit the ensemble’s size and restrain the
computational power needed to process incoming data points.

Regarding training procedures, we investigate the following three approaches to train the base
machine learning (ML) models:

1Source code available at https://bitbucket.org/thiago-phd/journal paper/.
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1. The mini-batch approach (q.v. Section 3.1), where the base ML model is continuously trained
using data blocks that arrive sequentially, without past information.

2. The online approach (q.v. Section 3.2), where the learning algorithm uses a single data point
to train the base ML model, which allows for an immediate model update as soon as an
interaction occurs.

3. The batch approach (q.v. Section 3.3), where the learning algorithm uses the entire dataset,
past and new information, training the ML model from scratch every time.

In our use case, the majority class set M represents regular behavior, while the minority class set
P represents violations. Since we define an action as a set of features, we represent a data point
with the tuple (X, y), where X is the set of features of a given action and y ∈ {0, 1} is its class
label, describing if it is a violation (1) or not (0).

The remainder of this chapter is divided as follows. Sections 3.1, 3.2, and 3.3 present the three learn-
ing algorithms investigated by FeDAL, with a computational complexity analysis in Section 3.4.
Subsequently, in Section 3.5, we describe the experiments conducted to evaluate the FeDAL frame-
work, with the results outlined in Section 3.6. Finally, Section 3.7 offers a comprehensive summary
of the key points discussed in this chapter.

3.1 Mini-batch Learning for Tabular Scenarios

FeDAL employs a mini-batch approach (q.v. Algorithm 3.1) that builds on top of two incremental
ensemble algorithms, the Accuracy Updated Ensemble (AUE2) (Brzezinski & Stefanowski, 2014)
and the Dynamic Updated Ensemble (DUE) (Z. Li et al., 2020). However, FeDAL introduces sig-
nificant differences: 1) it incorporates feedback to emphasize data points that had their class labels
changed by the community; 2) it uses a replication-based oversampling technique that randomly
replicates minority class instances present in the current data block, as opposed to the SMOTE
oversampling technique that creates synthetic minority class samples (Chawla et al., 2002) (in Sec-
tion 3.6.3, we compare both data sampling techniques and analyze their impact on the proposed
solution); and 3) it defines a new metric, the number of classifiers, to determine the oversampling
ratio for minority instances (q.v. Algorithm 3.1, line 10).

The algorithm builds data blocks with fixed size n as data is made available sequentially. Then,
when a data block contains n data points, the algorithm can start the training procedure of the ML
classifiers. In this work, we define a data block as Dt = ((X, y)1, ..., (X, y)n), where t denotes the
current time step. After pre-processing the data, the algorithm starts by calculating the imbalance
ratio rt between set Pt that contains minority instances and set Mt that contains majority instances
in the current data block Dt (Algorithm 3.1, line 8), which acts to track data distribution changes
over time. Additionally, sets Mt and Pt are used to calculate the number of classifiers in the
ensemble ct (q.v. Algorithm 3.1, line 9).

Here, we explore an example to illustrate the workings of Algorithm 3.1. Let us say that initially
t = 1, ct = 10, and the imbalance ratio rt = 0.07. Then, after some time, a concept drift is
noted at time step t = 5, with rt changing to 0.03 and ct changing to 12. Next, if ct > m
(the maximum number of classifiers), the algorithm oversamples set Pt by replicating all minority
instances following the ratio |Mt| ÷m (q.v. Algorithm 3.1, line 11), which prompts the update of
the best ensemble size. The algorithm then checks if the imbalance ratio has changed by some pre-
defined factor d (it is worth mentioning that this value is domain-dependent and defined during the
development process). Following this, the algorithm incorporates oversampled community feedback
to introduce relevant data about the change of community view into the training procedure (q.v.
Algorithm 3.1, line 19). Subsequently, ct balanced datasets (Bt) are created from data block Dt.
Each balanced dataset in Bt is composed of non-overlapping data points from Mt, which contains

30



1 Algorithm: Mini-batch Learning

2 Input: Current time step (t), current data block (Dt), set of majority instances (Mt), set
of minority instances (Pt), set of instances with feedback (Ft), max number of classifiers
(m), max change in distribution (d), and number of epochs (e);

3 Output: Trained ensemble (E);

4 Initialize ensemble size. c← 0
5 Initialize the last imbalance ratio change. r ← 0
6 while data block Dt is available do
7 Pre-process Dt, no past data is used
8 Compute the current imbalance ratio. rt ← |Pt| ÷ |Mt|
9 Compute the current best ensemble size. ct ← |Mt| ÷ |Pt|

10 if ct > m then
11 Oversample minority class instances ∈ Pt by |Mt| ÷m
12 Update ct with the new value for |Pt|
13 end
14 if ct > ct−1 and rt ÷ r < 1− d then
15 Compute the number of new classifiers. o← ct − ct−1

16 Update the last imbalance ratio change r ← rt
17 end
18 Emphasize set Ft by oversampling with ratio |Pt| ÷ |Ft|
19 Add Ft to data block Dt

20 for i=1; i ≤ ct; i++ do
21 Get a subset St,i from Mt, where |St,i| = |Pt| and

St,i ∩ St,u = ∅ (u = 1, 2, . . . , i− 1)
22 Create a balanced dataset. Bt,i = St,i ∪ Pt

23 end
24 Train ct classifiers ∈ E with datasets Bt for e epochs
25 Obtain the sum of relevance scores (srf ) for violations

26 end

Algorithm 3.1: The mini-batch learning procedure for the ensemble of classifiers (FeDAL).

the original majority class data points and the feedback data (Ft), and all data points from Pt (q.v.
Algorithm 3.1, line 22). To conclude the ensemble’s parameter update, the algorithm executes the
training procedure for each base classifier in E using the balanced datasets in Bt.

Lastly, in line 25 (q.v. Algorithm 3.1), as FeDAL finishes training the ensemble, it is possible
to obtain the features usually associated with violation by calculating a sum of relevance scores
based on local interpretations. The sum of relevance scores of a feature (srf ) is the sum of all
local relevance scores calculated using Local Interpretable Model-Agnostic Explanations (LIME)
(q.v. Section 2.5.1) for the instances present in the current data block Dt. Equation 3.1 describes
the sum operation, where k is the number of occurrences of feature f according to the intervals
obtained by LIME in the discretization step, and LIME(fu, 1) is the calculated relevance score for
the uth occurrence of f , regarding its contribution to violation classification. FeDAL must only
change the second parameter to 0 to get the relevance scores for the regular class.

srf ←
k∑

u=1

LIME(fu, 1) (3.1)
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1 Algorithm: Online Learning

2 Input: Current data point (d), data point is of majority class (m), data point is of
minority class (p), data point is feedback (f), desired class distribution (g), max
oversample (o), balance window with fixed size (W ), max window size (s), LIME block
size (z);

3 Output: Trained ensemble (E);

4 Initialize the ensemble of classifiers. E ← {NeuralNetworks}
5 Set initial ensemble size c
6 Set the initial index classifier to train. q ← 0
7 while data point is available do
8 Pre-process d, with running statistical values
9 Train with the majority data point. h← True

10 Add the label from d to W
11 if |W | > s then
12 Remove oldest label ∈W
13 end
14 Update the number of data points n
15 Get the number of the latest majority instances l from W
16 Compute minority class oversampling rate. r ← l ÷ c
17 if r > o then
18 The majority class is undersampled. Thus, data point d is not used for training
19 Train with the majority data point. h← False

20 end
21 Execute Train Classifiers (call Algorithm 3.3)
22 Obtain the sum of relevance scores (srf ) for z violations

23 end

Algorithm 3.2: The online learning procedure for the ensemble of classifiers (FeDAL).

3.2 Online Learning for Tabular Scenarios

Algorithm 3.2 and Algorithm 3.3 describe how FeDAL employs the procedure to train the ensemble
of classifiers online. We build this approach based on the concepts of oversampling and undersam-
pling described by S. Wang et al. (2015). However, we further enhance the data sampling strategy
in the context of online learning by proposing a novel approach to calculate the resampling ratio
for the minority class. Specifically, FeDAL only considers the classes of the latest data points to
accurately capture the most recent data distribution.

The first step in Algorithm 3.2 is to create the ensemble of classifiers E (line 4). In this case, the
community can define the number of base classifiers c ∈ E from expert knowledge or through initial
experiments. Next, for each data point d that is made available (i.e., for each action in an online
community), the algorithm pre-processes d using the running statistical values (q.v. Algorithm 3.2,
line 8).2 Unlike data block-based approaches, it is necessary to adapt the calculation of the
statistical values to account for the single instance update. Therefore, online learning employs
Equations 3.2 and 3.3 to perform this calculation (Montiel et al., 2021). Additionally, it is worth
noting that this procedure may result in lower accuracy compared to those in mini-batch and batch
learning.

RMt ← RMt−1 + ((Vt −RMt−1)÷ nt) (3.2)

2We are interested in the mean and the sum of squares since these are used to normalize the incoming data point.
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1 Algorithm: Train Classifiers Online

2 Input: Current data point (d), data point is of minority class (p), data point is feedback
(f), minority class oversampling rate (r), ensemble of classifiers (E), train with majority
data point (h), index classifier to train (q);

3 Output: Trained ensemble (E);

4 if p is True then
5 Oversampling data point d by rate r
6 for Classifier e ∈ E do
7 Train e with the oversample data point
8 end

9 else if f is True and h is True then
10 for i=q; i ≤ q + ((|E| ÷ 2) + 1); i++ do
11 Train classifier Ei with d
12 end
13 Update index classifier to train. q ← i

14 else
15 if h is True then
16 Train classifier Eq with d
17 Update index classifier to train. q ← q + 1

18 end

19 end

Algorithm 3.3: The training classifiers procedure for the online learning approach.

RMt is the updated running mean at time t for each feature that describes the action resulting
in d, RMt−1 is the last running mean, Vt is the new feature value, and nt is the number of data
points encountered until the current time t. With the running mean, it is possible to calculate the
running sum of squares (SQt):

SQt ← SQt−1 + (Vt −RMt−1) ∗ (Vt −RMt) (3.3)

Since it is impossible to know the data distribution for the complete dataset in online learning, it is
necessary to decide, as interactions happen, which portions of the data will be used for training. To
tackle this challenge, FeDAL checks for concept drift by calculating the change in data distribution.
It is important to note that our framework does not use all data points previously processed to
perform this calculation. Instead, it only considers a fixed number of instances in a window W
of fixed size (the maximum size s of this window is assumed to be provided in advance and is
domain-dependent). W contains only the information about the label of the latest s data points,
with no feature information present. Hence, W is a list where each element is either 0 or 1, regular
or norm-violating behavior, respectively. In line 12 (q.v. Algorithm 3.2), FeDAL updates W as
new instances are available.

Following the creation of W , the algorithm computes the sampling rate for the minority class,
considering the number of majority instances l present in W and the number of classifiers c in the
ensemble (q.v. Algorithm 3.2, line 16). This is useful in combination with the ensemble to balance
the data points seen by the classifiers, dealing with the imbalanced nature of a certain domain.
Next, the algorithm compares the oversampling ratio r with the maximum oversample value o. If
r > o, the majority class is undersampled (q.v. Algorithm 3.2, line 18), and h is set to False. The
parameter h controls whether the ensemble uses the current data point for training.

Upon obtaining the values for the sampling strategy, the classifiers in E can be trained following
three distinct directions, depending on the current data point (q.v. Algorithm 3.2, line 21). We
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design these directions to improve efficiency, as each path is dedicated to training specific base
classifiers. Concretely:

• if the current data point belongs to the minority class (p is True), all base classifiers are
trained (q.v. Algorithm 3.3, line 6). Given the imbalanced nature of the dataset with a
scarcity of data instances representing the minority class, each classifier needs to incorporate
these data points during the training process. Otherwise, they will not learn to identify
minority instances (violating behavior).

• if the current data point contains feedback from the community (f is True) and the algo-
rithm can train using the majority class (h is True), then half plus one (i.e., the majority)
classifiers are trained (q.v. Algorithm 3.3, line 10). Training the majority of base classi-
fiers serves to incorporate changing community views, as FeDAL’s decision-making process
employs majority voting.

• if the current data point is not of the minority class (p is False) and the algorithm can use
this data point for training (h is True), then one base classifier is updated (q.v. Algorithm 3.3,
line 16). Considering the higher frequency of instances of the majority class, we limit the
amount of data points seen by the base classifiers, aiming at having a balanced number of
instances (of the minority and majority classes) used during the training process.

To indicate which of the base classifiers is trained with the current data point d, we use the index
q. As a result, since the algorithm considers only one training data point at a time, different
base classifiers see different training instances. This feature described in Algorithm 3.3 differs
completely from our initial proposal presented in (Freitas dos Santos et al., 2022a), where only the
resampling strategy changed, with the algorithm training all classifiers using all data points. This
led to the algorithm requiring additional time to complete the training procedure.

In Algorithm 3.2 (line 22), FeDAL calculates the sum of relevance score (srf ). Since the online
learning procedure only considers one data point at a time, LIME requires the algorithm to process
z instances before executing this step. Although Algorithm 3.2 does not retain past data to
learn norm violations, incorporating interpretability with LIME requires access to this data. The
value of z is not predetermined and is domain-dependent. We envision each online community to
provide this value. However, to ensure consistency in the number of processed instances across
different experiments, we set z equal to the data block size used in the mini-batch procedure (q.v.
Algorithm 3.1).3

3.3 Batch Learning for Tabular Scenarios

Using the batch approach to train the ML model requires the treatment of the entire dataset D.
Also, it is not possible to update the ML model incrementally. Instead, a new ML model must be
created to incorporate new knowledge, and the training process starts from the beginning. These
characteristics make this approach the least suitable to deal with a stream of data that arrives
sequentially (as in the Wikipedia use case of article edits). Algorithm 3.4 builds on top of the
traditional batch learning procedure (Russell & Norvig, 2002) by incorporating two modifications:
1) emphasize the importance of feedback data by oversampling; and 2) oversample the minority
class to achieve a desired number of classifiers, using this number as a metric to choose the sampling
strategy.

The training procedure starts by oversampling the data points that received feedback (q.v. Algo-
rithm 3.4, line 4). The ratio to oversample is defined by the number of minority class instances |P |

3In the experiments described in Section 3.5, we set z to 512.

34



1 Algorithm: Batch Learning

2 Input: Past dataset (A), new dataset (T ), set of majority instances (M), set of minority
instances (P ), set of instances with feedback (F ), max number of classifiers (m), past
weight (wA), new weight (wT ), and number of epochs (e);

3 Output: Trained ensemble (E), sum of relevance score (sr);

4 Emphasize F by oversampling with ratio |P | ÷ |F |
5 Assign weights for the past dataset. A← wA

6 Assign weights for the new dataset. T ← wT

7 Create the complete dataset D ← A ∪ T
8 Pre-process D
9 Compute the best ensemble size. c← |M | ÷ |P |

10 if c > m then
11 Oversample minority class instances ∈ P
12 Update c with the new value for |P |
13 end
14 for i=1; i ≤ c; i++ do
15 Get a subset Si from M , where |Si| = |P | and Si ∩ Su = ∅ (u = 1, 2, . . . , i− 1)
16 Create a balanced dataset. Bi = Si ∪ P

17 end
18 Train c classifiers in E with datasets B for e epochs
19 Obtain the sum of relevance scores (srf ) for violations

Algorithm 3.4: The batch learning procedure for the ensemble of classifiers (FeDAL).

divided by the number of feedback instances |F |, which ensures that D contains a representative
number of minority and feedback cases.

D is composed of two groups: past data A(X, y) that contains data previously used to train
the initial ML model; and new data T (X, y) that contains data not used to train the initial ML
model and that may contain concept drift. We separate these into two groups because, for batch
learning, we set higher weights to newer data points. This step emphasizes the importance of new
data to incorporate community view changes since ML classifiers use weights during the training
process. In Algorithm 3.4, line 5 assigns the weights to A with value wA and line 6 to T with
value wT . As described above, wT is bigger than wA.4 In addition to these two sets, we define
F as the subset of T , in which (X, y) ∈ F received community feedback, a step exclusive to new
data T (X, y). Keeping past data A(X, y) is important only to ensure that relevant information,
not updated through community feedback, is preserved during the batch learning process when
training restarts from scratch.

With the entire dataset D created, after weight assignment and concatenation, the algorithm pre-
processes D (q.v. Algorithm 3.4, line 8). Specifically, this step calculates the statistical values
using each data point ∈ D. In line 9, the algorithm computes the best number of classifiers for
the ensemble, using the ratio between the number of majority instances |M | and the number of
minority instances |P |. This step ensures that the algorithm can create balanced datasets for each
classifier in the ensemble. The next step checks if the best number of classifiers c is bigger than the
maximum number m of classifiers that can be created (q.v. Algorithm 3.4, line 10). If c > m, then
the minority class is oversampled, and c is updated with the new value for |P |. The main goal is
to avoid creating an unnecessarily large number of classifiers to ensure computational efficiency.
In Algorithm 3.4 (line 16), the algorithm proceeds to create the balanced datasets to train each of
the base classifiers (q.v. Algorithm 3.4, line 18).

Lastly, like in mini-batch learning (q.v. Algorithm 3.1), the batch procedure also obtains the sum

4Section 3.5 presents the values used in this work.
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of relevance scores for violations (q.v. Algorithm 3.4, line 19). However, batch learning calculates
srf using the complete dataset instead of considering only a data block.

3.4 Computational Complexity

This section provides a complexity analysis of the learning algorithms employed by the FeDAL
framework. We are particularly interested in four key aspects that have the potential to impact
the computational requirements of our solution. As such, we examine operations in which the
execution time may vary because of the following:

• Maximum number of classifiers in an ensemble (m) — this parameter constrains the compu-
tational resources that FeDAL uses, limiting the ensemble size.

• Dataset size required by each training approach (|D|).

• Number of majority and minority instances, |M | and |P |, respectively.

• Number of instances that received feedback (|F |).

Examining the mini-batch case (q.v. Algorithm 3.1), the algorithm considers a single data block
Dt instead of the complete dataset D. As a result, mini-batch learning requires O(|Dt|) time in
the pre-processing step and O((|Mt|÷m)−|Pt|) and O(|Pt|÷ |Ft|) for oversampling. Furthermore,
Algorithm 3.1 requires O(m) time to create balanced datasets and train the classifiers. Thus, the
overall computational complexity of the mini-batch approach can be expressed as O(|Dt|+(|Mt|÷
m)− |Pt|+ (|Pt| ÷ |Ft|) + m).

Next, we analyze the training procedure for online learning (q.v. Algorithm 3.3). This approach
handles single data points during execution (i.e., the input size does not change, and the algorithm
will always process one instance at a time), resulting in a different complexity analysis compared
to mini-batch and batch learning. The oversampling operation requires O(l ÷ m) time, where l
represents the number of minority class instances obtained from the fixed window W . Moreover,
the worst-case scenario involves training all classifiers in the ensemble, which requires O(m) time.
Therefore, the online learning procedure is described with a O((l ÷m) + m) complexity.

Lastly, in batch learning (q.v. Algorithm 3.4), specifically in line 4, the algorithm emphasizes
the feedback data, which takes O(|P | ÷ |F |) time. The complete dataset’s pre-processing step
(line 8) also requires O(|D|) time. As minority class oversampling considers the maximum number
of classifiers, the algorithm needs O((|M | ÷ m) − |P |) time to complete this task. The training
procedure in line 12 has a O(m) complexity. Consequently, the overall computational complexity
of FeDAL’s batch learning is O(|D|+ (|M | ÷m)− |P |+ (|P | ÷ |F |) +m). The complexity analysis
only differs from mini-batch learning due to the dataset size.

To extend this analysis to a practical use case, we empirically evaluate the training time required by
these approaches in Section 3.6. Specifically, we present a case where online learning benefits from
not training all classifiers in the ensemble, which results in reduced training time. Additionally,
we compare batch with mini-batch learning, demonstrating how the constant use of the complete
dataset is detrimental to execution performance.

3.5 Experiments

The goals of this section are twofold: 1) to evaluate how batch and incremental learning approaches
learn to detect norm violations in a context with an imbalanced dataset and concept drift, which
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Group Features
Written Edition LANG ALL ALPHA; LANG EN PRONOUN
Comment on Edition COMM LEN; COMM LEN NO SECT
Article After Edition SIZE CHANGE RESULT; SIZE CHANGE CHARS
Time of Edition TIME TOD; TIME DOW
User’s Profile HIST REP ARTICLE; USER EDITS DENSITY
Page’s History PAGE AGE; WT NO DELAY
Reversions HASH REVERTED; HASH REC DIVERSITY

Table 3.1: Example of features present in the taxonomy groups.

denotes the shift in community views that reclassify actions previously considered norm violation
as regular behavior; and 2) to understand the features of an action that lead to norm-violation
detection. As described in Section 1.1.3, we investigate the use case of Wikipedia article edits,
focusing on the “no vandalism” norm. Thus, in this context, norm-violating behavior is referred
to as vandalism. Since FeDAL handles tabular datasets, an important step in our solution is to
map the instances of actions (Wikipedia article edits) to a set of features and categorize them.

We manually created a taxonomy that separates the features that compose an article edit into
categories, illustrating their relationship (q.v. Figure 3.1). We consider the features described
in (West & Lee, 2011) plus three that are present in the dataset: LANG MARKUP IMPACT,
the measure of the addition/removal of Wiki syntax/markup; LANG EN PROFANE BIG and
LANG EN PROFANE BIG IMPACT, the measure of addition/removal of English profane words.
In this case, features ending with IMPACT are normalized by the difference in article size after
the edition.

In Figure 3.1, we allocate the features into four main groups. The first group, “User’s Direct
Actions,” represents aspects related to the user’s action, i.e., the text edit in a Wikipedia article.
This group is further divided into four sub-groups: a) “Written Edition,” which contains features
about the content of the edited text; b) “Comment on Edition,” incorporating features related to
the comments provided by the user on the article edit; c) “Article After Edition,” which includes
features linked to the article edit after the user completed the action; and d) “Time of Edition,”
which contains features about the time of the edit.

The second group, “User’s Profile,” represents general information related to the user. The third
group, “Page’s History,” describes how articles have changed with past edits. Lastly, the fourth
group, “Reversions,” focuses on information related to past reversions.5

In total, these groups have 57 features and the label (specifying whether the edit is vandalism
or not). However, due to simplification purposes, Table 3.1 only presents a subset of those
features.6 The definitions of these features are presented in (West & Lee, 2011). Specifically,
LANG ALL ALPHA and LANG EN PRONOUN denote the percentage of text added that is al-
phabetic (excluding symbols and numbers) and the measure of pronoun addition/removal, respec-
tively. COMM LEN describes the size of the edit comment, and COMM LEN NO SECT indicates
the size of the comment revision. Regarding the article after the edit, SIZE CHANGE RESULT
depicts the difference in the article size after post-edit, while SIZE CHANGE CHARS quantities
the number of characters removed or added by the edit. TIME TOD represents the edit time, and
TIME DOW refers to the day of the week. HIST REP COUNTRY measures the user’s behavior
historically, while USER EDITS DENSITY quantifies the total user edits. PAGE AGE indicates
the time in seconds since page creation, and WT NO DELAY represents the WikiTrust score (West
& Lee, 2011). Lastly, HASH REVERTED indicates whether the article content receives reversion,
and HASH REC DIVERSITY measures the percentage of recent page edits made by the user.

5A reversion is when an article reverts to a version before the vandalism.
6For the complete taxonomy, the reader can refer to bit.ly/complete-taxonomy.
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Figure 3.1: The groups of features present in our use case.

3.5.1 Learning to Detect Vandalism

The dataset contains 32,439 edits, with 2,394 vandalism edits (around 7%) and 30,045 regular edits
(around 93%). Since the dataset is highly imbalanced, we use stratified 10-fold cross-validation
to evaluate the performance. Then, we repeat the process three times for each fold to enhance
the estimate of FeDAL’s performance. In total, 30 experiments are executed for each of the three
learning approaches. By stratifying the dataset, we guarantee that each fold of the validation
process maintains the data distribution between majority and minority classes (regular and van-
dalism edits). Classification recall, Area Under the Curve of the Receiver Operating Characteristics
(AUC-ROC), and Area Under the Curve of Precision-Recall (AUC-PR) are the chosen metrics for
evaluation.

We conduct a two-step experiment to evaluate FeDAL’s performance. Here, concept drift refers to
changes in community members’ views about the components of an action (e.g., the set of features)
that indicate the presence of vandalism behavior. Specifically, we consider changes in the label of
article edits as interactions unfold.

• Learn to detect vandalism before introducing concept drift: In this case, the goal
is to evaluate if the proposed algorithms can simply learn vandalism without considering
changes in community view. We separated the dataset into two halves (D1 and D2). D1

contains 14.597 article edits, while D2 contains 14.598 article edits. The data in D1 does not
present concept drift and only has the imbalanced dataset with regular and vandalism edits,
specifically with 13,520 regular and 1,077 vandalism edits. Since this part of the experiment
aims to learn to detect vandalism before introducing concept drift, only D1 was used. The
testing dataset T1 contains 3,005 regular edits and 239 vandalism edits, which maintains the
data distribution of the original dataset D1.

• Learn to detect vandalism after introducing concept drift: In the second part of
the experiment, we introduce changes in the community view within the D2 data, resulting
in a concept drift. The aim is to evaluate if FeDAL can learn to detect vandalism in the
presence of concept drift. For the incremental learning cases (mini-batch and online), the
algorithm does not process the original data D1: it only uses the new information in D2 and
updates the ML model previously trained with D1. However, for the batch learning case,
the algorithm must process the entire dataset D1 ∪D2, giving different weights for D1 and
D2 to emphasize the new data points. Additionally, the ML models created in the first part
of the experiment are not updated. Instead, new ML models are created based upon the
training set D1 ∪ D2. Since we do not have real feedback from community members, we
simulate it by introducing concept drift to the D2 dataset. We add concept drift by changing
which edits ∈ D2 are labeled as vandalism (swap of class labels). We do so as follows: using
only the vandalism subset VD2 ∈ D2, we apply the K-Means clustering algorithm to generate
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subgroups that contain data points most similar between themselves (Krishna & Murty,
1999). We obtain four subgroups from this process, G = {0: 555, 1: 435, 2: 87, 3: 1}. The
idea of having groups with similar data points is based on our assumption that community
feedback would be consistent and that this consistency would be present in these datasets.
Thus, our interpretation of the results naturally comes from this consistency. We swap the
class label from all data points ∈ G0 for this experiment.7 Then, class distribution in D2

changes, resulting in 14,075 regular and 523 vandalism edits. Consequently, the imbalanced
ratio changes as well to IR = 0.037. The testing dataset T2 also suffers change, with 117
vandalism and 3,127 regular edits.

We use the Keras library (Chollet et al., 2015) to build the ensemble, adopting the Feed-Forward
Neural Network (FNN) as the base classifier. FeDAL employs identical FNN architectures in all
cases to compare batch, mini-batch, and online learning. The base classifiers comprise an input
layer with 57 units (each representing one feature of an article edit) and two hidden layers, the
first with six nodes and the second with three nodes. Mini-Batch Gradient Descent, Stochastic
Gradient Descent (SGD), and Batch Gradient Descent, with a learning rate equal to 0.01, are used
as optimizers. The loss function is the Cross-Entropy (De Boer et al., 2005).

It is imperative to set specific parameters for the learning algorithms. For all three approaches,
the maximum ensemble size is 12. In mini-batch learning, the batch size is 512, and the number
of epochs is 128. In online learning, the desired class distribution is 50% for both regular and
vandalism classes, which the algorithm achieves by employing undersampling and oversampling.
In batch learning, the incoming data is assigned a weight (wT ) 100 times greater than the weight
assigned to past instances (wA). We evaluate each ensemble’s performance after training with 512
edits to ensure comparability across different learning approaches. Hence, for each block of 512
edits that the algorithm uses to train the ML model, we evaluate the performance, generating
graphs that describe the performance progress over time. The parameters described above are
found empirically and may affect the classifiers’ performances, indicating that different values
should be explored for specific domains.

3.5.2 Understanding the Features that Contribute to Vandalism Detec-
tion

Besides learning to detect vandalism, our work also focuses on understanding the features of an
edit that contribute to the ML model’s output. To fulfill this goal, we use the Local Interpretable
Model-Agnostic Explanations (LIME) algorithm as the interpretability tool (q.v. Section 2.5.1).
The first step is to train the ML models. Then, LIME provides a score for each feature of an
edit being explained. This score describes the influence of the feature on the classification result.
Since the investigated use case is a binary classification problem, the feature score influences the
classification in two directions, either contributing to classifying it as regular or as a vandalism
edit.

The experiments with LIME also consider datasets D1 and D2, before and after concept drift,
respectively. Thus, for each learning approach—batch, mini-batch, and online—there are two
sets of relevant features (q.v. Section 3.6). Since we aim to investigate the relevant features for
vandalism detection, the experiments only consider the testing data in which the class label is
vandalism. Therefore, for the first part of the experiment, 239 edits from the vandalism subset
VT1 ∈ T1 are explained by LIME, and for the second part, 117 edits VT2 ∈ T2 are explained.

Upon defining the testing dataset, the next step is configuring LIME parameters. In this study,
LIME generates 1024 data points around each evaluated edit and calculates the relevance score of

7For future work, we plan to conduct experiments where not all data points have a swap of class labels. This
experiment design aims to evaluate how FeDAL addresses potential inconsistencies in the labeling process that may
arise when people interact online.
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all 57 features, ranking them based on their score values. Additionally, LIME discretizes continu-
ous variables, transforming each continuous feature into a set of ranges. This assists community
members in understanding the features that contributed the most to vandalism detection. For
instance, the feature “LANG ALL ALPHA” ∈ [0, 1] is a continuous variable representing the per-
centage of the text that is only alphanumeric. In our case, LIME discretizes this feature in four
different ranges:

1. “LANG ALL ALPHA” ≤ 0.68.

2. 0.68 < “LANG ALL ALPHA” ≤ 0.72.

3. 0.72 < “LANG ALL ALPHA” ≤ 0.8.

4. “LANG ALL ALPHA” > 0.8.

To obtain these values, LIME uses two sets of data points. For the incremental learning cases, it
only considers the latest data points seen in the training procedure, 512 edits. On the other hand,
for batch learning, LIME considers the entire dataset. Thus, changes in these ranges are expected
due to the different training approaches.

3.6 Results and Discussion

This section presents the results of applying FeDAL to the task of learning vandalism detection
in the context of Wikipedia article edits. Additionally, it presents information about the relevant
features of an edit that contribute to classifying an action as vandalism. Lastly, it describes ablation
studies providing two key comparisons: 1) between an ensemble and a single model approach; and
2) between oversampling by replication and SMOTE.

3.6.1 Learning to Detect Vandalism

As presented in Section 3.5, we separate the experiments into two parts, before and after intro-
ducing concept drift. Thus, the dataset is also separated into two parts (D1 and D2).

Figure 3.2 presents the overall recall graph. Concept drift is introduced after 14,500 edits are
processed. For D1, the learning curves for the three approaches are similar. However, mini-batch
presents significantly better performance than batch learning, as attested by the Friedman-Nemenyi
Test (q.v. Figure 3.3a).8 We use this test to statistically compare the different approaches in this
work (ensemble of classifiers). To demonstrate that the approaches have a statistical difference
in performance, the corresponding average rank must have a difference bigger than the critical
difference (CD) value, which is calculated based on the Studentized range statistics (here, we
adopt the statistical significance α = 0.05) (Demšar, 2006). After introducing concept drift, the
algorithms behave differently. Even though the batch learning approach has the worst performance
as soon as changes are introduced, by the end of the training procedure, it is significantly better
than the other two approaches (q.v. Figure 3.3b). This shows that batch learning can build new
models that learn even with concept drift by setting weights for newly added data points and
providing enough data.

However, since we are dealing with an imbalanced dataset, evaluating only the overall recall is
not representative enough. Thus, we aim to further detail the performance metrics for each class
present in our user case (regular and vandalism).

8The complete statistical results are presented in Appendix A.
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Figure 3.2: Overall recall for the batch, mini-batch, and online cases. After around 14,500 processed
edits, concept drift is introduced.

(a) Before introducing concept drift.

(b) After introducing concept drift.

Figure 3.3: Friedman-Nemenyi test comparing overall recall for the batch, mini-batch, and online
learning approaches. Tables A.1 and A.2 present the complete statistical results.

Regarding the classification performance for the regular class (q.v. Figure 3.4), mini-batch learning
outperforms the other two approaches in the first part of the experiment. The difference is statis-
tically significant, as attested by the Friedman-Nemenyi test (q.v. Figure 3.5a). As the training
procedure advances, the three approaches present less performance instability in classifying regular
edits compared to the vandalism case. We argue that this behavior is an effect of the high number
of regular data points (majority class) and the re-label strategy, which increases the imbalance
ratio. Additionally, since batch learning handles concept drift by adding a bias towards vandalism
(minority class), this approach presents higher variation and instability after introducing concept
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Figure 3.4: Regular recall for the batch, mini-batch, and online cases. After around 14,500 pro-
cessed editions, concept drift is introduced.

(a) Before introducing concept drift.

(b) After introducing concept drift.

Figure 3.5: Friedman-Nemenyi test comparing regular recall for the batch, mini-batch, and online
learning approaches. Tables A.3 and A.4 present the complete statistical results.

drift, consequently leading to a significant drop in performance. In other words, it improves the
performance of vandalism detection at the cost of detecting regular edits (q.v. Figure 3.6). This
behavior is corrected as the algorithm processes more edits. At the end of the training proce-
dure, the batch learning performance is significantly better than the other two approaches (q.v.
Figure 3.5b). To conclude, although we can see that the difference is statistically significant, in
practice, all three approaches present impressive results (specifically, regular recall values greater
than 0.8) in classifying regular edits.

42



Figure 3.6: Vandalism recall for the batch, mini-batch, and online cases. After around 14.500
processed editions, concept drift is introduced.

To analyze the results for vandalism edits, we use Table 3.2, the learning curve of Figure 3.6, and
the Friedman-Nemenyi tests (q.v. Figures 3.7a and 3.7b). It is possible to conclude that before
introducing concept drift, the online learning approach outperforms the other two in correctly clas-
sifying vandalism. At the beginning of the training procedure, we see that online learning presents
a positive bias towards the vandalism case at the cost of regular classification. However, as the
ensemble processes new data, the performances for both classes reach similar levels. Additionally,
after introducing concept drift, the three approaches present a performance drop, and the insta-
bility properties for the incremental learning cases are evident (q.v. Figure 3.6). The instability
can be explained by how the training procedure incorporates incoming data. Since incremental
learning approaches use only parts of the dataset (a data block or a single instance) to train the
ensemble, these approaches are not guaranteed to immediately train the models with represen-
tative vandalism data. Specifically, this drawback is accentuated by the data sampling strategy
used in the online learning case (Z. Li et al., 2020; S. Wang et al., 2015, 2018), leading to a 10%
performance drop. Although, in the beginning, mini-batch learning also presents this instability
property, towards the end of the training procedure, it reaches a performance comparable to the
batch learning approach (q.v. Figure 3.7b). Finally, despite describing the introduction of concept
drift only once (in an abrupt manner), we note that the same approach could be used in the case
of multiple concept drifts since our results show that the proposed framework can continuously
learn as interactions happen.

Figure 3.8 presents the recall for data that suffered the swap of class labels after introducing concept
drift (the re-labeled dataset). As feedback data is incorporated, the framework’s overall perfor-
mance drops almost to zero (illustrated by the beginning of Figure 3.8). This behavior is expected
since we are giving a different label to old definitions and introducing it in the dataset. However, as
more data becomes available, the ensemble can learn that certain article edits should no longer be
classified as vandalism, thus adapting to the new community view. Figure 3.9 demonstrates that
online learning significantly outperforms the other approaches in this case, which can be attributed
to the bias towards the majority class and the re-label strategy (increasing the imbalance ratio by
changing vandalism to regular edits). Additionally, we observe that batch learning presents less
instability and no significant difference in performance compared to mini-batch learning.
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(a) Before introducing concept drift.

(b) After introducing concept drift.

Figure 3.7: Friedman-Nemenyi test comparing vandalism recall for the batch, mini-batch, and
online learning approaches. Tables A.5 and A.6 present the complete statistical results.

Figure 3.8: Re-label recall for the batch, mini-batch, and online cases after concept drift.

In addition to the recall, other interesting metrics are relevant to evaluate the performance of ML
classifiers. Two such metrics are the Area Under the Curve of the Receiver Operating Charac-
teristics (AUC-ROC) and the Area Under the Curve of Precision-Recall (AUC-PR). Here, we are
interested in the relationship between the majority and minority instances, specifically the ratio
between these two values, which is the basis for calculating the AUC-ROC and AUC-PR scores.
Therefore, we aim to investigate how useful these metrics can be for a domain with imbalanced
datasets and concept drift.

Both metrics (AUC-ROC and AUC-PR) rely on the confusion matrix from the test procedure. For
AUC-ROC, we note that, at first sight, this is not a suitable metric to evaluate ML models trained
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Figure 3.9: Friedman-Nemenyi test comparing re-label recall for the batch, mini-batch, and online
learning approaches after concept drift is introduced. Table A.7 presents the complete statistical
results.

with an imbalanced dataset since it overestimates the model’s performance with a bias towards the
true positive rate. In this case, a large change in the number of false positives (the regular edits
wrongly classified as vandalism edits) leads only to a small change in the ROC score (J. Davis &
Goadrich, 2006; H. He & Garcia, 2009). However, suppose the domain requires giving the most
importance to identifying true positives even at the cost of false positives. In such a scenario, this
metric may be useful for understanding performance. We argue that this is the context for norm
violation in online community domains since it may be more critical to block offensive actions than
to make mistakes classifying regular behavior.

Results show that all three approaches present results above 90% for AUC-ROC (q.v. Figure 3.10
and Figure 3.11a). This outstanding result indicates that the ML model is very useful in identi-
fying true vandalism cases, at the cost of giving little importance to the regular edits that were
wrongly classified. As concept drift is introduced, all three approaches present a significant drop in
performance, with batch learning receiving the highest impact on its AUC-ROC score. However,
as the training procedure continues, the batch approach performs better than the two incremental
learning approaches (with a statistically significant difference in performance as depicted in Fig-
ure 3.11b). This behavior is in accordance with the instability properties present in these cases
and explained in Figure 3.4 and Figure 3.6.

The AUC-PR plot shows the relationship between precision and recall by comparing the false
positive and the true positive rates (Saito & Rehmsmeier, 2015). It also uses precision and captures
the effect of the large number of regular instances on the algorithm’s performance (differently
from AUC-ROC) (Saito & Rehmsmeier, 2015). To obtain a more realistic evaluation of this
metric, Siblini et al. (2020) propose a calibrated version of AUC-PR, in which the goal is to make
the metric independent of the class prior (i.e., it monitors the performance based on the changing
data distribution after introducing concept drift). Figure 3.12 shows that mini-batch and online
learning perform significantly better than batch learning before introducing concept drift (q.v.
Figure 3.13a). However, after concept drift, batch learning presents less instability, thus leading
to a smaller drop in performance and the highest AUC-PR scores (q.v. Figure 3.13b).

In Figure 3.14, we present the training time (in seconds) necessary to learn to detect norm violation.
The ML models process 512 article edits at each time step. Incremental learning takes a constant
amount of time to train as new data is made available. Since mini-batch and online learning do
not consider past data, they only train the ML model on the latest article edits. Differently, batch
learning uses the entire dataset at each time step, which increases the number of instances to process
by 512 anytime new knowledge is incorporated. Hence, incremental learning approaches present
better training time and less data management complexity for an online community domain with a
constant stream of actions. By the end of the training procedure, online learning trains faster than
mini-batch learning since it updates only part of the ensemble of classifiers and processes fewer
data points. This second effect happens as a result of the online learning undersampling strategy,
which decreases the number of data points to compute by decreasing the number of majority class
instances. It is worth noting that this behavior is domain-dependent. If the data distribution is
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Figure 3.10: AUC-ROC scores for the batch, mini-batch, and online learning approaches. After
around 14.500 processed editions, concept drift is introduced.

(a) Before introducing concept drift.

(b) After introducing concept drift.

Figure 3.11: Friedman-Nemenyi test comparing AUC-ROC scores for the batch, mini-batch, and
online learning approaches. Tables A.8 and A.9 present the complete statistical results.

different in another setting, then the decrease in training time might not be noticed.

Table 3.2 and Table 3.3 summarize the results by presenting the performance information for
each approach concerning the different datasets (D1 and D2). For the Friedman-Nemenyi Test,
the null hypothesis is that the samples are drawn from the same distribution with the statistical
significance value set to α = 0.05. This test suits our experimental setup as it allows for the
comparison of multiple (three in our case) learning approaches without relying on assumptions of
normality (the performance estimates follow a normal distribution) or homogeneity of variance (the
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Figure 3.12: AUC-PR scores for the batch, mini-batch, and online cases. After around 14.500
processed editions, concept drift is introduced.

(a) Before introducing concept drift.

(b) After introducing concept drift.

Figure 3.13: Friedman-Nemenyi test comparing AUC-PR scores for the batch, mini-batch, and
online learning approaches. Tables A.10 and A.11 present the complete statistical results.

dispersion of the performance estimates is similar across different learning techniques), which our
repeated cross-validation procedure does not guarantee. Additionally, this test is robust to outliers,
ensuring that extreme performance values (regardless of being too good or too bad) do not greatly
impact overall estimates. Results show that the batch and mini-batch approaches present higher
performance scores to classify vandalism edits, with a significant statistical difference compared to
online learning. Specifically, the batch approach offers a more stable performance. It adapts more
quickly to concept drift, while the online approach presents a bias towards the majority class and,
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Figure 3.14: Training time for the batch, mini-batch, and online cases.

Dataset Method Recall Mean±Std Regular Recall Mean±Std Vandalism Recall Mean±Std

Original
Batch 0.895±0.01 0.898±0.07 0.891±0.0019

Mini-Batch 0.901±0.01 0.914±0.008 0.887±0.021
Online 0.897±0.008 0.889±0.0015 0.904±0.017

Concept Drift
Batch 0.863±0.017 0.874±0.007 0.854±0.033

Mini-Batch 0.849±0.019 0.846±0.016 0.854±0.039
Online 0.833±0.024 0.861±0.021 0.807±0.058

Re-label
Batch 0.869±0.024 X X

Mini-Batch 0.854±0.055 X X
Online 0.921±0.043 X X

Table 3.2: Summary of Batch, Mini-Batch, and Online Learning performance results applied to
the Wikipedia article edits dataset. Three settings are considered: 1) dataset before introducing
concept drift (original); 2) dataset after introducing concept drift, swap of class labels; and 3)
dataset with only the data that suffered the change (re-label).

consequently, in our concept drift case, a bias towards the changed data (with the highest recall to
the re-label dataset). Additionally, the significant drop in performance in online learning occurs
even when using different sampling and imbalance strategies, such as that in (Montiel et al., 2021;
S. Wang et al., 2015).

In conclusion, our findings indicate that all three learning approaches can effectively deal with
the challenge of learning to detect norm violations (vandalism) in the context of an online com-
munity (Wikipedia). However, each approach has its complexities and requirements. On the one
hand, batch learning offers more stability and faster recovery from the drop in performance after
introducing concept drift, but at the cost of adding complexity to assign weights and keep the
entire dataset consistent (handling data storage and management). On the other hand, incremen-
tal learning approaches offer faster training time and are designed to constantly update the ML
model. Thus, we argue that it is imperative to choose the most appropriate approach considering
the specific requirements of a certain online community.
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Dataset Method AUC-ROC Mean±Std AUC-PR Mean±Std

Original
Batch 0.951±0.007 0.670±0.0031

Mini-Batch 0.958±0.007 0.735±0.023
Online 0.956±0.007 0.721±0.003

Concept Drift
Batch 0.938±0.011 0.669±0.033

Mini-Batch 0.922±0.014 0.572±0.063
Online 0.916±0.014 0.537±0.042

Table 3.3: Considering the composed metrics, the summary of Batch, Mini-Batch, and Online
Learning performance results applied to the Wikipedia article edits dataset. Two settings are
considered: 1) dataset before introducing concept drift (original); 2) dataset after introducing
concept drift, swap of class labels.

3.6.2 Understanding the Features that Contribute to Vandalism Detec-
tion

The second part of the experiment focuses on the interpretability of the ML models. In our
work, we are interested in investigating which features of an article edit contribute the most to
detecting vandalism. This is relevant not only to promote transparency to end-users but also
as a valuable tool during development (M. Du et al., 2019), enabling engineers to debug and
obtain a deeper comprehension of the elements of an action the model focuses on (Hong et al.,
2020; Iadarola et al., 2021). This understanding helps prevent drawbacks associated with black-
box models, like attributing relevance to features of an article edit that the community does not
consider while defining vandalism. For example, let us assume that a community member edited
an article by adding text with profane words. In this case, these words would make the feature
PROFANE IMPACT have a bigger value, contributing to vandalism detection (since this feature
is usually present when such classification occurs). Thus, with information on the features that
triggered the ML model’s output, the community member can understand the type of edit the
entire community defines as violating behavior and specifically the parts of the action that contain
the issue.

Similar to the previous performance metrics, we also conduct a two-part experiment for inter-
pretability: 1) before concept drift; and 2) after introducing concept drift. In total, the results
of these experiments are presented in five bar charts (q.v. Figures 3.15–3.19). Specifically, each
training approach has one chart that describes the relevant features for vandalism detection under
both conditions (q.v. Figures 3.15–3.17). In addition, we directly compare the three learning ap-
proaches also under both conditions (q.v. Figures 3.18 and 3.19). It is worth noting that although
we do not include this information in the present work, the LIME tool also provides data about
the features that contribute the most to the classification of regular edits.

To build the interpretability charts, we calculate the sum (srf ) of all local relevance scores as-
sociated with vandalism detection. The relevance scores are obtained by applying LIME to each
instance that the model processes. Equation 3.1 describes the sum operation.

We then present the top ten features with the highest sum of relevance scores for each learning
approach. These features can provide enough information for community members to understand
how the most relevant parts of their actions affect the classification output. However, different
relevant features might exist when comparing learning techniques or under diverse conditions
(before and after concept drift). Thus, in some cases, more than ten features might be present.
While some features are consistently relevant in different cases, indicating their importance to
vandalism detection in general, we also note changes in the set of relevant features, particularly in
the ranking order and impact of these features on the classification output. This finding suggests
that the base ML models have distinct internal parameters affected by the training approaches,
prompting LIME to find a different set of relevant features.
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Figure 3.15: The sum of relevance scores for vandalism classification. The graph presents the top
ten features of the batch learning case before and after introducing concept drift.

Figure 3.15 describes interpretability for the ensemble of classifiers trained with batch learning.
The figure reveals that, before the introduction of concept drift, the presence of the feature
NEXT COMMENT VAND (a piece of metadata indicating if the following comment is related
to vandalism) with a value of 1 increases the probability of vandalism classification. However, after
introducing concept drift, this feature loses relevance and starts to negatively impact vandalism
detection, while the opposite, NEXT COMMENT VAND equals 0, gains relevance. This result is
consistent with the modification introduced in the dataset, where 97.5% of the data points that
suffered the swap of class labels from vandalism to regular had this feature altered. Before concept
drift, NEXT COMMENT VAND equals 1 was present in 59% of vandalism edits. After concept
drift, only about 18.8% of the vandalism edits possessed this feature with a value of 1. Addition-
ally, the feature HASH REVERTED also shows a significant loss in relevance score, as 66.5% of
the data points initially contained this feature, but after introducing concept drift, the percentage
dropped to around 35% of the data. In contrast, 96.7% of re-labeled instances had this feature
equal to 1.

Similar to batch learning, it is possible to note the changes in relevance scores for the mini-batch
approach (q.v. Figure 3.16). Specifically, the feature NEXT COMMENT VAND shows a similar
behavior, with a loss in relevance score after the introduction of concept drift. Additionally,
Figure 3.16 reveals slight differences in the discretization process employed by LIME. Features like
HIST REP COUNTRY and USER PAGE ZERO EN WARNINGS have different ranges before
and after concept drift, which is a result of the sequential nature of incremental learning approaches.
In these cases, LIME processes only the last data block instead of using the complete dataset.
Despite these differences, the above features remain relevant for violation classification in both
cases, with high relevance scores.

The interpretability analysis in the online learning scenario presents an interesting finding (q.v.
Figure 3.17). The sum of relevance scores for most features is low, only around 5 points, suggesting
that most of the 57 features have similar relevance in vandalism detection. Consequently, this may
have negative implications for user experience on the platform, as community members would need
to make significant changes to their actions to comply with the community’s view. The features
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Figure 3.16: Sum of relevance scores for vandalism classification. The graph presents the top ten
features for the mini-batch learning case before and after introducing concept drift.

Figure 3.17: Sum of relevance scores for vandalism classification. The graph presents the top ten
features for the online learning case before and after introducing concept drift.

that have the most significant impact are HIST REP COUNTRY and WT DELAYED. Similar to
mini-batch learning, these features also show a difference in range before and after concept drift.
This difference is also an effect of the sequential nature of the data in online learning scenarios.

Following our analysis of the relevant features for the same learning approach, we investigate the
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Figure 3.18: Sum of relevance scores for vandalism classification. The graph presents the top ten
features for batch, mini-batch, and online learning cases before concept drift.

changes in relevance scores across different techniques, as depicted in Figures 3.18 and 3.19. We
aim to demonstrate that not only do the data and base classifiers influence the relevant features
for vandalism classification, but the training approach adopted also plays a crucial role in defining
these features and their scores. Our results reveal that online learning presents the lowest relevance
scores for most features, with values of approximately 5 points, while batch and mini-batch present
higher values of approximately 15 and 20 points. The relevance scores directly impact a model’s
predicted probabilities. Consequently, on average, online learning yields the lowest probability
values for vandalism classification. Before concept drift (q.v. Figure 3.18), mini-batch produces
the highest sum of relevance scores, while after concept drift (q.v. Figure 3.19), batch learning
presents the highest scores. This difference can be attributed to the distinct weight update pro-
cedures adopted by these techniques during the training process, which leads to variation in their
output and feature relevance, despite processing the same dataset when training is completed.
Specifically, batch learning uses the entire dataset in a single epoch to compute the model’s pa-
rameters, calculating the gradients for all data points. In contrast, mini-batch learning uses only
a subset of the data in an epoch, and online learning uses the gradients of each edit individu-
ally. Additionally, we note differences in the ranges of feature values, such as those observed for
WT NO DELAY, HIST REP ARTICLE, and USER PAGE ZERO EN WARNINGS. The proce-
dure employed by LIME is responsible for these divergences since it creates the explanations using
either the complete dataset (batch learning) or only a subset of the training data (incremental
learning).

In summary, interpretation is an interesting manner of understanding why the ML model classified
an article edit as vandalism. This enhances FeDAL with the ability to better serve the community,
providing useful information about a user’s action. However, we also note the importance of
investigating different explainability techniques to obtain a more robust and consistent set of
relevant features considering the different learning approaches.

We aim to use this interpretability information for future work, providing data that supports
community members to review edits that help correct the output of ML models. In other words,
when a user performs an action, and the ML classifier detects it as violating behavior, FeDAL
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Figure 3.19: Sum of relevance scores for vandalism classification. The graph presents the top ten
features for batch, mini-batch, and online learning cases after introducing concept drift.

would provide the user with the reasons for such detection. If the user disagrees with the output,
they can engage with other community members to evaluate the action with information about
the relevant features, assessing the correctness of the ML classifier accordingly. The user’s original
edit will not be relabeled until the community reaches a consensus, and only then will the system
allow the relabeling of that edit.
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Dataset
Mini-Batch

Regular Vandalism Re-label
Original 0.0004 0.5291 X

Concept Drift 0.0000 0.0000 0.0000

Table 3.4: P-values of comparing the recall performance of ensemble and a single classifier training
using mini-batch learning. Performance values are presented in Figure 3.20. Bold p-values indicate
results below the critical value α = 0.05.

Dataset
Online

Regular Vandalism Re-label
Original 0.0000 0.0000 X

Concept Drift 0.0000 0.0000 0.0017

Table 3.5: P-values of comparing the recall performance of ensemble and a single classifier training
using online learning. Performance values are presented in Figure 3.21. Bold p-values indicate
results below the critical value α = 0.05

3.6.3 Ablation Studies

In this section of our work, we investigate the impact of two modifications on FeDAL. First, we
compare the ensemble approach against the use of a single model. Since a single model approach
is simpler and computationally less expensive, we argue that it is important to demonstrate the
advantages of employing ensemble learning in FeDAL. Second, we compare data sampling tech-
niques, presenting results for replication and SMOTE (Chawla et al., 2002). This comparison is
relevant because SMOTE is the original approach employed by the DUE algorithm (Z. Li et al.,
2020) that serves as the basis for FeDAL.

Ensemble and single model. Figure 3.20 presents the empirical results obtained by comparing
an ensemble against a single classifier trained with mini-batch learning. Our findings show that,
before concept drift, the identification of vandalism and regular behavior remains largely unaffected
regardless of the adopted model, as demonstrated by Figures 3.20a and 3.20c. However, the
ensemble significantly outperforms the single model approach after the introduction of concept drift
(q.v. Figures 3.20b and 3.20d). In Table 3.4, the statistical significance is attested by the Wilcoxon
Signed-Rank Test (Woolson, 2007),9 which compares the performance of both approaches. The
null hypothesis is that the samples were drawn from the same distribution, and the critical value
α = 0.05. Furthermore, the single model exhibits a strong bias towards re-labeled instances (q.v.
Figure 3.20e), indicating that the model learned the new patterns at the cost of previously acquired
knowledge.

Next, we analyze the other incremental learning approach, namely online learning, as depicted
in Figure 3.21. For both conditions, before and after introducing concept drift, the single model
presents the worst performance in vandalism classification (q.v. Figures 3.21a and 3.21b), with a
strong bias towards the majority class (q.v. Figures 3.21c and 3.21d). The differences are statisti-
cally significant, as attested in Table 3.5. Additionally, the single model has poor performance and
high variance in identifying re-labeled instances (q.v. Figure 3.21e). These findings demonstrate
that online learning significantly benefits from adopting an ensemble of classifiers, as this approach
presents the most substantial gains in performance.

9For the ablation studies, we use the Wilcoxon Signed-Rank Test instead of the Friedman-Nemenyi Test. This
is the case because we are comparing two distributions at each evaluation (ensemble and single classifier, and
replication against SMOTE).
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(a) Mini-Batch - no concept drift; the metric is van-
dalism recall. Ensemble and single classifiers.

(b) Mini-Batch - with concept drift; the metric is
vandalism recall. Ensemble and single classifiers.

(c) Mini-Batch - no concept drift; the metric is reg-
ular recall. Ensemble and single classifiers.

(d) Mini-Batch - with concept drift; the metric is
regular recall. Ensemble and single classifiers.

(e) Mini-Batch - with concept drift; the metric is re-
label recall. Ensemble and single classifiers.

Figure 3.20: Box-plots for ablation studies considering the mini-batch learning approach to compare
the performance of ensemble against single classifiers.

Models trained with the traditional batch learning approach (q.v. Figure 3.22) also present per-
formance differences as attested by the statistical results in Table 3.6. It is worth noting that
this difference is especially relevant for the regular class. In this case, the performance of a single
model presents several outliers across different executions of the cross-validation procedure (q.v.
Figures 3.22c and 3.22d). Concretely, the single model failed to provide an appropriate solution to
the problem, resulting in poor performance values. Thus, although the single model can learn to
identify minority class instances (including those that suffered the swap of class labels), it does so
at the cost of the majority (regular) class. This finding highlights the advantage of adopting an en-
semble approach, which offers the best performance by integrating algorithmic and data sampling
techniques to tackle the imbalanced nature of the data.

In summary, the results in Figures 3.20 and 3.21 demonstrate that using an ensemble approach
improves the performance of our incremental learning techniques under different conditions. Addi-
tionally, for the traditional batch learning case, Figure 3.22 shows that the single model approach
is subject to variance and that we can address this issue by adopting an ensemble of classifiers,
which is an expected benefit of using ensemble methods (Galar et al., 2011).
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(a) Online - no concept drift; the metric is vandalism
recall. Ensemble and single classifiers.

(b) Online - with concept drift; the metric is vandal-
ism recall. Ensemble and single classifiers.

(c) Online - no concept drift; the metric is regular
recall. Ensemble and single classifiers.

(d) Online - with concept drift; the metric is regular
recall. Ensemble and single classifiers.

(e) Online - with concept drift; the metric is re-label
recall. Ensemble and single classifiers.

Figure 3.21: Box-plots for ablation studies considering the online learning approach to compare
the performance of ensemble against single classifiers.

Dataset
Batch

Regular Vandalism Re-label
Original 0.0001 0.0021 X

Concept Drift 0.0000 0.0000 0.0000

Table 3.6: P-values of comparing the recall performance of ensemble and a single classifier training
using batch learning. Performance values are presented in Figure 3.22. Bold p-values indicate
results below the critical value α = 0.05

Replication and SMOTE. The mini-batch method adopted in our solution is based on the
proposal presented by Z. Li et al. (2020), where they use SMOTE as the data sampling strat-
egy. Additionally, other works have also shown the benefits of combining SMOTE and ensemble
techniques in different fields, positively impacting the performance of the minority class classifi-
cation (Fernández et al., 2018; Galar et al., 2011). However, in this research, we incorporate an
oversample by replication strategy. Therefore, it is important to present a comparison between
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(a) Batch - no concept drift; the metric is vandalism
recall. Ensemble and single classifiers.

(b) Batch - with concept drift; the metric is vandal-
ism recall. Ensemble and single classifiers.

(c) Batch - no concept drift; the metric is regular
recall. Ensemble and single classifiers.

(d) Batch - with concept drift; the metric is regular
recall. Ensemble and single classifiers.

(e) Batch - with concept drift; the metric is re-label
recall. Ensemble and single classifiers.

Figure 3.22: Box-plots for ablation studies considering the batch learning approach to compare
the performance of ensemble against single classifiers.

replication and SMOTE to justify the use of a different data sampling strategy. We note that our
use case poses a unique challenge to data sampling strategies since it embodies the complexities
associated with learning from scarce data and overlaps between class representations. In SMOTE,
this challenge is further accentuated by the incremental introduction of concept drifts through the
presentation of data in blocks, which directly affect the quality of the data generated (Fernández
et al., 2018). To summarize, the data sampling strategy in our context must consider class overlap,
feedback noise (re-label data), and limited datasets.

Results show that before concept drift, the performances of both data sampling strategies are
similar (q.v. Figures 3.23a and 3.23c) as supported by the statistical results in Table 3.7. How-
ever, after introducing concept drift (q.v. Table 3.7), mini-batch learning benefits from using the
replication-based technique to detect vandalism (q.v. Figure 3.23b). Another finding is that al-
though the incorporation of SMOTE leads to higher performance values for regular and re-labeled
instances after concept drift (q.v. Figures 3.23d and 3.23e), it results in reduced accuracy in van-
dalism classification, thus hindering the implementation of this strategy in our case.
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(a) Mini-Batch - no concept drift; the metric is van-
dalism recall. Replication and SMOTE.

(b) Mini-Batch - with concept drift; the metric is
vandalism recall. Replication and SMOTE.

(c) Mini-Batch - no concept drift; the metric is reg-
ular recall. Replication and SMOTE.

(d) Mini-Batch - with concept drift; the metric is
regular recall. Replication and SMOTE.

(e) Mini-Batch - with concept drift; the metric is re-
label recall. Replication and SMOTE.

Figure 3.23: Box-plots for ablation studies considering mini-batch learning approach to compare
the performance of oversampling by replication against SMOTE.

Dataset
Mini-Batch Replication

Regular Vandalism Re-label
Original 0.0740 0.4990 X

Concept Drift 0.0000 0.0000 0.0000

Table 3.7: P-values of comparing the recall performance of oversampling by replication and SMOTE
training using mini-batch learning. Performance values are presented in Figure 3.23. Bold p-values
indicate results below the critical value α = 0.05.

To comprehend the reasons that account for the differences between oversampling by replication
and SMOTE, we examine two sources of information. First, Figure 3.24 illustrates the class
distribution after applying each sampling strategy. Second, Figure 3.25 presents the interpretability
data, which assists in selecting the features to build the data space outlined in step one and in
understanding the contrast of feature scores.

As described by Luengo et al. (2011), one of the characteristics of the SMOTE method is its ability
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(a) Class distribution after replication. (b) Class distribution after SMOTE.

(c) Class distribution in the testing dataset.

Figure 3.24: Class distribution considering oversampling by replication, SMOTE, and testing data.
The features are USER IS IP and HIST REP COUNTRY.

to generate more general data points, covering a larger portion of the data space. In our particular
context, SMOTE generates instances in certain regions (Region A and B in Figure 3.24b) that
leads to the creation of a more complex data space. As a result, this causes the newly generated
instances to disrupt the contrary class space (Region A in Figure 3.24b), negatively impacting
the model’s performance. This effect has also been reported in different cases and identified as
a source of errors (Luengo et al., 2011; Weiss, 2009). In our case, we note that 4.6% of the
violation data is in Region A for SMOTE, while only 0.7% of the data is in the same region for
the replication strategy, and no data point exists in this region for the testing data. Furthermore,
SMOTE generates instances in regions of the data space that do not conform to the featurized edits
provided by the online community (Region B in Figure 3.24b).10 In contrast, the oversampling by
replication strategy does not add data points in this region, nor is it present in the testing dataset.

We select the features USER IS IP and HIST REP COUNTRY to describe the data space above
based on interpretability information provided in Figure 3.25. Our results reveal the importance
of these features in the vandalism classification task and how they have the biggest difference
in relevance score between the data sampling techniques. Specifically, USER IS IP gains impor-
tance when we apply SMOTE, while HIST REP COUNTRY reaches higher relevance when the
oversampling by replication strategy is used. The divergences in scores are important because a

10It should be noted that Region B represents oversampling for the feedback data that suffered the swap of class
labels.
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Figure 3.25: Sum of relevance scores for vandalism classification. The graph presents the top ten
features when resampling with replication and SMOTE.

considerable percentage (i.e., 73.33%) of the errors affecting the performance of the SMOTE-based
solution is related to a decrease in the relevance score of the HIST REP COUNTRY feature, thus,
explaining the lower performance of this technique in our use case.

3.7 Summary

In this chapter, we presented the Feedback-Driven Adaptive Learning (FeDAL) framework, which
aims to support normative systems by learning to detect norm violations from interaction data
and continuous feedback (human or artificial)11 in the context of online communities. Specifically,
FeDAL can work with norms whose meaning can change over time, like what is the set of features
that characterize hate speech.

FeDAL integrates ensemble with machine learning approaches to address two challenges that
emerge in online community domains: 1) the imbalanced nature of the dataset; and 2) the need to
adapt to the evolving community view on what characterizes norm violations. We used a dataset
from Wikipedia article edits to evaluate the efficacy of our framework for detecting violating be-
havior in a binary classification task. In this dataset, each action (article edit) is annotated as
either regular or violating behavior (referred to as vandalism in our context). Furthermore, we
note a highly imbalanced class distribution, with only 7% of the edits representing the vandalism
class.

In addition to detecting violating behavior, we argue that it is important to incorporate inter-
pretability into FeDAL to promote transparency in the decision-making process. Thus, FeDAL
employed LIME to assist in not only explaining to users how a particular community defines non-
acceptable behavior but also to serve as a tool for engineers to debug and comprehend the inner

11In this thesis, an artificial agent refers to the ML model that classifies an action as violation or regular behavior.
The output of the ML model is the feedback.
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workings of different ML models to mitigate their limitations, like considering features of an article
edit that humans do not consider when evaluating a violation.

We conducted experiments on two different dataset configurations (q.v. Section 3.5). First, we
evaluated the algorithms before introducing concept drift, specifically focusing on learning to de-
tect vandalism in the context of Wikipedia article edits. We examined the recall metric for the
overall, regular, and vandalism cases to assess FeDAL’s performance (q.v. Section 3.6). Moreover,
we analyzed AUC-ROC and AUC-PR to further comprehend the behavior of the three learning
techniques. Second, we designed a scenario to evaluate the learning techniques after introducing
concept drift, particularly when class labels are swapped. Our aim was to assess how FeDAL
adapts after receiving feedback. Our current approach adopted a simulation strategy since we did
not have access to real feedback from community members (which we plan to address in future
work). This strategy involved creating different subgroups within the vandalism class and changing
their labels to simulate the effect of concept drift. Lastly, we conducted ablation studies to evaluate
changes in FeDAL’s architecture and data sampling strategy (q.v. Section 3.6.3). Specifically, we
evaluated the benefits of using an ensemble of classifiers compared to a single model. Additionally,
we analyzed how the replication strategy outperforms the SMOTE technique in our use case.

Results indicated that we can use the three learning approaches to detect norm violations in an
online community. However, important differences must be addressed. First, compared to incre-
mental approaches, batch learning presented a drawback regarding training time. This resulted
from retraining the model using the entire dataset when new data became available, which was
time-consuming and added complexity to data treatment and management. Second, after introduc-
ing concept drift, batch and mini-batch learning exhibited more stability in the training process
and significantly better performance in classifying norm violations. In contrast, online learning
presented a significant drop in performance for the same case due to the bias towards the majority
class (regular behavior).

Finally, the next chapter presents the Language Model Adaptive Learning (LaMAL) framework,
which tackles norm violations by handling text datasets in binary and multi-label classification
tasks.
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Chapter 4

LaMAL: The Large Language
Model Framework

This chapter delves into the second framework of our multi-scenario approach, the Language Model
Adaptive Learning (LaMAL) framework, which learns to detect norm violations by handling text
datasets.1 While FeDAL handles tabular datasets (q.v. Chapter 3), LaMAL extends our approach
to solve binary and multi-label text classification tasks. This provides our multi-scenario approach
with a range of solutions to addressing communities with diverse data structure requirements.

The multi-label classification task refers to assigning distinct labels to a violation instance. This
is particularly relevant within the scope of this thesis, as we aim to handle domains in which a
single action may comprise multiple violation classes. For instance, our experiments with LaMAL
outline the application of this framework to the Wikipedia use case to identify hate speech in
article editing tasks (q.v. Section 4.3). In this context, each label corresponds to a particular hate
speech class, such as swearing, racism, or misogyny.

In contrast to FeDAL, LaMAL can identify these specific violation classes due to sufficiently infor-
mative text content, i.e., words in a text that are usually associated with different violations, like
the “N-Word” (Rahman, 2012) that can be used to manifest racism. In our Wikipedia use case,
this characteristic differs substantially from the tabular data structure since the set of features
lacks the encoding of pertinent information necessary to identify the specific violation classes.

To handle text datasets, LaMAL adopts Pre-Trained Language Models (PLMs) (q.v. Section 2.4)
fine-tuned using mini-batch learning (q.v. Section 2.3). Unlike the FeDAL framework, LaMAL does
not employ online and batch learning techniques due to the limitations in PLMs’ settings. Online
learning is unfeasible due to the model’s size, which impacts the update of the network weights
and the time needed to complete the fine-tuning process. Similarly, batch learning is unfeasible
because of the computational power required to repeatedly fine-tune a PLM as the dataset grows
in addition to the complexities regarding data management.

LaMAL also faces challenges associated with imbalanced datasets. Like FeDAL, which uses data-
sampling solutions to improve the ensemble learning process in the tabular scenario (q.v. Sec-
tion 3.1), LaMAL investigates data-level solutions, specifically oversampling and undersampling
techniques for text-related classification tasks (q.v. Sections 4.1 and 4.2).

The remainder of this chapter is divided as follows. Section 4.1 presents mini-batch learning
for binary classification tasks, while 4.2 presents mini-batch learning for multi-label classification
tasks. Subsequently, in Section 4.3, we describe the experiments to evaluate the LaMAL framework,

1Source code available at https://bitbucket.org/thiago-phd/jaamas 2023/src/.
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1 Algorithm: Binary Mini-Batch Fine-Tuning

2 Input: Current data block (Dt), set of majority instances (Mt), set of minority instances
(Pt), min imbalance ratio (d), and number of epochs (e);

3 Output: Fine-tuned PLM (Θ).

4 while data block is available do
5 Pre-process Dt, no past data is used.
6 Compute the current imbalance ratio. rt ← |Pt| ÷ |Mt|.
7 if rt < d then
8 Undersample majority class by the ratio rt ÷ d.
9 end

10 Fine-tune Θ with Dt for e epochs.
11 Obtain the sum of relevance scores for violations.

12 end

Algorithm 4.1: The binary mini-batch fine-tuning procedure for PLMs (LaMAL).

with the results outlined in Section 4.4. Finally, Section 4.5 offers a comprehensive summary of
the key points discussed in this chapter.

4.1 Mini-Batch Learning for Binary Text Scenarios

Similar to Algorithm 3.1 for tabular data, mini-batch for text tasks (q.v. Algorithm 4.1) builds
data blocks to continuously update the model’s parameters over time (in a sequential manner).
However, one key difference between these approaches is that Algorithm 4.1 can handle imbalanced
datasets more efficiently just by undersampling the majority class, without the need to create an
ensemble of classifiers. To achieve that, Algorithm 4.1 takes advantage of the PLMs’ architecture,
which can learn representations of texts based on previous training and incorporate classification
heads to solve specific classification tasks (Kenton & Toutanova, 2019; Y. Liu et al., 2019; Sanh
et al., 2019).

The fine-tuning process of PLMs starts by pre-processing the available text data (q.v. Algo-
rithm 4.1, line 5). In LaMAL’s context, the type of detection task dictates the necessary pre-
processing steps. For instance, in the case of hate speech detection, it may be beneficial to remove
non-alphanumeric characters, as our model considers only the terms in a sentence to determine
the violation. Thus, these characters may be irrelevant in this context. On the other hand, to
detect whether a sentence violates an expected writing style, removing these characters is detri-
mental to the model’s performance since they indicate that the text is not following the required
format. Another case that might require a pre-processing step is correcting words commonly used
to bypass automatic detection tools. For example, in cases where a community member uses swear
words, they may employ alternative terms such as “f1ck,” “fooock,” and “fuk.” These two cases
demonstrate that it is necessary to implement task-specific pre-processing to ensure the efficacy of
LaMAL. This becomes particularly relevant when the community contains limited labeled data or
the interactions happen in a low-resource language.

Following the pre-processing step, Algorithm 4.1 calculates the imbalance ratio to determine
whether under-sampling is required (lines 6 and 7). The algorithm then undersamples the ma-
jority class by considering the established difference between the number of majority and minority
instances (q.v. Algorithm 4.1, line 8). The next step is fine-tuning the PLM with the data block
for e epochs (q.v. Algorithm 4.1, line 10). One of the main advantages of PLMs is their inherent
simplicity in executing the fine-tuning process. Hence, the complete training procedure is more
straightforward than FeDAL’s Algorithms 3.1, 3.2 and 3.4, as it requires fewer steps to deploy a
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1 Algorithm: Multi-Label Mini-Batch Fine-Tuning

2 Input: current set of violation instances (It), set violation classes (V ), min instances per
class (c), and number of epochs (e);

3 Output: Fine-tuned multi-label PLM (Θ).

4 while violation data block is available do
5 for violation class v ∈ V do
6 Get instances of v. Nv

t ← It ∈ v.
7 if |Nv

t | < c then
8 Oversample Nv

t by duplication.
9 end

10 end
11 Fine-tune Θ with It for e epochs.
12 Obtain the sum of relevance scores for each class in V .

13 end

Algorithm 4.2: The multi-label mini-batch fine-tuning procedure for PLMs (LaMAL).

PLM to a new classification task.

Lastly, in line 11 (q.v. Algorithm 4.1), as we update the PLM, it is possible to understand the
terms usually associated with violation by calculating a sum of relevance scores obtained from local
interpretations. The sum of the relevance scores of a word (sw) is the sum of all local relevance
scores, calculated using the Integrated Gradients (IG) algorithm (q.v. Section 2.5.2). This differs
from the Local Interpretable Model-Agnostic Explanations (LIME) method employed by FeDAL
(q.v. Section 2.5.1). In equation 4.1, k is the number of occurrences of word w in the dataset,
IG(wu, 1) is the calculated relevance score for the uth occurrence of w, regarding its contribution to
class 1, where class 1 represents violating behavior. The framework must only change the second
parameter to 0 to get the relevance scores for the regular class.

sw ←
k∑

u=1

IG(wu, 1) (4.1)

4.2 Mini-Batch Learning for Multi-Label Text Scenarios

In addition to identifying violations (q.v. Algorithm 4.1), LaMAL can also classify the specific class
of violation present (q.v. Algorithm 4.2). It is worth noting that a single action may comprise mul-
tiple violation classes.2 Thus, the framework must be equipped to handle multi-label classification
tasks.

For each violation class v ∈ V defined by the community (q.v. Algorithm 4.2, line 5), LaMAL
retrieves the number of instances that belong to that class and compares it to a fixed minimum
number of instances (c) that each violation class must have (q.v. Algorithm 4.2, line 7). Suppose
the data block does not contain the minimum number of class instances v. In that case, the algo-
rithm over-samples by duplicating all instances belonging to v and uses them for fine-tuning. This
step is crucial as we attempt to maintain a balanced data distribution between the different viola-
tions. Without this step, the model would be prone to bias towards classes with a larger number
of instances, potentially hindering its ability to accurately identify violations in low-represented
classes.

2In Section 4.3, we describe the different violation classes considered in our use case.
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Line 12 (q.v. Algorithm 4.2) obtains the sum of relevance scores using Equation 4.2. The sum of
relevance scores (svw) is calculated for each v ∈ V and is based on local interpretations. IG(wu, v)
computes the local relevance score of word w in relation to class v, k is the number of occurrences
of w in the dataset, and u represents a specific instance of w. Calculating svw enables community
members to understand the words commonly associated with each violation class. This is partic-
ularly relevant because a word may have a relatively low relevance score for one class yet a high
relevance score for another (in Section 4.4, we analyze these differences).

svw ←
k∑

u=1

IG(wu, v) (4.2)

Finally, one limitation of the LaMAL framework is that it does not handle the emergence of
new violation classes. LaMAL has one PLM Θ with |V | output nodes, with each output node
corresponding to a distinct violation class. Consequently, to extend our multi-scenario approach,
the next chapter presents the CAL framework (q.v. Section 5), which employs adapters (q.v.
Section 2.4) as the component to tackle the emergence of new violation classes.

4.3 Experiments

This section describes how we apply mini-batch learning to fine-tune PLMs. Similar to the exper-
iments with FeDAL (q.v. Section 3.5), we also investigate the use case of Wikipedia article edits
in this context. However, we directly process text data instead of handling a set of features. This
thesis focuses on violations of the norm that prohibits hate speech, as this represents a complex
and particularly harmful violation within online interactions.3 We remind the reader that a norm
violation is referred to as vandalism in our use case, encompassing the norm prohibiting hate
speech.

Since LaMAL can solve multi-label classification tasks, the dataset labeling process consists of
two parts. First, Wikipedia uses Amazon Mechanical Turk (MTurk) to classify an article edit
either as vandalism or not, providing no further information on the nature of the violation (Adler
et al., 2011). Second, the author of this thesis4 further annotates each vandalism instance with
a violation class, focusing on the norm prohibiting hate speech. To perform this annotation, the
author starts by considering the labels from the MTurk process (vandalism or regular). Then,
the author specifies additional hate speech classes for the vandalism edits with texts that convey
attacks to individuals or groups. Usually, these attacks focus on characteristics of people, such
as ethnicity, sexual orientation, and social class (Nockleby, 2000). Table 4.1 presents examples
of such behavior in Wikipedia and their associated hate speech class. At this step, we manually
correct the misspelled insulting words (based on the identified violation classes).

The author of this thesis assigns the multi-label annotation, introducing the author’s view on
what is considered a norm violation. We assert that this annotation reflects one of many possible
communities’ views. Given that we aim to develop a framework capable of continuously updating
its parameters and that can adapt to different views, regardless of whether a single person (e.g.,
a moderator) or multiple individuals assign the violation class, it must incorporate the feedback
provided in the annotation process to continuously learn new definitions of norm violation (which
also contains diverse perspectives and may vary depending on the community in question). For
instance, the use of the “N-Word” (Rahman, 2012) may not represent detrimental behavior in an
African American community, but it violates the hate speech norm on Wikipedia. Therefore, our
system must learn that this term could indicate a violation in this new community.

3Future work shall focus on solving other kinds of violations.
4Here, we highlight the “author of this thesis” to clarify that a single person related to this research provides

the annotation.
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Sentence Class of Hate Speech

...he was the mother fuckin dom... Swear

...this is wiki not a forum for retards... Insult and Ableism

...the big lipped,hairbraned,egotistical dirty “N-Word”
often defecated...

Racism

[INDIVIDUAL’s NAME] also sucks dick for features. Sexual Harassment
...HES GAYYYYYYYYYYY AND HES A FREAKK... LGBTQIA+ Attack
[INDIVIDUAL’s NAME] was a super mega bitch and
she kill the...

Misogyny

Table 4.1: Examples of sentences classified as norm violation (vandalism) in the Wikipedia commu-
nity and the specific class of hate speech. “[INDIVIDUAL’s NAME]” is used to mask real people’s
names.

In the Wikipedia dataset, the author of this thesis identifies six different classes of hate speech
by analyzing each instance of norm-violation behavior (article edit). A single edit can contain
elements of one or more of these classes. As such, we build our framework to address the multi-
label classification task. In the current use case, We only solve the multi-label classification task
for text data, as the features present in the tabular data do not encode relevant information for
classifying vandalism with a specific hate speech class. Below, we present a list detailing each of
the hate speech classes:

• Swear - it describes edits that contain foul language;

• Insult and Ableism - it describes edits that insult people in general and specifically people
with disabilities (Bogart & Dunn, 2019);

• Sexual Harassment - it describes edits that contain sexual insinuations and harassment (Biber
et al., 2002);

• Racism - it describes edits with attacks targeting people from different ethnicities (Keum &
Miller, 2018);

• LGBTQIA+ Attack - it describes edits with insults targeting people based on their sexual
orientation and/or gender identity (Harper & Schneider, 2003);

• Misogyny - it describes edits with attacks targeting women (Ging & Siapera, 2018).

4.3.1 Learning to Detect Hate Speech

In contrast to the experiments with FeDAL, we are not investigating concept drift with LaMAL.
We cannot conduct such experiments with LaMAL due to the limited amount of data for the
hate speech detection case. However, considering that concept drift is an important aspect of
interactions in our use case, we later introduce the CAL framework to address this challenge
(q.v. Chapter 5).5 Thus, this section describes experiments to detect hate speech in a binary
classification task and identify specific vandalism classes in a multi-label classification task.

• Learn to detect hate speech — the binary classification task: This experiment aims
to evaluate LaMAL’s ability to deal with norm violation in Wikipedia edits, where the text

5CAL aims to use a dataset with hate speech from a different community and improve upon that with data
from our specific environment (Wikipedia article edits) while tackling the type of concept drift that introduces new
violation classes.
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of the edit is classified as violation or not. This step is similar to the first experiment for the
tabular classification scenario. The difference is that we are interested specifically in hate
speech. Thus, our dataset contains 30 684 edits, with 639 hate speech edits (around 2%) and
30 045 regular edits (around 98%). We use data from our annotation process to specifically
obtain hate speech edits. The dataset is highly imbalanced, so we use 2x5-fold cross-validation
for the experiments, which is necessary due to the text dataset size. Classification Recall,
Area Under the Curve of the Receiver Operating Characteristics (AUC-ROC), and Area
Under the Curve of Precision-Recall (AUC-PR) are the chosen metrics for evaluation.

• Learn to identify specific violation classes — the multi-label classification task:
Here, we aim to evaluate LaMAL’s performance to detect specific hate speech classes. Be-
sides the imbalanced dataset for violation/regular edits, the hate speech classes are also
imbalanced. Certain hate speech classes occur more often than others. In total, the hate
speech dataset is composed of 36.47% (233) “Sexual Harassment” edits, 33.18% (212) “In-
sult and Ableism,” 19.72% (126) “Swear,” 17.06% (109) “LGBTQIA+ Attack,” 8.76% (56)
“Misogyny,” and 5.01% (32) “Racism,” in a total of 639 hate speech edits. To guarantee that
each fold of the validation process maintains the data distribution, we apply a stratification
step on the multi-label dataset using the algorithm in (Sechidis et al., 2011). A 2x5-fold
cross-validation is also used for this experiment. Classification recall for each class is the
chosen metric for evaluation.

To classify a given text, our framework adopts PLMs (q.v. Section 2.4). Specifically, we employ
RoBERTa (Y. Liu et al., 2019) and DistilBERT (Sanh et al., 2019) following the Hugging Face
implementation (Wolf et al., 2020), with a batch size of 1024 for the binary classification task and
256 for the multi-label classification task. Adam is the optimization algorithm (Kingma & Ba,
2014), and the focal cross entropy is the loss function (T.-Y. Lin et al., 2017). The learning rate
is 10−4.

To optimize the performance of the PLMs, we implement additional parameters. Concretely, we
set the maximum input length to 64 words and apply padding to edits that exceed this length.
We base this decision on the observation that most instances in our dataset fall within this range,
allowing us to save computational resources and accelerate the fine-tuning process. It is essential to
highlight that, if required in other communities, our framework uses PLMs that can accommodate
texts up to the limit of 512 words.

4.3.2 Understanding the Words that Contribute to Hate Speech Detec-
tion

The LaMAL framework aims not only to classify a text as violating the “no-hate-speech” norm but
also to provide community members with information on which parts of that text result in such
a classification. We aim to accommodate diverse community members and leverage their mutual
understanding of what constitutes a norm violation. To achieve this, LaMAL employs Integrated
Gradients (IG) to obtain the relevant words contributing to the violation classification. These
words are then presented to the users, as depicted in the figures of Section 4.4 and Appendix B.
Additionally, by providing such information, other community members can argue about the inner
workings of our framework, supporting community members in deliberating about those words and
whether they should trigger violation classification. The collaborative decision of the community
can provide feedback for the model to adapt.

The interpretation results for the binary classification task show which words contribute most to
the classification of a text as being hate speech or not (regular text). Each word in the text
(Wikipedia edit) can be relevant for hate speech classification, relevant for regular classification, or
neutral. In contrast, the multi-label classification case allows each word to be neutral or relevant to
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Figure 4.1: Vandalism Recall for RoBERTa and DistilBert.

one or more classes. For instance, a single word may contribute to the classification of a Wikipedia
edit as both racist and containing swear words. As we are interested in understanding the terms
that compose hate speech, the experiments focus only on interpretability data for the six hate
speech classes. Thus, we consider 639 edits (the complete hate speech dataset) for interpretability.
Finally, we use the Transformers Interpret library (Pierse, 2023) to implement the IG algorithm in
our experiments.

4.4 Results and Discussion

This chapter presents the results of using PLMs to address text classification tasks when evaluated
within the Wikipedia article edits use case. Specifically, we describe the results of implementing
RoBERTa and DistilBERT. In this case, the community defines norm-violating behavior as van-
dalism. We show words of a Wikipedia article edit contributing to the PLMs’ output in binary
and multi-label classification tasks.

4.4.1 Learning to Detect Hate Speech

Binary Classification Task

Figure 4.1 shows the graph that describes the recall score for RoBERTa and DistilBERT when
applied to the hate speech classification task, and Table 4.2 presents the complete summarized
performance values. According to the Wilcoxon Signed-Rank Test in Table 4.3, the results show
that DistilBERT outperforms the RoBERTa model. Additionally, it is worth noting that since the
beginning of the training process, RoBERTa presents a higher standard deviation (q.v. Figure 4.1),
which may be attributed to the small size of the dataset and the large number of trainable param-
eters (125M) in the model. This behavior highlights how the presentation of data (different runs
of the 2x5-folder cross-validation) affects the fine-tuning process and RoBERTa’s performance. In
contrast, DistilBERT (which has approximately 66M trainable parameters) presents a more sta-
ble performance across the different executions of the experiments, dealing with a less complex
language model architecture that is especially useful for our small dataset settings.

In addition to the recall metric, we also evaluate LaMAL’s performance using the following metrics:
the Area Under the Curve of the Receiver Operating Characteristics (AUC-ROC) and the Area

68



Figure 4.2: AUC-ROC score for RoBERTa and DistilBERT.

Under the Curve of Precision-Recall (AUC-PR). It is worth mentioning that both metrics rely on
the ratio between the majority and minority instances to calculate their scores. Next, we detail
the usefulness of these metrics for text-based domains with an imbalanced dataset.

As in FeDAL’s case (q.v. Section 3.6), initially, AUC-ROC does not appear to be a suitable metric
to evaluate ML models trained with an imbalanced dataset, given that it overestimates the model’s
performance with a bias towards the true positive rate. Consequently, a large change in the number
of false positives (the regular edits wrongly classified as vandalism edits) yields only a small change
to the ROC score (J. Davis & Goadrich, 2006; H. He & Garcia, 2009). However, suppose the
domain requires giving the most importance to identifying true positives even at the cost of false
positives. In such contexts, the AUC-ROC metric may be useful for understanding performance.
We argue that this is the case for norm violation in online community domains, where blocking
offensive actions is more important than making mistakes when classifying regular behavior.

Figure 4.2 illustrates the results for the AUC-ROC metric. Both models exhibit equal AUC-ROC
scores, with no discernible differences. The lack of variability between the two models suggests
similar performance, even though, as described in Table 4.3, the Wilcoxon Signed-Rank Test fails
to statistically demonstrate their similarity with a valid p-value. Additionally, it is possible to
see that the AUC-ROC score presents higher values than the vandalism recall (q.v. Table 4.2).
Specifically, the AUC-ROC scores for RoBERTa and DistilBERT have values around 99%, while
vandalism recall values are around 88% and 93%, respectively. This difference demonstrates the
bias towards the true positive rate that characterizes the AUC-ROC metric.

The AUC-PR plot shows the relationship between precision and recall by comparing the false
positive and the true positive rates (Saito & Rehmsmeier, 2015). It also uses precision and captures
the effect of the large number of regular instances on the algorithm’s performance (differently
from AUC-ROC) (Saito & Rehmsmeier, 2015). To obtain a more realistic evaluation of this
metric, Siblini et al. (2020) propose a calibrated version of AUC-PR, in which the goal is to make
the metric independent of the class prior (i.e., it monitors the performance based on the data
distribution, regardless if it changes or not). In Figure 4.3, the beginning of the training process
shows that DistilBERT outperforms RoBERTa, yielding higher performance values. As training
progresses, the performance gap between the two models gradually diminishes. However, it is
worth noting that by the conclusion of the training procedure, a statistically significant difference
persists between the two models, as indicated by the p-values detailed in Table 4.3.

Figure 4.4 and Table 4.2 illustrates the time required to fine-tune RoBERTa and DistilBERT. We
can see a significant difference between the models, with DistilBERT requiring less time to complete
the fine-tuning process. This superiority is attested by the Wilcoxon Signed-Rank Test (q.v.
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Figure 4.3: AUC-PR score for RoBERTa and DistilBERT.

Figure 4.4: Training time for RoBERTa and DistilBERT to classify vandalism — binary task.

Table 4.3), which yields a p-value of 0.0019, indicating a statistically significant difference at level
α = 0.05. Like the performance case analyzed above, the PLMs’ size also interferes with training
time. DistilBERT is smaller, with fewer parameters. Thus, it takes less time to complete the
whole process. The standard deviation of the results reflects the limited computational resources
available for fine-tuning these models.

Measurement RoBERTa±Std DistilBERT±Std
Vandalism Recall 0.8805±0.0594 0.9331±0.0366

Regular Recall 0.9944±0.0046 0.9934±0.0043
AUC-ROC 0.9951±0.0023 0.9975±0.0018
AUC-PR 0.9149±0.0231 0.9445±0.0147

Training Time (s) 183.98±6.5272 89.56±4.1958

Table 4.2: Summary of the performance results of RoBERTa and DistilBERT applied to the
Wikipedia article edits dataset, binary task. We consider the task of classifying an edit as regular
or vandalism behavior. We also present the total training time in seconds to process 1024 edits
(batch size). Bold values refer to the best performance, while for training time, bold values refer
to the fastest approach.
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Measurement P-values
Vandalism Recall 0.0412
Regular Recall 0.5566
AUC-ROC X*
AUC-PR 0.0020

Training Time 0.0019

Table 4.3: Summarized comparison between the recall, AUC-ROC, and AUC-PR performances of
RoBERTa and DistilBERT. Training time is also presented. The Wilcoxon Signed-Rank Test is
used to obtain the p-values. The null hypothesis is that the samples were drawn from the same
distribution. Critical value α = 0.05. *Examining the AUC-ROC metric and given the similarities
between the score values for the two models, we note no discernible difference in this case. It is
worth mentioning that the Wilcoxon Signed-Rank Test fails to provide a valid p-value due to the
occurrence of ties between the scores. Specifically, seven out of the 2x5-fold experiments yielded
identical values for both models, thus negatively affecting the statistical test’s ability to generate
a conclusive p-value.

Multi-Label Classification Task

This section presents the evaluation of RoBERTa and DistilBERT applied to the multi-label clas-
sification task. We aim to categorize vandalism considering the six classes mapped for hate speech
in Wikipedia, e.g., “Swear,” “Insult and Ableism,” “Sexual Harassment,” “Racism,” “LGBTQIA+
Attack,” and “Misogyny.” In the Wikipedia use case, hateful content can attack different individ-
uals and groups at the same time. For instance, in a single sentence, a community member can
utter insults based on a person’s ethnicity and sexual orientation. Thus, LaMAL must be able to
identify when these violations occur simultaneously.

Figure 4.5 presents the recall scores (detailed in Table 4.4) for each class in the context of our use
case, which involves handling only vandalism data. As each class consists of a small number of
Wikipedia edits, our approaches exhibit a higher variation in the recall scores for the 2x5-fold cross-
validation experiments. Concerning performance values, the learning curves for both PLMs are
similar, attested by the Wilcoxon Signed-Rank Test (q.v. Table 4.5). The only significant difference
is the “Misogyny” class, in which RoBERTa outperforms DistilBERT. This class occurs in only
8.76% of the violation instances and presents the lowest performance score for both models, espe-
cially for DistilBERT. We later address this issue (i.e., a small number of violation instances) with
the CALmodel, which incorporates cross-community learning to enhance the model’s performance
by leveraging the fine-tuning process with data from different communities (q.v. Section 5.3).

Finally, Figure 4.6 shows the training time needed for the multi-label task. Similar to the binary
case, the DistilBERT model has a significantly faster fine-tuning process, as the Wilcoxon Signed-
Rank Test (q.v. Table 4.5) attests with a p-value of 0.0019 (below the critical value α = 0.05). We
use a batch size of 256 vandalism edits for the multi-label classification task, trained over three
epochs. On a smaller scale, the same behavior regarding the spread in training time, as seen for
the binary case, can also be observed here.
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(a) “Swear” Recall score for RoBERTa and Distil-
BERT.

(b) “Insult and Ableism” Recall score for RoBERTa
and DistilBERT.

(c) “Sexual Harassment” Recall score for RoBERTa
and DistilBERT.

(d) “Racism” Recall score for RoBERTa and Distil-
BERT.

(e) “LGBTQIA+ Attack” Recall score for RoBERTa
and DistilBERT.

(f) “Misogyny” Recall score for RoBERTa and Dis-
tilBERT.

Figure 4.5: Recall scores for the violation classes: “Swear,” “Insult and Ableism,” “Sexual Harass-
ment,” “Racism,” “LGBTQIA+ Attack,” and “Misogyny.”

Figure 4.6: Training time for RoBERTa and DistilBERT to classify the violation classes — multi-
label task.
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Measurement RoBERTa±Std DistilBERT±Std
Swear 0.7475±0.1140 0.8180±0.1047

Insult and Ableism 0.7802±0.1172 0.7553±0.0886
Sexual Harassment 0.8367±0.0662 0.8131±0.0759

Racism 0.6285±0.2054 0.7523±0.1594
LGBTQIA+ Attack 0.8854±0.0580 0.8670±0.0797

Misogyny 0.7242±0.1271 0.5811±0.1838
Training Time (s) 294.50±30.134 136.97±10.922

Table 4.4: Summary of the performance results of RoBERTa and DistilBERT applied to the
Wikipedia article edits dataset in the multi-label case. Here, we consider the task of classifying
a vandalism edit specifically to the class or classes of interest. We also present the total training
time in seconds to process 256 edits (batch size). Bold values refer to the best performance, while
for training time, bold values refer to the fastest approach.

Measurement P-values
Swear 0.1134

Insult and Ableism 0.4316
Sexual Harassment 0.3571

Racism 0.0632
LGBTQIA+ Attack 0.4055

Misogyny 0.0407
Training Time 0.0019

Table 4.5: Summarized comparison between the recall performance of RoBERTa and DistilBERT.
Additionally, training time is also presented. The Wilcoxon Signed-Rank Test is used to obtain the
p-values. The null hypothesis is that the samples were drawn from the same distribution. Critical
value α = 0.05
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Figure 4.7: The local interpretation of a specific edit considering the DistilBERT model in the
multi-label case. The label considered is “Swear.” The relevance score is calculated using IG (q.v.
Section 2.5.2).

Figure 4.8: The local interpretation of a specific edit considering the RoBERTa model in the
multi-label case. The label considered is “Swear.” The relevance score is calculated using IG (q.v.
Section 2.5.2).

4.4.2 Understanding the Words that Contribute to Hate Speech Detec-
tion

This experiment investigates which words of an article edit affect the classification output of the
PLMs. For that, we present three different pieces of information. One describes the relevant
words for a specific hate speech instance (i.e., a single article edit), as depicted in Figures 4.7
and 4.8. LaMAL calculates the relevance scores using the IG algorithm (q.v. Section 2.5.2). The
second presents a summary of the words usually associated with a specific hate speech class (such as
“Swear”) and their frequency in our complete training dataset, as depicted in Figures 4.9 and 4.10.6

Lastly, Figures 4.11 and 4.12 present a summary of words usually associated with hate speech in
general. The sum of scores considers the local relevance calculated using IG. With this, we aim to
give an overall view of the terms in our domain that result in classifying text as hate speech.7

To describe local interpretability, provided by the IG algorithm, we analyze Figures 4.7 and 4.8
for DistilBERT and RoBERTa, respectively. The violation class considered here is “Swear.”8 For
local interpretations, the stronger the green shade, the higher the highlighted word’s relevance
score concerning classifying the text with the “Swear” class. On the other hand, the stronger the
red shade, the more significant the influence of the highlighted word on decreasing the hate speech
confidence (classifying the text as not belonging to the “Swear” class).

One crucial aspect is that the relevance of certain words may vary depending on the model. Let
us consider the word “man” in Figures 4.7 and 4.8. For RoBERTa, it is relevant to the model’s
classification. However, for DistilBERT, this word has no importance since it contains a neutral
score. There are two main reasons for this variation. First, while RoBERTa prioritizes performance
accuracy, DistilBERT was built to be smaller, faster, and cheaper. Hence, their architectures differ,

6Appendix C presents the relevance score for all the other hate speech classes.
7To clarify, the sum of scores is not a global interpretation of our model (q.v. Section 2.5) but rather a summary

of the sum of local interpretations (the output of the IG algorithm).
8Appendix B presents local interpretability examples for all other violation classes.
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Figure 4.9: The list with the sum of relevance scores for the top 20 words considering the Distil-
BERT model in the multi-label case. The label considered is “Swear.” Besides, we present the
frequency in which a word appears in the dataset used for training. The relevance score is calcu-
lated using IG (q.v. Section 2.5.2).

and individual words affect the classification results differently. Second, they employ different
tokenization processes and vocabularies, influencing how each PLM encodes words in the input
layer. For instance, in DistilBERT’s tokenization process, the word “nerd” is split into two “ne”
and “rd”. In contrast, RoBERTa’s tokenization handles the complete word with no modification.
This difference is especially critical for our hate speech use case since these PLMs do not initially
map most terms associated with this behavior. In other words, when the PLMs are initially trained,
the datasets do not contain instances of texts with these terms as part of the violation classes we
identify in our use case.

Presenting the summary of words related to specific hate speech classes in general, as opposed to
only those related to a specific text (local interpretations), is also interesting. Figures 4.9 and 4.10
present the terms with the highest sum of relevance score for the “Swear” class. From the top 20
relevant words, DistilBERT and RoBERTa disagree on six. Additionally, some relevant words do
not align with our understanding of the “Swear” class, such as “307” and “s”. Identifying these
words demonstrates another advantage of incorporating interpretability. With this information,
community members have a visualization tool to identify when a model follows a faulty logic since
it considers influential words that are not coherent with their understanding. As such, they can
initiate a new training process, using additional instances of norm-violating behavior to improve
the model’s classification output.
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Figure 4.10: The list with the sum of relevance scores for the top 20 words considering the RoBERTa
model in the multi-label case. The label considered is “Swear.” Besides, we present the frequency
in which a word appears in the dataset used for training. The relevance score is calculated using
IG (q.v. Section 2.5.2).

The last part of our interpretation is in Figures 4.11 and 4.12. These graphs summarize the words
usually associated with hate speech, which is the binary classification task. The words in the
community dataset are insulting and related to cyberbullying. Both models consider similar words
relevant for detecting hate speech. However, they disagree on the assessment of six of them. This
discrepancy in scores (higher or lower) does not necessarily indicate a lack of relevance. Instead,
it reflects the differences in the internal mechanisms (different numbers of transformer layers and
embeddings) of the PLMs. For instance, in DistilBERT, the word with the highest global sum of
relevance scores is “gay”, while RoBERTa presents “fuck” with the highest scores. These findings
highlight how the two PLMs solve this task differently.
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Figure 4.11: The list with the sum of relevance scores for the top 20 words considering the Distil-
BERT model for all violations. Besides, we also present the frequency in which a word appears in
the dataset used for training. The relevance score is calculated using IG (q.v. Section 2.5.2).
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Figure 4.12: The list with the sum of relevance scores for the top 20 words considering the RoBERTa
model for all violations. Besides, we also present the frequency in which a word appears in the
dataset used for training. The relevance score is calculated using IG (q.v. Section 2.5.2).
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4.5 Summary

This chapter proposed the Language Model Adaptive Learning (LaMAL) framework, which aims to
support normative systems in continuously learning to detect norm violations in text classification
tasks. To accomplish this goal, LaMAL used data from community members’ views on what
constitutes a norm violation to fine-tune Pre-Trained Language Models (PLMs) (q.v. Section 2.4)
through an incremental learning approach (mini-batch).9

We evaluated LaMAL in the Wikipedia article editing use case (q.v. Section 1.1.3). In this commu-
nity, we were interested in detecting violations of the “no-vandalism” norm, specifically targeting
article edits that contained hate speech. Two challenges in such communities are crucial to our
investigation: the imbalanced nature of the dataset; and the incremental update of PLMs to incor-
porate the most recent definition of what constitutes norm violations. Thus, LaMAL’s main con-
tributions were 1) creating a framework that handled imbalance between violation classes (different
types of hate speech) using a replication approach; 2) enabling our framework to incrementally
incorporate feedback data to update the machine learning model as interactions unfold; and 3)
using interpretability to enhance a community’s understanding of what constitutes norm-violating
behavior (which words were associated with hate speech).

The experiments with LaMAL explored two PLMs, RoBERTa and DistilBERT, in distinct settings.
First, we conducted experiments for the binary classification task, in which both PLMs should learn
whether an article edit is a violation (hate speech). Second, we evaluated the PLMs to solve a
multi-label classification task, aiming at identifying the specific hate speech classes associated with
a given article edit. This enabled LaMAL to detect multiple violations that occur simultaneously.
Since we could handle text data directly in these cases (as opposed to working with tabular data like
FeDAL (q.v. Chapter 3)), we incorporated into our framework an interpretability component that
identified relevant words for hate speech detection. Specifically, LaMAL employed the Integrated
Gradients (IG) algorithm (q.v. Section 2.5.2).

Results showed that LaMAL could learn to detect hate speech in the case of Wikipedia article edits
while performing both binary and multi-label text classification tasks. With the incorporation of
DistilBERT and RoBERTa, LaMAL fine-tuned prior language knowledge to improve the learning
process for hate speech detection in our use case. Additionally, through interpretability, LaMAL
offered insights into the community’s view of what the members consider non-acceptable behavior,
specifically identifying the most relevant words usually associated with hate speech and providing
a summary view of this concept.

Finally, in the next section, we present the Cross-Community Adapter Learning (CAL) framework,
which tackles the limitations of LaMAL regarding the emergence of new violation classes and
learning from datasets with a limited size.

9For LaMAL, an action was defined as a Wikipedia article edit, and the words were the elements that helped
classify the text as a violation or not.
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Chapter 5

CAL: The Cross-Community
Adapter Learning Framework

This chapter introduces the third framework that composes our multi-scenario approach, the Cross-
community Adapter Learning (CAL) framework.1 CAL can learn to detect norm violations using
data from different sources, such as various online communities. Like FeDAL (q.v. Chapter 3) and
LaMAL (q.v. Chapter 4), the main objective of CAL is to be deployed in a normative system to
support the adherence to norms, especially when analyzing actions specified through text. CAL
analyzes each action that community members perform to minimize norm violations. Furthermore,
it addresses the limitations present in LaMAL, specifically by handling the emergence of new
violation classes and learning from datasets with a limited size.

The major difference between CAL and LaMAL is their approach to classifying violation classes.
While LaMAL employs a classification head comprising several nodes, each responsible for identify-
ing a distinct violation class, CAL adopts a different strategy combined with Pre-Trained Language
Models (PLMs). It employs adapters (q.v. Section 2.4) to represent specific classes of violations,
which can be dynamically created as interactions unfold. For instance, in contexts where commu-
nity feedback indicates a shift in community members’ views that leads to identifying classes that
did not exist, CAL can learn from this feedback by incorporating new adapters.

In this thesis, we aim to work with low-resource (or newly created) online communities (q.v.
Section 1.1.3), where low-resource implies working with a limited labeled set of norm-violating
actions (Huang et al., 2022). To improve a model’s performance in a particular community, CAL
adopts cross-community learning to incorporate data from different sources. This initially helps
train a Machine Learning (ML) model in a new target community with limited labeled data, where
we deploy the framework (Chandrasekharan et al., 2019; Zhuang et al., 2020).

Figure 5.1 presents an overview of the CAL framework (which is further explored in Section 5.1 with
details of the algorithm). Our work uses data from various source communities as the initial step to
define norm-violating behavior in a new community with limited labeled data (target community).
First, the new community defines the specific violation class that CAL should detect.2 CAL then
follows two different paths depending on whether an adapter that identifies the specified violation
class exists or not:

1. Suppose the adapter does not exist, i.e., a new violation class emerges. In that case, the
framework uses data from another community in the initial training process, creating a new

1Source code available at https://bitbucket.org/thiago-phd/ijcai 2023/.
2Although we do not tackle this challenge here, we envision this process to use feedback data from a deliberation

process where community members define the new violation class (provide a new label) that CAL should identify.
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Figure 5.1: The Cross-community Adapter Learning (CAL) framework. The “Source Community
Data” and the “Target Community Data” blocks have different colors because they represent
different datasets, source and target, respectively.

adapter for the specified violation class. Upon completing this step, CAL is ready to detect
norm-violating behavior in the new (target) community with limited labeled data. However,
it is worth noting that if the source and target communities exhibit divergent views of what
constitutes norm-violating behavior, the model may present low-performance values at this
step (the results in Section 5.3 describe this case). Thus, fine-tuning with target data is
important.

2. If the specific violation class adapter already exists, we simply fine-tune CAL with target
community data. This step aims to improve the framework’s performance with the newest
feedback data.

To accomplish its goal, CAL incorporates adapters between the layers of a PLM, learning to detect
norm violations from the feedback of interacting agents (referred to as community members).
Additionally, CAL employs the Integrated Gradients (IG) algorithm (q.v. Section 2.5.2) to help
understand the distinct views manifested in the communities. Concretely, IG allows CAL to obtain
the relevant words contributing to the violation classification in source and target communities.
The ability to analyze how communities’ views change within a specific domain or across different
communities is a key contribution of this component, as it describes how detrimental behavior
changes over time and across domains.

To summarize, each component in CAL offers a unique benefit. First, transformer-based models,
specifically the PLM, provide powerful language representation for tackling NLP tasks (T. Lin
et al., 2022; Vaswani et al., 2017). Second, incorporating adapters in our framework allows for
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1 Algorithm: The Cross-Community Adapter Learning (CAL) Algorithm

2 Input: Current time step (t), violation classes (Vt), set of all violation instances (It), set

of augmented instances (At), data block size (s), set of source task adapters (ΦVt−1), base
PLM (Θ), and number of epochs (e);

3 Output: Trained adapters (ΦVt)

4 while violation instances available do
5 for each violation class v ∈ Vt do
6 Get current violation class instances V I ∈ It.
7 Get other violation instances BI ∈ It to balance Dt, where BI ∩ V I = ∅ and

|BI| = |V I|.
8 Create a balanced data block. Dt ← V I ∪BI.
9 if |Dt| < s then

10 Incorporate augmented instances. Dt ← At.
11 end

12 if Φv ∈ ΦVt−1 = NULL then
13 Create a new adapter Φv.
14 else
15 Load previously trained adapter. Φv ← Φvt−1 .
16 end
17 Fine-tune Φv on top of Θ with Dt for e epochs.

18 Add trained adapter to the list ΦVt .

19 end

20 Obtain the sum of relevance scores for adapters ∈ ΦVt .

21 return fine-tuned adapters ΦVt .

22 end

Algorithm 5.1: The Cross-community Adapter Learning (CAL) Algorithm

an efficient fine-tuning process that reflects the new community’s view on what constitutes norm
violations while also allowing for extensibility through the dynamic creation of adapters as new
violation classes emerge. Lastly, the IG algorithm supports our analysis of the model to understand
the elements of a text relevant to norm violation detection.

The remainder of this chapter is divided as follows. Section 5.1 presents CAL’s learning algorithm.
Next, Section 5.2 describes the experiments conducted to evaluate the CAL framework. We divide
this section into two parts. First, we describe experiments regarding learning to detect violations
using data from different communities. Second, we employ interpretability to understand the words
usually associated with norm-violating behavior. Then, Section 5.3 outlines the results. Finally,
Section 5.4 offers a comprehensive summary of the key points discussed in this chapter.

5.1 Mini-Batch Learning for Cross-Community Text Sce-
narios

This section delves into Algorithm 5.1 that describes the Cross-Community Adapter Learning
(CAL) framework. CAL is trained using a mini-batch learning approach to solve text classification
tasks. As norm-violating actions are made available (for instance, community members start
labeling actions as norm-violating behavior), CAL builds balanced data blocks Dt of fixed size s
for each violation class v ∈ Vt defined by the community (q.v. Algorithm 5.1, line 8). To create
Dt, CAL uses s/2 instances of class v, while the other s/2 are randomly drawn from the remaining
instances (q.v. Algorithm 5.1, line 7).
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If the size of the current balanced dataset |Dt| is smaller than the fixed data block size (q.v.
Algorithm 5.1, line 9), we generate and augment extra violation instances (q.v. Algorithm 5.1, line
10). The augmented instances are generated by modifying the original text previously identified
as norm-violating behavior. This process includes substituting synonyms and randomly removing
words. If CAL is processing a newly emerged violation class, we perturb the ground-truth data
at the current time step (t), asking for feedback from the community members. This feedback is
essential because, by modifying a text, we may remove the violation. However, suppose CAL is
processing an already identified violation class. In that case, we use the classification output of
our model in the previous time step (t − 1) and generate the perturbed instances only from the
texts detected as violations, asking for augmented data relabeled by the community. Step t − 1
represents either the training step in a source community or in the same community but at a
previous moment (past actions).

In line 12, Algorithm 5.1 checks for an existing adapter corresponding to violation class v. If
v is a newly emerged violation for which no adapter has been previously created, CAL initiates
a new adapter Φv (q.v. Algorithm 5.1, line 13). The ability to dynamically generate adapters
enables CAL to incorporate new classes for violations as interactions unfold and communities’
views evolve. However, if a previously trained adapter Φvt−1 is related to v, then CAL loads it
(q.v. Algorithm 5.1, line 15). Each violation class v has a single associated adapter Φv.

Algorithm 5.1 executes the incremental learning procedure in line 17, updating Φv using Dt for
e epochs. As we update the adapters, it is possible to observe the evolution of their behavior
over time by calculating the relevance scores based on local interpretations obtained from the IG
algorithm (q.v. Algorithm 5.1, line 20). The differences between the adapters may occur due to
the application of distinct fine-tuning procedures. In this case, adapters Φv and Φvt−1 are different
because they were trained within the same community but at separated moments, or Φv and Φvt−1

were trained using cross-community learning (using source data from a different community). The
ability to analyze how the communities’ views change within a specific domain or across different
communities is a key contribution of our work. Finally, in line 21, Algorithm 5.1 returns the
continuously trained adapters for norm-violating detection.

5.2 Experiments

This section outlines the application of our incremental learning approach to detecting and under-
standing norm-violating behavior in a cross-community setting, specifically within the context of
Wikipedia article editing (q.v. Section 1.1.3). Wikipedia has a set of norms to regulate interactions
during article edits, including the requirement to use proper writing style, to refrain from removing
content, to avoid editing wars, and not to express hate speech. This chapter focuses on violations
of the hate speech norm, as this represents a complex and particularly harmful norm-violating
behavior within online interactions.3

We remind the reader that we employ a two-step process to collect interaction data for this study.
First, Wikipedia uses Amazon Mechanical Turk (MTurk) to classify an article edit either as a
violation or not, providing no further information on the nature of the violation (Adler et al.,
2011). Second, the author of this thesis4 further annotates each violation instance with a viola-
tion class, introducing the author’s view on what is considered a norm violation. We assert that
this annotation reflects one of many possible community views. Thus, instead of arguing about
the introduction of bias, we aim to demonstrate that our framework can continuously update its
parameters to new views, regardless of whether a single person (e.g., a moderator) or multiple

3Future work shall focus on solving other types of violations.
4Here, we highlight the “author of this thesis” to clarify that a single person related to this research provides

the annotation.
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individuals assign the violation class. In other use cases, this annotation process may be differ-
ent, with labels containing multiple perspectives and variations depending on the community in
question. For instance, the use of the “N-Word” (Rahman, 2012) may not represent detrimental
behavior in an African American community, but it violates the hate speech norm on Wikipedia.
Therefore, our system must learn, from the feedback of a new community, that this term could
indicate a violation specifically in this new community. Table 4.1 shows examples of hate speech
classes considered in this work.

In this thesis, we source data from three publicly available community datasets, namely a software
engineering community on Slack (Chatterjee et al., 2020), the abusive language towards conversa-
tional systems (ConvAbuse) (Curry et al., 2021), and a dataset built using humans and machine
learning models to generate hate speech (DynamicGenerated) (Vidgen et al., 2021). Each dataset
represents a unique community and includes text sentences for specific classes of hate speech.
Specifically, the Slack community provides “Swear” instances. The ConvAbuse dataset includes
“Insult and Ableism” and “Sexual Harassment” instances. The DynamicGenerated dataset in-
cludes “Racism,” “LGBTQIA+ Attack,” and “Misogyny” instances. To evaluate our approach, we
design the following two experiments. First, we evaluate CAL’s ability to identify hate speech using
data from different communities. Second, we use interpretability to analyze how the definition of
hate speech varies across communities.

5.2.1 Learning to Detect Hate Speech

We aim to evaluate whether CAL can learn to detect hate speech by initially using a source
community to train the adapters. The number of instances for each violation class in the source
data is 349 for “Swear,” 273 for “Insult and Ableism,” 456 for “Sexual Harassment,” 512 for
“Racism,” 512 for “LGBTQIA+ Attack,” and 512 for “Misogyny.” Our focus is on learning from a
limited number of examples of disruptive behavior. The target task consists of 639 edits, with 233
for “Sexual Harassment,” 212 for “Insult and Ableism,” 126 for “Swear,” 109 for “LGBTQIA+
Attack,” 56 for “Misogyny,” and 32 for “Racism.” In this case, a single edit may contain multiple
violation classes simultaneously. Consequently, the sum of the amount of edits belonging to these
violation classes surpasses the total of 639 edits. To ensure that each fold of the validation process
maintains a similar data distribution, we employ stratification on the multi-label dataset with the
algorithm from (Sechidis et al., 2011). 2x5-fold cross-validation is used for this experiment.

To implement our solution, we use DistilBERT, which is smaller and faster than other state-of-the-
art PLM alternatives (Sanh et al., 2019), with the adapter implementation by HuggingFace (Wolf
et al., 2020). The data block size is 256, AdamW is the optimization algorithm (Loshchilov &
Hutter, 2019), and the number of epochs is 12. Adapters have a reduction factor of 16 and ReLu as
the non-linearity function (S. Sharma et al., 2017). The IG algorithm was implemented following
the Transformers Interpret library (Pierse, 2023). We use TextAttack to create the augmented
instances (Morris et al., 2020). The experiments are executed on an NVIDIA GeForce GTX 1650
with 4GB memory.

5.2.2 Understanding Different Communities’ Views on Detecting Hate
Speech

We use the local interpretability of PLMs to analyze the impact of words on detecting hate speech.
To do so, we first examine the words that receive high relevance scores when the model is trained
on data from the source community. Next, we gather information on the relevant words when the
model is incrementally fine-tuned on data from the target community. Finally, we compare the
difference in the relevance score between these two steps. The change in the relevance score reveals
how interactions differ between these communities.
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5.3 Results and Discussion

5.3.1 Learning to Detect Hate Speech

Setting Violation Precision±Std Recall±Std F1±Std

Source – Target

Swear 0.5090±0.0438 0.5066±0.0355 0.3466±0.0281
Insult and Ableism 0.5925±0.0361 0.6680±0.0725 0.6005±0.0434
Sexual Harassment 0.7661±0.0381 0.7564±0.0397 0.7413±0.0415

Racism 0.6022±0.0120 0.8534±0.0357 0.6038±0.0224
LGBTQIA+ Attack 0.5963±0.0286 0.5973±0.0303 0.3978±0.0284

Misogyny 0.5848±0.0243 0.7083±0.0588 0.5553±0.0360

Target – Target

Swear 0.8757±0.0261 0.8945±0.0197 0.8831±0.0203
Insult and Ableism 0.6937±0.0380 0.8478±0.0557 0.7236±0.0437
Sexual Harassment 0.9147±0.0281 0.9151±0.0279 0.9144±0.0280

Racism 0.8290±0.0306 0.9760±0.0214 0.8850±0.0252
LGBTQIA+ Attack 0.8843±0.0271 0.9340±0.0363 0.9047±0.0294

Misogyny 0.8635±0.0657 0.7535±0.0618 0.7915±0.0573

Only Target

Swear 0.8407±0.0427 0.8701±0.0315 0.8515±0.0385
Insult and Ableism 0.6351±0.0294 0.7642±0.0574 0.6484±0.0359
Sexual Harassment 0.9012±0.0329 0.9005±0.0311 0.8998±0.0320

Racism 0.8662±0.0886 0.7682±0.0961 0.8002±0.0893
LGBTQIA+ Attack 0.8046±0.0441 0.8535±0.0434 0.8234±0.0446

Misogyny 0.5470±0.2025 0.5085±0.0185 0.4884±0.0349

Table 5.1: Summary of the performance results (2x5-fold cross-validation) of incremental Distil-
BERT using adapter-based fine-tuning to evaluate hate speech detection on the Wikipedia article
editing task. Three settings are considered: 1) cross-community training and testing on our target
(Source – Target); 2) fine-tuning on target community and testing on target (Target – Target);
and 3) training only on target data and testing on target data (Only Target).

Hate Speech
P-values

Precision Recall F1-Score
Swear 0.0273 0.0645 0.0273
Insult 0.0020 0.0059 0.0020
Sexual 0.0506 0.0525 0.0827
Racism 0.1934 0.0020 0.0840

LGBTQIA+ 0.0020 0.0020 0.0020
Misogyny 0.0098 0.0020 0.0020

Table 5.2: Comparison between Target – Target and Only Target . The Wilcoxon Signed-Rank
Test is used to obtain the p-values. The null hypothesis is that the samples were drawn from the
same distribution, and the critical value α = 0.05.

Table 5.1 presents the results for each experiment. We describe performance values per hate speech
class using precision, recall, and F1-score metrics. Source – Target refers to training on the source
community and testing on the target Wikipedia interactions, with no fine-tuning. Target – Target
is the experiment after fine-tuning the source model on our target community. Finally, Only Target
refers to the results obtained when the model is trained and evaluated solely on the target com-
munity data. Results indicate that fine-tuning a cross-community model presents the best perfor-
mance in most cases. Although directly using a model trained on a source task with no fine-tuning
(Source – Target) yields the lowest performance, it can serve as an initial point for our task, lever-
aging the performance of our approach after fine-tuning is applied. The Wilcoxon Signed-Rank
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Figure 5.2: Local interpretation when trained on source community data. The model wrongly
classifies.

Figure 5.3: Local interpretation after continuously fine-tuning on target data. The model changes
its behavior as expected by our new community view.

Test in Table 5.2 attests that, except for the “Sexual Harassment” class and precision for “Racism,”
our cross-community learning approach significantly outperforms Only Target , suggesting that our
framework benefits from incorporating data from multiple communities. These exceptions are ex-
plained as follows. First, for “Sexual Harassment,” Only Target performs very well (above 90%),
with no need to add data to improve its performance since this class is already well represented in
our target community. Second, the discrepancy in “Racism” precision occurs due to the divergence
in the terms used to express racist remarks in both the source and target communities. For in-
stance, the term “fuck” presents a high sum of relevance scores for “Racism” detection in the source
community (q.v. Figure 5.4). However, this relevance diminishes when considering the target com-
munity, demonstrating the shift in the term’s relevance for detecting this violation class in a new
use case. As such, because we have a small number of instances of the “Racism” class in our target
dataset, the model’s fine-tuning process is sub-optimal (i.e., incomplete parameter updating), and
an outdated definition of violation is still detected, affecting the precision performance.

5.3.2 Understanding Different Communities’ Views on Detecting Hate
Speech

Figures 5.2 and 5.3 present local interpretability as calculated by the IG algorithm. The intensity
of the green shade indicates the relevance of the highlighted word to violation detection, demon-
strating what words trigger norm violation. In contrast, the intensity of the red shade is related
to the decrease in the violation confidence (not detecting as an instance of “LGBTQIA+ Attack,”
but rather labeling the edit as “non-LGBTQIA+ Attack”). Figure 5.2 presents how the model
trained on source community data classifies an article edit from Wikipedia. Words usually associ-
ated with “Sexual Harassment” content are deemed relevant to the model. However, as fine-tuning
is executed, Figure 5.3 shows how the model drifts from the previous view about what constitutes
an “LGBTQIA+ Attack,” resulting in negative relevance scores for the same words as the model
adapts to the new community view.

Figure 5.4 illustrates the differences in the sum of relevance scores determined by CAL between
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(a) Swear (b) Racism

(c) LGBTQIA+ Attack

Figure 5.4: Sum of relevance scores for three violation classes. “Insult and Ableism,” “Sexual
Harassment,” and “Misogyny” are provided in Appendix D. The source task refers to the model
trained using the source community data, while the target task is the result after fine-tuning the
model with our data. “Frequency” refers to the number of occurrences of a word in the training
dataset. We present the increase (or decrease) of the relevant words for the violation classification,
presenting the difference between the two communities and how norm violations are defined.

communities or at different moments in time.5 To obtain a word’s relevance measure, CAL sums
the relevance scores of each occurrence of the word (local interpretability), as those depicted in
Figures 5.2 and 5.3. The term Source refers to the model trained exclusively on the source-
community data, while Target represents the relevance score after fine-tuning the model. The
graph is organized as follows: First, we identify the 15 most relevant words for Source and Target.

5Appendix D presents the data for the other three violation classes.
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Then, the relevant words for Target are displayed at the top. To demonstrate the changes in
relevance scores (either increase or decrease), we include the Source value for the same word.
Finally, we completed the rest of the rank with the words from the Source that had high relevance
scores but saw a decrease in value after fine-tuning. For example, considering the “LGBTQIA+
Attack” class (q.v. Figure 5.4c), we can see that the word “gay” becomes more relevant as we
fine-tune CAL with our target data (update what constitutes a norm violation based on a new
community view). However, simultaneously, the words “dick,” “fuck,” and “sex” lose relevance.
The NEGATIVE value informs us that these words are relevant for identifying an edit as a “non-
LGBTQIA+ Attack.”

In addition to understanding different communities’ views, we can identify the factors contributing
to the under-performance of the Source – Target task (q.v. Table 5.1) through the analysis of
relevance scores. As an example, for the “Swear” class (q.v. Figure 5.4a), the source community
data includes instances that associate “Sexual Harassment” and “LGBTQIA+ Attack” content
with “Swear,” e.g., “gay,” “penis,” “sex,” which are words with high relevance scores. Since the
communities use parts of the violating-behavior vocabulary differently when the Source – Target
model attempts to solve a new task, instances containing these words are wrongly classified as
“Swear.” However, the adaptable character of our proposal allows for updating relevance scores and
improving the model’s performance as interactions unfold. We can also observe this phenomenon
in the “Racism” case, where words like “N-Word,” “Jew,” and “Muslim” have higher relevance
scores, while “fuck,” “poo,” and “shit” present a significant drop.

5.4 Summary

This chapter presented the Cross-Community Adapter Learning (CAL) framework that aimed
to continuously learn to detect norm violations using interaction data from diverse communities.
Specifically, CAL incorporated data from source communities to improve the performance of ML
models in a new community with a limited labeled dataset, referred to as the target community.
Our goal was to provide the basis to work with norm violations where views on what constitutes
a norm violation can change based on community members’ feedback. Furthermore, we equipped
CAL to adapt to different communities’ views of identical violation classes.

For instance, consider the case of hate speech, particularly racism. The interpretation of sentences
deemed racist may vary depending on the community. To illustrate this point, imagine a community
composed of African Americans where the use of the “N-Word” is regarded as a friendly salute.
In contrast, this term is regarded as a severe racial offense within a different domain, such as
the Wikipedia article editing task. Thus, we aimed to learn the differences between communities,
providing insights into how violation evolved and is defined in different domains. To accomplish
this goal, we employed interpretability tools.

CAL adopted a bottleneck adapter architecture on top of a PLM (q.v. Section 2.4), fine-tuned using
a mini-batch approach (q.v. Section 2.3). Additionally, we presented an interpretability analysis
of the cross-community adapters to understand that what constitutes norm violations varied be-
tween communities. The Integrated Gradients (IG) algorithm calculated the local relevance scores
of words in text sentences (q.v. Section 2.5.2), which were combined to determine their sum of
relevance scores in a particular community.

We conducted experiments within the context of Wikipedia article editing (q.v. Section 1.1.3). The
norm in question regulated the prohibition of hate speech. This was the same domain in which we
evaluated FeDAL (q.v. Section 3.5) and LaMAL (q.v. Section 4.3). Nevertheless, some challenges
these approaches faced were efficiently addressed here due to CAL’s architecture. Concretely, since
we used adapters to handle specific violation classes, the imbalance between violation classes did
not hinder the performance of our model. Furthermore, CAL demonstrated efficiency in parameter
updates. Unlike FeDAL and LaMAL, which updated all parameters of a neural network or the
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classification heads simultaneously, CAL optimized this process. It only updated the adapter
associated with each violation class after obtaining the required data to build a data block. Lastly,
CAL could handle the emergence of new violation classes, creating new adapters in response to
community members’ feedback indicating the need to detect a new class.

To evaluate cross-community learning, we used data from three distinct sources. The results showed
that by initially training an adapter with source community data, we could leverage the perfor-
mance of our model (q.v. Section 5.3), demonstrating how CAL learned to detect violations and
incorporated new knowledge based on a novel community view. Since interactions have evolving
characteristics, we have argued throughout this thesis that a current community view is the most
critical input for defining what constitutes a norm violation.

Finally, in the next chapter, we present a user experiment to assess whether our model interpreta-
tion affects the user’s perception of violating behavior. As such, we use data derived from the IG
algorithm, both local and as the sum of relevance scores, to compare three different interpretability
layouts.
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Chapter 6

User Study: Assessing the Impact
of Interpretability

This thesis describes our multi-scenario approach to continuously learn what constitutes norm vio-
lations and detect when such violations occur. This approach continuously updates the parameters
of Machine Learning (ML) models to incorporate the evolving views about norm violations in online
communities as interactions unfold. Chapters 3, 4, and 5 introduce the frameworks that compose
this approach, which we believe are particularly important for the normative systems literature.
Our argument is that any system that intends to regulate the behavior of its interacting agents
(community members) in an open and dynamic environment should be able to identify evolving vi-
olating behavior. This ability is especially critical when considering issues like discrimination, hate
speech, and cyberbullying that represent real damage to people’s lives and interactions, besides
affecting the community experience and engagement in online platforms.

Moreover, in addition to learning norm violations, our multi-scenario approach incorporates in-
terpretability tools to present the elements of an action that contribute to its identification as a
norm violation, where these elements can be a set of features that represent that action or words
in a text that the action is introducing. In this context, we employ two algorithms, namely Local
Interpretable Model-Agnostic Explanations (LIME) (q.v. Section 2.5.1) and Integrated Gradients
(IG) (q.v. Section 2.5.2). These algorithms enable the presentation of interpretability information
to community members in three layouts: a) local interpretability, which presents relevant elements
of a specific action; b) the sum of relevance scores, which presents the relevant elements considering
all actions in the dataset so far; c) and a combination of both.

Figure 6.1 illustrates these different layouts. First, Figure 6.1a depicts an example of the local
interpretability layout obtained with the IG algorithm. It describes the impact of each word on
identifying a given text as a norm violation, enabling users to understand specific problematic
words in their text that may contribute to norm violations. Second, Figure 6.1b presents the sum
of the relevance scores, which is obtained by summing the relevance value of each word based
on its occurrence in the entire dataset used to train the ML model (q.v. Algorithm 5.1, line 20).
This layout provides users with a comprehensive general overview of problematic words that may
result in norm violations, which can also represent the community’s current view. The third layout
combines Figures 6.1a and 6.1b. In this case, the layout first presents the local interpretability,
followed by the list of the most relevant words.

As the layouts in Figure 6.1 present different information to community members, it is worth
conducting a user study to asses their potential influence on community members’ views regarding
norm violations. Thus, our user study aims to provide empirical evidence regarding the effective
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(a) Local interpretability. (b) sum of relevance scores.

Figure 6.1: The local interpretability and sum of relevance scores layouts. Specifically, Figure 6.1a
represents the interpretability of classifying the specific text as belonging to the “Misogyny” class,
while Figure 6.1b illustrates the sum of relevance scores for the “Misogyny” class considering words
across all instances in the training dataset. Regarding local interpretability (q.v. Figure 6.1a), the
intensity of the green shade indicates the relevance of the highlighted word to violation detection,
demonstrating the contribution of those words to identifying the text as misogynistic. In contrast,
the intensity of the red shade is related to the decrease in the violation confidence, demonstrating
the contribution of those words to classifying the text as not misogynistic).

use of ML-model interpretability and to investigate how these layouts can help mitigate violating
behavior online.

Specifically, we design this user study to assess three interpretability layouts based on partici-
pants’ responses. The IG algorithm provides the interpretability data, while the CAL framework
trains the ML model (q.v. Chapter 5).1 We directly ask participants how their views change when
presented with interpretability results from each of the three layouts. To achieve this, we cre-
ate a questionnaire for each layout, consisting of 20 tuples, each comprising two questions. The
questionnaire begins by presenting a sentence without interpretability data, such as Figure 6.2.
Next, after answering the question with no interpretability data, participants reevaluate the same
sentence. However, this time with information from the interpretability tool, as illustrated in Fig-
ure 6.3. Concretely, the participants assess each sentence twice, one with no interpretability data
and the other with interpretability data.2 These questions allow us to investigate the impact of
interpretability information on participants: do they change people’s views?

Finally, the remainder of this chapter is divided as follows. Section 6.1 presents the design of
our user study to assess the potential influence of three interpretability layouts when participants
evaluate text sentences containing hate speech (namely, misogyny and racism). Then, Section 6.2
outlines the results with statistical and qualitative analysis of questionnaire responses. Lastly,
Section 6.3 provides a comprehensive summary of the key points discussed in this chapter.

1We use IG because it provides information on relevant words as considered by the ML model, and CAL because
it learns with text data and can handle datasets with a limited size.

2Annex E provides the sentences and the examples for the other two interpretability layouts.
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Figure 6.2: A question that inquires participants about their views on misogyny with no inter-
pretability information. The participant must choose whether they agree or disagree with classi-
fying this text as misogynous using the 7-point Likert scale.

Figure 6.3: A question that inquires participants about their views on misogyny while considering
local interpretability information provided by the IG algorithm. Participants must answer this
question right after responding to the question about the same sentence with no interpretability
data, as depicted in Figure 6.2. Again, the participant must choose whether they agree or disagree
with classifying this text as misogynous using the 7-point Likert scale.
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6.1 Study Design

Our user study evaluates three distinct interpretability layouts, comparing them against a baseline
condition where participants only interact with a text (q.v. Figures 6.2 and 6.3). The study design
comprises both within-subject and between-subject settings. Within-subject refers to assessing
whether the information of a given interpretability layout influences the participant’s classifica-
tion of a sentence as hate speech or not. This experiment setting considers the same group of
participants. In contrast, the between-subject component of the study assesses whether one of
the interpretability layouts has a more significant impact on the participant’s classification than
another, which involves using different groups of participants. We randomly assign participants
to one of three groups. Each group evaluates a different interpretability layout3 and consists of
38 participants, totaling 114, and all groups share the same demographic distribution (gender and
ethnicity). In adherence to ethical considerations associated with human studies, the experiment
protocol was subject to review by the Universitat Autònoma de Barcelona ethics committee.

We employ a power analysis to determine the appropriate group size, which requires defining the
following factors:

• Statistical power - the probability that the statistical test will reject the null hypothesis and
obtain a statistically significant result (Cohen, 1992).

• Effect size - the quantitative indicator that measures the magnitude of the difference between
distributions (i.e., the impact of a layout) when conducting a statistical analysis (Brysbaert
& Stevens, 2018).

• Significance level (α) - the threshold to define the presence of statistically significant differ-
ence (Cohen, 1992).

• Cohen’s d value - the measure of effect size (Brysbaert & Stevens, 2018).

This power analysis considers the effect size measured with Cohen’s d value (Cumming, 2014)
obtained from the investigation by F. Yang et al. (2020). This work is particularly relevant to our
user study because it addresses a similar experiment setting, i.e., the investigation of interpretability
in ML models. We aim to achieve a statistical power of 0.95 while maintaining a significant level
of α = 0.05, for which we set Cohen’s d value to 0.84 (F. Yang et al., 2020). Moreover, we use the
two-tailed T-test method. This statistical hypothesis test examines the existence of a significant
difference between two distributions in both directions, whether the difference indicates an increase
or decrease in the influence of an interpretability layout (Park, 2010). Consequently, following this
calculation, we get to 38 participants per group. Lastly, it is worth noting that our required number
of participants is consistent with the sizes employed in other studies in the literature (Arora et al.,
2022; Chu et al., 2020; Schuff et al., 2022; F. Yang et al., 2020), aligning with established protocols
in the field and further supporting our decision.

Each participant must evaluate 20 sentences, ten for each of the two hate speech classes considered
in this study, “Misogyny” and “Racism.” Each sentence will receive two questions, as shown
in Figures 6.2 and 6.3. The first obtains the participant’s view on identifying the sentence as
misogynistic or racist without providing interpretability information. This serves as a baseline.
The second obtains the participant’s view after introducing interpretability information from one
of the interpretability layouts, which could be any of the layouts in Figure 6.1. It is worth noting
that the participants across the three distinct groups see the same 20 sentences. The difference
between the groups lies in their usage of different interpretability layouts.

3We do this to ensure that participants do not use information from one interpretability layout when answering
the questionnaire related to another interpretability layout.
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Additionally, to determine the number of sentences in the study, we consider three main points: 1)
ensure that the task completion time is not excessively long to avoid potential fatigue effects (Y.
Zhang et al., 2018); 2) limit the number of hate-speech sentences evaluated by the participants to
avoid any negative impact (e.g., anxiety, stress, and sadness) on their mental health (Karunakaran
& Ramakrishan, 2019; Steiger et al., 2021); and 3) align the number of sentences with previous
studies that achieved significant results (Chu et al., 2020; P. De Vries et al., 2003; F. Yang et al.,
2020).

The selected sentences are balanced to ensure that both violation classes are represented, choosing
ten distinct sentences for each of the two respective classes. To avoid any effect grammatical
mistakes might have on participants’ evaluations, we apply grammatical corrections when needed,4

without changing the sentences’ meaning. We obtained 40 answers from each participant during
the user study. This includes two answers for each sentence. First, the participant evaluates
the sentence without information from the interpretability layout (baseline). Next, the participant
evaluates the same sentence for the second time but now with information from the interpretability
layout. In both cases, participants rate the classification of each sentence on a 7-point Likert scale.
Across all three interpretability layouts, we collected 1,520 answers per layout,5 resulting in 4,560
answers for the entire study. We note that the questionnaire presents the text sentences randomly
to address potential carry-over effects.

It is worth noting that although our use case comprises six violation classes (q.v. Section 1.1.3),
our user study evaluates only two (“Misogyny” and “Racism”). The reason behind this choice is
to maintain the study concise and allow us to control the variables in the experiment, which we
accomplish by accounting for demographic factors (gender and ethnicity) in our statistical analysis.
Specifically, this involves limiting gender identification to male and female, and ethnicity identi-
fication to black and white.6 This approach takes into consideration that gender may influence
perceptions of misogynistic behavior, with women reportedly identifying instances of this behavior
more frequently than men (Kirkman & Oswald, 2020). Furthermore, black and white individuals
perceive racism differently, with distinct perceptions about attention to racial issues, inequality,
and violence targeting black people (Center, 2020). Including these demographic variables in
our statistical analysis enables an evaluation of whether participant characteristics influence hate
speech classification. In other words, our statistical analysis aims to isolate the variable of inter-
est (interpretability layout) while simultaneously accounting for potential confounding variables
(gender and ethnicity). By adopting this approach, we preserve the conclusions of our statistical
analysis, ensuring that confounding variables do not incorrectly impact our results about the true
relationship between the variables of interest.

After collecting participants’ responses,7 it is necessary to estimate their classification ratings of a
text sentence as a violation. To accomplish this, we employ the Generalized Additive Model (GAM)
(q.v. Section 2.6).8 Our GAM model comprises fixed effects, including interpretability layouts (also
referred to as treatment) and demographic aspects (gender and ethnicity), and random effects, such
as the participants and text sentences. Equation 6.1 describes the specific model for this study,
while Section 6.2 presents the results of fitting this model to our response data.

ytarget ← β0 + βtreat × xtreat + βdem × xdem + αuser × xuser + αsent × xsent (6.1)

ytarget refers to participants’ answers on the Likert scale, while xuser and xsent refer to random
effects corresponding to individual participants and text sentences, respectively. Regarding fixed

4For instance, the sentence “fuck y all N-Word” was corrected to “Fuck you all N-Word.”
538 participants providing 40 answers each.
6We note the existence of other gender and ethnicities identities (Center, 2020; Pega & Veale, 2015). However,

aiming to keep the study concise and statistically sound, we limit the options to only two for each class.
7Response data available at https://bitbucket.org/thiago-phd/user study.
8GAM enables us to capture the relationship between variables using nonlinear functions to model the response

data. Concretely, this allows us to estimate the participants’ confidence in classifying a sentence as hate speech.
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effects, xdem represents demographic aspects, and xint represents the different interpretability
layouts. Furthermore, β0 describes the intercept.9 βint and βdem refer to the intercept for in-
terpretability layouts and demographic aspects, respectively. Lastly, αuser addresses user-specific
effects, while αsent addresses sentence-specific effects.

To conduct this user study, we recruit participants from the Prolific online crowdsourcing plat-
form (Prolific, 2023a), which complies with the European GDPR data protection and treatment
framework (Voigt & Von dem Bussche, 2017). Specifically, to complete the study, participants
must read the research goal, give their consent, and answer the questionnaire. We select this plat-
form because it covers the following requirements: 1) easy integration with external forms (e.g.,
Alchemer) and easy management of the study lifecycle (i.e., the response collection stages); 2) our
previous experience with the platform; and 3) as presented in the Fairwork Cloudwork report (Fair-
work, 2022), it implements policies aiming to improve work conditions by mitigating precarity and
overwork while allowing researchers to directly set the amount paid to each worker.

We set the payment to £13,00 an hour.10 Since the maximum time of the experiment is 30
minutes, each participant is paid £6,50, regardless of whether they use all this time or not (within
this 30-minute window). Additionally, our consent form informs participants that if they decide to
leave the study without completing it, they will receive compensation according to the time spent
on the questionnaire (based on the £13,00 per hour rate). Following ethical guidelines defined
in the platform (Prolific, 2023b), we set payment to all participants equally, avoiding negative
psychological effects on crowdsourcing workers due to payment based on performance conditions
(e.g., getting the “right answers”) (Sayre, 2023). For questionnaires, the platform recommends
payments of £9,00 per hour. However, due to the nature of our sentences (hate speech), we add
£4 per hour (44% increase).

To ensure the quality of answers, we use attention checks to measure the participant’s attention
while answering our questionnaire. Six of the 114 initially recruited participants failed these atten-
tion checks. Thus, we recruited six additional people to achieve our desired number of participants.

6.2 Results

6.2.1 Within-Subject

The within-subject part of our user experiments presents three sets of results, one for each in-
terpretability layout. Our analysis compares the interpretability layouts to the baseline to obtain
these results. In practice, this comparison allows us to understand whether the interpretability
layouts influence the participants’ classification of a sentence as a particular class of violating
behavior, namely “Misogyny” and “Racism.” For the GAM model implementation described in
Equation 6.1, we use the R programming language (R Core Team, 2023).11

This work fits the GAM model employing linear terms, a useful approach when a solution requires
handling categorical variables as predictors. In our implementation, categorical variables such as
interpretability layout (treatment), gender, and ethnicity are transformed into factors and referred
to as fixed terms. This transformation allows the GAM function to fit the model with a fixed effect
associated with each level (i.e., a value that can be assigned to the variable) of the category. Thus,
this feature design allows us to depict the results specifically for each category level and provide
details on these levels’ influence.

9The intercept is a term in the model to represent the estimated value of the dependent variable when the values
of the independent variables are 0.

10£ refers to Pound Sterling.
11R is an Open Source programming language designed for statistical computing. It is important in our context

because it provides extensive data analysis and presentation tools. The source code for this implementation is
available at https://bitbucket.org/thiago-phd/user study.
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In addition to the linear terms above, the smoothing parameter12 is optimized in the model im-
plementation when we fit a GAM to the data. This parameter is particularly important in this
context, as it assists in fitting the underlying data trends rather than the noise, thus effectively
preventing issues related to over-fitting and under-fitting. In practice, to select the smooth param-
eter, our implementation employs the Restricted Maximum Likelihood (REML) method since this
is the most likely to provide reliable and stable results (Wood, 2011).

In summary, with these concepts, we can define the GAM formula implemented in our within-
subject part of the user study as follows:

Answer ← Treatment + Gender + Ethnicity + Smooth(User) + Smooth(Sentence) (6.2)

Equation 6.2 represents the implementation of the model described in Equation 6.1. Smooth()
applies the smooth function in the selected variables (User and Sentence). Treatment (inter-
pretability layouts), Gender, and Ethnicity are the fixed terms with the following possible values:

• Treatment - a) local interpretability; b) sum of relevance scores (“list”); and c) combined
approach.

• Gender - a) male; and b) female.

• Ethnicity - a) black; and b) white.

User and Sentence are random factors. Thus, the possible values in these variables are the
individual participants of the user study (38 for each interpretability layout) and the 20 sentences
we present to these participants, respectively.

Figure 6.4 provides an overview of the results for the local interpretability layout compared to the
baseline, including a sub-figure for each fixed term. Specifically, results indicate that none of the
factors significantly influence participants’ classifications, as corroborated by the Pr(> |z|) values
in Table 6.1. In other words, the participants’ views about violating behavior are not affected by
the interpretability layout, nor their gender or ethnicity.

Still comparing the local interpretability setting to the baseline, Figure 6.5 depicts the results for
the smooth factors. Specifically, Figures 6.5a and 6.5b illustrate a QQ-plot13 that describes the
observed distribution of the random effects’ estimated values against the theoretical (Gaussian)
expectation. Our findings indicate that the individual sentences and users influence the classifica-
tion ratings, as corroborated in Table 6.2. The reasons for this conclusion are twofold: 1) some
sentences might exhibit more explicit violations than others. Thus, a sentence containing explicit
racist terms may prompt participants to assign higher ratings on the Likert scale than sentences
containing subtle expressions of racism; and 2) some participants may have divergent perspectives
regarding the severity of these violations. Thus, these participants may assign higher ratings on
the Likert scale than others, reflecting a greater inclination towards classifying hate speech with
severity.

Regarding the interpretability layout that uses the sum of relevance scores (referred to as “list”
in the figures), results are depicted in Figures 6.6 and 6.7, with corresponding statistical details
provided in Tables 6.3 and 6.4. Like the local interpretability case, the results indicate that no fixed
terms (treatment, gender, and ethnicity) influence participants’ classification of violating behav-
ior. The individual users and sentences are the only effects influencing the violating classification
ratings.

12A smoothing parameter controls the balance (i.e., find the trade-off) between capturing data patterns and
avoiding over-fitting, keeping the model as simple as possible.

13A Quantile-Quantile plot is a graphical method to compare probability distributions (Wilk & Gnanadesikan,
1968). In our case, it compares the distribution of values for random factors (User and Sentence) with the normal
population, assessing the similarity of their distributions.
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Figure 6.4: Fixed terms of the GAM model for the experiment considering the local interpretability
layout. The baseline, female, and black values for the partial effects are zero because they represent
the reference level. In contrast, the values for the specific coefficients, e.g., local, male, and white,
vary since they represent the estimation of their deviation from the intercept (reference values).
Lastly, the dotted lines present the interval of the standard (Std.) error.

Factors Estimate Std. Error z-value Pr(> |z|)
Intercept 4.0429 0.6049 6.683 2.33e−11

Treatment - Local -0.2243 0.6324 -0.355 0.723
Gender - Male -0.5905 0.4803 -1.230 0.219
Ethnicity - White -0.3223 0.4802 -0.671 0.502

Table 6.1: The fixed terms for the experiment considering the local interpretability layout. The
parametric coefficients have values for Estimate, Standard Error, z-value, and Pr(> |z|). The z-
value relates to the estimation’s mean, representing the number of standard deviations from this
mean. Lastly, the Pr(> |z|) column depicts the p-value for the coefficients. Specifically, it indicates
the probability of obtaining a value of z bigger than our calculated absolute z-value.

The set of results for the combined interpretability layout is the last part of the within-subject
experiments. Figure 6.8 describes the results for fixed terms, while Figure 6.9 depicts results for
the smooth terms. Moreover, Tables 6.5 and 6.6 detail the corresponding statistical values. As
in the previous interpretability layout cases, no fixed term influences participants’ classification of
violating behavior, with only the specific user and sentence being relevant.

In summary, our findings demonstrate that no interpretability layout (local, sum of relevance
scores, or combined) influences participants’ views on misogyny and racism. Furthermore, the
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Figure 6.5: Smooth terms of the GAM model for the experiment considering the local interpretabil-
ity layout. The Y-axis (effects) refers to the estimated slope, which is a consequence of the effect
being modeled as a random slope. The Gaussian quantiles reflect the values of a standard normally
distributed variable, while the Y-axis shows the predicted values of the random intercept. Conse-
quently, the deviations from the line indicate the deviation of the data points from the expected
normal distribution.

Smooth Terms EDF Ref.df Chi.sq P-value
User Id 33.19 35 1374 < 2e−16

Sentence Id 36.83 38 2367 < 2e−16

Table 6.2: Approximate significance of smooth terms for the experiment considering the local
interpretability layout. With Effective Degrees of Freedom (EDF), Reference Degrees of Freedom
(Ref.df), Chi.sq, and p-value. EDF represents the complexity of the smooth. For instance, an
EDF of 1 indicates a straight line. Higher EDFs represent more wiggly curves. The Ref.df column
contains the maximum degrees of freedom for each term used in calculating the p-value. The
Chi.sq represents the test statistic to determine the overall significance of the smooth. Lastly, the
p-value is the result of the test.

Factors Estimate Std. Error z Value Pr(> |z|)
Intercept 4.8605 0.6170 7.88 3.3e−15

Treatment - List -0.0174 0.5984 -0.03 0.98
Gender - Male -0.6228 0.5121 -1.22 0.22
Ethnicity - White -0.1098 0.5121 -0.21 0.83

Table 6.3: The fixed terms for the experiment considering the sum of relevance scores interpretabil-
ity layout (“list”). The parametric coefficients have values for Estimate, Standard Error, z-value,
and Pr(> |z|). The z-value relates to the estimation’s mean, representing the number of standard
deviations from this mean. Lastly, the Pr(> |z|) column depicts the p-value for the coefficients.
Specifically, it indicates the probability of obtaining a value of z bigger than our calculated absolute
z-value.

demographic factors under investigation, specifically gender and ethnicity, do not yield any signif-
icant influence on participants’ assessments. We argue that participants start with a given view of
what constitutes hate speech when they answer the questionnaire, or our model’s output already
aligns with their classification of hate speech. Thus, any information provided by the different
interpretability layouts fails to change the participant’s rating while evaluating hate speech. This
conclusion is supported by our qualitative analysis (q.v. Section 6.2.3), with comments highlighting
participants’ reliance on their own view of hate speech when assessing violating behavior.
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Figure 6.6: Fixed terms of the GAM model for the experiment considering the sum of relevance
scores layout (referred to as “list”). The baseline, female, and black values for the partial effects are
zero because they represent the reference level. In contrast, the values for the specific coefficients,
e.g., local, male, and white, vary since they represent the estimation of their deviation from the
intercept (reference values). Lastly, the dotted lines present the interval of the Std. error.

Smooth Terms EDF Ref.df Chi.sq P-value
User Id 33.4 35 1623 < 2e−16

Sentence Id 36.7 38 2426 < 2e−16

Table 6.4: Approximate significance of smooth terms for the experiment considering the sum
of relevance scores interpretability layout (“list”). With Effective Degrees of Freedom (EDF),
Reference Degrees of Freedom (Ref.df), Chi.sq, and p-value. EDF represents the complexity of
the smooth. For instance, an EDF of 1 indicates a straight line. Higher EDFs represent more
wiggly curves. The Ref.df column contains the maximum degrees of freedom for each term used in
calculating the p-value. The Chi.sq represents the test statistic to determine the overall significance
of the smooth. Lastly, the p-value is the result of the test.
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Figure 6.7: Smooth terms of the GAM model for the experiment considering the sum of relevance
scores interpretability layout. The Y-axis (effects) refers to the estimated slope, which is a conse-
quence of the effect being modeled as a random slope. The Gaussian quantiles reflect the values
of a standard normally distributed variable, while the Y-axis shows the predicted values of the
random intercept. Consequently, the deviations from the line indicate the deviation of the data
points from the expected normal distribution.
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Figure 6.8: Fixed terms of the GAM model for the experiment considering the combined inter-
pretability layout. The baseline, female, and black values for the partial effects are zero because
they represent the reference level. In contrast, the values for the specific coefficients, e.g., local,
male, and white, vary since they represent the estimation of their deviation from the intercept
(reference values). Lastly, the dotted lines present the interval of the Std. error.
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Figure 6.9: Smooth terms of the GAM model for the experiment considering the combined in-
terpretability layout. The Y-axis (effects) refers to the estimated slope, which is a consequence
of the effect being modeled as a random slope. The Gaussian quantiles reflect the values of a
standard normally distributed variable, while the Y-axis shows the predicted values of the random
intercept. Consequently, the deviations from the line indicate the deviation of the data points from
the expected normal distribution.

Factors Estimate Std. Error z Value Pr(> |z|)
Intercept 4.1039 0.6110 6.72 1.9e−11

Treatment - Combined -0.0202 0.6620 -0.03 0.98
Gender - Male -0.4544 0.4490 -1.01 0.31
Ethnicity - White -0.5741 0.4490 -1.28 0.20

Table 6.5: The fixed terms for the experiment considering the combined interpretability layout.
The parametric coefficients have values for Estimate, Standard Error, z-value, and Pr(> |z|). The
z-value relates to the estimation’s mean, representing the number of standard deviations from this
mean. Lastly, the Pr(> |z|) column depicts the p-value for the coefficients. Specifically, it indicates
the probability of obtaining a value of z bigger than our calculated absolute z-value.

Smooth Terms EDF Ref.df Chi.sq P-value
User Id 32.9 35 983 < 2e−16

Sentence Id 36.7 38 1718 < 2e−16

Table 6.6: Approximate significance of smooth terms for the experiment considering the combined
interpretability layout. With Effective Degrees of Freedom (EDF), Reference Degrees of Freedom
(Ref.df), Chi.sq, and p-value. EDF represents the complexity of the smooth. For instance, an
EDF of 1 indicates a straight line. Higher EDFs represent more wiggly curves. The Ref.df column
contains the maximum degrees of freedom for each term used in calculating the p-value. The
Chi.sq represents the test statistic to determine the overall significance of the smooth. Lastly, the
p-value is the result of the test.
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Figure 6.10: Fixed terms of the GAM model for the between-subject experiment. The combined,
female, and black values for the partial effects are zero because they represent the reference level.
In contrast, the values for the specific coefficients, e.g., list, local, male, and white, vary since they
represent the estimation of their deviation from the intercept (reference values). Lastly, the dotted
lines present the interval of the Std. error.

6.2.2 Between-Subject

In addition to executing a within-subject analysis, we aim to investigate direct differences between
interpretability layouts, which enables us to understand if an interpretability layout asserts more
influence on participants than others.

The results illustrated in Figure 6.10 and detailed in Table 6.7 indicate that no particular treatment
(interpretability layout) influences participants’ responses more than the others. Furthermore, the
other fixed terms, gender and ethnicity, similarly do not affect the ratings across the different
layouts. In the context of the smooth terms, Figure 6.11 and Table 6.8 demonstrate that the
differences in classification ratings can be attributed to the specific user and sentence, aligning
with the findings in our within-subject analysis.
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Figure 6.11: Smooth terms of the GAM model for the between-subject experiment. The Y-axis
(effects) refers to the estimated slope, which is a consequence of the effect being modeled as
a random slope. The Gaussian quantiles reflect the values of a standard normally distributed
variable, while the Y-axis shows the predicted values of the random intercept. Consequently,
the deviations from the line indicate the deviation of the data points from the expected normal
distribution.

Factors Estimate Std. Error z Value Pr(> |z|)
Intercept 4.1595 0.5041 8.25 2e−16

Treatment - List -0.0202 0.3267 -0.06 0.95
Treatment - Local -0.2558 0.3265 -0.78 0.43
Gender - Male -0.4674 0.2666 -1.75 0.08
Ethnicity - White -0.3523 0.2666 -1.32 0.19

Table 6.7: Comparison of three interpretability layouts. The parametric coefficients have values for
Estimate, Standard Error, z-value, and Pr(> |z|). The z-value relates to the estimation’s mean,
representing the number of standard deviations from this mean. Lastly, the Pr(> |z|) column
depicts the p-value for the coefficients. Specifically, it indicates the probability of obtaining a value
of z bigger than our calculated absolute z-value.

Smooth Terms EDF Ref.df Chi.sq P-value
User Id 97.4 109 2918 < 2e−16

Sentence Id 18.8 19 2071 < 2e−16

Table 6.8: Approximate significance of smooth terms considering the between-subject experiment.
With Effective Degrees of Freedom (EDF), Reference Degrees of Freedom (Ref.df), Chi.sq, and p-
value. EDF represents the complexity of the smooth. For instance, an EDF of 1 indicates a straight
line. Higher EDFs represent more wiggly curves. The Ref.df column contains the maximum degrees
of freedom for each term used in calculating the p-value. The Chi.sq represents the test statistic
to determine the overall significance of the smooth. Lastly, the p-value is the result of the test.

103



6.2.3 Qualitative Evaluation

The previous two sections address the statistical analysis of our user study. Differently, here we
investigate the qualitative aspect of this experiment, aiming to gain insights from participants’
comments regarding what they consider relevant while evaluating the sentences and performing
the classification task. We provide an optional box for open-text comments in our questionnaire
to collect this data. Although most of the 114 comments do not convey any relevant message to
our investigation, we shall discuss the comments that complement our statistical analysis in the
rest of this section. Specifically, we analyze comments that fit into three categories: 1) familiarity
with the task, comprising four comments; 2) questionnaire design, comprising five comments; and
3) model accuracy, comprising four comments. Next, we discuss the most representative instances
within each category.

Familiarity with the Task. An interesting insight regarding participants’ perception of how
they used information from the interpretability layouts and their familiarity with the hate speech
classification task is present in the following comment: “I did not find that the AI-generated signif-
icance values affected my perceptions of whether statements were misogynistic or racist, but rather
confirmed my thoughts, with a couple of exceptions that read more benign (something you’d read
in a history book, e.g., the ‘royal strippers’ example) that the AI represented were more than I
believed.” This observation supports our reasoning that, in the context of hate speech - a common
type of violation that people are exposed to in online interactions, participants tend to have a
clear view of what constitutes hate speech before they are presented with interpretability informa-
tion. Concretely, this comment highlights two scenarios: 1) our interpretability information already
aligns with what participants expect of hate speech, i.e., the ML model correctly learns these kinds
of violations; 2) if the interpretability information does not align with participants’ definition of
hate speech, then it is difficult to change people’s views on what they consider hate speech when
they evaluate the sentences present in our study (such as the presence of sentences with “royal
strippers”). The following comment provides further insight into participants’ familiarity with the
hate speech task: “...Maybe it went so quick [the time needed to complete the questionnaire] because
the language used was very obvious for me in choosing an answer.” This observation highlights
that the participant has a clear view of what constitutes hate speech. Moreover, the sentences
evaluated in our study clearly contain terms related to hate speech that people are familiar with.

Questionnaire Design. Another relevant observation relates to the questionnaire design, as
highlighted in the following comment: “This survey was a little unpleasant, as stated in the consent
form. Thank you for not making this survey any longer than it is now.” Our initial goal was to
maintain survey conciseness, strictly including only the required number of sentences to achieve
our predetermined statistical power. The comment’s observation supports our initial decision,
which is especially relevant since we are handling offensive language that could be hurtful for the
readers, especially when they are numerous. As such, we strongly recommend that future research
tackling sensitive topics like hate speech follow in our footsteps and carefully consider the number
of violations presented in questionnaires, conducting statistical tests and comparing with existing
literature to avoid exposing participants to sentences that may adversely affect their mental health.
In this context, our work provides further metrics based on statistical analysis to assist in future
questionnaire design processes (q.v. Section 6.1).

Model Accuracy. In this context, participants expressed concerns about the relevant terms
identified by our interpretability approach. The following comment illustrates this concern: “The
highlighting seemed strangely unfocused in some instances...” This observation highlights an im-
portant aspect in the ML field: the discrepancy between the ML model and human perception.
Thus, we argue that if interpretability is not used to influence or correct a user’s behavior, such
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layouts can be useful to identify these discrepancies and trigger user feedback that would help
correct the outputs of the ML model. Concretely, the existence of a contrast between participants’
views and the model’s output supports incorporating interpretability layouts to assist the eval-
uation of the model’s behavior beyond conventional performance metrics (e.g., recall, F1-score,
and precision). Moreover, given that our multi-scenario approach focuses on norm violation de-
tection within contexts characterized by small labeled datasets, there might be instances where
the model fails to capture terms commonly associated with offensive content. Consequently, this
may lead to the model’s inability to identify specific sentences as violating behavior, impacting its
accuracy. For instance, the following comment is a representative case: “The AI is unaware of
racial nuances behind certain phrases such as ‘big lipped’ which was not even highlighted.” This
observation illustrates potential limitations in the detection capabilities of our model, especially
when the model must handle terms that have limited representation in our training dataset (for
instance, one occurrence). Integrating interpretability enhances the transparency of ML models by
enabling people to understand the relevant terms that these models consider. This is particularly
significant considering the dynamic nature of online interactions, where new sentences expressing
hate speech emerge over time within a single community or as we incorporate data from diverse
communities.

6.3 Summary

This chapter presented a user study to assess the potential influence of three interpretability layouts
when participants evaluate hate speech in text. Specifically, our study focused on two hate speech
classes: “Misogyny” and “Racism.” With statistical and qualitative analysis of questionnaire
responses, we aimed to provide empirical evidence in the context of interpretability for norm
violation detection within online communities. Concretely, this investigation explored the impact
of interpretability information on participants: do they influence people’s views?

The three interpretability layouts considered in this work comprised local, the sum of relevance
scores (referred to as “list”), and a combined approach, as illustrated in Figure 6.1. The Inte-
grated Gradients (IG) algorithm provided interpretability data for the study (q.v. Section 2.5.2).
Moreover, we used the model trained with the CAL framework (q.v. Chapter 5) to obtain the
interpretability data.

Beyond exploring interpretability layouts, our study was interested in assessing the potential impact
of other factors on participants’ views of what constitutes a violation. Thus, our statistical model
included terms related to participants’ gender and ethnicity (q.v. Equation 6.2). Including these
demographic characteristics was motivated by our focus on two violation classes: “Misogyny” and
“Racism.” Specifically, our statistical approach took into consideration that gender and ethnicity
might influence perceptions of misogynistic and racist behavior(Center, 2020; Kirkman & Oswald,
2020), respectively. Thus, by considering information related to participants’ characteristics in our
statistical analysis, we ensured that these factors did not incorrectly impact our results.

This user study comprised both within-subject and between-subject analyses. Additionally, it
covered a qualitative evaluation, in which we used participants’ comments to complement our un-
derstanding of the statistical findings. Participants were randomly allocated into three groups,
corresponding to the three distinct interpretability layouts. Following a power analysis, we deter-
mined a sample size of 38 participants per group. Each of these 38 participants had to evaluate
20 text sentences, equally distributed between the two violation classes. Participants performed
two evaluations for each sentence: one without any information from the interpretability layout,
and another with interpretability data from one of the three layouts. This study design yielded
40 responses from each participant, collected on a 7-point Likert scale. To estimate participants’
ratings in classifying a text containing hate speech, we employed the Generalized Additive Model
(GAM) (q.v. Section 2.6). By fitting this model to the response data, we analyzed the influence of

105



interpretability layouts, gender, ethnicity, individual sentences, and individual participants on the
response (q.v. Section 6.2).

Results of our statistical analysis indicated that none of the interpretability layouts influenced
participants’ views regarding the classification of hate speech within the context of the “Misog-
yny” and “Racism” classes. Furthermore, in the comparative assessment between the different
interpretability layouts, no layout demonstrated a larger influence over the others. The qualitative
analysis, which integrated insights from participants’ comments, leveraged our comprehension of
these results. Two key points explain why interpretability layouts did not significantly influence
participants’ views: First, the participants’ familiarity with hate speech, including the presence of
explicit hate speech terms. Second, the alignment between the ML model’s output and partici-
pants’ views, where the interpretability layout identified relevant terms similar to those considered
by the participants. Moreover, comments on the model’s accuracy contributed valuable insights
into the impact of incorporating ML interpretability and feedback mechanisms into our approach.
First, interpretability addresses transparency by allowing people to understand the relevant terms
considered by the ML model, while feedback enables people to correct misalignment between their
views and the model’s output. This is especially important in contexts where new instances of hate
speech may emerge over time within a single community or with the inclusion of data from diverse
communities. Second, interpretability layouts can provide insights into evaluating the ML model’s
behavior beyond traditional performance metrics (e.g., recall, F1-score, and precision), which is
especially relevant in scenarios where understanding the rationale behind an ML model’s decision
is essential for optimal implementation.

Finally, the next chapter describes works related to our research. While it presents related works
in the field of norm violation, ensemble and incremental learning, cross-community learning, and
interpretability, it also analyses existing user studies and compares their results to ours.
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Chapter 7

Literature Review

This chapter presents related work to the research reported in this thesis. First, we cite litera-
ture focusing on detecting detrimental behavior in online communities using Machine Learning
(ML) models (q.v. Section 7.1). The idea is to present different approaches to this issue in di-
verse domains, highlighting the importance of research in the field. Second, we describe works
that build an ensemble of classifiers trained using incremental learning approaches (q.v. Sec-
tion 7.2). Subsequently, Section 7.3 presents the literature on cross-community learning, where
works leverage the performance of a model using data from diverse sources, including solutions
that employ transformer-based models, like Pre-Trained Language Models (PLMs) and adapters
(q.v. Section 2.4). In Section 7.4, we describe works that handle interpretability in tabular and text
classification tasks, demonstrating how this technique can improve human interaction in different
contexts. Lastly, we investigate the literature that conducts experiments on how humans work
with interpretability information (q.v. Section 7.5).

7.1 Norm Violation Detection

Detecting norm violations in online communities is one of the main challenges in this thesis.
Moreover, this subject is relevant to previous research across diverse domains. Thus, in addition
to the specific context of our investigation, which focuses on norm violation detection in Wikipedia
article editing, we review previous research that has tackled similar challenges in online platforms,
including Stack Overflow and various social media sites. Concretely, this review describes solutions,
ML strategies, and datasets previously explored in these domains. Additionally, it compares our
multi-scenario approach to existing solutions, emphasizing the contributions of this thesis.

Starting with existing works focusing on the Wikipedia online community to detect norm viola-
tions, Anand and Eswari (2019) apply Deep Learning (DL) to classify a comment as abusive or not
based on a dataset from the talk page edit. Also, our initial work uses the Logistic Model Tree to
learn to detect norm violations (Freitas dos Santos et al., 2022a).1 However, these differ from our
research because they do not cope with concept drift and do not incorporate community feedback
to update their models.

Cheriyan et al. (2017) present a work that explores ML to detect norm violations in the Stack
Overflow community. As in our work, they use specific data about the context of the community
to train the ML models. In this case, instead of article edits, they analyze comments posted on

1We cite our initial work in the literature review instead of including it as part of our contributions. This decision
is based on the fact that this initial work does not explore the same frameworks we investigate in this thesis. Notably,
only the domain is similar.
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the site. The presence of hate speech and abusive language defines the violation. The main dif-
ference is our focus on applying an incremental learning approach to continuously update the ML
models, while Cheriyan et al. (2017) focus on using a recommendation system to detect and rec-
ommend alternatives to the community members’ posts. Continuing their work in (Cheriyan et al.,
2021), the authors expand their solution to incorporate the detection of offensive language in four
software engineering communities. They consider three violation classes: personal attack, racial
discrimination, and swearing. Other ML techniques were also evaluated, ranging from Random
Forest and Support Vector Machines to PLMs, which present the best classification performance.
Both works (Cheriyan et al., 2017, 2021) use TF-IDF2 Vectorizer, an automated method to obtain
features from text data. TF-IDF ensures a consistent approach to feature extraction,3 enables
handling large amounts of text, and avoids using a manual process, which can be time-consuming.
This differs from FeDAL, where the community provides the attributes (q.v. Section 3.5), allowing
the incorporation of the community view to define the relevant features and the inclusion of con-
textual information in a domain-specific manner (creating a detailed set of features to formalize
the data). Additionally, the differences between their PLM approach and ours are as follows: 1)
LaMAL presents a continuous fine-tuning process to detect norm violations in binary and multi-
label classification tasks (q.v. Section 4.3), and 2) CAL incorporates adapters, updating the network
parameters using data from diverse communities to start the training process, which is especially
useful when learning in newly created (or low-resource) communities with limited labeled data
(q.v. Chapter 5).

Different researchers use transformer-based language models for violation detection in text clas-
sification tasks. Markov et al. (2022) create an ensemble using PLMs, Support Vector Machine,
and feature information. Since their application considers the Dutch language, BERTje was used,
which is explicitly trained on top of Dutch text sentences (W. De Vries et al., 2019). The authors
used data from comments on Facebook and Twitter to evaluate their approach. While they mix
text and features to solve violation classification tasks, our multi-scenario approach tackles them
separately, aiming to avoid the need to have a featurization process when a community provides
text data. For instance, LaMAL and CAL address hate speech detection without defining a set
of attributes that encodes a text sentence. Consequently, these frameworks do not require the
community members to create these attributes.

Intending to detect aggression and misogyny, Samghabadi et al. (2020) use BERT (Kenton &
Toutanova, 2019) in a multi-task setting. Their solution first classifies an action as not aggressive,
covertly aggressive, or overtly aggressive. Then, they discover the target of the violation, focusing
on the gender of a person or group. Their work achieves state-of-the-art performance. This solution
differs from CAL, as our framework adopts adapters for each violation class, incorporating data
from source communities to initially train the transformer-based model.

Muslim et al. (2021) investigate the use of offensive language in social media. They employ a
combination of ensemble and cost-sensitive learning to enhance the performance of BERT for this
task, divided into three sub-tasks: a) offensive language identification, b) automatic categorization
of offense types, and c) offense target identification. The authors focus on building an ensemble of
BERT models to address the issue of high variance in small datasets. Similar to other studies on
detrimental behavior, the dataset is also imbalanced. In contrast to their work, which uses cost-
sensitive learning to evaluate the costs of mistakes made by the model, LaMAL employs binary
focal loss to assess errors in the calculation of the loss function during the training process.

The work in (Akhter et al., 2021) compares conventional ML and DL methods. The main emphasis
of their investigation is on low-resource language, particularly Urdu. The scarcity of resources
for this language represents a challenge for DL methods to detect abusive language. Within
this scope, they investigate four DL models: Convolutional Neural Network, Long Short-Term
Memory, Bidirectional Long Short-Term Memory, and Convolutional Long Short-Term Memory.

2Term Frequency-Inverse Document Frequency (TF-IDF) (W. Zhang et al., 2011)
3This extraction process avoids possible variations introduced by different people in a manual process.
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The authors argue that these are useful for capturing long-term dependencies in text sentences.
YouTube is the community of interest. Like our work, they must also learn in context with an
imbalanced dataset. However, they do not investigate transformer-based models. Furthermore, our
research focuses on continuously adapting and interpreting elements contributing to norm violation
detection. In contrast, their presentation focuses on comparing DL methods among themselves
and against traditional ML models such as Naive Bayes, Instance-Based Learning, Support Vector
Machine, Logistic Regression, and a rule-based approach. In conclusion, results show that the
Convolutional Neural Network outperforms the other DL methods and that, within the specific
language under investigation, DL methods perform better than ML methods.

Another research focusing on detecting norm-violating behavior within an online community is de-
scribed by Hajibabaee et al. (2022). The authors explore the Twitter community. Their methodol-
ogy comprises embedding approaches like TF-IDF, Word2Vec (Church, 2017), and FastText (Joulin
et al., 2016) to obtain the embedding of text sentences. After obtaining this representation, the
authors investigate the application of eight different ML methods. Furthermore, the classification
task categorizes text sentences into hate speech, offensive language, or neither. Like our work, their
dataset is annotated by crowdsourcing workers. Their findings describe an empirical study identi-
fying that the best-performing methods are Adaboost, Support Vector Machine, and Multi-layer
Perceptron, with TF-IDF embedding. Lastly, it is important to highlight that their work differs
from the scope of this thesis in several aspects. Most notably, our research explicitly addresses
concept drift, multi-scenario approaches, and interpretability.

Like CAL, Mutanga et al. (2020) use DistilBERT (Sanh et al., 2019) to detect violations in an
imbalanced setting. Their findings show that DistilBERT outperforms other algorithms (e.g.,
BERT, RoBERTa (Y. Liu et al., 2019)) in terms of F-measure. The advantage of transformer-based
models in this study is that they efficiently capture long-range dependencies and parallelization.
Similar to our reasons for adopting DistilBERT, they highlight its small size, faster training time,
and performance. Furthermore, they acknowledge the suitability of transformer-based models for
learning from source data. However, in contrast to CAL, they do not investigate this aspect.

In addition to the comparisons above, we note the potential of our work to contribute to another
line of research, which focuses on continuously revising norms as agents interact (Campos et al.,
2013; Dell’Anna et al., 2022; Morales et al., 2015). For instance, Dell’Anna et al. (2022) propose
the Data-Driven Norm Revision approach that relies on previously obtained knowledge of whether
individual actions violate a norm or not. Their solution requires access to labeled data acquired
from automated (or manual) classification processes, which is precisely the information our ap-
proach provides. In this context, our frameworks (LaMAL and CAL) complement their strategy
by enabling the identification of multiple classes of norm violations occurring simultaneously and
handling text-based scenarios.

7.2 Ensemble and Incremental Learning

Our multi-scenario approach aims to detect norm-violating behavior in domains with concept
drift (i.e., changes in community members’ views about what constitutes a norm violation) and
imbalanced datasets (i.e., regular behavior occurs more frequently than violations). We accomplish
that by adopting ensemble (q.v. Section 2.1) and incremental learning (q.v. Section 2.3). Thus,
this section investigates existing works that adopt these techniques, comparing our multi-scenario
approach to existing solutions to emphasize the contributions of this thesis. Concretely, we present
solutions that tackle concept drift by employing incremental learning to continuously update the
base ML model as data is made available. We argue that this approach is the most suitable
to be deployed in a system supporting an online community due to the streaming characteristic
of interactions. Additionally, we present solutions that employ ensemble learning to provide an
efficient approach to learning in a context with imbalanced datasets.
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Regarding the use of incremental learning in a setting with a class distribution that is highly im-
balanced, the work in (Lebichot et al., 2021) builds a solution capable of detecting credit and debit
card fraud. Like our use case, these transactions have a sequential nature, are highly imbalanced,
and present concept drift. The authors report better results than when employing traditional of-
fline learning approaches. To enhance incremental learning, they use ensemble learning to reduce
variance and improve stability. Furthermore, they incorporate transfer learning to deal with in-
formation learned in a distinct task. One difference compared to FeDAL is that we use an active
process (explicitly detecting the change in data distribution and when that change happens (Los-
ing et al., 2017)) to detect concept drift, which is better suited to deal with major changes that
happen in a single moment in time. On the other hand, they apply a passive strategy (continuous
update of the ML model without explicit knowledge of concept drift (Losing et al., 2017)) since,
in their case, several concept drifts happen daily. Another major difference is the way to deal with
an imbalanced dataset. While FeDAL uses an ensemble, their work uses parameter tuning of a
Dense Neural Network model. In this case, the ensemble’s models are independently trained, and
the final output is the average of the probability scores.

Z. Li et al. (2020) present an incremental learning approach that emphasizes misclassified instances
in the update procedure of the ensemble’s models. Another interesting characteristic of their
approach is that it keeps a limited number of classifiers in the ensemble, ensuring efficiency. Like
FeDAL, they use an ensemble to handle data imbalance without needing to access past data.
Moreover, they employ SMOTE as the oversampling technique (Chawla et al., 2002), while we
oversample by replication. Section 3.6 presents ablation studies comparing both techniques. In
our context, these techniques have similar performance values before introducing concept drift.
However, after introducing concept drift, the replication strategy outperforms SMOTE. Specifically,
our results indicate that oversampling by replication is the most suitable strategy when handling
online communities with class overlap, feedback noise (re-label data), and limited labeled datasets.
One significant difference between our approaches is the inclusion of a feedback component that
uses data provided by the community to emphasize instances with a swap of class labels.

Different from FeDAL, which builds ensembles, Idrees et al. (2020) focus on discovering the best
type of classifier over time in a domain with concept drift. This approach is particularly interesting
when dealing with purely online learning since it is harder to know which base classifiers would be
better for an ensemble from the beginning of the training procedures (because we have few data
points). Thus, as new data becomes available, finding the best base classifiers can leverage the
solution. If the best type of classifier changes due to concept drift, online ensemble learning should
also be able to automatically identify which classifiers are best for the new situation. By using a
heterogeneous framework, the authors aim to combine different classifiers to improve performance.

H. Zhang et al. (2019) present an ensemble framework to handle concept drift in an imbalanced
dataset context, the Resample-based Ensemble Framework for Drifting Imbalance Stream (RE-
DI). Their approach uses a resampling buffer to keep instances of the minority class to handle the
class distribution over time. Also, ensemble members that perform worst in the minority class
receive smaller weights. RE-DI maintains a long-term static classifier to handle gradual change
and a set of dynamic classifiers to handle sudden concept drift, focusing only on recently received
data. In the case of the dynamic classifiers, their weights incrementally decrease as time goes by
while they are dynamically created and replaced. The goal is that the classifiers learn the latest
concepts by the end of the training. Because the dynamic classifiers only exist for a period, RE-DI
creates them using a block-based method, which has more initialization power and can be updated
online. Unlike our frameworks, where we use oversampling to emphasize the minority class and
undersampling to decrease the influence of the majority class in the training procedure, RE-DI
uses a buffer (making use of past data), in which the last added data is used more than the older
ones.

Addressing the same challenges as our work regarding imbalanced datasets and online learning, H.
Du et al. (2021) introduce a cost-sensitive online ensemble learning algorithm. To build this ap-
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proach, the authors use different equalization methods, from initially constructing base classifiers
to calculating the weights of these initial classifiers. To evaluate their approach, the authors inves-
tigate the intrusion detection use case. Their approach shows better performance, including im-
provements in reducing the missing alarm rate and the false alarm rate. Unlike FeDAL, which uses
all classifiers in an ensemble to make the final decision (voting scheme), they propose a weighted
voting scheme, where only a subset of classifiers, selected based on specific criteria, contribute to
the final decision. Their methodology relies on bagging ensemble learning and employs decision
trees as the base classifiers, which differs from FeDAL’s use of neural networks. Additionally,
while they calculate classifier weights based on different misclassification costs, FeDAL focuses on
presenting distinct data points to the classifiers, adopting a window approach to determine which
data points are processed by each classifier (q.v. Section 3.2).

Abbasi et al. (2021) propose the ElStream approach. ElStream aims to build an ensemble of
classifiers to detect concept drift. Their approach employs the majority voting scheme, allowing
only the best classifiers to cast a vote. ElStream creates the ranking based on the confidence
level. Unlike our multi-scenario approach, they focus on big data streams. Furthermore, they
execute experiments in real and simulated datasets, emphasizing fake news detection. Specifically,
their work investigates three ensemble classifiers: Decision Tree, Random Forest, and Extra Tree.
In contrast to obtaining the set of features from community members,4 ElStream uses feature
extraction to identify the most relevant features related to fake news detection, extracting these
features directly from text content. Lastly, unlike our highly imbalanced datasets, their datasets
do not present this characteristic, so they are unconcerned with this issue.

Abedin et al. (2022) address the challenge of detecting credit risk in small businesses. Their
methodology combines weighted SMOTE and ensemble learning, adding weights to SMOTE’s
new instances. This approach is similar to FeDAL’s strategy to handle imbalanced datasets, as
they also create balanced datasets from the original set of instances. Their findings include the
beneficial impact of data-sampling techniques on classification performance. Specifically, results
demonstrate that SMOTE, particularly combined with weighting, outperforms non-sampling tech-
niques. Like FeDAL’s results (q.v. Section 3.6), their findings also indicate that ensemble and
data-level solutions yield the highest performance metrics, while cost-sensitive classifiers exhibit
the lowest performance. In this context, weighted SMOTE and Random Forest present the best
combination. However, unlike our Neural Network approach, which allows for incremental updates
using stochastic gradient descent, their base classifier is a Decision Tree.

7.3 Cross-Community Learning

In this thesis, we aim to work with low-resource (or newly created) communities (q.v. Section 1.1.3),
where low-resource implies working with a limited labeled set of norm-violating actions (Huang
et al., 2022). To tackle this challenge, we adopt cross-community learning, which incorporates
data from different sources (communities) to improve the performance of ML models in a new
target community. This approach also includes solutions that employ transformer-based models
and adapters (q.v. Section 2.4). Concretely, CAL is the framework that adopts this strategy, which
this section compares with existing solutions to emphasize our contributions.

Chandrasekharan et al. (2019) present Crossmod, which uses cross-community learning through an
ensemble of classifiers to assist moderators in detecting violations within different Reddit commu-
nities. Crossmod enables moderators to oversee the decision-making process of ML models and to
deal with the scarcity of labeled data. Unlike CAL, they do not focus on understanding changes in

4Similar to the advantages when compared with these works (Cheriyan et al., 2017, 2021) in Section 7.1, using
the set of features provided by the community allows the incorporation of the community view to include contextual
information in a domain-specific manner (creating a detailed set of features to formalize the data).
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the view of communities and on incorporating adapters to handle new violation classes dynamically
(q.v. Section 5.1).

Like with CAL, Subramanian et al. (2022) use adapters to facilitate creating a solution to identify
offensive comments on YouTube. Specifically, they consider low-resource languages, characterized
by a scarcity of labeled data and language models (Ishmam & Sharmin, 2019; A. Sharma et
al., 2022). Their results indicate that adapter-based fine-tuning is more effective than full fine-
tuning PLMs while updating fewer parameters. Lastly, our approaches diverge in that we focus
on understanding changes in community views (within a single community or across domains, q.v.
Section 5.3) regarding norm-violating behavior.

Pamungkas and Patti (2019) propose an approach for detecting abusive language that combines DL
techniques with a multilingual lexicon. Like CAL, their solution addresses the detection challenge
from a cross-domain perspective. In particular, they incorporate a domain-independent multilin-
gual lexicon of abusive words. It is worth noting that their work explores the availability of word
embeddings across diverse languages to leverage cross-lingual learning, conducting experiments
involving four languages. In contrast to CAL, which entails fine-tuning transformer-based models
with target data without employing a lexicon, their experiments for cross-domain classification rely
on training using only source data and testing directly on target data. By adopting this approach,
they focus on evaluating the abusive lexicon’s impact on the task, where results indicate better
performance values. Furthermore, CAL differs from their approach in tackling the emergence of
new violation classes. Lastly, similar to our findings that indicate abusive terms change from one
community to another (q.v. Section 5.3), their results also show that the nature of swearing may
vary from one domain to another.

Glavas et al. (2020) introduce an approach to address the challenges of cross-domain and cross-
lingual learning. The authors conduct experiments considering three domains. Furthermore, they
involve translation from English to five other languages. It is worth noting that they also investigate
PLMs, including RoBERTa (q.v. Section 2.4). One interesting finding relevant to our research is
that data augmentation through the combination of training instances from different domains can
lead to detrimental performance, especially when dealing with abusive language domains that
exhibit significant differences. The authors tackle a binary classification task, directly fine-tuning
the PLMs and focusing on multiple languages. Consequently, their work differs from LaMAL and
CAL, which detect multi-label violations and can use more than one source dataset to fine-tune
adapters (depending on the violation class, as described in Section 5.2), respectively.

Jin et al. (2022) evaluate the potential benefits of continually adapting PLMs to emerging data,
focusing on its application for two dataset configurations: 1) one derived from diverse domains,
including different topic areas, such as Computer Science and Biology, along with data streams from
Twitter, which spans several years; and 2) one derived from a single domain but including changes
over time, similar to our use case of evolving community members’ views on norm violations.
However, unlike CAL, they do not investigate adapters’ performance on classification tasks but
rather on relation extraction5 and named entity recognition.6 Specifically, in the case of the Twitter
community, the task revolves around predicting hashtags and emojis. Relevant to our work, their
results show that adapters consistently achieve competitive performance across different tasks,
comparing adapter-based methods against alternative techniques, including sequential pertaining,
memory replay, and distillation-based approaches.

Q. Lu et al. (2021) focus on the biomedical case to introduce an architecture that employs adapters,
independently training them on diverse sources. Their goal is to explore domains that benefit from
knowledge derived from a set of source tasks. It is important to note that their framework differs

5Relation extraction refers to the task of identifying the association that exists between set of entities (e.g.,
people, objects, concepts) (Nasar et al., 2021).

6Named entity recognition refers to the task of identifying references to entities in text, specifically information
like names of people and countries (Nadeau & Sekine, 2007).
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from our CAL approach, as CAL’s independent adapters are directly associated with specific vio-
lation classes, while they propose an adapter architecture that relates to the diverse data sources.
Furthermore, CAL allows source communities to provide data for various violation classes, high-
lighting their role in training distinct and independent adapters. Their findings demonstrate the
advantage of adopting adapters to improve performance. Like CAL, the trained adapters in their
context can be deployed in different applications, exploring previously obtained knowledge from a
source task to a novel target task. Consequently, this allows for an easy extension to new source
data or even replacing existing sources. To conclude, they show that adapters are useful not only
in a violation detection context but also in different tasks, including question answering, natural
language inference, and named entity recognition.

While Le et al. (2021) use adapters for multi-lingual speech translation, Barbieri et al. (2022)
present an approach that uses Twitter data from a multi-lingual setting for sentiment analysis.
Both approaches use data in different source languages to leverage learning in a context with big
datasets (the first with hundreds of hours of speech and the second with around 200M Twitter
entries). This contrasts with our solution, which focuses on small datasets and low-resource com-
munities (q.v. Section 1.1.3). Their results show that adapters can improve performance in a target
task, even for cases considering distinct source languages.

Two interesting works (Malik et al., 2023; R. Zhang et al., 2021) employ adapters to address
unsupervised domain adaptation. This task refers to the process of learning from a source domain
(or community) and applying it effectively to a novel, unlabeled target domain (or community) (T.
Xu et al., 2021). First, like CAL, R. Zhang et al. (2021) propose an approach requiring fine-
tuning adapters that adopt the bottle-neck architecture. Particularly, they use this architecture to
achieve domain adaptation. However, unlike CAL, which relies on a one-step procedure for adapter
training (q.v. Algorithm 5.1), they follow a two-step approach. The initial step requires training
on a dataset combining source and target data to reduce differences between the source and target
domains. Subsequently, the second step requires fine-tuning using the source data while testing the
model’s performance on the target data. This approach presents an important difference from CAL
since our main assumption is that CAL does not have access to the target data at the beginning
of the training process (q.v. 5.2).

Second, Malik et al. (2023) use an approach that stacks two adapters, the first trained to mitigate
domain divergence and the second specific for the task with labeled data. They also present an
alternative approach, which does not stack adapters but simultaneously mitigates domain diver-
gence and performance loss. Notably, they differ from R. Zhang et al. (2021) in that they do not
use data from the target during the training process. Furthermore, they differ from CAL in that
we focus on the incremental adaptation of the adapter based on new feedback from community
members (or a new community).

In addition to the bottle-neck architecture (q.v. Section 2.4), different approaches exist for adapters.
Pfeiffer et al. (2020) present AdapterFusion, which involves learning from multiple source tasks
and combining their representations via a fusion layer. This approach aims to combine multiple
adapters to solve a single target task. In the future, we shall explore this architecture to handle
multiple cross-community definitions for the same violation class. Other approaches aim to op-
timize the parameter efficiency of adapters. First, S. He et al. (2022) introduce a pruning-based
approach that reduces the number of trainable parameters. Second, Cai et al. (2022) focus on
training fewer and smaller adapters at the top layers.

Lastly, besides NLP tasks, cross-community learning with adapters has been explored for computer
vision. Huang et al. (2022) investigate the face anti-spoofing task, training adapters on diverse data
sources and evaluating their ability to detect unseen instances in a new target task.
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7.4 Interpretability

Following the training of ML models, we are interested in providing community members with
an explanation of which features or words of their actions have contributed most to detecting
norm violations. As such, in our specific domain, interpretability aims to provide information that
assists community members in evaluating a model’s decision on whether an article edit is correctly
classified. It is worth noting that the utility of interpretability extends beyond our use case and is
explored to solve different tasks (e.g., highlighting depression marks in text, evaluating adversarial
attack situations, and identifying words related to political polarization).

Sarzynska-Wawer et al. (2021) apply the Local Interpretable Model-Agnostic Explanations (LIME)
tool to the psychiatry use case. The authors use LIME to explain the predictions of a neural
network, specifically the Embeddings from Language Models (ELMo). The main idea is to detect
schizophrenia symptoms. Unlike our work with FeDAL that applies LIME to obtain the relevant
features, they use the text data directly. Thus, in their case, LIME does not output feature scores.
Instead, it outputs the words (parts of the texts) most relevant for the classification. One interesting
point about healthcare domains is that interpretable models play an important role since healthcare
professionals can make assertive decisions when assisted by automatic methods (ElShawi et al.,
2021).

Novikova and Shkaruta (2022) use BERT to detect depression marks in text. In this scenario, in-
terpretability provides additional information about the words usually associated with patient be-
havior. For instance, spiritual words are sometimes connected to non-healthy behavior, while work
and professional words indicate healthy behavior. Also considering the healthcare case, ElShawi et
al. (2021) focus on quantifying the quality of interpretability tools. Their work compares different
tools, and the result indicates that no technique outperforms the others, even when considering
different metrics.

Focused on maintaining a safe online space, Mahajan et al. (2021) compare different models to
automatically moderate content, especially those that express online abuse. To do that, their work
explores three datasets depicting this behavior (one is from the comments page on Wikipedia).
The authors also treat comments as a series of features created employing TF-IDF and word
embeddings (GloVE and FastText). Like our work, they conclude that LIME can help in the
explanation process, providing additional information to evaluate an ML model’s performance. Our
approaches differ in the training strategy. Specifically, while we focus on comparing incremental
learning approaches (q.v. Section 3.6), their work compares different ML models within the same
training strategy.

LIME can also be applied to explain the results of DL models (Aluru et al., 2020). They focus on
hate speech detection in a multi-language domain with different data sources. The authors build
embeddings for the text being classified. Subsequently, the words in this text receive the LIME
score, indicating how they contribute to the model’s output. Although it differs from our LIME
approach with FeDAL (q.v. Section 3.5), which considers the changing aspects of a single data
source (Wikipedia article edits) over a certain period, their work is similar to our IG approach with
LaMAL (q.v. Section 4.3) and CAL (q.v. Section 5.2) for text-related tasks. The main difference is
that LaMAL and CAL use IG, a model-specific approach that allows extracting rules from PLMs,
while LIME follows a model-agnostic architecture, which allows the creation of explanations for
different types of ML models (e.g., an ensemble of neural networks, random forests, support vector
machines) with no need to explore the inner workings of these models. Furthermore, they use
the LIME scores for the embeddings, showing differences depending on the model. Specifically,
they demonstrate that while one model focuses on hateful keywords, another focuses on the whole
context in which the keyword is present.

In their work, Xiang et al. (2021) introduce an approach to enhance the interpretability of PLMs.
Unlike IG with LaMAL and CAL, the authors compute the relevance of each word’s contribution
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to the output of a text and use max pooling to aggregate these values to determine the overall
relevance of an entire sentence. To evaluate the effectiveness of this approach, they conduct a
user experiment, discovering that the explanations generated by their method outperform those
produced by inherently interpretable models (e.g., Logistic Regression). Compared to our user
study (q.v. Chapter 6), the difference is that we aim to directly understand how participants’
views about norm-violating behavior change due to the interpretability tool. Lastly, future work
shall evaluate the differences between IG and their proposal, focusing on analyzing how the relevant
terms for norm violation differ depending on the interpretability algorithm.

The relationship between interpretability and PLMs can also benefit low-resource languages, char-
acterized by a scarcity of labeled data and language models (Ishmam & Sharmin, 2019; A. Sharma
et al., 2022). Karim et al., 2021 present a study that applies an interpretability approach to in-
vestigating hate speech in Bengali, focusing on political, personal, geopolitical, and religious hate
targets. In contrast to our work, their approach uses the Layer-wise Relevance Propagation tech-
nique to obtain interpretations when hate speech is detected.

Sabry et al. (2022) contribute to exploring the understanding of hate speech by investigating five
tasks. Their approach employs IG to tackle interpretability. However, unlike our work, they aim
to identify why their Bidirectional Long Short-Term Memory model made mistakes, especially
considering instances where errors are prevalent. On a different domain, Sáenz and Becker (2021)
investigate interpretability to obtain the relevant words associated with political polarization in the
context of anti/pro-vaccination concerning COVID-19. Specifically, the authors focus on attention
weight for word relevance, which differs from our work with IG. Furthermore, while they focus on
identifying the relevant words for different classes (similar to LaMAL), CAL’s analysis focuses on
describing the differences in relevance between communities.

Some researchers also use interpretability to simulate and evaluate how ML models behave in an
adversarial attack situation (Alsmadi et al., 2021; Y. Li et al., 2022; P. Yang et al., 2020), in
which small perturbations to the input can significantly degrade model performance. In addition,
other works focus on leveraging cross-domain interactions. Hossam et al. (2021) present a model
that learns using data from a similar domain, extracting relevant features. Their assumption for
creating this substitute model is that text structures are similar across different domains (such
as reviews of movies and restaurants). A possible future direction is to investigate cross-domain
interactions, focusing on getting relevant information about norm-violating behavior from different
communities and understanding how the definition of what constitutes a violation evolves.

7.5 User Study

This thesis proposes an approach incorporating interpretability tools to present which action ele-
ments, such as a set of features or words of a text sentence, contribute to norm violation detection.
Considering the tools employed by our multi-scenario approach, it is possible to present inter-
pretability information using three different layouts: local interpretability, a list with the sum of
relevance scores, and a combination of both. Since these layouts provide different information, it
is worth conducting a user study to evaluate whether any of these layouts can influence people’s
views when evaluating sentences containing hate speech (q.v. Chapter 6), aiming to provide em-
pirical evidence regarding the effective use of ML-model interpretability and to investigate how
these layouts can help mitigate norm-violating behavior online. Thus, this section presents works
investigating interpretability tools and how people interact with them.

The survey in (Rong et al., 2022) offers important guidelines for user studies in Explainable Ar-
tificial Intelligence (XAI) contexts, exploring interesting works in this domain. Their discussion
regarding the effectiveness of explanations in increasing participant trust and usability of ML mod-
els is particularly relevant to our research. However, it is important to note that existing literature
presents studies with different results. Consequently, we emphasize the importance of our work in

115



providing additional empirical evidence in the field of assessing the impact of interpretability. Fur-
thermore, we adopt an approach that measures the participants’ perception ratings using a Likert
scale (Mohseni et al., 2021), directly inquiring participants about their views when evaluating a
text sentence classified as a hate speech violation.

Schuff et al. (2022) investigate how people understand and interpret explanations provided by
the word salience in text sentences. Their methodology shares similarities with the information
in Figures 5.2 and 5.3, where salience indicates the terms that exhibit the most influence on the
model’s decision-making process. Specifically, they execute a study to evaluate the impact of
different factors (e.g., word frequency, word length, display index) on a participant’s interpretation
of the explanation. Like our study, they use crowdsourcing workers and employ a GAM-based
approach to analyze the data. However, certain differences are important to note. First, they
compare bar charts to heatmap-based salience visualizations, while we compare salience (local
interpretability), list, and a combination of both. Second, their study focuses on textual data
elements as factors in the model, while we incorporate demographic variables as influencing factors.
Lastly, instead of asking about the participants’ views regarding the model’s classification, they
inquire how relevant a specific word is to the model’s output (also on a Likert scale).

Arora et al. (2022) consider the domain of hotel reviews, where the trained model must differ-
entiate between authentic and fake reviews. Their user study asks participants to simulate the
model’s behavior on new reviews after having access to explanations. The goal is to assess whether
interpretability information helps humans predict the model output on unseen instances. Addi-
tionally, the participants are asked to engage in a manipulation task by editing the review to
change the classification output. This step evaluates if participants can lower the model confidence
towards the original predicted class (i.e., lower the classification probability). Like our findings
demonstrating that interpretability information does not influence participants’ views, their results
indicate that local interpretability fails to improve participants’ capacity to replicate the model’s
decision-making process. However, the authors conclude that participants can affect the model’s
confidence by leveraging information from the global attributions tool, built using a linear model
that emulates a PLM (specifically, a BERT model). These general explanations provide insights
into common input-output associations that the models exploit. Lastly, they employ IG as the
interpretability algorithm and use mixed effects models to analyze participants’ interactions.

Unlike our work that evaluates interpretability in the scope of textual data, Chu et al. (2020)
address saliency-based interpretability techniques applied to image data, specifically in the context
of age prediction tasks. Their study measures whether effective model explanations enhance human
accuracy (i.e., predict age better) while quantifying whether flawed explanations decrease human
trust (i.e., quantify the difference between people’s answers and the model’s output). The findings
indicate that different types of explanations do not significantly influence human accuracy or
trust, which is similar to our work’s conclusion, where different interpretability tools fail to impact
participants’ perception ratings (q.v. Section 6.2). They use a mixed-effects model to estimate
error, measuring the difference between participants’ guesses about a person’s age and the true
label. Additionally, they estimate trust, a measurement of the difference between the participants’
guesses and the model’s prediction. Also working with image data, Alqaraawi et al. (2020) find that
the saliency-based approach helps participants comprehend specific image features (i.e., the relevant
pixels of an image) that contribute to the output of a ML model solving an image classification
tasks, such as identifying objects. However, it is worth noting that their results indicate that this
approach is limited in assisting participants in anticipating the model’s predictions for new images.

To assess the factors contributing to the interpretability of explainability information, Lage et al.
(2019) investigate three tasks people can perform when engaging with an ML system. The tasks
comprise simulating system responses, verifying suggested responses, and evaluating whether the
correctness of a suggested response changes when the input data changes. In summary, they aim
to present the types of explanations participants could effectively employ for these tasks. The
scope of their work involves decision sets in three ways that can affect how easy it is for humans
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to interpret them: explanation length, number and presentation of newly introduced concepts,
and the number of repeated terms (i.e., input conditions). Their results indicate that the nature
of complexity matters, with newly introduced concepts having more impact on task performance
than the inclusion of repeated terms in the explanation. The performance metrics employed for
evaluation are accuracy, response time, and subjective satisfaction, with participants providing
ratings on a Likert scale.

Similar to our combined layout (q.v. Section 6.1), Radensky et al. (2022) conduct a user study to
assess the effectiveness of combining both local and global information in comparison to relying
solely on a single interpretability layout. Their findings indicate that the combination is better at
assisting participants to comprehend how a recommender system can improve. However, it is worth
noting that this result differs from our findings (q.v. Section 6.2), as in our domain, the combined
layout does not present a higher impact outcome compared to other layouts, with no significant
influence on participants’ perception concerning hate speech ratings. Furthermore, they focus on
improving recommendations while employing a Likert scale for collecting participant responses.

X. Wang and Yin (2021) conduct an empirical investigation that compares different XAI methods
in AI-assisted decision-making. Their study describes three essential properties that should be
present in AI explanations to make them helpful from a human perspective: model understanding,
uncertainty recognition, and trust calibration. Like our study, they also use a crowdsourcing
platform for the user experiment. Their findings indicate that the nature of the decision-making
task significantly impacts the efficacy of the employed XAI techniques. However, the results
also show that when participants lack domain knowledge, the XAI methods do not satisfy the
investigated properties. Consequently, they recommend building XAI methods specific to these
cases, incorporating alternative techniques to provide interpretability information. It is worth
noting that this recommendation differs from our study in terms of the specific task, as we focus
on evaluating two classes of hate speech, a domain where participants generally have some prior
knowledge (q.v. Section 6.2).

Lastly, regarding user studies carried out on crowdsourcing platforms (like ours), Shank (2016)
present concepts, patterns, and suggestions for exploring these platforms in online research. Their
review showcases several papers where researchers successfully acquire reliable and quality data
in diverse contexts such as psychology and economics. Additionally, one essential feature of these
platforms relevant to our study is their ability to easily target specific demographic characteristics
within a particular population. In our use case, we aim to target participants based on ethnicity
and gender (q.v. Section 6.1).

7.6 Summary

This chapter reviewed works related to the challenges addressed in this thesis. Our first challenge
was to detect norm violations in online communities, focusing on the Wikipedia article editing
use case. The literature review began by investigating norm violation on diverse online platforms,
examining existing ML solutions and datasets used in these domains. Then, we focused on a
complex issue in this context: identifying norm-violating behavior in environments characterized
by concept drift and imbalanced datasets. Specifically, we examined solutions that employed
ensemble and incremental learning techniques. Additionally, this chapter reviewed research on
cross-community learning, incorporated into our solution to leverage data from diverse sources to
enhance a model’s performance in low-resource (or newly created) online communities. Moving
beyond violation detection, the literature review investigated works emphasizing interpretability
to provide insights into the features or words that affect norm violation detection by a ML model,
describing solutions that employ interpretability tools such as LIME and Integrated Gradients
(IG), both of which used by our solution. Lastly, we closed the literature review by presenting
works exploring how humans interact with ML models using interpretability information. This is
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relevant to our thesis since we conducted a user study to provide empirical evidence on whether
ML model interpretability influences participants’ views when evaluating sentences containing hate
speech.

In the remainder of this section, we present a concise analysis of the identified gaps in the literature,
outlining each topic investigated in this chapter. We describe how our proposed multi-scenario
approach, comprising FeDAL, LaMAL, and Cross-Community Adapter Learning (CAL), addresses
these gaps. Concretely, our approach is designed to continuously learn from the interactions and
agents’ feedback on what constitutes norm-violating behavior in online communities.

Section 7.1 presented significant gaps in existing research regarding norm violation detection in
online communities. First, beyond our use case of the Wikipedia community, also explored in
previous work, the literature examined various online platforms, providing different solutions to
detect violations in this context (e.g., DL classifiers, Logistic Model Tree, transformer-based mod-
els). However, they lacked the mechanisms to cope with concept drift, did not incrementally learn
as interactions unfolded, and did not incorporate community feedback for ML model updates. In
contrast, our approach tackled these gaps by employing ensemble and incremental learning tech-
niques, facilitating continuous adaptation to concept drift. Moreover, it incorporated community
feedback in the learning process, allowing model updating based on evolving community members’
views. Second, regarding the data formats (e.g., set of features (tabular data), text sentences)
used to train ML models, existing research demonstrated a tendency to address either textual or
tabular datasets individually, with some attempts to manage both simultaneously. In contrast,
our approach adopted a strategy to create different frameworks that separately handled text data
(LaMAL and CAL) and the formalization of actions as a set of features (FeDAL). This strategy
was relevant in our work because it allowed us to eliminate the need for a featurization step7

when handling data collected as text sentences while still enabling deploying this solution in a
multi-scenario context.

While certain studies adopted different ML classification algorithms (e.g., Decision Tree, Random
Forests) to detect norm violations, our approach adopted neural networks and transformer-based
models, enabling continuous model updates. In this context, we were interested in research em-
ploying ensemble and incremental learning techniques to learn with imbalanced datasets (q.v.
Section 7.2). The existing literature presented various solutions that enhanced these methods by
using parameter tuning, SMOTE, and resampling buffers. In contrast, our approach used oversam-
pling by replication to leverage ensemble and incremental learning. Our solution performed better,
especially in scenarios characterized by class overlap, feedback noise, and limited labeled datasets
(q.v. Section 3.6.3), without the need for resampling buffers. Thus, we avoided dependence on
past data (i.e., we used only the latest data provided by a community) to incorporate changes
in communities’ views on what constitutes a violation. Additionally, different from some works
that employed a passive strategy to detect concept drift, we employed an active strategy, which is
relevant for our use case to deal with major changes in a single moment by monitoring changes in
class distribution.

Since this thesis focused on low-resource (or newly created) online communities, this chapter in-
vestigated the literature with solutions that incorporated data from different source communities
to enhance the performance of a ML model in a new community with limited labeled data (q.v.
Section 7.3). We identified a relevant gap in the literature: these solutions did not address changes
in community views by using adapters to identify specific norm violations and dynamically creat-
ing them to handle the emergence of new violation classes. Thus, we created the CAL framework
to fill this gap. Additionally, existing works emphasized the contextual relevance of community-
specific data in training ML models to identify norm violations. Our solution adopted this idea
and conducted experiments in a fine-tuning configuration with the new community data (q.v. Sec-
tion 5.2). Lastly, a major contribution to the literature introduced by CAL was incorporating an

7The featurization step refers to creating a set of features to formalize an action in an online community.
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interpretability component to understand the differences in community members’ views across do-
mains, especially after initially training with source data and fine-tuning with the new community
data.

Different works presented the advantages of using interpretability to understand the output of ML
models (q.v. Section 7.4). The literature investigated solutions that employed LIME to explain the
predictions of a neural network within the psychiatry context and to discern signs of depression.
However, unlike our solution with LIME, they did not focus on obtaining a set of features relevant
for norm violation detection but rather on obtaining the words’ relevance scores. Other domains
(e.g., political polarization, content moderation, addressing adversarial attacks) also benefited
from interpretability to assist humans. However, these works did not incorporate interpretability
to analyze changes in ML models when training using incremental learning approaches with data
from one or more online communities. This was especially relevant in our context since these
changes in the model reflect evolving community members’ views, allowing us to analyze how
detrimental behavior changed over time and across domains. Additionally, while the majority of
approaches explored in the literature review tended to employ either model-agnostic (LIME) or
model-specific (IG) interoperability tools, our multi-scenario approach employed both. This was
important because it allowed us to obtain the relevant set of features or the words that contribute to
norm violation detection by a ML model (e.g., an ensemble of neural networks, transformer-based
models).

The main challenge addressed by our user study, as discussed in Section 7.5, was providing sta-
tistical and qualitative analyses of whether three different interpretability layouts could impact
participants’ views on hate speech sentences. This study was important because existing literature
presented divergent conclusions on the impact of interpretability of ML models. For instance, some
works suggested that the manner in which interpretability information was presented could influ-
ence people in different activities (e.g., understanding recommender systems, lowering a ML model
classification probability). In contrast, other works indicated that interpretability information did
not significantly affect how people executed tasks (e.g., simulate a model’s behavior on new re-
views, predict age). Regarding our user study, the findings indicated that no interpretability layout
significantly impacted participants’ views on hate speech sentences. Our experiment aligned with
established guidelines for conducting user studies in Explainable Artificial Intelligence contexts
and contributed additional empirical evidence with insights into evaluating ML interpretability.
Moreover, while previous works focused on textual elements (e.g., word frequency, word length)
as factors that could impact participants’ interpretation of an explanation, our study focused on
incorporating demographic variables (e.g., gender, ethnicity) as factors that could impact partici-
pants’ perception ratings of a text sentence since they evaluated hate speech sentences within these
topics (q.v. Section 6.1).8 Lastly, existing works using crowdsourcing platforms presented how re-
searchers successfully obtained reliable and high-quality data across diverse domains, including
psychology and economics.

Finally, in the next chapter, we present the conclusions of our research, including directions for
future work.

8Including these demographic variables in our statistical analysis allowed us to evaluate their potential influence
on hate speech classification. We aimed to isolate the variable of interest (interpretability layout) while considering
confounding variables (gender and ethnicity), ensuring accurate conclusions.
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Chapter 8

Conclusions and Future Work

This thesis addressed dynamic online communities, where agents (in this work referred to as com-
munity members) with diverse backgrounds interact. As interactions unfold, these communities
continuously establish relevant norms to guide their interactions and define what behavior consti-
tutes a violation, which may evolve over time or across communities. This process involves incor-
porating feedback from the interacting agents, reflecting changes in community members’ views on
norm-violating behavior. For instance, previously accepted behavior may become frowned upon,
or vice versa (such as the shift in a community’s perspective to start allowing previously prohibited
terminology). In this context, a normative system that can adapt to the changing definitions of
norm violations is crucial for regulating community behavior. Thus, we proposed a Machine Learn-
ing (ML) approach that supports normative systems in continuous learning from the interactions
and agents’ feedback. Our proposed learning process uses examples of actions labeled as violations
in a multi-scenario context, effectively handling agent actions defined either as a set of features
(tabular data) or as text sentences.

We illustrated learning what constitutes a norm violation by investigating the Wikipedia article
editing use case (q.v. Section 1.1.3). Actions evaluated in this context were community members’
attempts to edit articles, and we specifically focused on the “no vandalism” norm. This norm
included the requirement to use proper writing style, refrain from removing content, avoid editing
wars, and not engage in hate speech. Wikipedia used MTurk to identify and label edits as regular
or violating behavior. Building upon this existing annotation, we extended it further by having the
author of this thesis provide additional annotations for each violation instance containing offensive
language, categorizing these into six different hate speech classes: Swear, Insult and Ableism,
Sexual Harassment, Racism, LGBTQIA+ Attack, and Misogyny. Notably, a single article edit may
exhibit multiple violation classes simultaneously, demonstrating the need for our multi-scenario
approach to handle binary and multi-label classification tasks.

Moreover, we investigated the emergence of violation classes in low-resource or newly created
online communities.1 In these domains, the learning process occurs in a context with limited
labeled data. Thus, we created a cross-community learning solution capable of using data from
different sources (other communities) to improve the performance of ML models in a new target
community, incorporating diverse views from community members across domains. When learning
from other communities, we used data from three sources other than Wikipedia to help address
emerging violation classes. This is particularly important because some violation classes had only
a few labeled instances in our Wikipedia article editing dataset (q.v. Section 5.2). By learning
using data from different communities, we demonstrated that normative systems equipped with
our proposed ML models can adapt to changing views within a single community and across diverse

1Although Wikipedia is known for its extensive content repository, the labeled dataset used in this thesis has a
limited size, comprising approximately 30.000 article edits labeled either as violation or not.
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domains. These changing views may reflect the emergence of new violation classes or shifts in the
community view (q.v. Section 5.3). In summary, our cross-community learning solution addresses
the following challenges: limited labeled data, varied data types (text and tabular), concept drift
(changing community views), and limited computational power.

To create our multi-scenario approach, we integrated incremental learning in three frameworks:
FeDAL (q.v. Chapter 3), LaMAL (q.v. Chapter 4), and CAL (q.v. Chapter 5). These frameworks
addressed the challenge of continuously learning what constitutes norm violation as interactions
unfold using different data types (tabular and text). Furthermore, the frameworks incorporated
interpretability to provide evidence on which elements of an action (words of a sentence or set
of features) contributed to detecting violating behavior. This ability aligns with the principles
of responsible artificial intelligence, promoting transparency and facilitating community members’
comprehension of what constitutes a violation. It also supports model debugging, enables analyzing
how community views change over time or across communities, and creates the conditions for
triggering collaborative feedback elicitation when community members agree there are discrepancies
between the model’s output and their view on norm-violating behavior.

We executed different experiments for the three frameworks. First, the Feedback-Driven Adaptive
Learning (FeDAL) framework is an ensemble of Feed-Forward Neural Networks (FNNs) equipped
with an incremental learning approach designed to handle tabular data with class distribution
imbalance (q.v. Section 2.1). FeDAL employed a replication by oversampling to limit ensemble
size, enhancing computational efficiency. Moreover, it implemented incremental learning using
Stochastic Gradient Descent (SGD) to update a model’s parameters as new interactions occur
(q.v. Section 2.3.2). In practice, FeDAL handled the actions of an online community formalized as
a set of features (X, y), allowing community members to understand the model’s decisions through
interpretability by employing the Local Interpretable Model-Agnostic Explanations (LIME) algo-
rithm (q.v. Section 2.5.1). The experiments in Section 3.5 described the evaluation of FeDAL’s
performance in the Wikipedia use case. Our findings demonstrated FeDAL’s effectiveness in de-
tecting norm violations with imbalanced data and concept drift (q.v. Section 3.6). Addition-
ally, we provided a comprehensive interpretability analysis of the differences between the learning
techniques. Lastly, our ablation studies demonstrated the advantages of an ensemble approach
(q.v. Section 3.6.3) compared to single models and of oversampling by replication compared to
SMOTE (Chawla et al., 2002).

Second, the Language Model Adaptive Learning (LaMAL) framework employed Pre-Trained Lan-
guage Models (PLMs) using an incremental learning approach (q.v. Section 2.4). Unlike FeDAL,
LaMAL leveraged PLMs directly for handling actions specified as text sentences, reducing the need
for an ensemble of classifiers. PLMs handle imbalanced datasets and enable superior performance
by fine-tuning the classification head for specific use cases (such as violation detection in Wikipedia
article editing). LaMAL efficiently tackled binary and multi-label text classification, identifying
specific violation classes since it directly handled text input. We used Integrated Gradients (IG)
to explain a PLM’s behavior (q.v. Section 2.5.2), providing insights on which words contributed
to norm violation detection. Experiments in Section 4.3 described the comparison between two
PLMs, DistilBERT and RoBERTa, in identifying violations in Wikipedia article edits. Our results
presented how the architecture of each PLM impacts the understanding of violating behavior, with
different relevant words obtained from DistilBERT and RoBERTa (q.v. Section 4.4).

Third, the Cross-Community Adapter Learning (CAL) framework integrated PLMs and adapters
using an incremental learning framework (q.v. Section 2.4). Unlike FeDAL and LaMAL, CAL
enhanced our multi-scenario approach by incorporating data from different communities to im-
prove ML model performance in new target communities with limited labeled data. By integrating
adapters, CAL presented the following advantages: 1) it allowed for an efficient fine-tuning process
for specific violation classes, dynamically creating adapters for emerging classes as interactions
unfold; 2) it addressed catastrophic forgetting by having individual adapters for different classes;2

2Here, we refer to the loss of knowledge acquired from previous classification tasks when learning new information
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and 3) it employed the IG algorithm to understand distinct views on norm violation across com-
munities, a unique contribution of this framework. Experiments in Section 5.2 described using
DistilBERT with an adapter and data from three communities. Our results demonstrated how
CAL continuously learns changing community views on norm violation through community feed-
back (labeled data) (q.v. Section 5.3). Moreover, it demonstrated CAL’s ability to incorporate data
from different sources to address emerging violation classes while explaining the different views on
norm-violating behavior across communities.

To close the research of this thesis, we conducted a user study to assess the impact of interpretability
on influencing user views when evaluating sentences containing hate speech (q.v. Chapter 6).
Participants answered an online questionnaire where they had to choose whether they agreed
or disagreed with classifying a sentence given a violation class (Misogyny or Racism) using a 7-
point Likert scale (q.v. Section 6.1). Three interpretability layouts were considered: the local
interpretability, the list of relevance scores, and the combination of both. Participants evaluated
each sentence twice, once without interpretability data and once with it. The study involved
within-subject and between-subject analyses, employing the Generalized Additive Model (GAM)
to obtain the estimate of the participants’ confidence ratings (q.v. Section 2.6). Our statistical
analysis indicated that none of the interpretability layouts significantly influenced participants’
views regarding the classification of hate speech (q.v. Section 6.2). Despite that, our qualitative
analyses contributed valuable insights into the impact of incorporating ML interpretability in our
frameworks. First, interpretability can enhance people’s understanding of words relevant to the
ML model’s output, which triggers them to provide corrective feedback in cases of discrepancies.
Second, interpretability layouts can provide insights into evaluating the ML model’s behavior
beyond traditional performance metrics (e.g., recall, F1-score, and precision), which is especially
relevant in scenarios where understanding the rationale behind an ML model’s decision is essential
for optimal implementation.

Future Work

In the future, we aim to investigate different lines of research that can benefit from our multi-
scenario approach. One such area of interest is the combination of norms and indirect reciprocity
in the context of evolving game theory (Nowak & Sigmund, 2005; Okada, 2020). In this case,
people’s perceptions of each other’s actions influence indirect reciprocity. For instance, individuals
may have diverse views regarding assisting defectors. Consider a community where researchers
support each other in the peer-review process. In this example, we could use norms to penalize
researchers who fail to contribute to the review process (resulting in fewer available reviewers)
while still benefiting from having their work reviewed by others. Here, helping non-cooperating
members could be detrimental to overall cooperation, as it might lead to extended wait times for
cooperating members seeking timely peer reviews, affecting their engagement in the community
(i.e., providing new reviews). However, imagine the same norms adopted by an online community
that aims to support the elderly. Cooperation in this community has a different meaning since
the elderly who do not offer assistance cannot be punished, and those who help them should be
promoted. Thus, we argue that our solution has the potential to learn the concept of cooperation
from interaction data and support normative systems by adapting to each community’s definitions.

In this thesis, we conducted experiments to evaluate learning techniques after introducing concept
drift, particularly when class labels are swapped. We aimed to assess how FeDAL adapts after
receiving feedback. One limitation is that our current approach adopted a simulation strategy
since we did not have access to real feedback from community members. Thus, we plan to address
this limitation in future work by getting real feedback. This is not only interesting because of
feedback collection but also from the point of view of how community members can collaboratively

from a different class (Pfeiffer et al., 2020).
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deliberate and agree on what constitutes norm violation. Moreover, regarding the swap strategy,3

we plan to conduct experiments where not all data points have a swap of class labels when concept
drift is introduced. This experiment design aims to evaluate how FeDAL addresses potential
inconsistencies in the labeling process that may arise when people interact online.

Additionally, as we envision people in control of defining their community norms and expect them
to collectively agree on those norms through deliberation, we aim to use the interpretability infor-
mation generated by our solution to support such deliberation in the future. This interpretability
data will offer insights into actions by providing the words in a text sentence or the set of features
that contribute to the model’s output. This information will support community members in re-
viewing actions to help them understand what feedback should be provided to the learning tools
to correct their models. For instance, when a community member performs an action, and the ML
model detects it as violating behavior, our solution will provide the member with the reasons for
such detection. If the member disagrees with the output, they can engage with other community
members to evaluate the action with information about the relevant features (tabular data) or
words of a sentence (text data), assessing the correctness of the ML model accordingly. As our
solution focuses on low-resource communities,4 the member’s original action will not be relabeled
until the community reaches a consensus, and only then will the system allow the relabeling of
that action. This process will facilitate proactive, collective, and collaborative feedback elicitation.

Regarding the research on different interpretability techniques, future work shall evaluate the dif-
ferences between Integrated Gradients (IG) (q.v. Section 2.5.2) and the solution created by Xiang
et al. (2021), focusing on analyzing how the relevant terms for norm violation differ depending on
the interpretability algorithm. Additionally, we will explore data augmentation techniques to im-
prove the interpretability capabilities of PLMs, aiming at using interpretability information from
source domains to create new perturbed instances in the target training process.

Exploring other adapter architectures to improve training efficiency in low-resource communities
and tasks is also an interesting direction for future research. Within this research line, we plan
to inject additional factual knowledge from source communities into adapters to improve their
generalization ability in the target domain. By incorporating factual information about allowed
terminology (or mapping prohibited terms) and their contextual usage, adapters can perform better
across cases not covered by the limited labeled data used for training. Moreover, we plan to extend
our approach by simultaneously incorporating multiple additional source community datasets into
CAL, allowing our models to access a broader range of information. Thus, instead of relying on
a single source community to provide data to an emerging violation class (q.v. Section 5.2), we
plan to use data from multiple communities. In this context, employing AdapterFusion (Pfeiffer
et al., 2020) is an interesting direction, as it represents a transfer-learning approach that integrates
data from different sources (communities) simultaneously to improve its performance in a target
domain (new community of interest). Lastly, we can explore the connection between Reinforcement
Learning (RL) and PLMs to improve the training procedure. We aim to guide the RL approach
with information derived from PLMs. This includes providing contextual state representations for
RL agents and continuously updating these representations as interactions unfold. Additionally,
we plan to use interpretability data from PLMs to assist RL agents in focusing on the most relevant
components of a state representation.

As our multi-scenario approach focused on learning the relevant elements of an action associated
with norm violation and detecting such violations, we plan to integrate this solution into a line of
research that focuses on the continuous revision of norms as agents interact. Existing research aims
to revise norms based on previously obtained knowledge about whether an action is a violation or
not (Campos et al., 2013; Dell’Anna et al., 2022; Morales et al., 2015). As such, their approach
relies on having access to the classification of an action derived from an automated or manual

3The swap strategy was implemented to simulate feedback that represented changing community views.
4Here, we highlight our focus on low-resource communities since open large communities might benefit from

different feedback processes.

123



process. In other words, their works can not identify when a specific action violates a norm
and require labeled data with such information (which our multi-scenario approach can provide).
Concretely, our solution will complement their approach by providing labeled data to serve as
a basis for norm revision. With this collaborative approach, we aim to assist norm revision in
scenarios that require handling different classes of norm violations that may occur simultaneously
(multi-label classification tasks) while addressing multiple scenarios (tabular and text data).

Lastly, future work shall investigate other norm violations unrelated to hate speech. This aims to
address the limitation of our user study in evaluating a task (classification of a text sentence as
racist or misogynistic) already familiar to participants (q.v. Section 6.2.3). Our goal is to investi-
gate tasks in different communities, such as the interaction of people during online meetings, where
norms might regulate the meeting’s duration, the volume of messages exchanged, and when partic-
ipants should interact. In this context, interpretability information describing expected behavior
within a particular online community may assist novice members in understanding and adhering
to established norms. For instance, if the volume of message exchange exceeds established norms,
interpretability can provide information regarding the expected volume in this community. Again,
this information can contribute to a future feedback elicitation process, where new definitions of the
elements (i.e., the new expected volume of message exchange) that comprise violation behavior in
this domain may emerge. A new user study can help assess whether community members use inter-
pretability information to adapt their behavior (without human interventions) in online meetings.
We believe the investigation in this use case has the potential to yield different results compared to
the hate speech use case, as participants may not have established opinions about what constitutes
a violation in this context. Additionally, when they have such notions, expected behavior may
vary greatly depending on the individual views. As such, our assumption is that participants will
demonstrate a higher tendency to adapt to the definitions provided by the interpretability tool.
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Appendix A

FeDAL – Friedman-Nemenyi
Complete Test Results

Friedman Test P-Value 0.0005
Critical Difference (CD) Value 0.6051
Metric Overall Recall

Method Batch Mini-Batch Online

Original
Batch 1.0000 0.0036 0.5527

Mini-Batch 0.0036 1.0000 0.0721
Online 0.5527 0.0721 1.0000

Table A.1: P-values for the dataset with NO concept drift (original). Friedman-Nemenyi test
comparing OVERALL recall for the batch, mini-batch, and online learning approaches. Bold p-
values indicate results below the critical value α = 0.05.

Friedman Test P-Value 0.0005
Critical Difference (CD) Value 0.6051
Metric Overall Recall

Method Batch Mini-Batch Online

Concept Drift
Batch 1.0000 0.0125 0.0010

Mini-Batch 0.0125 1.0000 0.0125
Online 0.0010 0.0125 1.0000

Table A.2: P-values for the dataset with concept drift. Friedman-Nemenyi test comparing OVER-
ALL recall for the batch, mini-batch, and online learning approaches. Bold p-values indicate results
below the critical value α = 0.05.
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Friedman Test P-Value 0.0001
Critical Difference (CD) Value 0.6051
Metric Regular Recall

Method Batch Mini-Batch Online

Original
Batch 1.0000 0.0010 0.1120

Mini-Batch 0.0010 1.0000 0.0010
Online 0.1120 0.0010 1.0000

Table A.3: P-values for the dataset with NO concept drift (original). Friedman-Nemenyi test
comparing REGULAR recall for the batch, mini-batch, and online learning approaches. Bold p-
values indicate results below the critical value α = 0.05.

Friedman Test P-Value 0.0015
Critical Difference (CD) Value 0.6051
Metric Regular Recall

Method Batch Mini-Batch Online

Concept Drift
Batch 1.0000 0.0010 0.0103

Mini-Batch 0.0010 1.0000 0.0317
Online 0.0103 0.0317 1.0000

Table A.4: P-values for the dataset with concept drift. Friedman-Nemenyi test comparing REG-
ULAR recall for the batch, mini-batch, and online learning approaches. Bold p-values indicate
results below the critical value α = 0.05.

Friedman Test P-Value 0.0245
Critical Difference (CD) Value 0.6051
Metric Vandalism Recall

Method Batch Mini-Batch Online

Original
Batch 1.0000 0.2138 0.0222

Mini-Batch 0.2138 1.0000 0.0010
Online 0.0222 0.0010 1.0000

Table A.5: P-values for the dataset with NO concept drift (original). Friedman-Nemenyi test
comparing VANDALISM recall for the batch, mini-batch, and online learning approaches. Bold
p-values indicate results below the critical value α = 0.05.
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Friedman Test P-Value 0.0032
Critical Difference (CD) Value 0.6051
Metric Vandalism Recall

Method Batch Mini-Batch Online

Concept Drift
Batch 1.0000 0.9000 0.0014

Mini-Batch 0.9000 1.0000 0.0010
Online 0.0014 0.0010 1.0000

Table A.6: P-values for the dataset with concept drift. Friedman-Nemenyi test comparing VAN-
DALISM recall for the batch, mini-batch, and online learning approaches. Bold p-values indicate
results below the critical value α = 0.05.

Friedman Test P-Value 0.0095
Critical Difference (CD) Value 0.6051
Metric Re-label Recall

Method Batch Mini-Batch Online

Re-label
Batch 1.0000 0.5158 0.0010

Mini-Batch 0.5158 1.0000 0.0010
Online 0.0010 0.0010 1.0000

Table A.7: P-values for the dataset with concept drift. Friedman-Nemenyi test comparing re-label
recall for the batch, mini-batch, and online learning approaches. Bold p-values indicate results
below the critical value α = 0.05.

Friedman Test P-Value 0.0245
Critical Difference (CD) Value 0.6051
Metric AUC-ROC

Method Batch Mini-Batch Online

Original
Batch 1.0000 0.0010 0.0068

Mini-Batch 0.0010 1.0000 0.7373
Online 0.0068 0.7373 1.0000

Table A.8: P-values for the dataset with NO concept drift (original). Friedman-Nemenyi test
comparing AUC-ROC for the batch, mini-batch, and online learning approaches. Bold p-values
indicate results below the critical value α = 0.05.
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Friedman Test P-Value 0.0001
Critical Difference (CD) Value 0.6051
Metric AUC-ROC

Method Batch Mini-Batch Online

Concept Drift
Batch 1.0000 0.0010 0.0010

Mini-Batch 0.0010 1.0000 0.1673
Online 0.0010 0.1673 1.0000

Table A.9: P-values for the dataset with concept drift. Friedman-Nemenyi test comparing AUC-
ROC for the batch, mini-batch, and online learning approaches. Bold p-values indicate results
below the critical value α = 0.05.

Friedman Test P-Value 0.0001
Critical Difference (CD) Value 0.6051
Metric AUC-PR

Method Batch Mini-Batch Online

Original
Batch 1.0000 0.0010 0.0010

Mini-Batch 0.0010 1.0000 0.0971
Online 0.0010 0.0971 1.0000

Table A.10: P-values for the dataset with NO concept drift (original). Friedman-Nemenyi test
comparing AUC-PR for the batch, mini-batch, and online learning approaches. Bold p-values
indicate results below the critical value α = 0.05.

Friedman Test P-Value 0.0001
Critical Difference (CD) Value 0.6051
Metric AUC-PR

Method Batch Mini-Batch Online

Concept Drift
Batch 1.0000 0.0010 0.0010

Mini-Batch 0.0010 1.0000 0.1285
Online 0.0010 0.1285 1.0000

Table A.11: P-values for the dataset with concept drift. Friedman-Nemenyi test comparing AUC-
PR for the batch, mini-batch, and online learning approaches. Bold p-values indicate results below
the critical value α = 0.05.
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Appendix B

LaMAL - Local Interpretation
Examples for All Violation Classes

Figure B.1: The local interpretation of a specific edit considering the DistilBERT model in the
multi-label case for LaMAL. The label considered is INSULT AND ABLEISM. The relevance score
is calculated using Integrated Gradients (IG) (q.v. Section 2.5.2).

Figure B.2: The local interpretation of a specific edit considering the RoBERTa model in the multi-
label case for LaMAL. The label considered is INSULT AND ABLEISM. The relevance score is
calculated using IG (q.v. Section 2.5.2).
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Figure B.3: The local interpretation of a specific edit considering the DistilBERT model in the
multi-label case for LaMAL. The label considered is SEXUAL HARASSMENT. The relevance
score is calculated using IG (q.v. Section 2.5.2).

Figure B.4: The local interpretation of a specific edit considering the RoBERTa model in the multi-
label case for LaMAL. The label considered is SEXUAL HARASSMENT. The relevance score is
calculated using IG (q.v. Section 2.5.2).

Figure B.5: The local interpretation of a specific edit considering the DistilBERT model in the
multi-label case for LaMAL. The label considered is RACISM. The relevance score is calculated
using IG (q.v. Section 2.5.2).
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Figure B.6: The local interpretation of a specific edit considering the RoBERTa model in the
multi-label case for LaMAL. The label considered is RACISM. The relevance score is calculated
using IG (q.v. Section 2.5.2).

Figure B.7: The local interpretation of a specific edit considering the DistilBERT model in the
multi-label case for LaMAL. The label considered is LGBTQIA+ Attack. The relevance score is
calculated using IG (q.v. Section 2.5.2).

Figure B.8: The local interpretation of a specific edit considering the RoBERTa model in the
multi-label case for LaMAL. The label considered is LGBTQIA+ Attack. The relevance score is
calculated using IG (q.v. Section 2.5.2).
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Figure B.9: The local interpretation of a specific edit considering the DistilBERT model in the
multi-label case for LaMAL. The label considered is MISOGYNY. The relevance score is calculated
using IG (q.v. Section 2.5.2).

Figure B.10: The local interpretation of a specific edit considering the RoBERTa model in the
multi-label case for LaMAL. The label considered is MISOGYNY. The relevance score is calculated
using IG (q.v. Section 2.5.2).

143



Appendix C

LaMAL - Sum of Relevance Scores
for All Violation Classes

Figure C.1: The list with the sum of relevance scores for the top 20 words considering the Distil-
BERT model in the multi-label case for LaMAL. The label considered is INSULT AND ABLEISM.
Besides, we also present the frequency in which a word appears in the dataset used for training.
The relevance score is calculated using Integrated Gradients (IG) (q.v. Section 2.5.2).

s
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Figure C.2: The list with the sum of relevance scores for the top 20 words considering the RoBERTa
model in the multi-label case. The label considered is INSULT AND ABLEISM. Besides, we also
present the frequency in which a word appears in the dataset used for training. The relevance
score is calculated using IG (q.v. Section 2.5.2).
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Figure C.3: The list with the sum of relevance scores for the top 20 words considering the Distil-
BERT model in the multi-label case for LaMAL. The label considered is SEXUAL HARASSMENT.
Besides, we also present the frequency in which a word appears in the dataset used for training.
The relevance score is calculated using IG (q.v. Section 2.5.2).
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Figure C.4: The list with the sum of relevance scores for the top 20 words considering the RoBERTa
model in the multi-label case. The label considered is SEXUAL HARASSMENT. Besides, we also
present the frequency in which a word appears in the dataset used for training. The relevance
score is calculated using IG (q.v. Section 2.5.2).
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Figure C.5: The list with the sum of relevance scores for the top 20 words considering the Dis-
tilBERT model in the multi-label case for LaMAL. The label considered is RACISM. Besides, we
also present the frequency in which a word appears in the dataset used for training. The relevance
score is calculated using IG (q.v. Section 2.5.2).
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Figure C.6: The list with the sum of relevance scores for the top 20 words considering the RoBERTa
model in the multi-label case. The label considered is RACISM. Besides, we also present the
frequency in which a word appears in the dataset used for training. The relevance score is calculated
using IG (q.v. Section 2.5.2).
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Figure C.7: The list with the sum of relevance scores for the top 20 words considering the Dis-
tilBERT model in the multi-label case for LaMAL. The label considered is LGBTQIA+ Attack.
Besides, we also present the frequency in which a word appears in the dataset used for training.
The relevance score is calculated using IG (q.v. Section 2.5.2).
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Figure C.8: The list with the sum of relevance scores for the top 20 words considering the RoBERTa
model in the multi-label case. The label considered is LGBTQIA+ Attack. Besides, we also present
the frequency in which a word appears in the dataset used for training. The relevance score is
calculated using IG (q.v. Section 2.5.2).
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Figure C.9: The list with the sum of relevance scores for the top 20 words considering the Distil-
BERT model in the multi-label case for LaMAL. The label considered is MISOGYNY. Besides, we
also present the frequency in which a word appears in the dataset used for training. The relevance
score is calculated using IG (q.v. Section 2.5.2).
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Figure C.10: The list with the sum of relevance scores for the top 20 words considering the
RoBERTa model in the multi-label case. The label considered is MISOGYNY. Besides, we also
present the frequency in which a word appears in the dataset used for training. The relevance
score is calculated using IG (q.v. Section 2.5.2).
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Appendix D

CAL - Sum of Relevance Scores
for All Violation Classes

Figure D.1: The sum of relevance scores for the INSULT AND ABLEISM class. The source task
refers to the model trained using the source community data, while the target task is the result
after fine-tuning the model with Wikipedia data. “Frequency” refers to the number of occurrences
of a word in the training dataset. Here, we present the increase (or decrease) of the relevant words
for the violation classification. We show the difference between the two communities and how norm
violations are defined.
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Figure D.2: The sum of relevance scores for the SEXUAL HARASSMENT class. The source task
refers to the model trained using the source community data, while the target task is the result
after fine-tuning the model with Wikipedia data. “Frequency” refers to the number of occurrences
of a word in the training dataset. Here, we present the increase (or decrease) of the relevant words
for the violation classification. We show the difference between the two communities and how norm
violations are defined.
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Figure D.3: The sum of relevance scores for the MISOGYNY class. The source task refers to the
model trained using the source community data, while the target task is the result after fine-tuning
the model with Wikipedia data. “Frequency” refers to the number of occurrences of a word in the
training dataset. Here, we present the increase (or decrease) of the relevant words for the violation
classification. We show the difference between the two communities and how norm violations are
defined.
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Appendix E

User Study - Sentences and
Examples for Interpretability
Layouts

Misogyny
His daughter is hot. Hey, Massi.
She is very hot and I would love to give her one.
My stupid ex-girlfriend claims she was at this concert and everybody know she was not.
Jacob’s step mama best blowjob.
Two of his royal strippers were Alana and Margarita.
Who was also employed previously as a prostitute.
Local ginger that has won the award of town bitch.
CENSORED in a woman’s CENSORED and then CENSORED her.
I’m making it rain on them bitches.
I did your mother last night in every possible position.

Racism
What is up, “N-Word”?
Which as we call it black people music.
Fuck you all “N-Word.”
All the “N-Word” are allowed to stay after school and smoke pot.
The big lipped hair-brained egotistical dirty “N-Word.”
Linked to the troll organization gay “N-Word” association of america or gnna.
I hate “N-Word,” I hate you black white bastard.
Small children or ass african american.
The american government to kill african americans second.
The toronto FC “N-Word.”

Table E.1: All the 20 Sentences evaluated by the participants in the User Study, 10 for each
violation class (Misogyny and Racism). We provide this table with some censored terms. It is
possible to access the uncensored list of sentences in the following link:
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Figure E.1: List with the sum of relevance score layout. This question inquires participants about
their views on misogyny while considering a list with the sum of relevance scores. Participants
must answer this question right after responding to the question about the same sentence with no
interpretability data (q.v. Figure 6.2). Participants must choose whether they agree or disagree
with classifying this text as misogynous using the 7-point Likert scale.
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Figure E.2: Combined layout. This question inquires participants about their views on misogyny
while considering the combination layout (highlighted words and list with the sum of relevance
scores). Participants must answer this question right after responding to the question about the
same sentence with no interpretability data (q.v. Figure 6.2). Participants must choose whether
they agree or disagree with classifying this text as misogynous using the 7-point Likert scale.
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