llIA U " B

[! ' V)
Instfut d'Invesfigacio en ~ ypiversitat Autonoma
Intel-ligéncia Artificial de Barcelona

Intelligent Generation and Control of
Interactive Virtual Worlds

Tomas Trescak

May 31, 2012
Dissertation submitted to obtain the degree: Adwvisors:
Doctor en Informatica Dr. Inmaculada Rodriguez and
(Ph.D. in Computer Science) Dr. Anton Bogdanovych

Departament de Ciéncies de la Computacié — Escola d’Enginyeria
Universitat Autonoma de Barcelona

In memory of Dr. Marc Esteva Vivanco

To my dear Valeria, my parents, my
friends, and all the dear people I met and
helped me and supported me during my
study.

And to the members of I1IA.

Choose a job you love and you will never
have to work a day in your life.

Confucius.
The Confucian Analects

Contents

1 Introduction

1.1 Motivation
1.2 Research Problem
1.3 Objectives
1.4 Research Methods
1.5 Contributions and Significance
1.5.1 Contributionso
1.5.2 Significance L o oo
1.6 Examples
1.6.1 E-auctions.,
1.6.2 Uruk 3000 BC
1.7 Structure
1.8 Summary

Background and Related Work

2.1 Virtual Worlds
2.1.1 Avatars
2.1.2 Virtual World Content Creation
2.1.3 Related Work: Automatic Generation of a Virtual World

Design
2.1.4 Second Life Virtual World and Open Simulator Platform

2.2 Virtual Worlds as Hybrid Multi-Agent Systems

2.3 Electronic Institutions (EI)
2.3.1 Dialogical Framework: Roles and Ontology
2.3.2 SCene e
2.3.3 Performative Structure.
234 Norms e
2.3.5 Summary of Institutional Data
2.3.6 EIDE Framework

2.4 Virtual Institutions (VI)
2.4.1 Related Work: Causal Connection Between Virtual

Worlds and Multi-agent Systems

2.5 Shape Grammars

2.5.1 Related Work: Computer Implementation of Shape Gram-

1002 3 45
2.6 Artificial Life o 47
2.7 Intelligent Virtual Agents 49
2.7.1 Related Work: Models for Intelligent Virtual Agents . . . 52
2.7.2 Related Work: Crowd Simulation 55
2.8 Summary 57
Shape Grammar Interpreter (SGI) 59
3.1 Motivation L 59
3.2 Implemented Generation Algorithms 60
3.2.1 Tree-Search Based Algorithms 60
3.2.2 Subshape Detection Algorithm 62
3.2.3 Parameterization of Generation Process Using Subshape
Detectiono 68
3.3 Shape Grammar Interpreter 68
3.3.1 Framework description 69
3.3.2 SGI Architecture 70
3.3.3 SGI User Interface 71
34 Evaluation. 74
3.4.1 Tree Search Algorithm 75
3.4.2 Subshape Detection Algorithm 76
3.5 Summary ... oo e e e 7
Virtual World Grammar (VWGQG) 79
4.1 Motivationo 79
4.1.1 Motivation Example 80
4.2 Virtual World Grammar (VWG) 82
4.2.1 Ontology 82
4.2.2 Shape Grammar 84
4.2.3 Validations oo 84
4.24 Heuristics Lo 85
4.2.5 Virtual World Grammar (VWG) 86
4.2.6 Design Generation Process 87
4.3 Virtual World Builder Toolkit 88
4.3.1 Workflow for Definition and Execution of Virtual World
Grammars 90
4.4 Results. 91
4.5 SUMMATY . . v v e e e 94
Virtual Institution eXEcution Environment (VIXEE) 95
5.1 Motivation Lo 95
5.2 Virtual Institution Execution Infrastructure 98
5.2.1 Solution Architecture 98
5.2.2 Message Handling: Movie Script Mechanism 102
5.2.3 VW Actions Implementation 105

vi

5.2.4 AMELI Events Implementation
5.3 VIXEE Interface
5.4 Case Study: eAuction House
5.5 Evaluation.
5.6 SUMMAry e e
VI Agents
6.1 Motivation L L
6.2 Approach Overview
6.3 VI Agent Model
6.3.1 Genetics
6.3.2 Believability o oo
6.3.3 Culture
6.3.4 Virtual World Objects
6.3.5 Reasoning oL
6.4 Implementation L oo
6.4.1 VIXEE Integration
6.5 SUmmary e e
3D Avatar Generation
7.1 Motivation L
7.2 Avatar Generation oL
7.2.1 Genetic algorithms o 0L
7.2.2 Formal Representation of Genetic Data
7.2.3 Formal Representation of Genetic Operators
7.2.4 Crossover vt
7.2.5 Inheritance and Gene Skipping
7.2.6 Mutation o
727 GenotypeRules.
7.2.8 Algorithm
7.3 Second Life - Genetic Mixer Application
74 Evaluation.
7.5 SUMMATY . . o v v v e e e e e e e
Case Study: Uruk 3000 BC
8.1 Introduction.
8.2 Workflow
8.3 Definition of Virtual Institution Components
83.1 Virtual World
8.3.2 Electronic Institution
8.3.3 Virtual World Objects
834 Goals e
8.3.5 Culture
8.3.6 Virtual World Grammar
8.3.7 Movie Script
84 Results.

vii

85 Summary e 184

9 Conclusions and Future Work 185

9.1 Publications 190
A KZero research results 193
B XML Definition of a Shape Grammar 195

viii

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

3.1

3.2

3.3

3.4
3.5

Number of virtual world users in Q4/2011 2
Overview of models for intelligent generation, execution and con-

trol of normative virtual worlds, presented in this thesis 9
Children focused virtual worlds 18
Breakdown of virtual worlds applications 19
Second Life avatars Lo oo 21
Avatar Design in Second Life 22
Content manipulation in Second Life 23
Generated floor plan using rectangular dualization 25
World map of Second Life 27
Second Life 27
Dialogic framework components 32
e-auction institution ontology and function detail 33
Scene protocol 34
Details of the arc “bid” from the scene protocol in Figure 2.11 . 35
Scene protocol 35
Performative structure of the e-auction institution 36
EIDE Framework Components 39
Overview of VI architecture. 40
Architecture of the Itchy Feet solution 41
Shape grammar rule L oL 0L 43
Shape grammar derivation process 43
Two different labelled rules and their derivations 44
Pogamut Lo 53
An example of execution tree using tree-search, breadth-first

search protocol 61
Shape grammar used in the generation process presented in Figure

33 e 62

Two examples of designs generated using the tree search algo-
rithm using the shape grammar in Figure 3.2. Outputs for a) 15

iterations and b) 40 iterations. 63
Maximal lines: 1) original shape 2) maximal shape 63
Intersections L o 64

ix

3.6
3.7
3.8
3.9

3.10
3.11

3.12
3.13
3.14
3.15
3.16
3.17
3.18

3.19
3.20

3.21

3.22

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

5.1
5.2
5.3
5.4

Algorithm input: 1) subShape 2) inputShape 64

Intersections: 1) subShape 2) inputShape 65
Intersection triplet o oL 66
Boundary detection: 1) Passing detection 2) Failing detection,

missing boundary oL 66
Flow chart of the subshape detection process 67

Generation process using the subshape detection algorithm. Out-
puts for a) 14 iterations and b) 20 iterations using the shape

grammar in Figure 3.2. o 0000 69
Three shape grammar rule types supported by SGL. 69
SGI Architecture 70
SGI: User Interface 72
SGI: Derivation process view 73
SGI: Subshape detection view 73

a) Definition of rule b) Generated design using tree search protocol 74
Generated design using rule from Figure 3.17a using subshape
detection. a) Without markers b) With markers. 74
Aggregated generated time using the breadth-first search algorithm 75
Numbers of tree nodes during the generation process using (a)
the breadth-first or (b) depth-first algorithm for different iterations 75
a) Time measure of shape grammar generation using the sub-
shape detection algorithm and (b) number of detected and tested
intersections Lo 76
Sub-shape detection: numbers of triplets detected and tested dur-
ing the generation process using (a) the original Krishnamurti’s

algorithm and (b) our proposed algorithm 76
3D virtual world generation process 81
Shape grammar derivation process 84
Architecture of the VWBT system 89
SGI interface with WVBT extensions 90
Workflow for definition and execution of VWG 91
Rule display simplification 92
Shape grammar 1 for the Auction House institution 92

An output of the Virtual World Grammar using shape grammar 1 92
An excerpt from the shape grammar 2 for the Auction House

institution Lo 92
Two different outputs of the Virtual World Grammar using shape

grammar 2 e 93
Performance measurements of VWG 93
Overview of the Virtual Institution architecture. 98
Architecture of the Virtual Institution Execution Environment . 99
Movie Script Mechanism Conceptualization 102
Message flow for VW generated action. Dashed lines represent

the message passing, solid lines represent the use relationship. . 105

5.5
5.6
5.7
5.8

5.9

5.10
5.11
5.12
5.13

5.14
5.15
5.16

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8.1
8.2
8.3
8.4
8.5

Message flow from AMELI to 3D virtual world 106

VIXEE interface 107
Performative structure of the eAuctionHouse institution 108
Initially generated floor plan (left) and the floor plan generated

with the addition of the auction room (right) 109
Initially generated 3D model (left) and the 3D model generated

with the addition of the auction room (right) 109
Avatars participating in an ongoing auction 110
AMELI interface 111
Measured response time intervals 111

Two different plans that VI participants follow during the test

(dashed lines are for SW agents and solid lines for human users). 112
Average step execution time for all steps for 100 agents 114
Average step execution time for all steps for 500 agents 114
Average response time with different number of connected agents 115

Plan creation process overview 123
Conceptual view of the VI Agent architecture 127
Activity diagram of a goal selection phase 132
Plan creation for the cooking example 134
Definition of temporal goals in VIXEE 137
VI Agent definitionin VIXEE 138
Definition of environments in VIXEE 139
Lord of the Rings Crowd Simulation in Massive 142
Example of crowd diversity in the Avatar Movie 143
Our Approach: Simulating Ethnic Crowds 144
Examples of graphical representations of family trees 147
Crossover technique called “cloning” 149
Crossover technique called “split” 149
Crossover technique called “multiple split” 150
Crossover technique called “gene exchange” 150
Gene skipping L 151
Selection process for a genotyperule 154
Interface of the Genetic Mixer tool 157
Avatar generation process, using the genetic mixer tool 159

Avatars generated using our method. The top row forms the start
population, bottom rows are the children. The label of every
figure contains following information: Name [crossover, father-

mother ratio, mutation level] 161
Uruk city overview Lo o 168
Role structure in Uruk 169
Uruk - Performative Structure. 170
Uruk - Eat Scene 170
Uruk - Fish Scene 171

xi

8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

Al
A2

Uruk - MakePot Scene 171

Uruk shape grammar 178
Base population of farmers L. 180
Generated crowd from distance 180
Base population of farmerso 0oL 181
Uruk citizen sleeping in hisbed 181
Uruk citizens praying by the temple 182
Citizens preparing their meal 182
Fisherman walking to the work 183
Potmaker creating anew claypot 183
Farmers harvesting fruit from the pomegranate tree. 184
Quarterly growth of Virtual World accounts 193
Virtual Worlds by sector oL 194

xii

Abstract

This thesis advocates the use of non-gaming virtual worlds as a significant fu-
ture technology for the domains of e-* applications (e- learning, e-commerce,
e-government) and social simulations. In such systems, a 3D virtual environ-
ment is often populated by a large number of inhabitants that can be either
human-controlled avatars or intelligent virtual agents (avatars controlled by au-
tonomous software entities) who engage in advanced interactions with their vir-
tual environment and other participants.

One significant problem that impedes wide adoption of the virtual worlds
technology for these problem domains is that virtual worlds in general are diffi-
cult to build, and significant effort has to be put into designing the 3D virtual
environment and programming virtual agents; but even harder is to ensure the
validity of participant interactions in such environments and enforce social norms
on their inhabitants so that unauthorized behavior can be prevented.

To address this problem, we have developed a comprehensive technological
solution that automates the design of such virtual worlds and its population with
virtual agents. Our approach is based on the utilization of Virtual Institutions,
which are virtual worlds with normative regulation of participant interactions.

The key focus of the thesis is on explaining how existing methods of formal
specification of Virtual Institutions can be extended to automatically translate
the institutional specification into an interactive 3D environment using the shape
grammars approach and automatically populating such environments with vir-
tual agents.

Shape grammars represent a powerful visual technique for creating proce-
dural 2D and 3D designs, but existing work was not immediately suitable for
our problem. Existing shape grammar solutions are normally restricted to very
specific scenarios, do not normally address interactivity of the generated designs
and rarely consider facilitating agent enactment of the generated environments
as well as their normative regulation.

Thus, we have extended existing work and developed the Shape Grammar In-
terpreter framework, which addresses the limitations of existing solutions. This
framework was further utilized for developing the concept of virtual world gram-
mar, which is a sub-set of shape grammars targeting automatic generation of
normative virtual worlds. As the result of this dissertation, Virtual Worlds
Grammars constitute a strong formalization and a development environment

xiii

not only enabling automatic generation of normative virtual worlds, but also
their platform independent deployment (using the VIXEE infrastructure that
has been developed as an important part of this dissertation).

Another significant contribution of this thesis is developing a mechanism of
automatic population of the generated environments with an arbitrary number
of software agents, which are capable of intelligent interactions with 3D objects
placed in the environment. Moreover, these agents are able to collaborate with
human-controlled avatars, facilitate their problem-solving and ensure that all
agent actions strictly adhere to social norms of the given institution.

For this purpose we have developed a generic model of virtual agents, which
enables an agent to be situated within any normative virtual world, generate its
own goals based on its current physiological and psychological needs, as well as
to dynamically generate plans for satisfying these goals using the underlying in-
stitutional specification. The institutional specification in this instance provides
a high-level representation of an agent’s interaction possibilities.

To illustrate the usefulness of methods and techniques presented in this thesis,
we have applied it to the domain of historical simulation, re-enacting everyday
life of ancient people in one of humanity’s first cities, the city of Uruk. The ex-
isting design of the Uruk city was enriched with dynamically generated artefacts
and a large crowd of virtual agents simulating ancient citizens from different
classes of the Uruk society. We showed how our approach allows to create a de-
sired number of visually and behaviorally diverse agents, as well as dynamically
generating food, tools and other items that they can utilise to satisfy their goals,
while acting in a historically authentic manner.

Xiv

Acknowledgements

This thesis would not be possible without all of the extraordinary people who
have helped me with its completion. First, I would like to thank Dr. Marc
Esteva, my supervisor and a great friend, whom we have tragically lost in 2011.
Marc was a marvellous person and an inspiration to me and many others. I want
to thank him for introducing me to the fascinating world of science and skillfully
guiding me through it. Marc, you will be remembered in my heart till the very
end, and I hope that this thesis makes you proud. Rest in peace buddy.

Great thanks go also to my other supervisors Inma Rodriguez and Anton
Bogdanovych. To Inma, for her strong support and guidance and help on all the
publications we have done together, you made them shine! To Anton for all the
inspiration that feeds my hunger for exploring new ideas, for guidance in writing
and a possibility of working on very exciting projects.

My gratitude also goes to Simeon Simoff and John Debenham, for the possi-
bility to visit them in Sydney, where I spent six delightful months, during which
many exciting new ideas surfaced, making my stay a great success. Thanks for
assisting me with a scholarship without which it would be impossible to come.
Thanks to all the lovely friends in Australia, dear Danko and Zuzana, that helped
me to get started.

I would also like to thank Alessandro Farinelli for providing me the possibility
to visit him in Verona, to learn italian and to eat as much italian pizza and
pasta as possible. It was a hectic period, during which I wrote this thesis; thus
I would like to thank for his patience and thanks to Meritxell for making this
visit possible!

Thanks to Maite Lopéz-Sanchéz, Carlos Carrascosa, Gustavo Aranda, Javier
Morales and Pablo Almajano for cooperation on our papers. I would like to
thank Pablo for keeping my work “alive” and extending it to the new fron-
tiers. Thanks to the shape grammar community for helping me to enter and
understand exciting world of computational design. Thanks to Juan Antonio
Rodriguez and Jests Cerquides, for their help after Marc was gone.

Equally important has been the support from my gorgeous fiancee Valeria
Toscani. I would probably already have gone crazy, without all the love she has
surrounded me with during writing of this thesis. She made this world a best
place to be for me, and I cherish every moment we spend together. Thank you
for your patience with me, and I am looking forward to living our happily ever

XV

after.

I would also like to thank my parents, my brother Michal and his lovely wife
Diana for supporting me and encouraging me during this scientific journey, which
in times was not easy. Many thanks also go to Ondrej Svora for his support and
friendship. Thanks to my superb friends in Brno, Prague and Kosice, although
we have not seen each other much I could feel your presence during difficult
times.

Many thanks go to all the great friends from Barcelona and friends and col-
leagues from ITTA and CVC. Without the possibility to blow off some steam after
work with a couple of horrible spanish beers I would probably explode. Thanks
to Tomas Zelina, Andrew Koster, Javier Tur, Jose Rubio my Czechoslovak crew
and many others.

This thesis would not have been possible without the Spanish government’s
generous funding through the Agreement Technologies project (CONSOLIDER
CSD2007-0022, INGENIO 2010), and I am grateful to Carles Sierra for his lead-
ership of this project, giving me the opportunity to write this thesis and present
parts of it at various conferences and workshops. I am also grateful for the
funding provided by European projects from MICIN (TIN2009-14702-C02-01),
MEC (TIN2006-15662-C02-01) and spanish project from CSIC (2006 5 OI 099).
My visit to Australia was funded by the Endeavour Research Fellowship scholar-
ship, awarded by the Australian government, thank you for this opportunity. My
visit to Italy was funded by the European Union’s COST Action on Agreement
Technologies (ICO801), great thanks to you too.

Finally, I would like to thank everybody who I have forgotten to thank. If I
have forgotten to acknowledge you, I am in remiss. I want you to know that I
am terribly sorry and will be sure to rectify this oversight in any future thesis I
write.

—Tomas Trescak

xvi

Chapter 1

Introduction

In this thesis, we are interested in 3D virtual worlds, and particularly in nor-
mative virtual worlds, which are virtual spaces that provide participants an im-
mersive experience and specify a set of rules to control the validity of their
interactions. We define methods and algorithms that allow intelligent genera-
tion and control of such virtual worlds, where humans and autonomous agents
participate in order to achieve their common or individual goals.

This chapter introduces the motivation for our research, explains our goals
and contributions, and introduces two application examples, which we use
throughout this thesis. Further, it provides details on problems that virtual
worlds face, and describes how solving these problems can facilitate their defini-
tion, execution and deployment.

1.1 Motivation

Not long ago, computers existed only as separate units, or they were connected
to small office networks or home networks. Then, people started to connect them
to larger networks, culminating to the World Wide Web and the start of the first
era of the Internet. The second era of the Internet started with search engines,
transforming the Internet into the information superhighway. Now, with massive
success of social applications like Facebook or Twitter, we find ourselves in the
era of social networks where user interactions moved from emails and private
message boards into large-scale online social environments.

Virtual worlds (VW) are a particular kind of online social applications where
users interact in a simulated computer-generated environment. Such environ-
ments are gaining a lot of hype with more than 1.7 billion virtual world accounts
registered by the end of 2011 and a quarterly growth of 280 million new user ac-
counts between the third and fourth quarter of 2011 (see Figure 1.1). Currently,
the most popular virtual worlds are 2D and 2.5D virtual environments for kids
between 5-15 years, making virtual worlds a new, vibrant market as the young
generation is growing up in parallel with them.

2 Chapter 1. Introduction

Total Cumulative Registered Accounts

Age 2009 2010 2011

Range

51010 | 77m(114m| 152m| 179m| 190m| 211m| 219m| 235m| 232m| 270m| 296m| 340m
0to15

246m‘ 334m‘ 367m‘ 392m‘ 413m‘ 444m‘ 468m‘ 511m‘ 601m‘ 652m 694m‘ 787m‘

15t025 73m‘ 99m’ 117m‘ 193m‘ 237m‘ 273m‘ 288m‘ 299m‘ 313m‘ 385m 456m‘ 596m‘
5+

18m| 21m| 23m| 25m| 27m| 30m| 34m| 36m 39m 42m| 44m 49m

KZER®

WORLDSWIDE

Figure 1.1: Number of virtual world users in Q4,/2011

3D virtual worlds are a specific class of virtual worlds where participants
experience a sense of presence by collaborating and interacting with others in
the simulated 3D environment. 3D virtual worlds are distinct from other social
applications in a way that VW participants can create and manipulate virtual
world content.

Interactivity in virtual worlds is achieved using a multimodal graphical user
interface, i.e., visual, audible, or textual, through which users receive multimodal
clues from their environment with possibility to respond in the same manner.
This interface allows users to interact with each other and collaborate on their
common or individual tasks. A common scenario for a virtual world application,
also considered in this thesis, is collaborative learning, which has proven to
be an efficient way of knowledge comprehension in a modern networked era
[Dillenbourg, 1999].

Interactions and collaborations in virtual worlds are possible through the use
of avatars. An avatar is a graphical representation of a virtual world participant.
In 3D virtual worlds, avatars are animated 3D characters that can represent
anything from a talking fish to an exact real-world appearance of a participant.
According to Liao, people tend to create their virtual alter egos that do not
mirror their physical body, but reflect their imaginations and desires [Liao, 2008].
This creates a strong link between an avatar and a person it represents. Such
link exists in both directions, when avatar behavior in the virtual world affects
the behavior of a person in the real world [Yee, 2007].

1.1. Motivation 3

Interactions using avatars are the key aspect of the subclass of virtual worlds,
called social virtual worlds, where participants chat in 2.5D and 3D environ-
ments. Popular 3D chat platforms are IMVU!, used mostly by teenagers, and
WeeWorld?, directed to younger kids. Other types of virtual world applications
can be broken down into the following domains [Bartle, 2003] [Cavazza, 2007]:
gaming - focused on online games (e.g. World of Warcraft?), entertainment -
focused on multimedia and show business (e.g. UpNext?), and business - focused
on e-commerce activities (e.g. Centre du Monde®).

Considering the successful deployment of VWs to business, social, entertain-
ment and game fields, we believe that VWs can be deployed in more advanced
scenarios such as e-* applications (e-commerce, e-learning and e-government)
and social simulations, considered in this thesis. Current e-* applications are
mostly web-based applications where stakeholders have no visual clues helping
them to carry out their interactions. These applications have a limited possibil-
ity to deal with user interaction. This lack of multi-user and visual awareness
in web-based systems can be handled by the 3D virtual world (VW) technology.
Virtual worlds provide effective communication among participants and let them
focus their attention on the who, where, or when of events. We are interested
in the following scenarios:

e Social simulations with different levels of sophistication, from basic
crowd simulations to advanced social dynamics simulations. Population
of such simulations can form ethnic groups, which are closely integrated
with their environment, and have the capability to evolve.

e E-commerce application where participants can engage in commercial
activities in a 3D virtual world, what can improve his shopping experience
over traditional online methods.

e E-learning applications where human participants participate in a 3D
virtual world in order to achieve knowledge of a specific subject in an
interactive way. For example, they can observe and interact with a pop-
ulation of a VW and learn about the context (e.g. historical society) in
which this population acts and what it represents.

e E-government: We are interested in applications in which VW partici-
pants perform institutional actions in a structured way, what leads to the
accomplishment of their specific goals.

In the context of social simulations, [Bainbridge, 2007] notes, “virtual
worlds have a great potential as sites for research in the social, behav-
ioral, and economic sciences, as well as in human-centered computer science”.

Thttp://imvu.com (05/2012)
2http://www.weeworld.com/ (05/2012)
3http://us.battle.net/wow/en/ (05/2012)
4http://www.upnext.com/ (05/2012)
Shttp://www.lecentredumonde.com/galerie/ (05/2012)

http://imvu.com
http://www.weeworld.com/
http://us.battle.net/wow/en/
http://www.upnext.com/
http://www.lecentredumonde.com/galerie/

4 Chapter 1. Introduction

[Chesney et al., 2009] showed how social 3D virtual worlds can effectively be
used for performing in-world experiments. He performed five economical experi-
ments in Second Life® (see Section 2.1.4 for details on Second Life virtual world)
and compared the results to a study on human values that had collected data
from several European countries with 1,500 samples from each country. He has
found out that human values of Second Life residents are similar as those of a
standard UK student sample; therefore, it can be used as a possible alternative
for the conduction of certain types of social experiments. Virtual worlds are a
natural candidate for such social experiments, either as a testbed prior to the
actual test or as an experiment itself. In our work, we use virtual worlds in a
cultural and social simulation of the historical city of Uruk (see Chapter 8).

In the e-commerce area, many business models rely on intensive internal
and external collaboration. The success of these models is favored by the use of
adequate communication tools. Nevertheless, current 2D and web-based tools,
such as video conference, chats and forums, offer limited levels of interaction
between stakeholders. An alternative to these approaches proposes to perform
collaborative business activities using 3D virtual worlds, where an immersive
participation can improve the experience [Bartle, 2003].

In the e-learning domain, traditional single-user e-learning systems seem
to fail, as they do not address the social needs of users. These environ-
ments do not motivate users enough to explore all the possibilities of an e-
learning system [Monahan et al., 2008]. Empirical research showed that collab-
orative and group work can help students to reach a higher achievement level
[Laister and Kober, 2002]. Social collaboration among classmates is recognized
as an important factor for the success of education [Joyce et al., 1980]. Virtual
worlds can provide an immersive learning experience by combining the 3D visual-
ization with the possibility to communicate in real-time, using chat, audio or even
gestures. In particular, it helps students to sense belonging to a supportive e-
learning community, which vitally improves interest and motivation to study the
given topic [McInnerney and Roberts, 2004]. E-learning using 3D virtual worlds
has been thoroughly evaluated [Bouras et al., 2001] [Bouras and Tsiatsos, 2006]
[San Chee, 2001]. The majority of users found virtual environments intuitive
and highlighted the social presence as the major advantage. Collaboration using
audio and chat have also proven to be particularly useful. Overall, the feed-
back, both from professors and students was very positive and supported the
usefulness of 3D paradigm.

The last e-* application type is e-government. E-government is defined
as the use of ICT to improve the services of government [Layne and Lee, 2001].
Government has the opportunity to educate and interact with their citizens, as
well as to promote new information using an entertaining and interactive way.
This can be used to gain support for passing new bill, or educate people about
the new changes in the political scene. Recently, American President Obama
has already applied this approach and ran a part of his presidential campaign in

Snttp://www.secondlife.com (05/2012)

http://www.secondlife.com

1.1. Motivation 5

Second Life”.

Such e-* applications often represent dynamic and complex processes, where
frequently we need to create a new application scenario or change/adapt the
existing one. An example from the e-learning domain is a history application
explaining a historical subject in an interactive way. In such a scenario, we
need to create a new intricate environment representing this historical subject.
Another example can be found in an e-government application, where often we
need to create new or change existing procedures for information processing by
modifying existing specifications. In these examples, each new scenario requires
a new 3D design of a virtual world, and often changes in the existing application
specification require subsequent manual update of its design. The process of
creation and modification of 3D design is complicated and tedious, where manual
updates are not practical; thus, we seek for a more automated solution.

An automatic solution depends on Virtual World platforms (e.g. Second Life,
OpenSim) allowing to generate and modify VW content programmatically, as
well as on the possibility of automatically adding interactivity to the generated
content, e.g., interactive 3D objects. Then, we can automatically generate a
virtual world from the specification of activities defining an e-* application or a
social simulation. In Chapter 4 we present the Virtual World Grammar mecha-
nism that uses shape grammars [Stiny and Gips, 1972], a computational design
technique, to generate many different VW designs out of a formal specification
of activities.

The model generated by the Virtual World Grammar is static, with no pos-
sible interactions. This is not sufficient for e-* applications and social simu-
lations as they depend on the interactivity between participants and the in-
teractivity with the environment. Moreover, specific interactions have to be
structured and controlled. An example is the control of a protocol execution in
an e-government application, or the execution of an auction protocol in an e-
commerce application. A popular method of such control is to use organization-
centered or normative systems, which define roles and interaction protocols be-
tween roles containing norms and constraints, which structure participant be-
havior [Esteva, 2003]. In this thesis, we present a method of causally connecting
an existing organization-centered system with multiple virtual worlds, allowing
collaboration of their participants.

Although generating interactive, normative virtual worlds is sufficient for
many applications, in the domains of our interest these worlds are lacking a
world population. Populating the world with avatars is a key aspect of social
simulations, allowing us to study participants’ behavior. It is also highly benefi-
cial for e-* applications, emphasizing the interactive and collaborative approach
to task execution.

In many occasions, it is not practical to have humans controlling these
avatars. This can happen when (i) we are simulating large crowds; (i) when
individual behavior can be automated; (iii) when execution of a task requires

"http://thecaucus.blogs.nytimes.com/2007/03/31/obama-is-first-in-their-second-1life/
(03/2012)

http://thecaucus.blogs.nytimes.com/2007/03/31/obama-is-first-in-their-second-life/

6 Chapter 1. Introduction

precise execution, and possible errors present a significant threat to a task ex-
ecution. A popular substitution mechanism is to replace human presence with
software agents, represented by their avatars. Agents acting in a virtual envi-
ronment for the class of Intelligent Virtual Agents (IVA) and their distinction
from other types of agents is that they try to mimic a human-like behavior.

Existing models for IVA focus on their execution within game scenarios
[Gemrot et al., 2009] or sophisticated army scenarios [Silverman et al., 2006b]
[Swartout et al., 2006]. Game IVAs such as Pogamut [Gemrot et al., 2009] have
a basic, generic structure, which allows build custom add-ons, yet they are closely
connected to existing game engines and game scenarios. Army IVAs possess
highly complex features. They communicate in natural language, have human
emotions and deal under stress. Complexity of model parts requires a high ef-
fort to re-configure application to a different scenario, usually taking months to
accomplish [Swartout et al., 2006]. Thus, as existing models for IVA resulted
inadequate for the purposes of e-* applications, there is a need to create a new
model, that would be generic, lightweight, reusable, extensible and easily appli-
cable to new scenarios. Using such model, we want to generate massive crowds
for social simulations, where all crowd members have unique appearance and
behave believably, that is human-like.

Considering presented motivations for an automatic generation of virtual
world content and its population with autonomous agents, in this thesis, we
present a new concept, named Virtual World Grammar (VWG) that can auto-
matically generate a 3D virtual world model out of the specification of activities
performed in the VW. A Virtual World Grammar can generate content for var-
ious virtual worlds; thus, we also present a mechanism that connects multiple
worlds to the normative infrastructure allowing the participation of users from
different virtual worlds in the same e-* application. Finally, we propose new
methods to populate a normative VW with crowds of unique, believable agents.

We have presented the motivation for our research, as well as scientific and
practical applications that this research provides, concerning the definition, con-
trol and execution of normative virtual worlds. Next, we present the research
problem, and explain why we took related decisions to face challenges of this
problem.

1.2 Research Problem

The initial research problem we faced was: how to facilitate a creation of a virtual
world model, considering that this world represents an e-* application or a social
simulation having a formal specification of activities performing in the applica-
tion. Such applications are dynamic in their nature, thus we need an efficient
way of reacting to changes in the specification, as well as to changes in the appli-
cation state during runtime. Therefore, we decided to automatically generate the
3D virtual world from the formal specification of the application it represents.
This problem can be addressed by fully automatic methods, such as rectangular
dualization of planar graphs [Ancona et al., 2008]. In this approach, authors use

1.2. Research Problem 7

a specification of activities introduced in the form of planar graphs, to automat-
ically these generate activities as rectangular spaces [Bogdanovych, 2007]. This
approach, as well as any other fully automatic approaches, face the problem of
tightly bonding the specification to the design of the virtual world (please also
see Section 2.1.3 for details of rectangular dualization).

To address this problem, we seek to employ a semi-automatic process that
would separate the conceptual specification of the application functionality from
the creative design of a 3D virtual world. We found inspiration in works of
[Gu and Maher, 2003] and [Smith et al., 2007], who used computational design
and procedural architecture techniques, and introduced shape grammars to the
generation process. Shape grammars [Stiny and Gips, 1972] were an excellent
match for purposes of design generation, but existing work was not immedi-
ately suitable for our problem. Existing shape grammar solutions are normally
restricted to very specific scenarios, do not normally address interactivity of
the generated designs and rarely consider facilitating agent enactment of the
generated environments as well as their normative regulation. Therefore, we de-
signed a new shape grammar framework that included also our modified version
of [Krishnamurti, 1981] sub-shape detection algorithm, which allowed real-time
execution of recti-linear shape grammars. We implement this framework in the
Shape Grammar Interpreter (SGI), presented in Chapter 3.

Furthermore, we needed a way to transform a design generated by the shape
grammar into a 3D virtual world model, as the shape grammar generates a 2D
floor plan which contains only basic geometrical data. We extended shape gram-
mars with the possibility to add semantic information to shapes that the gram-
mar generates. Moreover, we introduced several methods, such as validations
and heuristics, which assured correct execution of the generation process. This
effort resulted in the definition of Virtual World Grammar (VWG), which pro-
vides the possibility to generate a representation of multiple 3D virtual worlds
out of a formal specification of activities performing in these virtual worlds.
We implemented the Virtual World Grammar concept in a tool named Virtual
World Builder Toolkit, which provides interfaces to define all VWG parts, and
it is integrated as plug-in of Shape Grammar Interpreter.

The use of normative virtual worlds led to the next problem of the causal
connection of a generated 3D virtual environment and the normative infrastruc-
ture. In this work, the normative infrastructure is represented by the Electronic
Institution Execution Environment (AMELI) [Esteva et al., 2004]. Considering
the vast amount of existing virtual world platforms, and the possibility of VWG
to generate content for them, we set the goal to connect multiple virtual worlds
with a single Electronic Institution This allows the participation of users from
different virtual worlds in the same e-* application or simulation. The first chal-
lenge in this approach was processing of virtual world events, notification of
Electronic Institution events and manipulation content in various environments.
First, we needed a way to monitor, filter and process events coming from mul-
tiple virtual worlds. Second, for events coming from the normative runtime, we
needed an efficient way to monitor and distribute these events to related virtual

8 Chapter 1. Introduction

worlds. Third, specific events require an update of connected virtual worlds,
possibly with different architectures. First and second challenge was tackled
by the Movie Script mechanism, proposed in Chapter 5. Incorporating Virtual
World Grammar to the proposed Virtual Institution eXEcution Environment
(VIXEE) completes the third challenge.

Having generated an interactive virtual world and connecting it with a nor-
mative infrastructure is still not sufficient for the application domains of our
interest, as they miss the population. E-* applications stress the collaborative
approach to task solving, while social simulations focus on a study of a popu-
lation. In many cases, we desire to substitute human participants by software
agents, e.g., actions can be automated. When substituting humans by agents, we
require that agents act believably, human-like. Thus, the final problem we faced
was to populate generated interactive spaces with believable virtual agents.

We have studied existing agents’ models, e.g., [Swartout et al., 2006]
[Silverman et al., 2006b], [Gemrot et al., 2009], and although they were inspir-
ing, all of them proved to be inadequate for the purposes of applications con-
sidered by this thesis, due to their domain-specific aim, extensive complexity or
lacking features. Thus, we set the goal to define a new generic agent model,
appropriate for such applications, by combining approaches from Artificial Life
and Intelligent Virtual Agents. We have done a rigid review of existing works
in both fields, and collected information to face challenges during the definition
of virtual agent model and its subsequent execution in e-* application and so-
cial simulations. The first challenge concerned the generation of a believable
massive crowd, where each crowd member has a unique appearance, role and
behavior style. This poses a problem for automatically generated agents hav-
ing identical appearance. We solve this problem by storing agent properties
into genetic structures and applying evolutionary mechanisms using a genetic
algorithms based approach. The second challenge is in a believable, human-like
behavior of agents. We approached this problem by adopting existing models
for agent personality, emotions and physiology. The third challenge we faced
was the requirement that in cultural simulations, agents carry cultural infor-
mation, which affects their appearance and behavior. We solved this problem
by adding the Virtual Culture [Bogdanovych et al., 2010a] information to the
agent model. The final challenge was to integrate agents in the environment,
what allowed them to reason and create plans depending on the current state of
the environment without pre-encoding this data into agent behavior. We have
separated agent definition from the definition of environment and addressed this
problem by defining a Virtual World Object model carrying semantic informa-
tion on interactive objects. As a result, we proposed a new generic agent model
that defines sophisticated “digital organisms,” represented by embodied, believ-
able, autonomous virtual agents.

Figure 1.2 shows an overview of the approach presented in this thesis to
the mentioned research problems. Virtual World Grammar (VWG) targets the
problem of automatic generation of a virtual world design. VIXEE addresses the
second problem of creating efficient causal connection between single normative

1.3. Objectives 9

Virtual World Grammar
(VWG)

Generation

Execution Control

Normative Runtime
(AMELI)

Normative Control

Figure 1.2: Overview of models for intelligent generation, execution and control
of normative virtual worlds, presented in this thesis

infrastructure and multiple virtual worlds. The last problem was tackled by the
Genetic Mizer and a new generic agent model, named VI Agent, which we have
specifically designed for Virtual Institutions.

Summarizing all of the above challenges, we formulate the main research
problem this thesis addresses:

Problem: How to automatically generate and control normative, interactive,
3D wirtual worlds, populated by humans and believable virtual agents?

Next, we present our objectives for solving the research problem and describe
the research method that we use to achieve these objectives.

1.3 Objectives

The aim of the thesis is to propose different models, techniques and methods for
the automatic generation and control of interactive 3D virtual worlds populated
by humans and autonomous virtual agents. We decompose this objective into a
number of lower-level objectives, which target generation and control processes.

10 Chapter 1. Introduction

These objectives are:

e To design a new shape grammar framework having a real-time algorithm
for sub-shapes detection, and its implementation in a general shape gram-
mar interpreter.

e To develop a mechanism, named Virtual World Grammar, which provides
the possibility to generate 3D virtual worlds from the formal specification
of activities performing in the virtual space.

e To extend Virtual World Grammar with a general purpose agent model for
intelligent virtual agents combining Intelligent Virtual Agents and A-Life
features, acting in normative 3D virtual worlds representing e-* applica-
tions and social simulations.

e To develop an algorithm that allows the generation of avatars with unique
appearance, while respecting the ethnic origin of their ancestors.

e To apply designed models, techniques and methods of virtual world gener-
ation, control and crowd generation to the domain of e-learning and social
simulations.

1.4 Research Methods

To illustrate how the identified research objectives are addressed and how we
solved the research problem, we again present the list of objectives, and identify
corresponding research hypotheses and the research method selected to achieve
each of the objectives:

o To design a new shape grammar framework having a real-time algorithm
for sub-shapes detection, and its implementation in a general shape gram-
mar interpreter. The research hypothesis associated with this objective is
that it is possible to define a shape grammar framework having an effi-
cient algorithm that detects sub-shapes in real-time, and that it is possible
to successfully implement this framework in a general shape grammar in-
terpreter. This hypothesis was validated by means of the creation of the
Shape Grammar Interpreter (SGI) which implements a real-time sub-shape
detection algorithm. This algorithm was evaluated according to its perfor-
mance.

o To develop a mechanism, named Virtual World Grammar, which provides
the possibility to generate 3D virtual worlds from the formal specification
of activities performing in the virtual space. The research hypothesis asso-
ciated with this objective is that it is possible to define a mechanism that
provides the possibility to automatically generate a 3D virtual world from
the formal specification of activities performing in this world. This hypoth-
esis was validated by means of designing Virtual World Grammar mecha-
nism, and implementing it in Virtual World Builder Toolkit (VWBT). We

1.4. Research Methods 11

implemented VWBT as a plug-in of SGI. This tool was used as a proof of
concept by generating the representation of an e-auction application.

o To extend the virtual world grammar with a general-purpose agent model
for intelligent virtual agents combining Intelligent Virtual Agents and A-
Life features, acting in normative 3D virtual worlds representing e-* ap-
plications and social simulations. The research hypothesis associated with
this objective is that it is possible to specify a general-purpose agent model
for agents acting in normative 3D virtual worlds, which combines features
from Intelligent Virtual Agents and A-Life. Agents from this model belong
to a specific virtual culture, and their individual properties are encoded in
their genes, allowing them to replicate and evolve. This model integrates
agents closely with their environment, letting them automatically reason
about their plans depending on observed data. This hypothesis was vali-
dated by means of defining the VI Agents model, and evaluating it in the
context of a sophisticated social simulation, where VI Agents represented
the population of the virtual city of Uruk. This simulation is running in
Open Simulator and Second Life.

e To develop an algorithm that allows the generation of avatars with unique
appearance while respecting the ethnic origin of their ancestors. The re-
search hypothesis associated with this objective is that it is possible to au-
tomatically generate unique avatars while respecting the distinctive prop-
erties of parents’ ethnics. This hypothesis was validated by mean of the
definition of an algorithm that uses approaches from genetic algorithms.
For a given base population, using such evolutionary approach, we can
generate large crowds of unique avatars, respecting parents’ ethnics. This
algorithm was evaluated according to the diversity of generated avatars as
well as to the preservation of distinctive visual features of parents.

o To apply designed models, techniques and methods of virtual world genera-
tion, control and crowd generation to the domain of e-commerce, e-learning
and social simulations.The research hypothesis associated with this objec-
tive is that our proposed methods for automatic generation and control
of interactive virtual worlds can be successfully applied to the domain
of e-* applications and social simulations. This hypothesis was validated
by means of applied explanatory research. The detailed literature review
provided evidence and supporting information in favor of executing e-*
applications and social simulations using virtual worlds and the need for
the automatization of their definition and execution. The benefits of ap-
plication of our automated methods were then illustrated in two different
scenarios. First, we presented an e-auction application running in a virtual
world, where using Virtual World Grammar we automatically generated
and modified the world design during its execution. Second, we presented
a social simulation of life in the virtual city of Uruk 3000 BC. This city
is populated by our VI Agents, and operated using methods, models and
techniques presented in this thesis.

12 Chapter 1. Introduction

1.5 Contributions and Significance

In this section we show the major contributions of this thesis and highlight the
significance of these contributions in various areas of Computer Science.

1.5.1 Contributions

With this thesis, we made the following contributions:

e Defined a new shape grammar framework having an algorithm for real-
time execution of sub-shapes detection and its consequent implementation
in our Shape Grammar Interpreter.

e Designed an extension to shape grammar concept, called Virtual World
Grammar, which allows automatic generation of a 3D virtual world from
the formal specification of activities performing in the virtual space.

e Designed and developed a middleware layer model connecting multiple
virtual worlds with a normative runtime infrastructure using our proposed
Movie Script mechanism. This middleware is able to dynamically generate
and manipulate the virtual world model depending on the current state of
the normative runtime infrastructure.

e Designed a general purpose intelligent virtual agent model, called VI
Agents, for agents executing in the context of normative virtual worlds,
in our case Virtual Institutions. Each VI Agent is a member of a virtual
culture, which can be disseminated within their environment.

e Developed an algorithm that generates avatars with unique appearance,
while respecting the ethnic origin of avatar parents.

e Demonstrated how our models, techniques, and methods can be applied
to the domains of e-commerce, e-learning and social simulations.

1.5.2 Significance

The research work presented in this thesis contributes to different fields of com-
puter science: Virtual Worlds, Computational Design, Intelligent Virtual Agents,
Artificial Life, Multi-Agent Systems, Simulations and e-* applications. Below we
highlight the significance of thesis contributions for each of the aforementioned
fields.

1. Virtual Worlds: In this thesis, we present different methods, models
and techniques for automatic generation and control of interactive virtual
worlds. Our proposed mechanism, named Virtual World Grammar, allows
to dynamically react to changes in the specification, where each subsequent
change only requires to re-generate the virtual world design, with no fur-
ther manual modifications. Moreover, this mechanism allows to generate

1.5.

Contributions and Significance 13

many designs, letting a VW designer select the desired one. This dramat-
ically cuts down the VW design and maintenance efforts. Targeting the
control of interactions, VIXEE is a fast and reliable solution for simulta-
neously connecting different environments to the same normative runtime
infrastructure, in our case an Electronic Institution. Thus, VIXEE allows
developers to deploy one application to many virtual worlds. Concerning
the presented general purpose virtual agent model, VI Agents can populate
existing virtual worlds and use them to substitute humans for automated
tasks, such as virtual guides, poll collectors, or to make virtual spaces more
appealing for their visitors.

. Computational Design: Shape grammars represent a prominent field

in the world of computational design. Our shape grammar framework
with a modified version of an algorithm for sub-shapes detection, and its
subsequent implementation in our Shape Grammar Interpreter contributed
to the world of shape grammars in four aspects. First, it can be used to
efficiently execute rectilinear shape grammars with the use of sub-shape
detection. Second, it becomes a teaching and presentation tool for shape
grammar. Third, researchers working with shape grammars use SGI for
experiments and to prove their concepts. Fourth, SGI can be used by
industry, e.g., product designers or architects.

Another contribution to the computational design field is our algorithm
for the generation of agent appearance. Generated agents can be deployed
not only in virtual worlds, but also in any graphical environment, such as
games Or movies.

. Intelligent Virtual Agents and Artificial Life: Our proposed general-

purpose agent model combines approaches from Artificial Life and Intelli-
gent Virtual Agent fields. This model introduces a higher level of sophisti-
cation for A-Life “digital organisms.” Agents implementing this model can
be employed in e-* applications or perform sophisticated simulations with
embodied, believable, cultural agents capable of evolution and adapting to
a changing environment. This model is extensible, allowing researchers to
adapt this model for their needs.

. Multi-Agent Systems: In this thesis, we work with Virtual Institutions,

which combine Electronic Institutions, an Organization Centered Multi-
Agent System (OCMAS), and virtual worlds, to support human partici-
pation in MAS. Proposed VWG, VIXEE and VI Agent model facilitates
the deployment and control of Virtual Institutions in e-* applications and
simulations with a different level of sophistication. In these applications,
humans can directly participate in Electronic Institution execution through
their avatars, opening MAS to humans. The conducted study, literature
review and developed prototypes present significant evidence in favor of
applicability of our mechanism to these applications.

5. Social Simulations: VI Agent model is designed for deployment within

14 Chapter 1. Introduction

sophisticated social simulations to perform specific automated tasks. VI
Agents carry virtual culture allowing their execution in complex cultural
simulations. This model includes aspects supporting agent believability,
such as psychology and physiology. To create a believable crowd of VI
Agents, we take a genetic approach and encode agent properties into genes,
generating agents with unique behavior and appearance.

1.6 Examples

In this thesis, we use two different examples to illustrate and prove our tech-
niques, models and methods.

1.6.1 E-auctions

The first example is an auction system which allows both in-house users (bidders
present in a real auction room) and internet users to participate in real auctions
happening all around the world. This proved to be useful for specific types
of auctions, like fish market auctions [Noriega, 1999], happening over a short
time period, in the exact hour on the exact place. These types of auctions use
extensive visual information for auctioneers, e.g., fish quality, that decide the
final price of the auctioned item. However, how to accomplish the presence in
all these places and achieve an effective and comfortable communication between
in-house and internet users? Our answer is a hybrid environment which combines
3D virtual worlds, augmented reality and multi-agent system technologies. We
generate an auction as a virtual space, either as a room in a big auction building
or a separate building in the virtual world. All auction participants are displayed
as avatars. Internet users move around the building and visit different auctions
by entering auction rooms. In-house users are tracked either by cameras or
some communication device, and their actions are constantly updated in the 3D
representation. The auction system displays auction progress to every type of
participant in the following format:

e In-House user sees an announcement board with the auction progress, or
this information is displayed in custom glasses that he wears, allowing to
augment reality.

e Web user sees a dynamic page control displaying the auction progress.

e Virtual world user observes the actual environment and the behavior of
avatars to see the auction progress.

We use this example in Chapter 2 to explain Electronic Institutions concept
and also in Chapter 4 to contemplate the automatic generation of the 3D virtual
world representing the e-auction system. Using this example, we also present the
possibilities of a dynamic manipulation of a virtual world model by adding and
removing auction rooms depending on the current state of the auction system.

1.7. Structure 15

1.6.2 Uruk 3000 BC

The second example uses the 3D virtual environment developed by Anton Bog-
danovych as a part of Authentic Interactive Re-enactment of Cultural Heritage
with 3D Virtual Worlds and Artificial Intelligence [Bogdanovych et al., 2011]. In
this project the author, using Second Life, recreated the life of the first city on
earth, Uruk 3000 BC. In this example, we populate Uruk by VI Agents (Chap-
ter 6). Agent appearance is generated using the algorithm described in Chap-
ter 7, and their definition and execution is handled using VIXEE (see Chapter 5).
VIXEE is also responsible for updating the virtual world content. A detailed
specification of this example can be found in Chapter 8.

1.7 Structure

The remainder of this thesis is structured as follows:

Chapter 2 outlines the main components of the problem domain: virtual
worlds, Electronic Institutions, Virtual Institutions, and their key characteris-
tics. It also provides background on Shape Grammars, Intelligent Virtual Agents
and Artificial Life and lists the relevant works in these domains.

Chapter 3 presents our algorithm for the real-time sub-shape detection
during execution of shape grammars, evaluates its speed and complexity and
describes its implementation in our Shape Grammar Interpreter (SGI).

Chapter 4 describes our Virtual World Grammar, a technique for the auto-
matic generation of 3D virtual world content and presents results in an e-auction
Virtual Institution.

Chapter 5 introduces a model of a communication infrastructure, named
Virtual Institution Execution Environment (VIXEE) that allows the connection
of multiple virtual worlds to a running instance of a single Electronic Institution.
This chapter presents an evaluation of VIXEE according to its performance.

Chapter 6 presents our general purpose intelligent virtual agent model for
agents acting in normative virtual worlds called VI Agent. This model is evalu-
ated in Chapter 8.

Chapter 7 describes an algorithm for automatic generation of appearance
of avatars, using approaches and techniques from genetic algorithms. This al-
gorithm is evaluated by the variety of generated avatars and the preservation of
ethnic features of parents.

Chapter 8 evaluates our work in a sophisticated simulation of the city of
Uruk 3000 BC, running in OpenSim, a 3D virtual world platform. This simula-
tion uses mechanisms introduced in this thesis.

16

Chapter 1. Introduction

1.8 Summary

In this chapter:

*

*

We have introduced our research and presented the motivation to conduct
it.

We have stated the research problem and explained related challenges re-
lated to this problem.

We have stated our key contributions of this research to various academic
disciplines and showed how we advance the state of the art in those.

We have presented two application examples that we use throughout this
thesis.

We have presented the structure of this thesis.

In the next chapter, we present the background on related subjects that we
use in this thesis and may be unknown to the reader.

Chapter 2

Background and Related
Work

The previous chapter introduced our research concerning intelligent generation
and control of interactive virtual worlds. In this chapter, we present back-
ground information that helps in detailed understanding of concepts used in
this thesis. Moreover, for selected concepts we provide the state-of-the art re-
lated to this research. We start with details on virtual worlds, and introduce
their specific applications, where participant interactions must be controlled.
Then, we present Virtual Institutions, which combine Electronic Institutions, a
well-established Organization-Centered-Multi-Agent System, and virtual worlds
[Bogdanovych, 2007]. We follow with a description of Electronic Institutions
[Esteva, 2003]. Finally, we present the background and related work in A-Life
and Intelligent Virtual Agents fields that inspired us to design our generic pur-
pose agent model.

2.1 Virtual Worlds

Virtual worlds are a special class of online multi-user applications. They
have been thoroughly described in many books and publications [Bartle, 2003]
[Bogdanovych, 2007] [Messinger et al., 2008]. Their history, current use
and future scientific potential are well documented [Bainbridge, 2007]
[Messinger et al., 2009]. Thus, for readers unfamiliar with this concept, we pro-
vide a general overview of virtual worlds concept and then introduce only those
parts related to our research. We start with a definition of virtual worlds ac-
cording to [Bartle, 2003].

Definition 2.1. Virtual world (VW) is a computer based simulation environ-
ment through which participants can interact with each other and with objects
in the environment.

Virtual worlds use graphics with different level of sophistication. Particularly,

17

18 Chapter 2. Background and Related Work

Scary Tomato
o

‘e
Al

o'
- ,@,

_,/ 1
5 S8 ep SN

(a) Poptropica (b) Betteverse

Figure 2.1: Children focused virtual worlds

2D and 2.5D! virtual world such as Poptropica or Betteverse are popular between
kids (see Figure 2.1). This thesis is concerned with 3D virtual worlds.

Virtual worlds represent a broad class of online applications. These ap-
plications can be broken down into the following four domains (Figure 2.2)
[Bartle, 2003] [Cavazza, 2007]:

e Social - focused on community.
e Gaming - focused on online games.
e Entertainment - focused on multimedia and showbusiness.

e Business - focused on e-commerce activities.

Interactions using avatars are a key aspect of the subclass of virtual worlds
called social virtual worlds, where participants chat in 2.5D and 3D environ-
ments (see Figure 2.2 for virtual world types breakdown). Such virtual worlds
are represented as simulated environments populated with avatars, where par-
ticipants can change the look of the chat room, which represents their home or a
clubroom. The limitation of such virtual worlds is that the user usually cannot
move within his environment, or he can move only in a predefined way. One of
the most popular 3D chat platforms is IMVU?, used mostly by teenagers and
WeeWorld for younger kids. Social platforms represent another type of social vir-
tual worlds, which most resemble the classical social networks. Typical example
of a social platform is Cyworld® where more than 90% of young South-Koreans
interact on a daily base. Another type of social virtual world is an avatar-centric
application such as NeoPets*, where participants create, manipulate and share

12.5D application is a 3D application restricted to 2D plane, also known as fake 3D (see
Figure 2.1b)

2http://imvu.com (05/2012)

Shttp://us.cyworld.com/ (05/2012)

4nttp://www.neopets.com/ (05/2012)

http://imvu.com
http://us.cyworld.com/
http://www.neopets.com/

2.1. Virtual Worlds 19

Virtual universes landscape
Social : Game

D % A
== mm«m—*

2.5D & 3D Chats

Avat:;
FRRNZ(D

nnnnnn 2 vink g

skadZ

| VirtualWorlds .~ |

TowerChat QOO
= - HIETH1

&, (((((

V'\'::i::‘s“ Virtual Worlds Generat Serious Games Virtual Marketplaces
(EEPISCl M U LTI VERSE = ~rlcs ! questvile
Oubeck v owsd T | g D
Virtual City Guides
Goggle| | Unfiext || v Business
Entertainment @®® FredCavazza.net

Figure 2.2: Breakdown of virtual worlds applications

their avatars with other participants. Similar to avatar-centric worlds are brand
universes, e.g., Barbie Girls®, where real world brands, such as Hasbro, create a
specific virtual world that represents their virtual products creating a stronger
bondage between participants and real-world company products, often allowing
them to purchase these products directly from the virtual world environment.

Combining the social aspect of virtual worlds with entertainment forms the
class of entertainment virtual worlds, using which participant can generate
their own environments (e.g., Muse®), become immersed in virtual city tours
(e.g., UpNext”), or engage in adult activities (e.g., Virtual Ibiza®).

Adding gaming possibilities on top of social interactions and virtual enter-
tainment we obtain a class of game virtual worlds. These worlds represent
many successful multiplayer online games (MOG), such as sport and gambling
games and also very popular multiplayer online role-playing games (MMORPG),
e.g., World of Warcraft? (WoW) and Runescape'®. The WoW is (as of 05/2012)
the most successful game VW with more that 11 million of registered users.
Game VWs create enormous profits for their providers ($1 billion in year 2011
for Blizzard, provider of WoW). These profits come from subscriptions, online

Shttp://games.barbiegirls.com/virtualworld/en/ (05/2012)
Shttp://www.musecorp.com/ (05/2012)
Thttp://www.upnext.com/ (05/2012)
8http://www.virtualibiza.com/ (05/2012)
9http://us.battle.net/wow/en/ (05/2012)
Onttp://wuw.runescape.com/ (05/2012)

http://games.barbiegirls.com/virtualworld/en/
http://www.musecorp.com/
http://www.upnext.com/
http://www.virtualibiza.com/
http://us.battle.net/wow/en/
http://www.runescape.com/

20 Chapter 2. Background and Related Work

operations, e.g., gambling, as well as from virtual goods, that is content created
within virtual worlds and exchanged for either real or virtual currency between
world participants.

Profits themselves are a key aspect of the class of business centered vir-
tual worlds where participants can engage and collaborate in business activities,
such as virtual marketplaces, e.g., Centre du Monde'!. In these virtual market-
places, participants can browse a shop selection in simulated 3D environments.

Authors of Figure 2.2 separated the four just mentioned virtual universes
(social, gaming, entertainment and business) into different subgroups but they
named “virtual worlds” only those virtual universes that allow participants to
create and manipulate their content. [Singhal and Zyda, 1999] summarized key
aspects of virtual worlds that make them distinct from other types of computer
applications:

e The ability to support multiple users differentiates virtual worlds from
standard virtual reality and classical (single player) games.

e The ability to share and manipulate virtual world content (objects) differ-
entiates virtual worlds from traditional chat rooms.

e The ability to support real-time interactions differentiates Virtual Worlds
from email services and traditional web browsing.

Another important aspect of virtual worlds is their persistence. When a user
leaves a virtual world it continues executing, allowing the participation of other
users. Furthermore, 3D virtual worlds provide an immersive experience for their
participants. They have a “sense of space,” they can walk around, collaborate
and interact with other participants and the environment.

Participants act in virtual worlds through use of avatars, their graphical rep-
resentation. Sometimes it required to automate actions of a human participant,
thus we can substitute his presence with an automated counterpart. In games,
these automated participants are called bots, while in virtual worlds and the text
of this thesis, we refer to them as agents.

Next, we present two aspects of virtual worlds related to this research. First,
we explore the world of avatars. Second, we take a look at content creation
in virtual worlds, explain how it can be used to fulfil the objective to auto-
matically generate virtual world content. Then, we present several other works
related to this objective. Finally, we introduce Second Life virtual world and
an open-source virtual world platform called OpenSimulator, and explain their
advantages over other existing virtual worlds and platforms.

2.1.1 Awvatars

“Avatar” is a very popular word nowadays, used by the movie industry, computer
games and online applications. Although, the meaning of the word avatar in

Uhttp://wuw.lecentredumonde.com/galerie/ (05/2012)

http://www.lecentredumonde.com/galerie/

2.1. Virtual Worlds 21

these fields differs, in general we can refer to it as one’s alter ego. Historically, it
is derived from the Sanskrit avatra, meaning “descent”. Avatar first appeared
in English in 1784, as a Hinduistic term for a material manifestation of a deity,
which is earthly incarnation of higher gods [Bartle, 2003].

In the multimedia field, the term avatar as the on-screen representation of the
user was coined in 1985 during designing LucasFilm’s online role-playing game
Habitat. In the computer magazine Run, issue from August 1986, Margaret
Morabito wrote, “Once a human being enters Habitat, he or she takes on the
visual form of an Avatar, and for all intents and purposes becomes one of these
new-world beings.” Neil Stephenson, in his breathtaking cyberpunk novel “Snow
Crash” [Stephenson, 2000] introduced the word avatar to the wide public. In his
own jargon, he called his virtual world “the Metaverse” and its digital inhabitants
“avatars.” In 2009, James Cameron created the famous sci-fi movie Avatar,
where avatars are genetically engineered Na'vi-human hybrid bodies, which a
team of researchers uses to interact with the natives of Pandora.

(a) Human-like avatar (b) Fish avatar

Figure 2.3: Second Life avatars

In this work, we refer to avatar as the graphical representation of a user in
a virtual space. This meaning is also the most common between Internet users.
[Liao, 2008] makes connections between avatars and a person’s identity in the
real world; he wrote: “An avatar does not usually fully represent a person, but
rather, represents an alter ego or pretend persona. The body images they create
usually do not mirror their physical body but are accumulations of imagination
and desires.” This process is sometimes two sided, when avatar impersonation
affects the appearance and the behavior of a human user, called the Proteus
effect [Yee, 2007]. Levine mentioned the case of a shy, 40-years old teacher, who
played the role of necromancer (master commander of the dead) in the popular
online game called Everquest'? and while playing: “she began to become much
bolder, stronger and more assertive as a result of playing this character, and she
was able to carry that over into her real-life interactions'.” Levine also noted
that sometimes the process of such impersonation can be scary for users: “I

2http://http://wuw.everquest.com/ (01/2012)
Bhttp://wuw.npr.org/templates/story/story.php?storyld=12263532 (05/2012)

http://http://www.everquest.com/
http://www.npr.org/templates/story/story.php?storyId=12263532

22 Chapter 2. Background and Related Work

Me Communicate World Build Help

Ll O 25 Fas - General [Soll Kk

Animals Robots Vehicles

Q Destinations (a8 People [Profile | @ View

Figure 2.4: Avatar Design in Second Life

played one of these games for two days once, and it scared the hell out of me. I
made the decision never to play one again. Why? Because, I would end up just
vanishing into it!”. As a conclusion, we can state that there exist a deep link
between users and their avatars; therefore, selecting the graphical representation
of their avatars is particularly important for them.

In 3D virtual worlds, users are represented by their 3D avatars. A 3D avatar
is an animated, emotive, complex model representing anything from actual re-
semblance of the human user (see Figure 2.3a) to a sharp-teeth, talking fish (see
Figure 2.3b).

Nowadays, there exist the possibility to generate your 3D avatar. SitePal'# al-
lows web site owners to add an interactive 3D character to their web pages. Such
character, either real-life like or cartoon-like, actuates as a conversational agent,
which interacts with web-site visitors. There also exist many avatar-centric vir-
tual worlds, such as NeoPets'®, which allow users to create their avatars, share
them with friends and even order a real-life toy with the look of their avatar.

To create a 3D avatar is usually an application dependent process, where
a user can create his avatar for a specific game or a virtual world, making it
impossible to transfer the avatar to other applications. Figure 2.4 shows one
of the most sophisticated avatar appearance editors, which can be found within
Second Life (see Section 2.1.4). Second Life users can select an avatar from a rich
variety of predefined avatars and modify different parts of their body. A user
can also define and modify custom body parts, (e.g., head, torso, eyes), as well
as clothes (e.g., skirt, pants, socks). Moreover, different textures can be applied

Mnttp://wuw.sitepal.com/ (05/2012)
Bhttp://wuw.neopets.com/ (05/2012)

http://www.sitepal.com/
http://www.neopets.com/

2.1. Virtual Worlds 23

to both skin and clothing, as well as different accessories can be attached to an
avatar’s body (e.g. hats, earrings, handbags). Business with avatar accessories
creates a substantial part of Second Life’s economy, which is based on a custom
currency, the Linden Dollar.

In this thesis, we present a genetic based mechanism that can produce new
avatars independently of the virtual world considered. Moreover, regarding
crowd simulations in virtual worlds, there is a lack of approaches for automatic
generation of a large crowd of unique avatars. This genetic mechanism tackles
also this problem.

2.1.2 Virtual World Content Creation

In the introduction chapter, we have described the objective to automatically
generate 3D virtual worlds from the specification of activities taking place in this
world. We are able to accomplish this task in those virtual worlds that allow
users to create and manipulate their content. Even though this is a defining
feature of virtual worlds, many of them lack this capability, or it is limited (e.g.
possibility of manipulating only a predefined set of objects). A recent research
study revealed that due to the possibility to create content, virtual worlds have
the potential to become one additional environment, like school, home, and the
playground, where youth can learn, play, and grow [Beals, 2010].

Figure 2.5: Content manipulation in Second Life

Apart from educational benefits, content creation opens the door to virtual
economies by selling the created content to other participants. This emerging
economy raised $3 billion in 2010 with the planned increase to $12 billion in 2012
[Mitham, 2010]. This content includes not only avatars and avatar accessories,
such as clothing or different hair designs, but also whole environments with
buildings and their equipment. Monetization of virtual objects brings massive
profits for virtual world providers; thus, there is an increasing effort to include

24 Chapter 2. Background and Related Work

this possibility in many other virtual worlds. Although, due to the strong com-
plexity of the implementation of such a feature, only existing content can be
bought from the virtual world provider.

Each existing virtual world handles content creation in its own way. Ad-
vanced content manipulation features can be found within Second Life, which
provides a virtual land (island) and a set of world-specific tools to create and
manipulate world objects and avatar appearance. Content can be created either
on privately owned land (for a fee) or in open environments, called sandboxes.
Figure 2.5 shows a Second Life participant manipulating virtual world content.
In past years Second Life users were limited to create their content combining
“prims”, simple 3D objects such as a box or prism. Each user can use only a lim-
ited number of prims, or he can pay an extra fee to use more prims. Nowadays,
users can import complex 3D meshes and use them to design their islands.

Nevertheless, automatic generation of a virtual world depends on the possi-
bility of automatic manipulation of its content. In Second Life, and OpenSim-
ulator, content can be manipulated using OpenMetaverse'6 library. In Open
Wonderland!” virtual world content is managed with JMonkeyEngine'®. These
libraries allow not only to interact and manipulate with world objects, but also
to control and interact with their participants. Thus, we can use these libraries
to generate a virtual world design and to control avatars in the virtual world,
providing functionality to put agents in play.

In the next section we introduce several works that tackled the problem of
virtual world design generation. They are related to our objective of automati-
cally generating virtual world content.

2.1.3 Related Work: Automatic Generation of a Virtual
World Design

Although virtual architecture represents a separate field of study, it has similar
concerns as virtual worlds design. Maher et al. have explored in different works
the design of virtual worlds [Maher et al., 2000] [Lou Maher and Gu, 2003]
[Gu and Maher, 2004] [Lou Maher et al., 2005]. Authors approached the de-
sign from the functional point of view, where each design element serves a
specific function. Thus, it can be operated by a special design agent, which
depending on current preferences of activities, updates the virtual world design.
[Gu and Maher, 2003] and [Smith et al., 2007] presented the possibility of using
shape grammars to generate virtual world design, what inspired us to create a
Virtual World Grammar (see Chapter 4).

Considering existing approaches in the automatic generation of a vir-
tual world design from a formal specification, [Ancona et al., 2008] and
[Bogdanovych, 2007] generated a 2D floor plan of a Virtual Institution (see Sec-
tion 2.4 for details on Virtual Institutions) from the conceptual model described

6nttp://openmetaverse.org/ (04/2012)
Thttp://openwonderland.org/ (05/2012)
8http://jmonkeyengine.com/ (05/2012)

http://openmetaverse.org/
http://openwonderland.org/
http://jmonkeyengine.com/

2.1. Virtual Worlds 25

in its performative structure. This approach used rectangular dualization of
biconnected planar graphs. For this purpose, OCoRD software was developed.
Problems, related to this approach, include (i) close binding between the spec-
ification and the generated floor plan (ii) problem with scaling of sizes of gen-
erated spaces, and (iii) difficult navigation in such generated spaces. Figure 2.6
contemplates these problems showing the generated floor plan for a simple vir-
tual world with three activities, i.e., Trade Room, Meeting Room, Registration
Room. Spaces labelled with T1-T5 are transitions that represent intermediary
states between activities. We can imagine that for a virtual world with many
activities, its automatically generated layout becomes confusing for participants.

I TradeRoom I T5 Exit

Figure 2.6: Generated floor plan using rectangular dualization

In the thesis, we explore an alternative to this approach using shape gram-
mars, a computational design, rule-based technique (see Section 2.5 for details
on shape grammars). The use of shape grammars allows much more freedom in
the VI design, and it is possible to generate many different functional designs
with limited additional cost. We do not generate transitions as separate rooms
(as in OCoRD) but we map all transitions to a hallway. In this way, we can
generate floor plans of buildings with much simpler navigation for the user. Fur-
thermore, our system contemplates not only a generation of the 2D layout but
also a complete 3D scene.

Our approach is similar to [Lou Maher and Gu, 2003], which used shape
grammars to generate a floor plan of a virtual world. In their case, a design
agent was responsible for manipulating virtual world content. [Duarte, 2001]
used shape grammars to generate Siza’s Malagueira houses using an online ap-
plication that rendered house designs depending on user preferences. Duarte
introduced the concept of discursive grammars that contain a shape grammar, a
description grammar and a set of heuristics. While Duarte generated house de-
signs from the discrete set of user preferences, we generate virtual worlds from a
formal specification of any number of activities performing in the virtual world.
Also, Duarte used markers and a descriptive grammar to pertain semantic data
in generated forms, while we use user-defined ontologies to define concepts de-

26 Chapter 2. Background and Related Work

scribing these forms.

Other works, such as VRID (Virtual Reality Interface Design)
[Tanriverdi and Jacob, 2001] and VEDS (Virtual Environment Develop-
ment Structure) [J.R. et al., 2002] presented methodologies that facilitate
the designer’s task either by dividing the design in high-level and low-level
phases or guiding him in taking design decisions to get a usable virtual
environment. A conceptual model of a virtual environment was presented by
Ossa [Southey and Linders, 2001], the model considered conceptual graphs and
rule based systems that were too complex to be managed by designers. i4D is
another methodology based on the representation of conceptual models. This
methodology contributed with a thin abstraction layer taking into account only
a small space of the domain knowledge [Geiger et al., 2000]. Compared to the
approaches in this thesis we provide a high level abstraction layer by means of
the Virtual World Grammar, which enclosed both data and processes related to
the 2D and 3D generation of designs.

VR-WISE system and Ontoworld tool have focused on the gap between
the abstract model and the implementation prototype by proposing an ap-
proach to generate VW from high-level descriptions given by ontologies
[Troyer et al., 2003] [Mansouri et al., 2009]. Objects in the domain and their re-
lationships are described in a so-called domain ontology. The domain ontology is
converted into a representable domain ontology which describes how objects in
the domain can be represented in the virtual environment. As a main difference
with our approach, the domain ontology does not have all the information needed
to generate the 3D virtual world whereas our approach has it. We can generate
the whole virtual world layout and situate 3D objects there while VR-WISE
system situates objects in an already generated virtual scene. Currently, our
mechanism supports the design generation for Open Wonderland!'® and Second
Life?? virtual worlds and also for OpenSimulator-based virtual worlds?!.

2.1.4 Second Life Virtual World and Open Simulator Plat-
form

Second Life (SL) is one of the most popular 3D virtual worlds with more than
28 million sign ups since its launch in 2003 to this date. It can be considered
as a massive technological and social experiment, where SL participants, called
residents, interact in virtual environments called simulators (also called sims).
Each sim represents a virtual land owned by some resident. It can host a limited
number of residents and display a limited number of objects (called prims).
Users can teleport between sims. Figure 2.7 shows the map of the SL universe,
where each square represents one sim. Figure 2.8 displays a SL environment,
with participating residents.

Residents explore the world by walking, running or even flying and teleport-

Onttp://openwonderland.org (05/2012)
20nttp://secondlife.com (05/2012)
2lpttp://opensimulator.org (05/2012)

http://openwonderland.org
http://secondlife.com
http://opensimulator.org

2.1. Virtual Worlds 27

@sturl

)
=

Figure 2.7: World map of Second Life

Figure 2.8: Second Life

ing. They can talk to other residents either via chat or by voice and interact
with objects in the environment (e.g. touch, pick up and attach an object to
their body). The distinguishing feature of Second Life is that residents can
shape their environment according to their needs, particularly on their property.
Thus, Second Life can be considered as a platform, and all its content is created
by users. Content creation and environment interaction is protected by object
and property rights. Residents can build objects, make them interactive (using
a scripting language called Linden Scripting Language, LSL) exchange or sell
these objects. They can manipulate their appearance, purchase or trade clothes
and apparel, collaborate with other users, explore, work, or just have fun.

28 Chapter 2. Background and Related Work

Second Life has its own economy system based on Linden Dollars, which can
be exchanged with real dollars. Monetization of virtual objects and property in
SL gained a lot of media attention when the SL resident Anshe Chung cashed out
$1 million for her virtual real estate and virtual stock market investments?2. Such
success of a virtual economy draws attention of real-world businesses looking for
fresh possibilities of their expansion and new forms of company marketing.

In the e-commerce domain, we have seen companies like IBM, Toyota, Honda
and Sears presenting their products in SL. According to [Messinger et al., 2009]
there is a strong opportunity for real-world companies to enhance their brand
image or create higher levels of brand recognition by establishing their virtual
presence in 3D environments such as SL. A survey revealed that users that
shopped in a SL store are more likely to shop in the associated store in the real-
world. Although, considering that the majority of SL residents visit the virtual
world for social purposes, and wish to spend little, or nothing to modify their
appearance, the success of full-time businesses is questioned, what resulted into
recent closing of American Apparel store in Second Life. This does not degrade
the importance of SL for e-commerce domain. According to the business analysis
done by [Footprint, 2007], virtual worlds provide an environment for numerous
business applications and opportunities, such as (a) laboratory market research,
(b) test market, (c) large market for advertising, (d) retailing center and (e)
brand recognition and marketing. With more existing applications and more
possibilities, Second Life attracts still more users positively affecting the existing
and emerging virtual businesses.

The vast number of Second Life residents has affected the decision of many
real-world organizations to open their branches in Second Life as their message
can be distributed to many potential clients, sometimes with “the right kind of
media attention” (e.g. Obama’s speech in Second Life??). We can find several
government embassies in SL, including Maldives, Sweden and Estonia. Further-
more, religious organizations created their virtual disciples, when the christian
church of Oklahoma opened its 12th campus, the first one in the virtual world.
In 2007, radio Islam Online bought a virtual property where residents could
perform the ritual of Hajj.

In the e-learning domain, Second Life presents a powerful educational plat-
form for interactive and collaborative learning. This type of learning can help
where traditional learning processes fail. The traditional learning model for in-
teractive learning is the four-pronged model developed by [Kolb et al., 1974]:
concrete experience, reflective observation, abstract conceptualizations and ac-
tive experimentation. Collaborative learning is particularly popular between
young generation that grew up in constant contact with digital media, named
by [Tapscott, 1998] Net Generation or Generation Y. Members of this genera-
tion, also known as digital natives, seek every opportunity to use digital media
to facilitate their education. According to [Steinkuehler, 2004] virtual worlds fit
the needs of digital natives as they “use the scientific habits of mind better than

22nttp://wuw.anshechung. com/include/press/press_release251106.html (05/2012)
23nttp://www. cbsnews. com/8301-503544_162-5151594-503544 . html (05/2012)

http://www.anshechung.com/include/press/press_release251106.html
http://www.cbsnews.com/8301-503544_162-5151594-503544.html

2.2. Virtual Worlds as Hybrid Multi-Agent Systems 29

traditional teaching methods by letting participants to experiment with unfa-
miliar alternatives, rationally calculate problem outcomes, and develop complex
reasoning about the subject of study”. In this thesis, we implement an e-learning
scenario, and recreate life in the mesopotamian city of Uruk. Exploring Uruk,
students can better understand habits, values and history of the ancient Sume-
rian culture.

Apart from e-learning, Second Life provides excellent research possibilities in
multiple scientific fields. Considering the number of users of different population
groups and profiles, SL is especially well designed for formal experiments in so-
cial science and cognitive science. Researchers can construct virtual laboratories
that can automatically recruit potentially thousands of research subjects. Also,
examining the existing social networks and economic systems, we can extract
diverse data. For creative scientists, virtual worlds provide a powerful testbed,
before their experiments can be applied to real life, such as comparing socioe-
conomic consequences of alternate government regulations [Bainbridge, 2007].
Apart from social sciences, Bainbridge points out possibilities of virtual worlds
such as Second Life in education, history, humanities and even sexuality.

Considering the vast number of applications that have been used with Second
Life, we conclude that this virtual world platform fits well for the e-* applica-
tions and social simulations concerned by this thesis. For practical reasons, we
have decided to use Open Simulator, an open-source counterpart of SL. Open
Simulator provides an excellent testbed for applications of our concern, before
they will be deployed to Second Life or other virtual worlds.

Second Life has many complex features but it misses a fundamental charac-
teristic to the deployment applications with controlled interactions. The “run-
time” control of participant interactions is limited to the “terms of service,”
which is a document that contains what the user agrees to comply with. For the
application domains of our interest, we need a way of structuring and norma-
tively control participant interactions, what allows to implement different pro-
cedures for e-* applications or even specify scenarios for social simulations. For
this purpose, we employ Organization Centered Multi-Agent Systems presented
in the next section.

2.2 Virtual Worlds as Hybrid Multi-Agent Sys-
tems

In the previous section, we have introduced virtual worlds and its potential to
deploy e-* applications and social simulations. For these applications, it is often
practical to populate the virtual space both with humans and agents, this is the
reason we use the term hybrid. In this context, agents can be used to automatize
human tasks. Agents who act in virtual spaces are called autonomous, intelligent
virtual agents. Formally:

Definition 2.2. An Autonomous Intelligent Agent is a software agent (i.e.
a software program which acts on behalf of a user or other program), which

30 Chapter 2. Background and Related Work

observes through sensors, acts upon an environment using actuators and directs
its activity towards achieving goals [Russell et al., 1995].

For some authors, an agent being autonomous is more important than being
intelligent; therefore, often they are referred to as “autonomous agents” rather
than “intelligent”. Agents differ widely in their architecture. An example is
a reflex agent, which reacts to a world state depending on a set of rules. Ac-
cording to [Russell et al., 1995], there are other types of architectures. In this
thesis, we are concerned with a combined architecture of goal-based agents and
learning agents. Goal-based agents take decisions depending on the information
stored in the model of the observed environment and agents’ current goal. Goals
allow agents to choose among multiple possibilities of actions. Learning agents
start initially in an unknown environment, and during execution they observe
the environment, and adapt their actions depending on its current state. The
advantage of this approach comes with the usage of a learning element, which
rewards or punishes agents when performing their actions, thus allowing agents
to adapt and improve.

There exist different agent models depending on their field of application,
e.g., semantic web agents, mobile agents, interface agents. In this thesis, we are
concerned with agents that act in virtual environments, called intelligent virtual
agents (also see Section 2.7). Formally:

Definition 2.3. An Intelligent Virtual Agent (IVA) must perceive the
world in which it exists, both virtual and real, often including human par-
ticipants’ natural language and gestures. It must reason about those percep-

tions as well as decide on how to act on them in pursuit of its own agenda
[Marsella and Badler, 2011]

While sometimes it is enough to deal with a single instance of an agent (e.g.
inteface agent), we are interested in systems that can handle and coordinate
many agent instances, called multi-agent systems.

Definition 2.4. Multi-agent systems (or MAS) are systems in which several
interacting, autonomous agents pursue some set of goals or perform some set of
tasks [Weiss, 1999].

In many cases, MAS represent systems needing only agent-agent interaction.
Virtual worlds represent an excellent environment for human-agent interaction.
Then, Multi-agent Systems are used to specify when and how should participants
(i.e. humans and agents) interact. There are two approaches to this specifica-
tion. Agent-centered approach focuses on searching for agent-level capabilities,
while system-centered approach deals with searching for group-level rules, such
as conventions or norms [Weiss, 1999]. We are interested in both approaches,
where autonomous agents reason and adapt their actions according to a set of
specified regulations, i.e., norms, constraints and conventions. The specification
of regulations requires the use of formal methodologies and formal languages.
A class of MAS that employs these methodologies and languages is called Or-
ganization Centered Multi-Agent Systems (OCMAS) [Ferber et al., 2004]. An

2.3. Electronic Institutions (EI) 31

OCMAS is designed relying on organizational concepts such as roles, tasks (ac-
tivities), interaction protocols and norms.

A Normative Virtual World is a virtual environment where interactions are
controlled by an Organization Centered Multi-Agent System (“Normative” word
comes from the earlier use of the Normative MAS for interaction control, cur-
rently better known as OCMAS). In this thesis, we employ Virtual Institutions
[Bogdanovych, 2007], which are a specific class of Normative Virtual Worlds that
combines strengths of 3D virtual worlds and Organization-Centered Multi-Agent
Systems, in particular, Electronic Institutions [Esteva, 2003]. 3D virtual worlds
are responsible for audio-visual presentation, and the Electronic Institution en-
ables the formal rules of interactions between participants. In the next section,
we present details on Electronic Institutions as its knowledge is substantial in
understanding Virtual Institutions.

2.3 Electronic Institutions (EI)

An Electronic Institution is an Organization-Centered Multi-Agent System that
structures agent interactions, establishing what agents are permitted and for-
bidden to do as well as the consequences of their actions [Esteva, 2003]. A more
complete definition is provided in the following [Rodriguez-Aguilar, 2001]:

Definition 2.5. Electronic Institutions (EI) are software systems composed
of autonomous entities, i.e. humans or autonomous agents, that interact ac-
cording to predefined conventions on language and protocol and that guarantee
that certain norms of behavior are enforced. This view permits that participants
of Electronic Institutions behave autonomously and make their decisions freely
up to the limits imposed by the set of norms of the institution. An Electronic
Institution is in a sense a natural extension of the social concept of institutions
as regulatory systems which shape human interactions.

In general, an Electronic Institution regulates multiple, distinct, concurrent,
interrelated, dialogic activities, each one involving different groups of agents
playing different roles. It is defined by a dialogic framework, a performative
structure, scenes and morms. An EI is executed in a runtime infrastructure
called AMELI.

Following sections provide details on all parts of EI using the “e-auction
house” institution example introduced in the Section 1.6.1.

2.3.1 Dialogical Framework: Roles and Ontology

Communication between participants of Electronic Institutions is conducted
through speech acts [Searle, 1969]. In general, a speech act consists of two com-
ponents (1) a performative verb and (2) a propositional content. A performative
verb explicitly contains the type of the action a “speaker” is trying to achieve
by pronouncing the propositional content. To illustrate how this differs from
human communication consider the following two speech acts: request(“window

32 Chapter 2. Background and Related Work

opened”) and inform(“window opened”). Although the propositional content is
the same, “window opened”, a speaker expects different results for each action.
Specifying a unified language for such speech acts (by means of an ontology)
allows communication between agents with otherwise unrelated architectures.

In the terminology of EI, speech acts are called illocutions. Each illocution
consists of an illocutionary particle (a performative verb) and a message content
(propositional content). The dialogic framework establishes the acceptable illo-
cutions by defining an ontology (vocabulary) - the common language to represent
the “world” and for communication and knowledge representation.

The dialogic framework also defines participant roles and their relationships.
Each one of EI participants is required to adopt a role defined in the dialogic
framework. For each defined role, it is possible to specify a list of role properties.
Each role property is defined by (i) name, (ii) type, (iii) default value and a (iv)
flag if this property is required.

Figure 2.9 shows all the components of the dialogical framework of the e-
auction institution. This screenshot is taken from Islander tool, which allows
the visual definition of Electronic Institution components [Esteva et al., 2002].
In the right part of this figure, we see a role hierarchy with main roles of guest
and staff and their sub-roles buyer, seller and auctioneer. Staff and auctioneer
are internal (system) roles always executed by autonomous agents. Buyers and
sellers are external roles, which could represent human users or also autonomous
agents. We see a ssd relation between roles of guest and staff and buyer and
seller. Acronym ssd stands for static separation of duty, which means, that a user
can only take one of these roles in the system and when decides to participate
with one role, cannot change to the other. In the left part of this Figure, we see
the properties of the buyer role. Each agent participating in the system with a
given role obtains a copy of the role properties, and these properties become part
of the agent state. These properties change depending on the agent’s actions
within the system.

Relationships

() (@) Role: buyer. -

! Specification = Graphical data ~ Properties Description !

Figure 2.9: Dialogic framework components

Dialogic framework also contains a definition of the ontology and illocution
particles. For the e-auction institution, we define failure, inform and request

2.3. Electronic Institutions (EI) 33

particles. Figure 2.10 shows the ontology for the e-auction institution. On the
left side, we see a list of functions and complex types that these functions use.

Complex types represent structures composed of atomic types, e.g., string,
integer, and other defined complex types. In the e-auction example, Item and
ItemList represent complex types.

Functions form a propositional component of the illocution. On the right
side of Figure 2.10, we see the detail of the function registerltem. Sellers register
auctioned items by specifying a name, description and initial price for the auc-
tioned item. Thus, registerltem has three parameters, two strings and a float
for specifying item details.

Mo Function type: registerltem.

{Specifica(ion . Description]

v Uﬂ] eAuctionOntology

B Item -

9 ItemList Name registerltem

f& accepted BaEkian Requi... | List Type Default value Add

f© auctionitemsinfo (™ [] Sstring Remove

fo bid 1 % O rS::ring 00 Up
2 U oat X

fo close » U Down

fo denied L

f& endAuction Return type | ! :]

f® pay

fo

f& startAuction
Apply

Figure 2.10: e-auction institution ontology and function detail

2.3.2 Scene

Scenes (also called Activities) represent agents group meetings that follow well
defined communication protocols. All the interactions between agents at the
institutional level happen only in scenes. The scene protocol represents the pos-
sible dialogic interaction between roles instead of agents. We can say that these
protocols are patterns of multi-role conversation. The distinguishable feature
of the institutional scene is that an agent can enter and leave the scene only
in a particular moment, in a specific context, and only when he fulfils all his
obligations.

Figure 2.11 shows the simplified English Auction scene protocol from the
e-auction institution. In this protocol, buyers and auctioneer enter the scene
in the START state, indicated by symbol “+buyer” and “+4auctioneer” in the
square above the START state. Buyers can exit before the auction has started,
indicated by the “-buyer” in just mentioned square. Then, the auctioneer starts
the auction and scene execution moves to state W1. In this state, buyers place
their bids. Bidding imposes restrictions. Figure 2.12 shows the Islander window

34 Chapter 2. Background and Related Work

Hbuyer
-buyer
H-auctioneer

buyer
auctionee

Figure 2.11: Scene protocol

where we define properties of bidding arc (recurring arc with label “bid” in the
state W1). In the left part of the figure, we see basic arc properties, where we
can define arc label, constraints, arc action and actions.

Figure 2.11 show the simplified English Auction scene protocol from the
e-auction institution. In this protocol buyers and auctioneer enter the scene
in the START state, indicated by symbol “+buyer” and “4auctioneer” in the
square above the START state. Buyers can exit before the auction has started,
indicated by the “-buyer” in just mentioned square. Then, auctioneer starts the
auction and scene execution moves to state W1. In this state buyers place their
bids. Bidding imposes restrictions. Figure 2.12 shows Islander window where
we define properties of bidding arc (recurring arc with label “bid” in the state
W1). In the left part of the figure, we see basic arc properties, where we can
define arc label, constraints, arc action and actions.

e Constrains impose context-specific restrictions on agents which can per-
form the action specified in arc action. For bidding arc, the restriction
states that a new bid has to be higher than the last bid and that the same
bidder cannot bid twice in a row.

e Arc actions define the illocution or time out. The right side of Figure 2.12
contemplates the Islander window, where we define details of the illocution
where a buyer informs all participants of a bidding scene that he is bidding
a specific price.

e Actions define how context changes after arc action was performed. In
the case of auction protocol, we record the last bidder and the last price.

Buyers continue bidding until there are no new offers. After buyers finish
bidding, the auctioneer ends the auction, and scene protocol moves to state W2.
In this state, all buyers can leave the scene, except for the buyer that won the

2.3. Electronic Institutions (EI) 35

8.0.0 Editing the pattern.
o OO State edge: W1 - W1. Particle: inform ﬂ
(Specification = Graphical data Description | Sender name: % =
Name |W1-Wwl Senderrole: buyer 2
L...|Constraints | Arc action Actions a——— . o
bid true || (inform (y buyen) (x staff)...| sl ovion — (Add_) s (R -
R
\femove J Receiver role: all 1’
C v)
T Content
QS Dovme (bid ?price)
Sort
Apply Time variable: ﬂ
4
(CGancel)

Figure 2.12: Details of the arc “bid” from the scene protocol in Figure 2.11

auction. This contemplates the state detail window in the Figure 2.13, where
(in the area marked with the red ellipse) we see the constraint for the buyer
exiting the auction. In order to leave the auction, the winning buyer has to pay
for the product. When the buyer pays for the product, the auctioneer closes the
auction and everyone leaves.

(L IeNe) State: W2.

[Specification | Graphical data = Description]

Name W2
[Initial state
(] Final state
Constraints Action type Actions Add
- B N,_Remove
b:buyer b != buyerLastBid Exit scene Up
Down
Apply

Figure 2.13: Scene protocol

2.3.3 Performative Structure

More complex activities can be specified by establishing networks of scenes (ac-
tivities) in so-called performative structures. These define how agents can legally
move among different scenes (that is from activity to activity) depending on their
role. Furthermore, a performative structure defines when a new scene execution
starts, and if the scene can be executed multiple times. A performative struc-

36 Chapter 2. Background and Related Work

ture can be regarded as a graph whose nodes are both scenes and transitions
(scene connectives), linked by directed arcs. The transition type allows to ex-
press choice points (Or transitions) for agents to choose which target scenes
to enter, or synchronization/parallelization points (And transitions) that force
agents to synchronize before progressing to different scenes in parallel. Labels
on directed arcs define which roles can progress from scenes to transitions or
from transitions to scenes.

Transitions

Figure 2.14: Performative structure of the e-auction institution

Figure 2.14 contemplates a performative structure of the e-auctions institu-
tion with scenes, transitions and arcs. For each arc, we define the list of roles
that can enter this arc. Then, we specify the type of the arc that defines how
an agent can enter the scene connected with this arc, i.e., the agent can either
create a new instance of the scene or join one or multiple instances of the run-
ning scene. Then, for each arc, we can define context-dependent constraints and
actions. Constraints and actions of an arc are expressions, which use role prop-
erties (current value is stored in an agent state) and institutional properties.
The arc constraint is evaluated prior to an agent passing through the arc, and
the action is evaluated after passing through this arc.

In the performative structure from Figure 2.14, all roles enter the e-auction
institution through the Initial state. A staff agent then creates an ItemRegister
and an ltemlInfo scene. After these scenes were created, sellers can join the
ItemRegister scene where they register products for the auction. After a product
is registered, the staff agent changes its role to auctioneer and creates a new
Auction scene. From this moment, buyers can enter the Auction scene and
participate in the auction. Buyers can also visit the ItemInfo scene and ask
about currently registered items and performing auctions.

2.3. Electronic Institutions (EI) 37

2.3.4 Norms

Electronic Institution defines the possibilities and restrictions on agent actions
while acting within scenes. As mentioned earlier, these actions are either illo-
cutions or scene movements. Norms define the commitments, obligations and
rights that agents acquire while performing their actions within the institution.
Commitments restrict future actions of agents and may limit agent access to
specific scenes and the illocutions that can be uttered. For the e-auctions insti-
tution, we do not define any norms.

2.3.5 Summary of Institutional Data

This section summarizes the institutional data that define an Electronic Insti-
tution. From what we have described so far, the behavior of an institution
participant is constrained by an Electronic Institution at two levels:

e Inter-scene: Arcs in the performative structure define the possible paths
that agents may follow depending on their roles. Furthermore, the con-
straints over output arcs impose additional restrictions on an agent at-
tempting to reach a target scene, as well as specify how the agent state
and EI context is modified when the agent passes through this arc.

e Intra-scene: Scene protocols define what, can be said by whom (with a
specific role) to whom and when. Moreover, arcs are further extended by
constraints and actions for agents passing through the arc.

Moreover, it is possible to constrain participant behavior by norms, which
define commitments, obligations and rights of an agent. Constraints and norms
are defined using agent properties (defined for each role), scene properties and
message parameters. Table 2.1 contemplates the institutional data that an in-
stitution designer uses to define an Electronic Institution. In this table, the
acronym DF stands for Dialogic Framework, while PS for Performative Struc-
ture. The definition of an institution is static and does not change during its
execution, only the institutional context changes by the participation of agents
in the institution.

2.3.6 EIDE Framework

EIDE?* (Electronic Institutions Development Environment) is used to sup-
port the specification, design and deployment of Electronic Institutions
[Esteva et al., 2008]. EIDE comprises the following components:

e Islander provides graphical interfaces for the specification of Electronic
Institutions. It can also verify the specification according to both integrity
and protocol correctness.

24nttp://e-institutions.iiia.csic.es/eide/pub/ (05/2005)

http://e-institutions.iiia.csic.es/eide/pub/

38 Chapter 2. Background and Related Work
’Source\ Part \ Name \Description
DF | Role | Role Property |Property of a role
Norms |Norm Norm Norm defining obligations, commitments and
rights of participating agent
- Properties |PS Properties
Agent Variable|Allowed role for this arc
Type Defines if an agent can create a new scene con-
Arc . - .. C
PS nected with this arc or join existing instance(s)
(i.e. one/many/new)
Constraints |Context-based constraints for entering PS arc
Actions Updates context after passing arc
Protocols Scene protocols associated with given scene
Scene . :
Properties |Properties of the scene
Arc Action |Message said by agent
Arc Constraints |Context-based constraints for entering scene arc
Actions Updates context after passing this scene arc
Scene Action Enter/Exit scene action
Node Agent Agent/Role allowed to perform the action
Constraints |Context-based action constraints
Actions Updates context after the action

Table 2.1: Institutional Data

AMELI is a runtime infrastructure for Electronic Institutions, which
loads an institution specification and then mediates participant interac-
tions while enforcing institutional norms.

aBuilder facilitates agent programming for agents participating in an
Electronic Institution. It structures the development of agents along the
dimensions of the specification and automatically generates agent “skele-
tons”.

SIMDEI provides a simulation environment for quick testing of Islander
specifications. With SIMDEI institutions can be tested with different
agents populations and under different circumstances [Esteva et al., 2008].

Figure 2.15 contemplates all EIDE. The definition of the EIDE framework

concludes our explanation of Electronic Institutions. In the following section
we explain how we can use Electronic Institution to create Normative Virtual
Worlds (i.e. Virtual Institutions).

2.4 Virtual Institutions (VI)

The concept of combining Electronic Institutions with 3D virtual worlds was in-
troduced in [Bogdanovych et al., 2005] as Normative Virtual Worlds and named

2.4. Virtual Institutions (VI) 39

START

design
&

test
&
| deployment

=

P GO
[simulate | aBUILDER

develbpment

Figure 2.15: EIDE Framework Components

Virtual Institutions. In this context, Electronic Institutions are used to specify
the rules that govern participants’ behaviors, while 3D virtual worlds are used
to facilitate human participation in the institution. Therefore, participants of
Virtual Institutions can be both human and software agents. A Virtual Insti-
tution is separated into a Normative Control Layer and a Visual Interaction
Layer. This provides support to the conceptual separation between the norma-
tive control of interactions and the design of the virtual world, i.e., the design
of the 3D graphical user interface. The Normative Control Layer is responsible
for the institutional control of interactions among participants, while the Visual
Interaction Layer focuses on the 3D representation of the institution. Regarding
participants, humans participate in the system by controlling an avatar on the
Visual Interaction Layer, while software agents are directly connected to the Nor-
mative Control Layer, visualized as “special” avatars in the Visual Interaction
Layer, and participate by exchanging messages.

Both layers are causally connected, whenever one of them changes, the other
one changes in order to maintain a consistent state [Maes and Nardi, 1988]. In
the case of our Virtual Institution, a Causal Connection Layer keeps a consistent
state between the model, represented by the Normative Control Layer, and its
view, represented by the Visual Interaction Layer. Figure 2.16 shows an overview
of the three layered architecture of Virtual Institutions.

There is an important conceptual difference between Electronic Institutions
(EI) and Virtual Institutions (VI). In Els everything is regulated in the sense
that it is defined what is permitted, and everything else is prohibited. In VIs
the situation is opposite: there are some actions provided by the virtual world
platform that have institutional meaning, and hence, they are regulated (e.g.
participants are obliged to pay for obtained goods before leaving the auction
room), while the rest of actions are permitted (e.g. there is no regulation for
walking around a room). This is similar to traditional organizations or institu-
tions, where participants are able to perform many actions, but only some of

40 Chapter 2. Background and Related Work

Visual Interaction
Layer

~

\

1 1

1 1

1 1

c 1 1
2 | |
i |
. I 1
g gi o MIDDLEWARE '
oS5 !)
® | !
g ! !
1 I
3 N |
o H I| |
E Electronic :'

o ! . .

£5i | Institution i
H 1
Eq ;
(<] H 1
=2 : 1

Figure 2.16: Overview of VI architecture.

them are regulated and have organizational or institutional meaning.

2.4.1 Related Work: Causal Connection Between Virtual
Worlds and Multi-agent Systems

In this research work, we advocate the use of Virtual Institutions as Normative
Virtual Worlds for the deployment of e-* applications and social simulations.
For the purposes of such applications, we found that current architectures of the
middleware (Casual Connection Layer) lack features, therefore we proposed a
new one. This section presents the state-of-the-art in causal connection archi-
tectures, as well as in works related to Normative Virtual Worlds.

First attempts to establish a causal connection between Electronic Institu-
tions and 3D virtual worlds (in this case Adobe Atmosphere) led to the creation
of Causal Connection Server (CCS) [Bogdanovych, 2007]. CCS implemented two
basic causal actions: (i) creation of an external agent connected to AMELI when
a new human user logs in the institution and (ii) visualization of a new avatar
in a virtual world when a software agent connects to AMELI. Additionally, CCS
used an action/message table mapping each virtual world action to an institu-
tional message. Later, [Bogdanovych et al., 2008] presented an architecture that
allowed causal connection between multiple environments (e.g. mobile devices,
virtual worlds and the real world) and AMELI.

Subsequently, the implementation of the causal connection between a 3D vir-

2.4, Virtual Institutions (VI) 41

tual world and an Electronic Institution was further extended during the devel-
opment of the Itchy Feet prototype [Seidel, 2010] which used Virtual Institutions
in a virtual tourism environment. For this purpose, authors implemented the
Connection Server, bound to the Itchy-Feet implementation. Authors later re-
moved the binding to their solution and presented a Generic Connection Server
(GCS). The architecture of this system is depicted in Figure 2.17. GCS is a
robust extension of CCS, that uses its own communication protocol between the
virtual world and AMELI. Messages using this protocol are specified in XML
format and validated against XSD schema. We have used the ideas from both
GCS and CCS to design our new architecture.

Torque Virtual World

Torque Server

Client Layer

MIDDLEWARE J

* 4 Agent Manager
b

Generic Connection Server

Middle Layer

AMELI

Remote Server
(Dummy Server)

Bottom Layer

@ -TCP Port

Figure 2.17: Architecture of the Itchy Feet solution

Previous approaches to causal connection have some limitations: (i) they can
only use a single virtual world (GCS) or the execution with multiple environ-
ments is difficult to control (CCS); (ii) they cannot manipulate the virtual world
content at runtime; (iii) there is no mechanism for a fail-safe communication.

We have removed these limitations and created Virtual Institution eXEcution
Environment (VIXEE). VIXEE is a generic solution, which handles the causal
communication with multiple environments using the Movie Script mechanism
(see Section 5.2.2). Moreover, VIXEE dynamically reacts on changes in the
institution and changes the virtual world content accordingly (see Chapter 5).

In works related to other types of Normative Virtual Worlds,
[Cranefield and Li, 2009] describe the implementation of a tool that structures
social interactions (inspired by human society) between software agents and
adapts them for use with the computer-mediated human communication pro-

42 Chapter 2. Background and Related Work

vided by virtual worlds. [Ranathunga et al., 2010] addressed issues of collection,
filtering and processing of the sensor data. This research led into the develop-
ment of a tool that connects Second Life with a MAS programming language
called Jason. Jason is one of the most known agent programming languages
and platforms [Bordini et al., 2007]. In this work, authors demonstrate a new
framework in conjunction with an extension of the Jason BDI interpreter that
allows agents to specify their expectations of future outcomes in the system and
to respond to fulfillment and violations of these expectations.

The use of Normative Virtual Worlds has been explored in the context of
computer games as well. In the most recent ones, [Aranda et al., 2010] use Vir-
tual Institutions in the definition of Quests for the Massive Multi-player Online
Games (MMOG). The idea of this work is to apply multi-agent systems technol-
ogy to deploy MMOGs. [Napagao et al., 2010] modelled gaming scenarios using
social structures. Authors of this work intended to create a methodology and
tools for Game AT developers. This would allow decoupling the implementation
and the design, allowing reusable solutions.

2.5 Shape Grammars

In previous sections, we introduced virtual worlds, Electronic Institutions and
Virtual Institutions concepts. Now, we present a technique named shape gram-
mars, which serves as the basis for our proposal of Virtual World Grammar
concept (see Chapter 4).

As described by McCromack and Cagan [McCormack and Cagan, 2003], a
shape grammar is a method of generating designs by using primitive shapes and
rules of interaction among them. Hence, it is composed of shapes and rules.
One of the shapes is marked as starting shape, while rules are composed of left-
side shapes and right-side shapes. Designs are generated from a shape grammar
by starting with an initial shape and recursively applying its rules. A shape
grammar rule takes the form A — B, where A and B are both shapes. The rule
is applicable to shape C if there exists a transformation 7, such that 7(A) < C
where < is the operator that determines the existence of a sub-shape. The rule
is then applied by subtracting the transformed instance of shape A from shape
C and adding a similarly transformed shape B, hence C - 7(A) + 7(B).

An example of a shape grammar rule is displayed in Figure 2.18. Figure 2.19
displays five steps of the shape grammar derivation process using the rule from
the Figure 2.18. This rule simply adds a rotated copy of a rectangle to its origin.
We can see that the derivation process uses rectangle shapes that were produced
by the intersection of already generated ones. These shapes are called emerged
shapes. The process of finding such shapes is called sub-shape detection and it
is a complex problem for computer based implementations of shape grammars.
The use of sub-shape detection leads to the richer variety of designs and allows
us to use full power of shape grammar technology. Our sub-shape detection
algorithm is based on the [Krishnamurti, 1981] algorithm. Our modification
significantly decrements the search space, thus allows real-time execution for

2.5. Shape Grammars 43

relatively complex shapes.

Figure 2.18: Shape grammar rule

A

Emerged Shape _l I | | I I
> D -»> »> »>

Figure 2.19: Shape grammar derivation process

Furthermore, markers (also called labels) can be used to control how rules
are applied to the left-side shape. Rules with markers are called labelled rules.
Markers control the positioning of the shapes according to its symmetries. An
example of markers and different positioning of markers with the resulting deriva-
tion can be seen in Figure 2.20. In this figure, we see two different positions of
markers that lead to very different derivations. Furthermore, markers can be
used as carriers of semantical information about a given point. This informa-
tion can provide not only data about the functionality of the shapes but it also
can hold values of parameters used in the shape grammar generation process
[Agarwal and Cagan, 1998].

Once described all parts of a shape grammar, we are ready to provide a
formal definition:

Definition 2.6. As defined by Stiny [Stiny and Gips, 1972], a shape grammar
(SG) is a 4-tuple: SG = (S, Sp, R, I) where

1. St is a finite set of terminal shapes. S} is a set of shapes formed by the
finite arrangement of an element or elements of St in which any element
of Sp may be used multiple number of times with any scale or rotation
operation.

2. Sy is a set of shapes used as markers, such that S5 NSy = 0. Markers
permit to control how rules are applied to the left-side shape.

3. R is a finite set of rules, that are ordered pairs (u,v) such that v is a
left-side shape consisting of an element of Sp* possibly combined with an
element of Sjs and s is a right-side shape consisting of:

i An element of S} contained in u or

ii An element of S} contained in u combined with an element of Sy, or

44 Chapter 2. Background and Related Work

M DO

Figure 2.20: Two different labelled rules and their derivations

iii An element of S7 contained in u combined with an additional element
of S7 and an element of Sys

4. I is the starting shape consisting of elements of ST} and Sy;.

Having defined all important parts of shape grammars, we present some inter-
esting examples of shape grammar use from different fields such as architecture or
product design. Initially, shape grammars were introduced in the early 1970s as
a way of describing and creating paintings and sculptures [Stiny and Gips, 1972].
This first attempt led to a wide-spread use of this kind of grammars into mul-
tiple artistic, scientific and industrial fields. They were used to analyze and
recreate works of various artists like Piet Mondrian, Georges Vantongerloo and
Fritz Glarner potentially with great accuracy.

In architecture, Frank Lloyd Wright’s prairie houses
[Koning and Eizenberg, 1981], Palladio’s villas [Stiny and Mitchell, 1978]
or Mughul gardens [Stiny and Mitchell, 1980] were analyzed using shape
grammars so that new designs could be generated based upon the originals and
with similar style. José P. Duarte used them to generate Siza’s Malagueira
houses [Duarte, 2001] and created an online application that rendered houses
depending on user preferences. Duarte also introduced the concept of discursive
grammars that contain a shape grammar, a description grammar and a set of
heuristics. Furthermore, shape grammars also entered non traditional fields
when they were used to derive cellular automata rule patterns [T. Speller, 2007].

Shape grammars have also been used in the design of industrial products.
Prats [Prats et al., 2009] used shape grammars to analyze sketches of indus-
trial designers and let them have the freedom to explore a design space, whilst
providing quantitative information about produced designs. They presented car
design examples to illustrate the application of the shape grammar tool. Orsborn

2.5. Shape Grammars 45

[Orsborn and Cagan, 2009] proposed a multiagent shape grammar implementa-
tion (MASGI) to automatically generate product forms according to a preference
function that could represent designer or consumer design preference. This sys-
tem used the multiagent system to enable modifications to the shape grammar
as the form design space changes. Soni, Khanna and Tandon [Soni et al., 2010]
made an effort to develop a design system to support the automatic concept gen-
eration and evaluation for the mass customization of industrial products. They
presented examples in mobile phone design.

2.5.1 Related Work: Computer Implementation of Shape
Grammars

In this thesis, we present a new shape grammar framework for definition and
generation of rectilinear forms, which contains our algorithm for efficient sub-
shape detection and is implemented in the Shape Grammar Interpreter. In
this Section, we present the state-of-the-art in the area of the computational
implementation of shape grammars.

Shape grammars were initially executed either manually (i.e with pencil and
paper) or through ad-hoc computerized approaches intended for a particular
grammar. FEarly generic shape grammar systems were implemented in Pro-
log [Chase, 1989] [Flemming, 1987]. Nevertheless, the definition of shapes and
rules in these early systems was declarative, thus not interactive. One of the
first significant visual implementations of shape grammars was done by Tapia
[Tapia, 1999]. The framework we present in this thesis has been designed to be
a general tool to create and work with any rectilinear 2D shape grammar. By
general we mean that our tool is not tied to any particular type of shape gram-
mar, and it can be used in many different domain applications. Our tool covers
the entire process of shape grammar management that goes from the grammar
conception (i.e design of shapes and rules) until the generation of the design (i.e
generation algorithm and parameters).

Nevertheless, one of the most notable features of our framework is the im-
plementation of our sub-shape detection algorithm. Sub-shape detection is the
process of finding sub-shapes in a shape. It is a complex problem for computer
implementations of shape grammars. Most of the current implementations of
shape grammar interpreters do not support sub-shape detection. Using sub-
shape detection, we gain the power to use emergent shapes in the generation pro-
cess. A first description of sub-shape detection algorithm for rectilinear shapes
was done by Krishnamurti [Krishnamurti, 1981]. In Chapter 3, we present a
modified version of Krishnamurti algorithm, which allows sub-shapes detection
in real time. McCormack and Cagan [McCormack and Cagan, 2002] focused on
creating an efficient parametric shape grammar interpreter that would support
creativity through shape emergence. If a shape grammar tool wants to support
shape emergence, it has to have a possibility to detect such emerged shapes. In
their approach, they divided the shape into a hierarchy of sub-shapes based on
specific geometric relationships within the shape. Recent years brought attempts

46 Chapter 2. Background and Related Work

to create a sub-shape detection algorithm for curved shapes [Jowers, 2006] dur-
ing which a shape grammar interpreter for curved shapes was produced (named
QI). Later, this algorithm and his versions were used in computer vision projects,
where shape grammars were applied to analyze sketches of product design-
ers, in order to easily browse the possible design space [Lim et al., 2008] and
[Prats et al., 2009]. Although the dissertation of Patrick Min does not focus on
shape grammars, he introduces interesting approaches on shape detection using
the matching of ovals [Min, 2004].

In our research, we focus on 2D shape grammars producing rectilinear shapes,
but there were efforts to create a 3D shape grammar, such as 3D Shaper
from [Wang and Duarte, 2002]. From more recent works we mention the 3D
shape grammar implementation by [Chau et al., 2004]. [Hoisl and Shea, 2011]
presented a basic 3D grammar interpreter for the interactive, visual develop-
ment and application of three-dimensional spatial grammar rules. In our work
[Trescak et al., 2010b] we took a different approach and used specific 3D trans-
formation mechanisms, that produced a 3D output using a semantic description
of 2D shapes.

An alternative to shape grammars are so-called Lindenmayer systems (L-
systems) [Prusinkiewicz et al., 2001] where rules are codified using symbols. The
Computer Generated Architecture (CGA) introduced the idea of grammar-based
modelling using rules that iteratively refine a design by creating more and more
detail [Parish and Muller, 2001] [Muller et al., 2006]. Rather than building on
string replacement as L-systems do, CGA rules replace shapes with shapes.
CityEngine, a program allowing automatic population of cities, was inspired by
hybrid systems that combine shape grammars and L-systems. A recent research,
also using CGA shape, has presented a real-time visual editor which works on
usability issues such as the possibility of doing interactively local modifications
on buildings [Lipp et al., 2008].

In contrast to L-systems based approaches, we present a pure shape grammar
framework where the rules and the process of their application is performed using
geometrical shapes. This leads to some advantages of shape grammar systems
over L-systems. First, because of the direct definition of shapes via rules no
associations (i.e symbol-shape) are needed. Therefore, the user has immediate
overview of the behavior. Second, the use of markers allows better control of
shape grammar rules execution. Last, shape grammars lead to more general
use, while L-systems usually aim to generate biological forms or any repetitive
patterns. Nowadays, shape grammars continue being an interesting research
topic and trends are oriented to provide the designer both an attractive visual
interface and realistic results.

Shape grammar explanation closes explanation of topics related to the gen-
eration and execution of virtual worlds. In the next section, we take a look at
A-Life field, which inspired us to create the general purpose agent model for
Virtual Institutions. This model is introduced in Chapter 6.

2.6. Artificial Life 47

2.6 Artificial Life

Artificial life (A-Life) attempts to understand the essential general properties
of living systems by synthesizing life-like behavior in software, hardware and
biochemical systems [Bedau, 2003]. It is the study of synthetic systems that
behave like natural living systems in some way. A-Life is a young field that has
been gaining acceptance over the past two decades, but already in 1911 Leduc
postulated:

The synthesis of life, should it ever occur will not be the sensa-
tional discover which we usual associate with the idea. If we accept
the theory of evolution, then the first down of the synthesis of life
must consisted in the production of forms intermediate between the
inorganic and the organic world forms which possess only some of
the rudimentary attributes of life, to which other attributes will be
slowly added in the course of development by the evolutionary action
of the environment [Leduc, 1911].

There are many important questions that evolutionary scientists confront
while using A-Life simulations [Zimmer, 2005]: What good is half an eye? Why
does a forest have more than one kind of plant? Why be nice? Why do we
need sex to reproduce? What does life on other planets look like? What will
life on earth look like in the future? A-life is devoted to understanding such
questions by attempting to abstract the fundamental dynamic principles under-
lying biological phenomena (e.g. evolution) and recreating these dynamics in
other physical media, thus making them accessible to new kinds of experimental
manipulation and testing [Sipper, 1995]. A-life allowed evolutionary biologists
to move from experiments “in vitro” to “in silica” and observe a evolution of
many generations of digital organisms in a very small time period comparing to
“in vitro” experiments. A reason for this is the spectacular ability of digital or-
ganisms, the ability to evolve. They replicate; they mutate; they compete with
each other. Robert Penncock, from Michigan State University notes: “A-life
systems are not simulations of evolution, they are the instance of it. It may
seem strange to talk about a chunk of computer code in the same way you talk
about a cherry tree or a dolphin. However, the more biologists think about
life, the more compelling the equation becomes.” The resemblance of computer
programs and DNA is in their representation of sets of instructions. Computer
programs tell a computer how to process information, while DNA instructs a
cell how to assemble proteins [Zimmer, 2005].

A-life is based on the well-known intersection of evolutionary biology with
computer science, that is genetic algorithms or their many variants (genetic
programming, evolutionary strategies, and so on). All these variants share the
same basic technique:

1. Create random potential solutions.

2. Evaluate each solution assigning it a fitness value to represent its quality.

48 Chapter 2. Background and Related Work

3. Select a subset of solutions using fitness as a key criterion.

4. Vary these solutions by making random changes or recombining portions
of them.

5. Repeat from step 2 until a solution is found that is sufficiently good.

First "evolving” computer system was presented by Steen Rasmussen in
1990 [Rasmussen et al., 1990] although with limited success. The first suc-
cessful A-Life experiment was performed by Thomas Ray using his “Tierra”
system [Ray, 1991] [Ray, 1993]. Adami, used Tierra to create conditions in
which computer programs evolved the ability to solve simple mathematical prob-
lems (such as addition), without forcing them to use a pre-defined approach
[Adami, 1998]. This project imposed many limitations, thus Adami, together
with Charles Ofria and C. Titus Brown developed a new A-Life platform called
Avida [Ofria and Wilke, 2003].

Avida platform was used to investigate the evolution of complex features.
Researchers set up an experiment in Avida to document how equals operation
evolves. Evolution in Avida produced organisms that could carry out the equals
operation. Moreover, all the successful equals tests were done in a completely
different way. This provides a partial answer to the question “what good is
half of an eye,” mentioned in the beginning of this section, when considering
the evolution of the “eye” organ, a fly and a human can both produce a visual
image of their environment, but the structure of the eye is completely different
[Zimmer, 2005].

Another significant A-Life simulator that moved digital organisms to 3D
space was introduced by Yeager and named PolyWorld [Yaeger, 1993]. Digital
organisms in this artificial life simulator have several biological features. They
“live” and “move” in a simulated 3D space, represented by extruded 3D poly-
gons. Simulated organisms reproduce sexually, fight and kill and eat each other,
eat the food that grows throughout the world, and either develop successful
strategies for survival or die. An organism entire behavioral suite (move, turn,
attack, eat, mate, light) is controlled by its neural network “brain”; thus, it
has the ability to learn. Organisms can perceive their environment using their
“eyes” with limited visibility. Even physiological information is encoded into an
organism’s chromosome; thus, brain, body and all components of behavior evolve
over time. In Polyworld, a variety of species evolved over time, displaying such
complex ethological behaviors such as swarming, flocking, foraging and avoid-
ance?®. Polyworld project remains active until nowadays. [Yaeger et al., 2010]
used Polyworld to study the evolutionary selection of neural network structure
and function. Authors applied graph theoretical tools to the analysis of the
topology of artificial neural networks known to exhibit evolutionary increases in
dynamical neural complexity.

In summary, digital organisms motivate researches from many different fields

due to several reasons2®:

25http://www.beanblossom.in.us/larryy/polyworld.html (last accessed 03/2012)
26nttp://avida.devosoft.org/about/ (05/2012)

http://www.beanblossom.in.us/larryy/polyworld.html
http://avida.devosoft.org/about/

2.7. Intelligent Virtual Agents 49

1. Artificial life forms provide an opportunity to seek generalizations about
self-replicating systems.

2. Digital organisms enable us to address questions that are impossible to
study with organic life forms.

3. Other questions can be addressed on a scale that is unattainable with
natural organisms (e.g. extensive study of millions of types of genotypes
of digital organisms vs. one genotype of bacteria E. Coli).

4. Digital organisms possess the ability to truly evolve, unlike mere numerical
solutions.

5. Digital organisms can be used to design solutions to computational prob-
lems.

In one of the most famous applications of A-Life theory, Karl Sims designed a
system that generates virtual creatures that move in simulated three-dimensional
physical worlds [Sims, 1994]. Creatures were made of a set of blocks of different
sizes. Both, the morphology of block organization and a neural system for con-
trolling the movement of these blocks were generated automatically using genetic
algorithms. Different fitness evaluation functions were used to direct simulated
evolutions towards specific behaviors such as swimming, walking, jumping, and
following. The author presented an unprecedented variety of interesting locomo-
tion strategies, where some of them would be difficult to invent, build or design
without using an evolutionary strategy.

A-Life theory was also exploited by the world of games where users could play
with a simplified version of evolution of digital creatures using their computer.
The first successful A-Life based game was Creatures®”, which has four sequels.
In 2008 EA presented The Spore?® which allowed users to evolve their own 3D
modeled creatures that inhabited different planets.

In this thesis, A-Life and digital organisms inspired us to create a new in-
telligent virtual agent model with a high level of sophistication as this model
possesses A-Life features, but it also develops believable, human-like behavior.
Theory on believable agents is the focus of Intelligent Virtual Agents field ex-
plained in the next section.

2.7 Intelligent Virtual Agents

Intelligent virtual agents (IVAs) are animated characters capable of autonomous
interactions in dynamic social environments. Works in this area seek to cre-
ate virtual characters with capacities for perception, cognition and action, of-
ten including the ability to engage in dialogue with human users. A vir-
tual agent must perceive the world in which it exists, both virtual and real,

2Thttp://creatures.wikia.com/wiki/Creatures_Wiki_Homepage (03/2012)
28nttp://www.spore.com/ftl (03/2012)

http://creatures.wikia.com/wiki/Creatures_Wiki_Homepage
http://www.spore.com/ftl

50 Chapter 2. Background and Related Work

often including human participants’ language and gestures. It must reason
about those perceptions as well as decide on how to act on them in pursuit
of its own agenda [Marsella and Badler, 2011]. In some works we may find
references to Intelligent Virtual Agents as to Virtual Humans [Badler, 1997]
[Kshirsagar and Magnenat-Thalmann, 2002] [Swartout et al., 2006] or Digital
Humans [Badler et al., 2002].

Intelligent Virtual Agent are used to substitute human presence in vir-
tual environments; thus, it is essential that they act believably. Such be-
lievable agents are personality-rich, emotional characters, acting and be-
having human-like [Loyall, 1997]. Human behavior is a complex subject
of study, thus its simulation is separated into several different sub-fields.
[Kasap and Magnenat-Thalmann, 2008] reviewed the state-of-the-art for these
IVA fields and separated the research interest of IVA believability into several
categories:

1. Personification is the application of human properties to non-human
creatures and objects and deals with simulation of human personality and
emotions.

2. Interaction study focuses on the intelligent representation of agent’s ver-
bal and nonverbal behavior. Studies in this field deal with facial expres-
sions, gestures and dialogue management.

3. Autonomous behavior deals with the ability of agents to autonomously
act within their simulated environment. Research interests in this category
include methods of perception of an environment, decision-making and
adaptation of agent actions depending on perceived data and agent state
and action control dealing with believable visual representation of agent
actions (e.g. agent cannot be sitting and running in the same time)

In the following paragraphs, we review some existing works in previously
mentioned domains of IVA research, related to our work. We start with works
on agent personification, because emotional behavior and personality have a
significant impact on agents’ believability.

Well known models on human psychology, are the Big Five framework
for human personality [Costa and McCrae, 1992] and the appraisal theory for
human emotions, represented by the Ortony, Clore & Collins (OCC) model
[Ortony et al., 1988].

The Big Five framework of personality traits has emerged as a robust model
for understanding the relationship between personality and various academic be-
haviors. The Big Five factors, known as personality traits, are Openness, Consci-
entiousness, Extraversion, Agreeableness, and Neuroticism (OCEAN). Openness
reflects the desire for novelty and variety, the intellectual curiosity. Conscien-
tiousness represents the goal-driven thinking, the ability to be disciplined and
organized. Extraversion defines the level of sociability, preference to solve the
goal by social interactions, assertiveness and talkativeness. Agreeableness re-
flects the will of being cooperative, helpful and sympathetic to others. Finally,

2.7. Intelligent Virtual Agents 51

neuroticism refers to the level of emotional instability, anxiety and to react
impulsively rather than rationally. The OCEAN model has been refined and
adapted since its initial design, so that it provides us the possibility to model
different personality traits.

A popular model for simulation of human emotions is the appraisal-based
model OCC [Ortony et al., 1988]. Appraisal theory is based on the idea that
emotions are based on the subjective representation of perceived events; thus,
the same event produces different emotions for every individual. OCC model
isolated 22 core emotion types (e.g. joy, distress) and designed the structure of
their evaluation [Steunebrink et al., 2009] depending on the perceived event.

Several systems that implemented OCEAN and OCC were presented in
the past few years [Egges et al., 2003] [Bartneck, 2002] [André et al., 2000]
[Van Dyke Parunak et al., 2006] [Doce et al., 2010] [Hudlicka, 2005]
[Liu et al., 2009]. All these systems share a common aspect of quantify-
ing the personality and emotion values and evaluating them according to
the external event. Other available personality and emotion models have
been thoroughly reviewed and evaluated by [Gratch and Marsella, 2004]
[Gratch and Marsella, 2005] [Marsella et al., 2010].

While personification represents a substantial part of an agent believ-
able act, agents will not be believable without intelligent nonverbal behav-
ior during interactions. Scientists studied different aspects of non-verbal
behavior, which included facial expressions and speech [Cassell et al., 1994]
[Gratch et al., 2002], eye movement and gaze [Bickmore and Cassell, 2005] and
gestures [McNeill, 1996]. Authors even focused on the study of head nods dur-
ing interactions [Lee et al., 2010]. They followed studies that showed that head
nods serve a variety of communicative functions and that the head is in con-
stant motion during speaking turns. They concluded that there is a significant
effect on the perception of head nods in terms of appropriate nod occurrence,
especially between the data-driven approach and the rule-based approach.

When many different components form the believable behavior, e.g., gestures,
head nods and speech, it is difficult to keep track of their relations and execute
them in a correct way. For example, nod head to agree and move closer to
a person when showing aggression. [Kipp et al., 2010] suggest to distinguish
realization planning, where gesture and speech are processed symbolically using
the behavior markup language (BML), and presentation, which is controlled by
a lower-level animation language (EMBRScript).

In another category of IVA research, authors focused on correct spatial be-
haviour, which is essential for virtual agents acting in human-like environments,
such as buildings or cities. An important part of correct spatial navigation
is memory. Different authors have explored possible models of memory orga-
nization. The most common memory model is episodic memory with spatial
[Brom et al., 2009] or spatio-temporal [Schill and Zetzsche, 1995] memory orga-
nization. Brom et al. investigated on a simplified model of a virtual character
living in a virtual house, how memory representation is formed, and how it
evolves based on how objects are moved within the environment. He compares

52 Chapter 2. Background and Related Work

agent behavior with behavior of real humans and concludes that his memory
model is feasible for virtual agents.

At last we mention several long-running projects that consider investiga-
tion of different aspects of Intelligent Virtual Agents. First, the Social Agents®®
project aims to create sociable virtual characters that facilitate human-computer
interaction. Project’s interests vary from imitation mechanisms, motor cogni-
tions, dialogue coordination to adaptive embodied communication. Second, the
Embots3® research group focuses on embodied agents and their correct repre-
sentation of verbal and nonverbal behavior. In one of the last projects of this
group authors studied the possibility of having avatars showing sign language as
a visual aid for hearing disabled people. Last project group?! focuses on agent
multi-modal behavior and the coordination processes between specific parts of
such behavior.

2.7.1 Related Work: Models for Intelligent Virtual Agents

In this thesis, we present a generic model which intends to create believable
intelligent virtual agents that automatically reason and act in Normative Virtual
Worlds. In this section, we present the related work to this research and present
several others existing models of IVA, which inspired this work.

In the previous section, we have introduced several lines of research on agent
believability. Authors presented specific implementations to demonstrate feasi-
bility of such research. [Kopp et al., 2005] created a conversational agent called
Max and put him to test real-world settings in a museum, where the agent en-
gaged in a natural face-to-face communication with museum visitors. People
interacting with Max were aware that Max was an artificial being and adjusted
their interaction to small talk. Authors evaluated their system according to
the conversational capabilities of the virtual agent and the resemblance to the
human-like dialogues. Results indicated that Max engaged people in interactions
where they were likely to use human-like communication strategies, suggesting
the attribution of sociality to the agent.

[Weitnauer et al., 2008] integrated Max into Second Life and let him com-
municate with Second Life residents. Max could multi-modally (i.e. voice, chat)
communicate with other avatars. Residents reported that they suspected the
agent to be controlled by an artificial system at a certain point during the
conversation, or they got frustrated without realizing that they were not in-
teracting with a human and thus ended the conversation. In another research,
[Jan et al., 2009] created a virtual tour guide for Second Life, which combined
the abilities of a conversational agent with the navigation in the world. The
tour guide was a US army marshal the gave island visitors information about
the island as well as giving a guided tour as it goes through his rounds. Tour
guide’s avatar can be controlled either by an agent, or by a human operator.

29nttp://www.techfak.uni-bielefeld.de/ags/soa/ (05/2012)
30http://embots.dfki.de/projects.html (05/2012)
3lhttp://www.ru.is/~hannes/ru_main_projects.html (05/2012)

http://www.techfak.uni-bielefeld.de/ags/soa/
http://embots.dfki.de/projects.html
http://www.ru.is/~hannes/ru_main_projects.html

2.7. Intelligent Virtual Agents 53

These implementations represent goal specific implementations, producing
not-reusable solutions. In recent years, several general purpose agent mod-
els were proposed. These models, along with their implementations represent
reusable solutions, which allow to use IVA in different environments, simulations,
social experiments and computer games.

Currently available general virtual agent models are focused on games and
simulations. In the rest of this section, we present following existing systems
and explain why they do not properly fit to our purposes (except for Uruk 3000
BC):

e Pogamut [Gemrot et al., 2009]

e NonKin village using PMFserv [Silverman et al., 2011]

Virtual Humans from Mission Rehearsal FExercise project
[Swartout et al., 2006].

Uruk 3000 BC [Bogdanovych et al., 2011]

ALIVE [Napagao et al., 2010]

(a) Agents Interacting in EmoHawk (b) Pogamut with UT2004

Figure 2.21: Pogamut

Pogamut 3 is an open-source platform for rapid development of behavior for
virtual agents embodied in a 3D environment of the Unreal Tournament (UT)
videogame [Gemrot et al., 2009]. Pogamut 3 is designed to support research as
well as educational projects. Developers can program application-specific agents.
They can implement agents’ control mechanisms or use the reactive planner
POSH. This project in its history was used to: (i) study evolution of UT bot
behavior embodied using genetic algorithms [Kadlec, 2008]; (ii) research possibil-
ities of episodical memory of game bots [Brom et al., 2008] [Brom et al., 2009];
and to (iii) study possibilities or virtual storytelling®?. While Pogamut 3 intro-
duces many interesting features, it is aimed as the student platform for design

32http://artemis.ms.mff.cuni.cz/emohawk/doku.php, (last accessed 03/2012)

http://artemis.ms.mff.cuni.cz/emohawk/doku.php

54 Chapter 2. Background and Related Work

and execution of virtual agents, where the agent model includes only simple
functionalities (e.g. path-finding) and agent reasoning is based on declaratively
specified decision trees.

A complex model for believable intelligent virtual agents was presented
by Silverman et al. with the definition and implementation of PMFServ
[Silverman et al., 2006b] [Silverman et al., 2006a] and more recently in a simula-
tion environment called NonKin Village [Silverman et al., 2011]. Silverman et al.
created a highly sophisticated model for socio-cognitive intelligent virtual agents,
which included either newly designed or adapted models of agent physiology
[Gillis, 2000] [Witmer et al., 2002], stress assessment [Janis and Mann, 1977],
personalities, emotions (cognitive appraisal - OCC), perception, social functions
(relations, identity, trust) and cognition (affect- and stress-augmented decision
theory, bounded rationality). This agent implementation was developed to train
the army corps to act in foreign cultures. Silverman evaluated goals according
to the Performance Modification Functions (PMF) to access the next action to
execute. PMF is a function that models a behavioral response of an agent de-
pending on related input. Silverman designs many generic types of PMF, such
as decision, emotion, perception or stress. PMFserv is an implementation of
such PMF theory. It is an open agent architecture that allows to research and
explore alternative PMF's to add realism to a software agent. PMFserv incor-
porates four domains of psychological theories and models: (i) psychobiological,
(ii) personality, culture, and affect, (iii) social, and (iv) cognitive.

In other works, the Mission Rehearsal Exercise project joined efforts of sev-
eral dozens of authors from different research fields to create a model for in-
telligent virtual humans [Swartout et al., 2006]. Authors stated their biggest
contribution in integrating several existing models, learning lessons during this
integration, what resulted into improved state-of-the-art in related fields. Vir-
tual humans from this project were able to communicate in natural language,
correctly assessed their environments, had different personalities, presented their
emotions, interacted verbally and nonverbally and dealt with stress.

Both presented agent models represent highly complex models that integrate
several sophisticated components, where the main focus of agent modelled in this
system is its believable interaction with a human user. Both projects were used
in army scenarios, where goals of every agent are strictly pre-defined and agent
execution is started only by entering agent’s area of interest, thus simulating the
game-like life and not our desired artificial life.

Cultural simulation in a e-learning scenario, using Virtual Institutions, was
presented by [Bogdanovych et al., 2011] in the project of Authentic Interactive
Re-enactment of Cultural Heritage with 3D Virtual Worlds and Artificial In-
telligence. In this project, authors, using 3D virtual world, re-created life in
the mesopotamian city of Uruk 3000 BC. This simulation included accurately
reconstructed models of historical buildings (e.g. ziggurat), models of authentic
historical objects and avatars representing Uruk inhabitants, wearing traditional
clothes. Authors presented the role of Fisherman, which performs his actions in
Second Life virtual world in 15 minutes cycles. Agents are capable of dynamic

2.7. Intelligent Virtual Agents 55

planning, adjusting their actions depending on their state and the state of the
environment. In this thesis, we extend the features of Uruk agents and define
a general purpose virtual agent model for agents acting in normative virtual
environments.

So far, we have introduced models for individual agents, but other authors
also focused on coordination and organization of virtual agents, in order for
them to be able to collaborate on their common or individual tasks. ALIVE
project [Napagao et al., 2010] uses existing formal models of coordination and
organization mechanisms to deliver a flexible, high-level means to describe the
structure of interactions between services provided by agents in the environment.
Agents represent components of a dynamic ecosystem, where each component
provides some services. Agents collaborate in order to achieve a common goal.
All components of ALIVE system provide semantic description of their func-
tionalities through web services. ALIVE project is an example of service-based
computing. Its structure is split into three different levels: (i) the service level
introduces social context to existing services by connecting them with semantic
technologies, (ii) the coordination level specifies workflows that represent high
level of interaction among services, and (iii) the organization level specifies the
organization rules and norms that govern interactions. Such separation allows
agent designer to think in why-what-how manner instead of the most common
when-what practice. At the organization level, the designer specifies goals, that
specify why to do something. The coordination level specifies what to do and the
service level how to do it. Authors of ALIVE platform connected their system
to some existing computer games such as Grand Theft Auto IV33, Warcraft I11
34 and Lincity 3°.

We approach the problem of agent coordination and organization by using
Electronic Institutions, a well established Organization-Centered Multi-agent
System, which structures agent collaborations.

2.7.2 Related Work: Crowd Simulation

So far, we have talked about single instances of Intelligent Virtual Agents. In
many occasions, we need to generate a crowd of these agents which look and
behave believably. To achieve believability of a generated crowd each crowd
member, i.e., agent, should have a unique appearance and behavior.

Crowd generation methods vary on how to model a single individual and
the approach of making every crowd individual unique. In one of the first at-
tempts to generate a population of unique 3D characters, [DeCarlo et al., 1998]
created a system that generated facial models. The model was based on ran-
domization of anthropometric measures applied to B-spline surfaces. Later,
[Blanz and Vetter, 1999] used Principal Component Analysis (PCA) to analyze
datasets of facial features to extract base vectors from the face, and used these
vectors to generate new, unique faces. [Allen et al., 2003] extended this work

33nttp://www.rockstargames . com/IV/
34http://us.blizzard.com/en-us/games/war3/
35http://lincity-ng.berlios.de/

http://www.rockstargames.com/IV/
http://us.blizzard.com/en-us/games/war3/
http://lincity-ng.berlios.de/

56 Chapter 2. Background and Related Work

to generate the whole body of an avatar. A different approach was taken by
[Maim et al., 2009] and [Thalmann, 2007] who used variance of attachments and
textures over a predefined set of avatars, where avatars mainly varied in size and
the type of textures they used while still appearing as clones that undergone a
minor modification.

In other works, authors considered different means of crowd generation,
also considered by this thesis, and they isolated specific body and cloth-
ing parameters which deform related 3D models. The values of these pa-
rameters can be randomized in order to produce unique crowd members
[Seo and Magnenat-Thalmann, 2003] [Magnenat-Thalmann et al., 2004a).

Isolating visual features, quantifying and operating with them inspired re-
searchers to encode their values into genetic structures and apply genetic al-
gorithms theory to generate unique crowd members. Ventrella was one of the
first to explore the possibilities of storing and modifying the avatar properties
in a ”chromosome,” represented by an array of integer values. Genes from this
array can be modified in order to generate a sketch of an avatar with differ-
ent appearances. Ventrella presented his results using the developed Genetic
Customization Tool [Ventrella, 2000].

While Ventrella worked with 2D sketches, [Lewis, 2000]
[Lewis and Parent, 2000] applied the genetic approach to 3D avatars. In
these works, authors presented the way of mapping body parameters (e.g. hip
size, back arch) to 3D models, encoding them into avatar genes and generating
new avatars using these genes. Another important aspect of this work was
the specification of how to capture dependencies between body parameters.
Maintaining their dependencies allowed authors to define high level parameters,
such as height, whose modification performed hierarchical sizing of 3D models
in a natural way.

Taking the previous work one step further, [Vieira et al., 2008] and
[Vieira et al., 2010] closely followed the genetic inheritance processes from the
biological perspective, where each child chromosome holds a copy of mother’s
and father’s chromosome. During the reproduction process, child chromosomes
are duplicated, combined and then split into four ”gametes”. Through the pro-
cess called “fecundation” a father gamete and a mother gamete are combined in
order to produce the new child’s chromosomes. The parents’ gene values from
the chromosome are combined to visualize the final value. This approach natu-
rally models biological inheritance and it can be used to study the distribution
of dominant or recessive genes.

In our approach of avatar generation, we do not follow the biological evolution
like [Vieira et al., 2008], rather we apply approaches from genetic algorithms.
Similar to [Lewis, 2000], we encode visual properties to genes, which form chro-
mosomes. We use genetic operators to generate new, unique individuals. Our
contribution is the definition of new techniques applied during replication, such
as deep inheritance, which provides the possibility of inheritance of features
from our far ancestors. Another contribution is the definition of genotype rules,
which provide better control over features of generated individuals. Using geno-

2.8. Summary 57

type rules, we can define key ethnic features that have to be preserved during
replication, or we can define dependencies between visual features, e.g., making
an avatar fat. As a result our work allows the generation of ethnic crowds with a
high degree of variation across hundreds of body features, while also maintaining
the similarity with avatar ancestors in a classical genetic sense.

2.8 Summary

In this chapter:

*

We have presented the background information on virtual worlds and ex-
plained their parts related to our research, such as avatars and content
creation. We have also introduced Second Life virtual world and open-
source virtual world platform OpenSimulator.

We have presented all concepts related to the use of virtual worlds as hy-
brid multi-agent systems, specifically Organization-Centered Multi-Agent
Systems (OCMAS).

We have introduced a specific OCMAS called Electronic Institutions.

We have introduced Virtual Institutions and explain the reasons why they
are of our particular interest.

We have introduced shape grammars, explained their use and related work.

We have presented the background on Artificial Life and Intelligent Virtual
agents fields and gave details of state-of-the-art related to our research.

In the next chapter, we introduce a new shape grammar framework, which
includes the algorithm for the real-time sub-shape detection. Then, we present
our Shape Grammar Interpreter (SGI), a general interpreter for generating rec-
tilinear forms.

Chapter 3

Shape Grammar Interpreter

(SGI)

In the previous chapters, we have explained the concept of shape grammars and
presented our motivation for using this technique for automatic generation of
normative virtual worlds. But existing shape grammar focused approaches are
not immediately suitable for being applied to Virtual Institutions, are lacking
means for creating general-purpose interactive designs and are not sufficiently
supported with practical implementation tools. So, in this chapter, we deal with
the objective of designing a new shape grammar framework having a real-time al-
gorithm for sub-shapes detection, used during the execution of shape grammars,
and its implementation in a general shape grammar interpreter, named SGI. We
introduce the architecture of this framework and provide a performance eval-
uation of proposed algorithms, showing a significant gain in performance over
previous algorithms.

3.1 Motivation

Shape grammars play a vital role in a new generation of tools for the analysis and
design of products (see Section 2.5 for details on shape grammars). In computa-
tion, they represent a class of production systems that generate geometric shapes
or designs [Stiny and Gips, 1972]. Instead of using sequenced instructions as a
basic unit of computation, production systems use unordered and data-sensitive
rules called production rules.

Shape grammars are capable of representing knowledge about both the shape
of a product or design and represent knowledge about the functionality. Func-
tionality knowledge is represented by either labels or markers, and by parametric
shape grammars in advanced scenarios [Tapia, 1992]. Additionally, shape gram-
mars generate forms not previously defined, i.e emergent shapes. Using sub-
shape detection it is possible to use emergent shapes in the generation process.

59

60 Chapter 3. Shape Grammar Interpreter (SGI)

Sub-shape detection is a vital function in the application of shape grammars
during design synthesis tasks or design classification tasks.

Our interest is centered on synthesis problems, which involve the gen-
eration of geometrical designs. While many existing shape grammars
(e.g. Palladian grammar [Stiny and Mitchell, 1978], Prairie houses grammar
[Koning and Eizenberg, 1981]) were designed and evaluated “by hand”, this is
not adequate for synthesis tasks. These tasks require generation of many de-
signs and selecting the best candidates. Thus, it is practical to generate shape
grammars using a computer implemented interpreter.

Up until now, there have been numerous attempts to create a general shape
grammar interpreter, but most of the existing tools are either highly specific
in their purpose, have a limited functionality, do not include sub-shape detec-
tion, sub-shape detection is slow, or they are programmed for a single operating
system.

Therefore, we designed a new shape grammar framework, which includes an
efficient algorithm for sub-shapes detection used in the shape grammar genera-
tion process, and implemented in our Shape Grammar Interpreter (SGI). This
framework allows designers to automatically synthesize designs and to actively
participate in the generation process.

Potential applications of this research can be found in the educational field
(i.e. architecture and arts) and in the automatic generation of architectural,
mechanical and product designs. Also, universities use SGI to introduce the
shape grammar concept (e.g. shape grammar classes in Carnegie Mellon Uni-
versity!). In Chapter 4, we introduce the Virtual World Grammar, a shape
grammar extension for the intelligent generation of 3D virtual worlds.

3.2 Implemented Generation Algorithms

In this section, we describe two algorithms for the generation of designs using
shape grammars, which are included in our shape grammar framework. They
represent two different execution protocols, which manage both rule selection
and execution during the design generation process. First, we present a sim-
pler implementation using tree structures. This approach does not use emerged
shapes. Then, we introduce our sub-shape detection algorithm, which is a mod-
ified version of the algorithm proposed by [Krishnamurti, 1981]. We evaluate
these algorithms in Section 3.4.

3.2.1 Tree-Search Based Algorithms

The tree-search mechanism stores a state of the generation process in a tree
structure and uses traditional tree-search algorithms, i.e., breadth first and depth
first, to find the next rule to apply. This mechanism does not detect emerged
shapes, only uses the knowledge of shapes used in the left and right side of
the rule. The tree structure holds the generation execution state. Each node

Thttp://www.andrew.cmu.edu/course/48-747/subFrames/schedule.html (05/2005)

http://www.andrew.cmu.edu/course/48-747/subFrames/schedule.html

3.2. Implemented Generation Algorithms 61

A Shape Node

?

Expanded Shape

Rule Node

Expanded Rule

9
ol

Figure 3.1: An example of execution tree using tree-search, breadth-first search
protocol

represents either a shape or a rule. When a shape node is expanded, it has
as many children as there are rules with this shape on the left side of the rule.
Figure 3.1 shows an example of such a tree. Rectangles represent execution states
defined by shapes, while ovals represent execution states defined by rules. The
black-colored nodes of the tree in Figure 3.1 have been expanded, i.e., executed.
We can see that rule-based nodes have 0 or 1 children, depending whether they
have been executed or not. A child represents the right side shape of the rule.
To select the next rule to execute, the framework can use strict breadth/depth
first search, or it can decide randomly.

The advantage of this approach is that time and space complexity of finding
a next rule to execute is the same as finding a tree node using the breadth-first
or depth-first search algorithm. The time and space complexity of breadth first
search algorithm is O(b?), where b is a maximal branching factor and d is the
depth of the tree. For depth first search, the time complexity is the same O(b%),
but the space complexity is only O(d).

Parameterization of the Generation Process Using Tree-Search Mech-
anism

The following input parameters can be introduced to the tree-search mechanism
to affect its generation process and output:

e Level of randomization - defines the probability of using currently se-
lected node. The framework provides five different levels of randomiza-
tion (none, low, medium, high and extreme). Level “none” represent strict
breadth/depth first search. All other levels decide the probability of us-
ing the currently selected node in the generation process (e.g if high ran-
domness is selected, there is little probability of using the selected node).
Randomization is used to better explore the execution tree.

o Number of iterations - an iteration is the execution of a shape grammar

62 Chapter 3. Shape Grammar Interpreter (SGI)

rule in the current shape. Number of iterations indicates how many rules
will be executed during the current generation process.

e Step iteration - executes only one iteration (i.e. one shape grammar rule
is executed).

e Next shapes - returns a list of possible shapes after the application of
shape grammar rules in one iteration, in the current shape. One of them
is selected to proceed in the generation process.

o Use of markers - we can decide if we want to use markers or no.

The use of randomization and markers allows a user to browse the design
space by generating multiple designs, and select only those he likes. Figure 3.3
shows two different outputs of the generation process for the shape grammar
depicted Figure 3.2 using the breadth-first search algorithm. Figure 3.3a) shows
the output for 15 iterations while Figure 3.3b) for 40 iterations, where the shape
with the lighter color shows the shape from 15 iterations.

Shapes 1) 2)

Rules

1) 2 3)

Figure 3.2: Shape grammar used in the generation process presented in Figure
3.3

3.2.2 Subshape Detection Algorithm

The Shape Grammar Interpreter (SGI), presented in this chapter, imple-
ments a modified version of Krishnamurti’s algorithm for sub-shape detection
[Krishnamurti, 1981]. This algorithm processes rules as the affine transforma-
tions of a left side of the rule to the right side of the rule.

Krishnamurti’s algorithm is capable of solving most of the problems related
with sub-shape detection, but it also has some limitations. It misses the de-
tection of infinite sub-shapes (such as finding line sub-shapes in line segment);
thus, it processes only shapes with at least three points. However, the biggest
drawback of this algorithm is its performance as any three points of the sub-
shape are transformed to any three points of the input shape. To overcome this

3.2. Implemented Generation Algorithms 63

a) b)

Figure 3.3: Two examples of designs generated using the tree search algorithm
using the shape grammar in Figure 3.2. Outputs for a) 15 iterations and b) 40
iterations.

performance weakness, we have modified the algorithm by allowing detection of
sub-shapes with at least one intersection point. This provides a real-time ca-
pability of rendering designs using sub-shape detection. This algorithm works
with the mazimal shape, maximal line and viable intersections concepts which
we explain next.

Maximal Shape and Maximal Line

A maximal shape is a new shape created from the original one using its maximal
lines, which is the minimum set of lines maintaining the original form of the
shape (function CreateMaxzLns in Algorithm 1). Figure 3.4 shows how the
maximal shape is created by joining lines into maximal lines. In the original
shape 1) lines a and b, and ¢ and d are joined by the algorithm to maximal lines
e and f to create a maximal shape 2). This allows the algorithm to work with a
minimal set of intersections and also to detect correctly if a subshape is within
the boundaries of an original shape (as explained in Section 3.2.2 below). The
time complexity of finding a maximal shape is O(n?), where n is the number of
lines of a shape.

Figure 3.4: Maximal lines: 1) original shape 2) maximal shape

64 Chapter 3. Shape Grammar Interpreter (SGI)

Viable Intersections

A viable intersection is any inner or outer intersection of two segments of the
shape (this process is done by the function CreateInts in Algorithm 1). By outer
intersection, we mean an intersection of two segments that is positioned on the
lines containing the segments but outside of the boundaries of at least one of
these segments. The algorithm finds all intersections by checking each endpoint
with all other endpoints. This can be done with the time complexity of O(n?),
where n is the number of end points of an input shape.

Figure 3.5: Intersections

In Figure 3.5, we see all viable intersections of the shape. Internal intersec-
tions are shown as black boxes, external as white boxes and dotted lines display
the lines containing the segments.

Algorithm

In this section, we use a simple example to explain the execution of the algorithm
and what modifications we have performed. Our modified version of Krishna-
murti’s algorithm is presented in Algorithm 1. In this example, we detect a
subShape in an inputShape displayed in Figure 3.6 1) and 3.6 2) respectively.

1) 2)

Figure 3.6: Algorithm input: 1) subShape 2) inputShape

In the first step, maximal shapes (sets of maximal lines) are created from
both, input shape and subshape, as presented in Figure 3.4. When this process
is finished we find all the viable intersections in both shapes as shown in Figure

3.2. Implemented Generation Algorithms 65

Algorithm 1: Subshape detection algorithm

Input: inputShape, subShape
Output: Collection of subshapes
begin
maxLines < CreateMaxLns (inputShape)
subMaxLines + CreateMaxLns (subShape)
inters < CreateInts (maxLines)
sublnters < CreateInts (subMaxLines)
transfs < FindTransfs (subShape, inters, sublnters)
forall transfs do
if VsubMaxLines C maxLines
L then subShapes + TransShape (subShape)
return subShapes
end

3.7. Figure 3.7 emphasizes the importance of finding external intersections as
without them the subshape 1) would not be detected in input shape 2).

1) 2)

Figure 3.7: Intersections: 1) subShape 2) inputShape

The most time-consuming part of the algorithm is to find the correct trans-
formations (function FindTransfs) of the subShape to the inputShape. In the
original version of the algorithm, any three points are taken from the subShape to
create the transformation to any three points in the inputShape. This transfor-
mation is used to check if the remaining points of the subShape are transformed
to some points of the inputShape. This search space is exponential to the amount
of intersections in the inputShape. Our proposal reduces this search space by
using intersection triplets, that is a structure containing an intersection point,
two guiding points, the angle and the ratio of lengths between related segments.
Figure 3.8 shows an example of an intersection triplet. The intersection point is
represented as a white box and guiding points are represented as black boxes.
The angle is calculated using the containing lines of the two segments, and the
ratio is obtained from the lengths of the segments. To find all triplets means to
select all combinations with three members from the set of intersections. This
can be done in time O(3!(3})), where n is the number of found intersections.

66 Chapter 3. Shape Grammar Interpreter (SGI)

Size 1. ()

Figure 3.8: Intersection triplet

The process works as follows: first, we find triplets in the subShape, order
them by the angle (ordering a set can be done in time O(nlog(n))) and se-
lect the one with the smallest angle. Second, we start exploring triplets in the
inputShape. All triplets that do not have the same angle and the same ratio
are thrown away, while the good triplets ones are stored. For each of the stored
triplets, we find an affine transformation, and check if the remaining points of the
subShape fall onto points of the inputShape. We store all the transformations
satisfying the condition and discard the rest.

Figure 3.9: Boundary detection: 1) Passing detection 2) Failing detection, miss-
ing boundary

In the last step, we check if the transformed maximal lines of the subShape
fall within the boundaries of the maximal lines of the inputShape (function
TransShape in the algorithm). Figure 3.9 shows the passing condition 1) in the
left part of the shape and a failing condition 2) in the right part. In case 2)
we see that we could find the transformation of the points of the subShape to
the inputshape, but the test on the boundaries fails. In 1) the thick gray lines
represent the detected subshape and in 2) we see subshape’s top and bottom
line missing. The white boxes represent outer intersection points, and the black
boxes are inner intersection points.

Figure 3.10 depicts the flow chart of the subshape detection process. It starts
with the maximalization (having time complexity O(n?)) of both the subShape

3.2. Implemented Generation Algorithms 67

?

[Maximize inputShape and subShape]

Create intersections

Create triplets

[Order triplets by angle]

v

Select first triplet (tr) from the subShape ’

(this triplet has the smallest angle A and ratio R)

v

‘ Select the subset (TR) of inputShape's Triplets

with Angle A and ratio R

Take the first triplet tr,
from the set TR

‘ Create transformation t from tr to tr, and ’

test the remaining points

transformation ok ?
yes

[Test the boundaries]

boundary ok ?

yes (subshape detected)

Remove tr, from
TR

subshape not detected

Figure 3.10: Flow chart of the subshape detection process

and inputShape, continues by finding intersection points (O(n?)) from which it
creates triplets (O(3!(}))) and orders them by the angle (O(nlog(n))). The al-
gorithm then selects the subShape triplet with the smallest angle and ratio and
filters the set of inputShape triplets according to this angle and ratio (O(n)).
Then, for each triplet from the filtered set a transformation is created onto
subShape triplet, and using this transformation, we test the remaining points
(O(3!(3)))- The correct transformation is used to test the subShape boundaries
in the inputShape. If the boundary test passes, the algorithm can finish, oth-
erwise it removes the current triplet from the set and continues with the next
one, until the set is empty. Given presented complexities, the worst-case time
complexity of our algorithm is O(k! (Z)) where n is the number of shape’s inter-

68 Chapter 3. Shape Grammar Interpreter (SGI)

sections and k is the number of intersections, we use to create a transformation.
In our case, we create transformations for triples, thus k = 3.

In the worst-case scenario, this algorithm has the same complexity as the
original algorithm, although this occurs only when all the angles of the shape
and all the triplet’s ratios are the same, and shapes tend to have different angles.
In the standard scenario, we have significantly improved the performance of the
sub-shape detection algorithm. Original algorithm has to test 3!(2) combina-
tions (3 is the number of points used to create the transformation and n is the
number of intersections of the inputShape). In the example from Figure 3.5,
original algorithm tests 3360, while with the proposed modification it tests only
48 combinations. Section 5.5 provides a more detailed evaluation of performance
in different iterations of the generation process.

3.2.3 Parameterization of Generation Process Using Sub-
shape Detection

Most of the input parameters of subshape detection are the same as in tree-search
algorithm (see Section 3.2.1). They are the level of randomization, number of
iterations, step iteration, next shapes and use of markers. The parameter level
of randomization now decides the probability to use the currently found sub-
shape. If this sub-shape is not used, the algorithm tries to search for another
one. For sub-shape detection we have introduced a new parameter size of the
search space which limits the search space by defining how many sub-shapes
should be checked and returned in case of the “step iteration”.

The use of randomization and markers gives us freedom to browse the de-
sign space by generating multiple designs and selecting only those designs we
like. Limiting the search space increases the performance of the application.
Figure 3.11a) and 3.11b) show two different outputs during random generation
in 14 and 20 iterations. These outputs were produced using the shape grammar
defined in Figure 3.2.

3.3 Shape Grammar Interpreter

We have focused on bringing a complete and robust framework that allows the
user to interactively specify any shapes and rules and also to have a complete
control over the design generation process. The developed Shape Grammar
Interpreter (SGI) is generic in the sense that it allows to create and process
any shape grammar with full support of labeled rules and subshape detection.
Another important aspect of SGI is its object-oriented design that allows future
programmers to easily extend current functionalities.

Great effort has been devoted to providing an interactive way of defining
shapes, which are used in shape grammar rules and designs’ generation process.
SGI implements two different types of algorithms for the generation of designs.
First, tree-search algorithms, which store the state of the generation process in
a tree structure and use traditional tree-search algorithms to find the next rule

3.3. Shape Grammar Interpreter 69

=5 %ﬁ

a) b)

Figure 3.11: Generation process using the subshape detection algorithm. Out-
puts for a) 14 iterations and b) 20 iterations using the shape grammar in Figure
3.2.

to apply. Second, and most importantly, SGI includes our sub-shape detection
algorithm. Hence, sub-shapes of the existing shapes can be detected and used in
the generation process obtaining not only a wider set of designs but potentially
more appealing ones.

3.3.1 Framework description

We offer SGI as open-source? (distributed under GNU license) to provide possi-
bilities of joint development in the shape grammar community.

The user creates shapes by drawing them on the canvas using a mouse. Rules
are operated in similar manner, the user creates rules by specifying the spatial
relation among shapes either parametrically or by the mouse. All modifications
of the current grammar are persisted in a XML file for future use. Appendix B
shows an example of such a XML file containing the definition of a simple shape

gramimar.
- -/\ =

Addition Substitution Modification

Figure 3.12: Three shape grammar rule types supported by SGI.

2http://sourceforge.net/projects/sginterpreter/

70 Chapter 3. Shape Grammar Interpreter (SGI)

SGI supports the following types of rules (depicted in Figure 3.12):

e addition: adds a new shape in the right part of the rule in spatial depen-
dency to another shape which is in the left part of the rule

e substitution: substitutes an existing shape by another shape

e modification: modifies the proportions of an existing shape

The framework contemplates nondeterministic shape grammars, character-
ized by the possibility of applying several rules in one generation step. It imple-
ments several mechanisms, also referred in this chapter as execution protocols,
to select a candidate shape and the rule to proceed in the generation process.
These mechanisms were described in Section 3.2, they are tree search and sub-
shape detection algorithms. These algorithms can be further parameterized as
described in Section 3.2.1 and Section 3.2.3.

3.3.2 SGI Architecture

In this section, we present the architecture of SGI. It is programmed in Java
using the Eclipse Rich Client Platform (RCP) framework. RCP is based on
bundles, that is a dynamic plug-in model. Using bundles it is easy to add or
remove parts in the system. In the Chapter 4, we describe the extension of SGI
called Virtual World Builder Toolkit, that uses the Virtual World Grammar
concept to generate 3D virtual worlds.

I a\
SGl Interface -
| ol I | | r— | Shape Grammar Model
plugin.xm manifest.m
| manifest.mf | -
| Ul Commands | Visual Editor Model
Shape Grammar | manifest.mt |
| Ul Controls | | Shapes | -
| Views | > || Rules || [| Editor Ul |
N Controllers
E<_:I|_t<2r_s _____________ Execution Protocols | |
t____ShapeEditor ____1 [Tree-Search | | Visual Shapes |
T Rule Editor] - N <
I‘::::::u:::::::::::" | SUbShape Detection | e
t_____Renderer ____tlf \ v, '
\ Pl - - _ _ _ _EEES—]

Figure 3.13: SGI Architecture

With RCP, programmers can build their own applications on existing plat-
forms by extending the existing systems with plug-ins. To create the Shape
Grammar Interpreter, we implemented three plug-ins. Figure 3.13 shows these
three plug-ins, their components and relations between them. We see, that SGI
system respects the Model-View-Controller (MVC) architecture.

3.3. Shape Grammar Interpreter 71

The model is implemented as a stand-alone plug-in, Shape Grammar Model,
where shape grammar and its parts are defined (i.e shape models and rule mod-
els). Moreover, the model contains the definition of Ezecution Protocols, that
use tree-search and subshape detection algorithms to execute the grammar. If a
developer wants to include a new execution protocol, he needs to define a new
plug-in that adds this functionality into the model. Solid lines in Figure 3.13
represent dependency, while dashed lines represent inheritance.

Visual Editor Model defines controllers and views for the Shape Grammar
Model parts. It also defines a visual control, an editor, that allows to visually
define and manipulate Visual Shapes. Keeping it in a separate plug-in provides
the possibility to replace the visual editor with another one. The Shape Editor,
Rule Editor and Renderer extend the functionality of the Visual Editor and
facilitate modifications of shapes, rules and display rendering results.

The core of the Shape Grammar Interpreter is implemented as a bundle that
extends the RCP and depends on the Shape Grammar Model and Visual Editor
Model. Within this plug-in we define all the visual controls and actions. Several
views (e.g. render chain view, shape list view) facilitate the understanding of
the design generation process.

Using the architecture of the Eclipse bundles (based on OSGi framework) we
allow developers to easily extend current functionalities by adding new plug-ins.
These plug-ins can use or extend the functionality of the SGI core.

3.3.3 SGI User Interface

Figure 3.14 displays the SGI graphical user interface. It was designed to provide
an intuitive user experience. The main focus was put on the interactive definition
of shapes and rules by using the mouse. Shapes and rules are defined on separate
canvases giving the SGI user complete control and overview of ongoing work.
Figure 3.14 also points to the most important parts of SGI:

1. The list of all the existing shapes and rules of current grammar that can
be operated either by context menu or by double-clicking, which opens the
currently selected item in the editor area.

2. The main application toolbar that dynamically changes depending on the
currently selected editor and that includes standard input/output func-
tions such as load grammar and save grammar, as well as editor functions,
such as create line.

3. The outline view allows the user to (i) preview currently modified shape in
the shape editor and to (ii) preview a rule in the standard shape grammar
rule form.

4. The Editor area is where the user can modify the selected element, that is
either a shape or a rule.

5. The renderer is used to visualize generated designs using the current gram-
mar. The generation is done in real time and the result can be exported to

72 Chapter 3. Shape Grammar Interpreter (SGI)

2. 3. 4. 5. 6.

anon \. \ SILpe Grammar Interpreter I =

g
[shapes | (7 Rules 82 | = 8/ 5= outi = a5 [Add Rectangle »3 =8| Hep R =g

IR 4::*\‘§3M
ne| &2

2B B4 & a0 =

L] Add Right Square

Table of Contents >JDefining Shape

] Add Top Square Grammars

1 Rotate Rectangle ‘:’,

[Add Rectangle Rule Editor
1] Rotate Square

L] square Adds Rectangle Rule editor allows comfortable visual
[Rectangle Adds Square edition of rules. The rule uses simplistic
view of the rule where both parts (left-
side and right-side) of the rule are
displayed in the same window. This is
1 — allowed because we first define shapes
.] Render &2 of the shape grammar and then use
them in the shape grammar rule
definition. We can currently define 3
different types of rules, namely:
y addition, substitution and modification, In
the top of the editor is a toolbar holding
different actions (see Figure 1).

x;:,‘ ‘ @ 2, [100% [v] | Rulers G

Figure 1: Rule editor toolbar

Editor Toolbar

= = =n - =5
[Render... 2 | 5 Subsha... & Debug View | ¢ Debug Tree | I Properties 53 Rule editor toolbar holds different actions
]2 = ¥ thatcan be performed during the edition
= of a rule. Following is an explanation of
e S == e
¥ Geometry Undo last action
Rotate 0
= Scale 11 Redo last action
LRd e o
= = Flip horizontal No %, @, oo [g] Performs zoom in
NA] Flip vertical No the rule editor
Name <empty> Rulers Displays or hides 4
rulers around the
e e S—esiy s
Go To: -
% v | Contents 7 Search Related Topics
I) T (0 Bookmarks B Index

\ /
7. 8.

Figure 3.14: SGI: User Interface

different graphics formats (e.g. bmp, jpg). The user selects parameters of
generation such as randomization level or number of iterations. The ren-
derer also allows to render designs step by step and observe the emergence
of shapes.

6. The dynamic help view provides to the user help on how to use currently
selected part of the SGI interface.

7. The render line view shows current derivation line. It provides the user
the possibility to trace the execution of the shape grammar, i.e how he
obtained the current design. In this part, during subshape detection, we
can also display all possible next shapes and select the next one to use.

8. The list of all the properties of the currently selected item. A property of
the item is, for example, its position (in [x,y] coordinates) or name. The
property list allows the user to manually set these values.

Figure 3.15 shows the rule editor with an outline view where we see the left
and right side of a rule. In the bottom part of this window, we see a derivation
using this rule. Figure 3.16 shows the rule editor with a shape’s outline. In the
bottom part of this figure, we see a list of possible next steps of generation using
the subshape detection algorithm.

3.3. Shape Grammar Interpreter 73

800 B e =
EEFIES BEEIE
[shapes | [Rules 53 = O | 5= outline 83} = O/ 5 Render |EI <empty> [EI <empty> 52 =g
Xemr
[<empty>

RS

G Debug View |* Debug Tree | 1 subshape \new| =] properties ‘ {® Help m

O SHEHE G
&

Figure 3.15: SGI: Derivation process view

Boe Shape Grammar Interpreter =
| 2 09 | [(subsh 4] [None M (res B2 B p H‘1m@ﬁ‘aﬁm|_§_ﬁhuux 3|
[shapes | [Rules &2 = O | 5% outline 2% I = O [Render 2 I O *<empty> |Ij <empty> ‘ =0
X BmR
.| <empty>

4%

& Debug View |‘* Debug Tree M =] F‘mpen:ies| @ Help| [Render Line \ﬁew‘ =0

| Normal 3

e e R U KN ISNEEH NS
i

Figure 3.16: SGI: Subshape detection view

Next, we present results of design generations using SGI. Figure 3.17a repre-
sents a spatial rule, where we add another square to an original square, creating
a new square in their intersection. Figure 3.17b shows the result of the gener-
ation using a tree search protocol. This generation respects the original shape
and its orientation, creating a simple design.

74 Chapter 3. Shape Grammar Interpreter (SGI)

(a) (b)

Figure 3.17: a) Definition of rule b) Generated design using tree search protocol

Figure 3.18a shows the result of a generation using the simple rule from
Figure 3.17a with subshape detection and without markers. Figure 3.18b depicts
the result of the generation with subshape detection and using markers. Please
observe that it generates much more shapes creating various, complex designs
from this one simple rule. The use of markers limits the number of emerged
shapes that the subshape algorithm may find. When placing a marker on some
shape, the generator not only has to find the subshape in the current shape but
also has to find this marker on the same position in the detecting shape. In
Figure 3.18b, we see that the missing presence of a marker in the center of an
emerged shape does not allow us to use these smaller rectangles in the generation
process, and it is limited to those having a marker in its center.

(a) (b)

Figure 3.18: Generated design using rule from Figure 3.17a using subshape
detection. a) Without markers b) With markers

3.4 Evaluation

In this section, we evaluate the performance of the Shape Grammar Interpreter
(SGI) using the generation algorithms presented in Section 3.2. All measures
were taken using a generation with medium level of randomization and aggre-
gated in several iterations. First, we take a look at the tree generation, and then
we present the performance of the sub-shape detection algorithm.

3.4. Evaluation 75

Generation Time (ms)

13 5 7 9 11 13 15 17 19
Iteration

Figure 3.19: Aggregated generated time using the breadth-first search algorithm

3.4.1 Tree Search Algorithm

We have used basic breadth-first and depth-first search algorithms with possi-
bility of randomization. Therefore, our algorithm inherits time and space com-
plexity of these algorithms. Figure 3.19 contemplates the graph displaying the
execution times of the generation process for twenty iterations. As we can see,
each iteration is executed in constant time of one millisecond, making it powerful
yet simple generation process. Figure 3.20a) shows the different numbers of tree
nodes generated during the breadth-first search algorithm execution, while Fig-
ure 3.20b) shows the same for depth-first search algorithm. In the breadth-first
algorithm, the number of expanded nodes (Figure 3.1 shows an example of a
partial execution tree with shape and rule nodes, as well as with expanded and
not expanded nodes) is almost equal to the total number of nodes, meaning that
we always first check all nodes in one level of the tree, before proceeding to the
new level. On contrary, the depth-first algorithm expands the tree to its depth
following always the leftmost node. As a result, we see in the Figure 3.20Db)
that the number of expanded nodes is almost equal to the number of rule nodes.
The number of skipped nodes relates to the level of randomization, when we
randomly decide if we use the currently selected node.

) &

2 2

=z z

@ @

£ £

o] s

z]

5 £

=z =

o B8 [
1 3 5 7 811131517 182123 2527 28 14 5 7 811131517 18 21 23 25 27 28
Iteration Iteration

O Total Nodes (shape and rule) #r Expanded Nodes <O Total Nodes (shape and rule) 1+ Expanded Nodes

Skip. Nodes. I} Shape Nodes Skip. Nodes. F Shape Nodes
* Rule Nodes * Rule Nodes

(a) (b)
Figure 3.20: Numbers of tree nodes during the generation process using (a) the
breadth-first or (b) depth-first algorithm for different iterations

76 Chapter 3. Shape Grammar Interpreter (SGI)

4000 500
(%]
— c
£ 3000 2 975
o ol
o (72
S 5
= 2000 = 250
il ©
K]
2 £ 125
& 1000 3
0
12 3 4 5 6 7 8 9 10 11 12 13 14

12 83 45 6 7 8 9 1011 12 13 14
Iteration

Iteration
‘O Detected Intersections O Tested Intersections

(a) (b)

Figure 3.21: a) Time measure of shape grammar generation using the sub-shape
detection algorithm and (b) number of detected and tested intersections

30000

20000000
@ 22500
°
£ 15000000 g
2 =
= s
= ; 15000
G 10000000 k]
g £
£ Z 7500
Z 5000000
0 O 12 3 456 7 8 9 10111213 14
1234567 8 91011121314 Iteration
Iteration O Triplets Detected O Triplets Tested

(a) (b)

Figure 3.22: Sub-shape detection: numbers of triplets detected and tested during
the generation process using (a) the original Krishnamurti’s algorithm and (b)
our proposed algorithm

3.4.2 Subshape Detection Algorithm

In this section, we focus on performance measures of the sub-shape detec-
tion algorithm, and we also present the differences between the original by
[Krishnamurti, 1981] and the proposed algorithm. Figure 3.21a) shows the ex-
ecution time of the sub-shape detection algorithm in different iterations. We
can see that the time rises exponentially but in a steady manner. Figure 3.21b)
shows the number of intersections that were detected in the current shape in
a given iteration. These two figures allow us to study how the execution time
raises depending on the number of detected intersections.

Figure 3.22a) shows the number of triplets that would have to be tested using
the original approach. We see that in the seventh iteration, we would have to
test more than 17.000.000 triplets. Figure 3.22b) show the number of triplets
that we have to test using our approach. In comparison to the original approach,
in the seventh iteration we possibly would test only 5.000 triplets. The grey line

3.5. Summary 7

in Figure 3.22b) also shows how many triplets were tested in order to detect the
first sub-shape. We see that in the tenth iteration they were only 7.500.

In conclusion, we can say that tree-search based algorithm is much faster, as
the time of each iteration step is nearly 0 ms, while the time for the sub-shape
detection is growing exponentially with every step. Our proposed change in
sub-shape detection algorithm allows efficient execution (under 4 sec) for shapes
with around 400 intersection points.

3.5 Summary
In this chapter:

* We have presented the generic shape grammar framework and our Shape
Grammar Interpreter, which supports the interactive creation and execu-
tion of rectilinear designs.

x We have presented the optimized version of sub-shape detection algorithm
allowing fast detection of sub-shapes.

* We have presented the architecture of SGI that allows plug-in extensions.

x We have evaluated the performance of SGI tool.

In the next Chapter, we introduce the Virtual World Grammar, our pro-
posed extension to shape grammars, which allows the automatic generation of
3D virtual worlds designs from the formal specification of activities performing
in these virtual spaces. The Virtual World Builder Toolkit (VWBT) implement
the Virtual World Grammar concept. VWBT is implemented as an extension
plug-in of SGI.

Chapter 4

Virtual World Grammar
(VWG)

In the previous chapter, we have introduced the concept of shape grammars
and we have presented a Shape Grammar Interpreter (SGI) for the generation
of rectilinear designs. In this chapter, we propose a mechanism, inspired by
shape grammars (see Section 2.5) and virtual world (see Section 2.1) paradigms,
named Virtual World Grammar (VWG) that aims to automatically generate a
3D virtual world from a formal description of activities taking place in the virtual
space. We also present the Virtual World Builder Toolkit which implements the
VWG generation process and provides a graphical user interface to define and
execute VWG components. Finally, we present some generated designs and
give performance measures. This chapter uses the e-auction house example,
introduced in Section 1.6.1, to explain the generation process.

4.1 Motivation

In Chapter 1, we presented our motivation for deploying e-* applications and
social simulations in 3D virtual worlds. Such applications often represent dy-
namic and complex processes, where frequently we need to either create a new
application scenario or change/adapt the existing one. Every new scenario and
every change requires a manual update of virtual world model so that virtual
world creation is a time-consuming task for designers and makes it difficult to
manage its dynamic update at runtime. The latter issue is crucial for us as we
are interested in the dynamic nature of virtual worlds. Thus, we need an efficient
method to generate and update 3D virtual scenes in an automatic way.

We propose to automatically generate virtual world designs from the formal
specification of activities taking place in the virtual space. In this approach, we
advocate the use of normative virtual worlds, which structure participant in-
teractions depending on an organizational specification, which establishes roles,

79

80 Chapter 4. Virtual World Grammar (VWG)

tasks (activities) and interaction protocols. Using such specification, we map
activities to virtual spaces and actions to interactive objects or gestures. Using
this mapping, we generate a full-scale interactive model of the virtual world.
An example is mapping the Auction scene, introduced in the e-auction house
example, to a virtual auction room and saying a “bid” message to the gesture of
raising a hand or clicking on the auctioneer, represented by his avatar. However,
such mapping of activities to virtual objects does not contain spatial informa-
tion of objects in the virtual world. Encoding spatial information directly into
shapes leads to scaling problems (e.g. adding a new activity to current spatial
configuration triggers space redistribution among other activities). Thus, we
need a mechanism that can automatically position objects creating a floor plan
of a virtual world design.

A popular computational design technique also used for analysis and synthe-
sis of floor plans are shape grammars [Stiny and Gips, 1972]. Shape grammars
have proven to be an adequate approach for generating architectural structures
[Stiny and Mitchell, 1978] [Koning and Eizenberg, 1981]. While there exist the
possibility of manipulating directly 3D shape grammars, we take approach sim-
ilar to [Duarte, 2001], and first generate the 2D floor plan and then translate
this model to 3D. This approach allows us to generate many different designs
and then select the desired one. Shape grammar generation process uses shapes
and rules, where right-side shape of the rule replaces the left side shape of the
rule. Generated designs contain geometric forms.

Generated forms contain only spatial information, what is not sufficient for
transforming a 2D design into 3D. We need a way to specify semantic data about
shape components (e.g. if a line represent a wall, we need to know its height or
texture). Also, shape grammars do not contain any mechanism of controlling the
execution of the generation process and discarding the invalid designs already
during generation (e.g. we do not want to generate intersecting forms). Another
requirement is to place objects in a specific order, or on related locations (e.g.
place together activities that are executed in sequence).

To overcome just presented limitations, we propose an extension to shape
grammars named Virtual World Grammar (VWG). A VWG automatically gen-
erates a 3D virtual world from the specification of activities. It contains mecha-
nisms for providing semantic data to geometrical forms, mapping these geomet-
rical forms to specification activities, generating new designs with specified logic
and validating this design during the generation process as well as in the end.
The output of a VWG is a 2D floor plan, which is transformed by a specific 3D
transformation engine to a 3D model. Currently we can generate designs for
Open Wonderland, Second Life and OpenSim based virtual worlds.

4.1.1 Motivation Example

To introduce the Virtual World Grammar mechanism, we follow the e-auction
example introduced in Section 1.6.1, which is a hybrid system that combines 3D
virtual worlds and multi-agent systems (MAS) technologies. Figure 4.1 contem-
plates an overview of our approach, which facilitates the generation of such type

4.1. Motivation 81

s:auctiopeer

Activities:

ltemRegister
lteminfo
LAUCtIOF\ L Performative Structure |
g Ontology
Shape Grammar
VIRTUAL WORLD GRAMMAR Mappings
Heuristics
2 Validations
ah Y(spvi
<"~ 2D Floor Plan 3D Virtual World
= _H . !
§ - J y

Figure 4.1: 3D virtual world generation process

of hybrid environments out of a formal specification. In particular, we focus on
the generation of a Virtual Institution (see Section 2.4) from its performative
structure. A specification of the Auction House Virtual Institution is depicted
in the top rectangle of Figure 4.1. Rounded rectangles represent activities (also
called scenes). In this performative structure, we see the following scenes: Item
Registration, Auction and Auction Info. The initial and final scenes represent
the institution entrance and exit points, which are mapped to the entry and exit
of the generated 3D VW. In the proposed e-auction house scenario, there are
many ”Auction” scenes, and their number depends on currently active auctions.

To apply a VWG, we specify object types and their properties from both the
performative structure and the shape grammar, which form a general vocabulary,
that is the ontology of the Virtual World Grammar. For each selected object
from the specification and all shape grammar shapes, we create an instance
of the related ontology object. Then, we specify mappings that define, which
shape grammar object can represent which specification instance. In Virtual
Institutions, we are focusing on activities that can be mapped to virtual spaces,
such as stand-alone buildings or rooms in an institution building.

When we have successfully defined the ontology, created all instances of spec-
ification and shape grammar objects, and defined the desired mappings, we can

82 Chapter 4. Virtual World Grammar (VWG)

proceed to the generation of a VW design. This is where heuristics take a
decisive role. They decide the next specification element to process and the
applicable rule of the shape grammar for the selected specification element.

To make sure that we are generating functional and correct designs, we use
validations during every step of the generation. We can also evaluate the final
design. For example, we do not want designs where rooms intersect each other
or rooms that have no entry or exit. As shown in the bottom of Figure 4.1, the
automatic generation of a Virtual Institution is done in two steps. First, a 2D
floor plan of the institution is generated. Then a 3D transformation mechanism
transforms this floor plan into a final 3D scene.

Please note that the e-auction example is using the performative structure
of an Electronic Institution as the specification document, but our approach is
applicable to any system where activities and their interactions can be formally
specified.

4.2 Virtual World Grammar (VWG)

In this section, we introduce in detail the concept of Virtual World Grammar
(VWG). First, we formalize all the necessary elements, such as ontology, vali-
dation and heuristics, to conclude the section by giving a formal definition of a
VWG. For each of the VWG parts, we present a solution related to the motiva-
tion example.

4.2.1 Ontology

An ontology is a formal definition of the relevant concepts of a domain. In
the context of a Virtual World Grammar, the ontology contains two different
kinds of concepts. On the one hand, those related to the description of the
activities that will take place in the virtual world. They define how activities
are conceptualized, the relationships among them and in combination with a
shape grammar determine the layout of the virtual world. On the other hand,
there are the concepts that define the properties of the virtual world elements.
Those are the properties of shapes in the virtual world design. Notice that a
shape grammar contains geometrical information about shapes, but it does not
contain any semantic information about them. Hence, an ontology defines the
properties containing semantic information, such as texture or size, about those
shapes that are later used during the generation process and to validate the
obtained design.

In order to define an ontology, we take an object-oriented approach. The
different concepts are defined by classes, and there exists a hierarchical relation-
ship between them. We define B = {integer, real, boolean, string} as the set
of basic data types and I as a set of indexes.

Definition 4.1. We define an ontology as a tuple o = (C, <) where:

4.2. Virtual World Grammar (VWG) 83

o C = {(c;, Ai,oc,) }icto 18 a set of class definitions (concepts), each one
defined as a tuple, where ¢; stands for the class identifier, A; is a set of
attribute identifiers, and o., : A; — T maps each attribute to its type,
where T is recursively defined by the following rules:

- (BU{citier) C T
—ift;,t; € T thent; x t; €T
— if t; € T then t;list € T

— Nothing else belongs to T'.

e < is a class hierarchy such that if ¢; < ¢; then A; C A;.

We distinguish between the concepts describing the activities and their rela-
tionships related to the specification (Cspec), and those related to properties of
shapes from shape grammar (Csg). Hence, C' = Cgpec U Cse.

While the previous definition establishes how the domain concepts are for-
malized, by terms, we denote the actual instances of the concepts defined in an
ontology o. Furthermore, by termsocs‘”ec we denote the instances of concepts in
Cspec, while by termsgsc’ the instances of concepts Csg.

E-auction House Ontology

From the specification of the e-auction House institution, only scenes that define
activities are used in the generation (see blue rounded rectangles in Figure 4.1).
Hence, the specification concepts (Clgpec) just contain the scene (activity) class.
Attributes of this class come from the Virtual Institution specification. For
instance, attributes defining the maximum number of participants of an activity.
Specification elements for a Virtual Institution are obtained by searching within
the specification document.

To perform the 3D transformation of a 2D floor plan we need data such as a
texture, size, or information if some 2D object is substituted by a 3D model or it
is procedurally generated. An example of such procedurally generated structure is
a wall. Walls can be rendered as solid walls with texture, or walls with opening
for windows and doors. We introduce the following shape grammar concepts
(Cs) and their properties:

e Design wall is the basic design element which forms higher-level objects.
It represents an actual separation wall between some virtual spaces. Every
wall holds a basic set of geometrical properties such as position, length,
width and height. Design properties specifying how many doors and win-
dows should be created. Texture properties include standard texture map-
ping properties, such as texture path and tiling.

e Design space represents an area that is substituted by a functional or
non functional (see office-layout, tree in Figure 4.8 a)) 3D model. A design
space holds information, such as path to the 3D model and its size, used
during the 3D transformation phase.

84 Chapter 4. Virtual World Grammar (VWG)

i SiiiStd

L= U= -0

il il]
j_l

Figure 4.2: Shape grammar derivation process

e Design block is a collection of walls and design spaces that represents
one ”shape” of our shape grammar. We can look at the generation process
as a lego-like building process, where different blocks are spatially placed
together to create the final design. This placement is validated using vali-
dation rules.

4.2.2 Shape Grammar

Shape grammar is a method of generating designs by using primitive shapes
and the rules of interaction among them. One of the shapes is marked as the
starting shape. Shape grammar rules are composed of a left-side shape and a
right-side shape, where the right-side shape replaces the left-side shape. Designs
are generated from the shape grammar by starting with the initial shape and
recursively applying its rules. As an example Figure 4.2 shows a rule and steps
of the shape grammar derivation process. The shape grammar rule is marked
with a black square. For details on shape grammars, please see Section 2.5.

E-auction House Shape Grammar

We define two different shape grammars to present the possibilities of our mech-
anism. The first grammar, displayed in Figure 4.7, creates one institution build-
ing, and for each activity, it creates a room within this building. The second
grammar, depicted by Figure 4.9, creates a separate building for each activ-
ity. Shapes of a shape grammar represent blocks (rooms) of the building and
placeholders (spaces) for the 3D models. Activities from the specification are
associated with these spaces, and they are automatically resized to fit to the
number of participants in the activity.

Both shape grammars use two different rule types. The first one positions
rooms into locations within the outline. The second one distributes the rooms
depending on the position of the previous one. We have used breadth-first search
tree protocol (see Section 3.2).

4.2.3 Validations

Validations are used for testing and evaluating the execution of a shape grammar.
We define a validation language that will serve as a basic representation for the
validation terms. First, we define the set of binary operators Q = {<, <,=,>
,>}. Second, we define an open set of functions ® = {range, in,not}. This set
can be extended by designers by adding new functions.

4.2. Virtual World Grammar (VWG) 85

Definition 4.2. Given an ontology o = (C, <), a set of basic operators Q and
a set of functions ®, we define the wvalidation language Ly as the language
generated by the following grammar with starting symbol E:

E:= FopE withopeQ
| fun(M) with fun € ®

| p.P with p € Cspec
| ¢.Q with ¢ € Csg
| e with ¢ € {terms$®r* U termsCsc}

M:=FE|M,M
= a | P.a with a € ACspec
= a|Q.a witha€ Aoy,

O

where A; stands for the set of attributes of concepts of type i.

Definition 4.3. A walidation term T, , also called validator is a term created
using validation language T, € Ly

Validations can be evaluated at two different stages of the generation process.
Specifically, they can be evaluated after each generation step (step validations) or
at the end of the generation process (final validations). Step validations provide
control mechanisms for shape grammar execution so that no invalid path of
execution is selected (e.g. test for correct placement of rooms so the walls do
not cross). Final validations serve for evaluating the final design, and we can
regard them as goals or objectives of the generation process.

E-auction House Validations

We define a new validator intersect, which is executed after each execution step,
and checks that (i) design blocks do not intersect, but they can touch, but only
with walls that do not contain any doors or windows.

4.2.4 Heuristics

Heuristics guide the process of generation of a virtual world design. They have
two fundamental roles. First, to decide in which order to process the elements
from the specification. Second, how to find candidate execution nodes in the
shape grammar execution tree for currently selected specification element. The
generation process stores information in a tree structure, where each node holds
information about the state of generation (see Section 3.2). This tree structure
holds execution states, which represent either a shape or a rule. If a node
represents a shape, it has as many children nodes as there exist rules with this
shape on the left side. If a node represents a rule, it has only one child, which
represents the right-side shape of the rule.

86 Chapter 4. Virtual World Grammar (VWG)

Cspec

Definition 4.4. We define heuristic next as a function A, : terms, X
Cspec Cspec Cspec . Cspec
Qtermso T ¢ gtermso — terms, °P°°, which for any x € termsy °**°, a set of

already processed specification elements and a set of all specification elements
returns element y € termsg Srec which will be the next processed element. Func-

tion hyeqrt(nil, @, SE), returns an initial element.

Definition 4.5. We define heuristic exec as a function hegee @ ST X treeepeec —
Niree, that given a shape x € S and an execution tree t € treegpe. returns
the next node to expand y € ngee (St is a set of terminal shapes of a shape
grammar).

Definition 4.6. We define heuristics as a tuple H = (hnext, Pezec) Where Apept
is a heuristic next function and hggze. is a heuristic exec function.

In other words, function Ay, is responsible for defining the order in which
specification elements are processed. On the other hand, function hegzec is also
responsible for finding the correct node in the execution tree that represents the
possible rule that can be executed. If more than one node is returned, we can
randomly decide which one to choose.

E-auction House Heuristics

In the e-Auction House example hj,eqq is a straightforward function that returns
the next element in the list of specification elements given the last processed
one. The hegze. function searches for the non expanded nodes of the execution
tree that can be used with the current specification element. Notice, that in the
Virtual World Grammar, it is defined which shapes can be used to represent a
specification element. Thus, the function searches for those rule nodes whose
right-side shape is one of these shapes. When several candidate nodes are found
the function just randomly selects one of them.

4.2.5 Virtual World Grammar (VWG)

With all the presented definitions, we are now ready to define Virtual World
Grammar. It includes an ontology specifying all specification and shape gram-
mar concepts. Then, it includes instances of these concepts, i.e., concrete ele-
ments that are used to generate a virtual world. It also includes a shape grammar
that contains the different shapes and the rules used to generate the final design.
Each specification element is mapped to a set of shapes that can represent it in
the generated virtual world. During the generation process, it is decided which
one will represent the element in the generated design. Each terminal shape
St from shape grammar is associated to a shape grammar element defining the
properties of that shape. These properties are applied during the 3D transfor-
mation process. The Virtual World Grammar also includes a set of heuristics
that guide the generation process and validations that control and evaluate this
process. At last, it includes a function that for each validation term defines
its execution time, either after rule execution, or in the end of the generation
process to validate final design.

4.2. Virtual World Grammar (VWG) 87

Definition 4.7. We define a virtual world grammar (VWG) as a tuple: VIWG =
(O’ G7E7 fE7 f87 V7 fth) Where

1. o is an ontology that defines the relevant concepts for the generation pro-
cess; that is multi-agent system specification elements Cgpe., and shape
properties Csg.

2. G = (St,SMm, R,I) is shape grammar describing shapes and rules.
3. EC termsocsw is a set of instances of specification elements.

4. fp : E — 5’; returns for an specification element the set of shapes that
can represent it in the generated design.

5. fs : S0 — Csg maps each terminal shape St of shape grammar to the
ontology class defining its properties.

6. V is a set of validation terms V = {T,, }*

7. ft : Tg, — {STEP, END} is a function that assigns a value STEP to
the validator if it has to be evaluated after each step of shape grammar
execution, or value END if it is evaluated at the end of generation.

8. H is a set of heuristics

4.2.6 Design Generation Process

Algorithm 2 generates a 2D floor plan and summarizes how and when are used
all defined parts of a Virtual World Grammar. This algorithm first initializes
variables, where SE is a list of all specification elements, specElems is a list of
already processed specification elements, a is the currently processed specifica-
tion element, tepee is the execution tree and n is the currently processed node of
the execution tree tozec-

Function initTree initializes an execution tree t.... by inserting a starting
shape as the root node. Then, using function hy,.,: searches for the next spec-
ification element to process, assigning it to variable a, and adds it into the list
of executed elements SpecFElems. Using function fsg it finds the set of shapes
that can be used to represent this element. It loops over this whole set till it
finds a valid design. In this loop, it searches for the execution tree node n using
heuristic function heze. and executes it by calling function Execute creating new
shape. It validates the result of execution. If the result is valid, it proceeds to
the next iteration. The process finishes when it has processed all nodes from the
SE. The process fails and returns nothing if no valid design was found.

In our case, we use the performative structure of an Electronic Institution
as a specification of activities. In this specification, we isolate activities/scenes
and also illocutions from scene protocols as our specification elements. We map
activities/scenes to virtual spaces, and illocutions to interactive objects, which
automatically perform illocutionary actions during interaction. Using this ap-
proach we can automatically generate interactive virtual worlds (this requires
connecting an Electronic Institution to a virtual world, tackled in Chapter 5).

88 Chapter 4. Virtual World Grammar (VWG)

Algorithm 2: Virtual World Builder Algorithm

Input: Specification, Virtual World Grammar
Output: 2D draft (floor plan) of the virtual world
begin
// initialize variables
a + nil; specElems < (; topee + initTree();n + 0
while (size(specElems) ! = size(SE)) do
// get element from specification
@ < hpeqt(a,specElems, SE)
// put this element in control set specElems
specElems < a
// search for valid design
valid < false
// find associated shapes
S+ fe(a)
foreach (s € §) do
while (not(valid) vV n=10) do
// find unexecuted node in the exec. tree
n < hewec(sy texec)
// execute rule and store right shape
¢« Ezecute(n,tegec)
// validate
valid + Validate (c)
L if valid then break
if valid then appendChild(tegzec,n, C)

L else return ()
return tegec
end

4.3 Virtual World Builder Toolkit

The Virtual World Builder Toolkit (VWBT) provides visual interfaces and mech-
anisms to define and execute Virtual World Grammars. The toolkit loads the
specification of an Electronic Institution and combines it with information stored
in the Virtual World Grammar to produce the final output. It is integrated in
our Shape Grammar Interpreter. An intermediate output of the generation
process is a 2D draft of the virtual world (floor plan). Using a 3D engine (jMon-
keyEngine), this draft is transformed into a 3D model, used for preview purposes.
The tool allows to implement different renderers that export the 3D model into
different virtual worlds (e.g. Second Life, Open Wonderland). Furthermore, this
solution allows to:

e dynamically react to changes in the MAS specification and simply regen-
erate the virtual world visualization.

4.3. Virtual World Builder Toolkit 89

e separate artistic (graphical) design of the institution from the functional
implementation.

e make the generation process transparent to an institution designer and 3D
virtual world designer.

e browse the design space and easily explore different designs.

SGl Interface

Shape Grammar Model

| plugin.xml || manifest.mf |

manifest.mf

| Ul Commands Visual Editor Model

Execution Protocols

-
Subshape Detection

|
[_uicows:] [_maniestnt]
[vew J— [e]
Editors | Controllers |
I |

Visual Shapes

IR A

Virtual World Builder Toolkit

T
I
i
i 1
[1
1. 4
R
I A
I]
i i
[N 1
I VWG Model |
" I
: [VWBT Interface i '
E | manifest.mf | ! (JMonkeyEngine Renderer
i [pluginxmi || manifest.mf | Virtual World Grammar | [pluginxmi | [maniestm |
" | Ul Commands | Ontology !
N | Ul Commands
:; y - Specification ‘ i | |
N Editors > < | 3D Viewer |
i VWBT Editor Mappings E
et e e]
. Heuristics i
| TCP Server ! | Shapes |
1

Legend
(Visual Bundle

Figure 4.3: Architecture of the VWBT system

Figure 4.3 shows the architecture of the VWBT, which was implemented in
three plug-ins that extend the SGI system shown in the previous chapter, Figure
3.13. There are two visual, VWBT interface and JMonkeyEngine Renderer, and
one model plug-in, VWG Model. The model plug-in implements the VWG and
all its parts. Moreover, it implements the new execution protocol, which extends
the existing tree search protocol and adds new features to it, such as validation
of steps, or custom selection of rules to apply.

VWBT interface is a visual plug-in that provides all commands and inter-
faces needed to define and modify a VWG. Using these interfaces a grammar
designer can specify related parts of the grammar, such as (i) which specifica-
tion instances are generated in the 3D space, (ii) properties of objects defined

90 Chapter 4. Virtual World Grammar (VWG)

fanNon Shape Grammar Interpreter)
=) CTERIE]
Osh. B[O re.[D30.[= 0 £ VirtualWorld Gra... | T Outine 58 | £ Addsmallsack | = inigottom

3 ine © 10200 3 .40 500

Figure 4.4: SGI interface with WVBT extensions

by the ontology and (iii) validation terms. It also includes a custom renderer
which shows extra information about the generated shape, such as the meta-data
stored within the description of shapes in the VWG. The second visual plug-in
is the JMonkeyEngine renderer that allows us to preview the generated 3D vir-
tual world using the JMonkeyEngine, which is a 3D engine programmed in Java.
Figure 4.4 shows the interface of the VWBT, where in the top right part, we see
the editor for the VWG and below in the middle, we see the JMonkeyEngine 3D
renderer.

4.3.1 Workflow for Definition and Execution of Virtual
World Grammars

Virtual World Builder Toolkit brings many creative possibilities to the Virtual
World design process. Designers may explore many different designs based on
a shape grammar. Shape grammar elements serve as a visual style sheet for
the generation process. Trying different values for parameters, or even having
prepared multiple sets of instances brings possibilities of styling or skinning in
virtual worlds. Figure 4.5 describes the workflow process for the definition and
execution of a Virtual World Grammar. Depending on the results of the draft
or the final generation, we can readapt the grammar.

A grammar designer can either browse through possible designs or modify
existing parts of the shape grammar to obtain satisfiable results. The workflow
is divided into three main parts. First, in the preliminary definition, it defines
the ontology and the shape grammar. Second, in the instance definition, it

4.4. Results 91

loads the specification, creates and defines all specification elements (SE) and
shape grammar elements (SGE) and specifies mappings between them. Then
validations and heuristics are defined. Finally, in the execution part, it browses
through random designs and modifies instance parameters (i.e. step “Set up
SGE” where, for example, we decide actual sizes of shape grammar elements) to
produce the 2D floor plan, which is then transformed to 3D.

Define
Ontology
Preliminary
Definition
Define Shape
Grammar

v

Yes Creates
Load »| Specification
Specification Instances
Associate SE
to SGE
Instances
Define Instance
Yé Validations Definition

and Heuristics

A Set up SGE

No Render Draft
ry Other No
Execution

Random
Ye:

Design
Final 3D
Render

Yes

Figure 4.5: Workflow for definition and execution of VWG

4.4 Results

In this section, we present different results of the generation, and we measure
generation performance. As an input, we take the e-Auction house grammar,
and we vary the number of the auction rooms. We also define two different shape
grammars. We use a simplified display of rules presented in Figure 4.6 where
the left-side of the rule is shown in black and the right-side in red.

The first shape grammar, depicted in Figure 4.7, generates an institution
building and positions all rooms inside this building. The initial shape of this
grammar is the outline shape. This shape grammar distributes the rooms within
this outline. The floor plan and the 3D model for five auction rooms (we have
selected five rooms for a demo example of a small institution) and two remaining

92 Chapter 4. Virtual World Grammar (VWG)

=T [T

(a) Normal (b) Simplified

Figure 4.6: Rule display simplification

U Berlir

a) Shapes (b) Rules

+ 3)

+ 4)

Figure 4.7: Shape grammar 1 for the Auction House institution

(a) Floor plan (b) 3D render

Figure 4.8: An output of the Virtual World Grammar using shape grammar 1

1.) 2) 3) 4) / /
\‘ x\ + /// L
| O Y

L] E A n

a) Shapes (left one is the ini- (b) Rules
tlal shape)

+

Figure 4.9: An excerpt from the shape grammar 2 for the Auction House insti-
tution

rooms (Item Register, Auction Info) are displayed in Figure 4.8. This output
was produced using three shapes (outline, rectangle room and iso-room) and four
rules (two rules place the rooms within this outline, and two rules distribute
rooms depending on the position of a previous one). The drawback of this
grammar is that it is rather simple and the design space it generates is rather
small.

The second shape grammar for the auction house institution does not limit

4.4. Results 93

Figure 4.10: Two different outputs of the Virtual World Grammar using shape
grammar 2

the design by the initial outline, and it generates large design spaces. Figure 4.9
displays an excerpt from this grammar. We can see four shapes that represent
three possible room designs and an initial shape. In the right part of this fig-
ure, we see examples of rules that place rooms according to the position of the
previous shape. Rooms in this grammar are generated as stand-alone buildings.
Figure 4.10 shows two generated floor plans and the corresponding 3D models
for five auction rooms. The small rectangles and the rectangles within the shape
grammar shapes represent placeholders (office-layout in Figure 4.8) for the 3D
models that are substituted during the 3D transformation phase.

500 40000
o @
E ars o000 B
a 2
2 a
E 250 20000 E
i]
=) h=]
= £
= I
T 125 10000 5
& @
0 0
1 4 8 13 18
Me. of Activities
< 2D Render B 3D Render

Figure 4.11: Performance measurements of VWG

Figure 4.11 shows the graph showing the generation time depending on a

94 Chapter 4. Virtual World Grammar (VWG)

number of scenes. We have scaled the institution up to 30 scenes and in these
scenes we used some complex models to measure also the possibilities of the
jMonkeyEngine. The generation of the floor plan for a large institution was
under one second. The 3D render grew from two seconds for five rooms to
30 seconds for 25 rooms. The reason for increased time is the use of complex
models, such as trees, which in total made more that 1.4 million of faces for 30
rooms.

An Auction House institution is a typical example of the use of Virtual In-
stitutions. Our approach allows a comfortable separation of parts of a Virtual
Institution into design subsets. This allows to produce designs for large institu-
tions or confederations of institutions.

4.5 Summary
In this chapter:

* We have defined the Virtual World Grammar mechanism for automatic
generation of 3D virtual worlds designs from a specification of activities.

* We have described the 3D virtual world generation algorithm.

* We have presented the Virtual World Builder Toolkit, a tool implementing
the Virtual World Grammar functionality.

*x We have presented examples of generated 3D virtual world designs using
a Virtual World Grammar with two different shape grammars.

In the next chapter, we present our Virtual Institution Execution Environ-
ment which provides causal connection between virtual worlds and an Electronic
Institution, providing the possibility to enforce at run-time participant interac-
tions.

Chapter 5

Virtual Institution
eXEcution Environment

(VIXEE)

In the previous chapter, we introduced the Virtual World Grammar (VWG) as a
mechanism for automatic generation of virtual worlds’ designs. In this chapter,
our concerns shift from design to execution. We propose Virtual Institution eX-
Ecution Environment (VIXEE) as an innovative communication infrastructure
for Virtual Institutions (VIs). The main features of the infrastructure are i) the
causal connection between several Virtual Worlds and an Electronic Institution
using our Movie Script mechanism, ii) the automatic generation and update of
VIs’ 3D visualization and iii) the simultaneous participation of users from dif-
ferent virtual world platforms. We illustrate the execution of VIXEE system
on the previously introduced e-auction house example and use this example to
evaluate the performance of our solution.

5.1 Motivation

Nowadays there is an increasing demand for e-* applications (where * stands

for learning, commerce, government, etc.). These applications support the par-
ticipation of humans that engage in different activities, to achieve their goals.
Whenever some tasks can be delegated and automated, these applications can
be enriched with software agents. As a consequence, human and agent interac-
tion must be handled. The internet based and distributed software technologies,
such as Virtual Worlds (VW) and Multiagent Systems (MAS), may support the
engineering of this type of applications.

Specifically, we advocate to take a MAS approach for designing these sys-
tems and to use 3D Virtual Worlds to get humans-in-the-loop by facilitating
their participation in the system. First, a 3D real-time representation of the

95

96 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

system facilitates a better understanding of what is happening at both agent
and the entire system levels. Second, thanks to the regulation imposed by the
MAS, the 3D environment becomes a normative Virtual World, where norms
are enforced at runtime. This automatic regulation contrasts with the way it
is done in current virtual worlds where norms are restricted to the user’s ac-
ceptance of the terms of service. Third, system participants can be both hu-
mans and software agents. In other words, it is an effective way to facilitate
direct participation of humans in MAS, instead of just allowing them to cus-
tomize agent templates with their preferences. This approach is taken in Vir-
tual Institutions [Bogdanovych et al., 2005], which have proven [Seidel, 2010)
[Bogdanovych, 2007] [Bogdanovych et al., 2009] [Bogdanovych et al., 2011] to
be an adequate platform to support this type of hybrid multi-agent systems,
by combining Electronic Institutions [Esteva, 2003], which is an Organization-
Centered MAS (OCMAS), and 3D Virtual Worlds. In this context, Electronic
Institutions are used to establish the regulations that structure interactions and
support software agent participation while virtual worlds facilitate human par-
ticipation.

As described in Section 2.3, the formal specification of an Electronic Insti-
tution, called performative structure, is used by our Virtual World Grammar
(VWG) to automatically generate the virtual world design. Activities of per-
formative structure are displayed as virtual spaces, while illocutions from the
scene protocols are transformed to specific world interactions and gestures (see
Chapter 4). Also, Virtual World Grammar mechanism allows to generate virtual
world model for several different virtual worlds (e.g. Open Wonderland, Second
Life).

Nevertheless, the generated design is only a 3D model of a virtual world, a
visual layer, separated from the EI runtime infrastructure (called AMELI), the
normative control layer. This separation does not allow normative control of
world interactions at run-time. Thus, layers have to be connected, and in a way
that would assure their consistent state according to the other layer. Therefore,
the desired connection has to keep their causal dependence, when related actions
in virtual worlds are processed by EI and related EI events are visualized in a
virtual world, by manipulating the virtual world design (e.g. opening doors).

However, with the existence of such a large number of virtual worlds, it is
often practical to let participate users from several different virtual worlds. This
increases the possible user base or allows to perform experiments with different
user groups (e.g. kids, teens or adults). In some cases, as in the case of the
presented e-auction house, it is even desired to join the execution of the virtual
world application with the non virtual environment, such as the web application
or even the real world (see Section 1.6.1).

Combining several different environments and their simultaneous execution
raises several inter-operability issues, such as:

1. Parallel presence, movement and interactions of avatars in different virtual
worlds.

5.1. Motivation 97

2. Virtual world participants that speak different languages try to participate
in the same ”single language” application.

3. Heterogeneous architectures of virtual worlds make it difficult to monitor
and react to virtual world events and interactions, and to causally update
the virtual world model according to the EI state.

Considering point (1) solving parallel avatar presence and movement is out
of scope of this research. However, we demand only a basic level of virtual
worlds’ interoperability. This means that participants from other virtual worlds
are visualized as limited avatars, which only perform institutional actions. Thus,
for instance, it is not shown how they walk around the room. Although this may
bring visual problems related to group communication. An example application
using multiple virtual environments is an auction where users from Second Life,
Active Worlds or PS3 Network participate in the same auction room with a fixed
amount of chairs. Hence, as soon as a participant takes one of the chairs, his
avatar appears sitting in a chair, in all other universes (i.e. Virtual Worlds).

The popular solution to solve the problem of multilanguage environments,
mentioned in point (2), is to define a common ontology, that each of the partic-
ipating virtual worlds adopts for controlling and executing world’s interactions.
In our approach, we rely on Electronic Institutions, which define such common
ontology for all institutional interactions.

Considering heterogeneous architectures in point (3), we need a mechanism
that creates a mapping between virtual world dependent actions and institu-
tional messages. In reverse, it has to define mappings between institutional
events and target virtual environments, where such an event should be visual-
ized. Concerning the content manipulation, the virtual world model is generated
prior to the execution of the Virtual Institution, and then it is dynamically up-
dated during the execution of the institution (e.g. launching of a scene in the
normative layer can add a new room to an institutional building in the visual
interaction layer). In our approach, we use Virtual World Grammar (see Chap-
ter 4), which can dynamically manipulate 3D content of multiple virtual worlds.

[Bogdanovych et al., 2008] presented the architecture of a causal connection
server, which was able to create a causal connection between different envi-
ronments (e.g. virtual world and mobile application). The drawback of this
solution is a simple action-message table which makes it difficult to route events
between different environments and an Electronic institution. Therefore, we pro-
pose VIXEE as an innovative Virtual Institution eXEcution Environment which
adds important extensions to previous Virtual Institution infrastructures. These
extensions address generic and dynamic features. That is, VIXEE allocates at
run-time participants from different VW worlds, and it modifies on the fly the
content of a virtual world (e.g a new virtual room can be added during the
execution of the infrastructure). An important factor of any middleware is its
agility that is its ability to respond quickly and safely to both layers event during
heavy loads. Therefore, we have evaluated our solution by measuring response
time with a large number of agents (up to 500 agents).

98 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

5.2 Virtual Institution Execution Infrastructure

[Bogdanovych, 2007] proposed a three-layer architecture for Virtual Institutions.
Figure 5.1 shows an overview of this architecture. Causal Connection Layer
represents the middle layer (implemented by a middleware) of the three-layer
architecture. In this chapter, we propose a Virtual Institution eXEcution Envi-
ronment (VIXEE), which defines a new architecture of a middleware of a Virtual
Institution, connecting users in the Visual Interaction Layer to the Normative
Control Layer. Normative layer is in charge of regulating participant actions
by mean of AMELI, the EI execution infrastructure. VIXEE supports the par-
ticipation of software agents by visualizing them as bots in connected Virtual
Worlds; thus, human-software agent interaction is enhanced. Its main compo-
nent consists of an Extended Connection Server (ECS) and a Virtual World
Manager (VWM).

Visual Interaction
Layer

Virtual Worlds A

~

1 1
1 1
1 1
c 1 1
2 | |
g i :|
g gi MIDDLEWARE '
oR: .)
= | |
] \ 1
3 ' " |
o . 1
I o 1
P Electronic :'
o ! 5 .
25) Institution |
© H 1
S 1
4 : 1

Figure 5.1: Overview of the Virtual Institution architecture.

5.2.1 Solution Architecture

We design VIXEE respecting the 3-layered architecture of Virtual Institutions,
depicted in Figure 5.2. The top layer consists of several 3D Virtual Worlds. The
bottom layer is represented by the Electronic Institution execution environment
(AMELI). Both layers are causally connected by our middleware, which consists
of the Extended Connection Server (ECS) and the Virtual Worlds Manager
(VWM).

5.2. Virtual Institution Execution Infrastructure 99

Virtual World 1 Virtual World 2 Virtual World n
(e.g SecondLife) (e.g OpenSim)

Client 1 Client n Client 1 Client 1 Client n

_Visual Interaction

Extended A " -
Connection Server AMELI Dispatcher VW Dispatcher Builder

(ECS) [Movie Script) Movie Script_]] |[Build Script)

Agent Manager

@ Virtual World
Grammar
\

Manager

Causal Connection Layer

Remote Server Electronic

(Dummy Server) |nSt_it_utio'n
Specification

Normative Control

@ -TCP Port

Figure 5.2: Architecture of the Virtual Institution Execution Environment

Visual Interaction Layer

The Visual Interaction Layer consists of several 3D virtual worlds. Human users
and selected software agents are represented by their avatars (i.e. 3D virtual
characters). Each of the virtual worlds can be implemented in a different pro-
gramming language and using different visualization technologies. The virtual
world communicates with the middleware using a standard network protocol
(e.g. TCP, HTTP).

The case study introduced in Section 5.4 uses OpenSim as the virtual world
platform for the e-auction house Virtual Institution. The Visual Interaction
Layer may be composed of different types of interfaces allowing users to partic-
ipate from a 3D Virtual World as well as from a web page.

100 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

Normative Control Layer

The Normative Control Layer is represented by an Electronic Institution run-
ning in AMELI, which mediates agents’ interactions while enforcing institutional
rules. AMELI is a general-purpose MAS infrastructure, as it can interpret any
institution specification generated by ISLANDER [Esteva et al., 2002], the Els
specification editor. Therefore, it can be regarded as domain-independent. The
combination of ISLANDER and AMELI provides full support for the design and
development of Electronic Institutions [Esteva et al., 2004]. For each participant
within an institution, AMELI creates a governor, which mediates its participa-
tion in the institution, and coordinates with the rest of other agents in AMELI to
guarantee the correct execution of the institution. Autonomous software agents
(A. Agent in Figure 5.2) participating in the institution are directly connected
to AMELI. AMELI uses two TCP ports to communicate with the middleware.
The first one is used to announce changes in the institutional state (event) to
the causal connection layer (e.g. started institution, agent entering or exiting
a scene). The second one is used to receive messages, corresponding to VW
actions, from the middleware.

Causal Connection Layer

The Causal Connection Layer (CCL) (hereafter we may refer to it as middle-
ware) provides the causal connection between different 3D virtual worlds and an
executing Electronic Institution. As Figure 5.2 shows, it is split into two main
components: (i) Extended Connection Server (ECS), responsible for communi-
cation with AMELI; and (ii) Virtual Worlds Manager (VWM), responsible for
communication with 3D virtual worlds. The rest of this section describes them.

Extended Connection Server (ECS)

ECS mediates all communications between AMELI and Virtual Worlds Man-
ager. This layer introduces new features and improvements that were not avail-
able in previous designs of the Causal Connection Layer [Bogdanovych, 2007]
[Bogdanovych et al., 2008] [Seidel, 2010]. The most notable features are: sup-
port for multiple environments, reaction on early EI events, and connection
fail-safe mechanisms. Current design allows us to connect one running instance
of an Electronic Institution to multiple 3D virtual worlds, thus allowing joint
participation of users from different virtual worlds in the same Virtual Institu-
tion. Reaction to early EI events allows to catch events like institutionStarted,
which can trigger the construction of the virtual world design. The connection
fail-safe mechanisms deal with connection errors from both virtual worlds and
EI to the Casual Connection Layer.

An important part of ECS is the Agent Manager. For each human participat-
ing in a 3D virtual world, the Agent Manager creates an external agent (E. Agent
in Figure 2) in the middleware representing him within the institution. Thus,
when the avatar tries to perform an action that requires institutional verification,
this agent is used to send the corresponding message to AMELI. Hence, AMELI

5.2. Virtual Institution Execution Infrastructure 101

perceives all participants as software agents. There are two different classes of
external agents, one for human participants and another one for software agents.
Software agents adopt our generic model for believable virtual agents called VI
Agents (see Chapter 6). Both classes use AMELI for the normative control of
their actions.

Moreover, ECS includes the Builder component, which communicates with
the Virtual World Grammar Manager, and it is responsible for manipulating the
virtual world content. Specifically, the Builder uses the Virtual World Grammar
(see Chapter 4) to perform its tasks. Notice though, that whilst the Builder is
responsible for creating a new geometry for a virtual world scene (e.g., virtual
rooms), the Virtual World Manager is the component in charge of updating the
virtual world visualization.

ECS uses the VW Dispatcher to mediate virtual world actions and the
AMELI Dispatcher to mediate AMELI events. Both dispatchers use our pro-
posed Movie Script mechanism to select which action to perform depending on
the context of an action/event (see Section 5.2.2). As Section 5.2.3 details,
when the VW Dispatcher receives an action from a virtual world, it sends the
corresponding message to AMELI, and if necessary, waits for AMELI response
(synchronous messages wait for a response, while asynchronous do not). The re-
sponse to the event is communicated back to the virtual world (see Figure 5.4).
3D worlds are able to use either HTTP or TCP protocol to communicate its
events. On the other hand, as described in Section 5.2.4, AMELI Dispatcher
handles AMELI events. Such events provoke a causal change in the state of 3D
virtual worlds, so AMELI Dispatcher triggers an action execution to each of the
connected virtual worlds (see Figure 5.5).

ECS uses three TCP ports. First is used one to communicate between the
Builder and Virtual World Grammar Manager. The second one is used to listen
for AMELI events. The third one is used by the Agent Manager to send messages
to AMELI (all external agents share the same port).

Virtual Worlds Manager (VWM)

Virtual Worlds Manager is used to mediate all communications between 3D
virtual worlds and ECS and to dynamically manipulate the 3D representation of
all connected virtual worlds. It consists of a set of the virtual world Proxies, one
for each connected virtual world (see Figure 5.2). These proxies allow to use a
language specific for a given virtual world to communicate with VIXEE. Thus,
for example, in Second Life we use OpenMetaverse! library to update the state of
the virtual world. The content is manipulated after receiving a selected AMELI
event (e.g. SceneStarted), when as a result a new room is created in the 3D
virtual world. Next section details how this is done based on our Mowvie Script
mechanism, which can map any event/action from a specific context (AMELI
event or virtual world action) to a Mowvie Script action.

Thttp://openmetaverse.org/, (last accessed 05/2012)

http://openmetaverse.org/

102 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

5.2.2 Message Handling: Movie Script Mechanism

Virtual World interactivity is accomplished through wvirtual world actions that
human users and software agents perform within a virtual world. Such actions
are either institutional or non institutional. An institutional action has to be
validated by the Electronic Institution running in AMELI (e.g. entering some
scene). On the contrary, execution of non institutional actions does not have to
be validated by the institution (e.g. walking).

N
Extended Connection Server

VW Action
- name

- agent

- role

- location

Movie Script Mechanism

Virtual World Movie Script
| Action 1 |-.~ AMELI Message

Action n |

AMELI Movie Script

| _| AMELI Event

Action 1 L& - name
- agent
Action n | - role

- context

Figure 5.3: Movie Script Mechanism Conceptualization

When an institutional action is performed in a virtual world, an Electronic
Institution needs to be causally updated by receiving the corresponding AMELI
message (e.g. agentEnterScene). In reverse, when the Electronic Institution pro-
duces an event (we refer to such an event as AMELI event), all virtual worlds
need to be causally updated. The original mechanism that handles this mecha-
nism, proposed by [Bogdanovych, 2007], is an Action/Message table. This table
holds mappings between virtual world actions and an institutional message. An
example from the e-auction house example is the mapping of the gesture raising
hand to the institutional message "bid”. The problem arises when we need to
assign two different meanings for the same gesture, or the same action. That is,
actions or gestures can have different meaning in a different context (e.g. police
man raises hand to stop traffic). Another issue of the original approach is that
it is not possible to route events to and from multiple environments, meaning,
that we cannot decide which events to process in which environment and in what
manner.

Thus, we propose our Movie Script mechanism to process the transformation
of virtual world actions to AMELI messages and in reverse transformation of
AMELI events to virtual world updates. Figure 5.3 describes how the Movie
Script mechanism uses Movie Script actions to handle such transformations.
This mechanism supports the virtual world independence and facilitates a simple
and consistent definition of the expected behavior of a 3D virtual world. A

5.2. Virtual Institution Execution Infrastructure 103

Action Type Action Description
enterInstitution |Request to enter the institution
Motion moveToTransition | Request to move from a scene to a transition

moveToScenes |Request to move from a transition to several scenes

Illocutionary | saySceneMessage |Request to say a message in a scene

accesScenes Ask for the scenes the agent can join from a transi-
Information tion
accesTransitions |Ask for the transitions the agent can join from a
Request
scene
agentObligations |Ask for pending agent’s obligations
sceneState Ask for a scene’s current state

scenePlayers | Ask for agents in a scene

Table 5.1: Institutional Actions

virtual world Movie Script is defined for all virtual environments and a AMELI
Movie Script for an Electronic Institution. Both are processed by the VIXEE
environment. A Movie Script contains lines, where each virtual world Movie
Script line specifically defines the context for which this Movie Script line applies
(e.g. participant role, virtual world location, action name). Each AMELI Movie
Script line defines for which AMELI event this line applies (e.g. event name,
institution name, sender role) and which virtual worlds should be notified about
this event using what Movie Script action.

Virtual World Actions

VIXEE differentiates between three types of institutional actions: illocution-
ary (illocutions that agents try to utter within scenes), motion (movements be-
tween scenes and transitions), and information request (scenes reachable from a
transition, transitions reachable from a scene, agent’s obligations, scenes’ states,
and scenes’ participants).

Institutional actions are initiated in a specific virtual world and validated
by sending the corresponding message to its Proxy and observing the response.
Table 5.1 shows examples of institutional actions. The Mowvie-script mechanism
maps the institutional action to the defined Mowvie Script action, which depend-
ing on the action context received from the Proxy, creates the AMELI message
and sends it to AMELI. For each received message, AMELI replies with one of
the following messages: agree (correct message), refuse (incorrect message), or
unknown (message not understood).

We seek inspiration in a movie production, where depending on a current
scene and its state, an actor performs an action. Like a regular Movie Script, it
contains script lines. Each line holds the definition of the context, upon which
a defined action is executed. Formally:

Definition 5.1. Virtual World Movie Script is a function:
vwf: AXRXLxVWA — MSA which maps a virtual world action vwa € VIW A

104 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

to a corresponding Movie Script action msa € MSA depending on its context,
where:

1. A is a set of Virtual Institution participants

2. R is a set of roles that participants can take while participating in the
Virtual Institution

3. L is a set of locations, that is either transitions or scenes
4. VW A is a set of virtual world actions being sent from the virtual world

5. MSA is a set of Movie Script actions

An example of a script line from the eAuctions institution (see Section 5.4)
is: vwfi(agentld, buyer, auctionRoom, saySceneMessage(“Bid”, Agentld,
amount)) = makeBid(Agentld, buyer, auctionRoom, saySceneMessage(“Bid”,
Agentld, amount)). This lets a user with role buyer bid a specific amount of
money and sends the bid request to AMELI.

AMELI events

The causal connection of AMELI with all connected virtual worlds is main-
tained by the AMELI Dispatcher, which reacts to received AMELI events by
executing a corresponding Movie Script action. Then, for each of the connected
virtual worlds, and for each of the relevant AMELI events, we have to imple-
ment a Movie Script action, executed by the corresponding Proxy, which updates
the virtual world visualization. Table 5.2 contains examples of typical AMELI
events. Formally:

Definition 5.2. AMELI Movie Script is a function:

amf : E — {VW x MSA}* which depending on received AMELI event ¢ € E,
for each of the connected virtual worlds vw € VW returns a corresponding
Movie Script action msa € M S A where:

1. E is a set of AMELI events, where each event contains the name of the
event, the event context (identifying the origin of the event) and message
specific content.

2. VW is a set of identifiers of all connected virtual worlds.

3. MSA is aset of Movie Script actions. Specifically msa € MSA is a Movie
Script action which updates the given virtual world vw € VW depending
on the content of the message e € E. In particular, msa can be empty, if
no Movie Script action is defined for a specific virtual world.

An example of an AMELI Movie Script line from the e-auction house insti-
tution (see Section 5.4) for AMELI event ae; = (agentEnteredScenelagent =
buyery, scene = Auction]) is: amfi(ae;) = {SecondLife, openDoor(ae;)},
{OpenSim, openDoor(aeq)}. This opens the door of the auction scene in Second
Life as well as Open Simulator.

5.2. Virtual Institution Execution Infrastructure 105

5.2.3 VW Actions Implementation

There are different activities that participants perform in 3D virtual worlds. For
example, they interact with objects and communicate with other participants.
It is similar in Virtual Institutions where agents represented by avatars must be
able to perform institutional actions. In this section, we present how our system
handles 3D virtual world actions, maintaining the causal dependence with an
Electronic Institution using a bidirectional connection.

é A
(D Extended
E‘ \ Agent Manager | connection Server
2 NN, 2
a 4
- E vw _
Dispatcher 1~
S (= Movie
o X : /
glo Script 2
c |-
s|la[[| CE Agent) ||| - 5
Szl ~——— ||| e
2|2

> PN /

Figure 5.4: Message flow for VW generated action. Dashed lines represent the
message passing, solid lines represent the use relationship.

Figure 5.4 depicts the message flow of a virtual world action. In this Fig-
ure, the dashed line represents a message, while solid line represents the use?
relationship. When an action happens in a virtual world, it is sent to the Con-
nection Server using a corresponding VW proxy (1). Next, the received message
is passed to the external agent representing the user who has performed the
action (2). The external agent uses the VW Dispatcher to send the message to
AMELI. Specifically, VW Dispatcher uses the Movie Script mechanism (func-
tion vwf) to find the action (3). The Movie Script action is executed, and VW
Dispatcher sends the corresponding message to AMELI (4). Then, agent ac-
tions are evaluated by AMELI. As a result, an AMELI event may be generated
(see Section 5.2.4), and all connected virtual worlds are notified about agents’
actions. For an asynchronous message, the process ends.

For synchronous messages, the ECS waits for the response, which is either
the confirmation of the action execution or an error message (5). The response
is sent to the Agent Manager (6). Finally, The Agent Manager contacts all the
connected VW proxies (7) and each one of them informs its related 3D virtual
world about the result of the action (8). If the result is positive, the action is
visualized in the 3D virtual world. Actions produce human readable or visual
output so the participant can perceive the output of his action either by a change
in a 3D world (opening door) or by receiving a message.

2We consider the UML 2.0 notation

106 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

5.2.4 AMELI Events Implementation

AMELI keeps the execution state of an EI, which evolves as the consequence
of participant actions. In such a case AMELI informs participants about those
changes by using a set of institutional events (i.e. AMELI events). Examples of
such events are: institution started, scene started, entering or leaving a room or
a transition. VIXEE provides support for all AMELI events.

N
Extended Connection Server

VW Proxy AMELI
Method 1 Dispatcher

B 2. 1.
Method n Movie

> Script
VWProxy | V| v

1__d Method1 /|| oo
. 2) [
- Method n

Figure 5.5: Message flow from AMELI to 3D virtual world

VW1 53

Figure 5.5 depicts how VIXEE processes an AMELI event. When AMELI
triggers an event (1) it is communicated to ECS using TCP in the predefined
AMELI format. AMELI has a fixed, predefined set of events. When ECS receives
an event, it calls the AMELI Dispatcher that uses the Movie Script function
amf to look for an action msa to execute (2). Then, for each of the connected
VW Proxies, it dispatches the related action (3). If requested, ECS can use
the Builder to dynamically update the 3D representation of the related virtual
world.

Table 5.2 contains the list of typical AMELI events. Notice that some events
require the use of Builder component to manipulate the virtual world content.
These events and their corresponding VW updates are:

o [InstitutionStarted - The system generates a 3D representation of an insti-
tution from scratch or reset the institution to the default state.

o SceneStarted - The system generates a 3D representation of the scene and
set the virtual world parameters so that it is possible to enter the generated
scene

e SceneFinished - The system removes a 3D representation of the scene and
teleport all avatars out of the scene.

5.3 VIXEE Interface

While previous systems (CCS [Bogdanovych, 2007], GCS [Seidel, 2010]) needed
to run several components and programs in order to connect a Virtual Insti-
tution to a virtual world, VIXEE runs as a stand-alone tool with its own user

5.3. VIXEE Interface 107

l Event ‘ Description ‘
InstitutionStarted An instance of new Electronic Institution was created
SceneStarted An instance of new scene was created in AMELI
SceneFinished An instance scene was destroyed

Entered AgentEI An agent has entered an institution

Exited AgentEI An agent has exited the institution

MovedToScene An agent has moved to a scene

ExitedScene An agent has been exited of the scene

SaidMessage A message has been said in a scene

Table 5.2: AMELI events

graphical user interface. Figure 5.6 shows VIXEE interface demonstrating its
parts. (1) launcher is used to start and stop Virtual Institution execution. But-
ton ”Institution” launches AMELI infrastructure. (2) VIXEE components are
defined in several different tabs of the application editor. Figure 5.6 depicts the
”Movie Script” tabs (see Section 5.2.2). Other tabs (i.e. Avatars, Roles, Agents,
Environments, Runtimes and Run) are used to specify, project properties (e.g.
name, description or path to performative structure), or avatar data for different
virtual worlds. Other tabs are related to the definition of behavior of VI Agents
presented in Chapter 6. (3) Log component describes application log messages.
It is also used to monitor the incoming and outgoing communication.

1. Launcher 2. VIXEE Components 3.Log
® 00 Window (a]
0 Poolcasting '™ g .J
.~ Run Runtime H Stap H itutic
(Project * = Avatars " Roles Agents | Movie Script | Environments = Runtimes Rm{‘
Ameli Movie Script
Action Message Platf... Fed... Ei Agent Role Particle Parameters
@) (-
Virtual World Movie Script
:Action Message Platf... Fed... Ei World Agent Role Particle Location
Uruk.CheckFishingScene FishProtocol.enterBoat * * = * = BoatOwrfer * *
Uruk.CatchFish FishProtocol.fish * * o = FisherMan = *
[= i 5) <|»>
(+) (=
Source Type Message
Electroni... Info Starting parsing performative struture: /Users/admin/Documents/Tomas.
AmeliRec... Info Accepting connections at localhost:2435 m
AmeliRec... Inf Starting at localhost:2435 £
SIController Debug 3 was unable to subscribe to agent server: 'Connection refused')4

Figure 5.6: VIXEE interface

108 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

5.4 Case Study: eAuction House

In this Section, we present the use of VIXEE on the e-auction house example
from Section 1.6.1. First, we specify the normative control layer of the Virtual
Institution, which is an Electronic Institution specification. Figure 5.7 depicts a
performative structure (set of connected scenes) of the e-auction house institu-
tion. As this figure depicts, institution supports roles of seller, buyer, staff and
auctioneer. Staff agent is a software agent responsible for automatic processes,
such as the creation of an auction room and controlling the auction execution
protocol. To start the auction, staff agent changes role to auctioneer. Scenes in
this institution are: ItemInfo, ItemRegister and Auction. Initial and Final scene
are specific scenes through which participant can enter or leave the institution.

s:auctiopeer

Figure 5.7: Performative structure of the eAuctionHouse institution

In this scenario, sellers first register items in an ltemRegister scene. If no
auction is running, staff agent creates a new auction scene and waits for partic-
ipants to start the auction. Buyers join the ItemlInfo scene to check the list of
items to be auctioned and the auction starting time. When required, a number
of buyers enter the auction scene, the auction starts. Buyers can bid either by
raising his hand, or by typing the bid command. When the auction finishes a
winner cannot leave the auction room until he pays for the items he won. When
no more items are to be auctioned, the auction room is destroyed (removed from
virtual space).

Second, using the Virtual World Builder Toolkit, we define a Virtual World
Grammar that allows us to generate the 3D representation of the Virtual Insti-
tution from the performative structure. In this tool, we can test the generated
output. An example of the generated floor plan is displayed in Figure 5.8. To
generate this floor flan, we map ItemRegister scene to the registration room,
ItemlInfo scene to the item information room and Auction scene to the auction
room. In this Figure 'a’ is the registration room, 'b’ is the item information room,
¢’ is some decoration (tree) and ’d’, on the right side of the figure, represents

5.4. Case Study: eAuction House 109

Qi

]
]

Figure 5.8: Initially generated floor plan (left) and the floor plan generated with
the addition of the auction room (right)

i

|
|
|
%

Figure 5.9: Initially generated 3D model (left) and the 3D model generated with
the addition of the auction room (right)

the subsequently generated auction room.

Finally, once the Electronic Institution and Virtual World Grammar are spec-
ified, we map virtual world actions and AMELI events to the corresponding
Mowie Script actions. An example of virtual world action is an avatar raising
his hand in the auction room that triggers a bidding Movie Script action. The
bidding action is an example of the synchronous event, where its success or fail-
ure is visually announced to the other participants in the virtual world. We also
map an AMELI event of a StaffAgent creating a new Auction scene to the Movie

110 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

Communicate Waorld Build Help L$ 0 BUY L% 9:46 AM PST o))

PRQ o i e 1) ook B -

Click here to chat.

Figure 5.10: Avatars participating in an ongoing auction

Script action where the system adds a new auction room to the visualization of
the virtual world, where avatars will participate in the auction.

Once previous steps are defined, we can run VIXEE. Figure 5.8 depicts floor
plans generated by the Virtual World Grammar, while Figure 5.9 depicts their
visualization in Second Life. In the left part of Figure 5.9, we see a visualization
of the eAuction House in Second Life after launching the institution and with
ItemRegister and ItemInfo scenes. The right part of Figure 5.9 depicts the aerial
view of the institution after the auction room has been generated. Additionally,
Figure 5.10 shows avatars participating in the running auction, from the point
of view of the auction manager. Figure 5.11 shows the AMELI interface: a top
set of highlighted lines indicate that a seller agent registered a new item for
the auction; a single highlighted line shows an event describing that staff agent
entered (and thus created) a new Auction scene.

5.5 Evaluation

In this section, we evaluate the performance of VIXEE using the e-auction house
Virtual Institution example. Participants of this institution are humans and
software agents. Humans participate playing the roles of buyers and sellers.
Software agents play either as staff, or as buyers or sellers. During the test
we simulate virtual world actions of humans and software agents and measure

5.5. Evaluation

AMELI| (Monitoring Mode) =)@

File Monitoring View Help

o

M

RIS

*# | eauctions-Platform

7 fflt eAuctions
¢ 55 LieAuctionsP
o @ Initial
o @ Final

o @@ lteminfo

o @@ Auction
o i Ether

¢ efuctions-Federation

o [k createModes:
<o @@ ltemRegister

o B sellerEntry Or
o B createsuctiol

< i I

i EVENT
4 iternMame = '123 ' for the cornversation '{{0/temRegister:tem .

[»

A IE) deseription = ' tew ' for the corversation '{{D/temRegister:temre.}
@ startPrice = '234.0' for the conversation '{{0/temRegister:itemRe...
o & The message 'request (TomiBot_Akros:seller) (Staffagent:staff) n

H essage '(response (StaffAgent: staff) (TomiEot_Akros;‘ﬁ
|7 The agen scene '{{...

B The transition '[{1/createfuction: 0r¥@{-1/eAuctionsPS: e Auctions. ..

i % The 'Staffigent’ has been entered in the transition '{{Licreatesuc. .

& The agent 'Staffagent' would meve from that transition '{{1/create...

£l The agent 'staffagent’ has synchronized the movemnents from the ...
1<sg) - a tio...
The 'StaffAgent: staff' has been entered in the scene '{{0/auction:

B The transition '{{1/createfuction: Or@{-1/eAuctionsPS e Auctions. ..

R The m ‘linform (Staffanent:staff) fall:all) startScens 3 can't

EnteredSceneEvent

o) time stamp: 137357

:| platform: esuctions-Platform

¢| federation: efuctions-Federation

2| elnstitution: eAuctions

:| performativeStructureRef: (-l/eAuctionsPS:iefuctionsPS)

Scene

§ agent: StaffAgent

‘| source: {{l/createsuction:Or)@{-liesuctionsFS:eAuctionsPS]}

[H]

Figure 5.11: AMELI interface

T1

T2
> 44—

Figure 5.12: Measured response time intervals

111

VIXEE’s response time to such actions (e.g. VIXEE’s response time to validating
the entrance to a particular scene or response time to a bidding action). The
simulation of actions is done by feeding VIXEE’s proxy with VW event calls
(step 1 in Figure 5.12) and measuring time of receiving a response (step 8 in
Figure 5.12). This test was repeated ten times recording obtained values. We
have measured this response time in three intervals:

e T1 is the time interval between receiving the message from virtual world
and sending it to AMELI server (that is time of step 1, step 2 and step 3 in
Figure 5.12). In this interval VIXEE parses the message from text format
into the form understood by VIXEE, finds appropriate Movie Script action
and executes it and depending on the result of the action it then sends this
message to AMELL

112 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

e T2 is the time interval between sending and receiving the message from
AMELI (that is time of step 4 and step 5 in Figure 5.12).

e T3 is the time interval VIXEE needs to process the received AMELI re-
sponse and send it back to the virtual world (that is time of steps 6, 7 and 8
in Figure 5.12).

To simulate actions of humans and software agents, we have created two
different sets of actions (i.e. plans) that VI users typically perform within the
eAuction institution. First plan is performed by the simulated human user with
the buyer role. In this plan, the human user enters the institution, obtains the
list of items registered for an auction, and then enters the auction. In order to
get the list of auctioned items, the human avatar communicates with the staff
agent. Second plan is executed by a simulated software agent with the role of
seller. We assume that a human user programs the software agent to register
the items for him. In this plan, agent enters the institution, registers the item
and then leaves the institution.

s:auctiopeer

Figure 5.13: Two different plans that VI participants follow during the test
(dashed lines are for SW agents and solid lines for human users).

Figure 5.13 shows the actions that follow both simulated humans and soft-
ware agents. In the plan for simulated human users (marked with solid lines),
humans enter the institution and move to the Initial scene (1). Then, they exit
the Initial scene (2) and move to the ItemiInfo scene (3) where they request
the information about currently auctioned items (4). Then, they exit the Item-
Info scene (5) and move to the Auction scene (6). After moving to the Auction
scene, agents decide not to participate, so they exit the scene (2) and move back
to ItemInfo scene (3). This creates an infinite loop of actions. In step (4) we
simulate the execution of a complex Movie Script action (e.g. finding specific
auctioned items, considering a huge amount of registered items). We set the
execution time of this action to 1500 ms. We use this simulated action to prove

5.5. Evaluation 113

that scalability of VIXEE depends only on the implementation of the specific
VI that is, its Movie Script actions.

The plan for software agents in Figure 5.13 is marked with a dashed line. In
this plan agents enter the institution and move to the Initial scene (1). Then,
they exit the Initial scene (2) and move to the ItemRegister scene (3), where they
register some item (4). Then, agents leave this scene (5) and exit the institution
(6). When their plan is completed, agents restart it.

We ran the test in multiple threads where each thread ran a predefined
number of agents. The test randomly decides how many human users and how
many software agents will simulate. Threads run in parallel, where each thread
executes actions in the following manner: (i) randomly select an agent; (ii)
execute one step from agent’s plan; (iii) wait; then thread waits a random time
from an interval of [0, 3] seconds. Executions of random agents in random time
simulates real-world behavior where different actions from different agents are
executed simultaneously.

To evaluate the system scalability we ran two different tests with different
amounts of threads and agents and compared the results. We test the system
response time from two different aspects:

e Testing the average response time separated to presented three intervals
(T1-T3) of each of the steps of the plan (1-6), for 100 and 500 agents.

e Testing the total average response time while incrementally increasing the
number of active agents

y | T1 | T2 | T3 | Total |
With step 4 87,79 ms|2,92 ms|0,03 ms|90,75 ms
Without step 4| 2,22 ms [3,18 ms|0,04 ms| 5,45 ms

Table 5.3: Average response times for 100 agents (in milliseconds)

First test ran with 10 threads, each running 10 agents (100 agents in total).
First row of the Table 5.3 shows the average response time of each interval T1, T2
and T3, along with an average total response time. Second row of the Table 5.3
shows the average response times without the step 4 (i.e. complex Movie Script
action). Then, we see that the average response time drops to 5 ms. This
shows that the limits of VIXEE are bound to the complexity of the Movie Script
actions, which is domain dependent, since it corresponds to the implementation
of the specific Virtual Institution. To further illustrate this, Figure 5.14 shows
the average execution times for each of the six actions for 100 agents, clearly
showing that action 4 takes the longest execution time.

In the second test, we ran 25 parallel threads, each running 20 different
agents, that is 500 agents in the same virtual environment. Agents were joining
VIXEE in zero to three seconds interval. First row of the Table 5.4 shows
the average time of each interval T1, T2 and T3, along with the average total

114 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

1500 H W

—. 16

[2]

£

g 12

=

5

g 8

(8]

Q

x

- I I I I

0 - | B ™ -I [M |
1 2 3 4 5 6

Plan Step Number

W T W T3 M Total

Figure 5.14: Average step execution time for all steps for 100 agents

1512 I I

g 45

[0)

£

'_

- 30

K]

=

[&)

2

S 15

o \Mm II I I | lII [M |
1 2 3 4 5 6
Plan Step Number
m T W T2 T3 B Total

Figure 5.15: Average step execution time for all steps for 500 agents

\ | T1 | T2 | T3 | Total |
With step 4 91,54 ms|6,83 ms|0,05 ms|98,44 ms
Without step 4| 8,81 ms [6,86 ms|0,05 ms|15,73 ms

Table 5.4: Average response times for 500 agents (in milliseconds)

response time with all six actions included. Second row of the Table 5.4 shows
the average response time without step 4 (that is the step where we perform a
Movie Script action taking 1500 ms). By comparing both tables, we can see, that
even that we have increased the number of agent five times, VIXEE’s average

5.6. Summary 115

response time increased from 5 ms to 15 ms (making the relation sublinear).
Figure 5.15 shows the average execution times for each of the steps. We can
note that in comparison with the times from Figure 5.14, the sublinear relation
is kept for all actions.

Another aspect that we have evaluated was the total response time (T'1+72+
T3) during the incremental load. We have been adding agents one by one till
we were running 500 agents. We let all agents execute some actions in parallel,
and we measured the VIXEE’s response time. Figure 5.16 shows the graph of
average response times depending on the number of connected agents. We can
observe that even with the very high number of connected agents VIXEE was
slowing down steadily with the average response time around 20 ms. We have
approximated the performance decrease by a linear function y = 0,0095x+15, 34,
that just corresponds to 0.9% performance decrease by each connected agent.
The computed coefficient of determination is R? = 0.00033.

Total Response Time by Number of Connected Agents

70
y =0,0015x + 17,87

[6)]
o

S
N

N
©

(LI uH
W ¥ [15] | il

2 37 72 107 142 177 212 247 282 317 352 387 422 457 492
Number of Active Agents

Response Time (ms)

~
~

0

Figure 5.16: Average response time with different number of connected agents

5.6 Summary
In this chapter:

x We have presented the design of the middleware that provides a causal
connection between several 3D virtual worlds and a runtime infrastructure
that enforces interaction rules, AMELI.

*x We have proposed the Movie Script mechanism that extends the original
Action/Message table. Movie Script defines the context for which a se-
lected Movie Script action will be executed. This context is formed by

3The y function and R? function were computed by the standard functionality of the
Numbers program for Mac

116 Chapter 5. Virtual Institution eXEcution Environment (VIXEE)

the description of related AMELI event or a virtual world action. Such
Movie Script action either transforms a virtual world action to an AMELI
message, or an AMELI event to a virtual world update.

* We have presented an e-auction example contemplating VIXEE features.

* We have evaluated VIXEFE’s performance.

In the next chapter, we start our discussion on crowd simulation in 3D virtual
worlds. We introduce a generic model for intelligent virtual agents that are
designed to participate in Virtual Institutions.

Chapter 6

VI Agents

Simulating large crowds of virtual agents has become an important problem
in virtual reality applications, video games, cinematography and training sim-
ulators. In this chapter, we approach this problem and present a new general-
purpose agent model which provides the possibility to generate crowds of agents,
where each agent has a unique behavior and appearance. This model combines
features of Artificial Life’s digital organisms with features of Intelligent Virtual
Agents. Tt is designed to be executed in the context of Virtual Institutions, which
are normative 3D virtual worlds, where participant interactions are controlled by
an Electronic Institution, a well-established organization centered Multi-agent
System (OCMAS). We use the Uruk city example, presented in Section 1.6.2, to
explain particular concepts.

First, we introduce the motivation for the creation of a new virtual agent
model. This section also presents motivations for the work on automatic gen-
eration of avatar appearance, presented in Chapter 7. Then, we present our
approach and explain what are our contributions. In the rest of the chapter, we
present all model components following by the description of their implementa-
tion.

6.1 Motivation

Nowadays, most virtual worlds represent online communities, where human users
multi-modally interact in a simulated 3D space. In many cases (e.g. IMVU!,
Smeet?), 3D virtual worlds serve little function beyond 3D environments for
online chatting. In this thesis, we are concerned with using 3D virtual worlds
in more advanced scenarios, such as e-* applications and social simulations (as
described in Chapter 1).

A significant class of such scenarios represents e-* applications, allowing e-
commerce, e-government and e-learning participants to perform their tasks in

 http://www.imvu.com/ (05/2012)
2http://en.smeet.com/ (05/2012)

117

http://www.imvu.com/
http://en.smeet.com/

118 Chapter 6. VI Agents

simulated 3D environments. [Bogdanovych, 2007] notes that 3D virtual worlds
provide an immersive experience and support valuable real-world attributes
like social interaction, location awareness, advanced visualization, collabora-
tive shopping and impulsive purchases, which can improve existing practices
in e-commerce portals [Bogdanovych, 2007]. Attributes, such as immersive
experience, social interaction and collaborative approach to solving problems
could facilitate more interactive and practical applications in e-learning and e-
government.

Another class of virtual worlds’ applications we are concerned with are social
simulations. Social simulations represent a research field that applies computa-
tional methods to study issues in social sciences, as well as to other disciplines
that study complex human behavior. The issues explored include problems
in sociology, political science, economics, anthropology, geography, archaeology
and linguistics [Takahashi et al., 2007]. In social simulation, computers support
human reasoning activities. This field explores the simulation of societies as com-
plex non-linear systems, which are difficult to study with classical mathematical
equation-based models [Weidlich, 2000]. To highlight the practical benefits of
using 3D virtual worlds for social simulations, in this thesis, we focus on the
e-learning domain and simulate the society of the ancient Mesopotamian City
of Uruk (see Chapter 8).

Social simulations, e-* applications and their execution in 3D virtual worlds
are the main application domains we are concerned with in this thesis. We
introduce methods that facilitate their definition and execution. In previous
chapters, we have focused on automatic generation of such 3D virtual worlds.
For this purpose, we have defined the Virtual World Grammar, which generates
a 3D environment of the virtual world from the formal specification of activities
being performed in this virtual world. Later, using VIXEE, we have connected
this world with an Electronic Institution, making the virtual world normative,
where interactions can be structured and controlled. At present, this generated
environment contains no initial population.

Having empty 3D spaces with no population is not adequate for e-* appli-
cations and social simulations. In e-* applications, we stress the importance
of social interactions and the collaborative approach. In social simulations, the
issue is even stronger as it depends on execution and study of artificial societies.
Therefore, we need to populate generated 3D space with avatars.

Very often, these avatars are required to complete frequent repetitive tasks
where making errors has significant negative consequences. An example is an e-
commerce application, which uses avatars to approach world visitors and collect
poll data from them. Recording incorrect data could lead to the corruption of
poll results. Moreover, poll data often has to be collected in any given moment
during the day, thus “poll avatar” availability has to be assured 24 hours a
day. Moreover, in social simulations, we often simulate large societies; therefore,
it is needed to populate space with a large number of avatars. In all these
instances, it is not practical to control avatars by human users, therefore we
need a mechanism that would substitute human presence.

6.1. Motivation 119

The popular substitution mechanism is the replacement of human presence by
agents. In artificial intelligence, an intelligent agent (IA) is an autonomous entity
that observes through sensors, acts upon an environment using actuators and di-
rects its activity towards achieving goals [Russell et al., 1995]. Using agents with
agent-based modelling (ABM) is a powerful simulation modelling technique that
has seen a number of applications in the last few years including applications
to real-world business problems [Bonabeau, 2002] [Farmer and Foley, 2009]. In
agent-based modelling, a system is modelled as a collection of autonomous,
decision-making agents. Each agent individually assesses its situation and makes
decisions on the basis of a set of rules. Agents may execute various behaviors
appropriate for the system they represent, e.g., producing, consuming, or selling.
Repetitive competitive interactions between agents are a feature of agent-based
modelling, which relies on the power of computers to explore dynamics out of
the reach of pure mathematical methods [Bonabeau, 2002]. Agents and ABM
are often used in social simulations, where agent-based social simulation (ABSS)
[Li et al., 2008] models the different elements of the social systems using arti-
ficial agents, and placing them in a computer simulated society to observe the
behaviors of the agents. Deploying ABM to the domain of 3D virtual worlds,
we represent agents by avatars and let them act in a simulated 3D environment.
Avatars autonomously navigate in the 3D virtual world, using data from their
sensors and interact with the environment, human users and other agents. Thus,
by representing agents with avatars and using ABM, a well-established system
modelling technique, we are assured that agents effectively substitute human
presence in 3D virtual worlds.

Substituting humans by agents introduces several challenges for related ap-
plications [Thalmann et al., 2009]. In the area of social simulations, we are con-
cerned with the simulation of large crowds. We require that the simulated crowd
is believable. We approach crowd believability on two different levels. On the
macro (crowd) level, we want each crowd member (agent) to be visually and be-
haviorally unique; thus, assuring the believability when overlooking the crowd.
On the micro (agent) level, we want each agent to behave believably, mimicking
the human behavior. With regards to believability on the macro level, the sim-
plest method to generate a large crowd is by replicating (i.e. cloning) a single
individual until we reach a desired number of individuals. Naturally, this leads
to identical appearance and behavior, undesired for believable crowds. There-
fore, we need a mechanism that automatically alters individual appearance and
behavior, thus producing unique agents.

The most straightforward method of creating unique agents is the manual
modification of their visual and behavioral features. A manual method for de-
signing hundreds (or even thousands) of such avatars is a time-consuming and
inefficient task, and a higher level of automation is desired. A common automa-
tion approach is a definition of several appearances and behaviors and their con-
secutive variance between crowd members [Barbara, 1998] [Maim et al., 2009].

This is also a most common approach in role-playing computer games®. This

3World of Warcraft, Assassins Creed

120 Chapter 6. VI Agents

approach requires a lot of effort in generating sufficient predefined appearances
and behavior patterns, so that a large crowd remains believable and appearance
repetition and behavior repetition is not visible.

Another popular option [Lewis and Parent, 2000] [Thalmann, 2007]
[Magnenat-Thalmann et al., 2004b] is to isolate and quantify specific vi-
sual and behavioral features (e.g. height, foot size, friendliness) and then,
for every agent, randomize their values (e.g. producing agents with different
height, foot size, having different levels of friendliness). Although very effec-
tive, randomization of features sometimes leads to unacceptable results (e.g.
generating unusually small avatars with giant feet). Moreover, it is difficult
to maintain the visual properties of a specific ethnic during reproduction
(e.g. asian eyes). All the mentioned approaches seem to be lacking important
features, thus inadequate for our purposes. When looking for alternatives, we
found inspiration in evolution, responsible for creation of unique organisms,
even within single species.

Using a genetic approach, we first manually develop a small representative
number of individual agents capable of autonomous actions. This initial sample
models all required population groups and defines the initial population of a
virtual world. Then, we use the genetic approach to generate a large diverse
crowd of a desired size, where each generated agent is an offspring of agents
from the existing population.

In Chapter 7, we mimic the genetic reproduction principles found in nature.
In the artificial genetic model, we propose to encode an avatar’s visual features
and behavioral features into its genes, which form agent chromosomes. Chro-
mosomes of two different avatars are combined and mutated, to create a new,
unique avatar. This provides a practical solution for introducing an automatic
way of behavior and appearance variation in large avatar crowds

Using a genetic approach, we first manually develop a small representative
number of individual agents capable of autonomous actions. This initial sample
models all required population groups and defines the initial population of a
virtual world. When initial population is defined, we use the genetic approach
to generate a large diverse crowd of a desired size, where each generated agent
is an offspring of agents from the existing population.

Generating a large crowd using genetic approach assures believability on
the macro level, overlooking the crowd from the distance, by generating agents
with unique appearance and behavior. On the micro level we want individ-
ual agents to behave believably, that is human-like [Loyall, 1997]. Such be-
lievable behavior is achieved by modelling human personality and emotions
[André et al., 2000], human processes such as physiology (e.g. hunger, energy)
[Gillis, 2000], decision making under stress situations [Janis and Mann, 1977
[Silverman et al., 2006b] or using non-verbal behavior, such as facial expres-
sions and speech [Cassell et al., 1994] [Gratch et al., 2002], eye movement and
gaze [Bickmore and Cassell, 2005], gestures [McNeill, 1996] and head nods
[Lee et al., 2010] during agent interactions.

Personality and emotions are of our particular interest. Emotions are af-

6.1. Motivation 121

fected by personality, when two individuals with different personalities react dif-
ferently to the same situation. In the physical world, each person has a unique
personality. In the virtual world, encoding personality values into agent chro-
mosomes assures generation of agents with unique behavior, thus believable on
the “macro” level. Execution of psychological processes defined by these values
introduces believability on the “micro” level.

Agent believability presents a separate scientific field, which belongs to the
bigger research field of IVA. This work uses existing knowledge from IVA field
(e.g. [Kasap and Magnenat-Thalmann, 2008] summarizes state-of-the-art for
IVA), along with information from evolutionary computing and A-Life. Thus,
based on the literature review from these fields, we have created a general-
purpose virtual agent model where physiological, psychological and social needs
of humans are simulated in a believable way, while strongly relying on existing
theories about human behavior. This generic model combines properties both
from A-life digital organisms (see Section 2.6) and Intelligent Virtual Agents
(see Section 2.7). A-Life inspired us to encode agent properties into chromo-
somes and to use the genetic algorithm approach for generation and evolution of
avatars. Then, we used the IVA theory on believable agents and defined models
for agent appearance, psychology and physiology. This generic model allows us
to perform A-Life evolutionary simulations with a high level of sophistication.

Such generic models, however, do not take into account specific cultural
characteristics of the simulated human population and established social norms.
For the purposes of social simulations, when simulating different cultural groups
and their interactions, we need a way of encoding culture-specific properties and
culture-specific rituals. To address this drawback, we embed the general-purpose
agents into the model of virtual culture [Bogdanovych et al., 2010b]. Virtual
culture holds a definition of locations, actions, objects and rituals specific for
given culture. Agents can learn new cultural information, allowing us to simulate
dissemination of cultures.

Another drawback of such generic models is that they are independent of
the external environment. In standard scenarios (e.g. games, simulations),
agents are explicitly defined by a list of actions, usually specified as decision
trees [Gemrot et al., 2009] [Adobbati et al., 2001], and objects that they use to
accomplish these actions. This approach allows fast but restrained reasoning
over existing sets of objects. In the applications domains of our interest, such
approach is not adequate. In social simulations, agents reason and plan their ac-
tions using complex data from the changing state of an environment. Previously
mentioned approach would explicitly give agent knowledge about all possible
objects, their location in the world and all the possible interactions. This sig-
nificantly increases the complexity of agent definition. We seek a more dynamic
approach, where an agent “discovers” possibilities of the environment in which
it acts. Therefore, we propose a model for Virtual World Objects (VWO), which
defines the meta-data for 3D objects, which allow an agent to reason about them
and use them in their planning. Using VWO, we are able to shape agent actions
by dynamically changing the environment, or even incrementally introduce new

122 Chapter 6. VI Agents

objects to the simulation.

VWO complements the design of our generic purpose agent model. Consid-
ering all of the presented properties of this model, we are capable of accurate
simulations of large human societies. Furthermore, individual virtual agents are
suitable for being employed in all the application domains this thesis is concerned
with.

Considering our motivations, we conclude that, for e-* applications and social
simulations executed in normative virtual environments, one needs a way of
automatically populating them with a desired number of virtual agents. Those
agents must be intelligent, believable and aware of their dynamic environment,
while it is desired not to design them in a manual fashion, but have a high
degree of automation. Therefore, this chapter will investigate how to build an
agent model that contains information on agent culture, allows to utilize the
knowledge about the environment that comes with a Virtual World Grammar
and automatically populates this environment with avatars.

Thus, further in this chapter we explain how our work extends existing state-
of-the-art presented in Section 2.7 and state our contributions. Then, we present
all parts of this generic agent model. This model is evaluated in Chapter 8.

6.2 Approach Overview

In this section, we present our approach to the creation of a generic model for
believable Intelligent Virtual Agents (IVA) that can be automatically gener-
ated with a unique appearance and behavior. In Section 2.4, we presented the
background on IVA and explained how to approach agent believability. Then,
we introduced the state-of-the-art for the IVA models and stated why existing
models are inadequate for applications concerned by this thesis.

In general, all existing IVA models depend on the declarative definition of
agent behavior. In this approach, agent behavior specifies when and where
to perform an action. What exact action to perform is decided depending on
several external (e.g. state of the environment) and internal (e.g. emotional
state) factors. Agent decision on a current action is deduced either directly
from a decision tree [Gemrot et al., 2009] or using a custom evaluation function
[Silverman et al., 2006b] that considers both, an external and an internal agent
state. In the case of decision trees, we are forced to manually specify goals
for each agent or a group of agents. Using the functional approach, we need
to “tune” the configuration of functions so that agents behave accordingly to
implementation specifics, while a given function configuration needs not to apply
to an implementation in a different domain and needs to be reconfigured.

In our approach, we aim for a more automated solution. The focus of this
thesis is the automatic generation of virtual environments from a formal specifi-
cation of activities performing in this environment. In this work, we consider a
performative structure of an Electronic Institutions, an Organization-Centered
Multi-agent System (OCMAS), which structures and normatively controls agent
execution and interactions. Agents, using information stored in such specifica-

6.2. Approach Overview 123

tion can automatically reason about their goals, and also plan collaboration with
other agents in order to achieve common or individual goals. Goal, in our case,
is an illocution that has to be uttered in a specific scene. For example, illocution
eat(calories), in the scene Eat, tells an agent to consume food with a specified
number of calories.

Goal:
eatFish

o Y

Pray)
< cCitizen

Current Ctllizen
Position _ \

‘ InitRoles c:FisherMan | c:PotMa

(Px"\}\br (F\ W}Hr?

e
. . A /
Y N . 5 7 2.

[\ . S/ a o]
"{‘ . cFisherfan #V 9:Ged

c:Citizen) 4 “\g FisherfV)
‘ Fish r g) ,
Birth ~ - - <K/
o e 7
NV @ D oA
20— g:God | new
*'~‘God A([IOHS{‘
\)

Figure 6.1: Plan creation process overview

Thus, to achieve a goal means to navigate in a performative structure of an
Electronic Institution from a current location (i.e. scene or transition) to the
scene state that is the output node of a scene arc containing the illocution defin-
ing this goal. Figure 6.1 uses a performative structure of the Uruk Electronic
Institution (see Chapter 8) to explain how a plan is created. In this figure, a
Fisherman agent is currently in the Fishing scene, and its goal is to eatF'ish.
Thus, the agent performs a dynamic search for a sequence of actions that would
lead to satisfying the goal. As a result it creates a list of seven institutional ac-
tions that lead him to the arc in the Fat scene containing the eat Fish illocution.
Those actions include catching the fish, waiting for the Fish scene to evolve into
a state when the agent can leave this scene, exiting the scene, progressing to the
Eat scene (through the Idle scene) and in the Fat scene performing the illocu-
tion that results the fish being cooked in the fireplace and finally eating the fish.
Having the institutional specification in place allows the agent to conduct high
level reasoning about its options and then dynamically construct a plan that
can satisfy its current goal, while the underlying VIXEE infrastructure provides

124 Chapter 6. VI Agents

an efficient and powerful way of connecting the institutional specification with
the sequences of atomic actions the agent must perform to execute its plans and
progress toward its goal by performing institutional illocutions via actions in the
virtual world.

The most straightforward way of specifying agent goals is to define a list of
temporal goals for each role in the system. Temporal goals specify a time and
a goal that has to be executed at a particular time. More importantly, in our
approach we integrate several existing models of agent believability, what allows
us to specify high level goals, which are dynamic processes modelled by a related
part of the agent model, such as physiology, psychology or non-verbal behavior
(see Section 2.7). An important part of agent believability is its spatial behavior,
for which we advocate the use of the episodic memory [Nuxoll and Laird, 2007],
which stores memories with their temporal and spatial factors. Integrating agent
believability models allows us to specify goals such as “be happy,” modelled by
agent emotions or “survive,” modelled by its physiology. Using this approach
we need to include in the specification how possibly can an agent obtain food,
or what makes it happy. With high level goals, agents focus rather on why to
perform an action than when, where and what action to perform.

Using the why approach for goals, agents reason about their internal state
to set their goals, which are executed in the virtual environment by interact-
ing with other agents or environment. A plan for the current goal is created
depending on the current state of the environment; thus, the agent needs to
have a way of understanding the functionality of objects in the environment.
In our approach, we have integrated agents closely with their environment by
introducing the concept of Virtual World Objects (VWO). VWOs contain spe-
cific metadata that allows agents to reason about their goals (e.g. object apple,
holds data saying that agent can use this object for eating, thus provides action
of eat(100)). Thus, by changing the environment, we change the reasoning of
agents about their goals. Unlike existing agent models, this approach allows to
specify very high level goals (e.g. survive), and still it can model very specific
aspects of agent behavior only by designing the environment. Such environment
is generated using our Virtual World Grammar, thus achieving full automation
of the generation process.

Apart from the benefit of the why approach, high level goals allow us to
model so-called “fitness functions,” which serve as a selection mechanism in a
simulation of evolution using genetic algorithms. In our approach, we encode
agent properties in genes, which form their chromosomes. These properties in-
clude their visual and psychological information (i.e. personality values). Unlike
in existing agent models, using genetic operators and mutation, we can generate
agents with a unique appearance and personality during application runtime.
This mechanism permits to perform evolutionary simulations, well known from
A-Life field, but with much higher level of sophistication. In this approach,
Electronic Institution is used to model all the possible actions performing in
the virtual environment, while a genetic component, along with believability
components, dynamically decide the preferences of their execution.

6.3. VI Agent Model 125

Using Electronic Institutions allows agents to adopt and disseminate specific
Virtual Culture [Bogdanovych et al., 2010b]. Virtual Culture models the social
behavior and social decisions of an agent. It also models what rituals, with what
object at which locations are performed, if an agent is a member of a given
culture.

Thus, our main contribution is the generic Intelligent Virtual Agent model,
which we developed based on existing work and extended it in order to accom-
plish our requirements on automatization of the virtual environment generation
process. We also show, how this model can become culture specific by incorpora-
tion of Virtual Cultures and how it can be used in the evolutionary simulations.
Next, we provide details on this model.

6.3 VI Agent Model

In this section, we describe our generic intelligent virtual agent model for agents
acting in normative virtual environments. In our case, agents perform their
actions within Virtual Institutions (VI) [Bogdanovych, 2007]; thus, we named
them VI Agents. This model consists of several components, where some of
these components depending on a specific virtual world (e.g. sensors and actua-
tors), while some depend on selected normative infrastructure (e.g. reasoning).
Virtual Institutions use Electronic Institutions [Esteva, 2003] as the normative
infrastructure. Most of the presented components were implemented and evalu-
ated in Chapter 8.

VI Agent model takes inspiration from the Artificial Life (ALife) systems.
Such systems are designed from bottom-up, from the simplest to the most com-
plex parts. Therefore, we explain components in order of their use, explaining
first components that define structures used by others.

The timer simulates the real-world time, allowing to speed up or slow down
the execution of the current simulation. The time sensor is responsible for ob-
serving current system time and periodically informing related components, what
can trigger the execution of a time-dependent function.

The genetic component stores selected agent data, such as its appearance
and psychological profile values. Ordered sets of genes form agent chromosomes.
Chromosomes are operated with genetic operators, such as crossover and mu-
tation, during the process of agent replication, leading to generation of agents
with a unique appearance and behavior (see next Chapter 7).

Several agent believability components, such as psychology, physiology and
non-verbal communication, integrate existing models supporting agent human-
like behavior. Considering the physiology component (i.e. the homeostatic
model). Tt describes an agent specific physiological needs and evaluates physio-
logical processes. An example would be agent metabolism, where food produces
energy and agent needs food to survive. Survival can be modelled as agent’s high
level goal. An extension to existing psychology models is our concept of predis-
positions. Predispositions work as action modifiers (e.g. talent or handicap in
performing some activity).

126 Chapter 6. VI Agents

The memory component is responsible for storing the spatio-temporal data
on the state of the environment, enforcing believable spatial behavior of an
agent. We adopt the existing model of episodic memory [Rolls et al., 2002]
[Nuxoll and Laird, 2007]. This model stores memories of objects and actions
that took place at a specific time in a specific space. It also maintains custom
associations between memories, allowing an agent to quickly reason about the
state of the world.

The culture component defines structures and executes processes related to
the culture of an agent, which (i) respects cultural rituals performed at special
locations (e.g. christian prays in church, muslim prays in a mosque), (ii) uses
culture-specific objects, and (iii) performs specific gestures (e.g. western-world
shake hand to greet each other while asians bow). It also defines social protocols
specific to a given culture. Culture component is an implementation of Virtual
Culture proposed by [Bogdanovych et al., 2010b]. An agent can become part of
different cultures and also extend its knowledge of other cultures.

The sensor and actuators are virtual world dependent components that ob-
serve environment and perform agent actions in the specific virtual world. Sen-
sors observe currently visible objects, visible agents and actions that update the
virtual world state (e.g. chat, voice, door opening). They are responsible for
extracting the semantical data about interactive objects stored in the model of
Virtual World Objects. This model contains semantic annotations, which allow
agents to use object data during reasoning and adapt plans depending on the
current state of the environment. Actuators perform agent actions (i.e. move-
ment, chat, speech, gestures) in a virtual world virtual world. Such actions
include moving avatar to new locations, moving objects, interacting with ob-
jects or even communicating with other avatars or human users through chat or
audible channels.

The reasoning component is responsible for selecting a current goal, creating
a plan of actions for this goal, and executing it. Goals are either specified
manually as a list of temporal goals, or as high-level goals evaluated by a specific
component (e.g. goal “survive”). Reasoning component depends on the selected
normative infrastructure as it uses specification dependent data create a plan
of actions. In our approach, we use a performative structure of an Electronic
Institution. VI Agent creates plan depending on the specification and current
state of an Electronic Institution, the state of the virtual world, the state of the
agent and the data stored in its memory. Reasoning is triggered by the timer or
an external event (e.g. interaction with another agent).

Figure 6.2 contemplates a conceptual view of the VI Agent architecture. It
represents all components of the VI Agent model and shows how these com-
ponents contribute to reasoning. Please note the Electronic Institution (EI)
specification (yellow box). Electronic Institution is defined by a dialogic frame-
work, performative structure and norms (see Section 2.3). Each VI Agent plays
a selected role in the EI. This role is a part of the dialogic framework. Each role
has a list of temporary goals. Agent goals are represented by an illocutionary
message M from some scene protocol. In the rest of this text, for message M

6.3. VI Agent Model 127

/ Timer \
C Text)(Sound)C Vision)(’ Sensors|
=/
Psychosomatical Agent Definition
E BHEE | Genetics /=0 |
g Emotions] {+1] (Psychology]
E Physiology State]< Physiology]
o) S i
Appearance
2 L B
6a) Reasoning Role Goals
Td Goal Selection]-l——J T 00:00 --------
v : c
E Plan Creation > uture .]
= v + Memory]
> Plan Execution] A T
; = Electronic Institution ‘
(Text) (Sound) C Vision) Actuators|

Figure 6.2: Conceptual view of the VI Agent architecture

we use Scene.MessageName notation. Message M can have n parameters. An
agent plan consists of institutional actions forming the path in the EI performa-
tive structure from agent’s current institutional location (i.e. scene or transition)
to the arc containing a message M. An Institution specifies normative protocols
of agent communication and actions, thus fulfilling a goal means to create a list
of institutional interactions that will lead to the accomplishment of this goal.

Our proposed architecture follows the BDI - Beliefs Desires Intentions ap-
proach for agent modelling. In this context the reasoning component evaluates
agent’s desires and creates a plan executed by actuators, representing intentions
of an agent. The rest of modules operate with beliefs of an agent.

In the rest of this section, we provide the detailed information on all compo-
nents of a VI Agent model.

6.3.1 Genetics

Genetic component encapsulates the functionality of A-Life digital organisms,
that is genetic reproduction and evolution. It contains structures for storing
agent data, used during these genetic processes. These structures are represented
by the set of chromosomes that contain genes holding qualities and properties
of an agent. These chromosomes are:

1. Appearance chromosome holds appearance values of an agent.

128 Chapter 6. VI Agents

2. Psychology chromosome holds personality traits and predispositions.
Personality values depend on the selected personality model (e.g. the big-
five model).

3. Physiology chromosome holds values that specify agent’s physiological
requirements and measures. For example, how fast an agent is burning
energy.

During agent replication, the genetic component generates a new agent by
using approaches from genetic algorithms (i.e. crossover, mutation and deep
inheritance). As a result, generated agent is an evolved version of its parents
from physical, psychological and physiological point of view. For more details
on the genetic process, please see Chapter 7.

6.3.2 Believability

VI Agent model concerns believable agents. Agent believability is achieved by
integrating selected existing models on humanlike behavior of agents. These
models represent psychological processes (i.e. personality and emotions), phys-
iological processes and non-verbal behavior during interactions, such as facial
expressions and speech [Cassell et al., 1994] [Gratch et al., 2002], eye movement
and gaze [Bickmore and Cassell, 2005], gestures [McNeill, 1996] or even head
nods [Lee et al., 2010].

For personality model, we advocate the use of the big-five (OCEAN) model
[Costa and McCrae, 1992] and OCC model for emotions [Ortony et al., 1988].
Personality shapes agents emotions affect agent’s decisions. An example is a pair
of agents with no money, no food and a big hunger level. An aggressive agent
would try to rob other agents in order to obtain food, while a submissive agent
would try to beg (that is, if we allow begging and robbing in the simulation).

We introduce a new concept of predispositions, which extends the personality
model. These predispositions can have positive, or negative influence on the
agent’s performance. Positive ones are talents (e.g. skilled fisherman), and
negative predispositions are handicaps (e.g. weak vision). These predispositions
are stored in agent’s psychological chromosome and passed to new generations.
Predispositions can mutate as well; thus, they become an essential part of agent
evolution.

The physiology forms basic survival needs and processes of an agent. Such
process is metabolism, which changes energy resources (i.e. food) to agent en-
ergy. Each agent has specific requirements on the energy consumption. Some
agents burn the energy faster, some slower; some need a lot of food to feed; oth-
ers need to eat only small amounts to fully replenish their energy. Physiology
component is split in two parts: (1) a model that holds agent’s physiological
needs and (2) agent’s current physiological state. It is an analogy to psychology,
where personality shapes emotions.

6.3. VI Agent Model 129

6.3.3 Culture

[Bogdanovych et al., 2011] introduced the project of Authentic Interactive Reen-
actment of Cultural Heritage With 3D Virtual Worlds and Artificial Intelligence.
In this work, authors studied traditional ways of preserving historical and cul-
tural knowledge and proposed a new, modern, interactive way, based on Virtual
Institutions. In these “cultural simulations,” culture-specific structures are mod-
elled in 3D, avatars wear traditional clothes and perform culture-specific tasks.
Agents are able to apprehend and disseminate information about cultures. Hu-
man users communicate with agents to learn about their culture. Authors define
a virtual culture as follows:

Definition 6.1. Virtual Culture is defined as a tuple C = (E, P,0, Ag,1,1)
where:

1. FE is the virtual environment
2. P stands for the set of virtual places occupied by a virtual culture

3. O stands for the objects produced by a virtual culture (buildings and
artifacts)

4. Ag stands for a set of virtual agents

5. I stands for a set of Electronic Institutions structuring the interactions of
virtual agents

6. [: I — P is a function mapping each Electronic Institution to its context

(location), namely some virtual place

Using Definition 6.1, a VI Agent culture component contains gestures,
actions, objects, locations, rituals where:

e (Gestures are a set of gestures that agent can perform. Execution of ges-
tures is a VW-dependent process

e Actions are a set of institutional actions, which agents can perform within
Virtual Institution

e Objects are a set of annotated Virtual World Objects

e Locations are a set of locations where an agent can perform a specific
action.

e Rituals are a set of rituals specified by an institution protocol.

Virtual agents in the context of virtual cultures are characterized by their
appearance (i.e. avatar model, clothing), their cultural knowledge (i.e. beliefs)
and by actions and gestures they perform (e.g. shaking hands instead of a deep
bow). Each agent plays a specific role in the system, where each role has different

130 Chapter 6. VI Agents

beliefs. Agents are able to exchange knowledge, their beliefs. This occurs after
interacting with another agent in the context of an Electronic Institution. Thus,
the content of the culture model is changing during the execution of a virtual
world. Agents can learn new actions to perform their plans, they can learn
about new objects and discover new locations.

6.3.4 Virtual World Objects

A virtual world is a computer simulated environment in which participants in-
teract with each other and the environment. Such environment contains many
objects. Most of these objects serve only decorative or informative purpose;
therefore, participants cannot interact with them, or their interaction is not im-
portant for system execution. Those objects that somehow alter agent’s state,
or provide the possibility to execute an institutional action can be used to ac-
complish agent’s goals; therefore, they can be used in its reasoning. Such change
can either be visual (e.g. opening doors, grabbing an object) or non-visual (e.g.
buying object deducts money from the user’s account). We name this object
model Virtual World Objects (VWO).

Each VWO is annotated with semantic information informing agents about
(i) the owner of the object: no one, a specific agent, a group of agents and
(ii) actions that can be performed with the object and how to execute these
actions. Object’s actions represent illocutions from a specific scene protocol of
an Electronic Institution. For each possible action we define following:

1. Name - a name of the message (i.e. illocutionary action) M in form
Scene.MessageName. This message can have n parameters.

2. Parameters - set of values for n parameters of the action M.
3. Owner permission - specifies if the owner can perform the action.

4. Group permission - specifies if agents from owner’s group can perform
the action.

5. User permission - specifies if all other agents can perform the action.

6. Activation - Indicates which Virtual World action that has to be per-
formed in order to interact with the object (e.g. click, approach object,
attach object, sit on object). Activation is performed only after successful
execution of the message M in the Electronic Institution.

7. Activation distance - The minimal distance that an agent needs to have
from the object in order to activate it.

In our approach, we map all illocutions of performative structure to the
Virtual World Objects, and limit that any illocution can be uttered only by
interacting with these objects. Thus, VWO forms fundamental part of agent
reasoning, where the agent has to consider the spatio-temporal data of a VWO

6.3. VI Agent Model 131

(see Section 6.3.5). Also, each VWO contains a set of tags, that allow to cate-
gorize this object in agent’s episodic memory.

Table 6.1 shows an example of an annotation for a Fireplace object from
the Uruk example. In a fireplace, an agent can make a fire (represented by the
message Cook.makeFire()) and cook specified amount of food (represented by
the message Cook.cook(amount)).

Table 6.1 shows an example of an annotation for a Fireplace object from the
Uruk example. In a fireplace an agent can make a fire (represented by message
Cook.makeFire()) and cook specified amount of food (represented by message
Cook.cook(amount)).

Name: Fireplace

Description: | A place to prepare food

Owner: no-one

Tags: foodProcess

Message Parameters|O|G|U|Activation|Distance
Cook.makeFire |- X Click 1m
Cook.cook amount X Click 1m

Table 6.1: Fireplace VWO annotation

Virtual World Object model provides the virtual world independency for
agent reasoning, as agents use only VW independent data from VWO model
and object position obtained by the sensor module.

6.3.5 Reasoning

In this section, we introduce the “brain” of an agent, a decision making compo-
nent that depending on available data and the specified goal creates and executes
a plan of actions. The process that includes selecting a correct goal, creating
a plan to executing the plan is quite long and contains many functionalities.
Therefore, we split the explanation of reasoning into three phases:

1. Goal selection phase - selects agent’s current goal, that has the highest
priority, it is relevant to its role; it is within the current time interval, and
its execution did not fail in a recent time-frame.

2. Plan creation phase - creates a list of actions for the current goal, de-
pending on the available data from other modules.

3. Plan execution phase - controls the execution of the plan of actions.

Goal Selection Phase

Each agent plays some role in the institution. Each role has assigned a list of
goals, which are either high-level goals (e.g. survive) or specific temporal goals
(e.g. from 8 AM till 1 PM “work”). A temporal goal is valid only within a specific

132 Chapter 6. VI Agents

time interval. High-level goals are valid always. Purpose of the goal selection is
to select a valid goal to execute and pass this goal to the plan creation phase.
Each temporal goal is defined by a time interval and an institutional message in
form Scene.MessageName which has to be uttered in order to achieve this goal
(e.g. Eating.eat, Fish.catchFish).

Get current goals

Get goal with the
highest priority

yes

Create plan

Figure 6.3: Activity diagram of a goal selection phase

Figure 6.3 shows the activity diagram of the goal selection phase. Selection
phase starts by selecting goals valid for the current time and ordering them by
a priority. Next, it selects the goal with the highest priority. Each goal can be
marked either as valid or invalid. A goal becomes invalid if its execution fails
a predefined number of times in a recent time interval. The execution of this
phase can fail due to following reasons: (i) there exist no plan for current goal
in this moment, or (ii) the execution of a plan failed. If the goal is invalid, it is
removed from the selected list of goals, and the algorithm continues. If the goal
is valid, a reasoning component tries to create a plan for the goal.

Plan Creation

Creating a plan for an agent’s current goal means creating a list of institutional
interactions, represented by individual plan items, that leads to fulfilment of
this goal. Creating this protocol means finding a path from agent’s current
institutional position to the arc containing the goal represented by an illocution.
Thus, each plan item is represented by one of the following:

e Scene to Transition arc (ST) defines the way how to move from a scene to
a transition.

e Transition to Scene arc (T'S) defines the way how to move from a transition
to a scene.

e Message/Illocution to be uttered (i.e. perform an action) in a scene pro-
tocol of a scene.

6.3. VI Agent Model 133

In Section 2.3 we contemplate that each arc in the performative structure
(i.e. ST, TS, or message) can contain context-dependent constraints and actions.
These constraints and actions provide the logic for the plan creation. Imagine a
simple cooking example, where you cannot cook food (i.e. fish) unless you have
something to cook and the fire is on. When we are creating a plan, we need to
fulfill all these constraints. Constraints and actions contain (i) agent properties
(ii) scene properties and (iii) message properties. Agent properties are part of
agent state; they change their value during an EI execution. Scene properties are
a part of institutional state, and their values change during agent participation
in the scene. Message properties are a part of the semantic description of actions
provided by the VWO. For example, message eat with parameter quantity, can
be said in the scene Fat. Quantity specifies how many units of hunger we
can subtract from our hunger level. For example, there are two edible VWOs:
an apple and a cooked fish. Surely, they both are edible and both satisfy our
hunger differently. Thus, they both provide action Fat.eat, but apple provides
parameter 1 (Eat.eat(1)) while cooked fish parameter 5 (Eat.eat(5)) We can
now easily imagine how VWOs are used during reasoning, when finding a path
to the goal and satisfy all constraints. If no plan exists for all valid goals, agent
can either start a random walk in order to discover new ways to plan its actions
or try to execute another goal.

Figure 6.4 contemplates the plan creation process from the cooking example.
In the upper part, we see a simple performative structure with scenes connected
with arcs annotated with arc constraints and actions. For simplification of expla-
nation, we left out transitions between scenes. In the bottom part of this figure,
we see a table which displays the reasoning process of an agent to accomplish its
goal: FEat.eat. In the first step of the plan creation, the agent tries to find a path
to the scene FEat, but finds out that it does not fulfill the constraint hasFood.
The agent uses the information stored in its memory and the information stored
in the performative structure to find a path that fulfills the hasFood constraint.
Looking at the performative structure, we see that if the agent passes through
the Cook scene, its state will change to fulfill this constraint, but also it intro-
duces two more constraints hasFood and hasFire. The agent continues reasoning
and in four steps creates the plan: Fish. MakeFire. Cook.Eat.

As mention earlier, when an agent decides to perform an action, it first needs
to find a Virtual World Object (VWO) that provides execution of this action.
VWO provides semantical data on what actions can be performed, what is the
distance this agent needs to have from the object in order to perform it, what
is the activation type for this action and what are the action parameters (see
Section 6.3.4). Activation is usually done by touching or approaching the object.
In our design, virtual culture limits which objects can be used for specific actions.
For example, to accomplish a goal Pray, agents of different religions (cultures)
would go seek different places to pray (e.g. church, mosque). Thus, following
our cooking example, the agent creates all possible plans of actions and selects
the one using the following criteria (i) has the shortest list of actions and (ii)
the VW distance to travel to accomplish the action is the shortest.

134 Chapter 6. VI Agents

Properties:
isHungry = true
4 -{ hasFood = false
hasFish = false
hasFire = false

cons:
act: x.hasFire = true

cons: x.hasFire & x.hasFis
act:

YL

cons:
act: x.hasFood = true

cons:

act: x.hasFish = true
cons: x.hasFood & x.isHungry).
act:

" cons:
act: x.isHungry = false

L

GOAL: Eat
Step # Plan Problem Constraints
1 Eat x.HasFood = false
2 Cook.Eat x.HasFire = false; x.hasFish = false
3 MakeFire.Cook.Eat x.hasFish = false
4 Fish.MakeFire.Cook.Eat -

Figure 6.4: Cooking plan creation (cons: constraints, act: actions)

Plan execution

We have described the way agents create their plans. Such plans consists of
atomic institutional actions (i) move to transition, (ii) move to scene and (iii)
say message. In Section 5.2.2, we have introduced a Movie Script which allows to
specify which institutional actions are visualized in a virtual world. Moving to
transition, entering and exiting a scene are executed in an EI immediately when
requested by the agent, and they are visualized only if it is specified in the Movie
Script. With messages, the situation is different, when the agent first needs to
find a VWO that provides the possibility to execute this message and activate
this VWO within the maximum allowed distance. The object is activated only
if the related EI message was executed correctly.

To perform agent actions in a virtual world, an agent uses its actuator compo-
nent, which implementation depends on the specific virtual world and supports
the following actions:

1. Motion - move agent to a specific location.
2. Interaction - interact with objects existing in the virtual world.

3. Communication - communicate with other VI participants using text,
voice and gestures.

6.4. Implementation 135

6.4 Implementation

In this section, we explain details of the implementation of our general purpose
agent model. We use VI Agents in the context of simulations executed using a
Virtual Institution. Main components of such simulation are:

e Timer controls the time in the simulation. It allows to speed up or slow
down the execution process.

o Virtual Institution consists of:

— Electronic Institution running in AMFELI execution environment pro-
vides normative control over participants actions. . Moreover, it de-
fines the roles that EI participants play in the system and a common
language (i.e. ontology) that participants use during their interac-
tions.

— 3D Virtual World provides simulation participants a multimodal (e.g.
visual, audible) interaction, immersive 3D environment

— VIXFEE causally connects both EI and a 3D Virtual World

o Simulation Participants are either VI Agents or humans, which either only
observe the environment or directly participate in a simulation.

o Virtual World Objects (VWO) are 3D objects existing a virtual environ-
ment that contain semantic description of actions they provide.

A simulation follows a 24-hour day cycle, controlled by the timer. Each
VI Agent plays some role, where each role has a list of temporal goals. Goals
represent institutional actions, i.e., illocutionary message in a specific scene of an
Electronic Institution. Plans are formed by atomic steps of moving from current
institutional state to the required one. Consequences of institutional actions are
visualized in a 3D virtual world.

During the execution of a Virtual Institution agent, institution and virtual
world states change. All this information contained in the institution state,
and the virtual world state helps agent to create its plan. This information is
processed and evaluated by the reasoning component of the agent. A VI Agent
reasoning is initiated every specified time interval (e.g. every 3 seconds) or upon
an external event (e.g. by talking to an agent). The reasoning time interval
should be as small as possible, so that an agent can dynamically update its
goals and plans depending on the changing world state. An example is an agent
that is going to pick the last apple from the tree, but at the same time another
agent picks this apple. With a short enough interval, the agent can break its
plan and go to search for apples elsewhere.

The reasoning component functionality was split between two managers,
where each manager takes care of separate reasoning functionality. Goal man-
ager selects correct goal, and Plan Manager creates and executes plans.

136 Chapter 6. VI Agents

An agent reasons depending on available data (in BDI terminology this data
is considered beliefs of the agent). This data is collected from several model com-
ponents. Memory and Culture component of a VI Agent represent the beliefs
of the agent about its outer space. This outer space is formed by the 3D world
state. On the contrary, we use the agent state to represent the inner state of
the agent. This state is separated into the agent’s institutional state, execution
state and properties. The institutional state holds the data related to agents
participation in a specific Electronic Institution and the copy of all agent’s in-
stitutional properties, which help the agent during the reasoning process. The
execution state holds the data related to the execution of decisions of the agent,
such as a goal and the plan history, a current goal, a current plan or a current
location. Formally:

Definition 6.2. We define a VI Agent’s state as a tuple S = (IS, ES, P) where:

1. IS is a set of institutional states IS = {is1,9s2...1,} and institutional
state is is a tuple is = (i, 7, p) where:

(a) 7 is the Electronic Institution to which this state is related to.
(b) 7 is the role of the agent in institution .

(¢) p is agent’s current position in the performative structure of the in-
stitution ¢, that is, current institutional activity in which the agent is
participating.

2. Execution State ES is defined as tuple ES = (I, GH, g, p) where:

(a) 1 is the agent’s current location

(b) GH = {g1, g2--9n} is a set of goal history items, where a goal history
item is defined as a tuple g, = {(g, tstart, tend, ©)} where g is the
goal, tsqrt and tenq are a start and end time of the goal g and r is a
result of an execution of the goal g.

(c) g is the current goal.

(d) p is the current plan for goal g.

3. P is a set of current values of agent properties.

An agent state along with an agent’s memory and a culture provides all the
necessary information for the agent to reason about its goals and to create plans
to fulfill these goals. The execution state is continuously updated by the sensor
module, while the institutional state is always updated by VIXEE. Using VIXEE
(see Chapter 5), we connect a VI Agent with the EI runtime infrastructure. It
translates agent actions to the AMELI format. Moreover, VIXEE uses our Movie
Script mechanism to monitor AMELI events and using the actuators executes
all related virtual world updates.

6.4. Implementation 137

6.4.1 VIXEE Integration

We have integrated VI Agents into the Virtual Institution Execution Environ-
ment (VIXEE), presented in Chapter 5. VI Agents in VIXEE represent external
agents that communicate with an Electronic Institution and their actions are
visualized in a virtual world. Agent definition is facilitated by the set of VIXEE
interfaces situated in several tabs. These VIXEE tabs provide following func-
tionalities:

e Project tab facilitates the definition of project properties, such as a name
and a description of the project. Here we also define which Electronic
Institution we want to launch and where is the location of its configuration.

e Awatars tab facilitates the specification of virtual world servers and user
accounts of avatars that connect to these servers.

e Roles tab (see Figure 6.5) facilitates the definition of temporal goals for
each role in the system. We can modify time validity, priority of a goal
and the goal type.

e Agents tab (see Figure 6.6) facilitates the definition of an agent, the speci-
fication of its parents and its avatar in the virtual world. Using the genetic
mixer (see Chapter 7) we can generate its appearance and visualize it in the

800 VIXEE (=)}
Q = Q’ L ¥
Run Runtime Stop ituti |
(Project =~ Avatars | Roles | Agents Movie Script =~ Environments = Runtimes = Run B!
Institutions Goals
Uruk [Goal Start End Prio... Type
EatProtocol.eat 00:00 23:59 5 Repeat
Roles
Citizen
Farmer
Female (+) (=
FisherMan
God Goal Details
Male Y
Goal: w| Priority: S ']
PotMaker EatProtocol.eat _] ty
Staff Time: 0:00 [3)23:59 [2)

7| (

Type: Repeat]

Source Type Message

AmeliRec... Accepting connections at localhost:2435

AmeliRec... Starting at localhost:2435

SlController Debug 19 was unable to subscribe to agent server: ‘Connection refused’

Figure 6.5: Definition of temporal goals in VIXEE

138

Chapter 6. VI Agents

800 VIXEE (@)
o J @ a
Run Runtime . Stop Institution
(Project ~ Avatars = Roles | Agents | Movie Script = Environments = Runtimes = Run)
Agent List Basic Properties
. Name: KimLae
Kim rr
Avatar: Fisherman Samum '3
KimSimone it =
KimSimoneMar... - L
KimTanta Mother: Lae v
KimTantaBoy
KimTantaGirl Load Appearance From Server (" Load Memory
Lae
Marco Mixer Properties
MarcoSimoneGirl —_a
. v
MarcoSimonePi... Crossover: Fuzzy
MarcoTanta Father: O Mother
Pi w)
into Mutation: €) 0%
PintoLae Gend
PintoSimone ender: | Male >Fema|e]
Simone s Skipping: | Yes | No
Tanta b4
() (=)
Save to Server (Generate)
Source Type Message
AmeliRec... Accepting connections at localhost:2435 m
AmeliRec... Starting at localhost:2435 g
SlController Debug 19 was unable to subscribe to agent server: ‘Connection refused’ 4

SICantrallar Nahun Qwas unahle ta subscrihe to anent sarver: 'Cannection refused’

Figure 6.6: VI Agent definition in VIXEE

virtual world. We can also load current memory of the avatar representing
the agent and recreate spatial information it sees.

Mowie Script tab facilitates the definition of a virtual world Movie Script
and an AMELI Movie Script.

Environments tab (see Figure 6.7) facilitates the annotation of a virtual
environment using Virtual World Objects (VWO). We specify actions that
given VWO provides, the type of the interaction and action parameters.

Runtimes tab facilitates the definition of a runtime configuration, such as:
what agents having which roles and representing which culture we launch
in a virtual world.

Run tab facilitates the control of agent execution by allowing to start,
stop, and pause the execution and also to change current execution time.
It provides a 2D map which shows current positions of all agents and paths
they decided to take. We can also view current agent state, its goal and
plan.

6.5. Summary

® 00

VIXEE

=)

N

Environments

| Project = Avatars Roles Agents Movie Script | i * i Run

Virtual World Object Actions

Environment_Lae_1.xml Action Activation Distance 0
Environment_Test_1.... EatProtocol.eat

InitRolesProtocol.initFisherMan Nothing + 10 0

<«

SlController Debug
SlController Debug

19 was unable to subscribe to agent server: ‘Connection refused’
9 was unable to subscribe to agent server: ‘Connection refused'

(=)<
Source Type Message

AmeliRec... | Accepting connections at localhost:2435

AmeliRec... | Starting at localhost:2435

CICT . -)

Figure 6.7: Definition of environments in VIXEE

6.5 Summary

In this chapter:

139

* We have presented the general purpose agent model for Virtual Institution
called VI Agent.

*x We have introduced all of VI Agent components and stated our contribu-

tions.

x We have described the implementation of this model.

In the next chapter, we present details on generation of unique avatars using
the genetic algorithm approach.

Chapter 7

3D Avatar Generation

In the previous chapters, we have presented a method for the automatic genera-
tion of 3D virtual worlds from a formal specification. Later, we have connected
the generated virtual world with the execution infrastructure of Electronic Insti-
tutions (AMELI), making the environment normative and interactive. Then, we
have introduced a generic model for intelligent virtual agents named VI Agents,
which populated generated virtual environment, forming large crowds.

In this chapter we show how to achieve a high degree of appearance varia-
tion in simulating large crowds and their 3D avatars through the use of genetic
algorithms, while also manifesting unique characteristic features of a given pop-
ulation. We show how large virtual cities can be populated by diverse ethnic
crowds of virtual agents, illustrate how our approach can be used to simulate
full body avatar appearance, present a case study and analyze our results.

7.1 Motivation

Virtual worlds and 3D games use 3D avatars! for user’s physical representation
in the virtual space as well as for simulating computer-controlled non-player
characters. The use of 3D avatars is not limited to video games or virtual
worlds, but has a wide application, for example, in the movie industry, training
simulators and health systems. In most instances, such avatars are manually
designed, but often there are situations when such manual design is not practical.
The most common case when avatar design automation is required is when
a large crowd of computer-controlled avatars must be simulated to perform a
particular group activity.

As an example of automatic crowd generation, one of the most popular solu-
tions in the movie industry, is to utilize Massive? software that offers facilities for
creating a given number of avatar clones and further modification of those clones

13D avatar is an animated, emotive, complex model representing a user in a graphical form
that ranges from actual resemblance of the human user to a talking fish or a robot.
2http://www.massivesoftware.com/ (last access 05/2012)

141

http://www.massivesoftware.com/

142 Chapter 7. 3D Avatar Generation

by introducing a slight variation into their appearance features. This technique
was widely used in Peter Jackson’s The Lord Of The Rings film trilogy (see
Fig. 7.1) for simulating battles.

Figure 7.1: Lord of the Rings Crowd Simulation in Massive

The approach in simulating crowds, taken by systems like Massive, is to
use a number of manually created avatar shapes and randomly modify some
shape parameters and textures to introduce the variety. To avoid non-plausible
distortions of the resulting shapes, the features being changed are often limited
to randomly selecting a clothing texture from a predefined list or modifying the
height and width of the avatar. Thus, such systems are limited in terms of
introducing a variety into crowds.

What is often desired in crowd simulation - is to have a diverse crowd with
representatives of various genders and age groups, having different facial and
body appearance, while still consistently maintaining the distinct features of
their ethnic group. To illustrate this idea, Fig. 7.2 outlines a group of alien
tribesman from the Avatar movie?, where each member of the group is a dis-
tinct individual, but they are all perceived as members of a single tribe due to
similarities, for example in skin color, ear shape and hair style.

Simulating such diverse groups requires identifying the characteristic features
that represent a given population and defining the acceptable range of variation
in these features, as well as their intelligent manipulation. Without satisfying
these conditions when generating crowds of avatars in an automatic fashion -
either the believability of the crowd appearance or its diversity will be very
limited.

In order to address this problem, rather than using standard randomiza-
tion techniques for the crowd simulation [Thalmann, 2007], we suggest to intro-
duce diversity into avatar appearance by mimicking genetic rules of reproduction
present in nature. Under normal circumstances, humans and animals, when pro-
ducing their offsprings, manage to achieve enough variety in the appearance of

3http://www.avatarmovie.com (last access 05/2012)

http://www.avatarmovie.com

7.1. Motivation 143

Figure 7.2: Example of crowd diversity in the Avatar Movie

their children, while also preserving their distinct personal and ethnic charac-
teristics, as well as ensuring that their body shape and facial features remain
within the acceptable range of variation for the given species.

Thus, in this chapter, we introduce an algorithm that generates visually
unique avatars following the representations and techniques used in genetic al-
gorithms theory [Holland, 1975] (e.g. crossover and mutation). This algorithm
generates individuals that respect the visual, racial, cultural and behavioral fea-
tures of a defined population as well as genetic inheritance of these features.
Using genetic mutation, we add novelty to generated avatars. In addition to
the visual aspects of crowd simulation, our approach is applicable to generating
unique personalities of virtual agents.

Our work focuses on generating large crowds, where each individual is a
unique, distinguishable member of some ethnic group (see Figure 7.3). It should
not be treated as an attempt to closely mimic genetic reproduction found in
nature. Simulating the underlying processes behind forming body tissues and
bone structure based on the DNA code is quite complicated, as those mech-
anisms are not yet fully understood and are not computationally feasible at
present. Instead, our algorithm uses the same basic principles, but deals with a
much more simple high-level representation of genetic code and a very straight-
forward technique for manipulating it to produce the desired changes in the
avatar appearance.

In our approach we first isolate and quantify visual features of an avatar
(e.g. head size, jaw shape) and then use approaches and techniques from genetic
algorithms rather than mimicking biological behavior. Genetic algorithms be-
long to the field of evolutionary computing where computational approaches in
optimization seek inspiration from evolution and genetics.

Isolation and quantification of visual features of an avatar can be a tedious
process, but by doing so we can achieve a great level of detail and variety in

144 Chapter 7. 3D Avatar Generation

Figure 7.3: Our Approach: Simulating Ethnic Crowds

generated avatars [Lewis and Parent, 2000]. For example, for heads of human
avatars some can represent the craniofacial measures quantified by their minimal
and maximal values [Vieira et al., 2008]. Limiting these features by an interval
allows us to better control the appearance of an avatar, prohibiting the creation
of unwanted (e.g. implausible) results. Also, we can combine them to represent
more complicated visual aspects such as emotions (e.g. happiness). Another
possibility is to define different intervals of quantification for visual features of
children and adults.

A big advantage of isolating visual features is its reusability with different
3D models. We can easily imagine how the 3D model should change when
manipulating a visual feature in non-human 3D models (e.g. manipulating a
visual feature of eye-size in a 3D model of an animal). We are convinced that
the visual feature approach is more intuitive than most of previous approaches.

When visual features are isolated and quantified, all current values for an
individual are extracted to form the chromosome. A specific value of a visual
feature is named gene. Genetic algorithms provide different operators that com-
bine (i.e. crossover operator) and manipulate (i.e. mutation operator) parent
chromosomes to generate their children with a defined level of novelty. Next, we
describe our model of avatar generation based on representations and genetic
algorithms.

7.2 Avatar Generation

In this section, we propose a general model for automatic generation of 3D
avatars. By general, we mean that our model can be deployed in any current
3D game architecture or existing virtual world. Moreover, we do not want to
limit this model to human avatars, but to use it with any kind of avatars (e.g.
humans, animals, fishes, robots, orcs) with distinguishable wvisual features.

7.2. Avatar Generation 145

7.2.1 Genetic algorithms

Genetic algorithms (GA) belong to the larger class of evolutionary algorithms,
which generate solutions to optimization problems using techniques inspired by
natural evolution, such as inheritance, mutation, selection, and crossover.

In the history of evolutionary computing, four important paradigms served as
a base activity of the field: genetic algorithms [Holland, 1975], genetic program-
ming [Koza, 1992], evolutionary strategies [Rechenberg, 1973] and evolutionary
programming [Fogel, 1995]. Their differences lie within the terminology behind
the algorithms, the reproduction operators and selection methods. In our work,
we use the terminology and procedures from genetic algorithms.

Traditional genetic algorithm defines and manipulates individuals at the level
of their chromosomes, where a chromosome is represented as a fixed-length bit
string. Each position in the string is assumed to represent a particular fea-
ture of an individual, called gene. Usually, the string is “evaluated as a collec-
tion of structural features of an individual, which have little or no interactions”
[Sivanandam and Deepa, 2007]. To produce a new generation of individuals, we
combine parent’s chromosomes using a crossover operator. Combining parent’s
genes allows gene inheritance. To introduce novelty in the population, we apply
mutation to the current chromosome.

Genetic algorithms have been already used in numerous important fields,
such as search, optimization and machine learning [Goldberg, 1989]. In most of
these cases GA are used as a search heuristic that mimics the process of natural
evolution. In this approach, the GA are treated as an optimization algorithm
utilizing a fitness function to select a partial solution of the original problem,
till reaching some predefined threshold for suboptimal solution.

In our approach, we are not using GA as an optimization algorithm. This
is why we do not use the selection and focus only on crossover, mutation and
inheritance. In the following sections, we provide the formal representation of
genetic data and operators. Then we contemplate our design of deep inheritance,
also called gene skipping, and explain the generation algorithm.

7.2.2 Formal Representation of Genetic Data

In this section, we formalize genetic concepts used during the avatar generation
process. First, we define visual information or definable visual traits of an avatar.
For the purpose of generation of unique avatars such information needs to: (i)
express the specific appearance trait of an individual and (ii) must be quantifi-
able. Therefore, this information must hold the quantifiable visual descriptors of
an individual. For example, “height” visual descriptor can be quantifiable by a
numeric interval, from 0 to 100, with 0 being short to 100 being tall. Moreover,
a visual descriptor can quantify the shape, texture or color of an avatar’s body
part. We define the visual descriptor as the visual feature:

Definition 7.1. A visual feature holds a quantifiable descriptor of a body
part of an avatar. It is defined as vf = {Id, Name, Value, Interval, Minumum,
Maximum} where:

146 Chapter 7. 3D Avatar Generation

1. Id is a unique integer identifier, id € I
2. Name, is a string that identifies the visual feature, name € S
3. Interval defines the range of visual feature values

4. Minimum is a string that describes the visual feature when it reaches the
minimal value, or when value is false (e.g. short), minimum € S

5. Mazimum is a string that describes the visual feature when it reaches the
maximal value, or when value is true (e.g. tall), mazimum € S

Using our approach, each avatar is first described by a list of visual features.
These features should thoroughly characterize its appearance. When such list is
defined, we quantify the values of visual features into genes. Genes are real or
boolean values of visual features, which allow us to perform genetic operations,
such as crossover and mutation.

Definition 7.2. A gene g € R U B represents a real or boolean value of the
visual feature g = v fyaiue:

(i) To quantify the presence of the visual feature, g € B

(ii) To quantify the strength or a position of a feature (e.g. height with values
close to minimum representing short avatar and values close to maximum
representing a tall avatar), g € R

Table 7.1 shows an example of an avatar’s visual traits, with defined id, name,
descriptor of minimum and mazimum for interval values, current value and a
gene value.

’Id\ Name \Interval\Minimum\Maximum\Gene\‘

33[Height | [0,100] Short Tall | 81
80| Gender {0,1}| Male Female 1
93|Head Shape| [0,100]] Round Pointy 84

Table 7.1: Examples of definitions of visual features

The ordered set of avatar’s genes is called chromosome. A chromosome holds
the complete genetic information of an individual. Order of the genes in a
chromosome is specified by genomic sequence.

Definition 7.3. A genomic sequence defines the genetic composition of a
chromosome of a specific group, forming a representative gene ordering of a
species or group. A genomic sequence GS for a chromosome of length n is a
set of indexes which define the ordering of genes in the chromosome: GS =

{iv,ia. .. in}.

7.2. Avatar Generation 147

[(ITTITIT11] [TTTTTITIT]
Grand Mother Grand Father
1 |
I (LI IITIT] [TTTTTTTf |COITTITTT]
Aunt

Cousin

(a) Graphical Family Tree (b) Schematic Family Tree

Figure 7.4: Examples of graphical representations of family trees

Definition 7.4. A chromosome of length n, ¢, is a set of n genes g1,92 ... ¢gn
in the order given by its genomic sequence GS, that is ¢, = {giy, iy - -- 9i, }
where 11,99 ...91p € GS.

Furthermore, to operate with the genetic inheritance in population we store
all the parent-child relationship information in a genealogy tree. As a result, it
allows us to navigate within the relationships of the population. This tree pro-
vides information on ancestors or siblings of the generated avatar and provides
access to their chromosomes. Its name comes from the graphical representation
where the family ancestors are visualized in the tree-like structure, also called as
family tree. A gemealogy tree is usually represented as a directed acyclic graph.
Figure 7.4a shows an example of a genealogy tree. Figure 7.4b shows a schematic
view of a family tree.

Definition 7.5. A genealogy tree is represented as a directed acyclic graph
GT = {V,E}, where each graph node v € V holds both the identifier of the
avatar and its chromosome. Each graph edge e € E represents the parent-child
relationship.

7.2.3 Formal Representation of Genetic Operators

In our approach, we first define the initial population, that characterizes the
base groups of population. Members of these groups have distinguishable visual
features that define such group (e.g. asians with asian eyes, africans with african
skin). Then, we use this characteristic information to create new individuals.
Therefore, we may refer to our generation process as to reproduction. During
reproduction, we use the information stored in chromosomes of parents and
combine and modify them using a genetic operator to reproduce chromosomes
of new unique individuals.

In the previous section, we have formalized genetic concepts related to the re-
production process, that is genes, chromosome, genomic sequence and genealogy

148 Chapter 7. 3D Avatar Generation

tree. In the following sections, we define all the genetic functions and opera-
tors. Such operators are responsible for crossover, mutation and inheritance
of genetic information from parents. Moreover, we introduce the genotype rule
a mechanism to explicitly control the generation process, preserve the group
characteristic visual features and introduce relationships between genes. Our
algorithm first combines parent chromosomes using the crossover operator and
then uses gene skipping to inherit some amount of genes from its deeper ances-
tors. Next, to introduce novelty, it mutates the produced chromosome. Finally,
using a set of predefined genotype rules, it adjusts this chromosome to respect
the population group properties.

Algorithm 3: Naive algorithm for generation of 3D avatars

Input: Genealogy tree, Mother chromosome, Father chromosome
Output: Chromosome representing a new unique 3D avatar
begin
chromosome <+ Crossover (fatherChromosome, motherChromosome);
Inherit (chromosome, genealogyTree);
Mutate (chromosome);
Adjust (chromosome, genotypeRules);
end

7.2.4 Crossover

Crossover is a genetic algorithm operator that is used to vary and combine the
genetic information stored in chromosomes from one generation to the next one
[Sivanandam and Deepa, 2007]. Analogous processes from biology are genetic
reproduction and biological crossover. In this process, a crossover function se-
lects and combines the genes from one or more parents to create a new child
chromosome. We formalize different crossover operators. Some operators (i.e.
clone, split) are traditional, coming from the genetic algorithm theory, some
are defined by us to meet our needs (i.e. exchange, fuzzy). The first tradi-
tional crossover operator is clone operator, which copies the genetic information
directly from one of the parents.

Definition 7.6. Given the mother chromosome ¢™ consisting of genes ¢ =
g gy ... g and the father chromosome ¢/ consisting of genes ¢f = g{ gg gl
a clone operator @7 : C' x C' — C is defined as ¢™ @9 ¢f = 9193 ... g% where q
is either denoting mother (m) or father (f) genes.

Figure 7.5 shows an example of father cloning process. In this figure, we see
chromosomes of both parents, mother and father, consisting of smaller parts,
genes. Each parent is colored with different color. In the bottom part of this
figure, we see that all genes in the chromosome were copied from father, they
have the same color. We use this color notation in the following examples as
well.

7.2. Avatar Generation 149

Chromosome Genes
AN
- V¥ X

Motner | | [[| [[[TTJITIITTT1T]]

Figure 7.5: Crossover technique called “cloning”

Cloning is the simplest and fastest crossover technique, but it does not pro-
vide many functionalities in mixing genetic information from parents. The
simplest crossover operator that allows us to combine this genetic informa-
tion is the split operator (in GA terminology also known as one-point crossover
[Sivanandam and Deepa, 2007]). Figure 7.6 contemplates the operation of the
split operator. This technique splits the chromosome after a specific gene, called
split point, and all genes on the left of this split point will be copied from one
parent, and all genes on right will be copied from the other one. Formally:

Definition 7.7. Given the mother chromosome ¢™ consisting of genes ¢ =
gy ... g™ and the father chromosome ¢f consisting of genes ¢f = gfgf ... gf

and the split point 0 < s < n, a split operator © : C' x C — (' is defined as
cmed =grgg .. grgl., .9l

In fact, the split point specifies a father-mother ratio, /™, meaning what
percentage of genes should be copied from mother and which from father. The
split technique is applicable to more parents, where we select one split point
for each additional parent. We name such a split the multiple split (in GA
terminology also known as n-point crossover [Sivanandam and Deepa, 2007]). A
multiple split example is displayed in Figure 7.7.

Mother [| | | [J[[]JITTTIIIT]T]]

Father

Split Point

Child

Figure 7.6: Crossover technique called “split”

Previous crossover operators allow none, or very limited mechanisms for com-
bining and experimenting with genetic information from parents. A flexible

150 Chapter 7. 3D Avatar Generation

Parents [| | | [I JJTTTTIIT]TTT]]

Parent2

Parents

|
<— Split Point —>

Figure 7.7: Crossover technique called “multiple split”

crossover operator, is the exchange operator (in GA terminology it is similar
to the uniform crossover [Sivanandam and Deepa, 2007]). This operator com-
bines parents’ chromosomes by randomly selecting two complementary subsets
of genes from mother and father and joining them. Formally:

Definition 7.8. Given the mother chromosome ¢ consisting of genes ¢™ =
gl'gi ... g™, the father chromosome ¢/ consisting of genes ¢f = glf g{ gl
and the exchange selection function e : G x G — G that for input father and
mother genes outputs only one of them, we define a crossover exchange operator

©:0xC—Cascm®cl =e(gl gf) - e(g5', g3) . elgn, g])-

The process of gene exchange is shown in Figure 7.8, clearly marking genes
selected from mother and from father. The number of genes selected from the
father and mother is controlled by the father-mother ratio.

Mother [[| | | [[[]JITTT]]IT]]]

Figure 7.8: Crossover technique called “gene exchange”

For our purposes, we define a new crossover operator named probabilistic
fuzzy operator. This operator is similar to exchange operator, but rather to copy
the exact values of parent genes it combines values in the interval given by the
values of genes from the father and mother. This operator brings even more
variety into the generation process and produces avatars which closely resemble
their parents. We use this operator to evaluate our approach in Section 5.5.

Definition 7.9. Given the mother chromosome ¢ consisting of genes ¢™ =

gl g ... g™, the father chromosome ¢/ consisting of genes ¢/ = g{ gg gl

7.2. Avatar Generation 151

the parent gene selection function sifm : 2¢ — {0,1} which for position i,
where 0 < ¢ < n, selects either mother or father gene depending on probability
given by the father-mother ratio 7/™ and the fuzzy function f : 1 — R which
for gene on position i selects a random value in the interval given by f(i) =
[s(i), (g™ — g7)/2], we define a fuzzy crossover operator @ : C' x C — C as

e oc = f(1)- [(2)... ().

We can define even more crossover operators, but for our purposes, the split,
exchange and split are enough. An example of custom crossover operator would
take the arithmetic average of mother and father gene values.

7.2.5 Inheritance and Gene Skipping

Looking at ourselves in the mirror and analyzing our visual appearance, most
probably we find visual traits from our parents. Nevertheless, many of our traits
go even deeper into our ancestry tree, and sometimes we look more similar to
our grandparents than to parents. Inheriting visual and behavioral features
from our predecessors is possible due to a process called gene skipping. In some
extraordinary cases, it is even possible for black parents to have white (not
albino) baby [TheSun, 2010], when the skin color gene from white ancestors
becomes active generations later. Although, sometimes our visual features have
nothing to do with our ancestors and are the result of mutation or altered by
some external factor (see next Section 7.2.6).

AncestryLevels | | [[[| | [[[]]]]

l RS |

p(3) = 0.01 ¥ <
~
ancesrytovet: [T 1] EEELER. [0 CRRED

‘\ 4 ’
p(2) = 0.05

Ancestry Level 1

Generated Avatar EDE

Figure 7.9: Gene skipping, where p(n) denotes the probability of inheriting gene
from ancestry level n

Gene skipping is a natural genetic process that occurs during the reproduc-
tion process, when we obtain the genetic information from our deeper ancestors.
Such genetic information does not only alter our appearance, but also behavior,
personality and predispositions. Inheriting skipped gene can, for example, lead
to strong, unexpected predispositions to alcoholism, drug addiction or gambling
[Comings et al., 1996].

152 Chapter 7. 3D Avatar Generation

Figure 7.9 contemplates the process of gene skipping. In our approach, this
process becomes active after combining chromosomes using a crossover operator.
For each gene in the chromosome, we evaluate the possibility of inheriting this
gene from our ancestors. The probability value is bound to an ancestry level.
Ancestry level of our parents is 1. Our grandparents are our second closest an-
cestors, their level is 2, great-grandparents have level 3 and so on. For a given
gene, we define the probability of skipping it from a predecessor in ancestry level
n as a quadratic function p(n) = ﬁ, where n > 2. We have not found unified
and exact values of such probabilities in the literature; therefore, we have mod-
elled it to reflect the quadratic decrease with relation to older ancestors. In this
manner, there is a 5% probability of inheriting a given gene from our grandpar-
ents, 2.5% from our great-grandparents, 1.25% from great-great-grandparents.
The gene skipping technique introduces an interesting level of variability to the
appearance of avatars. In the next section, we introduce a new genetic operator
called mutation, which further extends the variability of generated results.

7.2.6 Mutation

In molecular biology and genetics, mutations are changes in a genomic sequence:
the DNA sequence of a cell’s genome or the DNA or RNA sequence of a virus.
It can be defined as sudden and spontaneous changes in the cell. Mutations
are caused by radiation, viruses, and mutagenic chemicals, as well as errors that
occur during DNA replication [Bertram, 2000]. Mutation can either be beneficial
or harmful to living organisms.

In genetic algorithms, mutation is a genetic operator used to provide genetic
diversity from one generation to the next. Mutation alters one or more gene
values in a chromosome from its initial state. Using mutation, the solution may
change entirely from the previous solution. Hence a genetic algorithm can come
to better solution using mutation [Goldberg, 1989].

We use mutation to bring more variability to generated avatars, allowing
them to have new visual traits, unknown to their ancestors. In our case, mutation
is performed by randomly selecting a specific number of genes and modifying
their values. The new value is either random, or taken from a specific interval
(e.g. £ 20% of parent value). The mutation level is expressed by the percentage
of the mutated genes from the total number of genes. In the bottom of the
Figure 7.13, we see a woman avatar, PintoLae2 that is significantly different
from his parents due to the high level of mutation set to generate this avatar.

7.2.7 Genotype Rules

In genetics, the genotype is a genetic makeup of a cell, an organism, or an
individual. In another words, it is a measurement of how an individual differs
within a group of individuals or species. We have borrowed this specific term
for a mechanism that allows us to define the characteristics of individuals or
population groups, using genotype rules.

7.2. Avatar Generation 153

We propose genotype rules to provide precise control over values of individual
genes during the reproduction process. It is a powerful mechanism, that allows
us to define the characteristics of a population group and to maintain their
significant traits (e.g. asian eyes, height of Pygmy tribe is never over 150 cm).
Moreover, genotype rules can specify the relationship between genes. Such rule
can, for example, force the inheritance of a group of genes only from one parent,
depending on the gender of the generated avatar. In another example, which we
explain in detail later in this section, we can generate female avatars with ideal
breast-waist-hip ratio.

A genotype rule modifies the gene value of the reproduced chromosome de-
pending on the other gene values stored in this reproduced chromosome, as well
as gene value stored in any of its ancestors. Genotype rules use the selection
function that allows them to select the gene value from its own chromosome or
from a chromosome of a specific relative. The input of this selection function for
gene n is a string, which encodes the full path to the given individual. Formally:

Definition 7.10. A gene selection function s, : S* — R* is a recursive
function which returns the value of a specific gene g from one or several relatives.
Relatives are selected depending on the input string s in the form s = X7 - X5 -
<o Xy where Xy p<m € {self, parent, child, sibling}*. Values of X represent
standard tree node selection functions and their concatenation specifies the path
to the specific relatives.

Examples of input strings S*, to the gene selection function follow the
subscript notation (i.e. selectionFunctiongenename) Wwith the gene name
geneName of some selected individual appearing under the selection function
name selectionFunction:

o Avatar: self
o Father: parentgender = 'male’

e Grandmother from mother’s side: parentsender = 'female’ - parentjender
= ’female’

e All my grandparents: parent - parent (note the recursive evaluation, where
the - operator starts the evaluation for all returns value on the left from
the dot)

e All my brothers that are taller than me: siblinggender = 'male’ A
Siblingheight > Selfheight

Using the selection function the genotype rule is:

Definition 7.11. A genotype rule for gene g; is a function ry4, : S1 x Sy x
... Sp — R which for a given input s1, 53 ... s,, where sx<, is a gene selection
function, returns the value of gene g;.

Definition 7.12. A genotype is a set of genotype rules that characterizes some
specific population group or an individual.

154 Chapter 7. 3D Avatar Generation

(TIT11] e (L] DGRl

Genotype Ru;;; rg?(D‘DD)% D_ -
1 [a]s[4]5]e)

Figure 7.10: Selection process for rule r4, : S7 X Sy X S3

Figure 7.10 contemplates the process of selection of genes for the genotype
rule evaluation. Next, we show an example of how the genotype is used to
characterize a population group and to specify a gene relation. In this example
we use random(x) function which returns a random value ¢ € I in the interval
0 < i < . If we look for more uniform population, we can model the random()
function as a fuzzy function with a gaussian distribution. For clarity, we do not
use the number index of a gene ry, but the name of related visual feature 7gepnder
that represents gene g;.

Example 1: Pygmy Tribe

We want to specify that members of Pygmy tribe have black skin and their
height never passes over 150 cm. We characterize this fact using two genotype
rules:

1. Theight = 150 - rand(30)

2. TskinColor = “black”, where black color is represented by some numeric
value

In our algorithm, genotypes rules are applied after the reproduction process.
This is the reason why no matter what the result of the reproduction is (e.g. after
mutation), genotype rules adjust the final chromosome to the defined height and
skin color.

Example 2: Ideal ratio

In this example, we want to generate female avatars which breast-waist-hip
ratio is (90-60-90). We can specify this fact with four rules, where we even

7.2. Avatar Generation 155

respect the diversity of generated values by using them as measure to the new
“ideal” proportions.

1. rgender = “female”

2. Toreasts = o (Sbreats(S€Lf) + Swaist (s€lf) + snip(self))
3. Twaist = 2(Sreats(S€lf) + Swaist(self) + snip(self))
4. Thip = %(sbrwts(self) + Swaist(self) + snip(self))

The first rule defines that all generated avatars will be female. The remaining
rules encode that breasts should be % (same as %) of the ratio and hip % of
the ratio and waist % of the ratio. This example shows how easily we can model
relations between genes. It is easy to imagine how we would model “correct” tall
people, by specifying the relations between their corporal length and the length

of their arms and feet.

Example 3: Eye Color

In this scenario, we define the color of the eyes of a new avatar depending
on the color of the eyes from his relatives. The proposed rules do not reflect the
real-life scenario, as in the real life the eye color is decided by the combination
of alleles (part of the gene), which we do not model. To model the eye color we
specify one rule:

1. TeyeColor =

® SeyeColor(parent) = “blue” — “blue”

o J(Seyecolor(parent) = “blue”) A I(Seyecoior(parent) = “brown”) —
“brown”
o J(seyecolor(parent) = “blue”) A I(seyecoior(parent) = “brown”) A

I(seyecotor (parent - parent) = “blue”) — “green”

These rules use the information stored in the genealogy tree and depending
on values from ancestors decide what will be the eye color of the generated
avatar. Genotype rules are powerful mechanism that controls or “fine tunes”
the generated population.

7.2.8 Algorithm

We have presented all the components and operators of our genetic approach
for generation of unique 3D avatars. In this section, we present the generation
Algorithm 4. The input of this algorithm is:

1. A genealogy tree of the population which contains the relationships between
ancestors.

156 Chapter 7. 3D Avatar Generation

2. Two graph nodes containing the mother and father chromosomes of the
newly generated avatar.

3. Crossover operator (e.g. exchange), that defines how the genetic informa-
tion from parents is combined.

4. Mother-father ratio r™/ defines what percentage of genes should be inher-
ited from father and what percentage from mother.

5. Mutation level introduces the novelty and uniqueness in generated avatars
by specifying what percentage of genes will be mutated.

6. Gene skipping flag that either allows or disables deep inheritance.

7. Genotype rules, that allow precise control over reproduction of individual
genes. Executing a genotype rule returns a boolean value if this rule has
modified the chromosome or not.

Algorithm 4 uses all the mechanisms introduced in the previous chapters.
First, it combines the chromosomes from father and mother, using a specific
crossover operator and creates a new child chromosome. Second, if allowed,
performs a gene skipping using the new chromosome and information stored in
the genealogy tree. Gene-skipping uses pre-defined probabilities to decide if a
given gene should be skipped from some ancestry level. Third, the algorithm
mutates a specific amount of genes in the new chromosome. This amount is
set by the mutation level. At last, the chromosome is modified according to
genotype rules. The algorithm repeatedly executes all rules till no change in
chromosome is detected. The generated chromosome contains all the information
about visual appearance of a new unique 3D avatar. The values of genes of
generated chromosomes are used to render the new avatar.

Figure 7.11 shows the interface of the Genetic Mixer tool?, that implements
all the features of the presented Algorithm 4. We used the Genetic Mixer to
generate all the examples in Figure 7.13. Next, we present how the presented
algorithm can be applied to Second Life avatars.

7.3 Second Life - Genetic Mixer Application

Second Life and open-source virtual world platform Open Simulator provide
one of the most sophisticated systems for avatar creation. In Second Life, the
appearance of each avatar can be modified in the appearance editor by changing
values of appearance features (e.g. height, head size, eye size). It lets the user
to modify a vast amount of visual parameters, attach objects to the different
parts of the body (e.g. head, eyes) and define different clothing. Our tool, called
Genetic Mixer uses OpenMetaverse® library, that allows to change these values
programmatically. We can modify 269 visual features of Second Life avatar,

4Genetic mixer video: http://youtu.be/HOw_nyjI3RA (last access 05/2012)
Shttp://openmetaverse.org/

http://youtu.be/HOw_nyjI3RA
http://openmetaverse.org/

7.3. Second Life - Genetic Mixer Application

157

Algorithm 4: Algorithm for generating an avatar

Input: genealogyTree, mother, father, crossover operator,
fatherMotherRatio, mutationLevel, skipGenes, genotype rules

Output: Chromosome representing a new unique 3D avatar
begin

// combine parent chromosomes
chromosome <+ Crossover (crossoverType, fatherChromosome,
motherChromosome, fatherMotherRatio);

// gene skipping

if skipGenes then

| chromosome < SkipGenes (genealogyTree, chromosome);
// mutate chromosome
chromosome < Mutate (chromosome, mutationlLevel);
// adjust chromosome according to genotype
// execute the rules till no change is performed

repeat
adjusted < false;

foreach (rule € genotype) do
| adjusted = adjusted V ExecuteRule (rule, chromosome);

until adjusted = false ;

return chromosome
end

| Heritage

Father: [Father v| Maother: [MOtth v|

| Mixer

Crossover

Crosover Type: [Random Exchange > | Father Mother 0.5 % [C] Allow Deep Inheritance

Mutation

Genes ‘ % 50

Eyes [T Gloves Hair [C] Jacket [[] Pants Shape [T shirt [C] Shoes [#] Skin [C] Skirt [] Sacks [£ Underpants [C] Undershirt

Female | | Generate |

Figure 7.11: Interface of the Genetic Mixer tool

identified by id, type and name and minimal, mazimal, default value and their
labels. The chromosome of an avatar is a concatenation of gene values, where
each gene represents a value of one of these 269 visual features. Id is an integer
value uniquely identifying this visual feature. We use the id value to set the
order of the gene in chromosome, thus the genomic sequence is given by the
order of visual features ids. Type specifies the part of the avatar this property
belongs to (e.g. shape, eyes, skin). Name describes the property (e.g. head

158 Chapter 7. 3D Avatar Generation

’Id \ Name \Type\ Minimum \Maximum‘
33 Height shape Short Tall

34 |Body Thickness|shape| Body Thin |Body Thick
35 Ear Size shape Small Large

36 Shoulders shape| Narrow Broad

37 Hip Width |shape| Narrow Wide

38 | Torso Length |shape |Short Torso| Long Torso
80 Gender shape Male Female
93 | Glove Length |gloves Short Long

98 | Eye Lightness | eyes Darker Lighter
99 Eye Color eyes | Natural | Unnatural

105| Breast Size |shape Small Large
106| Torso Muscles |shape| Regular Muscular
108 | Rainbow Color | skin None Wild
110| Ruddiness skin Pale Ruddy

Table 7.2: Examples of appearance parameters

] 1d \ Name \ Gene ‘

33 Height 81
34 |Body Thickness 52
35 Ear Size 31

Table 7.3: Gene values and encoding

size). Minimal and maximal value define the limits for a given appearance trait,
and their labels represent the meaning of such limits (e.g. for height minimal
value would be “short” and maximal “tall”, or for torso muscles the minimal
value would be “regular” and maximal would be “muscular”). Table 7.2 shows
examples of Second Life appearance features that we specify as genes. These
example parameters belong to different avatar parts, such as the body (e.g.
shape, eyes, skin) or clothing (e.g. gloves).

A value of an appearance parameter defines the corresponding gene value.
Gene is a real value is range [0,100], where boolean values are represented as 0
for false and 100 for true. In the following example, we assume that we have
only three visual properties: height, weight and head size with values displayed
in Table 7.3.

The corresponding chromosome is the concatenation of the genes:
c¢™: 81/52|31
In the following example we present a random split crossover operator with

the posterior mutation. We consider that chromosome M is father’s chromosome
and F for mother.

7.3. Second Life - Genetic Mixer Application 159
¢™: 81|52|31
cf: 73|40/60

We use the split operator, and we split after second gene. The new child c¢
after crossover is following:

c: 81]52|60
We set the level of mutation to 33% and select second gene to mutate:

c: 81|52|60 (before)
c®: 81/63|60 (after)

We have not used the gene skipping, nor defined any genotype rules, thus
the generation process is over. The output values for the child chromosome are
shown in Table 7.4.

] 1d \ Name \ Gene ‘

33 Height 81
34 |Body Thickness 63
35 Ear Size 60

Table 7.4: Second Life: Output gene values

Figure 7.12 shows the process of avatar creation. First, parent chromosomes
are mixed to produce the child’s chromosome. Second, the gene vales from
produced chromosome are stored into visual parameters of the avatar. Last, the
visual parameters are used by the OpenMetaverse library to create a new avatar.

GENETIC MIXER

Visual Parameters

Name | Value
namel

name2

names

OpenMetaverse

name4

Gene Skipping
Genotype Rules

[
£
o
(73
o
£
o
P
£
o

namen

|

Figure 7.12: Avatar generation process, using the genetic mixer tool

Next, we evaluate our algorithm according to two important aspects, that is
the variability of generated avatars and the speed of the algorithm.

160 Chapter 7. 3D Avatar Generation

7.4 Evaluation

We have evaluated the generation algorithm on the variety of generated avatars
depending on different input parameters of the algorithm, that is crossover oper-
ator, father-mother ratio and mutation level. We have also checked if distinctive
features of individuals are preserved within their children. Results are shown in
Figure 7.13.

For our purposes, we have defined six avatars, three females and three males
that form the base population of our virtual world. Two avatars are asian (Kim
and Lae), two are african (Pinto and Tanta), one caucasian (Simone) and one
arab (Marco). We have isolated 200 visual features of each avatar, that are
provided by OpenSim and that define shape, skin, eyes and hair. Each of these
visual features represents a gene in an avatar’s chromosome.

For the generation, we have used two crossover operators, fuzzy (marked as
F in the avatar captions) and exchange (marked as E in the avatar caption).
We have used different father-mother ratios and different mutation level. Each
generated child is named by combining the father’s and mother’s name (e.g.
child of Kim and Lae is named KimLae).

In the first row, of Figure 7.13 we see all six avatars from our base population.
In the second row, we see their children. KimLae was generated using the
fuzzy with the ratio set to 50%. We can clearly see the resemblance from both
father and mother. She has her father’s eyes, but her mother’s chin. Nose
width is somewhere between father and mother. We can clearly see that she is
asiatic. The same parameters were set for TantaPinto and we can see that she is
black, resembling both parents. If we now focus on KimSimone and her brother
KimSimone2, we see that they are both generated using the same parameters
with significantly different results. This is due to the random nature of fuzzy
operator and the use of mutation, which was set to 2%. When we look at the
grand-kids of the base population avatars we can see how their visual features
are combined.

In the last row we present a selection of avatars that we generated during the
generation of 3000 avatars from our base population. PintoLae2 is significantly
different from others due to the high level of mutation set to 10%. It’s evident
from the results that the algorithm generates a large variety of visually accept-
able avatars respecting the genetic inheritance of ancestor features. Although
we were able to generate 3000 avatars, we are unable to display them all at once
as we are limited by the capabilities of the OpenSimulator allowing to host a
maximum of 100 avatars, but recent research from Intel on using Distributed
Scene Graphs (DSG)® allowed simultaneous participation of thousands of users.

We have also measured the average speed of generation of one avatar during
the generation of crowd of avatars. The speed of the algorithm linearly depends
on the length of the chromosome, that is its time complexity is O(n) with respect
to the length of a chromosome. We have generated 3000 different avatars, using

Shttp://www.hypergridbusiness.com/2011/06/intel-increases-opensim-avatar-capacity-20-fold/
(last access 05/2012)

http://www.hypergridbusiness.com/2011/06/intel-increases-opensim-avatar-capacity-20-fold/

161

7.4. Evaluation

[0 ‘0 ‘4] yoE10IUId

[0 ‘00T ‘4] €a€703Uld

[0T ‘0S ‘4] Zae01Uld

[Z ‘0S ‘4] €auowisury

[z ‘0S ‘4] gaewny

[0 ‘sz ‘4] sej01UIdaUOWISOdIR

[0 ‘sz ‘4] se101UIdauUowWISOdIe) [0Z ‘ST ‘4] deJolUldauowisodiely [0 ‘0S ‘I] duowiSwiyoluideiue]

[0 ‘0S ‘4] duowiswiyoluldeiue]

[0 ‘0z ‘3] ZeeTWIy

[0 ‘0S ‘4] duowiSwIyoIUIdeIUR]

Figure 7.13: Avatars generated using our method. The top row forms the start
population, bottom rows are the children. The label of every figure contains
following information: Name [crossover, father-mother ratio, mutation level]

162 Chapter 7. 3D Avatar Generation

the most complex fuzzy operator with mutation level set to 2% and on average
the algorithm generated a new avatar in 305 ms. The generation was performed
on a MacBookPro with 2.6 GHz Intel Core 2 Duo processor and 4Gb of RAM.

7.5 Summary
In this chapter:

x We have formalized data and operators used by our genetic-based approach
to generate 3D avatars.

x We have presented an algorithm for automatic generation of 3D avatars
use techniques and formalizations from genetic algorithms.

x We have presented examples of generated avatars using our approach

* We have evaluated the performance of our approach when generating large
number of avatars according to the variance of produced avatars and speed
of algorithm.

In the next chapter we present a complex example in which VI Agents pop-
ulate the city of Uruk 3000 BC, the first city on earth. This simulation was
designed as part of Virtual Heritage Project [Bogdanovych et al., 2011]. Our
work uses the knowledge collected during the development of this project and
evaluates our model for agents that participate in this cultural simulation.

Chapter 8

Case Study: Uruk 3000 BC

In this chapter, we provide a case study in which we have applied mechanisms
and techniques presented in the thesis to the domain of interactive e-learning.
This case study concerns the execution of cultural and social simulation of life
in the first city on earth, Uruk 3000 BC. This simulation was previously intro-
duced by [Bogdanovych et al., 2010b]. It included an interactive 3D environment
executed in Second Life, with exact archeological recreations of the main city
buildings, such as Ziggurat or the Uruk temple. Human participants observe
and learn historical facts about life in Mesopotamia by interacting with Uruk
environment and its inhabitants.

We enrich this system by connecting the Uruk environment to an Electronic
Institution using VIXEE and enforcing the control of participant interactions.
Each computer-controlled participant is executed by a VI Agent. VI Agents
perform their tasks depending on the specified set of temporal goals. Their
appearance is automatically generated using the Genetic Mixer tool. Moreover,
using Virtual World Grammar, we dynamically manipulate the virtual world
content and insert or delete objects in the virtual world at run-time.

8.1 Introduction

Inhabitants of Uruk belong to the Sumerian culture, wear traditional clothes
and use culture-specific objects. For the purposes of this simulation, we isolated
several sub-cultures where each of them represents a specific role in the system.
These roles are Gods, Fisherman, Potmaker and Farmer.

Gods are divine entities, and in this simulation, they do not need to sleep;
thus, they work 24 hours a day. We employ two gods, Enki, god of freshwater,
male fertility, and knowledge and Ninhursag, goddess of earth. God Enki is
responsible for the creation of a population, and he is visualized by the Uruk
temple. Ninhursag is responsible for growing crops, and she is visualized close
to the fields. God Enki is worshiped by Fishermen and Potmakers and goddess
Ninhursag by Farmers.

163

164 Chapter 8. Case Study: Uruk 3000 BC

Inhabitants of Uruk, formed by Fishermen, Potmakers and Farmers, follow
the same daily routine: (1) in the morning, they wake up, pray, eat and then
go to work; (2) before lunch, they pray, then eat; after lunch, they go back to
work; (3) after work they rest, pray, have dinner and go to sleep. Although
this schedule is common for all subcultures, working and praying is specific for
some of these them. Fisherman work by catching fish, Potmakers make pots
and Farmers collect fruit from the fruit trees. Fishing requires a spear made of
reed, while to make a pot, Potmakers need water and clay. Fruit trees grow only
when a goddess Ningursag allows it; therefore, Farmers pray to her directly in
their fields. Fishermen and Potmakers worship Enki by the temple.

In this simulation, we generate several members of each culture, representing
the population of Uruk. Every individual has a unique physical appearance,
automatically plans and executes its actions according to the list of goals, navi-
gates to locations of its desire, interacts with the environment and manipulates
the objects.

Thus, our goal is to create a large virtual city with hundreds of avatars
controlled by artificial intelligence, who understand their environment, interact
with it and also interact with other agents and humans. The problem is how
to accomplish something like this. Do we design every agent manually? Do we
specify every agent’s behavior from scratch? How do we handle complex inter-
actions of hundreds of agents that include team work, rituals, trade, wars, etc.?
How do we ensure culturally authentic behavior? How to make the environment
dynamically evolve and the agents being able to sense the changes and adjust
their plans accordingly?

Classical approaches offer two popular solutions to the previous questions.
The first solution is to manually design and program every individual agent.
While this will eventually achieve the desired effect, the practicality of this
method is low as this is an extremely time-consuming and error-prone process.
Another popular approach is to employ crowd simulation techniques. However,
classical crowd simulation techniques are (i) not suitable for generating ethnic
crowds with a large degree of variation in agent appearance and behavior; (ii)
they do not normally feature agents playing different social roles; (iii) they do
not handle complex agent interactions with objects in a virtual environment;
(iv) they have to rely on manual programming to integrate culturally specific
behavior; (v) they do not normally allow human controlled avatars to actively
participate in the agent crowd; (vi) they do not help agents to achieve common
goals in a collaborative fashion.

Thus, in our approach, we advance the state of the art and define a sophis-
ticated general-purpose model of an individual agent capable of generating its
own goals based on physiological needs, featuring dynamic planning for pursu-
ing those goals based on the current state of the agent, its culture, the state of
the environment and states of other agents. Then, we offer the possibility of
generating a large ethnic crowd of agents, where each agent is designed based
on a small sample of manually created avatars, which define the ethnicity of the
Ururk population. The generated crowd is integrated into a Virtual Institution

8.2. Workflow 165

that ensures complex, culturally specific and normative behavior of each agent.
Moreover, Virtual Institution supports agents with different social roles and al-
lows them to engage into complex interactions with other agents and humans,
while providing a high-level method of interpreting their own behavior and the
behavior of other actors. Furthermore, using our model of interactive objects,
agents have the possibility to react to dynamic changes of the environment.

In the following section, we describe the workflow used to define and execute
Virtual Institution for the cultural and social simulation of Uruk.

8.2 Workflow

The definition and execution of a Virtual Institution, using techniques and mech-
anisms presented in this thesis, requires the following steps:

1. Definition of Electronic Institution specification. In this step, we define
the dialogic framework with ontology and roles, performative structure
with activities/scenes and transitions and all the scene protocols with a
definition of interactions'. In this definition, we also include information on
Virtual Cultures, which specify culture-specific actions, objects, locations
and rituals.

2. Definition of a virtual environment. We can use Virtual World Grammar
to either generate the whole virtual environment or only modify its parts
(as in our case).

3. Defintion of interactive Virtual World Objects and annotating environment
with their instances.

4. Definition of goals for all roles that participate in the system.

5. Definition and implementation of custom actions, which react to specific
virtual world actions or AMELI events. These actions, for example, modify
parameters of messages sent to AMELI or modify a virtual world model.
We use the Movie Script mechanism to map such virtual world actions/
AMELI events to these Movie Script actions.

6. Definition of an initial population, which is used to generate the appearance
of avatars entering the application. The initial population models the
ethnicity of the population.

7. Definition of runtime configuration, which assigns what agent having what
role, using which avatar participates in the simulation.

LCurrently, Electronic Institutions do not support dynamic update of a specification at
institution run-time. This feature is in active research and will provide us the possibility to
dynamically update agent knowledge and interactions.

166 Chapter 8. Case Study: Uruk 3000 BC

Further we show how this workflow was followed in development of the
Uruk case study. In the first step, we define the specification of the under-
lying Electronic Institution. This specification defines roles and their proper-
ties, a common ontology, activities/scenes and scene protocols that structure
agent interactions. It defines the whole organizational structure, and interac-
tion protocols of the simulation. Information stored in this specification serves
as core for agent reasoning process when creating plans for its goals. However,
agents can represent different cultures, where each culture performs specific ac-
tions at specific locations with a culture-specific object, what also affects the
reasoning process. While traditional approaches required rigid programming
of culture information into agent behavior, using a Virtual Culture concept
[Bogdanovych et al., 2010a], we can declaratively specify culture-specific infor-
mation into EI and define high level goals for participant roles, letting Virtual
Culture information decide a specific action that shall be taken. An example
is the goal “work”, where for the Fisherman culture, this means to go fishing,
while for PotMakers’ culture work corresponds to making clay pots.

Next, we design the virtual environment. We can either employ Virtual
World Grammar (VWG) and generate the whole environment from scratch, or,
like in the Uruk case, create the initial design manually and let VWG manipulate
only specific parts of a virtual world model. VWG allows us to generate the
content at various locations, using specified shape grammar rules. We use VWG
to place two different types of fruit trees on the field (see Figure 8.1), where
fruits are harvested by farmers.

After the virtual world has been created, using the Virtual World Objects
(VWO), we define which objects of the environment are interactive, and how they
can be included in agent planning. Plans represent a sequence of institutional
actions (i.e. movement between scenes and transitions, and illocutions). In the
virtual world, these actions are performed only by interacting with a VWO, or
by communicating with other participants. In traditional approaches, locations
of objects along with a specification of actions, is specified directly in the plan
(e.g. decision tree). This produces systems with static knowledge, where agents
are able to operate only fixed set of objects at predefined locations. Solution
using VWO is more dynamic and relies on keeping the knowledge about an
object in the object itself. Such object provides information on actions that can
be performed with it, how these actions are activated and who is permitted to
do it (i.e. owner of the object, group of owners or anybody). Thus, an agent
first has to find a VWO that allows it to execute this action. Then, the action is
validated with an EI, and in case of positive validation, the object is activated
using a specified virtual world action. Agent considers locations of VWO in its
planning, and if it does not know a location of a desired VWO, it can try to
search for such an object, or try a different approach or a different goal. This
creates a tight integration between an agent and an environment.

In the next step, we define goals for each role participating in the system
(goals are inherited from parents as well). Virtual Culture concept allows to
specify high-level goals, which are transformed into an action. In our case, this

8.3. Definition of Virtual Institution Components 167

is an illocutionary action from a specific scene protocol of a performative struc-
ture. Moreover, to simulate the daily routine and let agents follow a predefined
schedule, we limit the goal validity by a time interval.

Next, we define virtual world Movie Script and AMELI Movie Script and
implement related Movie Script actions. This mechanism allows us to react to
changes in both layers, virtual world and AMELI, and causally update the other
layer. Such changes are provoked by agent participation in the system.

What remains is to populate the virtual world with agents, where the popu-
lation crowd has to be believable; thus, each agent has a unique appearance and
behavior. Traditional approaches include manual design of every avatar, distri-
bution of random attachments or variation of predefined appearances. In our
approach, we employ genetic algorithm approach, where using reproduction we
generate child carrying features of parents. In the current implementation, we
deal only with an appearance as no psychological model has been implemented.
Compared to previously mentioned approaches, this approach allows to maintain
parent ethnic properties. The requirement for this approach is a definition of an
initial population using which, along with already generated agents, we generate
the virtual world population.

In the last step, we define the execution configuration. This configuration
defines: which agents, having which roles are launched within the simulation.

8.3 Definition of Virtual Institution Compo-
nents

In this section, we provide a thorough description of all parts of the Virtual
Institution, implemented in our example scenario? of the city of Uruk.

8.3.1 Virtual World

The presented scenario follows the work done by [Bogdanovych et al., 2010b],
and reuses its virtual world environment of the City of Uruk portrayed in Fig-
ure 8.1. As mentioned earlier, this environment includes the archeological re-
construction of the main city buildings such as the temple and several common
houses with typical roof openings for the roof access where Uruk inhabitants
reposed after work.

In this figure, we point to locations where different roles perform their ac-
tivities, that is the temple, fishing spot for Fisherman and field, where farmers
harvest fruit from fruit trees. Each agent participating in the simulation owns a
house where it sleeps after work.

2We apologise that due to tight schedule and unavailability of history consultants at the
time of designing this case study - the presented scenario may not be completely historically or
theologically correct. So this study should not be treated for historical references, but instead
should only be used as an illustration of the techniques developed in this dissertation.

168 Chapter 8. Case Study: Uruk 3000 BC

Fishing Spot Temple Field Houses

Potmakers Shop

Figure 8.1: Uruk city overview

8.3.2 Electronic Institution

An Electronic Institution (EI) specifies roles and the common language for its
participants. It also structures interactions between participants and enforces
institutional norms and constraints during such interactions. An EI is defined by
a dialogic framework, performative structure, scenes and norms (see Section 2.3).
Agents create their plans depending on the current goal and the information
stored in the EI definition. In this section, we present all parts of the Uruk
Electronic Institution.

Dialogic Framework

Dialogic framework defines roles, their hierarchy and common language (i.e.
ontology) used during interactions between these roles. Figure 8.2 shows a role
hierarchy for Uruk, separating roles of men and women. Please note that citizens
of Uruk can never be gods (due to the ssd® relationship) and vice-versa.

Each role contains a list of properties hierarchically inherited from its par-
ent. Role Citizen has the following properties: fishes, fruits, pots, cookedFishes.
These properties specify the quantity of different agent belongings. Role Fish-
erman has following properties: hasBoat, hasSpear, hasReed. These properties

3Static Separation of Duty

8.3. Definition of Virtual Institution Components 169

isherMa otMake Farmer

Figure 8.2: Role structure in Uruk

define the existence of belongings. These properties are modified during partic-
ipation in institution.

Considering the Uruk ontology, we define propositional contents of illocu-
tions uttered during conversations. The propositional content of an illocution
is a function with n parameters. Example functions are (i) eatFruit(), uttered
before an agent eats a fruit and removes one piece of fruit from its belongings (ii)
getClay() uttered before an agent obtains clay from a clay pit, (iii) growFruit-
Tree(), a divine action which triggers the addition of a fruit to the virtual world,
(iv) initCitizen(fishes, fruits, pots) uttered to initialize a Citizen’s properties and
(v) harvestFruit() uttered before an agent starts harvesting fruit.

Performative Structure

A performative structure establishes networks of scenes, which define how agents
can legally move among different scenes (that is from activity to activity) de-
pending on their role. Figure 8.3 contemplates a performative structure of Uruk
with eight scenes, one initial (Birth) and one final (Death) scene. Agents, enter
the institution through the Birth scene. Gods continue to the GodActions scene,
where they can perform their divine actions. Citizens continue to InitRoles scene
where their parameters are initialized (e.g. number of fish and fruit). Then they
join the Idle scene, which serves as a center point of agent decisions of its ac-
tions. Through the Idle scene, agent can enter all the other scenes Pray, Eat,
MakePot, Farm and Fish, each of them representing a specific action. Scenes
MakePot, Farm and Fish are only accessible to specific roles.

Figure 8.4 shows a scene protocol of the scene/action Eat. This protocol
defines the eating action, in which agents can either eat fruits if they possess
it, or eat a cooked fish, which has to be prepared on the fireplace with the
fire lit. All this information is stored in constraints and actions of this scene
protocol. Please recall that states are annotated with squares having “+” and
“—7”_ where“+” means that agent with a specific role can enter this state and
“—” means that it can exit while the scene is in this state.

Figure 8.5 shows a scene protocol of the scene Fish. This protocol defines

170 Chapter 8. Case Study: Uruk 3000 BC

c:Pot

Figure 8.3: Uruk - Performative Structure

constraint: agent.HasFire & agent.fishCount > 0
action: agent.CookedFish = agent.CookedFish + 1
\

constraint: agent.CookedFish >0
action: agent.CookedFish = agent.CookedFish - 1

&

v ‘ constraint: agent.vegetables > 0

. - tion: nt.vegetables = nt.vegetables - 1
action: agent.HasFire = true actlon: agent.vegelables = agent.vegelavles

Figure 8.4: Uruk - Eat Scene

the fishing action, in which agents can fish only if they have a spear. If they do
not have it, they need to find reed and create a spear out of it.

Figure 8.6 shows a scene protocol of the scene MakePot. This protocol defines
the action of making pot, in which agents can make a pot only if they have a
water and clay. If they do not have it, they need to find water and clay before
they start.

Remaining scenes have a very simple protocol, where agents can perform

8.3. Definition of Virtual Institution Components 171

action: agent.hasRied = true
Collect Reed

constraint: agent.hasSpear > 0
action: agent.Fishes = agent.Fishes + n
// \

s \

i FisherMan
FisherMan

constraint: agent.hasReed
action: agent.hasSpear = true

Figure 8.5: Uruk - Fish Scene

constraint: agent.hasWater and agent.hasClay
action: agent.pots = agent.pots + 1

action: agent.hasWater = true

Figure 8.6: Uruk - MakePot Scene
only one specific action, e.g., sleep, after which they exit the scene.

8.3.3 Virtual World Objects

After we have defined all EI parts, we annotate the environment with Virtual
World Objects (VWO). VWO annotate interactive objects with information that
allows to perform specific institutional actions, along with parameters of such
actions. As mentioned in Chapter 6, VI Agents can only perform illocutionary
actions by interacting with a VWO.

Table 8.1 describes the temple VWO. It is a religious place, where agents
come to pray. We use the SceneName.action notation for actions description.
Please note that table columns O, G, U (see Table 1) describe if a given action
is permitted for Owner, Group of owners or any User. Currently the group
ownership is not supported by VIXEE, yet it is part of VWO definition. Temple
VWO cannot be owned by anyone. Praying action is triggered by clicking on
the temple. In the temple, we also initialize all roles. Citizens are initialized
with random amount of pots, fishes and fruits and Potmakers with no water or
clay.

172 Chapter 8. Case Study: Uruk 3000 BC

Name: Temple

Description: Religious place for Uruk citizens.

Action Parameters |O|G|U|Activation|Distance
Pray.pray - X Click 20m
InitRoles.initCitizen | (rnd, rnd, rnd) X None 100m
InitRoles.initFarmer | () X None 100m
InitRoles.initPotmaker | (false, false) X None 100m

Table 8.1: Temple VWO

Table 8.2 contemplates the Fireplace VWO, which is a place where food can
be prepared but only when the fire is lit. Fireplace can be used by anyone and it
is activated by clicking on it, from within proximity of one meter. When cooking
on the fireplace, agents can decide to cook more than one piece of fish, specified
by the “amount” parameter.

Name: Fireplace

Description: | Place where to cook food

Action Parameters|O |G |U|Activation|Distance
Cook.makeF'ire |- X Click 1m
Cook.cook amount X Click 1m

Table 8.2: Fireplace VWO

Table 8.3 contemplates the Table VWO, where its owner can eat a cooked
fish or fruit. It is activated by sitting on it.

Name: Table

Description: | Place to eat

Action Parameters|O|G|U|Activation |Distance
Eat.eat - X Sit 1m

Table 8.3: Table VWO

Table 8.4 contemplates the PotteryRing VWO, where its owner can create a
clay pot. It is activated by sitting on it.

Name: PotteryRing

Description: Pottery ring tool to make pots

Action Parameters|O|G|U|Activation |Distance
MakePot.makePot |- X Sit 2m

Table 8.4: PotteryRing VWO

8.3. Definition of Virtual Institution Components 173

Table 8.5 contemplates the Well VWO, where anyone can obtain water. Pot-
makers use well to get water for pots. It is activated by clicking on it.

Name: Well

Description: Place that provides water

Action Parameters|O|G|U|Activation|Distance
MakePot.getWater |- X Click 2m

Table 8.5: Well VWO

Table 8.6 contemplates the ClayPit VWO, where anyone can obtain clay.
Potmakers obtain clay for their pots. It is activated by clicking on it.

Name: ClayPit

Description: |Clay pit from which potters extract clay
Action Parameters|O|G|U|Activation|Distance
MakePot.getClay |- X Click 2m

Table 8.6: ClayPit VWO

Table 8.7 contemplates the Field VWO, where gods plant fruit trees. Farmers
also come here to pray. Gods add a fruit tree by clicking on the field.

Name: Field

Description: Place where farmers harvest crops

Action Parameters|O|G|U|Activation|Distance
GodActions.growFruitTree |- X None 100m
Pray.pray - X Sit 100m

Table 8.7: Field VWO

In the Uruk simulation, Farmers only collect fruit from the trees after the
divine intervention from their god. This is also the reason why farmers worship
a different god than other Uruk citizens. Table 8.8 contemplates the FruitTree
VWO, collected by Farmers on Fields. It is activated by clicking on it, and it
adds one piece of fruit to the farmer’s belongings.

Name: FruitTree

Description: | Fruit tree that provides fruit to Uruk citizens
Action Parameters|O| G |U|Activation |Distance
Farm.harvest |- X Click 2m

Table 8.8: FruitTree VWO

Table 8.9 contemplates the Boat VWO, is used to go fishing. It is activated
by sitting in the boat, what triggers a fishing animation.

174 Chapter 8. Case Study: Uruk 3000 BC

Name: Boat

Description: | Boat is used for fishing

Action Parameters|O|G|U|Activation|Distance
Fish.fish (caught) X Sit 2m

Table 8.9: Boat VWO

Table 8.10 contemplates the Bed VWO, where their owners sleep. It is acti-
vated by sitting in the bed, what triggers sleeping animation.

Name: Bed

Description: | Place to sleep

Action Parameters|O|G|U|Activation |Distance
Idle.sleep - X Sit 1m

Table 8.10: Bed VWO

8.3.4 Goals

Agents’ goals are set in VIXEE. Temporal goals define what activity agent should
be doing at a particular time. Goals define an activity which is mapped to an
illocutionary action by the agent’s culture. Goals are defined for every role,
and they are inherited from a parent’s role. For our simulation, we define two
different sets of goals. One, for the role Citizen (see Table 8.11) and one for the
role of God (see Table 8.12). The highest priority goal has priority 1, the lowest
has priority 10. The goal type defines what should an agent do after the goal
has been achieved. Either it will repeat the execution of actions conducting to
the goal (type repeat), or it will execute another goal, if defined (type single).

Time Activity |Priority | Type
6:00 - 6:15 Pray 2 Repeat
6:15 - 7:00 Eat 2 Single
7:00 - 12:30 | Work 2 Repeat
12:30 - 12:45| Pray 2 Repeat
12:45 - 13:30| Eat 2 Single
13:30 - 19:30] Work 2 Repeat
19:30 - 19:45| Pray 2 Repeat
19:45 - 20:30| Eat 2 Single
20:30 - 6:00 | Sleep 2 Repeat

00:00 - 24:00) Work 3 Repeat

Table 8.11: Goals for the role of Citizen

As we do not know the exact time schedule of Uruk citizens, we have assumed

8.3. Definition of Virtual Institution Components 175

some possible times. Please note the goal Work, with priority 3 in the Table 8.11.
This goal defines that if agents have any possible free time, they should start to
work. Gods in the Uruk simulation do not need to sleep or eat; thus, they work
the entire time, where their “work” corresponds to looking after the correct flow
of things and ensuring the stability of the given eco-system.

Time Activity | Priority | Type
00:00 - 24:00f Work 2 Repeat

Table 8.12: Goals for the role of God

8.3.5 Culture

Virtual culture for VI Agents consists of culture-specific gestures, actions, ob-
jects, locations and rituals. Each role can have defined its own culture, and it
inherits cultural information from its parent role. Culture defines exact actions
and their locations that will be performed depending on the current goal. In the
Uruk simulation, we define five different cultures presented in following tables.
Please note that we use only the parts of virtual culture related to the simula-
tion. In following tables rituals represent activities/scenes from the performative
structure of Uruk. Table 8.13 contemplates the culture of gods, where the only
action is GodActions and their work is to grow fruit trees.

Actions|Work = GodActions.growFruitTree
Rituals | GodActions

Table 8.13: Culture: God

Table 8.14 contemplates the general culture of Uruk citizens, which perform
several rituals including eating and praying and use Fireplace, Table and Bed
objects.

Actions|Eat = Eat.eat, Sleep = Sleep.sleep, Pray = Pray.pray
Objects|Fireplace, Table, Bed
Rituals |Eat, Idle, Pray

Table 8.14: Culture: Citizen

Table 8.15 contemplates the subculture of Fisherman, whose work is to fish
on their boats, and to pray in the temple.

Actions | Work = Fish.fish
Objects|Boat, Pray = temple
Rituals |Fish

Table 8.15: Culture: Fisherman

176 Chapter 8. Case Study: Uruk 3000 BC

Table 8.16 contemplates the subculture of Potmakers, whose work is to make
clay pots on PotteryRings, using clay from ClayPits, water from the Well and
to pray in the temple.

Actions | Work = MakePot.makePot
Objects|PotteryRing, Well, ClayPit, Pray = Temple
Rituals |MakePot

Table 8.16: Culture: Potmaker

Table 8.17 contemplates the subculture of Farmers, whose work is to work
on the fields by harvesting fruits. Farmers also pray in the fields.

Actions|Work = Farm.harvest
Objects|Field, Pray = Field
Rituals |Farm

Table 8.17: Culture: Farmer

8.3.6 Virtual World Grammar

Virtual World Grammar is our mechanism for automatic generation of the virtual
world content. In the case of Uruk, we are not generating the model of the whole
city, but only some of its parts. In this particular case, we are generating fruit
trees on the virtual field, which provide fruits to be harvested by farmers. Next,
we define all part of the Virtual World Grammar.

Ontology

VWG ontology is the formal definition of the relevant concepts of the domain.
In this case, we are generating fruit trees that grow on Uruk fields. Therefore,
we define two ontology concepts: fruitTree and field. Field serves as a shape
that defines the boundary in which fruit trees grow. FruitTree is generated as
a 2D object on the virtual world floor plan. This object is then transformed
using the 3D transformation engine to the virtual world model representing a
specific fruit tree. Thus, ontology item fruitTree holds one property defining the
3D model that this item represents.

Instances

For the purposes of Uruk simulation, we define two instances of ontology type
FruitTree. First instance shows a pomegranate fruit tree, thus showing a 3D
model of a pomegranate tree. The second instance represents a fig fruit tree.

8.3. Definition of Virtual Institution Components 177

Shape Grammar

Shape grammar defines shapes and rules that are used to generate a 2D floor
plan of a virtual world design. This floor plan is later transformed to 3D using a
transformation engine. In Uruk case, we are not generating a full virtual world
model, rather dynamically manipulating its content during runtime. Our task
is to add fruit trees to the virtual field, where farmers can harvest them. This
field is positioned in the virtual space of the Uruk city. Figure 8.7 contemplates
the shape grammar that we use to add fruit trees to the field. Position of the
field in the Uruk floor plan is shown in the top part of this figure. In the bottom
part, we see 14 different rules. The two left rules place two different shapes to
the rectangle shape representing a field. The rest of the rules positions a new
shape depending on the position of a previous one.

Mappings

Mappings decide which ontology types are substituted by which shape grammar
shape. We map pomegranate instances to rectangles and fig instances to squares.
Thus, when we require a new pomegranate to be generated, we have to search
for rules that have a rectangle on the right side of the shape and execute it.

Validations

Validations take care of the correct execution of a shape grammar. While adding
fruit trees to the field, we do not want them to intersect, producing unappealing
results. Therefore, we define only one validation rule intersect(s,all), which
checks if shape s added to the design is intersecting with previously added all
shapes. Another test we need to perform is that all the fruit trees need to grow
inside the field. Thus, we define one more validation rule check Boundary(s,b),
which checks if the shape added to the design s is inside the boundary b.

Heuristics

Heuristics are responsible for finding a correct shape grammar rule to apply de-
pending on the current input. In this example, heuristics use an input parameter
which tells the grammar what ontology type has to be used. Then, heuristics
find the appropriate rule which has the shape mapped to this ontology type on
its right side, finds this rule in the shape grammar execution tree and executes
it.

3D Transformation Mechanism

3D Transformation Mechanism uses information stored in generated 2D gram-
mar along with information from ontology instances to generate a 3D virtual
world from this floor plan. In our case, it takes the position of a generated fruit
tree, and it creates a specific model, pomegranate or fig, on this position. We are
using OpenMetaverse library to manipulate the 3D content of Open Simulator.

178 Chapter 8. Case Study: Uruk 3000 BC

0O Fig

[| Pomegranate

u 1=l 000 io— |0
—- é é ;

=01l i ofio—s[o

o §|]—>|]|]§D—>DD§[|—>|]D
_> : : :

él]—>|][| SD—VDDSU—» ol

Figure 8.7: Uruk shape grammar

8.3.7 Movie Script

Movie Script is our proposed mechanism, which uses Movie Script actions to
map virtual world actions to AMELI messages and also AMELI events to virtual
world updates. Recall that AMELI is the execution infrastructure of Electronic
Institutions. Using this mechanism, we create the mapping between the context
of the message/event and a specific Movie Script action, which is an executable
code running in VIXEE.

8.4. Results 179

We define single AMELI Movie Script line, which maps AMELI event of role
God saying the message GodActions.growFruitTree to the Movie Script action
PlantFruitTree. This action, using Virtual World Grammar, plants a new fruit
tree to the virtual field. In the following table, we list the AMELI Movie Script
with a single line:

Institution|Role Event Action
Uruk God |GodActions.growFruitTree| PlantFruitTree

In order to simulate fishing with different success, we have defined the il-
locutionary message Fish.fish(count) with the parameter count which tells the
institution how many fishes a fisher man has caught. The value of this parameter
is decided by the Movie Script action DecideFishCaught, which is executed prior
to the calling of AMELI message Fish.fish(count). For this purpose, we create
the following Virtual World Movie Script:

World |Location| Role |[Message Action
Uruk | any(*) |Fisherman| Fish.fish |DecideFishCaught

8.4 Results

In this section, we present results on the social and cultural simulation of the
city of Uruk. We divide these results in two different aspects, the generation of
the Uruk crowd and simulation of life in Uruk.

Regarding the generation of Uruk inhabitants, we are interested in generating
a crowd of Farmers who work on their fields. Generated crowd was evaluated on
the diversity of agent appearance. First, we defined a base population formed by
six agents of different race shown in Figure 8.8. We use the same base population
as we used in Chapter 7 to evaluate the efficiency of our genetic algorithm. This
population is formed by two avatars of asian origin, two of african origin, one
european and one arab. Although this does not reflect actual Uruk demographic
breakdown, it serves us to present the variance of generated avatars.

Using the base population, we have generated 14 new agents as their de-
scendants, using our genetic based approach. Figure 8.9 and Figure 8.10 show
distant and close-up views of the crowd. Analyzing the results we see, that each
generated avatar is unique, concerning the body properties, having a different
body structure, facial features, even a skin color. In this case, we have generated
different physical properties while clothing and attachments remained the same.

Regarding the simulation of life in the city of Uruk, we focus on Fisherman
and Potmaker roles and actions these roles perform during their daily schedule.
Figure 8.11 contemplates an agent sleeping in his bed. In Uruk, beds were
situated on rooftops, where due to the warm night provided them a comfortable
place to rest. Please note that this figure and all the remaining figures were

180 Chapter 8. Case Study: Uruk 3000 BC

Figure 8.9: Generated crowd from distance

taken from Second Life as a separate experiment from crowd generation; thus,
avatars differ in their appearance.

After Uruk citizens wake up, they all head to their place of prayer. Fisherman
and Potmakers pray by the temple, while Farmers pray in fields. Figure 8.12
shows a group of Uruk citizens performing praying rituals.

After prayer, agents return to their homes and gather to eat. Agents prepare
their food in common fireplaces, where fire has to be lit. Our Uruk Citizens con-

8.4. Results 181

Figure 8.10: Base population of farmers

Figure 8.11: Uruk citizen sleeping in his bed

sume mainly fish and fruit, although in Figure 8.13 we display Citizens enjoying
a baked lamb (it was a nice model to use).

After meal, Uruk citizens head out to work and move into the location where
their job is performed. Fishermen find their boat, Farmers go to their field, and
Potmakers sit by their Pot Rings. Agents can automatically navigate in the
virtual space, calculating routes using a potential fields algorithm. Figure 8.14
shows two Fishermen walking to their job.

182 Chapter 8. Case Study: Uruk 3000 BC

Figure 8.12: Uruk citizens praying by the temple

Figure 8.13: Citizens preparing their meal

Figure 8.15 shows a Potmaker creating a new pot. Potmakers first gather clay
and water, so they can proceed with their work. After they create the pot, we
remove the pot from the world model and add it to the Potmaker’s belongings.

Figure 8.16 contemplates farmers harvesting fruits from the pomegranate
tree. In this scenario, god Ninhursag places at random intervals a new fruit
tree on the field where farmers can harvest it. To place a new fruit tree on

8.4. Results 183

Figure 8.14: Fisherman walking to the work

Figure 8.15: Potmaker creating a new clay pot

the field, god Ninhursag announces to all agents in the GodActions scene the
growFruit Tree message. This is an example of dynamic manipulation of a virtual
world content. This message is captured by VIXEE as an AMELI event. A
Movie Script defines that if God tells this message a Movie Script action using
the Virtual World Grammar places a new fruit tree in the virtual world model.
Thus, we call a Virtual World Grammar that generates new geometry, and then
using a 3D transformation engine, operated by Open Metaverse library, we add

184 Chapter 8. Case Study: Uruk 3000 BC

Figure 8.16: Farmers harvesting fruit from the pomegranate tree.

a new fruit tree to the virtual world.

Another important feature of the VIXEE infrastructure is that the results of
Ninhursag sending growFruitTree and growFruit messages can be sensed by all
the agents with the “Farmer” role through the institution. So, when the new tree
or fruit is planted the farmers can update their beliefs about the environment
and include the new location of the corresponding fruit tree as a potential source
of food and use this knowledge in their future planning routines.

8.5 Summary
In this chapter:

* We have presented a complex example in which VI Agents populate the
city of Uruk 3000 BC, the first city on earth. In this example we have used
all the techniques and mechanisms presented in this thesis,

With this chapter we finish our explanation of our work done for the auto-
matic generation and control of interactive virtual worlds. In the next chapter
we present our conclusions and state possible directions for future work.

Chapter 9

Conclusions and Future
Work

In this research, we have presented different mechanisms and techniques for intel-
ligent generation of interactive 3D virtual worlds. We have also presented a tool
chain that supports and implements the presented techniques (Shape Grammar
Interpreter, Virtual World Builder Toolkit, Virtual Institution eXEcution Envi-
ronment and Genetic Mixer). In this section, we conclude our work in the order
it was introduced; we present our future work and open discussion in related
areas.

First, we introduced our algorithm for efficient subshape detection and its
implementation in the shape grammar interpreter for rectilinear forms named
SGI. SGI is not tied to any particular shape grammar. It supports interactive
definition and manipulation of shape grammar shapes and rules. Several mech-
anisms (i.e execution protocols) have been implemented to select a candidate
shape and rule to proceed in the design generation process. Our contributions,
mainly to the shape grammar research field, are:

1. Definition of a new shape grammar framework and implementation of
Shape Grammar Interpreter (SGI)

2. Definition of an efficient algorithm for subshapes detection.
3. Implementation of the subshape detection algorithm in SGI.

4. SGI architecture is extendible with plug-ins, that can be used by future
researchers to include new SGI functionality (e.g. subshape detection for
curved shapes).

5. Intuitive SGI user interface allows its easy deployment in class rooms as
a learning tool for shape grammars. It can be also used by industry and
architecture designers in order to better explore the possible design space.

185

186 Chapter 9. Conclusions and Future Work

Shape Grammar Interpreter is distributed with a GNU license from Source-
forge! website. The success of SGI have superseded our expectations. So far
more there have been more than 1200 downloads and it is used in classrooms
around the world (e.g. by Dr. Krishnamurti in Carnegie Mellon University?).

We have evaluated SGI tool from the perspective of performance of our pro-
vided algorithms. We showed, that in the general case our algorithm outper-
forms the original algorithm, thus optimizes it. This algorithm was thoroughly
explained in text and on a provided example.

In our implementation markers have only limited functionality, i.e to control
how rules are applied to the left-side shape. In future works, we plan to ex-
tend this functionality. We can generate designs using shapes with descriptive
markers/labels. These markers can represent way-points useful for pathfinding
and path-planning algorithms (e.g. every hole representing a door have inside
and outside marks) which would allow autonomous movement through generated
spaces. Moreover, we plan to collaborate with the shape grammar community
and to integrate more features into SGI. We plan to incorporate the use of curves
in the generation process of tree-search algorithm, as well as to include the sub-
shape detection algorithm for curvilinear shapes from [Jowers, 2006]. We also
plan to include the evaluation form directly in our tool, so that users can give
us their opinions on our tool online and allow us to assess some aspects of the
usability of our tool. Another possibility we would like to look at is to apply
results of [Prats et al., 2004] and allow shape grammar designers to draw their
grammars by hand and then analyze the drawings and synthesize new designs.
Moreover, we would like to explore the possibility of using 3D shape grammars
and skip the 2D to 3D transformation process.

Second, we have presented a Virtual World Grammar (VWG) for the au-
tomatic generation of 3D virtual worlds. The Virtual World Grammar holds
semantic information about a system specification describing activities and re-
lationship between them, a shape grammar, introducing design elements and
their characteristics, and a list of validations and heuristics guiding the gener-
ation process. The virtual world generation is done in two steps, a first one in
which the output is a 2D floor plan, and a second one which generates a 3D
representation of the virtual world. Contributions of our research are:

1. The definition of the Virtual World Grammar and its components allows
the automatic generation and manipulation of different virtual worlds from
a formal specification of activities performing in the virtual environment.

2. The algorithm which defines how to navigate between the specification and
the shape grammar execution tree using heuristics and validations.

3. The Virtual World Builder Toolkit allows an interactive definition and
execution of Virtual World Grammars.

Thttps://sourceforge.net/projects/sginterpreter/
2http://www.andrew.cmu. edu/course/48-747/subFrames/schedule.html (05/2005)

https://sourceforge.net/projects/sginterpreter/
http://www.andrew.cmu.edu/course/48-747/subFrames/schedule.html

187

An important feature of the VWG workflow is that the user can explore
many different designs or modify existing parts of the shape grammar to explore
new designs. We have demonstrated the VWG applicability in the generation of
a 3D visualization of a Virtual Institution. Generation of of virtual world using
Virtual World Grammar can be applied to any system where it has meaning to
visualize its activities in a 3D virtual world. Current approach allows to map one
activity per one space. Mapping more activities to one space brings challenges
to their execution as it is difficult to control the concurrent execution or simply
identify which of these actions need to be executed upon arrival to this virtual
space.

Virtual World Builder Toolkit (VWBT) facilitates the functionality defined
by the Virtual World Grammar. The architecture of SGI tool provides the
possibility of extending it with new functionalities. The Virtual World Builder
toolkit (VWBT) is an example of such an extension.

In the future we want to study the integration of previous work on 3D objects’
behavior in virtual environments [Rodriguez et al., 2008] [D.Brota et al., 2009].
We also plan to apply our methodology in computer games domain, namely
in MMORPG, where Electronic Institutions control the norm enforcement and
VWG takes care of the visualization process.

Third, we have presented VIXEE, the Virtual Institution Execution Envi-
ronment, which is an innovative communication infrastructure for Virtual Insti-
tutions where participants are human and software agents. Virtual Institutions
are normative 3D virtual worlds where participants interact to achieve their
common or individual goals. The main contributions of our research are:

e Our design of a middleware layer, which provides causal connection of sev-
eral virtual worlds with an Electronic Institution which uses our Movie
Script mechanism, improving previous version of an Action/Message ap-
proach. This allows users from different virtual worlds to participate in
the same institution.

e Combination of our middleware with Virtual World Grammar allows dy-
namic manipulation of an environment content in different environments.

This thesis described the architecture and communication processes of
VIXEE and explained what changes were made in comparison to previous ap-
proaches [Bogdanovych, 2007] [Bogdanovych et al., 2008] [Seidel, 2010]. VIXEE
provides architecturally neutral and domain independent, and scalable solution
for causal connection in Virtual Institutions. Architectural-neutrality from the
agent point of view is given by AMELI, allowing to execute heterogeneous agents
with any architecture. From the Virtual World point of view, a Virtual World
Manager allows to connect different Virtual Worlds with any architecture. Do-
main independence is supported by Virtual Institutions concept and the Movie
Script mechanism, where VIXEE uses movie script to handle communication in
Virtual Institutions from many domains. We have presented the e-auction house
institution example to contemplate the dynamic update of the 3D model of this
institution.

188 Chapter 9. Conclusions and Future Work

We evaluated the performance of VIXEE in a high load scenario, with 500
agents executed in 25 threads. We have measured average VIXEE response
time, while increasing the number of connected and communicating agents. We
conclude that VIXEE does not introduce any limitations on the scalability of
the system, and it is only limited by the complexity of the implementation of
the movie script actions and by scalability limits of selected virtual worlds.

Currently, we are evaluating VIXEE in the e-learning scenario, which is a
cultural simulation of the city of Uruk. As future work we plan to evaluate our
VIXEE in other scenarios from e-* (e-commerce, e-government) applications.
We also plan to evaluate the usability of the system with human users using
different virtual worlds.

Fourth, we have presented a general purpose model for intelligent virtual
agents. In our case we apply this model to the domain of Virtual Institutions;
thus, we named this model VI Agents. VI Agents have the capability to partic-
ipate in a Electronic Institution as well as visualize their actions in a 3D virtual
world. Agents participate in the 3D virtual worlds through their avatars. They
can interact with other agents as well as with interactive objects, named Vir-
tual World Objects (VWO). Such objects are annotated to provide to an agent
complete information on what are the possibilities, constraints and outcomes of
such interaction.

Agent architecture consists of several modules which interact between them
in order to accomplish agent goals. An agent plays a specific role in the system.
Each role has assigned a list of temporal goals. Temporal goals are valid only in
specific time interval. General goals are valid 24 hours. Agent reasons about its
goals every specific time interval, or upon external events.

The main contributions of VI Agents are:

e Advanced believability features, such as agent psychology and physiology,
allows to specify high level goals.

e The agent model contains information on its virtual culture. This informa-
tion can be further disseminated. Virtual culture is responsible for making
the general purpose agent model behave in culturally specific manner.

e Agents encode their defining properties into genetic structures, which can
be operated by genetic operators to generate agents with unique appear-
ance and behavior.

e Design of Virtual World Objects (VWO) creates tight bonding between
agent and an environment by letting agents reason about these objects
and base their plans on them. VWO model allows world designer to dy-
namically introduce new objects during system run-time.

e Designed to execute automatically in Virtual Institutions with no, or lim-
ited effort in programming.

In the future, we would like to add new features for VI Agents that would
increase believability of their behavior. This includes implementation of an exist-

189

ing psychological and psychosomatical model. In other work we seek to include
agent’s non-verbal behavior.

Also, current implementation considers plan creation with no possibility of
agent collaboration, using the brute force search in a performative structure.
In our future works we would like to employ A-* algorithm to speed up rea-
soning and also create such representation of performative structure in a graph
structure, that would allow us to plan collaborative agent actions with differ-
ent strategies. Another possibility is to employ existing models on supply-chain
problems or constraint satisfaction problems, to create collaborative plans for
multiple agents and study how such plan creation is affected by the spatial and
temporal factors.

And last, we have presented an algorithm for the generation of unique 3D
avatars. We showed the importance of using genetic algorithms approach for
generating large crowds of virtual agents and presented the Genetic Mixer ap-
plication and its evaluation.

In our approach, first, parent chromosomes are combined using a crossover
operator. We have provided the definition of several crossover operators and
presented ideas on how to define new ones. We proposed the fuzzy crossover
operator that allows fuzzy inheritance of visual features from parents. Second,
we simulated the deep inheritance (situations when recessive genes become ac-
tive generations later) with a process called gene skipping. Third, to introduce
novelty in the generated population we use the mutation operator, which mu-
tates specified amount of genes in the child chromosome. Finally, to respect the
specifics population group and let the population designer fine tune the gen-
eration process, we define the genotype rules. Although, our process is not as
biologically accurate as the previously mentioned [Vieira et al., 2010], it brings
more transparent execution, better control and more diverse results. The main
contributions of our research are:

e Gene skipping allows inheritance of features from our deeper ancestors.

e Genotype rules allow preservation and variance of defining visual feature.
These rules can also encode relations between features maintaining ratios
during their modification.

e QOur fuzzy operator, together with mutation, gene skipping and genotype
rules can simulate biological evolution.

The algorithm was evaluated for the variety of avatars it produces and preser-
vation of visual features from parents, as well as for the speed of generation, and
showed very good results on all those occasions.

Our system is modelling a genetical inheritance of agent’s attributes.
These attributes do not have to be visual. There exist many implementa-
tions [Egges et al., 2003] [Su et al., 2007] of agents with personalities based on
OCEAN model [Ortony et al., 1988]. This personality model is used to produce
emotions of agents, creating emotional agents. We can extend the chromosome

190 Chapter 9. Conclusions and Future Work

of agents to incorporate the personality values of the OCEAN model. In this
way children would inherit personalities of their parents.

As our future work, we want to let the population designer carefully select
exact individuals from the generation process, thus we seek to employ Interac-
tive Genetic Algorithm, IGA [Caldwell and Johnston, 1991]. IGA belongs to a
more general category of Interactive Evolutionary Computation and uses human
evaluation to select the next population to be generated. In other work, we plan
to use this approach with different virtual worlds and game engines and employ
the genetic mechanism to create unique agent personalities.

9.1 Publications

This section contains the list of main publications we have produced while work-
ing on this dissertation:

Journals

e Trescak, T., Esteva, M., and Rodriguez, I. (2010b). A virtual world gram-
mar for automatic generation of virtual worlds. The Visual Computer
Journal, 26:521-531. Springer

e Aranda, G., Trescak, T., Esteva, M., and Carrascosa, C. (2011). Building
quests for online games with virtual institutions. Journal of Agents for
games and simulations II, 2:192-206. Springer-Verlag

e Trescak, T., Esteva, M., and Rodriguez, I. (2012a). A shape grammar
interpreter for rectilinear forms. Journal of Computer-Aided Design, 44:657
— 670. Elsevier

e Aranda, G., Trescak, T., Esteva, M., Rodriguez, I., and Carrascosa, C.
(2012). Massively multiplayer online games developed with agents. Journal
of Transactions on Edutainment VII, 7145:129-138. Springer Berlin /
Heidelberg

e Trescak, T., Esteva, M., Rodriguez, 1., Sanchez, M. L., and Almajano,
P. (to appear in 2012b). Execution infrastructure for normative virtual
environments. International Scientific Journal Engineering Applications
of Artificial Intelligence. Elsevier

Conferences

e Trescak, T., Rodriguez, L., and Esteva, M. (2009). General shape grammar
interpreter for intelligent designs generations. In Werner, B., editor, Pro-
ceedings of the Computer Graphics, Imaging and Visualization conference
(CGIV’09), volume 6, pages 235-240, Tianjin, China. IEEE Computer So-
ciety, IEEE Computer Society

9.1.

Publications 191

e Trescak, T., Esteva, M., Rodriguez, 1., and Morales, J. (2010d). A vir-
tual world builder toolkit (extended abstract). In Proceedings of The 9th

International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’10), pages 1627-1628, Toronto, Canada. IFAAMAS

e Trescak, T., Esteva, M., Rodriguez, L., and Morales, J. (2010c). A virtual
world builder toolkit. In Proceedings of The 9th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS’10), pages 1627—
1628, Toronto, Canada. IFAAMAS

e Trescak, T., Esteva, M., and Rodriguez, I. (2011). Vixee an innovative
communication infrastructure for virtual institutions. In Proceedings of
The 10th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’11), volume 3 of AAMAS ’11, pages 1131-1132, Rich-
land, SC. ITFAAMAS

e Trescak, T., Esteva, M., and Rodriguez, I. (2010a). Generating 3d virtual
environments using the virtual world builder toolkit. In Computer Graphics
International 2010 (CGI’10) - Demo, Singapore

e Almajano, P., Trescak, T., Esteva, M., Rodriguez, 1., and Lopez-Sanchez,
M. (to appear in 2012a). v-mwater: a 3d virtual market for water rights
(demonstration). In AAMAS 12

e Almajano, P., Trescak, T., Lopez-Sanchez, M., Esteva, M., and Rodriguez,
I. (to appear in 2012b). An infrastructure for human inclusion in mas. In
ECAI ’12

Book Chapter

e Almajano, P., Trescak, T., Lopez-Sanchez, M., Esteva, M., and Rodriguez,
I. (to appear in 2012c). v-mwater: an e-government application forwa-
ter rights agreements. In Agreement Technologies Handbook. Agreement
Technologies

Appendix A

KZero research results

Total Cumulative Registered Accounts

800m
700m
600m
500m
400m
300m
200m
100m

Om
Q109 Q209 Q309 Q409 Q110 Q210 Q310 Q410 Q111 Q11 Q311 0411

©® 5t010 @ 10to15 @ 15t025

wwwwwwwwww

Total registered accounts: Quarterly growth|

250m
200m
150m

100m

wwwwwwwwww

Figure A.1: Quarterly growth of Virtual World accounts

193

Appendix A. KZero research results

194

--
-
~ -

103098 Aq SP[IOAN TeNHIA 7'y oINS

ajqepreneoN/paso) @)
©13q 3)eAud/uawdojanap uj .

. eaq uadosoan @

s 1102 20

+PIOSIL = - - - _ _ Ty >
- “as .Sew_ﬁé__s . affisar/uonysey 10)J9S A(

o B

owze) Jaueld M_ssu&ﬁ_o. g, .a_v_GEm o, mOEE\mc—hcg —@=t_>
._a.saﬁs_s @ i .,____u,m_h_gam““._z& ¥n°0>°043z)
Ek OWa) sPHom asnoyoq evbia @) ‘,‘ foumz /, JAIMSATHOM

e adanpor @ @ outicoims@ o, . @ @N_ m NV_

N L AR onoi@® @ @ unuocuzjoquooney \
nenequen@ -~/ .

o @ iopess uoniquIy pin
& 0" OO @i
5o - @ _iéxas’\?a_%aé’a.n_ms% b

. wouny @i @puewany

v goesoun @) seeoay @ @) swwodpuey

o sy @) @ e § ’
PPN @ puomibooy ' juswidopAI(
saIqeg RIS Iy
s_ﬂmuw%x ...u__ss___z) \ juohenp]
\ sl 03 1

o @ @ v @ BETL
g : puequedury X
—— __ J00YSuooy L

\ si0qo) 1aueld qeqoeg _

ooy ePumoysapuom @), @ vestun; |

) DMewdy .Esgznog !

! SI0RH MY 1 .n%__smﬁzm !

1

+plosuhog +plo sz ——————+pjosifgL

Appendix B

XML Definition of a Shape
Grammar

This is the source XML file of the shape grammar that contains a simple shape
grammar with one square shape and an addition rule, that adds another copy
of the square to its top right corner.

<?xml version="1.0" encoding="UTF-8" standalone="no"?7>
<shapeGrammar>
<shapes>
<shape id="0" main="true">
<name>Square</name>
<description />
<content>
<polyLine closed="true" id="1">
<point x="120" y="60" />
<point x="180" y="60" />
<point x="180" y="120" />
<point x="120" y="120" />
</polyLine>
</content>
</shape>
</shapes>
<rules>
<rule id="2">
<name>AddSquare</name>
<description />
<type>Addition</type>
<left id="0">
<transformation>
<transform>1.0,0.0,-22.0,0.0,1.0,10.0</transform>
</transformation>

195

196 Appendix B. XML Definition of a Shape Grammar

</left>
<right id="0">
<transformation>
<transform>1.0,0.0,8.0,0.0,1.0,-20.0</transform>
</transformation>
</right>
<visual grid="false" rulers="true" snapGeometry="false">
<leftGuides />
<topGuides />
</visual>
</rule>
</rules>
</shapeGrammar>

Bibliography

[Adami, 1998] Adami, C. (1998). Introduction to artificial life, volume 1. Telos
Pr.

[Adobbati et al., 2001] Adobbati, R., Marshall, A., Scholer, A., Tejada, S.,
Kaminka, G., Schaffer, S., and Sollitto, C. (2001). Gamebots: A 3d virtual
world test-bed for multi-agent research. Proceedings of the second interna-
tional workshop on Infrastructure for Agents, MAS, and Scalable MAS, pages
47-52.

[Agarwal and Cagan, 1998] Agarwal, M. and Cagan, J. (1998). A blend of dif-
ferent tastes: the language of coffeemakers. Environment and Planning B,
25:205-226.

[Allen et al., 2003] Allen, B., Curless, B., and Popovié, Z. (2003). The space of
human body shapes: reconstruction and parameterization from range scans.
In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 587-594, New
York, NY, USA. ACM.

[Almajano et al., 2012a] Almajano, P., Trescak, T., Esteva, M., Rodriguez, I.,
and Lopez-Sanchez, M. (to appear in 2012a). v-mwater: a 3d virtual market
for water rights (demonstration). In AAMAS ’12.

[Almajano et al., 2012b] Almajano, P., Trescak, T., Lopez-Sanchez, M., Esteva,
M., and Rodriguez, I. (to appear in 2012b). An infrastructure for human
inclusion in mas. In ECAI ’12.

[Almajano et al., 2012¢] Almajano, P., Trescak, T., Lopez-Sanchez, M., Esteva,
M., and Rodriguez, 1. (to appear in 2012¢). v-mwater: an e-government
application forwater rights agreements. In Agreement Technologies Handbook.
Agreement Technologies.

[Ancona et al., 2008] Ancona, M., Drago, S., Quercini, G., and Bogdanovych,
A. (2008). Rectangular dualization of biconnected planar graphs in linear
time and related applications. Applied and Industrial Mathematics in Italy I,
75:37-48.

197

198 Bibliography

[André et al., 2000] André, E., Klesen, M., Gebhard, P., Allen, S., and Rist, T.
(2000). Integrating models of personality and emotions into lifelike characters.
Affective interactions, pages 150-165.

[Aranda et al., 2011] Aranda, G., Trescak, T., Esteva, M., and Carrascosa, C.
(2011). Building quests for online games with virtual institutions. Journal of
Agents for games and simulations II, 2:192-206. Springer-Verlag.

[Aranda et al., 2012] Aranda, G., Trescak, T., Esteva, M., Rodriguez, I., and
Carrascosa, C. (2012). Massively multiplayer online games developed with
agents. Journal of Transactions on Edutainment VII 7145:129-138. Springer
Berlin / Heidelberg.

[Aranda et al., 2010] Aranda, G. B., Trescak, T., Esteva, M., and Carrascosa,
C. (2010). Building quests for online games with virtual institutions. In
Dignum, F.; editor, AGS, volume 6525 of Lecture Notes in Computer Science,
pages 192—-206. Springer.

[Badler, 1997] Badler, N. (1997). Real-time virtual humans. In Computer
Graphics and Applications, 1997. Proceedings., The Fifth Pacific Conference
on, pages 4-13. IEEE.

[Badler et al., 2002] Badler, N. I., Magenat-Thalmann, N.; McCulloch, L.,
Hirsch, E. M., and LoPiccolo, P. (2002). Digital humans: what roles will
they play? In SIGGRAPH ’02: SIGGRAPH 2002 conference abstracts and
applications. ACM Request Permissions.

[Bainbridge, 2007] Bainbridge, W. (2007). The scientific research potential of
virtual worlds. Science, 317(5837):472-476.

[Barbara, 1998] Barbara, R. (1998). Crowd control. Comput. Graph. World,
21(2):30-32.

[Bartle, 2003] Bartle, R. (2003). Designing Virtual Worlds. New Riders Games.

[Bartneck, 2002] Bartneck, C. (2002). Integrating the occ model of emotions in
embodied characters. Workshop on Virtual Conversational Characters.

[Beals, 2010] Beals, L. (2010). Content creation in virtual worlds to support
adolescent identity development. New Directions for Youth Development,
2010(128):45-53.

[Bertram, 2000] Bertram, J. (2000). The molecular biology of cancer. Molecular
aspects of Medicine, 21(6):167-223.

[Bickmore and Cassell, 2005] Bickmore, T. and Cassell, J. (2005). Social dia-
longue with embodied conversational agents. Advances in natural multimodal
dialogue systems, pages 23-54.

Bibliography 199

[Blanz and Vetter, 1999] Blanz, V. and Vetter, T. (1999). A morphable model
for the synthesis of 3d faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, SIGGRAPH 99, pages 187—
194, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Bogdanovych, 2007] Bogdanovych, A. (2007). Virtual Institutions. PhD thesis,
University of Technology, Sydney, Australia.

[Bogdanovych et al., 2005] Bogdanovych, A., Berger, H., Sierra, C., and Simoff,
S. (2005). Humans and agents in 3d electronic institutions. In Dignum, F.,
Dignum, V., Koenig, S., Kraus, S., Singh, M. P., and Wooldridge, M., editors,
4rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The Netherlands. ACM,
ACM.

[Bogdanovych et al., 2011] Bogdanovych, A.,; Rodriguez, J. A., Simoff, S., Co-
hen, A., and Sierra, C. (2011). Developing virtual heritage applications as
normative multiagent systems. In Proceedings of the 10th international confer-
ence on Agent-oriented software engineering, AOSE’10, pages 140-154, Berlin,
Heidelberg. Springer-Verlag.

[Bogdanovych et al., 2010a] Bogdanovych, A., Rodriguez-Aguilar, J. A., Simoff,
S., and Cohen, A. (2010a). Authentic interactive re-enactment of cultural
heritage with 3d virtual worlds and artificial intelligence. Applied Artificial
Intelligence, 24:617-647.

[Bogdanovych et al., 2010b] Bogdanovych, A., Rodriguez-Aguilar, J. A., Simoff,
S., and Cohen, A. (2010b). Authentic interactive re-enactment of cultural
heritage with 3d virtual worlds and artificial intelligence. Applied Artificial
Intelligence, 24:617-647.

[Bogdanovych et al., 2008] Bogdanovych, A.; Simoff, S., and Esteva, M. (2008).
Normative virtual environments: Integrating physical and virtual under the

one umbrella. In Third International Conference on Software and Data Tech-
nologies (IC-Soft 2008), pages 233-236. INSTICC.

[Bogdanovych et al., 2009] Bogdanovych, A., Simoff, S., and Esteva, M. (2009).
Virtual institutions prototype. In Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS
’09, pages 1373-1374, Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

[Bonabeau, 2002] Bonabeau, E. (2002). Agent-based modeling: Methods and
techniques for simulating human systems. Proceedings of the National
Academy of Sciences of the United States of America, 99(Suppl 3):7280.

[Bordini et al., 2007] Bordini, R. H., Wooldridge, M., and Hubner, J. F. (2007).
Programming Multi-Agent Systems in AgentSpeak using Jason (Wiley Series
in Agent Technology). John Wiley & Sons.

200 Bibliography

[Bouras et al., 2001] Bouras, C., Philopoulos, A., and Tsiatsos, T. (2001). e-
learning through distributed virtual environments. Journal of Network and
Computer Applications, 24(3):175-199.

[Bouras and Tsiatsos, 2006] Bouras, C. and Tsiatsos, T. (2006). Educational
virtual environments: design rationale and architecture. Multimedia tools and
applications, 29(2):153-173.

[Brom et al., 2009] Brom, C., Korenko, T., and Lukavsky, J. (2009). How Do
Place and Objects Combine; What-Where” Memory for Human-Like Agents.
Intelligent Virtual Agents, pages 42-48.

[Brom et al., 2008] Brom, C., Lukavsky, J., and Kadlec, R. (2008). Episodic
memory for human-like agents and human-like agents for episodic memory.
In AAAI Fall Symposium on Biologically Inspired Cognitive Architectures
(BICA).

[Caldwell and Johnston, 1991] Caldwell, C. and Johnston, V. S. (1991). Track-
ing a Criminal Suspect through ”Face-Space” with a Genetic Algorithm. In
Proceedings of the Fourth International Conference on Genetic Algorithm,
pages 416—421. Morgan Kaufmann Publisher.

[Cassell et al., 1994] Cassell, J., Pelachaud, C., Badler, N., Steedman, M.,
Achorn, B., Becket, T., Douville, B., Prevost, S., and Stone, M. (1994).
Animated conversation: rule-based generation of facial expression, gesture
& spoken intonation for multiple conversational agents. In Proceedings of

the 21st annual conference on Computer graphics and interactive techniques,
pages 413-420. ACM.

[Cavazza, 2007] Cavazza, F. (2007). Virtual universes landscape. http://
www.fredcavazza.net/2007/10/04/virtual-universes-landscape/, last

accessed 04/2012.
[Chase, 1989] Chase, S. C. (1989). Shapes and shape grammars: from mathe-

matical model to computer implementation. FEnvironment and Planning B:
Planning and Design, 16:215-242.

[Chau et al., 2004] Chau, H. H., Chen, X., McKay, A., and de Pennington, A.
(2004). Evaluation of a 3D shape grammar implementation. In Gero, J. S., ed-
itor, Design Computing and Cognition ’04, pages 357376, Dordrecht. Kluwer.

[Chesney et al., 2009] Chesney, T., Chuah, S.-H., and Hoffmann, R. (2009). Vir-
tual world experimentation: An exploratory study. Journal of Economic Be-
havior and Organization, 72(1):618 — 635.

[Comings et al., 1996] Comings, D., Rosenthal, R., Lesieur, H., Rugle, L., Muh-
leman, D., Chiu, C., Dietz, G., and Gade, R. (1996). A study of the dopamine
d2 receptor gene in pathological gambling. Pharmacogenetics and Genomics,
6(3):223.

http://www.fredcavazza.net/2007/10/04/virtual-universes-landscape/
http://www.fredcavazza.net/2007/10/04/virtual-universes-landscape/

Bibliography 201

[Costa and McCrae, 1992] Costa, P. and McCrae, R. (1992). Neo pi-r profes-
sional manual. Odessa, FL: Psychological Assessment Resources, 396:653—659.

[Cranefield and Li, 2009] Cranefield, S. and Li, G. (2009). Monitoring social ex-
pectations in second life. In Proceedings of The Sth International Conference
on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS 09,
Richland, SC. International Foundation for Autonomous Agents and Multia-
gent Systems.

[D.Brota et al., 2009] D.Brota, Rodriguez, I., Puig, A., and Esteva, M. (2009).
A generic framework to exploit virtual worlds as normative and dynamic in-
teractive spaces. In Computer Graphics and Virtual Reality, pages 151-157.

[DeCarlo et al., 1998] DeCarlo, D., Metaxas, D., and Stone, M. (1998). An
anthropometric face model using variational techniques. In Proceedings of
the 25th annual conference on Computer graphics and interactive techniques,
SIGGRAPH 98, pages 67-74, New York, NY, USA. ACM.

[Dillenbourg, 1999] Dillenbourg, P. (1999). Collaborative Learning: Cognitive
and Computational Approaches. Advances in Learning and Instruction Series.
Elsevier Science, Inc., Madison Square Station, New York.

[Doce et al., 2010] Doce, T., Dias, J., Prada, R., and Paiva, A. (2010). Creating
individual agents through personality traits. Intelligent Virtual Agents, pages
257-264.

[Duarte, 2001] Duarte, J. P. (2001). Customizing mass housing : A discursive
grammar for Siza’s Malagueira houses. PhD thesis, Cambridge (MA): Mas-
sachusetts Institute of Technology.

[Egges et al., 2003] Egges, A., Kshirsagar, S., and Magnenat-Thalmann, N.
(2003). A model for personality and emotion simulation. Knowledge-Based
Intelligent Information and Engineering Systems, pages 453—461.

[Esteva, 2003] Esteva, M. (2003). Electronic Institutions: From Specification
to Development. PhD thesis, Artificial Intelligence Research Institute (IITA-
CSIC), Spain.

[Esteva et al., 2002] Esteva, M., de la Cruz, D., and Sierra, C. (2002). Islander:
an electronic institutions editor. In AAMAS ’02: Proceedings of the first
international joint conference on Autonomous agents and multiagent systems,
pages 1045-1052, New York, NY, USA. ACM.

[Esteva et al., 2008] Esteva, M., Rodriguez-Aguilar, J. A., Arcos, J. L., Sierra,
C., Noriega, P., Rosell, B., and de la Cruz, D. (2008). Electronic institutions
development environment. In AAMAS ’08: Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multiagent systems, pages
1657-1658, Richland, SC. International Foundation for Autonomous Agents
and Multiagent Systems.

202 Bibliography

[Esteva et al., 2004] Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., and Arcos,
J. L. (2004). Ameli: An agent-based middleware for electronic institutions. In
Jennings, N. e. a., editor, AAMAS 200/, Third international joint conference
on autonomous agents and multiagent systems, pages 236—243. ACM, ACM.

[Farmer and Foley, 2009] Farmer, J. and Foley, D. (2009). The economy needs
agent-based modelling. Nature, 460(7256):685-686.

[Ferber et al., 2004] Ferber, J., Gutknecht, O., and Michel, F. (2004). From
agents to organizations: an organizational view of multi-agent systems. Agent-
Oriented Software Engineering IV, pages 443—-459.

[Flemming, 1987] Flemming, U. (1987). More than the sum of parts: the gram-
mar of queen anne houses. Environment and Planning B: Planning and De-
sign, 14(3):323-350.

[Fogel, 1995] Fogel, D. (1995). Ewolutionary Computation. IEEE Press, New
York.

[Footprint, 2007] Footprint, T. V. B. (2007). The marketing opportunity in sec-
ond life. Technical report, Diversified Media Design, Combined Story, Market
Truths.

[Geiger et al., 2000] Geiger, C., Paelke, V., Reimann, C., and Rosenbach, W.
(2000). A framework for the structured design of vr/ar content. In VRST ’00:
Proceedings of the ACM symposium on Virtual reality software and technology,
pages 75-82, New York, NY, USA. ACM.

[Gemrot et al., 2009] Gemrot, J., Kadlec, R., Bida, M., Burker, O., Pibil, R.,
Havlicek, J., Zemésk, L., Simlovi¢, J., Vansa, R., Stolba, M., Plch, T., and
Brom, C. (2009). Pogamut 3 can assist developers in building AT (not only)
for their videogame agents. Agents for Games and Simulations, pages 1-15.

[Gillis, 2000] Gillis, P. (2000). Gillis: Cognitive behaviors for computer gener-
ated... - Google Scholar. US Army Research Institute Technical Report.

[Goldberg, 1989] Goldberg, D. (1989). Genetic algorithms in search, optimiza-
tion, and machine learning. Addison-wesley.

[Gratch and Marsella, 2004] Gratch, J. and Marsella, S. (2004). A domain-
independent framework for modeling emotion. Cognitive Systems Research,
5(4):269-306.

[Gratch and Marsella, 2005] Gratch, J. and Marsella, S. (2005). Evaluating a
computational model of emotion. In Autonomous Agents and Multi-Agent
Systems, pages 23—43. Univ So Calif, Inst Creat Technol, Marina Del Rey, CA
90292 USA.

[Gratch et al., 2002] Gratch, J., Rickel, J., André, E., Cassell, J., Petajan, E.,
and Badler, N. (2002). Creating interactive virtual humans: Some assembly
required. Intelligent Systems, IEEE, 17(4):54-63.

Bibliography 203

[Gu and Maher, 2003] Gu, N. and Maher, M. (2003). A grammar for the dy-
namic design of virtual architecture using rational agents. International Jour-
nal of Architectural Computing, 1(4):489-501.

[Gu and Maher, 2004] Gu, N. and Maher, M. (2004). Generating virtual archi-
tecture with style. In Proceedings of the Design Computing and Cognition’0/
Workshop on Design and Research Issues in Virtual Worlds.

[Hoisl and Shea, 2011] Hoisl, F. and Shea, K. (2011). Interactive, visual 3D
spatial grammars. In Gero, J. S., editor, Design Computing and Cognition 10,
pages 643—-662. Springer Netherlands.

[Holland, 1975] Holland, J. H. (1975). Adaptation in natural and artificial sys-
tems. MIT Press, Cambridge, MA, USA.

[Hudlicka, 2005] Hudlicka, E. (2005). A computational model of emotion and
personality: Applications to psychotherapy research and practice. Proceedings
of the 10th Annual CyberTherapy Conference: A Decade of Virtual Reality.

an et al., an, D., Roque, A., Leuski, A., Morie, J., and Traum, D.

J 1., 2009] J D, R A., Leuski, A., Morie, J d T D
(2009). A Virtual Tour Guide for Virtual Worlds. In IVA ’09: Proceedings
of the 9th International Conference on Intelligent Virtual Agents. Springer-
Verlag.

[Janis and Mann, 1977] Janis, I. L. and Mann, L. (1977). Decision making: A
psychological analysis of conflict, choice, and commitment. Free Press.

[Jowers, 2006] Jowers, 1. (2006). Computation with Curved Shapes: Towards
Freeform Shape Generation in Design. PhD thesis, The Open University.

[Joyce et al., 1980] Joyce, B., Weil, M., and Calhoun, E. (1980). Models of
teaching, volume 499. Prentice-Hall Englewood Cliffs, NJ.

[J.R. et al., 2002] J.R., W., R.M, E., and M., D. (2002). Structured develop-
ment of virtual environments. In Handbook of Virtual Environments: Design,
implementation and applications, pages 353-378. K. Stanney.

[Kadlec, 2008] Kadlec, R. (2008). Ewvolution of intelligent agent behaviour in
computer games. PhD thesis, Charles University in Prague.

[Kasap and Magnenat-Thalmann, 2008] Kasap, Z. and Magnenat-Thalmann,
N. (2008). Intelligent virtual humans with autonomy and personality: State-
of-the-art. New Advances in Virtual Humans, pages 43-84.

[Kipp et al., 2010] Kipp, M., Heloir, A., Schroder, M., and Gebhard, P. (2010).
Realizing multimodal behavior: closing the gap between behavior planning
and embodied agent presentation. Intelligent Virtual Agents, pages 57—63.

[Kolb et al., 1974] Kolb, D., Rubin, I., and Mclntyre, J. (1974). Organizational
psychology: an experiential approach. Prentice-Hall behavioral science in busi-
ness series. Prentice-Hall.

204 Bibliography

[Koning and Eizenberg, 1981] Koning, H. and Eizenberg, J. (1981). The lan-
guage of the prairie: Frank lloyd wright’s prairie houses. Environment and
Planning B, 8(3):295-323.

[Kopp et al., 2005] Kopp, S., Gesellensetter, L., Kramer, N. C., and
Wachsmuth, I. (2005). A conversational agent as museum guide: design and
evaluation of a real-world application. Lecture Notes in Computer Science.

[Koza, 1992] Koza, J. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cambridge, MA.

[Krishnamurti, 1981] Krishnamurti, R. (1981). The construction of shapes. En-
vironment and Planning B: Planning and Design, 8:5-40.

[Kshirsagar and Magnenat-Thalmann, 2002] Kshirsagar, S. and Magnenat-
Thalmann, N. (2002). Virtual humans personified. In Proceedings of the first
international joint conference on Autonomous agents and multiagent systems:
part 1, AAMAS 02, pages 356-357, New York, NY, USA. ACM.

[Laister and Kober, 2002] Laister, J. and Kober, S. (2002). Social aspects of
collaborative learning in virtual learning environments. In Proceedings of the

Networked Learning Conference Sheffield, March.

[Layne and Lee, 2001] Layne, K. and Lee, J. (2001). Developing fully func-
tional e-government: A four stage model. Government information quarterly,
18(2):122-136.

[Leduc, 1911] Leduc, S. (1911). The Mechanism Of Life. William Heinemann.

[Lee et al., 2010] Lee, J., Wang, Z., and Marsella, S. (2010). Evaluating models
of speaker head nods for virtual agents. In Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems: wvolume
1 - Volume 1, pages 1257-1264, Richland, SC. International Foundation for
Autonomous Agents and Multiagent Systems.

[Lewis, 2000] Lewis, M. (2000). Evolving human figure geometry. Technical
Report OSU-ACCAD-5/00-TR1, ACCAD, Ohio State University.

[Lewis and Parent, 2000] Lewis, M. and Parent, R. (2000). An implicit sur-
face prototype for evolving human figure geometry. Technical Report OSU-
ACCAD-11/00-TR2, ACCAD, Ohio State University.

[Li et al., 2008] Li, X., Mao, W., Zeng, D., and Wang, F. (2008). Agent-based
social simulation and modeling in social computing. Intelligence and Security
Informatics, pages 401-412.

[Liao, 2008] Liao, C. L. (2008). Avatars, second life®, and new media art: The
challenge for contemporary art education. In Art Education. National Art
Education Association.

Bibliography 205

[Lim et al., 2008] Lim, S., Prats, M., Jowers, 1., Chase, S., Garner, S., and
McKay, A. (2008). Shape exploration in design: formalising and supporting a
transformational process. International Journal of Architectural Computing,
6(4):415-433.

[Lipp et al., 2008] Lipp, M., Wonka, P., and Wimmer, M. (2008). Interactive
visual editing of grammars for procedural architecture. ACM Trans. Graph.,
27(3):1-10.

[Liu et al., 2009] Liu, Y. L.Y., Yang, C. Y. C., and Yu, J. Y. J. (2009). Research
on a model of emotion for virtual agent. Audio, Transactions of the IRE
Professional Group on, 2:96-99.

[Lou Maher and Gu, 2003] Lou Maher, M. and Gu, N. (2003). Situated design
of virtual worlds using rational agents. In ICEC ’03: Proceedings of the sec-
ond international conference on Entertainment computing. Carnegie Mellon
University.

[Lou Maher et al., 2005] Lou Maher, M., Liew, P., Gu, N., and Ding, L. (2005).
An agent approach to supporting collaborative design in 3d virtual worlds.
Automation in Construction, 14(2):189-195.

[Loyall, 1997] Loyall, A. (1997). Believable agents: building interactive person-
alities. PhD thesis, Carnegie Mellon University.

[Maes and Nardi, 1988] Maes, P. and Nardi, D., editors (1988). Meta-Level Ar-
chitectures and Reflection. Elsevier Science Inc., New York, NY, USA.

[Magnenat-Thalmann et al., 2004a] Magnenat-Thalmann, N., Seo, H., and
Cordier, F. (2004a). Automatic modeling of virtual humans and body cloth-
ing. Journal of Computer Science and Technology, 19(5):575-584.

[Magnenat-Thalmann et al., 2004b] Magnenat-Thalmann, N., Seo, H., and
Cordier, F. (2004b). Automatic modeling of virtual humans and body cloth-
ing. Journal of Computer Science and Technology, 19(5):575-584.

[Maher et al., 2000] Maher, M., Simoff, S., Gu, N.; and Lau, K. (2000). De-
signing virtual architecture. In CAADRIA 2000: The Fifth Conference on
Computer-Aided Architectural Design Research in Asia, pages 481-490.

[Maim et al., 2009] Maim, J., Yersin, B., and Thalmann, D. (2009). Unique
character instances for crowds. Computer Graphics and Applications, IEEE,
29(6):82-90.

[Mansouri et al., 2009] Mansouri, H., Kleinermann, F., and De Troyer, O.
(2009). Detecting inconsistencies in the design of virtual environments over
the web using domain specific rules. In Web3D ’09: Proceedings of the 14th
International Conference on 3D Web Technology, pages 101-109, New York,
NY, USA. ACM.

206 Bibliography

[Marsella and Badler, 2011] Marsella, S. and Badler, N. (2011). Special section:
Intelligent virtual agents guest editors’ introduction. PRESENCE: Teleoper-
ators and Virtual Environments, 20(5).

[Marsella et al., 2010] Marsella, S., Gratch, J., and Petta, P. (2010). Compu-
tational Models of Emotion. In Scherrer, K., Banziger, T., and Roesch, E.,
editors, Blueprint for Affective Computing. Oxford University Press.

[McCormack and Cagan, 2002] McCormack, J. P. and Cagan, J. (2002). Sup-
porting designers and hierarchies through parametric shape recognition. En-
vironment and Planning B: Planning and Design, 29(6):913-931.

[McCormack and Cagan, 2003] McCormack, J. P. and Cagan, J. (2003). Ex-
tending the representation capabilities of shape grammars: A parametric
matching technique for shapes defined by curved lines. Technical report, AAAI
SS-03-02.

[McInnerney and Roberts, 2004] McInnerney, J. and Roberts, T. (2004). On-
line learning: Social interaction and the creation of a sense of community.
Educational Technology € Society, 7(3):73-81.

[McNeill, 1996] McNeill, D. (1996). Hand and mind: What gestures reveal about
thought. University of Chicago Press.

[Messinger et al., 2008] Messinger, P., Stroulia, E., and Lyons, K. (2008). A
typology of virtual worlds: Historical overview and future directions. Journal
of Virtual Worlds Research, 1(1).

[Messinger et al., 2009] Messinger, P. R., Stroulia, E., Lyons, K., Bone, M., Niu,
R. H., Smirnov, K., and Perelgut, S. (2009). Virtual worlds - past, present,

and future: New directions in social computing. Decision Support Systems,
47(3):204-228.

[Min, 2004] Min, P. (2004). A 3D Model Search Engine. PhD thesis, The Prince-
ton University.

[Mitham, 2010] Mitham, N. (2010). Virtual goods: good for business? Journal
of Virtual Worlds Research, 2(4).

[Monahan et al., 2008] Monahan, T., McArdle, G., and Bertolotto, M. (2008).
Virtual reality for collaborative e-learning. Computers & Education,
50(4):1339-1353.

[Muller et al., 2006] Muller, P., Wonka, P., Haegler, S., Ulmer, A., and
Van Gool, L. (2006). Procedural modeling of buildings. ACM Trans. Graph.,
25(3):614-623.

[Napagao et al., 2010] Napagao, S. A., Koch, F., Sebastia, I. G., and Vazquez,
J. S. (2010). Making games alive: an organisational approach. In Proceedings
of AAMAS 2010 Workshop on Agents for Games and Simulations, pages 112—
124.

Bibliography 207

[Noriega, 1999] Noriega, P. (1999). Agent Mediated Auctions: The Fishmarket
Metaphor. Monografies de I'Institut d’Investigacié en Intel.ligencia Artificial.
Institut d’Investigacié en Intel.ligencia Artificial.

[Nuxoll and Laird, 2007] Nuxoll, A. M. and Laird, J. E. (2007). Extending cog-
nitive architecture with episodic memory. In Proceedings of the 22nd national
conference on Artificial intelligence - Volume 2, AAAT’07, pages 1560-1565.
AAAT Press.

[Ofria and Wilke, 2003] Ofria, C. and Wilke, C. O. (2003). Avida: a software
platform for research in computational evolutionary biology. Artificial Life,
10(2):191-229.

[Orsborn and Cagan, 2009] Orsborn, S. and Cagan, J. (2009). Multiagent shape
grammar implementation: automatically generating form concepts according
to a preference function. Journal of Mechanical Design, 131.

[Ortony et al., 1988] Ortony, A., Clore, G. L., and Collins, A. (1988). The Cog-
nitive Structure of Emotions. Cambridge University Press.

[Parish and Muller, 2001] Parish, Y. I. H. and Muller, P. (2001). Procedural
modeling of cities. In SIGGRAPH ’01: Proceedings of the 28th annual con-

ference on Computer graphics and interactive techniques, pages 301-308, New
York, NY, USA. ACM Press.

[Prats et al., 2004] Prats, M., Garner, S., Jowers, 1., and Earl, C. (2004). Im-
proving product design via a shape grammar tool. In D., M., editor, Proceed-
ings of the 8th International Design Conference, DESIGN 2004, Dubrovnik,
Croatia, pages 477-482.

[Prats et al., 2009] Prats, M., Lim, S., Jowers, 1., Garner, S., and Chase, S.
(2009). Transforming shape in design: observations from studies of sketching.
Design Studies, 30(5):503-520.

[Prusinkiewicz et al., 2001] Prusinkiewicz, P., Muendermann, L., Karwowski,
R., and Lane, B. (2001). The use of positional information in the model-
ing of plants. In Proceedings of ACM SIGGRAPH 2001, pages 289-300.

[Ranathunga et al., 2010] Ranathunga, S., Cranefield, S., and Purvis, M.
(2010). Interfacing a cognitive agent platform with a virtual world: a case
study using second life surangika ranathunga (extended abstract). In Proceed-
ings of the 10th International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 1181-1182. International Foundation for Autonomous
Agents and Multiagent Systems.

[Rasmussen et al., 1990] Rasmussen, S., Knudsen, C., Feldberg, R., and Hind-
sholm, M. (1990). The Coreworld - Emergence and Evolution of Cooperative
Structures in a Computational Chemistry. Physica D, 42:111-134.

208 Bibliography

[Ray, 1991] Ray, T. (1991). An approach to the synthesis of life. Artificial Life
11, Santa Fe Institute Studies in the Sciences of Complexity, 9:371-408.

[Ray, 1993] Ray, T. (1993). An evolutionary approach to synthetic biology: Zen
and the art of creating life. Artificial Life, 1(1-2):179-209.

[Rechenberg, 1973] Rechenberg, 1. (1973). Ewolutionsstrategie. Optimierung
technischer Systeme nach Prinzipien der biologischen FEvolution. Frommann
Holzboog.

[Rodriguez et al., 2008] Rodriguez, 1., Puig, A., Esteva, M., Sierra, C., Bog-
danovych, A., and Simoff, S. (2008). Intelligent objects to facilitate human
participation in virtual institutions. In Web Intelligence, pages 196-199.

[Rodriguez-Aguilar, 2001] Rodriguez-Aguilar, J. A. (2001). On the Design and
Construction of Agent-Mediated Electronic Institutions. PhD thesis, Univer-
sitat Autonoma de Barcelona, Spain.

[Rolls et al., 2002] Rolls, E., Stringer, S., and Trappenberg, T. (2002). A unified
model of spatial and episodic memory. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 269(1496):1087-1093.

[Russell et al., 1995] Russell, S., Norvig, P., and Artificial Intelligence, A.
(1995). A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood
Cliffs.

[San Chee, 2001] San Chee, Y. (2001). Networked virtual environments for col-
laborative learning. In Proceedings of ICCE/SchoolNet 2001Ninth Interna-
tional Conference on Computers in Education, Seoul, S. Korea, page 311.
Citeseer.

[Schill and Zetzsche, 1995] Schill, K. and Zetzsche, C. (1995). A model of vi-
sual spatio-temporal memory: The icon revisited. Psychological Research,
57(2):88-102.

[Searle, 1969] Searle, J. R. (1969). Speech Acts. Cambridge University Press,
Cambridge, UK.

[Seidel, 2010] Seidel, I. (2010). Engineering 3D Virtual World Applications De-
sign, Realization and Evaluation of a 8D e-Tourism Environment. PhD thesis,
Technischen Universitat Wien Fakultat fur Informatik.

[Seo and Magnenat-Thalmann, 2003] Seo, H. and Magnenat-Thalmann, N.
(2003). An automatic modeling of human bodies from sizing parameters.
In 18D °03: Proceedings of the 2003 symposium on Interactive 3D graphics.
ACM Request Permissions.

[Silverman et al., 2006a] Silverman, B., Bharathy, G., O’Brien, K., and Corn-
well, J. (2006a). Human behavior models for agents in simulators and games:
part II: gamebot engineering with PMFserv. Presence: Teleoperators € Vir-
tual Environments, 15(2):163-185.

Bibliography 209

[Silverman et al., 2006b] Silverman, B., Johns, M., Cornwell, J., and O’Brien,
K. (2006b). Human behavior models for agents in simulators and games:

part I: enabling science with PMFserv. Presence: Teleoperators & Virtual
Environments, 15(2):139-162.

[Silverman et al., 2011] Silverman, B., Pietrocola, D., Weyer, N., Osin, O.,
Johnson, D., Weaver, R., and Nye, B. (2011). Rich socio-cognitive agents
for immersive training environments: case of NonKin Village. Autonomous
Agents and Multi-Agent Systems, pages 1-32.

[Sims, 1994] Sims, K. (1994). Evolving virtual creatures. In SIGGRAPH ’94:
Proceedings of the 21st annual conference on Computer graphics and interac-
tive techniques. ACM Request Permissions.

[Singhal and Zyda, 1999] Singhal, S. and Zyda, M. (1999). Networked virtual

environments: design and implementation. Recherche, 67:02.

[Sipper, 1995] Sipper, M. (1995). An introduction to artificial life. Ezplorations
in Artificial Life (special issue of AI Expert), pages 4-8.

[Sivanandam and Deepa, 2007] Sivanandam, S. and Deepa, S. (2007). Introduc-
tion to genetic algorithms. Springer Verlag.

[Smith et al., 2007] Smith, G., Maher, M., and Gu, N. (2007). Designing Virtual
Worlds for 3D Electronic Institutions. Computer-Aided Architectural Design
Futures (CAADFutures) 2007, pages 397-400.

[Soni et al., 2010] Soni, S., Khanna, P., and Tandon, P. (2010). Multi-agent fea-
ture based shape grammar implementation for concept generation of industrial
product design. Computer-Aided Design and Applications, 7(6):797-807.

[Southey and Linders, 2001] Southey, F. and Linders, J. G. (2001). Ossa - a
conceptual modelling system for virtual realities. In ICCS ’01: Proceedings
of the 9th International Conference on Conceptual Structures, pages 333345,
London, UK. Springer-Verlag.

[Steinkuehler, 2004] Steinkuehler, C. (2004). Learning in massively multiplayer
online games. In Proceedings of the 6th international conference on Learning
sciences, pages 521-528. International Society of the Learning Sciences.

[Stephenson, 2000] Stephenson, N. (2000). Snow Crash. Bantam spectra book.
Bantam Books.

[Steunebrink et al., 2009] Steunebrink, B., Dastani, M., and Meyer, J. (2009).
The occ model revisited. In Proceedings of the 4th Workshop on Emotion and
Computing.

[Stiny and Gips, 1972] Stiny, G. and Gips, J. (1972). Shape grammars and the
generative specification of painting and sculpture. In Friedman, C. V., editor,
Information Processing 71, pages 1460-1465, Amsterdam.

210 Bibliography

[Stiny and Mitchell, 1978] Stiny, G. and Mitchell, W. J. (1978). The palladian
grammar. Environment and Planning B, 5(1):5-18.

[Stiny and Mitchell, 1980] Stiny, G. and Mitchell, W. J. (1980). The grammar
of paradise: on the generation of mughul gardens. Environment and Planning
B, 7(2):209-226.

[Su et al., 2007] Su, W.-P., Pham, B., and Wardhani, A. (2007). Personality and
emotion-based high-level control of affective story characters. IEEE Transac-
tions on Visualization and Computer Graphics, pages 281-293.

[Swartout et al., 2006] Swartout, W., Gratch, J., Hill Jr, R., Hovy, E., Marsella,
S., Rickel, J., Traum, D., et al. (2006). Toward virtual humans. Al Magazine,
27(2):96.

[T. Speller, 2007] T. Speller, D. Whitney, E. C. (2007). Using shape grammar
to derive cellular automata rule patterns. Complex Systems, 17:79102.

[Takahashi et al., 2007] Takahashi, S., Sallach, D., and Rouchier, J. (2007). Ad-
vancing Social Simulation: The First World Congress. Springer Series on
Agent Based Social Systems Series. Springer.

[Tanriverdi and Jacob, 2001] Tanriverdi, V. and Jacob, R. J. K. (2001). Vrid:
A design model and methodology for developing virtual reality interfaces. In
Proc. ACM VRST 2001 Symposium on Virtual Reality Software and Technol-
ogy, ACM, pages 175-182. Press.

[Tapia, 1992] Tapia, M. (1992). Chinese lattice designs and parametric shape
grammars. The Visual Computer, 9:47-56.

[Tapia, 1999] Tapia, M. (1999). A visual implementation of a shape grammar
system. Environment and Planning B: Planning and Design, 26(1):59-73.

[Tapscott, 1998] Tapscott, D. (1998). Growing up digital, volume 302. McGraw-
Hill New York.

[Thalmann, 2007] Thalmann, D. (2007). Crowd simulation. Wiley Online Li-
brary.

[Thalmann et al., 2009] Thalmann, D., Grillon, H., Maim, J., and Yersin, B.
(2009). Challenges in crowd simulation. In CyberWorlds, 2009. CW’09. In-
ternational Conference on, pages 1-12. IEEE.

[TheSun, 2010] TheSun (2010). Black parents... white baby.
http://www.thesun.co.uk/sol/homepage/news/3060907/
Black-parents-give-birth-to-white-baby.html.

[Trescak et al., 2010a] Trescak, T., Esteva, M., and Rodriguez, I. (2010a). Gen-
erating 3d virtual environments using the virtual world builder toolkit. In
Computer Graphics International 2010 (CGI’10) - Demo, Singapore.

http://www.thesun.co.uk/sol/homepage/news/3060907/Black-parents-give-birth-to-white-baby.html
http://www.thesun.co.uk/sol/homepage/news/3060907/Black-parents-give-birth-to-white-baby.html

Bibliography 211

[Trescak et al., 2010b] Trescak, T., Esteva, M., and Rodriguez, I. (2010b). A
virtual world grammar for automatic generation of virtual worlds. The Visual
Computer Journal, 26:521-531. Springer.

[Trescak et al., 2011] Trescak, T., Esteva, M., and Rodriguez, I. (2011). Vixee
an innovative communication infrastructure for virtual institutions. In Pro-
ceedings of The 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’11), volume 3 of AAMAS ’11, pages 1131-1132,
Richland, SC. TFAAMAS.

[Trescak et al., 2012a] Trescak, T., Esteva, M., and Rodriguez, I. (2012a). A
shape grammar interpreter for rectilinear forms. Journal of Computer-Aided
Design, 44:657 — 670. Elsevier.

[Trescak et al., 2010c] Trescak, T., Esteva, M., Rodriguez, 1., and Morales, J.
(2010c). A virtual world builder toolkit. In Proceedings of The 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’10), pages 1627-1628, Toronto, Canada. IFAAMAS.

[Trescak et al., 2010d] Trescak, T., Esteva, M., Rodriguez, I., and Morales, J.
(2010d). A virtual world builder toolkit (extended abstract). In Proceedings
of The 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’10), pages 1627-1628, Toronto, Canada. IFAAMAS.

[Trescak et al., 2012b] Trescak, T., Esteva, M., Rodriguez, 1., Sanchez, M. L.,
and Almajano, P. (to appear in 2012b). Execution infrastructure for normative
virtual environments. International Scientific Journal Engineering Applica-
tions of Artificial Intelligence. Elsevier.

[Trescak et al., 2009] Trescak, T., Rodriguez, I., and Esteva, M. (2009). General
shape grammar interpreter for intelligent designs generations. In Werner, B.,
editor, Proceedings of the Computer Graphics, Imaging and Visualization con-
ference (CGIV’09), volume 6, pages 235-240, Tianjin, China. IEEE Computer
Society, IEEE Computer Society.

[Troyer et al., 2003] Troyer, O. D., Bille, W., Romero, R., and Stuer, P. (2003).
On generating virtual worlds from domain ontologies. In Proceedings of the
9th International Conference on Multi-Media Modeling, pages 279-294.

[Van Dyke Parunak et al., 2006] Van Dyke Parunak, H., Bisson, R., Brueckner,
S., Matthews, R., and Sauter, J. (2006). A model of emotions for situated
agents. Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 993-995.

[Ventrella, 2000] Ventrella, J. (2000). Avatar Physics and Genetics. In VW
’00: Proceedings of the Second International Conference on Virtual Worlds.
Springer-Verlag.

212 Bibliography

[Vieira et al., 2008] Vieira, R. C. C., Vidal, C. A., and Cavalcante-Neto, J. B.
(2008). A biologically inspired generation of virtual characters. In Proceedings
of the 2008 ACM symposium on Applied computing, SAC ’08, pages 1218-
1224, New York, NY, USA. ACM.

[Vieira et al., 2010] Vieira, R. C. C., Vidal, C. A., and Neto, J. B. C. (2010).
Simulation of genetic inheritance in the generation of virtual characters. In
Lok, B., Klinker, G., and Nakatsu, R., editors, VR, pages 119-126. IEEE.

[Wang and Duarte, 2002] Wang, Y. and Duarte, J. P. (2002). Automatic gen-
eration and fabrication of designs. Automation in Construction, 11(3):291 —
302.

[Weidlich, 2000] Weidlich, W. (2000). Sociodynamics: A systematic approach to
mathematical modelling in the social sciences. Harwood Academic.

[Weiss, 1999] Weiss, G. (1999). Multiagent systems: a modern approach to dis-
tributed artificial intelligence. The MIT press.

[Weitnauer et al., 2008] Weitnauer, E., Thomas, N. M., Rabe, F., and Kopp, S.
(2008). Intelligent Agents Living in Social Virtual Environments — Bring-
ing Max into Second Life. In IVA ’08: Proceedings of the Sth international
conference on Intelligent Virtual Agents. Springer-Verlag.

[Witmer et al., 2002] Witmer, B. G., Jerome, C., and Goldberg, S. L. (2002).
Modeling Human Performance: Effects of Personal Traits and Transitory
States. Technical report, Army research institute for the behavioral and social
sciences.

[Yaeger, 1993] Yaeger, L. (1993). Computational genetics, physiology,
metabolism, neural systems, learning, vision, and behavior or PolyWorld: Life
in a new context. In Artificial Life III, Vol. XVII of SFI Studies in the Sci-
ences of Complezity, Santa Fe Institute, pages 263-298. Addison-Wesley.

[Yaeger et al., 2010] Yaeger, L., Sporns, O., Williams, S., and Shuai, X. (2010).
Evolutionary selection of network structure and function. Artificial Life, 12.

[Yee, 2007] Yee, N. (2007). The Proteus Effect. PhD thesis, Stanford University.

[Zimmer, 2005] Zimmer, C. (2005). Testing darwin. Discover.

	Introduction
	Motivation
	Research Problem
	Objectives
	Research Methods
	Contributions and Significance
	Contributions
	Significance

	Examples
	E-auctions
	Uruk 3000 BC

	Structure
	Summary

	Background and Related Work
	Virtual Worlds
	Avatars
	Virtual World Content Creation
	Related Work: Automatic Generation of a Virtual World Design
	Second Life Virtual World and Open Simulator Platform

	Virtual Worlds as Hybrid Multi-Agent Systems
	Electronic Institutions (EI)
	Dialogical Framework: Roles and Ontology
	Scene
	Performative Structure
	Norms
	Summary of Institutional Data
	EIDE Framework

	Virtual Institutions (VI)
	Related Work: Causal Connection Between Virtual Worlds and Multi-agent Systems

	Shape Grammars
	Related Work: Computer Implementation of Shape Grammars

	Artificial Life
	Intelligent Virtual Agents
	Related Work: Models for Intelligent Virtual Agents
	Related Work: Crowd Simulation

	Summary

	Shape Grammar Interpreter (SGI)
	Motivation
	Implemented Generation Algorithms
	Tree-Search Based Algorithms
	Subshape Detection Algorithm
	Parameterization of Generation Process Using Subshape Detection

	Shape Grammar Interpreter
	Framework description
	SGI Architecture
	SGI User Interface

	Evaluation
	Tree Search Algorithm
	Subshape Detection Algorithm

	Summary

	Virtual World Grammar (VWG)
	Motivation
	Motivation Example

	Virtual World Grammar (VWG)
	Ontology
	Shape Grammar
	Validations
	Heuristics
	Virtual World Grammar (VWG)
	Design Generation Process

	Virtual World Builder Toolkit
	Workflow for Definition and Execution of Virtual World Grammars

	Results
	Summary

	Virtual Institution eXEcution Environment (VIXEE)
	Motivation
	Virtual Institution Execution Infrastructure
	Solution Architecture
	Message Handling: Movie Script Mechanism
	VW Actions Implementation
	AMELI Events Implementation

	VIXEE Interface
	Case Study: eAuction House
	Evaluation
	Summary

	VI Agents
	Motivation
	Approach Overview
	VI Agent Model
	Genetics
	Believability
	Culture
	Virtual World Objects
	Reasoning

	Implementation
	VIXEE Integration

	Summary

	3D Avatar Generation
	Motivation
	Avatar Generation
	Genetic algorithms
	Formal Representation of Genetic Data
	Formal Representation of Genetic Operators
	Crossover
	Inheritance and Gene Skipping
	Mutation
	Genotype Rules
	Algorithm

	Second Life - Genetic Mixer Application
	Evaluation
	Summary

	Case Study: Uruk 3000 BC
	Introduction
	Workflow
	Definition of Virtual Institution Components
	Virtual World
	Electronic Institution
	Virtual World Objects
	Goals
	Culture
	Virtual World Grammar
	Movie Script

	Results
	Summary

	Conclusions and Future Work
	Publications

	KZero research results
	XML Definition of a Shape Grammar

